Sample records for affecting air quality

  1. Forest ecosystem services: Carbon and air quality

    Treesearch

    David J. Nowak; Neelam C. Poudyal; Steve G. McNulty

    2017-01-01

    Forests provide various ecosystem services related to air quality that can provide substantial value to society. Through tree growth and alteration of their local environment, trees and forests both directly and indirectly affect air quality. Though forests affect air quality in numerous ways, this chapter will focus on five main ecosystem services or disservices...

  2. Factors Affecting Parent's Perception on Air Quality-From the Individual to the Community Level.

    PubMed

    Guo, Yulin; Liu, Fengfeng; Lu, Yuanan; Mao, Zongfu; Lu, Hanson; Wu, Yanyan; Chu, Yuanyuan; Yu, Lichen; Liu, Yisi; Ren, Meng; Li, Na; Chen, Xi; Xiang, Hao

    2016-05-12

    The perception of air quality significantly affects the acceptance of the public of the government's environmental policies. The aim of this research is to explore the relationship between the perception of the air quality of parents and scientific monitoring data and to analyze the factors that affect parents' perceptions. Scientific data of air quality were obtained from Wuhan's environmental condition reports. One thousand parents were investigated for their knowledge and perception of air quality. Scientific data show that the air quality of Wuhan follows an improving trend in general, while most participants believed that the air quality of Wuhan has deteriorated, which indicates a significant difference between public perception and reality. On the individual level, respondents with an age of 40 or above (40 or above: OR = 3.252; 95% CI: 1.170-9.040), a higher educational level (college and above: OR = 7.598; 95% CI: 2.244-25.732) or children with poor healthy conditions (poor: OR = 6.864; 95% CI: 2.212-21.302) have much more negative perception of air quality. On the community level, industrial facilities, vehicles and city construction have major effects on parents' perception of air quality. Our investigation provides baseline information for environmental policy researchers and makers regarding the public's perception and expectation of air quality and the benefits to the environmental policy completing and enforcing.

  3. Factors Affecting Parent’s Perception on Air Quality—From the Individual to the Community Level

    PubMed Central

    Guo, Yulin; Liu, Fengfeng; Lu, Yuanan; Mao, Zongfu; Lu, Hanson; Wu, Yanyan; Chu, Yuanyuan; Yu, Lichen; Liu, Yisi; Ren, Meng; Li, Na; Chen, Xi; Xiang, Hao

    2016-01-01

    The perception of air quality significantly affects the acceptance of the public of the government’s environmental policies. The aim of this research is to explore the relationship between the perception of the air quality of parents and scientific monitoring data and to analyze the factors that affect parents’ perceptions. Scientific data of air quality were obtained from Wuhan’s environmental condition reports. One thousand parents were investigated for their knowledge and perception of air quality. Scientific data show that the air quality of Wuhan follows an improving trend in general, while most participants believed that the air quality of Wuhan has deteriorated, which indicates a significant difference between public perception and reality. On the individual level, respondents with an age of 40 or above (40 or above: OR = 3.252; 95% CI: 1.170–9.040), a higher educational level (college and above: OR = 7.598; 95% CI: 2.244–25.732) or children with poor healthy conditions (poor: OR = 6.864; 95% CI: 2.212–21.302) have much more negative perception of air quality. On the community level, industrial facilities, vehicles and city construction have major effects on parents’ perception of air quality. Our investigation provides baseline information for environmental policy researchers and makers regarding the public’s perception and expectation of air quality and the benefits to the environmental policy completing and enforcing. PMID:27187432

  4. Biodiversity, air quality and human health

    Treesearch

    David J. Nowak; Sarah Jovan; Christina Branquinho; Sofia Augusto; Manuel C. Ribeiro; Conor E. Kretsch

    2015-01-01

    Air pollution is a significant problem in cities across the world. It affects human health and well-being, ecosystem health, crops, climate, visibility and human-made materials. Health effects related to air pollution include its impact on the pulmonary, cardiac, vascular and neurological systems (Section 2). Trees affect air quality through a number of means (Section...

  5. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    EPA Science Inventory

    The study evaluates heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). Various literature sources and methods for characterizing HVAC emission sources are reviewed. Available methods include in situ test...

  6. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    EPA Science Inventory

    The paper discusses results of an evaluation of literature on heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). The various literature sources and methods for characterizing HVAC emission sources are re...

  7. Fundamentals of Indoor Air Quality in Buildings

    EPA Pesticide Factsheets

    This module provides the fundamentals to understanding indoor air quality. It provides a rudimentary framework for understanding how indoor and outdoor sources of pollution affect the indoor air quality of buildings.

  8. Indoor Air Quality: Is Increased Ventilation the Answer?

    ERIC Educational Resources Information Center

    Hansen, Shirley

    1989-01-01

    Explains how indoor air quality is affected by pollutants in the air and also by temperature, humidity, and ventilation. Increased ventilation alone seldom solves the "sick building syndrome." Lists ways to improve indoor air quality and optimize energy efficiency. (MLF)

  9. [Main indoor air pollutants and their health impacts].

    PubMed

    Xu, Zhen; Jin, Yinlong

    2003-05-01

    The quality of indoor air is a very important factor that may directly affect human health. There are many sources as well as a variety of indoor air pollutants. Therefore, the health impact is complicated, affecting different organs and systems of human being such as respiratory and immune system. The main indoor air pollutants are the combustion products from smoking, cooking and heating, the chemical pollutants from renovation materials and the biological contaminants. The kinds, sources and health impacts of these pollutants that affect the indoor air quality are reviewed in this paper.

  10. 76 FR 58835 - Information Collection Activity: Revision for Subpart C, Pollution Prevention and Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... provisions ``for compliance with the National Ambient Air Quality Standards [NAAQS] pursuant to the Clean Air... affect the air quality of any State.'' Section 1843(b) calls for ``regulations requiring all materials... State air quality requirement that was inadvertently submitted to OMB previously under 30 CFR 250...

  11. Meteorological Processes Affecting Air Quality – Research and Model Development Needs

    EPA Science Inventory

    Meteorology modeling is an important component of air quality modeling systems that defines the physical and dynamical environment for atmospheric chemistry. The meteorology models used for air quality applications are based on numerical weather prediction models that were devel...

  12. 30 CFR 250.304 - Existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR... indicates that emissions from existing facilities may be significantly affecting the air quality of the... Regional Supervisor which demonstrates that the facility is not significantly affecting the air quality of...

  13. Air quality perception of pedestrians in an urban outdoor Mediterranean environment: A field survey approach.

    PubMed

    Pantavou, Katerina; Lykoudis, Spyridon; Psiloglou, Basil

    2017-01-01

    Perception plays a significant role on people's response to preventive measures. In the view of public awareness, the aim of this study was to explore factors that affect air quality perception and to reveal its potential patterns. Air quality perception of individuals, in terms of dust and overall air quality, was examined in relation to air pollutants concentrations, meteorological variables, personal characteristics as well as their thermal sensation and health condition. The data used were obtained from environmental measurements, in situ and from stations, and questionnaire surveys conducted in an outdoor urban Mediterranean area, Athens, Greece. The participants were asked to report their air quality perception and thermal sensation based on predefined scales. A thermal index, Physiological Equivalent Temperature (PET), was estimated to obtain an objective measure of thermal sensation. Particulate matter (PM 10 ) and nitrogen oxide (NO) were associated with dust perception. Nitrogen oxides (NO x ) and carbon monoxide (CO) were associated to air quality perception. Age, area of residence, health symptoms and thermal sensation also affected the perception of air quality. Dusty or poor air quality conditions were more likely to be reported when pollutants' concentrations were increased. Younger people, participants residing in the city center, experiencing health symptoms or warm thermal sensation showed a trend towards reporting more unfavorable air quality conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. 30 CFR 250.304 - Existing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE... facilities may be significantly affecting the air quality of the onshore area of the State. The lessee shall... the facility is not significantly affecting the air quality of the State. (4) The Regional Supervisor...

  15. Air Quality Effects on Human Health and Approaches for Its Assessment through Microfluidic Chips.

    PubMed

    Schulze, Frank; Gao, Xinghua; Virzonis, Darius; Damiati, Samar; Schneider, Marlon R; Kodzius, Rimantas

    2017-09-27

    Air quality depends on the various gases and particles present in it. Both natural phenomena and human activities affect the cleanliness of air. In the last decade, many countries experienced an unprecedented industrial growth, resulting in changing air quality values, and correspondingly, affecting our life quality. Air quality can be accessed by employing microchips that qualitatively and quantitatively determine the present gases and dust particles. The so-called particular matter 2.5 (PM2.5) values are of high importance, as such small particles can penetrate the human lung barrier and enter the blood system. There are cancer cases related to many air pollutants, and especially to PM2.5, contributing to exploding costs within the healthcare system. We focus on various current and potential future air pollutants, and propose solutions on how to protect our health against such dangerous substances. Recent developments in the Organ-on-Chip (OoC) technology can be used to study air pollution as well. OoC allows determination of pollutant toxicity and speeds up the development of novel pharmaceutical drugs.

  16. Air Quality Effects on Human Health and Approaches for Its Assessment through Microfluidic Chips

    PubMed Central

    Gao, Xinghua; Virzonis, Darius; Damiati, Samar; Schneider, Marlon R.

    2017-01-01

    Air quality depends on the various gases and particles present in it. Both natural phenomena and human activities affect the cleanliness of air. In the last decade, many countries experienced an unprecedented industrial growth, resulting in changing air quality values, and correspondingly, affecting our life quality. Air quality can be accessed by employing microchips that qualitatively and quantitatively determine the present gases and dust particles. The so-called particular matter 2.5 (PM2.5) values are of high importance, as such small particles can penetrate the human lung barrier and enter the blood system. There are cancer cases related to many air pollutants, and especially to PM2.5, contributing to exploding costs within the healthcare system. We focus on various current and potential future air pollutants, and propose solutions on how to protect our health against such dangerous substances. Recent developments in the Organ-on-Chip (OoC) technology can be used to study air pollution as well. OoC allows determination of pollutant toxicity and speeds up the development of novel pharmaceutical drugs. PMID:28953246

  17. Panama Canal Expansion Illustrates Need for Multimodal Near-Source Air Quality Assessment

    EPA Science Inventory

    The compelling issue raised is potential major changes in goods movement due to the Panama Canal expansion and considerations for near-source air quality. Near-source air quality may be affected both at near-port areas as well as along the freight transportation corridor.

  18. Development of risk-based air quality management strategies under impacts of climate change.

    PubMed

    Liao, Kuo-Jen; Amar, Praveen; Tagaris, Efthimios; Russell, Armistead G

    2012-05-01

    Climate change is forecast to adversely affect air quality through perturbations in meteorological conditions, photochemical reactions, and precursor emissions. To protect the environment and human health from air pollution, there is an increasing recognition of the necessity of developing effective air quality management strategies under the impacts of climate change. This paper presents a framework for developing risk-based air quality management strategies that can help policy makers improve their decision-making processes in response to current and future climate change about 30-50 years from now. Development of air quality management strategies under the impacts of climate change is fundamentally a risk assessment and risk management process involving four steps: (1) assessment of the impacts of climate change and associated uncertainties; (2) determination of air quality targets; (3) selections of potential air quality management options; and (4) identification of preferred air quality management strategies that minimize control costs, maximize benefits, or limit the adverse effects of climate change on air quality when considering the scarcity of resources. The main challenge relates to the level of uncertainties associated with climate change forecasts and advancements in future control measures, since they will significantly affect the risk assessment results and development of effective air quality management plans. The concept presented in this paper can help decision makers make appropriate responses to climate change, since it provides an integrated approach for climate risk assessment and management when developing air quality management strategies. Development of climate-responsive air quality management strategies is fundamentally a risk assessment and risk management process. The risk assessment process includes quantification of climate change impacts on air quality and associated uncertainties. Risk management for air quality under the impacts of climate change includes determination of air quality targets, selections of potential management options, and identification of effective air quality management strategies through decision-making models. The risk-based decision-making framework can also be applied to develop climate-responsive management strategies for the other environmental dimensions and assess costs and benefits of future environmental management policies.

  19. 76 FR 68317 - Approval and Promulgation of Air Quality Implementation Plans; North Dakota; Revisions to the Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ... Promulgation of Air Quality Implementation Plans; North Dakota; Revisions to the Air Pollution Control Rules... letter dated April 6, 2009. The revisions affect North Dakota's air pollution control rules regarding... public hearing on October 7, 2008 to consider the revisions to the Air Pollution Control Rules. Following...

  20. Reference Guide. Indoor Air Quality Tools for Schools

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2009

    2009-01-01

    Understanding the importance of good indoor air quality (IAQ) in schools is the backbone of developing an effective Indoor Air Quality (IAQ) program. Poor IAQ can lead to a large variety of health problems and potentially affect comfort, concentration, and staff/student performance. In recognition of tight school budgets, this guidance is designed…

  1. Modeling the impacts of green infrastructure land use changes on air quality and meteorology case study and sensitivity analysis in Kansas City

    EPA Science Inventory

    Changes in vegetation cover associated with urban planning efforts may affect regional meteorology and air quality. Here we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate the influence of planned land use changes from green infrastructure impleme...

  2. Carpet and Indoor Air Quality in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, Baltimore.

    Ways in which carpeting can affect a school's indoor air quality (IAQ) are discussed. Carpeting is defined as a system of components that includes pads, adhesives, floor preparation compounds, and seam sealers. For the last several years, these products have been increasingly scrutinized as to how they affect IAQ. Carpeting gives off volatile…

  3. The effect of evaporative air chilling and storage temperature on quality and shelf life of fresh chicken carcasses.

    PubMed

    Mielnik, M B; Dainty, R H; Lundby, F; Mielnik, J

    1999-07-01

    The effect of evaporative air chilling on quality of fresh chicken carcasses was compared with air chilling as reference method. Cooling efficiency and total heat loss were significantly higher for evaporative air chilling. The chilling method was of great importance for weight loss. Chicken chilled in cold air lost considerably more weight than chicken cooled by evaporative air chilling; the difference was 1.8%. The chilling method also affected the skin color and the amount of moisture on skin surface. After evaporative air chilling, the chicken carcasses had a lighter color and more water on the back and under the wings. The moisture content in skin and meat, cooking loss, and pH were not affected by chilling method. Odor attributes of raw chicken and odor and flavor attributes of cooked chicken did not show any significant differences between the two chilling methods. The shelf life of chicken stored at 4 and -1 C were not affected significantly by chilling method. Storage time and temperature appeared to be the decisive factors for sensory and microbiological quality of fresh chicken carcasses.

  4. 76 FR 29652 - Approval and Promulgation of Air Quality Implementation Plans; Illinois; Missouri; Saint Louis...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ... income and minority residents near USS-GCW are affected by the air quality resulting from the plant's... ``illusory'' because it is dependent on air data gathered during the plant shutdown that the commenter... facility has a history of air pollution noncompliance. Regardless of EPA's determination of attainment, ABC...

  5. Impact of air pollution control costs on the cost and spatial arrangement of cellulosic biofuel production in the U.S.

    PubMed

    Murphy, Colin W; Parker, Nathan C

    2014-02-18

    Air pollution emissions regulation can affect the location, size, and technology choice of potential biofuel production facilities. Difficulty in obtaining air pollutant emission permits and the cost of air pollution control devices have been cited by some fuel producers as barriers to development. This paper expands on the Geospatial Bioenergy Systems Model (GBSM) to evaluate the effect of air pollution control costs on the availability, cost, and distribution of U.S. biofuel production by subjecting potential facility locations within U.S. Clean Air Act nonattainment areas, which exceed thresholds for healthy air quality, to additional costs. This paper compares three scenarios: one with air quality costs included, one without air quality costs, and one in which conversion facilities were prohibited in Clean Air Act nonattainment areas. While air quality regulation may substantially affect local decisions regarding siting or technology choices, their effect on the system as a whole is small. Most biofuel facilities are expected to be sited near to feedstock supplies, which are seldom in nonattainment areas. The average cost per unit of produced energy is less than 1% higher in the scenarios with air quality compliance costs than in scenarios without such costs. When facility construction is prohibited in nonattainment areas, the costs increase by slightly over 1%, due to increases in the distance feedstock is transported to facilities in attainment areas.

  6. Near-Road Air Quality Monitoring: Factors Affecting Network Design and Interpretation of Data

    EPA Science Inventory

    The growing number of health studies identifying adverse health effects for populations spending significant amounts of time near large roadways has increased the interest in monitoring air quality in this microenvironment. Designing near-road air monitoring networks or interpret...

  7. WSN based indoor air quality monitoring in classrooms

    NASA Astrophysics Data System (ADS)

    Wang, S. K.; Chew, S. P.; Jusoh, M. T.; Khairunissa, A.; Leong, K. Y.; Azid, A. A.

    2017-03-01

    Indoor air quality monitoring is essential as the human health is directly affected by indoor air quality. This paper presents the investigations of the impact of undergraduate students' concentration during lecture due to the indoor air quality in classroom. Three environmental parameters such as temperature, relative humidity and concentration of carbon dioxide are measured using wireless sensor network based air quality monitoring system. This simple yet reliable system is incorporated with DHT-11 and MG-811 sensors. Two classrooms were selected to install the monitoring system. The level of indoor air quality were measured and students' concentration was assessed using intelligent test during normal lecturing section. The test showed significant correlation between the collected environmental parameters and the students' level of performances in their study.

  8. The effects of climatic change and wildland fires on air quality in national parks and wilderness areas

    Treesearch

    Don McKenzie

    2010-01-01

    How will climatic change and wildfire management policies affect public land management decisions concerning air quality through the 21st century? As global temperatures and populations increase and demands on natural resources intensify, managers must evaluate the trade-offs between air quality and ongoing ecosystem restoration. In protected areas, where wilderness...

  9. Rural southeast Texas air quality measurements during the 2006 Texas Air Quality Study.

    PubMed

    Schade, Gunnar W; Khan, Siraj; Park, Changhyoun; Boedeker, Ian

    2011-10-01

    The authors conducted air quality measurements of the criteria pollutants carbon monoxide, nitrogen oxides, and ozone together with meteorological measurements at a park site southeast of College Station, TX, during the 2006 Texas Air Quality Study II (TexAQS). Ozone, a primary focus of the measurements, was above 80 ppb during 3 days and above 75 ppb during additional 8 days in summer 2006, suggestive of possible violations of the ozone National Ambient Air Quality Standard (NAAQS) in this area. In concordance with other air quality measurements during the TexAQS II, elevated ozone mixing ratios coincided with northerly flows during days after cold front passages. Ozone background during these days was as high as 80 ppb, whereas southerly air flows generally provided for an ozone background lower than 40 ppb. Back trajectory analysis shows that local ozone mixing ratios can also be strongly affected by the Houston urban pollution plume, leading to late afternoon ozone increases of as high as 50 ppb above background under favorable transport conditions. The trajectory analysis also shows that ozone background increases steadily the longer a southern air mass resides over Texas after entering from the Gulf of Mexico. In light of these and other TexAQS findings, it appears that ozone air quality is affected throughout east Texas by both long-range and regional ozone transport, and that improvements therefore will require at least a regionally oriented instead of the current locally oriented ozone precursor reduction policies.

  10. NOAA ARL Field Research Division

    Science.gov Websites

    quality managers become better informed about how and where air pollution is moving and what populations may be affected. Using this science-based information, air quality controls and regulations can be Commerce | NOAA | NOAA Research | ARL | FRD Privacy | Disclaimer | Information Quality | webmaster

  11. 23 CFR 450.314 - Metropolitan planning agreements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... among the State department of transportation, State air quality agency, affected local agencies, and the... within the nonattainment or maintenance area. The agreement must also indicate how the total... the designated agency for air quality planning under section 174 of the Clean Air Act (42 U.S.C. 7504...

  12. Bugs in Your Rugs? Carpet Maintenance and Indoor Air Quality.

    ERIC Educational Resources Information Center

    Schmidt, Edward A.

    1994-01-01

    This article, the second in a three-part series of articles that discuss indoor air quality (IAQ) issues affecting schools, looks at the effects of carpet maintenance and environmental influences on IAQ. (MLF)

  13. Deep learning architecture for air quality predictions.

    PubMed

    Li, Xiang; Peng, Ling; Hu, Yuan; Shao, Jing; Chi, Tianhe

    2016-11-01

    With the rapid development of urbanization and industrialization, many developing countries are suffering from heavy air pollution. Governments and citizens have expressed increasing concern regarding air pollution because it affects human health and sustainable development worldwide. Current air quality prediction methods mainly use shallow models; however, these methods produce unsatisfactory results, which inspired us to investigate methods of predicting air quality based on deep architecture models. In this paper, a novel spatiotemporal deep learning (STDL)-based air quality prediction method that inherently considers spatial and temporal correlations is proposed. A stacked autoencoder (SAE) model is used to extract inherent air quality features, and it is trained in a greedy layer-wise manner. Compared with traditional time series prediction models, our model can predict the air quality of all stations simultaneously and shows the temporal stability in all seasons. Moreover, a comparison with the spatiotemporal artificial neural network (STANN), auto regression moving average (ARMA), and support vector regression (SVR) models demonstrates that the proposed method of performing air quality predictions has a superior performance.

  14. Indoor Air Quality and Student Performance [and Case Studies].

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Radiation and Indoor Air.

    This report examines how indoor air quality (IAQ) affects a child's ability to learn and provides several case studies of schools that have successfully addressed their indoor air problems, the lessons learned from that experience, and what long-term practices and policies emerged from the effort. The report covers the effects from…

  15. There's Something in the Air: Indoor Air Quality in Schools.

    ERIC Educational Resources Information Center

    Schmidt, Edward A.

    1994-01-01

    Part 1 of this article, the first in a three-part series of articles that discuss indoor air quality (IAQ) issues affecting schools, provides a general overview of IAQ and discusses the three major health problems associated with IAQ: sick building syndrome, building-related illness, and multiple chemical sensitivity. (MLF)

  16. Information needs related to extension service and community outreach.

    PubMed

    Bottcher, Robert W

    2003-06-01

    Air quality affects everyone. Some people are affected by air quality impacts, regulations, and technological developments in several ways. Stakeholders include the medical community, ecologists, government regulators, industries, technology providers, academic professionals, concerned citizens, the news media, and elected officials. Each of these groups may perceive problems and opportunities differently, but all need access to information as it is developed. The diversity and complexity of air quality problems contribute to the challenges faced by extension and outreach professionals who must communicate with stakeholders having diverse backgrounds. Gases, particulates, biological aerosols, pathogens, and odors all require expensive and relatively complex technology to measure and control. Economic constraints affect the ability of regulators and others to measure air quality, and industry and others to control it. To address these challenges, while communicating air quality research results and concepts to stakeholders, three areas of information needs are evident. (1) A basic understanding of the fundamental concepts regarding air pollutants and their measurement and control is needed by all stakeholders; the Extension Specialist, to be effective, must help people move some distance up the learning curve. (2) Each problem or set of problems must be reasonably well defined since comprehensive solution of all problems simultaneously may not be feasible; for instance, the solution of an odor problem associated with animal production may not address atmospheric effects due to ammonia emissions. (3) The integrity of the communication process must be preserved by avoiding prejudice and protectionism; although stakeholders may seek to modify information to enhance their interests, extension and outreach professionals must be willing to present unwelcome information or admit to a lack of information. A solid grounding in fundamental concepts, careful and fair problem definition, and a resolute commitment to integrity and credibility will enable effective communication of air quality information to and among diverse stakeholders.

  17. Temporal and spatial distribution characteristics and influencing factors of air quality index in Xuchang

    NASA Astrophysics Data System (ADS)

    Wang, Zhenghua; Tian, Zhihui

    2018-01-01

    In recent years, the problem of air pollution becomes more and more serious. Based on the geographic and seasonal climatic characteristics of Xuchang City, this paper studies the temporal and spatial distribution characteristics of air quality index. The results show that: from the time point of view, air quality index shows seasonal difference. Air quality index is highest in winter and is lowest in summer. From the space point of view, there are differences between the north and the south to a certain extent. Changge City, Yuzhou city and central Xuchang county is higher than the southeast of Xiangcheng county and Yanling county. The spatial and temporal variation characteristics of air quality index in Xuchang are influenced by natural factors and human activities, and the economic development and population are the important factors affecting the urban air quality.

  18. Modeling the effects of urban vegetation on air pollution

    Treesearch

    David J. Nowak; Patrick J. McHale; Myriam Ibarra; Daniel Crane; Jack C. Stevens; Chris J. Luley

    1998-01-01

    Urban vegetation can directly and indirectly affect local and regional air quality by altering the urban atmospheric environment. Trees affect local air temperature by transpiring water through their leaves, by blocking solar radiation (tree shade), which reduces radiation absorption and heat storage by various anthropogenic surfaces (e.g., buildings, roads), and by...

  19. Long-term Changes in Extreme Air Pollution Meteorology and the Implications for Air Quality.

    PubMed

    Hou, Pei; Wu, Shiliang

    2016-03-31

    Extreme air pollution meteorological events, such as heat waves, temperature inversions and atmospheric stagnation episodes, can significantly affect air quality. Based on observational data, we have analyzed the long-term evolution of extreme air pollution meteorology on the global scale and their potential impacts on air quality, especially the high pollution episodes. We have identified significant increasing trends for the occurrences of extreme air pollution meteorological events in the past six decades, especially over the continental regions. Statistical analysis combining air quality data and meteorological data further indicates strong sensitivities of air quality (including both average air pollutant concentrations and high pollution episodes) to extreme meteorological events. For example, we find that in the United States the probability of severe ozone pollution when there are heat waves could be up to seven times of the average probability during summertime, while temperature inversions in wintertime could enhance the probability of severe particulate matter pollution by more than a factor of two. We have also identified significant seasonal and spatial variations in the sensitivity of air quality to extreme air pollution meteorology.

  20. Indoor Air Pollution (Environmental Health Student Portal)

    MedlinePlus

    ... on how indoor and outdoor air pollution affects human health. Healthy Air at Home (American Lung Association) - Resources ... and the environment, and the potential risks to human health. Experiments and Projects Air Quality (PDF, 981.40 ...

  1. Natural Ventilation of Buildings through Light Shafts. Design-Based Solution Proposals

    NASA Astrophysics Data System (ADS)

    Ángel Padilla-Marcos, Miguel; Meiss, Alberto; Feijó-Muñoz, Jesús

    2017-10-01

    This work analyses how the built environment affects the quality of the air to be introduced into buildings from light shafts. Several factors such as urban environment and building design intervene in the ability of the light shaft to produce its air change process. Urban areas continuously pollute the air in cities which affects the human health and the environment sustainability. Poor air quality outside buildings supposes a big energy waste to promote an acceptable air quality inside buildings. That requires a large flow rate to maintain the indoor air quality which is translated to an energy efficiency term. The main objective focuses on the impact of standardized architecture design in the quality of the indoor air dependent on the air change in the light shaft. The air change capacity of the outdoor space is numbered analysed using the concept of air change efficiency (ACE). ACE is determined by the built environment, the wind conditions and the design of the building containing light shafts. This concept is comparatively evaluated inside a control domain virtually defined to obtain the mean age of the air for a known air volume. The longer the light shaft in the wind direction is, the better the ACE is compared with other options. Light shafts up to 12 metres high are the most suitable in order to obtain acceptable efficiency results. Other studied cases verify that assumption. Different simplified tools for the technicians to evaluate the design of buildings containing light shafts are proposed. Some strategies of architectural design of buildings with light shafts to be used for ventilation are presented.

  2. Alternative Fuels Data Center

    Science.gov Websites

    remaining 85% of the appropriation to maximize total air pollution reduction and health benefits, improve air quality in areas disproportionately affected by air pollution, leverage additional matching funds

  3. Multi-pollutant surface objective analyses and mapping of air quality health index over North America.

    PubMed

    Robichaud, Alain; Ménard, Richard; Zaïtseva, Yulia; Anselmo, David

    2016-01-01

    Air quality, like weather, can affect everyone, but responses differ depending on the sensitivity and health condition of a given individual. To help protect exposed populations, many countries have put in place real-time air quality nowcasting and forecasting capabilities. We present in this paper an optimal combination of air quality measurements and model outputs and show that it leads to significant improvements in the spatial representativeness of air quality. The product is referred to as multi-pollutant surface objective analyses (MPSOAs). Moreover, based on MPSOA, a geographical mapping of the Canadian Air Quality Health Index (AQHI) is also presented which provides users (policy makers, public, air quality forecasters, and epidemiologists) with a more accurate picture of the health risk anytime and anywhere in Canada and the USA. Since pollutants can also behave as passive atmospheric tracers, they provide information about transport and dispersion and, hence, reveal synoptic and regional meteorological phenomena. MPSOA could also be used to build air pollution climatology, compute local and national trends in air quality, and detect systematic biases in numerical air quality (AQ) models. Finally, initializing AQ models at regular time intervals with MPSOA can produce more accurate air quality forecasts. It is for these reasons that the Canadian Meteorological Centre (CMC) in collaboration with the Air Quality Research Division (AQRD) of Environment Canada has recently implemented MPSOA in their daily operations.

  4. Mind Your Indoor Air Quality

    ERIC Educational Resources Information Center

    Mak, Lily

    2012-01-01

    When it comes to excelling in the classroom, it turns out the air students are breathing is just as important as the lessons they are learning. Studies show poor indoor air quality (IAQ) can lessen the comfort of students as well as staff--affecting concentration, attendance and student performance. It can even lead to lower IQs. What's more, poor…

  5. Air Quality Awareness Among U.S. Adults With Respiratory and Heart Disease.

    PubMed

    Mirabelli, Maria C; Boehmer, Tegan K; Damon, Scott A; Sircar, Kanta D; Wall, Hilary K; Yip, Fuyuen Y; Zahran, Hatice S; Garbe, Paul L

    2018-05-01

    Poor air quality affects respiratory and cardiovascular health. Information about health risks associated with outdoor air quality is communicated to the public using air quality alerts. This study was conducted to assess associations of existing respiratory and heart disease with three aspects of air quality awareness: awareness of air quality alerts, discussing with a health professional strategies to reduce air pollution exposure, and avoiding busy roads to reduce air pollution exposure when walking, biking, or exercising outdoors. During 2014-2016, a total of 12,599 U.S. adults participated in summer waves of the ConsumerStyles surveys and self-reported asthma, emphysema/chronic obstructive pulmonary disease, heart disease, and each aspect of air quality awareness. In 2017, associations between each health condition and air quality awareness were estimated using log binomial and multinomial regression. Overall, 49% of respondents were aware of air quality alerts, 3% discussed with a health professional strategies to reduce air pollution exposure, and 27% always/usually avoided busy roads to reduce air pollution exposure. Asthma was associated with increased prevalence of awareness of air quality alerts (prevalence ratio=1.11, 95% CI=1.04, 1.20), discussing with a health professional (prevalence ratio=4.88, 95% CI=3.74, 6.37), and always/usually avoiding busy roads to reduce air pollution exposure (prevalence ratio=1.13, 95% CI=1.01, 1.27). Heart disease was not associated with air quality awareness. Existing respiratory disease, but not heart disease, was associated with increased air quality awareness. These findings reveal important opportunities to raise awareness of air quality alerts and behavior changes aimed at reducing air pollution exposure among adults at risk of exacerbating respiratory and heart diseases. Published by Elsevier Inc.

  6. Whose murk is this?

    NASA Astrophysics Data System (ADS)

    Samson, P. J.

    2010-12-01

    The public is painfully aware when the sky turns murky and air quality advisories are posted. They are often less aware if or how these events are associated with particular weather and airflow conditions. In order to give citizens the power to explore their air quality a web site, SharedAir, has been created that lists concentrations of pollutants at various measurement sites around the world and displays the trajectories associated with each day. This site is a first step in raising public literacy on how atmospheric transport affects air quality degradation. SharedAir representation of sulfate concentrations measured in Sacramento, CA on December 6, 2006.

  7. Of moss and men: Using moss as a bioindicator of toxic heavy metals at the city scale

    Treesearch

    Natasha Vizcarra; Sarah Jovan; Demetrios Gatziolis; Vicente Monleon

    2018-01-01

    Air quality is a critical issue affecting the health of billions of people worldwide, yet often little is known about what is in the air we breathe. To reduce air pollution’s health impacts, pollution sources must first be reliably identified. Otherwise, it is impossible to design and effectively enforce environmental standards. However, urban networks of air quality...

  8. Air pollution due to traffic, air quality monitoring along three sections of National Highway N-5, Pakistan.

    PubMed

    Ali, Mahboob; Athar, Makshoof

    2008-01-01

    Transportation system has contributed significantly to the development of human civilization; on the other hand it has an enormous impact on the ambient air quality in several ways. In this paper the air and noise pollution at selected sites along three sections of National Highway was monitored. Pakistan National Highway Authority has started a Highway Improvement program for rehabilitations and maintenance of National highways to improve the traffic flows, and would ultimately improve the air quality along highways. The ambient air quality and noise level was monitored at nine different locations along these sections of highways to quantify the air pollution. The duration of monitoring at individual location was 72 h. The most of the sampling points were near the urban or village population, schools or hospitals, in order to quantify the air pollution at most affected locations along these roads. A database consisting of information regarding the source of emission, local metrology and air quality may be created to assess the profile of air quality in the area.

  9. Adaptive Sampling for Urban Air Quality through Participatory Sensing

    PubMed Central

    Zeng, Yuanyuan; Xiang, Kai

    2017-01-01

    Air pollution is one of the major problems of the modern world. The popularization and powerful functions of smartphone applications enable people to participate in urban sensing to better know about the air problems surrounding them. Data sampling is one of the most important problems that affect the sensing performance. In this paper, we propose an Adaptive Sampling Scheme for Urban Air Quality (AS-air) through participatory sensing. Firstly, we propose to find the pattern rules of air quality according to the historical data contributed by participants based on Apriori algorithm. Based on it, we predict the on-line air quality and use it to accelerate the learning process to choose and adapt the sampling parameter based on Q-learning. The evaluation results show that AS-air provides an energy-efficient sampling strategy, which is adaptive toward the varied outside air environment with good sampling efficiency. PMID:29099766

  10. Setting limits: Using air pollution thresholds to protect and restore U.S

    Treesearch

    Mark E Fenn; Kathleen F. Lambert; Tamara F. Blett; Douglas A. Burns; Linda H. Pardo; Gary M. Lovett; Richard A. Haeuber; David C. Evers; Charles T. Driscoll; Dean S. Jeffries

    2011-01-01

    More than four decades of research provide unequivocal evidence that sulfur, nitrogen, and mercury pollution have altered, and will continue to alter, our nation’s lands and waters. The emission and deposition of air pollutants harm native plants and animals, degrade water quality, affect forest productivity, and are damaging to human health. Many air quality policies...

  11. Sample storage-induced changes in the quantity and quality of soil labile organic carbon

    PubMed Central

    Sun, Shou-Qin; Cai, Hui-Ying; Chang, Scott X.; Bhatti, Jagtar S.

    2015-01-01

    Effects of sample storage methods on the quantity and quality of labile soil organic carbon are not fully understood even though their effects on basic soil properties have been extensively studied. We studied the effects of air-drying and frozen storage on cold and hot water soluble organic carbon (WSOC). Cold- and hot-WSOC in air-dried and frozen-stored soils were linearly correlated with those in fresh soils, indicating that storage proportionally altered the extractability of soil organic carbon. Air-drying but not frozen storage increased the concentrations of cold-WSOC and carbohydrate in cold-WSOC, while both increased polyphenol concentrations. In contrast, only polyphenol concentration in hot-WSOC was increased by air-drying and frozen storage, suggesting that hot-WSOC was less affected by sample storage. The biodegradability of cold- but not hot-WSOC was increased by air-drying, while both air-drying and frozen storage increased humification index and changed specific UV absorbance of both cold- and hot-WSOC, indicating shifts in the quality of soil WSOC. Our results suggest that storage methods affect the quantity and quality of WSOC but not comparisons between samples, frozen storage is better than air-drying if samples have to be stored, and storage should be avoided whenever possible when studying the quantity and quality of both cold- and hot-WSOC. PMID:26617054

  12. Exposure to ambient air pollution--does it affect semen quality and the level of reproductive hormones?

    PubMed

    Radwan, Michał; Jurewicz, Joanna; Polańska, Kinga; Sobala, Wojciech; Radwan, Paweł; Bochenek, Michał; Hanke, Wojciech

    2016-01-01

    Ambient air pollution has been associated with a variety of reproductive disorders. However, a limited amount of research has been conducted to examine the association between air pollution and male reproductive outcomes, specifically semen quality. The present study was designed to address the hypothesis that exposure to fluctuating levels of specific air pollutants adversely affects sperm parameters and the level of reproductive hormones. The study population consisted of 327 men who were attending an infertility clinic in Łodź, Poland for diagnostic purposes and who had normal semen concentration of 15-300 mln/ml. All participants were interviewed and provided a semen sample. Air quality data were obtained from AirBase database. The statistically significant association was observed between abnormalities in sperm morphology and exposure to all examined air pollutants (PM10, PM2.5, SO2, NOX, CO). Exposure to air pollutants (PM10, PM2.5, CO, NOx) was also negatively associated with the level of testosterone. Additional exposure to PM2.5, PM10 increase the percentage of cells with immature chromatin (HDS). The present study provides suggestive evidence of an association between ambient air pollution and sperm quality. Further research is needed to explore this association in more detail. Individual precise exposure assessment would be needed for more detailed risk characterization.

  13. Do School Facilities Affect Academic Outcomes?

    ERIC Educational Resources Information Center

    Schneider, Mark

    This review explores which facility attributes affect academic outcomes the most and in what manner and degree. The research is examined in six categories: indoor air quality, ventilation, and thermal comfort; lighting; acoustics; building age and quality; school size; and class size. The review concludes that school facilities affect learning.…

  14. Potential Impacts of Future Climate Change on Regional Air Quality and Public Health over China

    NASA Astrophysics Data System (ADS)

    Hong, C.; Zhang, Q.; Zhang, Y.; He, K.

    2017-12-01

    Future climate change would affect public health through changing air quality. Climate extremes and poor weather conditions are likely to occur at a higher frequency in China under a changing climate, but the air pollution-related health impacts due to future climate change remain unclear. Here the potential impacts of future climate change on regional air quality and public health over China is projected using a coupling of climate, air quality and epidemiological models. We present the first assessment of China's future air quality in a changing climate under the Representative Concentration Pathway 4.5 (RCP4.5) scenario using the dynamical downscaling technique. In RCP4.5 scenario, we estimate that climate change from 2006-2010 to 2046-2050 is likely to adversely affect air quality covering more than 86% of population and 55% of land area in China, causing an average increase of 3% in O3 and PM2.5 concentrations, which are found to be associated with the warmer climate and the more stable atmosphere. Our estimate of air pollution-related mortality due to climate change in 2050 is 26,000 people per year in China. Of which, the PM2.5-related mortality is 18,700 people per year, and the O3-related mortality is 7,300 people per year. The climate-induced air pollution and health impacts vary spatially. The climate impacts are even more pronounced on the urban areas where is densely populated and polluted. 90% of the health loss is concentrated in 20% of land areas in China. We use a simple statistical analysis method to quantify the contributions of climate extremes and find more intense climate extremes play an important role in climate-induced air pollution-related health impacts. Our results indicate that global climate change will likely alter the level of pollutant management required to meet future air quality targets as well as the efforts to protect public health in China.

  15. An indoor air quality assessment for vulnerable populations exposed to volcanic vog from Kilauea Volcano.

    PubMed

    Longo, Bernadette M; Yang, Wei; Green, Joshua B; Longo, Anthony A; Harris, Merylin; Bibilone, Renwick

    2010-01-01

    The Ka'u District of Hawaii is exposed to sulfurous air pollution called vog from the ongoing eruption of Kilauea Volcano. Increased volcanic activity in 2008 prompted an indoor air quality assessment of the district's hospital and schools. All indoor sulfur dioxide concentrations were above the World Health Organization's average 24-hour recommendation. Indoor penetration ratios were up to 94% of ambient levels and dependent upon building construction or the use of air-conditioning. Health-promotion efforts for vulnerable populations at the hospital and schools are under way to improve indoor air quality and respond to those affected by vog exposure.

  16. Air Force: Actions Needed to Strengthen Management of Unmanned Aerial System Pilots

    DTIC Science & Technology

    2014-04-01

    demands on RPA pilots limit the time they have available for training and development and negatively affects their work - life balance . In addition, the... balance . To understand the working conditions of RPA pilots that may affect their quality of life , we analyzed Air Force studies that evaluated the...servicemember needs. DOD has broadly defined quality of life to include such factors as morale, health and wellness, and work - life balance . To understand these

  17. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  18. Assessment and prediction of air quality using fuzzy logic and autoregressive models

    NASA Astrophysics Data System (ADS)

    Carbajal-Hernández, José Juan; Sánchez-Fernández, Luis P.; Carrasco-Ochoa, Jesús A.; Martínez-Trinidad, José Fco.

    2012-12-01

    In recent years, artificial intelligence methods have been used for the treatment of environmental problems. This work, presents two models for assessment and prediction of air quality. First, we develop a new computational model for air quality assessment in order to evaluate toxic compounds that can harm sensitive people in urban areas, affecting their normal activities. In this model we propose to use a Sigma operator to statistically asses air quality parameters using their historical data information and determining their negative impact in air quality based on toxicity limits, frequency average and deviations of toxicological tests. We also introduce a fuzzy inference system to perform parameter classification using a reasoning process and integrating them in an air quality index describing the pollution levels in five stages: excellent, good, regular, bad and danger, respectively. The second model proposed in this work predicts air quality concentrations using an autoregressive model, providing a predicted air quality index based on the fuzzy inference system previously developed. Using data from Mexico City Atmospheric Monitoring System, we perform a comparison among air quality indices developed for environmental agencies and similar models. Our results show that our models are an appropriate tool for assessing site pollution and for providing guidance to improve contingency actions in urban areas.

  19. A Multiplatform Observations of Air Quality in Korea as the Pre-campaign of Korea and US Air Quality (KORUS-AQ) Study.

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Hong, J.; Hong, Y.; Song, C. K.; Kim, S. K.; Chang, L. S.; Lim, J.; Ahn, J.; Kim, J. Y.; Han, Y. J.; Kim, J.; Park, R.; Lee, G.; Park, J.

    2015-12-01

    Despite the Korea government's efforts to regulate air pollutant emission for attaining the national air quality standard, current serious dust events and high ozone episodes in summer time remain important societal issues in Korea. In order to make effective policy for air quality attainment, it is contingent upon a thorough understanding of chemical production/loss mechanism of air pollutants and their precursors which drive air quality such as nitrogen oxides (NOX), volatile organic compounds (VOCs), and oxidants (e.g. OH, HO2, RO, RO2, etc.). At present, policy development is constrained by a lack of data for broad suite of chemical species which significantly affect on air quality.During 4 weeks between May and June 2013, the pre-campaign for the Korea and U.S. Air Quality (KORUS-AQ) study took place in multiplatform including fifteen ground sites, one mobile laboratory, and one small air crafts. An integrated research activity covering field observations, chemical transport models, and remote sensing has been intensively conducted. This study was focused on studying photochemistry and nighttime chemistry in urban area and transboundary transport of air pollutants from upwind. Scientific overview and outcomes from the campaign will be presented.

  20. Amperometric Gas Sensors as a Low Cost Emerging Technology Platform for Air Quality Monitoring Applications: A Review.

    PubMed

    Baron, Ronan; Saffell, John

    2017-11-22

    This review examines the use of amperometric electrochemical gas sensors for monitoring inorganic gases that affect urban air quality. First, we consider amperometric gas sensor technology including its development toward specifically designed air quality sensors. We then review recent academic and research organizations' studies where this technology has been trialed for air quality monitoring applications: early studies showed the potential of electrochemical gas sensors when colocated with reference Air Quality Monitoring (AQM) stations. Spatially dense networks with fast temporal resolution provide information not available from sparse AQMs with longer recording intervals. We review how this technology is being offered as commercial urban air quality networks and consider the remaining challenges. Sensors must be sensitive, selective, and stable; air quality monitors/nodes must be electronically and mechanically well designed. Data correction is required and models with differing levels of sophistication are being designed. Data analysis and validation is possibly the biggest remaining hurdle needed to deliver reliable concentration readings. Finally, this review also considers the roles of companies, urban infrastructure requirements, and public research in the development of this technology.

  1. 40 CFR 93.155 - Reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... determination on the action. If the action has multi-regional or national impacts (e.g., the action will cause... Regional Office(s), State and local air quality agencies and, where applicable, affected Federal land... Federal agency must notify the appropriate EPA Regional Office(s), State and local air quality agencies...

  2. Global and Regional Modeling of Long-Range Transport and Intercontinental Source-Receptor Linkages (presentation)

    EPA Science Inventory

    Because long-range transport has been shown to affect air quality in downwind continents, there is a growing realization that these effects may need to be considered in air quality management efforts by distinguishing between the contributions of local and regional emission sourc...

  3. Impact of inherent meteorology uncertainty on air quality ...

    EPA Pesticide Factsheets

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is important to understand how uncertainties in these inputs affect the simulated concentrations. Ensembles are one method to explore how uncertainty in meteorology affects air pollution concentrations. Most studies explore this uncertainty by running different meteorological models or the same model with different physics options and in some cases combinations of different meteorological and air quality models. While these have been shown to be useful techniques in some cases, we present a technique that leverages the initial condition perturbations of a weather forecast ensemble, namely, the Short-Range Ensemble Forecast system to drive the four-dimensional data assimilation in the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) model with a key focus being the response of ozone chemistry and transport. Results confirm that a sizable spread in WRF solutions, including common weather variables of temperature, wind, boundary layer depth, clouds, and radiation, can cause a relatively large range of ozone-mixing ratios. Pollutant transport can be altered by hundreds of kilometers over several days. Ozone-mixing ratios of the ensemble can vary as much as 10–20 ppb

  4. Air quality management: evolution of policy and practice in the UK as exemplified by the experience of English local government

    NASA Astrophysics Data System (ADS)

    Beattie, C. I.; Longhurst, J. W. S.; Woodfield, N. K.

    The air quality management (AQM) framework in the UK is designed to be an effects-based solution to air pollutants currently affecting human health. The AQM process has been legislated through The Environment Act 1995, which required the National Air Quality Strategy (NAQS) to be published. AQM practice and capability within local authorities has flourished since the publication of the NAQS in March 1997. This paper outlines the policy framework within which the UK operates, both at a domestic and European level, and reviews the air quality management process relating to current UK policy and EU policy. Data from questionnaire surveys are used to indicate the involvement of various sectors of local government in the air quality management process. These data indicate an increasing use of monitoring, and use of air dispersion modelling by English local authorities. Data relating to the management of air quality, for example, the existence and work of air quality groups, dissemination of information to the public and policy measures in place on a local scale to improve air quality, have also been reported. The UK NAQS has been reviewed in 1999 to reflect developments in European legislation, technological and scientific advances, improved air pollution modelling techniques and an increasingly better understanding of the socio-economic issues involved. The AQM process, as implemented by UK local authorities, provides an effective model for other European member states with regards to the implementation of the Air Quality Framework Directive. The future direction of air quality policy in the UK is also discussed.

  5. Measurement of Ozone Emission and Particle Removal Rates from Portable Air Purifiers

    ERIC Educational Resources Information Center

    Mang, Stephen A.; Walser, Maggie L.; Nizkorodov, Sergey A.; Laux, John M.

    2009-01-01

    Portable air purifiers are popular consumer items, especially in areas with poor air quality. Unfortunately, most users of these air purifiers have minimal understanding of the factors affecting their efficiency in typical indoor settings. Emission of the air pollutant ozone (O[subscript 3]) by certain air purifiers is of particular concern. In an…

  6. Assessing the impacts of seasonal and vertical atmospheric conditions on air quality over the Pearl River Delta region

    NASA Astrophysics Data System (ADS)

    Tong, Cheuk Hei Marcus; Yim, Steve Hung Lam; Rothenberg, Daniel; Wang, Chien; Lin, Chuan-Yao; Chen, Yongqin David; Lau, Ngar Cheung

    2018-05-01

    Air pollution is an increasingly concerning problem in many metropolitan areas due to its adverse public health and environmental impacts. Vertical atmospheric conditions have strong effects on vertical mixing of air pollutants, which directly affects surface air quality. The characteristics and magnitude of how vertical atmospheric conditions affect surface air quality, which are critical to future air quality projections, have not yet been fully understood. This study aims to enhance understanding of the annual and seasonal sensitivities of air pollution to both surface and vertical atmospheric conditions. Based on both surface and vertical meteorological characteristics provided by 1994-2003 monthly dynamic downscaling data from the Weather and Research Forecast Model, we develop generalized linear models (GLMs) to study the relationships between surface air pollutants (ozone, respirable suspended particulates, and sulfur dioxide) and atmospheric conditions in the Pearl River Delta (PRD) region. Applying Principal Component Regression (PCR) to address multi-collinearity, we study the contributions of various meteorological variables to pollutants' concentration levels based on the loading and model coefficient of major principal components. Our results show that relatively high pollutant concentration occurs under relatively low mid-level troposphere temperature gradients, low relative humidity, weak southerly wind (or strong northerly wind) and weak westerly wind (or strong easterly wind). Moreover, the correlations vary among pollutant species, seasons, and meteorological variables at various altitudes. In general, pollutant sensitivity to meteorological variables is found to be greater in winter than in other seasons, and the sensitivity of ozone to meteorology differs from that of the other two pollutants. Applying our GLMs to anomalous air pollution episodes, we find that meteorological variables up to mid troposphere (∼700 mb) play an important role in influencing surface air quality, pinpointing the significant and unique associations between meteorological variables at higher altitudes and surface air quality.

  7. Warm Dry Weather Conditions Cause of 2016 Fort McMurray Wild Forest Fire and Associated Air Quality

    NASA Astrophysics Data System (ADS)

    de Azevedo, S. C.; Singh, R. P.; da Silva, E. A., Sr.

    2016-12-01

    The climate change is evident from the increasing temperature around the world, day to day life and increasing frequency of natural hazards. The warm and dry conditions are the cause of frequent forest fires around the globe. Forest fires severely affect the air quality and human health. Multi sensor satellites and dense network of ground stations provide information about vegetation health, meteorological, air quality and atmospheric parameters. We have carried out detailed analysis of satellite and ground data of wild forest fire that occurred in May 2016 in Fort McMurray, Alberta, Canada. This wild forest fire destroyed 10 per cent of Fort McMurray's housing and forced more than 90,000 people to evacuate the surrounding areas. Our results show that the warm and dry conditions with low rainfall were the cause of Fort McMurray wild fire. The air quality parameters (particulate matter, CO, ozone, NO2, methane) and greenhouse gases measured from Atmospheric Infrared Sounder (AIRS) satellite show enhanced levels soon after the forest fire. The emissions from the forest fire affected health of population living in surrounding areas up to 300 km radius.

  8. A new air quality monitoring and early warning system: Air quality assessment and air pollutant concentration prediction.

    PubMed

    Yang, Zhongshan; Wang, Jian

    2017-10-01

    Air pollution in many countries is worsening with industrialization and urbanization, resulting in climate change and affecting people's health, thus, making the work of policymakers more difficult. It is therefore both urgent and necessary to establish amore scientific air quality monitoring and early warning system to evaluate the degree of air pollution objectively, and predict pollutant concentrations accurately. However, the integration of air quality assessment and air pollutant concentration prediction to establish an air quality system is not common. In this paper, we propose a new air quality monitoring and early warning system, including an assessment module and forecasting module. In the air quality assessment module, fuzzy comprehensive evaluation is used to determine the main pollutants and evaluate the degree of air pollution more scientifically. In the air pollutant concentration prediction module, a novel hybridization model combining complementary ensemble empirical mode decomposition, a modified cuckoo search and differential evolution algorithm, and an Elman neural network, is proposed to improve the forecasting accuracy of six main air pollutant concentrations. To verify the effectiveness of this system, pollutant data for two cities in China are used. The result of the fuzzy comprehensive evaluation shows that the major air pollutants in Xi'an and Jinan are PM 10 and PM 2.5 respectively, and that the air quality of Xi'an is better than that of Jinan. The forecasting results indicate that the proposed hybrid model is remarkably superior to all benchmark models on account of its higher prediction accuracy and stability. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. NASA Earth Observation Systems and Applications for Health and Air Quality

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.

    2015-01-01

    There is a growing body of evidence that the environment can affect human health in ways that are both complex and global in scope. To address some of these complexities, NASA maintains a diverse constellation of Earth observing research satellites, and sponsors research in developing satellite data applications across a wide spectrum of areas. These include environmental health; infectious disease; air quality standards, policies, and regulations; and the impact of climate change on health and air quality in a number of interrelated efforts. The Health and Air Quality Applications fosters the use of observations, modeling systems, forecast development, application integration, and the research to operations transition process to address environmental health effects. NASA has been a primary partner with Federal operational agencies over the past nine years in these areas. This talk presents the background of the Health and Air Quality Applications program, recent accomplishments, and a plan for the future.

  10. Atmospheric transport of mold spores in clouds of desert dust

    USGS Publications Warehouse

    Shinn, E.A.; Griffin, Dale W.; Seba, D.B.

    2003-01-01

    Fungal spores can be transported globally in clouds of desert dust. Many species of fungi (commonly known as molds) and bacteria--including some that are human pathogens--have characteristics suited to long-range atmospheric transport. Dust from the African desert can affect air quality in Africa, Europe, the Middle East, and the Americas. Asian desert dust can affect air quality in Asia, the Arctic, North America, and Europe. Atmospheric exposure to mold-carrying desert dust may affect human health directly through allergic induction of respiratory stress. In addition, mold spores within these dust clouds may seed downwind ecosystems in both outdoor and indoor environments.

  11. The Air up There

    ERIC Educational Resources Information Center

    Thomas, Jeffrey

    2010-01-01

    To engage students in a real-world issue (Bransford, Brown, and Cocking 2000) that affects their communities, the author designed an entire unit to investigate air pollution in their home state, Connecticut. The unit's goal is to understand how the use of resources, such as fossil fuels, might affect their quality of life. Through this unit,…

  12. Numerical simulation study on air quality in aircraft cabins.

    PubMed

    Zhao, Yingjie; Dai, Bingrong; Yu, Qi; Si, Haiqing; Yu, Gang

    2017-06-01

    Air pollution is one of the main factors that affect the air quality in aircraft cabins, and the use of different air supply modes could influence the distribution of air pollutants in cabins. Based on the traditional ceiling air supply mode used on the B737NG, this study investigated another 3 different kinds of air supply modes for comparison: luggage rack air supply mode, joint mode combining ceiling and luggage rack air supply, and joint mode combining ceiling and individual air supply. Under the above 4 air supply modes, the air velocity, temperature and distribution of air pollutants in a cabin full of passengers were studied using computational fluid dynamics (CFD), and carbon dioxide (CO 2 ) and formaldehyde were selected as 2 kinds of representative air pollutants. The simulation results show that the joint mode combining ceiling and individual air supply can create a more uniform distribution of air velocity and temperature, has a better effect on the removal of CO 2 and formaldehyde, and can provide better air quality in cabins than the other 3 modes. Copyright © 2016. Published by Elsevier B.V.

  13. Improving indoor air quality and thermal comfort in office building by using combination filters

    NASA Astrophysics Data System (ADS)

    Kabrein, H.; Yusof, M. Z. M.; Hariri, A.; Leman, A. M.; Afandi, A.

    2017-09-01

    Poor indoor air quality and thermal comfort condition in the workspace affected the occupants’ health and work productivity, especially when adapting the recirculation of air in heating ventilation and air-conditioning (HVAC) system. The recirculation of air was implemented in this study by mixing the circulated returned indoor air with the outdoor fresh air. The aims of this study are to assess the indoor thermal comfort and indoor air quality (IAQ) in the office buildings, equipped with combination filters. The air filtration technique consisting minimum efficiency reporting value (MERV) filter and activated carbon fiber (ACF) filter, located before the fan coil units. The findings of the study show that the technique of mixing recirculation air with the fresh air through the combination filters met the recommended thermal comfort condition in the workspace. Furthermore, the result of the post-occupancy evaluation (POE) and the environmental measurements comply with the ASHRAE 55 standard. In addition, the level of CO2 concentration continued to decrease during the period of the measurement.

  14. STAR Measurements and Modeling for Quantifying Air Quality and Climatic Impacts of Residential Biomass or Coal Combustion for Cooking, Heating and Lighting Kick-off Meeting

    EPA Pesticide Factsheets

    STAR grantees and EPA scientists will discuss progress on their projects which aim to quantify the extent to which interventions for cleaner cooking, heating, or lighting can impact air quality and climate, which in turn affect human health and welfare

  15. Forest fuels, prescribed fire, and air quality

    Treesearch

    J. Alfred Hall

    1972-01-01

    The combustion products (smoke) from forest wildfires or prescribed burns are often considered on a par with any other emission that might affect air quality. But enough is known about smoke from woody fuels to indicate that its importance is limited almost entirely to visibility obstruction, an effect that can be minimized by proper timing and preparation for burning...

  16. 30 CFR 250.303 - Facilities described in a new or revised Exploration Plan or Development and Production Plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exempt from further air quality review, the lessee shall use the highest annual-total amount of emissions... ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND... potential to significantly affect the air quality of an onshore area. To make these decisions, the Regional...

  17. Integrated satellite imaging and syndromic surveillance reveal health effects of smoke from wildfires in rural eastern North Carolina counties in the summer of 2008

    EPA Science Inventory

    Rationale: Wildfire smoke often impacts rural areas without air quality monitors, limiting assessment of health impacts. A 2008 wildfire in Pocosin Lakes National Wildlife Refuge produced massive quantities of smoke affecting eastern NC, a rural area with limited air quality moni...

  18. 77 FR 39943 - Approval and Promulgation of Air Quality Implementation Plans; Illinois; Regional Haze

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... contingent on the Cross-State Air Pollution Rule (CSAPR) and thus is not affected by the stay of that rule...)(2).) List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control..., Subtitle B: Air Pollution, Chapter 1: Pollution Control Board, Subchapter c: Emission Standards and...

  19. RAQ–A Random Forest Approach for Predicting Air Quality in Urban Sensing Systems

    PubMed Central

    Yu, Ruiyun; Yang, Yu; Yang, Leyou; Han, Guangjie; Move, Oguti Ann

    2016-01-01

    Air quality information such as the concentration of PM2.5 is of great significance for human health and city management. It affects the way of traveling, urban planning, government policies and so on. However, in major cities there is typically only a limited number of air quality monitoring stations. In the meantime, air quality varies in the urban areas and there can be large differences, even between closely neighboring regions. In this paper, a random forest approach for predicting air quality (RAQ) is proposed for urban sensing systems. The data generated by urban sensing includes meteorology data, road information, real-time traffic status and point of interest (POI) distribution. The random forest algorithm is exploited for data training and prediction. The performance of RAQ is evaluated with real city data. Compared with three other algorithms, this approach achieves better prediction precision. Exciting results are observed from the experiments that the air quality can be inferred with amazingly high accuracy from the data which are obtained from urban sensing. PMID:26761008

  20. Source Characterization of Volatile Organic Compounds Affecting the Air Quality in a Coastal Urban Area of South Texas

    PubMed Central

    Sanchez, Marciano; Karnae, Saritha; John, Kuruvilla

    2008-01-01

    Selected Volatile Organic Compounds (VOC) emitted from various anthropogenic sources including industries and motor vehicles act as primary precursors of ozone, while some VOC are classified as air toxic compounds. Significantly large VOC emission sources impact the air quality in Corpus Christi, Texas. This urban area is located in a semi-arid region of South Texas and is home to several large petrochemical refineries and industrial facilities along a busy ship-channel. The Texas Commission on Environmental Quality has setup two continuous ambient monitoring stations (CAMS 633 and 634) along the ship channel to monitor VOC concentrations in the urban atmosphere. The hourly concentrations of 46 VOC compounds were acquired from TCEQ for a comprehensive source apportionment study. The primary objective of this study was to identify and quantify the sources affecting the ambient air quality within this urban airshed. Principal Component Analysis/Absolute Principal Component Scores (PCA/APCS) was applied to the dataset. PCA identified five possible sources accounting for 69% of the total variance affecting the VOC levels measured at CAMS 633 and six possible sources affecting CAMS 634 accounting for 75% of the total variance. APCS identified natural gas emissions to be the major source contributor at CAMS 633 and it accounted for 70% of the measured VOC concentrations. The other major sources identified at CAMS 633 included flare emissions (12%), fugitive gasoline emissions (9%), refinery operations (7%), and vehicle exhaust (2%). At CAMS 634, natural gas sources were identified as the major source category contributing to 31% of the observed VOC. The other sources affecting this site included: refinery operations (24%), flare emissions (22%), secondary industrial processes (12%), fugitive gasoline emissions (8%) and vehicle exhaust (3%). PMID:19139530

  1. Randomized Trial of Interventions to Improve Childhood Asthma in Homes with Wood-burning Stoves.

    PubMed

    Noonan, Curtis W; Semmens, Erin O; Smith, Paul; Harrar, Solomon W; Montrose, Luke; Weiler, Emily; McNamara, Marcy; Ward, Tony J

    2017-09-13

    Household air pollution due to biomass combustion for residential heating adversely affects vulnerable populations. Randomized controlled trials to improve indoor air quality in homes of children with asthma are limited, and no such studies have been conducted in homes using wood for heating. Our aims were to test the hypothesis that household-level interventions, specifically improved-technology wood-burning appliances or air-filtration devices, would improve health measures, in particular Pediatric Asthma Quality of Life Questionnaire (PAQLQ) scores, relative to placebo, among children living with asthma in homes with wood-burning stoves. A three-arm placebo-controlled randomized trial was conducted in homes with wood-burning stoves among children with asthma. Multiple preintervention and postintervention data included PAQLQ (primary outcome), peak expiratory flow (PEF) monitoring, diurnal peak flow variability (dPFV, an indicator of airway hyperreactivity) and indoor particulate matter (PM) PM2.5. Relative to placebo, neither the air filter nor the woodstove intervention showed improvement in quality-of-life measures. Among the secondary outcomes, dPFV showed a 4.1 percentage point decrease in variability [95% confidence interval (CI)=-7.8 to -0.4] for air-filtration use in comparison with placebo. The air-filter intervention showed a 67% (95% CI: 50% to 77%) reduction in indoor PM2.5, but no change was observed with the improved-technology woodstove intervention. Among children with asthma and chronic exposure to woodsmoke, an air-filter intervention that improved indoor air quality did not affect quality-of-life measures. Intent-to-treat analysis did show an improvement in the secondary measure of dPFV. ClincialTrials.gov NCT00807183. https://doi.org/10.1289/EHP849.

  2. Randomized Trial of Interventions to Improve Childhood Asthma in Homes with Wood-burning Stoves

    PubMed Central

    Semmens, Erin O.; Smith, Paul; Harrar, Solomon W.; Montrose, Luke; Weiler, Emily; McNamara, Marcy; Ward, Tony J.

    2017-01-01

    Background: Household air pollution due to biomass combustion for residential heating adversely affects vulnerable populations. Randomized controlled trials to improve indoor air quality in homes of children with asthma are limited, and no such studies have been conducted in homes using wood for heating. Objectives: Our aims were to test the hypothesis that household-level interventions, specifically improved-technology wood-burning appliances or air-filtration devices, would improve health measures, in particular Pediatric Asthma Quality of Life Questionnaire (PAQLQ) scores, relative to placebo, among children living with asthma in homes with wood-burning stoves. Methods: A three-arm placebo-controlled randomized trial was conducted in homes with wood-burning stoves among children with asthma. Multiple preintervention and postintervention data included PAQLQ (primary outcome), peak expiratory flow (PEF) monitoring, diurnal peak flow variability (dPFV, an indicator of airway hyperreactivity) and indoor particulate matter (PM) PM2.5. Results: Relative to placebo, neither the air filter nor the woodstove intervention showed improvement in quality-of-life measures. Among the secondary outcomes, dPFV showed a 4.1 percentage point decrease in variability [95% confidence interval (CI)=−7.8 to −0.4] for air-filtration use in comparison with placebo. The air-filter intervention showed a 67% (95% CI: 50% to 77%) reduction in indoor PM2.5, but no change was observed with the improved-technology woodstove intervention. Conclusions: Among children with asthma and chronic exposure to woodsmoke, an air-filter intervention that improved indoor air quality did not affect quality-of-life measures. Intent-to-treat analysis did show an improvement in the secondary measure of dPFV. Trial registration: ClincialTrials.gov NCT00807183. https://doi.org/10.1289/EHP849 PMID:28935614

  3. Urban Landscape Characterization Using Remote Sensing Data For Input into Air Quality Modeling

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Khan, Maudood

    2005-01-01

    The urban landscape is inherently complex and this complexity is not adequately captured in air quality models that are used to assess whether urban areas are in attainment of EPA air quality standards, particularly for ground level ozone. This inadequacy of air quality models to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well these models predict ozone pollutant levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban growth projections as improved inputs to meteorological and air quality models focusing on the Atlanta, Georgia metropolitan area as a case study. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the Community Multiscale Air Quality (CMAQ) modeling schemes. Use of these data have been found to better characterize low density/suburban development as compared with USGS 1 km land use/land cover data that have traditionally been used in modeling. Air quality prediction for future scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission. This allows the State Environmental Protection agency to evaluate how these transportation plans will affect future air quality.

  4. “Nitrogen Budgets for the Mississippi River Basin using the ...

    EPA Pesticide Factsheets

    Presentation on the results from the 3 linked models, EPIC (USDA), CMAQ and NEWS to analyze a scenario of increased corn production related to biofuels together with Clean Air Act emission reductions across the US and the resultant effect on nitrogen loading to the Gulf of Mexico from the Mississippi River Basin. This is a demonstration of a capability to connect the N cascade bringing air, land, water together. EPIC = Environmental Policy Integrated Climate model, CMAQ = Community Multiscale Air Quality model, NEWS = Nutrient Export of WaterSheds model. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.

  5. Rates of urbanisation and the resiliency of air and water quality.

    PubMed

    Duh, Jiunn-Der; Shandas, Vivek; Chang, Heejun; George, Linda A

    2008-08-01

    Global human population and urban development are increasing at unprecedented rates and creating tremendous stress on local, regional, and global air and water quality. However, little is known about how urban areas vary in their capacity to address effectively air and water quality impacts associated to urban development. There exists a need to better understanding the factors that mediate the interactions between urbanisation and variations of environmental quality. By synthesizing literatures on the relationship between urban development and air and water quality, we assess the amount of scholarship for each of these cities, characterize population growth rates in one hundred of the largest global cities, and link growth trends to changes in air and water quality. Our results suggest that, while there is a growing literature linking urbanisation and environmental quality, some regions of the globe are better represented than others, and that these trends are consistent with our characterization of population growth rates. In addition, the comparison between population growth rates and air and water quality suggest that multiple factors affect the environmental quality, and that approaching rates of urbanisation through the lens of 'resiliency' can be an effective integrative concept for studying the capacity of urban areas to respond to rapid rates of change. Based on these results we offer a framework for systematically assessing changes in air and water quality in megacities.

  6. 40 CFR 60.1125 - What must I include in my siting analysis?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion unit affects four areas: (1) Ambient air quality. (2) Visibility. (3) Soils. (4) Vegetation. (b) Include an analysis of alternatives for controlling air pollution that minimize potential...

  7. Study on regional air quality impact from a chemical plant emergency shutdown.

    PubMed

    Ge, Sijie; Wang, Sujing; Xu, Qiang; Ho, Thomas

    2018-06-01

    Emergency shutdowns of chemical plants (ESCP) inevitably generate intensive and huge amounts of VOCs and NO x emissions through flaring that can cause highly localized and transient air pollution events with elevated ozone concentrations. However, quantitative studies of regional ozone impact due to ESCP, in terms of how ESCP would affect and to what extent ESCP could impact, are still lacking. This paper reports a systematic study on regional air quality impact from an olefin plant emergency shutdown due to the sudden failure of its cracked gas compressor (CGC). It demonstrates that emergency shutdown may cause significant ozone increment subject to different factors such as the starting time of emergency shutdown, flare destruction and removal efficiency (DRE) and plant location. In our studied case, the 8-hr ozone increment ranges from 0.4 to 3.3 ppb under different starting time, from 3.3 to 24.8 ppb under different DRE, and from 1.6 to 3.3 ppb under different locations. The results enable us to understand how and to what extent emergency operating activities of the chemical process will affect local air quality, which might be beneficial for decision makings on emergency air-quality response and control in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Satisfaction with environmental change: an empirical analysis of attitudes toward air quality by recent interstate migrants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, J.B.

    1984-09-01

    How (and whether) people perceive environmental change is a question that economists have generally chosen to finesse rather than explore. The three components of attitudes (cognitive, affective, behavioral) are identified and a satisfaction metric is used to evaluate the nonbehavioral components for recent in-migrants to Oregon. An interaction model is used to relate changes in satisfaction to changes in air quality and to personal characteristics of the migrants. In general, a valid cognitive dimension exists; changes in satisfaction are in fact consistent with changes in air quality data. 34 references, 7 tables.

  9. Requirements for modeling airborne microbial contamination in space stations

    NASA Astrophysics Data System (ADS)

    Van Houdt, Rob; Kokkonen, Eero; Lehtimäki, Matti; Pasanen, Pertti; Leys, Natalie; Kulmala, Ilpo

    2018-03-01

    Exposure to bioaerosols is one of the facets that affect indoor air quality, especially for people living in densely populated or confined habitats, and is associated to a wide range of health effects. Good indoor air quality is thus vital and a prerequisite for fully confined environments such as space habitats. Bioaerosols and microbial contamination in these confined space stations can have significant health impacts, considering the unique prevailing conditions and constraints of such habitats. Therefore, biocontamination in space stations is strictly monitored and controlled to ensure crew and mission safety. However, efficient bioaerosol control measures rely on solid understanding and knowledge on how these bioaerosols are created and dispersed, and which factors affect the survivability of the associated microorganisms. Here we review the current knowledge gained from relevant studies in this wide and multidisciplinary area of bioaerosol dispersion modeling and biological indoor air quality control, specifically taking into account the specific space conditions.

  10. Impact of Asian Dust on Global Surface Air Quality and Radiation Budget

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Yu, Hongbin; Ginoux, Paul

    2006-01-01

    Dust originating from Asian deserts and desertification areas can be transported regionally and globally to affect surface air quality, visibility, and radiation budget not only at immediate downwind locations (e.g., eastern Asia) but also regions far away from the sources (e.g., North America). Deposition of Asian dust to the North Pacific Ocean basin influences the ocean productivity. In this study, we will use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, remote sensing data form satellite and from the ground-based network, and in-situ data from aircraft and surface observations to address the following questions: - What are the effects of Asian dust on the surface air quality and visibility over Asia and North America? - What are the seasonal and spatial variations of dust deposition to the North Pacific Ocean? How does the Asian dust affect surface radiation budget?

  11. 40 CFR 60.1125 - What must I include in my siting analysis?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste combustion unit affects four areas: (1) Ambient air quality. (2) Visibility. (3) Soils. (4) Vegetation. (b) Include an analysis of alternatives for controlling air pollution that minimize potential... analysis? 60.1125 Section 60.1125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  12. 40 CFR 60.1125 - What must I include in my siting analysis?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste combustion unit affects four areas: (1) Ambient air quality. (2) Visibility. (3) Soils. (4) Vegetation. (b) Include an analysis of alternatives for controlling air pollution that minimize potential... analysis? 60.1125 Section 60.1125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  13. 40 CFR 60.1125 - What must I include in my siting analysis?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste combustion unit affects four areas: (1) Ambient air quality. (2) Visibility. (3) Soils. (4) Vegetation. (b) Include an analysis of alternatives for controlling air pollution that minimize potential... analysis? 60.1125 Section 60.1125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  14. 40 CFR 60.1125 - What must I include in my siting analysis?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste combustion unit affects four areas: (1) Ambient air quality. (2) Visibility. (3) Soils. (4) Vegetation. (b) Include an analysis of alternatives for controlling air pollution that minimize potential... analysis? 60.1125 Section 60.1125 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, William J.; Destaillats, H.; Apte, M.G.

    Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects studenthealth and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air?conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone depositionmore » in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent towhich filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.« less

  16. The potential impacts of climate variability and change on air pollution-related health effects in the United States.

    PubMed Central

    Bernard, S M; Samet, J M; Grambsch, A; Ebi, K L; Romieu, I

    2001-01-01

    Climate change may affect exposures to air pollutants by affecting weather, anthropogenic emissions, and biogenic emissions and by changing the distribution and types of airborne allergens. Local temperature, precipitation, clouds, atmospheric water vapor, wind speed, and wind direction influence atmospheric chemical processes, and interactions occur between local and global-scale environments. If the climate becomes warmer and more variable, air quality is likely to be affected. However, the specific types of change (i.e., local, regional, or global), the direction of change in a particular location (i.e., positive or negative), and the magnitude of change in air quality that may be attributable to climate change are a matter of speculation, based on extrapolating present understanding to future scenarios. There is already extensive evidence on the health effects of air pollution. Ground-level ozone can exacerbate chronic respiratory diseases and cause short-term reductions in lung function. Exposure to particulate matter can aggravate chronic respiratory and cardiovascular diseases, alter host defenses, damage lung tissue, lead to premature death, and possibly contribute to cancer. Health effects of exposures to carbon monoxide, sulfur dioxide, and nitrogen dioxide can include reduced work capacity, aggravation of existing cardiovascular diseases, effects on pulmonary function, respiratory illnesses, lung irritation, and alterations in the lung's defense systems. Adaptations to climate change should include ensuring responsiveness of air quality protection programs to changing pollution levels. Research needs include basic atmospheric science work on the association between weather and air pollutants; improving air pollution models and their linkage with climate change scenarios; and closing gaps in the understanding of exposure patterns and health effects. PMID:11359687

  17. The potential impacts of climate variability and change on air pollution-related health effects in the United States.

    PubMed

    Bernard, S M; Samet, J M; Grambsch, A; Ebi, K L; Romieu, I

    2001-05-01

    Climate change may affect exposures to air pollutants by affecting weather, anthropogenic emissions, and biogenic emissions and by changing the distribution and types of airborne allergens. Local temperature, precipitation, clouds, atmospheric water vapor, wind speed, and wind direction influence atmospheric chemical processes, and interactions occur between local and global-scale environments. If the climate becomes warmer and more variable, air quality is likely to be affected. However, the specific types of change (i.e., local, regional, or global), the direction of change in a particular location (i.e., positive or negative), and the magnitude of change in air quality that may be attributable to climate change are a matter of speculation, based on extrapolating present understanding to future scenarios. There is already extensive evidence on the health effects of air pollution. Ground-level ozone can exacerbate chronic respiratory diseases and cause short-term reductions in lung function. Exposure to particulate matter can aggravate chronic respiratory and cardiovascular diseases, alter host defenses, damage lung tissue, lead to premature death, and possibly contribute to cancer. Health effects of exposures to carbon monoxide, sulfur dioxide, and nitrogen dioxide can include reduced work capacity, aggravation of existing cardiovascular diseases, effects on pulmonary function, respiratory illnesses, lung irritation, and alterations in the lung's defense systems. Adaptations to climate change should include ensuring responsiveness of air quality protection programs to changing pollution levels. Research needs include basic atmospheric science work on the association between weather and air pollutants; improving air pollution models and their linkage with climate change scenarios; and closing gaps in the understanding of exposure patterns and health effects.

  18. Perceived indoor air quality and its relationship to air pollutants in French dwellings.

    PubMed

    Langer, S; Ramalho, O; Le Ponner, E; Derbez, M; Kirchner, S; Mandin, C

    2017-11-01

    Perception of indoor air quality (PIAQ) was evaluated in a nationwide survey of 567 French dwellings, and this survey was combined with measurements of gaseous and particulate matter (PM 10 and PM 2.5 ) indoor air pollutants and indoor climate parameters. The perception was assessed on a nine-grade scale by both the occupants of the dwellings and the inspectors who performed the measurements. The occupants perceived the air quality in their homes as more pleasant than the inspectors. The inspectors perceived the air quality as more unpleasant in dwellings in which the residents smoked indoors. Significant associations between PIAQ and indoor air pollutant concentrations were observed for both the inspectors and, to a lesser extent, the occupants. Introducing confounding parameters, such as building and personal characteristics, into a multivariate model suppressed most of the observed bivariate correlations and identified the tenure status of the occupants and their occupation as the parameters that most influenced their PIAQ. For the inspectors, perceived air quality was affected by the presence of smokers, the season, the type of ventilation, retrofitting, and the concentrations of acetaldehyde and acrolein. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. "Going the Extra Mile in Downscaling: Why Downscaling is not ...

    EPA Pesticide Factsheets

    This presentation provides an example of doing additional work for preprocessing global climate model data for use in regional climate modeling simulations with the Weather Research and Forecasting (WRF) model. In this presentation, results from 15 months of downscaling the Community Earth System Model (CESM) were shown, both using the out-of-the-box downscaling of CESM and also with a modification to setting the inland lake temperatures. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.

  20. "Updates to Model Algorithms & Inputs for the Biogenic ...

    EPA Pesticide Factsheets

    We have developed new canopy emission algorithms and land use data for BEIS. Simulations with BEIS v3.4 and these updates in CMAQ v5.0.2 are compared these changes to the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and evaluated the simulations against observations. This has resulted in improvements in model evaluations of modeled isoprene, NOx, and O3. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.

  1. "Total Deposition (TDEP) Maps" | Science Inventory | US EPA

    EPA Pesticide Factsheets

    The presentation provides an update on the use of a hybrid methodology that relies on measured values from national monitoring networks and modeled values from CMAQ to produce of maps of total deposition for use in critical loads and other ecological assessments. Additionally, comparisons of the deposition values from the hybrid approach are compared with deposition estimates from other methodologies. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.

  2. Evaluating the Impacts of Transboundary Air pollution from China on Air Quality in the U.S. Using a Regression Framework

    NASA Astrophysics Data System (ADS)

    Ngo, N. S.; Bao, X.; Zhong, N.

    2014-12-01

    China is the largest emitter of anthropogenic air pollution in the world and previous work has shown the environmental impacts of the long-range transport (LRT) of air pollution from China to the U.S. via chemical transport models, in situ observations, isentropic back trajectories, and to a lesser extent statistical models. However, these studies generally focus on a narrow time period due to data constraints. In this study, we build upon the literature using econometric techniques to isolate the impacts on U.S. air quality from the LRT of air pollution from China. We use a unique daily data set of China's air pollution index (API) and PM10 concentrations at the city level and merge these information with daily monitor data in California (CA) between 2000 and 2013. We first employ a distributed lag model to examine daily patterns, and then exploit a "natural experiment." In the latter methodology, since air pollution is rarely randomly assigned, we examine the impacts of specific events that affect air quality in China, but are plausibly uncorrelated to factors affecting air pollution in CA. For example, Chinese New Year (CNY) is a major week-long holiday and we show pollution levels in China decrease during this time period, likely from reductions in industrial production. CNY varies each calendar year since it is based off the lunar new year, so the timing of this pollution reduction could be considered "as good as random" or exogenous to factors affecting air quality in CA. Using a regression framework including weather, seasonal and geographic controls, we can potentially isolate the impact of the LRT of air pollution to CA. First, results from the distributed lag model suggest that in the Spring, when LRT peaks, a 1 μg/m3 increase in daily PM10 from China between 10 and 14 days ago is associated with an increase in today's PM2.5 in CA of 0.022 μg/m3 (mean daily PM2.5 in CA is 12 μg/m3). Second, we find that if CNY occurred 5 to 9 days ago, today's PM2.5 in CA decreases by 3 μg/m3. We also conduct other tests and sensitivity checks, like observing impacts from individual cities in China or other events, and using daily leads as a falsification test. Our results have important policy implications regarding the consequences of foreign pollution sources and suggest a causal relationship between pollution from China and air quality in CA.

  3. Enhancing indoor air quality –The air filter advantage

    PubMed Central

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality. PMID:26628762

  4. Enhancing indoor air quality -The air filter advantage.

    PubMed

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality.

  5. 77 FR 21663 - Air Quality Implementation Plans; Kentucky; Attainment Plan for the Kentucky Portion of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... available, but not yet certified, in the Air Quality System (AQS) database for 2011 show that this Area.... Moreover, there is no support for the Commenter's contention, based on the flawed premise that allowance... strong legal basis. To the extent that the current status of CAIR and the Transport Rule affect any of...

  6. Comparison of Indoor Air Quality Management Strategies between the School and District Levels in New York State

    ERIC Educational Resources Information Center

    Lin, Shao; Kielb, Christine L.; Reddy, Amanda L.; Chapman, Bonnie R.; Hwang, Syni-An

    2012-01-01

    Background: Good school indoor air quality (IAQ) can affect the health and functioning of school occupants. Thus, it is important to assess the degree to which schools and districts employ strategies to ensure good IAQ management. We examined and compared the patterns of IAQ management strategies between public elementary schools and their school…

  7. Air quality management in U.S. Fish and Wildlife Service wilderness areas

    Treesearch

    Ellen M. Porter

    2000-01-01

    Proper management of air resources is vital to maintaining the wilderness character of an area. Air pollution can affect natural resources and has caused injury to vegetation, bioaccumulation of mercury in fish, eutrophication of coastal ecosystems and visibility impairment in U.S. Fish and Wildlife Service (FWS) wilderness areas. Sources of air pollution include power...

  8. Air Pollution Affects Community Health

    ERIC Educational Resources Information Center

    Shy, Carl M.; Finklea, John F.

    1973-01-01

    Community Health and Environmental Surveillance System (CHESS), a nationwide program relating community health to environmental quality, is designed to evaluate existing environmental standards, obtain health intelligence for new standards, and document health benefits of air pollution control. (BL)

  9. A low-cost sensing system for cooperative air quality monitoring in urban areas.

    PubMed

    Brienza, Simone; Galli, Andrea; Anastasi, Giuseppe; Bruschi, Paolo

    2015-05-26

    Air quality in urban areas is a very important topic as it closely affects the health of citizens. Recent studies highlight that the exposure to polluted air can increase the incidence of diseases and deteriorate the quality of life. Hence, it is necessary to develop tools for real-time air quality monitoring, so as to allow appropriate and timely decisions. In this paper, we present uSense, a low-cost cooperative monitoring tool that allows knowing, in real-time, the concentrations of polluting gases in various areas of the city. Specifically, users monitor the areas of their interest by deploying low-cost and low-power sensor nodes. In addition, they can share the collected data following a social networking approach. uSense has been tested through an in-field experimentation performed in different areas of a city. The obtained results are in line with those provided by the local environmental control authority and show that uSense can be profitably used for air quality monitoring.

  10. Indoor air quality in public utility environments-a review.

    PubMed

    Śmiełowska, Monika; Marć, Mariusz; Zabiegała, Bożena

    2017-04-01

    Indoor air quality has been the object of interest for scientists and specialists from the fields of science such as chemistry, medicine and ventilation system design. This results from a considerable number of potential factors, which may influence the quality of the broadly understood indoor air in a negative way. Poor quality of indoor air in various types of public utility buildings may significantly affect an increase in the incidence of various types of civilisation diseases. This paper presents information about a broad spectrum of chemical compounds that were identified and determined in the indoor environment of various types of public utility rooms such as churches, museums, libraries, temples and hospitals. An analysis of literature data allowed for identification of the most important transport paths of chemical compounds that significantly influence the quality of the indoor environment and thus the comfort of living and the health of persons staying in it.

  11. [Estimating emergency hospital admissions to gauge short-term effects of air pollution: evaluation of health data quality].

    PubMed

    Bois de Fer, Béatrice; Host, Sabine; Chardon, Benoît; Chatignoux, Edouard; Beaujouan, Laure; Brun-Ney, Dominique; Grémy, Isabelle

    2009-01-01

    The study of the short-term effects and health impact of air pollution is carrier out by the ERPURS regional surveillance program which utilizes hospitalization data obtained from the French hospital information system (PMSI) to determine these links. This system does not permit the distinction between emergency hospital admissions from scheduled ones, which cannot be related to short term changes in air pollution levels. This study examines how scheduled admissions affect the quality of the health indicators used to estimate air pollution effects. This indicator is compared to three new emergency hospitalisation indicators reconstructed based on data from the public hospitals in Paris, partly from the PMSI data and partly with data from an on-line emergency network that regroups all of the computerized emergency services. According to the pathology, scheduled admissions present a difficulty which affects the capacity to highlight the weakest risks with any precision.

  12. Particle size distribution and air pollution patterns in three urban environments in Xi'an, China.

    PubMed

    Niu, Xinyi; Guinot, Benjamin; Cao, Junji; Xu, Hongmei; Sun, Jian

    2015-10-01

    Three urban environments, office, apartment and restaurant, were selected to investigate the indoor and outdoor air quality as an inter-comparison in which CO2, particulate matter (PM) concentration and particle size ranging were concerned. In this investigation, CO2 level in the apartment (623 ppm) was the highest among the indoor environments and indoor levels were always higher than outdoor levels. The PM10 (333 µg/m(3)), PM2.5 (213 µg/m(3)), PM1 (148 µg/m(3)) concentrations in the office were 10-50% higher than in the restaurant and apartment, and the three indoor PM10 levels all exceeded the China standard of 150 µg/m(3). Particles ranging from 0.3 to 0.4 µm, 0.4 to 0.5 µm and 0.5 to 0.65 µm make largest contribution to particle mass in indoor air, and fine particles number concentrations were much higher than outdoor levels. Outdoor air pollution is mainly affected by heavy traffic, while indoor air pollution has various sources. Particularly, office environment was mainly affected by outdoor sources like soil dust and traffic emission; apartment particles were mainly caused by human activities; restaurant indoor air quality was affected by multiple sources among which cooking-generated fine particles and the human steam are main factors.

  13. Implementation of quality by design approach in manufacturing process optimization of dry granulated, immediate release, coated tablets - a case study.

    PubMed

    Teżyk, Michał; Jakubowska, Emilia; Milanowski, Bartłomiej; Lulek, Janina

    2017-10-01

    The aim of this study was to optimize the process of tablets compression and identification of film-coating critical process parameters (CPPs) affecting critical quality attributes (CQAs) using quality by design (QbD) approach. Design of experiment (DOE) and regression methods were employed to investigate hardness, disintegration time, and thickness of uncoated tablets depending on slugging and tableting compression force (CPPs). Plackett-Burman experimental design was applied to identify critical coating process parameters among selected ones that is: drying and preheating time, atomization air pressure, spray rate, air volume, inlet air temperature, and drum pressure that may influence the hardness and disintegration time of coated tablets. As a result of the research, design space was established to facilitate an in-depth understanding of existing relationship between CPPs and CQAs of intermediate product (uncoated tablets). Screening revealed that spray rate and inlet air temperature are two most important factors that affect the hardness of coated tablets. Simultaneously, none of the tested coating factors have influence on disintegration time. The observation was confirmed by conducting film coating of pilot size batches.

  14. Development and application of an integrated indoor air quality audit to an international hotel building in Taiwan.

    PubMed

    Kuo, Nae-Wen; Chiang, Hsin-Chen; Chiang, Che-Ming

    2008-12-01

    Indoor air quality (IAQ) has begun to surface as an important issue that affects the comfort and health of people; however, there is little research concerned about the IAQ monitoring of hotels up to now. Hotels are designed to provide comfortable spaces for guests. However, most complaints related to uncomfortable thermal environment and inadequate indoor air quality appear. In addition, microbial pollution can affect the health of tourists such as the Legionnaire's disease and SARS problems. This study is aimed to establish the comprehensive IAQ audit approach for hotel buildings with portable equipment, and one five-star international hotel in Taiwan was selected to exam this integrated approach. Finally, four major problems are identified after the comprehensive IAQ audit. They are: (1) low room temperature (21.8 degrees C), (2) insufficient air exchange rate (<1.5 h(-1)), (3) formaldehyde contamination (>0.02 ppm), and (4) the microbial pollution (total bacteria: 2,624-3,799 CFU/m(3)). The high level of formaldehyde may be due to the emission from the detergent and cleaning agents used for housekeeping.

  15. Research on PM2.5 time series characteristics based on data mining technology

    NASA Astrophysics Data System (ADS)

    Zhao, Lifang; Jia, Jin

    2018-02-01

    With the development of data mining technology and the establishment of environmental air quality database, it is necessary to discover the potential correlations and rules by digging the massive environmental air quality information and analyzing the air pollution process. In this paper, we have presented a sequential pattern mining method based on the air quality data and pattern association technology to analyze the PM2.5 time series characteristics. Utilizing the real-time monitoring data of urban air quality in China, the time series rule and variation properties of PM2.5 under different pollution levels are extracted and analyzed. The analysis results show that the time sequence features of the PM2.5 concentration is directly affected by the alteration of the pollution degree. The longest time that PM2.5 remained stable is about 24 hours. As the pollution degree gets severer, the instability time and step ascending time gradually changes from 12-24 hours to 3 hours. The presented method is helpful for the controlling and forecasting of the air quality while saving the measuring costs, which is of great significance for the government regulation and public prevention of the air pollution.

  16. Aerosol distribution during open suctioning and long-term surveillance of air quality in a respiratory care center within a medical center.

    PubMed

    Chung, Fen-Fang; Lin, Hui-Ling; Liu, Hsueh-Erh; Lien, Angela Shin-Yu; Hsiao, Hsiu-Feng; Chou, Lan-Ti; Wan, Gwo-Hwa

    2015-01-01

    The investigation of hospital air quality has been conducted in wards, ICUs, operating theaters, and public areas. Few studies have assessed air quality in respiratory care centers (RCCs), especially in mechanically ventilated patients with open suctioning. The RCC air quality indices (temperature, relative humidity, levels of CO2, total volatile organic compounds, particulate matter [PM], bacteria, and fungi) were monitored over 1 y. The air around the patient's head was sampled during open suctioning to examine the probability of bioaerosol exposure affecting health-care workers. This investigation found that the levels of indoor air pollutants (CO2, PM, bacteria, and fungi) were below the indoor air quality standard set by the Taiwan Environmental Protection Agency. Meanwhile, the levels of total volatile organic compounds sometimes exceeded the indoor air quality standard, particularly in August. The identified bacterial genera included Micrococcus species, Corynebacterium species, and Staphylococcus species, and the predominant fungal genera included yeast, Aspergillus species, Scopulariopsis species, and Trichoderma species. Additionally, airborne PM2.5, PM1, and bacteria were clearly raised during open suctioning in mechanically ventilated patients. This phenomenon demonstrated that open suctioning may increase the bacterial exposure risk of health-care workers. RCC air quality deserves long-term monitoring and evaluation. Health-care workers must implement self-protection strategies during open suctioning to ensure their occupational health and safety in health-care settings. Copyright © 2015 by Daedalus Enterprises.

  17. Climate change, tropospheric ozone and particulate matter, and health impacts.

    PubMed

    Ebi, Kristie; McGregor, Glenn

    2009-01-01

    We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health, as well as studies projecting the impacts of climate change on air quality and the impacts of these changes on morbidity/mortality. Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty are the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given the uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, increasing morbidity/mortality. There are few projections for low- and middle-income countries. The evidence is less robust for PM, because few studies have been conducted. More research is needed to better understand the possible impacts of climate change on air pollution-related health impacts.

  18. Managing air and water quality in the face of uncertain futures: perspectives, perceptions, reported action, and needs for climate adaptation at the local level

    NASA Astrophysics Data System (ADS)

    Bedsworth, L. W.; Ekstrom, J.

    2017-12-01

    As the climate continues to shift, projections show amplified and more frequent extreme events, including coastal and inland flooding, wildfires, prolonged droughts, and heatwaves. Vital public goods, both air quality and water quality, can be critically affected by such extreme events. Climate change will make it increasingly difficult for managers to achieve public health targets for air and water quality. Successfully preparing governance structures developed to maintain and improve air and water quality may benefit from preventative strategies to avoid public health impacts and costs of climate change locally. Perceptions of climate change and its risks, actions taken so far, and perceived barriers to adaptation give insight into the needs of managers for preparing for climate change impacts. This paper compares results of two surveys that looked at local level management of air quality and water quality in California. Air quality managers consistently reported to recognize the risks of climate change on their sector, where water quality managers' perceptions varied between no concern to high concern. We explore the differences in governance, capacity influence the ill-defined responsibility and assumed roles of water and air districts in adaptation to extreme events increasing with climate change. The chain and network of managing air quality is compared with that of water quality - laying out similarities and differences. Then we compare how the survey respondents differed in terms of extreme weather-influenced threats to environmental quality. We end with a discussion of responsibility - where in the chain of managing these life-critical ecosystem services, is the need greatest for adapting to climate change and what does this mean for the other levels in the chain beyond the local management.

  19. Air Quality Response Modeling for Decision Support | Science ...

    EPA Pesticide Factsheets

    Air quality management relies on photochemical models to predict the responses of pollutant concentrations to changes in emissions. Such modeling is especially important for secondary pollutants such as ozone and fine particulate matter which vary nonlinearly with changes in emissions. Numerous techniques for probing pollutant-emission relationships within photochemical models have been developed and deployed for a variety of decision support applications. However, atmospheric response modeling remains complicated by the challenge of validating sensitivity results against observable data. This manuscript reviews the state of the science of atmospheric response modeling as well as efforts to characterize the accuracy and uncertainty of sensitivity results. The National Exposure Research Laboratory′s (NERL′s) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA′s mission to protect human health and the environment. AMAD′s research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the Nation′s air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being use

  20. Proposed Cross-State Air Pollution Rule (75 FR 45210)

    EPA Pesticide Factsheets

    EPA proposes identifying and limiting emissions within 32 states in the eastern United States that affect the ability of downwind states to attain and maintain compliance with fine particulate matter and ozone national ambient air quality standards.

  1. Empowerment in practice - insights from CITI-SENSE project in Ljubljana

    NASA Astrophysics Data System (ADS)

    Robinson, Johanna; Kocman, David; Smolnikar, Miha; Mohorčič, Miha; Horvat, Milena

    2014-05-01

    We present specifics of the citizen empowerment and crowd sourced citizen science conducted in Ljubljana, Slovenia, as one of the case study cities within the ongoing EU-project CITI-SENSE. CITI-SENSE addresses urban air quality and rests on three pillars: technological platforms for distributed monitoring; novel information and communication technologies; and citizen participation. In the project, empowerment initiatives are conducted, enabling citizens to participate in various aspects of urban air quality, both outdoor and indoor at schools affecting everyday life of societal groups. Each participating country runs its own citizen empowerment campaign adapting to local circumstances. In addition to Ljubljana, local campaigns have been initiated in Barcelona, Belgrade, Edinburgh, Haifa, Ljubljana, Oslo, Ostrava, Vienna and in Vitoria. Poor air quality has been recognized as an important factor affecting the quality of life, especially in urban environments. In Ljubljana specifically, the main air pollution sources are traffic-related emissions, individual house heating devices including increased use of coal and biomass in recent years, and to a limit extent industrial point sources and waste disposal sites. Air quality can be occasionally very poor due to specific climatic conditions owing partially to its location in a basin and on the marshes, resulting in a very complex circulation of air masses, temperature inversions and formation of urban heat island. By recognizing this, we established the main stakeholders in the city who are responsible for monitoring the quality of air in Ljubljana. Based on full stakeholder analysis we consider co-operation with local governmental- and non-governmental institutions with already established means of communications with citizens, as a tool for empowerment. Since we spend over 90% of our time indoors, the indoor air quality is of great importance. It is why the CITI-SENSE project empowerment initiatives also cover this aspect. In Ljubljana we have identified and are involving three schools; differing by location, house type and age of students. The project also gives children a unique approach to learning about air quality issues - by being involved. To evaluate the success of empowerment initiatives after a pilot phase, key performance indicators (KPI) were defined that will enable performance improvement for the full implementation phase of the project. Acknowledgements: CITI-SENSE is a Collaborative Project partly funded by the EU FP7-ENV-2012 under grant agreement no 308524. www.citi-sense.eu.

  2. Air-Sense: indoor environment monitoring evaluation system based on ZigBee network

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Hu, Liang; Yang, Disheng; Liu, Hengchang

    2017-08-01

    In the modern life, people spend most of their time indoors. However, indoor environmental quality problems have always been affecting people’s social activities. In general, indoor environmental quality is also related to our indoor activities. Since most of the organic irritants and volatile gases are colorless, odorless and too tiny to be seen, because we have been unconsciously overlooked indoor environment quality. Consequently, our body suffer a great health problem. In this work, we propose Air-Sense system which utilizes the platform of ZigBee Network to collect and detect the real-time indoor environment quality. What’s more, Air-Sense system can also provide data analysis, and visualizing the results of the indoor environment to the user.

  3. Impact of fine particulate fluctuation and other variables on Beijing's air quality index.

    PubMed

    Chen, Bo; Lu, Shaowei; Li, Shaoning; Wang, Bing

    2015-04-01

    We analyzed fluctuation in Beijing's air quality over 328 days, based on air quality grades and air quality data from 35 atmospheric monitoring stations. Our results show the air over Beijing is subject to pollution 152 days of the year, or 46.34%. Among all pollutants, fine particulates, solid or liquid, 2.5 μm or less in size (PM2.5), appeared most frequently as the primary pollutant: 249 days, or 76% of the sample year (328 days). Nitrogen dioxide (NO2) and coarse particulates (PM10) cause the least pollution, appearing only 7 and 3 days, or 2 and 1% of the sample year, respectively. In Beijing, fine particulates like PM2.5 vary seasonally: 154.54 ± 18.60 in winter > 145.22 ± 18.61 in spring > 140.16 ± 20.76 in autumn > 122.37 ± 13.42 in summer. Air quality is best in August and worst in December, while various districts in Beijing experience different air quality. To be specific, from south to north and from west to east, air quality tends to improve. Meteorological elements have a constraining effect on air pollutants, which means there is a linear correlation between the air quality index and humidity, rainfall, wind speed, and temperature. Under a typical pollution scenario, the higher the air quality index (AQI) value, the lower the wind speed and the greater the relative humidity; the lower the AQI value, the higher the wind speed and lower the relative humidity. Analysis of influencing factors reveals that the air pollution is mainly particulate matter produced by burning coal, vehicle emissions, volatile oils and gas, fast development of food services, emissions from the surrounding region, and natural dust clouds formed in arid areas to the northwest. Topography affects the distribution of meteorological conditions, in turn varying air quality over the region from one location to another. Human activities also exercise impact on urban air quality with dual functions.

  4. Application of Wavelet Filters in an Evaluation of ...

    EPA Pesticide Factsheets

    Air quality model evaluation can be enhanced with time-scale specific comparisons of outputs and observations. For example, high-frequency (hours to one day) time scale information in observed ozone is not well captured by deterministic models and its incorporation into model performance metrics lead one to devote resources to stochastic variations in model outputs. In this analysis, observations are compared with model outputs at seasonal, weekly, diurnal and intra-day time scales. Filters provide frequency specific information that can be used to compare the strength (amplitude) and timing (phase) of observations and model estimates. The National Exposure Research Laboratory′s (NERL′s) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA′s mission to protect human health and the environment. AMAD′s research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the Nation′s air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollu

  5. Assessment of the Indoor Odour Impact in a Naturally Ventilated Room

    PubMed Central

    Eusebio, Lidia; Derudi, Marco; Capelli, Laura; Nano, Giuseppe; Sironi, Selena

    2017-01-01

    Indoor air quality influences people’s lives, potentially affecting their health and comfort. Nowadays, ventilation is the only technique commonly used for regulating indoor air quality. CO2 is the reference species considered in order to calculate the air exchange rates of indoor environments. Indeed, regarding air quality, the presence of pleasant or unpleasant odours can strongly influence the environmental comfort. In this paper, a case study of indoor air quality monitoring is reported. The indoor field tests were conducted measuring both CO2 concentration, using a photoacoustic multi-gas analyzer, and odour trends, using an electronic nose, in order to analyze and compare the information acquired. The indoor air monitoring campaign was run for a period of 20 working days into a university room. The work was focused on the determination of both CO2 and odour emission factors (OEF) emitted by the human activity and on the evaluation of the odour impact in a naturally ventilated room. The results highlighted that an air monitoring and recycling system based only on CO2 concentration and temperature measurements might be insufficient to ensure a good indoor air quality, whereas its performances could be improved by integrating the existing systems with an electronic nose for odour detection. PMID:28379190

  6. 78 FR 69460 - Proposed License Renewal of the Prairie Island Independent Spent Fuel Storage Installation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ...; climatology, meteorology and air quality; geology and soils; water resources; ecology and threatened and... significantly affect the quality of the human environment. No significant changes in NSPM's authorized...

  7. Impacts of emission reduction and meteorological conditions on air quality improvement during the 2014 Youth Olympic Games in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Huang, Qian; Wang, Tijian; Chen, Pulong; Huang, Xiaoxian; Zhu, Jialei; Zhuang, Bingliang

    2017-11-01

    As the holding city of the 2nd Youth Olympic Games (YOG), Nanjing is highly industrialized and urbanized, and faces several air pollution issues. In order to ensure better air quality during the event, the local government took great efforts to control the emissions from pollutant sources. However, air quality can still be affected by synoptic weather, not only emission. In this paper, the influences of meteorological factors and emission reductions were investigated using observational data and numerical simulations with WRF-CMAQ (Weather Research and Forecasting - Community Multiscale Air Quality). During the month in which the YOG were held (August 2014), the observed hourly mean concentrations of SO2, NO2, PM10, PM2.5, CO and O3 were 11.6 µg m-3, 34.0 µg m-3, 57.8 µg m-3, 39.4 µg m-3, 0.9 mg m-3 and 38.8 µg m-3, respectively, which were below China National Ambient Air Quality Standard (level 2). However, model simulation showed that the weather conditions, such as weaker winds during the YOG, were adverse for better air quality and could increase SO2, NO2, PM10, PM2.5 and CO by 17.5, 16.9, 18.5, 18.8, 7.8 and 0.8 %. Taking account of local emission abatement only, the simulated SO2, NO2, PM10, PM2.5 and CO decreased by 24.6, 12.1, 15.1, 8.1 and 7.2 %. Consequently, stringent emission control measures can reduce the concentrations of air pollutants in the short term, and emission reduction is very important for air quality improvement during the YOG. A good example has been set for air quality protection for important social events.

  8. Predictability Analysis of PM10 Concentrations in Budapest

    NASA Astrophysics Data System (ADS)

    Ferenczi, Zita

    2013-04-01

    Climate, weather and air quality may have harmful effects on human health and environment. Over the past few hundred years we had to face the changes in climate in parallel with the changes in air quality. These observed changes in climate, weather and air quality continuously interact with each other: pollutants are changing the climate, thus changing the weather, but climate also has impacts on air quality. The increasing number of extreme weather situations may be a result of climate change, which could create favourable conditions for rising of pollutant concentrations. Air quality in Budapest is determined by domestic and traffic emissions combined with the meteorological conditions. In some cases, the effect of long-range transport could also be essential. While the time variability of the industrial and traffic emissions is not significant, the domestic emissions increase in winter season. In recent years, PM10 episodes have caused the most critical air quality problems in Budapest, especially in winter. In Budapest, an air quality network of 11 stations detects the concentration values of different pollutants hourly. The Hungarian Meteorological Service has developed an air quality prediction model system for the area of Budapest. The system forecasts the concentration of air pollutants (PM10, NO2, SO2 and O3) for two days in advance. In this work we used meteorological parameters and PM10 data detected by the stations of the air quality network, as well as the forecasted PM10 values of the air quality prediction model system. In this work we present the evaluation of PM10 predictions in the last two years and the most important meteorological parameters affecting PM10 concentration. The results of this analysis determine the effect of the meteorological parameters and the emission of aerosol particles on the PM10 concentration values as well as the limits of this prediction system.

  9. Multi-criteria analysis for PM10 planning

    NASA Astrophysics Data System (ADS)

    Pisoni, Enrico; Carnevale, Claudio; Volta, Marialuisa

    To implement sound air quality policies, Regulatory Agencies require tools to evaluate outcomes and costs associated to different emission reduction strategies. These tools are even more useful when considering atmospheric PM10 concentrations due to the complex nonlinear processes that affect production and accumulation of the secondary fraction of this pollutant. The approaches presented in the literature (Integrated Assessment Modeling) are mainly cost-benefit and cost-effective analysis. In this work, the formulation of a multi-objective problem to control particulate matter is proposed. The methodology defines: (a) the control objectives (the air quality indicator and the emission reduction cost functions); (b) the decision variables (precursor emission reductions); (c) the problem constraints (maximum feasible technology reductions). The cause-effect relations between air quality indicators and decision variables are identified tuning nonlinear source-receptor models. The multi-objective problem solution provides to the decision maker a set of not-dominated scenarios representing the efficient trade-off between the air quality benefit and the internal costs (emission reduction technology costs). The methodology has been implemented for Northern Italy, often affected by high long-term exposure to PM10. The source-receptor models used in the multi-objective analysis are identified processing long-term simulations of GAMES multiphase modeling system, performed in the framework of CAFE-Citydelta project.

  10. [Influence of Moxa Smoke on Indoor Air Quality and Strategies for Its Control].

    PubMed

    Yu, Chang; Wu, Qiao-Feng; Tang, Yong; Yu, Shu-Guang

    2018-02-25

    Moxibustion is an effective therapy for treatment of a lot of clinical problems, but the ignited moxa-induced smoke containing harmful substances may bring about indoor air pollution to affect both patients' and medical workers' health. However, there is no standards about controlling indoor air quality (IAQ) for moxibustion rooms in China. In the present study, the authors reviewed newly-published articles about some substances released from moxa smoke as inhalable particles (PM 10 and PM 2.5), formaldehyde, benzene, methylbenzene, xylene, bene[α]pyrene, total volatile organic compounds, CO, CO 2 , NO, SO 2 , NH 3 , O 3 , etc. some of which affect IAQ. On this account, the authors put forward some strategies for controlling IAQ in moxibustion clinics including setting united safe standards, enhancing ventilation, controlling moxibustion material quality and strengthening scientific research on the safety of moxa smoke control, fully playing the superiority of moxibustion therapy and reducing its unfavorable aspects in clinical practice in the future.

  11. Preliminary Evaluation of Air Quality Model Performance Utilizing Measurements at the University of Houston Moody Tower and others during the TexAQS-II

    NASA Astrophysics Data System (ADS)

    Byun, D. W.; Rappenglueck, B.; Lefer, B.

    2007-12-01

    Accurate meteorological and photochemical modeling efforts are necessary to understand the measurements made during the Texas Air Quality Study (TexAQS-II). The main objective of the study is to understand the meteorological and chemical processes of high ozone and regional haze events in the Eastern Texas, including the Houston-Galveston metropolitan area. Real-time and retrospective meteorological and photochemical model simulations were performed to study key physical and chemical processes in the Houston Galveston Area. In particular, the Vertical Mixing Experiment (VME) at the University of Houston campus was performed on selected days during the TexAQS-II. Results of the MM5 meteorological model and CMAQ air quality model simulations were compared with the VME and other TexAQS-II measurements to understand the interaction of the boundary layer dynamics and photochemical evolution affecting Houston air quality.

  12. Indoor air quality of everyday use spaces dedicated to specific purposes-a review.

    PubMed

    Marć, Mariusz; Śmiełowska, Monika; Namieśnik, Jacek; Zabiegała, Bożena

    2018-01-01

    According to literature data, some of the main factors which significantly affect the quality of the indoor environment in residential households or apartments are human activities such as cooking, smoking, cleaning, and indoor exercising. The paper presents a literature overview related to air quality in everyday use spaces dedicated to specific purposes which are integral parts of residential buildings, such as kitchens, basements, and individual garages. Some aspects of air quality in large-scale car parks, as a specific type of indoor environment, are also discussed. All those areas are characterized by relatively short time use. On the other hand, high and very high concentration levels of xenobiotics can be observed, resulting in higher exposure risk. The main compounds or group of chemical compounds are presented and discussed. The main factors influencing the type and amount of chemical pollutants present in the air of such areas are indicated.

  13. “AQMEII Status Update” | Science Inventory | US EPA

    EPA Pesticide Factsheets

    “AQMEII Status Update”This presentation provided an overview and status update of the Air Quality Model Evaluation International Initative (AQMEII) to participants of a workshop of the Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) . In addition, the presentation also outlines the objectives and potential timeline for a possible next phase of AQMEII that would involve a collaboration with the current modeling activities of TF-HTAP. The purpose of the presentation was to provide participants at the HTAP meeting with an overview of current AQMEII activities and timelines and to obtain feedback from HTAP workshop participants regarding HTAP timelines. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air po

  14. Air quality impact of the coal-fired power plants in the northern passageway of the China West-East Power Transmission Project.

    PubMed

    Xue, Zhigang; Hao, Jiming; Chai, Fahe; Duan, Ning; Chen, Yizhen; Li, Jindan; Chen, Fu; Liu, Simei; Pu, Wenqing

    2005-12-01

    This paper analyzes the air quality impacts of coal-fired power plants in the northern passageway of the West-East Power Transmission Project in China. A three-layer Lagrangian model called ATMOS, was used to simulate the spatial distribution of incremental sulfur dioxide (SO2) and coarse particulate matter (PM10) concentrations under different emission control scenarios. In the year 2005, the emissions from planned power plants mainly affected the air quality of Shanxi, Shaanxi, the common boundary of Inner Mongolia and Shanxi, and the area around the boundary between Inner Mongolia and Ningxia. In these areas, the annually averaged incremental SO2 and PM10 concentrations exceed 2 and 2.5 microg/m3, respectively. The maximum increases of the annually averaged SO2 and PM10 concentrations are 8.3 and 7.2 microg/m3, respectively, which occur around Hancheng city, near the boundary of the Shaanxi and Shanxi provinces. After integrated control measures are considered, the maximum increases of annually averaged SO2 and PM10 concentrations fall to 4.9 and 4 microg/m3, respectively. In the year 2010, the areas affected by planned power plants are mainly North Shaanxi, North Ningxia, and Northwest Shanxi. The maximum increases of the annually averaged SO2 and PM10, concentrations are, respectively, 6.3 and 5.6 microg/m3, occurring in Northwest Shanxi, which decline to 4.4 and 4.1 microg/m3 after the control measures are implemented. The results showed that the proposed power plants mainly affect the air quality of the region where the power plants are built, with little impact on East China where the electricity will be used. The influences of planned power plants on air quality will be decreased greatly by implementing integrated control measures.

  15. Distributional benefit analysis of a national air quality rule.

    PubMed

    Post, Ellen S; Belova, Anna; Huang, Jin

    2011-06-01

    Under Executive Order 12898, the U.S. Environmental Protection Agency (EPA) must perform environmental justice (EJ) reviews of its rules and regulations. EJ analyses address the hypothesis that environmental disamenities are experienced disproportionately by poor and/or minority subgroups. Such analyses typically use communities as the unit of analysis. While community-based approaches make sense when considering where polluting sources locate, they are less appropriate for national air quality rules affecting many sources and pollutants that can travel thousands of miles. We compare exposures and health risks of EJ-identified individuals rather than communities to analyze EPA's Heavy Duty Diesel (HDD) rule as an example national air quality rule. Air pollutant exposures are estimated within grid cells by air quality models; all individuals in the same grid cell are assigned the same exposure. Using an inequality index, we find that inequality within racial/ethnic subgroups far outweighs inequality between them. We find, moreover, that the HDD rule leaves between-subgroup inequality essentially unchanged. Changes in health risks depend also on subgroups' baseline incidence rates, which differ across subgroups. Thus, health risk reductions may not follow the same pattern as reductions in exposure. These results are likely representative of other national air quality rules as well.

  16. Indoor air quality in Brazilian universities.

    PubMed

    Jurado, Sonia R; Bankoff, Antônia D P; Sanchez, Andrea

    2014-07-11

    This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC) (n = 15) and naturally ventilated (NV) (n = 15) classrooms. The parameters of interest were indoor carbon dioxide (CO2), temperature, relative humidity (RH), wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively). The average indoor airborne dust concentration exceeded the Brazilian standards (<80 µg/m3) in both NV and AC classrooms. The levels of CO2 in the AC rooms were significantly different from the NV rooms (1433.62 ± 252.80 and 520.12 ± 37.25 ppm, respectively). The indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem.

  17. Mapping Air Quality Index of Carbon Monoxide (CO) in Medan City

    NASA Astrophysics Data System (ADS)

    Suryati, I.; Khair, H.

    2017-03-01

    This study aims to map and analyze air quality index of carbon monoxide (CO) in Medan City. This research used 12 (twelve) sampling points around in Medan with an hour duration each point. CO concentration was analyzed using the NDIR CO Analyzer sampling tool. The concentration CO was obtained between 1 ppm - 23 ppm, with an average concentration was 9.5 ppm. This condition is still below the national ambient air quality standard set by Government Regulation of Indonesian Republic Number 41-1999 amounted to 29 ppm. The result of CO concentration measurements was converted into air pollutant standard index, obtained the index value of 58 - 204. Surfer 10 was used to create map of air pollutant standard index for CO. The map illustrates very unhealthy area where located in the Medan Belawan district. The main factors affecting the concentration of CO are from transportation and meteorological factors.

  18. Indoor Air Quality in Brazilian Universities

    PubMed Central

    Jurado, Sonia R.; Bankoff, Antônia D. P.; Sanchez, Andrea

    2014-01-01

    This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC) (n = 15) and naturally ventilated (NV) (n = 15) classrooms. The parameters of interest were indoor carbon dioxide (CO2), temperature, relative humidity (RH), wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively). The average indoor airborne dust concentration exceeded the Brazilian standards (<80 μg/m3) in both NV and AC classrooms. The levels of CO2 in the AC rooms were significantly different from the NV rooms (1433.62 ± 252.80 and 520.12 ± 37.25 ppm, respectively). The indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem. PMID:25019268

  19. 78 FR 26300 - Approval and Promulgation of Air Quality Implementation Plans; Texas; Revisions to Control of Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... curing ovens used in wet-laid non-woven fiber mat manufacturing operations when nitrogen containing resins or other additives are used. These two actions affect NO X sources operating in the Dallas Fort...

  20. The air quality analysis of Dalian based on the data of AQI

    NASA Astrophysics Data System (ADS)

    Gu, Ji-lin; Liu, Miao

    2018-02-01

    The data of AQI from 10 countries accused of automatic air quality monitoring station of Dalian from June 2015 to December 2016 were analyzed to investigate the daily mean change of air quality index, the change of the hour and the correlation analysis between AQI and PM2.5, PM10, SO2, NO2, CO, O3 six parameters. The 856,800 index samples showed that the air quality index of autumn and winter was obviously higher than that of summer. The maximum AQI value in autumn and winter reached 389, with an average of 82. The maximum value of AQI in summer was 130, and the average was 50. From 2015 to 2016, the excellent air quality in the summer in Dalian was 60.3%; the standard rate was 98.4%. The autumn and winter air quality accounted for 39.1% and the compliance rate was 68.5%. The mean of the AQI average daily was a wavy trend, and the changes of summer and autumn and winter were roughly the same. The regularity of AQI 24-hour showed multi-peak changes, bimodal changes and single peak changes. The air quality in Dalian is affected by the weather conditions such as wind direction, rainfall and fog, the air quality in surrounding cities, urban pollution, vehicle exhaust and excessive consumption of coal energy. Through correlation calculation, AQI, PM2.5, and PM10 were significantly correlated irrespective of season. AQI and O3 were positively correlated in summer, but negatively correlated in autumn and winter, which is the basis for the treatment of air pollution in Dalian.

  1. Understanding social and behavioral drivers and impacts of air quality sensor use.

    PubMed

    Hubbell, Bryan J; Kaufman, Amanda; Rivers, Louie; Schulte, Kayla; Hagler, Gayle; Clougherty, Jane; Cascio, Wayne; Costa, Dan

    2018-04-15

    Lower-cost air quality sensors (hundreds to thousands of dollars) are now available to individuals and communities. This technology is undergoing a rapid and fragmented evolution, resulting in sensors that have uncertain data quality, measure different air pollutants and possess a variety of design attributes. Why and how individuals and communities choose to use sensors is arguably influenced by social context. For example, community experiences with environmental exposures and health effects and related interactions with industry and government can affect trust in traditional air quality monitoring. To date, little social science research has been conducted to evaluate why or how sensors, and sensor data, are used by individuals and communities, or how the introduction of sensors changes the relationship between communities and air quality managers. This commentary uses a risk governance/responsible innovation framework to identify opportunities for interdisciplinary research that brings together social scientists with air quality researchers involved in developing, testing, and deploying sensors in communities. Potential areas for social science research include communities of sensor users; drivers for use of sensors and sensor data; behavioral, socio-political, and ethical implications of introducing sensors into communities; assessing methods for communicating sensor data; and harnessing crowdsourcing capabilities to analyze sensor data. Social sciences can enhance understanding of perceptions, attitudes, behaviors, and other human factors that drive levels of engagement with and trust in different types of air quality data. New transdisciplinary research bridging social sciences, natural sciences, engineering, and design fields of study, and involving citizen scientists working with professionals from a variety of backgrounds, can increase our understanding of air sensor technology use and its impacts on air quality and public health. Published by Elsevier B.V.

  2. Evaluating the impact of ambient benzene vapor concentrations on product water from Condensation Water From Air technology.

    PubMed

    Kinder, Katherine M; Gellasch, Christopher A; Dusenbury, James S; Timmes, Thomas C; Hughes, Thomas M

    2017-07-15

    Globally, drinking water resources are diminishing in both quantity and quality. This situation has renewed interest in Condensation Water From Air (CWFA) technology, which utilizes water vapor in the air to produce water for both potable and non-potable purposes. However, there are currently insufficient data available to determine the relationship between air contaminants and the rate at which they are transferred from the air into CWFA untreated product water. This study implemented a novel experimental method utilizing an environmental test chamber to evaluate how air quality and temperature affects CWFA untreated product water quality in order to collect data that will inform the type of water treatment required to protect human health. This study found that temperature and benzene air concentration affected the untreated product water from a CWFA system. Benzene vapor concentrations representing a polluted outdoor environment resulted in benzene product water concentrations between 15% and 23% of the USEPA drinking water limit of 5μg/l. In contrast, product water benzene concentrations representing an indoor industrial environment were between 1.4 and 2.4 times higher than the drinking water limit. Lower condenser coil temperatures were correlated with an increased concentration of benzene in the product water. Environmental health professionals and engineers can integrate the results of this assessment to predict benzene concentrations in the product water and take appropriate health protective measures. Published by Elsevier B.V.

  3. The use of modern technologies in carbon dioxide monitoring

    NASA Astrophysics Data System (ADS)

    Komínek, Petr; Weyr, Jan; Hirš, Jiří

    2017-12-01

    Indoor environment has huge influence on person's health and overall comfort. It is of great importance that we realize how essential indoor air quality is, considering we spend on average as much as 90% of our time indoors. There are many factors that affect indoor air quality: specifically, inside air temperature, relative humidity, and odors to name the most important factors. One of the key factors indicating indoor air quality is carbon dioxide (CO2) level. The CO2 levels, measured in prefab apartment buildings, indicates substantial indoor air quality issues. Therefore, a proper education of the occupants is of utmost importance. Also, great care should be directed towards technical and technological solutions that would ensure meeting the normative indoor environment criteria, especially indoor air CO2 levels. Thanks to the implementation of new emerging autonomous technologies, such as Internet of Things (IoT), monitoring in real-time is enhanced. An area where IoT plays a major role is in the monitoring of indoor environment. IoT technology (e.g. smart meters and sensors) provide awareness of information about the quality of indoor environment. There is a huge potential for influencing behaviour of the users. Through the web application, it is possible to educate people and ensure fresh air supply.

  4. Regional impacts of oil and gas development on ozone formation in the western United States.

    PubMed

    Rodriguez, Marco A; Barna, Michael G; Moore, Tom

    2009-09-01

    The Intermountain West is currently experiencing increased growth in oil and gas production, which has the potential to affect the visibility and air quality of various Class I areas in the region. The following work presents an analysis of these impacts using the Comprehensive Air Quality Model with extensions (CAMx). CAMx is a state-of-the-science, "one-atmosphere" Eulerian photochemical dispersion model that has been widely used in the assessment of gaseous and particulate air pollution (ozone, fine [PM2.5], and coarse [PM10] particulate matter). Meteorology and emissions inventories developed by the Western Regional Air Partnership Regional Modeling Center for regional haze analysis and planning are used to establish an ozone baseline simulation for the year 2002. The predicted range of values for ozone in the national parks and other Class I areas in the western United States is then evaluated with available observations from the Clean Air Status and Trends Network (CASTNET). This evaluation demonstrates the model's suitability for subsequent planning, sensitivity, and emissions control strategy modeling. Once the ozone baseline simulation has been established, an analysis of the model results is performed to investigate the regional impacts of oil and gas development on the ozone concentrations that affect the air quality of Class I areas. Results indicate that the maximum 8-hr ozone enhancement from oil and gas (9.6 parts per billion [ppb]) could affect southwestern Colorado and northwestern New Mexico. Class I areas in this region that are likely to be impacted by increased ozone include Mesa Verde National Park and Weminuche Wilderness Area in Colorado and San Pedro Parks Wilderness Area, Bandelier Wilderness Area, Pecos Wilderness Area, and Wheeler Peak Wilderness Area in New Mexico.

  5. New directions: Future approaches to the standardized assessment of airborne pollutants affecting environmental quality

    NASA Astrophysics Data System (ADS)

    Nehr, Sascha; Franzen-Reuter, Isabelle; Kucejko, Catharina

    2017-10-01

    Man-made activities have caused unexampled changes of our environment during the last two centuries. Due to emissions of a vast number of pollutants the composition of the Earth's atmosphere is continuously changing, and the consequences for humans and for ecosystems are only partly understood at present. Once released to the atmosphere, the emitted substances undergo physical and chemical degradation. Many of the substances detected in ambient air are toxic or carcinogenic and might cause respiratory and cardiovascular diseases. Furthermore, air pollutants are influencing acidification, eutrophication, global warming, and biodiversity. Therefore soil quality, water quality, air quality, ecosystem exposure to pollutant deposition, biodiversity, and climate change are coupled problems (Schlesinger, 1997; Steffen et al., 2005; Ehlers et al., 2006; Rockström et al., 2009).

  6. Application of meteorology-based methods to determine local and external contributions to particulate matter pollution: A case study in Venice (Italy)

    NASA Astrophysics Data System (ADS)

    Squizzato, Stefania; Masiol, Mauro

    2015-10-01

    The air quality is influenced by the potential effects of meteorology at meso- and synoptic scales. While local weather and mixing layer dynamics mainly drive the dispersion of sources at small scales, long-range transports affect the movements of air masses over regional, transboundary and even continental scales. Long-range transport may advect polluted air masses from hot-spots by increasing the levels of pollution at nearby or remote locations or may further raise air pollution levels where external air masses originate from other hot-spots. Therefore, the knowledge of ground-wind circulation and potential long-range transports is fundamental not only to evaluate how local or external sources may affect the air quality at a receptor site but also to quantify it. This review is focussed on establishing the relationships among PM2.5 sources, meteorological condition and air mass origin in the Po Valley, which is one of the most polluted areas in Europe. We have chosen the results from a recent study carried out in Venice (Eastern Po Valley) and have analysed them using different statistical approaches to understand the influence of external and local contribution of PM2.5 sources. External contributions were evaluated by applying Trajectory Statistical Methods (TSMs) based on back-trajectory analysis including (i) back-trajectories cluster analysis, (ii) potential source contribution function (PSCF) and (iii) concentration weighted trajectory (CWT). Furthermore, the relationships between the source contributions and ground-wind circulation patterns were investigated by using (iv) cluster analysis on wind data and (v) conditional probability function (CPF). Finally, local source contribution have been estimated by applying the Lenschow' approach. In summary, the integrated approach of different techniques has successfully identified both local and external sources of particulate matter pollution in a European hot-spot affected by the worst air quality.

  7. Linked Analysis of East Asia Emission Reduction Pathways

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Woo, J. H.; Bu, C.; Lee, Y.; Kim, J.; Jang, Y.; Park, M.

    2017-12-01

    Air pollution and its impacts over the Northeast Asia are very severe because of the massive pollutant emissions and high population. Korea has been trying to improve air quality with the enhanced environmental legislation. The air quality over Korea, however, does not entirely dependent on its local emissions. Transboundary air pollution from China highly affects Korean atmosphere. The purpose of this research is to understand role of local and transbounday efforts to improve air quality changes over Korea. In this research, we have tried to set up the multiple emission scenario pathways for Korea and China using IIASA's GAINS (Greenhouse gas - Air pollution Interactions aNd Synergies) modeling framework. More up-to-date growth factors and control policy packets were made using regional socio-economic data and control policy information from local governments and international statistics. Four major scenario pathways, 1) Base (Baseline: current legislation), 2) OTB/OTB(On the book/On the way : existing control measure/planed control measure), 3) BOTW_GHG(Beyond on the way : OTW with GHG reduction plan), 4) BOTW_NH3 (OTW with additional NH3 reduction measure) were developed to represent air quality improvement pathways in consideration of both Korean and Chinese efforts. Strict ambient PM2.5 standards from Seoul metropolitan Air quality Improvement Plan(SAIP) seems too enthusiastic without linking air quality control efforts of China. Step-by-step emission controls and following air quality, control cost, health impact from each scenario will be presented at the conference. This subject is supported by Korea Ministry of Environment as "Climate Change Correspondence Program". And This work was supported under the framework of national strategy project on fine particulate matters by Ministry of Science, ICT and Future Planning.

  8. Monitoring and analysis of air quality in Riga

    NASA Astrophysics Data System (ADS)

    Ubelis, Arnolds; Leitass, Andris; Vitols, Maris

    1995-09-01

    Riga, the capital of Latvia is a city with nearly 900,000 inhabitants and various highly concentrated industries. Air pollution in Riga is a serious problem affecting health and damaging valuable buildings of historical importance, as acid rain and smog take their toll. Therefore the Air Quality Management System with significant assistance from Swedish Government and persistent efforts from Riga City Council was arranged in Riga. It contains INDIC AIRVIRO system which simulates and evaluates air pollution levels at various locations. It then processes the data in order to predict air quality based on a number of criteria and parameters, measured by OPSIS differential absorption instruments, as well as data from the Meteorological Service and results of episodic measurements. The analysis of the results provided by Riga Air Quality Management System for the first time allows us to start comprehensive supervision of troposphere physical, chemical, and photochemical processes in the air of Riga as well as to appreciate the influence of lcoal pollution and transboundary transfer. The report contains the actual results of this work and first attempts of analysis as well as overview about activities towards research and teaching in the fields of spectroscopy and photochemistry of polluted atmospheres.

  9. Indoor air quality and the law in Singapore.

    PubMed

    Chan, P

    1999-12-01

    With the greater use of air-conditioned offices in Singapore, achieving good indoor air quality has become an important issue. The laws that impose duties upon designers and contractors with respect to the design and construction of air-conditioning and mechanical ventilation (ACMV) systems are set out in the Building Control Regulations and the Singapore Standard Code of Practice for Mechanical Ventilation and Air-conditioning in Buildings (hereinafter "SS CP 13:1980"). ACMV maintenance is governed by the Environmental Public Health Act, the Building and Common Property (Maintenance and Management) Act, and the Land Titles (Strata) Act, as well as by lease or tenancy agreements. Designers, contractors, developers, building owners and management corporations may also be liable to the workers, occupants and other premises users for indoor air quality (IAQ)-related injuries under the general principles of contract and tort. Recently, the Guidelines for Good Indoor Air Quality in Office Premises was issued by the Ministry of Environment to complement SS CP 13:1980 toward improving the indoor air quality of air-conditioned office premises. Although the Guidelines have no statutory effect, they may be adopted as contractual requirements in construction, lease and maintenance contracts. They may also be used to determine the relevant standard of duty of care required to discharge tortious liability. This paper looks at the existing laws and rules affecting the design, construction and maintenance of air-conditioned offices in light of Part III of the Ministry's Guidelines.

  10. Assessment of windows on noise intrusion, energy efficiency, and indoor air quality for residential buildings near airports.

    DOT National Transportation Integrated Search

    2012-06-01

    The continuing increase in air traffic has implications for the preservation of our common : resources and causes global and micro-environmental pollution. This pollution affects public : health and causes damage to the prospects of future generation...

  11. 40 CFR 60.1115 - What is a siting analysis?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a siting analysis? 60.1115 Section 60.1115 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... unit affects ambient air quality, visibility, soils, vegetation, and other relevant factors. The...

  12. Air Pollution and Weather: Activities and Demonstrations for Science Classes

    ERIC Educational Resources Information Center

    Cole, Henry S.

    1973-01-01

    Discusses a number of concepts (turbulence, dispersion, vertical temperature distribution, atmospheric stability and instability, and inversions) which are prerequisite to understanding how weather affects air quality. Describes classroom demonstrations effective in introducing these concepts to students at the elementary, secondary and college…

  13. The Use of Regulatory Air Quality Models to Develop Successful Ozone Attainment Strategies

    NASA Astrophysics Data System (ADS)

    Canty, T. P.; Salawitch, R. J.; Dickerson, R. R.; Ring, A.; Goldberg, D. L.; He, H.; Anderson, D. C.; Vinciguerra, T.

    2015-12-01

    The Environmental Protection Agency (EPA) recently proposed lowering the 8-hr ozone standard to between 65-70 ppb. Not all regions of the U.S. are in attainment of the current 75 ppb standard and it is expected that many regions currently in attainment will not meet the future, lower surface ozone standard. Ozone production is a nonlinear function of emissions, biological processes, and weather. Federal and state agencies rely on regulatory air quality models such as the Community Multi-Scale Air Quality (CMAQ) model and Comprehensive Air Quality Model with Extensions (CAMx) to test ozone precursor emission reduction strategies that will bring states into compliance with the National Ambient Air Quality Standards (NAAQS). We will describe various model scenarios that simulate how future limits on emission of ozone precursors (i.e. NOx and VOCs) from sources such as power plants and vehicles will affect air quality. These scenarios are currently being developed by states required to submit a State Implementation Plan to the EPA. Projections from these future case scenarios suggest that strategies intended to control local ozone may also bring upwind states into attainment of the new NAAQS. Ground based, aircraft, and satellite observations are used to ensure that air quality models accurately represent photochemical processes within the troposphere. We will highlight some of the improvements made to the CMAQ and CAMx model framework based on our analysis of NASA observations obtained by the OMI instrument on the Aura satellite and by the DISCOVER-AQ field campaign.

  14. Air Quality Study Using Satellites - Current Capability and Future Plans

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.; Joiner, Joanna; Gleason, James; Liu, Xiong; Torres, Omar; Krotkov, Nickolay; Ziemke, Jerry; Chandra, Sushil

    2008-01-01

    Satellite instruments have had great success in monitoring the stratospheric ozone and in understanding the processes that control its daily to decadal scale variations. This field is now reaching its zenith with a number of satellite instruments from the US, Europe and Canada capping several decades of active research in this field. The primary public policy imperative of this research was to make reliable prediction of increases in biologically active surface UV radiation due to human activity. By contrast retrieval from satellite data of atmospheric constituents and photo-chemically active radiation that affect air quality is a new and growing field that is presenting us with unique challenges in measurement and data interpretation. A key distinction compared to stratospheric sensors is the greatly enhanced role of clouds, aerosols, and surfaces (CAS) in determining the quality and quantity of useful data that is available for air quality research. In our presentation we will use data from several sensors that are currently flying on the A-train satellite constellation, including OMI, MODIS, CLOUDSAT, and CALIPSO, to highlight that CAS can have both positive and negative effects on the information content of satellite measurements. This is in sharp contrast to other fields of remote sensing where CAS are usually considered an interference except in those cases when they are the primary subject of study. Our analysis has revealed that in the reflected wavelengths one often sees much further down into the atmosphere, through most cirrus, than one does in the emitted wavelengths. The lower level clouds provide a nice background against which one can track long-range transport of trace gases and aerosols. In addition, differences in trace gas columns estimated over cloudy and adjacent clear pixels can be used to measure boundary layer trace gases. However, in order to take full advantage of these features it will be necessary to greatly advance our understanding of how CAS affect the radiation at wavelengths that are used to derive the atmospheric constituents that affect air quality as well as the radiation that controls the photolysis of chemically active trace gases. We will discuss how we are using these new insights to design future satellite missions to study air quality.

  15. Air Quality Research and Applications Using AURA OMi Data

    NASA Technical Reports Server (NTRS)

    Bhartia, P.K.; Gleason, J.F.; Torres, O.; Levelt, P.; Liu, X.; Ziemke, J.; Chandra, S.; Krotkov, N.

    2007-01-01

    The Ozone Monitoring Instrument (OMI) on EOS Aura is a new generation of satellite remote sensing instrument designed to measure trace gas and aerosol absorption at the UV and blue wavelengths. These measurements are made globally at urban scale resolution with no inter-orbital gaps that make them potentially very useful for air quality research, such as the determination of the sources and processes that affect global and regional air quality, and to develop applications such as air quality forecast. However, the use of satellite data for such applications is not as straight forward as satellite data have been for stratospheric research. There is a need for close interaction between the satellite product developers, in-situ measurement programs, and the air quality research community to overcome some of the inherent difficulties in interpreting data from satellite-based remote sensing instruments. In this talk we will discuss the challenges and opportunities in using OMI products for air quality research and applications. A key conclusion of this work is that to realize the full potential of OMI measurements it will be necessary to combine OMI data with data from instruments such as MLS, MODIS, AIRS, and CALIPSO that are currently flying in the "A-train" satellite constellation. In addition similar data taken by satellites crossing the earth at different local times than the A-train (e.g., the recently MetOp satellite) would need to be processed in a consistent manner to study diurnal variability, and to capture the effects on air quality of rapidly changing events such as wild fires.

  16. Climate change, tropospheric ozone and particulate matter, and health impacts.

    PubMed

    Ebi, Kristie L; McGregor, Glenn

    2008-11-01

    Because the state of the atmosphere determines the development, transport, dispersion, and deposition of air pollutants, there is concern that climate change could affect morbidity and mortality associated with elevated concentrations of these gases and fine particles. We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health. We review studies projecting the impacts of climate change on air quality and studies projecting the impacts of these changes on morbidity and mortality. Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty include the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given these uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, which would increase morbidity and mortality. Few projections are available for low- and middle-income countries. The evidence is less robust for PM, primarily because few studies have been conducted. Additional research is needed to better understand the possible impacts of climate change on air pollution-related health impacts. If improved models continue to project higher ozone concentrations with climate change, then reducing greenhouse gas emissions would enhance the health of current and future generations.

  17. Alternate approaches for assessing impacts of oil sands development on air quality: A case study using the First Nation Community of Fort McKay.

    PubMed

    Davidson, Carla; Spink, David

    2018-04-01

    Previous analyses of continuously measured compounds in Fort McKay, an indigenous community in the Athabasca Oil Sands, have detected increasing concentrations of nitrogen dioxide (NO 2 ) and total hydrocarbons (THC), but not of sulfur dioxide (SO 2 ), ozone (O 3 ), total reduced sulfur compounds (TRS), or particulate matter (aerodynamic diameter <2.5 μm; PM 2.5 ). Yet the community frequently experiences odors, dust, and reduced air quality. The authors used Fort McKay's continuously monitored air quality data (1998-2014) as a case study to assess techniques for air quality analysis that make no assumptions regarding type of change. Linear trend analysis detected increasing concentrations of higher percentiles of NO 2 , nitric oxide (NO), and nitrogen oxides (NO x ), and THC. However, comparisons of all compounds between an early industrial expansion period (1998-2001) and current day (2011-2014) show that concentrations of NO 2 , SO 2 , THC, TRS, and PM 2.5 have significantly increased, whereas concentrations of O 3 are significantly lower. An assessment of the frequency and duration of periods when concentrations of each compound were above a variety of thresholds indicated that the frequency of air quality events is increasing for NO 2 and THC. Assessment of change over time with odds ratios of the 25th, 50th, 75th, and 90th percentile concentrations for each compound compared with an estimate of natural background variability showed that concentrations of TRS, SO 2 , and THC are dynamic, higher than background, and changes are nonlinear and nonmonotonic. An assessment of concentrations as a function of wind direction showed a clear and generally increasing influence of industry on air quality. This work shows that evaluating air quality without assumptions of linearity reveals dynamic changes in air quality in Fort McKay, and that it is increasingly being affected by oil sands operations. Understanding the nature and types of air quality changes occurring in a community or region is essential for the development of appropriate air quality management policies. Time-series trending of air quality data is a common tool for assessing air quality changes and is often used to assess the effectiveness of current emission management programs. The use of this tool, in the context of oil sands development, has significant limitations, and alternate air quality change analysis approaches need to be applied to ensure that the impact of this development on air quality is fully understood so that appropriate emission management actions can be taken.

  18. Five domains of environmental quality and birth outcomes

    EPA Science Inventory

    Human health is affected by simultaneous exposure to stressors and amenities, but research employs single exposure models. To address this, we constructed a county-level Environmental Quality Index (EQI) with data representing five environmental domains (air, water, land, built a...

  19. 76 FR 32321 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Revision to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ...-day window allowed under the prior approved SIP. This SIP revision affects forty-two counties in... inspection stations in the forty-two non-I/M counties. The quality assurance program established a window...

  20. Environmental Monitoring and Modeling Needs in the 21st Century

    EPA Science Inventory

    It is well-known that adverse weather conditions and high levels of air pollutants affect human health and the environment. Over the past four decades, there has been a significant increase in the number of locations where air quality and meteorological observations are taken. ...

  1. Evaluation of regional climate simulations for air quality modelling purposes

    NASA Astrophysics Data System (ADS)

    Menut, Laurent; Tripathi, Om P.; Colette, Augustin; Vautard, Robert; Flaounas, Emmanouil; Bessagnet, Bertrand

    2013-05-01

    In order to evaluate the future potential benefits of emission regulation on regional air quality, while taking into account the effects of climate change, off-line air quality projection simulations are driven using weather forcing taken from regional climate models. These regional models are themselves driven by simulations carried out using global climate models (GCM) and economical scenarios. Uncertainties and biases in climate models introduce an additional "climate modeling" source of uncertainty that is to be added to all other types of uncertainties in air quality modeling for policy evaluation. In this article we evaluate the changes in air quality-related weather variables induced by replacing reanalyses-forced by GCM-forced regional climate simulations. As an example we use GCM simulations carried out in the framework of the ERA-interim programme and of the CMIP5 project using the Institut Pierre-Simon Laplace climate model (IPSLcm), driving regional simulations performed in the framework of the EURO-CORDEX programme. In summer, we found compensating deficiencies acting on photochemistry: an overestimation by GCM-driven weather due to a positive bias in short-wave radiation, a negative bias in wind speed, too many stagnant episodes, and a negative temperature bias. In winter, air quality is mostly driven by dispersion, and we could not identify significant differences in either wind or planetary boundary layer height statistics between GCM-driven and reanalyses-driven regional simulations. However, precipitation appears largely overestimated in GCM-driven simulations, which could significantly affect the simulation of aerosol concentrations. The identification of these biases will help interpreting results of future air quality simulations using these data. Despite these, we conclude that the identified differences should not lead to major difficulties in using GCM-driven regional climate simulations for air quality projections.

  2. Role of future scenarios in understanding deep uncertainty in long-term air quality management.

    PubMed

    Gamas, Julia; Dodder, Rebecca; Loughlin, Dan; Gage, Cynthia

    2015-11-01

    The environment and its interactions with human systems, whether economic, social, or political, are complex. Relevant drivers may disrupt system dynamics in unforeseen ways, making it difficult to predict future conditions. This kind of "deep uncertainty" presents a challenge to organizations faced with making decisions about the future, including those involved in air quality management. Scenario Planning is a structured process that involves the development of narratives describing alternative future states of the world, designed to differ with respect to the most critical and uncertain drivers. The resulting scenarios are then used to understand the consequences of those futures and to prepare for them with robust management strategies. We demonstrate a novel air quality management application of Scenario Planning. Through a series of workshops, important air quality drivers were identified. The most critical and uncertain drivers were found to be "technological development" and "change in societal paradigms." These drivers were used as a basis to develop four distinct scenario storylines. The energy and emissions implications of each storyline were then modeled using the MARKAL energy system model. NOx emissions were found to decrease for all scenarios, largely a response to existing air quality regulations, whereas SO2 emissions ranged from 12% greater to 7% lower than 2015 emissions levels. Future-year emissions differed considerably from one scenario to another, however, with key differentiating factors being transition to cleaner fuels and energy demand reductions. Application of scenarios in air quality management provides a structured means of sifting through and understanding the dynamics of the many complex driving forces affecting future air quality. Further, scenarios provide a means to identify opportunities and challenges for future air quality management, as well as a platform for testing the efficacy and robustness of particular management options across wide-ranging conditions.

  3. Quantifying the effect of air quality control measures during the 2010 Commonwealth Games at Delhi, India

    NASA Astrophysics Data System (ADS)

    Beig, Gufran; Chate, Dilip M.; Ghude, Sachin. D.; Mahajan, A. S.; Srinivas, R.; Ali, K.; Sahu, S. K.; Parkhi, N.; Surendran, D.; Trimbake, H. R.

    2013-12-01

    In 2010, the XIX Commonwealth Games (CWG-2010) were held in India for the first time at Delhi and involved 71 commonwealth nations and dependencies with more than 6000 athletes participating in 272 events. This was the largest international multi-sport event to be staged in India and strict emission controls were imposed during the games in order to ensure improved air quality for the participating athletes as a significant portion of the population in Delhi is regularly exposed to elevated levels of pollution. The air quality control measures ranged from vehicular and traffic controls to relocation of factories and reduction of power plant emissions. In order to understand the effects of these policy induced control measures, a network of air quality and weather monitoring stations was set-up across different areas in Delhi under the Government of India's System of Air quality Forecasting And Research (SAFAR) project. Simultaneous measurements of aerosols, reactive trace gases (e.g. NOx, O3, CO) and meteorological parameters were made before, during and after CWG-2010. Contrary to expectations, the emission controls implemented were not sufficient to reduce the pollutants, instead in some cases, causing an increase. The measured pollutants regularly exceeded the National Ambient Air Quality limits over the games period. The reasons for this increase are attributed to an underestimation of the required control measures, which resulted in inadequate planning. The results indicate that any future air quality control measures need to be well planned and strictly imposed in order to improve the air quality in Delhi, which affects a large population and is deteriorating rapidly. Thus, the presence of systematic high resolution data and realistic emission inventories through networks such as SAFAR will be directly useful for the future.

  4. Impact of wildfires on the air quality of Mexico City, 1992-1999.

    PubMed

    Bravo, A H; Sosa, E R; Sánchez, A P; Jaimes, P M; Saavedra, R M I

    2002-01-01

    Wildfires in Mexico increased in 1998, compared to information for the last 6 years. The average number of wildfires in the Mexico City Metropolitan Area (MCMA) for this year (1998) were 58% (1916 events) more events than the 1992-1997 (average cases 1217 events). Mexico City affected area corresponds to 1.3% of the national affected area. The purpose of this paper is to evaluate the impact on the particles air quality due to the wildfire emissions at the MCMA and surrounding areas. Using the corresponding US EPA emission factors for wildfires, the tons of particulate matter, nitrogen oxides, carbon monoxide, and total hydrocarbons emitted by this source for the MCMA case were obtained. The calculated emissions during wildfires were correlated with the levels of particles present in the atmosphere. A comparison of the concentration levels of particles, both as PM10 as well as TSP, were made for the years 1992-1998, during wet and dry season, being March, April, and May the critical months due to the presence of wildfires. A good correlation is observed between particulate wildfire emissions and particulate air quality, being stronger for TSP. A clear impact on the particles air quality due to the increase of wildfires in 1998, is observed when this year is compared with 1997, presenting an increment of 200-300% for some monitoring stations.

  5. Evaluation of air quality in a megacity using statistics tools

    NASA Astrophysics Data System (ADS)

    Ventura, Luciana Maria Baptista; de Oliveira Pinto, Fellipe; Soares, Laiza Molezon; Luna, Aderval Severino; Gioda, Adriana

    2018-06-01

    Local physical characteristics (e.g., meteorology and topography) associate to particle concentrations are important to evaluate air quality in a region. Meteorology and topography affect air pollutant dispersions. This study used statistics tools (PCA, HCA, Kruskal-Wallis, Mann-Whitney's test and others) to a better understanding of the relationship between fine particulate matter (PM2.5) levels and seasons, meteorological conditions and air basins. To our knowledge, it is one of the few studies performed in Latin America involving all parameters together. PM2.5 samples were collected in six sampling sites with different emission sources (industrial, vehicular, soil dust) in Rio de Janeiro, Brazil. The PM2.5 daily concentrations ranged from 1 to 61 µg m-3, with averages higher than the annual limit (15 µg m-3) for some of the sites. The results of the statistics evaluation showed that PM2.5 concentrations were not influenced by seasonality. Furthermore, air basins defined previously were not confirmed, because some sites presented similar emission sources. Therefore, new redefinitions of air basins need to be done, once they are important to air quality management.

  6. Evaluation of air quality in a megacity using statistics tools

    NASA Astrophysics Data System (ADS)

    Ventura, Luciana Maria Baptista; de Oliveira Pinto, Fellipe; Soares, Laiza Molezon; Luna, Aderval Severino; Gioda, Adriana

    2017-03-01

    Local physical characteristics (e.g., meteorology and topography) associate to particle concentrations are important to evaluate air quality in a region. Meteorology and topography affect air pollutant dispersions. This study used statistics tools (PCA, HCA, Kruskal-Wallis, Mann-Whitney's test and others) to a better understanding of the relationship between fine particulate matter (PM2.5) levels and seasons, meteorological conditions and air basins. To our knowledge, it is one of the few studies performed in Latin America involving all parameters together. PM2.5 samples were collected in six sampling sites with different emission sources (industrial, vehicular, soil dust) in Rio de Janeiro, Brazil. The PM2.5 daily concentrations ranged from 1 to 61 µg m-3, with averages higher than the annual limit (15 µg m-3) for some of the sites. The results of the statistics evaluation showed that PM2.5 concentrations were not influenced by seasonality. Furthermore, air basins defined previously were not confirmed, because some sites presented similar emission sources. Therefore, new redefinitions of air basins need to be done, once they are important to air quality management.

  7. Review on urban vegetation and particle air pollution - Deposition and dispersion

    NASA Astrophysics Data System (ADS)

    Janhäll, Sara

    2015-03-01

    Urban vegetation affects air quality through influencing pollutant deposition and dispersion. Both processes are described by many existing models and experiments, on-site and in wind tunnels, focussing e.g. on urban street canyons and crossings or vegetation barriers adjacent to traffic sources. There is an urgent need for well-structured experimental data, including detailed empirical descriptions of parameters that are not the explicit focus of the study. This review revealed that design and choice of urban vegetation is crucial when using vegetation as an ecosystem service for air quality improvements. The reduced mixing in trafficked street canyons on adding large trees increases local air pollution levels, while low vegetation close to sources can improve air quality by increasing deposition. Filtration vegetation barriers have to be dense enough to offer large deposition surface area and porous enough to allow penetration, instead of deflection of the air stream above the barrier. The choice between tall or short and dense or sparse vegetation determines the effect on air pollution from different sources and different particle sizes.

  8. Association between Four-Level Categorisation of Indoor Exposure and Perceived Indoor Air Quality.

    PubMed

    Tähtinen, Katja; Lappalainen, Sanna; Karvala, Kirsi; Remes, Jouko; Salonen, Heidi

    2018-04-04

    The aim of this study was to develop and test a tool for assessing urgency of indoor air quality (IAQ) measures. The condition of the 27 buildings were investigated and results were categorized. Statistical test studied the differences between the categories and the employees’ complaints about their work environment. To study the employees’ experiences of the work premises, a validated indoor air (IA) questionnaire was used. This study reveals a multifaceted problem: many factors affecting IAQ may also affect perceived IAQ, making it difficult to separate the impurity sources and ventilation system deficiencies affecting to employee experiences. An examination of the relationship between the categories and perceived IAQ revealed an association between the mould odour perceived by employees and mould detected by the researcher. A weak link was also found between the assessed categories and environmental complaints. However, we cannot make far-reaching conclusions regarding the assessed probability of abnormal IA exposure in the building on the basis of employee experiences. According to the results, categorising tool can partly support the assessment of the urgency for repairs when several factors that affect IAQ are taken into account.

  9. Association between Four-Level Categorisation of Indoor Exposure and Perceived Indoor Air Quality

    PubMed Central

    Tähtinen, Katja; Lappalainen, Sanna; Karvala, Kirsi; Remes, Jouko; Salonen, Heidi

    2018-01-01

    The aim of this study was to develop and test a tool for assessing urgency of indoor air quality (IAQ) measures. The condition of the 27 buildings were investigated and results were categorized. Statistical test studied the differences between the categories and the employees’ complaints about their work environment. To study the employees’ experiences of the work premises, a validated indoor air (IA) questionnaire was used. This study reveals a multifaceted problem: many factors affecting IAQ may also affect perceived IAQ, making it difficult to separate the impurity sources and ventilation system deficiencies affecting to employee experiences. An examination of the relationship between the categories and perceived IAQ revealed an association between the mould odour perceived by employees and mould detected by the researcher. A weak link was also found between the assessed categories and environmental complaints. However, we cannot make far-reaching conclusions regarding the assessed probability of abnormal IA exposure in the building on the basis of employee experiences. According to the results, categorising tool can partly support the assessment of the urgency for repairs when several factors that affect IAQ are taken into account. PMID:29617335

  10. Urban air quality forecasting based on multi-dimensional collaborative Support Vector Regression (SVR): A case study of Beijing-Tianjin-Shijiazhuang

    PubMed Central

    Liu, Bing-Chun; Binaykia, Arihant; Chang, Pei-Chann; Tiwari, Manoj Kumar; Tsao, Cheng-Chin

    2017-01-01

    Today, China is facing a very serious issue of Air Pollution due to its dreadful impact on the human health as well as the environment. The urban cities in China are the most affected due to their rapid industrial and economic growth. Therefore, it is of extreme importance to come up with new, better and more reliable forecasting models to accurately predict the air quality. This paper selected Beijing, Tianjin and Shijiazhuang as three cities from the Jingjinji Region for the study to come up with a new model of collaborative forecasting using Support Vector Regression (SVR) for Urban Air Quality Index (AQI) prediction in China. The present study is aimed to improve the forecasting results by minimizing the prediction error of present machine learning algorithms by taking into account multiple city multi-dimensional air quality information and weather conditions as input. The results show that there is a decrease in MAPE in case of multiple city multi-dimensional regression when there is a strong interaction and correlation of the air quality characteristic attributes with AQI. Also, the geographical location is found to play a significant role in Beijing, Tianjin and Shijiazhuang AQI prediction. PMID:28708836

  11. Cross influences of ozone and sulfate precursor emissions changes on air quality and climate

    PubMed Central

    Unger, Nadine; Shindell, Drew T.; Koch, Dorothy M.; Streets, David G.

    2006-01-01

    Tropospheric O3 and sulfate both contribute to air pollution and climate forcing. There is a growing realization that air quality and climate change issues are strongly connected. To date, the importance of the coupling between O3 and sulfate has not been fully appreciated, and thus regulations treat each pollutant separately. We show that emissions of O3 precursors can dramatically affect regional sulfate air quality and climate forcing. At 2030 in an A1B future, increased O3 precursor emissions enhance surface sulfate over India and China by up to 20% because of increased levels of OH and gas-phase SO2 oxidation rates and add up to 20% to the direct sulfate forcing for that region relative to the present day. Hence, O3 precursors impose an indirect forcing via sulfate, which is more than twice the direct O3 forcing itself (compare −0.61 vs. +0.35 W/m2). Regulatory policy should consider both air quality and climate and should address O3 and sulfate simultaneously because of the strong interaction between these species. PMID:16537360

  12. Observed characteristics of dust storm events over the western United States using meteorological, satellite, and air quality measurements

    NASA Astrophysics Data System (ADS)

    Lei, H.; Wang, J. X. L.

    2014-08-01

    To improve dust storm identification over the western United States, historical dust events measured by air quality and satellite observations are analyzed based on their characteristics in data sets of regular meteorology, satellite-based aerosol optical depth (AOD), and air quality measurements. Based on the prevailing weather conditions associated with dust emission, dust storm events are classified into the following four typical types: (1) The key feature of cold front-induced dust storms is their rapid process with strong dust emissions. (2) Events caused by meso- to small-scale weather systems have the highest levels of emissions. (3) Dust storms caused by tropical disturbances show a stronger air concentration of dust and last longer than those in (1) and (2). (4) Dust storms triggered by cyclogenesis last the longest. In this paper, sample events of each type are selected and examined to explore characteristics observed from in situ and remote-sensing measurements. These characteristics include the lasting period, surface wind speeds, areas affected, average loading on ground-based optical and/or air quality measurements, peak loading on ground-based optical and/or air quality measurements, and loading on satellite-based aerosol optical depth. Based on these analyses, we compare the characteristics of the same dust events captured in different data sets in order to define the dust identification criteria. The analyses show that the variability in mass concentrations captured by in situ measurements is consistent with the variability in AOD from stationary and satellite observations. Our analyses also find that different data sets are capable of identifying certain common characteristics, while each data set also provides specific information about a dust storm event. For example, the meteorological data are good at identifying the lasting period and area impacted by a dust event; the ground-based air quality and optical measurements can capture the peak strength well; aerosol optical depth (AOD) from satellite data sets allows us to better identify dust-storm-affected areas and the spatial extent of dust. The current study also indicates that the combination of in situ and satellite observations is a better method to fill gaps in dust storm recordings.

  13. Urban-rural status affects associations between domains of environmental quality and childhood cancer

    EPA Science Inventory

    Childhood cancer is associated with individual ambient environmental exposures such as hazardous air pollutants and pesticides. However, the role of cumulative ambient environmental exposures is not well-understood. An Environmental Quality Index (EQI) for 2000-2005 was construct...

  14. Programmatic Environmental Assessment (EA) for Hazardous Materials Removal at F. E. Warren Air Force Base, Wyoming

    DTIC Science & Technology

    2013-05-31

    ACM). The FEW Environmental Planning Function ( EPF ) conducted the analysis of this proposed action. 2. PURPOSE AND NEED FOR ACTION. The... EPF determined that the proposed action has the potential to affect Air Quality, Occupational Safety and Health, Cultural Resources and Hazardous Waste

  15. 7 CFR Exhibit H to Subpart G of... - Environmental Assessment for Class II Actions

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... questions and contain as attachments the indicated descriptive materials, as well as the environmental... descriptive purposes or environmental analysis, include land use maps or other graphic information. All... meteorological conditions hinder or affect the dispersal of air emissions. Evaluate the impact on air quality...

  16. 7 CFR Exhibit H to Subpart G of... - Environmental Assessment for Class II Actions

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... questions and contain as attachments the indicated descriptive materials, as well as the environmental... descriptive purposes or environmental analysis, include land use maps or other graphic information. All... meteorological conditions hinder or affect the dispersal of air emissions. Evaluate the impact on air quality...

  17. 7 CFR Exhibit H to Subpart G of... - Environmental Assessment for Class II Actions

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... questions and contain as attachments the indicated descriptive materials, as well as the environmental... descriptive purposes or environmental analysis, include land use maps or other graphic information. All... meteorological conditions hinder or affect the dispersal of air emissions. Evaluate the impact on air quality...

  18. 7 CFR Exhibit H to Subpart G of... - Environmental Assessment for Class II Actions

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... questions and contain as attachments the indicated descriptive materials, as well as the environmental... descriptive purposes or environmental analysis, include land use maps or other graphic information. All... meteorological conditions hinder or affect the dispersal of air emissions. Evaluate the impact on air quality...

  19. 7 CFR Exhibit H to Subpart G of... - Environmental Assessment for Class II Actions

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... questions and contain as attachments the indicated descriptive materials, as well as the environmental... descriptive purposes or environmental analysis, include land use maps or other graphic information. All... meteorological conditions hinder or affect the dispersal of air emissions. Evaluate the impact on air quality...

  20. Tillage and straw management affect PM10 emission potential in subarctic Alaska

    USDA-ARS?s Scientific Manuscript database

    Emission of PM10 (particulates =10 um in diameter regulated by many nations as an air pollutant) from agricultural soils can impact regional air quality. Little information exists that describes the potential for PM10 and airborne dust emissions from subarctic soils or agricultural soils subject to ...

  1. Improving the indoor air quality by using a surface emissions trap

    NASA Astrophysics Data System (ADS)

    Markowicz, Pawel; Larsson, Lennart

    2015-04-01

    The surface emissions trap, an adsorption cloth developed for reducing emissions of volatile organic compounds and particulate matter from surfaces while allowing evaporation of moisture, was used to improve the indoor air quality of a school building with elevated air concentrations of 2-ethyl-1-hexanol. An improvement of the perceived air quality was noticed a few days after the device had been attached on the PVC flooring. In parallel, decreased air concentrations of 2-ethyl-1-hexanol were found as well as a linear increase of the amounts of the same compound adsorbed on the installed cloth as observed up to 13 months after installation. Laboratory studies revealed that the performance of the device is not affected by differences in RH (35-85%), temperature (30-40 °C) or by accelerated aging simulating up to 10 years product lifetime, and, from a blinded exposure test, that the device efficiently blocks chemical odors. This study suggests that the device may represent a fast and efficient means of restoring the indoor air quality in a building e.g. after water damage leading to irritating and potentially harmful emissions from building material surfaces indoors.

  2. Regional Modelling of Air Quality in the Canadian Arctic: Impact of marine shipping and North American wild fire emissions

    NASA Astrophysics Data System (ADS)

    Gong, W.; Beagley, S. R.; Zhang, J.; Cousineau, S.; Sassi, M.; Munoz-Alpizar, R.; Racine, J.; Menard, S.; Chen, J.

    2015-12-01

    Arctic atmospheric composition is strongly influenced by long-range transport from mid-latitudes as well as processes occurring in the Arctic locally. Using an on-line air quality prediction model GEM-MACH, simulations were carried out for the 2010 northern shipping season (April - October) over a regional Arctic domain. North American wildfire emissions and Arctic shipping emissions were represented, along with other anthropogenic and biogenic emissions. Sensitivity studies were carried out to investigate the principal sources and processes affecting air quality in the Canadian Northern and Arctic regions. In this paper, we present an analysis of sources, transport, and removal processes on the ambient concentrations and atmospheric loading of various pollutants with air quality and climate implications, such as, O3, NOx, SO2, CO, and aerosols (sulfate, black carbon, and organic carbon components). Preliminary results from a model simulation of a recent summertime Arctic field campaign will also be presented.

  3. Air pollution impacts of speed limitation measures in large cities: The need for improving traffic data in a metropolitan area

    NASA Astrophysics Data System (ADS)

    Baldasano, José M.; Gonçalves, María; Soret, Albert; Jiménez-Guerrero, Pedro

    2010-08-01

    Assessing the effects of air quality management strategies in urban areas is a major concern worldwide because of the large impacts on health caused by the exposure to air pollution. In this sense, this work analyses the changes in urban air quality due to the introduction of a maximum speed limit to 80 km h -1 on motorways in a large city by using a novel methodology combining traffic assimilation data and modelling systems implemented in a supercomputing facility. Albeit the methodology has been non-specifically developed and can be extrapolated to any large city or megacity, the case study of Barcelona is presented here. Hourly simulations take into account the entire year 2008 (when the 80 km h -1 limit has been introduced) vs. the traffic conditions for the year 2007. The data has been assimilated in an emission model, which considers hourly variable speeds and hourly traffic intensity in the affected area, taken from long-term measurement campaigns for the aforementioned years; it also permits to take into account the traffic congestion effect. Overall, the emissions are reduced up to 4%; however the local effects of this reduction achieve an important impact for the adjacent area to the roadways, reaching 11%. In this sense, the speed limitation effects assessed represent enhancements in air quality levels (5-7%) of primary pollutants over the area, directly improving the welfare of 1.35 million inhabitants (over 41% of the population of the Metropolitan Area) and affecting 3.29 million dwellers who are potentially benefited from this strategy for air quality management (reducing 0.6% the mortality rates in the area).

  4. 76 FR 25652 - Approval and Promulgation of Air Quality Implementation Plans; North Dakota; Revisions to the Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ...EPA is proposing to approve revisions to the North Dakota State Implementation Plan that the Governor of North Dakota submitted with a letter dated April 6, 2009. The revisions affect North Dakota's air pollution control rules regarding general provisions (including rules regarding shutdowns and malfunctions), ambient air quality standards, emissions of particulate matter, permitting, and fees. In addition, EPA is proposing administrative corrections to the regulatory text for North Dakota that will be codified in the Code of Federal Regulations; we made errors in the identification of plan table when we approved the North Dakota State Implementation Plan revisions for Interstate Transport of pollution, which the Governor also submitted on April 6, 2009. This action is being taken under section 110 of the Clean Air Act.

  5. Setting limits: Using air pollution thresholds to protect and restore US ecosystems

    USGS Publications Warehouse

    Fenn, Mark E.; Lambert, Kathleen F.; Blett, Tamara F.; Burns, Douglas A.; Pardo, Linda H.; Lovett, Gary M.; Haeuber, Richard A.; Evers, David C.; Driscoll, Charles T.; Jeffries, Dean S.

    2011-01-01

    More than four decades of research provide unequivocal evidence that sulfur, nitrogen, and mercury pollution have altered, and will continue to alter, our nation's lands and waters. The emission and deposition of air pollutants harm native plants and animals, degrade water quality, affect forest productivity, and are damaging to human health. Many air quality policies limit emissions at the source but these control measures do not always consider ecosystem impacts. Air pollution thresholds at which ecological effects are observed, such as critical loads, are effective tools for assessing the impacts of air pollution on essential ecosystem services and for informing public policy. U.S. ecosystems can be more effectively protected and restored by using a combination of emissions-based approaches and science-based thresholds of ecosystem damage.

  6. “Summary of the Emission Inventories compiled for the ...

    EPA Pesticide Factsheets

    We present a summary of the emission inventories from the US, Canada, and Mexico developed for the second phase of the Air Quality Model Evaluation International Initiative (AQMEII). Activities in this second phase are focused on the application and evaluation of coupled meteorology-chemistry models over both North America and Europe using common emissions and boundary conditions for all modeling groups for the years of 2006 and 2010. We will compare the emission inventories developed for these two years focusing on the SO2 and NOx reductions over these years and compare with socio-economic data. In addition we will highlight the differences in the inventories for the US and Canada compared with the inventories used in the phase 1 of this project. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollut

  7. Comparison of CMAQ Modeling Study with Discover-AQ 2014 Aircraft Measurements over Colorado

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Pan, L.; Lee, P.; Tong, D.; Kim, H. C.; Artz, R. S.

    2014-12-01

    NASA and NCAR jointly led a recent multiple platform-based (space, air and ground) measurement intensive to study air quality and to validate satellite data. The Discover-AQ/FRAPPE field experiment took place along the Colorado Front Range in July and August, 2014. The air quality modeling team of the NOAA Air Resources Laboratory was one of the three teams that provided real-time air quality forecasting for the campaign. The U.S. EPA Community Multi-scale Air Quality (CMAQ) Model was used with emission inventories based on the data set used by the NOAA National Air Quality Forecasting Capacity (NAQFC). By analyzing the forecast results calculated using aircraft measurements, it was found that CO emissions tended to be overestimated, while ethane emissions were underestimated. Biogenic VOCs were also underpredicted. Due to their relatively high altitude, ozone concentrations in Denver and the surrounding areas are affected by both local emissions and transported ozone. The modeled ozone was highly dependent on the meteorological predictions over this region. The complex terrain over the Rocky Mountains also contributed to the model uncertainty. This study discussed the causes of model biases, the forecast performance under different meteorology, and results from using different model grid resolutions. Several data assimilation techniques were further tested to improve the "post-analysis" performance of the modeling system for the period.

  8. Environmental impacts and sustainability of egg production systems.

    PubMed

    Xin, H; Gates, R S; Green, A R; Mitloehner, F M; Moore, P A; Wathes, C M

    2011-01-01

    As part of a systemic assessment toward social sustainability of egg production, we have reviewed current knowledge about the environmental impacts of egg production systems and identified topics requiring further research. Currently, we know that 1) high-rise cage houses generally have poorer air quality and emit more ammonia than manure belt (MB) cage houses; 2) manure removal frequency in MB houses greatly affects ammonia emissions; 3) emissions from manure storage are largely affected by storage conditions, including ventilation rate, manure moisture content, air temperature, and stacking profile; 4) more baseline data on air emissions from high-rise and MB houses are being collected in the United States to complement earlier measurements; 5) noncage houses generally have poorer air quality (ammonia and dust levels) than cage houses; 6) noncage houses tend to be colder during cold weather due to a lower stocking density than caged houses, leading to greater feed and fuel energy use; 7) hens in noncage houses are less efficient in resource (feed, energy, and land) utilization, leading to a greater carbon footprint; 8) excessive application of hen manure to cropland can lead to nutrient runoff to water bodies; 9) hen manure on open (free) range may be subject to runoff during rainfall, although quantitative data are lacking; 10) mitigation technologies exist to reduce generation and emission of noxious gases and dust; however, work is needed to evaluate their economic feasibility and optimize design; and 11) dietary modification shows promise for mitigating emissions. Further research is needed on 1) indoor air quality, barn emissions, thermal conditions, and energy use in alternative hen housing systems (1-story floor, aviary, and enriched cage systems), along with conventional housing systems under different production conditions; 2) environmental footprint for different US egg production systems through life cycle assessment; 3) practical means to mitigate air emissions from different production systems; 4) process-based models for predicting air emissions and their fate; and 5) the interactions between air quality, housing system, worker health, and animal health and welfare.

  9. Air Quality and Indoor Environmental Exposures: Clinical ...

    EPA Pesticide Factsheets

    Indoor air quality (IAQ) is a term which refers to the air quality within and around buildings and homes as it relates to the health and comfort of the occupants. Many ambient (outdoor) air pollutants readily permeate indoor spaces. Because indoor air can be considerably more polluted than ambient air, the USEPA lists poor IAQ as a major environmental concern. In the sections that follow, health effects associated with commonly encountered ambient air pollutants and indoor contaminants will be broken down by agent class. In some cases, exposure may be acute, with one or more pets (and owners) experiencing signs within a relatively short period. However, most exposures are episodic or chronic, making it difficult to definitively link poor IAQ to respiratory or other adverse health outcomes. Age or underlying immunologic, cardiac, or respiratory disease may further complicate the clinical picture, as those patients may be more sensitive to (and affected by) lower concentrations than prove problematic for healthy housemates. Because pets, like their owners, spend most of their lives indoors, we will discuss how certain home conditions can worsen indoor air quality and will briefly discuss measures to improve IAQ for owners and their pets. In this overview presentation, health effects associated with commonly encountered ambient air pollutants and indoor contaminants will be broken down by agent class. Because pets, like their owners, spend most of their lives indoo

  10. Local pollutants go global: The impacts of intercontinental air pollution from China on air quality and morbidity in California.

    PubMed

    Ngo, Nicole S; Bao, Xiaojia; Zhong, Nan

    2018-08-01

    China is among the greatest emitters of air pollution in the world and one concern is the effects of intercontinental air pollution traveling across the Pacific Ocean from China to the U.S. We exploit a natural experiment by observing the effects of changes in intercontinental air pollution associated with Chinese New Year, a 7-day national holiday, and sandstorms from China on air quality and morbidity in California. The timing of these events are unlikely correlated to other factors affecting air quality and health in California. Chinese New Year follows the Lunar New Year which varies each traditional calendar year while sandstorms are a naturally occurring phenomenon. We examine effects on morbidity using restricted emergency department and inpatient hospitalization data for the universe of patients with respiratory and heart disease between 2005 and 2012 in California. This is the first study to use patient-level data to examine the effects of trans-Pacific air pollution from China on morbidity in the U.S. We show that heavy sandstorms are associated with a modest increase in acute respiratory disease per capita, representing 0.5-4.6% of average weekly hospitalizations. However, we find no significant effect on morbidity in California from Chinese New Year. Results suggest that policymakers could prepare for changes in air quality following major sandstorms in China. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Intercontinental transport of aerosols and photochemical oxidants from Asia and its consequences.

    PubMed

    Wuebbles, Donald J; Lei, Hang; Lin, Jintai

    2007-11-01

    The intercontinental transport of aerosols and photochemical oxidants from Asia is a crucial issue for air quality concerns in countries downwind of the significant emissions and concentrations of pollutants occurring in this important region of the world. Since the lifetimes of some important pollutants are long enough to be transported over long distance in the troposphere, regional control strategies for air pollution in downwind countries might be ineffective without considering the effects of long-range transport of pollutants from Asia. Field campaigns provide strong evidence for the intercontinental transport of Asian pollutants. They, together with ground-based observations and model simulations, show that the air quality over parts of North America is being affected by the pollutants transported from Asia. This paper examines the current understanding of the intercontinental transport of gases and aerosols from Asia and resulting effects on air quality, and on the regional and global climate system.

  12. A structural regression model for relationship between indoor air quality with dissatisfaction of occupants in education environment

    NASA Astrophysics Data System (ADS)

    Hosseini, Hamid Reza; Yunos, Mohd Yazid Mohd; Ismail, Sumarni; Yaman, Maheran

    2017-12-01

    This paper analysis the effects of indoor air elements on the dissatisfaction of occupants in education of environments. Tries to find the equation model for increasing the comprehension about these affects and optimizes satisfaction of occupants about indoor environment. Subsequently, increase performance of students, lecturers and staffs. As the method, a satisfaction questionnaire (SQ) and measuring environment elements (MEE) was conducted, 143 respondents at five classrooms, four staff rooms and five lectures rooms were considered. Temperature, air velocity and humidity (TVH) were used as independent variables and dissatisfaction as dependent variable. The hypothesis was tested for significant relationship between variables, and analysis was applied. Results found that indoor air quality presents direct effects on dissatisfaction of occupants and indirect effects on performance and the highest effects fallowed by temperature. These results may help to optimize the quality of efficiency and effectiveness in education environments.

  13. Impact of East Asian Summer Monsoon on the Air Quality over China: View from space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Chun; Wang, Yuhang; Yang, Qing

    2010-05-04

    Tropospheric O3 columns retrieved from OMI and MLS measurements, CO columns from MOPITT, and tropospheric O3 and CO concentrations from TES from May to August in 2006 are analyzed using the Regional chEmical and trAnsport Model (REAM) to investigate the impact of the East Asian summer monsoon on the air quality over China. The observed and simulated migrations of O3 and CO are in good agreement, demonstrating that the summer monsoon significantly affects the air quality over southeastern China and this influence extends to central East China from June to July. Enhancements of CO and O3 over southeastern China disappearmore » after the onset of the summer monsoon and re-emerge in August after the monsoon wanes. The pre-monsoon high O3 concentrations over southern China are due to photochemical production from pollutant emissions and the O3 transport from the stratosphere. In the summer monsoon season, the O3 concentrations are relatively low over monsoon-affected regions because of the transport of marine air masses and weak photochemical activity. We find that the monsoon system strongly modulates the pollution problem over a large portion of East China in summer, depending on its strength and tempo-spatial extension. Model results also suggest that transport from the stratosphere and long-range transport from East China and South/Central Asia all make significant contributions to O3 enhancements over West China. Satellite observations provide valuable information for investigating the monsoon impact on air quality, particularly for the regions with limited in situ measurements.« less

  14. Urban-rural differences in environmental quality and associations with adverse birth outcomes

    EPA Science Inventory

    Exposures affecting human health differ across environmental media and level of urbanicity. To address this, we constructed an Environmental Quality Index (EQI) with data representing five domains (air, water, land, built, sociodemographic) for each United States (U.S.) county. F...

  15. Traffic and meteorological impacts on near-road air quality: summary of methods and trends from the Raleigh Near-Road Study.

    PubMed

    Baldauf, Richard; Thoma, Eben; Hays, Michael; Shores, Richard; Kinsey, John; Gullett, Brian; Kimbrough, Sue; Isakov, Vlad; Long, Thomas; Snow, Richard; Khlystov, Andrey; Weinstein, Jason; Chen, Fu-Lin; Seila, Robert; Olson, David; Gilmour, Ian; Cho, Seung-Hyun; Watkins, Nealson; Rowley, Patricia; Bang, John

    2008-07-01

    A growing number of epidemiological studies conducted worldwide suggest an increase in the occurrence of adverse health effects in populations living, working, or going to school near major roadways. A study was designed to assess traffic emissions impacts on air quality and particle toxicity near a heavily traveled highway. In an attempt to describe the complex mixture of pollutants and atmospheric transport mechanisms affecting pollutant dispersion in this near-highway environment, several real-time and time-integrated sampling devices measured air quality concentrations at multiple distances and heights from the road. Pollutants analyzed included U.S. Environmental Protection Agency (EPA)-regulated gases, particulate matter (coarse, fine, and ultrafine), and air toxics. Pollutant measurements were synchronized with real-time traffic and meteorological monitoring devices to provide continuous and integrated assessments of the variation of near-road air pollutant concentrations and particle toxicity with changing traffic and environmental conditions, as well as distance from the road. Measurement results demonstrated the temporal and spatial impact of traffic emissions on near-road air quality. The distribution of mobile source emitted gas and particulate pollutants under all wind and traffic conditions indicated a higher proportion of elevated concentrations near the road, suggesting elevated exposures for populations spending significant amounts of time in this microenvironment. Diurnal variations in pollutant concentrations also demonstrated the impact of traffic activity and meteorology on near-road air quality. Time-resolved measurements of multiple pollutants demonstrated that traffic emissions produced a complex mixture of criteria and air toxic pollutants in this microenvironment. These results provide a foundation for future assessments of these data to identify the relationship of traffic activity and meteorology on air quality concentrations and population exposures.

  16. Climate Change, Tropospheric Ozone and Particulate Matter, and Health Impacts

    PubMed Central

    Ebi, Kristie L.; McGregor, Glenn

    2008-01-01

    Objective Because the state of the atmosphere determines the development, transport, dispersion, and deposition of air pollutants, there is concern that climate change could affect morbidity and mortality associated with elevated concentrations of these gases and fine particles. We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health. Data sources We review studies projecting the impacts of climate change on air quality and studies projecting the impacts of these changes on morbidity and mortality. Data synthesis Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty include the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given these uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, which would increase morbidity and mortality. Few projections are available for low- and middle-income countries. The evidence is less robust for PM, primarily because few studies have been conducted. Conclusions Additional research is needed to better understand the possible impacts of climate change on air pollution–related health impacts. If improved models continue to project higher ozone concentrations with climate change, then reducing greenhouse gas emissions would enhance the health of current and future generations. PMID:19057695

  17. A multi-methodological approach to study the temporal and spatial distribution of air quality related to road transport emissions in Madrid, Spain

    NASA Astrophysics Data System (ADS)

    Perez, Pedro; Miranda, Regina

    2013-04-01

    The traffic-related atmospheric emissions, composition and transport of greenhouse gases (GHGs) and air toxic pollutants (ATPs), are an important environmental problem that affect climate change and air pollution in Madrid, Spain. Carbon dioxide (CO2) affects the regional weather and particularly fine particle matter (PM) translocate to the people resulting in local health problems. As the main source of emissions comes from road transport, and subsequent combustion of fossil fuels, air quality deterioration may be elevated during weekdays and peak hours. We postulate that traffic-related air quality (CO2, methane CH4, PM, volatile organic compounds VOCs, nitrogen oxides NOx and carbon monoxide CO contents) impairs epidemiology in part via effects on health and disease development, likely increasing the external costs of transport in terms of climate change and air pollution. First, the paper intends to estimate the local air quality related to the road transport emissions of weeks over a domain covering Madrid (used as a case study). The local air quality model (LAQM) is based on gridded and shaped emission fields. The European Environmental Agency (EEA) COPERT modeling system will provide GHGs and ATPs gridded and shaped emission data and mobile source parameters, available for Madrid from preliminary emission inventory records of the Municipality of Madrid and from disaggregated traffic counts of the Traffic Engineering Company and the Metropolitan Company of Metro (METRO-Madrid). The paper intends to obtain estimates of GHGs and ATPs concentrations commensurate with available ground measurements, 24-hour average values, from the Municipality of Madrid. The comparison between estimated concentrations and measurements must show small errors (e.g. fractional error, fractional bias and coefficient of determination). The paper's expected results must determine spatial and temporal patterns in Madrid. The estimates will be used to cross check the primary local emission inventory, together with the mobile source's parameters and the disaggregated transport activity data. The paper will also identify emission and concentration differences and gradients of certain magnitude/factor (e.g. comparison between estimated ATPs hourly concentrations in Madrid City Center and in the peripheries). Furthermore, because of the higher contribution of road mobile sources to GHGs and ATPs emissions in Madrid, small gradients between urban highways and residential areas will be expected. Second, the paper objectives are to develop valid methods and approaches to measure air quality and to develop valid road transport emission inventories to assess correlations between external costs, epidemiology and emissions in order to reveal how traffic pollution affects people exposure to key contaminants and disease development, and identify susceptible emission scenarios and health impacts. We have conducted general emission inventory studies providing preliminary evidence of regional road transport air pollution impacts on external cost growth and disease development. Third, we also aim to demonstrate short and long-term impacts of road transport emissions on external costs development using innovative multi-methodological methods interfaced with environmental chemistry and meteorology following meteorological and chemical fields with contrasting high/low traffic emissions in several linked components involving: air pollutant assessment using local measurements, height of the boundary layer, meteorological environment interactions on external costs and epidemiology, mapping of Madrid (identifying gradients of emissions), integrative causal modeling using statistical models, and trend and scenario analyses on external costs and impacts on human health. Meteorological and chemical fields will be obtained from local records collected by surface meteorological and air quality stations. These two sets of fields define the horizontal and vertical profiles of GHGs and ATPs of Madrid based on air quality ground (initial conditions) and vertical (boundary conditions) measurements and modulate air concentration estimates

  18. Methodology for assessing exposure and impacts of air pollutants in school children: Data collection, analysis and health effects - A literature review

    NASA Astrophysics Data System (ADS)

    Mejía, Jaime F.; Choy, Samantha Low; Mengersen, Kerrie; Morawska, Lidia

    2011-02-01

    The aim of this review is to explore the methodologies employed to assess the exposure of children to air pollutants, in particular traffic emissions, at school, and how these methodologies influence the assessment of the impact of this exposure on the children's health. This involves four main steps: the measurement of air quality at school level, the association between measured air quality and children's exposure, the association between children's exposure and health; and source identification. The comparative advantages and disadvantages of the methods used at each of these steps are discussed. Air quality in schools can be measured at three scales: broad scale, across several city blocks using remote monitors; school-based scale, through ground-level monitors installed within the schools or their immediate surroundings (i.e. only a few metres outside the school); and personal exposure scale using portable monitors attached to a sample of children. Although studies have reported high exposure to PAHs (polycyclic aromatic hydrocarbons), submicrometre (<1.0 μm) and ultrafine particles (<100 nm) at school, no study has investigated the formation of new particles in school facilities and only a handful of studies have analysed children's exposure at school. Associating air quality measurements at the broad and medium scale with children's exposure is challenging: there is spatial and temporal heterogeneity in the distribution of air quality within a school, indoor measurements can often exceed outdoor measurements; and exposure in the classroom is affected by the penetration of outdoor pollutants, wall absorption, emissions from furniture and other materials, level and length of occupancy, and quality of ventilation. This is further exacerbated by the fact that children move around during their school day. Quantifying the contribution of school exposure with observed health symptoms presents further challenges. In addition to ascertaining the impact of non-school-based exposures and co-morbidities, the air pollutant dose intake is affected by daily patterns of physical and traffic activity during and outside school hours which make it difficult to compare the contribution of school-based and non-school-based exposures to the health effect under investigation. Finally, there is strong evidence that low socioeconomic level is highly correlated with the proximity of the school to pollution sources, yet this area of socioeconomic research has been largely unexplored in the assessment of traffic emission exposure.

  19. Shelf life of ready to use peeled shrimps as affected by thymol essential oil and modified atmosphere packaging.

    PubMed

    Mastromatteo, Marianna; Danza, Alessandra; Conte, Amalia; Muratore, Giuseppe; Del Nobile, Matteo Alessandro

    2010-12-15

    In this work the influence of different packaging strategies on the shelf life of ready to use peeled shrimps was investigated. First, the effectiveness of the coating (Coat) and the active coating loaded with different concentrations of thymol (Coat-500, Coat-1000, and Coat-1500) on the quality loss of the investigated food product packaged in air was addressed; afterwards, the thymol concentration that had shown the best performance was used in combination with MAP (5% O(2); 95% CO(2)). Microbial cell load of main spoilage microorganisms, pH and sensorial quality were monitored during the refrigerated storage. Results of the first step suggested that the sole coating did not affect the microbial growth. A slight antimicrobial effect was obtained when the coating was loaded with thymol and a concentration dependence was also observed. Moreover, the active coating was effective in minimizing the sensory quality loss of the investigated product, it was particularly true at the lowest thymol concentration. In the second step, the thymol concentration (1000 ppm) that showed the strike balance between microbial and sensorial quality was chosen in combination with MAP. As expected, MAP significantly affected the growth of the mesophilic bacteria. In particular, a cell load reduction of about 2 log cycle for the samples under MAP respect to that in air was obtained. Moreover, the MAP packaging inhibited the growth of the Pseudomonas spp. and hydrogen sulphide-producing bacteria. The MAP alone was not able to improve the shelf life of the uncoated samples. In fact, no significant difference between the control samples packaged in air and MAP was observed. Whilst, the use of coating under MAP condition prolonged the shelf life of about 6 days with respect to the same samples packaged in air. Moreover, when the MAP was used in combination with thymol, a further shelf life prolongation with respect to the samples packaged in air was observed. In particular, a shelf life of about 14 days for the active coating under MAP compared to the same samples in air (5 days) was obtained. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Investigation of air quality on mood

    NASA Astrophysics Data System (ADS)

    Isaac, L.

    2017-12-01

    My project evaluated the effect of air quality on mood. We quantified people's mood using an online survey and then looked at the relationship between mood and pm 2.5 and ozone concentrations. Mood was quantified using the Positive and Negative Affect Schedule (PANAS). I found that with increasing ozone AQI the positive score for mood decreased and the negative score for mood increased. The trend was not significant (p=0.414 for positive and p=0.158 for negative). I also found that the positive score decreased with increasing PM2.5 AQI (p=0.19); however there was no pattern between the negative scores and PM 2.5 AQI. In summary, air quality does look to have a negative effect on mood; however more data is needed to confirm this relationship.

  1. RT-MATRIX: Measuring Total Organic Carbon by Photocatalytic Oxidation of Volatile Organic Compounds

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Volatile organic compounds (VOCs) inevitably accumulate in enclosed habitats such as the International Space Station and the Crew Exploration Vehicle (CEV) as a result of human metabolism, material off-gassing, and leaking equipment. Some VOCs can negatively affect the quality of the crew's life, health, and performance; and consequently, the success of the mission. Air quality must be closely monitored to ensure a safe living and working environment. Currently, there is no reliable air quality monitoring system that meets NASA's stringent requirements for power, mass, volume, or performance. The ultimate objective of the project -- the development of a Real-Time, Miniaturized, Autonomous Total Risk Indicator System (RT.MATRIX).is to provide a portable, dual-function sensing system that simultaneously determines total organic carbon (TOC) and individual contaminants in air streams.

  2. Monolayer Colloidal Crystals by Modified Air-Water Interface Self-Assembly Approach

    PubMed Central

    Ye, Xin; Huang, Jin; Zeng, Yong; Sun, Lai-Xi; Geng, Feng; Liu, Hong-Jie; Wang, Feng-Rui; Jiang, Xiao-Dong; Wu, Wei-Dong; Zheng, Wan-Guo

    2017-01-01

    Hexagonally ordered arrays of polystyrene (PS) microspheres were prepared by a modified air-water self-assembly method. A detailed analysis of the air-water interface self-assembly process was conducted. Several parameters affect the quality of the monolayer colloidal crystals, i.e., the colloidal microsphere concentration on the latex, the surfactant concentration, the polystyrene microsphere diameter, the microsphere polydispersity, and the degree of sphericity of polystyrene microspheres. An abrupt change in surface tension was used to improve the quality of the monolayer colloidal crystal. Three typical microstructures, i.e., a cone, a pillar, and a binary structure were prepared by reactive-ion etching using a high-quality colloidal crystal mask. This study provides insight into the production of microsphere templates with flexible structures for large-area patterned materials. PMID:28946664

  3. The air, carbon, water synergies and trade-offs in China's natural gas industry

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Mauzerall, D. L.; Höglund-Isaksson, L.; Wagner, F.; Byers, E.

    2017-12-01

    Both energy production and consumption can simultaneously affect regional air quality, local water stress, and the global climate. Identifying air, carbon and water impacts of various energy sources and end-uses is important in determining the relative merits of various energy policies. Here, we examine the air-carbon-water interdependencies of China's six major natural gas source choices (domestic conventional natural gas, domestic coal-based synthetic natural gas (SNG), domestic shale gas, imported liquefied natural gas, imported Russian pipeline gas, and imported Central Asian pipeline gas) and three end-use coal-to-gas deployment strategies (with substitution strategies that focus in turn on air quality, carbon, and water) in 2020. On the supply side, we find that gas sources other than SNG offer national air-carbon-water co-benefits. However, we find striking air-carbon/water trade-offs for SNG at the national scale. Moreover, the use of SNG significantly increases water demand and carbon emissions in regions already suffering from the most severe water stress and the highest per capita carbon footprint. On the end-use side, gas substitution for coal can result in enormous variations in air quality, carbon, and water impacts, with notable air-carbon synergies but air-water trade-offs. Our study finds that, except for SNG, end-use choices generally have a much larger influence on air quality, carbon emissions and water use than do gas source choices. Simultaneous consideration of air, carbon, and water impacts is necessary in designing both beneficial energy development and deployment policies.

  4. 75 FR 12087 - Determination of Attainment, Approval and Promulgation of Air Quality Implementation Plans; Indiana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... the Clean Air Act (CAA) affecting the Indiana portion (Lake and Porter Counties) of the Chicago-Gary... Oxides (NO X ) in Lake and Porter Counties from CAA Reasonably Available Control Technology (RACT... Lake and Porter Counties, also published in today's Federal Register, the Chicago-Gary-Lake County, IL...

  5. Air Quality Co-benefits of Energy Policy in China: Evidence from Iron & Steel and Cement Industries

    NASA Astrophysics Data System (ADS)

    Qiu, M.; Weng, Y.; Selin, N. E.; Karplus, V. J.; Cao, J.

    2017-12-01

    Previous literature has calculated large air quality co-benefits from policies that reduce CO2 emissions and increase energy efficiency. These (often prospective) studies rely on assumptions about how air pollutant emissions respond to energy use changes. Using a unique firm-level data set from China, we examine how a real-world energy efficiency policy affected SO2 emissions, estimate its actual effects on atmospheric PM2.5, and compare to ex ante theoretical estimates. During the 11th Five-year plan (2006-2010), the Chinese government implemented policies directing large energy-consuming firms to reduce their energy consumption per unit of economic output. The Top 1000 Enterprises Program (T1000P) set binding energy intensity targets for China's 1000 highest energy-consuming firms. This program is widely considered a policy success, as 92% of firms met their energy intensity target. Focusing on the cement and iron and steel industry, we examine how T1000P (and related provincial policies) affected firms' SO2 emissions and coal consumption from 2005 to 2008. By comparing T1000P firms with similar firms not subject to the policy, we find that T1000P had a very limited incremental effect on energy use or on air quality co-benefits. Compared to firms not subject to the policy, T1000P firms had 14.7% (cement) and 24.0% (iron & steel) lower reductions in SO2 emission per unit energy use. We also observe large, heterogeneous changes in emission factors (defined as SO2 emissions per unit of coal consumption) among all firms during this period. In comparison to co-benefits estimates that assume constant emission factors, SO2 emissions from T1000P firms in the post-policy period are 23.2% (iron and steel) and 40.2% (cement) lower, but spatially heterogeneous, with some regions experiencing increases. Using the GEOS-Chem model, we estimate the air quality co-benefits of the T1000P policy with realized SO2 emissions changes and compare them with two theoretical estimations of co-benefits: one assuming that emission factors stay the same, and one in which emissions factors decline exponentially with time. We conclude that heterogeneous technology and behavioral responses of covered firms can significantly affect the real-world air quality co-benefits of energy intensity policies delivered by a fixed policy design.

  6. Energy, Weatherization and Indoor Air Quality

    EPA Pesticide Factsheets

    Climate change presents many challenges, including the production of severe weather events. These events and efforts to minimize their effects through weatherization can adversely affect indoor environments.

  7. Air quality concerns of unconventional oil and natural gas production.

    PubMed

    Field, R A; Soltis, J; Murphy, S

    2014-05-01

    Increased use of hydraulic fracturing ("fracking") in unconventional oil and natural gas (O & NG) development from coal, sandstone, and shale deposits in the United States (US) has created environmental concerns over water and air quality impacts. In this perspective we focus on how the production of unconventional O & NG affects air quality. We pay particular attention to shale gas as this type of development has transformed natural gas production in the US and is set to become important in the rest of the world. A variety of potential emission sources can be spread over tens of thousands of acres of a production area and this complicates assessment of local and regional air quality impacts. We outline upstream activities including drilling, completion and production. After contrasting the context for development activities in the US and Europe we explore the use of inventories for determining air emissions. Location and scale of analysis is important, as O & NG production emissions in some US basins account for nearly 100% of the pollution burden, whereas in other basins these activities make up less than 10% of total air emissions. While emission inventories are beneficial to quantifying air emissions from a particular source category, they do have limitations when determining air quality impacts from a large area. Air monitoring is essential, not only to validate inventories, but also to measure impacts. We describe the use of measurements, including ground-based mobile monitoring, network stations, airborne, and satellite platforms for measuring air quality impacts. We identify nitrogen oxides, volatile organic compounds (VOC), ozone, hazardous air pollutants (HAP), and methane as pollutants of concern related to O & NG activities. These pollutants can contribute to air quality concerns and they may be regulated in ambient air, due to human health or climate forcing concerns. Close to well pads, emissions are concentrated and exposure to a wide range of pollutants is possible. Public health protection is improved when emissions are controlled and facilities are located away from where people live. Based on lessons learned in the US we outline an approach for future unconventional O & NG development that includes regulation, assessment and monitoring.

  8. Clean Air Markets - Where You Live (National and State Maps)

    EPA Pesticide Factsheets

    Where You Live accesses facility and unit attribute data as well as emissions data using a series of interactive national and state maps. This module allows the user to view data for regions of interest throughout the country using an intuitive interface, while also providing a national and statewide context for data specific to one or more facilities.EPA's Clean Air Markets Division (CAMD) includes several market-based regulatory programs designed to improve air quality and ecosystems. The most well-known of these programs are EPA's Acid Rain Program and the NOx Programs, which reduce emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx)-compounds that adversely affect air quality, the environment, and public health. CAMD also plays an integral role in the development and implementation of the Clean Air Interstate Rule (CAIR).

  9. Slowing global warming: benefits for patients and the planet.

    PubMed

    Parker, Cindy L

    2011-08-01

    Global warming will cause significant harm to the health of persons and their communities by compromising food and water supplies; increasing risks of morbidity and mortality from infectious diseases and heat stress; changing social determinants of health resulting from extreme weather events, rising sea levels, and expanding flood plains; and worsening air quality, resulting in additional morbidity and mortality from respiratory and cardiovascular diseases. Vulnerable populations such as children, older persons, persons living at or below the poverty level, and minorities will be affected earliest and greatest, but everyone likely will be affected at some point. Family physicians can help reduce greenhouse gas emissions, stabilize the climate, and reduce the risks of climate change while also directly improving the health of their patients. Health interventions that have a beneficial effect on climate change include encouraging patients to reduce the amount of red meat in their diets and to replace some vehicular transportation with walking or bicycling. Patients are more likely to make such lifestyle changes if their physician asks them to and leads by example. Medical offices and hospitals can become more energy efficient by recycling, purchasing wind-generated electricity, and turning off appliances, computers, and lights when not in use. Moreover, physicians can play an important role in improving air quality and reducing greenhouse gas emissions by advocating for enforcement of existing air quality regulations and working with local and national policy makers to further improve air quality standards, thereby improving the health of their patients and slowing global climate change.

  10. Addition of PM2.5 into the National Ambient Air Quality Standards of China and the Contribution to Air Pollution Control: The Case Study of Wuhan, China

    PubMed Central

    You, Mingqing

    2014-01-01

    PM2.5 has gradually become a major environmental problem of China with its rapid economic development, urbanization, and increasing of motor vehicles. Findings and awareness of serious PM2.5 pollution make the PM2.5 a new criterion pollutant of the Chinese National Ambient Air Quality Standard (NAAQS) revised in 2012. The 2012 NAAQS sets the PM2.5 concentrate limitation with the 24-hour average value and the annual mean value. Wuhan is quite typical among central and southern China in climate, economy, development level, and energy consumption. The data are cited from the official website of Wuhan Environmental Protection Bureau and cover the period from 1 January to 30 June 2013. The data definitely confirm the existence of serious PM2.5 pollution in Wuhan and indicate that the addition of PM2.5 as a criterion pollutant significantly brings down the attainment rate of air quality. The example of Wuhan reveals that local governments should take measures to reduce the emission of PM2.5 if it affects the attainment rate and the performance evaluation value of air quality. The main contribution of 2012 NAAQS is that it brings down the attainment rate of the air quality and forces local governmental officials to take the measures accordingly. PMID:24982994

  11. Contribution of indoor and outdoor nitrogen dioxide to indoor air quality of wayside shops.

    PubMed

    Shuai, Jianfei; Yang, Wonho; Ahn, Hogi; Kim, Sunshin; Lee, Seokyong; Yoon, Sung-Uk

    2013-06-01

    Indoor nitrogen dioxide (NO₂) concentration is an important factor for personal exposure despite the wide distribution of its sources. Exposure to NO₂ may produce adverse health effects. The aims of this study were to characterize the indoor air quality of wayside shops using multiple NO₂ measurements, and to estimate the contribution of outdoor NO₂ sources such as vehicle emission to indoor air quality. Daily indoor and outdoor NO₂ concentrations were measured for 21 consecutive days in wayside shops (5 convenience stores, 5 coffee shops, and 5 restaurants). Contributions of outdoor NO₂ sources to indoor air quality were calculated with penetration factors and source strength factors by indoor mass balance model in winter and summer, respectively. Most wayside shops had significant differences in indoor and outdoor NO₂ concentrations both in winter and in summer. Indoor NO₂ concentrations in restaurants were twice more than those in convenience stores and coffee shops in winter. While outdoor NO₂ contributions in indoor convenience stores and coffee shops were dominant, indoor NO₂ contributions were dominant in restaurants. These could be explained that indoor NO₂ sources such as gas range and smoking mainly affect indoor concentrations comparing to outdoor sources such as vehicle emission. The indoor mass balance model by multiple measurements suggests that quantitative contribution of outdoor air on indoor air quality might be estimated without measurements of ventilation, indoor generation and decay rate.

  12. Summarising climate and air quality (ozone) data on self-organising maps: a Sydney case study.

    PubMed

    Jiang, Ningbo; Betts, Alan; Riley, Matt

    2016-02-01

    This paper explores the classification and visualisation utility of the self-organising map (SOM) method in the context of New South Wales (NSW), Australia, using gridded NCEP/NCAR geopotential height reanalysis for east Australia, together with multi-site meteorological and air quality data for Sydney from the NSW Office of Environment and Heritage Air Quality Monitoring Network. A twice-daily synoptic classification has been derived for east Australia for the period of 1958-2012. The classification has not only reproduced the typical synoptic patterns previously identified in the literature but also provided an opportunity to visualise the subtle, non-linear change in the eastward-migrating synoptic systems influencing NSW (including Sydney). The summarisation of long-term, multi-site air quality/meteorological data from the Sydney basin on the SOM plane has identified a set of typical air pollution/meteorological spatial patterns in the region. Importantly, the examination of these patterns in relation to synoptic weather types has provided important visual insights into how local and synoptic meteorological conditions interact with each other and affect the variability of air quality in tandem. The study illustrates that while synoptic circulation types are influential, the within-type variability in mesoscale flows plays a critical role in determining local ozone levels in Sydney. These results indicate that the SOM can be a useful tool for assessing the impact of weather and climatic conditions on air quality in the regional airshed. This study further promotes the use of the SOM method in environmental research.

  13. Indoor airborne particle sources and outdoor haze days effect in urban office areas in Guangzhou.

    PubMed

    Zhang, Manwen; Zhang, Sukun; Feng, Guixian; Su, Hui; Zhu, Fengzhi; Ren, Mingzhong; Cai, Zongwei

    2017-04-01

    To identify the sources of PM 2.5 pollutants in work environments and determine whether the air quality inside an office was affected by a change in outdoor pollution status, concurrent indoor and outdoor measurements of PM 2.5 were conducted at five different office spaces in the urban center of Guangzhou on low pollution days (non-episode days, NEDs), and high pollution days (haze episode days, EDs). Indoor-outdoor relationships between the PM 2.5 mass and its chemical constituents, which included water-soluble ions, carbonaceous species, and metal elements, were investigated. A principle component analysis (PCA) was performed to further confirm the relationship between the indoor and outdoor PM 2.5 pollution. The results reveal that (1) Printing and ETS (Environmental tobacco smoking) were found to be important office PM 2.5 sources and associated with the enrichment of SO 4 2- , OC, EC and some toxic metals indoors; (2) On EDs, serious outdoor pollution and higher air exchange rate greatly affected all studied office environments, masking the original differences of the indoor characteristics (3) Fresh air system could efficiently filter out most of the outside pollutants on both NEDs and EDs. Overall, the results of our study suggest that improper human behavior is associated with the day-to-day generation of indoor PM 2.5 levels and sporadic outdoor pollution events can lead to poor indoor air quality in urban office environments. Moreover, fresh air system has been experimentally proved with data as an effective way to improve the air quality in office. Copyright © 2016. Published by Elsevier Inc.

  14. Air quality assessment in the periurban area of Mexico Megacity during dry hot season in 2011 and 2012

    NASA Astrophysics Data System (ADS)

    Garcia-Reynoso, Agustin; Santos Garcia-Yee, Jose; Barrera-Huertas, Hugo; Gerardo Ruiz-Suárez, Luis

    2016-04-01

    Air quality is a human health threat not only in urbanized areas, it also affects the surrounding zones. Interaction between urban and rural areas can be evaluated by measurements and using models for regional areas that includes in its domain the peri-urban regions. The use of monitoring sites in remote areas is useful however it is not possible to cover all the region the use of models can provide valuable information about the source and fate of the pollution and its transformation. In order to evaluate the influence of the Mexico Megacity in the air quality of the region, two field campaigns were performed during the dry hot season during 2011 and 2012. Meterological and pollutant measurements were made during February and march 2011, in three sites towards the south east of Mexico Megacity, and from march to April 2012 towards the west after the Popocatepetl-Iztaccihuatl mountain range. Air quality modeling were performed by using the National Emissions Inventory 2008 during the studied periods, a comparison between measurements and the air quality model was performed. This type of studies can offer information about the pollutant distribution, the meteorological conditions and the exactness of emissions inventories. The latest can be useful for emissions inventory developers and policy makers.

  15. Simulating smoke transport from wildland fires with a regional-scale air quality model: sensitivity to spatiotemporal allocation of fire emissions.

    PubMed

    Garcia-Menendez, Fernando; Hu, Yongtao; Odman, Mehmet T

    2014-09-15

    Air quality forecasts generated with chemical transport models can provide valuable information about the potential impacts of fires on pollutant levels. However, significant uncertainties are associated with fire-related emission estimates as well as their distribution on gridded modeling domains. In this study, we explore the sensitivity of fine particulate matter concentrations predicted by a regional-scale air quality model to the spatial and temporal allocation of fire emissions. The assessment was completed by simulating a fire-related smoke episode in which air quality throughout the Atlanta metropolitan area was affected on February 28, 2007. Sensitivity analyses were carried out to evaluate the significance of emission distribution among the model's vertical layers, along the horizontal plane, and into hourly inputs. Predicted PM2.5 concentrations were highly sensitive to emission injection altitude relative to planetary boundary layer height. Simulations were also responsive to the horizontal allocation of fire emissions and their distribution into single or multiple grid cells. Additionally, modeled concentrations were greatly sensitive to the temporal distribution of fire-related emissions. The analyses demonstrate that, in addition to adequate estimates of emitted mass, successfully modeling the impacts of fires on air quality depends on an accurate spatiotemporal allocation of emissions. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Using aircraft and satellite observations to improve regulatory air quality models

    NASA Astrophysics Data System (ADS)

    Canty, T. P.; Vinciguerra, T.; Anderson, D. C.; Carpenter, S. F.; Goldberg, D. L.; Hembeck, L.; Montgomery, L.; Liu, X.; Salawitch, R. J.; Dickerson, R. R.

    2014-12-01

    Federal and state agencies rely on EPA approved models to develop attainment strategies that will bring states into compliance with the National Ambient Air Quality Standards (NAAQS). We will describe modifications to the Community Multi-Scale Air Quality (CMAQ) model and Comprehensive Air Quality Model with Extensions (CAMx) frameworks motivated by analysis of NASA satellite and aircraft measurements. Observations of tropospheric column NO2 from OMI have already led to the identification of an important deficiency in the chemical mechanisms used by models; data collected during the DISCOVER-AQ field campaign has been instrumental in devising an improved representation of the chemistry of nitrogen species. Our recent work has focused on the use of: OMI observations of tropospheric O3 to assess and improve the representation of boundary conditions used by AQ models, OMI NO2 to derive a top down NOx emission inventory from commercial shipping vessels that affect air quality in the Eastern U.S., and OMI HCHO to assess the C5H8 emission inventories provided by bioegenic emissions models. We will describe how these OMI-driven model improvements are being incorporated into the State Implementation Plans (SIPs) being prepared for submission to EPA in summer 2015 and how future modeling efforts may be impacted by our findings.

  17. Assessment of the Impact of The East Asian Summer Monsoon on the Air Quality Over China

    NASA Astrophysics Data System (ADS)

    Hao, Nan; Ding, Aijun; Safieddine, Sarah; Valks, Pieter; Clerbaux, Cathy; Trautmann, Thomas

    2016-04-01

    Air pollution is one of the most important environmental problems in developing Asian countries like China. In this region, studies showed that the East Asian monsoon plays a significant role in characterizing the temporal variation and spatial patterns of air pollution, since monsoon is a major atmospheric system affecting air mass transport, convection, and precipitation. Knowledge gaps still exist in the understanding of Asian monsoon impact on the air quality in China under the background of global climate change. For the first time satellite observations of tropospheric ozone and its precursors will be integrated with the ground-based, aircraft measurements of air pollutants and model simulations to study the impact of the East Asian monsoon on air quality in China. We apply multi-platform satellite observations by the GOME-2, IASI, and MOPITT instruments to analyze tropospheric ozone and CO, precursors of ozone (NO2, HCHO and CHOCHO) and other related trace gases over China. Two years measurements of air pollutants including NO2, HONO, SO2, HCHO and CHOCHO at a regional back-ground site in the western part of the Yangtze River Delta (YRD) in eastern China will be presented. The potential of using the current generation of satellite instruments, ground-based instruments and aircraft to monitor air quality changes caused by the East Asian monsoon circulation will be presented. Preliminary comparison results between satellite measurement and limited but valuable ground-based and aircraft measurements will also be showed.

  18. Future impacts of distributed power generation on ambient ozone and particulate matter concentrations in the San Joaquin Valley of California.

    PubMed

    Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald

    2011-12-01

    Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region.

  19. Future Impacts of Distributed Power Generation on Ambient Ozone and Particulate Matter Concentrations in the San Joaquin Valley of California.

    PubMed

    Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald

    2011-12-01

    Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region. [Box: see text].

  20. Predicting Air Quality at First Ingress into Vehicles Visiting the International Space Station.

    PubMed

    Romoser, Amelia A; Scully, Robert R; Limero, Thomas F; De Vera, Vanessa; Cheng, Patti F; Hand, Jennifer J; James, John T; Ryder, Valerie E

    2017-02-01

    NASA regularly performs ground-based offgas tests (OGTs), which allow prediction of accumulated volatile pollutant concentrations at first entry on orbit, on whole modules and vehicles scheduled to connect to the International Space Station (ISS). These data guide crew safety operations and allow for estimation of ISS air revitalization systems impact from additional pollutant load. Since volatiles released from vehicle, module, and payload materials can affect crew health and performance, prediction of first ingress air quality is important. To assess whether toxicological risk is typically over or underpredicted, OGT and first ingress samples from 10 vehicles and modules were compared. Samples were analyzed by gas chromatography and gas chromatography-mass spectrometry. The rate of pollutant accumulation was extrapolated over time. Ratios of analytical values and Spacecraft Maximum Allowable Concentrations were used to predict total toxicity values (T-values) at first entry. Results were also compared by compound. Frequently overpredicted was 2-butanone (9/10), whereas propanal (6/10) and ethanol (8/10) were typically underpredicted, but T-values were not substantially affected. Ingress sample collection delay (estimated by octafluoropropane introduced from ISS atmosphere) and T-value prediction accuracy correlated well (R2 = 0.9008), highlighting the importance of immediate air sample collection and accounting for ISS air dilution. Importantly, T-value predictions were conservative 70% of the time. Results also suggest that T-values can be normalized to octafluoropropane levels to adjust for ISS air dilution at first ingress. Finally, OGT and ingress sampling has allowed small leaks in vehicle fluid systems to be recognized and addressed.Romoser AA, Scully RR, Limero TF, De Vera V, Cheng PF, Hand JJ, James JT, Ryder VE. Predicting air quality at first ingress into vehicles visiting the International Space Station. Aerosp Med Hum Perform. 2017; 88(2):104-113.

  1. Effects of future land use and ecosystem changes on boundary-layer meteorology and air quality

    NASA Astrophysics Data System (ADS)

    Tai, A. P. K.; Wang, L.; Sadeke, M.

    2017-12-01

    Land vegetation plays key roles shaping boundary-layer meteorology and air quality via various pathways. Vegetation can directly affect surface ozone via dry deposition and biogenic emissions of volatile organic compounds (VOCs). Transpiration from land plants can also influence surface temperature, soil moisture and boundary-layer mixing depth, thereby indirectly affecting surface ozone. Future changes in the distribution, density and physiology of vegetation are therefore expected to have major ramifications for surface ozone air quality. In our study, we examine two aspects of potential vegetation changes using the Community Earth System Model (CESM) in the fully coupled land-atmosphere configuration, and evaluate their implications on meteorology and air quality: 1) land use change, which alters the distribution of plant functional types and total leaf density; and 2) ozone damage on vegetation, which alters leaf density and physiology (e.g., stomatal resistance). We find that, following the RCP8.5 scenario for 2050, global cropland expansion induces only minor changes in surface ozone in tropical and subtropical regions, but statistically significant changes by up to +4 ppbv in midlatitude North America and East Asia, mostly due to higher surface temperature that enhances biogenic VOC emissions, and reduced dry deposition to a lesser degree. These changes are in turn to driven mostly by meteorological changes that include a shift from latent to sensible heat in the surface energy balance and reduced soil moisture, reflecting not only local responses but also a northward expansion of the Hadley Cell. On the other hand, ozone damage on vegetation driven by rising anthropogenic emissions is shown to induce a further enhancement of ozone by up to +6 ppbv in midlatitude regions by 2050. This reflects a strong localized positive feedback, with severe ozone damage in polluted regions generally inducing stomatal closure, which in turn reduces transpiration, increases surface temperature, and thus enhances biogenic VOC emissions and surface ozone. Our findings demonstrate the importance of considering meteorological responses to vegetation changes in future air quality assessment, and call for greater coordination among land use, ecosystem and air quality management efforts.

  2. [Study on air quality and pollution meteorology conditions of Guangzhou during the 2010 Asian games].

    PubMed

    Li, Ting-Yuan; Deng, Xue-Jiao; Fan, Shao-Jia; Wu, Dui; Li, Fei; Deng, Tao; Tan, Hao-Bo; Jiang, De-Hai

    2012-09-01

    Based on the monitoring data of NO2, O3, SO2, PM, visibility, regional air quality index (RAQI) and the atmospheric transport and diffusion data from Nov. 4, 2010 to Dec. 10, 2010 in Guangzhou area, the variations of air quality and meteorological conditions during the Guangzhou Asian Games were analyzed. It was found that, during the Asian Games, the air quality was better than the air quality before or after the Asian Games. The visibility was greater than the visibility before or after the Asian Games, while the concentrations of PM1 and PM2.5 were lower. The correlation coefficient between visibility and the concentrations of PM1, PM2.5 indicated anti-correlation relationships. Daily and hourly concentrations of NO2 and SO2 met the primary ambient air quality standards, whereas the daily concentration of PM10 and hourly concentration of O3 met the secondary ambient air quality standards. Pollutants had been well controlled during the Asian Games. The concentration of SO2 in Guangzhou was influenced by local sources and long distance transmission, while the concentration of NO2 was significantly influenced by local sources. The emissions of NO2, SO2 and PM10 surrounding Guangzhou had a trend to affect the concentrations in Guangzhou, but the situation of O3 was opposite, the relatively high concentration of O3 in Guangzhou had tendency to be transported to the surrounding areas. The pollution meteorology conditions in the period of Asian Games were better than the conditions before or after the Asian Games. The decrease in the concentrations during the Asian Games did not only benefit from the emission control by the government, but also from the good meteorological conditions.

  3. CityAir app: Mapping air-quality perception using people as sensors

    NASA Astrophysics Data System (ADS)

    Castell, Nuria; Fredriksen, Mirjam; Cole-Hunter, Thomas; Robinson, Johanna; Keune, Hans; Nieuwenhuijsen, Mark; Bartonova, Alena

    2016-04-01

    Outdoor air pollution is a major environmental health problem affecting all people in developed and developing countries alike. Ambient (outdoor) air pollution in both cities and rural areas was estimated to cause 3.7 million premature deaths worldwide in 2012. In modern society, people are expending an increasing amount of time in polluted urban environments, thus increasing their exposure and associated health responses. Some cities provide information about air pollution levels to their citizens using air quality monitoring networks. However, due to their high cost and maintenance, the density of the monitoring networks is very low and not capable to capture the high temporal and spatial variability of air pollution. Thus, the citizen lacks a specific answer to the question of "how the air quality is in our surroundings". In the framework of the EU-funded CITI-SENSE project the innovative concept of People as Sensors is being applied to the field of outdoor air pollution. This is being done in eight European cities, including Barcelona, Belgrade, Edinburgh, Haifa, Ljubljana, Oslo, Ostrava and Vienna. People as Sensors defines a measurement model, in which measurements are not only taken by hardware sensors, but in which also humans can contribute with their individual "measurements" such as their subjective perception of air quality and other personal observations. In order to collect the personal observations a mobile app, CityAir, has been developed. CityAir allows citizens to rate the air quality in their surroundings with colour at their current location: green if air quality is very good, yellow if air quality is good, orange if air quality is poor and red if air quality is very poor. The users have also the possibility of indicating the source of pollution (i.e. traffic, industry, wood burning) and writing a comment. The information is on-line and accessible for other app users, thus contributing to create an air-quality map based on citizens' perception. Currently, 400 + Android OS and 180+ iOS smartphone users in 12+ countries have downloaded, installed and used CityAir. The central advantage of the People as Sensors approach is that it can complement costly physical sensor networks. The observations made in smartphones are shared and other persons can consult those to take decisions as for instance choosing a cleaner route to bicycle to work or avoid exercising in certain areas that day. The drawbacks are limited comparability and interpretability, and the inherent uncertainty. CityAir can be seen as a democratic platform for empowering citizens to contribute to environmental governance, facilitating the communication between the citizen and the decision makers. Citizens are encouraged to participate in sharing their perception on the air quality in their city. Citizens become agents of change by uncovering and sharing their perception of air quality in a place that matters to them. We discuss the current challenges: how to involve citizens in the use of the app and how to communicate and visualize the information in a way that is useful for the citizens; point out possible solutions, and pin-point directions for future research.

  4. Domains of environmental quality are differentially associated with adverse birth outcomes by levels of urban-rural status

    EPA Science Inventory

    Human health is affected by exposures operating from multiple domains across level of urbanicity. To accommodate this, we constructed an environmental quality index(EQI) using data from five domains (air, water, land, built, sociodemographic) for each United States (U.S.) county;...

  5. Predicting indoor pollutant concentrations, and applications to air quality management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzetti, David M.

    Because most people spend more than 90% of their time indoors, predicting exposure to airborne pollutants requires models that incorporate the effect of buildings. Buildings affect the exposure of their occupants in a number of ways, both by design (for example, filters in ventilation systems remove particles) and incidentally (for example, sorption on walls can reduce peak concentrations, but prolong exposure to semivolatile organic compounds). Furthermore, building materials and occupant activities can generate pollutants. Indoor air quality depends not only on outdoor air quality, but also on the design, maintenance, and use of the building. For example, ''sick building'' symptomsmore » such as respiratory problems and headaches have been related to the presence of air-conditioning systems, to carpeting, to low ventilation rates, and to high occupant density (1). The physical processes of interest apply even in simple structures such as homes. Indoor air quality models simulate the processes, such as ventilation and filtration, that control pollutant concentrations in a building. Section 2 describes the modeling approach, and the important transport processes in buildings. Because advection usually dominates among the transport processes, Sections 3 and 4 describe methods for predicting airflows. The concluding section summarizes the application of these models.« less

  6. Fragmentation of urban forms and the environmental consequences: results from a high-spatial resolution model system

    NASA Astrophysics Data System (ADS)

    Tang, U. W.; Wang, Z. S.

    2008-10-01

    Each city has its unique urban form. The importance of urban form on sustainable development has been recognized in recent years. Traditionally, air quality modelling in a city is in a mesoscale with grid resolution of kilometers, regardless of its urban form. This paper introduces a GIS-based air quality and noise model system developed to study the built environment of highly compact urban forms. Compared with traditional mesoscale air quality model system, the present model system has a higher spatial resolution down to individual buildings along both sides of the street. Applying the developed model system in the Macao Peninsula with highly compact urban forms, the average spatial resolution of input and output data is as high as 174 receptor points per km2. Based on this input/output dataset with a high spatial resolution, this study shows that even the highly compact urban forms can be fragmented into a very small geographic scale of less than 3 km2. This is due to the significant temporal variation of urban development. The variation of urban form in each fragment in turn affects air dispersion, traffic condition, and thus air quality and noise in a measurable scale.

  7. Assessment of forest quality in southwestern Poland with the use of remotely sensed data

    Treesearch

    Zbigniew Bochenek; Andrzej Ciolkosz; Maria Iracka

    1998-01-01

    A three-stage approach was applied to assess the quality of forests in southwestern Poland, which are heavily affected with air pollution and insect infestations. In the first stage a ground evaluation of spruce stands was done within the selected test areas. Three main characteristics of forest quality were determined as a result of these works: defoliation,...

  8. Extreme air pollution events in Hokkaido, Japan, traced back to early snowmelt and large-scale wildfires over East Eurasia: Case studies.

    PubMed

    Yasunari, Teppei J; Kim, Kyu-Myong; da Silva, Arlindo M; Hayasaki, Masamitsu; Akiyama, Masayuki; Murao, Naoto

    2018-04-25

    To identify the unusual climate conditions and their connections to air pollutions in a remote area due to wildfires, we examine three anomalous large-scale wildfires in May 2003, April 2008, and July 2014 over East Eurasia, as well as how products of those wildfires reached an urban city, Sapporo, in the northern part of Japan (Hokkaido), significantly affecting the air quality. NASA's MERRA-2 (the Modern-Era Retrospective analysis for Research and Applications, Version 2) aerosol re-analysis data closely reproduced the PM 2.5 variations in Sapporo for the case of smoke arrival in July 2014. Results show that all three cases featured unusually early snowmelt in East Eurasia, accompanied by warmer and drier surface conditions in the months leading to the fires, inducing long-lasting soil dryness and producing climate and environmental conditions conducive to active wildfires. Due to prevailing anomalous synoptic-scale atmospheric motions, smoke from those fires eventually reached a remote area, Hokkaido, and worsened the air quality in Sapporo. In future studies, continuous monitoring of the timing of Eurasian snowmelt and the air quality from the source regions to remote regions, coupled with the analysis of atmospheric and surface conditions, may be essential in more accurately predicting the effects of wildfires on air quality.

  9. Urban air quality assessment using monitoring data of fractionized aerosol samples, chemometrics and meteorological conditions.

    PubMed

    Yotova, Galina I; Tsitouridou, Roxani; Tsakovski, Stefan L; Simeonov, Vasil D

    2016-01-01

    The present article deals with assessment of urban air by using monitoring data for 10 different aerosol fractions (0.015-16 μm) collected at a typical urban site in City of Thessaloniki, Greece. The data set was subject to multivariate statistical analysis (cluster analysis and principal components analysis) and, additionally, to HYSPLIT back trajectory modeling in order to assess in a better way the impact of the weather conditions on the pollution sources identified. A specific element of the study is the effort to clarify the role of outliers in the data set. The reason for the appearance of outliers is strongly related to the atmospheric condition on the particular sampling days leading to enhanced concentration of pollutants (secondary emissions, sea sprays, road and soil dust, combustion processes) especially for ultra fine and coarse particles. It is also shown that three major sources affect the urban air quality of the location studied-sea sprays, mineral dust and anthropogenic influences (agricultural activity, combustion processes, and industrial sources). The level of impact is related to certain extent to the aerosol fraction size. The assessment of the meteorological conditions leads to defining of four downwind patterns affecting the air quality (Pelagic, Western and Central Europe, Eastern and Northeastern Europe and Africa and Southern Europe). Thus, the present study offers a complete urban air assessment taking into account the weather conditions, pollution sources and aerosol fractioning.

  10. Basic Information about Ozone

    EPA Pesticide Factsheets

    Learn the difference between good (stratospheric) and bad (tropospheric) ozone, how bad ozone affects our air quality, health, and environment, and what EPA is doing about it through regulations and standards.

  11. Modeling Aircraft Emissions for Regional-scale Air Quality: Adapting a New Global Aircraft Emissions Database for the U.S

    NASA Astrophysics Data System (ADS)

    Arunachalam, S.; Baek, B. H.; Vennam, P. L.; Woody, M. C.; Omary, M.; Binkowski, F.; Fleming, G.

    2012-12-01

    Commercial aircraft emit substantial amounts of pollutants during their complete activity cycle that ranges from landing-and-takeoff (LTO) at airports to cruising in upper elevations of the atmosphere, and affect both air quality and climate. Since these emissions are not uniformly emitted over the earth, and have substantial temporal and spatial variability, it is vital to accurately evaluate and quantify the relative impacts of aviation emissions on ambient air quality. Regional-scale air quality modeling applications do not routinely include these aircraft emissions from all cycles. Federal Aviation Administration (FAA) has developed the Aviation Environmental Design Tool (AEDT), a software system that dynamically models aircraft performance in space and time to calculate fuel burn and emissions from gate-to-gate for all commercial aviation activity from all airports globally. To process in-flight aircraft emissions and to provide a realistic representation of these for treatment in grid-based air quality models, we have developed an interface processor called AEDTproc that accurately distributes full-flight chorded emissions in time and space to create gridded, hourly model-ready emissions input data. Unlike the traditional emissions modeling approach of treating aviation emissions as ground-level sources or processing emissions only from the LTO cycles in regional-scale air quality studies, AEDTproc distributes chorded inventories of aircraft emissions during LTO cycles and cruise activities into a time-variant 3-D gridded structure. We will present results of processed 2006 global emissions from AEDT over a continental U.S. modeling domain to support a national-scale air quality assessment of the incremental impacts of aircraft emissions on surface air quality. This includes about 13.6 million flights within the U.S. out of 31.2 million flights globally. We will focus on assessing spatio-temporal variability of these commercial aircraft emissions, and comparing upper tropospheric budgets of NOx from aircraft and lightning sources in the modeling domain.

  12. Past and future climate patterns affecting temperate, sub-tropical and tropical horticultural crop production

    USDA-ARS?s Scientific Manuscript database

    Perennial horticultural crop production will be impacted by climate change effects on temperature, water availability, solar radiation, air pollution, and carbon dioxide. Horticultural crop value is derived from both the quantity and the quality of the harvested product; both of which are affected ...

  13. Changes in O3 and NO2 due to emissions from Fracking in the UK.

    NASA Astrophysics Data System (ADS)

    Archibald, Alexander; Ordonez, Carlos

    2016-04-01

    Poor air quality is a problem that affects millions of people around the world. Understanding the driving forces behind air pollution is complicated as the precursor gases which combine to produce air pollutants react in a highly non-linear manner and are subject to a range of atmospheric transport mechanisms compounded by the weather. A great deal of money has been spent on mitigating air pollution and so it's important to assess the impacts that new technologies that emit air pollutant precursors may have on local and regional air pollution. One of the most highly discussed new technologies that could impact air quality is the adoption of wide-scale hydraulic fracturing or "fracking" for natural gas. Indeed in regions of the USA where fracking is commonplace large levels of ozone (O3 - a key air pollutant) have been observed and attributed directly to the fracking process. In this study, a numerical modelling framework was used to assess possible impacts of fracking in the UK where at present no large scale fracking facilities are in operation. A number of emissions scenarios were developed for the principle gas phase air pollution precursors: the oxides of nitrogen (NOx) and volatile organic compounds (VOCs). These emissions scenarios were then used in a state-of-the-art numerical air quality model (the UK Met Office operational air quality forecasting model AQUM) to determine potential impacts related to fracking on UK air quality. Comparison of base model results and observations for the year 2013 of NOx, O3 and VOCs from the UK Automatic Urban and Rural Network (AURN) showed that AQUM has good skill at simulating these gas phase air pollutants (O3 r=0.64, NMGE=0.3; NO2 r=0.62, NMGE=0.51). Analysis of the simulations with fracking emissions demonstrate that there are large changes in 1hr max NO2 (11.6±6.6 ppb) with modest increases in monthly mean NO2, throughout the British Isles (150±100 ppt). These results highlight that stringent measures should be applied to prevent deleterious impacts on air quality from emissions related to fracking in the UK.

  14. 75 FR 9619 - South Carolina Electric & Gas Company; Virgil C. Summer Nuclear Station; Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... significantly affect plant safety and would not have a significant adverse effect on the probability of an... effluents. No changes to the National Pollution Discharge Elimination System permit are needed. No effects... Magnuson-Steven's Act are expected. There are no impacts to the air or ambient air quality. There are no...

  15. 78 FR 26251 - Approval and Promulgation of Air Quality Implementation Plans; Texas; Revisions to Control of Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... ovens used in wet-laid non-woven fiber mat manufacturing operations when nitrogen containing resins or other additives are used. These two actions affect NOx sources operating in the Dallas Fort-Worth (DFW... include low-temperature drying ovens and curing ovens used in wet-laid, non-woven fiber mat manufacturing...

  16. Public’s Health Risk Awareness on Urban Air Pollution in Chinese Megacities: The Cases of Shanghai, Wuhan and Nanchang

    PubMed Central

    Liu, Xiaojun; Zhu, Hui; Hu, Yongxin; Feng, Sha; Chu, Yuanyuan; Wu, Yanyan; Wang, Chiyu; Zhang, Yuxuan; Yuan, Zhaokang; Lu, Yuanan

    2016-01-01

    This study assessed the public’s health risk awareness of urban air pollution triggered by three megacities in China, and the data are the responses from a sample size of 3868 megacity inhabitants from Shanghai, Nanchang and Wuhan. Descriptive analyses were used to summarize the respondents’ demographics, perceived health risks from air pollution and sources of health-related knowledge on urban air pollution. Chi-square tests were used to examine if participants’ demographics were associated with participant’s general attitudes towards current air quality and the three perceived highest health risks due to urban air pollution. We found low rate of satisfaction of current urban air quality as well as poor knowledge of air pollution related indicator. Participants’ gender, age and travel experience were found to be associated with the satisfaction of current air quality. The knowledge of air pollution related indicator was significantly affected by respondents’ education, monthly income, health status, and sites of study. As many as 46.23% of the participants expressed their feelings of anxiety when exposed to polluted air, especially females, older adults and those with poor health conditions. Most participants believed that coughs/colds, eye problems and skin allergies were the three highest health risks due to urban air pollution based on public education through television/radio, internet and newspaper/magazine. Further public health education is needed to improve public awareness of air pollution and its effects. PMID:27571088

  17. Public's Health Risk Awareness on Urban Air Pollution in Chinese Megacities: The Cases of Shanghai, Wuhan and Nanchang.

    PubMed

    Liu, Xiaojun; Zhu, Hui; Hu, Yongxin; Feng, Sha; Chu, Yuanyuan; Wu, Yanyan; Wang, Chiyu; Zhang, Yuxuan; Yuan, Zhaokang; Lu, Yuanan

    2016-08-25

    This study assessed the public's health risk awareness of urban air pollution triggered by three megacities in China, and the data are the responses from a sample size of 3868 megacity inhabitants from Shanghai, Nanchang and Wuhan. Descriptive analyses were used to summarize the respondents' demographics, perceived health risks from air pollution and sources of health-related knowledge on urban air pollution. Chi-square tests were used to examine if participants' demographics were associated with participant's general attitudes towards current air quality and the three perceived highest health risks due to urban air pollution. We found low rate of satisfaction of current urban air quality as well as poor knowledge of air pollution related indicator. Participants' gender, age and travel experience were found to be associated with the satisfaction of current air quality. The knowledge of air pollution related indicator was significantly affected by respondents' education, monthly income, health status, and sites of study. As many as 46.23% of the participants expressed their feelings of anxiety when exposed to polluted air, especially females, older adults and those with poor health conditions. Most participants believed that coughs/colds, eye problems and skin allergies were the three highest health risks due to urban air pollution based on public education through television/radio, internet and newspaper/magazine. Further public health education is needed to improve public awareness of air pollution and its effects.

  18. Response to Follow-up Questions From the Hearing on Air Quality Issues Affecting Our Forests and Public Lands.

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  19. CARETS: A prototype regional environmental information system. Volume 7: Land use information and air quality planning. [Norfolk and Portsmouth, Virginia

    NASA Technical Reports Server (NTRS)

    Alexander, R. H. (Principal Investigator); Reed, W. E.; Lewis, J. E.

    1975-01-01

    The author has identified the following significant results. The pilot air quality system provided data for updating information on the sources of point and area emissions of SO2 and particulate matter affecting the Norfolk-Portsmouth area of Virginia for 1971-72 winter and the annual 1972 period. During the 1971-72 winter, estimated SO2 amounts over an area with a SW-NE axis in the central section of Norfolk exceeded both primary and secondary levels.

  20. Development of wireless sensor network for monitoring indoor air pollutant

    NASA Astrophysics Data System (ADS)

    Saad, Shaharil Mad; Shakaff, Ali Yeon Md; Saad, Abdul Rahman Mohd; Yusof @ Kamarudin, Azman Muhamad

    2015-05-01

    The air that we breathe with everyday contains variety of contaminants and particles. Some of these contaminants and particles are hazardous to human health. Most of the people don't realize that the content of air they being exposed to whether it was a good or bad air quality. The air quality whether in indoor or outdoor environment can be influenced by physical factors like dust particles, gaseous pollutants (including carbon dioxide, carbon monoxide and volatile organic compounds) and biological like molds and bacteria growth which largely depend on temperature and humidity condition of a room. These kinds of pollutants can affect human health, physical reaction, comfort or work performance. In this study, a wireless sensor network (WSN) monitoring system for monitor air pollutant in indoor environment was developed. The system was divided into three parts: web-based interface program, sensing module and a base station. The measured data was displayed on the web which is can be accessed by the user. The result shows that the overall measured parameters were meet the acceptable limit, requirement and criteria of indoor air pollution inside the building. The research can be used to improve the indoor air quality level in order to create a comfortable working and healthy environment for the occupants inside the building.

  1. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data.

    PubMed

    Apte, Joshua S; Messier, Kyle P; Gani, Shahzad; Brauer, Michael; Kirchstetter, Thomas W; Lunden, Melissa M; Marshall, Julian D; Portier, Christopher J; Vermeulen, Roel C H; Hamburg, Steven P

    2017-06-20

    Air pollution affects billions of people worldwide, yet ambient pollution measurements are limited for much of the world. Urban air pollution concentrations vary sharply over short distances (≪1 km) owing to unevenly distributed emission sources, dilution, and physicochemical transformations. Accordingly, even where present, conventional fixed-site pollution monitoring methods lack the spatial resolution needed to characterize heterogeneous human exposures and localized pollution hotspots. Here, we demonstrate a measurement approach to reveal urban air pollution patterns at 4-5 orders of magnitude greater spatial precision than possible with current central-site ambient monitoring. We equipped Google Street View vehicles with a fast-response pollution measurement platform and repeatedly sampled every street in a 30-km 2 area of Oakland, CA, developing the largest urban air quality data set of its type. Resulting maps of annual daytime NO, NO 2 , and black carbon at 30 m-scale reveal stable, persistent pollution patterns with surprisingly sharp small-scale variability attributable to local sources, up to 5-8× within individual city blocks. Since local variation in air quality profoundly impacts public health and environmental equity, our results have important implications for how air pollution is measured and managed. If validated elsewhere, this readily scalable measurement approach could address major air quality data gaps worldwide.

  2. Formaldehyde Concentration Dynamics of the International Space Station Cabin Atmosphere

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    2005-01-01

    Formaldehyde presents a significant challenge to maintaining cabin air quality on board crewed spacecraft. Generation sources include offgassing from a variety of non-metallic materials as well as human metabolism. Because generation sources are pervasive and human health can be affected by continual exposure to low concentrations, toxicology and air quality control engineering experts jointly identified formaldehyde as a key compound to be monitored as part the International Space Station's (ISS) environmental health monitoring and maintenance program. Data acquired from in-flight air quality monitoring methods are the basis for assessing the cabin environment's suitability for long-term habitation and monitoring the performance of passive and active controls that are in place to minimize crew exposure. Formaldehyde concentration trends and dynamics served in the ISS cabin atmosphere are reviewed implications to present and future flight operations discussed.

  3. Outdoor air pollution and sperm quality.

    PubMed

    Lafuente, Rafael; García-Blàquez, Núria; Jacquemin, Bénédicte; Checa, Miguel Angel

    2016-09-15

    Exposure to air pollution has been clearly associated with a range of adverse health effects, including reproductive toxicity, but its effects on male semen quality are still unclear. We performed a systematic review (up to June 2016) to assess the impact of air pollutants on sperm quality. We included 17 semi-ecological, panel, and cohort studies, assessing outdoor air pollutants, such as PM2.5, PM10, NOx, SO2, and O3, and their effects on DNA fragmentation, sperm count, sperm motility, and sperm morphology. Thirteen studies assessed air pollution exposure measured environmentally, and six used biomarkers of air pollution exposure (two did both). We rated the studies using the Newcastle-Ottawa Scale and assessed with the exposure method. Taking into account these factors and the number of studies finding significant results (positive or negative), the evidence supporting an effect of air pollution on DNA fragmentation is weak but suggestive, on sperm motility is limited and probably inexistent, on lower sperm count is inconclusive, and on sperm morphology is very suggestive. Because of the diversity of air pollutants and sperm parameters, and the studies' designs, we were unable to perform a meta-analysis. In summary, most studies concluded that outdoor air pollution affects at least one of the four semen quality parameters included in the review. However, results lack consistency, and furthermore, studies were not comparable. Studies using standardized air pollution and semen measures are required to obtain more reliable conclusions. CRD42015007175. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Michigan`s air emission trading program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russette, T.M.; VanKolken, A.M.

    1997-12-31

    Michigan`s Emission Trading Program took effect on March 16, 1996 after two years of rule development by the Michigan Department of Environmental Quality, Air Quality Division and affected stakeholders. This program is based on the open market trading model and has been designed to (1) be consistent with existing federal and state rules and regulations, (2) integrate with existing air programs such as the permit program, and (3) address the needs of Michigan`s regulated community. Michigan`s Air Quality Division, along with other interested parties, initiated this program as part of market-based approaches to improve air quality through the reduction ofmore » criteria pollutants (except ozone) and volatile organic compounds. The Emission Trading rules offer potential benefits for Michigan companies that include increased operational flexibility, lower compliance costs, and/or money generated from the sale of the emission reduction credits. The environment also benefits from this program because the rules require that 10 percent of all registered emission reductions must be permanently retired as an air quality benefit. The emission trading program provides new opportunities for consulting firms to assist companies by identifying acceptable ways to generate and use emission reduction credits. Air pollution control companies may also see new opportunities by designing and installing control equipment in order to reduce air emissions. The role of consultants and equipment companies may expand to that of a broker selling and/or buying emission reduction credits on the Emission Trading Registry. Much has been learned since the conception of the air emission trading program. This paper will discuss how the program works in practice compared to what was envisioned in theory and the potential benefits from Michigan`s Emission Trading Program.« less

  5. Adapting Buildings for Indoor Air Quality in a Changing Climate

    EPA Pesticide Factsheets

    Climate change presents many challenges, including the production of severe weather events. These events and efforts to minimize their effects through weatherization can adversely affect indoor environments.

  6. Sensitivities of NOx transformation and the effects on surface ozone and nitrate

    NASA Astrophysics Data System (ADS)

    Lei, H.; Wang, J. X. L.

    2013-08-01

    As precursors for tropospheric ozone and nitrate aerosols, Nitrogen oxides (NOx) in present atmosphere and its transformation in responding to emission and climate perturbations are studied by CAM-Chem model and air quality measurements including National Emission Inventory (NEI), Clean Air Status and Trends Network (CASTNET) and Environmental Protection Agency Air Quality System (EPA AQS). It is found that not only the surface ozone formation but also the nitrate formation is associated with the relative emissions of NOx and volatile organic compounds (VOC). Due to the availability of VOC and associated NOx titration, ozone productions in industrial regions increase in warmer conditions and slightly decrease against NOx emission increase, which is converse to the response in farming region. The decrease or small increase in ozone concentrations over industrial regions result in the responded nitrate increasing rate staying above the increasing rate of NOx emissions. It is indicated that ozone concentration change is more directly affected by changes in climate and precursor emissions, while nitrate concentration change is also affected by local ozone production types and their seasonal transfer. The sensitivity to temperature perturbations shows that warmer climate accelerates the decomposition of odd nitrogen (NOy) during the night. As a result, the transformation rate of NOx to nitrate decreases. Examinations on the historical emission and air quality records on typical pollution areas further confirm the conclusion drawn from modeling experiments.

  7. Climate and human intervention effects on future fire activity and consequences for air pollution across the 21st century

    NASA Astrophysics Data System (ADS)

    Val Martin, M.; Pierce, J. R.; Heald, C. L.; Li, F.; Lawrence, D. M.; Wiedinmyer, C.; Tilmes, S.; Vitt, F.

    2016-12-01

    Emissions of aerosols and gases from fires have been shown to adversely affect air quality across the world. Fire activity is strongly related to climate and anthropogenic activities. Current fire projections for the 21st century seem very uncertain, ranging from increasing to declining depending on the climate, land cover change and population growth scenarios used. Here we present an analysis of the changes in future wildfire activity and consequences on air quality, with focus on PM2.5 and surface O3 over regions vulnerable to fire. We use the global Community Earth System Model (CESM) with a process-based fire model to simulate emissions from agriculture, peatland, deforestation and landscape fires for present-day and throughout the current century. We consider two future Representative Concentration Pathways climate scenarios combined with population density changes predicted from Shared Socio-economic Pathways to project climate and demographic effects on fire activity and further consequences for future air quality.

  8. Thermal conditions and perceived air quality in an air-conditioned auditorium

    NASA Astrophysics Data System (ADS)

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p < 0.001) positive correlation has been observed between T and PAQ values and CO2 concentrations (r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  9. Global Air Quality and Climate

    NASA Technical Reports Server (NTRS)

    Fiore, Arlene M.; Naik, Vaishali; Steiner, Allison; Unger, Nadine; Bergmann, Dan; Prather, Michael; Righi, Mattia; Rumbold, Steven T.; Shindell, Drew T.; Skeie, Ragnhild B.; hide

    2012-01-01

    Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH4), ozone precursors (O3), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O3 precursor CH4 would slow near-term warming by decreasing both CH4 and tropospheric O3. Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NOx) emissions, which increase tropospheric O3 (warming) but also increase aerosols and decrease CH4 (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH4 volatile organic compounds (NMVOC) warm by increasing both O3 and CH4. Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O3 and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative Concentration Pathway (RCP) scenarios assume uniformly an aggressive reduction, of air pollutant emissions. New estimates from the current generation of chemistry-climate models with RCP emissions thus project improved air quality over the next century relative to those using the IPCC SRES scenarios. These two sets of projections likely bracket possible futures. We find that uncertainty in emission-driven changes in air quality is generally greater than uncertainty in climate-driven changes. Confidence in air quality projections is limited by the reliability of anthropogenic emission trajectories and the uncertainties in regional climate responses, feedbacks with the terrestrial biosphere, and oxidation pathways affecting O3 and SOA.

  10. On the use of a risk ladder: Linking public perception of risks associated with indoor air with cognitive elements and attitudes toward risk reduction

    NASA Astrophysics Data System (ADS)

    Moschandreas, D. J.; Chang, P. E.

    In recent years a number of building managers have invested small amounts of money to measure indoor air quality in offices and other non-industrial buildings. Their objective is to reduce the number of occupant complaints, and not necessarily to reduce the risk associated with such complaints. Clearly, reduction of the risk would require greater investment of funds and effort. This paper focuses on individuals and the amount of money they are willing to invest in order to reduce risks associated with indoor air pollution in their home. Psychologists assert that lay judgement of risks are influenced by cognitive biases and attitudes. This study investigates the possibility that cognitive elements and general attitudes influence not only the perceived risk associated with exposures to indoor air pollutants, but also the willingness of individuals to invest in order to reduce the risk. A three-stage study was performed to determine some of the factors that influence public decisions to control the quality of the air inside their home. The study is focused on the design of a risk ladder, and the survey of 400 randomly selected individuals in the Chicago metropolitan area. The survey was designed to determine if demographics, smoking, education, or income influence the desire of individuals to invest in order to reduce indoor air pollution. The following conclusions were reached: (i) public awareness of indoor air pollution is high; (ii) media campaigns on indoor air pollution affect the determination of the specific pollutant the public perceives as important, but do not influence the public's desire to invest larger amounts of money to reduce risks from exposures to air pollutants in the residential environment; (iii) the public is not willing to spend large amounts of money to reduce indoor residential air pollution; (iv) education does not affect the level of awareness regarding indoor air pollution, but it increases the willingness to invest in an effort to reduce indoor air pollution; and (v) smoking status does not affect any of the above.

  11. Effect of Using an Indoor Air Quality Sensor on Perceptions of and Behaviors Toward Air Pollution (Pittsburgh Empowerment Library Study): Online Survey and Interviews

    PubMed Central

    Dias, M Beatrice; Taylor, Michael

    2018-01-01

    Background Air quality affects us all and is a rapidly growing concern in the 21st century. We spend the majority of our lives indoors and can be exposed to a number of pollutants smaller than 2.5 microns (particulate matter, PM2.5) resulting in detrimental health effects. Indoor air quality sensors have the potential to provide people with the information they need to understand their risk and take steps to reduce their exposure. One such sensor is the Speck sensor developed at the Community Robotics, Education and Technology Empowerment Lab at Carnegie Mellon University. This sensor provides users with continuous real-time and historical PM2.5 information, a Web-based platform where people can track their PM2.5 levels over time and learn about ways to reduce their exposure, and a venue (blog post) for the user community to exchange information. Little is known about how the use of such monitors affects people’s knowledge, attitudes, and behaviors with respect to indoor air pollution. Objective The aim of this study was to assess whether using the sensor changes what people know and do about indoor air pollution. Methods We conducted 2 studies. In the first study, we recruited 276 Pittsburgh residents online and through local branches of the Carnegie Library of Pittsburgh, where the Speck sensor was made available by the researchers in the library catalog. Participants completed a 10- to 15-min survey on air pollution knowledge (its health impact, sources, and mitigation options), perceptions of indoor air quality, confidence in mitigation, current behaviors toward air quality, and personal empowerment and creativity in the spring and summer of 2016. In our second study, we surveyed 26 Pittsburgh residents in summer 2016 who checked out the Speck sensor for 3 weeks on the same measures assessed in the first study, with additional questions about the perception and use of the sensor. Follow-up interviews were conducted with a subset of those who used the Speck sensor. Results A series of paired t tests found participants were significantly more knowledgeable (t25=−2.61, P=.02), reported having significantly better indoor air quality (t25=−5.20, P<.001), and felt more confident about knowing how to mitigate their risk (t25=−1.87, P=.07) after using the Speck sensor than before. McNemar test showed participants tended to take more action to reduce indoor air pollution after using the sensor (χ225=2.7, P=.10). Qualitative analysis suggested possible ripple effects of use, including encouraging family and friends to learn about indoor air pollution. Conclusions Providing people with low- or no-cost portable indoor air quality monitors, with a supporting Web-based platform that offers information about how to reduce risk, can help people better express perceptions and adopt behaviors commensurate with the risks they face. Thus, thoughtfully designed and deployed personal sensing devices can help empower people to take steps to reduce their risk. PMID:29519779

  12. Effect of Using an Indoor Air Quality Sensor on Perceptions of and Behaviors Toward Air Pollution (Pittsburgh Empowerment Library Study): Online Survey and Interviews.

    PubMed

    Wong-Parodi, Gabrielle; Dias, M Beatrice; Taylor, Michael

    2018-03-08

    Air quality affects us all and is a rapidly growing concern in the 21st century. We spend the majority of our lives indoors and can be exposed to a number of pollutants smaller than 2.5 microns (particulate matter, PM 2.5 ) resulting in detrimental health effects. Indoor air quality sensors have the potential to provide people with the information they need to understand their risk and take steps to reduce their exposure. One such sensor is the Speck sensor developed at the Community Robotics, Education and Technology Empowerment Lab at Carnegie Mellon University. This sensor provides users with continuous real-time and historical PM 2.5 information, a Web-based platform where people can track their PM 2.5 levels over time and learn about ways to reduce their exposure, and a venue (blog post) for the user community to exchange information. Little is known about how the use of such monitors affects people's knowledge, attitudes, and behaviors with respect to indoor air pollution. The aim of this study was to assess whether using the sensor changes what people know and do about indoor air pollution. We conducted 2 studies. In the first study, we recruited 276 Pittsburgh residents online and through local branches of the Carnegie Library of Pittsburgh, where the Speck sensor was made available by the researchers in the library catalog. Participants completed a 10- to 15-min survey on air pollution knowledge (its health impact, sources, and mitigation options), perceptions of indoor air quality, confidence in mitigation, current behaviors toward air quality, and personal empowerment and creativity in the spring and summer of 2016. In our second study, we surveyed 26 Pittsburgh residents in summer 2016 who checked out the Speck sensor for 3 weeks on the same measures assessed in the first study, with additional questions about the perception and use of the sensor. Follow-up interviews were conducted with a subset of those who used the Speck sensor. A series of paired t tests found participants were significantly more knowledgeable (t 25 =-2.61, P=.02), reported having significantly better indoor air quality (t 25 =-5.20, P<.001), and felt more confident about knowing how to mitigate their risk (t 25 =-1.87, P=.07) after using the Speck sensor than before. McNemar test showed participants tended to take more action to reduce indoor air pollution after using the sensor (χ 2 25 =2.7, P=.10). Qualitative analysis suggested possible ripple effects of use, including encouraging family and friends to learn about indoor air pollution. Providing people with low- or no-cost portable indoor air quality monitors, with a supporting Web-based platform that offers information about how to reduce risk, can help people better express perceptions and adopt behaviors commensurate with the risks they face. Thus, thoughtfully designed and deployed personal sensing devices can help empower people to take steps to reduce their risk. ©Gabrielle Wong-Parodi, M Beatrice Dias, Michael Taylor. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 08.03.2018.

  13. Remote Sensing Characterization of the Urban Landscape for Improvement of Air Quality Modeling

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Khan, Maudood

    2005-01-01

    The urban landscape is inherently complex and this complexity is not adequately captured in air quality models, particularly the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone pollutant levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban growth projections as improved inputs to the meteorology component of the CMAQ model focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include "business as usual" and "smart growth" scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, in moderating ground-level ozone and air temperature, compared to "business as usual" simulations in which heat island mitigation strategies are not applied. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the (CMAQ) modeling schemes. Use of these data has been found to better characterize low densityhburban development as compared with USGS 1 km land use/land cover data that have traditionally been used in modeling. Air quality prediction for fiture scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission, the regional planning agency for the area. This allows the state Environmental Protection agency to evaluate how these transportation plans will affect fbture air quality.

  14. Project ATLANTA (Atlanta Land use Analysis: Temperature and Air Quality): Use of Remote Sensing and Modeling to Analyze How Urban Land Use Change Affects Meteorology and Air Quality Through Time

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.

    1999-01-01

    This paper presents an overview of Project ATLANTA (ATlanta Land use ANalysis: Temperature and Air-quality) which is an investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta, Georgia metropolitan area since the early 1970's has impacted the region's climate and air quality. The primary objectives for this research effort are: (1) To investigate and model the relationships between land cover change in the Atlanta metropolitan, and the development of the urban heat island phenomenon through time; (2) To investigate and model the temporal relationships between Atlanta urban growth and land cover change on air quality; and (3) To model the overall effects of urban development on surface energy budget characteristics across the Atlanta urban landscape through time. Our key goal is to derive a better scientific understanding of how land cover changes associated with urbanization in the Atlanta area, principally in transforming forest lands to urban land covers through time, has, and will, effect local and regional climate, surface energy flux, and air quality characteristics. Allied with this goal is the prospect that the results from this research can be applied by urban planners, environmental managers and other decision-makers, for determining how urbanization has impacted the climate and overall environment of the Atlanta area. Multiscaled remote sensing data, particularly high resolution thermal infrared data, are integral to this study for the analysis of thermal energy fluxes across the Atlanta urban landscape.

  15. Ambient air quality and asthma cases in Niğde, Turkey.

    PubMed

    Kara, Ertan; Özdilek, Hasan Göksel; Kara, Emine Erman

    2013-06-01

    Urban air quality is one of the key factors affecting human health. Turkey has transformed itself into an urban society over the last 30 years. At the same time, air pollution has become a serious impairment to health in many urban areas in the country. This is due to many reasons. In this study, a nonparametric evaluation was conducted of health effects that are triggered by urban air pollution. Niğde, the city which is the administrative centre of Nigde province was chosen of the effects of air pollution since, like many central Turkish cities, it is situated on a valley where atmospheric inversion occurs. In this paper, the relationship between ambient urban air quality, namely PM10 and sulphur dioxide (SO2), and human health, specifically asthma, during the winter season is examined. Air pollution data and asthma cases from 2006 to 2010 are covered in this study. The results of our study indicate that total asthma cases reported in Nigde between 2008 and 2010 were highly dependent on ambient SO2 concentration. More asthma cases were recorded when 30 μg m(-3) or higher SO2 was present in the ambient air than those recorded under cleaner ambient air conditions. Moreover, it was determined that in Nigde in 2010, asthma cases reported in males aged between 45 and 64 were closely correlated with ambient SO2 (α=0.05).

  16. Impact of smoke from biomass burning on air quality in rural communities in southern Australia

    NASA Astrophysics Data System (ADS)

    Reisen, Fabienne; Meyer, C. P. (Mick); McCaw, Lachie; Powell, Jennifer C.; Tolhurst, Kevin; Keywood, Melita D.; Gras, John L.

    2011-08-01

    In rural towns of southern Australia, smoke from biomass burning such as prescribed burning of forests, wildfires and stubble burning is often claimed to be the major source of air pollution. To investigate the validity of this claim, ambient measurements of PM 2.5 and ozone were made in two rural locations in southern Australia between 2006 and 2008. In order to distinguish PM 2.5 associated with smoke from other sources of particulate pollution, PM 2.5 samples were analysed for specific smoke tracers, levoglucosan, non sea-salt potassium (nssK +) and oxalate. Monitoring was also undertaken in four homes to determine the extent to which ambient pollutants from prescribed burning penetrate indoors into houses. Monitoring clearly showed that, on occasions, air quality in rural areas is significantly affected by smoke from biomass combustion with PM 2.5 showing the greatest impact. Concentrations of PM 2.5 increased significantly above background levels at both sites during periods of wildfire and prescribed fire leading to exceedences of the 24-h PM 2.5 Air National Environment Protection Measure (NEPM) Advisory standard. The 1-h and 4-h ozone NEPM standards were exceeded only during protracted forest wildfires. The impact of prescribed burning on the indoor air quality of residences depended on the duration of the smoke event and the ventilation rate of the houses. During short-duration events indoor air quality was determined by household activities. During events that persisted for several days, indoor air quality was determined by external conditions coupled with management of household ventilation rate.

  17. Decision makers, scientists and the public as stakeholders: the connection between traffic intervention policy and air quality in a local context.

    NASA Astrophysics Data System (ADS)

    Weiand, L.; von Schneidemesser, E.; Schmitz, S.; Niehoff, N.

    2017-12-01

    Urban mobility is a key issue to make cities more inclusive, safer, and more environmentally friendly. To ensure a sustainable future, local policy should, among other actions, aim to improve access to sustainable transport systems and enhance mobility opportunities, while at the same time addressing critical environmental and health targets. In order to assess whether these objectives are met, measures should be informed and evaluated from a social and environmental perspective. Citizens' opinions and the acceptance of environmental policies are crucial to successful implementation of urban mobility measures. The complexity of urban air quality issues require transparent decision-making processes that are grounded in evidence-based research and embrace local knowledge. From this basis, our research group and the city council collaborated to assess a new policy action intended to address environmental and health targets. This talk will present the results from the assessment of this new policy, that was implemented in large part to alleviate air quality exceedances, from the perspective of public acceptability of the measure and the approach taken by the city council to implement the measure. Parallel to assessing the effect of this policy on the recorded levels of air pollution and traffic counts, we conducted a social survey to examine public opinions of this measure, as well as the link between air quality awareness and mobility decisions. 4661 responses were collected over a one month period. Survey participants were those most affected by the traffic measure, including commuters and local residents. The results show that there is an overall low acceptance rate of the measure (8%) as well as low concern for air quality (2,90 - where 1 = not concerned and 6 = very concerned). We also found that there is a negative relationship between air quality rating and air quality concern. A similar approach was taken to understand climate change concern, which will be discussed further in the talk as well as how concern for air quality can increase acceptability for climate change mitigation policies.

  18. Evaluating and Mapping of Spatial Air Ion Quality Patterns in a Residential Garden Using a Geostatistic Method

    PubMed Central

    Wu, Chen-Fa; Lai, Chun-Hsien; Chu, Hone-Jay; Lin, Wen-Huang

    2011-01-01

    Negative air ions (NAI) produce biochemical reactions that increase the levels of the mood chemical serotonin in the environment. Moreover, they benefit both the psychological well being and the human body’s physiological condition. The aim of this research was to estimate and measure the spatial distributions of negative and positive air ions in a residential garden in central Taiwan. Negative and positive air ions were measured at thirty monitoring locations in the study garden from July 2009 to June 2010. Moreover, Kriging was applied to estimate the spatial distribution of negative and positive air ions, as well as the air ion index in the study area. The measurement results showed that the numbers of NAI and PAI differed greatly during the four seasons, the highest and the lowest negative and positive air ion concentrations were found in the summer and winter, respectively. Moreover, temperature was positively affected negative air ions concentration. No matter what temperature is, the ranges of variogram in NAI/PAI were similar during four seasons. It indicated that spatial patterns of NAI/PAI were independent of the seasons and depended on garden elements and configuration, thus the NAP/PAI was a good estimate of the air quality regarding air ions. Kriging maps depicted that the highest negative and positive air ion concentration was next to the waterfall, whereas the lowest air ions areas were next to the exits of the garden. The results reveal that waterscapes are a source of negative and positive air ions, and that plants and green space are a minor source of negative air ions in the study garden. Moreover, temperature and humidity are positively and negatively affected negative air ions concentration, respectively. The proposed monitoring and mapping approach provides a way to effectively assess the patterns of negative and positive air ions in future landscape design projects. PMID:21776231

  19. Evaluating and mapping of spatial air ion quality patterns in a residential garden using a geostatistic method.

    PubMed

    Wu, Chen-Fa; Lai, Chun-Hsien; Chu, Hone-Jay; Lin, Wen-Huang

    2011-06-01

    Negative air ions (NAI) produce biochemical reactions that increase the levels of the mood chemical serotonin in the environment. Moreover, they benefit both the psychological well being and the human body's physiological condition. The aim of this research was to estimate and measure the spatial distributions of negative and positive air ions in a residential garden in central Taiwan. Negative and positive air ions were measured at thirty monitoring locations in the study garden from July 2009 to June 2010. Moreover, Kriging was applied to estimate the spatial distribution of negative and positive air ions, as well as the air ion index in the study area. The measurement results showed that the numbers of NAI and PAI differed greatly during the four seasons, the highest and the lowest negative and positive air ion concentrations were found in the summer and winter, respectively. Moreover, temperature was positively affected negative air ions concentration. No matter what temperature is, the ranges of variogram in NAI/PAI were similar during four seasons. It indicated that spatial patterns of NAI/PAI were independent of the seasons and depended on garden elements and configuration, thus the NAP/PAI was a good estimate of the air quality regarding air ions. Kriging maps depicted that the highest negative and positive air ion concentration was next to the waterfall, whereas the lowest air ions areas were next to the exits of the garden. The results reveal that waterscapes are a source of negative and positive air ions, and that plants and green space are a minor source of negative air ions in the study garden. Moreover, temperature and humidity are positively and negatively affected negative air ions concentration, respectively. The proposed monitoring and mapping approach provides a way to effectively assess the patterns of negative and positive air ions in future landscape design projects.

  20. Indoor human exposure to size-fractionated aerosols during the 2015 Southeast Asian smoke haze and assessment of exposure mitigation strategies

    NASA Astrophysics Data System (ADS)

    Sharma, Ruchi; Balasubramanian, Rajasekhar

    2017-11-01

    The 2015 smoke haze episode was one of the most severe and prolonged transboundary air pollution events ever seen in Southeast Asia (SEA), affecting the air quality of several countries within the region including Indonesia, Malaysia and Singapore. The 24 h mean outdoor PM2.5 (particulate matter (PM) with aerodynamic diameter ≤ 2.5 μm) concentrations ranged from 72-157 μg m-3 in Singapore during this episode, exceeding the WHO 24 h mean PM2.5 guidelines (25 μg m-3) several times over. The smoke haze episode not only affected ambient air quality, but also indoor air quality due to the migration of PM of different sizes from the outdoor to the indoor environment. Despite the frequent occurrence of smoke haze episodes over the years, their potential health impacts on indoor building occupants remain largely unknown in SEA due to the lack of systematic investigations and observational data. The current work was carried out in Singapore to assess human exposure to size-resolved PM during the 2015 smoke haze episode, and to evaluate the effectiveness of exposure mitigation measures in smoke-haze-impacted naturally ventilated indoor environments. The potential health risks associated with exposure to PM2.5 were assessed based on the concentrations of redox active particulate-bound trace elements, which are known to be harmful to human health, with and without exposure mitigation. Overall, it was observed that human health exposure to PM2.5 and its carcinogenic chemical components was reduced substantially by 62% (p < 0.05) while using an air cleaner. However, extremely small hazardous particles were only partially removed by the air cleaner and remain a matter of concern for public health.

  1. Indoor air quality levels in a University Hospital in the Eastern Province of Saudi Arabia

    PubMed Central

    El-Sharkawy, Mahmoud F.; Noweir, Mohamed E. H.

    2014-01-01

    Aim of the Study: The complex hospital environment requires special attention to ensure a healthy indoor air quality (IAQ) to protect patients and healthcare workers against hospital-acquired infections and occupational diseases. Poor hospital IAQ may cause outbreaks of building-related illness such as headaches, fatigue, eye, and skin irritations, and other symptoms. The general objective for this study was to assess IAQ inside a large University hospital at Al-Khobar City in the Eastern Province of Saudi Arabia. Materials and Methods: Different locations representing areas where most activities and tasks are performed were selected as sampling points for air pollutants in the selected hospital. In addition, several factors were studied to determine those that were most likely to affect the IAQ levels. The temperature and relative percent humidity of different air pollutants were measured simultaneously at each location. Results: The outdoor levels of all air pollutant levels, except volatile organic compounds (VOCs), were higher than the indoor levels which meant that the IAQ inside healthcare facilities (HCFs) were greatly affected by outdoor sources, particularly traffic. The highest levels of total suspended particulates (TSPs) and those less than 10 microns (PM10) inside the selected hospital were found at locations that are characterized with m4ore human activity. Conclusions: Levels of particulate matter (both PM10 and TSP) were higher than the Air Quality Guidelines (AQGs). The highest concentrations of the fungal species recorded were Cladosporium and Penicillium. Education of occupants of HCF on IAQ is critical. They must be informed about the sources and effects of contaminants and the proper operation of the ventilation system. PMID:24696632

  2. 49 CFR 520.5 - Guidelines for identifying major actions significantly affecting the environment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... impact but which have a potential for significantly affecting the environment; (2) Any proposed action... relating to the environment; (ii) has a significantly detrimental impact on air or water quality or on... vehicles or motor vehicle equipment; and (13) Any other action that causes significant environment impact...

  3. Clean Air Markets - Compliance Query Wizard

    EPA Pesticide Factsheets

    The Compliance Query Wizard is part of a suite of Clean Air Markets-related tools that are accessible at http://ampd.epa.gov/ampd/. The Compliance module provides final compliance results. Using the Compliance Query Wizard, the user can find compliance information associated with specific programs, facilities, states or time frames. Quick Reports and Prepackaged Datasets are also available for data that are commonly requested. Final compliance results are available for all years since 1995 for the Acid Rain Program and for the various NOx trading programs EPA has operated since 1999.EPA's Clean Air Markets Division (CAMD) includes several market-based regulatory programs designed to improve air quality and ecosystems. The most well-known of these programs are EPA's Acid Rain Program and the NOx Programs, which reduce emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx)-compounds that adversely affect air quality, the environment, and public health. CAMD also plays an integral role in the development and implementation of the Clean Air Interstate Rule (CAIR).

  4. Clean Air Markets - Allowances Query Wizard

    EPA Pesticide Factsheets

    The Allowances Query Wizard is part of a suite of Clean Air Markets-related tools that are accessible at http://camddataandmaps.epa.gov/gdm/index.cfm. The Allowances module allows the user to view allowance data associated with EPA's emissions trading programs. Allowance data can be specified and organized using the Allowance Query Wizard to find allowances information associated with specific accounts, companies, transactions, programs, facilities, representatives, allowance type, or by date. Quick Reports and Prepackaged Datasets are also available for data that are commonly requested.EPA's Clean Air Markets Division (CAMD) includes several market-based regulatory programs designed to improve air quality and ecosystems. The most well-known of these programs are EPA's Acid Rain Program and the NOx Programs, which reduce emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx)-compounds that adversely affect air quality, the environment, and public health. CAMD also plays an integral role in the development and implementation of the Clean Air Interstate Rule (CAIR).

  5. Clean Air Markets - Quick Facts and Trends

    EPA Pesticide Factsheets

    The Quick Facts and Trends module is part of a suite of Clean Air Markets-related tools that are accessible at http://camddataandmaps.epa.gov/gdm/index.cfm. The Quick Facts and Trends module provides charts and graphs depicting national trends in emissions and heat input. The user can view, for example, data pertaining to the top annual and ozone season emitters of a selected pollutant, the number of units and facilities in a particular state, and trends in sulfur dioxide, nitrogen oxide and carbon dioxide emissions.EPA's Clean Air Markets Division (CAMD) includes several market-based regulatory programs designed to improve air quality and ecosystems. The most well-known of these programs are EPA's Acid Rain Program and the NOx Programs, which reduce emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx)-compounds that adversely affect air quality, the environment, and public health. CAMD also plays an integral role in the development and implementation of the Clean Air Interstate Rule (CAIR).

  6. Impacts of the July 2012 Siberian fire plume on air quality in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Teakles, Andrew D.; So, Rita; Ainslie, Bruce; Nissen, Robert; Schiller, Corinne; Vingarzan, Roxanne; McKendry, Ian; Macdonald, Anne Marie; Jaffe, Daniel A.; Bertram, Allan K.; Strawbridge, Kevin B.; Leaitch, W. Richard; Hanna, Sarah; Toom, Desiree; Baik, Jonathan; Huang, Lin

    2017-02-01

    Biomass burning emissions emit a significant amount of trace gases and aerosols and can affect atmospheric chemistry and radiative forcing for hundreds or thousands of kilometres downwind. They can also contribute to exceedances of air quality standards and have negative impacts on human health. We present a case study of an intense wildfire plume from Siberia that affected the air quality across the Pacific Northwest on 6-10 July 2012. Using satellite measurements (MODIS True Colour RGB imagery and MODIS AOD), we track the wildfire smoke plume from its origin in Siberia to the Pacific Northwest where subsidence ahead of a subtropical Pacific High made the plume settle over the region. The normalized enhancement ratios of O3 and PM1 relative to CO of 0.26 and 0.08 are consistent with a plume aged 6-10 days. The aerosol mass in the plume was mainly submicron in diameter (PM1 / PM2.5 = 0.96) and the part of the plume sampled at the Whistler High Elevation Monitoring Site (2182 m a.s.l.) was 88 % organic material. Stable atmospheric conditions along the coast limited the initial entrainment of the plume and caused local anthropogenic emissions to build up. A synthesis of air quality from the regional surface monitoring networks describes changes in ambient O3 and PM2.5 during the event and contrasts them to baseline air quality estimates from the AURAMS chemical transport model without wildfire emissions. Overall, the smoke plume contributed significantly to the exceedances in O3 and PM2.5 air quality standards and objectives that occurred at several communities in the region during the event. Peak enhancements in 8 h O3 of 34-44 ppbv and 24 h PM2.5 of 10-32 µg m-3 were attributed to the effects of the smoke plume across the Interior of British Columbia and at the Whistler Peak High Elevation Site. Lesser enhancements of 10-12 ppbv for 8 h O3 and of 4-9 µg m-3 for 24 h PM2.5 occurred across coastal British Columbia and Washington State. The findings suggest that the large air quality impacts seen during this event were a combination of the efficient transport of the plume across the Pacific, favourable entrainment conditions across the BC interior, and the large scale of the Siberian wildfire emissions. A warming climate increases the risk of increased wildfire activity and events of this scale reoccurring under appropriate meteorological conditions.

  7. Fire behavior, fuel treatments, and fire suppression on the Hayman Fire - Part 6: Daily emissions

    Treesearch

    Wei Min Hao

    2003-01-01

    Biomass burning is a major source of many atmospheric trace gases and aerosol particles (Crutzen and Andreae 1990). These compounds and particulates affect public health, regional air quality, air chemistry, and global climate. It is difficult to assess quantitatively the impact wildfires have on the environment because of the uncertainty in determining the size of...

  8. Mapping Emissions that Contribute to Air Pollution Using Adjoint Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Bastien, L. A. J.; Mcdonald, B. C.; Brown, N. J.; Harley, R.

    2014-12-01

    The adjoint of the Community Multiscale Air Quality model (CMAQ) is used to map emissions that contribute to air pollution at receptors of interest. Adjoint tools provide an efficient way to calculate the sensitivity of a model response to a large number of model inputs, a task that would require thousands of simulations using a more traditional forward sensitivity approach. Initial applications of this technique, demonstrated here, are to benzene and directly-emitted diesel particulate matter, for which atmospheric reactions are neglected. Emissions of these pollutants are strongly influenced by light-duty gasoline vehicles and heavy-duty diesel trucks, respectively. We study air quality responses in three receptor areas where populations have been identified as especially susceptible to, and adversely affected by air pollution. Population-weighted air basin-wide responses for each pollutant are also evaluated for the entire San Francisco Bay area. High-resolution (1 km horizontal grid) emission inventories have been developed for on-road motor vehicle emission sources, based on observed traffic count data. Emission estimates represent diurnal, day of week, and seasonal variations of on-road vehicle activity, with separate descriptions for gasoline and diesel sources. Emissions that contribute to air pollution at each receptor have been mapped in space and time using the adjoint method. Effects on air quality of both relative (multiplicative) and absolute (additive) perturbations to underlying emission inventories are analyzed. The contributions of local versus upwind sources to air quality in each receptor area are quantified, and weekday/weekend and seasonal variations in the influence of emissions from upwind areas are investigated. The contribution of local sources to the total air pollution burden within the receptor areas increases from about 40% in the summer to about 50% in the winter due to increased atmospheric stagnation. The effectiveness of control strategies based on region-wide exposure metrics is compared with strategies that focus on improving air quality at specific receptors.

  9. Impact of National Ambient Air Quality Standards Nonattainment Designations on Particulate Pollution and Health.

    PubMed

    Zigler, Corwin M; Choirat, Christine; Dominici, Francesca

    2018-03-01

    Despite dramatic air quality improvement in the United States over the past decades, recent years have brought renewed scrutiny and uncertainty surrounding the effectiveness of specific regulatory programs for continuing to improve air quality and public health outcomes. We employ causal inference methods and a spatial hierarchical regression model to characterize the extent to which a designation of "nonattainment" with the 1997 National Ambient Air Quality Standard for ambient fine particulate matter (PM2.5) in 2005 causally affected ambient PM2.5 and health outcomes among over 10 million Medicare beneficiaries in the Eastern United States in 2009-2012. We found that, on average across all retained study locations, reductions in ambient PM2.5 and Medicare health outcomes could not be conclusively attributed to the nonattainment designations against the backdrop of other regional strategies that impacted the entire Eastern United States. A more targeted principal stratification analysis indicates substantial health impacts of the nonattainment designations among the subset of areas where the designations are estimated to have actually reduced ambient PM2.5 beyond levels achieved by regional measures, with noteworthy reductions in all-cause mortality, chronic obstructive pulmonary disorder, heart failure, ischemic heart disease, and respiratory tract infections. These findings provide targeted evidence of the effectiveness of local control measures after nonattainment designations for the 1997 PM2.5 air quality standard.

  10. Impacts of fire smoke plumes on regional air quality, 2006-2013.

    PubMed

    Larsen, Alexandra E; Reich, Brian J; Ruminski, Mark; Rappold, Ana G

    2017-12-29

    Increases in the severity and frequency of large fires necessitate improved understanding of the influence of smoke on air quality and public health. The objective of this study is to estimate the effect of smoke from fires across the continental U.S. on regional air quality over an extended period of time. We use 2006-2013 data on ozone (O 3 ), fine particulate matter (PM 2.5 ), and PM 2.5 constituents from environmental monitoring sites to characterize regional air quality and satellite imagery data to identify plumes. Unhealthy levels of O 3 and PM 2.5 were, respectively, 3.3 and 2.5 times more likely to occur on plume days than on clear days. With a two-stage approach, we estimated the effect of plumes on pollutants, controlling for season, temperature, and within-site and between-site variability. Plumes were associated with an average increase of 2.6 p.p.b. (2.5, 2.7) in O 3 and 2.9 µg/m 3 (2.8, 3.0) in PM 2.5 nationwide, but the magnitude of effects varied by location. The largest impacts were observed across the southeast. High impacts on O 3 were also observed in densely populated urban areas at large distance from the fires throughout the southeast. Fire smoke substantially affects regional air quality and accounts for a disproportionate number of unhealthy days.

  11. Emission Sectoral Contributions of Foreign Emissions to Particulate Matter Concentrations over South Korea

    NASA Astrophysics Data System (ADS)

    Kim, E.; Kim, S.; Kim, H. C.; Kim, B. U.; Cho, J. H.; Woo, J. H.

    2017-12-01

    In this study, we investigated the contributions of major emission source categories located upwind of South Korea to Particulate Matter (PM) in South Korea. In general, air quality in South Korea is affected by anthropogenic air pollutants emitted from foreign countries including China. Some studies reported that foreign emissions contributed 50 % of annual surface PM total mass concentrations in the Seoul Metropolitan Area, South Korea in 2014. Previous studies examined PM contributions of foreign emissions from all sectors considering meteorological variations. However, little studies conducted to assess contributions of specific foreign source categories. Therefore, we attempted to estimate sectoral contributions of foreign emissions from China to South Korea PM using our air quality forecasting system. We used Model Inter-Comparison Study in Asia 2010 for foreign emissions and Clean Air Policy Support System 2010 emission inventories for domestic emissions. To quantify contributions of major emission sectors to South Korea PM, we applied the Community Multi-scale Air Quality system with brute force method by perturbing emissions from industrial, residential, fossil-fuel power plants, transportation, and agriculture sectors in China. We noted that industrial sector was pre-dominant over the region except during cold season for primary PMs when residential emissions drastically increase due to heating demand. This study will benefit ensemble air quality forecasting and refined control strategy design by providing quantitative assessment on seasonal contributions of foreign emissions from major source categories.

  12. Air-Quality Impacts and Intake Fraction of PM2.5 during the 2013 Rim Megafire.

    PubMed

    Navarro, Kathleen M; Cisneros, Ricardo; O'Neill, Susan M; Schweizer, Don; Larkin, Narasimhan K; Balmes, John R

    2016-11-01

    The 2013 Rim Fire was the third largest wildfire in California history and burned 257 314 acres in the Sierra Nevada Mountains. We evaluated air-quality impacts of PM 2.5 from smoke from the Rim Fire on receptor areas in California and Nevada. We employed two approaches to examine the air-quality impacts: (1) an evaluation of PM 2.5 concentration data collected by temporary and permanent air-monitoring sites and (2) an estimation of intake fraction (iF) of PM 2.5 from smoke. The Rim Fire impacted locations in the central Sierra nearest to the fire and extended to the northern Sierra Nevada Mountains of California and Nevada monitoring sites. Daily 24-h average PM 2.5 concentrations measured at 22 air monitors had an average concentration of 20 μg/m 3 and ranged from 0 to 450 μg/m 3 . The iF for PM 2.5 from smoke during the active fire period was 7.4 per million, which is slightly higher than representative iF values for PM 2.5 in rural areas and much lower than for urban areas. This study is a unique application of intake fraction to examine emissions-to-exposure for wildfires and emphasizes that air-quality impacts are not only localized to communities near large fires but can extend long distances and affect larger urban areas.

  13. In-Cabin Air Quality during Driving and Engine Idling in Air-Conditioned Private Vehicles in Hong Kong.

    PubMed

    Barnes, Natasha Maria; Ng, Tsz Wai; Ma, Kwok Keung; Lai, Ka Man

    2018-03-27

    Many people spend lengthy periods each day in enclosed vehicles in Hong Kong. However, comparably limited data is available about in-cabin air quality in air-conditioned private vehicles, and the car usage that may affect the air quality. Fifty-one vehicles were tested for particulate matter (PM 0.3 and PM 2.5 ), total volatile organic compounds (TVOCs), carbon monoxide (CO), carbon dioxide (CO₂), airborne bacteria, and fungi levels during their routine travel journey. Ten of these vehicles were further examined for PM 0.3 , PM 2.5 , TVOCs, CO, and CO₂ during engine idling. In general, during driving PM 2.5 levels in-cabin reduced overtime, but not PM 0.3 . For TVOCs, 24% vehicles exceeded the recommended Indoor Air Quality (IAQ) level in offices and public places set by the Hong Kong Environmental Protection Department. The total volatile organic compounds (TVOC) concentration positively correlated with the age of the vehicle. Carbon monoxide (CO) levels in all of the vehicles were lower than the IAQ recommendation, while 96% vehicles exceeded the recommended CO₂ level of 1000 ppmv; 16% vehicles >5000 ppmv. Microbial counts were relatively low. TVOCs levels at idle engine were higher than that during driving. Although the time we spend in vehicles is short, the potential exposure to high levels of pollutants should not be overlooked.

  14. In-Cabin Air Quality during Driving and Engine Idling in Air-Conditioned Private Vehicles in Hong Kong

    PubMed Central

    Barnes, Natasha Maria; Ng, Tsz Wai; Ma, Kwok Keung; Lai, Ka Man

    2018-01-01

    Many people spend lengthy periods each day in enclosed vehicles in Hong Kong. However, comparably limited data is available about in-cabin air quality in air-conditioned private vehicles, and the car usage that may affect the air quality. Fifty-one vehicles were tested for particulate matter (PM0.3 and PM2.5), total volatile organic compounds (TVOCs), carbon monoxide (CO), carbon dioxide (CO2), airborne bacteria, and fungi levels during their routine travel journey. Ten of these vehicles were further examined for PM0.3, PM2.5, TVOCs, CO, and CO2 during engine idling. In general, during driving PM2.5 levels in-cabin reduced overtime, but not PM0.3. For TVOCs, 24% vehicles exceeded the recommended Indoor Air Quality (IAQ) level in offices and public places set by the Hong Kong Environmental Protection Department. The total volatile organic compounds (TVOC) concentration positively correlated with the age of the vehicle. Carbon monoxide (CO) levels in all of the vehicles were lower than the IAQ recommendation, while 96% vehicles exceeded the recommended CO2 level of 1000 ppmv; 16% vehicles >5000 ppmv. Microbial counts were relatively low. TVOCs levels at idle engine were higher than that during driving. Although the time we spend in vehicles is short, the potential exposure to high levels of pollutants should not be overlooked. PMID:29584686

  15. Navajo coal and air quality in Shiprock, New Mexico

    USGS Publications Warehouse

    Bunnell, Joseph E.; Garcia, Linda V.

    2006-01-01

    Among the Navajo people, high levels of respiratory disease, such as asthma, exist in a population with low rates of cigarette smoking. Air quality outdoors and indoors affects respiratory health. Many Navajo Nation residents burn locally mined coal in their homes for heat, as coal is the most economical energy source. The U.S. Geological Survey and Dine College, in cooperation with the Navajo Division of Health, are conducting a study in the Shiprock, New Mexico, area to determine if indoor use of this coal might be contributing to some of the respiratory health problems experienced by the residents. Researchers in this study will (1) examine respiratory health data, (2) identify stove type and use, (3) analyze samples of coal that are used locally, and (4) measure and characterize air quality inside selected homes. This Fact Sheet summarizes the interim results of the study in both English and Navajo.

  16. Assessing Impact of Aerosol Intercontinental Transport on Regional Air Quality and Climate: What Satellites Can Help

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin

    2011-01-01

    Mounting evidence for intercontinental transport of aerosols suggests that aerosols from a region could significantly affect climate and air quality in downwind regions and continents. Current assessment of these impacts for the most part has been based on global model simulations that show large variability. The aerosol intercontinental transport and its influence on air quality and climate involve many processes at local, regional, and intercontinental scales. There is a pressing need to establish modeling systems that bridge the wide range of scales. The modeling systems need to be evaluated and constrained by observations, including satellite measurements. Columnar loadings of dust and combustion aerosols can be derived from the MODIS and MISR measurements of total aerosol optical depth and particle size and shape information. Characteristic transport heights of dust and combustion aerosols can be determined from the CALIPSO lidar and AIRS measurements. CALIPSO liar and OMI UV technique also have a unique capability of detecting aerosols above clouds, which could offer some insights into aerosol lofting processes and the importance of above-cloud transport pathway. In this presentation, I will discuss our efforts of integrating these satellite measurements and models to assess the significance of intercontinental transport of dust and combustion aerosols on regional air quality and climate.

  17. Teachers and Healthy Indoor School Environments

    EPA Pesticide Factsheets

    Teachers can be powerful advocates for creating healthy indoor environments, including improving school indoor air quality (IAQ). As they are on the front lines, teachers can perceive when IAQ changes affect students and themselves.

  18. When Is Safe, Safe Enough?

    ERIC Educational Resources Information Center

    Neil, Kirk

    2002-01-01

    Discusses events affecting parental school-safety concerns and what school districts can do to alleviate those concerns. Addresses post-September 11 crisis-management procedures, preventing sports-related student deaths, maintaining healthy indoor air quality. (PKP)

  19. Monitoring and assessment of water quality of Tasik Cempaka, Bangi

    NASA Astrophysics Data System (ADS)

    Sabri, Nurul Ain Syahirah Mohamad; Abdullah, Md Pauzi; Mat, Sohif

    2014-09-01

    A study was carried out to determine the status of water quality of Tasik Cempaka which is a part of Sg. Air Itam, located near the Bangi industrial area. The study was carried out for eight months from May and to December 2013. Eight sampling stations were selected from upstream to downstream of Sg. Air Itam which represent the entire body of the lake water. There are 8 parameters measured and Water Quality Indices (WQI) was calculated and classified according to the National Water Quality Standard (NWQS). The physical and chemical parameters were temperature, pH, conductivity, dissolve oxygen (DO), total suspended solid (TSS), ammoniacal nitrogen (AN), chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Among parameters that are affected by pollution is AN, COD and BOD. Classification by WQI shows that the average for all sampling was 54 (dry) and 52 (wet). Both are of class III according to National Water Quality Standard (NWQS) indicating slightly polluted. This is mainly due to drainage from Bangi Golf Resort and Bangi-Putrajaya Hotel. Other factors are activities around Sg. Air Itam such as municipal activities, settlements and manufacturing industries.

  20. Credible investigation of air accidents.

    PubMed

    Smart, K

    2004-07-26

    Within the United Kingdom the Air Accidents Investigation Branch (AAIB) has been used as a model for the other transport modes accident investigation bodies. Government Ministers considered that the AAIB's approach had established the trust of the public and the aviation industry in its ability to conduct independent and objective investigations. The paper will examine the factors that are involved in establishing this trust. They include: the investigation framework; the actual and perceived independence of the accident investigating body; the aviation industry's safety culture; the qualities of the investigators and the quality of their liaison with bereaved families those directly affected by the accidents they investigate.

  1. 78 FR 29306 - Approval and Promulgation of Implementation Plans; Florida; Infrastructure Requirements for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ... quality modeling/data. 110(a)(2)(L): Permitting fees. 110(a)(2)(M): Consultation/participation by affected... state statutes, 403.131, Injunctive relief, remedies and 120.569(n) (relating to emergency orders) which allow the state to seek injunctive relief to prevent irreparable damage to air quality. In addition, the...

  2. Environmental Impact of Megacities - Results from CityZen

    NASA Astrophysics Data System (ADS)

    Gauss, M.

    2012-04-01

    Megacities have increasingly important impacts on air quality and climate change on different spatial scales, owing to their high population densities and concentrated emission sources. The EU FP7 project CityZen (Megacity - Zoom for the Environment) ended in 2011 and was, together with its sister project MEGAPOLI, part of a major research effort within FP7 on megacities in Europe and worldwide. The project mainly focused on air pollution trends in large cities and emission hotspots, climate-chemistry couplings, future projections, and emission mitigation options. Both observational and modeling tools have been extensively used. This paper reviews some of the main results from CityZen regarding present air pollution in and around megacities, future scenarios and mitigation options to reduce air pollution and/or climate change, and the main policy messages from the project. The different observed trends over European and Asian hotspots during the last 10 to 15 years are shown. Results of source attribution of pollutants, which have been measured and calculated in and around the different selected hot spots in CityZen will be discussed. Another important question to be addressed is the extent to which climate change will affect air quality and the effectiveness of air quality legislation. Although projected emission reductions are a major determinate influencing the predictions of future air pollution, model results suggest that climate change has to be taken into account when devising future air quality legislation. This paper will also summarize some important policy messages in terms of ozone, particles and the observational needs that have been put forward as conclusions from the project.

  3. The impact of past and future climate change on global human mortality due to ozone and PM2.5 outdoor air pollution

    NASA Astrophysics Data System (ADS)

    Silva, R.; West, J.; Anenberg, S.; Lamarque, J.; Shindell, D. T.; Bergmann, D. J.; Berntsen, T.; Cameron-Smith, P. J.; Collins, B.; Ghan, S. J.; Josse, B.; Nagashima, T.; Naik, V.; Plummer, D.; Rodriguez, J. M.; Szopa, S.; Zeng, G.

    2012-12-01

    Climate change can adversely affect air quality, through changes in meteorology, atmospheric chemistry, and emissions. Future changes in air pollutant emissions will also profoundly influence air quality. These changes in air quality can affect human health, as exposure to ground-level ozone and fine particulate matter (PM2.5) has been associated with premature human mortality. Here we will quantify the global mortality impacts of past and future climate change, considering the effects of climate change on air quality isolated from emission changes. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has simulated the past and future surface concentrations of ozone and PM2.5 from each of several GCMs, for emissions from 1850 ("preindustrial") to 2000 ("present-day"), and for the IPCC AR5 Representative Concentration Pathways (RCPs) scenarios to 2100. We will use ozone and PM2.5 concentrations from simulations from five or more global models of atmospheric dynamics and chemistry, for a base year (present-day), pre-industrial conditions, and future scenarios, considering changes in climate and emissions. We will assess the mortality impacts of past climate change by using one simulation ensemble with present emissions and climate and one with present emissions but 1850 climate. We will similarly quantify the potential impacts of future climate change under the four RCP scenarios in 2030, 2050 and 2100. All model outputs will be regridded to the same resolution to estimate multi-model medians and range in each grid cell. Resulting premature deaths will be calculated using these medians along with epidemiologically-derived concentration-response functions, and present-day or future projections of population and baseline mortality rates, considering aging and transitioning disease rates over time. The spatial distributions of current and future global premature mortalities due to ozone and PM2.5 outdoor air pollution will be presented separately. These results will strengthen our understanding of the impacts of climate change today, and in future years considering different plausible scenarios.

  4. A Study of the Role of Clouds in the Relationship Between Land Use/Land Cover and the Climate and Air Quality of the Atlanta Area

    NASA Technical Reports Server (NTRS)

    Kidder, Stanley Q.; Hafner, Jan

    2001-01-01

    The goal of Project ATLANTA is to derive a better scientific understanding of how land cover changes associated with urbanization affect climate and air quality. In this project the role that clouds play in this relationship was studied. Through GOES satellite observations and RAMS modeling of the Atlanta area, we found that in Atlanta (1) clouds are more frequent than in the surrounding rural areas; (2) clouds cool the surface by shading and thus tend to counteract the warming effect of urbanization; (3) clouds reflect sunlight, which might other wise be used to produce ozone; and (4) clouds decrease biogenic emission of ozone precursors, and they probably decrease ozone concentration. We also found that mesoscale modeling of clouds, especially of small, summertime clouds, needs to be improved and that coupled mesoscale and air quality models are needed to completely understand the mediating role that clouds play in the relationship between land use/land cover change and the climate and air quality of Atlanta. It is strongly recommended that more cities be studied to strengthen and extend these results.

  5. Beyond the ABCs.

    ERIC Educational Resources Information Center

    American School & University, 1997

    1997-01-01

    Offers different school administrators' opinions on issues affecting education. Focuses on the Americans with Disabilities Act, school administration, business offices, contract services, energy concerns, school facilities, furniture and furnishings, hazardous materials, indoor air quality, lighting, maintenance, physical education, purchasing,…

  6. Satellite data driven modeling system for predicting air quality and visibility during wildfire and prescribed burn events

    NASA Astrophysics Data System (ADS)

    Nair, U. S.; Keiser, K.; Wu, Y.; Maskey, M.; Berendes, D.; Glass, P.; Dhakal, A.; Christopher, S. A.

    2012-12-01

    The Alabama Forestry Commission (AFC) is responsible for wildfire control and also prescribed burn management in the state of Alabama. Visibility and air quality degradation resulting from smoke are two pieces of information that are crucial for this activity. Currently the tools available to AFC are the dispersion index available from the National Weather Service and also surface smoke concentrations. The former provides broad guidance for prescribed burning activities but does not provide specific information regarding smoke transport, areas affected and quantification of air quality and visibility degradation. While the NOAA operational air quality guidance includes surface smoke concentrations from existing fire events, it does not account for contributions from background aerosols, which are important for the southeastern region including Alabama. Also lacking is the quantification of visibility. The University of Alabama in Huntsville has developed a state-of-the-art integrated modeling system to address these concerns. This system based on the Community Air Quality Modeling System (CMAQ) that ingests satellite derived smoke emissions and also assimilates NASA MODIS derived aerosol optical thickness. In addition, this operational modeling system also simulates the impact of potential prescribed burn events based on location information derived from the AFC prescribed burn permit database. A lagrangian model is used to simulate smoke plumes for the prescribed burns requests. The combined air quality and visibility degradation resulting from these smoke plumes and background aerosols is computed and the information is made available through a web based decision support system utilizing open source GIS components. This system provides information regarding intersections between highways and other critical facilities such as old age homes, hospitals and schools. The system also includes satellite detected fire locations and other satellite derived datasets relevant for fire and smoke management.

  7. Air quality impacted by local pollution sources and beyond - Using a prominent petro-industrial complex as a study case.

    PubMed

    Chen, Sheng-Po; Wang, Chieh-Heng; Lin, Wen-Dian; Tong, Yu-Huei; Chen, Yu-Chun; Chiu, Ching-Jui; Chiang, Hung-Chi; Fan, Chen-Lun; Wang, Jia-Lin; Chang, Julius S

    2018-05-01

    The present study combines high-resolution measurements at various distances from a world-class gigantic petrochemical complex with model simulations to test a method to assess industrial emissions and their effect on local air quality. Due to the complexity in wind conditions which were highly seasonal, the dominant wind flow patterns in the coastal region of interest were classified into three types, namely northeast monsoonal (NEM) flows, southwest monsoonal (SEM) flows and local circulation (LC) based on six years of monitoring data. Sulfur dioxide (SO 2 ) was chosen as an indicative pollutant for prominent industrial emissions. A high-density monitoring network of 12 air-quality stations distributed within a 20-km radius surrounding the petrochemical complex provided hourly measurements of SO 2 and wind parameters. The SO 2 emissions from major industrial sources registered by the monitoring network were then used to validate model simulations and to illustrate the transport of the SO 2 plumes under the three typical wind patterns. It was found that the coupling of observations and modeling was able to successfully explain the transport of the industrial plumes. Although the petrochemical complex was seemingly the only major source to affect local air quality, multiple prominent sources from afar also played a significant role in local air quality. As a result, we found that a more complete and balanced assessment of the local air quality can be achieved only after taking into account the wind characteristics and emission factors of a much larger spatial scale than the initial (20 km by 20 km) study domain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. A Decadal Spatial and Temporal Analysis of PM10 in Istanbul: 1998-2008

    NASA Astrophysics Data System (ADS)

    Kilic, D.; Baltacibasi, S.; Unal, A.; Kindap, T.

    2012-04-01

    This study provides valuable new insights into the key contributors to ambient air quality in Istanbul, one of the largest mega-cities in Europe. The study builds on work in Europe that links air quality with national dynamics such as economical, vehicle activity and, meteorology in the long-term. Spatial and temporal analysis was performed on PM10 levels measured at 10 air quality monitoring sta- tions (AQMSs) in Istanbul from 1998 to 2008. The analysis found that ambient air quality levels are linked with winter temperatures as well as economic activity. The mean annual PM10 levels in 2001 are among the three lowest years in the period. This decrease corresponds with daily temperature data and annual number of heating degree days which shows that 2001 was one of the warmest winters in Istanbul. Warmer temperatures led to a decrease in energy demand for heating purposes, as demonstrated by the coal sales data. Low ambient air quality levels in 2001 also correspond to a decrease in gross domestic product and electricity demand due to the national economic crisis in March 2001 which affected industrial activity and as a result industrial and energy production related emissions. The study also found that air quality levels in Istanbul are a threat to human health and the environment. Based on the annual and seasonal PM10 profiles of the stations, 5 of the 6 AQMSs in the European Side of the city had mean PM10 values above the EU limit for PM10 for over 50% of the time. According to the linear regression analysis, there is no significant increase or decrease in the annual PM10 trend in Istanbul, this may be due warm winter and economic crisis in 2001.

  9. The effects of transboundary air pollution following major events in China on air quality in the U.S.: Evidence from Chinese New Year and sandstorms.

    PubMed

    Ngo, N S; Zhong, N; Bao, X

    2018-04-15

    Transboundary air pollution is a global environmental and public health problem including in the U.S., where pollution emissions from China, the largest emitter of anthropogenic air pollution in the world, can travel across the Pacific Ocean and reach places like California and Oregon. We examine the effects of transboundary air pollution following major events in China, specifically sandstorms, a natural-occurring source of air pollution, and Chinese New Year, a major 7-day holiday, on background air quality in the U.S. We focus on high elevation sites on the west coast between 2000 and 2013. We use regression analysis and a natural experiment to exploit the variation in the timing of these events in China, which are plausibly uncorrelated to other factors that affect air quality in China and the U.S. We find that sandstorms are associated with statistically significant increases in background coarse and fine particulate matter (PM) in the U.S., representing between 16 and 39% of average weekly PM levels. We also find Chinese New Year is associated with modest reductions in background air quality in the U.S., representing between 0.4 and 2.5% of PM levels. Findings are robust to different models and falsification tests. These results suggest that regression analysis could be a powerful tool to complement other, more widely used techniques in the environmental sciences that study this problem. This also has important implications for policymakers, who could track major sandstorms in China and prepare for possible increased foreign pollution emissions in the U.S. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The correlation of Acanthamoeba from the ventilation system with other environmental parameters in commercial buildings as possible indicator for indoor air quality.

    PubMed

    Ooi, Soo Shen; Mak, Joon Wah; Chen, Donald K F; Ambu, Stephen

    2017-02-07

    The free-living protozoan Acanthamoeba is an opportunistic pathogen that is ubiquitous in our environment. However, its role in affecting indoor air quality and ill-health of indoor occupants is relatively unknown. The present study investigated the presence of Acanthamoeba from the ventilation system and its correlation with other indoor air quality parameters, used in the industry code of practice and its potential as an indicator for indoor air quality. Indoor air quality assessments were carried out in nine commercial buildings with approval from the building management, and the parameters assessed were as recommended by the Department of Occupational Safety and Health. The presence of Acanthamoeba was determined through dust swabs from the ventilation system and indoor furniture. Logistic regression was performed to study the correlation between assessed parameters and occupants' complaints. A total of 107 sampling points were assessed and 40.2% of the supplying air diffuser and blowing fan and 15% of the furniture were positive for cysts. There was a significant correlation between Acanthamoeba detected from the ventilation system with ambient total fungus count (r=0.327; p=0.01) and respirable particulates (r=0.276; p=0.01). Occupants' sick building syndrome experience also correlated with the presence of Acanthamoeba in the ventilation system (r=0.361; p=0.01) and those detected on the furniture (r=0.290; p=0.01). Logistic regression showed that there was a five-fold probability of sick building syndrome among occupants when Acanthamoeba was detected in the ventilation system.

  11. The correlation of Acanthamoeba from the ventilation system with other environmental parameters in commercial buildings as possible indicator for indoor air quality

    PubMed Central

    OOI, Soo Shen; MAK, Joon Wah; CHEN, Donald K.F.; AMBU, Stephen

    2016-01-01

    The free-living protozoan Acanthamoeba is an opportunistic pathogen that is ubiquitous in our environment. However, its role in affecting indoor air quality and ill-health of indoor occupants is relatively unknown. The present study investigated the presence of Acanthamoeba from the ventilation system and its correlation with other indoor air quality parameters, used in the industry code of practice and its potential as an indicator for indoor air quality. Indoor air quality assessments were carried out in nine commercial buildings with approval from the building management, and the parameters assessed were as recommended by the Department of Occupational Safety and Health. The presence of Acanthamoeba was determined through dust swabs from the ventilation system and indoor furniture. Logistic regression was performed to study the correlation between assessed parameters and occupants’ complaints. A total of 107 sampling points were assessed and 40.2% of the supplying air diffuser and blowing fan and 15% of the furniture were positive for cysts. There was a significant correlation between Acanthamoeba detected from the ventilation system with ambient total fungus count (r=0.327; p=0.01) and respirable particulates (r=0.276; p=0.01). Occupants’ sick building syndrome experience also correlated with the presence of Acanthamoeba in the ventilation system (r=0.361; p=0.01) and those detected on the furniture (r=0.290; p=0.01). Logistic regression showed that there was a five-fold probability of sick building syndrome among occupants when Acanthamoeba was detected in the ventilation system. PMID:27476379

  12. Estimating the effects of the transboundary transport and local emissions of atmospheric pollutants in South Korea during KORUS-AQ campaign

    NASA Astrophysics Data System (ADS)

    Lee, S.; Koo, J. H.; Hong, J.; Choi, M.; Kim, J.; Lim, H.; Holben, B. N.; Eck, T. F.; Ahn, J. Y.; Park, J.; Kim, S. K.

    2017-12-01

    The air quality of South Korea, located in the east of China, is affected by persistent westerlies, showing the relationship to the emission in upwind region. High aerosol concentration in South Korea is also attributed to local emissions. Particularly, the industrial complex and power plants are concentrated in the Chungcheongnam-do (CN), located by the southwest part of Seoul Metropolitan Area (SMA). In this study, we evaluate the contribution of both the transboundary transport of Chinese pollutants and local emissions in the CN to the air quality in South Korea during Korea-US Air Quality (KORUS-AQ) campaign, 1 May to 12 June in 2016. Based on the information of aerosol optical depth (AOD) obtained from ground-based Aerosol Robotic NETwork (AERONET) sunphotometer and surface in-situ Particulate Matter (PM) measurements at 19 stations, high and low aerosol pollution cases are classified first. Then, 2-day back-trajectories are calculated using National Ocean and Atmospheric Administration (NOAA) HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model at each AERONET site to investigate whether transport pattern is different in accordance with the classified cases about aerosol amounts. As a result, we find the distinct pathway of air-mass transport from eastern China; When high AOD is observed at station located in the western coast of South Korea, air masses are directly transported from Shandong peninsular to the Korean peninsula. In contrast, air masses are mostly transported from northwestern or northern China during the period of low AOD conditions. When PM2.5 detected at SMA sites is greater than Korean government criteria (50 micrograms per cubic meter for 24-hour average PM2.5), SMA sites are mostly affected by air mass flows through the CN area. These results indicate that transport pattern can be different vertically and surface aerosol concentration has different transport pattern from the transport pattern related to the variation of total column aerosol.

  13. Reduce oil and grease content in wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capps, R.W.; Matelli, G.N.; Bradford, M.L.

    Poor water quality is often blamed on biological oxidation unit malfunction. However, poorly treated water entering the bio-unit is more often the problem. At the microscopic level, oil/water-separation dynamics are influenced by pH, fluid velocity, temperature, and unit volumes. Oily water's physical and chemical properties affect pretreatment systems such as API separators, corrugated plate interception (CPI) separators, air flotation and equalization systems. A better understanding of pretreatment systems' limits and efficiencies can improve wastewater quality before it upsets the biological oxidation (BIOX). Oil contamination in refinery wastewater originates from desalting, steam stripping, product treating, tank drains, sample drains and equipmentmore » washdown. The largest volumetric contributors are cooling tower blowdowns and contaminated stormwater. The paper describes the BIOX process; oil/water separation; oil/water emulsions and colloidal solutions; air flotation; surfactants; DAF (dissolved air flotation) process; IAF (induced air flotation) process; equalization; load factors; salts; and system design.« less

  14. Calculation of containment concentrations while coating the interior of a bulk storage fuel tank

    NASA Astrophysics Data System (ADS)

    Haberlin, Gail Maureen

    1990-05-01

    In the last decade we, as a society, have made great strides in the field of Occupational Safety and Health. The smarter we become about the hazards that surround us the more we need to learn. It is not enough to know that a substance provides a potential risk to an individual but we need to know what that risk is; specifically in a particular occupational activity, when does exposure to a chemical become hazardous and what are the effects of the exposure. Air quality may be defined as the characteristics of air that affect an individual's health and well-being in a salubrious way. More technically, air quality is a quantitative indicator of how well air satisfies the requirements for human occupancy: thermal acceptability; normal concentrations of respiratory gases (i.e., oxygen, nitrogen and carbon dioxide); and suppression of other contaminants below levels that are deleterious to health or produce unpleasant odors.

  15. Global air quality and climate.

    PubMed

    Fiore, Arlene M; Naik, Vaishali; Spracklen, Dominick V; Steiner, Allison; Unger, Nadine; Prather, Michael; Bergmann, Dan; Cameron-Smith, Philip J; Cionni, Irene; Collins, William J; Dalsøren, Stig; Eyring, Veronika; Folberth, Gerd A; Ginoux, Paul; Horowitz, Larry W; Josse, Béatrice; Lamarque, Jean-François; MacKenzie, Ian A; Nagashima, Tatsuya; O'Connor, Fiona M; Righi, Mattia; Rumbold, Steven T; Shindell, Drew T; Skeie, Ragnhild B; Sudo, Kengo; Szopa, Sophie; Takemura, Toshihiko; Zeng, Guang

    2012-10-07

    Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH(4)), ozone precursors (O(3)), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O(3) precursor CH(4) would slow near-term warming by decreasing both CH(4) and tropospheric O(3). Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NO(x)) emissions, which increase tropospheric O(3) (warming) but also increase aerosols and decrease CH(4) (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH(4) volatile organic compounds (NMVOC) warm by increasing both O(3) and CH(4). Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O(3) and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative Concentration Pathway (RCP) scenarios assume uniformly an aggressive reduction, of air pollutant emissions. New estimates from the current generation of chemistry-climate models with RCP emissions thus project improved air quality over the next century relative to those using the IPCC SRES scenarios. These two sets of projections likely bracket possible futures. We find that uncertainty in emission-driven changes in air quality is generally greater than uncertainty in climate-driven changes. Confidence in air quality projections is limited by the reliability of anthropogenic emission trajectories and the uncertainties in regional climate responses, feedbacks with the terrestrial biosphere, and oxidation pathways affecting O(3) and SOA.

  16. Air pollution and public health: emerging hazards and improved understanding of risk.

    PubMed

    Kelly, Frank J; Fussell, Julia C

    2015-08-01

    Despite past improvements in air quality, very large parts of the population in urban areas breathe air that does not meet European standards let alone the health-based World Health Organisation Air Quality Guidelines. Over the last 10 years, there has been a substantial increase in findings that particulate matter (PM) air pollution is not only exerting a greater impact on established health endpoints, but is also associated with a broader number of disease outcomes. Data strongly suggest that effects have no threshold within the studied range of ambient concentrations, can occur at levels close to PM2.5 background concentrations and that they follow a mostly linear concentration-response function. Having firmly established this significant public health problem, there has been an enormous effort to identify what it is in ambient PM that affects health and to understand the underlying biological basis of toxicity by identifying mechanistic pathways-information that in turn will inform policy makers how best to legislate for cleaner air. Another intervention in moving towards a healthier environment depends upon the achieving the right public attitude and behaviour by the use of optimal air pollution monitoring, forecasting and reporting that exploits increasingly sophisticated information systems. Improving air quality is a considerable but not an intractable challenge. Translating the correct scientific evidence into bold, realistic and effective policies undisputedly has the potential to reduce air pollution so that it no longer poses a damaging and costly toll on public health.

  17. Evaluation of Volatile Organic Compounds and Carbonyl Compounds Present in the Cabins of Newly Produced, Medium- and Large-Size Coaches in China

    PubMed Central

    Lu, Yan-Yang; Lin, Yi; Zhang, Han; Ding, Dongxiao; Sun, Xia; Huang, Qiansheng; Lin, Lifeng; Chen, Ya-Jie; Chi, Yu-Lang; Dong, Sijun

    2016-01-01

    An air-conditioned coach is an important form of transportation in modern motorized society; as a result, there is an increasing concern of in-vehicle air pollution. In this study, we aimed to identify and quantify the levels of volatile organic compounds (VOCs) and carbonyl compounds (CCs) in air samples collected from the cabins of newly produced, medium- and large-size coaches. Among the identified VOCs and CCs, toluene, ethylbenzene, xylene, formaldehyde, acetaldehyde, acrolein/acetone, and isovaleraldehyde were relatively abundant in the cabins. Time was found to affect the emissions of the contaminants in the coaches. Except for benzaldehyde, valeraldehyde and benzene, the highest in-vehicle concentrations of VOCs and CCs were observed on the 15th day after coming off the assembly line, and the concentrations exhibited an approximately inverted U-shaped pattern as a function of time. Interestingly, this study also showed that the interior temperature of the coaches significantly affected the VOCs emissions from the interior materials, whereas the levels of CCs were mainly influenced by the relative humidity within the coaches. In China, guidelines and regulations for the in-vehicle air quality assessment of the coaches have not yet been issued. The results of this study provide further understanding of the in-vehicle air quality of air-conditioned coaches and can be used in the development of both specific and general rules regarding medium- and large-size coaches. PMID:27314375

  18. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with changing climate: implications for human and environmental health.

    PubMed

    Madronich, S; Shao, M; Wilson, S R; Solomon, K R; Longstreth, J D; Tang, X Y

    2015-01-01

    UV radiation is an essential driver for the formation of photochemical smog, which includes ground-level ozone and particulate matter (PM). Recent analyses support earlier work showing that poor outdoor air quality is a major environmental hazard as well as quantifying health effects on regional and global scales more accurately. Greater exposure to these pollutants has been linked to increased risks of cardiovascular and respiratory diseases in humans and is associated globally with several million premature deaths per year. Ozone also has adverse effects on yields of crops, leading to loss of billions of US dollars each year. These detrimental effects also may alter biological diversity and affect the function of natural ecosystems. Future air quality will depend mostly on changes in emission of pollutants and their precursors, but changes in UV radiation and climate will contribute as well. Significant reductions in emissions, mainly from the energy and transportation sectors, have already led to improved air quality in many locations. Air quality will continue to improve in those cities/states that can afford controls, and worsen where the regulatory infrastructure is not available. Future changes in UV radiation and climate will alter the rates of formation of ground-level ozone and photochemically-generated particulate matter and must be considered in predictions of air quality. The decrease in UV radiation associated with recovery of stratospheric ozone will, according to recent global atmospheric model simulations, lead to increases in ground-level ozone at most locations. If correct, this will add significantly to future ground-level ozone trends. However, the spatial resolution of these global models is insufficient to inform policy at this time, especially for urban areas. UV radiation affects the atmospheric concentration of hydroxyl radicals, ˙OH, which are responsible for the self-cleaning of the atmosphere. Recent measurements confirm that, on a local scale, ˙OH radicals respond rapidly to changes in UV radiation. However, on large (global) scales, models differ in their predictions by nearly a factor of two, with consequent uncertainties for estimating the atmospheric lifetime and concentrations of key greenhouse gases and air pollutants. Projections of future climate need to consider these uncertainties. No new negative environmental effects of substitutes for ozone depleting substances or their breakdown-products have been identified. However, some substitutes for the ozone depleting substances will continue to contribute to global climate change if concentrations rise above current levels.

  19. Real-Time Environmental Sensors to Improve Health in the Sensing City

    NASA Astrophysics Data System (ADS)

    Marek, L.; Campbell, M.; Epton, M.; Storer, M.; Kingham, S.

    2016-06-01

    The opportunity of an emerging smart city in post-disaster Christchurch has been explored as a way to improve the quality of life of people suffering Chronic Obstructive Pulmonary Disease (COPD), which is a progressive disease that affects respiratory function. It affects 1 in 15 New Zealanders and is the 4th largest cause of death, with significant costs to the health system. While, cigarette smoking is the leading cause of COPD, long-term exposure to other lung irritants, such as air pollution, chemical fumes, or dust can also cause and exacerbate it. Currently, we do know little what happens to the patients with COPD after they leave a doctor's care. By learning more about patients' movements in space and time, we can better understand the impacts of both the environment and personal mobility on the disease. This research is studying patients with COPD by using GPS-enabled smartphones, combined with the data about their spatiotemporal movements and information about their actual usage of medication in near real-time. We measure environmental data in the city, including air pollution, humidity and temperature and how this may subsequently be associated with COPD symptoms. In addition to the existing air quality monitoring network, to improve the spatial scale of our analysis, we deployed a series of low-cost Internet of Things (IoT) air quality sensors as well. The study demonstrates how health devices, smartphones and IoT sensors are becoming a part of a new health data ecosystem and how their usage could provide information about high-risk health hotspots, which, in the longer term, could lead to improvement in the quality of life for patients with COPD.

  20. Water-quality monitoring and process understanding in support of environmental policy and management

    USGS Publications Warehouse

    Peters, N.E.

    2008-01-01

    The quantity and quality of freshwater at any point on the landscape reflect the combined effects of many processes operating along hydrological pathways within a drainage basin/watershed/catchment. Primary drivers for the availability of water are landscape changes and patterns, and the processes affecting the timing, magnitude, and intensity of precipitation, including global climate change. The degradation of air, land, and water in one part of a drainage basin can have negative effects on users downstream; the time and space scales of the effects are determined by the residence time along the various hydrological pathways. Hydrology affects transport, deposition, and recycling of inorganic materials and sediment. These components affect biota and associated ecosystem processes, which rely on sustainable flows throughout a drainage basin. Human activities on all spatial scales affect both water quantity and quality, and some human activities can have a disproportionate effect on an entire drainage basin. Aquatic systems have been continuously modified by agriculture, through land-use change, irrigation and navigation, disposal of urban, mining, and industrial wastes, and engineering modifications to the environment. Interdisciplinary integrated basin studies within the last several decades have provided a more comprehensive understanding of the linkages among air, land, and water resources. This understanding, coupled with environmental monitoring, has evolved a more multidisciplinary integrated approach to resource management, particularly within drainage basins.

  1. Thermal Catalytic Oxidation of Airborne Contaminants by a Reactor Using Ultra-Short Channel Length, Monolithic Catalyst Substrates

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Tomes, K. M.; Tatara, J. D.

    2005-01-01

    Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed.

  2. An Internet of Things System for Underground Mine Air Quality Pollutant Prediction Based on Azure Machine Learning

    PubMed Central

    Jo, ByungWan

    2018-01-01

    The implementation of wireless sensor networks (WSNs) for monitoring the complex, dynamic, and harsh environment of underground coal mines (UCMs) is sought around the world to enhance safety. However, previously developed smart systems are limited to monitoring or, in a few cases, can report events. Therefore, this study introduces a reliable, efficient, and cost-effective internet of things (IoT) system for air quality monitoring with newly added features of assessment and pollutant prediction. This system is comprised of sensor modules, communication protocols, and a base station, running Azure Machine Learning (AML) Studio over it. Arduino-based sensor modules with eight different parameters were installed at separate locations of an operational UCM. Based on the sensed data, the proposed system assesses mine air quality in terms of the mine environment index (MEI). Principal component analysis (PCA) identified CH4, CO, SO2, and H2S as the most influencing gases significantly affecting mine air quality. The results of PCA were fed into the ANN model in AML studio, which enabled the prediction of MEI. An optimum number of neurons were determined for both actual input and PCA-based input parameters. The results showed a better performance of the PCA-based ANN for MEI prediction, with R2 and RMSE values of 0.6654 and 0.2104, respectively. Therefore, the proposed Arduino and AML-based system enhances mine environmental safety by quickly assessing and predicting mine air quality. PMID:29561777

  3. An Internet of Things System for Underground Mine Air Quality Pollutant Prediction Based on Azure Machine Learning.

    PubMed

    Jo, ByungWan; Khan, Rana Muhammad Asad

    2018-03-21

    The implementation of wireless sensor networks (WSNs) for monitoring the complex, dynamic, and harsh environment of underground coal mines (UCMs) is sought around the world to enhance safety. However, previously developed smart systems are limited to monitoring or, in a few cases, can report events. Therefore, this study introduces a reliable, efficient, and cost-effective internet of things (IoT) system for air quality monitoring with newly added features of assessment and pollutant prediction. This system is comprised of sensor modules, communication protocols, and a base station, running Azure Machine Learning (AML) Studio over it. Arduino-based sensor modules with eight different parameters were installed at separate locations of an operational UCM. Based on the sensed data, the proposed system assesses mine air quality in terms of the mine environment index (MEI). Principal component analysis (PCA) identified CH₄, CO, SO₂, and H₂S as the most influencing gases significantly affecting mine air quality. The results of PCA were fed into the ANN model in AML studio, which enabled the prediction of MEI. An optimum number of neurons were determined for both actual input and PCA-based input parameters. The results showed a better performance of the PCA-based ANN for MEI prediction, with R ² and RMSE values of 0.6654 and 0.2104, respectively. Therefore, the proposed Arduino and AML-based system enhances mine environmental safety by quickly assessing and predicting mine air quality.

  4. Disparities in urban/rural environmental quality

    EPA Science Inventory

    Individuals experience simultaneous exposure to many pollutants and social factors, which cluster to affect human health outcomes. Because the optimal approach to combining these factors is unknown, we developed a method to model simultaneous exposure using criteria air pollutant...

  5. Special issue: Chemical characterization of secondary organic aerosol - Dedication to Professor Magda Claeys

    NASA Astrophysics Data System (ADS)

    Surratt, Jason D.; Szmigielski, Rafal; Faye McNeill, V.

    2016-04-01

    Atmospheric aerosols are suspensions of liquid and solid particles that have diameters ranging from a few nanometers to several micrometers (μm). Atmospheric fine particulate matter (PM2.5, aerosols with aerodynamic diameters of 2.5 μm or less) are especially important since they can adversely affect air quality and human health as well as play a critical role in Earth's climate system. In terms of aerosol climate effects, PM2.5 can directly affect climate by scattering or absorbing incoming solar radiation or indirectly by acting as nuclei on which cloud droplets and ice particles form. As a result, a better understanding of processes that determine the formation and sinks of PM2.5 is needed for developing effective policies that improve air quality and public health as well as to accurately predict the response of the climate system due to changes in anthropogenic emissions.

  6. The effect of natural ventilation strategy on indoor air quality in schools.

    PubMed

    Stabile, Luca; Dell'Isola, Marco; Russi, Aldo; Massimo, Angelamaria; Buonanno, Giorgio

    2017-10-01

    In order to reduce children's exposure to pollutants in classrooms a proper ventilation strategy need to be adopted. Such strategy is even more important in naturally ventilated schools where the air exchange rate is only based on the manual airing of classrooms. The present work aimed to evaluate the effect of the manual airing strategy on indoor air quality in Italian classrooms. For this aim, schools located in the Central Italy were investigated. Indoor air quality was studied in terms of CO 2 , particle number and PM concentrations and compared to corresponding outdoor levels. In particular two experimental analyses were performed: i) a comparison between heating and non heating season in different schools; ii) an evaluation of the effect of scheduled airing periods on the dilution of indoor-generated pollutants and the penetration of outdoor-generated ones. In particular, different airing procedures, i.e. different window opening periods (5 to 20min per hour) were imposed and controlled through contacts installed on classroom windows and doors. Results revealed that the airing strategy differently affect the several pollutants detected in indoors depending on their size, origin and dynamics. Longer airing periods may result in reduced indoor CO 2 concentrations and, similarly, other gaseous indoor-generated pollutants. Simultaneously, higher ultrafine particle (and other vehicular-related pollutants) levels in indoors were measured due to infiltration from outdoors. Finally, a negligible effect of the manual airing on PM levels in classroom was detected. Therefore, a simultaneous reduction in concentration levels for all the pollutant metrics in classrooms cannot be obtained just relying upon air permeability of the building envelope and manual airing of the classrooms. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Indoor climate and air quality . Review of current and future topics in the field of ISB study group 10

    NASA Astrophysics Data System (ADS)

    Höppe, P.; Martinac, Ivo

    In industrialized countries about 90% of the time is spent indoors. The ambient parameters affecting indoor thermal comfort are air temperature and humidity, air velocity, and radiant heat exchange within an enclosure. In assessing the thermal environment, one needs to consider all ambient parameters, the insulating properties of the occupants' clothing, and the activity level of the occupants by means of heat balance models of the human body. Apart from thermal parameters, air quality (measured and perceived) is also of importance for well-being and health in indoor environments. Pollutant levels are influenced by both outdoor concentrations and by indoor emissions. Indoor levels can thus be lower (e.g. in the case of ozone and SO2) or higher (e.g. for CO2 and formaldehyde) than outdoor levels. Emissions from cooking play an important role, especially in developing countries. The humidity of the ambient air has a wide range of effects on the energy and water balance of the body as well as on elasticity, air quality perception, build-up of electrostatic charge and the formation or mould. However, its effect on the indoor climate is often overestimated. While air-handling systems are commonly used for achieving comfortable indoor climates, their use has also been linked to a variety of problems, some of which have received attention within the context of ''sick building syndrome''.

  8. Indoor climate and air quality. Review of current and future topics in the field of ISB study group 10.

    PubMed

    Höppe, P; Martinac, I

    1998-08-01

    In industrialized countries about 90% of the time is spent indoors. The ambient parameters affecting indoor thermal comfort are air temperature and humidity, air velocity, and radiant heat exchange within an enclosure. In assessing the thermal environment, one needs to consider all ambient parameters, the insulating properties of the occupants' clothing, and the activity level of the occupants by means of heat balance models of the human body. Apart from thermal parameters, air quality (measured and perceived) is also of importance for well-being and health in indoor environments. Pollutant levels are influenced by both outdoor concentrations and by indoor emissions. Indoor levels can thus be lower (e.g. in the case of ozone and SO2) or higher (e.g. for CO2 and formaldehyde) than outdoor levels. Emissions from cooking play an important role, especially in developing countries. The humidity of the ambient air has a wide range of effects on the energy and water balance of the body as well as on elasticity, air quality perception, build-up of electrostatic charge and the formation or mould. However, its effect on the indoor climate is often overestimated. While air-handling systems are commonly used for achieving comfortable indoor climates, their use has also been linked to a variety of problems, some of which have received attention within the context of "sick building syndrome".

  9. Noble Logic for Preventing Scratch on Roll-to-Roll Printed Layers in Noncontacting Transportation

    NASA Astrophysics Data System (ADS)

    Lee, Changwoo; Kang, Hyunkyoo; Kim, Hojoon; Shin, Keehyun

    2010-05-01

    The use of roll-to-roll (R2R) printed electronics is a relatively new method of mass producing flexible electronic devices while keeping production costs down. The geometrical qualities of a printed pattern, such as surface roughness and uniformity, could deteriorate. Moreover, the geometric qualities of a printed layer affect the functional qualities of a printed electronic device directly. Therefore, the functional qualities (conductivity and mobility) of a multilayer electronic device could deteriorate in the presence of a scratch defect on the printed layer. In general, a scratch on a printed pattern on a flexible substrate is induced by contact between the rolls and printed pattern in R2R printing systems. To prevent such contact, one of the best solutions is to use an air flotation unit. However, a scratch defect could be induced even though an air flotation process is used to minimize contact, because the flotation height of a moving web is affected by web tension. In this paper, we discuss an analytical model of an air-floated moving substrate. For the noncontacting transfer of a moving web without a scratch defect, a mathematical tension model has been developed by considering an induced strain due to aerodynamic forces and verified by numerical and experimental studies. Additionally, the correlation between the flotation height of an air-floated moving web and speed compensation used to control the tension are investigated. The analysis shows that tension fluctuations can cause the substrate to touch the air-flotation subsystem, which is installed to prevent contact, resulting in defects such as scratches on the printed layer. On the basis of the proposed model, a logic is developed to minimize scratch defects on R2R printed layers in noncontacting transportation. Through a guideline based on this logic, the scratched area density on R2R printed layers can be reduced by approximately 70%.

  10. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    NASA Technical Reports Server (NTRS)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; hide

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  11. Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives

    NASA Astrophysics Data System (ADS)

    Andrade, Maria de Fatima; Kumar, Prashant; de Freitas, Edmilson Dias; Ynoue, Rita Yuri; Martins, Jorge; Martins, Leila D.; Nogueira, Thiago; Perez-Martinez, Pedro; de Miranda, Regina Maura; Albuquerque, Taciana; Gonçalves, Fabio Luiz Teixeira; Oyama, Beatriz; Zhang, Yang

    2017-06-01

    We present a comprehensive review of published results from the last 30 years regarding the sources and atmospheric characteristics of particles and ozone in the Metropolitan Area of São Paulo (MASP). During the last 30 years, many efforts have been made to describe the emissions sources and to analyse the primary and secondary formation of pollutants under a process of increasing urbanisation in the metropolitan area. From the occurrence of frequent violations of air quality standards in the 1970s and 1980s (due to the uncontrolled air pollution sources) to a substantial decrease in the concentrations of the primary pollutants, many regulations have been imposed and enforced, although those concentrations do not yet conform to the World Health Organization guidelines. The greatest challenge currently faced by the São Paulo State Environmental Protection Agency and the local community is controlling secondary pollutants such as ozone and fine particles. Understanding the formation of these secondary pollutants, by experimental or modelling approaches, requires the description of the atmospheric chemical processes driven by biofuel, ethanol and biodiesel emissions. Exposure to air pollution is the cause of many injuries to human health, according to many studies performed not only in the region but also worldwide, and affects susceptible populations such as children and the elderly. The MASP is the biggest megacity in the Southern Hemisphere, and its specifics are important for other urban areas that are facing the challenge of intensive growth that puts pressure on natural resources and worsens the living conditions in urban areas. This text discusses how imposing regulations on air quality and emission sources, mainly related to the transportation sector, has affected the evolution of pollutant concentrations in the MASP.

  12. Microscale anthropogenic pollution modelling in a small tropical island during weak trade winds: Lagrangian particle dispersion simulations using real nested LES meteorological fields

    NASA Astrophysics Data System (ADS)

    Cécé, Raphaël; Bernard, Didier; Brioude, Jérome; Zahibo, Narcisse

    2016-08-01

    Tropical islands are characterized by thermal and orographical forcings which may generate microscale air mass circulations. The Lesser Antilles Arc includes small tropical islands (width lower than 50 km) where a total of one-and-a-half million people live. Air quality over this region is affected by anthropogenic and volcanic emissions, or saharan dust. To reduce risks for the population health, the atmospheric dispersion of emitted pollutants must be predicted. In this study, the dispersion of anthropogenic nitrogen oxides (NOx) is numerically modelled over the densely populated area of the Guadeloupe archipelago under weak trade winds, during a typical case of severe pollution. The main goal is to analyze how microscale resolutions affect air pollution in a small tropical island. Three resolutions of domain grid are selected: 1 km, 333 m and 111 m. The Weather Research and Forecasting model (WRF) is used to produce real nested microscale meteorological fields. Then the weather outputs initialize the Lagrangian Particle Dispersion Model (FLEXPART). The forward simulations of a power plant plume showed good ability to reproduce nocturnal peaks recorded by an urban air quality station. The increase in resolution resulted in an improvement of model sensitivity. The nesting to subkilometer grids helped to reduce an overestimation bias mainly because the LES domains better simulate the turbulent motions governing nocturnal flows. For peaks observed at two air quality stations, the backward sensitivity outputs identified realistic sources of NOx in the area. The increase in resolution produced a sharper inverse plume with a more accurate source area. This study showed the first application of the FLEXPART-WRF model to microscale resolutions. Overall, the coupling model WRF-LES-FLEXPART is useful to simulate the pollutant dispersion during a real case of calm wind regime over a complex terrain area. The forward and backward simulation results showed clearly that the subkilometer resolution of 333 m is necessary to reproduce realistic air pollution patterns in this case of short-range transport over a complex terrain area. Globally, this work contributes to enrich the sparsely documented domain of real nested microscale air pollution modelling. This study dealing with the determination of the proper resolution grid and proper turbulence scheme, is of significant interest to the near-source and complex terrain air quality research community.

  13. Clean Air Markets - Facility Attributes and Contacts Query Wizard

    EPA Pesticide Factsheets

    The Facility Attributes and Contacts Query Wizard is part of a suite of Clean Air Markets-related tools that are accessible at http://camddataandmaps.epa.gov/gdm/index.cfm. The Facility Attributes and Contact module gives the user access to current and historical facility, owner, and representative data using custom queries, via the Facility Attributes Query Wizard, or Quick Reports. In addition, data regarding EPA, State, and local agency staff are also available. The Query Wizard can be used to search for data about a facility or facilities by identifying characteristics such as associated programs, owners, representatives, locations, and unit characteristics, facility inventories, and classifications.EPA's Clean Air Markets Division (CAMD) includes several market-based regulatory programs designed to improve air quality and ecosystems. The most well-known of these programs are EPA's Acid Rain Program and the NOx Programs, which reduce emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx)-compounds that adversely affect air quality, the environment, and public health. CAMD also plays an integral role in the development and implementation of the Clean Air Interstate Rule (CAIR).

  14. Air pollution and blood lipid markers levels: Estimating short and long-term effects on elderly hypertension inpatients complicated with or without type 2 diabetes.

    PubMed

    Xiao, Sanhua; Liu, Ranran; Wei, Youxiu; Feng, Lin; Lv, Xuemin; Tang, Fei

    2016-08-01

    With the development of society and the economy, many Chinese cities are shrouded in pollution haze for much of the year. Scientific studies have identified various adverse effects of air pollutants on human beings. However, the relationships between air pollution and blood lipid levels are still unclear. The objective of this study is to explore the short and long-term effects of air pollution on eight blood lipid markers among elderly hypertension inpatients complicated with or without type 2 diabetes (T2D). Blood lipid markers which met the pre-established inclusion criteria were exported from the medical record system. Air pollution data were acquired from the official environmental protection website. Associations between the air quality index and the blood lipid indexes were analyzed by one-way ANOVA and further Bonferroni correction. In an exposure time of 7 days or longer, blood lipid markers were somewhat affected by poor air quality. However, the results could not predict whether atherosclerosis would be promoted or inhibited by poorer air condition. Changes of blood lipid markers of hypertension inpatients with or without T2D were not completely the same, but no blood lipid markers had an opposite trend between the two populations. The air quality index was associated with changes to blood lipid markers to some extent in a population of hypertension inpatients with or without T2D. Further studies are needed to investigate the potential mechanism by which air pollutants induce blood lipids changes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Final Supplemental Environmental Assessment: Falcon I Launch Vehicle Program from SLC-4W Vandenberg Air Force Base, California

    DTIC Science & Technology

    2005-09-06

    affected surface water, 3) adversely affected groundwater quantity or quality, or 4) caused a need that exceeded the existing potable supply or...goby is from Tillas Slough (mouth of the Smith River) in Del Norte County, south to Colonel Louis D. Van Mullem, Jr. (1-8-96-F/C-29) 5 Agua Hedionda

  16. Heterogeneous oxygen availability affects the titer and topology but not the fidelity of plasmid DNA produced by Escherichia coli.

    PubMed

    Jaén, Karim E; Sigala, Juan-Carlos; Olivares-Hernández, Roberto; Niehaus, Karsten; Lara, Alvaro R

    2017-07-04

    Dissolved oxygen tension (DOT) is hardly constant and homogenously distributed in a bioreactor, which can have a negative impact in the metabolism and product synthesis. However, the effects of DOT on plasmid DNA (pDNA) production and quality have not been thoroughly investigated. In the present study, the effects of aerobic (DOT ≥30% air sat.), microaerobic (constant DOT = 3% air sat.) and oscillatory DOT (from 0 to 100% air sat.) conditions on pDNA production, quality and host performance were characterized. Microaerobic conditions had little effect on pDNA production, supercoiled fraction and sequence fidelity. By contrast, oscillatory DOT caused a 22% decrease in pDNA production compared with aerobic cultures. Although in aerobic cultures the pDNA supercoiled fraction was 98%, it decreased to 80% under heterogeneous DOT conditions. The different oxygen availabilities had no effect on the fidelity of the produced pDNA. The estimated metabolic fluxes indicated substantial differences at the level of the pentose phosphate pathway and TCA cycle under different conditions. Cyclic changes in fermentative pathway fluxes, as well as fast shifts in the fluxes through cytochromes, were also estimated. Model-based genetic modifications that can potentially improve the process performance are suggested. DOT heterogeneities strongly affected cell performance, pDNA production and topology. This should be considered when operating or scaling-up a bioreactor with deficient mixing. Constant microaerobic conditions affected the bacterial metabolism but not the amount or quality of pDNA. Therefore, pDNA production in microaerobic cultures may be an alternative for bioreactor operation at higher oxygen transfer rates.

  17. Effect of different drying technologies on drying characteristics and quality of red pepper (Capsicum frutescens L.): a comparative study.

    PubMed

    Cao, Zhen-Zhen; Zhou, Lin-Yan; Bi, Jin-Feng; Yi, Jian-Yong; Chen, Qin-Qin; Wu, Xin-Ye; Zheng, Jin-Kai; Li, Shu-Rong

    2016-08-01

    Hot air drying and sun drying are traditional drying technologies widely used in the drying of agricultural products for a long time, but usually recognized as time-consuming or producing lower-quality products. Infrared drying is a rather effective drying technology that has advantages over traditional drying technologies. Thus, in order to investigate the application of infrared drying in the dehydration of red pepper, the drying characteristics and quality of infrared-dried red pepper were compared with those of sun-dried and hot air-dried red pepper. The infrared drying technology significantly enhanced the drying rate when compared with hot air drying and sun drying. Temperature was the most important factor affecting the moisture transfer during the process of infrared drying as well as hot air drying. Effective moisture diffusivity (Deff ) values of infrared drying ranged from 1.58 × 10(-9) to 3.78 × 10(-9) m(2) s(-1) . The Ea values of infrared drying and hot air drying were 42.67 and 44.48 kJ mol(-1) respectively. Infrared drying and hot air drying produced color loss to a similar extent. Relatively higher crispness values were observed for infrared-dried samples. Sun drying produced dried red pepper with the best color when compared with hot air drying and infrared drying. Meanwhile, infrared drying markedly improved the drying rate at the same drying temperature level of hot air drying, and the products obtained had relatively better quality with higher crispness values. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  18. Taking Action on Air Pollution Control in the Beijing-Tianjin-Hebei (BTH) Region: Progress, Challenges and Opportunities

    PubMed Central

    Wang, Li; Zhang, Fengying; Pilot, Eva; Yu, Jie; Holdaway, Jennifer; Yang, Linsheng; Li, Yonghua; Wang, Wuyi; Vardoulakis, Sotiris; Krafft, Thomas

    2018-01-01

    Due to rapid urbanization, industrialization and motorization, a large number of Chinese cities are affected by heavy air pollution. In order to explore progress, remaining challenges, and sustainability of air pollution control in the Beijing-Tianjin-Hebei (BTH) region after 2013, a mixed method analysis was undertaken. The quantitative analysis comprised an overview of air quality management in the BTH region. Semi-structured expert interviews were conducted with 12 stakeholders from various levels of government and research institutions who played substantial roles either in decision-making or in research and advising on air pollution control in the BTH region. The results indicated that with the stringent air pollution control policies, the air quality in BTH meets the targets of the Air Pollution Prevention and Control Action Plan. However, improvements vary across the region and for different pollutants. Although implementation has been decisive and was at least in parts effectively enforced, significant challenges remained with regard to industrial and traffic emission control, and national air quality limits continued to be significantly exceeded and competing development interests remained mainly unsolved. There were also concerns about the sustainability of the current air pollution control measures especially for industries due to the top-down enforcement, and the associated large burden of social cost including unemployment and social inequity resulting industrial restructuring. Better mechanisms for ensuring cross-sectoral coordination and for improved central-local government communication were suggested. Further suggestions were provided to improve the conceptual design and effective implementation of respective air pollution control strategies in BTH. Our study highlights some of the major hurdles that need to be addressed to succeed with a comprehensive air pollution control management for the Chinese mega-urban agglomerations. PMID:29425189

  19. Taking Action on Air Pollution Control in the Beijing-Tianjin-Hebei (BTH) Region: Progress, Challenges and Opportunities.

    PubMed

    Wang, Li; Zhang, Fengying; Pilot, Eva; Yu, Jie; Nie, Chengjing; Holdaway, Jennifer; Yang, Linsheng; Li, Yonghua; Wang, Wuyi; Vardoulakis, Sotiris; Krafft, Thomas

    2018-02-09

    Due to rapid urbanization, industrialization and motorization, a large number of Chinese cities are affected by heavy air pollution. In order to explore progress, remaining challenges, and sustainability of air pollution control in the Beijing-Tianjin-Hebei (BTH) region after 2013, a mixed method analysis was undertaken. The quantitative analysis comprised an overview of air quality management in the BTH region. Semi-structured expert interviews were conducted with 12 stakeholders from various levels of government and research institutions who played substantial roles either in decision-making or in research and advising on air pollution control in the BTH region. The results indicated that with the stringent air pollution control policies, the air quality in BTH meets the targets of the Air Pollution Prevention and Control Action Plan. However, improvements vary across the region and for different pollutants. Although implementation has been decisive and was at least in parts effectively enforced, significant challenges remained with regard to industrial and traffic emission control, and national air quality limits continued to be significantly exceeded and competing development interests remained mainly unsolved. There were also concerns about the sustainability of the current air pollution control measures especially for industries due to the top-down enforcement, and the associated large burden of social cost including unemployment and social inequity resulting industrial restructuring. Better mechanisms for ensuring cross-sectoral coordination and for improved central-local government communication were suggested. Further suggestions were provided to improve the conceptual design and effective implementation of respective air pollution control strategies in BTH. Our study highlights some of the major hurdles that need to be addressed to succeed with a comprehensive air pollution control management for the Chinese mega-urban agglomerations.

  20. A proposed methodology for impact assessment of air quality traffic-related measures: The case of PM2.5 in Beijing.

    PubMed

    Fontes, Tânia; Li, Peilin; Barros, Nelson; Zhao, Pengjun

    2018-08-01

    Air quality traffic-related measures have been implemented worldwide to control the pollution levels of urban areas. Although some of those measures are claiming environmental improvements, few studies have checked their real impact. In fact, quantitative estimates are often focused on reducing emissions, rather than on evaluating the actual measures' effect on air quality. Even when air quality studies are conducted, results are frequently unclear. In order to properly assess the real impact on air quality of traffic-related measures, a statistical method is proposed. The method compares the pollutant concentration levels observed after the implementation of a measure with the concentration values of the previous year. Short- and long-term impact is assessed considering not only their influence on the average pollutant concentration, but also on its maximum level. To control the effect of the main confounding factors, only the days with similar environmental conditions are analysed. The changeability of the key meteorological variables that affect the transport and dispersion of the pollutant studied are used to identify and group the days categorized as similar. Resemblance of the pollutants' concentration of the previous day is also taken into account. The impact of the road traffic measures on the air pollutants' concentration is then checked for those similar days using specific statistical functions. To evaluate the proposed method, the impact on PM 2.5 concentrations of two air quality traffic-related measures (M1 and M2) implemented in the city of Beijing are taken into consideration: M1 was implemented in 2009, restricting the circulation of yellow-labelled vehicles, while M2 was implemented in 2014, restricting the circulation of heavy-duty vehicles. To compare the results of each measure, a time-period when these measures were not applied is used as case-control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Wildfire Smoke Emissions webinar

    EPA Pesticide Factsheets

    This webinar presented by Wayne Cascio will highlight updates to the Wildfire Smoke Guide, as well as the Smoke Sense app, which is a mobile application that gets air quality information to people impacted by wildfire smoke, and helps those affected learn

  2. Assessing environmental quality: the implications for social justice

    EPA Science Inventory

    Individuals experience simultaneous exposure to pollutants and social factors, which cluster to affect human health outcomes. The optimal approach to combining these factors is unknown, therefore we developed a method to model simultaneous exposure using criteria air pollutants, ...

  3. Red light and carbon dioxide differentially affect growth, lipid production, and quality in the microalga, Ettlia oleoabundans.

    PubMed

    Yang, Ying; Weathers, Pamela

    2015-01-01

    Ettlia oleoabundans, a freshwater unicellular green microalga, was grown under different light qualities ± carbon dioxide-enriched air to determine the combined effects on growth and lipid production of this oleaginous species. Keeping total light intensity constant, when a portion of the cool white was replaced by red, volumetric lipid yield increased 2.8-fold mainly due to the greater yield of oleic acid, a desirable biodiesel precursor. Only 30 min of red light treatment was sufficient to increase lipid yield and quality to the same level as cultures provided red light for >14 days, indicating the potential role of red light in stimulating lipid production of this species. Carbon dioxide enrichment via air sparging enhanced exponential growth, carbon conversion efficiency, and nutrient consumption. Together, these results showed that light quality plays an important role in microalgal lipid production. Adjustment in light quality and gas delivery efficiency with carbon dioxide enrichment improved lipid yield and quality in this and possibly other oleaginous algal species.

  4. Elevated CO2 levels affects the concentrations of copper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions.

    PubMed

    Guo, Hongyan; Zhu, Jianguo; Zhou, Hui; Sun, Yuanyuan; Yin, Ying; Pei, Daping; Ji, Rong; Wu, Jichun; Wang, Xiaorong

    2011-08-15

    Elevated CO(2) levels and the increase in heavy metals in soils through pollution are serious problems worldwide. Whether elevated CO(2) levels will affect plants grown in heavy-metal-polluted soil and thereby influence food quality and safety is not clear. Using a free-air CO(2) enrichment (FACE) system, we investigated the impacts of elevated atmospheric CO(2) on the concentrations of copper (Cu) or cadmium (Cd) in rice and wheat grown in soil with different concentrations of the metals in the soil. In the two-year study, elevated CO(2) levels led to lower Cu concentrations and higher Cd concentrations in shoots and grain of both rice and wheat grown in the respective contaminated soil. Elevated CO(2) levels slightly but significantly lowered the pH of the soil and led to changes in Cu and Cd fractionation in the soil. Our study indicates that elevated CO(2) alters the distribution of contaminant elements in soil and plants, thereby probably affecting food quality and safety.

  5. Development of a comprehensive air quality modeling framework for a coastal urban airshed in south Texas

    NASA Astrophysics Data System (ADS)

    Farooqui, Mohmmed Zuber

    Tropospheric ozone is one of the major air pollution problems affecting urban areas of United States as well as other countries in the world. Analysis of surface observed ozone levels in south and central Texas revealed several days exceeding 8-hour average ozone National Ambient of Air Quality Standards (NAAQS) over the past decade. Two major high ozone episodes were identified during September of 1999 and 2002. A photochemical modeling framework for the high ozone episodes in 1999 and 2002 were developed for the Corpus Christi urban airshed. The photochemical model was evaluated as per U.S. Environmental Protection Agency (EPA) recommended statistical methods and the models performed within the limits set by EPA. An emission impact assessment of various sources within the urban airshed was conducted using the modeling framework. It was noted that by nudging MM5 with surface observed meteorological parameters and sea-surface temperature, the coastal meteorological predictions improved. Consequently, refined meteorology helped the photochemical model to better predict peak ozone levels in urban airsheds along the coastal margins of Texas including in Corpus Christi. The emissions assessment analysis revealed that Austin and San Antonio areas were significantly affected by on-road mobile emissions from light-duty gasoline and heavy-duty diesel vehicles. The urban areas of San Antonio, Austin, and Victoria areas were estimated to be NOx sensitive. Victoria was heavily influenced by point sources in the region while Corpus Christi was influenced by both point and non-road mobile sources and was identified to be sensitive to VOC emissions. A rise in atmospheric temperature due to climate change potentially increase ozone exceedances and the peak ozone levels within the study region and this will be a major concern for air quality planners. This study noted that any future increase in ambient temperature would result in a significant increase in the urban and regional ozone levels within the modeling domain and it would also enhance the transported levels of ozone across the region. Overall, the photochemical modeling framework helped in evaluating the impact of various parameters affecting ozone air quality; and, it has the potential to be a tool for policy-makers to develop effective emissions control strategies under various regulatory and climate conditions.

  6. GLIMPSE: a rapid decision framework for energy and environmental policy.

    PubMed

    Akhtar, Farhan H; Pinder, Robert W; Loughlin, Daniel H; Henze, Daven K

    2013-01-01

    Over the coming decades, new energy production technologies and the policies that oversee them will affect human health, the vitality of our ecosystems, and the stability of the global climate. The GLIMPSE decision model framework provides insights about the implications of technology and policy decisions on these outcomes. Using GLIMPSE, decision makers can identify alternative techno-policy futures, examining their air quality, health, and short- and long-term climate impacts. Ultimately, GLIMPSE will support the identification of cost-effective strategies for simultaneously achieving performance goals for these metrics. Here, we demonstrate the utility of GLIMPSE by analyzing several future energy scenarios under existing air quality regulations and potential CO2 emission reduction policies. We find opportunities for substantial cobenefits in setting both climate change mitigation and health-benefit based air quality improvement targets. Though current policies which prioritize public health protection increase near-term warming, establishing policies that also reduce greenhouse gas emissions may offset warming in the near-term and lead to significant reductions in long-term warming.

  7. Effect of freezing method and frozen storage duration on lamb sensory quality.

    PubMed

    Muela, E; Sañudo, C; Campo, M M; Medel, I; Beltrán, J A

    2012-01-01

    This study assessed the effect of three freezing methods with three frozen storage durations (1, 3, and 6 months) on the sensory quality of lamb. Methods were: air blast freezer, freezing tunnel+air blast freezer, and nitrogen chamber+air blast freezer. Meat was frozen after 48 h of ageing (0-4°C). Fresh meat (72 h ageing at 2-4°C) was used as control. Sensory analyses (trained panel and consumer tests) were performed on loin chops (Longissimus lumborum) after 24 h of thawing. Results from the trained panel test showed that freezing (method and/or storage duration) had no significant effect. Consumers found that freezing affected sensory quality. Cluster analysis for overall acceptability divided the population into four classes with different preference patterns, and none of them showed a significant preference for fresh meat. The small differences between fresh and thawed meat shown in this study should not give consumers concerns about buying frozen meat or consuming thawed meat. Copyright © 2011. Published by Elsevier Ltd.

  8. Indoor air pollution and preventions in college libraries

    NASA Astrophysics Data System (ADS)

    Yang, Zengzhang

    2017-05-01

    The college library is a place where it gets the comparatively high density of students often staying long time with it. Therefore, the indoor air quality will affect directly reading effect and physical health of teachers and students in colleges and universities. The paper analyzes the influenced factors in indoor air pollution of the library from the selection of green-environmental decorating materials and furniture, good ventilation maintaining, electromagnetic radiation reducing, regular disinfection, indoor green building and awareness of health and environmental protection strengthening etc. six aspects to put forward the ideas for preventions of indoor air pollution and construction of the green low-carbon library.

  9. Indoor to outdoor air quality associations with self-pollution implications inside passenger car cabins

    NASA Astrophysics Data System (ADS)

    Abi-Esber, L.; El-Fadel, M.

    2013-12-01

    In this study, in-vehicle and out-vehicle concentrations of fine particulate matter (PM2.5) and carbon monoxide (CO) are measured to assess commuter's exposure in a commercial residential area and on a highway, under three popular ventilation modes namely, one window half opened, air conditioning on fresh air intake, and air conditioning on recirculation and examine its relationship to scarcely studied parameters including self pollution, out-vehicle sample intake location and meteorological gradients. Self pollution is the intrusion of a vehicle's own engine fumes into the passenger's compartment. For this purpose, six car makes with different ages were instrumented to concomitantly monitor in- and out-vehicle PM2.5 and CO concentrations as well as meteorological parameters. Air pollution levels were unexpectedly higher in new cars compared to old cars, with in-cabin air quality most correlated to that of out-vehicle air near the front windshield. Self-pollution was observed at variable rates in three of the six tested cars. Significant correlations were identified between indoor to outdoor pressure difference and PM2.5 and CO In/Out (IO) ratios under air recirculation and window half opened ventilation modes whereas temperature and humidity difference affected CO IO ratios only under the air recirculation ventilation mode.

  10. What Air Quality Models Tell Us About Sources and Sinks of Atmospheric Aldehydes

    NASA Astrophysics Data System (ADS)

    Luecken, D.; Hutzell, W. T.; Phillips, S.

    2010-12-01

    Atmospheric aldehydes play important roles in several aspects of air quality: they are critical radical sources that drive ozone formation, they are hazardous air pollutants that are national drivers for cancer risk, they participate in aqueous chemistry and potentially aerosol formation, and are key species for evaluating the accuracy of isoprene emissions. For these reasons, it is important to accurately understand their sources and sinks, and the sensitivity of their concentrations to emission controls. While both compounds have been included in air quality modeling for many years, current, state-of-the-science chemical mechanisms have difficulty reproducing measured values of aldehydes, which calls into question the robustness of ozone, HAPs and aerosol predictions. In the past, we have attributed discrepancies to measurement errors, inventory errors, or the focus on high-NOx urban regimes. Despite improvements in all of these areas, the measurements still diverge from model predictions, with formaldehyde often underpredicted by 50% and acetaldehyde showing a large degree of scatter - from 20% overprediction to 50% underprediction. To better examine the sources of aldehydes, we implemented the new SAPRC07T mechanism in the Community Multi-Scale Air Quality (CMAQ) model. This mechanism incorporates current recommendations for kinetic data and has the most detailed representation of product formation under a wide variety of conditions of any mechanism used in regional air quality models. We use model simulations to pinpoint where and when aldehyde concentrations tend to deviate from measurements. We demonstrate the role of secondary production versus primary emissions in aldehdye concentrations and find that secondary sources produce the largest deviations from measurements. We identify which VOCs are most responsible for aldehyde secondary production in the areas of the U.S. where the largest health effects are seen, and discuss how this affects consideration of control strategies.

  11. Study of temporal variation in ambient air quality during Diwali festival in India.

    PubMed

    Singh, D P; Gadi, Ranu; Mandal, T K; Dixit, C K; Singh, Khem; Saud, T; Singh, Nahar; Gupta, Prabhat K

    2010-10-01

    The variation in air quality was assessed from the ambient concentrations of various air pollutants [total suspended particle (TSP), particulate matter < or =10 microm (PM(10)), SO(2), and NO(2)] for pre-Diwali, Diwali festival, post-Diwali, and foggy day (October, November, and December), Delhi (India), from 2002 to 2007. The extensive use of fireworks was found to be related to short-term variation in air quality. During the festival, TSP is almost of the same order as compared to the concentration at an industrial site in Delhi in all the years. However, the concentrations of PM(10), SO(2), and NO(2) increased two to six times during the Diwali period when compared to the data reported for an industrial site. Similar trend was observed when the concentrations of pollutants were compared with values obtained for a typical foggy day each year in December. The levels of these pollutants observed during Diwali were found to be higher due to adverse meteorological conditions, i.e., decrease in 24 h average mixing height, temperature, and wind speed. The trend analysis shows that TSP, PM(10), NO(2), and SO(2) concentration increased just before Diwali and reached to a maximum concentration on the day of the festival. The values gradually decreased after the festival. On Diwali day, 24-h values for TSP and PM(10) in all the years from 2002 to 2007 and for NO(2) in 2004 and 2007 were found to be higher than prescribed limits of National Ambient Air Quality Standards and exceptionally high (3.6 times) for PM(10) in 2007. These results indicate that fireworks during the Diwali festival affected the ambient air quality adversely due to emission and accumulation of TSP, PM(10), SO(2), and NO(2).

  12. Smoke and fires from Sumatra

    NASA Image and Video Library

    2014-03-21

    Fires burning in Sumatra continued to pour smoke over the region in mid-March, 2014, bringing air quality to dangerous levels. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of the smoke and haze across the region on March 12. According to the Jakarta Post, on March 12 the Sumatra Environmental Laboratory reported that 10 of 12 spots in Riau had an air quality of index above 300 on the Pollutant Standards Index (PSI), which is considered hazardous. Hazardous air quality had been recorded in some of the locations for 11 consecutive days. The province of Riau is located in the central eastern coast of Sumatra and, in this image, is hidden under thick bands of light gray smoke. Intense fires, reported as deliberately set to clear land, were burning in the Giam Siak Kecil-Bukit Batu biosphere reserve. This reserve contains over 700,000 hectares of sensitive peat forest that sustains a wide range of plant and animal species, including the Sumatra tiger, elephant, tapir and sun bear. With visibility as low as 500 m (1640 ft), 58 flights were cancelled in Pekanbaru, the capital of Riau province, on March 11. Schools were closed across the region, with 43,000 students affected in Payakumbuh, West Sumatra. On March 14, Selangor, Malaysia closed 203 schools, affecting 211,700 pupils, until the air quality improved. On that same day, according to Riau Health Agency, more than 55,000 residents in the province were suffering from haze-related illnesses, including acute respiratory infections, pneumonia and skin and eye irritation. Poor air quality not only affected transportation, human health and the ecosystem, but has had significant economic impacts. On March 17, Reuters reported that the poor air quality had forced Chevron, the country’s biggest oil producer, to close hundreds of its wells. As a result, Indonesia’s crude oil output dropped to 790,000 barrels per day (bpd) – significantly lower than the 870,000 bpd target. Although slash-and-burn techniques, which use fire to clear land, is illegal in Indonesia, the practice is still widespread, with approximately 99% of fires in Sumatra considered to be intentionally set. This year’s early agricultural fires began in February in Riau Province, home to palm-oil and pulpwood plantations. The emergency has prompted strong government response, including a shoot-on-sight order for any suspects involved in land burning activities that resisted arrest. According to the Jakarta Post, police have named as many as 60 suspected-fire starters in Riau. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Gulf of Mexico Air Quality: CALIPSO Support for Gulf of Mexico Air Quality Relating to the Deepwater Horizon Oil Spill

    NASA Technical Reports Server (NTRS)

    Nguyen, Myngoc T.; Lapointe, Stephen; Jennings, Brittney; Zoumplis, Angela

    2011-01-01

    On April 20, 2010, an oil platform belonging to BP exploded and leaked a huge volume of oil into the Gulf of Mexico. In an effort to control the spread of the oil, BP applied dispersants such as Corexit and conducted in-situ burnings of the oil. This catastrophe created a complex chain of events that affected not only the fragile water and land ecosystems, but the humans who breathe the air every day. Thousands of people were exposed to fumes associated with oil vapors from the spill, burning of the oil, and the toxic mixture of dispersants. While aiding in clean-up efforts, local fishermen were directly exposure to fumes when working on the Gulf. A notable amount of Gulf Coast residents were also exposed to the oil fumes as seasonal southeasterly winds blew vapors toward land. The Volatile Organic Compounds (VOC) found in oil vapors include: benzene, toluene, ethyl benzene, xylene, naphthalene, hydrogen sulfide and particulate matter (PM). Increases in water temperature and sunlight due to the summer season allow for these VOCs and PM to evaporate into the air more rapidly. Aside from the VOCs found in oil vapors, the dispersant being used to break up the oil is highly toxic and is thought to be even more toxic than the oil itself (EPA website, 2010). To protect human health, the environment, and to make informed policy decisions relevant to the spill, the EPA Region 6 has continuously monitored the affected areas carefully for levels of pollutants in the outdoor air that are associated with petroleum products and the burning of oil along the coast. In an effort to prevent, prepare for, and respond to future oil spills that occur in and around inland waters of the United States, the EPA has been working with local, state, and federal response partners. Air quality measurements were collected by the EPA at five active monitoring systems stationed along the coast.

  14. Remote Sensing and Spatial Growth Modeling Coupled with Air Quality Modeling to Assess the Impact of Atlanta, Georgia on the Local and Regional Environment

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Khan, Maudood

    2006-01-01

    The growth of cities, both in population and areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 80 percent of the world s population will live in cities. Directly aligned with the expansion of cities is urban sprawl. Urban expansion has profound impacts on a host of biophysical, environmental, and atmospheric processes. A reduction in air quality over cities is a major result of these impacts. Strategies that can be directly or indirectly implemented to help remediate air quality problems in cities and that can be accepted by political decision makers and the general public are now being explored to help bring down air pollutants and improve air quality. The urban landscape is inherently complex and this complexity is not adequately captured in air quality models, particularly the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone pollutant levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban spatial growth modeling (SGM) projections as improved inputs to the meteorology component of the CMAQ model focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include "business as usual" and "smart growth" scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, which in turn, are used to model how ozone and air temperature can potentially be moderated as impacts on elevating ground-level ozone, as opposed to not utilizing heat island mitigation strategies. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the (CMAQ) modeling schemes. Use of these data have been found to better characterize low density/suburban development as compared with USGS 1km land use/land cover data that have traditionally been used in modeling. Air quality prediction for future scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission, the regional planning agency for the area. This allows the State Environmental Protection agency to evaluate how these transportation plans will affect future air quality. The coupled SGM and air quality modeling approach provides insight on what the impacts of Atlanta s growth will be on the local and regional environment and exists as a mechanism that can be used by policy makers to make rationale decisions on urban growth and sustainability for the metropolitan area in the future.

  15. Environmental Quality Index and Childhood Mental Health

    EPA Science Inventory

    Childhood mental disorders affect between 13%-20% of children in the United States (US) annually and impact the child, family, and community. Literature suggests associations exist between environmental and children’s mental health such as air pollution with autism and ADHD...

  16. 40 CFR 52.1169 - Stack height review.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....1169 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... limitations have been affected by stack height credits greater than good engineering practice or any other... under the Massachusetts SIP and our delegated PSD authority, the Department of Environmental Quality...

  17. Accounting for Heterogeneous-Phase Chemistry in Air Quality Models - Research Needs and Applications

    EPA Science Inventory

    Understanding the extent to which heterogeneous chemical reactions affect the burden and distribution of atmospheric pollutants is important because heterogeneous surfaces are ubiquitous throughout our environment. They include materials such as aerosol particles, clouds and fog,...

  18. Borneo on Fire

    Atmospheric Science Data Center

    2016-12-23

    ... the land surface, meaning it had the potential to affect air quality not only locally but as far as 1,000 miles (1,600 kilometers) away in Malaysia. For several weeks, episodes of hazardous pollution from the heavy smoke have been causing emergency school closures and ...

  19. Ground-water hydrology and water quality of the southern high plains aquifer, Melrose Air Force Range, Cannon Air Force Base, Curry and Roosevelt Counties, New Mexico, 2002-03

    USGS Publications Warehouse

    Langman, Jeff B.; Gebhardt, Fredrick E.; Falk, Sarah E.

    2004-01-01

    In cooperation with the U.S. Air Force, the U.S. Geological Survey characterized the ground-water hydrology and water quality at Melrose Air Force Range in east-central New Mexico. The purpose of the study was to provide baseline data to Cannon Air Force Base resource managers to make informed decisions concerning actions that may affect the ground-water system. Five periods of water-level measurements and four periods of water-quality sample collection were completed at Melrose Air Force Range during 2002 and 2003. The water-level measurements and water-quality samples were collected from a 29-well monitoring network that included wells in the Impact Area and leased lands of Melrose Air Force Range managed by Cannon Air Force Base personnel. The purpose of this report is to provide a broad overview of ground-water flow and ground-water quality in the Southern High Plains aquifer in the Ogallala Formation at Melrose Air Force Range. Results of the ground-water characterization of the Southern High Plains aquifer indicated a local flow system in the unconfined aquifer flowing northeastward from a topographic high, the Mesa (located in the southwestern part of the Range), toward a regional flow system in the unconfined aquifer that flows southeastward through the Portales Valley. Ground water was less than 55 years old across the Range; ground water was younger (less than 25 years) near the Mesa and ephemeral channels and older (25 years to 55 years) in the Portales Valley. Results of water-quality analysis indicated three areas of different water types: near the Mesa and ephemeral channels, in the Impact Area of the Range, and in the Portales Valley. Within the Southern High Plains aquifer, a sodium/chloride-dominated ground water was found in the center of the Impact Area of the Range with water-quality characteristics similar to ground water from the underlying Chinle Formation. This sodium/chloride-dominated ground water of the unconfined aquifer in the Impact Area indicates a likely connection with the deeper water-producing zone. No pesticides, explosives, volatile organic compounds, semivolatile organic compounds, organic halogens, or perchlorate were found in water samples from the Southern High Plains aquifer at the Range.

  20. Is the perception of clean, humid air indeed affected by cooling the respiratory tract?

    NASA Astrophysics Data System (ADS)

    Burek, Rudolf; Polednik, Bernard; Guz, Łukasz

    2017-07-01

    The study aims at determining exposure-response relationships after short exposure to clean air and long exposure to air polluted by people. The impact of water vapor content in the indoor air on its acceptability (ACC) was assessed by the occupants after a short exposure to clean air and an hour-long exposure to increasingly polluted air. The study presents a critical analysis pertaining to the stimulation of olfactory sensations by the air enthalpy suggested in previous models and proposes a new model based on the Weber-Fechner law. Our assumption was that water vapor is the stimulus of olfactory sensations. The model was calibrated and verified in field conditions, in a mechanically ventilated and air conditioned auditorium. Measurements of the air temperature, relative humidity, velocity and CO2 content were carried out; the acceptability of air quality was assessed by 162 untrained students. The subjective assessments and the measurements of the environmental qualities allowed for determining the Weber coefficients and the threshold concentrations of water vapor, as well as for establishing the limitations of the model at short and long exposure to polluted indoor air. The results are in agreement with previous studies. The standard error equals 0.07 for immediate assessments and 0.17 for assessments after adaptation. Based on the model one can predict the ACC assessments of trained and untrained participants.

  1. Abrupt recent trend changes in atmospheric nitrogen dioxide over the Middle East

    PubMed Central

    Lelieveld, Jos; Beirle, Steffen; Hörmann, Christoph; Stenchikov, Georgiy; Wagner, Thomas

    2015-01-01

    Nitrogen oxides, released from fossil fuel use and other combustion processes, affect air quality and climate. From the mid-1990s onward, nitrogen dioxide (NO2) has been monitored from space, and since 2004 with relatively high spatial resolution by the Ozone Monitoring Instrument. Strong upward NO2 trends have been observed over South and East Asia and the Middle East, in particular over major cities. We show, however, that a combination of air quality control and political factors, including economical crisis and armed conflict, has drastically altered the emission landscape of nitrogen oxides in the Middle East. Large changes, including trend reversals, have occurred since about 2010 that could not have been predicted and therefore are at odds with emission scenarios used in projections of air pollution and climate change in the early 21st century. PMID:26601240

  2. Inactivation of Kudoa septempunctata in olive flounder meat by liquid freezing.

    PubMed

    Ohnishi, Takahiro; Akuzawa, Sayuri; Furusawa, Hiroko; Yoshinari, Tomoya; Kamata, Yoichi; Sugita-Konishi, Yoshiko

    2014-01-01

    Kudoa septempunctata in olive flounder meat was inactivated using 3 distinct freezing methods:liquid freezing for 5 min, air blast freezing at -30℃ for 5 h, and -80℃ for 1 h. The fracture curve of olive flounder meat subjected to liquid freezing resembled that of meat stored at 4℃, indicating that the structure of olive flounder muscle was well preserved. In contrast, air blast freezing induced the disappearance of the fracture point in the fracture curve, indicating that there was deterioration in the meat quality. Liquid freezing preserved the transparency of olive flounder meat to the same degree as that of meat stored at 4°C. However, air blast freezing induced meat cloudiness. These results indicate that liquid freezing can be used for K. septempunctata inactivation without affecting the meat quality.

  3. The Influence of the Environment and Clothing on Human Exposure to Ultraviolet Light

    PubMed Central

    Liu, Jin; Zhang, Wei

    2015-01-01

    Objection The aim of this study is to determine the effect of clothing and the environment on human exposure to ultraviolet light. Methods The ultraviolet (ultraviolet A and ultraviolet B) light intensity was measured, and air quality parameters were recorded in 2014 in Beijing, China. Three types of clothing (white polyester cloth, pure cotton white T-shirt, and pure cotton black T-shirt) were individually placed on a mannequin. The ultraviolet (ultraviolet A and ultraviolet B) light intensities were measured above and beneath each article of clothing, and the percentage of ultraviolet light transmission through the clothing was calculated. Results (1) The ultraviolet light transmission was significantly higher through white cloth than through black cloth; the transmission was significantly higher through polyester cloth than through cotton. (2) The weather significantly influenced ultraviolet light transmission through white polyester cloth; transmission was highest on clear days and lowest on overcast days (ultraviolet A: P=0.000; ultraviolet B: P=0.008). (3) Air quality parameters (air quality index and particulate matter 2.5 and 10) were inversely related to the ultraviolet light intensity that reached the earth’s surface. Ultraviolet B transmission through white polyester cloth was greater under conditions of low air pollution compared with high air pollution. Conclusion Clothing color and material and different types of weather affected ultraviolet light transmission; for one particular cloth, the transmission decreased with increasing air pollution. PMID:25923778

  4. The influence of the environment and clothing on human exposure to ultraviolet light.

    PubMed

    Liu, Jin; Zhang, Wei

    2015-01-01

    The aim of this study is to determine the effect of clothing and the environment on human exposure to ultraviolet light. The ultraviolet (ultraviolet A and ultraviolet B) light intensity was measured, and air quality parameters were recorded in 2014 in Beijing, China. Three types of clothing (white polyester cloth, pure cotton white T-shirt, and pure cotton black T-shirt) were individually placed on a mannequin. The ultraviolet (ultraviolet A and ultraviolet B) light intensities were measured above and beneath each article of clothing, and the percentage of ultraviolet light transmission through the clothing was calculated. (1) The ultraviolet light transmission was significantly higher through white cloth than through black cloth; the transmission was significantly higher through polyester cloth than through cotton. (2) The weather significantly influenced ultraviolet light transmission through white polyester cloth; transmission was highest on clear days and lowest on overcast days (ultraviolet A: P=0.000; ultraviolet B: P=0.008). (3) Air quality parameters (air quality index and particulate matter 2.5 and 10) were inversely related to the ultraviolet light intensity that reached the earth's surface. Ultraviolet B transmission through white polyester cloth was greater under conditions of low air pollution compared with high air pollution. Clothing color and material and different types of weather affected ultraviolet light transmission; for one particular cloth, the transmission decreased with increasing air pollution.

  5. Acute Health Impact of Air Pollution in China

    NASA Astrophysics Data System (ADS)

    Feng, T.; Zhao, Y.; Zheng, M.

    2014-12-01

    Air pollution not only has long term health impact, but can affect health through acute exposure. This paper, using air pollution index (API) as overall evaluation of air quality, blood pressure and vital capacity as health outcomes, focuses on the acute health impact of air pollution in China. Current result suggests that after controlling smoking history, occupational exposure, income and education, API is positively associated with blood pressure and negatively associated with vital capacity. The associations became stronger for people with hypertension or pulmonary functional diseases, which indicates that these people are more sensitive to air pollution. Among three pollutants which API measures, that is inhalable particles (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2), PM10 is most statistically associated with blood pressure increase and vital capacity decrease. Further study will focusing on the following two questions. The first question is how various time lags affect the associations among API, blood pressure and vital capacity. The second question is how differently people in various cohorts reacts to acute exposure to air pollution. The differences in reactions of blood pressure and vital capacity between people in urban and rural areas, genders, various age cohorts, distinct income and education groups will be further studied.

  6. Analysis of carbon monoxide (CO) with Delhi Finite Line Source (DFLS) in MT Haryono Street, Medan City

    NASA Astrophysics Data System (ADS)

    Turmuzi, M.; Suryati, I.; Mashaly, E. T.; Batubara, F.

    2018-02-01

    One source to decrease urban air ambient quality is transportation sector. Important pollutants are released by gas emissions from vehicles are carbon monoxide (CO), hydrocarbons (HC), nitrogen dioxide (NO2), particulate matter and others. The presence of CO pollutants in the ambient air can be predicted by modeling air quality. This study aims to estimate CO concentration resulting from transportation activities using Delhi Finite Line Source (DFLS) model, comparing CO prediction using a DFLS model with CO observation in the field, and determine the suitability of the DFLS model application on the MT Haryono street in Medan City. Research was conducted for 3 days at two sample points with frequency twice daily. Based on research results, the range of CO concentration from observation between 22.903 μg/m3 - 27.484 μg/m3. CO observation is still below the ambient air quality standard. According to the DFLS calculations, the range of CO concentration between 1.499 μg/m3- 2.051 μg/m3. The calculation index of agreement (IOA) validation test obtained value of d = 0.22. The DFLS model is not suitable to be applied on MT Haryono street because many factors affected such as wind direction and wind velocity, ambient air temperature and humidity

  7. EVALUATING THE EFFECTS OF NEAR ROAD SOLID AND ...

    EPA Pesticide Factsheets

    Public health concerns for populations living, working and going to school near high-traffic roadways has increased substantially in recent years. Air quality measurement studies indicate high pollutant concentrations can occur near these large roads, impacting population exposures and health effects. Roadside features have been shown to alter pollutant transport and dispersion from the road, affecting near-road concentrations and exposures for nearby populations. Air quality, wind tunnel and tracer gas measurement studies have identified the potential for noise barriers and roadside vegetation to reduce near-road air pollution concentrations, under some conditions by over 50 percent. However, some roadside conditions have been shown to result in increased downwind pollutant concentrations. The data from these studies have been used to develop and evaluate air dispersion model algorithms to simulate pollutant transport and dispersion around and over these features. This presentation will provide an overview of field and wind tunnel studies which have investigated how roadside features alter near-road air quality, how these studies have led to the development of dispersion model algorithms, and recommendations on the design and location of these features to maximize opportunities for pollution reduction and minimize potential increases in near-road pollutant concentrations. Presentation for the CRC MSAT workshop; requested by organizing committee and OTAQ

  8. Ozone and nitrogen effects on yield and nutritive quality of the annual legume Trifolium cherleri

    NASA Astrophysics Data System (ADS)

    Sanz, J.; González-Fernández, I.; Calvete-Sogo, H.; Lin, J. S.; Alonso, R.; Muntifering, R.; Bermejo, V.

    2014-09-01

    Two independent experiments were performed in an Open-Top Chamber facility to determine the response of biomass and nutritive quality of the annual legume Trifolium cherleri to increased levels of ozone (O3) and nitrogen (N) deposition, two main drivers of global change. Plants growing in pots were exposed to three O3 treatments: charcoal-filtered air (CFA); non-filtered air, reproducing ambient O3 levels of the site (NFA); and non-filtered air supplemented with 40 nl l-1 (NFA+). Nitrogen was added in biweekly doses to achieve final doses of 5 (N5), 15 (N15) and 30 kg ha-1 (N30), reproducing the N deposition range in the Iberian Peninsula. Ozone negatively affected all the growth-related parameters and increased plant senescent biomass. The pollutant affected subterranean biomass to a greater extent than aerial biomass, resulting in altered aerial/subterranean ratio. Effects in the second experiment followed the same pattern as in the first, but were of lesser magnitude. However, these differences between assays could not be explained adequately by the absorbed O3 fluxes (Phytotoxic Ozone Dose, POD). Concentrations of cell-wall constituents related to nutritive quality increased with the O3 exposure, reducing the Relative Food Value index (RFV) that indicates decreased nutritive quality of the forage. Nitrogen stimulated all growth-related parameters, but increased the aboveground biomass more than the subterranean biomass. No effects of N fertilizer were detected for the nutritive quality parameters. A significant interaction between O3 and N was found in the second experiment. N further enhanced the increase of senescent biomass caused by O3. Results indicate that O3 is a potentially significant environmental stress factor in terms of structure and diversity of Mediterranean pastures.

  9. Exploring the direct impacts of particulate matter and surface ozone on global crop production

    NASA Astrophysics Data System (ADS)

    Schiferl, L. D.; Heald, C. L.

    2016-12-01

    The current era of rising food demand to feed an increasing population along with expansion of industrialization throughout the globe has been accompanied by deteriorating air quality and an enhancement in agricultural activity. Both air quality and the food supply are vitally important to sustaining human enterprise, and understanding the effects air quality may have on agricultural production is critical. Particulate matter (PM) in the atmosphere decreases the total photosynthetically available radiation (PAR) available to crops through the scattering and absorption of radiation while also increasing the diffuse fraction (DF) of this PAR. Since plants respond positively to a higher DF through the more even distribution of photons to all leaves, the net effect of PM on crop production depends on the magnitudes of these values and the response mechanisms of a specific crop. In contrast, atmospheric ozone always acts to decrease crop production through its phytotoxic properties. While the relationships between ozone and crop production have been readily studied, the effects of PM on crop production and their relative importance compared to ozone is much more uncertain. This study uses the GEOS-Chem chemical transport model linked to the RRTMG radiative transfer model and the DSSAT crop model to explore the impacts of PM and ozone on the globally distributed production of maize, rice, wheat and soybeans. First, we examine how air quality differentially affects total seasonal production by crop and region. Second, we investigate the dependence of simulated production on air quality over different timescales and under varying cloud conditions.

  10. Quality Circles at Wilford Hall U.S.A.F. Medical Center, Lackland Air Force Base, Texas: Some Preliminary Findings

    DTIC Science & Technology

    1982-08-01

    relationships which can be identified from one sample population and generalized to cause and effect in different persons, settings, and times...affect the cause-and-effect relationship which one can draw with a civilian group? Will it be pos- sible to generalize about other groups within... relationship about quality circles obtained in a military health care facility be generalized to a civil- ian one? Can a causal relationship about quality

  11. The lasting effect of limonene-induced particle formation on air quality in a genuine indoor environment.

    PubMed

    Rösch, Carolin; Wissenbach, Dirk K; von Bergen, Martin; Franck, Ulrich; Wendisch, Manfred; Schlink, Uwe

    2015-09-01

    Atmospheric ozone-terpene reactions, which form secondary organic aerosol (SOA) particles, can affect indoor air quality when outdoor air mixes with indoor air during ventilation. This study, conducted in Leipzig, Germany, focused on limonene-induced particle formation in a genuine indoor environment (24 m(3)). Particle number, limonene and ozone concentrations were monitored during the whole experimental period. After manual ventilation for 30 min, during which indoor ozone levels reached up to 22.7 ppb, limonene was introduced into the room at concentrations of approximately 180 to 250 μg m(-3). We observed strong particle formation and growth within a diameter range of 9 to 50 nm under real-room conditions. Larger particles with diameters above 100 nm were less affected by limonene introduction. The total particle number concentrations (TPNCs) after limonene introduction clearly exceed outdoor values by a factor of 4.5 to 41 reaching maximum concentrations of up to 267,000 particles cm(-3). The formation strength was influenced by background particles, which attenuated the formation of new SOA with increasing concentration, and by ozone levels, an increase of which by 10 ppb will result in a six times higher TPNC. This study emphasizes indoor environments to be preferred locations for particle formation and growth after ventilation events. As a consequence, SOA formation can produce significantly higher amounts of particles than transported by ventilation into the indoor air.

  12. Boundary-Layer & health

    NASA Astrophysics Data System (ADS)

    Costigliola, V.

    2010-09-01

    It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate matter for regional environmental agencies - Local forecast model evaluation support for local authorities and city bodies. Giving value to the above listed aspects, PASODOBLE objectives are following: - Evolution of existing and development of new sustainable air quality services for Europe on regional and local scales - Development and testing of a generic service framework for coordinated input data acquisition and customizable user-friendly access to services - Utilization of multiple cycles of delivery, use and assessment versus requirements and market planning in cooperation with users - Promotion and harmonisation of best practise tools for air quality communities. Further European multidisciplinary projects should be created to better understand the most prevalent atmospheric factors to be impacted in predictive, preventive and personalised medicine considered as the central concept for future medicine.

  13. Stratospheric Instrusion Catalog: A 10-Year Compilation of Events Identified by using TRACK with NASA's MERRA-2 Reanalysis

    NASA Technical Reports Server (NTRS)

    Knowland, K. Emma; Ott, Lesley E.; Duncan, Bryan N.; Wargan, Kris; Hodges, Kevin

    2017-01-01

    Stratospheric intrusions "the introduction of ozone-rich stratospheric air into the troposphere" have been linked with surface ozone air quality exceedances, especially at the high elevations in the western USA in springtime. However, the impact of stratospheric intrusions in the remaining seasons and over the rest of the USA is less clear. A new approach to the study of stratospheric intrusions uses NASA's Goddard Earth Observing System Model (GEOS) model and assimilation products with an objective feature tracking algorithm to investigate the atmospheric dynamics that generate stratospheric intrusions and the different mechanisms through which stratospheric intrusions may influence tropospheric chemistry and surface air quality seasonally over both the western and the eastern USA. A catalog of stratospheric intrusions identified in the MERRA-2 reanalysis was produced for the period 2004-2015 and validated against surface ozone observations (focusing on those which exceed the national air quality standard) and a recent data set of stratospheric intrusion-influenced air quality exceedance flags from the US Environmental Protection Agency (EPA). Considering not all ozone exceedances have been flagged by the EPA, a collection of stratospheric intrusions can support air quality agencies for more rapid identification of the impact of stratospheric air on surface ozone and demonstrates that future operational analyses may aid in forecasting such events. An analysis of the spatiotemporal variability of stratospheric intrusions over the continental US was performed, and while the spring over the western USA does exhibit the largest number of stratospheric intrusions affecting the lower troposphere, the number of intrusions in the remaining seasons and over the eastern USA is sizable. By focusing on the major modes of variability that influence weather in the USA, such as the Pacific North American (PNA) teleconnection index, predicative meteorological patterns associated with stratospheric intrusions and their regional effects on tropospheric ozone were identified. Improved understanding of the connections between large-scale climate variability and local-scale dynamically-driven air quality events may support improved seasonal prediction of such events.

  14. Stratospheric Intrusion Catalog: A 10-year Compilation of Events Identified By Using an Objective Feature Tracking Model With NASA's MERRA-2 Reanalysis

    NASA Astrophysics Data System (ADS)

    Knowland, K. E.; Ott, L. E.; Duncan, B. N.; Wargan, K.; Hodges, K.

    2017-12-01

    Stratospheric intrusions - the introduction of ozone-rich stratospheric air into the troposphere - have been linked with surface ozone air quality exceedances, especially at the high elevations in the western USA in springtime. However, the impact of stratospheric intrusions in the remaining seasons and over the rest of the USA is less clear. A new approach to the study of stratospheric intrusions uses NASA's Goddard Earth Observing System Model (GEOS) model and assimilation products with an objective feature tracking algorithm to investigate the atmospheric dynamics that generate stratospheric intrusions and the different mechanisms through which stratospheric intrusions may influence tropospheric chemistry and surface air quality seasonally over both the western and the eastern USA. A catalog of stratospheric intrusions identified in the MERRA-2 reanalysis was produced for the period 2005-2014 and validated against surface ozone observations (focusing on those which exceed the national air quality standard) and a recent data set of stratospheric intrusion-influenced air quality exceedance flags from the US Environmental Protection Agency (EPA). Considering not all ozone exceedances have been flagged by the EPA, a collection of stratospheric intrusions can support air quality agencies for more rapid identification of the impact of stratospheric air on surface ozone and demonstrates that future operational analyses may aid in forecasting such events. An analysis of the spatiotemporal variability of stratospheric intrusions over the continental US was performed, and while the spring over the western USA does exhibit the largest number of stratospheric intrusions affecting the lower troposphere, the number of intrusions in the remaining seasons and over the eastern USA is sizable. By focusing on the major modes of variability that influence weather in the USA, such as the Pacific North American (PNA) teleconnection index, predicative meteorological patterns associated with stratospheric intrusions and their regional effects on tropospheric ozone were identified. Improved understanding of the connections between large-scale climate variability and local-scale dynamically-driven air quality events may support improved seasonal prediction of such events.

  15. Special report on transboundary air quality issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-31

    The International Air Quality Board was created in 1996 to provide advice to the International Joint Commission in fulfilling an air quality alerting function requested by governments in that year. The Board undertook a review of the many issues affecting transboundary air quality along the Canada-US border. This report reflects on issues previously addressed by the Board in its reporting to the Commission. Section 1 discusses the need for Canada and the US to adopt a seamless border approach to address pollution sources and receptors in a holistic manner. Section 2 discusses nitrogen oxides as a key contaminant because ofmore » its direct impact on the ecosystem and its effects on future levels of other secondary pollutants. Section 3 outlines the deficiencies of emission inventories regarding persistent toxic substances such as mercury, which must be addressed if source-to-receptor relationships are to be established. Section 4 covers the need to develop monitoring and modelling tools to further examine pollutant transport and concentration, and the resulting human and ecological exposure. Section 5 describes issues in individual regions along the border. Section 6 is directed at the harmonization of standards, which would assist in the effective control of transboundary pollutants such as ozone. Section 7 discusses collaboration with other organizations in addressing transboundary air pollution issues. Section 8 describes various feedback mechanisms for verifying that the elimination or management of air pollution is achieving improvement and benefits. Section 9 considers emissions and preventive strategies for major source sectors, including coal-fired utilities and mobile sources. The final section outlines future Board activities.« less

  16. Entrainment of stratospheric air and Asian pollution by the convective boundary layer in the southwestern U.S.

    NASA Astrophysics Data System (ADS)

    Langford, A. O.; Alvarez, R. J.; Brioude, J.; Fine, R.; Gustin, M. S.; Lin, M. Y.; Marchbanks, R. D.; Pierce, R. B.; Sandberg, S. P.; Senff, C. J.; Weickmann, A. M.; Williams, E. J.

    2017-01-01

    A series of deep stratospheric intrusions in late May 2013 increased the daily maximum 8 h surface ozone (O3) concentrations to more than 70 parts per billion by volume (ppbv) at rural and urban surface monitors in California and Nevada. This influx of ozone-rich lower stratospheric air and entrained Asian pollution persisted for more than 5 days and contributed to exceedances of the 2008 8 h national ambient air quality standard of 75 ppbv on 21 and 25 May in Clark County, NV. Exceedances would also have occurred on 22 and 23 May had the new standard of 70 ppbv been in effect. In this paper, we examine this episode using lidar measurements from a high-elevation site on Angel Peak, NV, and surface measurements from NOAA, the Clark County, Nevada Department of Air Quality, the Environmental Protection Agency Air Quality System, and the Nevada Rural Ozone Initiative. These measurements, together with analyses from the National Centers for Environmental Prediction/North American Regional Reanalysis; NOAA Geophysical Fluid Dynamics Laboratory AM3 model; NOAA National Environmental Satellite, Data, and Information Service Real-time Air Quality Modeling System; and FLEXPART models, show that the exceedances followed entrainment of 20 to 40 ppbv of lower stratospheric ozone mingled with another 0 to 10 ppbv of ozone transported from Asia by the unusually deep convective boundary layers above the Mojave desert. Our analysis suggests that this vigorous mixing can affect both high and low elevations and help explain the springtime ozone maximum in the southwestern U.S.

  17. Combined effect of boundary layer recirculation factor and stable energy on local air quality in the Pearl River Delta over southern China.

    PubMed

    Li, Haowen; Wang, Baomin; Fang, Xingqin; Zhu, Wei; Fan, Qi; Liao, Zhiheng; Liu, Jian; Zhang, Asi; Fan, Shaojia

    2018-03-01

    Atmospheric boundary layer (ABL) has a significant impact on the spatial and temporal distribution of air pollutants. In order to gain a better understanding of how ABL affects the variation of air pollutants, atmospheric boundary layer observations were performed at Sanshui in the Pearl River Delta (PRD) region over southern China during the winter of 2013. Two types of typical ABL status that could lead to air pollution were analyzed comparatively: weak vertical diffusion ability type (WVDAT) and weak horizontal transportation ability type (WHTAT). Results show that (1) WVDAT was featured by moderate wind speed, consistent wind direction, and thick inversion layer at 600~1000 m above ground level (AGL), and air pollutants were restricted in the low altitudes due to the stable atmospheric structure; (2) WHTAT was characterized by calm wind, varied wind direction, and shallow intense ground inversion layer, and air pollutants accumulated in locally because of strong recirculation in the low ABL; (3) recirculation factor (RF) and stable energy (SE) were proved to be good indicators for horizontal transportation ability and vertical diffusion ability of the atmosphere, respectively. Combined utilization of RF and SE can be very helpful in the evaluation of air pollution potential of the ABL. Air quality data from ground and meteorological data collected from radio sounding in Sanshui in the Pearl River Delta showed that local air quality was poor when wind reversal was pronounced or temperature stratification state was stable. The combination of horizontal and vertical transportation ability of the local atmosphere should be taken into consideration when evaluating local environmental bearing capacity for air pollution.

  18. Statistical Analysis of the Impacts of Regional Transportation on the Air Quality in Beijing

    NASA Astrophysics Data System (ADS)

    Huang, Zhongwen; Zhang, Huiling; Tong, Lei; Xiao, Hang

    2016-04-01

    From October to December 2015, Beijing-Tianjin-Hebei (BTH) region had experienced several severe haze events. In order to assess the effects of the regional transportation on the air quality in Beijing, the air monitoring data (PM2.5, SO2, NO2 and CO) from that period published by Chinese National Environmental Monitoring Center (CNEMC) was collected and analyzed with various statistical models. The cities within BTH area were clustered into three groups according to the geographical conditions, while the air pollutant concentrations of cities within a group sharing similar variation trends. The Granger causality test results indicate that significant causal relationships exist between the air pollutant data of Beijing and its surrounding cities (Baoding, Chengde, Tianjin and Zhangjiakou) for the reference period. Then, linear regression models were constructed to capture the interdependency among the multiple time series. It shows that the observed air pollutant concentrations in Beijing were well consistent with the model-fitted results. More importantly, further analysis suggests that the air pollutants in Beijing were strongly affected by regional transportation, as the local sources only contributed 17.88%, 27.12%, 14.63% and 31.36% of PM2.5, SO2, NO2 and CO concentrations, respectively. And the major foreign source for Beijing was from Southwest (Baoding) direction, account for more than 42% of all these air pollutants. Thus, by combining various statistical models, it may not only be able to quickly predict the air qualities of any cities on a regional scale, but also to evaluate the local and regional source contributions for a particular city. Key words: regional transportation, air pollution, Granger causality test, statistical models

  19. CORRECTING PHOTOLYSIS RATES ON THE BASIS OF SATELLITE OBSERVED CLOUDS

    EPA Science Inventory

    Clouds can significantly affect photochemical activities in the boundary layer by altering radiation intensity, and therefore their correct specification in the air quality models is of outmost importance. In this study we introduce a technique for using the satellite observed c...

  20. Local Air Quality Conditions and Forecasts

    MedlinePlus

    ... Monitor Location Archived Maps by Region Canada Air Quality Air Quality on Google Earth Links A-Z About AirNow AirNow International Air Quality Action Days / Alerts AirCompare Air Quality Index (AQI) ...

  1. Impacts of Residential Biofuel Emissions on Air Quality and Climate

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Unger, N.; Harper, K.; Storelvmo, T.

    2016-12-01

    The residential biofuel sector is defined as fuelwood, agricultural residues and dung used for household cooking and heating. Aerosol emissions from this human activity play an important role affecting local, regional and global air quality, climate and public health. However, there are only few studies available that evaluate the net impacts and large uncertainties persist. Here we use the Community Atmosphere Model version 5.3 (CAM v5.3) within the Community Earth System Model version 1.2.2, to quantify the impacts of cook-stove biofuel emissions on air quality and climate. The model incorporates a novel advanced treatment of black carbon (BC) effects on mixed-phase/ice clouds. We update the global anthropogenic emission inventory in CAM v5.3 to a state-of-the-art emission inventory from the Greenhouse Gas-Air Pollution Interactions and Synergies integrated assessment model. Global in-situ and aircraft campaign observations for BC and organic carbon are used to evaluate and validate the model performance. Sensitivity simulations are employed to assess the impacts of residential biofuel emissions on regional and global direct and indirect radiative forcings in the contemporary world. We focus the analyses on several key regions including India, China and Sub-Saharan Africa.

  2. National-Scale Air Quality Data Assessment: Initial Findings from the Near-Road NO2 Monitoring Program

    NASA Astrophysics Data System (ADS)

    DeWinter, J. L.

    2015-12-01

    In 2010, the U.S. Environmental Protection Agency (EPA) revised the National Ambient Air Quality Standards (NAAQS) for nitrogen dioxide (NO2) to include a primary health-based standard for hourly NO2. NO2 is a reactive gas that is emitted from motor vehicles, such as cars, trucks, and off-road equipment, as well as non-mobile sources, and is known to adversely affect human respiratory health. In conjunction with the NAAQS revision, EPA has mandated air quality monitoring next to selected major roadways throughout the United States that are in large urban areas where peak hourly NO2 concentrations are expected. Monitoring began in phases during 2012-2015 and included nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matter smaller than 2.5 microns (PM2.5) at 40 monitoring sites nationwide. We conducted a national-scale review of near-road air pollutant concentrations, identified areas where high concentrations of NO2, PM2.5, and CO occurred, and evaluated how concentrations varied by factors such as location, distance to roadway, fleet mix characteristics, and traffic volume. We present the findings from our national near-road data assessment for the 2014 monitoring year.

  3. Spatial Growth Modeling and High Resolution Remote Sensing Data Coupled with Air Quality Modeling to Assess the Impact of Atlanta, Georgia on the Local and Regional Environment

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Johnson, Hoyt; Khan, Maudood

    2006-01-01

    The growth of cities, both in population and areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 60 percent of the world s population will live in cities. Urban expansion has profound impacts on a host of biophysical, environmental, and atmospheric processes within an urban ecosystems perspective. A reduction in air quality over cities is a major result of these impacts. Because of its complexity, the urban landscape is not adequately captured in air quality models such as the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban spatial growth modeling (SGM) projections as improved inputs to a meteorological/air quality modeling system focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include business as usual and smart growth scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, which in turn, are used to model how air temperature can potentially be moderated as impacts on elevating ground-level ozone, as opposed to not utilizing heat island mitigation strategies. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the CMAQ modeling schemes. Use of these data has been found to better characterize low density/suburban development as compared with USGS lkm land use/land cover data that have traditionally been used in modeling. Air quality prediction for future scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission, the regional planning agency for the area. This allows the Georgia Environmental Protection Division to evaluate how these transportation plans will affect future air quality. The coupled SGM and air quality modeling approach provides insight on what the impacts of Atlanta s growth will be on the local and regional environment and exists as a mechanism that can be used by policy makers to make rational decisions on urban growth and sustainability for the metropolitan area in the future.

  4. Remote Sensing and Spatial Growth Modeling Coupled With Air Quality Modeling to Assess the Impact of Atlanta, Georgia on the Local and Regional Environment

    NASA Astrophysics Data System (ADS)

    Quattrochi, D. A.; Estes, M. G.; Crosson, W. L.; Johnson, H.; Khan, M.

    2006-05-01

    The growth of cities, both in population and areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 60 percent of the world's population will live in cities. Urban expansion has profound impacts on a host of biophysical, environmental, and atmospheric processes within an urban ecosystems perspective. A reduction in air quality over cities is a major result of these impacts. Because of its complexity, the urban landscape is not adequately captured in air quality models such as the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban spatial growth modeling (SGM) projections as improved inputs to a meteorological/air quality modeling system focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include "business as usual" and "smart growth" scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, which in turn, are used to model how air temperature can potentially be moderated as impacts on elevating ground-level ozone, as opposed to not utilizing heat island mitigation strategies. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the CMAQ modeling schemes. Use of these data has been found to better characterize low density/suburban development as compared with USGS 1km land use/land cover data that have traditionally been used in modeling. Air quality prediction for future scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission, the regional planning agency for the area. This allows the Georgia Environmental Protection Division to evaluate how these transportation plans will affect future air quality. The coupled SGM and air quality modeling approach provides insight on what the impacts of Atlanta's growth will be on the local and regional environment and exists as a mechanism that can be used by policy makers to make rational decisions on urban growth and sustainability for the metropolitan area in the future.

  5. Quantifying the Contribution of Thermally Driven Recirculation to a High-Ozone Event Along the Colorado Front Range Using Lidar

    NASA Technical Reports Server (NTRS)

    Sullivan, John T.; McGee, Thomas J.; Langford, Andrew O.; Alvarez, Raul J., II; Senff, Christoph; Reddy, Patrick J.; Thompson, Anne M.; Twigg, Laurence W.; Sumnicht, Grant K.; Lee, Pius; hide

    2016-01-01

    A high-ozone (O3) pollution episode was observed on 22 July 2014 during the concurrent Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) and Front Range Air Pollution and Photochemistry Experiment (FRAPPE) campaigns in northern Colorado. Surface O3 monitors at three regulatory sites exceeded the Environmental Protection Agency (EPA) 2008 National Ambient Air Quality Standard (NAAQS) daily maximum 8h average (MDA8) of 75ppbv. To further characterize the polluted air mass and assess transport throughout the event, measurements are presented from O3 and wind profilers, O3-sondes, aircraft, and surface-monitoring sites. Observations indicate that thermally driven upslope flow was established throughout the Colorado Front Range during the pollution episode. As the thermally driven flow persisted throughout the day, O3 concentrations increased and affected high-elevation Rocky Mountain sites. These observations, coupled with modeling analyses, demonstrate a westerly return flow of polluted air aloft, indicating that the mountain-plains solenoid circulation was established and impacted surface conditions within the Front Range.

  6. Forests under climate change and air pollution: gaps in understanding and future directions for research.

    PubMed

    Matyssek, R; Wieser, G; Calfapietra, C; de Vries, W; Dizengremel, P; Ernst, D; Jolivet, Y; Mikkelsen, T N; Mohren, G M J; Le Thiec, D; Tuovinen, J-P; Weatherall, A; Paoletti, E

    2012-01-01

    Forests in Europe face significant changes in climate, which in interaction with air quality changes, may significantly affect forest productivity, stand composition and carbon sequestration in both vegetation and soils. Identified knowledge gaps and research needs include: (i) interaction between changes in air quality (trace gas concentrations), climate and other site factors on forest ecosystem response, (ii) significance of biotic processes in system response, (iii) tools for mechanistic and diagnostic understanding and upscaling, and (iv) the need for unifying modelling and empirical research for synthesis. This position paper highlights the above focuses, including the global dimension of air pollution as part of climate change and the need for knowledge transfer to enable reliable risk assessment. A new type of research site in forest ecosystems ("supersites") will be conducive to addressing these gaps by enabling integration of experimentation and modelling within the soil-plant-atmosphere interface, as well as further model development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. 76 FR 19292 - Approval and Promulgation of Implementation Plans; Oregon; Interstate Transport of Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    ...EPA is proposing to approve a portion of the State Implementation Plan (SIP) revision submitted by the State of Oregon for the purpose of addressing the interstate transport provisions of Clean Air Act (CAA) section 110(a)(2)(D)(i)(I) for the 1997 8-hour ozone National Ambient Air Quality Standards (NAAQS or standards) and the 1997 fine particulate matter (PM2.5) NAAQS. Section 110(a)(2)(D)(i) of the CAA requires that each State have adequate provisions to prohibit air emissions from adversely affecting air quality in other States through interstate transport. EPA is proposing to approve Oregon's SIP revision for the 1997 8-hour ozone and 1997 PM2.5 NAAQS as meeting the requirements of CAA section 110(a)(2)(D)(i)(I) to prohibit emissions that will contribute significantly to nonattainment of the these standards in any other State and to prohibit emissions that will interfere with maintenance of these standards by any other State.

  8. Evaluation of various activated carbons for air cleaning - Towards design of immune and sustainable buildings

    NASA Astrophysics Data System (ADS)

    Haghighat, Fariborz; Lee, Chang-Seo; Pant, Bhuvan; Bolourani, Golnoush; Lakdawala, Ness; Bastani, Arash

    There are increased demands for security, sustainability and indoor air quality in today's building design, construction, operation and maintenance. Installation of air cleaning systems can improve the indoor air quality by reducing the air pollution levels, and enhance the building security against sudden release of chemical and/or biological agents. At the same time, air cleaning techniques may reduce the building energy consumption by reducing the outdoor air supply rate, hence lowering the needs for conditioning of outdoor air. While the air filtration of particulate matter is well standardized, the standards against which the performance of air cleaning for gaseous contaminants is measured or classified are still under development. This study examined the performance of various granular activated carbons (GACs) for the removal of volatile organic compounds (VOCs) from mechanically ventilated buildings. Eight different GACs (three virgin and five impregnated) were tested against toluene using a dynamic test system. The virgin GACs showed better performance than impregnated ones, the percentage and the type of impregnation affected the removal efficiencies. Tests were also conducted with selected GACs against toluene, cyclohexane and ethyl acetate at relative humidity (RH) values of 30%, 50% and 70%. The effect of humidity was dependant on the VOC used. Both for toluene and cyclohexane, the removal efficiency decreased as RH increased. However, higher humidity showed a positive impact on the removal of ethyl acetate.

  9. Advanced air distribution: improving health and comfort while reducing energy use.

    PubMed

    Melikov, A K

    2016-02-01

    Indoor environment affects the health, comfort, and performance of building occupants. The energy used for heating, cooling, ventilating, and air conditioning of buildings is substantial. Ventilation based on total volume air distribution in spaces is not always an efficient way to provide high-quality indoor environments at the same time as low-energy consumption. Advanced air distribution, designed to supply clean air where, when, and as much as needed, makes it possible to efficiently achieve thermal comfort, control exposure to contaminants, provide high-quality air for breathing and minimizing the risk of airborne cross-infection while reducing energy use. This study justifies the need for improving the present air distribution design in occupied spaces, and in general the need for a paradigm shift from the design of collective environments to the design of individually controlled environments. The focus is on advanced air distribution in spaces, its guiding principles and its advantages and disadvantages. Examples of advanced air distribution solutions in spaces for different use, such as offices, hospital rooms, vehicle compartments, are presented. The potential of advanced air distribution, and individually controlled macro-environment in general, for achieving shared values, that is, improved health, comfort, and performance, energy saving, reduction of healthcare costs and improved well-being is demonstrated. Performance criteria are defined and further research in the field is outlined. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Effect of Air Pollution on Menstrual Cycle Length-A Prognostic Factor of Women's Reproductive Health.

    PubMed

    Merklinger-Gruchala, Anna; Jasienska, Grazyna; Kapiszewska, Maria

    2017-07-20

    Air pollution can influence women's reproductive health, specifically menstrual cycle characteristics, oocyte quality, and risk of miscarriage. The aim of the study was to assess whether air pollution can affect the length of the overall menstrual cycle and the length of its phases (follicular and luteal). Municipal ecological monitoring data was used to assess the air pollution exposure during the monitored menstrual cycle of each of 133 woman of reproductive age. Principal component analyses were used to group pollutants (PM 10 , SO₂, CO, and NO x ) to represent a source-related mixture. PM 10 and SO₂ assessed separately negatively affected the length of the luteal phase after standardization (b = -0.02; p = 0.03; b = -0.06; p = 0.02, respectively). Representing a fossil fuel combustion emission, they were also associated with luteal phase shortening (b = -0.32; p = 0.02). These pollutants did not affect the follicular phase length and overall cycle length, neither in single- nor in multi-pollutant models. CO and NO x assessed either separately or together as a traffic emission were not associated with overall cycle length or the length of cycle phases. Luteal phase shortening, a possible manifestation of luteal phase deficiency, can result from fossil fuel combustion. This suggests that air pollution may contribute to fertility problems in women.

  11. One multi-media environmental system with linkage between meteorology/ hydrology/ air quality models and water quality model

    NASA Astrophysics Data System (ADS)

    Tang, C.; Lynch, J. A.; Dennis, R. L.

    2016-12-01

    The biogeochemical processing of nitrogen and associated pollutants is driven by meteorological and hydrological processes in conjunction with pollutant loading. There are feedbacks between meteorology and hydrology that will be affected by land-use change and climate change. Changes in meteorology will affect pollutant deposition. It is important to account for those feedbacks and produce internally consistent simulations of meteorology, hydrology, and pollutant loading to drive the (watershed/water quality) biogeochemical models. In this study, the ecological response to emission reductions in streams in the Potomac watershed was evaluated. Firstly, we simulated the deposition by using the fully coupled Weather Research & Forecasting (WRF) model and the Community Multiscale Air Quality (CAMQ) model; secondly, we created the hydrological data by the offline linked Variable Infiltration Capacity (VIC) model and the WRF model. Lastly, we investigated the water quality by one comprehensive/environment model, namely the linkage of CMAQ, WRF, VIC and the Model of Acidification of Groundwater In Catchment (MAGIC) model from 2002 to 2010.The simulated results (such as NO3, SO4, and SBC) fit well to the observed values. The linkage provides a generally accurate, well-tested tool for evaluating sensitivities to varying meteorology and environmental changes on acidification and other biogeochemical processes, with capability to comprehensively explore strategic policy and management design.

  12. Environmental Impact Analysis Process. Supplement to Final Environmental Impact Statement Space Shuttle Program, Vandenberg AFB, California

    DTIC Science & Technology

    1983-07-01

    problems . Six appendices offer more detailed environmental assessments for the key issues of air quality impacts, inadvertent weather modification...research studies in problem areas, and newly- acquired knowledge of the affected environment. The physical, chemi- cal, biological, and...Shuttle program, in conjunction with other projects within the county, will aggravate short-tenm problems concerning housing, and the quality and quantity

  13. Final Base Realignment and Closure (BRAC) Environmental Assessment for Realignment of Nellis Air Force Base

    DTIC Science & Technology

    2007-03-01

    Traffic Control Assigned Airspace ATG Adversary Tactics Group AWACS Airborne Warning and Control System BAQ Bureau of Air Quality BLM Bureau of Land...Department of Interior Actions BLM The BLM manages millions of acres of public lands in southern Nevada which include portions of NTTR and...within NTTR and would not affect BLM lands adjacent to the base. Therefore, there are no cumulative impacts. USFWS Aircraft operate within the

  14. Intra and inter-continental aerosol transport and local and regional impacts

    NASA Astrophysics Data System (ADS)

    Charles, Leona Ann Marie

    Under the Clean Air Act, the Environmental Protection Agency (EPA) is required to establish a nationally uniform air quality index for the reporting of air quality. In 1976, the EPA established this index, then called the Pollutant Standards Index, for use by state and local communities across the country. The Index provides information on pollutant concentrations for ground-level ozone, particulate matter, carbon monoxide, sulfur dioxide, and nitrogen dioxide. On July 18, 1997, the EPA revised the ozone and particulate matter standards, in light of a comprehensive review of new scientific evidence including refined fine particulate matter standards.* Any program which is designed to improve air quality must devise tools in which emissions, meteorology, air chemistry and transport are understood. Clearly, the complexity of this task requires measurements at both regional and mesoscale ranges, as well as on a continental scale to investigate long range transport. Unfortunately, determination of fine particulate matter (PM) concentrations is particularly difficult since an accurate measurement of PM2.5 relies on costly equipment which cannot provide the complete transport story and the mixing and dispersion of particulate matter is much more complex than that for trace gases. Besides the need for accurate measurements as a way of documenting air quality standards, the EPA is required in the near future to implement a 24 hour Air Quality Forecast. Current forecast tools are usually based on emission inventories and meteorological forecasts, but significant work is being done in trying to assimilate both ground measurements as well as satellite measurements into these schemes. Clearly, the 'Holy Grail' would be the capability of assimilating full 3D (+ time) measurements. However, since satellite measurements are primarily passive, only total air column properties such as aerosol optical depth can be retrieved. In particular, it is not possible to determine the vertical layering of aerosols in the troposphere from passive remote sensing measurements. Therefore, the connection with air pollution is very poor. Furthermore, the vertical structure of the aerosol is very important in assessing transport events and how they mix with the Planetary Boundary Layer (PBL). The need to fill this data gap and supply vertical information on plume detection has led to the launch of the Cloud Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) space borne lidar system, which can in principle provide vertical profiles of aerosol backscatter that can be used in the assimilation schemes. One particular problem which needs to be addressed, is the fact that the relationship between the optical scattering coefficients (or AOD) and the PM2.5 mass is not simple. Finally, regarding non-attainment of National Ambient Air Quality Standards (NAAQS), it has also been shown that a significant portion of the PM2.5 aerosol mass can be due to non-local sources. This fact is critical in assessing the appropriate strategy in emission controls, as part of the state implementation plan (SIP) to come into compliance. However, these studies are usually based on statistical analysis tools such as Positive Factor Analysis (PFA), and are not applicable to any single measurement. In addition, little is known about the impact of episodic long range transport as a possible mechanism for affecting local pollution. Such a mechanism cannot be investigated by statistical means or by any existing air transport models which do not consider high altitude plumes (aerosol layers), and must be studied solely with an appropriate suite of measurements including the simultaneous use of sky radiometers, lidars and satellites. Furthermore, since fine particulate matter is so crucial to identify, multi-wavelength determination of aerosol properties such as angstrom coefficient are necessary. It is our purpose to investigate the possibility that such long range transport events can indeed affect local air-quality. This may first seem improbable due to the high plume altitudes, but we will show by case studies that significant mixing into the PBL can occur and affect local air quality. In particular, in chapters 5 and 6 we investigate dust and smoke transport events respectively, showing the usefulness of multi-wavelength lidar measurements to study the interaction of aerosols in the PBL with long range advected aerosol plumes. Our measurements are used to determine the plume angstrom exponent, which allows us to differentiate smoke events from dust events, as well as partitioning the total aerosol optical depth obtained from a CIMEL sky radiometer between the PBL and the high altitude plumes.* (Abstract shortened by UMI.) *Please refer to dissertation for diagrams.

  15. A piloted simulation investigation of yaw dynamics requirements for turreted gun use in low-level helicopter air combat

    NASA Technical Reports Server (NTRS)

    Decker, William A.; Morris, Patrick M.; Williams, Jeffrey N.

    1988-01-01

    A piloted, fixed-base simulation study was conducted to investigate the handling qualities requirements for helicopter air-to-air combat using turreted guns in the near-terrain environment. The study used a version of the helicopter air combat system developed at NASA Ames Research Center for one-on-one air combat. The study focused on the potential trade-off between gun angular movement capability and required yaw axis response. Experimental variables included yaw axis response frequency and damping and the size of the gun-movement envelope. A helmet position and sighting system was used for pilot control of gun aim. Approximately 340 simulated air combat engagements were evaluated by pilots from the Army and industry. Results from the experiment indicate that a highly-damped, high frequency yaw response was desired for Level I handling qualities. Pilot preference for those characteristics became more pronounced as gun turret movement was restricted; however, a stable, slow-reacting platform could be used with a large turret envelope. Most pilots preferred to engage with the opponent near the own-ship centerline. Turret elevation restriction affected the engagement more than azimuth restrictions.

  16. The effect of environmental parameters to dust concentration in air-conditioned space

    NASA Astrophysics Data System (ADS)

    Ismail, A. M. M.; Manssor, N. A. S.; Nalisa, A.; Yahaya, N.

    2017-08-01

    Malaysia has a wet and hot climate, therefore most of the spaces are air conditioned. The environment might affect dust concentration inside a space and affect the indoor air quality (IAQ). The main objective of this study is to study the dust concentration collected inside enclosed air-conditioned space. The measurement was done physically at four selected offices and two classrooms using a number of equipment to measure the dust concentration and environmental parameters which are temperature and relative air humidity. It was found that the highest dust concentration produced in office (temperature of 24.7°C, relative humidity of 66.5%) is 0.075 mg/m3, as compared to classroom, the highest dust concentration produced is 0.060 mg/m3 office (temperature of 25.9°C, relative humidity of 64.0%). However, both measurements show that value still within the safety level set by DOSH Malaysia (2005-2010) and ASHRAE 62.2 2016. The office contained higher dust concentration compared to classroom because of frequent movement transpires daily due to the functional of the offices.

  17. Respiratory infections during air travel.

    PubMed

    Leder, K; Newman, D

    2005-01-01

    An increasing number of individuals undertake air travel annually. Issues regarding cabin air quality and the potential risks of transmission of respiratory infections during flight have been investigated and debated previously, but, with the advent of severe acute respiratory syndrome and influenza outbreaks, these issues have recently taken on heightened importance. Anecdotally, many people complain of respiratory symptoms following air travel. However, studies of ventilation systems and patient outcomes indicate the spread of pathogens during flight occurs rarely. In the present review, aspects of the aircraft cabin environment that affect the likelihood of transmission of respiratory pathogens on airplanes are outlined briefly and evidence for the occurrence of outbreaks of respiratory illness among airline passengers are reviewed.

  18. Can ornamental potted plants remove volatile organic compounds from indoor air? A review.

    PubMed

    Dela Cruz, Majbrit; Christensen, Jan H; Thomsen, Jane Dyrhauge; Müller, Renate

    2014-12-01

    Volatile organic compounds (VOCs) are found in indoor air, and many of these can affect human health (e.g. formaldehyde and benzene are carcinogenic). Plants affect the levels of VOCs in indoor environments, thus they represent a potential green solution for improving indoor air quality that at the same time can improve human health. This article reviews scientific studies of plants' ability to remove VOCs from indoor air. The focus of the review is on pathways of VOC removal by the plants and factors affecting the efficiency and rate of VOC removal by plants. Laboratory based studies indicate that plant induced removal of VOCs is a combination of direct (e.g. absorption) and indirect (e.g. biotransformation by microorganisms) mechanisms. They also demonstrate that plants' rate of reducing the level of VOCs is influenced by a number of factors such as plant species, light intensity and VOC concentration. For instance, an increase in light intensity has in some studies been shown to lead to an increase in removal of a pollutant. Studies conducted in real-life settings such as offices and homes are few and show mixed results.

  19. Estimates of wildland fire emissions

    Treesearch

    Yongqiang Liu; John J. Qu; Wanting Wang; Xianjun Hao

    2013-01-01

    Wildland fire missions can significantly affect regional and global air quality, radiation, climate, and the carbon cycle. A fundamental and yet challenging prerequisite to understanding the environmental effects is to accurately estimate fire emissions. This chapter describes and analyzes fire emission calculations. Various techniques (field measurements, empirical...

  20. Petaluma Revisited

    ERIC Educational Resources Information Center

    Wolff, Anthony

    1975-01-01

    If economic recovery occurs, land development and construction will revive simultaneously with land-use controls. Already the Federal government has affected land use by passing the Coastal Zone Management Act and the Clean Air Act. The states have also initiated land-use regulations concerning community planning and environmental quality. (MR)

  1. Uncertainty Analysis of Ozone Formation and Response to Emission Controls Using Higher-Order Sensitivities

    EPA Science Inventory

    Understanding ozone response to its precursor emissions is crucial for effective air quality management practices. This nonlinear response is usually simulated using chemical transport models, and the modeling results are affected by uncertainties in emissions inputs. In this stu...

  2. The health impacts and economic value of wildland fire episodes in the U.S.: 2008-2012

    EPA Science Inventory

    Introduction: Wildland fires degrade regional air quality and adversely affect human health. A growing body of epidemiology literature report increased rates of emergency department, hospital admission and premature deaths from wildfire smoke exposure. Objective: Our research a...

  3. Avoiding Failure

    ERIC Educational Resources Information Center

    McGraw, Michael

    2010-01-01

    Evidence continues to emerge about the effect indoor air quality has on a student's ability to learn. One study cited by the U.S. Environmental Protection Agency (EPA) shows moderate changes in room temperature affect children's abilities to perform mental tasks requiring concentration, such as addition, multiplication and sentence comprehension.…

  4. Gas-particle partitioning of atmospheric aerosols: interplay of physical state, non-ideal mixing and morphology.

    PubMed

    Shiraiwa, Manabu; Zuend, Andreas; Bertram, Allan K; Seinfeld, John H

    2013-07-21

    Atmospheric aerosols, comprising organic compounds and inorganic salts, play a key role in air quality and climate. Mounting evidence exists that these particles frequently exhibit phase separation into predominantly organic and aqueous electrolyte-rich phases. As well, the presence of amorphous semi-solid or glassy particle phases has been established. Using the canonical system of ammonium sulfate mixed with organics from the ozone oxidation of α-pinene, we illustrate theoretically the interplay of physical state, non-ideality, and particle morphology affecting aerosol mass concentration and the characteristic timescale of gas-particle mass transfer. Phase separation can significantly affect overall particle mass and chemical composition. Semi-solid or glassy phases can kinetically inhibit the partitioning of semivolatile components and hygroscopic growth, in contrast to the traditional assumption that organic compounds exist in quasi-instantaneous gas-particle equilibrium. These effects have significant implications for the interpretation of laboratory data and the development of improved atmospheric air quality and climate models.

  5. A comprehensive air quality investigation at an aquatic centre: Indoor/outdoor comparisons.

    PubMed

    Tolis, Evangelos I; Panaras, Giorgos; Bartzis, John G

    2018-06-01

    Air quality and comfort parameters in a naturally ventilated aquatic centre were studied in relation to the outdoor pollution levels. Simultaneous measurements of PM 2.5, as well as of volatile organic compounds, were carried out for the indoor and outdoor environment of the aquatic centre. The chemical analysis of ionic species and trace elements associated with particulate matter was also performed. In addition, automated analyzer for NO 2 and O 3 was used in order to record the indoor and outdoor levels of these pollutants. Analysis of diurnal variation of the pollutants' concentration was applied to the collected data, allowing the identification of potential variation on the sources affecting the indoor air quality. PM 2.5 concentration was almost two times higher indoors than outdoors with average values of 13.96 and 6.78 μg/m 3 , respectively. Concerning the ion fraction of PM 2.5, SO 4 2- and Ca 2+ were the ions with higher concentration indoors with values of 1.06 and 0.93 μg/m 3 , respectively, while the percentage of Cl - to the PM 2.5 fraction of the indoor atmosphere (9%) was too high than outdoor ones (1%). These results showed that indoor air of swimming pool concerning PM 2.5 and ionic species is mainly affected by the chlorination process along with the comfort conditions (high relative humidity) created during the operation of the facility. The common volatile organic compound concentrations at indoor air are generally in higher levels, compared to the outdoor air with p,m-xylene and toluene to be the substances with the higher concentration for indoor and outdoor area, respectively (7.80 and 1.57 μg/m 3 ); nevertheless, values were rather low compared with the findings of other studies. Also, they clearly demonstrate a diurnal variation as a result of poor ventilation during night. As it was expected, chloroform showed the highest concentration compared to the other volatile organic compounds with values ranging from 3.35 to 135.89 μg/m 3 , with an average of 54.50 μg/m 3 . Concerning the NO 2 concentration, indoor levels showed an increased pattern when the swimming pool was fully occupied, a fact that reveals a possible correlation. As an overall conclusion, the natural ventilation and the disinfection process seem to play a key role to the air quality of the indoor air of the aquatic centre.

  6. Technology review: prototyping platforms for monitoring ambient conditions.

    PubMed

    Afolaranmi, Samuel Olaiya; Ramis Ferrer, Borja; Martinez Lastra, Jose Luis

    2018-05-08

    The monitoring of ambient conditions in indoor spaces is very essential owing to the amount of time spent indoors. Specifically, the monitoring of air quality is significant because contaminated air affects the health, comfort and productivity of occupants. This research work presents a technology review of prototyping platforms for monitoring ambient conditions in indoor spaces. It involves the research on sensors (for CO 2 , air quality and ambient conditions), IoT platforms, and novel and commercial prototyping platforms. The ultimate objective of this review is to enable the easy identification, selection and utilisation of the technologies best suited for monitoring ambient conditions in indoor spaces. Following the review, it is recommended to use metal oxide sensors, optical sensors and electrochemical sensors for IAQ monitoring (including NDIR sensors for CO 2 monitoring), Raspberry Pi for data processing, ZigBee and Wi-Fi for data communication, and ThingSpeak IoT platform for data storage, analysis and visualisation.

  7. Environmental Health

    NASA Technical Reports Server (NTRS)

    Pierson, Duane; James, John; Russo, Dane; Limero, Thomas; Beck, Steve; Groves, Theron

    1999-01-01

    The Environmental Health activity for the Extended Duration Orbiter Medical Project (EDOMP) was formed to develop an overall strategy for safeguarding crew members from potential airborne hazards anticipated on missions of extended duration. These efforts were necessary because of major modifications to the air revitalization system of the U.S. Space Shuttle and an increased potential for environmental health risks associated with longer space flights. Degradation of air quality in the Shuttle during a space flight mission has the potential to affect the performance of the crew not only during piloting, landing, or egress, but also during space flight. It was anticipated that the risk of significant deterioration in air quality would increase with extended mission lengths and could result from: (1) a major chemical contamination incident, such as a thermodegradation event or toxic leak, (2) continual accumulation of volatile organic compounds to unacceptable levels, (3) excessive levels of airborne particles, (4) excessive levels of microorganisms, or (5) accumulation of airborne pathogens.

  8. The Co-benefits of Domestic and Foreign GHG Mitigation on US Air Quality

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Bowden, J.; Adelman, Z.; Naik, V.; Horowitz, L. W.; West, J. J.

    2013-12-01

    Authors: Yuqiang Zhang1, Jared Bowden2 , Zachariah Adelman1,2, Vaishali Naik3, Larry W. Horowitz4 , J. Jason West1 1 University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 2 Institute for the Environment, Chapel Hill, NC 27599 3 UCAR/NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540 4 NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540 Abstract: Actions to mitigate greenhouse gas (GHG) emissions will reduce co-emitted air pollutants, which can immediately affect air quality; slowing climate change through GHG mitigation also influences air quality in the long term. We previously used a global model (MOZART-4) to show that global GHG mitigation will have significant co-benefits for air quality and human health. In doing so, we contrasted the Representative Concentration Pathway Scenario 4.5 (RCP4.5), treated as a GHG mitigation scenario, with its associated reference case scenario (REF). Using these same scenarios, we investigate here the air quality co-benefits due to domestic GHGs mitigation in the US alone at fine resolution, and compare these co-benefits with those resulting from foreign GHG mitigation. This work focuses on downscaling the meteorology and air pollutant chemistry to the US scale. We use the latest Weather Research and Forecasting (WRF) model as a Regional Climate Model (RCM) to dynamically downscale the GFDL AM3 Global Climate Model (GCM) over the US at 36 km resolution, in 2000 and 2050. The 2000 simulation will be compared with the multi-year surface observation data, satellite data, and all simulations with the GCM simulation. These simulations will be used as inputs for the newest Community Multiscale Air Quality (CMAQ) modeling system. Initial conditions (IC) and dynamic boundary conditions (BC) for CMAQ will be derived from the global MOZART-4 simulations. Anthropogenic emissions for the REF and RCP4.5 scenarios will be processed through SMOKE to prepare temporally- and spatially-resolved emission files. We will evaluate the co-benefits of GHG mitigation by changing the meteorological and air pollutant emissions inputs for RCP4.5 and REF, as well as the fixed methane level, and will separate the co-benefits of domestic vs. foreign GHG mitigation by using RCP4.5 emissions in the US only, but REF boundary conditions and REF emissions elsewhere.

  9. Setting limits: Using air pollution thresholds to protect and restore U.S. ecosystems

    USGS Publications Warehouse

    Fenn, M.E.; Lambert, K.F.; Blett, T.F.; Burns, Douglas A.; Pardo, L.H.; Lovett, Gary M.; Haeuber, R. A.; Evers, D.C.; Driscoll, C.T.; Jeffries, D.S.

    2011-01-01

    More than four decades of research provide unequivocal evidence that sulfur, nitrogen, and mercury pollution have altered, and will continue to alter, our nation's lands and waters. The emission and deposition of air pollutants harm native plants and animals, degrade water quality, affect forest productivity, and are damaging to human health. Many air quality policies limit emissions at the source but these control measures do not always consider ecosystem impacts. Air pollution thresholds at which ecological effects are observed, such as critical loads, are effective tools for assessing the impacts of air pollution on essential ecosystem services and for informing public policy. U.S. ecosystems can be more effectively protected and restored by using a combination of emissions-based approaches and science-based thresholds of ecosystem damage. Based on the results of a comprehensive review of air pollution thresholds, we conclude: ??? Ecosystem services such as air and water purification, decomposition and detoxification of waste materials, climate regulation, regeneration of soil fertility, production and biodiversity maintenance, as well as crop, timber and fish supplies are impacted by deposition of nitrogen, sulfur, mercury and other pollutants. The consequences of these changes may be difficult or impossible to reverse as impacts cascade throughout affected ecosystems. ??? The effects of too much nitrogen are common across the U.S. and include altered plant and lichen communities, enhanced growth of invasive species, eutrophication and acidification of lands and waters, and habitat deterioration for native species, including endangered species. ??? Lake, stream and soil acidification is widespread across the eastern United States. Up to 65% of lakes within sensitive areas receive acid deposition that exceeds critical loads. ??? Mercury contamination adversely affects fish in many inland and coastal waters. Fish consumption advisories for mercury exist in all 50 states and on many tribal lands. High concentrations of mercury in wildlife are also widespread and have multiple adverse effects. ??? Air quality programs, such as those stemming from the 1990 Clean Air Act Amendments, have helped decrease air pollution even as population and energy demand have increased. Yet, they do not adequately protect ecosystems from long-term damage. Moreover they do not address ammonia emissions. ??? A stronger ecosystem basis for air pollutant policies could be established through adoption of science-based thresholds. Existing monitoring programs track vital information needed to measure the response to policies, and could be expanded to include appropriate chemical and biological indicators for terrestrial and aquatic ecosystems and establishment of a national ecosystem monitoring network for mercury. The development and use of air pollution thresholds for ecosystem protection and management is increasing in the United States, yet threshold approaches remain underutilized. Ecological thresholds for air pollution, such as critical loads for nitrogen and sulfur deposition, are not currently included in the formal regulatory process for emissions controls in the United States, although they are now considered in local management decisions by the National Park Service and U.S. Forest Service. Ecological thresholds offer a scientifically sound approach to protecting and restoring U.S. ecosystems and an important tool for natural resource management and policy. ?? The Ecological Society of America.

  10. Adverse effects of increasing drought on air quality via natural processes

    NASA Astrophysics Data System (ADS)

    Wang, Yuxuan; Xie, Yuanyu; Dong, Wenhao; Ming, Yi; Wang, Jun; Shen, Lu

    2017-10-01

    Drought is a recurring extreme of the climate system with well-documented impacts on agriculture and water resources. The strong perturbation of drought to the land biosphere and atmospheric water cycle will affect atmospheric composition, the nature and extent of which are not well understood. Here we present observational evidence that US air quality is significantly correlated with drought severity. Severe droughts during the period of 1990-2014 were found associated with growth-season (March-October) mean enhancements in surface ozone and PM2.5 of 3.5 ppbv (8 %) and 1.6 µg m-3 (17 %), respectively. The pollutant enhancements associated with droughts do not appear to be affected by the decreasing trend of US anthropogenic emissions, indicating natural processes as the primary cause. Elevated ozone and PM2.5 are attributed to the combined effects of drought on deposition, natural emissions (wildfires, biogenic volatile organic compounds (BVOCs), and dust), and chemistry. Most climate-chemistry models are not able to reproduce the observed correlations of ozone and PM2.5 to drought severity. The model deficiencies are partly attributed to the lack of drought-induced changes in land-atmosphere exchanges of reactive gases and particles and misrepresentation of cloud changes under drought conditions. By applying the observed relationships between drought and air pollutants to climate model projected drought occurrences, we estimate an increase of 1-6 % for ground-level O3 and 1-16 % for PM2.5 in the US by 2100 compared to the 2000s due to increasing drought alone. Drought thus poses an important aspect of climate change penalty on air quality, and a better prediction of such effects would require improvements in model processes.

  11. Estimating Cloud optical thickness from SEVIRI, for air quality research, by implementing a semi-analytical cloud retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Pandey, Praveen; De Ridder, Koen; van Looy, Stijn; van Lipzig, Nicole

    2010-05-01

    Clouds play an important role in Earth's climate system. As they affect radiation hence photolysis rate coefficients (ozone formation),they also affect the air quality at the surface of the earth. Thus, a satellite remote sensing technique is used to retrieve the cloud properties for air quality research. The geostationary satellite, Meteosat Second Generation (MSG) has onboard, the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The channels in the wavelength 0.6 µm and 1.64 µm are used to retrieve cloud optical thickness (COT). The study domain is over Europe covering a region between 35°N-70°N and 5°W-30°E, centred over Belgium. The steps involved in pre-processing the EUMETSAT level 1.5 images are described, which includes, acquisition of digital count number, radiometric conversion using offsets and slopes, estimation of radiance and calculation of reflectance. The Sun-earth-satellite geometry also plays an important role. A semi-analytical cloud retrieval algorithm (Kokhanovsky et al., 2003) is implemented for the estimation of COT. This approach doesn't involve the conventional look-up table approach, hence it makes the retrieval independent of numerical radiative transfer solutions. The semi-analytical algorithm is implemented on a monthly dataset of SEVIRI level 1.5 images. Minimum reflectance in the visible channel, at each pixel, during the month is accounted as the surface albedo of the pixel. Thus, monthly variation of COT over the study domain is prepared. The result so obtained, is compared with the COT products of Satellite Application Facility on Climate Monitoring (CM SAF). Henceforth, an approach to assimilate the COT for air quality research is presented. Address of corresponding author: Praveen Pandey, VITO- Flemish Institute for Technological Research, Boeretang 200, B 2400, Mol, Belgium E-mail: praveen.pandey@vito.be

  12. Study of the effectiveness of several tree canopy types on roadside green belt in influencing the distribution of NO2 gas emitted from transportation

    NASA Astrophysics Data System (ADS)

    Desyana, R. D.; Sulistyantara, B.; Nasrullah, N.; Fatimah, I. S.

    2017-03-01

    Transportation is one significant factor which contributes to urban air pollution. One of the pollutants emitted from transportation which affect human’s health is NO2. Plants, especially trees, have high potential in reducing air pollutants from transportation through diffusion, absorbtion, adsorption and deposition. Purpose of this study was to analyze the effectiveness of several tree canopy types on roadside green belt in influencing distribution of NO2 gas emitted from transportation. The study conducted in three plots of tree canopy in Jagorawi Highway: Bungur (Lagerstroemia speciosa), Gmelina (Gmelina arborea) and Tanjung (Mimusops elengi). The tree canopy ability in absorbing pollutant is derived by comparing air quality on vegetated area with ambience air quality at control area (open field). Air sampling was conducted to measure NO2 concentration at elevation 1.5m, 5m and 10m at distance 0m, 10m and 30m, using Air Sampler Impinger. Concentration of NO2 was analyzed with Griess-Saltzman method. From this research, the result of ANOVA showed that tree plot (vegetated area) affected significantly to NO2 concentration. However the effect of distance from road and elevation was not significant. Among the plots, the highest NO2 concentration was found on Control plot (area without tree canopy), while the lowest NO2 concentration was found in Tanjung plot. Tanjung plot with round shape and high density canopy performed better in reducing NO2 than Bungur plot with round shape and medium density canopy, regardless the sampling elevation and distance. Gmelina plot performed the best in reducing horizontal distribution of NO2 concentration at elevation 1.5 and 5m, but the result at elevation 10m was not significant.

  13. 78 FR 63934 - Approval of Air Quality Implementation Plans; California; El Dorado County Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ...] Approval of Air Quality Implementation Plans; California; El Dorado County Air Quality Management District... California for the El Dorado County Air Quality Management District (EDAQMD) portion of the California SIP... 24, 1987 Federal Register, May 25, 1988, U.S. EPA, Air Quality Management Division, Office of Air...

  14. Harvest season, high polluted season in East China

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Song, Yu; Li, Mengmeng; Li, Jianfeng; Zhu, Tong

    2012-12-01

    East China, a major agricultural zone with a dense population, suffers from severe air pollution during June, the agricultural harvest season, every year. Crop burning emits tremendous amounts of combustion products into the atmosphere, not only rapidly degrading the local air quality but also affecting the tropospheric chemistry, threatening public health and affecting climate change. Recently, in mid-June 2012, crop fires left a thick pall of haze over East China. We evaluated the PM10, PM2.5 (particulates less than 10 and 2.5 μm in aerodynamic diameter) and BC (black carbon) emissions by analyzing detailed census data and moderate resolution imaging spectroradiometer (MODIS) remote sensing images and then simulated the consequent pollution using meteorological and dispersion models. The results show that the crop fires sweeping from the south to the north are responsible for the intensive air pollution during harvest season. It is necessary for scientists and governments to pay more attention to this issue.

  15. Updating Sea Spray Aerosol Emissions in the Community Multiscale Air Quality Model

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Bash, J. O.; Kelly, J.

    2014-12-01

    Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions, include sea surface temperature (SST) dependency, and revise surf zone emissions. Based on evaluation with several regional and national observational datasets in the continental U.S., the updated emissions generally improve surface concentrations predictions of primary aerosols composed of sea-salt and secondary aerosols affected by sea-salt chemistry in coastal and near-coastal sites. Specifically, the updated emissions lead to better predictions of the magnitude and coastal-to-inland gradient of sodium, chloride, and nitrate concentrations at Bay Regional Atmospheric Chemistry Experiment (BRACE) sites near Tampa, FL. Including SST-dependency to the SSA emission parameterization leads to increased sodium concentrations in the southeast U.S. and decreased concentrations along the Pacific coast and northeastern U.S., bringing predictions into closer agreement with observations at most Interagency Monitoring of Protected Visual Environments (IMPROVE) and Chemical Speciation Network (CSN) sites. Model comparison with California Research at the Nexus of Air Quality and Climate Change (CalNex) observations will also be discussed, with particular focus on the South Coast Air Basin where clean marine air mixes with anthropogenic pollution in a complex environment. These SSA emission updates enable more realistic simulation of chemical processes in coastal environments, both in clean marine air masses and mixtures of clean marine and polluted conditions.

  16. Going Green: Eco-Friendly Schools

    ERIC Educational Resources Information Center

    Whelan, Debra Lau

    2007-01-01

    A growing number of studies show that a school's physical condition--especially its lighting and indoor air quality--directly affect student performance. A 2005 Turner Construction survey of green buildings found that 70 percent of districts with sustainable schools reported improved student performance. It also makes perfect sense that…

  17. 30 CFR 57.5071 - Exposure monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality, Radiation... exposure to DPM exceeds the DPM limit specified in § 57.5060. (b) The mine operator must provide affected...

  18. The Green Obligation

    ERIC Educational Resources Information Center

    Adams, Cameron

    2007-01-01

    As the green movement grows, studies provide conclusive evidence about the benefits of environmentally conscious practices indoors and outdoors. Schools are no exception. Many of these studies demonstrate how poor indoor air quality (IAQ) in schools adversely affects many of the nation's 55 million students with health problems such as asthma and…

  19. Indoor air quality in urban nurseries at Porto city: Particulate matter assessment

    NASA Astrophysics Data System (ADS)

    Branco, P. T. B. S.; Alvim-Ferraz, M. C. M.; Martins, F. G.; Sousa, S. I. V.

    2014-02-01

    Indoor air quality in nurseries is an interesting case of study mainly due to children's high vulnerability to exposure to air pollution (with special attention to younger ones), and because nursery is the public environment where young children spend most of their time. Particulate matter (PM) constitutes one of the air pollutants with greater interest. In fact, it can cause acute effects on children's health, as well as may contribute to the prevalence of chronic respiratory diseases like asthma. Thus, the main objectives of this study were: i) to evaluate indoor concentrations of particulate matter (PM1, PM2.5, PM10 and PMTotal) on different indoor microenvironments in urban nurseries of Porto city; and ii) to analyse those concentrations according to guidelines and references for indoor air quality and children's health. Indoor PM measurements were performed in several class and lunch rooms in three nurseries on weekdays and weekends. Outdoor PM10 concentrations were also obtained to determine I/O ratios. PM concentrations were often found high in the studied classrooms, especially for the finer fractions, reaching maxima hourly mean concentrations of 145 μg m-3 for PM1 and 158 μg m-3 PM2.5, being often above the limits recommended by WHO, reaching 80% of exceedances for PM2.5, which is concerning in terms of exposure effects on children's health. Mean I/O ratios were always above 1 and most times above 2 showing that indoor sources (re-suspension phenomena due to children's activities, cleaning and cooking) were clearly the main contributors to indoor PM concentrations when compared with the outdoor influence. Though, poor ventilation to outdoors in classrooms affected indoor air quality by increasing the PM accumulation. So, enhancing air renovation rate and performing cleaning activities after the occupancy period could be good practices to reduce PM indoor air concentrations in nurseries and, consequently, to improve children's health and welfare.

  20. Navajo coal and air quality in Shiprock, New Mexico

    USGS Publications Warehouse

    Bunnell, Joseph E.; Garcia, Linda V.

    2006-01-01

    Among the Navajo people, high levels of respiratory disease, such as asthma, exist in a population with low rates of cigarette smoking. Air quality outdoors and indoors affects respiratory health. Many Navajo Nation residents burn locally mined coal in their homes for heat, as coal is the most economical energy source. The U.S. Geological Survey and Dine College, in cooperation with the Navajo Division of Health, are conducting a study in the Shiprock, New Mexico, area to determine if indoor use of this coal might be contributing to some of the respiratory health problems experienced by the residents. Researchers in this study will (1) examine respiratory health data, (2) identify stove type and use, (3) analyze samples of coal that are used locally, and (4) measure and characterize air quality inside selected homes. This Fact Sheet summarizes the interim results of the study in both English and Navajo. This Fact Sheet is available in three versions: * English [800-KB PDF file ] * Navajo [computer must have Navajo language fonts installed - 304-KB PDF file] * Image of the Navajo language version [19.8-MB PDF file

  1. Scenarios over the past 3 decades: air quality impact of European legislation

    NASA Astrophysics Data System (ADS)

    Crippa, M.; Janssens-Maenhout, G. G. A.; Guizzardi, D.; Schaaf, E.; Muntean, M.; Dentener, F. J.; Sindelarova, K.; Granier, C.

    2014-12-01

    The impacts of air pollution span from local to global, affecting human health, climate, visibility and ecosystems. Several actions at national, regional and global scale have been adopted to reduce pollutant emission levels. In our work we make use of the EDGAR_ v4.3 emission database to compare today's pollutant levels with ex-post scenarios developed to assess the impact and effectiveness of legislation over the last 3 decades on air quality and climate. Differently from most of literature works addressing future air quality, here we focus on historical global anthropogenic emissions (years 1970-2010) of several gaseous and particulate air pollutants (SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC) and past emission scenarios to demonstrate the role that policy has played in improving air quality. Three scenarios have been developed and compared to today's situation (year 2010), assuming the lack of abatement measures, the complete stagnation of technology (no reduction measures applied and constant emission factors from 1970), and a constant fuel mixture (with a more prominent role for coal in the 1970s). Special focus is dedicated to the power generation sector, manufacturing industry and road transport activities since these were mostly influenced by official regulations in the EU. Global SO2 emissions from transport dropped down by 8.5 times due to the deployment of low S content fuels; NOx and CO emissions are indeed a function of combustion efficiency and therefore decreased with the introduction of new technologies, while NH3 emitted by road transport increased in Europe by 18% due to the introduction of catalyzers. Finally, particulate matter emissions are mainly abated by the installation of End-of-Pipe measures (e.g. filters) especially in the energy and transport sectors.

  2. 76 FR 44535 - Revisions to the California State Implementation Plan, Northern Sierra Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... the California State Implementation Plan, Northern Sierra Air Quality Management District, Sacramento Metropolitan Air Quality Management District, and South Coast Air Quality Management District AGENCY... the Northern Sierra Air Quality Management District (NSAQMD), Sacramento Metropolitan Air Quality...

  3. [Indoor air quality in school facilities in Cassino (Italy)].

    PubMed

    Langiano, Elisa; Lanni, Liana; Atrei, Patrizia; Ferrara, Maria; La Torre, Giuseppe; Capelli, Giovanni; De Vito, Elisabetta

    2008-01-01

    This study evaluated the indoor air quality of 26 classrooms of secondary schools in the city of Cassino (Italy). Two types of school buildings were assessed: buildings specifically designed as schools, and former dwellings converted to schools. Measurements were taken in both winter and spring months, before students entered the classrooms and while the classrooms were occupied. Lower thermal comfort levels were observed during the winter months; in fact, during the winter, ideal temperature, humidity and air speed parameters were found in only a small percentage of classrooms and students were found to experience thermal discomfort as a result. Air velocity was often found to be inadequate both in winter and spring months and in both types of school buildings evaluated. Illumination levels measured during the winter months with both natural daylight and mixed illumination, were found to be below 200 lux, the minimum recommended level recommended by the ministerial decree 18.12.1975. Noise levels above the maximum level recommended by the ministerial decree 01.03.1991 were also frequently observed. The symptoms most frequently reported by students were headache, difficulties in concentrating, cough, and unusual tiredness. The various discomfort situations observed in both types of school buildings point toward a need for greater attention toward indoor air quality of schools as this can have affect students' attention, concentration, productivity and comfort.

  4. Monitoring of Emissions From a Refinery Tank Farm Using a Combination of Optical Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Polidori, A.; Tisopulos, L.; Pikelnaya, O.; Mellqvist, J.; Samuelsson, J.; Marianne, E.; Robinson, R. A.; Innocenti, F.; Finlayson, A.; Hashmonay, R.

    2016-12-01

    Despite great advances in reducing air pollution, the South Coast Air Basin (SCAB) still faces challenges to attain federal health standards for air quality. Refineries are large sources of ozone precursors and, hence contribute to the air quality problems of the region. Additionally, petrochemical facilities are also sources of other hazardous air pollutants (HAP) that adversely affect human health, for example aromatic hydrocarbons. In order to assure safe operation, decrease air pollution and minimize population exposure to HAP the South Coast Air Quality Management District (SCAQMD) has a number of regulations for petrochemical facilities. However, significant uncertainties still exist in emission estimates and traditional monitoring techniques often do not allow for real-time emission monitoring. In the fall of 2015 the SCAQMD, Fluxsense Inc., the National Physical Laboratory (NPL), and Atmosfir Optics Ltd. conducted a measurement study to characterize and quantify gaseous emissions from the tank farm of one of the largest oil refineries in the SCAB. Fluxsense used a vehicle equipped with Solar Occultation Flux (SOF), Differential Optical Absorption Spectroscopy (DOAS), and Extractive Fourier Transform Infrared (FTIR) spectroscopy instruments. Concurrently, NPL operated their Differential Absorption Lidar (DIAL) system. Both research groups quantified emissions from the entire tank farm and identified fugitive emission sources within the farm. At the same time, Atmosfir operated an Open Path FTIR (OP-FTIR) spectrometer along the fenceline of the tank farm. During this presentation we will discuss the results of the emission measurements from the tank farm of the petrochemical facility. Emission rates resulting from measurements by different ORS methods will be compared and discussed in detail.

  5. Analysis of the effects of meteorology on aircraft exhaust dispersion and deposition using a Lagrangian particle model.

    PubMed

    Pecorari, Eliana; Mantovani, Alice; Franceschini, Chiara; Bassano, Davide; Palmeri, Luca; Rampazzo, Giancarlo

    2016-01-15

    The risk of air quality degradation is of considerable concern particularly for those airports that are located near urban areas. The ability to quantitatively predict the effects of air pollutants originated by airport operations is important for assessing air quality and the related impacts on human health. Current emission regulations have focused on local air quality in the proximity of airports. However, an integrated study should consider the effects of meteorological events, at both regional and local level, that can affect the dispersion and the deposition of exhausts. Rigorous scientific studies and extensive experimental data could contribute to the analysis of the impacts of airports expansion plans. This paper is focused on the analysis of the effects of meteorology on aircraft emission for the Marco Polo Airport in Venice. This is the most important international airport in the eastern part of the Po' Valley, one of the most polluted area in Europe. Air pollution is exacerbated by meteorology that is a combination of large and local scale effects that do not allow significant dispersion. Moreover, the airport is located near Venice, a city of noteworthy cultural and architectural relevance, and nearby the lagoon that hosts several areas of outstanding ecological importance at European level (Natura 2000 sites). Dispersion and deposit of the main aircraft exhausts (NOx, HC and CO) have been evaluated by using a Lagrangian particle model. Spatial and temporal aircraft exhaust dispersion has been analyzed for LTO cycle. Aircraft taxiing resulted to be the most impacting aircraft operation especially for the airport working area and its surroundings, however occasionally peaks may be observed even at high altitudes when cruise mode starts. Mixing height can affect concentrations more significantly than the concentrations in the exhausts themselves. An increase of HC and CO concentrations (15-50%) has been observed during specific meteorological events. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Overview Of Cal-Mex 2010: US-Mexico Collaborative Project On Air Quality And Climate Change In The California-Mexico Border Region

    NASA Astrophysics Data System (ADS)

    Molina, L. T.; Cal-Mex Science Team

    2010-12-01

    The composition of the atmosphere over the US-Mexico border region is affected by cross-border transport of emissions in both directions. Air quality issues in the California-Mexico (Cal-Mex) border are associated with air masses originating in the portion of the border region adjacent to California, which includes two of the sister city pairs (Tijuana-San Diego and Mexicali-Calexico) that have the most severe air pollution problems, posing a serious health threat to their inhabitants as well as affecting ecosystem viability and regional climate for large downwind distances. During May-June 2010, an intensive field study was undertaken by US-Mexico collaborative teams to characterize the major sources of primary and secondary particulate matter and precursor gases in the California-Mexico (Cal-Mex) border region, their transport and transformation, and the impact of these emissions on regional air quality and climate. The ground-based measurements included a central fixed site located in Tijuana that housed state-of-the-science instruments to measure gases, aerosols, radiation and meteorological parameters; a mobile eddy covariance laboratory that measured surface-atmosphere exchange fluxes of carbon dioxide, nitrogen oxides, and particle number; several mobile units for criteria pollutants and meteorological parameters; and measurements of fine particles and trace gases at the border crossing areas. Preliminary results from the field study will be presented. Cal-Mex Science Team includes: Molina Center for Energy and the Environment, Texas A & M University, Scripps Institution of Oceanography/University of California at San Diego, Virginia Tech, San Diego State University, National University of Mexico, National Institute of Ecology/Mexican Ministry of the Environment, University of the State of Morelos, LT Consulting Group, University of Baja California (Mexicali, Tijuana, Ensenada, Valle de Las Palmas campuses), Secretary of the Environment of Baja California, Tijuana Technological University, and University of Ciudad Juarez.

  7. Can Elevated Air [CO2] Conditions Mitigate the Predicted Warming Impact on the Quality of Coffee Bean?

    PubMed

    Ramalho, José C; Pais, Isabel P; Leitão, António E; Guerra, Mauro; Reboredo, Fernando H; Máguas, Cristina M; Carvalho, Maria L; Scotti-Campos, Paula; Ribeiro-Barros, Ana I; Lidon, Fernando J C; DaMatta, Fábio M

    2018-01-01

    Climate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO 2 ] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO 2 ] and heat on coffee bean quality was never addressed. In this study, the single and combined impacts of enhanced [CO 2 ] and temperature in beans of Coffea arabica cv. Icatu were evaluated. Plants were grown at 380 or 700 μL CO 2 L -1 air, and then submitted to a gradual temperature rise from 25°C up to 40°C during ca. 4 months. Fruits were harvested at 25°C, and in the ranges of 30-35 or 36-40°C, and bean physical and chemical attributes with potential implications on quality were then examined. These included: color, phenolic content, soluble solids, chlorogenic, caffeic and p -coumaric acids, caffeine, trigonelline, lipids, and minerals. Most of these parameters were mainly affected by temperature (although without a strong negative impact on bean quality), and only marginally, if at all, by elevated [CO 2 ]. However, the [CO 2 ] vs. temperature interaction strongly attenuated some of the negative impacts promoted by heat (e.g., total chlorogenic acids), thus maintaining the bean characteristics closer to those obtained under adequate temperature conditions (e.g., soluble solids, caffeic and p -coumaric acids, trigonelline, chroma, Hue angle, and color index), and increasing desirable features (acidity). Fatty acid and mineral pools remained quite stable, with only few modifications due to elevated air [CO 2 ] (e.g., phosphorous) and/or heat. In conclusion, exposure to high temperature in the last stages of fruit maturation did not strongly depreciate bean quality, under the conditions of unrestricted water supply and moderate irradiance. Furthermore, the superimposition of elevated air [CO 2 ] contributed to preserve bean quality by modifying and mitigating the heat impact on physical and chemical traits of coffee beans, which is clearly relevant in a context of predicted climate change and global warming scenarios.

  8. Can Elevated Air [CO2] Conditions Mitigate the Predicted Warming Impact on the Quality of Coffee Bean?

    PubMed Central

    Ramalho, José C.; Pais, Isabel P.; Leitão, António E.; Guerra, Mauro; Reboredo, Fernando H.; Máguas, Cristina M.; Carvalho, Maria L.; Scotti-Campos, Paula; Ribeiro-Barros, Ana I.; Lidon, Fernando J. C.; DaMatta, Fábio M.

    2018-01-01

    Climate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO2] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO2] and heat on coffee bean quality was never addressed. In this study, the single and combined impacts of enhanced [CO2] and temperature in beans of Coffea arabica cv. Icatu were evaluated. Plants were grown at 380 or 700 μL CO2 L-1 air, and then submitted to a gradual temperature rise from 25°C up to 40°C during ca. 4 months. Fruits were harvested at 25°C, and in the ranges of 30–35 or 36–40°C, and bean physical and chemical attributes with potential implications on quality were then examined. These included: color, phenolic content, soluble solids, chlorogenic, caffeic and p-coumaric acids, caffeine, trigonelline, lipids, and minerals. Most of these parameters were mainly affected by temperature (although without a strong negative impact on bean quality), and only marginally, if at all, by elevated [CO2]. However, the [CO2] vs. temperature interaction strongly attenuated some of the negative impacts promoted by heat (e.g., total chlorogenic acids), thus maintaining the bean characteristics closer to those obtained under adequate temperature conditions (e.g., soluble solids, caffeic and p-coumaric acids, trigonelline, chroma, Hue angle, and color index), and increasing desirable features (acidity). Fatty acid and mineral pools remained quite stable, with only few modifications due to elevated air [CO2] (e.g., phosphorous) and/or heat. In conclusion, exposure to high temperature in the last stages of fruit maturation did not strongly depreciate bean quality, under the conditions of unrestricted water supply and moderate irradiance. Furthermore, the superimposition of elevated air [CO2] contributed to preserve bean quality by modifying and mitigating the heat impact on physical and chemical traits of coffee beans, which is clearly relevant in a context of predicted climate change and global warming scenarios. PMID:29559990

  9. The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate

    NASA Astrophysics Data System (ADS)

    Turnock, S. T.; Butt, E. W.; Richardson, T. B.; Mann, G. W.; Reddington, C. L.; Forster, P. M.; Haywood, J.; Crippa, M.; Janssens-Maenhout, G.; Johnson, C. E.; Bellouin, N.; Carslaw, K. S.; Spracklen, D. V.

    2016-02-01

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 80 000 (37 000-116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr-1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality and human health over Europe, as well as having an unintended impact on the regional radiative balance and climate.

  10. Ambient Air Quality Data Inventory

    EPA Pesticide Factsheets

    The Office of Air and Radiation's (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as state, local, and tribal air pollution control agencies. Its component data sets have been collected over the years from approximately 10,000 monitoring sites, of which approximately 5,000 are currently active. OAR's Office of Air Quality Planning and Standards (OAQPS) and other internal and external users, rely on this data to assess air quality, assist in Attainment/Non-Attainment designations, evaluate State Implementation Plans for Non-Attainment Areas, perform modeling for permit review analysis, and other air quality management functions. Air quality information is also used to prepare reports for Congress as mandated by the Clean Air Act. This data covers air quality data collected after 1980, when the Clean Air Act requirements for monitoring were significantly modified. Air quality data from the Agency's early years (1970s) remains available (see OAR PRIMARY DATA ASSET: Ambient Air Quality Data -- Historical), but because of technical and definitional differences the two data assets are not directly comparable. The Clean Air Act of 1970 provided initial authority for monitoring air quality for Conventional Air Pollutants (CAPs) for which EPA has promulgated National Ambient Air Quality Standards (NAAQS). Requirements for monitoring visibility-related parameters were added in 1977. Requiremen

  11. 78 FR 30770 - Approval and Promulgation of Air Quality Implementation Plans; Illinois; Air Quality Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... Promulgation of Air Quality Implementation Plans; Illinois; Air Quality Standards Revision AGENCY... Illinois state implementation plan (SIP) to reflect current National Ambient Air Quality Standards (NAAQS... Implementation Plan at 35 Illinois Administrative Code part 243, which updates National Ambient Air Quality...

  12. 75 FR 65572 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY... Ohio Administrative Code (OAC) relating to the consolidation of Ohio's Ambient Air Quality Standards... apply to Ohio's SIP. Incorporating the air quality standards into Ohio's SIP helps assure that...

  13. How Clean is your Local Air? Here's an app for that

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Yang, E.; Christopher, S. A.; Keiser, K.; Nair, U. S.; Graves, S. J.

    2011-12-01

    Air quality is a vital element of our environment. Accurate and localized air quality information is critical for characterizing environmental impacts at the local and regional levels. Advances in location-aware handheld devices and air quality modeling have enabled a group of UAHuntsville scientists to develop a mobile app, LocalAQI, that informs users of current conditions and forecasts of up to twenty-four hours, of air quality indices. The air quality index is based on Community Multiscale Air Quality Modeling System (CMAQ). UAHuntsville scientists have used satellite remote sensing products as inputs to CMAQ, resulting in forecast guidance for particulate matter air quality. The CMAQ output is processed to compute a standardized air quality index. Currently, the air quality index is available for the eastern half of the United States. LocalAQI consists of two main views: air quality index view and map view. The air quality index view displays current air quality for the zip code of a location of interest. Air quality index value is translated into a color-coded advisory system. In addition, users are able to cycle through available hourly forecasts for a location. This location-aware app defaults to the current air quality of user's location. The map view displays color-coded air quality information for the eastern US with an ability to animate through the available forecasts. The app is developed using a cross-platform native application development tool, appcelerator; hence LocalAQI is available for iOS and Android-based phones and pads.

  14. Image quality on the Kuiper Airborne Observatory. I - Results of the first flight series

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Dunham, E. W.; Baron, R. L.; Watts, A. W.; Kruse, S. E.; Rose, W. C.; Gillespie, C. M., Jr.

    1989-01-01

    The NASA Kuiper Airborne Observatory (KAO) was flown three times during June and July, 1984 in order to study the causes of the poor seeing obtained with the 0.9-m telescope. High-speed pressure and temperature sensors were placed in the telescope cavity. Several thousand stellar images were recorded under various flight and optical configurations. It is found that the long-exposure image size is affected by telescope tracking errors, imperfect optics, poor optical alignment, telescope and instrument vibration, thermal fluctuations in the telescope cavity, and density fluctuations in the shear layer that forms the boundary between the cavity air and outside air. Possible ways to improve the quality of the images are discussed.

  15. Field Studies Delve Into the Intricacies of Mountain Weather

    NASA Astrophysics Data System (ADS)

    Fernando, Harindra J. S.; Pardyjak, Eric R.

    2013-09-01

    Mountain meteorology, in particular weather prediction in complex (rugged) terrain, is emerging as an important topic for science and society. Large urban settlements such as Los Angeles, Hong Kong, and Rio de Janeiro have grown within or in the shadow of complex terrain, and managing the air quality of such cities requires a good understanding of the air flow patterns that spill off of mountains. On a daily time scale, the interconnected engineered and natural systems that sustain urban metabolism and quality of life are affected by weather [Fernando, 2010]. Further, recent military engagements in remote mountainous areas have heightened the need for better weather predictions—alpine warfare is considered to be one of the most dangerous types of combat.

  16. Air quality impacts of implementing emission reduction strategies at southern California airports

    NASA Astrophysics Data System (ADS)

    Benosa, Guillem; Zhu, Shupeng; Kinnon, Michael Mac; Dabdub, Donald

    2018-07-01

    Reducing aviation emissions will be a major concern in the coming years, as the relative contribution of aviation to overall emissions is projected to increase in the future. The South Coast Air Basin of California (SoCAB) is an extreme nonattainment area with many airports located upwind of the most polluted regions in the basin. Techniques to reduce aviation emissions have been studied in the past, and strategies that can be implemented at airports include taxi-out times reduction, ground support equipment electrification and aviation biofuel implementation. These strategies have been analyzed only at the national scale, their effectiveness to improve air quality within the SoCAB given the local meteorology and chemical regimes is unclear. This work studies how the adoption of the techniques at commercial SoCAB airports affect ozone (O3) and fine particulate matter (PM2.5) concentrations. In addition, potential impacts on public exposure to PM2.5 and O3 resulting from changes in the concentration of these pollutants are estimated. In addition, the work calculates aviation emissions for each scenario and simulate the transport and atmospheric chemistry of the pollutants using the Community Multiscale Air Quality (CMAQ) model. The simultaneous application of all reduction strategies is projected to reduce the aviation-attributable population weighted ground-level PM2.5 by 36% in summer and 32% in winter. On the other hand, O3 increases by 16% in winter. Occurring mostly in densely populated areas, the decrease in ground-level PM2.5 would have a positive health impact and help the region achieve attainment of national ambient air quality standards.

  17. Influence of Asian dust storms on air quality in Taiwan.

    PubMed

    Liu, Chung-Ming; Young, Chea-Yuan; Lee, Yen-Chih

    2006-09-15

    In each year, dust storms triggered by cold air masses passing through northern China and Mongolia enhance the PM10 concentration over Taiwan region during winter and spring. On average, there are four to five dust events and 6.1 dust days in a year in Taiwan. Each event lasts for 1 day or even longer. A procedure to identify a dust event is rationalized and exercised on data collected during 1994-2005. Also, a ranking method named as the dust intensity rank (DIR) is developed to distinguish the intensity of each event affecting the local air quality. About 86% of dust days belong to ranks 1 and 2. In general, poorer air quality is associated with higher ranks. Ranks 4 and 5 correspond to a PSI (Pollution Standard Index) larger than 100. Linking DIR with the popular PSI is useful for both the public and the official forecasting system. It is also useful for inter-comparison between dust influences on air quality at different downstream regions in Taiwan. Composite analyses of the temporal and spatial variation of the hourly PM10 level indicate that dust particles usually arrive 12 h before the time of the peak PM10 concentration and last for 36 h at northern Taiwan, while the time of the peak concentration at eastern or western Taiwan, due to the evolution of the synoptic weather system, is about 3-12 h later. It is noted that the increase of PM10 level at the western side of Taiwan results from a mixture of upstream Asian dust inputs and local pollutants.

  18. Assessing the influence of regional transport from Mainland China over the Korean Peninsula during the 2016 KORUS-AQ Field Campaign with CO/CO2 ratios

    NASA Astrophysics Data System (ADS)

    Halliday, H. S.; DiGangi, J. P.; Diskin, G. S.; Choi, Y.; Pusede, S.; Rana, M.; Nowak, J. B.

    2017-12-01

    The industrial growth in East Asia has resulted in widespread growth and prosperity, but has been accompanied by degraded air quality. These poor air quality events have both local and regional effects, and long range transportation of pollution can greatly increase the affected populations. South Korea has a technologically oriented economy with vibrant urban regions, but suffers from poor air quality arising from both local emissions on the Korean peninsula and from the transport of pollution from Mainland China. The KORUS-AQ field campaign was an international collaboration to characterize and understand the air quality over the Korean peninsula in the spring of 2016. We use the aircraft in situ data from the DC-8 aircraft to examine trace gas ratios over three major analysis regions: the Seoul Metropolitan region, the South Korean peninsula, and the West Sea (Yellow Sea). We look specifically at the correlations between CO and CO2 as an indicator of emissions type, with low ratios generally indicative of more efficient combustion and high emission ratios indicating low efficiency combustion. At low altitudes, higher incidences of low CO/CO2 ratios were observed in the Seoul and Peninsula regions, compared to higher ratios of CO/CO2 over the West Sea. We examine the meteorological dependence of these carbon species ratios, their relationships to VOC tracers, and their vertical behavior to evaluate the air mass contributions from Mainland China and assess the percentage contributions of these regional emissions to the measurements over the Korean Peninsula.

  19. Application of an integrated Weather Research and Forecasting (WRF)/CALPUFF modeling tool for source apportionment of atmospheric pollutants for air quality management: A case study in the urban area of Benxi, China.

    PubMed

    Wu, Hao; Zhang, Yan; Yu, Qi; Ma, Weichun

    2018-04-01

    In this study, the authors endeavored to develop an effective framework for improving local urban air quality on meso-micro scales in cities in China that are experiencing rapid urbanization. Within this framework, the integrated Weather Research and Forecasting (WRF)/CALPUFF modeling system was applied to simulate the concentration distributions of typical pollutants (particulate matter with an aerodynamic diameter <10 μm [PM 10 ], sulfur dioxide [SO 2 ], and nitrogen oxides [NO x ]) in the urban area of Benxi. Statistical analyses were performed to verify the credibility of this simulation, including the meteorological fields and concentration fields. The sources were then categorized using two different classification methods (the district-based and type-based methods), and the contributions to the pollutant concentrations from each source category were computed to provide a basis for appropriate control measures. The statistical indexes showed that CALMET had sufficient ability to predict the meteorological conditions, such as the wind fields and temperatures, which provided meteorological data for the subsequent CALPUFF run. The simulated concentrations from CALPUFF showed considerable agreement with the observed values but were generally underestimated. The spatial-temporal concentration pattern revealed that the maximum concentrations tended to appear in the urban centers and during the winter. In terms of their contributions to pollutant concentrations, the districts of Xihu, Pingshan, and Mingshan all affected the urban air quality to different degrees. According to the type-based classification, which categorized the pollution sources as belonging to the Bengang Group, large point sources, small point sources, and area sources, the source apportionment showed that the Bengang Group, the large point sources, and the area sources had considerable impacts on urban air quality. Finally, combined with the industrial characteristics, detailed control measures were proposed with which local policy makers could improve the urban air quality in Benxi. In summary, the results of this study showed that this framework has credibility for effectively improving urban air quality, based on the source apportionment of atmospheric pollutants. The authors endeavored to build up an effective framework based on the integrated WRF/CALPUFF to improve the air quality in many cities on meso-micro scales in China. Via this framework, the integrated modeling tool is accurately used to study the characteristics of meteorological fields, concentration fields, and source apportionments of pollutants in target area. The impacts of classified sources on air quality together with the industrial characteristics can provide more effective control measures for improving air quality. Through the case study, the technical framework developed in this study, particularly the source apportionment, could provide important data and technical support for policy makers to assess air pollution on the scale of a city in China or even the world.

  20. 75 FR 72964 - Disapproval and Promulgation of Air Quality Implementation Plans; Indiana; Addition of Incentive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... limits, and the processing of pollution prevention projects as minor permit revisions. EPA proposed to... standard. EPA is disapproving the third incentive, which affects public notice requirements for pollution prevention projects, because it relaxes the existing SIP-approved public notice requirements and is...

  1. 30 CFR 550.304 - Existing facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND... facilities. (a) Process leading to review of an existing facility. (1) An affected State may request that the... further air quality review, the lessee shall use the highest annual total amount of emissions from the...

  2. 30 CFR 550.304 - Existing facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND... facilities. (a) Process leading to review of an existing facility. (1) An affected State may request that the... further air quality review, the lessee shall use the highest annual total amount of emissions from the...

  3. 30 CFR 550.304 - Existing facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND... facilities. (a) Process leading to review of an existing facility. (1) An affected State may request that the... further air quality review, the lessee shall use the highest annual total amount of emissions from the...

  4. Urban Sustainability and Public Health: Throwing the Bath Water Out and Not the Baby

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.

    2009-01-01

    This slide presentation reviews the affect of urbanization on community health. It exams urbanization trends in the Atlanta metro area and includes information on impervious surfaces, air quality, mitigation strategies, spatial growth modeling, land use, public health surveillance and different data collection methods.

  5. 24 CFR 1710.107 - Risks of buying land.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of the land. Changes in plant and animal life, air and water quality and noise levels may affect your... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Risks of buying land. 1710.107... URBAN DEVELOPMENT (INTERSTATE LAND SALES REGISTRATION PROGRAM) LAND REGISTRATION Reporting Requirements...

  6. 40 CFR 63.1 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of Air Quality Planning and Standards, U.S. EPA (MD-13), Research Triangle Park, North Carolina 27711... or before the number of days specified in the applicable requirement. For example, if a notification... part, the owner or operator of an affected source may be required to obtain a title V permit from a...

  7. Carpet vs. Hard Surface Floors: Studies Compare Health Effects of Each.

    ERIC Educational Resources Information Center

    Schmidt, Edward A.

    1994-01-01

    This article, third in a three-part series of articles that discuss indoor air quality (IAQ) issues affecting schools, looks at studies that compare the health effect of carpet and hard surface floors. Concludes that carpet is appropriate for use in schools when it is properly maintained. (MLF)

  8. Can surface-applied zeolite reduce ammonia losses from feedyard manure? A laboratory study

    USDA-ARS?s Scientific Manuscript database

    Ammonia emission from beef cattle feedyard manure results in losses of nitrogen (N), which may negatively affect air, soil, and water quality. The magnitude and rate of ammonia volatilization from feedyards partially depends on the amount of urinary urea excreted and dissociation of ionic ammonium ...

  9. Effects of roadway configurations on near-road air quality and the implications on roadway designs

    EPA Science Inventory

    This paper presents an analysis of wind tunnel experiments of twelve different roadway configurations and modeling of these configurations using a Large-Eddy Simulation (LES) model, aiming at investigating how flow structures affect the impact of roadway features on near-road and...

  10. Indoor Air Quality

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2008-01-01

    When a problem affects one out of every 13 children, it clearly is an issue that schools must address. According to the U.S. Environmental Protection Agency (EPA), that is the incident rate for asthma among the nation's children. The inflammatory disease causes a person's airways to constrict, leading to wheezing, breathlessness, chest tightness…

  11. Application of the WEPS and SWEEP models to non-agricultural disturbed lands

    USDA-ARS?s Scientific Manuscript database

    Wind erosion not only affects agricultural productivity but also soil, air, and water quality. Dust and specifically particulate matter = 10 µm (PM-10) has adverse effects on respiratory health and also reduces visibility along roadways, resulting in auto accidents. The Wind Erosion Prediction Syste...

  12. 40 CFR 81.77 - Puerto Rico Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Puerto Rico Air Quality Control Region... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.77 Puerto Rico Air Quality Control Region. The Puerto Rico Air Quality Control Region...

  13. 40 CFR 81.76 - State of Hawaii Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false State of Hawaii Air Quality Control... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.76 State of Hawaii Air Quality Control Region. The State of Hawaii Air Quality...

  14. 40 CFR 81.77 - Puerto Rico Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Puerto Rico Air Quality Control Region... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.77 Puerto Rico Air Quality Control Region. The Puerto Rico Air Quality Control Region...

  15. 40 CFR 81.76 - State of Hawaii Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false State of Hawaii Air Quality Control... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.76 State of Hawaii Air Quality Control Region. The State of Hawaii Air Quality...

  16. 40 CFR 81.76 - State of Hawaii Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false State of Hawaii Air Quality Control... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.76 State of Hawaii Air Quality Control Region. The State of Hawaii Air Quality...

  17. 40 CFR 81.77 - Puerto Rico Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Puerto Rico Air Quality Control Region... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.77 Puerto Rico Air Quality Control Region. The Puerto Rico Air Quality Control Region...

  18. 78 FR 19990 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards; Correction AGENCY... approved revisions to Ohio regulations that consolidated air quality standards in a new chapter of rules... State's air quality standards into Ohio Administrative Code (OAC) 3745-25 and modifying an assortment of...

  19. 77 FR 12482 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality Standards AGENCY... incorporates the National Ambient Air Quality Standards (NAAQS) for Pb promulgated by EPA in 2008. DATES: This... FR 66964) and codified at 40 CFR 50.16, ``National primary and secondary ambient air quality...

  20. 40 CFR 81.77 - Puerto Rico Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Puerto Rico Air Quality Control Region... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.77 Puerto Rico Air Quality Control Region. The Puerto Rico Air Quality Control Region...

  1. 40 CFR 81.76 - State of Hawaii Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false State of Hawaii Air Quality Control... PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.76 State of Hawaii Air Quality Control Region. The State of Hawaii Air Quality...

  2. Maximizing the spatial representativeness of NO2 monitoring data using a combination of local wind-based sectoral division and seasonal and diurnal correction factors.

    PubMed

    Donnelly, Aoife; Naughton, Owen; Misstear, Bruce; Broderick, Brian

    2016-10-14

    This article describes a new methodology for increasing the spatial representativeness of individual monitoring sites. Air pollution levels at a given point are influenced by emission sources in the immediate vicinity. Since emission sources are rarely uniformly distributed around a site, concentration levels will inevitably be most affected by the sources in the prevailing upwind direction. The methodology provides a means of capturing this effect and providing additional information regarding source/pollution relationships. The methodology allows for the division of the air quality data from a given monitoring site into a number of sectors or wedges based on wind direction and estimation of annual mean values for each sector, thus optimising the information that can be obtained from a single monitoring station. The method corrects for short-term data, diurnal and seasonal variations in concentrations (which can produce uneven weighting of data within each sector) and uneven frequency of wind directions. Significant improvements in correlations between the air quality data and the spatial air quality indicators were obtained after application of the correction factors. This suggests the application of these techniques would be of significant benefit in land-use regression modelling studies. Furthermore, the method was found to be very useful for estimating long-term mean values and wind direction sector values using only short-term monitoring data. The methods presented in this article can result in cost savings through minimising the number of monitoring sites required for air quality studies while also capturing a greater degree of variability in spatial characteristics. In this way, more reliable, but also more expensive monitoring techniques can be used in preference to a higher number of low-cost but less reliable techniques. The methods described in this article have applications in local air quality management, source receptor analysis, land-use regression mapping and modelling and population exposure studies.

  3. Air pollution and fuel vapour induced changes in lung functions: are fuel handlers safe?

    PubMed

    Chawla, Anuj; Lavania, A K

    2008-01-01

    Automobile exhaust derived air pollutants have become a major health hazard. Coupled with the inhalation of fuel vapour, as occurs in petrol station workers, this may lead to significant impairment of lung function. Spirometric lung functions were studied in 58 petrol station workers to examine this possibility. The forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), forced expiratory flow 25%-75% (FEF25-75) and peak expiratory flow (PEF) were recorded and analysed separately for smokers and non-smokers. The workers were divided into 5 groups for analysis of data based on the number of years of work in the petrol pumps. Outdoor air analysis was also carried out. The FVC, FEV1 and PEF declined significantly with increasing years of work in petrol stations in both smokers and non-smokers. Smoking as an independent variable was found to affect the FEV1 significantly but not FVC or PEF. The FEF25-75 was found to be the most affected spirometric value with a significant reduction with increasing years of work. Smoking as such did not affect it. Oxides of nitrogen (NOx), suspended particulate matter (SPM) and particulate matter less than 10 microns (PM10) in outdoor air were higher than the national ambient air quality standards. Exposure to automobile exhaust and fuel vapour impairs lung function in a time-dependent manner. Cigarette smoking appears to accelerate the decline.

  4. Effect of Air Pollution on Menstrual Cycle Length—A Prognostic Factor of Women’s Reproductive Health

    PubMed Central

    Merklinger-Gruchala, Anna; Jasienska, Grazyna; Kapiszewska, Maria

    2017-01-01

    Air pollution can influence women’s reproductive health, specifically menstrual cycle characteristics, oocyte quality, and risk of miscarriage. The aim of the study was to assess whether air pollution can affect the length of the overall menstrual cycle and the length of its phases (follicular and luteal). Municipal ecological monitoring data was used to assess the air pollution exposure during the monitored menstrual cycle of each of 133 woman of reproductive age. Principal component analyses were used to group pollutants (PM10, SO2, CO, and NOx) to represent a source-related mixture. PM10 and SO2 assessed separately negatively affected the length of the luteal phase after standardization (b = −0.02; p = 0.03; b = −0.06; p = 0.02, respectively). Representing a fossil fuel combustion emission, they were also associated with luteal phase shortening (b = −0.32; p = 0.02). These pollutants did not affect the follicular phase length and overall cycle length, neither in single- nor in multi-pollutant models. CO and NOx assessed either separately or together as a traffic emission were not associated with overall cycle length or the length of cycle phases. Luteal phase shortening, a possible manifestation of luteal phase deficiency, can result from fossil fuel combustion. This suggests that air pollution may contribute to fertility problems in women. PMID:28726748

  5. Potential impact of particulate matter less than 10 micron (PM10) to ambient air quality of Jakarta and Palembang

    NASA Astrophysics Data System (ADS)

    Agustine, I.; Yulinawati, H.; Gunawan, D.; Suswantoro, E.

    2018-01-01

    Particulate is a main urban air pollutant affects the environment and human wellbeing. The purpose of this study is to analyze the impact of particulate matter less than 10 micron (PM10) to ambient air quality of Jakarta and Palembang. The analysis is done with calendarPlot Function of openair model, which is based on the calculation of Pollutant Standards Index (PSI) or better known as Air Quality Index (AQI). The AQI category of “moderate” dominates Jakarta’s calendar from 2015 to 2016, which indicates the impact of PM10 is the visibility reduction. There was one day with category “unhealthy” that indicates the impact of dust exposure everywhere in Jakarta during 2015. Similar to Jakarta, the AQI category “moderate” also dominates Palembang’s calendar during 2015. However, the AQI category “hazardous” happened for few days in September and October 2015 during forest fires, which indicates the more harmful impacts of PM10, such as reduced visibility, dust exposure everywhere, increased sensitivity in patients with asthma and bronchitis to respiratory illness in all exposed populations. During 2016, AQI category of Jakarta mostly “moderate”, while in Palembang was “good”. Dominant AQI category from 2015 to 2016 shows higher PM10 concentration occurred in Jakarta compared to Palembang.

  6. Policy implications of KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Kim, J.; Chang, L.; Ahn, J.

    2017-12-01

    Under the leadership of NIER(S. Korea) and NASA(US), Korea-United States Air Quality Study(KORUS-AQ) assembled a large team of measurement and modeling experts to conduct a field study in Korea. The KORUS-AQ study collected detailed measurements from aircrafts, groundsites, and ships during 1 May and 10 June of 2016. Observations were guided by model forecasts of meteorology and air quality, but they also serve to evaluate the performance of these models as part of the ongoing analysis of KORUS-AQ data. And for the understanding to public, we summarized preliminary findings for the following questions. - Can we identify a) the portion of aerosol derived from secondary production in SMA and across Korea, and b) the major sources and factors controlling its variation? - Is ozone formation in Seoul NOx limited or VOC limited? Can we determine the biogenic or natural contributions to ozone production? - How well do KORUS-AQ observations support current emissions estimations by magnitude and sector? - How significant is the impact of the large point sources along the west coast to the air quality of SMA temporally and spatially? - How is Seoul affected by transport of air pollution from sources from regional to continental to hemispheric scales? In the presentation, brief results will be introduced with some directions for the policy and future plans.

  7. 40 CFR 81.16 - Metropolitan Denver Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.16 Metropolitan Denver Intrastate Air Quality Control Region. The Metropolitan Denver Intrastate Air Quality Control Region (Colorado) consists of the territorial area...

  8. 40 CFR 81.62 - Northeast Mississippi Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.62 Northeast Mississippi Intrastate Air Quality Control Region. The Alabama-Mississippi-Tennessee Interstate Air Quality Control Region has been renamed the Northeast...

  9. 40 CFR 81.16 - Metropolitan Denver Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.16 Metropolitan Denver Intrastate Air Quality Control Region. The Metropolitan Denver Intrastate Air Quality Control Region (Colorado) consists of the territorial area...

  10. 40 CFR 81.31 - Metropolitan Providence Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.31 Metropolitan Providence Interstate Air Quality Control Region. The Metropolitan Providence Interstate Air Quality Control Region (Rhode Island-Massachusetts) consists of the...

  11. 40 CFR 81.16 - Metropolitan Denver Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.16 Metropolitan Denver Intrastate Air Quality Control Region. The Metropolitan Denver Intrastate Air Quality Control Region (Colorado) consists of the territorial area...

  12. 40 CFR 81.30 - Southeastern Wisconsin Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.30 Southeastern Wisconsin Intrastate Air Quality Control Region. The Metropolitan Milwaukee Intrastate Air Quality Control Region (Wisconsin) has been renamed the Southeastern...

  13. 40 CFR 81.31 - Metropolitan Providence Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.31 Metropolitan Providence Interstate Air Quality Control Region. The Metropolitan Providence Interstate Air Quality Control Region (Rhode Island-Massachusetts) consists of the...

  14. 40 CFR 81.62 - Northeast Mississippi Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.62 Northeast Mississippi Intrastate Air Quality Control Region. The Alabama-Mississippi-Tennessee Interstate Air Quality Control Region has been renamed the Northeast...

  15. 40 CFR 81.28 - Metropolitan Baltimore Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.28 Metropolitan Baltimore Intrastate Air Quality Control Region. The Metropolitan Baltimore Intrastate Air Quality Control Region (Maryland) consists of the territorial area...

  16. 40 CFR 81.78 - Metropolitan Portland Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.78 Metropolitan Portland Intrastate Air Quality Control Region. The Metropolitan Portland Intrastate Air Quality Control Region (Maine) consists of the territorial area...

  17. 40 CFR 81.78 - Metropolitan Portland Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.78 Metropolitan Portland Intrastate Air Quality Control Region. The Metropolitan Portland Intrastate Air Quality Control Region (Maine) consists of the territorial area...

  18. 40 CFR 81.28 - Metropolitan Baltimore Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.28 Metropolitan Baltimore Intrastate Air Quality Control Region. The Metropolitan Baltimore Intrastate Air Quality Control Region (Maryland) consists of the territorial area...

  19. 40 CFR 81.62 - Northeast Mississippi Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.62 Northeast Mississippi Intrastate Air Quality Control Region. The Alabama-Mississippi-Tennessee Interstate Air Quality Control Region has been renamed the Northeast...

  20. 40 CFR 81.28 - Metropolitan Baltimore Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.28 Metropolitan Baltimore Intrastate Air Quality Control Region. The Metropolitan Baltimore Intrastate Air Quality Control Region (Maryland) consists of the territorial area...

  1. 40 CFR 81.30 - Southeastern Wisconsin Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.30 Southeastern Wisconsin Intrastate Air Quality Control Region. The Metropolitan Milwaukee Intrastate Air Quality Control Region (Wisconsin) has been renamed the Southeastern...

  2. 40 CFR 81.29 - Metropolitan Indianapolis Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Air Quality Control Region. 81.29 Section 81.29 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.29 Metropolitan Indianapolis Intrastate Air Quality Control...

  3. 40 CFR 81.31 - Metropolitan Providence Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.31 Metropolitan Providence Interstate Air Quality Control Region. The Metropolitan Providence Interstate Air Quality Control Region (Rhode Island-Massachusetts) consists of the...

  4. 40 CFR 81.29 - Metropolitan Indianapolis Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Air Quality Control Region. 81.29 Section 81.29 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.29 Metropolitan Indianapolis Intrastate Air Quality Control...

  5. 40 CFR 81.44 - Metropolitan Memphis Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.44 Metropolitan Memphis Interstate Air Quality Control Region. The Metropolitan Memphis Interstate Air Quality Control Region (Arkansas-Mississippi-Tennessee) consists of the...

  6. 40 CFR 81.30 - Southeastern Wisconsin Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.30 Southeastern Wisconsin Intrastate Air Quality Control Region. The Metropolitan Milwaukee Intrastate Air Quality Control Region (Wisconsin) has been renamed the Southeastern...

  7. 40 CFR 81.30 - Southeastern Wisconsin Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.30 Southeastern Wisconsin Intrastate Air Quality Control Region. The Metropolitan Milwaukee Intrastate Air Quality Control Region (Wisconsin) has been renamed the Southeastern...

  8. 40 CFR 81.28 - Metropolitan Baltimore Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.28 Metropolitan Baltimore Intrastate Air Quality Control Region. The Metropolitan Baltimore Intrastate Air Quality Control Region (Maryland) consists of the territorial area...

  9. 40 CFR 81.29 - Metropolitan Indianapolis Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Air Quality Control Region. 81.29 Section 81.29 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.29 Metropolitan Indianapolis Intrastate Air Quality Control...

  10. 40 CFR 81.19 - Metropolitan Boston Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.19 Metropolitan Boston Intrastate Air Quality Control Region. The Metropolitan Boston Intrastate Air Quality Control Region (Massachusetts) consists of the territorial area...

  11. 40 CFR 81.19 - Metropolitan Boston Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.19 Metropolitan Boston Intrastate Air Quality Control Region. The Metropolitan Boston Intrastate Air Quality Control Region (Massachusetts) consists of the territorial area...

  12. 40 CFR 81.44 - Metropolitan Memphis Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.44 Metropolitan Memphis Interstate Air Quality Control Region. The Metropolitan Memphis Interstate Air Quality Control Region (Arkansas-Mississippi-Tennessee) consists of the...

  13. 40 CFR 81.16 - Metropolitan Denver Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.16 Metropolitan Denver Intrastate Air Quality Control Region. The Metropolitan Denver Intrastate Air Quality Control Region (Colorado) consists of the territorial area...

  14. 40 CFR 81.19 - Metropolitan Boston Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.19 Metropolitan Boston Intrastate Air Quality Control Region. The Metropolitan Boston Intrastate Air Quality Control Region (Massachusetts) consists of the territorial area...

  15. 40 CFR 81.19 - Metropolitan Boston Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.19 Metropolitan Boston Intrastate Air Quality Control Region. The Metropolitan Boston Intrastate Air Quality Control Region (Massachusetts) consists of the territorial area...

  16. 40 CFR 81.29 - Metropolitan Indianapolis Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Air Quality Control Region. 81.29 Section 81.29 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.29 Metropolitan Indianapolis Intrastate Air Quality Control...

  17. 40 CFR 81.44 - Metropolitan Memphis Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.44 Metropolitan Memphis Interstate Air Quality Control Region. The Metropolitan Memphis Interstate Air Quality Control Region (Arkansas-Mississippi-Tennessee) consists of the...

  18. 40 CFR 81.31 - Metropolitan Providence Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.31 Metropolitan Providence Interstate Air Quality Control Region. The Metropolitan Providence Interstate Air Quality Control Region (Rhode Island-Massachusetts) consists of the...

  19. 40 CFR 81.44 - Metropolitan Memphis Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.44 Metropolitan Memphis Interstate Air Quality Control Region. The Metropolitan Memphis Interstate Air Quality Control Region (Arkansas-Mississippi-Tennessee) consists of the...

  20. 40 CFR 81.44 - Metropolitan Memphis Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.44 Metropolitan Memphis Interstate Air Quality Control Region. The Metropolitan Memphis Interstate Air Quality Control Region (Arkansas-Mississippi-Tennessee) consists of the...

  1. 40 CFR 81.16 - Metropolitan Denver Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.16 Metropolitan Denver Intrastate Air Quality Control Region. The Metropolitan Denver Intrastate Air Quality Control Region (Colorado) consists of the territorial area...

  2. 40 CFR 81.28 - Metropolitan Baltimore Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.28 Metropolitan Baltimore Intrastate Air Quality Control Region. The Metropolitan Baltimore Intrastate Air Quality Control Region (Maryland) consists of the territorial area...

  3. 40 CFR 81.30 - Southeastern Wisconsin Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.30 Southeastern Wisconsin Intrastate Air Quality Control Region. The Metropolitan Milwaukee Intrastate Air Quality Control Region (Wisconsin) has been renamed the Southeastern...

  4. 40 CFR 81.19 - Metropolitan Boston Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.19 Metropolitan Boston Intrastate Air Quality Control Region. The Metropolitan Boston Intrastate Air Quality Control Region (Massachusetts) consists of the territorial area...

  5. 40 CFR 81.29 - Metropolitan Indianapolis Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Air Quality Control Region. 81.29 Section 81.29 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.29 Metropolitan Indianapolis Intrastate Air Quality Control...

  6. 40 CFR 81.78 - Metropolitan Portland Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.78 Metropolitan Portland Intrastate Air Quality Control Region. The Metropolitan Portland Intrastate Air Quality Control Region (Maine) consists of the territorial area...

  7. 40 CFR 81.62 - Northeast Mississippi Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.62 Northeast Mississippi Intrastate Air Quality Control Region. The Alabama-Mississippi-Tennessee Interstate Air Quality Control Region has been renamed the Northeast...

  8. 40 CFR 81.31 - Metropolitan Providence Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.31 Metropolitan Providence Interstate Air Quality Control Region. The Metropolitan Providence Interstate Air Quality Control Region (Rhode Island-Massachusetts) consists of the...

  9. Mexico City air quality research initiative. Volume 2, Problem definition, background, and summary of prior research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-06-01

    Air pollution in Mexico City has increased along with the growth of the city, the movement of its population, and the growth of employment created by industry. The main cause of pollution in the city is energy consumption. Therefore, it is necessary to take into account the city`s economic development and its prospects when considering the technological relationships between well-being and energy consumption. Air pollution in the city from dust and other particles suspended in the air is an old problem. However, pollution as we know it today began about 50 years ago with the growth of industry, transportation, andmore » population. The level of well-being attained in Mexico City implies a high energy use that necessarily affects the valley`s natural air quality. However, the pollution has grown so fast that the City must act urgently on three fronts: first, following a comprehensive strategy, transform the economic foundation of the city with nonpolluting activities to replace the old industries, second, halt pollution growth through the development of better technologies; and third, use better fuels, emission controls, and protection of wooded areas.« less

  10. Response of antioxidant activity and sensory quality in fresh-cut pear as affected by high O2,active packaging compared with low O2 packaging

    USDA-ARS?s Scientific Manuscript database

    Effects of active modified atmosphere packaging (MAP, initial O2/CO2: 5/5; 30/5; 80/0) and passive packaging (initial O2/CO2: 20.8/0 (air)) on the antioxidant capacity and sensory quality of fresh-cut ‘Yaoshan’ pear stored at 4C for 12 days were investigated. Samples stored in high O2 (30% and 80%) ...

  11. 40 CFR 81.75 - Metropolitan Charlotte Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.75 Metropolitan Charlotte Interstate Air Quality Control Region. The Metropolitan Charlotte Interstate Air Quality Control Region (North Carolina-South Carolina) has been revised...

  12. 40 CFR 81.45 - Metropolitan Atlanta Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.45 Metropolitan Atlanta Intrastate Air Quality Control Region. The Metropolitan Atlanta Intrastate Air Quality Control Region (Georgia) has been revised to consist of the...

  13. 40 CFR 52.499 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.499 Section 52.499 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  14. 40 CFR 81.34 - Metropolitan Dayton Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.34 Metropolitan Dayton Intrastate Air Quality Control Region. The Metropolitan Dayton Intrastate Air Quality Control Region consists of the territorial area encompassed by the...

  15. 40 CFR 81.24 - Niagara Frontier Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.24 Niagara Frontier Intrastate Air Quality Control Region. The Niagara Frontier Intrastate Air Quality Control Region (New York) consists of the territorial area...

  16. 40 CFR 81.43 - Metropolitan Toledo Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.43 Metropolitan Toledo Interstate Air Quality Control Region. The Metropolitan Toledo Interstate Air Quality Control Region (Ohio-Michigan) consists of the territorial area...

  17. 40 CFR 52.1884 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.1884 Section 52.1884 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulations for preventing significant deterioration of air quality. The...

  18. 40 CFR 52.1165 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.1165 Section 52.1165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Significant deterioration of air quality. (a) The requirements of sections 160 through 165 of the Clean Air... deterioration of air quality. (b) Regulation for preventing significant deterioration of air quality. The...

  19. 40 CFR 81.36 - Maricopa Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Maricopa Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.36 Maricopa Intrastate Air Quality Control Region. The Phoenix-Tucson...

  20. 40 CFR 81.45 - Metropolitan Atlanta Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.45 Metropolitan Atlanta Intrastate Air Quality Control Region. The Metropolitan Atlanta Intrastate Air Quality Control Region (Georgia) has been revised to consist of the...

Top