Science.gov

Sample records for affected zones haz

  1. Dynamic Material Properties of the Heat-Affected Zone (haz) in Resistance SPOT Welding

    NASA Astrophysics Data System (ADS)

    Ha, Ji-Woong; Song, Jung-Han; Huh, Hoon; Lim, Ji-Ho; Park, Sung-Ho

    This paper is concerned with a methodology to identify the dynamic material properties of the heat-affected zone (HAZ) near the base metal in a resistance spot weld process at various strain rates. In order to obtain the dynamic material properties of the HAZ in the spot-welded steel sheet, specimens are prepared to have similar material properties, hardness and microstructure to the actual HAZ. Such thermally simulated specimens are fabricated with the material thermal cycle simulator (MTCS) and compared with the real one for the hardness and microstructure. Dynamic tensile tests are then conducted with a high speed material testing machine. Stress-strain curves of the thermally simulated HAZ are obtained at various strain rates ranged from 0.001/sec to 100/sec. Obtained material properties are applied to the finite element analysis of the spot-welded tensile-shear specimen in order to verify validity of the proposed testing methodology and obtained results. Analysis results demonstrate that the material properties obtained are appropriate for the FE analysis of spot-welded specimens.

  2. The effect of weld Heat-Affected zone (HAZ) liquation kinetics on the hot cracking susceptibility of alloy 718

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, B.; Thompson, R. G.

    1993-06-01

    A delay in grain boundary liquation was observed in the subsolidus portion of the weld heat affected zone (HAZ) of alloy 718 for the solution-treated material. However, for the homogenized or the homogenized and aged alloy, an instantaneous liquation of the grain boundaries occurred in the subsolidus HAZ. The above difference in the grain boundary liquation kinetics may account for the greater hot-cracking susceptibility of the homogenized or the homogenized and aged alloy compared to that of the solution-treated alloy. Existing models of grain boundary liquation are used to explain the observed kinetic effects associated with liquation in the subsolidus HAZ of alloy 718.

  3. The effect of weld heat-affected zone (HAZ) liquation kinetics on the hot cracking susceptibility of alloy 718

    SciTech Connect

    Radhakrishnan, B.; Thompson, R.G. . Department of Materials Science and Engineering)

    1993-06-01

    A delay in grain boundary liquation was observed in the subsolidus portion of the weld heat affected zone (HAZ) of alloy 718 for the solution-treated material. However, for the homogenized and aged alloy, an instantaneous liquation of the grain boundaries occurred in the subsolidus HAZ. The above difference in the grain boundary liquation kinetics may account for the greater hot-cracking susceptibility of the homogenized or the homogenized and aged alloy compared to that of the solution-treated alloy. Existing models of grain boundary liquation are used to explain the observed kinetic effects associated with liquation in the subsolidus HAZ of alloy 718.

  4. Estimation of the most influential factors on the laser cutting process heat affected zone (HAZ) by adaptive neuro-fuzzy technique

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor; Nikolić, Vlastimir; Milovančević, Miloš; Lazov, Lyubomir

    2016-07-01

    Heat affected zone (HAZ) of the laser cutting process may be developed on the basis on combination of different factors. In this investigation was analyzed the HAZ forecasting based on the different laser cutting parameters. The main aim in this article was to analyze the influence of three inputs on the HAZ of the laser cutting process. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for HAZ forecasting. Three inputs are considered: laser power, cutting speed and gas pressure. According the results the cutting speed has the highest influence on the HAZ forecasting (RMSE: 0.0553). Gas pressure has the smallest influence on the HAZ forecasting (RMSE: 0.0801). The results can be used in order to simplify HAZ prediction and analyzing.

  5. On the development of a new pre-weld thermal treatment procedure for preventing heat-affected zone (HAZ) liquation cracking in nickel-base IN 738 superalloy

    NASA Astrophysics Data System (ADS)

    Ola, O. T.; Ojo, O. A.; Chaturvedi, M. C.

    2014-10-01

    Hot cracking in the heat-affected zone (HAZ) of precipitation strengthened nickel-base superalloys, such as IN 738, during fusion welding remains a major factor limiting reparability of nickel-base gas turbine components. The problem of HAZ intergranular cracking can be addressed by modifying the microstructure of the pre-weld material through thermal treatment, which requires significant understanding of the critical factors controlling cracking behaviour. The decomposition of Mo-Cr-W-and Cr-rich borides in the alloy, among other factors, has been observed to contribute significantly to non-equilibrium intergranular liquation and, hence, intergranular liquation cracking during welding. Gleeble physical simulation of HAZ microstructure has also shown that non-equilibrium liquation is more severe in the vicinity of decomposed borides in the alloy and can occur at temperatures as low as 1,150 °C. Although currently existing pre-weld heat treatments for IN 738 superalloy minimize the contributions of dissolution of second phases, including borides, to HAZ intergranular liquation, these heat treatments are not industrially feasible due to process-related difficulties. Therefore, a new industrially feasible and effective pre-weld thermal treatment process, designated as FUMT, was developed during the present research by controlling both the formation of borides and the segregation of boron at the grain boundaries in the pre-weld heat-treated material. This thermal treatment was observed to very significantly reduce intergranular HAZ cracking in welded IN 738 superalloy. The details of the development process and developed procedure are presented in this paper.

  6. Microstructure characterization and weldability evaluation of the weld heat affected zone (HAZ) in 310HCbN tubing

    SciTech Connect

    Lundin, C.D.; Qiao, C.Y.P.

    1995-08-01

    Metallographic evaluation on the Gleeble simulated HAZ samples of 310HCbN tubing material was performed in order to reveal potential degradation in mechanical properties and corrosion resistance. The carbide evolutionary process in the HAZ samples was studied. It is indicated that 310HCbN material showed a weld HAZ sensitization tendency that is associated with the formation of Cr{sub 23}C{sub 6}.

  7. Corrosion Cyclic Voltammetry of Two Types of Heat-Affected Zones (HAZs) of API-X100 Steel in Bicarbonate Solutions

    NASA Astrophysics Data System (ADS)

    Eliyan, Faysal Fayez; Alfantazi, Akram

    2014-12-01

    This paper examined the electrochemical corrosion behavior and corrosion products of two types of heat-affected HAZs made from API-X100 steel. Cyclic voltammetry, with different scan rates and potential ranges at 10 cycles, was applied to analyze the interdependent corrosion reactions of cathodic reduction, anodic dissolution, passivation, and transpassivation. The HAZ cooled at 60 K/s, from a peak temperature of 1470 K (1197 °C) that was held for 15 seconds, exhibited better passivation and lower cathodic activity than the HAZ cooled at 10 K/s. Increasing bicarbonate concentration, from 0.05 and 0.2 to 0.6 M, increases the anodic activity and cathodic reduction, but accordingly protects the active surfaces and enhances passivation.

  8. Relationship between crystallographic structure of the Ti{sub 2}O{sub 3}/MnS complex inclusion and microstructure in the heat-affected zone (HAZ) in steel processed by oxide metallurgy route and impact toughness

    SciTech Connect

    Xiong, Zhihui; Liu, Shilong; Wang, Xuemin; Shang, Chengjia; Misra, R.D.K.

    2015-08-15

    A new method based on electron back scattered diffraction (EBSD) is proposed to determine the structure of titanium oxide/MnS complex inclusion which induced the formation of intragranular acicular ferrite (IAF) in heat-affected zone (HAZ) in steel processed by oxide metallurgy route. It was found that the complex inclusion was Ti{sub 2}O{sub 3}/MnS, the orientation relationship between Ti{sub 2}O{sub 3} and MnS was also examined, and the crystallographic orientation relationship among IAF, Ti{sub 2}O{sub 3}/MnS complex inclusion, austenite, bainite formed at lower temperature is researched systematically. It was observed that MnS precipitated on Ti{sub 2}O{sub 3} at specific habit plane and direction and MnS had a specific orientation relationship ((0001) Ti{sub 2}O{sub 3}//(111) MnS), <10–10> Ti{sub 2}O{sub 3}//<110> MnS) with respect to Ti{sub 2}O{sub 3}. Intragranular acicular ferrite (IAF) nucleated on MnS part of the Ti{sub 2}O{sub 3}/MnS complex inclusion had no specific orientation relationship with MnS. IAF and the surrounding bainite had different Bain groups, so that there was an increase in high angle boundaries, which was beneficial for the toughness of HAZ. - Highlights: • The inclusion of TiO{sub x}/MnS that induced IAF formation is identified to be Ti{sub 2}O{sub 3}/MnS. • The inclusion is identified based on electron back scattered diffraction (EBSD). • MnS and Ti{sub 2}O{sub 3} had specific orientation relationship of Ti{sub 2}O{sub 3}/MnS complex inclusion. • The IAFs formed on the same inclusion tend to be in one Bain group. • IAF and the surrounding bainite tend to be in different Bain groups.

  9. Weld heat-affected zone in Ti-6Al-4V alloys. Part 1: Computer simulation of the effect of weld variables on the thermal cycles in the HAZ

    SciTech Connect

    Shah, A.K.; Kulkarni, S.D.; Gopinathan, V.; Krishnan, R.

    1995-09-01

    The weld thermal cycles encountered in the HAZ of titanium alloys have been characterized using modified Rosenthal equations. The results are shown in the form of axonometric plots depicting the effect of two weld variables keeping the other variables fixed. Computer simulation results show that the heat input and the plate thickness are the major variables affecting the thermal cycles in the HAZ. The effects of changes in welding speed are reflecting in the variation in the heat input. The electrode radius has minimal effect and can be termed as the minor variable. Preheat or interpass temperatures have an intermediate effect. An increase in electrode radius or decrease in plate thickness requires large apparent displacement of the heat source above the plate surface to be incorporated in the analytical solutions. The melt pool width increases sharply with an increase in the heat input (a/v) or a decrease in plate thickness (d); however, preheat temperature (T{sub 0}) has negligible effect. The effect of weld variables on the effective heat input is also similar. The t{sub 8/5} parameter increases sharply with reducing plate thickness or increasing heat input.

  10. Bead temperature effects on FCAW heat-affected zone hardness

    SciTech Connect

    Kiefer, J.H.

    1995-11-01

    Hardness limits for welding procedure qualification are often imposed to lessen the chances of delayed hydrogen cracking during production fabrication. Temper bead techniques have been used by fabricators during these qualifications to improve their chances of success. This practice involves using the heat of additional weld beads to soften the heat-affected zone (HAZ) hardness in the base metal next to the weld where the hardness is the greatest. The technique works under controlled conditions, but the consistency for field use was questionable. This report describes an investigate of the effect of welding parameters, base metal chemical composition, and weld bead placement on HAZ softening. An empirical formula developed from base plate chemical composition, weld cooling time, and temper bead placement can be used to estimate the amount of HAZ tempering. Combined with an appropriate hardness prediction formula, it can help find the welding procedure needed to achieve a desired maximum HAZ hardness, or predict the HAZ hardness of existing welds. Based on the results of the study, bead temperature is not recommended for HAZ hardness control on large scale fabrications.

  11. Mechanical Properties and Microstructural Evolution of Simulated Heat-Affected Zones in Wrought Eglin Steel

    NASA Astrophysics Data System (ADS)

    Leister, Brett M.; DuPont, John N.; Watanabe, Masashi; Abrahams, Rachel A.

    2015-12-01

    A comprehensive study was performed to correlate the mechanical properties and microstructural evolution in the heat-affected zone of Eglin steel. A Gleeble 3500 thermo-mechanical simulator was used to simulate weld thermal cycles with different peak temperatures at a heat input of 1500 J/mm. These samples underwent mechanical testing to determine strength and toughness in the as-welded and post-weld heat-treated conditions. The inter-critical heat-affected zone (HAZ) had the lowest strength following thermal simulation, while the fine-grain and coarse-grain heat-affected zone exhibited increased strength when compared to the inter-critical HAZ. The toughness of the heat-affected zone in the as-simulated condition is lower than that of the base metal in all regions of the HAZ. Post-weld heat treatments (PWHTs) increased the toughness of the HAZ, but at the expense of strength. In addition, certain combinations of PWHTs within specific HAZ regions exhibited low toughness caused by tempered martensite embrittlement or intergranular failure. Synchrotron X-ray diffraction data have shown that Eglin steel has retained austenite in the fine-grain HAZ in the as-simulated condition. In addition, alloy carbides (M23C6, M2C, M7C3) have been observed in the diffraction spectra for the fine-grain and coarse-grain HAZ following a PWHT of 973 K (700 °C)/4 hours.

  12. Crack arrest toughness of a heat-affected zone containing local brittle zones

    SciTech Connect

    Malik, L.; Pussegoda, L.N.; Graville, B.A.; Tyson, W.R.

    1996-11-01

    The awareness of the presence of local brittle zones (LBZs) in the heat-affected zone (HAZ) of welds has led to the requirements for minimum initiation toughness for the HAZ for critical applications. A fracture control philosophy that is proposed to be an attractive alternative for heat-affected zones containing LBZs is the prevention of crack propagation rather than of crack initiation. Such an approach would be viable if it could be demonstrated that cracks initiated in the LBZs will be arrested without causing catastrophic failure, notwithstanding the low initiation (CTOD) toughness resulting from the presence of LBZs. Unstable propagation of a crack initiating from an LBZ requires the rupture of tougher microstructural regions surrounding the LBZ in HAZ, and therefore the CTOD value reflecting the presence of LBZ is unlikely to provide a true indication of the potential for fast fracture along the heat-affected zone. Base metal specifications usually ensure that small unstable cracks propagating from the weld zone into the base metal would be arrested. To investigate the likelihood of fast fracture within the HAZ, a test program has been carried out that involved performing compact plane strain and plane stress crack arrest tests on a heat-affected zone that contained LBZs, and thus exhibited unacceptable low CTOD toughness for resistance to brittle fracture initiation. The results indicated that the crack arrest toughness was little influenced by the presence of local brittle zones. Instead, the superior toughness of the larger proportion of finer-grain HAZ surrounding the LBZ present along the crack path has a greater influence on the crack arrest toughness.

  13. On relationship between microfissuring and microstructure in the HAZ of Inconel 718

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.

    1982-01-01

    Inconel 718, as well as many other metals, is susceptible to intergranular hot cracking in the weld heat-affected-zone (HAZ). These cracks form near the solidus temperature of the metal during the welding process. This problem is of particular concern to NASA/MSFC because the SSME is primarily constructed of welded Inconel 718. The present program studied microfissuring in the weld HAZ of Inconel 718 by simulating HAZ thermal cycles with the Gleeble machine. Previous researchers have studied the instantaneous mechanical properties of the HAZ using the Gleeble. The present study examines the instantaneous microstructure of the HAZ. This approach showed that second phase structures, high in niobium, melt and wet the grain boundaries in the HAZ during welding. It is postulated that the resultant HAZ grain boundaries, enriched in niobium, act as preferred sites for microfissure nucleation as the weld zone cools.

  14. Creep deformation and rupture behavior of 2.25Cr-1Mo steel weldments and its constituents (base metal, weld metal and simulated heat affected zones)

    SciTech Connect

    Laha, K.; Chandravathi, K.S.; Rao, K.B.S.; Mannan, S.L.

    1995-12-31

    Microstructure across a weldment base metal through transformed heat-affected zone (HAZ) to cast weld metal. HAZ of 2.25Cr-1Mo weldment consists of coarse-grain bainite, fine-grain bainite and intercritical region. These HAZ microstructures were simulated by isothermal heat-treatments. Creep tests were carried out on base metal, weld metal, weldment and the simulated HAZ structures. Creep deformation and fracture behavior of 2.25Cr-1Mo weldments has been assessed based on the properties of its constituents. Coarse-grain bainite with low ductility and intercritical structure with low strength are the critical components of HAZ determining performance of the weldments.

  15. Analysis of heat-affected zone cracking in Ni/sub 3/Al alloys

    SciTech Connect

    Santella, M.L.; Maguire, M.C.; David, S.A.

    1986-01-01

    A key issue in the development of Ni/sub 3/Al for engineering applications is their weldability. Detailed welding studies have been done which show that iron-containing nickel aluminides are prone to heat-affected zone (HAZ) cracking. Hot ductility testing of these alloys has suggested that grain boundary cohesive strength controls high temperature ductility and the resistance to HAZ cracking. This analysis cannot, however, be used to explain the behavior of other aluminide alloys. The intention of this work is to more fully characterize the relationship between mechanical behavior and HAZ cracking susceptibility for Ni/sub 3/Al alloys.

  16. SCC Initiation in Alloy 600 Heat Affected Zones Exposed to High Temperature Water

    SciTech Connect

    E Richey; DS Morton; RA Etien; GA Young; RB Bucinell

    2006-11-03

    Studies have shown that grain boundary chromium carbides improve the stress corrosion cracking (SCC) resistance of nickel based alloys exposed to high temperature, high purity water. However, thermal cycles from welding can significantly alter the microstructure of the base material near the fusion line. In particular, the heat of welding can solutionize grain boundary carbides and produce locally high residual stresses and strains, reducing the SCC resistance of the Alloy 600 type material in the heat affected zone (HAZ). Testing has shown that the SCC growth rate in Alloy 600 heat affected zone samples can be {approx}30x faster than observed in the Alloy 600 base material under identical testing conditions due to fewer intergranular chromium rich carbides and increased plastic strain in the HAZ [1, 2]. Stress corrosion crack initiation tests were conducted on Alloy 600 HAZ samples at 360 C in hydrogenated, deaerated water to determine if these microstructural differences significantly affect the SCC initiation resistance of Alloy 600 heat affected zones compared to the Alloy 600 base material. Alloy 600 to EN82H to Alloy 600 heat-affected-zone (HAZ) specimens where fabricated from an Alloy 600 to Alloy 600 narrow groove weld with EN82H filler metal. The approximate middle third of the specimen gauge region was EN82H such that each specimen had two HAZ regions. Tests were conducted with in-situ monitored smooth tensile specimens under a constant load, and a direct current electric potential drop was used for in-situ detection of SCC. Test results suggest that the SCC initiation resistance of Alloy 600 and its weld metal follows the following order: EN82H > Alloy 600 HAZ > Alloy 600. The high SCC initiation resistance observed to date in Alloy 600 heat affected zones compared to wrought Alloy 600 is unexpected based on the microstructure of HAZ versus wrought material and based on prior SCC growth rate studies. The observed behavior for the HAZ specimens is likely

  17. Fracture characteristics of HAZ-double edge notched weld joints with mechanical undermatching

    SciTech Connect

    Zarzour, J.F.; Kleinosky, M.J.

    1995-12-31

    Both experimental and finite element investigations were carried out on double edge notched weld joints in tension to determine the influence of material gradients across the heat affected zone (HAZ) on cracks located at three interface regions: (1) base plate and fine grain HAZ, (2) coarse grain HAZ and fine grain HAZ, (3) weld metal and coarse grain HAZ. For HY-100 steel with a 20 percent weld undermatch, it was concluded that for case (a), the different mechanical properties of both fine grain HAZ (FGHAZ) and coarse grain HAZ (CGHAZ), obtained with a novel indentation technique, greatly affect the near tip stress fields and promote yielding into the base plate. For case (b), the stress triaxiality at the crack tip is the highest and the plastic deformation is confined to the HAZ zone. Finally for case (c), the stress triaxiality is lowered by the presence of a softer weld metal. However, there is a possibility of gross section yielding through the weld area. The overall conclusion indicates that, in order to evaluate crack initiation in the HAZ, one needs to verify the relevant microstructure and determine the mechanical properties of each constituent, mainly, the CGHAZ and FGHAZ. In addition, the assumption of homogeneous HAZ properties may lead to erroneous conclusions.

  18. The Stress Corrosion Crack Growth Rate of Alloy 600 Heat Affected Zones Exposed to High Purity Water

    SciTech Connect

    George A. Young; Nathan Lewis

    2003-04-05

    Grain boundary chromium carbides improve the resistance of nickel based alloys to primary water stress corrosion cracking (PWSCC). However, in weld heat affected zones (HAZ's), thermal cycles from fusion welding can solutionize beneficial grain boundary carbides, produce locally high residual stresses and strains, and promote PWSCC. The present research investigates the crack growth rate of an A600 HAZ as a function of test temperature. The A600 HAZ was fabricated by building up a gas-tungsten-arc-weld deposit of EN82H filler metal onto a mill-annealed A600 plate. Fracture mechanics based, stress corrosion crack growth rate testing was performed in high purity water between 600 F and 680 F at an initial stress intensity factor of 40 ksi {radical}in and at a constant electrochemical potential. The HAZ samples exhibited significant SCC, entirely within the HAZ at all temperatures tested. While the HAZ samples showed the same temperature dependence for SCC as the base material (HAZ: 29.8 {+-} 11.2{sub 95%} kcal/mol vs A600 Base: 35.3 {+-} 2.58{sub 95%} kcal/mol), the crack growth rates were {approx} 30X faster than the A600 base material tested at the same conditions. The increased crack growth rates of the HAZ is attributed to fewer intergranular chromium rich carbides and to increased plastic strain in the HAZ as compared to the unaffected base material.

  19. Detection of hydrogen attack in base metal and weld HAZ

    SciTech Connect

    Birring, A.S.; Elliot, J.; Hsiao, C.P.

    1995-12-01

    Hydrogen attack is known to occur in C-1/2Mo steels operating at high temperature and pressure in the hydrogen environment. The attack occurs in the base metal as well as in the weld heat affected zone (HAZ) of vessels and pipes. Hydrogen attack reduces the strength and toughness of steel and, if left undetected, can lead to component failure. Failures can be avoided by timely application of reliable and sensitive nondestructive techniques. Ultrasonic techniques were developed and applied to detect hydrogen attack in both the base metal and weld HAZ attack. Ultrasonic backscatter and velocity ratio techniques were applied for detection of base metal attack. These techniques are, however, not suitable for detection of HAZ attack. Conventional shear wave examination is currently used for HAZ inspection. This method can detect large cracks but is not sensitive to detect microcracks produced by hydrogen attack. A combination of two techniques was developed for detection of HAZ attack. These techniques are: contact focused angle beam S-wave and pitch-catch L-wave. The first technique focuses the beam using an acoustic lens while the second technique uses the intersection point of the two pitch-catch beam axes to illuminate the HAZ zone. Both the focused and pitch-catch techniques were applied on samples with simulated HAZ attack. The techniques were successful in detecting simulated attack.

  20. Moessbauer analysis of heat affected zones of an SA 508 steel weld

    SciTech Connect

    Kwon, S.J.; Oh, S.J.; Kim, S.; Lee, S.; Kim, J.H.

    1998-12-18

    Microstructure of a heat affected zone (HAZ) in a weld is influenced by many factors such as chemical composition, welding condition, and peak temperature. It is more complex under multi-pass welding because of the repeated heat input. For the analysis of the HAZ microstructure, optical microscope, electron microscope, and X-ray diffraction techniques have been widely used. However, their application is limited since they can hardly make quantitative analysis of HAZ where numerous phases such as martensite, bainite, ferrite, pearlite, austenite, and carbides are co-existing. Moessbauer spectroscopy, in such a case, is particularly useful due to the capability of quantitative analysis on the fraction of each phase. In this study, phases present in the HAZ of an SA 508 steel were identified, and their fractions were quantitatively determined by Moessbauer spectroscopy in conjunction with microscopic observations.

  1. Metallurgical factors on toughness in intercritically reheated HAZ of low-C low-alloy steel

    SciTech Connect

    Shiwaku, Toyoaki; Kobayashi, Yoichiro; Shimizu, Masato; Toyoda, Masao; Minami, Fumiyoshi

    1994-12-31

    Metallurgical factors on toughness in heat affected zone (HAZ) intercritically reheated between Ac1 and Ac3 were studied by welding thermal cycle simulation, because intercritically reheated HAZ has been, in general, recognized to be especially embrittled region in a multi-pass welded joint. The toughness of intercritical HAZ (ICHAZ) deteriorated with increasing cooling rate, while the toughness of intercritically reheated coarse grain HAZ (ICCGHAZ) deteriorated with decreasing cooling rate. It is found that the dominant metallurgical factor on toughness of ICHAZ is martensite-austenite (M-A) constituent, but those of ICCGHAZ are both M-A constituent and effective grain size depending on prior microstructure of ICCGHAZ.

  2. The study on microstructural and mechanical properties of weld heat affected zone of 7075-T651 aluminum alloy

    SciTech Connect

    Hwang, R.Y.; Chou, C.P.

    1997-12-22

    Aluminum alloys play an important role in aerospace industry due to their high strength and low density. The general accepted precipitation behavior of 7075 alloy was represented as: supersaturated solid solution {alpha}{sub ss} {yields} Gp zones {yields} {eta}{prime}(MgZn{sub 2}) {yields} {eta}(MgZn{sub 2}). The Addition of Cu in Al-Zn-Mg alloy would promote the transformation of GP zones into {eta}{prime}(MgZn{sub 2}) phase and stabilize the {eta}(MgZn{sub 2}) phase. The T6 temper has the maximum strength but lower ductility. The T73 temper may lose some strength, but can gain higher corrosion resistance and lower susceptibility to stress corrosion cracking as compared to the T6 temper. The welding fabrication can produce thermal cycling on the weldment. In the heat affected zone (HAZ) beside the fusion zone, different temperatures can be obtained. This would cause change of microstructure in the HAZ of aluminum alloy weldment. Many workers studied the behavior of weld HAZ by cutting the HAZ into many small pieces or using short time isothermal heat treatment to simulate the HAZ. This may lose some information, especially near the fusion zone, because high temperature gradient occurred in this region. In this study, the Gleeble system was used to simulate the weld HAZ. It can accurately simulate every point of weld HAZ by heating and cooling the specimen to the thermal history of weld HAZ as the same as measured. The microstructural and mechanical properties of weld HAZ of 7075-T651 alloy were investigated.

  3. Hydrogen-induced cold cracking in heat-affected zone of low-carbon high-strength steel

    NASA Astrophysics Data System (ADS)

    Lan, Liangyun; Kong, Xiangwei; Hu, Zhiyong; Qiu, Chunlin

    2014-12-01

    The Y-groove cracking test by submerged arc welding was employed to study the susceptibility of a low-carbon high-strength steel to hydrogen-induced cold cracking (HICC). The morphology of hydrogen cracks was observed using an electron probe microscope. The results showed that the heat-affected zone (HAZ) has a higher susceptibility to HICC than the weld metal and that increasing heat input can improve the HICC resistance of the weldment. The intergranular microcracking is the main HICC mode at the lowest heat input condition, accompanied with some transgranular microcracks attached to complex inclusions. In combination with phase transformation behaviour in sub-zones, the effect of the phase transformation sequence is proposed to try to illustrate the fact that the fine-grained HAZ has higher probability of hydrogen cracking than the coarse-grained HAZ owing to the occurrence of hydrogen enrichment in the fine-grained HAZ after the transformation.

  4. Femtosecond laser heat affected zones profiled in Co/Si multilayer thin films

    SciTech Connect

    Picard, Yoosuf N.; Yalisove, Steven M.

    2008-01-07

    In this letter, we describe an approach for assessing collateral thermal damage resulting from high intensity, femtosecond laser irradiation. Polycrystalline Co thin films deposited on Si (100) substrates and buried under an amorphous Si film were prepared for plan-view transmission electron microscopy (TEM) prior to laser irradiation by femtosecond laser pulses. A heat affected zone (HAZ) resulting from single pulse irradiation at a fluence of 0.9 J/cm{sup 2} was determined by TEM imaging and point-wise selected area diffraction. The spatially Gaussian laser pulse generated a HAZ extending up to 3 {mu}m radially from the femtosecond laser irradiated region.

  5. Microstructural transformations of heat affected zones in duplex steel welded joints

    SciTech Connect

    Nowacki, Jerzy . E-mail: jnowacki@ps.pl; Lukojc, Aleksander

    2006-06-15

    The influence of the welding thermal conditions exemplified by heat input and heat treatment after welding on the structure of the heat affected zone (HAZ) UNS S31803 has been analysed. The post weld treatment was used to create the precisely defined thermal conditions for the decomposition of primary phases in the HAZ, by a multi-layer welding thermal cycle stimulation. Detailed analyses of the microstructure and chemical composition of the phases in the different post welded conditions were performed by scanning electron microscopy (SEM) combined with energy dispersive spectrometry (EDS) and transmission electron microscopy (TEM). Three types of secondary precipitates have been observed: secondary austenite ({gamma}{sub 2}), carbides: M{sub 23}C{sub 6} and M{sub 7}C{sub 3}. The dependence of the secondary austenite volume fraction and morphology in the HAZ on thermal cycle have been interpreted. The eutectoid decomposition of the primary phases in the analysed thermal conditions was confirmed.

  6. Hot Ductility Behaviors in the Weld Heat-Affected Zone of Nitrogen-Alloyed Fe-18Cr-10Mn Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Moon, Joonoh; Lee, Tae-Ho; Hong, Hyun-Uk

    2015-04-01

    Hot ductility behaviors in the weld heat-affected zone (HAZ) of nitrogen-alloyed Fe-18Cr-10Mn austenitic stainless steels with different nitrogen contents were evaluated through hot tension tests using Gleeble simulator. The results of Gleeble simulations indicated that hot ductility in the HAZs deteriorated due to the formation of δ-ferrite and intergranular Cr2N particles. In addition, the amount of hot ductility degradation was strongly affected by the fraction of δ-ferrite.

  7. Report Number 1: Metallurgical characterization of the HAZ in A516-70 and evaluation of fracture toughness specimens

    SciTech Connect

    Lundin, C.D.; Zhou, G.; Khan, K.K.

    1995-07-01

    An extensive study has been conducted on A516 grade 70 steel to investigate the effect of shallow cracks in weldment HAZs. Charpy V-notch (CVN) and crack-tip opening displacement (CTOD) tests were utilized to characterize the fracture toughness behavior of the heat-affected zone (HAZ) of A516-70 SMAW weldments. The test results are explained on the basis of microstructural features in the HAZ and fractographic examination. Optical light microscopy (OLM) and scanning electron microscopy (SEM) were used for these evaluations. A computer-assisted imaging system was also utilized and it proved to be a powerful tool for fracture surface analysis. It was evident from the testing of thermally simulated HAZs of A516-70, that the CGHAZ has the lowest toughness. The need for welding techniques to create actual weld HAZs without an influence from secondary weld passes was addressed during the course of this investigation. A welding procedure was developed which is capable of producing ``singular`` HAZs in actual welds. The ``singular`` HAZ technique produced a non-overlapped continuous HAZ through the full plate thickness. A good correlation was found between thermally simulated HAZ behavior and ``singular`` HAZ behavior in terms of fracture toughness, hardness and microstructure.

  8. Characterization of Microstructures across the Heat-Affected Zone of the Modified 9Cr-1Mo Weld Joint to Understand Its Role in Promoting Type IV Cracking

    NASA Astrophysics Data System (ADS)

    Laha, K.; Chandravathi, K. S.; Parameswaran, P.; Rao, K. Bhanu Sankara; Mannan, S. L.

    2007-01-01

    In the postweld heat-treated (PWHT) fusion welded modified 9Cr-1Mo steel joint, a soft zone was identified at the outer edge of the heat-affected zone (HAZ) of the base metal adjacent to the deposited weld metal. Hardness and tensile tests were performed on the base metal subjected to soaking for 5 minutes at temperatures below Ac1 to above Ac3 and tempering at the PWHT condition. These tests indicated that the soft zone in the weld joint corresponds to the intercritical region of HAZ. Creep tests were conducted on the base metal and cross weld joint. At relatively lower stresses and higher test temperatures, the weld joint possessed lower creep rupture life than the base metal, and the difference in creep rupture life increased with the decrease in stress and increase in temperature. Preferential accumulation of creep deformation coupled with extensive creep cavitation in the intercritical region of HAZ led to the premature failure of the weld joint in the intercritical region of the HAZ, commonly known as type IV cracking. The microstructures across the HAZ of the weld joint have been characterized to understand the role of microstructure in promoting type IV cracking. Strength reduction in the intercritical HAZ of the joint resulted from the combined effects of coarsening of dislocation substructures and precipitates. Constrained deformation of the soft intercritical HAZ sandwich between relatively stronger constitutes of the joint induced creep cavitation in the soft zone resulting in premature failure.

  9. Thermal embrittlement of simulated heat-affected zone in cast austenitic stainless steels

    SciTech Connect

    Mimura, H.; Taniguchi, T.; Horii, Y.; Kume, R.; Uesugi, N.

    1998-08-01

    Metallurgical factors controlling thermal embrittlement in the heat-affected zone (HAZ) of cast austenitic stainless steels were investigated by using the simulated HAZ. It was shown that the simulated HAZ was more susceptible to the thermal embrittlement by aging at 673 K in correspondence with its higher tendency to age hardening and a higher content of ferrite than the parent casting. Electron microprobe analyzer measurement showed that application of the simulated thermal cycle gave a change in the chemical composition of the ferrite, which might be a cause of the higher age hardening of the ferrite in the simulated HAZ. This higher ferrite hardness had a good correlation with fine precipitates of presumably G-phase in the ferrite grain, which existed more in the simulated HAZ than in the parent casting, though it is not clear whether this correlation was only apparent. Ductility of the austenite portion was found to reduce remarkably when surrounded by the hard ferrite of a high fraction. Annealing after aging restored CTOD to some degree. Aging after fatigue cracking gave more embrittlement than a usual procedure for preparation of test specimens, i.e., fatigue cracking after aging.

  10. Grain Boundary Character Distribution in the Heat-Affected Zone of Friction Stir-Processed AL 7075 T7

    NASA Astrophysics Data System (ADS)

    Basinger, J. A.; Adams, B. L.

    2007-06-01

    Current transmission electron microscopy (TEM) research (Cai et al., 2006) in the heat-affected zone (HAZ) of friction stir-welded Al 7075 T7 finds a correlation between precipitate-free zone (PFZ) width and grain boundary (GB) geometry. Based on these correlations, this article makes a comparison of grain boundary character distributions (GBCDs) in the HAZ and the parent metal via multisection plane five-parameter stereology. The stereology is conducted in a convenient macroscopic coordinate frame, associated with the HAZ. Further comparisons between the two microstructures are conducted relative to two-dimensional (2-D) GB network connectivity, recovered from electron backscatter diffraction (EBSD) data in each section plane. It is shown that the relative fraction of GBs of misorientation character associated with smaller PFZ size is larger in the HAZ as compared to the parent material. A commensurate decrease in the connectivity (radius of gyration) of GBs of character conducive to larger PFZ size is also found in the HAZ, relative to the parent material. Distribution of inclinations changes as a function of GB geometry. Surface area per unit volume of low-angle random (LAR) misorientations increases in the HAZ, while high-angle random (HAR) and coincident site lattice (CSL) boundaries decrease. In the case of LAR and some CSL boundaries, a reorientation occurs in which macroscopic normals of these interfaces rotate.

  11. Effects of welding and weld heat-affected zone simulation on the microstructure and mechanical behavior of a 2195 aluminum-lithium alloy

    NASA Astrophysics Data System (ADS)

    Chen, D. L.; Chaturvedi, M. C.

    2001-11-01

    The microstructures, tensile properties, and fatigue properties of a 2195-T8 Al-Li alloy subjected to a weld heat-affected zone (HAZ) simulation and gas-tungsten-arc (GTA) welding using a 4043 filler metal, with and without a postweld heat treatment, were studied. The principal strengthening precipitate in the T8 base alloy was the T 1 (Al2CuLi) phase. The HAZ simulation resulted in the dissolution of T 1 precipitates and the formation of T B(Al7Cu4Li) phase, Guinier-Preston (G-P) zones, and δ' (Al3Li) particles. When the HAZ simulation was conducted at the highest temperature of 600 °C, microcracks and voids also formed along the grain boundaries (GBs). In the specimens welded with the 4043 alloy, T (AlLiSi) phase was found to form in the fusion zone (FZ). An elongated T Bphase and microcracks were observed to occur along the GBs in the HAZ close to the FZ interface. The T 1 phase was not observed in the HAZ. The postweld heat treatment resulted in the spheroidization of primary T phase and the precipitation of small secondary T particles in the FZ, the dissolution of T B phase, and the reprecipitation of the T 1 phase in the HAZ. Both the HAZ simulation and welding gave rise to a considerable decrease in the hardness, tensile properties, and fatigue strength. The hardness in the FZ was lower than that in the HAZ. Although the postweld heat treatment improved both the hardness and tensile properties due to the reprecipitation of T 1 phase in the HAZ and a smaller interparticle spacing in the FZ, no increase in the fatigue strength was observed because of the presence of microcracks in the HAZ.

  12. Characteristics of GTA fusion zones and heat affected zones in superalloy 713C

    NASA Astrophysics Data System (ADS)

    Lachowicz, M. B.; Dudziński, W.

    2012-09-01

    In this paper, metallographic examinations, characterising microstructural changes in the 713C superalloy subjected to remelting by GTA method, are presented. In the fusion zone, precipitation of M23C6 or M6C carbides based on chromium and molybdenum was observed. Eutectic mixtures of ( γ- gg')-M x C y type with highly developed morphology were also perceived. It was found that, in the matrix areas with non-homogeneous chemical composition, the eutectic reaction γ-γ' can occur at the temperature close to that of the precipitation of the M x C y carbides. The presence of silicon in the carbide phases can be conducive to lowering their solidification point by creating low-melting compound NbSi. Both in the fusion zone (FZ) and in the heat-affected zone (HAZ), the secondary precipitates of the Ni3(AlTi)- γ' phase, varying in size from 50 to 100 nm, were found. The lattice mismatch factor of the γ and γ' particles was +0.48 % to +0.71 %, which is characteristic of the coherent precipitates of the Ni3Al phase enriched with titanium. No dislocations or stacking faults were observed in the microstructure of the FZ. In the HAZ, some primary undissolved γ' precipitates, with a part of aluminium probably replaced with niobium were observed, which raised their melting point.

  13. TEM observation of the heat-affected zone in electron beam welded superalloy Inconel 713C

    SciTech Connect

    Lachowicz, Maciej Dudzinski, Wlodzimierz; Podrez-Radziszewska, Marzena

    2008-05-15

    The paper presents results of microstructural observations and phase analysis of electron-beam-welded fusion zones in superalloy Inconel 713C using transmission electron microscopy. In the fusion zone, a 90% fraction of fine-grained {gamma}' precipitates was found, with sizes up to 30 nm. No dislocations were observed in the precipitates or at the {gamma}-{gamma}' interface. Primary, undissolved inclusions of {gamma}' were found in the heat-affected zone (HAZ). In the HAZ, a very high concentration of dislocations was found at the {gamma}-{gamma}' boundaries, as well as inside the {gamma}' particles and in the {gamma} solid solution. The increased dislocation density indicates loss of coherence of that phase and the creation of a semi-coherent boundary, and is related to dissolution of the particles and intensified diffusion through the interphase {gamma}-{gamma}' boundary. The lattice misfit coefficient {delta}a/a between the {gamma}' particles and {gamma} solution in the HAZ indicates negative values from - 0.20% to - 0.06%. The presence of semi-coherent boundaries and the negative lattice misfit coefficient leads to dislocation locking and can result in cracking in the HAZ.

  14. Analysis of heat affected zone obtained by CO2 laser cutting of low carbon steel (S235)

    NASA Astrophysics Data System (ADS)

    Zaied, M.; Miraoui, I.; Boujelbene, M.; Bayraktar, E.

    2013-12-01

    Laser cutting is associated with thermal effects at the cutting surface resulting in alteration of microstructure and mechanical properties. An abrupt change on the cutting surface is caused by a structural modified zone called heat affected zone (HAZ) due to weld heat treatment introduced by a high thermal gradient in the substrate material. Heat affected zone is often associated with undesirable effects such as surface cracking, fatigue resistance, etc. Therefore, it is important to minimize the thickness of this zone (HAZ). The objective of this work is to study the effect of high-power CO2 laser cutting on the heat affected zone. The laser cutting of low carbon steel (S235) is investigated with the aim of evaluating the effect of the input laser cutting parameters: laser power and cutting speed, on heat affected zone. An overall optimization was applied to find out the optimal cutting parameters that would minimize the thickness of heat affected zone. It was found that laser cutting parameters have an effect on the heat affected zone. The HAZ can be minimized by increasing the laser cutting speed and decreasing the laser power.

  15. Effect of Close-Packed Plane Boundaries in a Bain Zone on the Crack Path in Simulated Coarse-Grained HAZ of Bainitic Steel

    NASA Astrophysics Data System (ADS)

    Terasaki, Hidenori; Shintome, Yutaro; Komizo, Yu-ichi; Ohata, Mitsuru; Moriguchi, Koji; Tomio, Yusaku

    2015-05-01

    Global effect of Bain-zone boundaries and the local effect of close-packed plane (CP) boundaries on the path of secondary cleavage cracks (observed on a fractured V-notch Charpy specimen) were visualized and discussed in simulated coarse-grained HAZ of bainitic steel. Microstructural unit map (Bain-zone map and CP map) was obtained by electron backscatter diffraction method for a prior austenite grain of a few hundred micrometers. Furthermore, a correlation between CP boundaries and sites that favored formation of the blocky martensite-austenite (M-A) constituent was confirmed. It was clarified that two crack deviation/local changing factors (CP boundaries and blocky M-A) are paired.

  16. Low temperature sensitization of type 304 stainless steel pipe weld heat affected zone

    NASA Astrophysics Data System (ADS)

    Schmidt, Charles G.; Caligiuri, Robert D.; Eiselstein, Lawrence E.; Wing, Sharon S.; Cubicciotti, Daniel

    1987-08-01

    Large-diameter Type 304 stainless steel pipe weld heat-affected zone (HAZ) was investigated to determine the rate at which low temperature sensitization (LTS) can occur in weld HAZ at nuclear reactor operating temperatures and to determine the effects of LTS on the initiation and propagation of intergranular stress corrosion cracks (IGSCC). The level of sensitization was determined with the electrochemical potentiokinetic reactivation (EPR) test, and IGSCC susceptibility was determined with constant extension rate tests (CERT) and actively loaded compact tension (CT) tests. Substructural changes and carbide compositions were analyzed by electron microscopy. Weld HAZ was found to be susceptible to IGSCC in the as-welded condition for tests conducted in 8-ppm-oxygen, high-purity water at 288 °C. For low oxygen environments ( i.e., 288 °C/0.2 ppm O2 or 180 °C/1.0 ppm O2), IGSCC susceptibility was detected only in weld HAZ that had been sensitized at temperatures from 385 °C to 500 °C. Lower temperature heat treatments did not produce IGSCC. The microscopy studies indicate that the lack of IGSCC susceptibility from LTS heat treatments below 385 °C is a result of the low chromium-to-iron ratio in the carbide particles formed at grain boundaries. Without chromium enrichment of carbides, no chromium depleted zone is produced to enhance IGSCC susceptibility.

  17. Morphology of weld heat-affected zone liquation cracking in Ta-modified cast alloy 718

    SciTech Connect

    West, S.L.; Baeslack, W.A. . Dept. of Welding Engineering); Kelly, T.J. . Aircraft Engine Business Group)

    1989-11-01

    The authors' discuss some problems involved in the use of alloy 718 which is a precipitation-hardenable, nickel-base superalloy developed in the early 1960s for medium temperature (540-705{sup 0}C) aerospace applications. The use of Nb as a substitute for Al and Ti leads to a susceptibility to liquation cracking in the weld heat-affected zone (HAZ). This problem is discussed in detail in the article.

  18. Mechanical Properties and Microstructures of the HAZs of 11Cr F/M Steel for Gen-IV Nuclear Power Station

    NASA Astrophysics Data System (ADS)

    Li, Yongkui; Wang, Jian; Lu, Shanping; Rong, Lijian; Li, Dianzhong

    2015-02-01

    The weldability of a newly developed 11Cr ferritic/martensitic (F/M) steel to be used in Pb-Bi liquid cooled ADS for the fourth generation nuclear power station was studied by experiments and numerical simulation. In this work, an appropriate method for obtaining simulated heat-affected zones (HAZs) was developed. HAZs, including CG-HAZ, FG-HAZ, and IC-HAZ, were successfully simulated by Gleeble at heating rates of 209, 176, and 149 °C/s and peak temperatures of 1314, 1138, and 998 °C, respectively. Results of tension and impact tests indicated that the simulated HAZs had much higher strength and poorer toughness than the base metal. The poor toughness is caused by high carbon, silicon contents, and quenched martensitic microstructures. The tempering treatment is necessary for the developed steel before application in nuclear reactor.

  19. Mechanical Properties of Heat Affected Zone of High Strength Steels

    NASA Astrophysics Data System (ADS)

    Sefcikova, K.; Brtnik, T.; Dolejs, J.; Keltamaki, K.; Topilla, R.

    2015-11-01

    High Strength Steels became more popular as a construction material during last decade because of their increased availability and affordability. On the other hand, even though general use of Advanced High Strength Steels (AHSS) is expanding, the wide utilization is limited because of insufficient information about their behaviour in structures. The most widely used technique for joining steels is fusion welding. The welding process has an influence not only on the welded connection but on the area near this connection, the so-called heat affected zone, as well. For that reason it is very important to be able to determine the properties in the heat affected zone (HAZ). This area of investigation is being continuously developed in dependence on significant progress in material production, especially regarding new types of steels available. There are currently several types of AHSS on the world market. Two most widely used processes for AHSS production are Thermo-Mechanically Controlled Processing (TMCP) and Quenching in connection with Tempering. In the presented study, TMCP and QC steels grade S960 were investigated. The study is focused on the changes of strength, ductility, hardness and impact strength in heat affected zone based on the used amount of heat input.

  20. Constitutional liquid film migration in the weld heat affected zone of a nickel-base alloy

    SciTech Connect

    Acoff, V.L.; Thompson, R.G.

    1996-12-31

    It has been discovered that when multiphase alloys are rapidly heated, it is possible to cause melting of the interface between phases. This phenomenon was discovered to exist in the weld heat-affected zone (HAZ) of several alloys and is called constitutional liquation. Constitutional liquation occurs if during melting, the bulk composition is in a non-liquid region of the phase diagram but the tie-line between the liquating phases passes through a liquid region. The liquid produced during constitutional liquation can spread along grain boundaries and promote constitutional liquid film migration (CLFM). Nickel-base alloy 718 has been studied to determine the effect that HAZ peak temperature has on supersaturated solute concentration in the areas behind CLFM grain boundaries. In order to promote CLFM, a Gleeble 1000 thermomechanical device was used to subject heat treated rods of alloy 718 to rapid thermal cycles. Results show that the concentration of niobium in the migrated region (area behind the migrated boundary) was higher than the niobium concentration in the matrix for HAZ peak temperatures below the solidus temperature (1,227 C and 1,240 C). For an HAZ peak temperature above the solidus temperature (1,250 C), there was no significant difference between the niobium concentration in the migrated region and the matrix.

  1. Microstructural response to heat affected zone cracking of prewelding heat-treated Inconel 939 superalloy

    SciTech Connect

    Gonzalez, M.A.; Garza, A.

    2011-12-15

    The microstructural response to cracking in the heat-affected zone (HAZ) of a nickel-based IN 939 superalloy after prewelding heat treatments (PWHT) was investigated. The PWHT specimens showed two different microstructures: 1) spherical ordered {gamma} Prime precipitates (357-442 nm), with blocky MC and discreet M{sub 23}C{sub 6} carbides dispersed within the coarse dendrites and in the interdendritic regions; and 2) ordered {gamma} Prime precipitates in 'ogdoadically' diced cube shapes and coarse MC carbides within the dendrites and in the interdendritic regions. After being tungsten inert gas welded (TIG) applying low heat input, welding speed and using a more ductile filler alloy, specimens with microstructures consisting of spherical {gamma} Prime precipitate particles and dispersed discreet MC carbides along the grain boundaries, displayed a considerably improved weldability due to a strong reduction of the intergranular HAZ cracking associated with the liquation microfissuring phenomena. - Highlights: Black-Right-Pointing-Pointer Homogeneous microstructures of {gamma} Prime spheroids and discreet MC carbides of Ni base superalloys through preweld heat treatments. Black-Right-Pointing-Pointer {gamma} Prime spheroids and discreet MC carbides reduce the intergranular HAZ liquation and microfissuring of Nickel base superalloys. Black-Right-Pointing-Pointer Microstructure {gamma} Prime spheroids and discreet blocky type MC carbides, capable to relax the stress generated during weld cooling. Black-Right-Pointing-Pointer Low welding heat input welding speeds and ductile filler alloys reduce the HAZ cracking susceptibility.

  2. Effect of Heat Input on Microstructure Evolution and Mechanical Properties in the Weld Heat-Affected Zone of 9Cr-2W-VTa Reduced Activation Ferritic-Martensitic Steel for Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Moon, Joonoh; Lee, Chang-Hoon; Lee, Tae-Ho; Kim, Hyoung Chan

    2015-01-01

    The phase transformation and mechanical properties in the weld heat-affected zone (HAZ) of a reduced activation ferritic/martensitic steel were explored. The samples for HAZs were prepared using a Gleeble simulator at different heat inputs. The base steel consisted of tempered martensite and carbides through quenching and tempering treatment, whereas the HAZs consisted of martensite, δ-ferrite, and a small volume of autotempered martensite. The prior austenite grain size, lath width of martensite, and δ-ferrite fraction in the HAZs increased with increase in the heat input. The mechanical properties were evaluated using Vickers hardness and Charpy V-notch impact test. The Vickers hardness in the HAZs was higher than that in the base steel but did not change noticeably with increase in the heat input. The HAZs showed poor impact property due to the formation of martensite and δ-ferrite as compared to the base steel. In addition, the impact property of the HAZs deteriorated more with the increase in the heat input. Post weld heat treatment contributed to improve the impact property of the HAZs through the formation of tempered martensite, but the impact property of the HAZs remained lower than that of base steel.

  3. Initial Evaluation of the Heat-Affected Zone, Local Embrittlement Phenomenon as it Applies to Nuclear Reactor Vessels

    SciTech Connect

    McCabe, D.E.

    1999-09-01

    The objective of this project was to determine if the local brittle zone (LBZ) problem, encountered in the testing of the heat-affected zone (HAZ) part of welds in offshore platform construction, can also be found in reactor pressure vessel (RPV) welds. Both structures have multipass welds and grain coarsening along the fusion line. Literature was obtained that described the metallurgical evidence and the type of research work performed on offshore structure welds.

  4. Phase transformation and impact properties in the experimentally simulated weld heat-affected zone of a reduced activation ferritic/martensitic steel

    NASA Astrophysics Data System (ADS)

    Moon, Joonoh; Lee, Chang-Hoon; Lee, Tae-Ho; Jang, Min-Ho; Park, Min-Gu; Han, Heung Nam

    2014-12-01

    In this work, the phase transformation and impact properties in the weld heat-affected zone (HAZ) of a reduced activation ferritic/martensitic (RAFM) steel are investigated. The HAZs were experimentally simulated using a Gleeble simulator. The base steel consisted of tempered martensite through normalizing at 1000 °C and tempering at 750 °C, while the HAZs consisted of martensite, δ-ferrite and a small volume of autotempered martensite. The impact properties using a Charpy V-notch impact test revealed that the HAZs showed poor impact properties due to the formation of martensite and δ-ferrite as compared with the base steel. In addition, the impact properties of the HAZs further deteriorated with an increase in the δ-ferrite fraction caused by increasing the peak temperature. The impact properties of the HAZs could be improved through the formation of tempered martensite after post weld heat treatment (PWHT), but they remained lower than that of the base steel because the δ-ferrite remained in the tempered HAZs.

  5. Cleavage initiation in the intercritically reheated coarse-grained heat affected zone. Part 2: Failure criteria and statistical effects

    SciTech Connect

    Davis, C.L.; King, J.E.

    1996-10-01

    In part 1 of this article, cleavage initiation in the intercritically reheated coarse-grained heat affected zone (IC CG HAZ) of high-strength low-alloy (HSLA) steels was determined to occur between two closely spaced blocky MA particles. Blunt notch, crack tip opening displacement (CTOD), and precracked Charpy testing were used in this investigation to determine the failure criteria required for cleavage initiation to occur by this mechanism in the IC CG HAZ. It was found that the attainment of a critical level of strain was required in addition to a critical level of stress. This does not occur in the case of high strain rate testing, for example, during precracked Charpy testing. A different cleavage initiation mechanism is then found to operate. The precise fracture criteria and microstructural requirements (described in part 1 of this article) result in competition between potential cleavage initiation mechanisms in the IC CG HAZ.

  6. Effects of Thermal History and Microstructure on Segregation of Phosphorus and Alloying Elements in the Heat-Affected Zone of a Low Alloy Steel

    NASA Astrophysics Data System (ADS)

    Zhai, Ziqing; Miyahara, Yuichi; Abe, Hiroshi; Watanabe, Yutaka

    2014-12-01

    The grain boundary segregation of phosphorus and alloying elements in the heat-affected zone (HAZ) of a low alloy steel was studied quantitatively with atom probe tomography. Non-equilibrium segregation mainly occurred during welding and subsequent fast cooling, leading to remarkable segregation of P, C, Mn, and Mo. The segregation of these four types of solutes showed similar microstructure-dependence at this stage, in which the segregation levels are higher in coarse-grained HAZ and intercritically reheated coarse-grained HAZ than in fine-grained HAZ. After simulated aging, P and Mn showed further enrichment at grain boundaries through equilibrium segregation, while desegregation was observed for C and Mo. In addition, it seems that precipitation of Mo at dislocations was greatly promoted during aging, which probably also contributed to the increase of P and Mn at grain boundaries.

  7. Effects of Thermal History and Microstructure on Segregation of Phosphorus and Alloying Elements in the Heat-Affected Zone of a Low Alloy Steel

    NASA Astrophysics Data System (ADS)

    Zhai, Ziqing; Miyahara, Yuichi; Abe, Hiroshi; Watanabe, Yutaka

    2014-09-01

    The grain boundary segregation of phosphorus and alloying elements in the heat-affected zone (HAZ) of a low alloy steel was studied quantitatively with atom probe tomography. Non-equilibrium segregation mainly occurred during welding and subsequent fast cooling, leading to remarkable segregation of P, C, Mn, and Mo. The segregation of these four types of solutes showed similar microstructure-dependence at this stage, in which the segregation levels are higher in coarse-grained HAZ and intercritically reheated coarse-grained HAZ than in fine-grained HAZ. After simulated aging, P and Mn showed further enrichment at grain boundaries through equilibrium segregation, while desegregation was observed for C and Mo. In addition, it seems that precipitation of Mo at dislocations was greatly promoted during aging, which probably also contributed to the increase of P and Mn at grain boundaries.

  8. Liquation Microfissuring in the Weld Heat-Affected Zone of an Overaged Precipitation-Hardened Nickel-Base Superalloy

    NASA Astrophysics Data System (ADS)

    Ojo, O. A.; Chaturvedi, M. C.

    2007-02-01

    The effect of preweld overaging heat treatment on the microstructural response in the heat-affected zone (HAZ) of a precipitation-hardened nickel-base superalloy INCONEL 738LC subjected to the welding thermal cycle ( i.e., rapid) was investigated. The overaging heat treatment resulted in the formation of an interfacial microconstituent containing M23X6 particles and coarsening of primary and secondary γ' precipitates. The HAZ microstructures around welds in the overaged alloy were simulated using the Gleeble thermomechanical simulation system. Microstructural examination of simulated HAZs and those present in tungsten inert gas (TIG) welded specimens showed the occurrence of extensive grain boundary liquation involving liquation reaction of the interfacial microconstituents containing M23X6 particles and MC-type carbides. In addition, the coarsened γ' precipitate particles present in the overaged alloy persisted well above their solvus temperature to temperatures where they constitutionally liquated and contributed to considerable liquation of grain boundaries, during continuous rapid heating. Intergranular HAZ microfissuring, with resolidified product formed mostly on one side of the microfissures, was observed in welded specimens. This suggested that the HAZ microfissuring generally occurred by decohesion across one of the solid-liquid interfaces during the grain boundary liquation stage of the weld thermal cycle. Correlation of simulated HAZ microstructures with hot ductility properties of the alloy revealed that the temperature at which the alloy exhibited zero ductility during heating was within the temperature range at which grain boundary liquation was observed. The on-cooling ductility of the alloy was significantly damaged by the on-heating liquation reaction, as reflected by the considerably low ductility recovery temperature (DRT). Important characteristics of the intergranular liquid that could influence HAZ microfissuring of the alloy in overaged

  9. Effect of boron segregation at grain boundaries on heat-affected zone cracking in wrought INCONEL 718

    NASA Astrophysics Data System (ADS)

    Chen, W.; Chaturvedi, M. C.; Richards, N. L.

    2001-04-01

    Susceptibility to heat-affected zone (HAZ) cracking during electron-beam welding was studied in two INCONEL 718-based alloys doped with different levels of boron. By lowering the carbon, sulfur, and phosphorous concentrations to be “as low as possible,” the occurrence of HAZ cracking was related directly to the level of segregation of boron at grain boundaries, which occurred by nonequilibrium segregation during a preweld heat treatment. The study has demonstrated a direct correlation between the amount of boron segregated at grain boundaries and their susceptibility to HAZ cracking, in terms of the total crack length and number of cracks observed in the HAZ. The analysis of results suggests that both the melting and resolidification temperatures of the boron-segregated grain boundaries can be about 100 °C to 200 °C lower than those of the grain boundaries that were susceptible to constitutional liquation of Nb carbides on them, making boron more deleterious in causing HAZ cracking.

  10. Corrosion behavior in high heat input welded heat-affected zone of Ni-free high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel

    SciTech Connect

    Moon, Joonoh Ha, Heon-Young; Lee, Tae-Ho

    2013-08-15

    The pitting corrosion and interphase corrosion behaviors in high heat input welded heat-affected zone (HAZ) of a metastable high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel were explored through electrochemical tests. The HAZs were simulated using Gleeble simulator with high heat input welding condition of 300 kJ/cm and the peak temperature of the HAZs was changed from 1200 °C to 1350 °C, aiming to examine the effect of δ-ferrite formation on corrosion behavior. The electrochemical test results show that both pitting corrosion resistance and interphase corrosion resistance were seriously deteriorated by δ-ferrite formation in the HAZ and their aspects were different with increasing δ-ferrite fraction. The pitting corrosion resistance was decreased by the formation of Cr-depleted zone along δ-ferrite/austenite (γ) interphase resulting from δ-ferrite formation; however it didn't depend on δ-ferrite fraction. The interphase corrosion resistance depends on the total amount of Cr-depleted zone as well as ferrite area and thus continuously decreased with increasing δ-ferrite fraction. The different effects of δ-ferrite fraction on pitting corrosion and interphase corrosion were carefully discussed in terms of alloying elements partitioning in the HAZ based on thermodynamic consideration. - Highlights: • Corrosion behavior in the weld HAZ of high-nitrogen austenitic alloy was studied. • Cr{sub 2}N particle was not precipitated in high heat input welded HAZ of tested alloy. • Pitting corrosion and interphase corrosion show a different behavior. • Pitting corrosion resistance was affected by whether or not δ-ferrite forms. • Interphase corrosion resistance was affected by the total amount of δ-ferrite.

  11. HAZ hardenability in welded C-Mn steels: The role of prior microstructure

    SciTech Connect

    Sarafinchin, D.; Patchett, B.M.

    1994-12-31

    The hardenability of the heat-affected zone (HAZ) in C-Mn steels is one of the primary influences on susceptibility to HAC in welded structures. Procedure control of HAZ hardness is based on the use of preheat and/or heat input to limit the peak HAZ hardness to 350--450 Hv10, depending on hydrogen level. Determination of procedural conditions depends on material thickness and carbon equivalent, but does not involve prior microstructure. This study investigated the influence of hot-rolled and normalized base metal microstructures on the level, development and location of peak hardness in steels of identical chemical composition. One heat of A516Gr70 steel in the hot-rolled condition was cut in two and one-half was normalized. This produced microstructures of differing grain size and pearlite coarseness. Gas tungsten arc welding (GTAW) fusion welds at two heat inputs (0.5 and 2.5 KJ/mm) were placed in each of the two base metals. Macro-and microhardness surveys and metallographic analysis were used o determine the location and level of HAZ hardness. Carbon gradients due to incomplete dissolution of cementite and lack of time for homogenization by diffusion cause significant differences in macro-and microhardness of HAZ constituents in A516Gr70 weld zones. Increased pearlite grain size, and to a lesser extent, pearlite lamellar thickness, produce martensitic zones of high hardness in hot-rolled A516Gr70 in two regions: at temperatures just over the A{sub 3} and at temperatures just over the A{sub 1}. Of the two, the region just over the A{sub 3} although removed from the fusion line, has the highest HAZ hardness and is most likely to be susceptible to HAC. Normalized steel is likely to be more resistant to HAC in the HAZ than hot-rolled steel of identical chemical composition.

  12. Analysis of Microstructural Changes in the Heat-Affected Zone and Fusion Zone of a Fiber Laser Welded DP980 Steel

    NASA Astrophysics Data System (ADS)

    Zhang, Jianqi; Khan, Abdul; Ojo, Olanrewaju A.; Zhou, Norman; Chen, Daolun

    2015-08-01

    Dual phase (DP) steels are designed to consist of hard martensite dispersed in a relatively soft ferrite matrix, which offers a favorable combination of high strength with good deformability. Fiber laser welding (FLW) is becoming increasingly important for joining advanced materials due to its flexibility and deep penetration. In this study, the microstructure of a DP steel, DP980, welded by FLW technique was carefully analyzed. Gleeble thermo-mechanical simulation coupled with analytical transmission electron microscopy revealed that the FLW process produced significant microstructural changes in a narrow heat-affected zone (HAZ) and fusion zone (FZ), which can result in dramatic changes in mechanical properties. This is reflected in the micro-hardness profile obtained across the welded material. The salient phase transitions induced by the FLW, including the formation of new martensite grains in the upper-critical HAZ and FZ, are discussed.

  13. Crack growth rates of irradiated austenitic stainless steel weld heat affected zone in BWR environments.

    SciTech Connect

    Chopra, O. K.; Alexandreanu, B.; Gruber, E. E.; Daum, R. S.; Shack, W. J.; Energy Technology

    2006-01-31

    Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of reactor pressure vessels because of their superior fracture toughness. However, exposure to high levels of neutron irradiation for extended periods can exacerbate the corrosion fatigue and stress corrosion cracking (SCC) behavior of these steels by affecting the material microchemistry, material microstructure, and water chemistry. Experimental data are presented on crack growth rates of the heat affected zone (HAZ) in Types 304L and 304 SS weld specimens before and after they were irradiated to a fluence of 5.0 x 10{sup 20} n/cm{sup 2} (E > 1 MeV) ({approx} 0.75 dpa) at {approx}288 C. Crack growth tests were conducted under cycling loading and long hold time trapezoidal loading in simulated boiling water reactor environments on Type 304L SS HAZ of the H5 weld from the Grand Gulf reactor core shroud and on Type 304 SS HAZ of a laboratory-prepared weld. The effects of material composition, irradiation, and water chemistry on growth rates are discussed.

  14. Heat-affected zone liquation crack on resistance spot welded TWIP steels

    SciTech Connect

    Saha, Dulal Chandra; Chang, InSung; Park, Yeong-Do

    2014-07-01

    In this study, the heat affected zone (HAZ) liquation crack and segregation behavior of the resistance spot welded twinning induced plasticity (TWIP) steel have been reported. Cracks appeared in the post-welded joints that originated at the partially melted zone (PMZ) and propagated from the PMZ through the heat affected zone (HAZ) to the base metal (BM). The crack length and crack opening widths were observed increasing with heat input; and the welding current was identified to be the most influencing parameter for crack formation. Cracks appeared at the PMZ when nugget diameter reached at 4.50 mm or above; and the liquation cracks were found to occur along two sides of the notch tip in the sheet direction rather than in the electrode direction. Cracks were backfilled with the liquid films which has lamellar structure and supposed to be the eutectic constituent. Co-segregation of alloy elements such as, C and Mn were detected on the liquid films by electron-probe microanalysis (EPMA) line scanning and element map which suggests that the liquid film was enrich of Mn and C. The eutectic constituent was identified by analyzing the calculated phase diagram along with thermal temperature history of finite element simulation. Preliminary experimental results showed that cracks have less/no significant effect on the static cross-tensile strength (CTS) and the tensile-shear strength (TSS). In addition, possible ways to avoid cracking were discussed. - Highlights: • The HAZ liquation crack during resistance spot welding of TWIP steel was examined. • Cracks were completely backfilled and healed with divorced eutectic secondary phase. • Co-segregation of C and Mn was detected in the cracked zone. • Heat input was the most influencing factor to initiate liquation crack. • Cracks have less/no significant effect on static tensile properties.

  15. Weld heat-affected zone in Ti-6Al-4V alloy. Part 2: Modeling and experimental simulation of growth and phase transformations

    SciTech Connect

    Shah, A.K.; Kulkarni, S.D.; Gopinathan, V.; Krishnan, R.

    1995-10-01

    The work carried out involved development of theoretical models to predict the {alpha} + {beta} {R_arrow} {beta} transformation during heating, grain growth, and subsequent transformation of {beta} on cooling in the Ti-6Al-4V alloy. The data for correlation of microstructure to mechanical properties have been generated experimentally using simulated HAZ (heat-affected zone) specimens. The overall effect of the weld variables on the HAZ microstructure can be visualized from the HAZ microstructure diagram which depicts various phase transformations occurring during the weld thermal cycle in t{sub 8/5}-T{sub p} space. The results of computer modeling indicate that due to the rapid heating and cooling cycles encountered in welding, the shift in {beta} transus may be hundreds of degrees. Also, in the near-HAZ region, the grains can grow an order of magnitude larger than the original grain size. The formation of lamellar {alpha} can be minimized by reducing the t{sub 8/5} parameter. The experimental simulation results confirm excessive grain growth in the HAZ region. The hardness values do not show any significant trend, but the fracture toughness is found to deteriorate in the HAZ.

  16. Interdependence of character of grain boundaries, intergranular segregation of boron and grain boundary liquation in simulated weld heat-affected zone in Inconel 718

    SciTech Connect

    Guo, H.; Chaturvedi, M.C.; Richards, N.L.; McMahon, G.S.

    1999-01-08

    Intergranular microfissuring is frequently observed in the weld heat-affected zones (HAZ) in Inconel 718. Extensive studies of this phenomenon have established that the HAZ microfissuring in Inconel 718 is associated with the constitutional liquation of grain boundary (GB) precipitates of carbides, Laves and {delta} phases. In addition, HAZ microfissuring has been also attributed to the GB segregation of B and S. To differentiate between the influence of B from other factors, studies were initiated on Inconel 718 that was almost free of C, P, and S, and contained different concentrations of B. These studies have shown that B in Inconel 718 can segregate to the grain boundaries by a non-equilibrium mechanism during cooling from the pre-weld solution heat treatment temperature, which would lower the melting temperature of the GB material. If the segregation of B is sufficiently high, the GBs are likely to liquate in the HAZ during the heating component of the welding thermal cycle. The inability of the liquated GBs to support tensile stresses that develop during cooling of the welds would result in microfissuring in the HAZs. It was also observed that the GB liquation in the HAZs was heterogeneously distributed. That is, while a GB liquated others connected to it did not. Therefore, an investigation was initiated to determine the interdependence of segregation of B on GBs, their crystallographic character and liquation. The results are presented in this communication.

  17. Physical metallurgical basis for heat-affected zone and base-plate properties of a microalloyed HSLA steel. Final report 1984-1986

    SciTech Connect

    Nichting, R.A.; Brown, E.L.

    1986-12-01

    The overall objective of this study was to elucidate the processing structure/property relationship associated with the heat-affected zone (HAZ) produced in an HSLA microalloyed steel during arc welding. Single-pass submerged arc welds on a Nb-V microalloyed steel were made with variable heat input. The thermal cycle as a function of heat input and position in the HAZ was determined experimentally in the course of welding. In addition, weld simulations were produced for selected heat inputs and HAZ locations. The evolution of austenite and transformation product microstructure as well as the state of microalloy precipitation was monitored as a function of heat input and HAZ location primarily via light and electron microscopy on specimens from actual welds and simulation specimens. These observations were utilized to support efforts to model austenite microstructure evolution and continuous-cooling transformation behavior in the HAZ. Charpy-impact-toughness testing was performed on actual weld HAZ specimens and specimens of selected simulation specimens. Impact transition curves were determined, and the microsctructure through which fracture propagated was correlated with impact transition energies and fracture surface morphology determined via scanning electron microscopy.

  18. Microstructural changes in HSLA-100 steel thermally cycled to simulate the heat-affected zone during welding

    SciTech Connect

    Spanos, G.; Fonda, R.W.; Vandermeer, R.A.; Matuszeski, A.

    1995-12-01

    The microstructural changes that occur in a commercial HSLA-100 steel thermally cycled to simulate weld heat affected zone (HAZ) behavior were systematically investigated primarily by transmission electron microscopy (TEM). Eight different weld thermal cycles, with peak temperatures representative of four HAZ regions (the tempered region, the intercritical region, the fine-grained austenitized region, and the coarse-grained austenitized region) and cooling rates characteristic of high heat input (cooling rate (CR) = 5 C/s) and low heat input (CR = 60 C/s) welding were simulated in a heating/quenching dilatometer. The as-received base plate consisted of heavily tempered lath martensite, acicular ferrite, and retained austenite matrix phases with precipitates of copper, niobium-carbonitride, and cementite. The microstructural changes in both the matrix and precipitate phases due to thermal cycling were examined by TEM and correlated with the results of (1) conventional optical microscopy, (2) prior austenite grain size measurements, (3) microhardness testing, and (4) dilatometric analysis. Many of the thermal cycles resulted in dramatic changes in both the microstructures and the properties due to the synergistic interaction between the simulated position in the HAZ and the heat input. Some of these microstructures deviate substantially from those predicted from published continuous cooling transformation (CCT) curves. The final microstructure was predominantly dependent upon peak temperature (i.e., position within the HAZ), although the cooling rate (i.e., heat input) strongly affected the microstructures of the simulated intercritical and fine-grained austenitized regions.

  19. Effect of welding parameters on the heat-affected zone of AISI409 ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Ranjbarnodeh, Eslam; Hanke, Stefanie; Weiss, Sabine; Fischer, Alfons

    2012-10-01

    One of the main problems during the welding of ferritic stainless steels is severe grain growth within the heat-affected zone (HAZ). In the present study, the microstructural characteristics of tungsten inert gas (TIG) welded AISI409 ferritic stainless steel were investigated by electron backscattered diffraction (EBSD), and the effects of welding parameters on the grain size, local misorientation, and low-angle grain boundaries were studied. A 3-D finite element model (FEM) was developed to predict the effects of welding parameters on the holding time of the HAZ above the critical temperature of grain growth. It is found that the base metal is not fully recrystallized. During the welding, complete recrystallization is followed by severe grain growth. A decrease in the number of low-angle grain boundaries is observed within the HAZ. FEM results show that the final state of residual strains is caused by competition between welding plastic strains and their release by recrystallization. Still, the decisive factor for grain growth is heat input.

  20. Prediction of carbon steel heat-affected zone microstructure induced by electroslag cladding

    SciTech Connect

    Li, M.V.; Atteridge, D.G.

    1994-12-31

    One of the major concerns in developing electroslag cladding technique is the mechanical properties of the clad heat-affected zone. During the cladding operation, the base metal adjacent to the clad deposit undergoes intensive heating and fast cooling. Mechanical properties of this area are different from, and in most cases inferior to, those of the base metal due to the formation of undesirable microstructure which results from the thermal cycle. To optimize mechanical properties of clad components, steps must be taken to optimize the HAZ microstructure, which is determined by the cladding heat input, geometry of the components, chemistry of the steel, and the thermodynamics and kinetics of phase transformations. There are four main methods for predicting HAZ hardness and microstructure: weld simulation experiments, CCT diagrams, regression analysis based on the carbon equivalents of steels and hardenability studies, and the computational models based on phase transformationkineticss and thermodynamics. The computational approach was adopted in the study to predict the carbon steel HAZ microstructure evolution during electroslag cladding because it is a general approach applicable to a wide range of chemical compositions and welding conditions. The computation model in the study incorporates a grain growth model and a model for austenite decomposition. The empirical grain growth kinetics models and the reaction kinetics model for austenite decomposition originally proposed by Kirkaldy and Venugopalan were calibrated with experimental studies and then coded into a computer program to predict microstructure development. Reasonable agreement was observed between the computer predictions and experimental observations; discrepanciesweree also discussed.

  1. Weld heat-affected-zone response to elevated-temperature deformation

    SciTech Connect

    Bowers, R.J.; Nippes, E.F.

    1996-11-01

    The mechanical response to elevated-temperature deformation was assessed for weld heat-affected-zone (HAZ) and base-metal microstructures in 2.25Cr-1Mo steel. A constant-displacement-rate (CDR) test, capable of determining long-time, notch-sensitivity tendencies, was implemented on a Gleeble 1,500 thermal/mechanical simulator and an Instron. Microstructures representative of the coarse-grained, grain-refined, and intercritical regions of the HAZ were simulated on a Gleeble. Microstructural reproduction reflected the preheat and postweld heat treatments in accordance with the required codes. A K{sub 1} analysis of the data was conducted, which showed that small-scale yielding criteria were adhered to throughout the test. The test results indicated that the high-temperature extensometer control of the Instron was better able to maintain stable crack growth after peak load than the crosshead control of the Gleeble. The CDR test was seen to be an effective, short-time procedure to delineate and compare the strength and relative service life of the structures present in the weld HAZ.

  2. Fracture analysis of the heat-affected zone in the NESC-1 spinning cylinder experiment

    SciTech Connect

    Keeney, J.A.

    1999-02-01

    This paper presents updated analyses of the cylinder specimen being used in the international Network for Evaluating Steel Components (NESC) large-scale spinning-cylinder project (NESC-1). The NESC was organized as an international forum to exchange information on procedures for structural integrity assessment, to collaborate on specific projects, and to promote the harmonization of international standards. The objective of the NESC-1 project is to focus on a complete procedure for assessing the structural integrity of aged reactor pressure vessels. A clad cylinder containing through-clad and subclad cracks will be tested under pressurized-thermal shock conditions at AEA Technology, Risley, U.K. Three-dimensional finite-element analyses were carried out to determine the effects of including the cladding heat-affected zone (HAZ) in the models. The cylinder was modeled with inner-surface through-clad cracks having a depth of 74 mm and aspect ratios of 2:1 and 6:1. The cylinder specimen was subjected to centrifugal loading followed by a thermal shock and analyzed with a thermoelastic-plastic material model. The peak K{sub 1} values occurred at the clad/HAZ interface for the 6:1 crack and at the HAZ/base interface for the 2:1 crack. The analytical results indicate that cleavage initiation is likely to be achieved for the 6:1 crack, but questionable for the 2:1 crack.

  3. The influence of solidification mode on heat affected zone microfissuring in a nickel-iron base superalloy

    SciTech Connect

    Nakkalil, R.; Chaturvedi, M.C. . Metallurgical Sciences Lab.); Richards, N.L. )

    1993-12-01

    The heat affected zone (HAZ) microfissuring of thermomechanically processed Incoloy 903 with a duplex grain structure, has been examined with a view to understand the mechanism(s) of, and to reduce the incidence of microfissuring. Extensive formation of liquid films on the HAZ grain boundaries primarily due to the complete constitutional liquation of preexisting MNP phosphides, MC carbides and partial constitutional liquation of primary MX carbide insolubles was observed. The liquid films resulted in considerable microfissuring on the long warm worked grain boundaries and extensive grain boundary liquid film migration (LFM) on the fine recrystallized grain boundaries. The liquid films formed on the warm worked boundaries were observed to have undergone normal solidification accompanied with the formation of dendritic gamma and terminal interdendritic constituents. The exclusive occurrence of LFM only on the fine grains and not on warm worked grains is attributed to the increased driving force and velocity for LFM arising due to substantial interface curvature of the fine grains. It is shown that HAZ microfissuring is minimized if the liquid films on the HAZ grain boundaries can partially equilibrate by LFM instead of by normal solidification.

  4. Structure-Property-Fracture Mechanism Correlation in Heat-Affected Zone of X100 Ferrite-Bainite Pipeline Steel

    NASA Astrophysics Data System (ADS)

    Li, Xueda; Ma, Xiaoping; Subramanian, S. V.; Misra, R. D. K.; Shang, Chengjia

    2015-03-01

    Structural performance of a weld joint primarily depends on the microstructural characteristics of heat-affected zone (HAZ). In this regard, the HAZ in X100 ferrite-bainite pipeline steel was studied by separating the HAZ into intercritically reheated coarse-grained (ICCG) HAZ containing and non-containing regions. These two regions were individually evaluated for Charpy impact toughness and characterized by electron back-scattered diffraction (EBSD). Low toughness of ~50 J was obtained when the notch of impact specimen encountered ICCGHAZ and high toughness of ~180 J when the notch did not contain ICCGHAZ. Fracture surface was ~60 pct brittle in the absence of ICCGHAZ, and 95 pct brittle (excluding shear lip) in the presence of ICCGHAZ in the impact tested samples. The underlying reason is the microstructure of ICCGHAZ consisted of granular bainite and upper bainite with necklace-type martensite-austenite (M-A) constituent along grain boundaries. The presence of necklace-type M-A constituent notably increases the susceptibility of cleavage microcrack nucleation. ICCGHAZ was found to be both the initiation site of the whole fracture and cleavage facet initiation site during brittle fracture propagation stage. Furthermore, the study of secondary microcracks beneath CGHAZ and ICCGHAZ through EBSD suggested that the fracture mechanism changes from nucleation-controlled in CGHAZ to propagation-controlled in ICCGHAZ because of the presence of necklace-type M-A constituent in ICCGHAZ. Both fracture mechanisms contribute to the poor toughness of the sample contained ICCGHAZ.

  5. Notch position in the HAZ specimen of reactor pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Yoon, E. P.

    1998-12-01

    Variations in the notch toughness in the heat-affected zone (HAZ) were investigated by positioning the Charpy V-notches along the line normal to the weld fusion line of a SA 508 Cl.3 reactor pressure vessel (RPV) steel. In the notch position for common surveillance HAZ specimens, rather higher toughness values were acquired. The minimum properties were noted in the region of 4-5 mm apart from the fusion boundary, where the values of toughness and strength were both poorer than those of the other regions of the HAZ and the base metal. The causes for these variations were discussed with reference to the microstructures from the actual and the simulated welding processes.

  6. Microstructural Characterization of Thermomechanical and Heat-Affected Zones of an Inertia Friction Welded Astroloy

    NASA Astrophysics Data System (ADS)

    Oluwasegun, K. M.; Olawale, J. O.; Ige, O. O.; Shittu, M. D.; Adeleke, A. A.; Malomo, B. O.

    2014-08-01

    The behaviour of γ' phase to thermal and mechanical effects during rapid heating of Astroloy, a powder metallurgy nickel-based superalloy has been investigated. The thermo-mechanical-affected zone (TMAZ) and heat-affected zone (HAZ) microstructures of an inertia friction welded (IFW) Astroloy were simulated using a Gleeble thermo-mechanical simulation system. Detailed microstructural examination of the simulated TMAZ and HAZ and those present in actual IFW specimens showed that γ' particles persisted during rapid heating up to a temperature where the formation of liquid is thermodynamically favored and subsequently re-solidified eutectically. The result obtained showed that forging during the thermo-mechanical simulation significantly enhanced resistance to weld liquation cracking of the alloy. This is attributable to strain-induced rapid isothermal dissolution of the constitutional liquation products within 150 μm from the center of the forged sample. This was not observed in purely thermally simulated samples. The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens.

  7. Effect of Mg Content on the Microstructure and Toughness of Heat-Affected Zone of Steel Plate after High Heat Input Welding

    NASA Astrophysics Data System (ADS)

    Xu, Long-Yun; Yang, Jian; Wang, Rui-Zhi; Wang, Yu-Nan; Wang, Wan-Lin

    2016-05-01

    The effect of Mg content on the microstructure and toughness of the heat-affected zone (HAZ) of steel plates after high heat input welding was investigated by means of welding thermal simulation test and in situ observation through high-temperature laser scanning confocal microscopy. It was found that with the increase of Mg content in the steel, the former austenite grain sizes were greatly decreased and the mainly microstructural constituents in HAZ were changed from the brittle constituents of Widmanstätten ferrite, ferrite side plate and upper bainite to the ductile constituents of intragranular acicular ferrite and polygonal ferrite. The proportion of grain boundary ferrite was decreased greatly with the further addition of Mg from 27 to 99 ppm. As a result, the HAZ toughness after welding with heat input of 400 kJ cm-1 is increased with increasing Mg content in the steel plate.

  8. Effect of Mg Content on the Microstructure and Toughness of Heat-Affected Zone of Steel Plate after High Heat Input Welding

    NASA Astrophysics Data System (ADS)

    Xu, Long-Yun; Yang, Jian; Wang, Rui-Zhi; Wang, Yu-Nan; Wang, Wan-Lin

    2016-07-01

    The effect of Mg content on the microstructure and toughness of the heat-affected zone (HAZ) of steel plates after high heat input welding was investigated by means of welding thermal simulation test and in situ observation through high-temperature laser scanning confocal microscopy. It was found that with the increase of Mg content in the steel, the former austenite grain sizes were greatly decreased and the mainly microstructural constituents in HAZ were changed from the brittle constituents of Widmanstätten ferrite, ferrite side plate and upper bainite to the ductile constituents of intragranular acicular ferrite and polygonal ferrite. The proportion of grain boundary ferrite was decreased greatly with the further addition of Mg from 27 to 99 ppm. As a result, the HAZ toughness after welding with heat input of 400 kJ cm-1 is increased with increasing Mg content in the steel plate.

  9. Synchrotron-Based Experimental Investigations and Numerical Modeling of the Kinetics of Phase Transformations in the Heat Affected Zone of Welds

    SciTech Connect

    2000-05-04

    Spatially Resolved X-Ray Diffraction (SRXRD) and Time Resolved X-Ray Diffraction (TRXRD) methods are being developed at LLNL for in-situ investigations of phase transformations in the heat-affected zone (HAZ) of welds. In this region of the weld, severe temperature gradients, high peak temperatures and rapid thermal fluctuations occur as the heat source passes through the material. These non-isothermal temperature fluctuations produce HAZ microstructures that cannot be predicted by conventional methods. The unique synchrotron-based experiments being developed here will enable the determination of phase transformation kinetics under true non-isothermal welding conditions, and can be used to aid in the development of models to predict HAZ microstructural evolution under a wide range of welding conditions. Commercially pure titanium, stainless steel alloys and plain carbon steels are currently under investigation.

  10. Evaluation of Heat-affected Zone Hydrogen-induced Cracking in High-strength Steels

    NASA Astrophysics Data System (ADS)

    Yue, Xin

    Shipbuilding is heavily reliant on welding as a primary fabrication technique. Any high performance naval steel must also possess good weldability. It is therefore of great practical importance to conduct weldability testing of naval steels. Among various weldability issues of high-strength steels, hydrogen-induced cracking (HIC) in the heat-affected zone (HAZ) following welding is one of the biggest concerns. As a result, in the present work, research was conducted to study the HAZ HIC susceptibility of several naval steels. Since the coarse-grained heat-affected zone (CGHAZ) is generally known to be the most susceptible to HIC in the HAZ region, the continuous cooling transformation (CCT) behavior of the CGHAZ of naval steels HSLA-65, HSLA-100, and HY-100 was investigated. The CGHAZ microstructure over a range of cooling rates was characterized, and corresponding CCT diagrams were constructed. It was found that depending on the cooling rate, martensite, bainite, ferrite and pearlite can form in the CGHAZ of HSLA-65. For HSLA-100 and HY-100, only martensite and bainite formed over the range of cooling rates that were simulated. The constructed CCT diagrams can be used as a reference to select welding parameters to avoid the formation of high-hardness martensite in the CGHAZ, in order to ensure resistance to hydrogen-induced cracking. Implant testing was conducted on the naval steels to evaluate their susceptibility to HAZ HIC. Stress vs. time to failure curves were plotted, and the lower critical stress (LCS), normalized critical stress ratio (NCSR) and embrittlement index (EI) for each steel were determined, which were used to quantitatively compare HIC susceptibility. The CGHAZ microstructure of the naval steels was characterized, and the HIC fracture behavior was studied. Intergranular (IG), quasi-cleavage (QC) and microvoid coalescence (MVC) fracture modes were found to occur in sequence during the crack initiation and propagation process. This was

  11. Mapping Phase Transformations in the Heat-Affected-Zone of Carbon Manganese Steel Welds using Spatially Resolved X-Ray Diffraction

    SciTech Connect

    Elmer, J W; Wong, J; Ressler, T; Palmer, T A

    2001-12-04

    Spatially Resolved X-Ray Diffraction (SRXRD) was used to investigate phase transformations that occur in the heat affected zone (HAZ) of gas tungsten arc (GTA) welds in AISI 1005 carbon-manganese steel. In situ SRXRD experiments performed at the Stanford Synchrotron Radiation Laboratory (SSRL) probed the phases present in the HAZ during welding, and these real-time observations of the HAZ phases were used to construct a map of the phase transformations occurring in the HAZ. This map identified 5 principal phase regions between the liquid weld pool and the unaffected base metal for the carbon-manganese steel studied in this investigation. Regions of annealing, recrystallization, partial transformation and complete transformation to {alpha}-Fe, {gamma}-Fe, and {delta}-Fe phases were identified using SRXRD, and the experimental results were combined with a heat flow model of the weld to investigate transformation kinetics under both positive and negative temperature gradients in the HAZ. From the resulting phase transformation map, the kinetics of phase transformations that occur under the highly non-isothermal heating and cooling cycles produced during welding of steels can now be better understood and modeled.

  12. Analysis of heat-affected zone phase transformations using in situ spatially resolved x-ray diffraction with synchrotron radiation

    SciTech Connect

    Elmer, J.W.; Wong, J.; Froeba, M.; Waide, P.A.; Larson, E.M.

    1996-03-01

    Spatially resolved X-ray diffraction (SRXRD) consists of producing a submillimeter size X-ray beam from an intense synchrotron radiation source to perform real-time diffraction measurements on solid materials. This technique was used int his study to investigate the crystal phases surrounding a liquid weld pool in commercial purity titanium and to determine the location of the phase boundary separating the high-temperature body-centered-cubic (bcc) {beta} phase from the low-temperature hexagonal-close-packed (hcp) {alpha} phase. The experiments were carried out at the Stanford Synchrotron Radiation Laboratory (SSRL) using a 0.25 x 0.50 mm X-ray probe that could be positioned with 10-{micro}m precision on the surface of a quasistationary gas tungsten arc weld (GTAW). The SRXRD results showed characteristic hcp, bcc, and liquid diffraction patterns at various points along the sample, starting from the base metal through the heat-affected zone (HAZ) and into the weld pool, respectively. Analyses of the SRXRD data show the coexistence of bcc and hcp phases in the partially transformed (outer) region of the HAZ and single-phase bcc in the fully transformed (inner) region of the HAZ. Postweld metallographic examinations of the HAZ, combined with a conduction-based thermal model of the weld, were correlated with the SRXRD results. Finally, analysis of the diffraction intensities of the hcp and bcc phases was performed on the SRXRD data to provide additional information about the microstructural conditions that may exist in the HAZ at temperature during welding. This work represents the first direct in situ mapping of phase boundaries in fusion welds.

  13. Heat-affected zone toughness of a TMCP steel designed for low-temperature applications

    SciTech Connect

    Gianetto, J.A.; Braid, J.E.M.; Bowker, J.T.; Tyson, W.R.

    1997-05-01

    The objective of this investigation was to provide a detailed evaluation of the heat-affected zone (HAZ) toughness of a high-strength TMCP steel designed for low-temperature applications. The results form both Charpy-vee notch (CVN) and crack-tip-opening displacement (CTOD) tests conducted on two straight-walled narrow groove welds, produced at energy inputs of 1.5 and 3.0 kJ/mm, show that significantly lower toughness was exhibited by the grain-coarsened HAZ (GCHAZ) compared with the intercritical HAZ (ICHAZ) region. This is explained based on the overall GCHAZ microstructure, and the initiation mechanism which caused failure. For the particular TMCP steel investigated in this study very good ICHAZ toughness properties were recorded using both HAZ Charpy and CTOD tests. In general, this was attributable to the low hardness, relatively fine ferrite microstructure, and the formation of secondary microphases that were not overly detrimental to the toughness. The lower-bound GCHAZ CTOD results obtained for both welds (KAW-L and KAW-H) did not meet the targeted requirement of {delta} = 0.07 mm at {minus}50 C. It was found in both welds that low CTOD toughness was associated with the initiation of fracture from nonmetallic inclusions, which were complex oxides containing Ce, La, and S. The sites were located in the subcritical GCHAZ (SCGHAZ) region in the case of the 1.5 kJ/mm weld and in the GCHAZ for the 3.0 kJ/mm weld. Some variation in CVN toughness was observed at different through-thickness locations. Toughness was lowest for the GCHAZ of the weld deposited at 3.0 kJ/mm and was related to the proportion of GCHAZ being samples, which was {approximately} 55% for the bottom compared to 25--30% for that of the top location. Recommendations are proposed on the preferred practices and criteria that should be used in establishing guidelines and specifications for evaluating the HAZ toughness of candidate steels for construction of Arctic class ships.

  14. Correlation of the microstructure and fracture toughness of the heat-affected zones of an SA 508 steel

    SciTech Connect

    Kim, S.; Kang, S.Y.; Oh, S.J.; Kwon, S.J.; Lee, S.; Kim, J.H.; Hong, J.H.

    2000-04-01

    In this study, microstructures of a heat-affected zone (HAZ) of an SA 508 steel were identified by Moessbauer spectroscopy in conjunction with microscopic observations, and were correlated with fracture toughness. Specimens with the peak temperature raised to 1350 C showed mostly martensite. With the peak temperature raised to 900 C, the martensite fraction was reduced, while bainite or martensite islands were formed because of the slow cooling from the lower austenite region and the increase in the prior austenite grain size. As the martensite fraction present inside the HAZ increased, hardness and strength tended to increase, whereas fracture toughness decreased. The microstructures were not changed much from the base metal because of the minor tempering effect when it was raised to 650 C or 700 C. However, fracture toughness of the subcritical HAZ with the peak temperature raised to 650 C to 700 C was seriously reduced after postweld heat treatment (PWHT) because carbide particles were of primary importance in initiating voids. Thus, the most important microstructural factors affecting fracture toughness were the martensite fraction before PWHT and the carbide fraction after PWHT.

  15. The Influence of Pd-Doped Au Wire Bonding on HAZ Microstructure and Looping Profile in Micro-Electromechanical Systems (MEMS) Packaging

    NASA Astrophysics Data System (ADS)

    Ismail, Roslina; Omar, Ghazali; Jalar, Azman; Majlis, Burhanuddin Yeop

    2015-07-01

    Wire bonding processes has been widely adopted in micro-electromechanical systems (MEMS) packaging especially in biomedical devices for the integration of components. In the first process sequence in wire bonding, the zone along the wire near the melted tips is called the heat-affected zone (HAZ). The HAZ plays an important factor that influenced the looping profiles of wire bonding process. This paper investigates the effect of dopants on microstructures in the HAZ. One precent palladium (Pd) was added to the as-drawn 4N gold wire and annealed at 600°C. The addition of Pd was able to moderate the grain growth in the HAZ by retarding the heat propagation to the wire. In the formation of the looping profile, the first bending point of the looping is highly associated with the length of the HAZ. The alloyed gold wire (2N gold) has a sharp angle at a distance of about 30 m from the neck of the wire with a measured bending radius of about 40 mm and bending angle of about 40° clockwise from vertical axis, while the 4N gold wire bends at a longer distance. It also shows that the HAZ for 4N gold is longer than 2N gold wire.

  16. Kinetics of grain growth in the weld heat-affected zone of Alloy 718

    SciTech Connect

    Radhakrishnan, B.; Thompson, R.G.

    1993-12-01

    Grain-boundary liquation occurs in the weld heat-affected zone (HAZ) of the Ni-base superalloy 718 at locations where the peak temperatures are greater than about 1,200 C. The evolution of the grain structure at the HAZ locations depends upon the interaction between the grains and the grain-boundary liquid. The evolution of grain structure in the presence of grain-boundary liquid was simulated by subjecting samples to controlled thermal cycles using resistance heating. A measurement of grain size as a function of isothermal hold at two peak temperatures of 1,200 C and 1,227 C indicated that in alloy 718, the kinetics of grain growth depended upon the prior thermal history of the alloy. In the solution-treated alloy, the presence of grain-boundary liquid did not arrest grain growth at either peak temperature. In the homogenized and aged alloy, a grain refinement was observed at the peak temperature of 1,227 C, while an arrest of grain growth was observed at a peak temperature of 1,200 C. Liquid film migration (LFM) and subgrain coalescence, either acting alone or simultaneously, are shown to explain most of the observed microstructural phenomena and the kinetics of grain growth in the alloy.

  17. Kinetics of grain growth in the weld heat-affected zone of alloy 718

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, B.; Thompson, R. G.

    1993-12-01

    Grain-boundary liquation occurs in the weld heat-affected zone (HAZ) of the Ni-base superalloy 718 at locations where the peak temperatures are greater than about 1200 ‡C. The evolution of the grain structure at these HAZ locations depends upon the interaction between the grains and the grain-boundary liquid. The evolution of grain structure in the presence of grain-boundary liquid was simulated by subjecting samples to controlled thermal cycles using resistance heating. A measurement of grain size as a function of isothermal hold at two peak temperatures of 1200 ‡C and 1227 ‡C indicated that in alloy 718, the kinetics of grain growth depended upon the prior thermal history of the alloy. In the solution-treated alloy, the presence of grain-boundary liquid did not arrest grain growth at either peak temperature. In the homogenized and aged alloy, a grain refinement was observed at the peak temperature of 1227 ‡C, while an arrest of grain growth was observed at a peak temperature of 1200‡C. Liquid film migration (LFM) and subgrain coalescence, either acting alone or simultaneously, are shown to explain most of the observed microstructural phenomena and the kinetics of grain growth in the alloy.

  18. A model for heat-affected zone hardness profiles in Al-Li-X alloys

    SciTech Connect

    Rading, G.O.; Berry, J.T.

    1998-09-01

    A model based on reaction kinetics and elemental diffusion is proposed to account for the presence of double inflection in the hardness profiles of the heat-affected zone (HAZ) in weldments of Al-Li-X alloys tested without postweld heat treatment (PWHT). Such profiles are particularly evident when (1) the base metal is in the peak-aged (T8 or T6) temper condition prior to welding; (2) the welding process is a high-heat input process, i.e., gas tungsten arc (GTA), gas metal arc (GMA) or plasma arc (PA) welding; and (3) a filler alloy deficient in lithium (i.e., AA 2319) is used. In the first part of this paper, the theoretical mechanisms are presented. It is proposed that the double inflection appears due to complete or partial reversion of the semi-coherent, plate-like precipitates (i.e., {theta}{prime}, T{sub 1} or S{prime}); coarsening of the plate-like precipitates at constant volume fraction; precipitation of {delta}{prime} as a result of natural aging; and diffusion of lithium from the HAZ into the weld pool due to the concentration gradient between the weld pool and the base metal. In the second part (to be published in next month`s Welding Journal), experimental validation of the model is provided using weldments of the Al-Li-Cu Alloy 2095.

  19. Transformation, metallurgical response and behavior of the weld fusion zone and heat affected zone in Cr-Mo steels for fossil energy application: Final technical report for January 1985-September 1987

    SciTech Connect

    Lundin, C.D.; Henning, J.A.; Menon, R.; Khan, K.K.

    1987-09-30

    This research program was undertaken to provide fundamental and basic metallurgical information on the behavior of the heat affected zone (HAZ) in Cr-Mo steel welds as well as practical information on their relative weldability. The principal work was the evaluation of the post weld heat treatment (PWHT) cracking of Cr-Mo steels ranging in Cr content from 2-1/4% to 9%. Differences in observed cracking behavior were contrasted with composition, on cooling transformation behavior and HAZ microstructure. Hydrogen assisted cracking (HAC) studies using a large scale cracking test were conducted on 2-1/4 Cr and 3 Cr steels. Soft zone studies were conducted on 9 Cr NKK steel to determine the reason for the development of a low hardness region (''Soft Zone'') at the outer boundary of the HAZ. The literature review provides a concise historical review and the basis of theories for PWHT cracking and HAC in Cr-Mo steels which were employed to explain the weld cracking susceptibility of various Cr-Mo alloys. PWHT cracking susceptibility was investigated using Gleeble simulated heat affected zone (HAZ) specimens. A new test was developed at the University of Tennessee, The C-ring test, to evaluate the PWHT cracking behavior. The C-ring test was found to be an extremely useful test for PWHT cracking susceptibility and for verifying the results obtained from Gleeble tsting. An excellent correlation was obtained for the two tests. The standard Y-groove test was selected for HAC susceptibility testing. This test is very suitable for evaluating the HAC of the base metal and is defined in Japanese Industrial Standard JIS Z 3158.

  20. Effects of cooling time and alloying elements on the microstructure of the gleeble-simulated heat-affected zone of 22% Cr duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Hsieh, Rong-Iuan; Liou, Horng-Yih; Pan, Yeong-Tsuen

    2001-10-01

    The effects of austenite stabilizers, such as nitrogen, nickel, and manganese, and cooling time on the microstructure of the Gleeble simulated heat-affected zone (HAZ) of 22% Cr duplex stainless steels were investigated. The submerged are welding was performed for comparison purposes. Optical microscopy (OM) and transmission electron microscopy (TEM) were used for microscopic studies. The amount of Cr2N precipitates in the simulated HAZ was determined using the potentiostatic electrolysis method. The experimental results indicate that an increase in the nitrogen and nickel contents raised the δ to transformation temperature and also markedly increased the amount of austenite in the HAZ. The lengthened cooling time promotes the reformation of austenite. An increase in the austenite content reduces the supersaturation of nitrogen in ferrite matrix as well as the precipitation tendency of Cr2N. The optimum cooling time from 800 to 500 °C (Δ t 8/5) obtained from the Gleeble simulation is between 30 and 60 s, which ensures the austenite content in HAZ not falling below 25% and superior pitting and stress corrosion cracking resistance for the steels. The effect of manganese on the formation of austenite can be negligible.

  1. The structure of the heat-affected zone in welds of a Ni-29 wt. % Mo commercial alloy (Hastelloy B2)

    SciTech Connect

    Cao, S.; Brooks, C.R. ); Whittaker, G. )

    1994-07-01

    The microstructure of a welded pipe of Hastelloy B2 removed from a coal gasification plant was examined. Although this alloy is susceptible to severe embrittlement if ordering occurs, no significant ordering was found in the heat-affected zone (HAZ) or the weld, and the material was ductile. However, intergranular corrosion was found in the HAZ, and fine (e.g., 0.1mm) particles of Mo-rich M[sub 12]C carbide and the intermetallic compound NiMo were found in the grain boundaries. These are apparently depleting the adjacent matrix of Mo, rendering the grain boundary region susceptible to corrosion. A single- and a double-pass autogeneous weld made on the base-plate material were examined. No ordering was detected in the HAZ, which is consistent with the measured temperature-time curves of regions adjacent to the weld and with the known ordering kinetics. In the HAZ, fine grain boundary particles of M[sub 12] carbide were detected, and NiMo may also be present.

  2. Mapping Phase Transformations in the Heat-Affected-Zone of Carbon Manganese Steel Welds using Spatially Resolved X-Ray Diffraction

    SciTech Connect

    Elmer, J W; Wong, J; Ressler, T; Palmer, T A

    2002-02-12

    Spatially Resolved X-Ray Diffraction (SRXRD) was used to investigate phase transformations that occur in the heat affected zone (HAZ) of gas tungsten arc (GTA) welds in AISI 1005 carbon-manganese steel. In situ SRXRD experiments performed at the Stanford Synchrotron Radiation Laboratory (SSRL) probed the phases present in the HAZ during welding, and these real-time observations of the HAZ phases were used to construct a map of the phase transformations occurring in the HAZ. This map identified 5 principal phase regions between the liquid weld pool and the unaffected base metal. Regions of annealing, recrystallization, partial transformation and complete transformation to {alpha}-Fe, {gamma}-Fe, and {delta}-Fe phases were identified using SRXRD, and the experimental results were combined with a heat flow model of the weld and thermodynamic calculations to compare these results with the important phase transformation isotherms. From the resulting phase transformation map, the kinetics of phase transformations that occur under the highly non-isothermal heating and cooling cycles produced during welding of steels can be better understood and modeled.

  3. Heat-affected zone fracture toughness of 420-500 MPa yield strength steels: Effects of chemical composition and welding conditions

    SciTech Connect

    Tronskar, J.P. )

    1993-02-01

    During the last five years, high-strength steels with yield strengths in the range 420 to 500 MPa have attracted considerable interest within the offshore industry, primarily due to the potential for weight saving and reduction in volume of weld metal through the use of reduced section thicknesses. With respect to chemical composition these steels are developed following much the same philosophy as for the modern normalized structural steels. Due to the increased stress level in these higher strength steels, it is anticipated that brittle fracture initiation occurring in the coarse-gained HAZ will be more critical for these steels than for the lower strength normalized grades. The objective of this paper is to present the results from several experimental investigations carried out at VERITEC during the last five years to study the factors affecting the crack tip opening displacement (CTOD) fracture toughness of the heat-affected zone (HAZ) in structural steels in the yield strength range 420-500 MPa. Typical CTOD fracture toughnesses of the HAZ in normalized 350-MPa yield strength steels used in offshore structures are also presented for comparison. The results of the investigations confirm that the same chemical compositional factors which are known to influence the HAZ fracture toughness of normalized steels are also important for the 420-500-MPa yield strength steels. It is demonstrated that the width of the HAZ is important for the initiation of brittle fracture of pop-in and that this width must exceed a certain minimum value for such events to occur.

  4. Structure and ductility of the heat-affected zone of welded joints of a high-strength steel

    NASA Astrophysics Data System (ADS)

    Tabatchikova, T. I.; Nosov, A. D.; Goncharov, S. N.; Gudnev, N. Z.; Delgado Reina, S. Yu.; Yakovleva, I. L.

    2014-12-01

    Methods of optical microscopy and scanning and transmission electron microscopy have been used to study the structure of welded joints of a high-strength structural steel with different types of the weld metal. The impact toughness of the heat-affected zone (HAZ) has been determined at temperatures of +20 and -40°C. Based on the fractograph investigations of the character of the fracture of the welded joints after tests for impact bending, the regions that are the most dangerous for crack initiation have been determined. Structural factors that affect the brittleness of the near-weld zone of welded joints with the austenite metal of the weld are indicated, including the existence of an austenite-bainite structure and coarse carbides, as well as the specific distribution of hydrogen.

  5. Effect of homogenization heat treatment on the microstructure and heat-affected zone microfissuring in welded cast alloy 718

    SciTech Connect

    Xiao Huang; Richards, N.L.; Chaturvedi, M.C.

    1996-03-01

    The effect of homogenization temperature on microfissuring in the heat-affected zones of electron-beam welded cast INCONEL 718 has been studied. The material was homogenized at various temperatures in the range of 1,037 C and 1,163 C and air-cooled. The homogenized material was then electron-beam welded by the bead-on-plate welding technique. The microstructures and microfissuring in the heat-affected zone (HAZ) were evaluated by analytical scanning electron microscopy (SEM). The grain boundary segregation of various elements was evaluated by secondary ion mass spectroscopy (SIMS). It was observed that the total crack length (TCL) of microfissures first decreases with homogenization temperature and then increases, with a minimum occurring in the specimen heat treated at 1,163 C. This trend coincides with the variation in segregation of B at grain boundaries with homogenization temperature and has been explained by equilibrium and nonequilibrium segregation of B to grain boundaries during the homogenization heat treatment. No other element was observed to segregate at the grain boundaries. The variation in volume fraction of phases like {delta}-Ni{sub 3}Nb, MC carbide, and Laves phases does not follow the same trend as that observed for TCL and B segregation at the grain boundaries. Therefore, microfissuring in HAZ of welded cast INCONEL 718 is attributed to the segregation of B at the grain boundaries.

  6. Effect of homogenization heat treatment on the microstructure and heat- affected zone microfissuring in welded cast alloy 718

    NASA Astrophysics Data System (ADS)

    Huang, Xiao; Chaturvedi, M. C.; Richards, N. L.

    1996-03-01

    The effect of homogenization temperature on microfissuring in the heat-affected zones of electronwelded cast INCONEL 718 has been studied. The material was homogenized at various temperatures in the range of 1037 ° to 1163 ° and air-cooled. The homogenized material was then electron-beam welded by the bead-on-plate welding technique. The microstructures and microfissuring in the heat-affected zone (HAZ) were evaluated by analytical scanning electron microscopy (SEM). The grain boundary segregation of various elements was evaluated by secondary ion mass spectroscopy (SIMS). It was observed that the total crack length (TCL) of microfissures first decreases with homogenization temperature and then increases, with a minimum occurring in the specimen heat treated at 1163 °. This trend coincides with the variation in segregation of B at grain boundaries with homogenization temperature and has been explained by equilibrium and nonequilibrium segregation of B to grain boundaries during the homogenization heat treatment. No other element was observed to segregate at the grain boundaries. The variation in volume fraction of phases like δ-Ni3Nb, MC carbide, and Laves phases does not follow the same trend as that observed for TCL and B segregation at the grain boundaries. Therefore, microfissuring in HAZ of welded cast INCONEL 718 is attributed to the segregation of B at the grain boundaries.

  7. The structural significance of HAZ sigma phase formation in welded 25%Cr super duplex pipework

    SciTech Connect

    Wiesner, C.S.; Garwood, S.J.; Bowden, P.L.

    1993-12-31

    The welding of 25%Cr duplex stainless steel can lead to the formation of sigma phase in both weld metal and heat affected zone (HAZ) regions. It has generally been accepted that this can be avoided by the adoption of appropriate welding procedure controls, generally aimed at reducing heat input and promoting rapid cooling rates. However, experience during pipe spool fabrication for the Marathon East Brae Project has shown that it is extremely difficult to satisfy a welding specification requiring sigma free HAZs. This has proved a particular problem with thin wall pipe welds made in the 2G/5G or 6G fixed positions, where the joint geometry reduces heat flow away from the weld and welding conditions tend to result in the use of higher heat inputs. This paper examines the effect of sigma phase on the fracture toughness of 25%Cr super duplex steel (UNS S32760). It is shown that the CTOD toughness at {minus}20 C decreases as soon as any sigma phase is present and continues to decrease with increasing sigma levels. The toughness of the sigmatized specimens produced by heat treatment was shown to be conservative compared to the toughness measured in the HAZ of 14.2mm and 7.1mm thick pipe weldments, made with welding parameters chosen to enhance HAZ sigma phase formation. Based on the CTOD versus percent sigma level relationship derived from the laboratory specimens, fracture assessment calculations of tolerable flaw sizes were performed. These demonstrated that under the severest design conditions, assuming the maximum flaw sizes which could remain undetected in the pipework, sigma levels up to 2.5% can be tolerated safely. The conservatism of the fracture assessments for predicting the performance of weldments was demonstrated by full scale tensile testing of 2 inch nominal bore x 2.77 mm wall thickness pipe butt welds containing through-thickness circumferential fatigue cracks located in the sigmatized HAZ.

  8. Microstructure and property examination of the weld HAZ in Grade 100 microalloyed steel

    NASA Astrophysics Data System (ADS)

    Poorhaydari-Anaraki, Kioumars

    The microstructure and mechanical property variations across different regions of the heat-affected zone (HAZ) of a Grade 100 microalloyed steel were examined for a range of heat inputs from 0.5 to 2.5 kJ/mm. Autogenous gas tungsten arc welding was performed on plates of Grade 100 steel to create the HAZ. The weld thermal cycles were recorded by embedding thermocouples at different locations in the plates. Examination of precipitate alterations (dissolution, coarsening and reprecipitation) was carried out theoretically and/or experimentally using transmission electron microscopy (TEM). Iron matrix phase transformations and grain size changes were examined with optical microscopy as well as TEM (both thin foils and carbon replicas). Hardness measurements (macro-, micro- and nano-hardness) were mainly used for examination of mechanical properties across the HAZ. Hardness measurements across the HAZ showed hardening in 0.5 kJ/mm weld samples and softening in the 1.5 and 2.5 kJ/mm weld samples. This was mainly due to the difference in cooling rates, since fast cooling results in microstructures with finer structures (especially grain size) and higher levels of solutes and sub-structure in the matrix. The coarse-grained HAZ (CGHAZ) had a higher hardness relative to the fine-grained HAZ (FGHAZ), regardless of the heat input, due to the formation of bainitic and martensitic fine structures (laths/plates) inside large prior austenite grains. The CGHAZ-0.5 kJ/mm consisted of packets of untempered lath martensite and coarse regions of autotempered martensite or aged massive ferrite. Increasing the heat input to 1.5 and 2.5 kJ/mm resulted in mainly bainitic microstructures (e.g., granular bainite) with some acicular ferrite and grain-boundary ferrite in the CGHAZ. The FGHAZ was mainly made up of polygonal ferrite, with considerable amounts of bainitic ferrite in the case of the 0.5 kJ/mm weld sample. Nb-rich carbides mostly survived the thermal cycles experienced in FGHAZ

  9. Effects of Oxides on Tensile and Charpy Impact Properties and Fracture Toughness in Heat Affected Zones of Oxide-Containing API X80 Linepipe Steels

    NASA Astrophysics Data System (ADS)

    Sung, Hyo Kyung; Sohn, Seok Su; Shin, Sang Yong; Oh, Kyung Shik; Lee, Sunghak

    2014-06-01

    This study is concerned with effects of complex oxides on acicular ferrite (AF) formation, tensile and Charpy impact properties, and fracture toughness in heat affected zones (HAZs) of oxide-containing API X80 linepipe steels. Three steels were fabricated by adding Mg and O2 to form oxides, and various HAZ microstructures were obtained by conducting HAZ simulation tests under different heat inputs. The no. of oxides increased with increasing amount of Mg and O2, while the volume fraction of AF present in the steel HAZs increased with increasing the no. of oxides. The strengths of the HAZ specimens were generally higher than those of the base metals because of the formation of hard microstructures of bainitic ferrite and granular bainite. When the total Charpy absorbed energy was divided into the fracture initiation and propagation energies, the fracture initiation energy was maintained constant at about 75 J at room temperature, irrespective of volume fraction of AF. The fracture propagation energy rapidly increased from 75 to 150 J and saturated when the volume fraction of AF exceeded 30 pct. At 253 K (-20 °C), the total absorbed energy increased with increasing volume fraction of AF, as the cleavage fracture was changed to the ductile fracture when the volume fraction of AF exceeded 45 pct. Thus, 45 vol pct of AF at least was needed to improve the Charpy impact energy, which could be achieved by forming a no. of oxides. The fracture toughness increased with increasing the no. of oxides because of the increased volume fraction of AF formed around oxides. The fracture toughness did not show a visible correlation with the Charpy absorbed energy at room temperature, because toughness properties obtained from these two toughness testing methods had different significations in view of fracture mechanics.

  10. Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel

    NASA Astrophysics Data System (ADS)

    Lambert-Perlade, A.; Sturel, T.; Gourgues, A. F.; Besson, J.; Pineau, A.

    2004-03-01

    The effect of the welding cycle on the fracture toughness properties of high-strength low alloy (HSLA) steels is examined by means of thermal simulation of heat-affected zone (HAZ) microstructures. Tensile tests on notched bars and fracture toughness tests at various temperatures are performed together with fracture surface observations and cross-sectional analyses. The influence of martensite-austenite (M-A) constituents and of “crystallographic” bainite packets on cleavage fracture micromechanisms is, thus, evidenced as a function of temperature. Three weakest-link probabilistic models (the “Master-curve” (MC) approach, the Beremin model, and a “double-barrier” (DB) model) are applied to account for the ductile-to-brittle transition (DBT) fracture toughness curve. Some analogy, but also differences, are found between the MC approach and the Beremin model. The DB model, having nonfitted, physically based scatter parameters, is applied to the martensite-containing HAZ microstructures and gives promising results.

  11. Localized ageing in the heat affected zone of welded X5CrNiCuNbl6-4 and X4CrNiSiTi14-7 sheets

    NASA Astrophysics Data System (ADS)

    Sakhawat, S.; Falahati, A.; Degischer, H. P.; Spiradek, K.; Dománková, M.

    2014-06-01

    Localized ageing and corresponding microstructural developments as a result of welding heat in the heat-affected zone (HAZ) of two different precipitation-hardened Cr-Steels (X5CrNiCuNb16-4 and X4CrNiSiTi14-7) have been studied. The X5CrNiCuNb16-4 sheet was in solution annealed condition and X4CrNiSiTi14-7 sheet was in peak aged condition. The results showed that despite of initial heat treated condition, the fusion zone formed in both welded sheets has typical cast structure. The HAZ has different microstructure compared to fusion zone and base metal. The HAZ is found to be sensitive to the welding heat and was aged locally due to thermal effects of welding. This localized ageing forms regions in HAZ varying from over-aged to under aged, depending upon the initial ageing condition of the base sheet.

  12. In-situ Phase transformation study in fine grained heat affected zone of Grade 91 steels

    SciTech Connect

    Babu, Sudarsanam Suresh; Yamamoto, Yukinori; Santella, Michael L; Yu, Xinghua; Komizo, Prof. Y; Terasaki, Prof. H

    2014-01-01

    Creep strength-enhanced ferritic (CSEF) steels such as the 9 Cr steel [ASTM A387 Grade 91] are widely used as tubing and piping in the new generation of fossil fired power plants. Microstructures in the fine-grained heat affected zone (FGHAZ) may significantly reduce creep strength leading Type IV failures. Current research suggest that reducing pre-weld tempering temperature from 760 C (HTT) to 650 C (LTT) has the potential to double the creep life of these welds. To understand this improvement, time-resolved X-ray diffraction (TRXRD) measurement with synchrotron radiation was used to characterize the microstructure evolution during fine grained heat-affected zone (HAZ) thermal cycling of grade 91 steel. The measurements showed both M23C6 (M=Fe, Cr) and MX (M=Nb, V; X=C,N) are present in the sample after the HTT condition. Near equilibrium fraction of M23C6 was measured in high temperature tempering condition (HTT, 760 C). However, the amount of M23C6 in LTT condition was very low since the diffraction peaks are close to the background. During simulated FGHAZ thermal cycling, the M23C6 partially dissolved in HTT sample. Interestingly, MX did not dissolve in both LTT and HTT samples. Hypothesis for correlation of M23C6 carbide distribution and pre-mature creep failure in FGHAZ will be made.

  13. Grain boundary melting and hot cracking in weld HAZ of a two-phase Ni{sub 3}Al alloy containing Zr

    SciTech Connect

    Li, H.; Chaki, T.K.

    1995-08-01

    Grain boundary melting and its effect on hot cracking in the weld heat-affected zone (HAZ) have been investigated in the investment cast billet of a two-phase ({gamma} + {gamma}{prime}) nickel aluminide alloy (Ni{sub 74.48}Al{sub 16.98}Cr{sub 8.02}Zr{sub 0.51}B{sub 0.10}), designated as IC-218. Due to enrichment of Zr, which can form eutectic alloys with Ni, the dendritic boundaries melted incipiently at 1,150 C. Under thermal stresses during welding the molten layers often opened up producing liquation cracks at the boundaries in the HAZ. Annealing at 1,100 C in argon for 23 h prior to welding reduced the incipient melting temperature to 1,125 C and increased the propensity of liquation cracking in the HAZ.

  14. Magnetic Barkhausen noise for reliable detection of the heat affected zone in welded ship steel plate

    NASA Astrophysics Data System (ADS)

    Blaow, Mohamed M.; Shaw, Brian A.

    2014-02-01

    The applicability of the Barkhausen noise technique to non-destructively determine the heat affected zone (HAZ) in welded steel plates was investigated. Magnetic Barkhausen noise measurements were conducted on welded hot-rolled low carbon ship steel plates to determine the MBN behaviour following the exposure to elevated heat in a localized region by welding. The exciting field was applied parallel to the weld bead. The results showed a variation in MBN level along a line that crosses the weld bead. The MBN intensity was higher in the near weld material compared with a lower intensity when the measurement setup was moved away from the weld bead in both sides of the weld. The increased MBN level was attributed to the induced residual tensile stresses as a result of the shrinkage of the hot zone. The variation of MBN along the measurement line was eliminated after the welded plate was shot peened. The decrease in MBN intensity after shot peening was attributed to the induced compressive stresses. The results were explained in terms of different mechanisms of interaction of domain walls with residual tensile and compressive stresses.

  15. Improved Resistance to Laser Weld Heat-Affected Zone Microfissuring in a Newly Developed Superalloy HAYNES 282

    NASA Astrophysics Data System (ADS)

    Osoba, L. O.; Ding, R. G.; Ojo, O. A.

    2012-11-01

    Gleeble thermomechanical simulation and microstrucutural analyses of laser beam weldability of a newly developed precipitation-hardened nickel-base HAYNES alloy 282 were performed to better understand the fundamental cause of heat-affected zone (HAZ) cracking and how to prevent the cracking problem in the material. Submicron size intergranular M5B3 particles are identified for the first time in the present work by transmission electron microscopy, and were found to be the primary cause of HAZ grain boundary liquation cracking in the alloy. Complete dissolution of the liquating M5B3 particles by preweld heat treatment exacerbated rather than reduced susceptibility to cracking, which could be attributed to nonequilibrium intergranular segregation of boron atoms, liberated by the complete dissolution of the boride particles, during cooling from heat treatment temperature. Consequently, to reduce the HAZ cracking, a preweld heat treatment that reduces the volume fraction of the M5B3 particles while minimizing nonequilibrium grain boundary boron segregation is necessary, and this is possible by heat treating the alloy at 1353 K to 1373 K (1080 °C to 1100 °C). Further improvement in cracking resistance to produce crack-free welds is achieved by subjecting the alloy to thermomechanically induced grain refinement coupled with the preweld heat treatment at 1353 K (1080 °C). A Gleeble hot ductility test showed that formation of the crack-free welds is unexplainable by mere reduction in grain size without considering the effect of grain refinement on intergranular liquid produced by subsolidus liquation of the M5B3 borides.

  16. The physical modeling of grain boundary liquation mechanisms within the heat-affected zone of an aluminum-copper alloy

    NASA Astrophysics Data System (ADS)

    Wilson, Andre Lamont

    This dissertation describes the results of a research program which was conducted to physically model, weld heat-affected zone (HAZ) liquation processes observed in Aluminum alloys during welding in the absence of an external strain. Three liquation processes were analyzed using a binary Al-3Cu alloy: (1) intergranular liquid infiltration from the fusion zone; (2) sub-solidus (below the equilibrium solidus temperature) grain boundary liquation due to non-equilibrium segregation during welding; and, (3) sub-solidus liquation (constitutional liquation) of undissolved precipitates in the matrix and along the grain boundary. Silicon, from an Al-Si filler metal, was observed at the base metal, HAZ grain boundaries, of a solution treated Al-3Cu alloy after gas-tungsten arc welding. With no evidence for crack-backfilling, the mechanism of transport of fusion zone material into the matrix was tentatively identified as liquid metal penetration of grain boundaries governed by liquid diffusion kinetics. Grain boundary regions in the heat-affected zone (HAZ) of arc welds, in a solution treated Al-3Cu alloy, were examined for liquation susceptibility. The welding experiments showed that certain grain boundaries, adjacent to the fusion line, were depleted in solute (copper), but were not liquated. Investigation of the third mechanism, involved a comprehensive study of the solid-state, dissolution and liquation-dissolution of matrix and grain boundary precipitates. This represents the first complete study of its type, for any alloy system. The isothermal kinetics of solid-state and liquation-dissolution of theta (Al2Cu) precipitates, were fully quantified during salt bath annealing. The stability of the grain boundary precipitate dispersion was examined in order to determine the susceptibility of the grain boundary microstructure to liquation. These latter experiments were facilitated by a large, "static" grain structure, and this study may mark the first time that any grain

  17. Precipitation Behavior in the Heat-Affected Zone of Boron-Added 9Cr-3W-3Co Steel During Post-Weld Heat Treatment and Creep Deformation

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Tsukamoto, Susumu; Sawada, Kota; Tabuchi, Masaaki; Abe, Fujio

    2015-05-01

    In the previous paper, we demonstrated that the addition of boron was effective in preventing type IV failure due to suppression of grain refinement in the heat-affected zone at the peak temperature of around AC3 (AC3 HAZ). However, some fine prior austenite grains (PAGs) still remained around the coarse PAG boundaries, and these fine PAGs may affect the creep property of the welded joint. In the present study, the effect of these fine PAGs on the creep property of the boron-added 9Cr-3Co-3W steel (B steel) Ac3 HAZ is investigated. Different heat treatments are carried out on B steel base metal to form different Ac3 HAZ-simulated microstructures of coarse PAG with and without fine PAGs. Ac3 HAZ microstructure shows that a lot of M23C6 carbides are formed at the block boundary in the interior of coarse PAG. On the other hand, few M23C6 carbides are formed at the fine PAG boundaries, but a number of μ phases (W6Fe7 type) cover the boundary. The formation of μ phase retards the recovery of dislocation at the fine PAG boundary and contributes to stabilizing the microstructure in the primary and transient creep regions. The μ phase transforms to the Laves phase during creep. As the growth rate of Laves phase is higher than that of M23C6 carbides during creep, the creep strength of fine PAG boundary, which is strengthened only by Laves phase, becomes a little bit lower than the other boundaries strengthened by M23C6 carbides after long-term creep. The mismatch of creep strength between the fine PAG boundary and the matrix should be taken into account to attain an excellent long-term creep property of the B steel welded joint.

  18. Effect of welding conditions on transformation and properties of heat-affected zones in LWR (light-water reactor) vessel steels

    SciTech Connect

    Lundin, C.D.; Mohammed, S. . Welding Research and Engineering)

    1990-11-01

    The continuous cooling transformation behavior (CCT) and isothermal transformation (IT) behavior were determined for SA-508 and SA-533 materials for conditions pertaining to standard heat treatment and for the coarse-grained region of the heat-affected zone (HAZ). The resulting diagrams help to select welding conditions that produce the most favorable microconstituent for the development of optimum postweld heat treatment (PWHT) toughness levels. In the case of SA-508 and SA-533, martensite responds more favorably to PWHT than does bainite. Bainite is to be avoided for the optimum toughness characteristics of the HAZ. The reheat cracking tendency for both steels was evaluated by metallographic studies of simulated HAZ structures subjected to PWHT cycles and simultaneous restraint. Both SA-533, Grade B, Class 1, and SA-508, Class 2, cracked intergranularly. The stress rupture parameter (the product of the stress for a rupture life of 10 min and the corresponding reduction of area) calculated for both steels showed that SA-508, Class 2, was more susceptible to reheat cracking than SA-533, Grade B, Class 1. Cold cracking tests (Battelle Test and University of Tennessee modified hydrogen susceptibility test) indicated that a higher preheat temperature is required for SA-508, Class 2, to avoid cracking than is required for SA-533, Grade B, Class 1. Further, the Hydrogen Susceptibility Test showed that SA-508, Class 2, is more susceptible to hydrogen embrittlement than is SA-533, Grade B, Class 1.

  19. Segregation behavior of phosphorus in the heat-affected zone of an A533B/A182 dissimilar weld joint before and after simulated thermal aging

    NASA Astrophysics Data System (ADS)

    Zhai, Ziqing; Miyahara, Yuichi; Abe, Hiroshi; Watanabe, Yutaka

    2014-09-01

    The segregation behavior of phosphorus (P) in the heat-affected zone (HAZ) of an A533B/A182 dissimilar weld joint before and after step cooling was investigated with atom probe tomography. At grain/packet boundaries, the final P segregation level consisted of non-equilibrium segregation that occurred during cooling after welding and post-weld heat treatment (PWHT) and equilibrium segregation that occurred during step cooling. In both processes, higher P coverage was observed in the coarse-grained and intercritically reheated coarse-grained HAZ than in the fine-grained HAZ and base material. The cooling after welding and PWHT seemed to have a pronounced impact on P segregation in the subsequent aging process. In addition, P segregation also occurred at the precipitate/matrix interfaces of cementite, Mo2C and Al-Si rich precipitates. The evolution of P coverage at these two types of sites suggested increasing risks of embrittlement with an increase in aging time.

  20. Effect of simulated thermal cycles on the microstructure of the heat-affected zone in HSLA-80 and HSLA-100 steel plates

    NASA Astrophysics Data System (ADS)

    Shome, M.; Gupta, O. P.; Mohanty, O. N.

    2004-03-01

    The influence of weld thermal simulation on the transformation kinetics and heat-affected zone (HAZ) microstructure of two high-strength low-alloy (HSLA) steels, HSLA-80 and HSLA-100, has been investigated. Heat inputs of 10 kJ/cm (fast cooling) and 40 kJ/cm (slow cooling) were used to generate single-pass thermal cycles with peak temperatures in the range of 750 °C to 1400 °C. The prior-austenite grain size is found to grow rapidly beyond 1100 °C in both the steels, primarily with the dissolution of niobium carbonitride (Nb(CN)) precipitates. Dilatation studies on HSLA-80 steel indicate transformation start temperatures (T s ) of 550 °C to 560 °C while cooling from a peak temperature (T p ) of 1000 °C. Transmission electron microscopy studies show here the presence of accicular ferrite in the HAZ. The T s value is lowered to 470 °C and below when cooled from a peak temperature of 1200 °C and beyond, with almost complete transformation to lath martensite. In HSLA-100 steel, the T s value for accicular ferrite is found to be 470 °C to 490 °C when cooled from a peak temperature of 1000 °C, but is lowered below 450 °C when cooled from 1200 °C and beyond, with correspondingly higher austenite grain sizes. The transformation kinetics appears to be relatively faster in the fine-grained austenite than in the coarse-grained austenite, where the niobium is in complete solid solution. A mixed microstructure consisting of accicular ferrite and lath martensite is observed for practically all HAZ treatments. The coarse-grained HAZ (CGHAZ) of HSLA-80 steel shows a higher volume fraction of lath martensite in the final microstructure and is harder than the CGHAZ of HSLA-100 steel.

  1. 30 CFR 47.32 - HazCom program contents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false HazCom program contents. 47.32 Section 47.32 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) HazCom Program § 47.32 HazCom program contents. The HazCom program must include...

  2. 30 CFR 47.32 - HazCom program contents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false HazCom program contents. 47.32 Section 47.32 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) HazCom Program § 47.32 HazCom program contents. The HazCom program must include...

  3. 30 CFR 47.32 - HazCom program contents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false HazCom program contents. 47.32 Section 47.32 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) HazCom Program § 47.32 HazCom program contents. The HazCom program must include...

  4. 30 CFR 47.32 - HazCom program contents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false HazCom program contents. 47.32 Section 47.32 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) HazCom Program § 47.32 HazCom program contents. The HazCom program must include...

  5. 30 CFR 47.32 - HazCom program contents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false HazCom program contents. 47.32 Section 47.32 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) HazCom Program § 47.32 HazCom program contents. The HazCom program must include...

  6. Effect of long-term aging on microstructure and local behavior in the heat-affected zone of a Ni–Cr–Mo–V steel welded joint

    SciTech Connect

    Zhu, Ming-Liang Wang, De-Qiang; Xuan, Fu-Zhen

    2014-01-15

    Evolution of microstructure, micro-hardness and micro-tensile strength behavior was investigated in the heat-affected zone of a Ni–Cr–Mo–V steel welded joint after the artificial aging at 350 °C for 3000 h. After detailed characterization of microstructures in optical microscopy, scanning electron microscopy and transmission electron microscopy, it is revealed that the change of martensite–bainite constituent promotes more homogeneous microstructure distribution. The aging treatment facilitates redistribution of carbon and chromium elements along the welded joint, and the micro-hardness is increased slightly through the welds due to enrichment of carbon. The types of precipitates in the weldment mainly include M{sub 3}C, MC, M{sub 2}C and M{sub 23}C{sub 6}. The carbides in base metal, weld metal and coarse-grained heat-affected zone are prone to change from ellipsoidal to platelet form whereas more uniform spherical carbides are observed in the fine-grained zone. Precipitation and coarsening of M{sub 23}C{sub 6} near the fusion line, and formation of MC and M{sub 2}C, are responsible for the tensile strength decrease and its smooth distribution in the aged heat-affected zone. This implies that the thermal aging can relieve strength mismatch in the weldments. - Highlights: • Microstructure homogeneity improved in HAZ after long-term aging. • Tensile strength decreased in HAZ due to precipitation and coarsening of M{sub 23}C{sub 6}. • Strength mismatch in NiCrMoV steel welds was relieved after aging at 350 °C × 3000 h.

  7. The effect of grain boundary segregation of boron in cast alloy 718 on HAZ microfissuring -- a SIMS analysis

    SciTech Connect

    Huang, X.; Chaturvedi, M.C.; Richards, N.L.; Jackman, J.

    1997-08-01

    Secondary ion mass spectroscopy (SIMS) has been used to examine grain boundary segregation in cast alloy 718. The relationship between the boron segregation and the microfissuring tendency in heat affected zones (HAZ) around electron beam welds is discussed in this study. It is concluded that two types of segregation, namely equilibrium and non-equilibrium segregation, occurred during the homogenization heat treatment of the base material. Water quenching after the homogenization treatment inhibited non-equilibrium segregation of boron and other trace elements owing to insufficient time for diffusion of solute-vacancy complexes to occur. Intermediate cooling rates such as air cooling enhanced both non-equilibrium and equilibrium segregation, since equilibrium segregation occurred during holding at the heat treatment temperature. The value of net segregation produced by a combination of equilibrium segregation and non-equilibrium segregation varied with temperature in a U-shape. The nature of the grain boundary in the cast alloy was examined by using an electron backscattered diffraction (EBSD) technique and it was found that 93% of the grain boundaries were of the random type ({Sigma} > 49). The weldability of this alloy was found to be closely related to the grain boundary segregation of boron, i.e., the variation of HAZ total crack length (TCL) with pre-welding heat treatment temperatures has a trend similar to that of boron segregation with temperature after air cooling. Mechanisms for the effect of boron on HAZ microfissuring have been proposed.

  8. In-Situ Observations of Phase Transformations in the HAZ of 2205 Duplex Stainless Steel Weldments

    SciTech Connect

    Palmer, T A; Elmer, J W; Wong, J

    2001-08-15

    Ferrite ({delta})/austenite ({gamma}) transformations in the heat affected zone (HAZ) of a gas tungsten arc (GTA) weld in 2205 duplex stainless steel are observed in real-time using spatially resolved X-ray diffraction (SRXRD) with high intensity synchrotron radiation. A map showing the locations of the {delta} and {gamma} phases with respect to the calculated weld pool dimensions has been constructed from a series of SRXRD scans. Regions of liquid, completely transformed {gamma}, a combination of partially transformed {gamma} with untransformed {delta}, and untransformed {delta}+{gamma} are identified. Analysis of each SRXRD pattern provides a semi-quantitative definition of both the {delta}/{gamma} phase balance and the extent of annealing which are mapped for the first time with respect to the calculated weld pool size and shape. A combination of these analyses provides a unique real-time description of the progression of phase transformations in the HAZ. Using these real-time observations, important kinetic information about the transformations occurring in duplex stainless steels during heating and cooling cycles typical of welding can be determined.

  9. Root-Zone Glyphosate Exposure Adversely Affects Two Ditch Species

    PubMed Central

    Saunders, Lyndsay E.; Koontz, Melissa B.; Pezeshki, Reza

    2013-01-01

    Glyphosate, one of the most applied herbicides globally, has been extensively studied for its effects on non-target organisms. In the field, following precipitation, glyphosate runs off into agricultural ditches where it infiltrates into the soil and thus may encounter the roots of vegetation. These edge-of-field ditches share many characteristics with wetlands, including the ability to reduce loads of anthropogenic chemicals through uptake, transformation, and retention. Different species within the ditches may have a differential sensitivity to exposure of the root zone to glyphosate, contributing to patterns of abundance of ruderal species. The present laboratory experiment investigated whether two species commonly found in agricultural ditches in southcentral United States were affected by root zone glyphosate in a dose-dependent manner, with the objective of identifying a sublethal concentration threshold. The root zone of individuals of Polygonum hydropiperoides and Panicum hemitomon were exposed to four concentrations of glyphosate. Leaf chlorophyll content was measured, and the ratio of aboveground biomass to belowground biomass and survival were quantified. The findings from this study showed that root zone glyphosate exposure negatively affected both species including dose-dependent reductions in chlorophyll content. P. hydropiperdoides showed the greatest negative response, with decreased belowground biomass allocation and total mortality at the highest concentrations tested. PMID:24833234

  10. Effects of alloying elements on mechanical and fracture properties of base metals and simulated heat-affected zones of SA 508 steels

    NASA Astrophysics Data System (ADS)

    Kim, Sangho; Lee, Sunghak; Im, Young-Roc; Lee, Hu-Chul; Oh, Yong Jun; Hong, Jun Hwa

    2001-04-01

    This study was aimed at developing low-alloy steels for nuclear reactor pressure vessels by investigating the effects of alloying elements on mechanical and fracture properties of base metals and heat-affected zones (HAZs). Four steels whose compositions were variations of the composition specification for SA 508 steel (class 3) were fabricated by vacuum-induction melting and heat treatment, and their tensile properties and Charpy impact toughness were evaluated. Microstructural analyses indicated that coarse M3C-type carbides and fine M2C-type carbides were precipitated along lath boundaries and inside laths, respectively. In the steels having decreased carbon content and increased molybdenum content, the amount of fine M2C carbides was greatly increased, while that of coarse M3C carbides was decreased, thereby leading to the improvement of tensile properties and impact toughness. Their simulated HAZs also had sufficient impact toughness after postweld heat treatment (PWHT). These findings suggested that the low-alloy steels with high strength and toughness could be processed by decreasing carbon and manganese contents and by increasing molybdenum content.

  11. Effects of alloying elements on fracture toughness in the transition temperature region of base metals and simulated heat-affected zones of Mn-Mo-Ni low-alloy steels

    NASA Astrophysics Data System (ADS)

    Kim, Sangho; Im, Young-Roc; Lee, Sunghak; Lee, Hu-Chul; Kim, Sung-Joon; Hong, Jun Hwa

    2004-07-01

    This study is concerned with the effects of alloying elements on fracture toughness in the transition temperature region of base metals and heat-affected zones (HAZs) of Mn-Mo-Ni low-alloy steels. Three kinds of steels whose compositions were varied from the composition specification of SA 508 steel (grade 3) were fabricated by vacuum-induction melting and heat treatment, and their fracture toughness was examined using an ASTM E1921 standard test method. In the steels that have decreased C and increased Mo and Ni content, the number of fine M2C carbides was greatly increased and the number of coarse M3C carbides was decreased, thereby leading to the simultaneous improvement of tensile properties and fracture toughness. Brittle martensite-austenite (M-A) constituents were also formed in these steels during cooling, but did not deteriorate fracture toughness because they were decomposed to ferrite and fine carbides after tempering. Their simulated HAZs also had sufficient impact toughness after postweld heat treatment. These findings indicated that the reduction in C content to inhibit the formation of coarse cementite and to improve toughness and the increase in Mo and Ni to prevent the reduction in hardenability and to precipitate fine M2C carbides were useful ways to improve simultaneously the tensile and fracture properties of the HAZs as well as the base metals.

  12. Development of embrittlement prediction models for U.S. power reactors and the impact of the heat-affected zone to thermal annealing

    SciTech Connect

    Wang, J.A.

    1998-05-01

    The NRC Regulatory Guide 1.99 Revision 2 was based on 177 surveillance data points and the EPRI data base, where 76% of 177 data points and 60% of EPRI data base were from Westinghouse`s data. Therefore, other vendors` radiation environment may not be properly characterized by R.G. 1.99`s prediction. To minimize scatter from the influences of the irradiation temperature, neutron energy spectrum, displacement rate, and plant operation procedures on embrittlement models, improved embrittlement models based on group data that have similar radiation environments and reactor design and operation criteria are examined. A total of 653 shift data points from the current FR-EDB, including 397 Westinghouse data, 93 B and W data, 37 CE data, and 106 GE data, are used. A nonlinear least squares fitting FORTRAN program, incorporating a Monte Carlo procedure with 35% and 10% uncertainty assigned to the fluence and shift data, respectively, was written for this study. In order to have the same adjusted fluence value for the weld and plate material in the same capsule, the Monte Carlo least squares fitting procedure has the ability to adjust the fluence values while running the weld and plate formula simultaneously. Six chemical components, namely, copper, nickel, phosphorus, sulfur, manganese, and molybdenum, were considered in the development of the new embrittlement models. The overall percentage of reduction of the 2-sigma margins per delta RTNDT predicted by the new embrittlement models, compared to that of R.G. 1.99, for weld and base materials are 42% and 36%, respectively. Currently, the need for thermal annealing is seriously being considered for several A302B type RPVs. From the macroscopic view point, even if base and weld materials were verified from mechanical tests to be fully recovered, the linking heat affected zone (HAZ) material has not been properly characterized. Thus the final overall recovery will still be unknown. The great data scatter of the HAZ metals may

  13. A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part II. Application to electron beam welding

    NASA Astrophysics Data System (ADS)

    Hemmer, H.; Grong, Ø.; Klokkehaug, S.

    2000-03-01

    In the present investigation, a process model for electron beam (EB) welding of different grades of duplex stainless steels (i.e. SAF 2205 and 2507) has been developed. A number of attractive features are built into the original finite element code, including (1) a separate module for prediction of the penetration depth and distribution of the heat source into the plate, (2) adaptive refinement of the three-dimensional (3-D) element mesh for quick and reliable solution of the differential heat flow equation, and (3) special subroutines for calculation of the heat-affected zone (HAZ) microstructure evolution. The process model has been validated by comparison with experimental data obtained from in situ thermocouple measurements and optical microscope examinations. Subsequently, its aptness to alloy design and optimization of welding conditions for duplex stainless steels is illustrated in different numerical examples and case studies pertaining to EB welding of tubular joints.

  14. Spatially resolved X-ray diffraction phase mapping and {alpha} {r_arrow} {beta} {r_arrow} {alpha} transformation kinetics in the heat-affected zone of commercially pure titanium arc welds

    SciTech Connect

    Elmer, J.W.; Wong, J.; Ressler, T.

    1998-11-01

    Spatially resolved X-ray diffraction (SRXRD) is used to map the {alpha} {r_arrow} {beta} {r_arrow} {alpha} phase transformation in the heat-affected zone (HAZ) of commercially pure titanium gas tungsten arc welds. In situ SRXRD experiments were conducted using a 180-{micro}m-diameter X-ray beam at the Stanford Synchrotron Radiation Laboratory (SSRL) (Stanford, CA) to probe the phases present in the HAZ of a 1.9 kW weld moving at 1.1 mm/s. Results of sequential linear X-ray diffraction scans made perpendicular to the weld direction were combined to construct a phase transformation map around the liquid weld pool. This map identifies six HAZ microstructural regions between the liquid weld pool and the base metal: (1) {alpha}-Ti that is undergoing annealing and recrystallization; (2) completely recrystallized {alpha}-Ti; (3) partially transformed {alpha}-Ti, where {alpha}-Ti and {beta}-Ti coexist; (4) single-phase {beta}-Ti; (5) back-transformed {alpha}Ti; and (6) recrystallized {alpha}-Ti plus back-transformed {alpha}-Ti. Although the microstructure consisted predominantly of {alpha}-Ti, both prior to and after the weld, the crystallographically textured starting material was altered during welding to produce different {alpha}-Ti textures within the resulting HAZ. Based on the travel speed of the weld, the {alpha} {r_arrow} {beta} transformation was measured to take 1.83 seconds during heat, while the {beta} {r_arrow} {alpha} transformation was measured to take 0.91 seconds during cooling. The {alpha} {r_arrow} {beta} transformation was characterized to be dominated by long-range diffusion growth on the leading (heating) side of the weld, while the {beta} {r_arrow} {alpha} transformation was characterized to be predominantly massive on the trailing (cooling) side of the weld, with a massive growth rate on the order of 100 {micro}m/s.

  15. Hydrogen cracking in the heat affected zone of high strength steels - year 2, development of weld metal test

    SciTech Connect

    Graville, B.A.

    1997-03-01

    In previous work the notched bend test had been developed for evaluating the sensitivity of the heat affected zone (HAZ) of a weld to hydrogen cracking. In the present work the test was modified to allow the evaluation of weld metal. The test specimen uses a Charpy-V notch placed in the weld metal after welding and prior to loading in three point bending. The deflection to first load drop is used as the measure of sensitivity to cracking. The results showed that weld metal could readily be evaluated with the test discriminating among weld metals of different composition and hydrogen content. Finite element analysis was undertaken and showed that for the two weld metals tested, cracking occurred at the same local stress when the hydrogen content was the same despite differences in strength. A finite difference model was used to calculate the distribution of hydrogen as a function of aging time. Although the general trends were confirmed by the experimental measurements of hydrogen content, there was considerable scatter attributed to the small hydrogen volumes measured.

  16. Direct observation of phase transformations in the simulated heat-affected zone of a 9Cr martensitic steel

    SciTech Connect

    Mayr, Peter; Palmer, T. A.; Elmer, J. W.; Specht, Eliot D

    2008-01-01

    An experimental test melt of a boron alloyed 9Cr-3W-3Co-V,Nb steel for high temperature applications in the thermal power generation industry was produced by vacuum induction melting. This grade of steel typically displays a homogeneous tempered martensitic microstructure in the as-received condition. However, after welding, this microstructure is significantly altered, resulting in a loss of its desired properties. The phase transformations during simulated thermal cycles typical of those experienced in the weld heat-affected zone (HAZ) were directly observed by in situ X-ray diffraction experiments using synchrotron radiation. Heating rates of 10 C s-1 and 100 C s-1 up to a peak temperature of 1300 C are investigated here. The final microstructures observed after both simulated weld thermal cycles are primarily composed of martensite with approximately 4% retained delta ferrite and 4% retained austenite, by volume. With the temporal resolution of the in situ X-ray diffraction technique, phase transformations from tempered martensite to austenite to delta ferrite during heating and to martensite during cooling were monitored. With this technique, the evolution of the final microstructure through both heating and cooling is monitored, providing additional context to the microstructural observations.

  17. Characterization of Low Temperature Ferrite/Austenite Transformations in the Heat Affected Zone of 2205 Duplex Stainless Steel Arc Welds

    SciTech Connect

    Palmer, T A; Elmer, J W; Babu, S S; Vitek, J M

    2003-08-20

    Spatially Resolved X-Ray Diffraction (SRXRD) has been used to identify a previously unobserved low temperature ferrite ({delta})/austenite({gamma}) phase transformation in the heat affected zone (HAZ) of 2205 Duplex Stainless Steel (DSS) welds. In this ''ferrite dip'' transformation, the ferrite transforms to austenite during heating to peak temperatures on the order of 750 C, and re-transforms to ferrite during cooling, resulting in a ferrite volume fraction equivalent to that in the base metal. Time Resolved X-Ray Diffraction (TRXRD) and laser dilatometry measurements during Gleeble{reg_sign} thermal simulations are performed in order to verify the existence of this low temperature phase transformation. Thermodynamic and kinetic models for phase transformations, including both local-equilibrium and para-equilibrium diffusion controlled growth, show that diffusion of substitutional alloying elements does not provide a reasonable explanation for the experimental observations. On the other hand, the diffusion of interstitial alloying elements may be rapid enough to explain this behavior. Based on both the experimental and modeling results, two mechanisms for the ''ferrite dip'' transformation, including the formation and decomposition of secondary austenite and an athermal martensitic-type transformation of ferrite to austenite, are considered.

  18. Microstructural Evolution and Mechanical Properties of Fusion Welds and Simulated Heat-Affected Zones in an Iron-Copper Based Multi-Component Steel

    NASA Astrophysics Data System (ADS)

    Farren, Jeffrey David

    NUCu-140 is a copper-precipitation strengthened steel that exhibits excellent mechanical properties with a relatively simple chemical composition and processing schedule. As a result, NUCu-140 is a candidate material for use in many naval and structural applications. Before NUCu-140 can be implemented as a replacement for currently utilized materials, a comprehensive welding strategy must be developed under a wide range of welding conditions. This research represents an initial step toward understanding the microstructural and mechanical property evolution that occurs during fusion welding of NUCu-140. The following dissertation is presented as a series of four chapters. Chapter one is a review of the relevant literature on the iron-copper system including the precipitation of copper in steel, the development of the NUCu family of alloys, and the formation of acicular ferrite in steel weldments. Chapter two is a detailed study of the precipitate, microstructural, and mechanical property evolution of NUCu-140 fusion welds. Microhardness testing, tensile testing, local-electrode atom probe (LEAP) tomography, MatCalc kinetic simulations, and Russell-Brown strengthening results for gas-tungsten and gas-metal arc welds are presented. Chapter three is a thorough study of the microstructural and mechanical property evolution that occurs in the four critical regions of the HAZ. Simulated HAZ specimens were produced and evaluated using microhardness, tensile testing, and charpy impact testing. MatCalc simulations and R-B strengthening calculations were also performed in an effort to model the experimentally observed mechanical property trends. Chapter 4 is a brief investigation into the capabilities of MatCalc and the R-B model to determine if the two techniques could be used as predictive tools for a series of binary iron-copper alloys without the aid of experimentally measured precipitate data. The mechanical property results show that local softening occurs in the heat-affected

  19. Hazardous chemical tracking system (HAZ-TRAC)

    SciTech Connect

    Bramlette, J D; Ewart, S M; Jones, C E

    1990-07-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) developed and implemented a computerized hazardous chemical tracking system, referred to as Haz-Trac, for use at the Idaho Chemical Processing Plant (ICPP). Haz-Trac is designed to provide a means to improve the accuracy and reliability of chemical information, which enhances the overall quality and safety of ICPP operations. The system tracks all chemicals and chemical components from the time they enter the ICPP until the chemical changes form, is used, or becomes a waste. The system runs on a Hewlett-Packard (HP) 3000 Series 70 computer. The system is written in COBOL and uses VIEW/3000, TurboIMAGE/DBMS 3000, OMNIDEX, and SPEEDWARE. The HP 3000 may be accessed throughout the ICPP, and from remote locations, using data communication lines. Haz-Trac went into production in October, 1989. Currently, over 1910 chemicals and chemical components are tracked on the system. More than 2500 personnel hours were saved during the first six months of operation. Cost savings have been realized by reducing the time needed to collect and compile reporting information, identifying and disposing of unneeded chemicals, and eliminating duplicate inventories. Haz-Trac maintains information required by the Superfund Amendment Reauthorization Act (SARA), the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Occupational Safety and Health Administration (OSHA).

  20. Microstructural characterization of the HAZ in AISI 444 ferritic stainless steel welds

    SciTech Connect

    Silva, Cleiton C. Farias, Jesualdo P.; Miranda, Helio C.; Guimaraes, Rodrigo F.; Menezes, John W.A.; Neto, Moises A.M.

    2008-05-15

    Ferritic stainless steel is used as a coating for equipment in the petroleum refining industry. Welding is the main manufacturing and maintenance process used. However, little information on the metallurgical alterations caused by welding of these steels is found in the literature, prompting this study. In this study the authors evaluated the HAZ microstructure of AISI 444 ferritic stainless steel welded plates, by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicated that a weld thermal cycle caused microphase precipitation in the HAZ of the ferritic stainless steel. Also needle-like Laves phase precipitation occurred in the HAZ, near the partially-melted zone. Other secondary phases such as chi and sigma were observed, as well as nitride, carbide and carbonitride precipitates.

  1. A model for HAZ hardness profiles in Al-Li-X alloys: Application to the Al-Li-Cu Alloy 2095

    SciTech Connect

    Rading, G.O.; Shamsuzzoha, M.; Berry, J.T.

    1998-10-01

    In a previous paper details were presented of a theoretical model describing the evolution of the hardness profiles in the heat-affected zones (HAZ) of Al-Li-X weldments. The intent of the model was to qualitatively predict the general shape of such a profile, which indicates points of double inflection. In the present paper, experimental results are presented to validate the model. Panels of Al-Li-Cu Alloy 2095 in the peak aged (T8) condition were welded by the gas tungsten arc (GTA) process using AA 2319 filler metal. Conventional transmission electron microscopy (TEM) studies were conducted on specimens taken from specific points across the HAZ to estimate the relative ratios of T{sub 1} (Al{sub 2}CuLi) and {delta}{prime} (Al{sub 3}Li) precipitates, as well as incoherent grain boundary phases. Electron probe microanalysis (EPMA) was used to determine the variation of concentrations of elements across the HAZ, while the hardness profile was determined using Vickers microhardness measurements. The hardness profile and the associated pattern of phases present agree well with the information predicted qualitatively by the previously described model.

  2. Finite element modeling of creep damage effects on a magnetic detector signal for a seam weld/HAZ-region in a steel pipe

    SciTech Connect

    Sablik, M.J.; Jiles, D.C.; Govindaraju, M.R.

    1998-07-01

    Creep damage in steel causes a reduction of magnetic properties. A mathematical model, previously formulated, accounts for this. Recently, this model was used in finite element modeling (FEM) of a magnetic C-core signal due to creep damage at a seam weld in Cr-Mo steam pipe. The FEM assumed unrealistically that in the absence of creep damage, the weld material and heat-affected zone (HAZ) and base metal all had the same magnetic properties. In this paper, new finite element simulations are presented for worst case relative permeabilities of 1271, 784 and 571 for base metal, HAZ, and weld material. Reduced permeability at the weld results in a considerably reduced emf at low probe magnetic fields. However, creep damage does produce an additional emf reduction that is large enough to be detected, even when the creep damage does not extend to the pipe wall surface. A method is suggested for calibrating the magnetic signal for weld, HAZ, and base metal effects.

  3. Fracture initiation by local brittle zones in weldments of quenched and tempered structural alloy steel plate

    SciTech Connect

    Kenney, K.L.; Reuter, W.G.; Reemsnyder, H.S.; Matlock, D.K.

    1997-12-31

    The heat-affected zone (HAZ) embrittlement of an API 2Y Grade 50T quenched and tempered offshore structural steel plate, welded by the submerged-arc process at a heat input of 4.5 kJ/mm, was investigated from the viewpoint of identifying the local brittle zone (LBZ) microstructure and the metallurgical factors associated with its formation. Microstructural and fractographic analysis showed the LBZ microstructure to be dual phase martensite-austenite (M-A) constituent. The formation of M-A constituent was found to be related to microstructural banding of the hot-rolled base plate. When the banded base plate was welded, M-A constituent formed only within the band microstructure which penetrated the intercritically-reheated coarse-grain HAZ (IRCGHAZ). The chemistry of the band microstructure in conjunction with the thermal cycle of the IRCGHAZ provided the critical conditions for the formation of M-A constituent in the API 2Y Grade 50T steel investigated. The influence of local brittle zones (i.e., M-A constituent) on the HAZ fracture toughness was evaluated by means of Crack-Tip Opening Displacement (CTOD) tests. These tests showed the steel to suffer embrittlement when the fatigue precrack sampled an intercritically-reheated coarse-grain HAZ which contained M-A constituent, confirming that M-A constituent is the major microstructural factor controlling the HAZ toughness of this particular steel.

  4. Evaluation of HAZ liquation cracking susceptibility and HAZ softening behavior in modified 800H

    SciTech Connect

    Lundin, C.D.; Qiao, C.Y.P.

    1992-11-20

    A modified 800H alloy, developed at Oak Ridge National Laboratory (ORNL), is one of the candidate materials designed for high temperature applications. Extensive mechanical and corrosion investigations have been completed and it has been proven that modified 800 has excellent high temperature mechanical and metallurgical behavior. Weldability studies of modified 800H are being carried out at the University of Tennessee, Knoxville. A series of modified 800H alloys and two similar commercial high temperature materials (310Ta and HR3C) were used to conduct this investigation. A preliminary weldability evaluation has been accomplished and the major part of the results (HAZ liquation cracking resistance and HAZ softening behavior in modified 800H) is addressed in this report. The basic conclusion of this investigation is that modified 800H material possesses good resistance to HAZ liquation cracking especially with a grain size control (thermo-mechanical treatment). The information from this study is important to the further modification of the material in order to extend its applications.

  5. Observations of Ferrite/Austenite Transformations in the Heat Affected Zone of 2205 Duplex Stainless Steel Spot Welds Using Time Resolved X-Ray Diffraction

    SciTech Connect

    Palmer, T; Elmer, J; Babu, S

    2003-10-29

    Time Resolved X-Ray Diffraction (TRXRD) measurements are made in the Heat Affected Zone (HAZ) of 2205 Duplex Stainless Steel (DSS) spot welds. Both the {gamma} {yields} {delta} and {delta} {yields} {gamma} transformations are monitored as a function of time during the rapid spot weld heating and cooling cycles. These observations are then correlated with calculated thermal cycles. Where the peak temperatures are highest ({approx}1342 C), the {gamma} {yields} {delta} transformation proceeds to completion, leaving a ferritic microstructure at the end of heating. With lower peak temperatures, the {gamma} {yields} {delta} transformation proceeds to only partial completion, resulting in a microstructure containing both transformed and untransformed austenite. Further analyses of the individual diffraction patterns show shifts in the peak positions and peak widths as a function of both time and temperature. In addition, these changes in the peak characteristics are correlated with measured changes in the ferrite volume fraction. Such changes in the peak positions and widths during the {gamma} {yields} {delta} transformation provide an indication of changes occurring in each phase. These changes in peak properties can be correlated with the diffusion of nitrogen and other substitutional alloying elements, which are recognized as the primary mechanisms for this transformation. Upon cooling, the {delta} {yields} {gamma} transformation is observed to proceed from both the completely and partially transformed microstructural regions in the TRXRD data. An examination of the resulting microstructures confirms the TRXRD observation as the evidence shows that austenite both nucleates and grows from the ferritic microstructure at locations closest to the fusion zone boundary and grows from untransformed austenite grains at locations further from this boundary.

  6. HazLit: a unique resource for natural hazards information.

    PubMed

    Fitzpatrick, Roberta Bronson

    2007-01-01

    The "Online Updates" column generally focuses on bibliographic databases that may be licensed from commercial vendors or are available free of charge from a federal government agency. HazLit is featured because it is a unique and comprehensive resource of the literature of natural disasters. This column provides background information on HazLit and offers some searching basics, as well as highlights special information found at the Web site that hosts the database. PMID:17915632

  7. 30 CFR 47.31 - Requirement for a HazCom program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Requirement for a HazCom program. 47.31 Section... TRAINING HAZARD COMMUNICATION (HazCom) HazCom Program § 47.31 Requirement for a HazCom program. Each operator must— (a) Develop and implement a written HazCom program, (b) Maintain it for as long as...

  8. 30 CFR 47.71 - Access to HazCom materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Access to HazCom materials. 47.71 Section 47.71... COMMUNICATION (HazCom) Making HazCom Information Available § 47.71 Access to HazCom materials. Upon request, the operator must provide access to all HazCom materials required by this part to miners and...

  9. 30 CFR 47.31 - Requirement for a HazCom program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Requirement for a HazCom program. 47.31 Section... TRAINING HAZARD COMMUNICATION (HazCom) HazCom Program § 47.31 Requirement for a HazCom program. Each operator must— (a) Develop and implement a written HazCom program, (b) Maintain it for as long as...

  10. 30 CFR 47.71 - Access to HazCom materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Access to HazCom materials. 47.71 Section 47.71... COMMUNICATION (HazCom) Making HazCom Information Available § 47.71 Access to HazCom materials. Upon request, the operator must provide access to all HazCom materials required by this part to miners and...

  11. 30 CFR 47.71 - Access to HazCom materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Access to HazCom materials. 47.71 Section 47.71... COMMUNICATION (HazCom) Making HazCom Information Available § 47.71 Access to HazCom materials. Upon request, the operator must provide access to all HazCom materials required by this part to miners and...

  12. 30 CFR 47.31 - Requirement for a HazCom program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Requirement for a HazCom program. 47.31 Section... TRAINING HAZARD COMMUNICATION (HazCom) HazCom Program § 47.31 Requirement for a HazCom program. Each operator must— (a) Develop and implement a written HazCom program, (b) Maintain it for as long as...

  13. 30 CFR 47.71 - Access to HazCom materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Access to HazCom materials. 47.71 Section 47.71... COMMUNICATION (HazCom) Making HazCom Information Available § 47.71 Access to HazCom materials. Upon request, the operator must provide access to all HazCom materials required by this part to miners and...

  14. 30 CFR 47.31 - Requirement for a HazCom program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Requirement for a HazCom program. 47.31 Section... TRAINING HAZARD COMMUNICATION (HazCom) HazCom Program § 47.31 Requirement for a HazCom program. Each operator must— (a) Develop and implement a written HazCom program, (b) Maintain it for as long as...

  15. 30 CFR 47.71 - Access to HazCom materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Access to HazCom materials. 47.71 Section 47.71... COMMUNICATION (HazCom) Making HazCom Information Available § 47.71 Access to HazCom materials. Upon request, the operator must provide access to all HazCom materials required by this part to miners and...

  16. 30 CFR 47.31 - Requirement for a HazCom program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Requirement for a HazCom program. 47.31 Section... TRAINING HAZARD COMMUNICATION (HazCom) HazCom Program § 47.31 Requirement for a HazCom program. Each operator must— (a) Develop and implement a written HazCom program, (b) Maintain it for as long as...

  17. Dynamic behavior and failure of the base and heat affected materials of a HSS fillet welded joint

    NASA Astrophysics Data System (ADS)

    Carrier, Julien; Markiewicz, Eric; Haugou, Grégory; Lebaillif, David; Leconte, Nicolas; Naceur, Hakim

    2015-09-01

    Welded joints, due to their manufacturing process, are commonly weakened areas. This study analyses the dynamic behavior of the Base Metal (BM) and the Heat-Affected Zone (HAZ) materials of a HSS (High Strength Steel) fillet welded joint. First, a specific approach is developed to generate the HAZ material using a thermal treatment. Hardness and grain size are used to validate the replicated HAZ. This approach appears efficient and repeatable. Secondly, the true stress-strain quasi-static and dynamic behaviors up to failure of the BM and the HAZ are determined. This characterization is performed thanks to video tracking procedure and Bridgman-LeRoy correction. The comparison between these two materials shows that the thermal field of the welding process increases the HAZ yield stress and hardening while decreasing the strain at failure. It appears that the base metal is not rate sensitive from quasi-static up to 1350 s-1. On the contrary, the heat affected material appears to be rate sensitive but by softening. This unexpected dynamic material softening requires further analyses.

  18. Effect of Heat Treatment on Microstructure and Hot Impact Toughness of Various Zones of P91 Welded Pipes

    NASA Astrophysics Data System (ADS)

    Pandey, C.; Mahapatra, M. M.

    2016-06-01

    The new generation super critical thermal power plants are required to operate at enhanced thermal efficiency of over 50% to reduce the fuel consumption and environmental pollution. Creep strength-enhanced ferritic steels, commonly known as Cr-Mo alloys such as P91 (X10CrMoVNb 9-1) are such material of choice for the next generation power plants. The operating requirement of these next generation power plants is that steam temperature of around 650 °C is maintained. For such high-temperature application, creep strength of material is the primary consideration together with adequate weld heat-affected zone (HAZ) toughness. Present work deals with the effect of high service temperature on impact toughness of P91 (X10CrMoVNb 9-1) base material, weld fusion zone, and HAZ. The impact toughness of HAZ for conventional weld groove design and narrow weld groove design has been evaluated experimentally in as-welded and at different post-weld heat treatment conditions. Fractography of the impact toughness specimens of base metal, weld fusion zone, and HAZ was carried out using scanning electron microscope. The effects of heat treatment schemes on the percentage of element present at the fracture surface were also studied.

  19. Effect of Heat Treatment on Microstructure and Hot Impact Toughness of Various Zones of P91 Welded Pipes

    NASA Astrophysics Data System (ADS)

    Pandey, C.; Mahapatra, M. M.

    2016-04-01

    The new generation super critical thermal power plants are required to operate at enhanced thermal efficiency of over 50% to reduce the fuel consumption and environmental pollution. Creep strength-enhanced ferritic steels, commonly known as Cr-Mo alloys such as P91 (X10CrMoVNb 9-1) are such material of choice for the next generation power plants. The operating requirement of these next generation power plants is that steam temperature of around 650 °C is maintained. For such high-temperature application, creep strength of material is the primary consideration together with adequate weld heat-affected zone (HAZ) toughness. Present work deals with the effect of high service temperature on impact toughness of P91 (X10CrMoVNb 9-1) base material, weld fusion zone, and HAZ. The impact toughness of HAZ for conventional weld groove design and narrow weld groove design has been evaluated experimentally in as-welded and at different post-weld heat treatment conditions. Fractography of the impact toughness specimens of base metal, weld fusion zone, and HAZ was carried out using scanning electron microscope. The effects of heat treatment schemes on the percentage of element present at the fracture surface were also studied.

  20. A topology reorganization scheme for reliable communication in underwater wireless sensor networks affected by shadow zones.

    PubMed

    Domingo, Mari Carmen

    2009-01-01

    Effective solutions should be devised to handle the effects of shadow zones in Underwater Wireless Sensor Networks (UWSNs). An adaptive topology reorganization scheme that maintains connectivity in multi-hop UWSNs affected by shadow zones has been developed in the context of two Spanish-funded research projects. A mathematical model has been proposed to find the optimal location for sensors with two objectives: the minimization of the transmission loss and the maintenance of network connectivity. The theoretical analysis and the numerical evaluations reveal that our scheme reduces the transmission loss under all propagation phenomena scenarios for all water depths in UWSNs and improves the signal-to-noise ratio. PMID:22291531

  1. A Topology Reorganization Scheme for Reliable Communication in Underwater Wireless Sensor Networks Affected by Shadow Zones

    PubMed Central

    Domingo, Mari Carmen

    2009-01-01

    Effective solutions should be devised to handle the effects of shadow zones in Underwater Wireless Sensor Networks (UWSNs). An adaptive topology reorganization scheme that maintains connectivity in multi-hop UWSNs affected by shadow zones has been developed in the context of two Spanish-funded research projects. A mathematical model has been proposed to find the optimal location for sensors with two objectives: the minimization of the transmission loss and the maintenance of network connectivity. The theoretical analysis and the numerical evaluations reveal that our scheme reduces the transmission loss under all propagation phenomena scenarios for all water depths in UWSNs and improves the signal-to-noise ratio. PMID:22291531

  2. Haz-Safe material handling in hazmat buildings

    SciTech Connect

    Romig, F.W.

    1994-12-31

    Material handling techniques have begun to be utilized in hazmat buildings for maneuvering and stacking of hazardous material containers. Therefore, the efficiencies involved in increased safety and productivity are being realized. In addition, there are savings in HazMat building costs and floor space or real estate inside or outside manufacturing plants. Stacking of containers is being used as structures are beefed up to install crane/hoists or air power mast type stacking machines. The purpose of this paper is to encourage potential HazMat building users and the material handling industry to look for opportunities to project material handling technology into hazmat buildings.

  3. Particle denuded zones in alumina reinforced aluminum matrix composite weldments

    SciTech Connect

    Chidambaram, A.; Bhole, S.D.

    1996-08-01

    The Welding Institute of Canada (WIC), Ontario, has been studying the weldability of different DURALCAN MMC`s. Research on alumina reinforced (20 vol.%) 6061 Al alloy GTA welds showed satisfactory tensile and yield strengths (0.2% Proof Stress) but the welds failed to pass the bend test requirements with fracture taking place in the relatively brittle heat affected zone (HAZ). Further, the welds were characterized by a region which was devoid of reinforcement particles adjacent to the fusion lines. The present study was undertaken to try and explain the formation of this particle denuded zone (PDZ) at the fusion lines.

  4. Analysis of laser ablation dynamics of CFRP in order to reduce heat affected zone

    NASA Astrophysics Data System (ADS)

    Sato, Yuji; Tsukamoto, Masahiro; Nariyama, Tatsuya; Nakai, Kazuki; Matsuoka, Fumihiro; Takahashi, Kenjiro; Masuno, Shinichiro; Ohkubo, Tomomasa; Nakano, Hitoshi

    2014-03-01

    A carbon fiber reinforced plastic [CFRP], which has high strength, light weight and weather resistance, is attractive material applied for automobile, aircraft and so on. The laser processing of CFRP is one of suitable way to machining tool. However, thermal affected zone was formed at the exposure part, since the heat conduction property of the matrix is different from that of carbon fiber. In this paper, we demonstrated that the CFRP plates were cut with UV nanosecond laser to reduce the heat affected zone. The ablation plume and ablation mass were investigated by laser microscope and ultra-high speed camera. Furthermore, the ablation model was constructed by energy balance, and it was confirmed that the ablation rate was 0.028 μg/ pulse in good agreement with the calculation value of 0.03 μg/ pulse.

  5. Mathematical modeling of microstructure evolution in the heat affected zone of electroslag cladding

    SciTech Connect

    Li, M.V.; Atteridge, D.G.; Meekisho, L.

    1996-12-31

    An algorithm is presented for computing microstructure evolution in weld heat affected zone of low alloy steels. It contains computational models for multicomponent Fe-C-M system equilibria, austenite grain growth kinetics, and austenite decomposition kinetics. A new kinetics model for austenite decomposition has been developed based on first principles of phase transformations expressed with Zener-Hillert type formulas. Coefficients in this model were calibrated with CCT diagrams of low alloy steels. This algorithm has the capability of computing TTT diagrams, CCT diagrams Jominy hardness curves, and phase transformations in the weld heat affected zone of low alloy steels. Excellent agreement was observed between the experimentally observed and the predicted microstructure and hardness.

  6. HAZ-ED Classroom Activities for Understanding Hazardous Waste.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    The Federal Superfund Program investigates and cleans up hazardous waste sites throughout the United States. Part of this program is devoted to informing the public and involving people in the process of cleaning up hazardous waste sites from beginning to end. The Haz-Ed program was developed to assist the Environmental Protection Agency's (EPA)…

  7. Modeling the Ferrite-Austenite Transformation in the Heat-Affected Zone of Stainless Steel Welds

    SciTech Connect

    Vitek, J.M.; David, S.A.

    1997-12-01

    The diffusion-controlled ferrite-austenite transformation in stainless steel welds was modeled. An implicit finite-difference analysis that considers multi-component diffusion was used. The model was applied to the Fe-Cr-Ni system to investigate the ferrite- austenite transformation in the heat-affected zone of stainless steel weld metal. The transformation was followed as a function of time as the heat-affected zone was subjected to thermal cycles comparable to those experienced during gas-tungsten arc welding. The results showed that the transformation behavior and the final microstructural state are very sensitive to the maximum temperature that is experienced by the heat-affected zone. For high maximum exposure temperatures ({approximately} 1300{degree} C), the ferrite formation that occurs at the highest temperatures is not completely offset by the reverse ferrite dissolution at lower temperatures. As a result, for high temperature exposures there is a net increase in the amount of ferrite in the microstructure. It was also found that if compositional gradients are present in the initial ferrite and austenite phases, the extent of the transformation is impacted.

  8. Characterizing multiple timescales of stream and storage zone interaction that affect solute fate and transport in streams

    USGS Publications Warehouse

    Choi, J.; Harvey, J.W.; Conklin, M.H.

    2000-01-01

    The fate of contaminants in streams and rivers is affected by exchange and biogeochemical transformation in slowly moving or stagnant flow zones that interact with rapid flow in the main channel. In a typical stream, there are multiple types of slowly moving flow zones in which exchange and transformation occur, such as stagnant or recirculating surface water as well as subsurface hyporheic zones. However, most investigators use transport models with just a single storage zone in their modeling studies, which assumes that the effects of multiple storage zones can be lumped together. Our study addressed the following question: Can a single-storage zone model reliably characterize the effects of physical retention and biogeochemical reactions in multiple storage zones? We extended an existing stream transport model with a single storage zone to include a second storage zone. With the extended model we generated 500 data sets representing transport of nonreactive and reactive solutes in stream systems that have two different types of storage zones with variable hydrologic conditions. The one storage zone model was tested by optimizing the lumped storage parameters to achieve a best fit for each of the generated data sets. Multiple storage processes were categorized as possessing I, additive; II, competitive; or III, dominant storage zone characteristics. The classification was based on the goodness of fit of generated data sets, the degree of similarity in mean retention time of the two storage zones, and the relative distributions of exchange flux and storage capacity between the two storage zones. For most cases (> 90%) the one storage zone model described either the effect of the sum of multiple storage processes (category I) or the dominant storage process (category III). Failure of the one storage zone model occurred mainly for category II, that is, when one of the storage zones had a much longer mean retention time (t(s) ratio > 5.0) and when the dominance of

  9. 30 CFR 47.91 - Exemptions from the HazCom standard.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Exemptions from the HazCom standard. 47.91 Section 47.91 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Exemptions § 47.91 Exemptions from the HazCom standard. A...

  10. 30 CFR 47.91 - Exemptions from the HazCom standard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Exemptions from the HazCom standard. 47.91 Section 47.91 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Exemptions § 47.91 Exemptions from the HazCom standard. A...

  11. 30 CFR 47.91 - Exemptions from the HazCom standard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Exemptions from the HazCom standard. 47.91 Section 47.91 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Exemptions § 47.91 Exemptions from the HazCom standard. A...

  12. 30 CFR 47.91 - Exemptions from the HazCom standard.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Exemptions from the HazCom standard. 47.91 Section 47.91 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Exemptions § 47.91 Exemptions from the HazCom standard. A...

  13. 30 CFR 47.1 - Purpose of a HazCom standard; applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Purpose of a HazCom standard; applicability. 47... EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Purpose, Scope, Applicability, and Initial Miner Training § 47.1 Purpose of a HazCom standard; applicability. The purpose of this part is to reduce...

  14. 30 CFR 47.1 - Purpose of a HazCom standard; applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Purpose of a HazCom standard; applicability. 47... EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Purpose, Scope, Applicability, and Initial Miner Training § 47.1 Purpose of a HazCom standard; applicability. The purpose of this part is to reduce...

  15. 30 CFR 47.1 - Purpose of a HazCom standard; applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Purpose of a HazCom standard; applicability. 47... EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Purpose, Scope, Applicability, and Initial Miner Training § 47.1 Purpose of a HazCom standard; applicability. The purpose of this part is to reduce...

  16. 30 CFR 47.1 - Purpose of a HazCom standard; applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Purpose of a HazCom standard; applicability. 47... EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Purpose, Scope, Applicability, and Initial Miner Training § 47.1 Purpose of a HazCom standard; applicability. The purpose of this part is to reduce...

  17. 30 CFR 47.1 - Purpose of a HazCom standard; applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Purpose of a HazCom standard; applicability. 47... EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Purpose, Scope, Applicability, and Initial Miner Training § 47.1 Purpose of a HazCom standard; applicability. The purpose of this part is to reduce...

  18. Performance processes within affect-related performance zones: a multi-modal investigation of golf performance.

    PubMed

    van der Lei, Harry; Tenenbaum, Gershon

    2012-12-01

    Individual affect-related performance zones (IAPZs) method utilizing Kamata et al. (J Sport Exerc Psychol 24:189-208, 2002) probabilistic model of determining the individual zone of optimal functioning was utilized as idiosyncratic affective patterns during golf performance. To do so, three male golfers of a varsity golf team were observed during three rounds of golf competition. The investigation implemented a multi-modal assessment approach in which the probabilistic relationship between affective states and both, performance process and performance outcome, measures were determined. More specifically, introspective (i.e., verbal reports) and objective (heart rate and respiration rate) measures of arousal were incorporated to examine the relationships between arousal states and both, process components (i.e., routine consistency, timing), and outcome scores related to golf performance. Results revealed distinguishable and idiosyncratic IAPZs associated with physiological and introspective measures for each golfer. The associations between the IAPZs and decision-making or swing/stroke execution were strong and unique for each golfer. Results are elaborated using cognitive and affect-related concepts, and applications for practitioners are provided. PMID:22562463

  19. Heat-affected zone and weld metal behavior of modern 9--10% Cr steels

    SciTech Connect

    Cerjak, H.; Letofsky, E.; Schuster, F.

    1996-12-31

    Basic investigations of the weldability of modern 9--10% Cr creep resistant steels for application in high efficiency and low emission thermal power generation plants were performed on a pipe P91 and a W-containing cast steel G-X 12 CrMoWVNbN 10 1 1. Gleeble simulation, representing the manual metal arc welding process, were applied to produce HAZ-simulated microstructures. They were exposed to different PWHT-treatments and tested using hardness tests, metallographic investigations, constant strain rate tests, creep tests and toughness tests. Primary attention was given to the softening effect in the HAZ and its influence on the creep resistance of the welded material. The decrease shown by the W-modified version seems to be less pronounced than that observed in the P91 material. The preheating temperature during welding can be selected through determination of the M{sub s}-transformation behavior of the base materials and the welding deposit.

  20. Microstructure characterization of heat affected zone after welding in Mod.9Cr–1Mo steel

    SciTech Connect

    Sawada, K.; Hara, T.; Tabuchi, M.; Kimura, K.; Kubushiro, K.

    2015-03-15

    The microstructure of the heat affected zone after welding was investigated in Mod.9Cr–1Mo steel, using TEM and STEM-EDX. The microstructure of thin foil was observed at the fusion line, and at the positions of 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm and 3.5 mm to the base metal side of the fusion line. Martensite structure with very fine lath and high dislocation density was confirmed at all positions. Twins with a twin plane of (112) were locally observed at all positions. Elemental mapping was obtained for all positions by means of STEM-EDX. Inclusions of mainly Si were formed at the fusion line but not at the other positions. No precipitates could be detected at the fusion line or at the position of 0.5 mm. On the other hand, MX particles were observed at the positions of 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm and 3.5 mm even after welding. M{sub 23}C{sub 6} particles were also confirmed at the positions of 2.0 mm, 2.5 mm, 3.0 mm and 3.5 mm. Very fine equiaxed grains were locally observed at the positions of 2.0 mm and 2.5 mm. The Cr content of the equiaxed grains was about 12 mass%, although the martensite area included about 8 mass% Cr. - Graphical abstract: Display Omitted - Highlights: • Nonequilibrium microstructure of heat affected zone was observed after welding in Mod.9Cr–1Mo steel. • Inclusions containing Si were detected at the fusion line. • Undissolved M{sub 23}C{sub 6} and MX particles were confirmed in heat affected zone. • Twins with a twin plane of (112) were locally observed at all positions. • Very fine ferrite grains with high Cr content were observed in fine grained heat affected zone.

  1. Irradiation effects on weld heat-affected zone and plate materials (series 11)

    SciTech Connect

    Nanstad, R.K.; McCabe, D.E.

    1995-10-01

    The purpose of this task is to examine the effects of neutron irradiation on the fracture toughness (ductile and brittle) of the HAZ of welds and of A 302 grade B (A302B) plate materials typical of those used fabricating older RPVs. The initial plate material of emphasis will be A302B steel, not the A302B modified with nickel additions. This decision was made by the NRC following a survey of the materials of construction for RPBs in operating U.S. nuclear plants. Reference 1 was used for the preliminary survey, and the information from that report was revised by NRC staff based on information contained in the licensee responses to Generic Letter (GL) 92-01, {open_quotes}Reactor Vessel Structural Integrity, 10CFR50.54(f).{close_quotes} The resulting survey showed a total of eight RPVs with A302B, ten with A302B (modified), and one with A302 grade A plate. Table 5.1 in the previous semiannual report provides a summary of that survey. For the HAZ portion of the program, the intent is to examine HAZ material in the A302B (i.e., with low nickel content) and in A302B (modified) or A533B-1 (i.e., with medium nickel content). During this reporting period, two specific plates were identified as being applicable to this task. One plate is A302B and the other is A302B (modified). The A302B plate (43 x 42 x 7 in.) will be prepared for welding, while the A302B (modified) plate already contains a commercially produced weld (heat 33A277, Linde 0091 flux). These plates were identified from a list of ten materials provided by Mr. E. Biemiller of Yankee Atomic Electric Company (YAEC). The materials have been requested from YAEC for use in this irradiation task, and arrangements are being made with YAEC for procurement of the plates mentioned above.

  2. The role of fault zone in affecting multiphase flow at Yucca Mountain

    SciTech Connect

    Tsang, Y.W.; Pruess, K.; Wang, J.S.Y.

    1993-12-31

    Within Yucca Mountain, the potential High Level Nuclear-Waste Repository site, there are large scale fault zones, most notably the Ghost Dance Fault. The effect of such high-permeability, large-scale discontinuities on the flow and transport is a question of concern in assessing the ability of the site to isolate radio-nuclides from the biosphere. In this paper, we present a numerical study to investigate the role of the fault in affecting both the liquid and gas phase flows in the natural state at Yucca Mountain prior to waste emplacement, as well as after the waste emplacement when the fluid flow is strongly heat-driven. Our study shows that if the characteristic curves of the Ghost Dance Fault obey the same relationship between saturated permeability and capillary scaling parameter, is as observed from the measured data of Yucca Mountain welded and nonwelded tuffs, Apache Leap tuffs, and Las Cruces soil, then a large saturated permeability of the Ghost Dance Fault will play little role in channeling water into the fault, or in enhancing the flow of water down the fault. However, the Fault may greatly enhance the upward gas flow after emplacement of waste. This may have implications on the transport of gaseous radio-nuclides such as C{sup 14}. The results of this study also focus attention on the need for field measurements of fluid flow in the fault zones.

  3. The role of fault zones in affecting multiphase flow at Yucca Mountain

    SciTech Connect

    Tsang, Y.W.; Pruess, K.; Wang, J.S.Y.

    1993-01-01

    Within Yucca Mountain, the potential High Level Nuclear-Waste Repository site, there are large scale fault zones, most notably the Ghost Dance Fault. The effect of such high-permeability, large scale discontinuities on the flow and transport is a question of concern in assessing the ability of the site to isolate radio-nuclides from the biosphere. In this paper, we present a numerical study to investigate the role of the fault in affecting both the liquid and gas phase flows in the natural state at Yucca Mountain prior to waste emplacement, as well as after the waste emplacement when the fluid flow is strongly heat-driven. Our study shows that if the characteristic curves of the Ghost Dance Fault obey the same relationship between saturated permeability and capillary scaling parameter, as is observed from the measured data of Yucca Mountain welded and nonwelded tuffs. Apache Leap tuffs, and Las Cruces soil, then a large saturated permeability of the Ghost Dance Fault will play little role in channeling water into the fault, or inenhancing the flow of water down the fault. However, the Fault may greatly enhance the upward gas flow after emplacement of waste. This may have implications on the transport of gaseous radio-nuclides such as C{sup 14}. The results of this study also focus attention on the need for field measurements of fluid flow in the fault zones.

  4. Zones of impact around icebreakers affecting beluga whales in the Beaufort Sea.

    PubMed

    Erbe, C; Farmer, D M

    2000-09-01

    A software model estimating zones of impact on marine mammals around man-made noise [C. Erbe and D. M. Farmer, J. Acoust. Soc. Am. 108, 1327-1331 (2000)] is applied to the case of icebreakers affecting beluga whales in the Beaufort Sea. Two types of noise emitted by the Canadian Coast Guard icebreaker Henry Larsen are analyzed: bubbler system noise and propeller cavitation noise. Effects on beluga whales are modeled both in a deep-water environment and a near-shore environment. The model estimates that the Henry Larsen is audible to beluga whales over ranges of 35-78 km, depending on location. The zone of behavioral disturbance is only slightly smaller. Masking of beluga communication signals is predicted within 14-71-km range. Temporary hearing damage can occur if a beluga stays within 1-4 km of the Henry Larsen for at least 20 min. Bubbler noise impacts over the short ranges quoted; propeller cavitation noise accounts for all the long-range effects. Serious problems can arise in heavily industrialized areas where animals are exposed to ongoing noise and where anthropogenic noise from a variety of sources adds up. PMID:11008834

  5. Microstructure and embrittlement of the fine-grained heat-affected zone of ASTM4130 steel

    NASA Astrophysics Data System (ADS)

    Li, Li-Ying; Wang, Yong; Han, Tao; Li, Chao-Wen

    2011-08-01

    The mechanical properties and microstructure features of the fine-grained heat-affected zone (FGHAZ) of ASTM4130 steel was investigated by optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), and welding thermal simulation test. It is found that serious embrittlement occurs in the FGHAZ with an 81.37% decrease of toughness, compared with that of the base metal. Microstructure analysis reveals that the FGHAZ is mainly composed of acicular, equiaxed ferrite, granular ferrite, martensite, and martensite-austenite (M-A) constituent. The FGHAZ embrittlement is mainly induced by granular ferrite because of carbides located at its boundaries and sub-boundaries. Meanwhile, the existence of martensite and M-A constituent, which distribute in a discontinuous network, is also detrimental to the mechanical properties.

  6. Plant hybrid zones affect biodiversity: Tools for a genetic-based understanding of community structure

    SciTech Connect

    Whitham, T.G.; Martinsen, G.D.; Keim, P.; Floate, K.D.; Dungey, H.S. |; Potts, B.M.

    1999-03-01

    Plant hybrid zones are dynamic centers of ecological and evolutionary processes for plants and their associated communities. Studies in the wild and in gardens with synthetic crosses showed that hybrid eucalypts supports the greatest species richness and abundances of insect and fungal taxa. In an updated review of 152 case studies of taxa associated with diverse hybridizing systems, there were 43 (28%) cases of hybrids being more susceptible than their parent species, 7 (5%) resistant, 35 (23%) additive, 35 (23%) dominant, and 32 (21%) showed no response to hybridization. Thus, most taxa respond to hybrids in ways that result in equal or greater abundance, and hybrids tend to accumulate the taxa of their parent species. These studies suggest that genetic-based plant traits affect the distribution of many species and that the variation in hybrids can be used as tools to examine the genetic components of community structure and biodiversity.

  7. Effects of welding heat input on microstructure and hardness in heat-affected zone of HQ130 steel

    NASA Astrophysics Data System (ADS)

    Sun, J. S.; Wu, C. S.; Sun, J. S.

    2001-01-01

    There are two parts of the heat input in gas-metal arc welding (GMAW): one is the arc heat flux and the other is the heat content of filler metal droplets. This paper introduces a new mode of arc heat flux density distribution on the deformed GMAW weldpool surface. A numerical model of fluid flow and temperature field in GMAW is established according to the new mode of arc heat flux distribution. By using a numerical simulation technique, the effects of welding heat input on microstructure and hardness in HAZ of HQ130 steel are studied. The dimensions of Austenitic grains and hardness in different locations in HAZ of HQ130 steel are calculated under different welding heat inputs. Experiments show that the calculated results of welding thermal cycle and microstructure and hardness in HAZ of HQ130 steel are in agreement with measured ones.

  8. Flavor of oranges as impacted by abscission zone formation for trees affected by huanglongbing disease and Lasiodiploida infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trees affected by Huanglongbing (HLB) exhibit excessive fruit drop, which is exacerbated by secondary infection of the abscission zone by the fungus Lasiodiplodia. ‘Hamlin’ orange trees, both healthy and affected by HLB, Candidatus Liberibacter asiaticus (CLas, determined by Polymerase chain reactio...

  9. Root-zone acidity affects relative uptake of nitrate and ammonium from mixed nitrogen sources

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; Henry, L. T.; Chaillou, S.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1990-01-01

    Soybean plants (Glycine max [L.] Merr. cv Ransom) were grown for 21 days on 4 sources of N (1.0 mM NO3-, 0.67 mM NO3- plus 0.33 mM NH4+, 0.33 mM NO3- plus 0.67 mM NH4+, and 1.0 mM NH4+) in hydroponic culture with the acidity of the nutrient solution controlled at pH 6.0, 5.5, 5.0, and 4.5. Dry matter and total N accumulation of the plants was not significantly affected by N-source at any of the pH levels except for decreases in these parameters in plants supplied solely with NH4+ at pH 4.5. Shoot-to-root ratios increased in plants which had an increased proportion [correction of proporiton] of NH4(+)-N in their nutrient solutions at all levels of root-zone pH. Uptake of NO3- and NH4+ was monitored daily by ion chromatography as depletion of these ions from the replenished hydroponic solutions. At all pH levels the proportion of either ion that was absorbed increased as the ratio of that ion increased in the nutrient solution. In plants which were supplied with sources of NO3- plus NH4+, NH4+ was absorbed at a ratio of 2:1 over NO3- at pH 6.0. As the pH of the root-zone declined, however, NH4+ uptake decreased and NO3- uptake increased. Thus, the NH4+ to NO3- uptake ratio declined with decreases in root-zone pH. The data indicate a negative effect of declining root-zone pH on NH4+ uptake and supports a hypothesis that the inhibition of growth of plants dependent on NH4(+)-N at low pH is due to a decline in NH4+ uptake and a consequential limitation of growth by N stress.

  10. 30 CFR 47.91 - Exemptions from the HazCom standard.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Exemptions from the HazCom standard. 47.91 Section 47.91 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Exemptions § 47.91 Exemptions from the HazCom standard. A hazardous chemical is exempt from this part...

  11. Characterization of microstructure, local deformation and microchemistry in Alloy 690 heat-affected zone and stress corrosion cracking in high temperature water

    NASA Astrophysics Data System (ADS)

    Lu, Zhanpeng; Chen, Junjie; Shoji, Tetsuo; Takeda, Yoichi; Yamazaki, Seiya

    2015-10-01

    With increasing the distance from the weld fusion line in an Alloy 690 heat-affected zone, micro-hardness decreases, kernel average misorientation decreases and the fraction of Σ3 boundaries increases. Chromium depletion at grain boundaries in the Alloy 690 heat-affected zone is less significant than that in an Alloy 600 heat-affected zone. Alloy 690 heat-affected zone exhibits much higher IGSCC resistance than Alloy 600 heat-affected zone in simulated pressurized water reactor primary water. Heavily cold worked Alloy 690 exhibits localized intergranular stress corrosion cracking. The effects of metallurgical and mechanical properties on stress corrosion cracking in Alloy 690 are discussed.

  12. Effect of silicon contents on the microstructures and mechanical properties of heat affected zones for 9Cr2WVTa steels

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Lu, Shanping; Rong, Lijian; Li, Dianzhong

    2016-03-01

    The weldability of 9Cr2WVTa steels with silicon content varying from 0.30 wt.% to 1.36 wt.% was studied to meet the requirement of Generation-Ⅳ nuclear reactor. Samples of enlarged HAZs were fabricated by a thermal-mechanical simulator based on the simulation and measurement of non-equilibrium phase transformation. The content of δ-ferrite in the HAZs increased with the silicon content and the peak temperature of welding thermal cycle. The impact toughness in the HAZs decreased in different degrees when the δ-ferrite exhibits stripe (lower than 4.82%) or blocky types (higher than 4.82%). Post weld heat treatment (PWHT) has a significant role on improving the toughness. Adding silicon content increased the volume of δ-ferrite and therefore, decreased the tensile strength of the HAZs for 9Cr2WVTa steels. Silicon also as solid solution strengthening element increased the tensile strength. The 9Cr2WVTa steel has good weldability when the silicon content is lower than 0.60 wt.%.

  13. Use of coastal zone color scanner imagery to identify nearshore ocean areas affected by land-based pollutants. Final report

    SciTech Connect

    LaPointe, T.F.; Basta, D.J.

    1981-01-01

    The purpose of the analysis was to use remotely sensed satellite imagery to determine the spatial boundaries of nearshore areas or zones likely to be affected by pollutants from land-based sources, so that data collected on the presence or absence of living marine resources could be combined with information on land-based pollutant discharges in a preliminary relative assessment of potential risk. Ocean zones of impact related to East Coast estuaries and embayments were approximated using reflectance patterns from data transmitted from the Coastal Zone Color Scanner (CZCS) instrument mounted on the NASA Nimbus-7 satellite. Data were transformed from numerical measures of radiance to photographic images suitable for identifying and mapping ocean impact zones through a simple enhancement technique.

  14. Social Capacity Assessment for communities and organisations in the CapHaz-Net context

    NASA Astrophysics Data System (ADS)

    Begg, C.; Kuhlicke, C.; Steinführer, A.; Luther, J.

    2012-04-01

    Instead of focusing on physical conditions of a hazard, CapHaz-Net regards the occurrence of a disaster as a result of people, communities and organisations lacking capacities to anticipate, cope with and recover from the impact of a natural hazard. Therefore, the CapHaz-Net project has pooled together knowledge surrounding six topics relating to the social side of natural hazards. These theoretical topics, which include social capacity building, risk governance, social vulnerability, risk perception, risk communication and risk education have been reviewed in terms of how they relate to and how we can improve actions relating to natural hazards. One of the results of this work has been the development of capacities typology that relates to the abilities and resources available to organisations and communities in regards to a future hazard event. It is from this typology we have developed two social capacity audits; one for communities and one for organisations. These assessments aim to identify appropriate measures and strategies regarding how to enhance, develop and build different kinds of capacities. The final outcome of the project is to develop recommendations. By using these assessments participants will be able to identify strong capacities and can refer to the recommendations for tips on how to improve capacities identified as weak. Most importantly, the assessment process is designed to be a self-assessment, completed by members of the community/organisation with the help of a facilitator. That way deficits and outcomes are defined by those who are most likely to be affected by a future hazard event and most likely to be implementing improvements towards resilience.

  15. On the decomposition of austenite in the heat-affected zone upon welding of high-strength steels

    NASA Astrophysics Data System (ADS)

    Efimenko, L. A.; Ramus', A. A.; Merkulova, A. O.

    2015-05-01

    The kinetics of the decomposition of austenite in the heat-affected zone of welded joints of low-carbon microalloyed high-strength steels has been investigated. A new approach to selecting the parameters of the thermal cycle of welding that ensure the service characteristics of welded joints on a level no lower than the normative requirements is suggested.

  16. Factors Affecting Motivation and Job Satisfaction of Academic Staff of Universities in South-South Geopolitical Zone of Nigeria

    ERIC Educational Resources Information Center

    Osakwe, Regina N.

    2014-01-01

    This study determined the factors affecting motivation and job satisfaction of non-management academic staff of universities in South-South geopolitical zone of Nigeria. It employed an expost-facto research design. Three research questions and two hypotheses were raised for the study. A sample of four hundred and fifty non-management academic…

  17. Factors affecting the dynamics of the honeybee (Apis mellifera) hybrid zone of South Africa.

    PubMed

    Beekman, M; Allsopp, M H; Wossler, T C; Oldroyd, B P

    2008-01-01

    Hybrid zones are found wherever two populations distinguishable on the basis of heritable characters overlap spatially and temporally and hybridization occurs. If hybrids have lower fitness than the parental types a tension zone may emerge, in which there is a barrier to gene flow between the two parental populations. Here we discuss a hybrid zone between two honeybee subspecies, Apis mellifera capensis and A. m. scutellata and argue that this zone is an example of a tension zone. This tension zone is particularly interesting because A. m. capensis can be a lethal social parasite of A. m. scutellata. However, despite its parasitic potential, A. m. capensis appears to be unable to increase its natural range unassisted. We propose three interlinked mechanisms that could maintain the South African honeybee hybrid zone: (1) low fitness of intercrossed and genetically mixed colonies arising from inadequate regulation of worker reproduction; (2) higher reproductive success of A. m. scutellata via both high dispersal rates into the hybrid zone and increased competitiveness of males, countered by (3) the parasitic nature of A. m. capensis. PMID:17848972

  18. Direct Observations of the (Alpha to Gamma) Transformation at Different Input Powers in the Heat Affected Zone of 1045 C-Mn Steel Arc Welds Observed by Spatially Resolved X-Ray Diffraction

    SciTech Connect

    Palmer, T A; Elmer, J W

    2005-03-16

    Spatially Resolved X-Ray Diffraction (SRXRD) experiments have been performed during Gas Tungsten Arc (GTA) welding of AISI 1045 C-Mn steel at input powers ranging from 1000 W to 3750 W. In situ diffraction patterns taken at discreet locations across the width of the heat affected zone (HAZ) near the peak of the heating cycle in each weld show regions containing austenite ({gamma}), ferrite and austenite ({alpha}+{gamma}), and ferrite ({alpha}). Changes in input power have a demonstrated effect on the resulting sizes of these regions. The largest effect is on the {gamma} phase region, which nearly triples in width with increasing input power, while the width of the surrounding two phase {alpha}+{gamma} region remains relatively constant. An analysis of the diffraction patterns obtained across this range of locations allows the formation of austenite from the base metal microstructure to be monitored. After the completion of the {alpha} {yields} {gamma} transformation, a splitting of the austenite peaks is observed at temperatures between approximately 860 C and 1290 C. This splitting in the austenite peaks results from the dissolution of cementite laths originally present in the base metal pearlite, which remain after the completion of the {alpha} {yields} {gamma} transformation, and represents the formation of a second more highly alloyed austenite constituent. With increasing temperatures, carbon, originally present in the cementite laths, diffuses from the second newly formed austenite constituent to the original austenite constituent. Eventually, a homogeneous austenitic microstructure is produced at temperatures of approximately 1300 C and above, depending on the weld input power.

  19. How does the spaceborne radar blind zone affect derived surface snowfall statistics in polar regions?

    NASA Astrophysics Data System (ADS)

    Maahn, Maximilian; Burgard, Clara; Crewell, Susanne; Gorodetskaya, Irina V.; Kneifel, Stefan; Lhermitte, Stef; Van Tricht, Kristof; Lipzig, Nicole P. M.

    2014-12-01

    Global statistics of snowfall are currently only available from the CloudSat satellite. But CloudSat cannot provide observations of clouds and precipitation within the so-called blind zone, which is caused by ground-clutter contamination of the CloudSat radar and covers the last 1200 m above land/ice surface. In this study, the impact of the blind zone of CloudSat on derived snowfall statistics in polar regions is investigated by analyzing three 12 month data sets recorded by ground-based Micro Rain Radar (MRR) at the Belgian Princess Elisabeth station in East Antarctica and at Ny-Ålesund and Longyearbyen in Svalbard, Norway. MRR radar reflectivity profiles are investigated in respect to vertical variability in the frequency distribution, changes in the number of observed snow events, and impacts on total precipitation. Results show that the blind zone leads to reflectivity being underestimated by up to 1 dB, the number of events being altered by ±5% and the precipitation amount being underestimated by 9 to 11 percentage points. Besides investigating a blind zone of 1200 m, the impacts of a reduced blind zone of 600 m are also analyzed. This analysis will help in assessing future missions with a smaller blind zone. The reduced blind zone leads to improved representation of mean reflectivity but does not improve the bias in event numbers and precipitation amount.

  20. Characterization of hole circularity and heat affected zone in pulsed CO2 laser drilling of alumina ceramics

    NASA Astrophysics Data System (ADS)

    Bharatish, A.; Narasimha Murthy, H. N.; Anand, B.; Madhusoodana, C. D.; Praveena, G. S.; Krishna, M.

    2013-12-01

    Circularity of drilled hole at the entry and exit, heat affected zone and taper are important attributes which influence the quality of a drilled hole in laser drilling. This paper examines the effect of laser parameters on the quality of drilled holes in Alumina ceramics which are widely used in microelectronic devices, based on orthogonal array experimentation and response surface methodology. Both entrance and exit circularities were significantly influenced by hole diameter and laser power. Heat affected zone was influenced by frequency. Taper was also significantly influenced by laser power. Response surface model predicted nominal entrance circularity at 2.5 kHz, 240 W, 2.5 mm/s, 1 mm hole, exit circularity and taper at 7.5 kHz, 240 W, 4.5 mm/s, and 1 mm hole. The model predicted lowest heat affected zone at 7.5 kHz, 240 W, 2.5 mm/s, and 1 mm. Multiobjective optimization achieved using both response surface model and gray relational analysis indicated that all the four quality parameters are optimized at 7.5 kHz, 240 W, 3.85 mm/s and 1 mm.

  1. Prediction of HAZ hardness in welds of quenched and tempered HSLA steels

    SciTech Connect

    Zaczek, Z.; Cwiek, J. . Inst. of Tech. of Materials and Welding)

    1993-01-01

    The present study was subdivided into two sections: a review of the published literature, and experimental work performed on HSLA steels at the authors' laboratory during the past few years. The literature review showed that a simple useful formula for HAZ hardness control in currently produced quenched and tempered HSLA steels Grade E420-690 has not been published. Experimental work was performed on 12 quenched and tempered plates from different melts of four HSLA steels, A maximum HAZ hardness in which cracks have not been observed, and a minimum HAZ hardness over which cracks occur have been noted from controlled thermal severity tests. Statistical calculations and analysis of corresponding experimental data have shown that the best prediction of the critical HAZ hardness may be given by using the carbon equivalent formula of K. Lorenz and C. Dueren for a short cooling time (from 800 to 500 C in 6 s).

  2. The Affective Establishment and Maintenance of Vygotsky's Zone of Proximal Development

    ERIC Educational Resources Information Center

    Levykh, Michael G.

    2008-01-01

    Many recent articles, research papers, and conference presentations about Lev Vygotsky's zone of proximal development (ZPD) emphasize the "extended" version of the ZPD that reflects human emotions and desires. In this essay, Michael G. Levykh expands on the extant literature on the ZPD through developing several new ideas. First, he maintains that…

  3. Lithospheric Thermal Structure: One of Factors Affecting the Depth of the Seismogenic Zone

    NASA Astrophysics Data System (ADS)

    Tanaka, A.

    2008-12-01

    Evidence that the base of the crustal seismogenic zone may be critically dependent on temperature has been bolstered for more than three decades. This paper addresses and reviews several topics related to relationship between lithospheric thermal regime and depth extent of seismicity. The base of the seismogenic crustal zone correlates with surface heat flow in most intraplate seismic areas of the world [e.g., Kobayshi, 1976; Sibson, 1982]. Compilation of previous studies shows that temperatures at the base of seismogenic zone appear to be distributed from about 250°C to 450°C over a large depth interval, 5-30 km, at different tectonic settings [e.g., Tanaka, 2008]. It supports that temperature is one of factors governing the focal depth. Variations in lithology, slip rate, pore pressure, and focal mechanism may account for the temperature difference. Inverse relationship between the base of the seismogenic crustal zone and surface heat flow is obvious, however this relationship is shown at geographically restricted area due to uneven data distribution. In order to overcome this spatial limitation, determination of the basal depth of magnetic layer, Curie point depth (Zb), based on spectrum analysis of magnetic anomaly data was applied to estimate regional thermal structure. This analysis is still controversial and Zb does not necessarily represent an isotherm, however, previous studies suggested that there was an inverse correlation between Zb and heat-flow measurements. Recently, the correlation between Zb and the base of the seismogenic crustal zone has been shown at Japan [Tanaka and Ishikawa, 2005] and California [Ross et al., 2006]. Correlations between them in both regions are good, however each region has own cluster; Zb of California region are significantly deeper than those of Japan. The lithological difference may cause the cluster shift between Japan and California.

  4. Visualization of microcrack anisotropy in granite affected by afault zone, using confocal laser scanning microscope

    SciTech Connect

    Onishi, Celia T.; Shimizu, Ichiko

    2004-01-02

    Brittle deformation in granite can generate a fracture system with different patterns. Detailed fracture analyses at both macroscopic and microscopic scales, together with physical property data from a drill-core, are used to classify the effects of reverse fault deformation in four domains: (1) undeformed granite, (2) fractured granite with cataclastic seams, (3) fractured granite from the damage zone, and (4) foliated cataclasite from the core of the fault. Intact samples from two orthogonal directions, horizontal (H) and vertical (V), from the four domains indicate a developing fracture anisotropy toward the fault, which is highly developed in the damage zone. As a specific illustration of this phenomenon, resin impregnation, using a confocal laser scanning microscope (CLSM) technique is applied to visualize the fracture anisotropy developed in the Toki Granite, Japan. As a result, microcrack networks have been observed to develop in H sections and elongate open cracks in V sections, suggesting that flow pathways can be determined by deformation.

  5. 49 CFR 222.41 - How does this rule affect Pre-Rule Quiet Zones and Pre-Rule Partial Quiet Zones?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-Rule Quiet Zone may be established by automatic approval and remain in effect, subject to § 222.51, if the Pre-Rule Quiet Zone is in compliance with §§ 222.35 (minimum requirements for quiet zones) and 222... Zone may be established by automatic approval and remain in effect, subject to § 222.51, if the...

  6. 49 CFR 222.41 - How does this rule affect Pre-Rule Quiet Zones and Pre-Rule Partial Quiet Zones?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-Rule Quiet Zone may be established by automatic approval and remain in effect, subject to § 222.51, if the Pre-Rule Quiet Zone is in compliance with §§ 222.35 (minimum requirements for quiet zones) and 222... Zone may be established by automatic approval and remain in effect, subject to § 222.51, if the...

  7. 49 CFR 222.41 - How does this rule affect Pre-Rule Quiet Zones and Pre-Rule Partial Quiet Zones?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-Rule Quiet Zone may be established by automatic approval and remain in effect, subject to § 222.51, if the Pre-Rule Quiet Zone is in compliance with §§ 222.35 (minimum requirements for quiet zones) and 222... Zone may be established by automatic approval and remain in effect, subject to § 222.51, if the...

  8. 49 CFR 222.41 - How does this rule affect Pre-Rule Quiet Zones and Pre-Rule Partial Quiet Zones?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-Rule Quiet Zone may be established by automatic approval and remain in effect, subject to § 222.51, if the Pre-Rule Quiet Zone is in compliance with §§ 222.35 (minimum requirements for quiet zones) and 222... Zone may be established by automatic approval and remain in effect, subject to § 222.51, if the...

  9. 49 CFR 222.41 - How does this rule affect Pre-Rule Quiet Zones and Pre-Rule Partial Quiet Zones?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-Rule Quiet Zone may be established by automatic approval and remain in effect, subject to § 222.51, if the Pre-Rule Quiet Zone is in compliance with §§ 222.35 (minimum requirements for quiet zones) and 222... Zone may be established by automatic approval and remain in effect, subject to § 222.51, if the...

  10. Determination of elastoplastic mechanical properties of the weld and heat affected zone metals in tailor-welded blanks by nanoindentation test

    NASA Astrophysics Data System (ADS)

    Ma, Xiangdong; Guan, Yingping; Yang, Liu

    2015-09-01

    The elastoplastic mechanical properties of the weld and heat affected zone metals have comparatively major impact on the forming process of tailor-welded blanks. A few scholars investigated the elastoplastic mechanical properties of the weld and heat affected zone, but they only simply assumed that it was a uniform distribution elastoplastic material different from the base materials. Four types of tailor-welded blanks which consist of ST12 and 304 stainless steel plates are selected as the research objects, the elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals are obtained based on the nanoindentation tests, and the Erichsen cupping tests are conducted by combining numerical simulation with physical experiment. The nanoindentation tests results demonstrate that the elastoplastic mechanical properties of the weld and heat affected zone metals are not only different from the base materials, but also varying between the weld metals and the heat affected zone metals. Comparing the Erichsen cupping test resulted from numerical with that from experimental method, it is found that the numerical value of Erichsen cupping test which consider the elastoplastic mechanical properties of the weld and heat affected zone metals have a good agreement with the experimental result, and the relative error is only 4.8%. The proposed research provides good solutions for the inhomogeneous elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals, and improves the control performance of tailor-welded blanks forming accuracy.

  11. Influence of rapid thermal cycles in multipass welding on heat-affected-zone properties in ferritic cryogenic steels

    SciTech Connect

    Kim, H.J.; Shin, H.K.; Morris, J.W. Jr.

    1982-05-01

    The results of both welding and weld simulation studies on 2BT-treated 9Ni steel show that multiple rapid thermal cycles have a very beneficial effect on heat-affected zone toughness at cryogenic temperatures. The metallurgical sources of toughness are, however, different from those in the furnace-treated base plate. The rapidly cycled material contains no detectable austenite phase. The alloy is grain-refined by the rapid thermal cycle, and the matrix carbon content is relieved by the formation of interlathcementite precipitates which do not destroy toughness.

  12. Microstructural investigation of the weld HAZ in a modified 800H alloy

    SciTech Connect

    Lundin, C.D.; Qiao, C.Y.P. . Materials Science and Engineering)

    1994-07-01

    Detailed metallographic investigations of Gleeble simulated HAZ samples in modified 800H were performed. Precipitate dissolution, gain growth, HAZ liquation and the hardness degradation behavior in modified 800H were also addressed. Results of this study agree with previous HAZ hot cracking and softening behavior evaluations. Modified 800H is one of the newly developed high-temperature alloys for applications in coal-fired power generating systems (Swindeman, 1991). Modified 800H possesses a greater creep and higher temperature tensile strength as compared to standard alloy 800 and conventional austenitic stainless steels. To achieve excellent creep and high-temperature tensile strength a thermomechanical treatment is applied during alloy fabrication (5--10% cold work). Therefore, grain growth, recrystallization, and precipitate dissolution and redistribution will occur in the weld HAZ during fabrication. Thus, both mechanical and metallurgical degradation may occur in the HAZ. Additionally, metallurgical reactions adjacent to the fusion boundary, including a partially melted region and constitutional liquation, may occur and influence the hot cracking resistance.

  13. Enhancement of Heat-Affected Zone Toughness of a Low Carbon Steel by TiN Particle

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Li, Xiaobao; Ma, Han

    2015-11-01

    Enhancement of heat-affected zone toughness of a weight percentage of 0.014 pct Ti-bearing low carbon steel by TiN particle was investigated. An increase in nitrogen weight percentage from 0.0031 to 0.0083 pct results in increasing of number density of TiN precipitates from 4 × 103 to 3 × 105/mm2, and reduces prior austenite grain size from 850 to 350 μm with a soaking of 1673 K (1400 °C) for 2000 seconds. Effective refinement of austenite grain prohibits formation of ferrite side plate and/or upper bainite, and densely distributed TiN particles promote intra-granular ferrite formation, which is accompanied by an increase of 40 K to 60 K (40 °C to 60 °C) in austenite decomposition temperature during continuous cooling process. The changes in transformed products improved impact toughness of heat-affected zone efficiently, ex., increase absorbed energy of less than 42 J to more than 320 J with a simulated t 8/5 of 550 seconds.

  14. Enhancement of Heat-Affected Zone Toughness of a Low Carbon Steel by TiN Particle

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Li, Xiaobao; Ma, Han

    2016-08-01

    Enhancement of heat-affected zone toughness of a weight percentage of 0.014 pct Ti-bearing low carbon steel by TiN particle was investigated. An increase in nitrogen weight percentage from 0.0031 to 0.0083 pct results in increasing of number density of TiN precipitates from 4 × 103 to 3 × 105/mm2, and reduces prior austenite grain size from 850 to 350 μm with a soaking of 1673 K (1400 °C) for 2000 seconds. Effective refinement of austenite grain prohibits formation of ferrite side plate and/or upper bainite, and densely distributed TiN particles promote intra-granular ferrite formation, which is accompanied by an increase of 40 K to 60 K (40 °C to 60 °C) in austenite decomposition temperature during continuous cooling process. The changes in transformed products improved impact toughness of heat-affected zone efficiently, ex., increase absorbed energy of less than 42 J to more than 320 J with a simulated t 8/5 of 550 seconds.

  15. Factors Affecting the Latitudinal Location of the Intertropical Convergence Zone in a GCM

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Chen, Baode

    2002-01-01

    The dominant role of the latitudinal peak of the sea surface temperature (SST) in determining the latitudinal location of the intertropical convergence zone (ITCZ) is well-known. However, the roles of the other factors are less well-known and are the topic of this study. These other factors include the inertial stability, the interaction between convection and surface fluxes and the interaction between convection and radiation. Since these interactions involve convection, in a model they involve the cumulus parameterization scheme. These factors are studied with a general circulation model with uniform SST and solar angle. Under the aforementioned model settings, the latitudinal location of the ITCZ is the latitude where the balance of two types of attraction on the ITCZ, both due to earth's rotation, exists. Directly related to the Coriolis parameter, the first type pulls the ITCZ toward the equator and is not sensitive to model design changes. Related to the convective circulation, the second type pulls the ITCZ poleward and is sensitive to model design changes. Due to the shape and the magnitude of the attractors, the balance of the two types of attractions is reached either at the equator or more than 10 degrees away from the equator. The former case results in a single ITCZ over the equator and the latter case a double ITCZ straddling the equator.

  16. Health in the hot zone - How could global warming affect humans?

    SciTech Connect

    Monastersky, R.

    1996-04-06

    A soon-to-be-released report from the World Health Organization examines the health effects of global warming, calling climate change one of the largest public health challenges for the upcoming century. The issue extends beyond tropical illness: deaths caused directly by heat, dwindling agricultural yields etc. could all affect human health. This article looks at the following health related effects and gives an overview of the scientific information available on each: temperature and mortality; tropical trouble, including vecorborne diseases and increase in susceptable populations; and waterborne problems such as cholera, harmful algal bloomes, food shortages.

  17. Statistical analysis of factors affecting landslide distribution in the new Madrid seismic zone, Tennessee and Kentucky

    USGS Publications Warehouse

    Jibson, R.W.; Keefer, D.K.

    1989-01-01

    More than 220 large landslides along the bluffs bordering the Mississippi alluvial plain between Cairo, Ill., and Memphis, Tenn., are analyzed by discriminant analysis and multiple linear regression to determine the relative effects of slope height and steepness, stratigraphic variation, slope aspect, and proximity to the hypocenters of the 1811-12 New Madrid, Mo., earthquakes on the distribution of these landslides. Three types of landslides are analyzed: (1) old, coherent slumps and block slides, which have eroded and revegetated features and no active analogs in the area; (2) old earth flows, which are also eroded and revegetated; and (3) young rotational slumps, which are present only along near-river bluffs, and which are the only young, active landslides in the area. Discriminant analysis shows that only one characteristic differs significantly between bluffs with and without young rotational slumps: failed bluffs tend to have sand and clay at their base, which may render them more susceptible to fluvial erosion. Bluffs having old coherent slides are significantly higher, steeper, and closer to the hypocenters of the 1811-12 earthquakes than bluffs without these slides. Bluffs having old earth flows are likewise higher and closer to the earthquake hypocenters. Multiple regression analysis indicates that the distribution of young rotational slumps is affected most strongly by slope steepness: about one-third of the variation in the distribution is explained by variations in slope steepness. The distribution of old coherent slides and earth flows is affected most strongly by slope height, but the proximity to the hypocenters of the 1811-12 earthquakes also significantly affects the distribution. The results of the statistical analyses indicate that the only recently active landsliding in the area is along actively eroding river banks, where rotational slumps formed as bluffs are undercut by the river. The analyses further indicate that the old coherent slides

  18. Remote sensing for assessing the zone of benefit where deep drains improve productivity of land affected by shallow saline groundwater.

    PubMed

    Kobryn, H T; Lantzke, R; Bell, R; Admiraal, R

    2015-03-01

    The installation of deep drains is an engineering approach to remediate land salinised by the influence of shallow groundwater. It is a costly treatment and its economic viability is, in part, dependent on the lateral extent to which the drain increases biological productivity by lowering water tables and soil salinity (referred to as the drains' zone of benefit). Such zones may be determined by assessing the biological productivity response of adjacent vegetation over time. We tested a multi-temporal satellite remote sensing method to analyse temporal and spatial changes in vegetation condition surrounding deep drainage sites at five locations in the Western Australian wheatbelt affected by dryland salinity-Morawa, Pithara, Beacon, Narembeen and Dumbleyung. Vegetation condition as a surrogate for biological productivity was assessed by Normalised Difference Vegetation Index (NDVI) during the peak growing season. Analysis was at the site scale within a 1000 m buffer zone from the drains. There was clear evidence of NDVI increasing with elevation, slope and distance from the drain. After accounting for elevation, slope and distance from the drain, there was a significant increase in NDVI across the five locations after installation of deep drains. Changes in NDVI after drainage were broadly consistent with measured changes at each site in groundwater levels after installation of the deep drains. However, this study assessed the lateral extent of benefit for biological productivity and gave a measure of the area of benefit along the entire length of the drain. The method demonstrated the utility of spring NDVI images for rapid and relatively simple assessment of the change in site condition after implementation of drainage, but approaches for further improvement of the procedure were identified. PMID:25481499

  19. Linking river, floodplain, and vadose zone hydrology to improve restoration of a coastal river affected by saltwater intrusion.

    PubMed

    Kaplan, D; Muñoz-Carpena, R; Wan, Y; Hedgepeth, M; Zheng, F; Roberts, R; Rossmanith, R

    2010-01-01

    Floodplain forests provide unique ecological structure and function, which are often degraded or lost when watershed hydrology is modified. Restoration of damaged ecosystems requires an understanding of surface water, groundwater, and vadose (unsaturated) zone hydrology in the floodplain. Soil moisture and porewater salinity are of particular importance for seed germination and seedling survival in systems affected by saltwater intrusion but are difficult to monitor and often overlooked. This study contributes to the understanding of floodplain hydrology in one of the last bald cypress [Taxodium distichum (L.) Rich.] floodplain swamps in southeast Florida. We investigated soil moisture and porewater salinity dynamics in the floodplain of the Loxahatchee River, where reduced freshwater flow has led to saltwater intrusion and a transition to salt-tolerant, mangrove-dominated communities. Twenty-four dielectric probes measuring soil moisture and porewater salinity every 30 min were installed along two transects-one in an upstream, freshwater location and one in a downstream tidal area. Complemented by surface water, groundwater, and meteorological data, these unique 4-yr datasets quantified the spatial variability and temporal dynamics of vadose zone hydrology. Results showed that soil moisture can be closely predicted based on river stage and topographic elevation (overall Nash-Sutcliffe coefficient of efficiency = 0.83). Porewater salinity rarely exceeded tolerance thresholds (0.3125 S m(-1)) for bald cypress upstream but did so in some downstream areas. This provided an explanation for observed vegetation changes that both surface water and groundwater salinity failed to explain. The results offer a methodological and analytical framework for floodplain monitoring in locations where restoration success depends on vadose zone hydrology and provide relationships for evaluating proposed restoration and management scenarios for the Loxahatchee River. PMID:21043263

  20. Modeling phase transformation behavior during thermal cycling in the heat-affected zone of stainless steel welds

    SciTech Connect

    Vitek, J.M.; Iskander, Y.S.; David, S.A.

    1995-12-31

    An implicit finite-difference analysis was used to model the diffusion-controlled transformation behavior in a ternary system. The present analysis extends earlier work by examining the transformation behavior under the influence of multiple thermal cycles. The analysis was applied to the Fe-Cr-Ni ternary system to simulate the microstructural development in austenitic stainless steel welds. The ferrite-to-austenite transformation was studied in an effort to model the response of the heat-affected zone to multiple thermal cycles experienced during multipass welding. Results show that under some conditions, a transformation ``inertia`` exists that delays the system`s response when changing from cooling to heating. Conditions under which this ``inertia`` is most influential were examined. It was also found that under some conditions, the transformation behavior does not follow the equilibrium behavior as a function of temperature. Results also provide some insight into effect of composition distribution on transformation behavior.

  1. Case Study: Pitting and Stress Corrosion Cracking in Heat-Affected Zone of Welded Underground 304 Stainless Steel Pipe

    NASA Astrophysics Data System (ADS)

    Tawancy, H. M.; Al-Hadhrami, Luai. M.

    2012-08-01

    A jacketed underground pipeline made of 304 stainless steel tubing to transport utility water in a petrochemical plant at ambient temperature was perforated after few months of operation. Perforation started preferentially at the outer bottom surface of the pipe in the weld heat-affected zones where the insulating coating was damaged. Detailed microstructural characterization was carried out to determine the cause of failure using optical metallography, x-ray diffraction, scanning electron microscopy combined with energy dispersive spectroscopy, and transmission electron microscopy. Experimental results indicated that the failure occurred by interaction between the outer bottom surface of the pipe and surrounding environment leading to pitting and stress corrosion cracking in the presence of chloride ions. This could have been aided by residual welding stresses and the characteristic low stacking fault energy of the material.

  2. Factors affecting the quality of fish caught by Native Americans in the Zone 6 fishery 1991 through 1993

    SciTech Connect

    Abernethy, C.S.

    1994-09-01

    A program to monitor the salmon and steelhead (Oncorhynchus spp.) fishery in the lower Columbia River (Zone 6 fishery) was initiated in 1991 to respond to questions and comments frequently made by Native Americans at public meetings. Native Americans were concerned that the quality of the Columbia River had deteriorated and that the poor environmental conditions had affected the health and quality of fish they relied on for subsistence, ceremonial, religious, and commercial purposes. They also feared that eating contaminated fish might endanger the health of their children and future generations. Operations at the Hanford Site were listed as one of many causes of the deteriorating environment. Fisheries pathologists concluded that most of the external symptoms on fish were related to bacterial infection of gill net abrasions and pre-spawning trauma, and were not caused by pollution or contamination of the Columbia River. The pathologists also stated that consumption of the fish posed no threat to human consumers.

  3. Dissolved barium behavior in Louisiana Shelf waters affected by the Mississippi/Atchafalaya River mixing zone

    NASA Astrophysics Data System (ADS)

    Joung, DongJoo; Shiller, Alan M.

    2014-09-01

    a proxy for paleo-salinity changes. Barium input to bottom waters and the extent to which this is natural or anthropogenically-affected is a particular source of uncertainty. Thus, as is the case with nearly all paleoceanographic proxies, the planktonic foraminiferal Ba/Ca ratio should be used in conjunction with other constraining proxies.

  4. Report Number 2: Comparison of the CTOD fracture toughness of simulated and weldment HAZ regions in A516 steel with deep and shallow cracks

    SciTech Connect

    Smith, J.A.; Holcomb, R.M.; Rolfe, S.T.

    1995-07-01

    An experimental fracture toughness study was performed on A516 grade 70 steel to compare crack tip opening displacement (CTOD) values of laboratory specimens with simulated and actual weld microstructures. This study was undertaken as a joint project with the University of Tennessee. Specimens with simulated microstructures from the coarse, fine or intercritical zones were produced in a Gleeble thermal simulator with thermal cycles that represented a 39.4 Kj/cm and 11.0 Kj/cm heat input. Because the thermally simulated specimens were limited to 12.5 x 12.5 mm (0.5 x 0.5 inch) cross-section, the CTOD tests at the University of Kansas were performed on these same size three-point bend specimens. The effect of crack depth to specimen width, a/W, ratio on CTOD toughness was studied for a/W ratios of 0.2 and 0.5. Experimental testing also included Charpy V-Notch (CVN) impact tests at equivalent CTOD temperatures and tension tests of each of the simulated microstructures with 39.4 Kj/cm (100 Kj/in) heat input. Actual weldments were tested to investigate whether the simulated microstructures give similar toughness results as the actual HAZ regions. Good correlation was found between the CVN and CTOD test results on the upper shelf, both for the simulated HAZ and actual weldment HAZ specimens. Also, the results of this study support the conclusions of previous work which showed that increased elastic-plastic fracture toughness is associated with a reduction in the a/W ratio of CTOD test specimens.

  5. A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part I. the model

    NASA Astrophysics Data System (ADS)

    Hemmer, H.; Grong, Ø.

    1999-11-01

    The present investigation is concerned with modeling of the microstructure evolution in duplex stainless steels under thermal conditions applicable to welding. The important reactions that have been modeled are the dissolution of austenite during heating, subsequent grain growth in the delta ferrite regime, and finally, the decomposition of the delta ferrite to austenite during cooling. As a starting point, a differential formulation of the underlying diffusion problem is presented, based on the internal-state variable approach. These solutions are later manipulated and expressed in terms of the Scheil integral in the cases where the evolution equation is separable or can be made separable by a simple change of variables. The models have then been applied to describe the heat-affected zone microstructure evolution during both thick-plate and thin-plate welding of three commercial duplex stainless steel grades: 2205, 2304, and 2507. The results may conveniently be presented in the form of novel process diagrams, which display contours of constant delta ferrite grain size along with information about dissolution and reprecipitation of austenite for different combinations of weld input energy and peak temperature. These diagrams are well suited for quantitative readings and illustrate, in a condensed manner, the competition between the different variables that lead to structural changes during welding of duplex stainless steels.

  6. A process model for the heat-affected zone microstructure evolution in duplex stainless steel weldments: Part I. The model

    SciTech Connect

    Hemmer, H.; Grong, O.

    1999-11-01

    The present investigation is concerned with modeling of the microstructure evolution in duplex stainless steels under thermal conditions applicable to welding. The important reactions that have been modeled are the dissolution of austenite during heating, subsequent grain growth in the delta ferrite regime, and finally, the decomposition of the delta ferrite to austenite during cooling. As a starting point, a differential formulation of the underlying diffusion problem is presented, based on the internal-state variable approach. These solutions are later manipulated and expressed in terms of the Scheil integral in the cases where the evolution equation is separable or can be made separable by a simple change of variables. The models have then been applied to describe the heat-affected zone microstructure evolution during both thick-plate and thin-plate welding of three commercial duplex stainless steel grades: 2205, 2304, and 2507. The results may conveniently be presented in the form of novel process diagrams, which display contours of constant delta ferrite grain size along with information about dissolution and reprecipitation of austenite for different combinations of weld input energy and peak temperature. These diagrams are well suited for quantitative readings and illustrate, in a condensed manner, the competition between the different variables that lead to structural changes during welding of duplex stainless steels.

  7. Texture Evolution within the Thermomechanically Affected Zone of an Al-Li Alloy 2195 Friction Stir Weld

    NASA Astrophysics Data System (ADS)

    Tayon, Wesley A.; Domack, Marcia S.; Hoffman, Eric K.; Hales, Stephen J.

    2013-11-01

    Friction stir welding (FSW) of Al -Li alloy 2195 plate produces strong texture gradients. The microstructural characteristics evolve from the base plate, through the thermomechanically affected zone (TMAZ), to the weld nugget interface. In the current study, electron backscattered diffraction (EBSD) analyses were employed to quantify the spatial distribution of texture gradients associated with the evolution of texture within the TMAZ. The strong texture of the base plate enabled the texture evolution to be characterized as a function of location. Systematic partitioning of EBSD data relative to the degree of lattice rotation at each point accurately captured the crystallographic transitions across the advancing side TMAZ. Over a large section of this region, the texture evolves as a result of continuous rigid body rotations. The rigid body rotations were correlated with the complex material flow patterns commonly associated with the FSW process and prior observations of shear-related textures. Finally, a correlation between texture and fracture in a subscale tensile specimen is observed, where failure occurs within a visible band of low-Taylor factor grains.

  8. Green reconstruction of the tsunami-affected areas in India using the integrated coastal zone management concept.

    PubMed

    Sonak, Sangeeta; Pangam, Prajwala; Giriyan, Asha

    2008-10-01

    A tsunami, triggered by a massive undersea earthquake off Sumatra in Indonesia, greatly devastated the lives, property and infrastructure of coastal communities in the coastal states of India, Andaman and Nicobar Islands, Indonesia, Sri Lanka, Malaysia and Thailand. This event attracted the attention of environmental managers at all levels, local, national, regional and global. It also shifted the focus from the impact of human activities on the environment to the impacts of natural hazards. Recovery/reconstruction of these areas is highly challenging. A clear understanding of the complex dynamics of the coast and the types of challenges faced by the several stakeholders of the coast is required. Issues such as sustainability, equity and community participation assume importance. The concept of ICZM (integrated coastal zone management) has been effectively used in most parts of the world. This concept emphasizes the holistic assessment of the coast and a multidisciplinary analysis using participatory processes. It integrates anthropocentric and eco-centric approaches. This paper documents several issues involved in the recovery of tsunami-affected areas and recommends the application of the ICZM concept to the reconstruction efforts. PMID:17544565

  9. Recovery approach affects soil quality in the water level fluctuation zone of the Three Gorges Reservoir, China: implications for revegetation.

    PubMed

    Ye, Chen; Cheng, Xiaoli; Zhang, Quanfa

    2014-02-01

    Plants in the water level fluctuation zone of the Three Gorges Reservoir Region disappeared due to winter-flooding and prolonged inundation. Revegetation (plantation and natural recovery) have been promoted to restore and protect the riparian ecosystem in recent years. Revegetation may affect soil qualities and have broad important implications both for ecological services and soil recovery. In this study, we investigated soil properties including soil pH values, bulk density, soil organic matter (SOM), soil nutrients and heavy metals, soil microbial community structure, microbial biomass, and soil quality index under plantation and natural recovery in the Three Gorges Reservoir Region. Most soil properties showed significant temporal and spatial variations in both the plantation and natural recovery areas. Higher contents of SOM and NO3-N were found in plantation area, while higher contents of soil pH values, bulk density, and total potassium were observed in the natural recovery area. However, there were no significant differences in plant richness and diversity and soil microbial community structure between the two restoration approaches. A soil quality index derived from SOM, bulk density, Zn, Cd, and Hg indicated that natural recovery areas with larger herbaceous coverage had more effective capacity for soil restoration. PMID:24019143

  10. A SYNCHROTRON DIFFRACTION STUDY OF TRANSFORMATION BEHAVIOUR IN 9 CR STEELS USING SIMULATED WELD HEAT-AFFECTED ZONE CONDITIONS

    SciTech Connect

    Santella, Michael L; Specht, Eliot D; Shingledecker, John P; Abe, Fujio

    2007-01-01

    Synchrotron diffraction experiments were conducted to examine the real-time transformation behaviours of an ex-perimental 9Cr-3W-3Co-NbV steel with high B and low N (N130B), and the commercial P92 steel under simulated weld heat-affected zone thermal cycles. When heated to peak temperatures near 1100 C, both steels rapidly trans-formed from ferrite to 100% austenite. During cooling, both transformed to martensite near 400 C. Both steels also retained untransformed austenite: 1.7% in N130B, and 5.8% in P92. The N130B was also heated to about 60 C above its A3 of 847 C. About 56% of the original ferrite never transformed to austenite. During cooling an additional 21% of ferrite and 23% of martensite formed. It retained no austenite. The P92 was heated to just above its A3 of 889 C. About 15% of the original ferrite never transformed to austenite. During cooling an additional 22% of ferrite and 60% of martensite formed. This steel retained about 2.3% austenite. Metallographic examina-tions indicated that the M23C6 in N130B was much more stable than that in P92 for heating to the lower peak tem-peratures. Analysis using equilibrium thermodynamics suggested that the more stable M23C6 in N130B could raise its apparent A3 by sequestering C. This could cause the ferrite-austenite transformation to appear sluggish. Ther-modynamic analysis also indicated that the M23C6 in N130B contained about 3.9 at% B compared to about 0.08 at% B in that of P92. In contrast, the refractory metal element content of the M23C6 was predicted to be higher in P92.

  11. Contents and toxicity of heavy metals in soils of the zone affected by aerial emissions from the Severonikel Enterprise

    NASA Astrophysics Data System (ADS)

    Evdokimova, G. A.; Kalabin, G. V.; Mozgova, N. P.

    2011-02-01

    In 2009, the zoning of the terrestrial ecosystems in the area exposed to aerial emissions from the Severonikel Enterprise (Murmansk oblast) was performed on the basis of the parameters characterizing the state of the soils, including the contents of the main heavy metal pollutants and exchangeable calcium and magnesium, the soils' pH, the ratio of the organic to mineral soil components, and the state of the soils' microbiota. Three zones differing in the degree of the soil pollution were delimited. These were the zones of heavy, moderate, and weak pollution, which extended for up to 3, 25, and 50 km from the emission source in the prevailing wind direction. The data on the amount of bacterial and fungal biomass provided evidence of the profound degradation of the soils in the heavily polluted zone. In particular, the biomass of the soil microbiota, including its prokaryotic and eukaryotic components, was two to six times lower in this zone than in the background (control) area. The soils of the heavily polluted zone can be classified as strongly toxic for plants, and most of the soils of the moderately polluted zone also fall into the same category.

  12. Calibrated heat flow model for the determination of different heat-affected zones in single-pass laser-cut CFRP using a cw CO2 laser

    NASA Astrophysics Data System (ADS)

    Mucha, P.; Berger, P.; Weber, R.; Speker, N.; Sommer, B.; Graf, T.

    2015-03-01

    Laser machining has great potential for automated manufacturing of parts made of carbon-fiber-reinforced plastic (CFRP) due to the nearly force and tool-wear free processing. The high vaporization temperatures and the large heat conductivity of the carbon fibers, however, lead to unintentional heat conduction into the material causing damage in zones close to the process. In this paper, the matrix damage zone (MDZ) is subdivided into a matrix sublimation zone (MSZ) where the matrix material was sublimated and a zone where the temperature temporarily exceeded a value causing structural damage in the matrix. In order to investigate the extent of these zones, a one-dimensional heat flow model was applied, which was calibrated by cutting experiments using temperature sensors embedded in the CFRP samples. The investigations showed that the extents of the MSZ and MDZ are dominated by a total interaction time, which includes the passage of the laser beam and the continued interaction of the cloud of hot ablation products with the carbon fibers at the kerf wall and that from a practical point of view, the experimentally determined effective heat conductivity is suitable for simple estimations of the heat-affected zones in CFRP.

  13. Isothermal Calorimetric Observations of the Affect of Welding on Compatibility of Stainless Steels with High-Test Hydrogen Peroxide Propellant

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy C.

    2002-01-01

    Compatibility is determined by the surface area, the chemical constituency and the surface finish of a material. In this investigation exposed area is obviously not a factor as the welded samples had a slightly smaller surface than the unwelded, but were more reactive. The chemical makeup of welded CRES 316L and welded CRES 304L have been observed in the literature to change from the parent material as chromium and iron are segregated in zones. In particular, the ratio of chromium to iron in CRES 316L increased from 0.260 to 0.79 in the heat affected zone (HAZ) of the weld and to 1.52 in the weld bead itself. In CRES 304L the ratio of chromium to iron increased from 0.280 to 0.44 in the HAZ and to 0.33 in the weld bead. It is possible that the increased reactivity of the welded samples and of those welded without purge gas is due to this segregation phenomenon. Likewise the reactivity increased in keeping with the greater roughness of the welded and welded without purge gas samples. Therefore enhanced roughness may also be responsible for the increased reactivity.

  14. Aggregate-cement paste transition zone properties affecting the salt-frost damage of high-performance concretes

    SciTech Connect

    Cwirzen, Andrzej; Penttala, Vesa

    2005-04-01

    The influence of the cement paste-aggregate interfacial transition zone (ITZ) on the frost durability of high-performance silica fume concrete (HPSFC) has been studied. Investigation was carried out on eight non-air-entrained concretes having water-to-binder (W/B) ratios of 0.3, 0.35 and 0.42 and different additions of condensed silica fume. Studies on the microstructure and composition of the cement paste have been made by means of environmental scanning electron microscope (ESEM)-BSE, ESEM-EDX and mercury intrusion porosimetry (MIP) analysis. The results showed that the transition zone initiates and accelerates damaging mechanisms by enhancing movement of the pore solution within the concrete during freezing and thawing cycles. Cracks filled with ettringite were primarily formed in the ITZ. The test concretes having good frost-deicing salt durability featured a narrow transition zone and a decreased Ca/Si atomic ratio in the transition zone compared to the bulk cement paste. Moderate additions of silica fume seemed to densify the microstructure of the ITZ.

  15. The Effect of Substrate Microstructure on the Heat-Affected Zone Size in Sn-Zn Alloys Due to Adjoining Ni-Al Reactive Multilayer Foil Reaction

    NASA Astrophysics Data System (ADS)

    Hooper, R. J.; Adams, D. P.; Hirschfeld, D.; Manuel, M. V.

    2016-01-01

    The rapid release of energy from reactive multilayer foils can create extreme local temperature gradients near substrate materials. In order to fully exploit the potential of these materials, a better understanding of the interaction between the substrate or filler material and the foil is needed. Specifically, this work investigates how variations in local properties within the substrate (i.e. differences between properties in constituent phases) can affect heat transport into the substrate. This can affect the microstructural evolution observed within the substrate, which may affect the final joint properties. The effect of the initial substrate microstructure on microstructural evolution within the heat-affected zone is evaluated experimentally in two Sn-Zn alloys and numerical techniques are utilized to inform the analysis.

  16. Tomato growth as affected by root-zone temperature and the addition of gibberellic acid and kinetin to nutrient solutions

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; White, J. W.; Salisbury, F. B. (Principal Investigator)

    1984-01-01

    The effect of root-zone temperature on young tomato plants (Lycopersicon esculentum Mill. cv. Heinz 1350) was evaluated in controlled environments using a recirculating solution culture system. Growth rates were measured at root-zone temperatures of 15 degrees, 20 degrees, 25 degrees, and 30 degrees C in a near optimum foliar environment. Optimum growth occurred at 25 degrees to 30 degrees during the first 4 weeks of growth and 20 degrees to 25 degrees during the 5th and 6th weeks. Growth was severely restricted at 15 degrees. Four concentrations of gibberellic acid (GA3) and kinetin were added to the nutrient solution in a separate trial; root-zone temperature was maintained at 15 degrees and 25 degrees. Addition of 15 micromoles GA3 to solutions increased specific leaf area, total leaf area, and dry weight production of plants in both temperature treatments. GA3-induced growth stimulation was greater at 15 degrees than at 25 degrees. GA3 may promote growth by increasing leaf area, enhancing photosynthesis per unit leaf area, or both. Kinetic was not useful in promoting growth at either temperature.

  17. Colloid formation and metal transport through two mixing zones affected by acid mine drainage near Silverton, Colorado

    USGS Publications Warehouse

    Schemel, L.E.; Kimball, B.A.; Bencala, K.E.

    2000-01-01

    Stream discharges and concentrations of dissolved and colloidal metals (Al, Ca, Cu, Fe, Mg, Mn, Pb, and Zn), SO4, and dissolved silica were measured to identify chemical transformations and determine mass transports through two mixing zones in the Animas River that receive the inflows from Cement and Mineral Creeks. The creeks were the dominant sources of Al, Cu, Fe, and Pb, whereas the upstream Animas River supplied about half of the Zn. With the exception of Fe, which was present in dissolved and colloidal forms, the metals were dissolved in the acidic, high-SO4 waters of Cement Creek (pH 3.8). Mixing of Cement Creek with the Animas River increased pH to near-neutral values and transformed Al and some additional Fe into colloids which also contained Cu and Pb. Aluminium and Fe colloids had already formed in the mildly acidic conditions in Mineral Creek (pH 6.6) upstream of the confluence with the Animas River. Colloidal Fe continued to form downstream of both mixing zones. The Fe- and Al-rich colloids were important for transport of Cu, Pb, and Zn, which appeared to have sorbed to them. Partitioning of Zn between dissolved and colloidal phases was dependent on pH and colloid concentration. Mass balances showed conservative transports for Ca, Mg, Mn, SO4, and dissolved silica through the two mixing zones and small losses (< 10%) of colloidal Al, Fe and Zn from the water column.

  18. Microstructure and Toughness of Simulated Heat-Affected Zone of Laser Welded Joint for 960 MPa Grade High Strength Steel

    NASA Astrophysics Data System (ADS)

    Meng, Wei; Li, Zhuguo; Jiang, Xiaoxia; Huang, Jian; Wu, Yixiong; Katayama, Seiji

    2014-10-01

    The microstructure and toughness of coarse grain zone (CGZ) and mixed grain zone (MGZ) for laser welded 960 MPa grade high strength steel joints were investigated by thermal simulation with a Gleeble-3500 thermal simulator. The results show that microstructure of the stimulated CGZ mainly consists of uniform interweaved lath martensite, and grain growth is not severe upon increasing the cooling time ( t 8/5). Microstructure of the stimulated MGZ presents strip-like in low peak temperature, and small block martensite is formed on the grain boundary. However, in high peak temperature, the strip-like microstructure disappears and small block martensite presents net-like structure. The lath character for MGZ and CGZ is very obvious under TEM observation, and the average lath thickness of BM, MGZ, and CGZ is 100, 150 and 200 nm, respectively. The impact energy and microhardness of CGZ are higher than MGZ and reduce with increasing the cooling time. The fracture toughness deteriorating drastically for MGZ may be related with the formation of the mixture microstructure, in which the small block martensite is distributed in the shape of a network.

  19. Micromechanism of Decrease of Impact Toughness in Coarse-Grain Heat-Affected Zone of HSLA Steel with Increasing Welding Heat Input

    NASA Astrophysics Data System (ADS)

    Cao, R.; Li, J.; Liu, D. S.; Ma, J. Y.; Chen, J. H.

    2015-07-01

    This paper analyzes the micromechanism of decrease of impact toughness with increasing the welding heat input in coarse-grain heat-affected zone (CGHAZ) of a low-alloy high-strength ship-building steel plate. By comparing the microstructures, measuring the extending length of the fibrous crack, identifying the critical event of cleavage fracture, measuring the critical length, and calculating the local cleavage fracture stress σ f, and then using the basic principles of the micromechanism of cleavage fracture, this work reveals the essential causes of deteriorated toughness in the CGHAZ of high-strength steel welded joints.

  20. Study of Reservoir Heterogencities and Structural Features Affecting Production in the Shallow Oil Zone, Eastern Elk Hills Area, California

    SciTech Connect

    Janice Gillespie

    2004-11-01

    Late Neogene (Plio-Pleistocene) shallow marine strata of the western Bakersfield Arch and Elk Hills produce hydrocarbons from several different reservoirs. This project focuses on the shallow marine deposits of the Gusher and Calitroleum reservoirs in the Lower Shallow Oil Zone (LSOZ). In the eastern part of the study area on the Bakersfield Arch at North and South Coles Levee field and in two wells in easternmost Elk Hills, the LSOZ reservoirs produce dry (predominantly methane) gas. In structurally higher locations in western Elk Hills, the LSOZ produces oil and associated gas. Gas analyses show that gas from the eastern LSOZ is bacterial and formed in place in the reservoirs, whereas gas associated with oil in the western part of the study area is thermogenic and migrated into the sands from deeper in the basin. Regional mapping shows that the gas-bearing LSOZ sands in the Coles Levee and easternmost Elk Hills area are sourced from the Sierra Nevada to the east whereas the oil-bearing sands in western Elk Hills appear to be sourced from the west. The eastern Elk Hills area occupied the basin depocenter, farthest from either source area. As a result, it collected mainly low-permeability offshore shale deposits. This sand-poor depocenter provides an effective barrier to the updip migration of gases from east to west. The role of small, listric normal faults as migration barriers is more ambiguous. Because our gas analyses show that the gas in the eastern LSOZ reservoirs is bacterial, it likely formed in-place near the reservoirs and did not have to migrate far. Therefore, the gas could have been generated after faulting and accumulated within the fault blocks as localized pools. However, bacterial gas is present in both the eastern AND western parts of Elk Hills in the Dry Gas Zone (DGZ) near the top of the stratigraphic section even though the measured fault displacement is greatest in this zone. Bacterial gas is not present in the west in the deeper LSOZ which

  1. Distribution of polychlorinated biphenyls in an urban riparian zone affected by wastewater treatment plant effluent and the transfer to terrestrial compartment by invertebrates.

    PubMed

    Yu, Junchao; Wang, Thanh; Han, Shanlong; Wang, Pu; Zhang, Qinghua; Jiang, Guibin

    2013-10-01

    In this study, we investigated the distribution of polychlorinated biphenyls (PCBs) in a riparian zone affected by the effluent from a wastewater treatment plant (WWTP). River water, sediment, aquatic invertebrates and samples from the surrounding terrestrial compartment such as soil, reed plants and several land based invertebrates were collected. A relatively narrow range of δ(13)C values was found among most invertebrates (except butterflies, grasshoppers), indicating a similar energy source. The highest concentration of total PCBs was observed in zooplankton (151.1 ng/g lipid weight), and soil dwelling invertebrates showed higher concentrations than phytophagous insects at the riparian zone. The endobenthic oligochaete Tubifex tubifex (54.28 ng/g lw) might be a useful bioindicator of WWTP derived PCBs contamination. High bioaccumulation factors (BAFs) were observed in collected aquatic invertebrates, although the biota-sediment/soil accumulation factors (BSAF) remained relatively low. Emerging aquatic insects such as chironomids could carry waterborne PCBs to the terrestrial compartment via their lifecycles. The estimated annual flux of PCBs for chironomids ranged from 0.66 to 265 ng⋅m(-2)⋅y(-1). Although a high prevalence of PCB-11 and PCB-28 was found for most aquatic based samples in this riparian zone, the mid-chlorinated congeners (e.g. PCB-153 and PCB-138) became predominant among chironomids and dragonflies as well as soil dwelling invertebrates, which might suggest a selective biodriven transfer of different PCB congeners. PMID:23811358

  2. Root zone temperature affects the phytoextraction of Ba, Cl, Sn, Pt, and Rb using potato plants (Solanum tuberosum L. var. Spunta) in the field.

    PubMed

    Baghour, M; Moreno, D A; Víllora, G; Hernández, J; Castilla, N; Romero, L

    2002-01-01

    Three consecutive years of field experiments were conducted to investigate how different root-zone temperatures, manipulated by using different mulches, affect the phytoextraction of Ba, Cl, Sn, Pt and Rb in different organs of potato plants (roots, tubers, stems and leaves). Four different plastic covers were used (T1: transparent polyethylene; T2: white polyethylene; T3: white and black coextruded polyethylene, and T4: black polyethylene), using uncovered plants as control (T0). The different treatments had a significant effect on mean root zone temperatures (T0 = 16 degrees C, T1 = 20 degrees C, T2 = 23 degrees C, T3 = 27 degrees C and T4 = 30 degrees C) and induced a significantly different response in Ba, Cl, Sn, Pt and Rb concentration and accumulation. The T3 treatment gave rise to the greatest phytoextraction of Ba, Pt, Cl and Sn in the roots, leaflets and tubers. In terms of the relative distribution of the phytoaccumulated elements (as percentage of the total within the plant), Pt and Ba accumulated mainly in the roots whereas Rb, Sn and Cl accumulated primarily in tubers, establishing a close relationship between the biomass development of each organ and phytoaccumulation capacity of metals in response to temperature in the root zone. PMID:11846271

  3. Cleavage Fracture Initiation at M-A Constituents in Intercritically Coarse-Grained Heat-Affected Zone of a HSLA Steel

    NASA Astrophysics Data System (ADS)

    Mohseni, Peyman; Solberg, Jan Ketil; Karlsen, Morten; Akselsen, Odd Magne; Østby, Erling

    2014-01-01

    Local brittle zones, i.e., martensite-austenite (M-A) islands, are formed within the coarse-grained heat-affected zone (CGHAZ) and the intercritically reheated CGHAZ (ICCGHAZ) during welding of many HSLA steels. In the current study, the M-A constituents in the microstructure of simulated ICCGHAZ of an API X80 pipeline steel were investigated using transmission electron microscopy and scanning electron microscopy. The focused ion beam technique was applied to make TEM specimens of M-A constituents that were located in the initiation sites of cleavage cracks. The main purpose of the study was to identify crack-initiation sites of cleavage fracture in ICCGHAZ and to prove the presence of M-A constituents in such initiation sites. Twinned martensite was detected in all local brittle zones that were investigated in the current study, demonstrating that they are M-A constituents. It was also demonstrated that the fracture initiation occurred preferentially at M-A constituents by a debonding mechanism rather than cracking of the M-A constituents.

  4. Mineralogical constraint for metamorphic conditions in a shear zone affecting the Archean Ngoulemakong tonalite, Congo craton (Southern Cameroon) and retentivity of U-Pb SHRIMP zircon dates

    NASA Astrophysics Data System (ADS)

    Tchameni, R.; Lerouge, C.; Penaye, J.; Cocherie, A.; Milesi, J. P.; Toteu, S. F.; Nsifa, N. E.

    2010-08-01

    In the Ngoulemakong region of the Ntem unit (South Cameroon), tonalite crops out as intrusions of various sizes cross-cutting the charnockite suite. Both of these granitoids are affected by NE-SW and WNW-ESE sinistral and dextral shear zones. Tonalite in the WNW-ESE shear zone are deformed and shows metamorphic assemblages represented by quartz-microcline-biotite-garnet-plagioclase-scapolite-fluoro-apatite and chlorite-sulfides-epidote-muscovite-quartz-calcite not recorded by the undeformed rocks outside it. These mineralogical assemblages provide evidence of decreasing pressure-temperature conditions from granulite-amphibolite-facies in the moderate deformed part to greenschist-facies in the central part of the shear plane. The higher fluid (H 2O, CO 2, S, F, Cl, K, and Na) activities and high-grade recrystallizations recorded in the shear zone favour a Pb loss hypothesis in the zircons. U-Pb SHRIMP zircon dating yield an emplacement age of 2865 ± 4 Ma for the tonalite but does not permit the determination of the age of the high-grade event responsible for the Pb loss. These results provide evidence of the retentivity of U-Pb zircon dates under high grade conditions.

  5. Utilization of accident databases and fuzzy sets to estimate frequency of HazMat transport accidents.

    PubMed

    Qiao, Yuanhua; Keren, Nir; Mannan, M Sam

    2009-08-15

    Risk assessment and management of transportation of hazardous materials (HazMat) require the estimation of accident frequency. This paper presents a methodology to estimate hazardous materials transportation accident frequency by utilizing publicly available databases and expert knowledge. The estimation process addresses route-dependent and route-independent variables. Negative binomial regression is applied to an analysis of the Department of Public Safety (DPS) accident database to derive basic accident frequency as a function of route-dependent variables, while the effects of route-independent variables are modeled by fuzzy logic. The integrated methodology provides the basis for an overall transportation risk analysis, which can be used later to develop a decision support system. PMID:19250750

  6. A Thermal Physiological Comparison of Two HazMat Protective Ensembles With and Without Active Convective Cooling

    NASA Technical Reports Server (NTRS)

    Williamson, Rebecca; Carbo, Jorge; Luna, Bernadette; Webbon, Bruce W.

    1998-01-01

    Wearing impermeable garments for hazardous materials clean up can often present a health and safety problem for the wearer. Even short duration clean up activities can produce heat stress injuries in hazardous materials workers. It was hypothesized that an internal cooling system might increase worker productivity and decrease likelihood of heat stress injuries in typical HazMat operations. Two HazMat protective ensembles were compared during treadmill exercise. The different ensembles were created using two different suits: a Trelleborg VPS suit representative of current HazMat suits and a prototype suit developed by NASA engineers. The two life support systems used were a current technology Interspiro Spirolite breathing apparatus and a liquid air breathing system that also provided convective cooling. Twelve local members of a HazMat team served as test subjects. They were fully instrumented to allow a complete physiological comparison of their thermal responses to the different ensembles. Results showed that cooling from the liquid air system significantly decreased thermal stress. The results of the subjective evaluations of new design features in the prototype suit were also highly favorable. Incorporation of these new design features could lead to significant operational advantages in the future.

  7. Complete Genome Sequence of Mycoplasma arginini Strain HAZ 145_1 from Bovine Mastitic Milk in Japan.

    PubMed

    Hata, Eiji

    2015-01-01

    Mycoplasma arginini is a species sometimes isolated from bovine specimens, mastitic milk, etc. Its pathogenicity against cows, however, is unspecific, unlike other bovine mycoplasmas. Its whole-genome sequence is needed to comprehend its real image. We present here the 678,592-bp complete genome sequence of M. arginini strain HAZ 145_1. PMID:25883285

  8. Surface Features Analysis in Salt-Affected Area Using Hyperspectral Data: A Case Study in the Zone of Chotts, Tunisia

    NASA Astrophysics Data System (ADS)

    Bouaziz, Moncef; Liesenberg, Veraldo; Bouaziz, Samir; Gloaguen, Richard

    2010-12-01

    Arid and semi-arid regions are most affected by Salinity. Chotts regions in southern Tunisia are such an area, where the excessive content of salt in the soil is a hard faced problem. Soil salinity in this area enforces several environmental problems such as limiting plant growth, reducing crop productivity, degrading soil quality and leads to accelerated rates rill and gully erosion . Remote sensing analysis by the mean of spectral analysis, geomorphologic aspect from digital elevation models and distribution of rainfall intensity from satellite data are used in this study to discern features and patterns of areas affected by salt. Correlation between these remote sensing indicators is made in order to assess the contribution of each indicator to identify the salt-affected area. The approach followed in this study was applied on Hyperspectral data from EO-1 Mission. Hyperion data are promoted due to their very high spectral resolution and wide enhanced spatial information. The present study highlighted the high correlation between the flat surfaces and the high content of salt in the soil (from soil salinity indices) on one hand and a low correlation between the high intensity of rainfall distribution and indicators of low salt content in the soil on the other hand.

  9. Natural Radiation for Identification and Evaluation of Risk Zones for Affectation of Activated Faults in Aquifer Overexploited.

    NASA Astrophysics Data System (ADS)

    Ramos-Leal, J.; Lopez-Loera, H.; Carbajal-Perez, N.

    2007-05-01

    In basins as Mexico, Michoacán, Guanajuato, Queretaro, Aguascalientes and San Luis Potosi, the existence of faults and fractures have affected the urban infrastructure, lines of conduction of drinkable water, pipelines, etc., that when not being identified and considered, they don't reflect the real impact that these cause also to the aquifer system, modifying the permeability of the means and in occasions they work as preferential conduits that communicate hydraulically potentially to the aquifer with substances pollutants (metals, fertilizers, hydrocarbons, waste waters, etc.) located in the surface. In the Valley of San Luis Potosi, Villa of Reyes, Arista, Ahualulco and recently The Huizache-Matehuala is being strongly affected by faulting and supposedly due cracking to subsidence, however, the regional tectonic could also be the origin of this phenomenon. To know the origin of the faults and affectation to the vulnerability of the aquifer few works they have been carried out in the area. A preliminary analysis indicates that it is possible that a tectonic component is affecting the area and that the vulnerability of the aquifer in that area you this increasing. Before such a situation, it is necessary to carry out the isotopic study of the same one, for this way to know among other things, isotopic characterization, recharge places and addresses of flow of the groundwater; quality of waters and the behavior hydrochemistry with relationship to the faults. High radon values were measured in San Luis Potosi Valley, the natural source of radon could be the riolites and however, these are located to almost a once thousand meters deep for what the migration of the gas is not very probable. The anomalies radiometrics was not correlation with the faults in this case. In some areas like the Valley of Celaya, the origin of the structures and the tectonic activity in the area was confirmed, identifying the structural arrangement of the faulting, the space relationships

  10. Why person affected by leprosy did not look after their plantar ulcer? Experience from Pakokku zone, Myanmar.

    PubMed

    Win, Le Le; Shwe, San; Maw, Win; Ishida, Yutaka; Myint, Kyaw; Mar, Kyi Kyi; Min, Thandar; Oo, Phyo Min; Khine, Aye Win

    2010-09-01

    A cross-sectional study was carried out to identify methods of caring plantar ulcers in leprosy patients and the underlying causes of poor plantar ulcer care during January and February 2008. This was conducted in Pakokku zone as it was one of the "9 selected townships of the Disabilities survey, i.e., Basic Health Staff project 2003/4", which was funded by Japan International Cooperation Agency. After getting consent, all available leprosy cases, i.e., 101 cases with foot disability grade 2 were interviewed with the pre-tested questionnaire. Among 101 cases, 13 cases who took care of their ulcer poorly and 20 who did none of the recommended measures were recruited for in-depth interview (IDI). The subjects were largely old people, males and people with no marriage partner. The majority had earned money by doing sedentary job. Prolongation of ulcers was observed in 78 cases. Most had been suffering from ulcers for years. When asking face-to-face interview, all the recommended care measures were not reported. Among these recommended measures, a large number of respondents reported about soaking measure. However, these reported measures were contradicted to the preventive methods which they disclosed in IDI. Plantar ulcer care seemed to be an individualised practice. The individual ways of performing were related to their view of ulcer, the environment, and occupation, and custom, communication with family and health staff. The findings identified the actual practice of plantar ulcer care in study areas. It is suggested that the current performance of planar ulcer care is inadequate and more attention should be given to achieve the target set by the programme as a recommendation. PMID:20857653

  11. Differences in Water Vapor Radiative Transfer among 1D Models Can Significantly Affect the Inner Edge of the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Leconte, Jérémy; Wolf, Eric T.; Goldblatt, Colin; Feldl, Nicole; Merlis, Timothy; Wang, Yuwei; Koll, Daniel D. B.; Ding, Feng; Forget, François; Abbot, Dorian S.

    2016-08-01

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4_Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μm) and in the region between 0.2 and 1.5 μm. Differences in outgoing longwave radiation increase with surface temperature and reach 10–20 W m‑2 differences in shortwave reach up to 60 W m‑2, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m‑2 in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.

  12. A Survey of Food Projects in the English NHS Regions and Health Action Zones in 2001

    ERIC Educational Resources Information Center

    Caraher, Martin; Cowburn, Gill

    2004-01-01

    Background and Objective: This article sets out the findings from an analysis of food projects, with a particular emphasis on fruit and vegetables, from the 26 Health Action Zones (HAZs) in England and those taking place within the former NHS regional areas in 2001. The objective was to gather information on the existing practice to inform future…

  13. How do changes in the Diurnal Cycle affect Bi-stability and Climate Sensitivity in the Habitable Zone?

    NASA Astrophysics Data System (ADS)

    Boschi, R.; Valerio, L.

    2013-09-01

    fundamental properties of planets in the habitable zone from relatively simple observables.

  14. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2007-01-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS). DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. The critical fusion zone sizes to ensure nugget pull-out failure mode are developed for both DP800 and TRIP800 using limit load based analytical model and micro-hardness measurements of the weld cross sections. Static weld strength tests using cross tension samples were performed on the joint populations with controlled fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 materials examined. The critical fusion zone size for nugget pullout shall be derived for individual materials based on different base metal properties as well as different heat affected zone (HAZ) and weld properties resulted from different welding parameters.

  15. Design requirements for ERD in diffusion-dominated media: how do injection interval, bioactive zones and reaction kinetics affect remediation performance?

    NASA Astrophysics Data System (ADS)

    Chambon, J.; Lemming, G.; Manoli, G.; Broholm, M. M.; Bjerg, P.; Binning, P. J.

    2011-12-01

    Enhanced Reductive Dechlorination (ERD) has been successfully used in high permeability media, such as sand aquifers, and is considered to be a promising technology for low permeability settings. Pilot and full-scale applications of ERD at several sites in Denmark have shown that the main challenge is to get contact between the injected bacteria and electron donor and the contaminants trapped in the low-permeability matrix. Sampling of intact cores from the low-permeability matrix has shown that the bioactive zones (where degradation occurs) are limited in the matrix, due to the slow diffusion transport processes, and this affects the timeframes for the remediation. Due to the limited ERD applications and the complex transport and reactive processes occurring in low-permeability media, design guidelines are currently not available for ERD in such settings, and remediation performance assessments are limited. The objective of this study is to combine existing knowledge from several sites with numerical modeling to assess the effect of the injection interval, development of bioactive zones and reaction kinetics on the remediation efficiency for ERD in diffusion-dominated media. A numerical model is developed to simulate ERD at a contaminated site, where the source area (mainly TCE) is located in a clayey till with fractures and interbedded sand lenses. Such contaminated sites are common in North America and Europe. Hydro-geological characterization provided information on geological heterogeneities and hydraulic parameters, which are relevant for clay till sites in general. The numerical model couples flow and transport in the fracture network and low-permeability matrix. Sequential degradation of TCE to ethene is modeled using Monod kinetics, and the kinetic parameters are obtained from laboratory experiments. The influence of the reaction kinetics on remediation efficiency is assessed by varying the biomass concentration of the specific degraders. The injected

  16. Enhancing international earth science competence in natural hazards through 'geoNatHaz

    NASA Astrophysics Data System (ADS)

    Giardino, Marco; Clague, John J.

    2010-05-01

    "geoNatHaz" is a Transatlantic Exchange Partnership project (TEP 2009-2012) within the framework of the EU-Canada programme for co-operation in higher education, training, and youth. The project is structured to improve knowledge and skills required to assess and manage natural hazards in mountain regions. It provides student exchanges between European and Canadian universities in order to enhance international competence in natural hazard research. The university consortium is led by Simon Fraser University (Canada) and Università degli studi di Torino (Italy). Partner universities include the University of British Columbia, Queen's University, Università di Bologna, Université de Savoie, and the University of Athens. Université de Lausanne (Switzerland) supports the geoNatHaz advisory board through its bilateral agreements with Canadian partner universities. The geoNatHaz project promotes cross-cultural understanding and internationalization of university natural hazard curricula through common lectures, laboratory exercises, and field activities. Forty graduate students from the seven Canadian and European partner universities will benefit from the project between 2009 and 2012. Some students enrolled in graduate-level earth science and geologic engineering programs spend up to five months at the partner universities, taking courses and participating in research teams under the direction of project scientists. Other students engage in short-term (four-week) exchanges involving training in classic natural hazard case-studies in mountain regions of Canada and Europe. Joint courses are delivered in English, but complementary cultural activities are offered in the languages of the host countries. Supporting organizations offer internships and technical and scientific support. Students benefit from work-study programs with industry partners. Supporting organizations include government departments and agencies (Geological Survey of Canada; CNR-IRPI National

  17. Factors Affecting Utilization of Maternal Health Care Services in Kombolcha District, Eastern Hararghe Zone, Oromia Regional State, Eastern Ethiopia

    PubMed Central

    Belayihun, Bekele; Teji, Kedir; Admassu Ayana, Desalegn

    2014-01-01

    Introduction. World health organization estimates that more than half a million women lose their lives in the process of reproduction worldwide every year and most of these mortalities are avoidable if mothers have access to maternal health care services. Objectives. This study was conducted with objectives of determining the prevalence of utilization of maternal health care services and identifying factors affecting it. Methodology. A community based cross-sectional survey was conducted in six kebeles of Kombolcha district. A total of 495 women of reproductive age participated in the study and their selection was made using simple random sampling technique and data was collected using an interviewer-administered structured questionnaire. The data was analyzed using SPSS version 16. Results. A total of 495 women were included in this study and from these women about 86.1% had at least one ANC visit during their last pregnancy. About 61.7% of mothers had less than four visits which is less than the recommended and 46.2% started it in the second trimester. Only 25.3% of respondents gave birth in health institutions and rural women were less likely to use institutional delivery 20.9% compared to urban women 35.9%. Recommendations. More efforts should be given to educate society in general and mothers in particular, to strengthen community participation and to increase the accessibility of maternal health care services. Moreover, providing accurate information about the services provided in the health institutions is required from the concerned governmental and nongovernmental organizations.

  18. Inclusions and Microstructure of Ce-Added Weld Metal Coarse Grain Heat-Affected Zone in Twin-Wire Submerged-Arc Welding

    NASA Astrophysics Data System (ADS)

    Yu, S. F.; Yan, N.; Chen, Y.

    2016-04-01

    In high heat-input multi-pass twin-wire submerged-arc welding, weld metal of previous pass will be affected by the heat input of subsequent one and form coarse-grained heat-affected zone (CGHAZ). This study focused on the effects of welding thermal cycle on the inclusions and microstructure of Ce-alloyed weld metal CGHAZ. According to the study of inclusions and microstructure of weld metal CGHAZ, it was found that the composition and type of the inclusions did not change under the effect of welding thermal cycle. Although the inclusions were coarsened slightly, the promoting ability to acicular ferrite (AF) was not deprived after thermal cycling. There are three types of AF in weld metal CGHAZ, which include oxy-sulfides of Ce inclusions-promoted AF, home-position-precipitated AF, and sympathetic AF. Results showed more than 80% of microstructure was AF, which greatly benefited the mechanical properties of weld metal CGHAZ, even though granular bainite and M-A constituents were generated.

  19. Inclusions and Microstructure of Ce-Added Weld Metal Coarse Grain Heat-Affected Zone in Twin-Wire Submerged-Arc Welding

    NASA Astrophysics Data System (ADS)

    Yu, S. F.; Yan, N.; Chen, Y.

    2016-06-01

    In high heat-input multi-pass twin-wire submerged-arc welding, weld metal of previous pass will be affected by the heat input of subsequent one and form coarse-grained heat-affected zone (CGHAZ). This study focused on the effects of welding thermal cycle on the inclusions and microstructure of Ce-alloyed weld metal CGHAZ. According to the study of inclusions and microstructure of weld metal CGHAZ, it was found that the composition and type of the inclusions did not change under the effect of welding thermal cycle. Although the inclusions were coarsened slightly, the promoting ability to acicular ferrite (AF) was not deprived after thermal cycling. There are three types of AF in weld metal CGHAZ, which include oxy-sulfides of Ce inclusions-promoted AF, home-position-precipitated AF, and sympathetic AF. Results showed more than 80% of microstructure was AF, which greatly benefited the mechanical properties of weld metal CGHAZ, even though granular bainite and M-A constituents were generated.

  20. Microstructural evolution in the HAZ of Inconel 718 and correlation with the hot ductility test

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.; Genculu, S.

    1983-01-01

    The nickel-base alloy 718 was evaluated to study the role of preweld heat treatment in reducing or eliminating heat-affected zone hot cracking. Three heat treatments were studied using the Gleeble hot ductility test. A modified hot ductility test was also used to follow the evolution of microstructure during simulated welding thermal cycles. The microstructural evolution was correlated with the hot ductility data in order to evaluate the mechanism of hot cracking in alloy 718. The correlation of hot ductility with microstructure showed that recrystallization, grain growth, and dissolution of precipitates did not in themselves cause any loss of ductility during cooling. Ductility loss during cooling was not initiated until the constitutional liquation of NbC particles was observed in the microstructure. Laves-type phases were found precipitated in the solidified grain boundaries but were not found to correlate with any ductility loss parameter. Mechanisms are reviewed which help to explain how heat treatment controls the hot crack susceptibility of alloy 718 as measured in the hot ductility test.

  1. Microstructure of Ti6Al4V weld metal and simulated HAZ

    SciTech Connect

    Kivineva, E.; Hannerz, N.E.; Sjoeberg, R.

    1995-12-31

    TIG and plasma arc welding were performed on 3.2 mm thick plate of Ti6Al4V (ASTM Grade 5). The welds were studied for mechanical properties in the as welded as well as in the post weld heat treated condition. Plasma arc welding was conducted with and without external copper cooling devices. It appears that TIG-welding resulted in rather large {beta} grains the mean size being 830 {micro}m depending probably on the excessive heat input involved in the process. The smallest weld metal {beta}-grain size 375 {micro}m was obtained by plasma arc with water-cooled copper blocks. The heat affected zone grain size was studied by Gleeble simulation with peak temperature 1,400 C, The cooling time {Delta}t8/5 was permutated from 10 to 300 sec. The slowest cooling time {Delta}t8/5=300 see resulted in a {beta} grain size of 515 {micro}m. At the more rapid cooling times a martensitic structure in the large {beta} grains was obtained, but a Widmanstaetten substructure is also formed at slower cooling. Moreover grain boundary {alpha} is precipitated at the slowest cooling times {Delta}t8/5=300 sec. To obtain the desired toughness properties it appears that post weld heat treatment would be necessary unless a very low heat input is employed.

  2. Arbuscular mycorrhizal fungal communities in sub-Saharan savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone.

    PubMed

    Tchabi, Atti; Coyne, Danny; Hountondji, Fabien; Lawouin, Louis; Wiemken, Andres; Oehl, Fritz

    2008-04-01

    The rapid decline of soil fertility of cultivated lands in the sub-Saharan savannas of West Africa is considered to be the main cause of the increasingly severe constraints of food production. The soils in this tropical area are highly fragile, and crop yields are limited by characteristically low levels of available phosphorus. Under such preconditions, the multiple benefits of the arbuscular mycorrhizal (AM) symbiosis are likely to play a pivotal role for maintaining natural soil fertility by enhancing plant nutrient use efficiency, plant health, and stabilization of a favorable soil structure. Thus, it is important to explore the impact of the commonly applied farming practices on the native AM fungal community. In the present study, we determined the AM fungal species composition in three ecological zones differing by an increasingly prolonged dry season from South to North, from the Southern Guinea Savanna (SG), to the Northern Guinea Savanna (NG), to the Sudan Savanna (SU). In each zone, four "natural" and four "cultivated" sites were selected. "Natural" sites were three natural forest savannas (at least 25-30 years old) and a long-term fallow (6-7 years old). "Cultivated" sites comprised a field with yam (Dioscorea spp.) established during the first year after forest clearance, a field under mixed cropping with maize (Zea mays) and peanut (Arachis hypogaea), a field under peanut, and a field under cotton (Gossypium hirsutum) which was the most intensively managed crop. Soil samples were collected towards the end of the wet season in each zone. AM fungal spores were extracted and morphologically identified. Soil subsamples were used to inoculate AM fungal trap cultures using Stylosanthes guianensis and Brachiaria humidicola as host plants to monitor AM root colonization and spore formation over 10 and 24 months, respectively. A total of 60 AM fungal species were detected, with only seven species sporulating in the trap cultures. Spore density and species

  3. Towards flash flood disaster prevention: the SciNetNat Haz proposal

    NASA Astrophysics Data System (ADS)

    Konstantinos, Papatheodorou; Elena, Tzanou; Carmen, Maftei; Ozgur, Kirca; Hafzullah, Aksoy

    2015-04-01

    Floods occur with a continuously increasing frequency due to climatic changes and cause serious damage in the wider Black Sea area, endangering human life and property. As societies continuously expand, these phenomena are expected to play an increasingly important role, blocking sustainable development unless properly tackled. Flash flood prevention seems at this point, to be the target of effectively mitigating the potential threat. Since in many cases, there is a cross-border character of the problem, collaborative efforts have to be made involving cooperation between countries. To this end, a variety of problems exist, including the "information gap" related to the unavailability of data and the multitude of methodologies used to assess flood hazard; a fact that renders comparison of hazard assessment results and cross border cooperation ineffective. An effort made within the context of the SciNetNatHaz project, suggests a two step approach to produce reliable the results which can lead to decision making regarding designing preventive measures. The first step aims at defining the flood prone areas on a regional scale, using geomorphometric models and readily available topographic data; thus overcoming the problem of data availability for any region of interest. The second step follows a vulnerability and risk assessment of the flood prone areas of interest and focuses on the calculation of flood parameters on a local scale using hydraulic models. Implementation of the full process is based on Open Source software tools so that it can be implemented with minimal costs by anyone interested. Implementation of the proposed procedure in three different cases in Greece and in Romania shows that it can provide accurate and reliable results to support decision making regarding the design of preventive measures. Keywords: Flash floods, hazard assessment, flood disaster prevention, HEC-RAS, SAGA GIS . Acknowledgements: This work is partially funded by the EU through the

  4. Evidence of multi-stage faulting by clay mineral analysis: Example in a normal fault zone affecting arkosic sandstones (Annot sandstones)

    NASA Astrophysics Data System (ADS)

    Buatier, Martine D.; Cavailhes, Thibault; Charpentier, Delphine; Lerat, Jérémy; Sizun, Jean Pierre; Labaume, Pierre; Gout, Claude

    2015-06-01

    Fault affecting silicoclastic sediments are commonly enriched in clay minerals. Clays are sensitive to fluid-rock interactions and deformation mechanisms; in this paper, they are used as proxy for fault activity and behavior. The present study focuses on clay mineral assemblages from the Point Vert normal fault zone located in the Annot sandstones, a Priabonian-Rupelian turbidite succession of the Alpine foredeep in SE France. In this area, the Annot sandstones were buried around 6-8 km below the front of Alpine nappes soon after their deposition and exhumed during the middle-late Miocene. The fault affects arkosic sandstone beds alternating with pelitic layers, and displays throw of about thirty meters. The fault core zone comprises intensely foliated sandstones bounding a corridor of gouge about 20 cm thick. The foliated sandstones display clay concentration along S-C structures characterized by dissolution of K-feldspar and their replacement by mica, associated with quartz pressure solution, intense microfracturation and quartz vein precipitation. The gouge is formed by a clayey matrix containing fragments of foliated sandstones and pelites. However, a detailed petrographical investigation suggests complex polyphase deformation processes. Optical and SEM observations show that the clay minerals fraction of all studied rocks (pelites and sandstones from the damage and core zones of the fault) is dominated by white micas and chlorite. These minerals have two different origins: detrital and newly-formed. Detrital micas are identified by their larger shape and their chemical composition with a lower Fe-Mg content than the newly-formed white micas. In the foliated sandstones, newly-formed white micas are concentrated along S-C structures or replace K-feldspar. Both types of newly formed micas display the same chemical composition confirmed microstructural observations suggesting that they formed in the same conditions. They have the following structural formulas: Na0

  5. Prediction and characterization of heat-affected zone formation in tin-bismuth alloys due to nickel-aluminum multilayer foil reaction

    NASA Astrophysics Data System (ADS)

    Hooper, R. J.; Davis, C. G.; Johns, P. M.; Adams, D. P.; Hirschfeld, D.; Nino, J. C.; Manuel, M. V.

    2015-06-01

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. Most of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To improve the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical model for the purpose of predicting heat affected zone size in substrate materials. The model is experimentally validated using a commercially available Ni-Al multilayer foils and alloys from the Sn-Bi binary system. To accomplish this, phenomenological models for predicting the variation of physical properties (i.e., thermal conductivity, density, and heat capacity) with temperature and composition in the Sn-Bi system were utilized using literature data.

  6. Prediction and characterization of heat-affected zone formation in tin-bismuth alloys due to nickel-aluminum multilayer foil reaction

    DOE PAGESBeta

    Hooper, R. J.; Davis, C. G.; Johns, P. M.; Adams, D. P.; Hirschfeld, D.; Nino, J. C.; Manuel, M. V.

    2015-06-26

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. In this study, most of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To improve the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical modelmore » for the purpose of predicting heat affected zone size in substrate materials. The model is experimentally validated using a commercially available Ni-Al multilayer foils and alloys from the Sn-Bi binary system. To accomplish this, phenomenological models for predicting the variation of physical properties (i.e., thermal conductivity, density, and heat capacity) with temperature and composition in the Sn-Bi system were utilized using literature data.« less

  7. Prediction and characterization of heat-affected zone formation in tin-bismuth alloys due to nickel-aluminum multilayer foil reaction

    SciTech Connect

    Hooper, R. J.; Davis, C. G.; Johns, P. M.; Adams, D. P.; Hirschfeld, D.; Nino, J. C.; Manuel, M. V.

    2015-06-26

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. In this study, most of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To improve the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical model for the purpose of predicting heat affected zone size in substrate materials. The model is experimentally validated using a commercially available Ni-Al multilayer foils and alloys from the Sn-Bi binary system. To accomplish this, phenomenological models for predicting the variation of physical properties (i.e., thermal conductivity, density, and heat capacity) with temperature and composition in the Sn-Bi system were utilized using literature data.

  8. Vein attribute scaling in strike-slip and extensional fault damage zones affecting the platform carbonates in the Jabal Qusaybah anticline, Salakh Arc, Oman

    NASA Astrophysics Data System (ADS)

    Clemenzi, Luca; Balsamo, Fabrizio; Storti, Fabrizio; Solum, John; Taberner, Conxita; Tueckmantel, Christian

    2015-04-01

    Understanding factors that determine deformation intensity and vein attributes in fault damage zones is important to predict fracture patterns and fault system permeability in the subsurface. In this contribution we present a new dataset on vein attributes collected along 26 fault zones (extensional and strike-slip) developed in the Cretaceous platform carbonates of the Natih Formation during the growth of the Jabal Qusaybah anticline, in the foreland basin of the Oman Mountains. Extensional and strike slip fault zones accommodated comparable displacements (~0.1 up to ~100 m), but were active at different burial depths. Extensional fault zones developed at shallow burial depth (<1-2 km) during late-stage folding and strike-slip faulting, and are laterally restricted by sub-vertical strike-slip fault zones. Vein aperture (A), eight (H), and spacing (S) were measured in vertical sections by scanlines across 10 strike-slip and 16 extensional fault damage zones, and then statistically analyzed. In both strike-slip and extensional fault damage zones vein aperture and height generally increase approaching the master slip surfaces, while vein spacing decreases approaching them. Deformation intensity, calculated as vein H/S ratio per meter, exponentially increases moving from background host rock toward master slip surfaces. Furthermore, the mean vein H/S ratio calculated in each damage zone increases also with increasing fault displacement in extensional fault zones, whereas it remain almost constant in strike-slip fault zones. Different vein pattern evolutions in the two fault systems are due to the presence of sub-vertical strike-slip fault zones which provided mechanical barriers that hindered the lateral propagation of extensional fault zones. During extensional faulting, the vertical downthrown was not inhibited, thus resulting in a progressively higher deformation intensity in laterally-restricted, extensional fault damage zones.

  9. The Use of Haz-Flote to Efficiently Remove Mercury from Contaminated Materials

    SciTech Connect

    Terry Brown

    2009-03-03

    There are thousands of known contaminated sites in the United Stated, including Superfund sites (1500 to 2100 sites), RCRA corrective action sites (1500 to 3500 sites), underground storage tanks (295,000 sites), U.S. Department of Defense sites (7300 sites), U.S. Department of Energy sites (4,000 sites), mining refuse piles, and numerous other hazardous metals and organic contamination sites. Only a small percentage of these sites has been cleaned up. The development of innovative technologies to handle the various clean-up problems on a national and international scale is commonplace. Many innovative technologies have been developed that can be used to effectively remediate contaminated materials. Unfortunately, many of these technologies are only effective for materials coarser than approximately 200 mesh. In addition, these technologies usually require considerable investment in equipment, and the clean-up costs of soil material are relatively high - in excess of $100 to $500 per yd{sup 3}. These costs result from the elaborate nature of the processes, the costs for power, and the chemical cost. The fine materials are disposed of or treated at considerable costs. As a result, the costs often associated with amelioration of contaminated sites are high. Western Research institute is in the process of developing an innovative soil washing technology that addresses the removal of contaminants from the fine size-fraction materials located at many of the contaminated sites. This technology has numerous advantages over the other ex-situ soil washing techniques. It requires a low capital investment, low operating costs and results in high levels of re-emplacement of the cleaned material on site. The process has the capability to clean the fine fraction (<200 mesh) of the soil resulting in a replacement of 95+% of the material back on-side, reducing the costs of disposal. The Haz-Flote{trademark} technology would expand the application of soil washing technology to heavy

  10. Microstructure and mechanical properties of weld fusion zones in modified 9Cr-1Mo steel

    NASA Astrophysics Data System (ADS)

    Sireesha, M.; Sundaresan, S.; Albert, Shaju K.

    2001-06-01

    Modified 9Cr-1Mo steel finds increasing application in power plant construction because of its excellent high-temperature properties. While it has been shown to be weldable and resistant to all types of cracking in the weld metal and heat-affected zone (HAZ), the achievement of optimum weld metal properties has often caused concern. The design of appropriate welding consumables is important in this regard. In the present work, plates of modified 9Cr-1Mo steel were welded with three different filler materials: standard 9Cr-1Mo steel, modified 9Cr-1Mo, and nickel-base alloy Inconel 182. Post-weld heat treatment (PWHT) was carried out at 730 and 760 °C for periods of 2 and 6 h. The joints were characterized in detail by metallography. Hardness, tensile properties, and Charpy toughness were evaluated. Among the three filler materials used, although Inconel 182 resulted in high weld metal toughness, the strength properties were too low. Between modified and standard 9Cr-1Mo, the former led to superior hardness and strength in all conditions. However, with modified 9Cr-1Mo, fusion zone toughness was low and an acceptable value could be obtained only after PWHT for 6 h at 760 °C. The relatively poor toughness was correlated to the occurrence of local regions of untransformed ferrite in the microstructure.

  11. The Stress-Relief Cracking Susceptibility of a New Ferritic Steel - Part I: Single-Pass Heat-Affected Zone Simulations

    SciTech Connect

    NAWROCKI,J.G.; DUPONT,J.N.; ROBINO,CHARLES V.; MARDER,A.R.

    1999-12-15

    The stress-relief cracking susceptibility of single-pass welds in a new ferritic steel, HCM2S, has been evaluated and compared to 2.25Cr-1Mo steel using Gleeble techniques. Simulated coarse-grained heat-affected zones (CGHAZ) were produced under a range of energy inputs and tested at various post-weld heat treatment (PWHT) temperatures. Both alloys were tested at a stress of 325 MPa. The 2.25 Cr-1Mo steel was also tested at 270 MPa to normalize for the difference in yield strength between the two materials. Light optical and scanning electron microscopy were used to characterize the CGHAZ microstructure. The ''as-welded'' CGHAZ of each alloy consisted of lath martensite or bainite and had approximately equal prior austenite grain sizes. The as-welded hardness of the 2.25Cr-1Mo steel CGHAZ was significantly higher than that of the HCM2S alloy. Over the range studied energy input had no effect on the as-welded microstructure or hardness of either alloy. The energy input also had no effect on the stress-relief cracking susceptibility of either material. Both alloys failed intergranularly along prior austenite grain boundaries under all test conditions. The 2.25Cr-1Mo steel samples experienced significant macroductility and some microductility when tested at 325 MPa. The ductility decreased significantly when tested at 270 MPa but was still higher that than of HCM2S at each test condition. The time to failure decreased with increasing PWHT Temperature for each material. There was no significant difference in the times to failure between the two materials. Varying energy input and stress had no effect on the time-to failure. The ductility, as measured by reduction in are% increased with increasing PWHT temperature for 2.25 Cr-1Mo steel tested at both stresses. However, PWHT temperature had no effect on the ductility of HCM2S. The hardness of the CGHAZ for 2.25Cr-1Mo steel decreased significantly after PWHT, but remained constant for HCM2S. The differences in stress

  12. The association of lava dome growth with major explosive activity (VEI ≥ 4): DomeHaz, a global dataset

    NASA Astrophysics Data System (ADS)

    Ogburn, S. E.; Loughlin, S. C.; Calder, E. S.

    2015-05-01

    Investigation of the global eruptive records of particular types of volcanoes is a fundamental and valuable method of understanding what style of activity can be anticipated in the future and can highlight what might be expected or unusual in particular settings. This paper investigates the relationship between large explosions (volcanic explosivity index, VEI ≥ 4) and lava dome growth from 1000 AD to present and develops the DomeHaz database. DomeHaz contains information from 397 dome-forming episodes, including duration of dome growth, duration of pauses in extrusion, extrusion rates, and the timing and magnitude (VEI) of associated large explosions. Major explosive activity, when associated with dome growth, is more likely to occur before dome growth rather than during, or at the end of, dome-forming eruptions. In most cases where major explosive activity has been associated with dome growth, the eruptions occurred at basaltic andesite to andesitic volcanoes (the most common type of dome-forming volcano), but a greater proportion of dacitic and rhyolitic dome growth episodes were associated with large explosions. High extrusion rates (>10 m3 s-1) seem to be associated with large explosions and may inhibit degassing or destabilize existing domes, leading to explosive decompression. Large explosions may, alternatively, be followed by dome growth, which represents the clearing of residual magma from the conduit. Relationships extracted from the global record can be used to construct probability trees for new and ongoing dome-forming eruptions or can be used in conjunction with other types of event trees to aid in forecasting volcanic hazards during a crisis, especially for volcanoes where data are sparse.

  13. Physicochemical characteristics of the hyporheic zone affect redd site selection of chum salmon and fall chinook salmon in the Columbia River

    SciTech Connect

    Geist, David R. ); Hanrahan, Timothy P. ); Arntzen, Evan V. ); McMichael, Geoffrey A. ); Murray, Christopher J. ); Chien, Yi-Ju )

    2002-11-01

    Chum salmon Oncorhynchus keta and fall chinook salmon O. tshawytscha spawned at different locations in the vicinity of Ives Island, Washington, a side channel to the Columbia River downstream of Bonneville Dam. We hypothesized that measurements of water depth, substrate size, and water velocity alone would not explain the separation in spawning areas and began a 2-year investigation of physicochemical characteristics of the hyporheic zone. We found that chum salmon spawned in upwelling water that was significantly warmer than the surrounding river water. In contrast, fall chinook salmon constructed redds at downwelling sites where there was no difference in temperature between the river and its bed. Understanding the specific features that are important for chum salmon and fall chinook salmon redd site selection at Ives Island will be useful to resource managers attempting to maximize available spawning habitat for these species within the constraints imposed by other water resource needs.

  14. Zones of Peace.

    ERIC Educational Resources Information Center

    Evans, Judith L.; And Others

    1996-01-01

    Children affected by armed violence face a specific set of stressors and challenges which calls for appropriate programming. This Coordinator's Notebook focuses on how to work with children affected by organized violence in order to provide them the best possible early childhood experiences. It is divided into five sections. "Children as Zones of…

  15. Tensile Deformation Behavior and Phase Transformation in the Weld Coarse-Grained Heat-Affected Zone of Metastable High-Nitrogen Fe-18Cr-10Mn-N Stainless Steel

    NASA Astrophysics Data System (ADS)

    Moon, Joonoh; Lee, Tae-Ho; Park, Seong-Jun; Jang, Jae-il; Jang, Min-Ho; Ha, Heon-Young; Hwang, Byoungchul

    2013-07-01

    The tensile deformation behavior and phase transformation in the weld coarse-grained heat-affected zone (CGHAZ) of a metastable high-nitrogen austenitic stainless steel was explored through tensile tests, nanoindentation experiments, and transmission electron microscopy analysis. True stress-strain response during tensile test was found to be seriously affected by δ-ferrite fraction, which depends on peak temperature of the CGHAZs. The strain-induced martensitic transformation (SIMT) occurred in base steel, whereas the SIMT disappeared and deformation twinning occurred predominantly in the CGHAZs. The relationship among true stress-strain response, nanoindentation hardness, and deformed microstructures was carefully investigated and discussed in terms of changes of stacking fault energy.

  16. Cold seep and oxygen minimum zone associated sources of margin heterogeneity affect benthic assemblages, diversity and nutrition at the Cascadian margin (NE Pacific Ocean)

    NASA Astrophysics Data System (ADS)

    Guilini, Katja; Levin, Lisa A.; Vanreusel, Ann

    2012-04-01

    Hydrate Ridge (HR), located on the northeastern Pacific margin off Oregon, is characterized by the presence of outcropping hydrates and active methane seepage. Additionally, permanent low oxygen conditions overlay the benthic realm. This study evaluated the relative influence of both seepage and oxygen minima as sources of habitat heterogeneity and potential stress-inducing features on the bathyal metazoan benthos (primarily nematodes) at three different seep and non-seep HR locations, exposed to decreasing bottom-water oxygen concentrations with increasing water depth. The nematode seep communities at HR exhibited low diversity with dominance of only one or two genera (Daptonema and Metadesmolaimus), elevated average individual biomass and δ13C evidence for strong dependance on chemosynthesis-derived carbon, resembling deep-sea seeps worldwide. Although the HR seep habitats harbored a distinct nematode community like in other known seep communities, they differed from deep-sea seeps in well-oxygenated waters based on that they shared the dominant genera with the surrounding non-seep sediments overlain by oxygen-deficient bottom water. The homogenizing effect of the oxygen minimum zone on the seep nematode assemblages and surrounding sediments was constant with increasing water depth and concomitant greater oxygen-deficiency, resulting in a loss of habitat heterogeneity.

  17. How lithology and climate affect REE mobility and fractionation along a shale weathering transect of the Susquehanna Shale Hills Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Ma, L.; Jin, L.; Dere, A. L.; White, T.; Mathur, R.; Brantley, S. L.

    2012-12-01

    Shale weathering is an important process in global elemental cycles. Accompanied by the transformation of bedrock into regolith, many elements including rare earth elements (REE) are mobilized primarily by chemical weathering in the Critical Zone. Then, REE are subsequently transported from the vadose zone to streams, with eventual deposition in the oceans. REE have been identified as crucial and strategic natural resources; and discovery of new REE deposits will be facilitated by understanding global REE cycles. At present, the mechanisms and environmental factors controlling release, transport, and deposition of REE - the sources and sinks - at Earth's surface remain unclear. Here, we present a systematic study of soils, stream sediments, stream waters, soil water and bedrock in six small watersheds that are developed on shale bedrock in the eastern USA to constrain the mobility and fractionation of REE during early stages of chemical weathering. The selected watersheds are part of the shale transect established by the Susquehanna Shale Hills Observatory (SSHO) and are well suited to investigate weathering on shales of different compositions or within different climate regimes but on the same shale unit. Our REE study from SSHO, a small gray shale watershed in central Pennsylvania, shows that up to 65% of the REE (relative to parent bedrock) is depleted in the acidic and organic-rich soils due to chemical leaching. Both weathering soil profiles and natural waters show a preferential removal of middle REE (MREE: Sm to Dy) relative to light REE (La to Nd) and heavy REE (Ho to Lu) during shale weathering, due to preferential release of MREE from a phosphate phase (rhabdophane). Strong positive Ce anomalies observed in the regolith and stream sediments point to the fractionation and preferential precipitation of Ce as compared to other REE, in the generally oxidizing conditions of the surface environments. One watershed developed on the Marcellus black shale in

  18. Bioturbation, geochemistry and geotechnics of sediments affected by the oxygen minimum zone on the Oman continental slope and abyssal plain, Arabian Sea

    NASA Astrophysics Data System (ADS)

    Meadows, Azra; Meadows, Peter S.; West, Fraser J. C.; Murray, John M. H.

    2000-01-01

    We investigate the way the oxygen minimum zone (OMZ) alters interactions between bioturbation and sediment geochemistry, and geotechnical properties. Sediments are compared within and below the OMZ on the Oman continental slope and adjacent abyssal plain during the post monsoonal autumn season. Quantitative measurements were made of Eh and pH, of total organic matter (TOM) and carbonate, of water content and shear strength, and of bioturbation structures in vertical profiles of subcores taken from spade-box core samples. The OMZ stations had distinctively low redox conditions and high carbonate content, and different geotechnical properties and different bioturbation structures than stations below the OMZ on the abyssal plain. These differences are related to the degree of anoxia and to water depth. Within the OMZ, Eh, pH and carbonate increased with water depth, and TOM and water content decreased. We also noted the presence of subsurface sediment heterogeneity on the continental slope within the OMZ. In the OMZ, Eh, water content and bioturbation decreased with increasing sediment depth. There was a slight decrease in pH in the top 5 cm at all stations. Shear strength nearly always increased with increasing sediment depth. At each water depth correlations show down-core trends in these parameters, while across all water depths correlations were significant at deeper sediment depths (20-30 cm). An Eh-pH diagram identified two water-depth groupings: 391-1008 and 1265-3396 m. Cluster analysis showed the upper and lower sediment depths form separate clusters, the break occurring at 4-7.5 cm; while there are also distinct clusters related to water depth. We relate our results to bottom-water oxygen concentrations reported by other investigators, and to regional-scale geochemical processes.

  19. Modelling vegetation water-use and groundwater recharge as affected by climate variability in an arid-zone Acacia savanna woodland

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Eamus, Derek; Cleverly, James; Boulain, Nicolas; Cook, Peter; Zhang, Lu; Cheng, Lei; Yu, Qiang

    2014-11-01

    For efficient and sustainable utilisation of limited groundwater resources, improved understanding of how vegetation water-use responds to climate variation and the corresponding controls on recharge is essential. This study investigated these responses using a modelling approach. The biophysically based model WAVES was calibrated and validated with more than two years of field experimental data conducted in Mulga (Acacia aneura) in arid central Australia. The validated model was then applied to simulate vegetation growth (as changes in overstory and understory leaf area index; LAI), vegetation water-use and groundwater recharge using observed climate data for the period 1981-2012. Due to large inter-annual climatic variability, especially precipitation, simulated annual mean LAI ranged from 0.12 to 0.35 for the overstory and 0.07 to 0.21 for the understory. These variations in simulated LAI resulted in vegetation water-use varying greatly from year-to-year, from 64 to 601 mm pa. Simulated vegetation water-use also showed distinct seasonal patterns. Vegetation dynamics affected by climate variability exerted significant controls on simulated annual recharge, which was greatly reduced to 0-48 mm compared to that (58-672 mm) only affected by climate. Understanding how climate variability and land use/land cover change interactively impact on groundwater recharge significantly improves groundwater resources management in arid and semi-arid regions.

  20. Fusion zone microstructure and porosity in electron beam welds of an {alpha} + {beta} titanium alloy

    SciTech Connect

    Mohandas, T.; Banerjee, D.; Kutumba Rao, V.V.

    1999-03-01

    The effect of electron beam welding parameters on fusion zone (FZ) microstructure and porosity in a Ti-6.8 Al-3.42 Mo-1.9 Zr-0.21 Si alloy (Russian designation VT 9) has been investigated. It has been observed that the FZ grain width increased continuously with increase in heat input when the base metal was in the {beta} heat-treated condition, while in the {alpha} + {beta} heat-treated base metal welds, the FZ grain width increased only after a threshold energy input. The difference is attributed to both the weld thermal cycle and the pinning effect of equiaxed primary alpha on grain growth in the heat-affected zone (HAZ) of {alpha} + {beta} heat-treated base metal. Postweld heat treatment (PWHT) in the subtransus and supertransus regions did not alter the columnar grain morphology in the FZ, possibly due to the lack of enough driving force for the formation of new grains by the breaking up of the columnar grains and grain boundary movement for grain growth. The highest porosity was observed at intermediate welding speeds. At low speeds, a majority of pores formed at the fusion boundary, while at high speeds, occurrence of porosity was maximum at the weld center. The trends on porosity can be explained on the basis of solubility of hydrogen in titanium as a function of temperature and the influence of weld thermal cycle on nucleation, growth, and escape of hydrogen gas bubbles. The porosity at slow welding speeds is low because sufficient time exists for the nucleation, growth, and escape of hydrogen gas bubbles, while insufficient time exists for the nucleation of gas bubbles at high welding speeds. The effect of pickling of joint surface, vacuum annealing of the base metal, and successive remelting of the weld metal has also been investigated.

  1. Development of a priority list of chemical mixtures occurring at 1188 hazardous waste sites, using the HazDat database.

    PubMed

    Fay, R M; Mumtaz, M M

    1996-01-01

    Under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund) section 104 mandate, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986 USC 9604 (i)(2), the Agency for Toxic Substances and Disease Registry (ATSDR) is to identify individual substances and combinations of substances that pose the greatest public health hazard at hazardous waste sites. This has led to certain mandated activities of the Agency, including development of toxicological profiles, identification of data gaps, and, ultimately, establishment of a research agenda. The Agency has also developed HazDat, a database that captures pertinent information from public health assessments conducted at hazardous waste sites. As a preliminary step, data from sites have been analysed to identify the combinations of chemicals found in various environmental media. The most frequently found combinations were perchloroethylene (PERC) and trichloroethylene (TCE) in water (23.5% of sites); chromium (Cr) and lead (Pb) in soil (20.5%); benzene and toluene in air (3.5%); PERC, 1,1,1-trichloroethane (1,1,1-TCA) and TCE in water (11.6%); Cr, cadmium (Cd) and Pb in soil (12.0%); and benzene, PERC and TCE in air (2.2%). The findings of this analysis can be enhanced by factoring into the algorithm paramenters such as toxicity, source contribution, and likelihood of human exposure similar to that used for the Agency's priority list of 275 single substances. Assessment of the impact of chemical mixtures on human health is a formidable task, and estimating the toxicity of such mixtures, including the role of chemical interactions, is an equally demanding challenge. Because limited experimental data exist for chemical interactions, alternative methods such as predictive approaches and in vitro techniques are needed to address the many substances and their potential combinations. PMID:9119332

  2. Steady convective flow in an unsaturated state dependent anisotropic soil profile: Analysis of the affected zone from a contaminating point source

    NASA Astrophysics Data System (ADS)

    Cohen, M.; Mualem, Y.

    2011-01-01

    SummaryAnisotropy of the medium plays a dominant role in shaping the flow pattern in the soil profile. This study analyses the effect of anisotropy on the horizontal spreading of the flow trajectories from a contaminating source point at the soil surface to a high water table. It considers a phreatic aquifer with infinite lateral extension and uniform sedimentary-layered soil profile, where a state dependent anisotropy factor (SDAF) - A( ψ), and Mualem's (1984) anisotropy model might be applicable. The numerically calculated streamlines portray the effect of anisotropy, and allow discernment among various anisotropic media. Different flow cases are analyzed with regard to their dependence on A( ψ), as well as their dependence on the infiltration rate, and on the orientation of the principal axes. Theory indicates that the flux direction is dependent on the capillary head and thus on the flow rate. Consequently, it is the infiltration rate, which determines the particular path line from the contaminant source point to the ground water table. Accordingly, we have defined the "affected domain" as the domain within the unsaturated profile which is vulnerable to contamination from a source point at the soil surface, and the "affected segment" as the segment on the phreatic surface where pollutants may potentially reach the ground water aquifer. Both are determined with respect to anisotropy, infiltration rate, and depth. The non-linear horizontal shift of the contaminant trajectory indicates that a substantial error may result when adopting a constant anisotropy factor. This study suggests that the maximal horizontal shift is the relevant scale when characterizing the anisotropic flow system. This measure should be taken into consideration when designing a related laboratory experiment or a field monitoring system.

  3. Recent (2008-10) water quality in the Barton Springs segment of the Edwards aquifer and its contributing zone, central Texas, with emphasis on factors affecting nutrients and bacteria

    USGS Publications Warehouse

    Mahler, Barbara J.; Musgrove, MaryLynn; Sample, Thomas L.; Wong, Corinne I.

    2011-01-01

    The Barton Springs zone, which comprises the Barton Springs segment of the Edwards aquifer and the watersheds to the west that contribute to its recharge, is in south-central Texas, an area with rapid growth in population and increasing amounts of land area affected by development. During November 2008-March 2010, an investigation of factors affecting the fate and transport of nutrients and bacteria in the Barton Springs zone was conducted by the U.S. Geological Survey (USGS), in cooperation with the Texas Commission on Environmental Quality. The primary objectives of the study were to characterize occurrence of nutrients and bacteria in the Barton Springs zone under a range of flow conditions; to improve understanding of the interaction between surface-water quality and groundwater quality; and to evaluate how factors such as streamflow variability and dilution affect the fate and transport of nutrients and bacteria in the Barton Springs zone. The USGS collected and analyzed water samples from five streams (Barton, Williamson, Slaughter, Bear, and Onion Creeks), two groundwater wells (Marbridge and Buda), and the main orifice of Barton Springs in Austin, Texas. During the period of the study, during which the hydrologic conditions transitioned from exceptional drought to wetter than normal, water samples were collected routinely (every 3 to 4 weeks) from the streams, wells, and spring and, in response to storms, from the streams and spring. All samples were analyzed for major ions, nutrients, the bacterium Escherichia coli, and suspended sediment. During the dry period, the geochemistry of groundwater at the two wells and at Barton Springs was dominated by flow from the aquifer matrix and was relatively similar and unchanging at the three sites. At the onset of the wet period, when the streams began to flow, the geochemistry of groundwater samples from the Marbridge well and Barton Springs changed rapidly, and concentrations of most major ions and nutrients and

  4. A field technique to measure the tortuosity and sorption-affected porosity for gaseous diffusion of materials in the unsaturated zone with experimental results from near Barnwell, South Carolina

    NASA Astrophysics Data System (ADS)

    Kreamer, David K.; Weeks, Edwin P.; Thompson, Glenn M.

    1988-03-01

    A tracer experiment was conducted at the commercial low-level nuclear waste disposal site near Barnwell, South Carolina, to test a new method for determining the tortuosity and sorption-affected porosity for gaseous diffusion transport of materials in the Unsaturated zone. Two tracers, CBrClF2 and SF6, were released at constant rates of 105 and 3.3 ng/s, respectively, from permeation devices, which were placed in short screened sections in access holes. Soil gas was sampled from 15 piezometers located at various distances from the sources by sequentially pumping 60-160 mL of gas from the piezometers into a dual-column gas chromatograph located at the test site. The CBrClF2 concentration data obtained from several of the piezometers were analyzed by use of type curves for a continuous point source in an areally extensive medium bounded above and below by planar no-flow boundaries. The tortuosity of the geologic unit tested, an eolian sand, was determined to be about 0.4, and the sorption-affected porosity to be 0.22. The tortuosity value is plausible, but the sorption-affected porosity value is substantially less than that computed from the drained porosity, particularly if adjustments are made for retardation due to solution of the tracer in the liquid phase and sorption on the solid phase. The SF6 data could not be reliably analyzed.

  5. Hydrogeology, Water Chemistry, and Factors Affecting the Transport of Contaminants in the Zone of Contribution of a Public-Supply Well in Modesto, Eastern San Joaquin Valley, California

    USGS Publications Warehouse

    Jurgens, Bryant C.; Burow, Karen R.; Dalgish, Barbara A.; Shelton, Jennifer L.

    2008-01-01

    Ground-water chemistry in the zone of contribution of a public-supply well in Modesto, California, was studied by the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program's topical team for Transport of Anthropogenic and Natural Contaminants (TANC) to supply wells. Twenty-three monitoring wells were installed in Modesto to record baseline hydraulic information and to collect water-quality samples. The monitoring wells were divided into four categories that represent the chemistry of different depths and volumes of the aquifer: (1) water-table wells were screened between 8.5 and 11.7 m (meter) (28 and 38.5 ft [foot]) below land surface (bls) and were within 5 m (16 ft) of the water table; (2) shallow wells were screened between 29 and 35 m (95 and 115 ft) bls; (3) intermediate wells were screened between 50.6 and 65.5 m (166 and 215 ft) bls; and (4) deep wells are screened between 100 to 106 m (328 and 348 ft) bls. Inorganic, organic, isotope, and age-dating tracers were used to characterize the geochemical conditions in the aquifer and understand the mechanisms of mobilization and movement of selected constituents from source areas to a public-supply well. The ground-water system within the study area has been significantly altered by human activities. Water levels in monitoring wells indicated that horizontal movement of ground water was generally from the agricultural areas in the northeast towards a regional water-level depression within the city in the southwest. However, intensive pumping and irrigation recharge in the study area has caused large quantities of ground water to move vertically downward within the regional and local flow systems. Analysis of age tracers indicated that ground-water age varied from recent recharge at the water table to more than 1,000 years in the deep part of the aquifer. The mean age of shallow ground water was determined to be between 30 and 40 years. Intermediate ground water was determined to be a mixture

  6. Haz-Map Glossary

    MedlinePlus

    ... a cumulative exposure with short latency, e.g., lead poisoning. Surfactant "A detergent compound that promotes lathering." [EPA] ... a cumulative exposure with short latency, e.g., lead poisoning. Surfactant "A detergent compound that promotes lathering." [EPA] ...

  7. Investigation of the Kinetics of the Ferrite/Austenite Phase Transformation in the HAZ of a 2205 Duplex Stainless Steel Weldment

    SciTech Connect

    Palmer, T A; Elmer, J W; Wong, J; Babu, S S; Vitek, J M

    2002-03-14

    A semi-quantitative map based on a series of spatially resolved X-ray diffraction (SRXRD) scans shows the progression of the ferrite ({delta})/austenite ({gamma}) phase balance throughout the HAZ during GTA welding of a 2205 duplex stainless steel (DSS). This map shows an unexpected decrease in the ferrite fraction on heating, followed by a recovery to the original ferrite fraction on cooling at locations within the HAZ. Even though such behavior is supported by thermodynamic calculations, it has not been confirmed by either experimental methods or have the kinetics been evaluated. Both Gleeble thermal simulations and time resolved x-ray diffraction measurements on spot welds in the 2205 DSS provide further evidence for this rather low-temperature transformation. On the other hand, calculations of the diffusion of alloying elements across the 6/y interface under a variety of conditions shed no further light on the driving force for this transformation. Further work on the mechanisms and driving forces for this transformation is on-going.

  8. DomeHaz, a Global Hazards Database: Understanding Cyclic Dome-forming Eruptions, Contributions to Hazard Assessments, and Potential for Future Use and Integration with Existing Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Ogburn, S. E.; Calder, E.; Loughlin, S.

    2013-12-01

    Dome-forming eruptions can extend for significant periods of time and can be dangerous; nearly all dome-forming eruptions have been associated with some level of explosive activity. Large Plinian explosions with a VEI ≥ 4 sometimes occur in association with dome-forming eruptions. Many of the most significant volcanic events of recent history are in this category. The 1902-1905 eruption of Mt. Pelée, Martinique; the 1980-1986 eruption of Mount St. Helens, USA; and the 1991 eruption of Mt. Pinatubo, Philippines all demonstrate the destructive power of VEI ≥ 4 dome-forming eruptions. Global historical analysis is a powerful tool for decision-making as well as for scientific discovery. In the absence of monitoring data or a knowledge of a volcano's eruptive history, global analysis can provide a method of understanding what might be expected based on similar eruptions. This study investigates the relationship between large explosive eruptions and lava dome growth and develops DomeHaz, a global database of dome-forming eruptions from 1000 AD to present. It is currently hosted on VHub (https://vhub.org/groups/domedatabase/), a community cyberinfrastructure for sharing data, collaborating, and modeling. DomeHaz contains information about 367 dome-forming episodes, including duration of dome growth, duration of pauses in extrusion, extrusion rates, and the timing and magnitude of associated explosions. Data sources include the The Smithsonian Institution Global Volcanism Program (GVP), Bulletin of the Global Volcanism Network, and all relevant published review papers, research papers, and reports. This database builds upon previous work (e.g Newhall and Melson, 1983) in light of newly available data for lava dome eruptions. There have been 46 new dome-forming eruptions, 13 eruptions that continued past 1982, 151 new dome-growth episodes, and 8 VEI ≥ 4 events since Newhall and Melson's work in 1983. Analysis using DomeHaz provides useful information regarding the

  9. Twin Convergence Zones

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's QuikSCAT satellite has confirmed a 30-year old largely unproven theory that there are two areas near the equator where the winds converge year after year and drive ocean circulation south of the equator. By analyzing winds, QuikSCAT has found a year-round southern and northern Intertropical Convergence Zone. This find is important to climate modelers and weather forecasters because it provides more detail on how the oceans and atmosphere interact near the equator. The Intertropical Convergence Zone (ITCZ) is the region that circles the Earth near the equator, where the trade winds of both the Northern and Southern Hemispheres come together. North of the equator, strong sun and warm water of the equator heats the air in the ITCZ, drawing air in from north and south and causing the air to rise. As the air rises it cools, releasing the accumulated moisture in an almost perpetual series of thunderstorms. Satellite data, however, has confirmed that there is an ITCZ north of the equator and a parallel ITCZ south of the equator. Variation in the location of the ITCZ is important to people around the world because it affects the north-south atmospheric circulation, which redistributes energy. It drastically affects rainfall in many equatorial nations, resulting in the wet and dry seasons of the tropics rather than the cold and warm seasons of higher latitudes. Longer term changes in the ITCZ can result in severe droughts or flooding in nearby areas. 'The double ITCZ is usually only identified in the Pacific and Atlantic Oceans on a limited and seasonal basis,' said Timothy Liu, of NASA's Jet Propulsion Laboratory and California Institute of Technology, Pasadena, Calif., and lead researcher on the project. In the eastern Pacific Ocean, the southern ITCZ is usually seen springtime. In the western Atlantic Ocean, the southern ITCZ was recently clearly identified only in the summertime. However, QuikSCAT's wind data has seen the southern ITCZ in all seasons across the

  10. Fractographic Analysis of Weld Metal and HAZ Regions of API X-80 Steel Subjected to Simulation of the Reel-Lay Method

    NASA Astrophysics Data System (ADS)

    Beltrão, M. A. N.; Bastian, F. L.

    2014-10-01

    The reel-lay method is a process commonly used for rigid riser installation. During this process, riser materials are subjected to high strain levels and associated plastic damage which can affect their structural integrity. The aim of this work was to evaluate the fracture surfaces at weld metal and heat-affected zone regions of API X-80 steel three-point bend specimens, SE(B), subjected to reel-lay method simulations. The pre-existence of circumferential planar defects at 12 o'clock position was considered and the J-integral was used to simulate the reel-lay condition at the defects. Different strain levels considering conditions less and more severe than the real one were also studied. The results showed a great influence of J magnitude on fracture surface morphology. The increase of J magnitude led to a greater local surface damage on the specimens and stable crack growth during reel-lay simulation. High loading conditions should be avoided in the operation in order to prevent further structural damage of the materials.

  11. Fusion zone microstructure and porosity in electron beam welds of an α+β titanium alloy

    NASA Astrophysics Data System (ADS)

    Mohandas, T.; Banerjee, D.; Kutumba Rao, V. V.

    1999-03-01

    The effect of electron beam welding parameters on fusion zone (FZ) microstructure and porosity in a Ti -6.8 Al -3.42 Mo -1.9 Zr -0.21 Si alloy (Russian designation VT 9) has been investigated. It has been observed that the FZ grain width increased continuously with increase in heat input when the base metal was in the β heat-treated condition, while in the α+β heat-treated base metal welds, the FZ grain width increased only after a threshold energy input. The difference is attributed to both the weld thermal cycle and the pinning effect of equiaxed primary alpha on grain growth in the heat-affected zone (HAZ) of α+β heat-treated base metal. Postweld heat treatment (PWHT) in the subtransus and supertransus regions did not alter the columnar grain morphology in the FZ, possibly due to the lack of enough driving force for the formation of new grains by the breaking up of the columnar grains and grain boundary movement for grain growth. As the PWHTs were conducted in a furnace, the role of thermal gradients can be ruled out. Intragranular microstructure in the aswelded condition consisted of hexagonal martensite. The scale of the martensite laths depended on welding speed. The highest porosity was observed at intermediate welding speeds. At low speeds, a majority of pores formed at the fusion boundary, while at high speeds, occurrence of porosity was maximum at the weld center. The trends on porosity can be explained on the basis of solubility of hydrogen in titanium as a function of temperature and the influence of weld thermal cycle on nucleation, growth, and escape of hydrogen gas bubbles. The porosity at slow welding speeds is low because sufficient time exists for the nucleation, growth, and escape of hydrogen gas bubbles, while insufficient time exists for the nucleation of gas bubbles at high welding speeds. The effect of pickling of joint surface, vacuum annealing of the base metal, and successive remelting of the weld metal has also been investigated.

  12. Analysis of the Creep Behavior of P92 Steel Welded Joint

    NASA Astrophysics Data System (ADS)

    An, Junchao; Jing, Hongyang; Xiao, Guangchun; Zhao, Lei; Xu, Lianyong

    2011-11-01

    Different regions of heat-affected zone (HAZ) were simulated by heat treatment to investigate the mechanisms of the Type IV fracture of P92 (9Cr-2W) steel weldments. Creep deformation of simulated HAZ specimens with uniform microstructures was investigated and compared with those of the base metal (BM) and the weld metal (WM) specimens. The results show that the creep strain rate of the fine-grained HAZ (FGHAZ) is much higher than that of the BM, WM, the coarse-grained HAZ (CGHAZ), and the inter-critical HAZ (ICHAZ). According to the metallurgical investigation of stress-rupture, the FGHAZ and the ICHAZ have the most severely cavitated zones. During creep process, carbides become coarser, and form on grain boundaries again, leading to the deterioration of creep property and the decline of creep strength. In addition, the crack grows along the FGHAZ adjacent to the BM in the creep crack growth test (CCG) of HAZ.

  13. 32 CFR 643.33 - Policy-Coastal zone management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Policy-Coastal zone management. 643.33 Section... affecting land or water uses in the coastal zone of a state will include a certification that the proposed... manner consistent with the law. (c) An activity affecting land or water uses in the coastal zone of...

  14. 19 CFR 146.7 - Zone changes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the risk and expense of the operator. The port director may require an accounting of all merchandise... surety; or (4) for any other reason that substantially affects the liability of the operator under the... (CONTINUED) FOREIGN TRADE ZONES General Provisions § 146.7 Zone changes. (a) Alteration of an activated...

  15. Zone separator for multiple zone vessels

    DOEpatents

    Jones, John B.

    1983-02-01

    A solids-gas contact vessel, having two vertically disposed distinct reaction zones, includes a dynamic seal passing solids from an upper to a lower zone and maintaining a gas seal against the transfer of the separate treating gases from one zone to the other, and including a stream of sealing fluid at the seal.

  16. Liquid-copper/zinc embrittlement in Alloy 718

    SciTech Connect

    Shih, W.; King, J.; Raczkowski, C.

    1998-06-01

    Welding of Alloy 718 is known to cause intergranular cracks in the weld heat-affected zone (HAZ). In this work, an Alloy 718 sample that exhibited HAZ cracking revealed high Cu/Zn concentrations on the fracture surface. Previous studies on HAZ cracking of Alloy 718 have not reported high Cu/Zn concentrations on the fracture surface. It is proposed here that the presence of liquid Cu/Zn can cause liquid-metal embrittlement (LME) and HAZ cracking in Alloy 718.

  17. Understanding the Fluvial Critical Zone

    NASA Astrophysics Data System (ADS)

    Bätz, N.; Lane, S. N.; Temme, A. J. A. M.; Lang, F.

    2012-04-01

    Geomorphological modelling has evolved significantly the representation of the link between river morphology, flow processes and sediment transport; notably recently, with an emphasis upon the interactions between vegetation dynamics and morphodynamics. Nevertheless, vegetation dynamics have tended to be treated as a simplistic "black box" in which time replaces the more complex underlying processes. Thus, riparian vegetation dynamics not only result from interactions between surface-flow, topography and vegetation resistance to disturbance, but also soil development within the fluvial zone, which affects nutrient and water supply. More generally labeled the critical zone, there is a lack of considering the "critical fluvial zone" in geomorphological models. Understanding the key drivers of this system, thus the processes interrelating vegetation, topography, soil (formation), subsurface- and surface-flow, are crucial to understand how riverine landscapes respond to increasing human pressure and to climate change. In this poster, we consider the likely nature of a braided river critical fluvial zone. Braided rivers in deglaciated forelands provide an opportunity to study the fluvial critical zone due to their dynamic properties, the restricted physical size, the simple ecosystems and the space-for-time relation caused by glacier retreatment after the "Little Ice Age". The poster aims to commence a discussion on the fluvial critical zone, showing first results about: a) the system understanding of a braided river set in a recently deglaciated alpine foreland; b) methodological approaches to quantify the identified interrelating key processes; c) how quantitative understanding can be integrated into fluvial geomorphological modelling.

  18. Climate change and dead zones.

    PubMed

    Altieri, Andrew H; Gedan, Keryn B

    2015-04-01

    Estuaries and coastal seas provide valuable ecosystem services but are particularly vulnerable to the co-occurring threats of climate change and oxygen-depleted dead zones. We analyzed the severity of climate change predicted for existing dead zones, and found that 94% of dead zones are in regions that will experience at least a 2 °C temperature increase by the end of the century. We then reviewed how climate change will exacerbate hypoxic conditions through oceanographic, ecological, and physiological processes. We found evidence that suggests numerous climate variables including temperature, ocean acidification, sea-level rise, precipitation, wind, and storm patterns will affect dead zones, and that each of those factors has the potential to act through multiple pathways on both oxygen availability and ecological responses to hypoxia. Given the variety and strength of the mechanisms by which climate change exacerbates hypoxia, and the rates at which climate is changing, we posit that climate change variables are contributing to the dead zone epidemic by acting synergistically with one another and with recognized anthropogenic triggers of hypoxia including eutrophication. This suggests that a multidisciplinary, integrated approach that considers the full range of climate variables is needed to track and potentially reverse the spread of dead zones. PMID:25385668

  19. Oil-Ash Corrosion Resistance of Dissimilar T22/T91 Welded Joint of Super Heater Tubes

    NASA Astrophysics Data System (ADS)

    Mittal, Rutash; Sidhu, Buta Singh

    2015-02-01

    The studies on the high temperature corrosion of the dissimilar metal weldment are necessary for longer service of the weldments in corrosive medium. This paper reports the performance of microstructurally different regions, namely heat-affected zone (HAZ), weld metal (WM), and base metal (BM) of dissimilar metal weldment of T22/T91 in the molten salt (Na2SO4-60%V2O5) environment under cyclic studies. The T22 HAZ, WM, and T91 HAZ were observed to oxidize at higher rates and develop more scale thickness than other regions in the weldment. Microstructures and elemental analysis indicate lesser availability of Cr in T22 HAZ and T91 HAZ due to formation of Cr-rich phases, which ultimately causes the difference in oxidation behavior of different regions. The presence of chromium carbides and intermetallics in un-oxidized T22 HAZ region and martensitic structure with the presence of delta ferrites in un-oxidized T91 HAZ region was observed to be the major cause behind the weak corrosion resistance of the respective HAZs. The higher oxidation rate of T22 HAZ may be attributed to the absence of protective scale of Cr2O3 and presence of Fe3O4 phases. Similarly higher oxidation rate of T91 HAZ region can be attributed to lesser availability of Cr due to the propensity of development of delta ferrite in martensitic structure.

  20. Modeling of residual stresses by HY-100 weldments

    SciTech Connect

    Zacharia, T.; Taljat, B.; Radhakrishnan, B.

    1997-02-01

    Residual stress distribution in a HY-100 steel disk, induced by GTA spot welding, was analyzed by finite element (FE) formulations and measured by neutron diffraction (ND). Computations used temperature- dependent thermophysical and mechanical properties. FE model predictions are in good agreement with ND data in far heat affected zone (HAZ) and in base metal. Predicted residual stresses in fusion zone and near HAZ were higher than those measured by ND. This discrepancy was attributed to microstructural changes and associated material properties in the HAZ and fusion zone due to phase transformations during the weld thermal cycle.

  1. Vadose zone microbiology

    SciTech Connect

    Kieft, Thomas L.; Brockman, Fred J.

    2001-01-17

    The vadose zone is defined as the portion of the terrestrial subsurface that extends from the land surface downward to the water table. As such, it comprises the surface soil (the rooting zone), the underlying subsoil, and the capillary fringe that directly overlies the water table. The unsaturated zone between the rooting zone and the capillary fringe is termed the "intermediate zone" (Chapelle, 1993). The vadose zone has also been defined as the unsaturated zone, since the sediment pores and/or rock fractures are generally not completely water filled, but instead contain both water and air. The latter characteristic results in the term "zone of aeration" to describe the vadose zone. The terms "vadose zone," "unsaturated zone", and "zone of aeration" are nearly synonymous, except that the vadose zone may contain regions of perched water that are actually saturated. The term "subsoil" has also been used for studies of shallow areas of the subsurface immediately below the rooting zone. This review focuses almost exclusively on the unsaturated region beneath the soil layer since there is already an extensive body of literature on surface soil microbial communities and process, e.g., Paul and Clark (1989), Metting (1993), Richter and Markowitz, (1995), and Sylvia et al. (1998); whereas the deeper strata of the unsaturated zone have only recently come under scrutiny for their microbiological properties.

  2. [Dynamics of Radioecological State of the Fresh-Water Ecosystems Affected by a Long-Term Impact from Nuclear Power Plant in the Frontiers of the Zone under Observation].

    PubMed

    Trapeznikov, A V; Trapeznikova, V N; Korjavin, A V

    2015-01-01

    The results of radioecological studies of six small rivers situated in the surveillance zone of the Beloyarskaya NPP (BNPP) and around the cooling pond of the power plant are presented. 21 radionuclides and the total α- and β-activity were studied in the main components of the aquatic ecosystems. It is shown that after the 1st and 2nd BN PP blocks decommissioning the content of 60Co and 137Cs in the Beloyarskoye storage pond water, sediments, fish fauna and macrophytes dropped tens and hundreds of times. The fundamental importance of this fact is that in a large range of time the aquatic ecosystem mechanism of self-purification from radionuclides is working due to radioactive substances decay as well as redistribution of radionuclides from water to other components, primarily to the sediments. Of 6 small rivers the maximum levels of radioactive substances is found in the river Olkhovka, which for several years has been subjected to the low-level radioactive water discharges from Beloyarskaya NPP. The radionuclide content in the main components of the aquatic ecosystems of the other five rivers studied after BNPP 47-year operation period corresponds to the regional background. PMID:26310022

  3. Conservation of the Red Kite Milvus milvus (Aves: Accipitriformes) Is Not Affected by the Establishment of a Broad Hybrid Zone with the Black Kite Milvus migrans migrans in Central Europe.

    PubMed

    Heneberg, Petr; Dolinay, Matej; Matušík, Hynek; Pfeiffer, Thomas; Nachtigall, Winfried; Bizos, Jiří; Šimčíková, Daniela; Literák, Ivan

    2016-01-01

    Among Accipitriformes sensu stricto, only a few species have been reported to form hybrid zones; these include the red kite Milvus milvus and black kite Milvus migrans migrans. M. milvus is endemic to the western Palearctic and has an estimated total population of 20-24,000 breeding pairs. The species was in decline until the 1970s due to persecution and has declined again since the 1990s due to ingestion of rodenticide-treated baits, illegal poisoning and changes in agricultural practices, particularly in its core range. Whereas F1 M. milvus × M. migr. migrans hybrid offspring have been found, F2 and F3 hybrids have only rarely been reported, with low nesting success rates of F1 hybrids and partial hybrid sterility likely playing a role. Here, we analyzed the mitochondrial (CO1 and CytB) and nuclear (Myc) DNA loci of 184 M. milvus, 124 M. migr. migrans and 3 F1 hybrid individuals collected across central Europe. In agreement with previous studies, we found low heterozygosity in M. milvus regardless of locus. We found that populations of both examined species were characterized by a high gene flow within populations, with all of the major haplotypes distributed across the entire examined area. Few haplotypes displayed statistically significant aggregation in one region over another. We did not find mitochondrial DNA of one species in individuals with the plumage of the other species, except in F1 hybrids, which agrees with Haldane´s Rule. It remains to be investigated by genomic methods whether occasional gene flow occurs through the paternal line, as the examined Myc gene displayed only marginal divergence between M. milvus and M. migr. migrans. The central European population of M. milvus is clearly subject to free intraspecific gene flow, which has direct implications when considering the origin of individuals in M. milvus re-introduction programs. PMID:27463515

  4. Conservation of the Red Kite Milvus milvus (Aves: Accipitriformes) Is Not Affected by the Establishment of a Broad Hybrid Zone with the Black Kite Milvus migrans migrans in Central Europe

    PubMed Central

    Matušík, Hynek; Pfeiffer, Thomas; Nachtigall, Winfried; Bizos, Jiří; Šimčíková, Daniela; Literák, Ivan

    2016-01-01

    Among Accipitriformes sensu stricto, only a few species have been reported to form hybrid zones; these include the red kite Milvus milvus and black kite Milvus migrans migrans. M. milvus is endemic to the western Palearctic and has an estimated total population of 20–24,000 breeding pairs. The species was in decline until the 1970s due to persecution and has declined again since the 1990s due to ingestion of rodenticide-treated baits, illegal poisoning and changes in agricultural practices, particularly in its core range. Whereas F1 M. milvus × M. migr. migrans hybrid offspring have been found, F2 and F3 hybrids have only rarely been reported, with low nesting success rates of F1 hybrids and partial hybrid sterility likely playing a role. Here, we analyzed the mitochondrial (CO1 and CytB) and nuclear (Myc) DNA loci of 184 M. milvus, 124 M. migr. migrans and 3 F1 hybrid individuals collected across central Europe. In agreement with previous studies, we found low heterozygosity in M. milvus regardless of locus. We found that populations of both examined species were characterized by a high gene flow within populations, with all of the major haplotypes distributed across the entire examined area. Few haplotypes displayed statistically significant aggregation in one region over another. We did not find mitochondrial DNA of one species in individuals with the plumage of the other species, except in F1 hybrids, which agrees with Haldane´s Rule. It remains to be investigated by genomic methods whether occasional gene flow occurs through the paternal line, as the examined Myc gene displayed only marginal divergence between M. milvus and M. migr. migrans. The central European population of M. milvus is clearly subject to free intraspecific gene flow, which has direct implications when considering the origin of individuals in M. milvus re-introduction programs. PMID:27463515

  5. Fluid processes in subduction zones.

    PubMed

    Peacock, S A

    1990-04-20

    Fluids play a critical role in subduction zones and arc magmatism. At shallow levels in subduction zones (<40 kilometers depth), expulsion of large volumes of pore waters and CH(4)-H(2)O fluids produced by diagenetic and low-grade metamorphic reactions affect the thermal and rheological evolution of the accretionary prism and provide nutrients for deep-sea biological communities. At greater depths, H(2)O and CO(2) released by metamorphic reactions in the subducting oceanic crust may alter the bulk composition in the overlying mantle wedge and trigger partial melting reactions. The location and conse-quences of fluid production in subduction zones can be constrained by consideration of phase diagrams for relevant bulk compositions in conjunction with fluid and rock pressure-temperature-time paths predicted by numerical heat-transfer models. Partial melting of subducting, amphibole-bearing oceanic crust is predicted only within several tens of million years of the initiation of subduction in young oceanic lithosphere. In cooler subduction zones, partial melting appears to occur primarily in the overlying mantle wedge as a result of fluid infiltration. PMID:17784486

  6. Rough Fresnel zone plates over metallic surfaces.

    PubMed

    Salgado-Remacha, Francisco Javier; Sanchez-Brea, Luis Miguel; Alvarez-Rios, Francisco Javier; Bernabeu, Eusebio

    2010-04-01

    We analyze the focusing properties of Fresnel zone plates fabricated over steel tapes using laser ablation. Our intention is to implement the use of micro-optical elements when the use of conventional chrome-glass elements is not indicated. Because of the manufacture process, the surface presents a certain anisotropic roughness, which reduces the focusing properties. First, we develop numerical simulations by means of the Rayleigh-Sommerfeld approach, showing how roughness in both levels of the Fresnel zone plate affects the focalization of the lens. We also manufacture Fresnel zone plates over steel tape, and perform experimental verification that corroborates the numerical results. PMID:20357856

  7. Effect of Multipasses on Microstructure and Electrochemical Behavior of Weldments

    NASA Astrophysics Data System (ADS)

    Makhdoom, Muhammad Atif; Kamran, Muhammad; Awan, Gul Hameed; Mukhtar, Sehrish

    2013-12-01

    Shielded metal arc welding was applied to AISI 1045 medium carbon steel. The microstructural changes and electrochemical corrosion behavior of the heat-affected zone (HAZ), base metal (BM), and weld zone (WZ) were investigated. The effect of welding passes on microstructural changes of BM, HAZ, and WZ were elucidated using optical microscopy, potentiodynamic Tafel scan, and linear polarization resistance (LPR) methods in plain water and 3.5 pct (w/v) NaCl solution under standard temperature and pressure using corrosion kinetic parameters. From microstructural observations, the variations in ferrite morphology in the BM and WZ showed dissimilar electrochemical corrosion behavior and a corrosion rate than that of HAZ.

  8. Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Johnson, B.

    1988-01-01

    The Coastal Zone Color Scanner (CZCS) spacecraft ocean color instrument is capable of measuring and mapping global ocean surface chlorophyll concentration. It is a scanning radiometer with multiband capability. With new electronics and some mechanical, and optical re-work, it probably can be made flight worthy. Some additional components of a second flight model are also available. An engineering study and further tests are necessary to determine exactly what effort is required to properly prepare the instrument for spaceflight and the nature of interfaces to prospective spacecraft. The CZCS provides operational instrument capability for monitoring of ocean productivity and currents. It could be a simple, low cost alternative to developing new instruments for ocean color imaging. Researchers have determined that with global ocean color data they can: specify quantitatively the role of oceans in the global carbon cycle and other major biogeochemical cycles; determine the magnitude and variability of annual primary production by marine phytoplankton on a global scale; understand the fate of fluvial nutrients and their possible affect on carbon budgets; elucidate the coupling mechanism between upwelling and large scale patterns in ocean basins; answer questions concerning the large scale distribution and timing of spring blooms in the global ocean; acquire a better understanding of the processes associated with mixing along the edge of eddies, coastal currents, western boundary currents, etc., and acquire global data on marine optical properties.

  9. Fault damage zones

    NASA Astrophysics Data System (ADS)

    Kim, Young-Seog; Peacock, David C. P.; Sanderson, David J.

    2004-03-01

    Damage zones show very similar geometries across a wide range of scales and fault types, including strike-slip, normal and thrust faults. We use a geometric classification of damage zones into tip-, wall-, and linking-damage zones, based on their location around faults. These classes can be sub-divided in terms of fault and fracture patterns within the damage zone. A variety of damage zone structures can occur at mode II tips of strike-slip faults, including wing cracks, horsetail fractures, antithetic faults, and synthetic branch faults. Wall damage zones result from the propagation of mode II and mode III fault tips through a rock, or from damage associated with the increase in slip on a fault. Wall damage zone structures include extension fractures, antithetic faults, synthetic faults, and rotated blocks with associated triangular openings. The damage formed at the mode III tips of strike-slip faults (e.g. observed in cliff sections) are classified as wall damage zones, because the damage zone structures are distributed along a fault trace in map view. Mixed-mode tips are likely to show characteristics of both mode II and mode III tips. Linking damage zones are developed at steps between two sub-parallel faults, and the structures developed depend on whether the step is extensional or contractional. Extension fractures and pull-aparts typically develop in extensional steps, whilst solution seams, antithetic faults and synthetic faults commonly develop in contractional steps. Rotated blocks, isolated lenses or strike-slip duplexes may occur in both extensional and contractional steps. Damage zone geometries and structures are strongly controlled by the location around a fault, the slip mode at a fault tip, and by the evolutionary stage of the fault. Although other factors control the nature of damage zones (e.g. lithology, rheology and stress system), the three-dimensional fault geometry and slip mode at each tip must be considered to gain an understanding of

  10. Affective Learning.

    ERIC Educational Resources Information Center

    Brown, Charles T.

    This paper addresses itself to the question, "What does feeling have to do with knowing?" Two movements in affective education are discussed which have come into focus in recent years and which attempt to define the relationship between knowing and feeling. The first, a conscious application of the role of arousal in learning, emphasizes arousal…

  11. Microgravity silicon zoning investigation

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1983-01-01

    A resistance heated zoner, suitable for early zoning experiments with silicon, was designed and put into operation. The initial power usage and size was designed for an shown to be compatible with payload carriers contemplated for the Shuttle. This equipment will be used in the definition and development of flight experiments and apparatus for float zoning silicon and other materials in microgravity.

  12. Float Zone Workshop

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1980-01-01

    A summary of the Analytical Float Zone Experiment System (AFZES) concept is presented. The types of experiments considered for such a facility are discussed. Reports from various industrial producers and users of float zone material are presented. Special emphasis is placed on state-of-the-art developments in low gravity manufacturing and their applications to space processing.

  13. Investigating Aquatic Dead Zones

    ERIC Educational Resources Information Center

    Testa, Jeremy; Gurbisz, Cassie; Murray, Laura; Gray, William; Bosch, Jennifer; Burrell, Chris; Kemp, Michael

    2010-01-01

    This article features two engaging high school activities that include current scientific information, data, and authentic case studies. The activities address the physical, biological, and chemical processes that are associated with oxygen-depleted areas, or "dead zones," in aquatic systems. Students can explore these dead zones through both…

  14. Coastal zone management

    NASA Technical Reports Server (NTRS)

    Tilton, E. L., III

    1975-01-01

    A panel of federal and state representatives concerned with coastal zone affairs discussed their problems in this area. In addition, several demonstrations of the application of remote sensing technology to coastal zone management were described. These demonstrations were performed by several agencies in a variety of geographical areas.

  15. Weld quality assessment using an edge detection algorithm

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh

    2010-03-01

    Heat input during the welding process and subsequent re-cooling changes the microstructure, hardness, toughness, and cracking susceptibility in heat affected zone (HAZ). Weld quality of a weldment largely depends on the area of HAZ. Determination of exact area of the HAZ by manual stereological methods and conventional visual inspection techniques is a difficult task. These techniques of evaluation are based on approximating the complex shape of HAZ as combination of simplified shapes such as rectangles, triangles etc. In this paper, a filtering scheme based on morphology, thresholding and edge detection is implemented on image of weldments to assess quality of the weld. The HAZ of mild steel specimens welded at different welding parameters by Metal Active Gas/Gas Metal Arc Welding process were compared and presented.

  16. Weld quality assessment using an edge detection algorithm

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh

    2009-12-01

    Heat input during the welding process and subsequent re-cooling changes the microstructure, hardness, toughness, and cracking susceptibility in heat affected zone (HAZ). Weld quality of a weldment largely depends on the area of HAZ. Determination of exact area of the HAZ by manual stereological methods and conventional visual inspection techniques is a difficult task. These techniques of evaluation are based on approximating the complex shape of HAZ as combination of simplified shapes such as rectangles, triangles etc. In this paper, a filtering scheme based on morphology, thresholding and edge detection is implemented on image of weldments to assess quality of the weld. The HAZ of mild steel specimens welded at different welding parameters by Metal Active Gas/Gas Metal Arc Welding process were compared and presented.

  17. Multi-zone furnace system

    SciTech Connect

    Orbeck, G.A.

    1986-05-06

    A multi-zone furnace is described which consists of: a furnace chamber having at least one heat zone and at least one zone adjacent to the heat zone and disposed along the length of the furnace chamber; the heat zone having a hearth at a level different from the hearth level of the adjacent zone; a walking beam conveyor disposed in the furnace chamber and operative in a short stroke mode to convey a product along the hearth of the heat zone, and in a long stroke mode to convey a product from the heat zone to the adjacent zone.

  18. Megacities in the Coastal Zone

    NASA Astrophysics Data System (ADS)

    von Glasow, R.; Jickells, T.; Baklanov, A.; Carmichael, G. R.; Church, T. M.; Gallardo, L.; Hughes, C.; Kanakidou, M.; Liss, P. S.; Mee, L.; Raine, R.; Ramachandran, P.; Ramesh, R.; Sundseth, K.; Tsunogai, U.; Uematsu, M.; Zhu, T.

    2012-04-01

    Megacities have long been recognised as important drivers for socioeconomic development but also as sources of environmental challenges. A large number of megacities are located in the coastal zone where land, atmosphere and ocean meet, posing additional challenges for our understanding of the interactions. The atmospheric flow is complicated not only by urban heat island effects but also topographic flows and sea breezes which also lead to profound changes in clouds and precipitation. Inflow of oceanic air (rich in sea salt) into the polluted city's atmosphere and outflow of polluted air onto a much cleaner ocean lead to very specific interactions, the net effects of which are not well understood. The addition of contaminants to the coastal waters both by atmospheric deposition and fluvial inputs can affect the coastal ecosystems dramatically, limiting their ability to function and provide ecosystem services, e.g. fisheries and aquaculture. Changes to coastal ecosystems also affect fluxes of gases and particles to the atmosphere and can lead to harmful algal blooms. The scale of influence of megacities in the coastal zone is at least hundreds if not thousands of kilometres in the atmosphere and tens to hundreds of kilometres in the ocean, the latter strongly dependent on the hydrographic setting. Coastal megacities are at risk by sea level rise, floods and storms; they are at the forefront of change and scientifically well informed planning can improve livelihoods and ecosystem health but only if we take a holistic approach to study and monitor these regions.

  19. Fault zone hydrogeology

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and

  20. The Ethical Tipping Points of Evaluators in Conflict Zones

    ERIC Educational Resources Information Center

    Duggan, Colleen; Bush, Kenneth

    2014-01-01

    What is different about the conduct of evaluations in conflict zones compared to nonconflict zones--and how do these differences affect (if at all) the ethical calculations and behavior of evaluators? When are ethical issues too risky, or too uncertain, for evaluators to accept--or to continue--an evaluation? These are the core questions guiding…

  1. Microgravity silicon zoning investigation

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1985-01-01

    The flow instabilities in floating zones of silicon were investigated and methods for investigation of these instabilities in microgravity were defined. Three principal tasks were involved: (1) characterization of the float zone in small diameter rods; (2) investigation of melt flow instabilities in circular melts in silicon disks; and (3) the development of a prototype of an apparatus that could be used in near term space experiments to investigate flow instabilities in a molten zone. It is shown that in a resistance heated zoner with 4 to 7 mm diameter silicon rods that the critical Marangoni number is about 1480 compared to a predicted value of 14 indicative that viable space experiments might be performed. The prototype float zone apparatus is built and specifications are prepared for a flight zoner should a decision be reached to proceed with a space flight experimental investigation.

  2. Theory of zone radiometry

    NASA Technical Reports Server (NTRS)

    Farmer, R. C.; Audeh, B. J.

    1973-01-01

    A spectroscopic instrumentation system was developed which was used to measure temperature and concentration distributions in axisymmetric and two dimensional combusting flows. This measurement technique is known as zone radiometry.

  3. [Affective dependency].

    PubMed

    Scantamburlo, G; Pitchot, W; Ansseau, M

    2013-01-01

    Affective dependency is characterized by emotional distress (insecure attachment) and dependency to another person with a low self-esteem and reassurance need. The paper proposes a reflection on the definition of emotional dependency and the confusion caused by various denominations. Overprotective and authoritarian parenting, cultural and socio-environmental factors may contribute to the development of dependent personality. Psychological epigenetic factors, such as early socio-emotional trauma could on neuronal circuits in prefronto-limbic regions that are essential for emotional behaviour.We also focus on the interrelations between dependent personality, domestic violence and addictions. The objective for the clinician is to propose a restoration of self-esteem and therapeutic strategies focused on autonomy. PMID:23888587

  4. The Law of the People (Dine Bibee Haz'Aannii): A Bicultural Approach to Legal Education for Navajo Students, Volume 4.

    ERIC Educational Resources Information Center

    Vicenti, Dan; And Others

    Volume 4 of a 4-volume bilingual bicultural law-related curriculum examines Navajo community life as it is affected by certain laws. Getting a job, obtaining assistance from welfare and other agencies, and preserving one's individual rights as an employee or as a student are all aspects of daily living with important legal ramifications. This unit…

  5. Can Supersaturation Affect Protein Crystal Quality?

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar

    2013-01-01

    In quiescent environments (microgravity, capillary tubes, gels) formation of a depletion zone is to be expected, due either to limited sedimentation, density driven convection or a combination of both. The formation of a depletion zone can: Modify solution supersaturation near crystal; Give rise to impurity partitioning. It is conjectured that both supersaturation and impurity partitioning affect protein crystal quality and size. Further detailed investigations on various proteins are needed to assess above hypothesis.

  6. Dike zones on Venus

    NASA Technical Reports Server (NTRS)

    Markov, M. S.; Sukhanov, A. L.

    1987-01-01

    Venusian dike zone structures were identified from Venera 15 and 16 radar images. These include: a zone of subparallel rows centered at 30 deg N, 7 deg E; a system of intersecting bands centered at 67 deg N, 284 deg E; polygonal systems in lavas covering the structural base uplift centered at 47 deg N, 200 deg E; a system of light bands in the region of the ring structure centered at 43 deg N, 13 deg E; and a dike band centered at 27 deg N, 36 deg E.

  7. ON HYDRODYNAMIC MOTIONS IN DEAD ZONES

    SciTech Connect

    Oishi, Jeffrey S.; Mac Low, Mordecai-Mark E-mail: mordecai@amnh.or

    2009-10-20

    We investigate fluid motions near the midplane of vertically stratified accretion disks with highly resistive midplanes. In such disks, the magnetorotational instability drives turbulence in thin layers surrounding a resistive, stable dead zone. The turbulent layers in turn drive motions in the dead zone. We examine the properties of these motions using three-dimensional, stratified, local, shearing-box, non-ideal, magnetohydrodynamical simulations. Although the turbulence in the active zones provides a source of vorticity to the midplane, no evidence for coherent vortices is found in our simulations. It appears that this is because of strong vertical oscillations in the dead zone. By analyzing time series of azimuthally averaged flow quantities, we identify an axisymmetric wave mode particular to models with dead zones. This mode is reduced in amplitude, but not suppressed entirely, by changing the equation of state from isothermal to ideal. These waves are too low frequency to affect sedimentation of dust to the midplane, but may have significance for the gravitational stability of the resulting midplane dust layers.

  8. 9 CFR 77.22 - Accredited-free States or zones.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Accredited-free States or zones. 77.22... Cervids § 77.22 Accredited-free States or zones. (a) The following are accredited-free States: None. (b) The following are accredited-free zones: None. (c) If an affected herd is detected in a State or...

  9. 9 CFR 77.22 - Accredited-free States or zones.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Accredited-free States or zones. 77.22... Cervids § 77.22 Accredited-free States or zones. (a) The following are accredited-free States: None. (b) The following are accredited-free zones: None. (c) If an affected herd is detected in a State or...

  10. 9 CFR 77.22 - Accredited-free States or zones.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Accredited-free States or zones. 77.22... Cervids § 77.22 Accredited-free States or zones. (a) The following are accredited-free States: None. (b) The following are accredited-free zones: None. (c) If an affected herd is detected in a State or...

  11. 9 CFR 77.22 - Accredited-free States or zones.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Accredited-free States or zones. 77.22... Cervids § 77.22 Accredited-free States or zones. (a) The following are accredited-free States: None. (b) The following are accredited-free zones: None. (c) If an affected herd is detected in a State or...

  12. Fast aurora zone analysis

    NASA Technical Reports Server (NTRS)

    Booker, Mattie

    1992-01-01

    The Flight Dynamics Facility (FDF) of the Flight Dynamics Division (FDD), of the Goddard Space Flight Center provides acquisition data to tracking stations and orbit and attitude services to scientists and mission support personnel. The following paper explains how a method was determined that found spacecraft entry and exit times of the aurora zone.

  13. Stretching the comfort zone

    NASA Astrophysics Data System (ADS)

    Gibb, Bruce C.

    2015-08-01

    Bruce C. Gibb is organizing a workshop for two groups of scientists that study a similar topic, but rarely get together. The different perspectives they bring and the unusual set up of the meeting will hopefully lead to new ideas, but, as he suggests, they will also lead to the attendees leaving their comfort zones.

  14. Investigation of Strength Recovery in Welds of NUCu-140 Steel Through Multipass Welding and Isothermal Post-Weld Heat Treatments

    NASA Astrophysics Data System (ADS)

    Bono, Jason T.; DuPont, John N.; Jain, Divya; Baik, Sung-Il; Seidman, David N.

    2015-11-01

    NUCu-140 is a ferritic copper precipitation-strengthened steel that is a candidate material for use in many naval and structural applications. Previous work has shown that the heat-affected zone (HAZ) and fusion zone (FZ) of NUCu-140 exhibit softening that is due to dissolution of the copper-rich precipitates. This study aims to recover the FZ and HAZ strength by re-precipitation of the copper-rich precipitates through either multiple weld passes or an isothermal post-weld heat treatment (PWHT). The potential use of multiple thermal cycles was investigated with HAZ simulations using a Gleeble thermo-mechanical simulator. The HAZ simulations represented two weld thermal cycles with different combinations of peak temperatures during the initial and secondary weld passes. To investigate the potential for a PWHT for strength recovery, gas tungsten arc weld samples were isothermally heated for various times and temperatures. Microhardness measurements revealed no strength recovery in the multipass HAZ samples. The time-dependent precipitate characteristics were modeled under the HAZ thermal cycle conditions, and the results showed that the lack of strength recovery could be attributed to insufficient time for re-precipitation during the secondary weld pass. Conversely, full strength recovery in the HAZ was observed in the isothermally heat treated samples. Atom probe tomography analysis correlated this strength recovery to re-precipitation of the copper-rich precipitates during the isothermal PWHT.

  15. Local mechanical properties of Alloy 82/182 dissimilar weld joint between SA508 Gr.1a and F316 SS at RT and 320C

    SciTech Connect

    Byun, Thak Sang; Kim, Jin Weon

    2009-01-01

    This paper presents the variations of local mechanical and microstructural properties in dissimilar metal weld joints consisting of the SA508 Gr.1a ferritic steel, Alloy 82/182 filler metal, and F316 austenitic stainless steel. Flat or round tensile specimens and transmission electron microscopy disks were taken from the base metals, welds, and heat-affected zones (HAZ) of the joints and tested at room temperature (RT) and/or at 320 C. The tensile test results indicated that the mechanical property was relatively uniform within each material zone, but varied considerably between different zones. Further, significant variations were observed both in the austenitic HAZ of F316 SS and in the ferritic HAZ of SA508 Gr.1a. The yield stress (YS) of the weld metal was under-matched with respect to the HAZs of SA508 Gr.1a and F316 SS by 0.78 to 0.92, although the YS was over-matched with respect to both base metals. The minimum ductility occurred in the HAZ of SA508 Gr.1 at both test temperatures. The plastic instability stress also varied considerably in the weld joints, with minimum values occurring in the SA508 Gr.1a base metal at RT and in the HAZ of F316 SS at 320 C, suggesting that the probability of ductile failure caused by a unstable deformation at the Alloy 82/182 buttering layer is low. Within the HAZ of SA508 Gr.1a, the gradient of the YS and ultimate tensile strength (UTS) was significant, primarily because of the different microstructures produced by the phase transformation during the welding process. The increment of YS was unexpectedly high in the HAZ of F316 SS, which was explained by the strain hardening induced by a strain mismatch between the weldment and the base metal. This was confirmed by the transmission electron micrographs showing high dislocation density in the HAZ.

  16. Softening Behavior of a New Al-Zn-Mg-Cu Alloy Due to TIG Welding

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Li, Xiaoyan; Nie, Zuoren; Huang, Hui; Sun, Jiantong

    2016-05-01

    A new Al-Zn-Mg-Cu alloy with T6 temper was welded by TIG welding, and the softening behavior of the joint was evaluated. Results show that the ultimate tensile strength of the joint is 436.2 ± 26.4 MPa which is about 64.5% of that of the base metal (BM). Fusion zone (FZ) is the weakest region even though its microhardness increases from 107.6 to 131.3 HV within 90 days after welding. Microhardness of the heat-affected zone (HAZ) adjacent to FZ increases from 125.2 to 162.3 HV within 90 days. However, a valley value of microhardness appears in the rest of the HAZ that increases from 112.1 to 128.1 HV within 90 days. The variation of grain size and precipitates is regarded as the main cause of softening in both FZ and HAZ. The grain size of FZ is about 33.9 μm, whereas 8.7 and 8.4 μm for HAZ and BM, respectively. A large number of η' phases distribute dispersively in BM, whereas precipitates in FZ identified as GPI zones are finer and fewer. Besides, precipitates in HAZ adjacent to FZ are also GPI zones. Precipitates in HAZ far away from FZ are coarser and fewer than those in BM and η phases begin to emerge.

  17. Vadose zone water fluxmeter

    DOEpatents

    Faybishenko, Boris A.

    2005-10-25

    A Vadose Zone Water Fluxmeter (WFM) or Direct Measurement WFM provides direct measurement of unsaturated water flow in the vadose zone. The fluxmeter is a cylindrical device that fits in a borehole or can be installed near the surface, or in pits, or in pile structures. The fluxmeter is primarily a combination of tensiometers and a porous element or plate in a water cell that is used for water injection or extraction under field conditions. The same water pressure measured outside and inside of the soil sheltered by the lower cylinder of the fluxmeter indicates that the water flux through the lower cylinder is similar to the water flux in the surrounding soil. The fluxmeter provides direct measurement of the water flow rate in the unsaturated soils and then determines the water flux, i.e. the water flow rate per unit area.

  18. Trojans in habitable zones.

    PubMed

    Schwarz, Richard; Pilat-Lohinger, Elke; Dvorak, Rudolf; Erdi, Balint; Sándor, Zsolt

    2005-10-01

    With the aid of numerical experiments we examined the dynamical stability of fictitious terrestrial planets in 1:1 mean motion resonance with Jovian-like planets of extrasolar planetary systems. In our stability study of the so-called "Trojan" planets in the habitable zone, we used the restricted three-body problem with different mass ratios of the primary bodies. The application of the three-body problem showed that even massive Trojan planets can be stable in the 1:1 mean motion resonance. From the 117 extrasolar planetary systems only 11 systems were found with one giant planet in the habitable zone. Out of this sample set we chose four planetary systems--HD17051, HD27442, HD28185, and HD108874--for further investigation. To study the orbital behavior of the stable zone in the different systems, we used direct numerical computations (Lie Integration Method) that allowed us to determine the escape times and the maximum eccentricity of the fictitious "Trojan planets." PMID:16225431

  19. Radiant zone heated particulate filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2011-12-27

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  20. Renewable liquid reflecting zone plate

    DOEpatents

    Toor, Arthur; Ryutov, Dmitri D.

    2003-12-09

    A renewable liquid reflecting zone plate. Electrodes are operatively connected to a dielectric liquid in a circular or other arrangement to produce a reflecting zone plate. A system for renewing the liquid uses a penetrable substrate.

  1. 33 CFR 110.230 - Anchorages, Captain of the Port Puget Sound Zone, WA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... citations affecting § 110.230, see the List of CFR Sections Affected, which appears in the Finding Aids... Puget Sound Zone, WA. 110.230 Section 110.230 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Port Puget Sound Zone, WA. (a) Anchorage grounds. All coordinates are expressed in North American...

  2. 33 CFR 110.230 - Anchorages, Captain of the Port Puget Sound Zone, WA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... citations affecting § 110.230, see the List of CFR Sections Affected, which appears in the Finding Aids... Puget Sound Zone, WA. 110.230 Section 110.230 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Port Puget Sound Zone, WA. (a) Anchorage grounds. All coordinates are expressed in North American...

  3. 9 CFR 77.7 - Accredited-free States or zones.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Register citations affecting § 77.7, see the List of CFR Sections Affected, which appears in the Finding... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Accredited-free States or zones. 77.7... and Bison § 77.7 Accredited-free States or zones. (a) The following are accredited-free...

  4. 9 CFR 77.7 - Accredited-free States or zones.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Register citations affecting § 77.7, see the List of CFR Sections Affected, which appears in the Finding... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Accredited-free States or zones. 77.7... and Bison § 77.7 Accredited-free States or zones. (a) The following are accredited-free...

  5. Microstructure evolution in the fusion welding of heat-treatable Al-Cu-Li alloys. Ph.D. Thesis

    SciTech Connect

    Hou, K.

    1994-01-01

    Aluminum alloys 2090 and 2195 and Al-2.5Cu were welded autogenously using the gas tungsten-arc (GTA) and CO2 laser beam (LB) welding processes. Relationships between microstructure and mechanical properties in the fusion zone (FZ) and the heat-affected zone (HAZ) in both the as-welded and the postweld heat-treated conditions were studied. Solute segregation due to non-equilibrium solidification in the FZ and its effect on precipitation after postweld aging was quantitatively investigated. After aging treatment, precipitates were found surrounding eutectic regions where higher solute content was measured. Fast cooling LB weld exhibited narrower solute enriched regions and narrower precipitate segregation zones (PSZ`s) adjacent to the eutectic. A partial recovery of strength and hardness in the FZ`s was achieved by postweld aging at 160 C and 190 C for 16 hours. A higher Li/Cu ratio in 2090 promoted the formation of uniformly distributed delta(prime) precipitates in the as-welded HAZ. An evident reduction in the FZ ductility occurred in the 2195 LB welds due to the existence of porosity and shrinkage cavities, and the constraint effect from narrower FZ`s. GTA welds in both 2090 and 2195 alloys exhibited a hardness recovery in the near HAZ, which was not obvious in the LB welds. Postweld aging enhanced this hardness variation. Overaging, dissolution and reprecipitation of various strengthening precipitates occurred in the different regions of the HAZ, and consequently induced the hardness variation. Higher heat inputs increased the HAZ width and enhanced the hardness increase in the near HAZ. Aged HAZ microstructure was affected by the precipitation in the as-welded condition. The formation of Li-containing precipitates in the GTA HAZ, especially alpha(prime) in Li-lean 2195, consumed Li from the matrix. Consequently, the precipitation of T1 was affected.

  6. Habitable zones and UV habitable zones around host stars

    NASA Astrophysics Data System (ADS)

    Guo, Jianpo; Zhang, Fenghui; Zhang, Xianfei; Han, Zhanwen

    2010-01-01

    Ultraviolet radiation is a double-edged sword to life. If it is too strong, the terrestrial biological systems will be damaged. And if it is too weak, the synthesis of many biochemical compounds cannot go along. We try to obtain the continuous ultraviolet habitable zones, and compare the ultraviolet habitable zones with the habitable zones of host stars. Using the boundary ultraviolet radiation of ultraviolet habitable zone, we calculate the ultraviolet habitable zones of host stars with masses from 0.08 to 4.00 M ⊙. For the host stars with effective temperatures lower than 4,600 K, the ultraviolet habitable zones are closer than the habitable zones. For the host stars with effective temperatures higher than 7,137 K, the ultraviolet habitable zones are farther than the habitable zones. For a hot subdwarf as a host star, the distance of the ultraviolet habitable zone is about ten times more than that of the habitable zone, which is not suitable for the existence of life.

  7. Saturated Zone Colloid Transport

    SciTech Connect

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation

  8. Liquid zone seal

    DOEpatents

    Klebanoff, Leonard E.

    2001-01-01

    A seal assembly that provides a means for establishing multiple pressure zones within a system. The seal assembly combines a plate extending from the inner wall of a housing or inner enclosure that intersects with and is immersed in the fluid contained in a well formed in a tray contained within the enclosure. The fluid is a low vapor pressure oil, chemically inert and oxidation resistant. The use of a fluid as the sealing component provides a seal that is self-healing and mechanically robust not subject to normal mechanical wear, breakage, and formation of cracks or pinholes and decouples external mechanical vibrations from internal structural members.

  9. Welding-Induced Microstructure Evolution of a Cu-Bearing High-Strength Blast-Resistant Steel

    NASA Astrophysics Data System (ADS)

    Caron, Jeremy L.; Babu, Sudarsanam Suresh; Lippold, John C.

    2011-12-01

    A new high strength, high toughness steel containing Cu for precipitation strengthening was recently developed for naval, blast-resistant structural applications. This steel, known as BlastAlloy160 (BA-160), is of nominal composition Fe-0.05C-3.65Cu-6.5Ni-1.84Cr-0.6Mo-0.1V (wt pct). The evident solidification substructure of an autogenous gas tungsten arc (GTA) weld suggested fcc austenite as the primary solidification phase. The heat-affected zone (HAZ) hardness ranged from a minimum of 353 HV in the coarse-grained HAZ (CGHAZ) to a maximum of 448 HV in the intercritical HAZ (ICHAZ). After postweld heat treatment (PWHT) of the spot weld, hardness increases were observed in the fusion zone (FZ), CGHAZ, and fine-grained HAZ (FGHAZ) regions. Phase transformation and metallographic analyses of simulated single-pass HAZ regions revealed lath martensite to be the only austenitic transformation product in the HAZ. Single-pass HAZ simulations revealed a similar hardness profile for low heat-input (LHI) and high heat-input (HHI) conditions, with higher hardness values being measured for the LHI samples. The measured hardness values were in good agreement with those from the GTA weld. Single-pass HAZ regions exhibited higher Charpy V-notch impact toughness than the BM at both test temperatures of 293 K and 223 K (20 °C and -50 °C). Hardness increases were observed for multipass HAZ simulations employing an initial CGHAZ simulation.

  10. Impact of contact lens zone geometry and ocular optics on bifocal retinal image quality

    PubMed Central

    Bradley, Arthur; Nam, Jayoung; Xu, Renfeng; Harman, Leslie; Thibos, Larry

    2014-01-01

    Purpose To examine the separate and combined influences of zone geometry, pupil size, diffraction, apodisation and spherical aberration on the optical performance of concentric zonal bifocals. Methods Zonal bifocal pupil functions representing eye + ophthalmic correction were defined by interleaving wavefronts from separate optical zones of the bifocal. A two-zone design (a central circular inner zone surrounded by an annular outer-zone which is bounded by the pupil) and a five-zone design (a central small circular zone surrounded by four concentric annuli) were configured with programmable zone geometry, wavefront phase and pupil transmission characteristics. Using computational methods, we examined the effects of diffraction, Stiles Crawford apodisation, pupil size and spherical aberration on optical transfer functions for different target distances. Results Apodisation alters the relative weighting of each zone, and thus the balance of near and distance optical quality. When spherical aberration is included, the effective distance correction, add power and image quality depend on zone-geometry and Stiles Crawford Effect apodisation. When the outer zone width is narrow, diffraction limits the available image contrast when focused, but as pupil dilates and outer zone width increases, aberrations will limit the best achievable image quality. With two-zone designs, balancing near and distance image quality is not achieved with equal area inner and outer zones. With significant levels of spherical aberration, multi-zone designs effectively become multifocals. Conclusion Wave optics and pupil varying ocular optics significantly affect the imaging capabilities of different optical zones of concentric bifocals. With two-zone bifocal designs, diffraction, pupil apodisation spherical aberration, and zone size influence both the effective add power and the pupil size required to balance near and distance image quality. Five-zone bifocal designs achieve a high degree of

  11. Breathing zone air sampler

    DOEpatents

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  12. Habitable zones in the universe.

    PubMed

    Gonzalez, Guillermo

    2005-12-01

    Habitability varies dramatically with location and time in the universe. This was recognized centuries ago, but it was only in the last few decades that astronomers began to systematize the study of habitability. The introduction of the concept of the habitable zone was key to progress in this area. The habitable zone concept was first applied to the space around a star, now called the Circumstellar Habitable Zone. Recently, other, vastly broader, habitable zones have been proposed. We review the historical development of the concept of habitable zones and the present state of the research. We also suggest ways to make progress on each of the habitable zones and to unify them into a single concept encompassing the entire universe. PMID:16254692

  13. Haz-Mat Refresher: Chemical Precautions

    ERIC Educational Resources Information Center

    Caliendo, Louis A.

    2012-01-01

    It is important that first responders remain aware of the possible hazards resulting from chemical accidents or the intentional use of chemicals in destructive devices. Chemical components can be utilized in the manufacturing of improvised explosive devices (IEDs), can enhance the effect of a more conventional device, or can pose hazards based on…

  14. INSPIRE Natural Risk Zones Data Specification

    NASA Astrophysics Data System (ADS)

    Harrison, M.; Thomas, F.; Tomas, R.

    2012-04-01

    INSPIRE Directive (2007/2/EC) defines Natural Risk Zones theme as: "Vulnerable areas characterised according to natural hazards (all atmospheric, hydrologic, seismic, volcanic and wildfire phenomena that, because of their location, severity, and frequency, have the potential to seriously affect society), e.g. floods, landslides and subsidence, avalanches, forest fires, earthquakes, volcanic eruptions." This specification is the work of the Natural Risk Zones thematic working group. A multinational team of experts volunteered from the community of SDICs (Spatial Data Interest Communities) and LMOs (Legally Mandated Organisations) of INSPIRE. The data specification has been compiled using reference material submitted by SDICs and LMOs and the responses to a user requirements survey. The team themselves have had to draw on their own expertise and that of their organisations and other groups to develop agreed use cases in a selection of areas pertinent to Natural Risk Zones. The scope of the Natural Risk Zones data specification is potentially very large and this presentation will demonstrate this fact. Natural Risk Zones also involves significant engagement with other thematic areas from INSPIRE. This involvement stems from the nature of hazard, exposure, vulnerability and risk. Several other thematic areas input attributes vital to understanding the nature of hazard, yet others are vital in the understanding of exposure. In working on the scope of the Natural Risk Zones theme four use cases have been created for; Floods, Landslide, Forest Fire and Earthquake. These will be used in the presentation to demonstrate the use of the data specification. The approach taken to model Natural Risk Zones is generic in its treatment of each of hazard, exposure, vulnerability and risk, with a core model, whilst allowing extensibility to be more specific where possible and required. Flood risk is significantly more precisely defined than other hazards, due in part to the

  15. High-power picosecond laser drilling/machining of carbon fibre-reinforced polymer (CFRP) composites

    NASA Astrophysics Data System (ADS)

    Salama, A.; Li, L.; Mativenga, P.; Sabli, A.

    2016-02-01

    The large differences in physical and thermal properties of the carbon fibre-reinforced polymer (CFRP) composite constituents make laser machining of this material challenging. An extended heat-affected zone (HAZ) often occurs. The availability of ultrashort laser pulse sources such as picosecond lasers makes it possible to improve the laser machining quality of these materials. This paper reports an investigation on the drilling and machining of CFRP composites using a state-of-the-art 400 W picosecond laser system. Small HAZs (<25 µm) were obtained on the entry side of 6-mm-diameter hole drilled on sample of 6 mm thickness, whereas no HAZ was seen below the top surface on the cut surfaces. Multiple ring material removal strategy was used. Furthermore, the effect of laser processing parameters such as laser power, scanning speed and repetition rate on HAZ sizes and ablation depth was investigated.

  16. On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus

    NASA Astrophysics Data System (ADS)

    Asala, G.; Ojo, O. A.

    The susceptibility of heat affected zone (HAZ) to cracking in Tungsten Inert Gas (TIG) welded Allvac 718Plus superalloy during post-weld heat treatment (PWHT) was studied. Contrary to the previously reported case of low heat input electron beam welded Allvac 718Plus, where HAZ cracking occurred during PWHT, the TIG welded alloy is crack-free after PWHT, notwithstanding the presence of similar micro-constituents that caused cracking in the low input weld. Accordingly, the formation of brittle HAZ intergranular micro-constituents may not be a sufficient factor to determine cracking propensity, the extent of heat input during welding may be another major factor that influences HAZ cracking during PWHT of the aerospace superalloy Allvac 718Plus.

  17. Zoning should promote public health.

    PubMed

    Hirschhorn, Joel S

    2004-01-01

    Legally, governments use their police powers to protect public health, safety, and welfare through zoning. This paper presents a case for revisiting zoning on the basis of increasing evidence that certain types of community design promote public health, as opposed to the dominant pattern of sprawl development, which does not. Zoning, and the land use planning linked to it, that prohibits or disfavors health-promoting community designs contradicts the inherent public policy goal on which it is based. If there is a paradigm shift underway, from traditional sprawl to health-promoting community designs, then health professionals and others should understand why zoning must be reassessed. PMID:14748317

  18. Influence of the Amlia fracture zone on the evolution of the Aleutian Terrace forearc basin, central Aleutian subduction zone

    USGS Publications Warehouse

    Ryan, Holly F.; Draut, Amy E.; Keranen, Katie M.; Scholl, David W.

    2012-01-01

    During Pliocene to Quaternary time, the central Aleutian forearc basin evolved in response to a combination of tectonic and climatic factors. Initially, along-trench transport of sediment and accretion of a frontal prism created the accommodation space to allow forearc basin deposition. Transport of sufficient sediment to overtop the bathymetrically high Amlia fracture zone and reach the central Aleutian arc began with glaciation of continental Alaska in the Pliocene. As the obliquely subducting Amlia fracture zone swept along the central Aleutian arc, it further affected the structural evolution of the forearc basins. The subduction of the Amlia fracture zone resulted in basin inversion and loss of accommodation space east of the migrating fracture zone. Conversely, west of Amlia fracture zone, accommodation space increased arcward of a large outer-arc high that formed, in part, by a thickening of arc basement. This difference in deformation is interpreted to be the result of a variation in interplate coupling across the Amlia fracture zone that was facilitated by increasing subduction obliquity, a change in orientation of the subducting Amlia fracture zone, and late Quaternary intensification of glaciation. The change in coupling is manifested by a possible tear in the subducting slab along the Amlia fracture zone. Differences in coupling across the Amlia fracture zone have important implications for the location of maximum slip during future great earthquakes. In addition, shaking during a great earthquake could trigger large mass failures of the summit platform, as evidenced by the presence of thick mass transport deposits of primarily Quaternary age that are found in the forearc basin west of the Amlia fracture zone.

  19. Zone refining of plutonium metal

    SciTech Connect

    Blau, M.S.

    1994-08-01

    The zone refining process was applied to Pu metal containing known amounts of impurities. Rod specimens of plutonium metal were melted into and contained in tantalum boats, each of which was passed horizontally through a three-turn, high-frequency coil in such a manner as to cause a narrow molten zone to pass through the Pu metal rod 10 times. The impurity elements Co, Cr, Fe, Ni, Np, U were found to move in the same direction as the molten zone as predicted by binary phase diagrams. The elements Al, Am, and Ga moved in the opposite direction of the molten zone as predicted by binary phase diagrams. As the impurity alloy was zone refined, {delta}-phase plutonium metal crystals were produced. The first few zone refining passes were more effective than each later pass because an oxide layer formed on the rod surface. There was no clear evidence of better impurity movement at the slower zone refining speed. Also, constant or variable coil power appeared to have no effect on impurity movement during a single run (10 passes). This experiment was the first step to developing a zone refining process for plutonium metal.

  20. Commercial Zone Melting Ingots

    NASA Astrophysics Data System (ADS)

    Zheng, Yun; Xie, Hongyao; Shu, Shengcheng; Yan, Yonggao; Li, Han; Tang, Xinfeng

    2014-06-01

    Bismuth telluride-based compounds have been extensively utilized for commercial application. However, thermoelectric materials must suffer numerous mechanical vibrations and thermal stresses while in service, making it equally important to discuss the mechanical properties, especially at high temperature. In this study, the compressive and bending strengths of Bi0.5Sb1.5Te3 commercial zone melting (ZM) ingots were investigated at 25, 100, and 200 °C, respectively. Due to the obvious anisotropy of materials prepared by ZM method, the effect of anisotropy on the strengths was also explored. Two-parameter Weibull distribution was employed to fit a series of values acquired by a universal testing machine. And digital speckle photography was applied to record the strain field evolution, providing visual observation of surface strain. The compressive and bending strengths along ZM direction were approximately three times as large as those perpendicular to the ZM direction independent of the temperature, indicating a weak van der Waals bond along the c axis.

  1. Neonatal Subventricular Zone Electroporation

    PubMed Central

    Feliciano, David M.; Lafourcade, Carlos A.; Bordey, Angélique

    2013-01-01

    Neural stem cells (NSCs) line the postnatal lateral ventricles and give rise to multiple cell types which include neurons, astrocytes, and ependymal cells1. Understanding the molecular pathways responsible for NSC self-renewal, commitment, and differentiation is critical for harnessing their unique potential to repair the brain and better understand central nervous system disorders. Previous methods for the manipulation of mammalian systems required the time consuming and expensive endeavor of genetic engineering at the whole animal level2. Thus, the vast majority of studies have explored the functions of NSC molecules in vitro or in invertebrates. Here, we demonstrate the simple and rapid technique to manipulate neonatal NPCs that is referred to as neonatal subventricular zone (SVZ) electroporation. Similar techniques were developed a decade ago to study embryonic NSCs and have aided studies on cortical development3,4 . More recently this was applied to study the postnatal rodent forebrain5-7. This technique results in robust labeling of SVZ NSCs and their progeny. Thus, postnatal SVZ electroporation provides a cost and time effective alternative for mammalian NSC genetic engineering. PMID:23426329

  2. Predicting km-scale shear zone formation

    NASA Astrophysics Data System (ADS)

    Gerbi, Christopher; Culshaw, Nicholas; Shulman, Deborah; Foley, Maura; Marsh, Jeffrey

    2015-04-01

    gradients but are insufficient to maintain them because the stress perturbations will dissipate with deformation. Metamorphism can unquestionably cause sufficient rheological change, but only in certain rock types: for example, granitoids have much less capacity for metamorphically induced rheologic change than do mafic rocks. The magnitude of phase geometry variation observed in natural systems suggests that morphological change (e.g., interconnection of weak phases) likely has little direct affect on strength changes, although other textural factors related to diffusion paths and crystallographic orientation could play a significant role. Thermal perturbation, mainly in the form of shear heating, remains potentially powerful but inconclusive. Taken together, these observations indicate that a simple algorithm predicting shear zone formation will not succeed in many geologically relevant instances. One significant reason may be that the inherent lithologic variation at the km scale, such as observed in the Central Gneiss belt, prevents the development of self-organized strain patterns that would form in more rheologically uniform systems.

  3. 49 CFR 71.8 - Mountain zone.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Mountain zone. 71.8 Section 71.8 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.8 Mountain zone. The fourth zone, the mountain standard time zone, includes that part of the United States that is west of...

  4. 49 CFR 71.8 - Mountain zone.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Mountain zone. 71.8 Section 71.8 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.8 Mountain zone. The fourth zone, the mountain standard time zone, includes that part of the United States that is west of...

  5. 49 CFR 71.8 - Mountain zone.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Mountain zone. 71.8 Section 71.8 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.8 Mountain zone. The fourth zone, the mountain standard time zone, includes that part of the United States that is west of...

  6. 49 CFR 71.8 - Mountain zone.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Mountain zone. 71.8 Section 71.8 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.8 Mountain zone. The fourth zone, the mountain standard time zone, includes that part of the United States that is west of...

  7. 49 CFR 71.8 - Mountain zone.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Mountain zone. 71.8 Section 71.8 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.8 Mountain zone. The fourth zone, the mountain standard time zone, includes that part of the United States that is west of...

  8. Microstructure and Hardness Variation in a TIG Weldment of Irradiated F82H

    SciTech Connect

    Tanigawa, H.; Ando, M.; Sawai, T.; Shiba, K.; Hashimoto, N.; Klueh, R.L.

    2003-07-15

    Previous work reported that a TIG weld joint of F82H exhibited low irradiation hardening in a tensile test, compared to the base metal. Microhardness tests and microstructure observation on the neutron-irradiated TIG weld joint of F82H revealed that the over-tempered zone in the heat-affected zone (HAZ) exhibited this good performance. The region in the HAZ where the prior austenite grain size became very fine during welding also exhibited lower irradiation hardening. Hypotheses for these low-hardening mechanisms were proposed based on the phase diagram and grain size.

  9. Winter Storm Zones on Mars

    NASA Technical Reports Server (NTRS)

    Hollingsworth, J. L.; Haberle, R. M.; Barnes, J. R.; Bridger, A. F. C.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    Preferred regions of weather activity in Mars' winter middle latitudes-so called 'storm zones' are found in a general circulation model of Mars' atmospheric circulation. During northern winter, these storm zones occur in middle latitudes in the major planitia (low-relief regions) of the western and eastern hemisphere. In contrast, the highlands of the eastern hemisphere are mostly quiescent. Compared to Earth's storm zones where diabatic heating associated with land-sea thermal contrasts is crucial, orography on Mars is fundamental to the regionalization of weather activity. Future spacecraft missions aimed at assessing Mars' climate and its variability need to include such regions in observation strategies.

  10. Affective processing requires awareness.

    PubMed

    Lähteenmäki, Mikko; Hyönä, Jukka; Koivisto, Mika; Nummenmaa, Lauri

    2015-04-01

    Studies using backward masked emotional stimuli suggest that affective processing may occur outside visual awareness and imply primacy of affective over semantic processing, yet these experiments have not strictly controlled for the participants' awareness of the stimuli. Here we directly compared the primacy of affective versus semantic categorization of biologically relevant stimuli in 5 experiments (n = 178) using explicit (semantic and affective discrimination; Experiments 1-3) and implicit (semantic and affective priming; Experiments 4-5) measures. The same stimuli were used in semantic and affective tasks. Visual awareness was manipulated by varying exposure duration of the masked stimuli, and subjective level of stimulus awareness was measured after each trial using a 4-point perceptual awareness scale. When participants reported no awareness of the stimuli, semantic and affective categorization were at chance level and priming scores did not differ from zero. When participants were even partially aware of the stimuli, (a) both semantic and affective categorization could be performed above chance level with equal accuracy, (b) semantic categorization was faster than affective categorization, and (c) both semantic and affective priming were observed. Affective categorization speed was linearly dependent on semantic categorization speed, suggesting dependence of affective processing on semantic recognition. Manipulations of affective and semantic categorization tasks revealed a hierarchy of categorization operations beginning with basic-level semantic categorization and ending with superordinate level affective categorization. We conclude that both implicit and explicit affective and semantic categorization is dependent on visual awareness, and that affective recognition follows semantic categorization. PMID:25559654

  11. Zone purification of potassium chloride

    NASA Technical Reports Server (NTRS)

    Susman, S.

    1969-01-01

    Procedure for removal of sodium and bromine from KCl involves zone refining in dilute halogen atmosphere. Distribution of Na and Br at concentrations of parts per million is followed by neutron-activation analyses.

  12. CHAOTIC ZONES AROUND GRAVITATING BINARIES

    SciTech Connect

    Shevchenko, Ivan I.

    2015-01-20

    The extent of the continuous zone of chaotic orbits of a small-mass tertiary around a system of two gravitationally bound primaries of comparable masses (a binary star, a binary black hole, a binary asteroid, etc.) is estimated analytically, as a function of the tertiary's orbital eccentricity. The separatrix map theory is used to demonstrate that the central continuous chaos zone emerges (above a threshold in the primaries' mass ratio) due to overlapping of the orbital resonances corresponding to the integer ratios p:1 between the tertiary and the central binary periods. In this zone, the unlimited chaotic orbital diffusion of the tertiary takes place, up to its ejection from the system. The primaries' mass ratio, above which such a chaotic zone is universally present at all initial eccentricities of the tertiary, is estimated. The diversity of the observed orbital configurations of biplanetary and circumbinary exosystems is shown to be in accord with the existence of the primaries' mass parameter threshold.

  13. In situ vadose zone bioremediation.

    PubMed

    Höhener, Patrick; Ponsin, Violaine

    2014-06-01

    Contamination of the vadose zone with various pollutants is a world-wide problem, and often technical or economic constraints impose remediation without excavation. In situ bioremediation in the vadose zone by bioventing has become a standard remediation technology for light spilled petroleum products. In this review, focus is given on new in situ bioremediation strategies in the vadose zone targeting a variety of other pollutants such as perchlorate, nitrate, uranium, chromium, halogenated solvents, explosives and pesticides. The techniques for biostimulation of either oxidative or reductive degradation pathways are presented, and biotransformations to immobile pollutants are discussed in cases of non-degradable pollutants. Furthermore, research on natural attenuation in the vadose zone is presented. PMID:24863890

  14. Cohesive Zone Model User Element

    2007-04-17

    Cohesive Zone Model User Element (CZM UEL) is an implementation of a Cohesive Zone Model as an element for use in finite element simulations. CZM UEL computes a nodal force vector and stiffness matrix from a vector of nodal displacements. It is designed for structural analysts using finite element software to predict crack initiation, crack propagation, and the effect of a crack on the rest of a structure.

  15. 76 FR 7107 - Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, Drawbridge Operation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... Bridge.... Safety Zones (Part 165)...... 11/9/2009 USCG-2008-0700 Portland, OR Safety Zones (Part 165... SECURITY Coast Guard 33 CFR Parts 100, 117, 147, and 165 Quarterly Listings; Safety Zones, Security Zones... temporary safety zones, security zones, special local regulations, drawbridge operation regulations...

  16. Zoning, equity, and public health.

    PubMed

    Maantay, J

    2001-07-01

    Zoning, the most prevalent land use planning tool in the United States, has substantial implications for equity and public health. Zoning determines where various categories of land use may go, thereby influencing the location of resulting environmental and health impacts. Industrially zoned areas permit noxious land uses and typically carry higher environmental burdens than other areas. Using New York City as a case study, the author shows that industrial zones have large residential populations within them or nearby. Noxious uses tend to be concentrated in poor and minority industrial neighborhoods because more affluent industrial areas and those with lower minority populations are rezoned for other uses, and industrial zones in poorer neighborhoods are expanded. Zoning policies, therefore, can have adverse impacts on public health and equity. The location of noxious uses and the pollution they generate have ramifications for global public health and equity; these uses have been concentrated in the world's poorer places as well as in poorer places within more affluent countries. Planners, policymakers, and public health professionals must collaborate on a worldwide basis to address these equity, health, and land use planning problems. PMID:11441726

  17. Zoning, equity, and public health.

    PubMed Central

    Maantay, J

    2001-01-01

    Zoning, the most prevalent land use planning tool in the United States, has substantial implications for equity and public health. Zoning determines where various categories of land use may go, thereby influencing the location of resulting environmental and health impacts. Industrially zoned areas permit noxious land uses and typically carry higher environmental burdens than other areas. Using New York City as a case study, the author shows that industrial zones have large residential populations within them or nearby. Noxious uses tend to be concentrated in poor and minority industrial neighborhoods because more affluent industrial areas and those with lower minority populations are rezoned for other uses, and industrial zones in poorer neighborhoods are expanded. Zoning policies, therefore, can have adverse impacts on public health and equity. The location of noxious uses and the pollution they generate have ramifications for global public health and equity; these uses have been concentrated in the world's poorer places as well as in poorer places within more affluent countries. Planners, policymakers, and public health professionals must collaborate on a worldwide basis to address these equity, health, and land use planning problems. PMID:11441726

  18. Stepped conical zone plate antenna

    NASA Astrophysics Data System (ADS)

    Wiltse, James C.

    2001-07-01

    The Fresnel zone plate lens was invented and developed for optical frequencies. However, fabrication difficulties at the short optical wavelengths have prevented obtain good efficiencies. At longer microwave or millimeter-wavelengths fabrication is easier and phase correcting zone plate antennas have been used to obtain good efficiencies. This paper describes a new type of phase correcting zone plate having even better efficiency, namely a diffraction efficiency of 99 percent compared to a true lens, and an overall efficiency much better than a true lens. For the usual zone plate antenna employed at microwave or millimeter wavelengths, path length adjustment is accomplished by cutting different depths in a dielectric plate or by using two or more dielectrics having different dielectric constants. The new design uses a tilted cut in a dielectric plate, which more accurately matches the shape of a true lens and produces much lower phase error. The construction is still near and can be made for example, by a milling machine with a tilted bit. For a circular zone plate, the lens is a stepped conical or tapered shape. Because the phase steps are small, the far-field antenna pattern is excellent and sidelobe-levels are very low. Analysis of typical configurations will be given, showing that phase errors are small, lower than those for an eighth-wave corrected phase zone plate.

  19. Heat transport model within the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Marzadri, Alessandra; Tonina, Daniele; Bellin, Alberto

    2010-05-01

    Temperature is a key quantity in controlling water quality, aquatic habitats and the distribution of aquatic invertebrates within the hyporheic zone. Despite its importance in all processes (e.g., biogeochemical reactions and organism metabolism, growth, movement and migration) occurring within the streambed sediment, only few experimental and numerical works analyzed temperature distribution within the hyporheic zone, while little is known on the control that river morphology exerts on temperature dynamics. In the present work, we analyze the effects of river morphology on the thermal regime of the hyporheic zone from a modelling perspective. Our goal is to identify the dominant processes that affect the hyporheic thermal regime and gradients, which influence the rates of microbial and biogeochemical processes. With this objective in mind, we developed a simplified process-based model, which predicts the temperature pattern within the streambed sediment taking into account the external forcing due to the daily temperature variations of the in-stream water and the hyporheic exchange due to streambed morphology. To simplify the analysis the hydraulic conductivity of the streambed sediment is assumed homogeneous and isotropic, and the hyporheic velocity field is obtained analytically by solving the flow equation with the near-bed piezometric head of the stream flow as the linkage between surface and subsurface flows. Furthermore, we solved the heat transport equation with a Lagrangian approach and by neglecting transverse dispersivity. Our model results show a complex near-bed hyporheic temperature distributions, which vary temporally and are strongly related to the in-stream water residence time into the hyporheic zone and consequently to the bed morphology and flow discharge. We compared the temperature dynamics within the hyporheic zone of both large low-gradient and small steep streams to investigate the effect of stream morphology. Results show that the

  20. Fracture process zone in granite

    USGS Publications Warehouse

    Zang, A.; Wagner, F.C.; Stanchits, S.; Janssen, C.; Dresen, G.

    2000-01-01

    In uniaxial compression tests performed on Aue granite cores (diameter 50 mm, length 100 mm), a steel loading plate was used to induce the formation of a discrete shear fracture. A zone of distributed microcracks surrounds the tip of the propagating fracture. This process zone is imaged by locating acoustic emission events using 12 piezoceramic sensors attached to the samples. Propagation velocity of the process zone is varied by using the rate of acoustic emissions to control the applied axial force. The resulting velocities range from 2 mm/s in displacement-controlled tests to 2 ??m/s in tests controlled by acoustic emission rate. Wave velocities and amplitudes are monitored during fault formation. P waves transmitted through the approaching process zone show a drop in amplitude of 26 dB, and ultrasonic velocities are reduced by 10%. The width of the process zone is ???9 times the grain diameter inferred from acoustic data but is only 2 times the grain size from optical crack inspection. The process zone of fast propagating fractures is wider than for slow ones. The density of microcracks and acoustic emissions increases approaching the main fracture. Shear displacement scales linearly with fracture length. Fault plane solutions from acoustic events show similar orientation of nodal planes on both sides of the shear fracture. The ratio of the process zone width to the fault length in Aue granite ranges from 0.01 to 0.1 inferred from crack data and acoustic emissions, respectively. The fracture surface energy is estimated from microstructure analysis to be ???2 J. A lower bound estimate for the energy dissipated by acoustic events is 0.1 J. Copyright 2000 by the American Geophysical Union.

  1. Stratospheric aerosols in the intertropical convergence zone, Panama Canal zone

    NASA Technical Reports Server (NTRS)

    Farlow, N. H.; Ferry, G. V.; Lem, H. Y.; Hayes, D. M.

    1979-01-01

    To investigate whether injection sources of the stratospheric aerosol layer could be detected in the tropical stratosphere, an examination of the aerosol vertical and horizontal size distribution around the Intertropical Convergence Zone (ITCZ) at the Panama Canal Zone was performed during the summer of 1977. By comparing these data with similar measurements in temperate and polar regions, it was hoped to discover variations in particle size that would indicate whether a young aerosol is forming and entering the stratosphere at the ITCZ; where the aerosol matures; and finally, where it reenters the troposphere. The methods used in the investigations and the results obtained from the analyses are described.

  2. Wave statistics in a coastal focal zone

    NASA Astrophysics Data System (ADS)

    Janssen, T. T.; Herbers, T. H. C.; Pearman, D. W.; Van Ettinger, E.; Smit, P. B.

    2014-12-01

    Wave-current dynamics in wave focal zones in exposed coastal inlets and river mouths are still poorly understood. This is in part due to lack of observations, which are complicated due to the presence of energetic waves, strong (tidal) currents, dynamic seabed morphology, and often busy ship traffic. Conventional (fixed) instruments, such as buoys and bottom-mounted current or pressure sensors, are difficult to maintain in such areas, and the spatial variability of the wave field is difficult to capture with single point measurements, or even arrays of fixed measurements. In addition to the observational difficulties, the effects of e.g. current shear, wave blocking, statistical inhomogeneity [see Smit & Janssen, 2013, J. Phys. Ocean., 43, pp 1741-1758], and nonlinearity [see Janssen & Herbers, 2009, J. Phys Ocean., 39, pp 1948-1964] on wave statistics are not fully understood, not accounted for in operational stochastic wave models, and - as a consequence - often ignored. In this paper, we consider new observational data of waves approaching the Mouth of the Columbia River undergoing bottom refraction and strong wave-current interaction. The data were collected during the 2013 ONR RIVET experiment using an array of free drifting wave-current buoys. The Lagrangian instruments capture the spatial variability of the wave field in the inlet and, by deploying them in large ensembles, resolve the (inhomogeneous and nonlinear) wave statistics in the focal zone. We discuss the use of free-drifting instruments to measure wave statistics in a coastal wave focal zone, consider the observed effects of wave inhomogeneity, and show that non-Gaussian effects are important and affect extreme wave occurrences in the Mouth of the Columbia River.

  3. Nuclear weapon-free zones

    SciTech Connect

    Zinner, P.E.

    1988-06-01

    The literature dealing with nuclear weapon-free zones is not as prominent as is that on arms control and reduction negotiations, confidence-building measures, and a variety of other security-related issues. Documentary sources are relatively scarce and they are widely scattered. Yet on close scrutiny, it becomes apparent that nuclear weapon-free zones have been the object of widespread, intense interest in most regions of the world. Six international treaties designed to prevent the spread of nuclear weapons are now in force. A substantial portion of the globe is already under some sort of nuclear weapon-free regime. Proposals for creating additional nuclear weapon-free zones abound. In Europe, the only region where adversary alliances maintain a high concentration of nuclear weapons, issues concerning the viability of nuclear weapon-free zones have attracted special attention. The following pages contain information intended to help to put problems in perspective, create awareness of trends, and provide a basis for identifying factors that may bear significantly on evaluating options in the formulation of national and alliance security policies concerning nuclear weapon-free zones. 31 refs.

  4. The Dynamics of Fault Zones

    NASA Astrophysics Data System (ADS)

    Mooney, W. D.; Beroza, G.; Kind, R.

    2006-05-01

    Geophysical studies of the Earth's crust, including fault zones, have developed over the past 80 years. Among the first methods to be employed, seismic refraction and reflection profiles were recorded in the North American Gulf Coast to detect salt domes which were known to trap hydrocarbons. Seismic methods continue to be the most important geophysical technique in use today due to the methods' relatively high accuracy, high resolution, and great depth of penetration. However, in the past decade, a much expanded repertoire of seismic and non-seismic techniques have been brought to bear on studies of the Earth's crust and uppermost mantle. Important insights have also been obtained using seismic tomography, measurements of seismic anisotropy, fault zone guided waves, borehole surveys, and geo-electrical, magnetic, and gravity methods. In this presentation, we briefly review recent geophysical progress in the study of the structure and internal properties of faults zones, from their surface exposures to their lower limit. We focus on the structure of faults within continental crystalline and competent sedimentary rock rather than within the overlying, poorly consolidated sedimentary rocks. A significant body of literature exists for oceanic fracture zones, however, due to space limitations we restrict this review to faults within and at the margins of the continents. We also address some unanswered questions, including: 1) Does fault-zone complexity, as observed at the surface, extend to great depth, or do active faults become thin simple planes at depth? and 2) How is crustal deformation accommodated within the lithospheric mantle?

  5. Affective Dynamics in Psychopathology

    PubMed Central

    Trull, Timothy J.; Lane, Sean P.; Koval, Peter; Ebner-Priemer, Ulrich W.

    2016-01-01

    We discuss three varieties of affective dynamics (affective instability, emotional inertia, and emotional differentiation). In each case, we suggest how these affective dynamics should be operationalized and measured in daily life using time-intensive methods, like ecological momentary assessment or ambulatory assessment, and recommend time-sensitive analyses that take into account not only the variability but also the temporal dependency of reports. Studies that explore how these affective dynamics are associated with psychological disorders and symptoms are reviewed, and we emphasize that these affective processes are within a nexus of other components of emotion regulation.

  6. 47 CFR 5.313 - Innovation zones.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Innovation zones. 5.313 Section 5.313... Licenses § 5.313 Innovation zones. (a) An innovation zone is a specified geographic location with pre... own motion or in response to a request from the public. Innovation zones will be announced via...

  7. 33 CFR 165.20 - Safety zones.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety zones. 165.20 Section 165... WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Safety Zones § 165.20 Safety zones. A Safety Zone is a water area, shore area, or water and shore area to which, for safety or...

  8. 33 CFR 165.20 - Safety zones.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety zones. 165.20 Section 165... WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Safety Zones § 165.20 Safety zones. A Safety Zone is a water area, shore area, or water and shore area to which, for safety or...

  9. 33 CFR 165.20 - Safety zones.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety zones. 165.20 Section 165... WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Safety Zones § 165.20 Safety zones. A Safety Zone is a water area, shore area, or water and shore area to which, for safety or...

  10. 33 CFR 165.20 - Safety zones.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety zones. 165.20 Section 165... WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Safety Zones § 165.20 Safety zones. A Safety Zone is a water area, shore area, or water and shore area to which, for safety or...

  11. 33 CFR 165.20 - Safety zones.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety zones. 165.20 Section 165... WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Safety Zones § 165.20 Safety zones. A Safety Zone is a water area, shore area, or water and shore area to which, for safety or...

  12. 15 CFR 400.44 - Zone schedule.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 2 2013-01-01 2013-01-01 false Zone schedule. 400.44 Section 400.44 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) FOREIGN-TRADE ZONES BOARD, DEPARTMENT OF COMMERCE REGULATIONS OF THE FOREIGN-TRADE ZONES BOARD Operation of Zones...

  13. 15 CFR 400.44 - Zone schedule.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 2 2014-01-01 2014-01-01 false Zone schedule. 400.44 Section 400.44 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) FOREIGN-TRADE ZONES BOARD, DEPARTMENT OF COMMERCE REGULATIONS OF THE FOREIGN-TRADE ZONES BOARD Operation of Zones...

  14. 47 CFR 5.313 - Innovation zones.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Innovation zones. 5.313 Section 5.313... Licenses § 5.313 Innovation zones. (a) An innovation zone is a specified geographic location with pre... own motion or in response to a request from the public. Innovation zones will be announced via...

  15. 19 CFR 146.7 - Zone changes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 2 2013-04-01 2013-04-01 false Zone changes. 146.7 Section 146.7 Customs Duties U... (CONTINUED) FOREIGN TRADE ZONES General Provisions § 146.7 Zone changes. (a) Alteration of an activated area... operations performed in the zone are substantially changed; (3) the existing bond lacks good and...

  16. 19 CFR 146.7 - Zone changes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false Zone changes. 146.7 Section 146.7 Customs Duties U... (CONTINUED) FOREIGN TRADE ZONES General Provisions § 146.7 Zone changes. (a) Alteration of an activated area... operations performed in the zone are substantially changed; (3) the existing bond lacks good and...

  17. 19 CFR 146.7 - Zone changes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Zone changes. 146.7 Section 146.7 Customs Duties U... (CONTINUED) FOREIGN TRADE ZONES General Provisions § 146.7 Zone changes. (a) Alteration of an activated area... operations performed in the zone are substantially changed; (3) the existing bond lacks good and...

  18. 19 CFR 146.7 - Zone changes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 2 2014-04-01 2014-04-01 false Zone changes. 146.7 Section 146.7 Customs Duties U... (CONTINUED) FOREIGN TRADE ZONES General Provisions § 146.7 Zone changes. (a) Alteration of an activated area... operations performed in the zone are substantially changed; (3) the existing bond lacks good and...

  19. State Enterprise Zone Programs: Have They Worked?

    ERIC Educational Resources Information Center

    Peters, Alan H.; Fisher, Peter S.

    The effectiveness of state enterprise zone programs was examined by using a hypothetical-firm model called the Tax and Incentives Model-Enterprise Zones (TAIM-ez) model to analyze the value of enterprise zone incentives to businesses across the United States and especially in the 13 states that had substantial enterprise zone programs by 1990. The…

  20. Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones.

    PubMed

    Walsh, David A; Zaikova, Elena; Howes, Charles G; Song, Young C; Wright, Jody J; Tringe, Susannah G; Tortell, Philippe D; Hallam, Steven J

    2009-10-23

    Oxygen minimum zones, also known as oceanic "dead zones," are widespread oceanographic features currently expanding because of global warming. Although inhospitable to metazoan life, they support a cryptic microbiota whose metabolic activities affect nutrient and trace gas cycling within the global ocean. Here, we report metagenomic analyses of a ubiquitous and abundant but uncultivated oxygen minimum zone microbe (SUP05) related to chemoautotrophic gill symbionts of deep-sea clams and mussels. The SUP05 metagenome harbors a versatile repertoire of genes mediating autotrophic carbon assimilation, sulfur oxidation, and nitrate respiration responsive to a wide range of water-column redox states. Our analysis provides a genomic foundation for understanding the ecological and biogeochemical role of pelagic SUP05 in oxygen-deficient oceanic waters and its potential sensitivity to environmental changes. PMID:19900896

  1. Behavior of post-tensioned girder anchorage zones

    NASA Astrophysics Data System (ADS)

    Stone, W. C.; Paes-Filho, W.; Breen, J. E.

    1981-04-01

    Several large, thin-webbed box girder bridges, with post-tensioned anchorage zones have experienced large cracks along the tendon path in the anchorage zones at the design stressing load. A simplified test specimen was developed to accurately simulate the behavior of the post-tensioned box girder web. The primary variables affecting the formation of the tendon path crack were. investigated: tendon inclination and eccentricity, section height and width, tensile splitting strength of the concrete, anchor width and geometry, and the effect of supplementary anchorage zone reinforcement, both active and passive. Behavioral trends are presented as determined from three sources. These include physical tests of 40 quarter-scale microconcrete models and physical tests of 9 full-scale prototype box girder web sections.

  2. Finite element analysis of type IV cracking in 2.25Cr-1Mo steel weldment based on micro-mechanistic approach

    NASA Astrophysics Data System (ADS)

    Goyal, Sunil; Laha, K.; Chandravathi, K. S.; Parameswaran, P.; Mathew, M. D.

    2011-08-01

    Creep studies were carried out on 2.25Cr-1Mo steel base metal and its fusion-welded weldments at 823 K over the stress range 100-240 MPa. The weldment possessed lower creep rupture strength than the base metal due to type IV failure at the outer edge of the heat-affected zone (HAZ). Premature failure of the weldment was associated with pronounced creep cavitation accompanied with localized creep deformation in the soft intercritical region of the HAZ that was sandwiched between relatively higher creep deformation-resistant microstructural regions. The cavitation was associated with coarse intergranular precipitates in the intercritical region of the HAZ. The type IV cracking in the intercritical region of the HAZ was found to initiate deep inside the weldment and propagate towards the specimen surface. Finite element analysis of stress and strain distributions across the weldment was carried out considering the micro-mechanical strength inhomogeneity across it to explain the observed features of type IV cracking. The estimated higher von-Mises and principal stresses deep inside the intercritical region of the HAZ of the weldment led to the localized creep deformation and preferential cavity nucleation and growth, resulting in type IV failure of the weldment. The role of intergranular precipitate particles in the intercritical region of the HAZ in facilitating creep cavity nucleation by the exhaustion of creep ductility of the material close to the precipitate was corroborated from finite element analysis of stress and strain distribution around the precipitates.

  3. Infrasonic tremor in the diffraction zone

    NASA Astrophysics Data System (ADS)

    Fee, David; Garcés, Milton

    2007-08-01

    Volcanic tremor signals recorded by an infrasound array ~12.5 km from the active vent of Kīlauea Volcano show clear diurnal amplitude variations and originate from a well defined direction pointing to the active Pu`u `Ō`ō crater complex. Spectral amplitudes between 0.02-0.3 Hz, a proxy for wind speed, increase when the wind speeds increase during the daytime. Spectral amplitudes between 0.5-3 Hz, where infrasonic tremor is concentrated, increase when the wind speeds decrease at night. Power spectrum analysis shows that when ambient noise levels drop, infrasonic tremor amplitudes rise. Array processing confirms this relationship and reveals tremor detections and amplitudes decrease during the day. These changes in infrasonic tremor spectral amplitude and coherence are most likely due to diurnal variations in atmospheric boundary layers affecting infrasonic propagation within the diffraction zone. Recognition of these regional atmospheric patterns is necessary to permit robust infrasonic remote sensing of volcanic processes.

  4. Beyond the classic thermoneutral zone

    PubMed Central

    Kingma, Boris RM; Frijns, Arjan JH; Schellen, Lisje; van Marken Lichtenbelt, Wouter D

    2014-01-01

    The thermoneutral zone is defined as the range of ambient temperatures where the body can maintain its core temperature solely through regulating dry heat loss, i.e., skin blood flow. A living body can only maintain its core temperature when heat production and heat loss are balanced. That means that heat transport from body core to skin must equal heat transport from skin to the environment. This study focuses on what combinations of core and skin temperature satisfy the biophysical requirements of being in the thermoneutral zone for humans. Moreover, consequences are considered of changes in insulation and adding restrictions such as thermal comfort (i.e. driver for thermal behavior). A biophysical model was developed that calculates heat transport within a body, taking into account metabolic heat production, tissue insulation, and heat distribution by blood flow and equates that to heat loss to the environment, considering skin temperature, ambient temperature and other physical parameters. The biophysical analysis shows that the steady-state ambient temperature range associated with the thermoneutral zone does not guarantee that the body is in thermal balance at basal metabolic rate per se. Instead, depending on the combination of core temperature, mean skin temperature and ambient temperature, the body may require significant increases in heat production or heat loss to maintain stable core temperature. Therefore, the definition of the thermoneutral zone might need to be reformulated. Furthermore, after adding restrictions on skin temperature for thermal comfort, the ambient temperature range associated with thermal comfort is smaller than the thermoneutral zone. This, assuming animals seek thermal comfort, suggests that thermal behavior may be initiated already before the boundaries of the thermoneutral zone are reached. PMID:27583296

  5. Analytical model for radionuclide transport in the buffer zone of the deep geological disposal

    NASA Astrophysics Data System (ADS)

    Tsao, L. D.; Chen, J. S.; Li, M. H.

    2015-12-01

    Radioactive nuclear waste poses long-term threat to human beings and the environment because that remains radioactive after millions of years. Therefore, radioactive wastes must be isolated from the living environment for millennia. A deep geological disposal entails a combination of four parts: vitrified waste form, imaginary zone, buffer zone and excavation-affected zone. The buffer zone constituted by bentonite clay provides a high level of containment of the radioactivity in the wastes over a very long time period. Analytical solution is an efficient tool for the performance evaluation of the buffer zone. This study develops a new analytical model to diffusion equation in cylindrical coordinate for describing radionuclide transport in the buffer zone. The derived solution is compared against the previous solution to illustrate the validity of previous solution which was derived using a diffusion equation in Cartesian coordinates.

  6. A method for generating volumetric fault zone grids for pillar gridded reservoir models

    NASA Astrophysics Data System (ADS)

    Qu, Dongfang; Røe, Per; Tveranger, Jan

    2015-08-01

    The internal structure and petrophysical property distribution of fault zones are commonly exceedingly complex compared to the surrounding host rock from which they are derived. This in turn produces highly complex fluid flow patterns which affect petroleum migration and trapping as well as reservoir behavior during production and injection. Detailed rendering and forecasting of fluid flow inside fault zones require high-resolution, explicit models of fault zone structure and properties. A fundamental requirement for achieving this is the ability to create volumetric grids in which modeling of fault zone structures and properties can be performed. Answering this need, a method for generating volumetric fault zone grids which can be seamlessly integrated into existing standard reservoir modeling tools is presented. The algorithm has been tested on a wide range of fault configurations of varying complexity, providing flexible modeling grids which in turn can be populated with fault zone structures and properties.

  7. Structural Analysis of Active North Bozgush Fault Zone (NW Iran)

    NASA Astrophysics Data System (ADS)

    Saber, R.; Isik, V.; Caglayan, A.

    2013-12-01

    NW Iran is one of the seismically active regions between Zagros Thrust Belt at the south and Caucasus at the north. Not only large magnitude historical earthquakes (Ms>7), but also 1987 Bozgush, 1997 Ardebil (Mw 6.1) and 2012 Ahar-Varzagan (Mw 6.4) earthquakes reveal that the region is seismically active. The North Bozgush Fault Zone (NBFZ) in this region has tens of kilometers in length and hundreds of meters in width. The zone has produced some large and destructive earthquakes (1593 M:6.1 and 1883 M:6.2). The NBFZ affects the Cenozoic units and along this zone Eocene units thrusted over Miocene and/or Plio-Quaternary sedimentary units. Together with morphologic features (stream offsets and alluvial fan movements) affecting the young unites reveal that the zone is active. The zone is mainly characterized by strike-slip faults with reverse component and reverse faults. Reverse faults striking N55°-85°E and dip of 40°-50° to the SW while strike-slip faults show right lateral slip with N60°-85°W and N60°-80°E directions. Our structural data analysis in NBFZ indicates that the axis direction of σ2 principal stress is vertical and the stress ratio (R) is 0.12. These results suggest that the tectonic regime along the North Bozgush Fault Zone is transpressive. Obtained other principal stresses (σ1, σ3) results are compatible with stress directions and GPS velocity suggested for NW Iran.

  8. Tectonics and the photosynthetic habitable zone (Invited)

    NASA Astrophysics Data System (ADS)

    Sleep, N. H.

    2009-12-01

    The traditional habitable zone lies between an inner stellar radius where the surface of the planet becomes too hot for liquid water carbon-based life and on outer radius, where the surface freezes. It is effectively the zone where photosynthesis is feasible. The concept extends to putative life on objects with liquid methane at the surface, like Titan. As a practical matter, photosynthesis leaves detectable biosignatures in the geological record; black shale on the Earth indicates that sulfide and probably FeO based photosynthesis existed by 3.8 Ga. The hard crustal rocks and the mantle sequester numerous photosynthetic biosignatures. Photosynthesis can produce detectable free oxygen with ozone in the atmosphere of extrasolar planets. In contrast, there is no outer limit for subsurface life in large silicate objects. Pre-photosynthetic niches are dependable but meager and not very detectable at great antiquity or great distance, with global productivity less than 1e-3 of the photosynthetic ones. Photosynthetic organisms have bountiful energy that modifies their surface environment and even tectonics. For example, metamorphic rocks formed at the expense of thick black shale are highly radioactive and hence self-fluxing. Active tectonics with volcanism and metamorphism prevents volatiles from being sequestered in the subsurface as on Mars. A heat-pipe object, like a larger Io, differs from the Earth in that the volatiles return to the deep interior distributed within massive volcanic deposits rather than concentrated in the shallow oceanic crust. One the Earth, the return of water to the surface by arc volcanoes controls its mantle abundance at the transition between behaving as a trace element and behaving as a major element that affects melting. The ocean accumulates the water that the mantle and crust do not take. The Earth has the “right” amount of water that erosion/deposition and tectonics both tend to maintain near sea level surfaces. The mantle contains

  9. Effect of vadose zone on the steady-state leakage rates from landfill barrier systems

    SciTech Connect

    Celik, B. Rowe, R.K. Unlue, K.

    2009-01-15

    Leakage rates are evaluated for a landfill barrier system having a compacted clay liner (CCL) underlain by a vadose zone of variable thickness. A numerical unsaturated flow model SEEP/W is used to simulate the moisture flow regime and steady-state leakage rates for the cases of unsaturated zones with different soil types and thicknesses. The results of the simulations demonstrate that harmonic mean hydraulic conductivity of coarse textured vadose zones is 3-4 orders of magnitude less than saturated hydraulic conductivity; whereas, the difference is only one order of magnitude for fine textured vadose zones. For both coarse and fine textured vadose zones, the effective hydraulic conductivity of the barrier system and the leakage rate to an underlying aquifer increases with increasing thickness of the vadose zone and ultimately reaches an asymptotic value for a coarse textured vadose zone thickness of about 10 m and a fine textured vadose zone thickness of about 5 m. Therefore, the fine and coarse textured vadose zones thicker than about 5 m and 10 m, respectively, act as an effective part of the barrier systems examined. Although the thickness of vadose zone affects the effective hydraulic conductivity of the overall barrier system, the results demonstrated that the hydraulic conductivity of the CCL is the dominant factor controlling the steady-state leakage rates through barrier systems having single low permeability clay layers.

  10. X-ray Microdiffraction and EBSD Study of FSP Induced Structural/Phase Transitions in a Ni-based Superalloy

    SciTech Connect

    Barabash, Oleg M; Barabash, Rozaliya; Ice, Gene E; Feng, Zhili; Gandy, Dr. David

    2009-01-01

    Severe plastic deformation during Friction Stir Processing (FSP) of an IN738 Ni-based superalloy was studied by means of X-ray polychromatic microdiffraction, EBSD, scanning electron and optical microscopies. Modeling of the physical properties and phase composition was also performed. Several distinct zones are formed during FSP including a stir zone (SZ), a thermal-mechanical affected zone (TMAZ) and a heat affected zone (HAZ). Each zone has distinct microstructure after FSP. The initial dendrite structure is preserved in the HAZ, while strengthening ??-phase particles partially dissolve and coagulate. Plastic deformation of the base material dendrites takes place in the TMAZ and a large number of geometrically necessary dislocations are formed. The extent of deformation increases toward the SZ and the dendrite structure is completely destroyed in the SZ and replaced by a fine submicrocrystalline microstructure.

  11. Ecotoxicology for risk assessment in arid zones: some key issues.

    PubMed

    Everts, J W

    1997-01-01

    In the hot arid zones of the world, ecotoxicological research is in statu nascendi. In these zones, the major sources of contamination by toxicants are: (1) plant protection and vector control in wet zones; (2) large-scale crop protection campaigns in dry and ephemeral wet zones; (3) refuse and obsolete pesticides in dry zones; and (4) mining. Economic development in many of these zones requires an adequate knowledge of certain basic principles, i.e., where extrapolating existing knowledge does not apply. The vulnerability of ecosystems to contaminants is closely related to water flow. In dry areas, species are susceptible to factors that interfere with the ecophysiological properties regulating water loss. Most hot arid areas are found at low latitudes where temperatures show striking extremes both in time and space. Living organisms are physiologically resistant and/or show adaptive behavior to these temperature extremes. Very little is known about the effects of toxicants on these key resistant and adaptive functions, although by extrapolation a few assumptions can be made. The effects of hyperthermia, for instance, can be aggravated by GSH depleting substances, and the temporary disabling effects characteristic of many pesticides may prove fatal under these circumstances. Most wet areas show a spatial concentration of both human activity and wildlife. In mesic zones, the contamination of water represents a health risk to both humans and other living organisms. The vast majority of aquatic communities are those inhabiting temporary pools and streams. Their populations are characterized by short reproductive cycles and/or long dormant stages. Toxicants affecting growth in these areas have been shown to have a deleterious effect. In a synthesis of existing knowledge the most prominent gaps are identified and priorities for further research are made. PMID:9002429

  12. Influence of soil and climate on root zone storage capacity

    NASA Astrophysics Data System (ADS)

    Euser, Tanja; McMillan, Hilary; Hrachowitz, Markus; Winsemius, Hessel; Savenije, Hubert

    2015-04-01

    The root zone water storage capacity (Sr) of a catchment is an important variable for the hydrological behaviour of a catchment; it strongly influences the storage, transpiration and runoff generation in an area. However, the root zone storage capacity is largely heterogeneous and not measurable. There are different theories about the variables affecting the root zone storage capacity; among the most debated are soil, vegetation and climate. The effect of vegetation and soil is often accounted for by detailed soil and land use maps. To investigate the effect of climate on the root zone storage capacity, an analogue can be made between the root zone storage capacity of a catchment and the human habit to design and construct reservoirs: both storage capacities help to overcome a dry period of a certain length. Humans often use the mass curve technique to determine the required storage needed to design the reservoir capacity. This mass curve technique can also be used to derive the root zone storage capacity created by vegetation in a certain ecosystem and climate (Gao et al., 2014). Only precipitation and discharge or evaporation data are required for this method. This study tests whether Sr values derived by both the mass curve technique and from soil maps are comparable for a range of catchments in New Zealand. Catchments are selected over a gradient of climates and land use. Special focus lies on how Sr values derived for a larger catchment are representative for smaller nested catchments. The spatial differences are examined between values derived from soil data and from climate and flow data. Gao, H., Hrachowitz, M., Schymanski, S.J., Fenicia, F., Sriwongsitanon, N., Savenije, H.H.G, (2014): Climate controls how ecosystems size the root zone storage capacity at catchment scale. DOI: 10.1002/2014GL061668

  13. Influence of carbonate facies on fault zone architecture

    NASA Astrophysics Data System (ADS)

    Michie, E. A. H.; Haines, T. J.; Healy, D.; Neilson, J. E.; Timms, N. E.; Wibberley, C. A. J.

    2014-08-01

    Normal faults on Malta were studied to analyse fault propagation and evolution in different carbonate facies. Deformation of carbonate facies is controlled by strength, particle size and pore structure. Different deformation styles influence the damage characteristics surrounding faults, and therefore the fault zone architecture. The carbonates were divided into grain- and micrite-dominated carbonate lithofacies. Stronger grain-dominated carbonates show localised deformation, whereas weaker micrite-dominated carbonates show distributed deformation. The weaker micrite-dominated carbonates overlie stronger grain-dominated carbonates, creating a mechanical stratigraphy. A different architecture of damage, the ‘Fracture Splay Zone’ (FSZ), is produced within micrite-dominated carbonates due to this mechanical stratigraphy. Strain accumulates at the point of juxtaposition between the stronger grain-dominated carbonates in the footwall block and the weaker micrite-dominated carbonates in the hanging wall block. New slip surfaces nucleate and grow from these points, developing an asymmetric fault damage zone segment. The development of more slip surfaces within a single fault zone forms a zone of intense deformation, bound between two slip surfaces within the micrite-dominated carbonate lithofacies (i.e., the FSZ). Rather than localisation onto a single slip surface, allowing formation of a continuous fault core, the deformation will be dispersed along several slip surfaces. The dispersed deformation can create a highly permeable zone, rather than a baffle/seal, in the micrite-dominated carbonate lithofacies. The formation of a Fracture Splay Zone will therefore affect the sealing potential of the fault zone. The FSZ, by contrast, is not observed in the majority of the grain-dominated carbonates.

  14. 'One physical system': Tansley's ecosystem as Earth's critical zone.

    PubMed

    Richter, Daniel deB; Billings, Sharon A

    2015-05-01

    Integrative concepts of the biosphere, ecosystem, biogeocenosis and, recently, Earth's critical zone embrace scientific disciplines that link matter, energy and organisms in a systems-level understanding of our remarkable planet. Here, we assert the congruence of Tansley's (1935) venerable ecosystem concept of 'one physical system' with Earth science's critical zone. Ecosystems and critical zones are congruent across spatial-temporal scales from vegetation-clad weathering profiles and hillslopes, small catchments, landscapes, river basins, continents, to Earth's whole terrestrial surface. What may be less obvious is congruence in the vertical dimension. We use ecosystem metabolism to argue that full accounting of photosynthetically fixed carbon includes respiratory CO₂ and carbonic acid that propagate to the base of the critical zone itself. Although a small fraction of respiration, the downward diffusion of CO₂ helps determine rates of soil formation and, ultimately, ecosystem evolution and resilience. Because life in the upper portions of terrestrial ecosystems significantly affects biogeochemistry throughout weathering profiles, the lower boundaries of most terrestrial ecosystems have been demarcated at depths too shallow to permit a complete understanding of ecosystem structure and function. Opportunities abound to explore connections between upper and lower components of critical-zone ecosystems, between soils and streams in watersheds, and between plant-derived CO₂ and deep microbial communities and mineral weathering. PMID:25731586

  15. Review on symmetric structures in ductile shear zones

    NASA Astrophysics Data System (ADS)

    Mukherjee, Soumyajit

    2016-07-01

    Symmetric structures in ductile shear zones range widely in shapes and geneses. Matrix rheology, its flow pattern, its competency contrast with the clast, degree of slip of the clast, shear intensity and its variation across shear zone and deformation temperature, and degree of confinement of clast in shear zones affects (independently) the degree of symmetry of objects. Kinematic vorticity number is one of the parameters that govern tail geometry across clasts. For example, symmetric and nearly straight tails develop if the clast-matrix system underwent dominantly a pure shear/compression. Prolonged deformation and concomitant recrystallization can significantly change the degree of symmetry of clasts. Angular relation between two shear zones or between a shear zone and anisotropy determines fundamentally the degree of symmetry of lozenges. Symmetry of boudinaged clasts too depends on competency contrast between the matrix and clast in some cases, and on the degrees of slip of inter-boudin surfaces and pure shear. Parasitic folds and post-tectonic veins are usually symmetric.

  16. Comfort Zone: Model or Metaphor

    ERIC Educational Resources Information Center

    Brown, Mike

    2008-01-01

    The comfort zone model is widespread within adventure education literature. It is based on the belief that when placed in a stressful situation people will respond by overcoming their fear and therefore grow as individuals. This model is often presented to participants prior to activities with a highly perceived sense of risk and challenge which…

  17. Zone refining of plutonium metal

    SciTech Connect

    1997-05-01

    The purpose of this study was to investigate zone refining techniques for the purification of plutonium metal. The redistribution of 10 impurity elements from zone melting was examined. Four tantalum boats were loaded with plutonium impurity alloy, placed in a vacuum furnace, heated to 700{degrees}C, and held at temperature for one hour. Ten passes were made with each boat. Metallographic and chemical analyses performed on the plutonium rods showed that, after 10 passes, moderate movement of certain elements were achieved. Molten zone speeds of 1 or 2 inches per hour had no effect on impurity element movement. Likewise, the application of constant or variable power had no effect on impurity movement. The study implies that development of a zone refining process to purify plutonium is feasible. Development of a process will be hampered by two factors: (1) the effect on impurity element redistribution of the oxide layer formed on the exposed surface of the material is not understood, and (2) the tantalum container material is not inert in the presence of plutonium. Cold boat studies are planned, with higher temperature and vacuum levels, to determine the effect on these factors. 5 refs., 1 tab., 5 figs.

  18. Building a Subduction Zone Observatory

    USGS Publications Warehouse

    Gomberg, Joan S.; Bodin, Paul; Bourgeois, Jody; Cashman, Susan; Cowan, Darrel; Creager, Kenneth C.; Crowell, Brendan; Duvall, Alison; Frankel, Arthur; Gonzalez, Frank; Houston, Heidi; Johnson, Paul; Kelsey, Harvey; Miller, Una; Roland, Emily C.; Schmidt, David; Staisch, Lydia; Vidale, John; Wilcock, William; Wirth, Erin

    2016-01-01

    Subduction zones contain many of Earth’s most remarkable geologic structures, from the deepest oceanic trenches to glacier-covered mountains and steaming volcanoes. These environments formed through spectacular events: Nature’s largest earthquakes, tsunamis, and volcanic eruptions are born here.

  19. Issues in Coastal Zone Management.

    ERIC Educational Resources Information Center

    Davis, Derrin

    1992-01-01

    Addresses the following issues relevant to coastal zone management: overcrowding, resource exploitation, pollution, agriculture, fisheries, industrial, and other uses. Describes conflicts and trade-offs in management typified by fragmented agency decision making. Discusses implications of the greenhouse effect, sustainable development, and the…

  20. Comparable Habitable Zones of Stars

    NASA Video Gallery

    The habitable zone is the distance from a star where one can have liquid water on the surface of a planet. If a planet is too close to its parent star, it will be too hot and water would have evapo...

  1. Float zone experiments in space

    NASA Technical Reports Server (NTRS)

    Verhoeven, J. D.; Noack, M. A.; Gill, W. N.; Hau, C. C.

    1984-01-01

    The molten zone/freezing crystal interface system and all the mechanisms were examined. If Marangoni convection produces oscillatory flows in the float zone of semiconductor materials, such as silicon, then it is unlikely that superior quality crystals can be grown in space using this process. The major goals were: (1) to determine the conditions for the onset of Marangoni flows in molten tin, a model system for low Prandtl number molten semiconductor materials; (2) to determine whether the flows can be suppressed by a thin oxide layer; and (3) based on experimental and mathematical analysis, to predict whether oscillatory flows will occur in the float zone silicon geometry in space, and if so, could it be suppressed by thin oxide or nitride films. Techniques were developed to analyze molten tin surfaces in a UHV system in a disk float zone geometry to minimize buoyancy flows. The critical Marangoni number for onset of oscillatory flows was determined to be greater than 4300 on atomically clean molten tin surfaces.

  2. Vanadium and niobium additions in pressure vessel steels

    SciTech Connect

    Xu, Peiyuan.

    1992-01-01

    A statistically designed series of vanadium and niobium microalloyed C-Mn HSLA steels was used for an investigation of heat-affected zone (HAZ) toughness in multipass welds. The vanadium additions were in the range 0.005 to 0.097 Wt.% and the niobium additions were in the range 0.004 to 0.06 Wt.%. GMAW processes with welding heat inputs of 3kJ/mm and 5kJ/mm and post-weld heat treatments (PWHT) at additions of microalloy elements V and Nb on multipass HAZ toughness in the as-welded and PWHT conditions was confirmed. the 50 Joule transition temperature (TT50J) for HAZs in all weld conditions correlated with maximum HAZ hardness. Increases in HAZ hardness and TT50J caused by PWHT were observed. Hence PWHT is not recommended for V/Nb microalloyed HLSA steels. The randomly distributed precipitation of V and Nb carbides (V,Nb)C, including dislocation precipitation and matrix precipitation with particle sizes of 5-15nm, is the predominant alloy carbide precipitate morphology in these steels. Banded morphology of (V,Nb)C precipitation is rarely observed in the HAZ. The volume fraction of (V,Nb)C precipitates increases as increasing V and/or Nb contents in the experimental heats. The volume fraction of precipitates also increases with increasing the PWHT time. The crack initiation sites in Charpy specimens of HAZs tested at the approximate transition temperature are shifted from the highest stress triaxiality location to a higher hardness location. This is found to be characteristic of fracture in the multipass HAZ of the microalloyed steel. An analytical study shows that the influences of additions of microalloy elements V and Nb on yield stress, [sigma][sub y8], and fracture stress, [sigma][sub f], eventuate in the increase of transition temperature in these materials.

  3. Weldability of an abrasion-resistant steel

    SciTech Connect

    Adonyi, Y.; Domis, W.F.; Chen, C.C.

    1995-12-31

    The welding performance of a low-carbon-equivalent, abrasion-resistant steel newly developed for the mining industry was studied using a combination of simulative and actual weldability tests. The susceptibility to hydrogen-induced cracking in the weld-metal and heat-affected zones (HAZ), as well as the potential loss of strength and toughness in the HAZ, were evaluated. Simulative testing included the use of the Gleeble 1500 thermomechanical simulator to produce single and multiple-pass weld HAZ microstructures on CVN-size specimens. The effects of heat input, interpass temperature, and post-weld heat treatment (PWHT) on the HAZ microstructure and properties were determined. Additionally, a computer software was used to predict theoretical HAZ hardnesses and volume fraction of phases as a function of cooling rates. The actual welding tests included the Gapped Bead-on-Plate and the Y-groove tests to determine the weld-metal and HAZ susceptibility to hydrogen-induced cracking. Three heat inputs, two diffusible hydrogen and two weld-metal yield-strength levels were used for the actual welding stage. Good correlation was found between microstructure predictions, physical simulations, and actual weld testing results. The new steel was found to be highly weldable because of the low preheat required to avoid HAZ hydrogen induced cracking. All aspects of weld-metal and HAZ cracking behavior had to be addressed for a complete weldability characterization. It was also found that use of excessive heat inputs and PWHT should be avoided when welding this type of steels.

  4. Seismic fault zone trapped noise

    NASA Astrophysics Data System (ADS)

    Hillers, G.; Campillo, M.; Ben-Zion, Y.; Roux, P.

    2014-07-01

    Systematic velocity contrasts across and within fault zones can lead to head and trapped waves that provide direct information on structural units that are important for many aspects of earthquake and fault mechanics. Here we construct trapped waves from the scattered seismic wavefield recorded by a fault zone array. The frequency-dependent interaction between the ambient wavefield and the fault zone environment is studied using properties of the noise correlation field. A critical frequency fc ≈ 0.5 Hz defines a threshold above which the in-fault scattered wavefield has increased isotropy and coherency compared to the ambient noise. The increased randomization of in-fault propagation directions produces a wavefield that is trapped in a waveguide/cavity-like structure associated with the low-velocity damage zone. Dense spatial sampling allows the resolution of a near-field focal spot, which emerges from the superposition of a collapsing, time reversed wavefront. The shape of the focal spot depends on local medium properties, and a focal spot-based fault normal distribution of wave speeds indicates a ˜50% velocity reduction consistent with estimates from a far-field travel time inversion. The arrival time pattern of a synthetic correlation field can be tuned to match properties of an observed pattern, providing a noise-based imaging tool that can complement analyses of trapped ballistic waves. The results can have wide applicability for investigating the internal properties of fault damage zones, because mechanisms controlling the emergence of trapped noise have less limitations compared to trapped ballistic waves.

  5. Geological factors affecting CO2 plume distribution

    USGS Publications Warehouse

    Frailey, S.M.; Leetaru, H.

    2009-01-01

    Understanding the lateral extent of a CO2 plume has important implications with regards to buying/leasing pore volume rights, defining the area of review for an injection permit, determining the extent of an MMV plan, and managing basin-scale sequestration from multiple injection sites. The vertical and lateral distribution of CO2 has implications with regards to estimating CO2 storage volume at a specific site and the pore pressure below the caprock. Geologic and flow characteristics such as effective permeability and porosity, capillary pressure, lateral and vertical permeability anisotropy, geologic structure, and thickness all influence and affect the plume distribution to varying degrees. Depending on the variations in these parameters one may dominate the shape and size of the plume. Additionally, these parameters do not necessarily act independently. A comparison of viscous and gravity forces will determine the degree of vertical and lateral flow. However, this is dependent on formation thickness. For example in a thick zone with injection near the base, the CO2 moves radially from the well but will slow at greater radii and vertical movement will dominate. Generally the CO2 plume will not appreciably move laterally until the caprock or a relatively low permeability interval is contacted by the CO2. Conversely, in a relatively thin zone with the injection interval over nearly the entire zone, near the wellbore the CO2 will be distributed over the entire vertical component and will move laterally much further with minimal vertical movement. Assuming no geologic structure, injecting into a thin zone or into a thick zone immediately under a caprock will result in a larger plume size. With a geologic structure such as an anticline, CO2 plume size may be restricted and injection immediately below the caprock may have less lateral plume growth because the structure will induce downward vertical movement of the CO2 until the outer edge of the plume reaches a spill

  6. Overlap zoned electrically heated particulate filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Chapman, Mark R [Brighton, MI

    2011-07-19

    A system includes a particulate matter (PM) filter that includes an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than or equal to one, and wherein the N zones and the M sub-zones are arranged in P layers, where P is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

  7. Floating zone melting of cadmium telluride

    NASA Technical Reports Server (NTRS)

    Chang, Wen-Ming; Regel, L. L.; Wilcox, W. R.

    1992-01-01

    To produce superior crystals of cadmium telluride, floating zone melting in space has been proposed. Techniques required for floating zone melting of cadmium telluride are being developed. We have successfully float-zoned cadmium telluride on earth using square rods. A resistance heater was constructed for forming the molten zone. Evaporation of the molten zone was controlled by adding excess cadmium to the growth ampoule combined with heating of the entire ampoule. An effective method to hold the feed rod was developed. Slow rotation of the growth ampoule was proven experimentally to be necessary to achieve a complete symmetric molten zone. Most of the resultant cylindrical rods were single crystals with twins. Still needed is a suitable automatic method to control the zone length. We tried a fiber optical technique to control the zone length, but experiments showed that application of this technique to automate zone length control is unlikely to be successful.

  8. The Galicia-Ossa-Morena Zone: Proposal for a new zone of the Iberian Massif. Variscan implications

    NASA Astrophysics Data System (ADS)

    Arenas, Ricardo; Díez Fernández, Rubén; Rubio Pascual, Francisco J.; Sánchez Martínez, Sonia; Martín Parra, Luis Miguel; Matas, Jerónimo; González del Tánago, José; Jiménez-Díaz, Alberto; Fuenlabrada, Jose M.; Andonaegui, Pilar; Garcia-Casco, Antonio

    2016-06-01

    Correlation of a group of allochthonous terranes (referred to as basal, ophiolitic and upper units) exposed in the NW and SW of the Iberian Massif, is used to propose a new geotectonic zone in the southern branch of the Variscan Orogen: the Galicia-Ossa-Morena Zone. Recent advances in SW Iberia identify most of the former Ossa-Morena Zone as another allochthonous complex of the Iberian Massif, the Ossa-Morena Complex, equivalent to the Cabo Ortegal, Órdenes, Malpica-Tui, Bragança and Morais complexes described in NW Iberia. The new geotectonic zone and its counterparts along the rest of the Variscan Orogen constitute an Internal Variscan Zone with ophiolites and units affected by high-P metamorphism. The Galicia-Ossa-Morena Zone includes a Variscan suture and pieces of continental crust bearing the imprint of Ediacaran-Cambrian events related to the activity of peri-Gondwanan magmatic arcs (Cadomian orogenesis). In the Iberian Massif, the general structure of this geotectonic zone represents a duplication of the Gondwanan platform, the outboard sections being juxtaposed on top of domains located closer to the mainland before amalgamation. This interpretation offers an explanation that overcomes some issues regarding the differences between the stratigraphic and paleontological record of the central and southern sections of the Iberian Massif. Also, equivalent structural relationships between other major geotectonic domains of the rest of the Variscan Orogen are consistent with our interpretation and allow suspecting similar configurations along strike of the orogen. A number of issues may be put forward in this respect that potentially open new lines of thinking about the architecture of the Variscan Orogen.

  9. Assessing Student Affect

    ERIC Educational Resources Information Center

    Popham, W. James

    2009-01-01

    Student affect--the attitudes, interests, and values that students exhibit and acquire in school--can play a profoundly important role in students' postschool lives, possibly an even more significant role than that played by students' cognitive achievements. If student affect is so crucial, then why don't teachers assess it? One deterrent is that…

  10. Affective Involvement Instrument.

    ERIC Educational Resources Information Center

    Lemlech, Johanna K.

    1970-01-01

    The Affective Involvement Instrument (AII) describes and classifies affective involvement in the process of decision-making as it occurs during classroom activities such as role-playing or group discussions. The thirty-celled instrument behaviorizes the six processes involved in decision-making and combines them with the taxonomic levels of the…

  11. Affectional Patterns of Adolescents.

    ERIC Educational Resources Information Center

    O'Donnell, William J.

    1979-01-01

    This study sought to determine if there is a shift with age in affection (1) from parents to friends, (2) from one parent to the other, and (3) from same-sex to opposite-sex friends. Subjects, eighth graders and eleventh graders, completed the Measurement of Family Affective Structure. (Author)

  12. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    SciTech Connect

    J. Conca

    2000-12-20

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion.

  13. Tensile properties of vanadium-base alloys with a tungsten/inert-gas weld zone

    SciTech Connect

    Loomis, B.A.; Konicek, C.F.; Nowicki, L.J.; Smith, D.L.

    1992-12-31

    The tensile properties of V-(0-20)Ti and V-(O-15)Cr-5Ti alloys after butt-joining by tungsten/inert-gas (TIG) welding were determined from tests at 25{degrees}C. Tensile tests were conducted on both annealed and cold-worked materials with a TIG weld zone. The tensile properties of these materials were strongly influenced by the microstructure in the heat-affected zone adjacent to the weld zone and by the intrinsic fracture toughness of the alloys. TIG weld zones in these vanadium-base alloys had tensile properties comparable to those of recrystallized alloys without a weld zone. Least affected by the TIG welding were tensile properties of the V-5Ti and V-5Cr-5Ti alloys. Although the tensile properties of the V-5Ti and V- 5Cr-5Ti alloys with a TIG weld zone were acceptable for structural material, these properties would be improved by optimization of the welding parameters for minimum grain size in the heat-affected zone.

  14. 9 CFR 77.9 - Modified accredited advanced States or zones.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Register citations affecting § 77.9, see the List of CFR Sections Affected, which appears in the Finding... TUBERCULOSIS Cattle and Bison § 77.9 Modified accredited advanced States or zones. (a) The following are... “Uniform Methods and Rules—Bovine Tuberculosis Eradication” (January 22, 1999), which is incorporated...

  15. Three-dimensional currents in the outer nearshore zone

    NASA Astrophysics Data System (ADS)

    Özkan-Haller, H.

    2008-12-01

    Cross-shore flows on the continental shelf are primarily wind-driven and are affected by the Earth's rotation (Coriolis force). In contrast, surf zone flows are primarily wave-driven and exist at scales that are too small to be affected by rotational effects. There is a transition zone between the continental shelf and the surf zone (e.g. the "inner shelf" or the "outer nearshore" zone) that had, until recently, been relatively poorly studied. However, recent studies suggest that in this area the wind-driven transport (dominant on the continental shelf) shuts down (Kirincich et al., JGR, 2005), yet the wave-driven transport (dominant in the surf zone) is not yet fully established. Hence, phenomena that usually exert small forcing (compared to wind or wave forcing effects) and are therefore routinely neglected can become important. Indeed, recent observations (Fewings et al., JPO, 2008) suggest that cross-shore wind stress, usually small in comparison to the Coriolis force due to alongshore flow, can be significant in forcing cross-shore flow on the inner shelf. Similarly, Lentz et al. (JPO, 2008) suggest that wave-induced forcing, however small outside the surf zone, can still have an effect on offshore directed undertow velocities on the shelf. The modeling of flows in this transition region needs to consider wind forcing, wave forcing, Coriolis effects and 3D effects, and a shelf circulation model that incorporates 3D wave forcing effects should be most appropriate. One particular example of such a model is the Princeton Ocean Model POM that has recently been adapted to the prediction of surf zone currents (Newberger and Allen, JGR, 2007a, 2007b). POM is already well-tested on the continental shelf; however its applicability to the transition region, while promising, is unproven. Herein, we apply POM to this region and compare results with velocity observations from the Sandyduck experiment that included 6 upward-looking Sontek/SI Acoustic Doppler Profilers (ADP

  16. Zone wise local characterization of welds using digital image correlation technique

    NASA Astrophysics Data System (ADS)

    Saranath, K. M.; Sharma, Abhay; Ramji, M.

    2014-12-01

    The process of welding is associated with high and varying thermal gradients across the weld, resulting in inhomogeneous material properties surrounding the weldment. A proper understanding of the varying mechanical properties of the weld and surrounding materials is important in designing and modelling of components with weld. In the present study the characterization of different zones such as fusion zone, heat affected zones and unaffected base material of a deposited weld is carried out using digital image correlation (DIC) technique. A methodology using the micrographic observation and image processing is proposed for accurate identification of various weld zones. The response of welded samples in the elastic and plastic region is compared with the virgin sample. Full range stress-strain curves are obtained for each zone using the whole field strain measurement involving DIC. The parameters investigated are Young's modulus, Poisson's ratio, yield stress, strain hardening exponent and strength coefficient. A study regarding the variation of properties with respect to varying weld currents of 100 A, 130 A and 150 A is carried out. The Vickers microhardness measurement is also conducted to obtain the variation in hardness across weldment. Fusion zone of all the welded samples have reported lower Young's modulus and higher yield strength compared to virgin samples. The Vickers hardness values obtained for fusion and heat affected zones are in line with the yield stress variation obtained zone wise. Proposed zone wise local characterization of welds using digital image correlation. Weld zones are identified using a strain based method coupled with micrographs. Full range stress-strain curves are extracted for each local weld zones. Local elastic, plastic properties and microhardness across the weld are extracted. Local properties of welds produced using different current ratings are compared.

  17. Definition of Management Zones for Enhancing Cultivated Land Conservation Using Combined Spatial Data

    NASA Astrophysics Data System (ADS)

    Li, Yan; Shi, Zhou; Wu, Hao-Xiang; Li, Feng; Li, Hong-Yi

    2013-10-01

    The loss of cultivated land has increasingly become an issue of regional and national concern in China. Definition of management zones is an important measure to protect limited cultivated land resource. In this study, combined spatial data were applied to define management zones in Fuyang city, China. The yield of cultivated land was first calculated and evaluated and the spatial distribution pattern mapped; the limiting factors affecting the yield were then explored; and their maps of the spatial variability were presented using geostatistics analysis. Data were jointly analyzed for management zone definition using a combination of principal component analysis with a fuzzy clustering method, two cluster validity functions were used to determine the optimal number of cluster. Finally one-way variance analysis was performed on 3,620 soil sampling points to assess how well the defined management zones reflected the soil properties and productivity level. It was shown that there existed great potential for increasing grain production, and the amount of cultivated land played a key role in maintaining security in grain production. Organic matter, total nitrogen, available phosphorus, elevation, thickness of the plow layer, and probability of irrigation guarantee were the main limiting factors affecting the yield. The optimal number of management zones was three, and there existed significantly statistical differences between the crop yield and field parameters in each defined management zone. Management zone I presented the highest potential crop yield, fertility level, and best agricultural production condition, whereas management zone III lowest. The study showed that the procedures used may be effective in automatically defining management zones; by the development of different management zones, different strategies of cultivated land management and practice in each zone could be determined, which is of great importance to enhance cultivated land conservation

  18. [Affect and mimetic behavior].

    PubMed

    Zepf, S; Ullrich, B; Hartmann, S

    1998-05-01

    The relationship between facial expression and experienced affect presents many problems. The two diametrically opposed positions proposing solutions to this problem are exemplified using the conceptions of Mandler u. Izard. The underlying premises of both conceptions still prevail in various forms. The authors reject the concepts according to which facial expression is merely correlated to the affects (see Mandler 1975) as well as the view that facial expression controls the affects (see Izard 1977). The relationship between affect and facial expression is reexamined, subjecting it to a semiotic, essentially semantic analysis similar to the Ogden and Richards' language and meaning approach. This analysis involves a critical discussion of Scherer's attempt of a purely communicational interpretation using Bühler's organon model. In the author's approach, facial expression is seen not simply as a system of signals, but as a system of representative signs which signify the affects and refer to the emotive meaning of things for the subject. The authors develop the thesis that human beings are not born simply with the ability to speak, but also with the abstract possibility of performing facial expressions. This ability develops by way of coordinating patterns of expressions, which are presumably phylogenetically determined, with affects that take on a socially determined individual form, similar to language acquisition during socialisation. The authors discuss the methodological implications arising for studies investigating the affective meaning of facial expressions. PMID:9632951

  19. Topography of Human Erogenous Zones.

    PubMed

    Nummenmaa, Lauri; Suvilehto, Juulia T; Glerean, Enrico; Santtila, Pekka; Hietanen, Jari K

    2016-07-01

    Touching is a powerful means for eliciting sexual arousal. Here, we establish the topographical organization of bodily regions triggering sexual arousal in humans. A total of 704 participants were shown images of same and opposite sex bodies and asked to color the bodily regions whose touching they or members of the opposite sex would experience as sexually arousing while masturbating or having sex with a partner. Resulting erogenous zone maps (EZMs) revealed that the whole body was sensitive to sexual touching, with erogenous hotspots consisting of genitals, breasts, and anus. The EZM area was larger while having sex with a partner versus while masturbating, and was also dependent on sexual desire and heterosexual and homosexual interest levels. We conclude that tactile stimulation of practically all bodily regions may trigger sexual arousal. Extension of the erogenous zones while having sex with a partner may reflect the role of touching in maintenance of reproductive pair bonds. PMID:27091187

  20. Satellite-Derived Management Zones

    NASA Technical Reports Server (NTRS)

    Lepoutre, Damien; Layrol, Laurent

    2005-01-01

    The term "satellite-derived management zones" (SAMZ) denotes agricultural management zones that are subdivisions of large fields and that are derived from images of the fields acquired by instruments aboard Earth-orbiting satellites during approximately the past 15 years. "SAMZ" also denotes the methodology and the software that implements the methodology for creating such zones. The SAMZ approach is one of several products of continuing efforts to realize a concept of precision agriculture, which involves optimal variations in seeding, in application of chemicals, and in irrigation, plus decisions to farm or not to farm certain portions of fields, all in an effort to maximize profitability in view of spatial and temporal variations in the growth and health of crops, and in the chemical and physical conditions of soils. As used here, "management zone" signifies, more precisely, a subdivision of a field within which the crop-production behavior is regarded as homogeneous. From the perspective of precision agriculture, management zones are the smallest subdivisions between which the seeding, application of chemicals, and other management parameters are to be varied. In the SAMZ approach, the main sources of data are the archives of satellite imagery that have been collected over the years for diverse purposes. One of the main advantages afforded by the SAMZ approach is that the data in these archives can be reused for purposes of precision agriculture at low cost. De facto, these archives contain information on all sources of variability within a field, including weather, crop types, crop management, soil types, and water drainage patterns. The SAMZ methodology involves the establishment of a Web-based interface based on an algorithm that generates management zones automatically and quickly from archival satellite image data in response to requests from farmers. A farmer can make a request by either uploading data describing a field boundary to the Web site or else

  1. 33 CFR 165.169 - Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone. 165.169 Section 165.169 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS...

  2. 75 FR 40726 - Safety Zones: Annual Events Requiring Safety Zones in the Captain of the Port Buffalo Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... the Port Buffalo Zone AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY... Buffalo Zone from July 2, 2010 through July 31, 2010. This action is necessary to protect the safety of... vessel may enter the safety zones without the permission of the Captain of the Port Buffalo. DATES:...

  3. Penetration below a convective zone

    NASA Astrophysics Data System (ADS)

    Hurlburt, Neal E.; Toomre, Juri; Massaguer, Josep M.; Zahn, Jean-Paul

    1994-01-01

    Two-dimensional numerical simulations are used to investigate how fully compressible nonlinear convection penetrates into a stably stratified zone beneath a stellar convection zone. Estimates are obtained of the extent of penetration as the relative stability S of the stable to the unstable zone is varied over a broad range. The model deals with a perfect gas possessing a constant dynamic viscosity. The dynamics is dominated by downward-directed plumes which can extend far into the stable material and which can lead to the excitation of a broad spectrum of internal gravity waves in the lower stable zone. The convection is highly time dependent, with the close coupling between the lateral swaying of the plumes and the internal gravity waves they generate serving to modulate the strength of the convection. The depth of penetration delta, determined by the position where the time-averaged kinetic flux has its first zero in the stable layer, is controlled by a balance between the kinetic energy carried into the stable layer by the plumes and the buoyancy braking they experience there. A passive scalar is introduced into the unstable layer to evaluate the transport of chemical species downward. Such a tracer is effectively mixed within a few convective overturning times down to a depth of delta within the stable layer. Analytical estimates based on simple scaling laws are used to interpret the variation of delta with S, showing that it first involves an interval of adiabatic penetration if the local Peclet number of the convection exceeds unity, followed by a further thermal adjustment layer, the depths of each interval scaling in turn as S-1 and S-1/4. These estimates are in accord with the penetration results from the simulations.

  4. TASK 2: QUENCH ZONE SIMULATION

    SciTech Connect

    Fusselman, Steve

    2015-09-30

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. A key feature of the AR gasifier design is the transition from the gasifier outlet into the quench zone, where the raw syngas is cooled to ~ 400°C by injection and vaporization of atomized water. Earlier pilot plant testing revealed a propensity for the original gasifier outlet design to accumulate slag in the outlet, leading to erratic syngas flow from the outlet. Subsequent design modifications successfully resolved this issue in the pilot plant gasifier. In order to gain greater insight into the physical phenomena occurring within this zone, AR developed a cold flow simulation apparatus with Coanda Research & Development with a high degree of similitude to hot fire conditions with the pilot scale gasifier design, and capable of accommodating a scaled-down quench zone for a demonstration-scale gasifier. The objective of this task was to validate similitude of the cold flow simulation model by comparison of pilot-scale outlet design performance, and to assess demonstration scale gasifier design feasibility from testing of a scaled-down outlet design. Test results did exhibit a strong correspondence with the two pilot scale outlet designs, indicating credible similitude for the cold flow simulation device. Testing of the scaled-down outlet revealed important considerations in the design and operation of the demonstration scale gasifier, in particular pertaining to the relative momentum between the downcoming raw syngas and the sprayed quench water and associated impacts on flow patterns within the quench zone. This report describes key findings from the test program, including assessment of pilot plant configuration simulations relative to actual

  5. Why subduction zones are curved

    NASA Astrophysics Data System (ADS)

    Mahadevan, L.; Bendick, R.; Liang, Haiyi

    2010-12-01

    We give an explanation for the polarity, localization, shape, size, and initiation of subduction zones on Earth. By considering a soft, thin, curved lithospheric cap with either elastic or viscous rheology supported by a thick, nearly incompressible mantle, we find two different characteristic subduction geometries arise depending on boundary conditions: (1) plate boundaries where subduction results primarily from the gravitational body force (free subduction) have characteristic plate lengths and form arc-shaped dimpled segments resulting from the competition between bending and stretching in edge buckling modes of thin spherical shells, and (2) subduction zones due to localized applied loads that push one slab of thin, positively buoyant lithosphere beneath an overriding plate (forced subduction) form localized straight segments, consistent with the deformation of indented spherical shells. Both types of subduction are nonlinear subcritical instabilities, so small perturbations in the mechanical properties of the lithosphere have pronounced effects on subduction initiation and evolution. Yet in both cases, geometric relationships determined by the shape of the Earth itself play the most critical role in controlling the basic morphology and characteristic length scales of subduction zones.

  6. Dry Zones Around Frozen Droplets

    NASA Astrophysics Data System (ADS)

    Bisbano, Caitlin; Nath, Saurabh; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    The saturation pressure of water vapor above supercooled water exceeds that above ice at the same temperature. A frozen droplet will therefore grow by harvesting water vapor from neighboring supercooled condensate, which has recently been demonstrated to be a primary mechanism of in-plane frost growth on hydrophobic surfaces. The underlying physics of this source-sink interaction is still poorly understood. In this work, a deposited water droplet is frozen on a dry hydrophobic surface initially held above the dew point. We demonstrate that when the surface is then cooled beneath the dew point, the frozen droplet harvests nearby water vapor in the air. This results in an annular dry zone that forms between the frozen droplet and the forming supercooled condensation. For a given ambient temperature and humidity, the length of the dry zone varied strongly with surface temperature and weakly with droplet volume. The dependence of the dry zone on surface temperature is due to the fact that the vapor pressure gradients between the ambient and the surface and between the liquid and frozen water are both functions of temperature.

  7. Oblique sinistral transpression in the Arabian shield: The timing and kinematics of a Neoproterozoic suture zone

    USGS Publications Warehouse

    Johnson, P.R.; Kattan, F.

    2001-01-01

    The Hulayfah-Ad Dafinah-Ruwah fault zone is a belt of highly strained rocks that extends in a broad curve across the northeastern Arabian shield. It is a subvertical shear zone, 5-30 km wide and over 600 km long, and is interpreted as a zone of oblique sinistral transpression that forms the suture between the Afif terrane and the Asir-Jiddah-Hijaz-Hulayfah superterrane. Available data suggest that the terranes began to converge sometime after 720 Ma, were in active contact at about 680 Ma, and were in place, with suturing complete, by 630 Ma, The fault zone was affected by sinistral horizontal and local vertical shear, and simultaneous flattening and fault-zone-parallel extension. Structures include sinistral sense-of-shear indicators, L-S tectonite, and coaxial stretching lineations and fold axes. The stretching lineations switch from subhorizontal to subvertical along the fault zone indicating significant variation in finite strain consistent with an origin by oblique transpression. The sense of shear on the fault zone suggests sinistral trajectories for the converging terranes, although extrapolating the shear sense of the suture zone to infer far-field motion must be done with caution. The amalgamation model derived from the chronologic and structural data for the fault zone modifies an existing model of terrane amalgamation and clarifies the definitions of two deformational events (the Nabitah orogeny and the Najd fault system) that are widely represented in the Arabian shield. ?? 2001 Elsevier Science B.V.

  8. Effects of vadose zone on groundwater table fluctuations in unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Kong, Jun; Xin, Pei; Hua, Guo-Fen; Luo, Zhao-Yang; Shen, Cheng-Ji; Chen, Dan; Li, Ling

    2015-09-01

    Above a shallow unconfined aquifer, a considerable amount of water is stored in the vadose zone. Through water exchange with the underlying unconfined aquifer, the vadose zone affects the groundwater table dynamics and overall behavior of the aquifer. In this paper, we examine tide-induced groundwater table fluctuations in unconfined aquifers influenced by vadose zone of finite thickness. Under the condition of small aquifer thickness (D) compared with the groundwater wavelength (L) (i.e., μ2 =(D / L) 2 ≪ 1) and small boundary oscillation amplitude (a) (i.e., ε = a / D ≪ 1) (where μ2 and ε are two parameters), an approximate analytical solution was derived to quantify systematically the vadose zone effects, with a particular consideration of capping by the ground surface, i.e., the upper boundary of the vadose zone. Depending on the extent to which the capillary rise is truncated by the ground surface, the vadose zone enhances the groundwater table fluctuations in an unconfined aquifer. However, the mean groundwater table height and exchange between surface water and groundwater are reduced due to the presence of the vadose zone. These effects are intensified with increased capillary rise, but weakened as the vadose zone thickens. This study provides a criterion for assessing the importance of vadose zone in modulating the response of unconfined aquifers to low-frequency forcing oscillations such as tides.

  9. Effect of Application of Short and Long Holds on Fatigue Life of Modified 9Cr-1Mo Steel Weld Joint

    NASA Astrophysics Data System (ADS)

    Shankar, Vani; Mariappan, K.; Sandhya, R.; Mathew, M. D.; Jayakumar, T.

    2013-11-01

    Modified 9Cr-1Mo steel is a heat-treatable steel and hence the microstructure is temperature sensitive. During welding, the weld joint (WJ) is exposed to various temperatures resulting in a complex heterogeneous microstructure across the weld joint, such as the weld metal, heat-affected zone (HAZ) (consisting of coarse-grained HAZ, fine-grained HAZ, and intercritical HAZ), and the unaffected base metal of varying mechanical properties. The overall creep-fatigue interaction (CFI) response of the WJ is hence due to a complex interplay between various factors such as surface oxides and stress relaxation (SR) occurring in each microstructural zone. It has been demonstrated that SR occurring during application of hold in a CFI cycle is an important parameter that controls fatigue life. Creep-fatigue damage in a cavitation-resistant material such as modified 9Cr-1Mo steel base metal is accommodated in the form of microstructural degradation. However, due to the complex heterogeneous microstructure across the weld joint, SR will be different in different microstructural zones. Hence, the damage is accommodated in the form of preferential coarsening of the substructure, cavity formation around the coarsened carbides, and new surface formation such as cracks in the soft heat-affected zone.

  10. PLANT INVASIONS IN RHODE ISLAND RIPARIAN ZONES

    EPA Science Inventory

    The vegetation in riparian zones provides valuable wildlife habitat while enhancing instream habitat and water quality. Forest fragmentation, sunlit edges, and nutrient additions from adjacent development may be sources of stress on riparian zones. Landscape plants may include no...

  11. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  12. Evaluation of flow properties in the weldments of vanadium alloys using a novel indentation technique

    SciTech Connect

    Gubbi, A.N.; Rowcliffe, A.F.; Lee, E.H.; King, J.F.; Goodwin, G.M.

    1996-10-01

    Automated Ball Indentation (ABI) testing, was successfully employed to determine the flow properties of the fusion zone, heat affected zone (HAZ), and base metal of the gas tungsten arc (GTA) and electron beam (EB) welds of the V-4Cr-4Ti (large heat no. 832665) and the V-5Cr-5Ti (heat 832394) alloys. ABI test results showed a clear distinction among the properties of the fusion zone, HAZ, and base metal in both GTA and EB welds of the two alloys. GTA and EB welds of both V-4Cr-4Ti and V-5Cr-5Ti alloys show strengthening of both the fusion zone and the HAZ (compared to base metal) with the fusion zone having higher strength than the HAZ. These data correlate well with the Brinell hardness. On the other hand, GTA welds of both alloys, after a post-weld heat treatment of 950{degrees}C for 2 h, show a recovery of the properties to base metal values with V-5Cr-5Ti showing a higher degree of recovery compared to V-4Cr-4Ti. These measurements correlate with the reported recovery of the Charpy impact properties.

  13. Microstructure Characterization of Laser-Welded Nb-Microalloyed Silicon-Aluminum TRIP Steel

    NASA Astrophysics Data System (ADS)

    Grajcar, A.; Różański, M.; Stano, S.; Kowalski, A.

    2014-09-01

    This work presents the results of a microstructural characterization of welds in Nb-microalloyed TRIP steel with silicon partially replaced by aluminum. Tests of laser welding of thermomechanically processed sheet samples were carried out using keyhole welding and a solid-state laser. Welding penetration tests were conducted for heat input values between 0.037 and 0.048 kJ/mm. Identification of different microstructural constituents was carried out using light microscopy and scanning electron microscopy in the fusion zone (FZ), heat-affected zone (HAZ), and base metal. Special focus was put on the effect of cooling conditions on the stabilization of retained austenite in different zones. The intercritical, fine-grained, and coarse-grained regions of the HAZ were identified. It was determined that enriching austenite with carbon in the intercritical HAZ stabilizes this phase at a level close to the base metal, i.e., a 15% volume fraction. Despite a high cooling rate in the FZ and HAZ, interlath retained austenite is also present in these zones. The research involved microhardness measurements and characterizing non-metallic inclusions formed in the fusion zone. A good correlation between microstructures formed in different weld regions and microhardness results was obtained.

  14. Microstructural Effects on the Mechanical Integrity of a TRIP-800 Steel Welded by Laser-CO2 Process

    NASA Astrophysics Data System (ADS)

    Perez-Medina, G. Y.; López, H. F.; Zambrano, P.; Reyes-Valdés, F. A.

    2013-02-01

    In this study, a TRIP-800 steel was welded using a Laser CO2 process, and the resultant microstructures were characterized by optical, scanning, and transmission electron microscopy (TEM) means. It was found that the microstructure of the steel in the as-received condition consisted of ferrite, bainite, and retained austenite (RA), including some martensite. In particular, TEM observations indicated that the developed martensites were high carbon twinned martensites. It was found that laser beam welding (LBW) promoted the development of up to 23% martensite in the fusion zone (FZ) and up to 30% in the heat-affected zone (HAZ). In addition, determinations of RA using x-ray diffraction indicated that the amount of RA developed in the FZ was relatively small (<6%). Confirmation for the relatively large amounts of martensite in both the FZ and HAZ was indirectly made by the shape of microhardness profiles, which resembled a "top hat." Tensile testing in welded strips indicated a loss of strength and ductility. An examination of the fracture surfaces indicated that the steel fractured in a brittle fashion at the HAZ-BM interface. Apparently, the development of relatively large amounts of martensite in the HAZ reduced the steel toughness. In turn, this indicated that LBW leads to martensite embrittlement in the HAZ regions, but not at the parting line of the FZ.

  15. Zone heating for fluidized bed silane pyrolysis

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K. (Inventor)

    1987-01-01

    An improved heated fluidized bed reactor and method for the production of high purity polycrystalline silicon by silane pyrolysis wherein silicon seed particles are heated in an upper heating zone of the reactor and admixed with particles in a lower reaction zone, in which zone a silane-containing gas stream, having passed through a lower cooled gas distribution zone not conducive to silane pyrolysis, contacts the heated seed particles whereon the silane is heterogeneously reduced to silicon.

  16. Lithification facilitates frictional instability in argillaceous subduction zone sediments

    NASA Astrophysics Data System (ADS)

    Trütner, Sebastian; Hüpers, Andre; Ikari, Matt J.; Yamaguchi, Asuka; Kopf, Achim J.

    2015-12-01

    Previous work suggests that in subduction zones, the onset of large earthquake nucleation at depths > ~ 5-10 km is likely driven by a combination of factors associated with the process of lithification. At these depths, lithification processes affect the entire fault system by modifying the mechanical properties of both the plate boundary fault zone and the wall-rock. To test the hypothesis that lithification of subduction zone sediments produces rocks capable of earthquake nucleation via diagenesis and low-grade metamorphism, we conducted friction experiments on fossil subduction zone sediments recovered from exposures in the Shimanto Belt in SW Japan. These meta-sediments represent accreted and subducted material which has experienced maximum temperatures of 125 to 225 °C, which are representative of seismogenic depths along the active Nankai subduction megathrust in the foreland of the Shimanto Belt. We find that intact Shimanto rock samples, which preserve the influence of diagenetic and metamorphic processes, exhibit the potential for unstable slip under in-situ pressure conditions. Powdered versions of the same samples tested under the same conditions exhibit only velocity-strengthening friction, thus demonstrating that destroying the lithification state also removes the potential for unstable slip. Using advanced porosity loss to quantify the lithification process, we demonstrate that increased velocity weakening correlates with increasingly advanced lithification. In combination with documented frictionally stable behavior of subduction zone sediments from shallower depths, our results provide evidence that the sediment lithification hypothesis can explain the depth-dependent onset of large earthquake nucleation along subduction zone megathrusts.

  17. Coastal-zone biogeochemical dynamics under global warming

    SciTech Connect

    Mackenzie, F.T.; Ver, L.M.; Lerman, A.

    2000-03-01

    The coastal zone, consisting of the continental shelves to a depth of 200 meters, including bays, lagoons, estuaries, and near-shore banks, is an environment that is strongly affected by its biogeochemical and physical interactions with reservoirs in the adjacent domains of land, atmosphere, open ocean, and marine sediments. Because the coastal zone is smaller in volume and area coverage relative to the open ocean, it traditionally has been studied as an integral part of the global oceans. In this paper, the authors show by numerical modeling that it is important to consider the coastal zone as an entity separate from the open ocean in any assessment of future Earth-system response under human perturbation. Model analyses for the early part of the 21st century suggest that the coastal zone plays a significant modifying role in the biogeochemical dynamics of the carbon cycle and the nutrient cycles coupled to it. This role is manifested in changes in primary production, storage, and/or export of organic matter, its remineralization, and calcium carbonate precipitation--all of which determine the state of the coastal zone with respect to exchange of CO{sub 2} with the atmosphere. Under a scenario of future reduced or complete cessation of the thermohaline circulation (THC) of the global oceans, coastal waters become an important sink for atmospheric CO{sub 2}, as opposed to the conditions in the past and present, when coastal waters are believed to be a source of CO{sub 2} to the atmosphere. Profound changes in coastal-zone primary productivity underscore the important role of phosphorus as a limiting nutrient. In addition, calculations indicate that the saturation state of coastal waters with respect to carbonate minerals will decline by {approximately}15% by the year 2030. Any future slowdown in the THC of the oceans will increase slightly the rate of decline in saturation state.

  18. Method and apparatus for welding precipitation hardenable materials

    DOEpatents

    Murray, Jr., Holt; Harris, Ian D.; Ratka, John O.; Spiegelberg, William D.

    1994-01-01

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined.

  19. Method and apparatus for welding precipitation hardenable materials

    DOEpatents

    Murray, H. Jr.; Harris, I.D.; Ratka, J.O.; Spiegelberg, W.D.

    1994-06-28

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined. 5 figures.

  20. Finite Element Modeling of Orbital Friction Welding of Eutectoid Steel Bars

    NASA Astrophysics Data System (ADS)

    Maalekian, M.; Kozeschnik, E.; Brantner, H. P.; Cerjak, H.

    2008-04-01

    The orbital friction welding of eutectoid steel bars is investigated using experimental and numerical analyses. By a three-dimensional (3-D) coupled thermomechanical finite element (FE) model, the temperature profile, axial shortening, and flash formation at the joint interface are analyzed. With a thermal phase transformation FE model, the volume fractions of the final microstructure constituents and the size of the heat-affected zone (HAZ) are also predicted. For use in the models, the frictional heat generation is estimated by inverse heat-transfer analysis. The predicted HAZ width, upset, thermal history, and final microstructure are verified successfully on the experimental measurements.

  1. Analysis of the Influence of Laser Welding on Fatigue Crack Growth Behavior in a Newly Developed Nickel-Base Superalloy

    NASA Astrophysics Data System (ADS)

    Buckson, R. A.; Ojo, O. A.

    2015-01-01

    The influence of laser welding on fatigue crack growth (FCG) behavior of a newly developed nickel-base superalloy, Haynes 282 was studied. Laser welding resulted in cracking in the heat affected zone (HAZ) of the alloy during welding and FCG test results show that this produces deleterious effect on the fatigue crack growth behavior of Haynes 282. However, two post weld heat treatments, including a new thermal treatment schedule developed in this work, are used to significantly improve the resistance of the Haynes 282 fatigue crack growth after laser welding. The effects of laser welding and thermal treatments are discussed in terms of HAZ cracking and heterogeneity of slip, respectively.

  2. Evolution of a Subduction Zone

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Van Hoolst, Tim; Dehant, Veronique

    2014-05-01

    The purpose of this study is to understand how Earth's surface might have evolved with time and to examine in a more general way the initiation and continuance of subduction zones and the possible formation of continents on an Earth-like planet. Plate tectonics and continents seem to influence the likelihood of a planet to harbour life, and both are strongly influenced by the planetary interior (e.g. mantle temperature and rheology) and surface conditions (e.g. stabilizing effect of continents, atmospheric temperature), but may also depend on the biosphere. Employing the Fortran convection code CHIC (developed at the Royal Observatory of Belgium), we simulate a subduction zone with a pre-defined weak zone (between oceanic and continental crust) and a fixed plate velocity for the subducting oceanic plate (Quinquis et al. in preparation). In our study we first investigate the main factors that influence the subduction process. We simulate the subduction of an oceanic plate beneath a continental plate (Noack et al., 2013). The crust is separated into an upper crust and a lower crust. We apply mixed Newtonian/non-Newtonian rheology and vary the parameters that are most likely to influence the subduction of the ocanic plate, as for example density of the crust/mantle, surface temperature, plate velocity and subduction angle. The second part of our study concentrates on the long-term evolution of a subduction zone. Even though we model only the upper mantle (until a depth of 670km), the subducted crust is allowed to flow into the lower mantle, where it is no longer subject to our investigation. This way we can model the subduction zone over long time spans, for which we assume a continuous inflow of the oceanic plate into the investigated domain. We include variations in mantle temperatures (via secular cooling and decay of radioactive heat sources) and dehydration of silicates (leading to stiffening of the material). We investigate how the mantle environment influences

  3. Technical Education in the Enterprise Zone.

    ERIC Educational Resources Information Center

    Friedman, Howard

    Support is growing for the concept of the enterprise zone. Congress has before it a bill, the Enterprise Zone Tax Act of 1982, that would provide incentives and create a climate in which entrepreneurs and business executives would locate businesses in areas of pervasive poverty and unemployment. A potential urban enterprise zone in New York City…

  4. 49 CFR 71.10 - Pacific zone.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Time Act of 1966 and Pub. L. 97-449, 15 U.S.C. 260-264; 49 CFR 1.59(a)). ... 49 Transportation 1 2014-10-01 2014-10-01 false Pacific zone. 71.10 Section 71.10 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.10 Pacific zone. The...

  5. 49 CFR 71.10 - Pacific zone.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Time Act of 1966 and Pub. L. 97-449, 15 U.S.C. 260-264; 49 CFR 1.59(a)). ... 49 Transportation 1 2012-10-01 2012-10-01 false Pacific zone. 71.10 Section 71.10 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.10 Pacific zone. The...

  6. 49 CFR 71.10 - Pacific zone.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Time Act of 1966 and Pub. L. 97-449, 15 U.S.C. 260-264; 49 CFR 1.59(a)). ... 49 Transportation 1 2010-10-01 2010-10-01 false Pacific zone. 71.10 Section 71.10 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.10 Pacific zone. The...

  7. 33 CFR 165.30 - Security zones.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Security zones. (a) A security zone is an area of land, water, or land and water which is so designated by... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security zones. 165.30 Section 165.30 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED)...

  8. Do "Some" Enterprise Zones Create Jobs?

    ERIC Educational Resources Information Center

    Kolko, Jed; Neumark, David

    2010-01-01

    We study how the employment effects of enterprise zones vary with their location, implementation, and administration, based on evidence from California. We use new establishment-level data and geographic mapping methods, coupled with a survey of enterprise zone administrators. Overall, the evidence indicates that enterprise zones do not increase…

  9. 46 CFR 76.33-5 - Zoning.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Smoke Detecting System, Details § 76.33-5 Zoning. (a) The smoke detecting system shall be divided into separate zones to restrict the area covered by any particular alarm signal. (b) The smoke detecting zone shall not...

  10. 46 CFR 76.33-5 - Zoning.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Smoke Detecting System, Details § 76.33-5 Zoning. (a) The smoke detecting system shall be divided into separate zones to restrict the area covered by any particular alarm signal. (b) The smoke detecting zone shall not...

  11. 46 CFR 76.33-5 - Zoning.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Smoke Detecting System, Details § 76.33-5 Zoning. (a) The smoke detecting system shall be divided into separate zones to restrict the area covered by any particular alarm signal. (b) The smoke detecting zone shall not...

  12. 46 CFR 76.33-5 - Zoning.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Smoke Detecting System, Details § 76.33-5 Zoning. (a) The smoke detecting system shall be divided into separate zones to restrict the area covered by any particular alarm signal. (b) The smoke detecting zone shall not...

  13. 46 CFR 76.33-5 - Zoning.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Smoke Detecting System, Details § 76.33-5 Zoning. (a) The smoke detecting system shall be divided into separate zones to restrict the area covered by any particular alarm signal. (b) The smoke detecting zone shall not...

  14. 49 CFR 71.10 - Pacific zone.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Time Act of 1966 and Pub. L. 97-449, 15 U.S.C. 260-264; 49 CFR 1.59(a)). ... 49 Transportation 1 2011-10-01 2011-10-01 false Pacific zone. 71.10 Section 71.10 Transportation Office of the Secretary of Transportation STANDARD TIME ZONE BOUNDARIES § 71.10 Pacific zone. The...

  15. Drought analysis according to shifting of climate zones to arid climate zone over Asia monsoon region

    NASA Astrophysics Data System (ADS)

    Son, Kyung-Hwan; Bae, Deg-Hyo

    2015-10-01

    When a humid region is affected by arid climate, significant changes in drought characteristics occur due to imbalance of water budget. In this study, change in drought characteristics according to shift of different climates i.e. tropical, warm temperate, cold and polar to Arid Climate (SAC) was analyzed over the Asia monsoon region. Climate zones and the SAC regions were identified by applying the Köppen climate classification on hydro-meteorological data for the period of 1963-2006. The analysis of hydro-meteorological parameters revealed that the annual precipitation and runoff in the SAC regions appeared to decrease about 12.1% and 27.3%, respectively, while annual average temperature increased about 0.5 °C. Standardized runoff index (SRI) was calculated using model-driven runoff data. The trend and change point analyses of SRI were performed to evaluate the changes in drought characteristics (frequency, duration, severity) before and after shifting of the different climates to arid climate. The results revealed strong decreasing trend of SRI and hence intensified drought conditions for the SAC regions. A change point year of drought occurred about 3-5 years earlier than the shifting time of the SAC region. Frequency and duration of droughts in the SAC regions were observed to increase about 9.2 and 1.5 months, respectively, and drought severity index intensified to about -0.15. It can be concluded that analysis of shifting to arid climate zones should be considered together with changes in drought characteristics, because the drought characteristics and changing arid climate zones are closely related to each other.

  16. Affective responses to dance.

    PubMed

    Christensen, Julia F; Pollick, Frank E; Lambrechts, Anna; Gomila, Antoni

    2016-07-01

    The objective of the present work was the characterization of mechanisms by which affective experiences are elicited in observers when watching dance movements. A total of 203 dance stimuli from a normed stimuli library were used in a series of independent experiments. The following measures were obtained: (i) subjective measures of 97 dance-naïve participants' affective responses (Likert scale ratings, interviews); and (ii) objective measures of the physical parameters of the stimuli (motion energy, luminance), and of the movements represented in the stimuli (roundedness, impressiveness). Results showed that (i) participants' ratings of felt and perceived affect differed, (ii) felt and perceived valence but not arousal ratings correlated with physical parameters of the stimuli (motion energy and luminance), (iii) roundedness in posture shape was related to the experience of more positive emotion than edgy shapes (1 of 3 assessed rounded shapes showed a clear effect on positiveness ratings while a second reached trend level significance), (iv) more impressive movements resulted in more positive affective responses, (v) dance triggered affective experiences through the imagery and autobiographical memories it elicited in some people, and (vi) the physical parameters of the video stimuli correlated only weakly and negatively with the aesthetics ratings of beauty, liking and interest. The novelty of the present approach was twofold; (i) the assessment of multiple affect-inducing mechanisms, and (ii) the use of one single normed stimulus set. The results from this approach lend support to both previous and present findings. Results are discussed with regards to current literature in the field of empirical aesthetics and affective neuroscience. PMID:27235953

  17. Kinematics and shear heat pattern of ductile simple shear zones with `slip boundary condition'

    NASA Astrophysics Data System (ADS)

    Mulchrone, Kieran F.; Mukherjee, Soumyajit

    2016-04-01

    Extrusion by Poiseuille flow and simple shear of hot lower crust has been deciphered from large hot orogens, and partial-slip boundary condition has been encountered in analogue models. Shear heat and velocity profiles are deduced from a simplified form of Navier-Stokes equation for simple shear together with extrusive Poiseuille flow and slip boundary condition for Newtonian viscous rheology. A higher velocity at the upper boundary of the shear zone promotes higher slip velocity at the lower boundary. The other parameters that affect the slip are viscosity and thickness of the shear zone and the resultant pressure gradient that drives extrusion. In the partial-slip case, depending on flow parameters (resultant pressure gradient, density and viscosity) and thickness of the shear zone, the velocity profiles can curve and indicate opposite shear senses. The corresponding shear heat profiles can indicate temperature maximum inside shear zones near either boundaries of the shear zone, or equidistant from them.

  18. The upper-mantle transition zone beneath the Chile-Argentina flat subduction zone

    NASA Astrophysics Data System (ADS)

    Bagdo, Paula; Bonatto, Luciana; Badi, Gabriela; Piromallo, Claudia

    2016-04-01

    The main objective of the present work is the study of the upper mantle structure of the western margin of South America (between 26°S and 36°S) within an area known as the Chile-Argentina flat subduction zone. For this purpose, we use teleseismic records from temporary broad band seismic stations that resulted from different seismic experiments carried out in South America. This area is characterized by on-going orogenic processes and complex subduction history that have profoundly affected the underlying mantle structure. The detection and characterization of the upper mantle seismic discontinuities are useful to understand subduction processes and the dynamics of mantle convection; this is due to the fact that they mark changes in mantle composition or phase changes in mantle minerals that respond differently to the disturbances caused by mantle convection. The discontinuities at a depth of 410 km and 660 km, generally associated to phase changes in olivine, vary in width and depth as a result of compositional and temperature anomalies. As a consequence, these discontinuities are an essential tool to study the thermal and compositional structure of the mantle. Here, we analyze the upper-mantle transition zone discontinuities at a depth of 410 km and 660 km as seen from Pds seismic phases beneath the Argentina-Chile flat subduction.

  19. 33 CFR 165.916 - Security Zones; Captain of the Port Milwaukee Zone, Lake Michigan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Port Milwaukee Zone, Lake Michigan. 165.916 Section 165.916 Navigation and Navigable Waters COAST GUARD... § 165.916 Security Zones; Captain of the Port Milwaukee Zone, Lake Michigan. (a) Location. The following are security zones: (1) Kewaunee Nuclear Power Plant. All navigable waters of Western Lake...

  20. 33 CFR 165.916 - Security Zones; Captain of the Port Milwaukee Zone, Lake Michigan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Port Milwaukee Zone, Lake Michigan. 165.916 Section 165.916 Navigation and Navigable Waters COAST GUARD... § 165.916 Security Zones; Captain of the Port Milwaukee Zone, Lake Michigan. (a) Location. The following are security zones: (1) Kewaunee Nuclear Power Plant. All navigable waters of Western Lake...

  1. 78 FR 41694 - Safety Zone; Fireworks Events in Captain of the Port New York Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ... SECURITY Coast Guard 33 CFR Part 165 Safety Zone; Fireworks Events in Captain of the Port New York Zone... enforce safety zones in the Captain of the Port New York Zone on the specified dates and times. This... email Lieutenant Junior Grade Kristopher Kesting, Coast Guard Sector New York; telephone...

  2. 78 FR 27032 - Safety Zones; Annual Events in the Captain of the Port Detroit Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... SECURITY Coast Guard 33 CFR Part 165 Safety Zones; Annual Events in the Captain of the Port Detroit Zone... enforce various safety zones for annual marine events in the Captain of the Port Detroit zone from May 24... without permission of the Captain of the Port. DATES: The regulations in this notice of enforcement...

  3. 76 FR 22033 - Safety Zone; Red River Safety Zone, Red River, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AAOO Safety Zone; Red River Safety Zone, Red River, MN AGENCY... Safety Unit Duluth, MN is establishing a temporary safety zone on the Red River, MN. This safety zone is... entering all navigable waters of the Red River in the State of Minnesota north of a line drawn...

  4. Prioritising coastal zone management issues through fuzzy cognitive mapping approach.

    PubMed

    Meliadou, Aleka; Santoro, Francesca; Nader, Manal R; Dagher, Manale Abou; Al Indary, Shadi; Salloum, Bachir Abi

    2012-04-30

    Effective public participation is an essential component of Integrated Coastal Zone Management implementation. To promote such participation, a shared understanding of stakeholders' objectives has to be built to ultimately result in common coastal management strategies. The application of quantitative and semi-quantitative methods involving tools such as Fuzzy Cognitive Mapping is presently proposed for reaching such understanding. In this paper we apply the Fuzzy Cognitive Mapping tool to elucidate the objectives and priorities of North Lebanon's coastal productive sectors, and to formalize their coastal zone perceptions and knowledge. Then, we investigate the potential of Fuzzy Cognitive Mapping as tool for support coastal zone management. Five round table discussions were organized; one for the municipalities of the area and one for each of the main coastal productive sectors (tourism, industry, fisheries, agriculture), where the participants drew cognitive maps depicting their views. The analysis of the cognitive maps showed a large number of factors perceived as affecting the current situation of the North Lebanon coastal zone that were classified into five major categories: governance, infrastructure, environment, intersectoral interactions and sectoral initiatives. Furthermore, common problems, expectations and management objectives for all sectors were exposed. Within this context, Fuzzy Cognitive Mapping proved to be an essential tool for revealing stakeholder knowledge and perception and understanding complex relationships. PMID:22325583

  5. Effects of Terrestrial Buffer Zones on Amphibians on Golf Courses

    PubMed Central

    Puglis, Holly J.; Boone, Michelle D.

    2012-01-01

    A major cause of amphibian declines worldwide is habitat destruction or alteration. Public green spaces, such as golf courses and parks, could serve as safe havens to curb the effects of habitat loss if managed in ways to bolster local amphibian communities. We reared larval Blanchard's cricket frogs (Acris blanchardi) and green frogs (Rana clamitans) in golf course ponds with and without 1 m terrestrial buffer zones, and released marked cricket frog metamorphs at the golf course ponds they were reared in. Larval survival of both species was affected by the presence of a buffer zone, with increased survival for cricket frogs and decreased survival for green frogs when reared in ponds with buffer zones. No marked cricket frog juveniles were recovered at any golf course pond in the following year, suggesting that most animals died or migrated. In a separate study, we released cricket frogs in a terrestrial pen and allowed them to choose between mown and unmown grass. Cricket frogs had a greater probability of using unmown versus mown grass. Our results suggest that incorporating buffer zones around ponds can offer suitable habitat for some amphibian species and can improve the quality of the aquatic environment for some sensitive local amphibians. PMID:22761833

  6. Effects of remediation amendments on vadose zone microorganisms

    SciTech Connect

    Miller, Hannah M.; Tilton, Fred A.

    2012-08-10

    Surfactant-based foam delivery technology has been studied to remediate Hanford 200 area deep vadose zone sediment. However, the surfactants and remediation amendments have an unknown effect on indigenous subsurface microorganisms. Microbial populations are important factors to consider in remediation efforts due to their potential to alter soil geochemistry. This project focuses on measuring microbial metabolic responses to remediation amendments in batch and column studies using Deep Vadose Zone Sediments. Initial studies of the microbes from Hanford 200 area deep vadose zone sediment showed surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CAPB) and remediation amendment calcium polysulfide (CPS) had no affect on microbial growth using BiologTM Ecoplates. To move towards a more realistic field analog, soil columns were packed with Hanford 200 Area sediment. Once microbial growth in the column was verified by observing growth of the effluent solution on tryptic soy agar plates, remedial surfactants were injected into the columns, and the resulting metabolic diversity was measured. Results suggest surfactant sodium dodecyl sulfate (SDS) stimulates microbial growth. The soil columns were also visualized using X-ray microtomography to inspect soil packing and possibly probe for evidence of biofilms. Overall, BiologTM Ecoplates provide a rapid assay to predict effects of remediation amendments on Hanford 200 area deep vadose zone microorganisms.

  7. Vadose zone monitoring for hazardous waste sites

    SciTech Connect

    Everett, L.G.; Wilson, L.G.; Hoylman, E.W.

    1983-10-01

    This book describes the applicability of vadose zone monitoring techniques to hazardous waste site investigations. More than 70 different sampling and nonsampling vadose zone monitoring techniques are described in terms of their advantages and disadvantages. Physical, chemical, geologic, topographic, geohydrologic, and climatic constraints for vadose zone monitoring are quantitatively determined. Vadose zone monitoring techniques are categorized for premonitoring, active, and postclosure site assessments. Waste disposal methods are categorized for piles, landfills, impoundments, and land treatment. Conceptual vadose zone monitoring approaches are developed for specific waste disposal method categories.

  8. Architecture of small-scale fault zones in the context of the Leinetalgraben Fault System

    NASA Astrophysics Data System (ADS)

    Reyer, Dorothea; Philipp, Sonja L.

    2010-05-01

    Understanding fault zone properties in different geological settings is important to better assess the development and propagation of faults. In addition this allows better evaluation and permeability estimates of potential fault-related geothermal reservoirs. The Leinetalgraben fault system provides an outcrop analogue for many fault zones in the subsurface of the North German Basin. The Leinetalgraben is a N-S-trending graben structure, initiated in the Jurassic, in the south of Lower Saxony and as such part of the North German Basin. The fault system was reactivated and inverted during Alpine compression in the Tertiary. This complex geological situation was further affected by halotectonics. Therefore we can find different types of fault zones, that is normal, reverse, strike-slip an oblique-slip faults, surrounding the major Leinetalgraben boundary faults. Here we present first results of structural geological field studies on the geometry and architecture of fault zones in the Leinetalgraben Fault System in outcrop-scale. We measured the orientations and displacements of 17 m-scale fault zones in limestone (Muschelkalk) outcrops, the thicknesses of their fault cores and damage zones, as well as the fracture densities and geometric parameters of the fracture systems therein. We also analysed the effects of rock heterogeneities, particularly stiffness variations between layers (mechanical layering) on the propagation of natural fractures and fault zones. The analysed fault zones predominantly show similar orientations as the major fault zones they surround. Other faults are conjugate or perpendicular to the major fault zones. The direction of predominant joint strike corresponds to the orientation of the fault zones in the majority of cases. The mechanical layering of the limestone and marlstone stratification obviously has great effects on fracture propagation. Already thin layers (mm- to cm-scale) of low stiffness - here marl - seem to suffice to change the

  9. Serpentine in active subduction zones

    NASA Astrophysics Data System (ADS)

    Reynard, Bruno

    2013-09-01

    Serpentinization is a key phenomenon for understanding the geodynamics of subduction zones in the 10-200 km depth range. Serpentines are a major water carrier, and their rheological properties have a strong influence on deformation partitioning and seismicity at depths. I review experimental investigations that have been conducted on serpentines, with emphasis on the large body of data acquired over the past decade. Determinations of physical properties at the pressure and temperature conditions of subductions allow interpreting geophysical data in active subduction in terms of mineralogy and petrology, and to link the presence of serpentinites with deformation and fluid circulation. The fluid budget can be partially constrained from geophysical data. Elasticity data provide a quantitative basis for mapping serpentinization in the mantle wedge and slab from seismic tomography. Anisotropy suggests the existence of thin serpentinite channels above the plate interface, that account for mechanical decoupling inferred from down-dip limit of the seismogenic zone and heat flow. Strain-rate dependent rheology of antigorite serpentine is consistent with stable deformation of this thin layer or channel over timescales ranging from those of the seismic cycle to those of thermal equilibration and exhumation of high-pressure rocks, and with the geological record of subduction-related deformation. Circulation of serpentinizing fluids depends on the permeability structure, and is imaged by electrical conductivity tomography. It could be controlled by fracturing in the undeformed cold nose of the mantle wedge, and by plastic deformation along the plate interface. Fluid migration mechanisms are similar to those inferred from petrological and geochemical data on exhumed serpentinites. Estimation of the fluid budget associated with serpentine formation will rely on numerical simulations for which coupling of kinetics of hydration and dehydration at scales ranging from grain size up

  10. Holdridge life zone physical inconsistency

    NASA Astrophysics Data System (ADS)

    Martínez, A., Sr.; Ochoa, A.

    2015-12-01

    Life zones is a very used classification system, developed by L.R. Holdridge in 1967, used to discern why plants have different adaptation mechanism to their surrounding environment. In this paper, the relation between potential evapotranspiration rate (ETr ), anual precipitation (P ) and biotemperature (Tb ) in the Holdridge triangle, is parametrized (P = (500/9)*ETr) to evaluate if the rain process is conserved in Colombia. Further, an adiabatic ascent of air with diurnal and interannual variability, and cluster analysis is view as a classification example of the advantage of using physical process to evaluate the plants adaptation mechanisms . The most inconsistency life zones are situated in the rainiest places of Colombian pacific costs in tropical latitudinal region, are non-exist places in holdridge triangle with annual biotemperature higher than 26◦ C, annual precipitation about 10.000mm and annual potential evapotranspiration rate about 0.1. The difference between Holdridge predicted precipitation and the precipitation measured with TRMM are about 5.000mm in these places. Classification systems based on an annual average, do not stablish adaptation as a function of diurnal variability, for example, the difference between valley sides vegetation could not being determined. This kind of limitations, added to a validation procces and the auscence of a physic procces in the variable interaction, make the Holdridge Life Zones a very useful tool, but physically inconsistent for caracterice vegetation as a function of precipitation. The rain process is very complex, depend of mass and energy exchanges and is still a controversial topic in atmospheric modeling, as a biotic pump.

  11. Central Cascadia subduction zone creep

    NASA Astrophysics Data System (ADS)

    Schmalzle, Gina M.; McCaffrey, Robert; Creager, Kenneth C.

    2014-04-01

    Cascadia between 43°N and 46°N has reduced interseismic uplift observed in geodetic data and coseismic subsidence seen in multiple thrust earthquakes, suggesting elevated persistent fault creep in this section of the subduction zone. We estimate subduction thrust "decade-scale" locking and crustal block rotations from three-component continuous Global Positioning System (GPS) time series from 1997 to 2013, as well as 80 year tide gauge and leveling-derived uplift rates. Geodetic observations indicate coastal central Oregon is rising at a slower rate than coastal Washington, southern Oregon and northern California. Modeled locking distributions suggest a wide locking transition zone that extends inland under central Oregon. Paleoseismic records of multiple great earthquakes along Cascadia indicate less subsidence in central Oregon. The Cascade thrust under central Oregon may be partially creeping for at least 6500 years (the length of the paleoseismic record) reducing interseismic uplift and resulting in reduced coseismic subsidence. Large accretions of Eocene age basalt (Siletzia terrane) between 43°N and 46°N may be less permeable compared to surrounding terranes, potentially increasing pore fluid pressures along the fault interface resulting in a wide zone of persistent fault creep. In a separate inversion, three-component GPS time series from 1 July 2005 to 1 January 2011 are used to estimate upper plate deformation, locking between slow-slip events (SSEs), slip from 16 SSEs and an earthquake mechanism. Cumulative SSEs and tectonic tremor are weakest between 43°N and 46°N where partial fault creep is increased and Siletzia terrane is thick, suggesting that surrounding rock properties may influence the mode of slip.

  12. Danger zone in mandibular molars before instrumentation: an in vitro study.

    PubMed

    Garcia Filho, Paulo Ferreira; Letra, Ariadne; Menezes, Renato; Carmo, Antônio Márcio Rezende do

    2003-12-01

    The aim of this work was to measure the danger zone in mandibular molars, relating to strip perforations that might affect the mesial root during canal instrumentation. One hundred mesial roots were sectioned 2mm below the furcation and the distal concavities were measured with a microscope from the border of the canals to the outer dentin of the root. The average thickness of the danger zone of the mesial roots was 0.789 +/- 0.182mm. No significant statistical differences were observed comparing the danger zone of mesiobuccal and mesiolingual canals. PMID:21394408

  13. Drugs affecting glycosaminoglycan metabolism.

    PubMed

    Ghiselli, Giancarlo; Maccarana, Marco

    2016-07-01

    Glycosaminoglycans (GAGs) are charged polysaccharides ubiquitously present at the cell surface and in the extracellular matrix. GAGs are crucial for cellular homeostasis, and their metabolism is altered during pathological processes. However, little consideration has been given to the regulation of the GAG milieu through pharmacological interventions. In this review, we provide a classification of small molecules affecting GAG metabolism based on their mechanism of action. Furthermore, we present evidence to show that clinically approved drugs affect GAG metabolism and that this could contribute to their therapeutic benefit. PMID:27217160

  14. Unsaturated Zone Flow Changes After Wildfire: A Virtual Experiment Perspective

    NASA Astrophysics Data System (ADS)

    Ebel, B. A.

    2013-12-01

    Wildfire is a frequent disturbance event in the Western U.S. and other regions worldwide. It is well known that wildfire impacts the hydrologic cycle, yet the accompanying changes in unsaturated zone flow are poorly understood. This effort uses unsaturated zone flow simulation for well characterized experimental plots covering north- and south-facing slope aspects for plots both affected and unaffected by wildfire to improve understanding. Comparisons to observed soil-water content and matric potential data establish 'foundation simulations' that lay the groundwork for virtual experiments testing hypotheses developed from interpretation of field and laboratory data. The virtual experiments with the numerical model then extend understanding beyond what could be gleaned from data alone. Unsaturated zone flow is simulated with Hydrus-1D and the field site for this work is within the area affected by the 2010 Fourmile Canyon Fire near Boulder, CO USA. Preliminary work shows that loss of transpiration because of vegetation combustion/mortality caused soils to be wetter at depths greater than 5 cm on both north- and south-facing slopes. Loss of interception by the tree canopy also contributes to wetter subsurface conditions on north-facing slopes. On south-facing slopes, at depths less than 3 cm, the soil was drier after wildfire because of decreases in soil-water retention, confirming hypotheses from field and laboratory measurements.

  15. Challenges for Deep Vadose Zone Remediation at the Hanford Site

    SciTech Connect

    Morse, J.G.; Charboneau, B.L.; Lober, R.W.; Triplett, M.B.

    2008-07-01

    The 'deep vadose zone' is defined as the region below the practical depth of surface remedy influence (e.g., excavation or barrier). At the Hanford Site, this region of the Central Plateau poses unique challenges for characterization and remediation. Currently, deep vadose zone characterization efforts and remedy selection are spread over multiple waste site Operable Units and tank farm Waste Management Areas. A particular challenge for this effort is the situation in which past leaks from single-shell tanks have become commingled with discharges from nearby liquid disposal sites. In addition, tests of potentially viable remediation technologies will be initiated in the next few years. The Hanford Site is working with all affected parties, including the Washington State Department of Ecology, the Environmental Protection Agency, DOE-RL, DOE-ORP, and multiple contractor organizations to develop remediation approaches. This effort addresses the complex and challenging technical and is evaluating the best strategy or combination of strategies for focusing technical investigations, including treatability studies to facilitate deep vadose zone remediation at the Hanford Site. In summary: Hanford's two DOE offices, Richland Operations and the Office of River Protection, are engaging the Site's regulators, EPA and the Washington State Department of Ecology, in a collaborative process to resolve one of Hanford's most challenging technical issues - investigation and remedy selection for the deep vadose zone. While this process has not reached its conclusion, several important findings are apparent. All parties agree that the current approach of addressing this problem is not likely to be successful and an alternative is needed. An essential initial step is to develop and then implement a deep vadose zone treatability test plan that logically organizes the testing of candidate technologies for application to the variety of Hanford's deep vadose zone problems. This plan is

  16. FOAM: NOVEL DELIVERY TECHNOLOGY FOR REMEDIATION OF VADOSE ZONE ENVIRONMENTS

    SciTech Connect

    Jansik, Danielle P.; Wellman, Dawn M.; Mattigod, Shas V.; Zhong, Lirong; Wu, Yuxin; Foote, Martin; Zhang, Z. F.; Hubbard, Susan

    2011-07-05

    Deep vadose zone environments can be a primary source and pathway for contaminant migration to groundwater. These environments present unique characterization and remediation challenges that necessitate scrutiny and research. The thickness, depth, and intricacies of the deep vadose zone, combined with a lack of understanding of the key subsurface processes (e.g., biogeochemical and hydrologic) affecting contaminant migration, make it difficult to create validated conceptual and predictive models of subsurface flow dynamics and contaminant behavior across multiple scales. These factors also make it difficult to design and deploy sustainable remedial approaches and monitor long-term contaminant behavior after remedial actions. Functionally, the methods for addressing contamination must remove and/or reduce transport of contaminants. This problem is particularly challenging in the arid western United States where the vadose zone is hundreds of feet thick, rendering transitional excavation methods exceedingly costly and ineffective. Delivery of remedial amendments is one of the most challenging and critical aspects for all remedy-based approaches. The conventional approach for delivery is through injection of aqueous remedial solutions. However, heterogeneous deep vadose zone environments present hydrologic and geochemical challenges which limit the effectiveness. Because the flow of solution infiltration is dominantly controlled by gravity and suction, injected liquid preferentially percolates through highly permeable pathways, by-passing low-permeability zones which frequently contain the majority of contamination. Moreover, the wetting front can readily mobilize and enhance contaminant transport to the underlying aquifer prior to stabilization. Development of innovative, in-situ technologies may be the only way to meet remedial action objectives and long-term stewardship goals. Surfactants can be used to lower the liquid surface tension and create stabile foams

  17. The Structural Architecture and Tectonic Inheritance of the Vlora-Elbasan Transfer Zone in Albanides-Albania

    NASA Astrophysics Data System (ADS)

    Abus, E. D.; Dilek, Y.

    2014-12-01

    The Albanides in the Balkan Peninsula are part of the Alpine orogenic belt and host one of the most significant oil fields in SE Europe. The late Mesozoic-Cenozoic evolution of the Albanides has been strongly controlled by the relative movements of Adria or Apulia, a microcontinent with a West Gondwana affinity with respect to Eurasia. In northeastern Albania, the Internal Albanides consist of Paleozoic - Jurassic basement rocks, which involved subduction zone tectonics of the Pindos-Mirdita ocean basin. The External Albanides, on the other hand, represent a fold-and-thrust belt with deformation in a broad zone of oblique convergence. This tectonic domain is divided, from east to west, into five major structural zones: the Krasta-Cukali Zone, the Kruja Zone, the Peri-Adriatic Depression, the Ionian Zone, and the Sazani Zone, which is represented by the Apulian platform carbonates. The zone is characterized by NW-SE-running and SW-verging thrust fault systems that involve a thick series of Mesozoic - Tertiary passive margin carbonates, unconformably overlain by Oligocene clastic units. These two tectonic zones are dissected by the NE-SW-striking Vlora-Elbasan Transfer Zone, which extends eastwards into the Internal Albanides, affecting the structural architecture and the tectonic evolution of the entire mountain belt. This fault zone that has been tectonically active from the Triassic to recent have display diapiric structures along it.

  18. Affective Factors: Anxiety

    ERIC Educational Resources Information Center

    Tasnimi, Mahshad

    2009-01-01

    Affective factors seem to play a crucial role in success or failure in second language acquisition. Negative attitudes can reduce learners' motivation and harm language learning, while positive attitudes can do the reverse. Discovering students' attitudes about language will help both teacher and student in teaching learning process. Anxiety is…

  19. How Technology Affects Teaching.

    ERIC Educational Resources Information Center

    Wiske, Martha Stone; And Others

    This study presents composite profiles of teachers who were interviewed in order to assess how they are being affected by the challenges and opportunities presented by computer technology use. In-depth interviews were held with 76 teachers from 10 sites around the country, and the interview data were analyzed to identify themes and to construct…

  20. Factors affecting soil cohesion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erodibility is a measure of a soil’s resistance against erosive forces and is affected by both intrinsic (or inherent) soil property and the extrinsic condition at the time erodibility measurement is made. Since soil erodibility is usually calculated from results obtained from erosion experimen...

  1. What Variables Affect Solubility?

    ERIC Educational Resources Information Center

    Baker, William P.; Leyva, Kathryn

    2003-01-01

    Helps middle school students understand the concept of solubility through hands-on experience with a variety of liquids and solids. As they explore factors that affect solubility and saturation, students gain content mastery and an understanding of the inquiry process. Also enables teachers to authentically assess student performance on several…

  2. How Body Affects Brain.

    PubMed

    Suzuki, Wendy A

    2016-08-01

    Studies show that physical exercise can affect a range of brain and cognitive functions. However, little is known about the peripheral signals that initiate these central changes. Moon et al. (2016) provide exciting new evidence that a novel myokine, cathepsin B (CTSB), released with exercise is associated with improved memory. PMID:27508865

  3. Food Affects Human Behavior.

    ERIC Educational Resources Information Center

    Kolata, Gina

    1982-01-01

    A conference on whether food and nutrients affect human behavior was held on November 9, 1982 at the Massachusetts Institute of Technology. Various research studies on this topic are reviewed, including the effects of food on brain biochemistry (particularly sleep) and effects of tryptophane as a pain reducer. (JN)

  4. The Himalayan Seismogenic Zone: A New Frontier for Earthquake Research

    NASA Astrophysics Data System (ADS)

    Brown, Larry; Hubbard, Judith; Karplus, Marianne; Klemperer, Simon; Sato, Hiroshi

    2016-04-01

    The Mw 7.8 Gorkha, Nepal, earthquake that occurred on April 25 of this year was a dramatic reminder that great earthquakes are not restricted to the large seismogenic zones associated with subduction of oceanic lithosphere. Not only does Himalayan seismogenesis represents important scientific and societal issues in its own right, it constitutes a reference for evaluating general models of the earthquake cycle derived from the studies of the oceanic subduction systems. This presentation reports results of a Mini-Workshop sponsored by the GeoPrisms project that was held in conjunction with the American Geophysical Union on December 15, 2015, designed to organize a new initiative to study the great Himalaya earthquake machine. The Himalayan seismogenic zone shares with its oceanic counterparts a number of fundamental questions, including: a) What controls the updip and downdip limits of rupture? b) What controls the lateral segmentation of rupture zones (and hence magnitude)? c) What is the role of fluids in facilitating slip and or rupture? d) What nucleates rupture (e..g. asperities?)? e) What physical properties can be monitored as precursors to future events? f) How effectively can the radiation pattern of future events be modeled? g) How can a better understanding of Himalayan rupture be translated into more cost effective preparations for the next major event in this region? However the underthrusting of continental, as opposed to oceanic, lithosphere in the Himalayas frames these questions in a very different context: h) How does the greater thickness and weaker rheology of continental crust/lithosphere affect locking of the seismogenic zone? i) How does the different thermal structure of continental vs oceanic crust affect earthquake geodynamics? j) Are fluids a significant factor in intercontinental thrusting? k) How does the basement morphology of underthrust continental crust affect locking/creep, and how does it differ from the oceanic case? l) What is the

  5. Control of climate and litter quality on leaf litter decomposition in different climatic zones.

    PubMed

    Zhang, Xinyue; Wang, Wei

    2015-09-01

    Climate and initial litter quality are the major factors influencing decomposition rates on large scales. We established a comprehensive database of terrestrial leaf litter decomposition, including 785 datasets, to examine the relationship between climate and litter quality and evaluate the factors controlling decomposition on a global scale, the arid and semi-arid (AS) zone, the humid middle and humid low (HL) latitude zones. Initial litter nitrogen (N) and phosphorus (P) concentration only increased with mean annual temperature (MAT) in the AS zone and decreased with mean annual precipitation (MAP) in the HL zone. Compared with nutrient content, MAT imposed less effect on initial litter lignin content than MAP. MAT were the most important decomposition driving factors on a global scale as well as in different climatic zones. MAP only significantly affected decomposition constants in AS zone. Although litter quality parameters also showed significant influence on decomposition, their importance was less than the climatic factors. Besides, different litter quality parameters exerted significant influence on decomposition in different climatic zones. Our results emphasized that climate consistently exerted important effects on decomposition constants across different climatic zones. PMID:26135888

  6. Dynamic Synchronization of Teacher-Students Affection in Affective Instruction

    ERIC Educational Resources Information Center

    Zhang, Wenhai; Lu, Jiamei

    2011-01-01

    Based on Bower's affective network theory, the article links the dynamic analysis of affective factors in affective instruction, and presents affective instruction strategic of dynamic synchronization between teacher and students to implement the best ideal mood that promotes students' cognition and affection together. In the process of teaching,…

  7. Generalized provisional seed zones for native plants.

    PubMed

    Bower, Andrew D; St Clair, J Bradley; Erickson, Vicky

    2014-07-01

    Deploying well-adapted and ecologically appropriate plant materials is a core component of successful restoration projects. We have developed generalized provisional seed zones that can be applied to any plant species in the United States to help guide seed movement. These seed zones are based on the intersection of high-resolution climatic data for winter minimum temperature and aridity (as measured by annual heat : moisture index), each classified into discrete bands. This results in the delineation of 64 provisional seed zones for the continental United States. These zones represent areas of relative climatic similarity, and movement of seed within these zones should help to minimize maladaptation. Superimposing Omernik's level III ecoregions over these seed zones distinguishes areas that are similar climatically yet different ecologically. A quantitative comparison of provisional seed zones with level III ecoregions and provisional seed zones within ecoregions for three species showed that provisional seed zone within ecoregion often explained the greatest proportion of variation in a suite of traits potentially related to plant fitness. These provisional seed zones can be considered a starting point for guidelines for seed transfer, and should be utilized in conjunction with appropriate species-specific information as well as local knowledge of microsite differences. PMID:25154085

  8. Characterization of a Friction Stir Weld in Aluminum Alloy 7055 Using Microhardness, Electrical Conductivity, and Differential Scanning Calorimetry (DSC)

    NASA Astrophysics Data System (ADS)

    Bush, Ralph; Kiyota, Michelle; Kiyota, Catherine

    2016-04-01

    Optical microscopy, microhardness, electrical conductivity, and differential scanning calorimetry (DSC) were used to characterize the microstructure, hardness, and precipitate structure as a function of position in a friction stir weld, naturally aged for 10 years, in aluminum alloy 7055. Results are shown for the as-welded/naturally aged condition and for a weld that was post-aged using a -T76 regimen. The grain structure and microhardness results reveal the expected central recrystallized region, a thermo-mechanical affected zone (TMAZ), and heat-affected zone (HAZ) with typical changes in microhardness. DSC scans for the as-welded/naturally aged condition indicate a precipitate structure similar to that of a naturally aged condition in the central recrystallized region. Maximum precipitate coarsening and overaging occurs near the TMAZ/HAZ boundary with reduced precipitate dissolution and coarsening as the distance from the weld increases. The post-weld aging resulted in the transformation of GP zones to more stable precipitates plus coarsening of the more stable η' and η precipitates. A combination of DSC testing and CALPHAD calculations allowed calculation of precipitate volume fraction in the HAZ. The precipitate volume fraction decreased monotonically from 0.052 in the baseline material to 0.044 at the TMAZ/HAZ interface.

  9. Characterization of a Friction Stir Weld in Aluminum Alloy 7055 Using Microhardness, Electrical Conductivity, and Differential Scanning Calorimetry (DSC)

    NASA Astrophysics Data System (ADS)

    Bush, Ralph; Kiyota, Michelle; Kiyota, Catherine

    2016-07-01

    Optical microscopy, microhardness, electrical conductivity, and differential scanning calorimetry (DSC) were used to characterize the microstructure, hardness, and precipitate structure as a function of position in a friction stir weld, naturally aged for 10 years, in aluminum alloy 7055. Results are shown for the as-welded/naturally aged condition and for a weld that was post-aged using a -T76 regimen. The grain structure and microhardness results reveal the expected central recrystallized region, a thermo-mechanical affected zone (TMAZ), and heat-affected zone (HAZ) with typical changes in microhardness. DSC scans for the as-welded/naturally aged condition indicate a precipitate structure similar to that of a naturally aged condition in the central recrystallized region. Maximum precipitate coarsening and overaging occurs near the TMAZ/HAZ boundary with reduced precipitate dissolution and coarsening as the distance from the weld increases. The post-weld aging resulted in the transformation of GP zones to more stable precipitates plus coarsening of the more stable η' and η precipitates. A combination of DSC testing and CALPHAD calculations allowed calculation of precipitate volume fraction in the HAZ. The precipitate volume fraction decreased monotonically from 0.052 in the baseline material to 0.044 at the TMAZ/HAZ interface.

  10. Pan-European Chikungunya surveillance: designing risk stratified surveillance zones.

    PubMed

    Tilston, Natasha; Skelly, Chris; Weinstein, Phil

    2009-01-01

    The first documented transmission of Chikungunya within Europe took place in Italy during the summer of 2007. Chikungunya, a viral infection affecting millions of people across Africa and Asia, can be debilitating and no prophylactic treatment exists. Although imported cases are reported frequently across Europe, 2007 was the first confirmed European outbreak and available evidence suggests that Aedes albopictus was the vector responsible and the index case was a visitor from India. This paper proposed pan-European surveillance zones for Chikungunya, based on the climatic conditions necessary for vector activity and viral transmission. Pan-European surveillance provides the best hope for an early-warning of outbreaks, because national boundaries do not play a role in defining the risk of this new vector borne disease threat. A review of climates, where Chikungunya has been active, was used to inform the delineation of three pan-European surveillance zones. These vary in size each month across the June-September period of greatest risk. The zones stretch across southern Europe from Portugal to Turkey. Although the focus of this study was to define the geography of potential surveillance zones based on the climatic limits on the vector and virus, a preliminary examination of inward bound airline passengers was also undertaken. This indicated that France and Italy are likely to be at greater risk due to the number of visitors they receive from Chikungunya active regions, principally viraemic visitors from India. Therefore this study represents a first attempt at creating risk stratified surveillance zones, which we believe could be usefully refined with the use of higher resolution climate data and more complete air travel data. PMID:19878588

  11. A Geophysical Study of the Carcavai Fault Zone, Portugal

    NASA Astrophysics Data System (ADS)

    Carvalho, J.; Ramalho, E.; Dias, R.; Pinto, C.; Ressurreição, R.

    2012-01-01

    The Algarve province is located a few hundred kilometres north of the crossing of the E-W Eurasia-Africa plate boundary in an area of diffuse seismicity and broad deformation. It is characterised by a moderate seismicity, with some important historical and instrumental earthquakes causing loss of lives and significant material damages. The area is affected not only by plate boundary earthquakes but also by moderate to large events generated by local sources. The assessment of onshore local sources is, therefore, of vital importance for an evaluation of the regional seismic hazard. This paper discusses the application of geophysical data to the study of the Carcavai fault zone, an outcropping structure more than 20 km long which is seen to deform sediments of the Plio-Quaternary age. The location of some sectors of the fault zone, as well as the vertical offsets of the structure, are still to be confirmed. In order to estimate these and to study the geometry of the fault zone at depth, geophysical data were acquired together with new geological data. Where the location of the fault was less certain, EM and seismic reflection profiles with coarse spatial sampling were carried out. After the detailed location of the fault zone, seismic reflection profiles with a more dense spatial resolution were acquired. The integrated interpretation of the geological and geophysical data confirmed the presence of a large fault zone. The total fault length is still unknown as its extension offshore is still being studied. Together with estimated values of the throw obtained, this data set has improved understanding the seismic hazard in the area by providing more refined estimates of co-seismic rupture, maximum expected earthquake and return periods.

  12. High-temperature strength analysis of welded joint of RAFs by small punch test

    NASA Astrophysics Data System (ADS)

    Kato, Taichiro; Komazaki, Shin-ichi; Kohno, Yutaka; Tanigawa, Hiroyasu; Kohyama, Akira

    2009-04-01

    Type IV creep damage has recently been a worldwide issue for high Cr ferritic steels. The small punch (SP) creep test has been successfully applied to evaluate this damage of low alloy ferritic steel by the author's group. However, the heat affected zone (HAZ) of fusion reactor material welded by electron-beam (EB) welding is so thin that it is not easy to evaluate its mechanical properties by the conventional SP test. In this study, the SP test using a further miniaturized specimen was applied to the EB welded joint of reduced activation ferritic steel (RAFs), for evaluating high-temperature tensile properties of the HAZs. As the result, the σy and σB of the tempered HAZ at 873 K were estimated to be as low as 275-300 MPa and 325-340 MPa, respectively.

  13. Analysis of laser beam weldability of Inconel 738 superalloy

    SciTech Connect

    Egbewande, A.T.; Buckson, R.A.; Ojo, O.A.

    2010-05-15

    The susceptibility of pre-weld heat treated laser beam welded IN 738 superalloy to heat affected zone (HAZ) cracking was studied. A pre-weld heat treatment that produced the minimal grain boundary liquation resulted in a higher level of cracking compared to those with more intergranular liquation. This deviation from the general expectation of influence of intergranular liquation extent on HAZ microfissuring is attributable to the reduction in the ability of the base alloy to accommodate welding tensile stress that accompanied a pre-weld heat treatment condition designed to minimize intergranular liquation. Furthermore, in contrast to what has been generally reported in other nickel-based superalloys, a decrease in laser welding speed resulted in increased HAZ cracking in the IN 738, which can be attributed to exacerbated process instability at lower welding speeds.

  14. Basic study of heat flow in fusion welding. Progress report to the US Department of Energy, October 1, 1980-October 1, 1982

    SciTech Connect

    Szekely, J.; Eagar, T.W.

    1981-10-15

    Progress is reported in an investigation whose purpose is the development of a fundamental understanding of heat and fluid flow in fusion welding operations and of the role played by heat and fluid flow in determining the mechanical and structural properties of the welds produced. To date, a good quantitative description has been developed of the temperature profiles for electroslag welding systems and an understanding has been derived of factors that determine the size of the heat-affected zone (HAZ). Mathematical models of heat and fluid flow in the weld pool and of the temperature distribution in weldments using a moving heat source were developed. Experiments were performed to determine the effects of welding process parameters on the size and shape of the weld pool and of the HAZ. An unexpected finding was that the size of the HAZ was not markedly dependent on any of the welding process parameters. (LCL)

  15. SCC behavior of an Al-3. 7wt%Zn-2. 5wt%Mg alloys before and after welding in 3. 5% NaCl solution

    SciTech Connect

    Liao, C.M. )

    1993-01-01

    The behavior of stress corrosion cracking (SCC) of an overaged Al-3.7wt%Zn-2.5wt%Mg alloy including base metal, weldment, and heat-affected zone (HAZ) in 3.5% NaCl solution was investigated. This Al-Zn-Mg alloy loaded in longitudinal or long transverse direction has good SCC resistance and is maintained even after welding. Welding residual stress alone does not induce the SCC of the weldment. The result of the specially modified type 1 double cantilever beam (DCB) testing shows that the crack can be arrested by the weld metal because of the better SCC resistance of the filler metal ER5183. In addition, a specially designed type 2 DCB testing indicates that the SCC resistance of the HAZ is better than that of the base metal because of the re-overaging of the HAZ during welding.

  16. Microstructure of welded and thermal-aged low activation steel F82H IEA heat

    NASA Astrophysics Data System (ADS)

    Sawai, T.; Shiba, K.; Hishinuma, A.

    2000-12-01

    F82H(8Cr-2WVTa steel) IEA heat was used to prepare tungsten-inert-gas (TIG) and electron-beam (EB) weld joints, followed by heat treatment at 720°C for 1 h. Hardening in the weld metal and softening in the heat-affected zone (HAZ) were detected in TIG weld joints. In EB weld joints, hardening in the weld metal was more clearly observed but HAZ softening was hardly observed. Hardness of TIG weld metal was reduced after 550°C thermal-aging, but softening of the base metal was only observed after 650°C thermal-aging. M23C6 phase was the major precipitate in aged base metal and weld joints. The amount of precipitates in aged weld metal was lower than that of normalized and tempered base metal. W-rich Laves phase was also detected in aged weld metal, HAZ and base metal.

  17. Analysis of fracture toughness of explosion-hardened martensitic steel

    NASA Astrophysics Data System (ADS)

    Moskvitina, L. V.

    2015-10-01

    In this work we study a shift of the following nonlinear states: tempering + abatement + 10 GPa shock loading + welding thermocycle. As a result the self-organized HAZ metal structure with elements of self-similarity on different scales is found. The fractal analysis shows how formed defects affect the HAZ metal hardness of 14H2GMR steel with the martensitic structure of static fracture. The statistical analysis of stereometric parameters of fracture shows a higher energy intensity of static fracture in specimens treated by explosion. The multifractal analysis reveals hardness of the grid dislocation structure induced by explosion in the air-hardening zone. The homogeneity of the dislocation structure related to carbides increases the resistance of HAZ metal of static fracture.

  18. Finite Element Modeling of Transition Zone in Friction Stir Welded Tailor-Made Blanks

    SciTech Connect

    Zadpoor, Amir A.; Sinke, Jos; Benedictus, Rinze

    2007-05-17

    Finite element modeling of a prototype friction stir welded blank made of aluminum alloy 2024-T351 is considered in this paper. Feasibility of implementation of the experimentally-obtained mechanical properties of the weld nugget and heat-affected zones in FEM models is investigated. Limiting dome height test is considered as case of the study. Three different finite element models implementing different levels of the weld details are built and compared. It is shown that despite increased simulation time, implementation of the weld nugget and heat-affected zones is justified by significantly improved accuracy of the simulation results.

  19. Zipper and freeway shear zone junctions

    NASA Astrophysics Data System (ADS)

    Passchier, Cees; Platt, John

    2016-04-01

    Ductile shear zones are usually presented as isolated planar high-strain domains in a less deformed wall rock, characterised by shear sense indicators such as characteristic deflected foliation traces. Many shear zones, however, form branched systems and if movement on such branches is contemporaneous, the resulting geometry can be complicated and lead to unusual fabric geometries in the wall rock. For Y-shaped shear zone junctions with three simultaneously operating branches, and with slip directions at a high angle to the branch line, eight basic types of shear zone triple junctions are possible, divided into three groups. The simplest type, called freeway junctions, have similar shear sense on all three branches. If shear sense is different on the three branches, this can lead to space problems. Some of these junctions have shear zone branches that join to form a single branch, named zipper junctions, or a single shear zone which splits to form two, known as wedge junctions. Closing zipper junctions are most unusual, since they form a non-active high-strain zone with opposite deflection of foliations. Shear zipper and shear wedge junctions have two shear zones with similar shear sense, and one with the opposite sense. All categories of shear zone junctions show characteristic flow patterns in the shear zone and its wall rock. Shear zone junctions with slip directions normal to the branch line can easily be studied, since ideal sections of shear sense indicators lie in the plane normal to the shear zone branches and the branch line. Expanding the model to allow slip oblique and parallel to the branch line in a full 3D setting gives rise to a large number of geometries in three main groups. Slip directions can be parallel on all branches but oblique to the branch line: two slip directions can be parallel and a third oblique, or all three branches can have slip in different directions. Such more complex shear zone junctions cannot be studied to advantage in a

  20. Anger in the combat zone.

    PubMed

    Reyes, Valvincent A; Hicklin, Thomas A

    2005-06-01

    A U.S. Army Reserve Combat Stress Control prevention team was dispatched to Afghanistan in support of Operation Enduring Freedom to provide preventative mental health care to a U.S. Army airborne division and Special Operations forces. The team's mission was to ensure mental health readiness of units in the area of operations. In Bagram, Afghanistan, the Combat Stress Control team identified anger as a very prevalent emotion in the combat zone. Anger management interventions with individual and group counseling were implemented to help soldiers cope with anger. Of 7,000 military personnel stationed there during the team's rotation, there was not one completed suicide or homicide. This article describes how the 113th Medical Company identified, treated, and controlled anger at Bagram Airbase, Afghanistan, between June 20, 2002, and December 20, 2002, with anger management interventions. This article does not address the psychophysiological features of anger. PMID:16001596