Science.gov

Sample records for affecting arctic climate

  1. Is climate change affecting wolf populations in the high Arctic?

    USGS Publications Warehouse

    Mech, L.D.

    2004-01-01

    Global climate change may affect wolves in Canada's High Arctic (80DG N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena.

  2. Is climate change affecting wolf populations in the high Arctic?

    USGS Publications Warehouse

    Mech, L.D.

    2004-01-01

    Gobal climate change may affect wolves in Canada's High Arctic (80?? N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However, when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena. ?? 2004 Kluwer Academic Publishers.

  3. Arctic climate tipping points.

    PubMed

    Lenton, Timothy M

    2012-02-01

    There is widespread concern that anthropogenic global warming will trigger Arctic climate tipping points. The Arctic has a long history of natural, abrupt climate changes, which together with current observations and model projections, can help us to identify which parts of the Arctic climate system might pass future tipping points. Here the climate tipping points are defined, noting that not all of them involve bifurcations leading to irreversible change. Past abrupt climate changes in the Arctic are briefly reviewed. Then, the current behaviour of a range of Arctic systems is summarised. Looking ahead, a range of potential tipping phenomena are described. This leads to a revised and expanded list of potential Arctic climate tipping elements, whose likelihood is assessed, in terms of how much warming will be required to tip them. Finally, the available responses are considered, especially the prospects for avoiding Arctic climate tipping points.

  4. Observational uncertainty of Arctic sea-ice concentration significantly affects seasonal climate forecasts

    NASA Astrophysics Data System (ADS)

    Bunzel, Felix; Notz, Dirk; Baehr, Johanna; Müller, Wolfgang; Fröhlich, Kristina

    2016-04-01

    We examine how the choice of a particular satellite-retrieved sea-ice concentration dataset used for initialising seasonal climate forecasts impacts the prediction skill of Arctic sea-ice area and Northern hemispheric 2-meter air temperatures. To do so, we performed two assimilation runs with the Max Planck Institute Earth System Model (MPI-ESM) from 1979 to 2012, where atmospheric and oceanic parameters as well as sea-ice concentration were assimilated using Newtonian relaxation. The two assimilation runs differ only in the sea-ice concentration dataset used for assimilating sea ice. In the first run, we use sea-ice concentrations as derived by the NASA-Team algorithm, while in the second run we use sea-ice concentrations as derived from the Bootstrap algorithm. A major difference between these two sea-ice concentration data products involves the treatment of melt ponds. While for both products melt ponds appear as open water in the raw satellite data, the Bootstrap algorithm more strongly attempts to offset this systematic bias by synthetically increasing the retrieved ice concentration during summer months. For each year of the two assimilation runs we performed a 10-member ensemble of hindcast experiments starting on 1 May and 1 November with a hindcast length of 6 months. For hindcasts started in November, initial differences in Arctic sea-ice area and surface temperature decrease rapidly throughout the freezing period. For hindcasts started in May, initial sea-ice area differences increase over time. By the end of the melting period, this causes significant differences in 2-meter air temperature of regionally more than 3°C. Hindcast skill for surface temperatures over Europe and North America is higher with Bootstrap initialization during summer and with NASA Team initialisation during winter. This implies that the choice of the sea-ice data product and, thus, the observational uncertainty also affects forecasts of teleconnections that depend on Northern

  5. Time varying arctic climate change amplification

    SciTech Connect

    Chylek, Petr; Dubey, Manvendra K; Lesins, Glen; Wang, Muyin

    2009-01-01

    During the past 130 years the global mean surface air temperature has risen by about 0.75 K. Due to feedbacks -- including the snow/ice albedo feedback -- the warming in the Arctic is expected to proceed at a faster rate than the global average. Climate model simulations suggest that this Arctic amplification produces warming that is two to three times larger than the global mean. Understanding the Arctic amplification is essential for projections of future Arctic climate including sea ice extent and melting of the Greenland ice sheet. We use the temperature records from the Arctic stations to show that (a) the Arctic amplification is larger at latitudes above 700 N compared to those within 64-70oN belt, and that, surprisingly; (b) the ratio of the Arctic to global rate of temperature change is not constant but varies on the decadal timescale. This time dependence will affect future projections of climate changes in the Arctic.

  6. Impacts of a Warming Arctic - Arctic Climate Impact Assessment

    NASA Astrophysics Data System (ADS)

    Arctic Climate Impact Assessment

    2004-12-01

    The Arctic is now experiencing some of the most rapid and severe climate change on earth. Over the next 100 years, climate change is expected to accelerate, contributing to major physical, ecological, social, and economic changes, many of which have already begun. Changes in arctic climate will also affect the rest of the world through increased global warming and rising sea levels. Impacts of a Warming Arctic is a plain language synthesis of the key findings of the Arctic Climate Impact Assessment (ACIA), designed to be accessible to policymakers and the broader public. The ACIA is a comprehensively researched, fully referenced, and independently reviewed evaluation of arctic climate change. It has involved an international effort by hundreds of scientists. This report provides vital information to society as it contemplates its responses to one of the greatest challenges of our time. It is illustrated in full color throughout.

  7. Changes in forcing factors affecting coastal and shallow water erosion in the future Arctic climate change projections.

    NASA Astrophysics Data System (ADS)

    Dobrynin, Mikhail; Razumov, Sergey; Brovkin, Victor; Ilyina, Tatiana; Grigoriev, Mikhail

    2016-04-01

    Driving factors of seabed and coastal erosion in the Arctic can be classified as thermal and mechanical. Thermal factors such as air and ocean temperatures affect the seabed and coastal ground temperatures. Mechanical factors such as ocean currents and surface gravity waves contribute to the seabed and costal erosion due to shear stress. Due to polar amplification, the Arctic experiences strong increase in air and water temperature, sea-ice loss and changes in the ocean and atmospheric circulation, temperature and wind distribution. These climatic changes lead to changes in factors driving seabed and coastal erosion, which is expected to accelerate in the shallow Arctic regions such as the Laptev sea and East Siberian sea. In these regions, the coastal line to a large extent consists of frozen rocks, sediments and organic soils including ground ice. The increase of erosion rate of the coastal line will increase the release of organic and inorganic matter from thawed permafrost. Dynamics of thermal and mechanical drivers of seabed and coastal erosion in the present and future climate change (RCP8.5 scenario) simulated by the CMIP5 version of the MPI Earth system model and wave model WAM will be presented. Special attention will be given to changes in the air temperature, wind dynamics and development of new waves system in the ``ice-free'' Arctic and its role in the seabed and coastal erosion.

  8. Challenges of climate change: an Arctic perspective.

    PubMed

    Corell, Robert W

    2006-06-01

    Climate change is being experienced particularly intensely in the Arctic. Arctic average temperature has risen at almost twice the rate as that of the rest of the world in the past few decades. Widespread melting of glaciers and sea ice and rising permafrost temperatures present additional evidence of strong Arctic warming. These changes in the Arctic provide an early indication of the environmental and societal significance of global consequences. The Arctic also provides important natural resources to the rest of the world (such as oil, gas, and fish) that will be affected by climate change, and the melting of Arctic glaciers is one of the factors contributing to sea level rise around the globe. An acceleration of these climatic trends is projected to occur during this century, due to ongoing increases in concentrations of greenhouse gases in the Earth's atmosphere. These Arctic changes will, in turn, impact the planet as a whole.

  9. Arctic Climate Systems Analysis

    SciTech Connect

    Ivey, Mark D.; Robinson, David G.; Boslough, Mark B.; Backus, George A.; Peterson, Kara J.; van Bloemen Waanders, Bart G.; Swiler, Laura Painton; Desilets, Darin Maurice; Reinert, Rhonda Karen

    2015-03-01

    This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in the Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.

  10. How does climate change influence Arctic mercury?

    PubMed

    Stern, Gary A; Macdonald, Robie W; Outridge, Peter M; Wilson, Simon; Chételat, John; Cole, Amanda; Hintelmann, Holger; Loseto, Lisa L; Steffen, Alexandra; Wang, Feiyue; Zdanowicz, Christian

    2012-01-01

    Recent studies have shown that climate change is already having significant impacts on many aspects of transport pathways, speciation and cycling of mercury within Arctic ecosystems. For example, the extensive loss of sea-ice in the Arctic Ocean and the concurrent shift from greater proportions of perennial to annual types have been shown to promote changes in primary productivity, shift foodweb structures, alter mercury methylation and demethylation rates, and influence mercury distribution and transport across the ocean-sea-ice-atmosphere interface (bottom-up processes). In addition, changes in animal social behavior associated with changing sea-ice regimes can affect dietary exposure to mercury (top-down processes). In this review, we address these and other possible ramifications of climate variability on mercury cycling, processes and exposure by applying recent literature to the following nine questions; 1) What impact has climate change had on Arctic physical characteristics and processes? 2) How do rising temperatures affect atmospheric mercury chemistry? 3) Will a decrease in sea-ice coverage have an impact on the amount of atmospheric mercury deposited to or emitted from the Arctic Ocean, and if so, how? 4) Does climate affect air-surface mercury flux, and riverine mercury fluxes, in Arctic freshwater and terrestrial systems, and if so, how? 5) How does climate change affect mercury methylation/demethylation in different compartments in the Arctic Ocean and freshwater systems? 6) How will climate change alter the structure and dynamics of freshwater food webs, and thereby affect the bioaccumulation of mercury? 7) How will climate change alter the structure and dynamics of marine food webs, and thereby affect the bioaccumulation of marine mercury? 8) What are the likely mercury emissions from melting glaciers and thawing permafrost under climate change scenarios? and 9) What can be learned from current mass balance inventories of mercury in the Arctic? The

  11. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models

    PubMed Central

    Holland, Marika M.; Landrum, Laura

    2015-01-01

    We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. PMID:26032318

  12. Occurrence of near-surface ozone depletion in the Arctic spring strongly affected by Northern-Hemispheric climate variability

    NASA Astrophysics Data System (ADS)

    Koo, J.; Wang, Y.; Jiang, T.; Deng, Y.; Oltmans, S. J.; Solberg, S.

    2013-12-01

    In the Arctic spring, near-surface ozone can decrease to extremely low levels due to chemical removal catalyzed by halogen radicals. These ozone depletion events (ODEs) are usually accompanied by greatly enhanced surface deposition of reactive gaseous mercury. Here we show the effects of regional climate variability on Arctic ODE frequencies by analyzing surface ozone measurements at three monitoring sites (Barrow, Alert, and Zeppelinfjellet) in the past 30 years. Among the various climate variability indices, the Western Pacific (WP) index has the most significant impact. In years with high ODE frequencies at Barrow and Alert in April, the WP teleconnection pattern tends to be in its negative phase with a weakened storm track from the western Pacific to the Arctic and a strengthened subtropical jet across the Pacific, reducing transport of ozone-rich air masses from mid-latitudes to the Arctic. Analysis of the observations at Zeppelinfjellet indicates a much stronger influence of WP pattern in the 2000s than 1990s. Consequently, the WP index may be used as a proxy to assess ODE frequencies and subsequent environmental impacts in future climate projections.

  13. Climate change and Arctic parasites.

    PubMed

    Dobson, Andy; Molnár, Péter K; Kutz, Susan

    2015-05-01

    Climate is changing rapidly in the Arctic. This has important implications for parasites of Arctic ungulates, and hence for the welfare of Arctic peoples who depend on caribou, reindeer, and muskoxen for food, income, and a focus for cultural activities. In this Opinion article we briefly review recent work on the development of predictive models for the impacts of climate change on helminth parasites and other pathogens of Arctic wildlife, in the hope that such models may eventually allow proactive mitigation and conservation strategies. We describe models that have been developed using the metabolic theory of ecology. The main strength of these models is that they can be easily parameterized using basic information about the physical size of the parasite. Initial results suggest they provide important new insights that are likely to generalize to a range of host-parasite systems. PMID:25900882

  14. The Arctic Grand Challenge: Abrupt Climate Change

    NASA Astrophysics Data System (ADS)

    Wilkniss, P. E.

    2003-12-01

    Trouble in polar paradise (Science, 08/30/02), significant changes in the Arctic environment are scientifically documented (R.E. Moritz et al. ibid.). More trouble, lots more, "abrupt climate change," (R. B. Alley, et al. Science 03/28/03). R. Corell, Arctic Climate Impact Assessment team (ACIA), "If you want to see what will happen in the rest of the world 25 years from now just look what's happening in the Arctic," (Arctic Council meeting, Iceland, 08/03). What to do? Make abrupt Arctic climate change a grand challenge for the IPY-4 and beyond! Scientifically:Describe the "state" of the Arctic climate system as succinctly as possible and accept it as the point of departure.Develop a hypothesis and criteria what constitutes "abrupt climate change," in the Arctic that can be tested with observations. Observations: Bring to bear existing observations and coordinate new investments in observations through an IPY-4 scientific management committee. Make the new Barrow, Alaska, Global Climate Change Research Facility a major U.S. contribution and focal point for the IPY-4 in the U.S Arctic. Arctic populations, Native peoples: The people of the North are living already, daily, with wrenching change, encroaching on their habitats and cultures. For them "the earth is faster now," (I. Krupnik and D. Jolly, ARCUS, 2002). From a political, economic, social and entirely realistic perspective, an Arctic grand challenge without the total integration of the Native peoples in this effort cannot succeed. Therefore: Communications must be established, and the respective Native entities must be approached with the determination to create well founded, well functioning, enduring partnerships. In the U.S. Arctic, Barrow with its long history of involvement and active support of science and with the new global climate change research facility should be the focal point of choice Private industry: Resource extraction in the Arctic followed by oil and gas consumption, return the combustion

  15. Climate-derived tensions in Arctic security.

    SciTech Connect

    Backus, George A.; Strickland, James Hassler

    2008-09-01

    Globally, there is no lack of security threats. Many of them demand priority engagement and there can never be adequate resources to address all threats. In this context, climate is just another aspect of global security and the Arctic just another region. In light of physical and budgetary constraints, new security needs must be integrated and prioritized with existing ones. This discussion approaches the security impacts of climate from that perspective, starting with the broad security picture and establishing how climate may affect it. This method provides a different view from one that starts with climate and projects it, in isolation, as the source of a hypothetical security burden. That said, the Arctic does appear to present high-priority security challenges. Uncertainty in the timing of an ice-free Arctic affects how quickly it will become a security priority. Uncertainty in the emergent extreme and variable weather conditions will determine the difficulty (cost) of maintaining adequate security (order) in the area. The resolution of sovereignty boundaries affects the ability to enforce security measures, and the U.S. will most probably need a military presence to back-up negotiated sovereignty agreements. Without additional global warming, technology already allows the Arctic to become a strategic link in the global supply chain, possibly with northern Russia as its main hub. Additionally, the multinational corporations reaping the economic bounty may affect security tensions more than nation-states themselves. Countries will depend ever more heavily on the global supply chains. China has particular needs to protect its trade flows. In matters of security, nation-state and multinational-corporate interests will become heavily intertwined.

  16. Arctic Cities and Climate Change: A Geographic Impact Assessment

    NASA Astrophysics Data System (ADS)

    Shiklomanov, N. I.; Streletskiy, D. A.

    2014-12-01

    Arctic climate change is a concern for the engineering community, land-use planners and policy makers as it may have significant impacts on socio-economic development and human activities in the northern regions. A warmer climate has potential for a series of positive economic effects, such as development of maritime transportation, enhanced agricultural production and decrease in energy consumption. However, these potential benefits may be outwaited by negative impacts related to transportation accessibility and stability of existing infrastructure, especially in permafrost regions. Compared with the Arctic zones of other countries, the Russian Arctic is characterized by higher population, greater industrial development and urbanization. Arctic urban areas and associated industrial sites are the location of some of intense interaction between man and nature. However, while there is considerable research on various aspects of Arctic climate change impacts on human society, few address effects on Arctic cities and their related industries. This presentation overviews potential climate-change impacts on Russian urban environments in the Arctic and discusses methodology for addressing complex interactions between climatic, permafrost and socio-economic systems at the range of geographical scales. We also provide a geographic assessment of selected positive and negative climate change impacts affecting several diverse Russian Arctic cities.

  17. Polar Climate: Arctic sea ice

    USGS Publications Warehouse

    Stone, R.S.; Douglas, David C.; Belchansky, G.I.; Drobot, S.D.

    2005-01-01

    Recent decreases in snow and sea ice cover in the high northern latitudes are among the most notable indicators of climate change. Northern Hemisphere sea ice extent for the year as a whole was the third lowest on record dating back to 1973, behind 1995 (lowest) and 1990 (second lowest; Hadley Center–NCEP). September sea ice extent, which is at the end of the summer melt season and is typically the month with the lowest sea ice extent of the year, has decreased by about 19% since the late 1970s (Fig. 5.2), with a record minimum observed in 2002 (Serreze et al. 2003). A record low extent also occurred in spring (Chapman 2005, personal communication), and 2004 marked the third consecutive year of anomalously extreme sea ice retreat in the Arctic (Stroeve et al. 2005). Some model simulations indicate that ice-free summers will occur in the Arctic by the year 2070 (ACIA 2004).

  18. The changing seasonal climate in the Arctic

    PubMed Central

    Bintanja, R.; van der Linden, E. C.

    2013-01-01

    Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities. PMID:23532038

  19. The changing seasonal climate in the Arctic.

    PubMed

    Bintanja, R; van der Linden, E C

    2013-01-01

    Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities.

  20. Identifying uncertainties in Arctic climate change projections

    NASA Astrophysics Data System (ADS)

    Hodson, Daniel L. R.; Keeley, Sarah P. E.; West, Alex; Ridley, Jeff; Hawkins, Ed; Hewitt, Helene T.

    2013-06-01

    Wide ranging climate changes are expected in the Arctic by the end of the 21st century, but projections of the size of these changes vary widely across current global climate models. This variation represents a large source of uncertainty in our understanding of the evolution of Arctic climate. Here we systematically quantify and assess the model uncertainty in Arctic climate changes in two CO2 doubling experiments: a multimodel ensemble (CMIP3) and an ensemble constructed using a single model (HadCM3) with multiple parameter perturbations (THC-QUMP). These two ensembles allow us to assess the contribution that both structural and parameter variations across models make to the total uncertainty and to begin to attribute sources of uncertainty in projected changes. We find that parameter uncertainty is an major source of uncertainty in certain aspects of Arctic climate. But also that uncertainties in the mean climate state in the 20th century, most notably in the northward Atlantic ocean heat transport and Arctic sea ice volume, are a significant source of uncertainty for projections of future Arctic change. We suggest that better observational constraints on these quantities will lead to significant improvements in the precision of projections of future Arctic climate change.

  1. Biodiversity of the Arctic Ocean in the Face of Climate Change

    NASA Astrophysics Data System (ADS)

    Węsławski, Jan Marcin

    2011-01-01

    Global climate changes which has been observed over the recent years affects organisms occurring in the Arctic seas and the functioning of the whole maritime ecosystems there. The research note presents and briefly analyses the biological diversity of the Arctic Ocean and the most important factors which change the relations between organisms and the environment in the Arctic.

  2. Biodiversity of the Arctic Ocean in the Face of Climate Change

    NASA Astrophysics Data System (ADS)

    Węsławski, Jan Marcin

    2011-01-01

    Global climate changes which has been observed over the recent years affects organisms occurring in the Arctic seas and the functioning of the whole maritime ecosystems there. The research note presents and briefly analyses the biological diversity of the Arctic Ocean and the most important factors which change the relations between organisms and the environment in the Arctic

  3. a New Japanese Project for Arctic Climate Change Research - Grene Arctic - (Invited)

    NASA Astrophysics Data System (ADS)

    Enomoto, H.

    2013-12-01

    A new Arctic Climate Change Research Project 'Rapid Change of the Arctic Climate System and its Global Influences' has started in 2011 for a five years project. GRENE-Arctic project is an initiative of Arctic study by more than 30 Japanese universities and institutes as the flame work of GRENE (Green Network of Excellence) of MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan). The GRENE-Arctic project set four strategic research targets: 1. Understanding the mechanism of warming amplification in the Arctic 2. Understanding the Arctic system for global climate and future change 3. Evaluation of the effects of Arctic change on weather in Japan, marine ecosystems and fisheries 4. Prediction of sea Ice distribution and Arctic sea routes This project aims to realize the strategic research targets by executing following studies: -Improvement of coupled general circulation models based on validations of the Arctic climate reproducibility and on mechanism analyses of the Arctic climate change and variability -The role of Arctic cryosphere in the global change -Change in terrestrial ecosystem of pan-Arctic and its effect on climate -Studies on greenhouse gas cycles in the Arctic and their responses to climate change -Atmospheric studies on Arctic change and its global impacts -Ecosystem studies of the Arctic ocean declining Sea ice -Projection of Arctic Sea ice responding to availability of Arctic sea route (* ** ***) *Changes in the Arctic ocean and mechanisms on catastrophic reduction of Arctic sea ice cover **Coordinated observational and modeling studies on the basic structure and variability of the Arctic sea ice-ocean system ***Sea ice prediction and construction of ice navigation support system for the Arctic sea route. Although GRENE Arctic project aims to product scientific contribution in a concentrated program during 2011-2016, Japanese Arctic research community established Japan Consortium for Arctic Environmental Research (JCAR) in May

  4. Modeling Arctic Climate with a Regional Arctic System Model (RASM)

    NASA Astrophysics Data System (ADS)

    Cassano, J. J.; Duvivier, A.; Hughes, M.; Roberts, A.; Brunke, M.; Fisel, B. J.; Gutowski, W. J.; Maslowski, W.; Nijssen, B.; Osinski, R.; Zeng, X.

    2013-12-01

    A new regional Earth system model of the Arctic, the Regional Arctic System Model (RASM), has recently been developed. The initial version of this model includes atmosphere (WRF), ocean (POP), sea ice (CICE), and land (VIC) component models coupled with the NCAR CESM CPL7 coupler. The model is configured to run on a large pan-Arctic domain that includes all sea ice covered waters in the Northern Hemisphere and all Arctic Ocean draining land areas. Results from multi-decadal (1989 to present) simulations with RASM will be presented and will focus on the model's representation of atmosphere, ocean, sea ice, and land surface climate, emphasizing both strengths and weaknesses of the current model climate and comparisons with atmosphere-only WRF simulations. Results from the model show both areas of improvement and degraded results relative to stand-alone WRF. Improvement in the coupled model climate are related to more physically realistic representation of coupled processes such as energy transfer from the ocean to the atmosphere through leads in the sea ice during winter. Degraded results come from feedbacks in model component biases, such as atmospheric circulation biases resulting in incorrect local sea ice cover that then result in large local atmospheric temperature biases. The issue of spectral nudging in a coupled regional climate model system as well as other lessons learned during the development of RASM will be discussed. The presentation will conclude with future plans for RASM.

  5. Impact of Holocene climate variability on Arctic vegetation

    NASA Astrophysics Data System (ADS)

    Gajewski, K.

    2015-10-01

    This paper summarizes current knowledge about the postglacial history of the vegetation of the Canadian Arctic Archipelago (CAA) and Greenland. Available pollen data were used to understand the initial migration of taxa across the Arctic, how the plant biodiversity responded to Holocene climate variability, and how past climate variability affected primary production of the vegetation. Current evidence suggests that most of the flora arrived in the area during the Holocene from Europe or refugia south or west of the region immediately after local deglaciation, indicating rapid dispersal of propagules to the region from distant sources. There is some evidence of shrub species arriving later in Greenland, but it is not clear if this is dispersal limited or a response to past climates. Subsequent climate variability had little effect on biodiversity across the CAA, with some evidence of local extinctions in areas of Greenland in the late Holocene. The most significant impact of climate changes is on vegetation density and/or plant production.

  6. Climate impacts on arctic freshwater ecosystems and fisheries: background, rationale and approach of the Arctic Climate Impact Assessment (ACIA).

    PubMed

    Wrona, Frederick J; Prowse, Terry D; Reist, James D; Hobbie, John E; Lévesque, Lucie M J; Vincent, Warwick F

    2006-11-01

    Changes in climate and ultraviolet radiation levels in the Arctic will have far-reaching impacts, affecting aquatic species at various trophic levels, the physical and chemical environment that makes up their habitat, and the processes that act on and within freshwater ecosystems. Interactions of climatic variables, such as temperature and precipitation, with freshwater ecosystems are highly complex and can propagate through the ecosystem in ways that are difficult to project. This is partly due to a poor understanding of arctic freshwater systems and their basic interrelationships with climate and other environmental variables, and partly due to a paucity of long-term freshwater monitoring sites and integrated hydro-ecological research programs in the Arctic. The papers in this special issue are an abstraction of the analyses performed by 25 international experts and their associated networks on Arctic freshwater hydrology and related aquatic ecosystems that was initially published by the Arctic Climate Impact Assessment (ACIA) in 2005 as "Chapter 8--Freshwater Ecosystems and Fisheries". The papers provide a broad overview of the general hydrological and ecological features of the various freshwater ecosystems in the Arctic, including descriptions of each ACIA region, followed by a review of historical changes in freshwater systems during the Holocene. This is followed by an assessment of the effects of climate change on broad-scale hydro-ecology; aquatic biota and ecosystem structure and function; and arctic fish and fisheries. Potential synergistic and cumulative effects are also discussed, as are the roles of ultraviolet radiation and contaminants. The nature and complexity of many of the effects are illustrated using case studies from around the circumpolar north, together with a discussion of important threshold responses (i.e., those that produce stepwise and/or nonlinear effects). The issue concludes with summary the key findings, a list of gaps in

  7. Climate of the Arctic marine environment.

    PubMed

    Walsh, John E

    2008-03-01

    The climate of the Arctic marine environment is characterized by strong seasonality in the incoming solar radiation and by tremendous spatial variations arising from a variety of surface types, including open ocean, sea ice, large islands, and proximity to major landmasses. Interannual and decadal-scale variations are prominent features of Arctic climate, complicating the distinction between natural and anthropogenically driven variations. Nevertheless, climate models consistently indicate that the Arctic is the most climatically sensitive region of the Northern Hemisphere, especially near the sea ice margins. The Arctic marine environment has shown changes over the past several decades, and these changes are part of a broader global warming that exceeds the range of natural variability over the past 1000 years. Record minima of sea ice coverage during the past few summers and increased melt from Greenland have important implications for the hydrographic regime of the Arctic marine environment. The recent changes in the atmosphere (temperature, precipitation, pressure), sea ice, and ocean appear to be a coordinated response to systematic variations of the large-scale atmospheric circulation, superimposed on a general warming that is likely associated with increasing greenhouse gases. The changes have been sufficiently large in some sectors (e.g., the Bering/Chukchi Seas) that consequences for marine ecosystems appear to be underway. Global climate models indicate an additional warming of several degrees Celsius in much of the Arctic marine environment by 2050. However, the warming is seasonal (largest in autumn and winter), spatially variable, and closely associated with further retreat of sea ice. Additional changes predicted for 2050 are a general decrease of sea level pressure (largest in the Bering sector) and an increase of precipitation. While predictions of changes in storminess cannot be made with confidence, the predicted reduction of sea ice cover will

  8. 78 FR 12033 - Programs and Research Projects Affecting the Arctic

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... From the Federal Register Online via the Government Publishing Office ] ARCTIC RESEARCH COMMISSION Programs and Research Projects Affecting the Arctic Notice is hereby given that the U.S. Arctic Research...) Commissioners and staff reports (4) Discussion and presentations concerning Arctic research activities The...

  9. Early Tertiary climates of the Arctic Ocean

    SciTech Connect

    Marincovich, L.; Zinsmeister, W.J.

    1985-01-01

    Knowledge of Early Tertiary high latitude marine faunas (north of 65 N) is extremely limited. What published data that are available were based on small collections obtained during the early part of the 20th century. Recent work along the western part of the Arctic Ocean has greatly increased the knowledge of the composition of these faunas and climatic conditions of the high northern latitudes during the Early Tertiary. Early Eocene shallow marine faunas from the Eureka Sound Formation, Ellesmere Island (79/sup 0/ 30'N), together with similar aged faunas from Ocean Point, Alaska (72/sup 0/N) and Spitsbergen trough, Svalbard, (78/sup 0/N) indicate that temperature conditions prevailed in the high Arctic during the early Tertiary. These high latitude temperate conditions are also supported by the presence of a diverse terrestrial mammalian faunas (currently known only from Ellesmere Island) and floras. Preliminary comparisons of these faunas from the Arctic ocean with the diverse subtropical faunas from West Greenland (70/sup 0/N) indicates the presence of a major faunal discontinuity existed in the high northern latitudes during the early Tertiary. The cause of this faunal discontinuity is uncertain. It may be due to the presence of a physical barrier between the Arctic Ocean and the North Atlantic or it may reflect cooler climatic conditions north of 70 N.

  10. Climate sensitivity to Arctic seaway restriction during the early Paleogene

    NASA Astrophysics Data System (ADS)

    Roberts, Christopher D.; LeGrande, Allegra N.; Tripati, Aradhna K.

    2009-09-01

    The opening and closing of ocean gateways affects the global distribution of heat, salt, and moisture, potentially driving climatic change on regional to global scales. Between 65 and 45 million years ago (Ma), during the early Paleogene, exchange between the Arctic and global oceans occurred through two narrow and shallow seaways, the Greenland-Norway seaway and the Turgai Strait. Sediments from the Arctic Ocean suggest that, during this interval, the surface ocean was warm, brackish, and episodically enabled the freshwater fern Azolla to bloom. The precise mechanisms responsible for the development of these conditions in the Paleogene Arctic remain uncertain. Here we show results from an isotope-enabled, atmosphere-ocean general circulation model, which indicate that Northern Hemisphere climate would have been very sensitive to the degree of oceanic exchange through the Arctic seaways. We also present modelled estimates of seawater and calcite δ18O for the Paleogene. By restricting these seaways, we simulate freshening of the surface Arctic Ocean to ~ 6 psu and warming of sea-surface temperatures by 2 °C in the North Atlantic and 5-10 °C in the Labrador Sea. Our results may help explain the occurrence of low-salinity tolerant taxa in the Arctic Ocean during the Eocene and provide a mechanism for enhanced warmth in the north western Atlantic. We propose that the formation of a volcanic land-bridge between Greenland and Europe could have caused increased ocean convection and warming of intermediate waters in the Atlantic. If true, this result is consistent with the theory that bathymetry changes may have caused thermal destabilisation of methane clathrates and supports a tectonic trigger hypothesis for the Paleocene Eocene Thermal Maximum (PETM).

  11. Multiple climate drivers accelerate Arctic plant community senescence

    NASA Astrophysics Data System (ADS)

    Livensperger, C.; Steltzer, H.; Wallenstein, M. D.; Weintraub, M. N.

    2015-12-01

    Alteration of seasonal phenology cues due to climate change has led to changes in the onset and duration of the growing season. While photoperiod often acts as an ultimate control on phenological events, recent studies have shown that environmental cues such as temperature and soil water content can modify the direction and rate of senescence processes. Warmer temperatures have resulted in an observed trend towards delayed senescence across temperate latitudes. However, Arctic regions are characterized by extreme seasonality and rapidly decreasing photoperiod, and consequently senescence may not shift as climate warms. We monitored the timing of Arctic plant community senescence for three years under the framework of an experimental manipulation that altered seasonal phenological cues through warming and earlier snowmelt. Alternative models of senescence were tested to determine if microclimate (air temperature, soil temperature, and soil moisture) or start of season phenology affect the timing and rate of community senescence. We found that all three microclimate predictors contributed to explaining variation in timing of senescence, suggesting that photoperiod is not the sole control on timing of senescence in Arctic plant communities. Rather, increased air and soil temperatures along with drier soil conditions, led to acceleration in the onset of senescence at a community level. Our data suggest that (1) multiple climate drivers predict timing of plant community senescence, and (2) climate change could result in a shorter peak season due to earlier onset of senescence, which would decrease the potential carbon uptake in moist acidic tundra.

  12. Arctic cities and climate change: climate-induced changes in stability of Russian urban infrastructure built on permafrost

    NASA Astrophysics Data System (ADS)

    Shiklomanov, Nikolay; Streletskiy, Dmitry; Swales, Timothy

    2014-05-01

    Planned socio-economic development during the Soviet period promoted migration into the Arctic and work force consolidation in urbanized settlements to support mineral resources extraction and transportation industries. These policies have resulted in very high level of urbanization in the Soviet Arctic. Despite the mass migration from the northern regions during the 1990s following the collapse of the Soviet Union and the diminishing government support, the Russian Arctic population remains predominantly urban. In five Russian Administrative regions underlined by permafrost and bordering the Arctic Ocean 66 to 82% (depending on region) of the total population is living in Soviet-era urban communities. The political, economic and demographic changes in the Russian Arctic over the last 20 years are further complicated by climate change which is greatly amplified in the Arctic region. One of the most significant impacts of climate change on arctic urban landscapes is the warming and degradation of permafrost which negatively affects the structural integrity of infrastructure. The majority of structures in the Russian Arctic are built according to the passive principle, which promotes equilibrium between the permafrost thermal regime and infrastructure foundations. This presentation is focused on quantitative assessment of potential changes in stability of Russian urban infrastructure built on permafrost in response to ongoing and future climatic changes using permafrost - geotechnical model forced by GCM-projected climate. To address the uncertainties in GCM projections we have utilized results from 6 models participated in most recent IPCC model inter-comparison project. The analysis was conducted for entire extent of Russian permafrost-affected area and on several representative urban communities. Our results demonstrate that significant observed reduction in urban infrastructure stability throughout the Russian Arctic can be attributed to climatic changes and that

  13. Inter-annual growth of Arctic charr (Salvelinus alpinus, L.) in relation to climate variation

    PubMed Central

    Kristensen, David M; Jørgensen, Thomas R; Larsen, Rasmus K; Forchhammer, Mads C; Christoffersen, Kirsten S

    2006-01-01

    Background Major changes in climate have been observed in the Arctic and climate models predict further amplification of the enhanced greenhouse effect at high-latitudes leading to increased warming. We propose that warming in the Arctic may affect the annual growth conditions of the cold adapted Arctic charr and that such effects can already be detected retrospectrally using otolith data. Results Inter-annual growth of the circumpolar Arctic charr (Salvelinus alpinus, L.) was analysed in relation to climatic changes observed in the Arctic during the last two decades. Arctic charr were sampled from six locations at Qeqertarsuaq in West Greenland, where climate data have been recorded since 1990. Two fish populations met the criteria of homogeny and, consequently, only these were used in further analyses. The results demonstrate a complex coupling between annual growth rates and fluctuations in annual mean temperatures and precipitation. Significant changes in temporal patterns of growth were observed between cohorts of 1990 and 2004. Conclusion Differences in pattern of growth appear to be a consequence of climatic changes over the last two decades and we thereby conclude that climatic affects short term and inter-annual growth as well as influencing long term shifts in age-specific growth patterns in population of Arctic charr. PMID:16934162

  14. Arctic Sea Ice Changes, Interactions, and Feedbacks on the Arctic Climate during the Satellite Era

    NASA Astrophysics Data System (ADS)

    Wang, X.; Key, J. R.; Liu, Y.

    2011-12-01

    Of all the components of the Earth climate system, the cryosphere is arguably the least understood even though it is a very important indicator and an effective modulator of regional and global climate change. Changes in sea ice will significantly affect exchanges of momentum, heat, and mass between the ocean and the atmosphere, and have profound socio-economic impacts on transportation, fisheries, hunting, polar animal habitat and more. In the last three decades, the Arctic underwent significant changes in sea ice as part of the accelerated global climate change. With the recently developed One-dimensional Thermodynamic Ice Model (OTIM), sea and lake ice thickness and trends can be reasonably estimated. The OTIM has been extensively validated against submarine and moored upward-looking sonar measurements, meteorological station measurements, and comprehensive numerical model simulations. The Extended AVHRR Polar Pathfinder (APP-x) dataset has 25 climate parameters covering surface, cloud, and sea ice properties as well as surface and top-of-atmosphere radiative fluxes for the period 1982 - 2004 over the Arctic and Antarctic at 25 km resolution. The OTIM has been used with APP-x dataset for Arctic sea ice thickness and volume estimation. Statistical analysis of spatial and temporal distributions and trends in sea ice extent, thickness, and volume over the satellite period has been performed, along with the temporal analysis of first year and multiple year sea ice extent changes. Preliminary results show clear evidence that Arctic sea ice has been experiencing significant changes over the last two decades of the 20th century. The Arctic sea ice has been shrinking unexpectedly fast with the declines in sea ice extent, thickness, and volume, most apparent in the fall season. Moreover, satellites provide an unprecedented opportunity to observe Arctic sea ice and its changes with high spatial and temporal coverage that is making it an ideal data source for mitigating

  15. Program for Arctic Regional Climate Assessment (PARCA)

    NASA Technical Reports Server (NTRS)

    Gogineni, Sivaprasad; Thomas, Robert H.; Abdalati, Waleed (Editor)

    1999-01-01

    The Program for Arctic Regional Climate Assessment (PARCA) is a NASA-sponsored initiative with the prime objective of understanding the mass balance of the Greenland ice sheet. In October 1998, PARCA investigators met to review activities of the previous year, assess the program's progress, and plan future investigations directed at accomplishing that objective. Some exciting results were presented and discussed, including evidence of dramatic thinning of the ice sheet near the southeastern coast. Details of the investigations and many of the accomplishments are given in this report, but major highlights are given in the Executive Summary of the report.

  16. Climate Change: Science and Policy in the Arctic Climate Change: Science and Policy in the Arctic

    NASA Astrophysics Data System (ADS)

    Bigras, S. C.

    2009-12-01

    It is an accepted fact that the Earth’s climate is warming. Recent research has demonstrated the direct links between the Arctic regions and the rest of the planet. We have become more aware that these regions are feeling the effects of global climate change more intensely than anywhere else on Earth -- and that they are fast becoming the new frontiers for resources and political disputes. This paper examines some of the potential climate change impacts in the Arctic and how the science of climate change can be used to develop policies that will help mitigate some of these impacts. Despite the growing body of research we do not yet completely understand the potential consequences of climate change in the Arctic. Climate models predict significant changes and impacts on the northern physical environment and renewable resources, and on the communities and societies that depend on them. Policies developed and implemented as a result of the research findings will be designed to help mitigate some of the more serious consequences. Given the importance of cost in making policy decisions, the financial implications of different scenarios will need to be considered. The Arctic Ocean Basin is a complex and diverse environment shared by five Arctic states. Cooperation among the states surrounding the Arctic Ocean is often difficult, as each country has its own political and social agenda. Northerners and indigenous peoples should be engaged and able to influence the direction of northern adaptation policies. Along with climate change, the Arctic environment and Arctic residents face many other challenges, among them safe resource development. Resource development in the Arctic has always been a controversial issue, seen by some as a solution to high unemployment and by others as an unacceptably disruptive and destructive force. Its inherent risks need to be considered: there are needs for adaptation, for management frameworks, for addressing cumulative effects, and for

  17. Climate Change, Globalization and Geopolitics in the New Maritime Arctic

    NASA Astrophysics Data System (ADS)

    Brigham, L. W.

    2011-12-01

    Early in the 21st century a confluence of climate change, globalization and geopolitics is shaping the future of the maritime Arctic. This nexus is also fostering greater linkage of the Arctic to the rest of the planet. Arctic sea ice is undergoing a historic transformation of thinning, extent reduction in all seasons, and reduction in the area of multiyear ice in the central Arctic Ocean. Global Climate Model simulations of Arctic sea ice indicate multiyear ice could disappear by 2030 for a short period of time each summer. These physical changes invite greater marine access, longer seasons of navigation, and potential, summer trans-Arctic voyages. As a result, enhanced marine safety, environmental protection, and maritime security measures are under development. Coupled with climate change as a key driver of regional change is the current and future integration of the Arctic's natural wealth with global markets (oil, gas and hard minerals). Abundant freshwater in the Arctic could also be a future commodity of value. Recent events such as drilling for hydrocarbons off Greenland's west coast and the summer marine transport of natural resources from the Russian Arctic to China across the top of Eurasia are indicators of greater global economic ties to the Arctic. Plausible Arctic futures indicate continued integration with global issues and increased complexity of a range of regional economic, security and environmental challenges.

  18. Impacts of volcanic eruptions and geoengineering on Arctic climate

    NASA Astrophysics Data System (ADS)

    Berdahl, Mira

    Stratospheric aerosols can produce large radiative forcing and climate response, often amplified in the Arctic. Here I study the Arctic response to natural (volcanic eruptions) and potential anthropogenic (geoengineering) stratospheric sulfate aerosols. I use a regional climate model and global climate model output from two modeling intercomparison projects. First, I investigate the relative impacts of changes in radiation and advection on snow extent over Baffin Island with the Weather Research and Forecasting model. Model results show it is possible to suddenly lower the snowline by amounts comparable to those seen during the Little Ice Age with an average temperature decrease of --3.9 +/- 1.1 K from present. Further, sea ice expansion following large volcanic eruptions would have significant affects on inland temperatures, especially in the fall. Next, I analyze Last Millennium simulations from the Paleoclimate Modeling Intercomparison Project 3 to assess whether state-of-the-art global climate models produce sudden changes and persistence of cold conditions after large volcanic eruptions as inferred by geological records and previous climate modeling. North Atlantic sea ice and Baffin Island snow cover showed large-scale expansion in the simulations, but none of the models produced significant centennial-scale effects. Warm Baffin Island summer climates stunt snow expansion in some models completely, and model topography misses the critical elevations that could sustain snow on the island. This has critical consequences for ice and snow formation and persistence in regions such as the Arctic where temperatures are near freezing and small temperature changes affect the state of water. Finally, I analyze output from the Geoengineering Modeling Intercomparison Project to examine whether geoengineering by injection of sulfate aerosols into the lower stratosphere prevents the demise of minimum annual sea ice extent, or slows spring snow cover loss. Despite

  19. Future Climate Change Will Favour Non-Specialist Mammals in the (Sub)Arctics

    PubMed Central

    Hof, Anouschka R.; Jansson, Roland; Nilsson, Christer

    2012-01-01

    Arctic and subarctic (i.e., [sub]arctic) ecosystems are predicted to be particularly susceptible to climate change. The area of tundra is expected to decrease and temperate climates will extend further north, affecting species inhabiting northern environments. Consequently, species at high latitudes should be especially susceptible to climate change, likely experiencing significant range contractions. Contrary to these expectations, our modelling of species distributions suggests that predicted climate change up to 2080 will favour most mammals presently inhabiting (sub)arctic Europe. Assuming full dispersal ability, most species will benefit from climate change, except for a few cold-climate specialists. However, most resident species will contract their ranges if they are not able to track their climatic niches, but no species is predicted to go extinct. If climate would change far beyond current predictions, however, species might disappear. The reason for the relative stability of mammalian presence might be that arctic regions have experienced large climatic shifts in the past, filtering out sensitive and range-restricted taxa. We also provide evidence that for most (sub)arctic mammals it is not climate change per se that will threaten them, but possible constraints on their dispersal ability and changes in community composition. Such impacts of future changes in species communities should receive more attention in literature. PMID:23285098

  20. Future climate change will favour non-specialist mammals in the (sub)arctics.

    PubMed

    Hof, Anouschka R; Jansson, Roland; Nilsson, Christer

    2012-01-01

    Arctic and subarctic (i.e., [sub]arctic) ecosystems are predicted to be particularly susceptible to climate change. The area of tundra is expected to decrease and temperate climates will extend further north, affecting species inhabiting northern environments. Consequently, species at high latitudes should be especially susceptible to climate change, likely experiencing significant range contractions. Contrary to these expectations, our modelling of species distributions suggests that predicted climate change up to 2080 will favour most mammals presently inhabiting (sub)arctic Europe. Assuming full dispersal ability, most species will benefit from climate change, except for a few cold-climate specialists. However, most resident species will contract their ranges if they are not able to track their climatic niches, but no species is predicted to go extinct. If climate would change far beyond current predictions, however, species might disappear. The reason for the relative stability of mammalian presence might be that arctic regions have experienced large climatic shifts in the past, filtering out sensitive and range-restricted taxa. We also provide evidence that for most (sub)arctic mammals it is not climate change per se that will threaten them, but possible constraints on their dispersal ability and changes in community composition. Such impacts of future changes in species communities should receive more attention in literature.

  1. Factors affecting dynamical seasonal prediction of the Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Wang, W.; Chen, M.; Kumar, A.; Hung, M.

    2013-12-01

    Arctic sea ice variability has received increasing attention during the last decade. Seasonal prediction of the Arctic sea ice has been primarily produced with statistical methods during the past years. A few operational centers have recently implemented dynamical sea ice component in the coupled atmosphere-ocean forecast systems for seasonal climate prediction. Yet various issues remain to be resolved for an improved prediction of seasonal sea ice variations. In this study, we analyze the forecast of sea ice extent in the NCEP Climate Forecast System version 2 (CFSv2) and address factors that affect the representation of the observed sea ice variability in the forecast model. The analysis will be based on retrospective and real-time 9-month forecasts from the CFSv2 for 1982-2012. We will first assess the overall performance of the CFSv2 in capturing the observed sea ice extent climatology, long-term trend, and interannual anomalies. We will then discuss factors that affect the sea ice prediction, including: (1) consistency of the initialization of the observed sea ice concentration, (2) impacts of surface heat fluxes related to atmospheric model physics, (3) bias in sea surface temperatures, and (4) impacts of initial sea ice thickness.

  2. Gender specific reproductive strategies of an arctic key species (Boreogadus saida) and implications of climate change.

    PubMed

    Nahrgang, Jasmine; Varpe, Oystein; Korshunova, Ekaterina; Murzina, Svetlana; Hallanger, Ingeborg G; Vieweg, Ireen; Berge, Jørgen

    2014-01-01

    The Arctic climate is changing at an unprecedented rate. What consequences this may have on the Arctic marine ecosystem depends to a large degree on how its species will respond both directly to elevated temperatures and more indirectly through ecological interactions. But despite an alarming recent warming of the Arctic with accompanying sea ice loss, reports evaluating ecological impacts of climate change in the Arctic remain sparse. Here, based upon a large-scale field study, we present basic new knowledge regarding the life history traits for one of the most important species in the entire Arctic, the polar cod (Boreogadus saida). Furthermore, by comparing regions of contrasting climatic influence (domains), we present evidence as to how its growth and reproductive success is impaired in the warmer of the two domains. As the future Arctic is predicted to resemble today's Atlantic domains, we forecast changes in growth and life history characteristics of polar cod that will lead to alteration of its role as an Arctic keystone species. This will in turn affect community dynamics and energy transfer in the entire Arctic food chain.

  3. Gender Specific Reproductive Strategies of an Arctic Key Species (Boreogadus saida) and Implications of Climate Change

    PubMed Central

    Nahrgang, Jasmine; Varpe, Øystein; Korshunova, Ekaterina; Murzina, Svetlana; Hallanger, Ingeborg G.; Vieweg, Ireen; Berge, Jørgen

    2014-01-01

    The Arctic climate is changing at an unprecedented rate. What consequences this may have on the Arctic marine ecosystem depends to a large degree on how its species will respond both directly to elevated temperatures and more indirectly through ecological interactions. But despite an alarming recent warming of the Arctic with accompanying sea ice loss, reports evaluating ecological impacts of climate change in the Arctic remain sparse. Here, based upon a large-scale field study, we present basic new knowledge regarding the life history traits for one of the most important species in the entire Arctic, the polar cod (Boreogadus saida). Furthermore, by comparing regions of contrasting climatic influence (domains), we present evidence as to how its growth and reproductive success is impaired in the warmer of the two domains. As the future Arctic is predicted to resemble today's Atlantic domains, we forecast changes in growth and life history characteristics of polar cod that will lead to alteration of its role as an Arctic keystone species. This will in turn affect community dynamics and energy transfer in the entire Arctic food chain. PMID:24871481

  4. Arctic ocean sediment texture and the Pleistocene climate cycle

    SciTech Connect

    Clark, D.L.; Morris, T.H.

    1985-01-01

    Arctic Ocean sediment texture accurately reflects the Plio-Pleistocene climate cycle. The precision of paleoclimate interpretation is improved when deglaciation is recognized as a distinct climate stage, overlapping both glacial and interglacial stages, and for the later Pleistocene, perhaps never completed. Oxygen isotope stratigraphy and foraminifera productivity are out of phase but can be understood in the context of the transitional nature of the glacial, deglacial and interglacial climate stages of the Arctic Ocean.

  5. Can regional climate engineering save the summer Arctic sea ice?

    NASA Astrophysics Data System (ADS)

    Tilmes, S.; Jahn, Alexandra; Kay, Jennifer E.; Holland, Marika; Lamarque, Jean-Francois

    2014-02-01

    Rapid declines in summer Arctic sea ice extent are projected under high-forcing future climate scenarios. Regional Arctic climate engineering has been suggested as an emergency strategy to save the sea ice. Model simulations of idealized regional dimming experiments compared to a business-as-usual greenhouse gas emission simulation demonstrate the importance of both local and remote feedback mechanisms to the surface energy budget in high latitudes. With increasing artificial reduction in incoming shortwave radiation, the positive surface albedo feedback from Arctic sea ice loss is reduced. However, changes in Arctic clouds and the strongly increasing northward heat transport both counteract the direct dimming effects. A 4 times stronger local reduction in solar radiation compared to a global experiment is required to preserve summer Arctic sea ice area. Even with regional Arctic dimming, a reduction in the strength of the oceanic meridional overturning circulation and a shut down of Labrador Sea deep convection are possible.

  6. Climate change and zoonotic infections in the Russian Arctic

    PubMed Central

    Revich, Boris; Tokarevich, Nikolai; Parkinson, Alan J.

    2012-01-01

    Climate change in the Russian Arctic is more pronounced than in any other part of the country. Between 1955 and 2000, the annual average air temperature in the Russian North increased by 1.2°C. During the same period, the mean temperature of upper layer of permafrost increased by 3°C. Climate change in Russian Arctic increases the risks of the emergence of zoonotic infectious diseases. This review presents data on morbidity rates among people, domestic animals and wildlife in the Russian Arctic, focusing on the potential climate related emergence of such diseases as tick-borne encephalitis, tularemia, brucellosis, leptospirosis, rabies, and anthrax. PMID:22868189

  7. Climate penalty for shifting shipping to the Arctic.

    PubMed

    Fuglestvedt, Jan S; Dalsøren, Stig Bjørløw; Samset, Bjørn Hallvard; Berntsen, Terje; Myhre, Gunnar; Hodnebrog, Øivind; Eide, Magnus Strandmyr; Bergh, Trond Flisnes

    2014-11-18

    The changing climate in the Arctic opens new shipping routes. A shift to shorter Arctic transit will, however, incur a climate penalty over the first one and a half centuries. We investigate the net climate effect of diverting a segment of Europe-Asia container traffic from the Suez to an Arctic transit route. We find an initial net warming for the first one-and-a-half centuries, which gradually declines and transitions to net cooling as the effects of CO2 reductions become dominant, resulting in climate mitigation only in the long term. Thus, the possibilities for shifting shipping to the Arctic confront policymakers with the question of how to weigh a century-scale warming with large uncertainties versus a long-term climate benefit from CO2 reductions. PMID:25347302

  8. Climate Effects on Methylmercury Bioaccumulation Along a Latitudinal Gradient in the Eastern Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Chetelat, J.; Richardson, M.; MacMillan, G. A.; Amyot, M.; Hintelmann, H.; Crump, D.

    2014-12-01

    Recent evidence indicates that inorganic mercury (Hg) loadings to Arctic lakes decline with latitude. However, monomethylmercury (MMHg) concentrations in fish and their prey do not decline in a similar fashion, suggesting that higher latitude lakes are more vulnerable to Hg inputs. Preliminary results will be presented from a three-year study (2012-2015) of climate effects on MMHg bioaccumulation in lakes of the eastern Canadian Arctic. We have investigated mercury transport and accumulation processes in lakes and ponds from three study regions along a latitudinal gradient in climate-controlled ecosystem types in the Canadian Arctic, specifically sub-Arctic taiga, Arctic tundra and polar desert. In each water body, we measured key aspects of MMHg bioaccumulation—MMHg bioavailability to benthic food webs and organism growth rates—as well as how watershed characteristics affect the transport of Hg and organic carbon to lakes. Novel approaches were incorporated including the use of passive samplers (Diffusive Gradient in Thin Film samplers or DGTs) to estimate sediment bioavailable MMHg concentrations and tissue RNA content to compare organism short-term growth rates. A comparison of Arctic tundra and sub-Arctic taiga lakes showed that surface water concentrations of MMHg were strongly and positively correlated to total Hg concentrations both within and among study regions, implying strong control of inorganic Hg supply. Sediment concentrations of bioavailable MMHg were highly variable among lakes, although average concentrations were similar between study regions. Local environmental conditions appear to have a strong influence on sediment potential for MMHg supply. Lake-dwelling Arctic char from tundra lakes had similar or higher total Hg concentrations compared with brook trout from sub-Arctic lakes that were exposed to higher water MMHg concentrations. Potential environmental drivers of these patterns will be discussed. This latitudinal study will provide new

  9. The Arctic Climate Modeling Program: Professional Development for Rural Teachers

    ERIC Educational Resources Information Center

    Bertram, Kathryn Berry

    2010-01-01

    The Arctic Climate Modeling Program (ACMP) offered yearlong science, technology, engineering, and math (STEM) professional development to teachers in rural Alaska. Teacher training focused on introducing youth to workforce technologies used in Arctic research. Due to challenges in making professional development accessible to rural teachers, ACMP…

  10. Integrated regional changes in arctic climate feedbacks: Implications for the global climate system

    USGS Publications Warehouse

    McGuire, A.D.; Chapin, F. S.; Walsh, J.E.; Wirth, C.; ,

    2006-01-01

    The Arctic is a key part of the global climate system because the net positive energy input to the tropics must ultimately be resolved through substantial energy losses in high-latitude regions. The Arctic influences the global climate system through both positive and negative feedbacks that involve physical, ecological, and human systems of the Arctic. The balance of evidence suggests that positive feedbacks to global warming will likely dominate in the Arctic during the next 50 to 100 years. However, the negative feedbacks associated with changing the freshwater balance of the Arctic Ocean might abruptly launch the planet into another glacial period on longer timescales. In light of uncertainties and the vulnerabilities of the climate system to responses in the Arctic, it is important that we improve our understanding of how integrated regional changes in the Arctic will likely influence the evolution of the global climate system. Copyright ?? 2006 by Annual Reviews. All rights reserved.

  11. Arctic Vegetation Change and Feedbacks under Future Climate (Invited)

    NASA Astrophysics Data System (ADS)

    Goetz, S. J.; Loranty, M. M.; Beck, P.; Phillips, S.; Damoulas, T.; Pearson, R. G.

    2013-12-01

    .27 Pg) were roughly equivalent to the projected annual efflux of soil carbon to the atmosphere as a consequence of permafrost thaw over the coming century. In contrast, changes in Spring-Summer albedo (α) and net surface shortwave radiation (SN) indicate the significant extent to which vegetation change will influence climate. We estimate that α will decrease by 2-6% under restricted tree dispersal and by 10-26% under equilibrium, corresponding to increases in SN of 1.07-3.11 W m-2 and 3.54-8.71 W m-2 under the same two scenarios. These changes are largely due to the snow masking effects of taller vegetation, indicating the projected vegetation changes would exacerbate currently amplified rates of regional warming. Our predictions thereby indicate that vegetation in the Arctic will affect climate primarily as a biophysical medium, whereas the carbon implications of Arctic change are largely those that influence permafrost and associated soil carbon stocks. As with thawing permafrost, vegetation distribution shifts will result in an overall positive feedback to climate that is likely to cause greater warming than has previously been predicted.

  12. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change.

    PubMed

    Ernakovich, Jessica G; Hopping, Kelly A; Berdanier, Aaron B; Simpson, Rodney T; Kachergis, Emily J; Steltzer, Heidi; Wallenstein, Matthew D

    2014-10-01

    Global climate change is already having significant impacts on arctic and alpine ecosystems, and ongoing increases in temperature and altered precipitation patterns will affect the strong seasonal patterns that characterize these temperature-limited systems. The length of the potential growing season in these tundra environments is increasing due to warmer temperatures and earlier spring snow melt. Here, we compare current and projected climate and ecological data from 20 Northern Hemisphere sites to identify how seasonal changes in the physical environment due to climate change will alter the seasonality of arctic and alpine ecosystems. We find that although arctic and alpine ecosystems appear similar under historical climate conditions, climate change will lead to divergent responses, particularly in the spring and fall shoulder seasons. As seasonality changes in the Arctic, plants will advance the timing of spring phenological events, which could increase plant nutrient uptake, production, and ecosystem carbon (C) gain. In alpine regions, photoperiod will constrain spring plant phenology, limiting the extent to which the growing season can lengthen, especially if decreased water availability from earlier snow melt and warmer summer temperatures lead to earlier senescence. The result could be a shorter growing season with decreased production and increased nutrient loss. These contrasting alpine and arctic ecosystem responses will have cascading effects on ecosystems, affecting community structure, biotic interactions, and biogeochemistry.

  13. Evidence and implications of recent climate change in Northern Alaska and other Arctic regions

    USGS Publications Warehouse

    Hinzman, L.D.; Bettez, N.D.; Bolton, W.R.; Chapin, F.S.; Dyurgerov, M.B.; Fastie, C.L.; Griffith, B.; Hollister, R.D.; Hope, A.; Huntington, H.P.; Jensen, A.M.; Jia, G.J.; Jorgenson, T.; Kane, D.L.; Klein, D.R.; Kofinas, G.; Lynch, A.H.; Lloyd, A.H.; McGuire, A.D.; Nelson, F.E.; Oechel, W.C.; Osterkamp, T.E.; Racine, C.H.; Romanovsky, V.E.; Stone, R.S.; Stow, D.A.; Sturm, M.; Tweedie, C.E.; Vourlitis, G.L.; Walker, M.D.; Walker, D. A.; Webber, P. J.; Welker, J.M.; Winker, K.S.; Yoshikawa, K.

    2005-01-01

    The Arctic climate is changing. Permafrost is warming, hydrological processes are changing and biological and social systems are also evolving in response to these changing conditions. Knowing how the structure and function of arctic terrestrial ecosystems are responding to recent and persistent climate change is paramount to understanding the future state of the Earth system and how humans will need to adapt. Our holistic review presents a broad array of evidence that illustrates convincingly; the Arctic is undergoing a system-wide response to an altered climatic state. New extreme and seasonal surface climatic conditions are being experienced, a range of biophysical states and processes influenced by the threshold and phase change of freezing point are being altered, hydrological and biogeochemical cycles are shifting, and more regularly human sub-systems are being affected. Importantly, the patterns, magnitude and mechanisms of change have sometimes been unpredictable or difficult to isolate due to compounding factors. In almost every discipline represented, we show how the biocomplexity of the Arctic system has highlighted and challenged a paucity of integrated scientific knowledge, the lack of sustained observational and experimental time series, and the technical and logistic constraints of researching the Arctic environment. This study supports ongoing efforts to strengthen the interdisciplinarity of arctic system science and improve the coupling of large scale experimental manipulation with sustained time series observations by incorporating and integrating novel technologies, remote sensing and modeling. ?? Springer 2005.

  14. Evidence and Implications of Recent Climate Change in Northern Alaska and Other Arctic Regions

    NASA Astrophysics Data System (ADS)

    Hinzman, L. D.; Bettez, N.; Bolton, W. R.; Chapin, F. S.; Dyurgerov, M. B.; Fastie, C. L.; Griffith, B.; Hollister, R. D.; Hope, A.; Huntington, H. P.; Jensen, A. M.; Jia, G. J.; Jorgenson, T.; Kane, D. L.; Klein, D. R.; Kofinas, G.; Lynch, A. H.; Lloyd, A. H.; McGuire, A. D.; Nelson, F. E.; Nolan, M.; Oechel, W. C.; Osterkamp, T. E.; Racine, C. H.; Romanovsky, V. E.; Stone, R. S.; Stow, D. A.; Sturm, M.; Tweedie, C. E.; Vourlitis, G. L.; Walker, M. D.; Walker, D. A.; Webber, P. J.; Welker, J.; Winker, K. S.; Yoshikawa, K.

    2004-12-01

    The Arctic climate is changing. Permafrost is warming, hydrological processes are changing and biological and social systems are also evolving in response to these changing conditions. Knowing how the structure and function of arctic terrestrial ecosystems are responding to recent and persistent climate change is paramount to understanding the future state of the Earth system and how humans will need to adapt. Our holistic review presents a broad array of evidence that illustrates convincingly; the Arctic is undergoing a system-wide response to an altered climatic state. New extreme and seasonal surface climatic conditions are being experienced, a range of biophysical states and processes influenced by the threshold and phase change of freezing point are being altered, hydrological and biogeochemical cycles are shifting, and more regularly human sub-systems are being affected. Importantly, the patterns, magnitude and mechanisms of change have sometimes been unpredictable or difficult to isolate due to compounding factors. In almost every discipline represented, we show how the biocomplexity of the Arctic system has highlighted and challenged a paucity of integrated scientific knowledge, the lack of sustained observational and experimental time series, and the technical and logistic constraints of researching the Arctic environment. This study supports ongoing efforts to strengthen the interdisciplinarity of arctic system science and improve the coupling of large scale experimental manipulation with sustained time series observations by incorporating and integrating novel technologies, remote sensing and modeling.

  15. Influence of altered low cloud parameterizations for seasonal variation of Arctic cloud amount on climate feedbacks

    NASA Astrophysics Data System (ADS)

    Kim, Yoojin; Choi, Yong-Sang; Kim, Baek-Min; Kim, Hyerim

    2015-12-01

    This study investigates the alteration of climate feedbacks due to overestimated wintertime low-level cloud amount bias over the Arctic region (60°N-90°N) in a climate model. The climate feedback was quantitatively examined through radiative kernels that are pre-calculated radiative responses of climate variables to doubling of carbon dioxide concentration in NCAR Community Atmosphere Model version 3 (CAM3). Climate models have various annual cycle of the Arctic cloud amount at the low-level particularly with large uncertainty in winter and CAM3 may tend to overestimate the Arctic low-level cloud. In this study, the seasonal variation of low-level cloud amount was modified by reducing the wintertime cloud amount by up to 35 %, and then compared with the original without seasonal variation. Thus, we investigate how that bias may affect climate feedbacks and the projections of future Arctic warming. The results show that the decrease in low-level cloud amount slightly affected the radiation budgets because of a small amount of incident solar insolation in winter, but considerably changed water vapor and temperature profiles. Consequently, the most distinctive was decreases in water vapor feedback and contribution of heat transport (by -0.20 and -0.55 W m-2 K-1, respectively) and increases in the lapse rate feedback and cloud feedback (by 0.13 and 0.58 W m-2 K-1, respectively) during winter in this model experiment. This study suggests that the change in Arctic cloud amount effectively reforms the contributions of individual climate feedbacks to Arctic climate system and leads to opposing effects on different feedbacks, which cancel out in the model.

  16. Influence of altered low cloud parameterizations for seasonal variation of Arctic cloud amount on climate feedbacks

    NASA Astrophysics Data System (ADS)

    Kim, Yoojin; Choi, Yong-Sang; Kim, Baek-Min; Kim, Hyerim

    2016-09-01

    This study investigates the alteration of climate feedbacks due to overestimated wintertime low-level cloud amount bias over the Arctic region (60°N-90°N) in a climate model. The climate feedback was quantitatively examined through radiative kernels that are pre-calculated radiative responses of climate variables to doubling of carbon dioxide concentration in NCAR Community Atmosphere Model version 3 (CAM3). Climate models have various annual cycle of the Arctic cloud amount at the low-level particularly with large uncertainty in winter and CAM3 may tend to overestimate the Arctic low-level cloud. In this study, the seasonal variation of low-level cloud amount was modified by reducing the wintertime cloud amount by up to 35 %, and then compared with the original without seasonal variation. Thus, we investigate how that bias may affect climate feedbacks and the projections of future Arctic warming. The results show that the decrease in low-level cloud amount slightly affected the radiation budgets because of a small amount of incident solar insolation in winter, but considerably changed water vapor and temperature profiles. Consequently, the most distinctive was decreases in water vapor feedback and contribution of heat transport (by -0.20 and -0.55 W m-2 K-1, respectively) and increases in the lapse rate feedback and cloud feedback (by 0.13 and 0.58 W m-2 K-1, respectively) during winter in this model experiment. This study suggests that the change in Arctic cloud amount effectively reforms the contributions of individual climate feedbacks to Arctic climate system and leads to opposing effects on different feedbacks, which cancel out in the model.

  17. Shrub expansion and climate feedbacks in Arctic tundra

    NASA Astrophysics Data System (ADS)

    Loranty, Michael M.; Goetz, Scott J.

    2012-03-01

    . Res. Lett. 7 015503 Bunn A G and Goetz S J 2006 Trends in satellite-observed circumpolar photosynthetic activity from 1982 to 2003: the influence of seasonality, cover type, and vegetation density Earth Interact. 10 12 Chapin F et al 2005 Role of land-surface changes in Arctic summer warming Science 310 657 Forbes B C, Fauria M M and Zetterberg P 2010 Russian Arctic warming and greening are closely tracked by tundra shrub willows Glob. Change Biol. 16 1542-54 Goetz S J, Bunn A G, Fiske G and Houghton R 2005 Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance Proc. Natl Acad. Sci. USA 102 13521-5 Lawrence D M and Swenson S C 2011 Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming Environ. Res. Lett. 6 045504 Loranty M M, Goetz S J and Beck P S A 2011 Tundra vegetation effects on pan-Arctic albedo Environ. Res. Lett. 6 024014 Myers-Smith I H et al 2011 Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities Environ. Res. Lett. 6 045509 Schuur E et al 2008 Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle BioScience 58 701-14 Serreze M, Walsh J, Chapin F, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel W, Morison J, Zhang T and Barry R 2000 Observational evidence of recent change in the northern high-latitude environment Clim. Change 46 159-207 Sturm M, Douglas T, Racine C and Liston G 2005a Changing snow and shrub conditions affect albedo with global implications J. Geophys. Res. 110 G01004 Sturm M, Schimel J, Michaelson G and Welker J M 2005b Winter biological processes could help convert Arctic tundra to shrubland BioScience 55 17-26 Swann A L, Fung I Y, Levis S, Bonan G B and Doney S C 2010 Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect Proc. Natl Acad. Sci. 107 1295-300 Tape K, Sturm M and

  18. Winter temperature affects the prevalence of ticks in an Arctic seabird.

    PubMed

    Descamps, Sébastien

    2013-01-01

    The Arctic is rapidly warming and host-parasite relationships may be modified by such environmental changes. Here, I showed that the average winter temperature in Svalbard, Arctic Norway, explained almost 90% of the average prevalence of ticks in an Arctic seabird, the Brünnich's guillemot Uria lomvia. An increase of 1°C in the average winter temperature at the nesting colony site was associated with a 5% increase in the number of birds infected by these ectoparasites in the subsequent breeding season. Guillemots were generally infested by only a few ticks (≤5) and I found no direct effect of tick presence on their body condition and breeding success. However, the strong effect of average winter temperature described here clearly indicates that tick-seabird relationships in the Arctic may be strongly affected by ongoing climate warming.

  19. Eocene Arctic Ocean and earth's Early Cenozoic climate

    SciTech Connect

    Clark, D.L.

    1985-01-01

    Seasonal changes of the Arctic Ocean are an approximate microcosm of the present advanced interglacial climate of the Earth. A similar relationship has existed for several million years but was the Early Cenozoic Arctic Ocean an analog of Earth's climate, as well. Absence of polar ice during the Cretaceous is relatively well established. During the Cenozoic a worldwide decrease in mean annual ocean temperature resulted from such factors as altered oceanic circulation and lower atmospheric CO/sub 2/ levels. Limited Arctic Ocean data for the middle or late Eocene indicate the presence of upwelling conditions and accompanying high productivity of diatoms, ebridians, silicoflagellates and archaeomonads. During this interval, some seasonality is suggested from the varve-like nature of a single sediment core. However, the absence of drop stones or any ice-rafted sediment supports the idea of an open water, ice-free central Arctic Ocean during this time. Latest Cretaceous Arctic Ocean sediment is interpreted to represent approximately the same conditions as those suggested for the Eocene and together with that data suggest that the central Arctic Ocean was ice-free during part if not all of the first 20 my of the Cenozoic. Sediment representing the succeeding 30 my has not been recovered but by latest Miocene or earl Pliocene, ice-rafted sediment was accumulating, both pack ice and icebergs covered the Arctic Ocean reflecting cyclic glacial climate.

  20. Arctic Climate Change: A Tale of Two Cod Species

    EPA Science Inventory

    Arctic cod play an important role in the Arctic trophic hierarchy as the consumer of primary productivity and a food source for many marine fish and mammals. Shifts in their distribution and abundance could have cascading affects in the marine environment. This paper investigates...

  1. Arctic climate response to geoengineering with stratospheric sulfate aerosols

    NASA Astrophysics Data System (ADS)

    McCusker, K. E.; Battisti, D. S.; Bitz, C. M.

    2010-12-01

    Recent warming and record summer sea-ice area minimums have spurred expressions of concern for arctic ecosystems, permafrost, and polar bear populations, among other things. Geoengineering by stratospheric sulfate aerosol injections to deliberately cancel the anthropogenic temperature rise has been put forth as a possible solution to restoring Arctic (and global) climate to modern conditions. However, climate is particularly sensitive in the northern high latitudes, responding easily to radiative forcing changes. To that end, we explore the extent to which tropical injections of stratospheric sulfate aerosol can accomplish regional cancellation in the Arctic. We use the Community Climate System Model version 3 global climate model to execute simulations with combinations of doubled CO2 and imposed stratospheric sulfate burdens to investigate the effects on high latitude climate. We further explore the sensitivity of the polar climate to ocean dynamics by running a suite of simulations with and without ocean dynamics, transiently and to equilibrium respectively. We find that, although annual, global mean temperature cancellation is accomplished, there is over-cooling on land in Arctic summer, but residual warming in Arctic winter, which is largely due to atmospheric circulation changes. Furthermore, the spatial extent of these features and their concurrent impacts on sea-ice properties are modified by the inclusion of ocean dynamical feedbacks.

  2. Carbon, Climate and Cameras: Showcasing Arctic research through multimedia storytelling

    NASA Astrophysics Data System (ADS)

    Tachihara, B. L.; Linder, C. A.; Holmes, R. M.

    2011-12-01

    In July 2011, Tachihara spent three weeks in the Siberian Arctic documenting The Polaris Project, an NSF-funded effort that brings together an international group of undergraduate students and research scientists to study Arctic systems. Using a combination of photography, video and interviews gathered during the field course, we produced a six-minute film focusing on the researchers' quest to track carbon as it moves from terrestrial upland areas into lakes, streams, rivers and eventually into the Arctic Ocean. The overall goal was to communicate the significance of Arctic science in the face of changing climate. Using a selection of clips from the 2011 video, we will discuss the advantages and challenges specific to using multimedia presentations to represent Arctic research, as well as science in general. The full video can be viewed on the Polaris website: http://www.thepolarisproject.org.

  3. Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere climate

    DOE PAGES

    Cvijanovic, Ivana; Caldeira, Ken; MacMartin, Douglas G.

    2015-04-01

    The Arctic Ocean is expected to transition into a seasonally ice-free state by mid-century, enhancing Arctic warming and leading to substantial ecological and socio-economic challenges across the Arctic region. It has been proposed that artificially increasing high latitude ocean albedo could restore sea ice, but the climate impacts of such a strategy have not been previously explored. Motivated by this, we investigate the impacts of idealized high latitude ocean albedo changes on Arctic sea ice restoration and climate. In our simulated 4xCO₂ climate, imposing surface albedo alterations over the Arctic Ocean leads to partial sea ice recovery and a modestmore » reduction in Arctic warming. With the most extreme ocean albedo changes, imposed over the area 70°–90°N, September sea ice cover stabilizes at ~40% of its preindustrial value (compared to ~3% without imposed albedo modifications). This is accompanied by an annual mean Arctic surface temperature decrease of ~2 °C but no substantial global mean temperature decrease. Imposed albedo changes and sea ice recovery alter climate outside the Arctic region too, affecting precipitation distribution over parts of the continental United States and Northeastern Pacific. For example, following sea ice recovery, wetter and milder winter conditions are present in the Southwest United States while the East Coast experiences cooling. We conclude that although ocean albedo alteration could lead to some sea ice recovery, it does not appear to be an effective way of offsetting the overall effects of CO₂ induced global warming.« less

  4. Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere climate

    SciTech Connect

    Cvijanovic, Ivana; Caldeira, Ken; MacMartin, Douglas G.

    2015-04-01

    The Arctic Ocean is expected to transition into a seasonally ice-free state by mid-century, enhancing Arctic warming and leading to substantial ecological and socio-economic challenges across the Arctic region. It has been proposed that artificially increasing high latitude ocean albedo could restore sea ice, but the climate impacts of such a strategy have not been previously explored. Motivated by this, we investigate the impacts of idealized high latitude ocean albedo changes on Arctic sea ice restoration and climate. In our simulated 4xCO₂ climate, imposing surface albedo alterations over the Arctic Ocean leads to partial sea ice recovery and a modest reduction in Arctic warming. With the most extreme ocean albedo changes, imposed over the area 70°–90°N, September sea ice cover stabilizes at ~40% of its preindustrial value (compared to ~3% without imposed albedo modifications). This is accompanied by an annual mean Arctic surface temperature decrease of ~2 °C but no substantial global mean temperature decrease. Imposed albedo changes and sea ice recovery alter climate outside the Arctic region too, affecting precipitation distribution over parts of the continental United States and Northeastern Pacific. For example, following sea ice recovery, wetter and milder winter conditions are present in the Southwest United States while the East Coast experiences cooling. We conclude that although ocean albedo alteration could lead to some sea ice recovery, it does not appear to be an effective way of offsetting the overall effects of CO₂ induced global warming.

  5. Changing Arctic ecosystems: resilience of caribou to climatic shifts in the Arctic

    USGS Publications Warehouse

    Gustine, David; Adams, Layne; Whalen, Mary; Pearce, John

    2014-01-01

    The U.S. Geological Survey (USGS) Changing Arctic Ecosystems (CAE) initiative strives to inform key resource management decisions for Arctic Alaska by providing scientific information and forecasts for current and future ecosystem response to a warming climate. Over the past 5 years, a focal area for the USGS CAE initiative has been the North Slope of Alaska. This region has experienced a warming trend over the past 60 years, yet the rate of change has been varied across the North Slope, leading scientists to question the future response and resilience of wildlife populations, such as caribou (Rangifer tarandus), that rely on tundra habitats for forage. Future changes in temperature and precipitation to coastal wet sedge and upland low shrub tundra are expected, with unknown consequences for caribou that rely on these plant communities for food. Understanding how future environmental change may affect caribou migration, nutrition, and reproduction is a focal question being addressed by the USGS CAE research. Results will inform management agencies in Alaska and people that rely on caribou for food.

  6. Changes in Arctic climate and its relationship with Barents Oscillation

    NASA Astrophysics Data System (ADS)

    Jung, E.; Lim, G.

    2013-12-01

    One of the major atmospheric modes governing the atmospheric motion on the Arctic region in boreal winter is Arctic Oscillation. This zonally symmetric pattern is first identified by Lorenz(1951) and named in 1887 by Thompson and Wallace. After its discovery many researchers have explained variability of winter climate over the northern hemisphere using intensity of Arctic oscillation and its relationship have been well shown. In the last decade, Arctic oscillation has trended to a more neutral state. However, in the same period Arctic warming has been faster than any other region and strong cold surge events over Eurasia have occurred. Strong relationship between Arctic oscillation and these phenomena is not well explained. Skeie(2000) called second EOF mode of sea level pressure Barents oscillation. Using this index, the relationship between recent cold events over Eurasia and Barents oscillation can be shown. Briefly, recent changes over the Arctic region are well associated with this mode. Some of studies consider Barents oscillation as a non-real mode and artificially made from statistical error. In this study, difference between Barents oscillation and Arctic oscillation is shown according to its statistical relationship with other variables and dynamical structure.

  7. Sensitivity of the carbon cycle in the Arctic to climate change

    USGS Publications Warehouse

    McGuire, A. David; Anderson, Leif G.; Christensen, Torben R.; Dallimore, Scott; Guo, Laodong; Hayes, Daniel J.; Heimann, Martin; Lorenson, T.D.; Macdonald, Robie W.; Roulet, Nigel

    2009-01-01

    The recent warming in the Arctic is affecting a broad spectrum of physical, ecological, and human/cultural systems that may be irreversible on century time scales and have the potential to cause rapid changes in the earth system. The response of the carbon cycle of the Arctic to changes in climate is a major issue of global concern, yet there has not been a comprehensive review of the status of the contemporary carbon cycle of the Arctic and its response to climate change. This review is designed to clarify key uncertainties and vulnerabilities in the response of the carbon cycle of the Arctic to ongoing climatic change. While it is clear that there are substantial stocks of carbon in the Arctic, there are also significant uncertainties associated with the magnitude of organic matter stocks contained in permafrost and the storage of methane hydrates beneath both subterranean and submerged permafrost of the Arctic. In the context of the global carbon cycle, this review demonstrates that the Arctic plays an important role in the global dynamics of both CO2 and CH4. Studies suggest that the Arctic has been a sink for atmospheric CO2 of between 0 and 0.8 Pg C/yr in recent decades, which is between 0% and 25% of the global net land/ocean flux during the 1990s. The Arctic is a substantial source of CH4 to the atmosphere (between 32 and 112 Tg CH4/yr), primarily because of the large area of wetlands throughout the region. Analyses to date indicate that the sensitivity of the carbon cycle of the Arctic during the remainder of the 21st century is highly uncertain. To improve the capability to assess the sensitivity of the carbon cycle of the Arctic to projected climate change, we recommend that (1) integrated regional studies be conducted to link observations of carbon dynamics to the processes that are likely to influence those dynamics, and (2) the understanding gained from these integrated studies be incorporated into both uncoupled and fully coupled carbon–climate

  8. The Contribution to Arctic Climate Change from Countries in the Arctic Council

    NASA Astrophysics Data System (ADS)

    Schultz, T.; MacCracken, M. C.

    2013-12-01

    The conventional accounting frameworks for greenhouse gas (GHG) emissions used today, established under the Kyoto Protocol 25 years ago, exclude short lived climate pollutants (SLCPs), and do not include regional effects on the climate. However, advances in climate science now suggest that mitigation of SLCPs can reduce up to 50% of global warming by 2050. It has also become apparent that regions such as the Arctic have experienced a much greater degree of anthropogenic warming than the globe as a whole, and that efforts to slow this warming could benefit the larger effort to slow climate change around the globe. A draft standard for life cycle assessment (LCA), LEO-SCS-002, being developed under the American National Standards Institute process, has integrated the most recent climate science into a unified framework to account for emissions of all radiatively significant GHGs and SLCPs. This framework recognizes four distinct impacts to the oceans and climate caused by GHGs and SLCPs: Global Climate Change; Arctic Climate Change; Ocean Acidification; and Ocean Warming. The accounting for Arctic Climate Change, the subject of this poster, is based upon the Absolute Regional Temperature Potential, which considers the incremental change to the Arctic surface temperature resulting from an emission of a GHG or SLCP. Results are evaluated using units of mass of carbon dioxide equivalent (CO2e), which can be used by a broad array of stakeholders, including scientists, consumers, policy makers, and NGOs. This poster considers the contribution to Arctic Climate Change from emissions of GHGs and SLCPs from the eight member countries of the Arctic Council; the United States, Canada, Russia, Denmark, Finland, Iceland, Norway, and Sweden. Of this group of countries, the United States was the largest contributor to Arctic Climate Change in 2011, emitting 9600 MMT CO2e. This includes a gross warming of 11200 MMT CO2e (caused by GHGs, black and brown carbon, and warming effects

  9. Future Arctic climate changes: Adaptation and mitigation time scales

    NASA Astrophysics Data System (ADS)

    Overland, James E.; Wang, Muyin; Walsh, John E.; Stroeve, Julienne C.

    2014-02-01

    The climate in the Arctic is changing faster than in midlatitudes. This is shown by increased temperatures, loss of summer sea ice, earlier snow melt, impacts on ecosystems, and increased economic access. Arctic sea ice volume has decreased by 75% since the 1980s. Long-lasting global anthropogenic forcing from carbon dioxide has increased over the previous decades and is anticipated to increase over the next decades. Temperature increases in response to greenhouse gases are amplified in the Arctic through feedback processes associated with shifts in albedo, ocean and land heat storage, and near-surface longwave radiation fluxes. Thus, for the next few decades out to 2040, continuing environmental changes in the Arctic are very likely, and the appropriate response is to plan for adaptation to these changes. For example, it is very likely that the Arctic Ocean will become seasonally nearly sea ice free before 2050 and possibly within a decade or two, which in turn will further increase Arctic temperatures, economic access, and ecological shifts. Mitigation becomes an important option to reduce potential Arctic impacts in the second half of the 21st century. Using the most recent set of climate model projections (CMIP5), multimodel mean temperature projections show an Arctic-wide end of century increase of +13°C in late fall and +5°C in late spring for a business-as-usual emission scenario (RCP8.5) in contrast to +7°C in late fall and +3°C in late spring if civilization follows a mitigation scenario (RCP4.5). Such temperature increases demonstrate the heightened sensitivity of the Arctic to greenhouse gas forcing.

  10. Arctic climate change: Greenhouse warming unleashed

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten

    2016-04-01

    Human activity alters the atmospheric composition, which leads to global warming. Model simulations suggest that reductions in emission of sulfur dioxide from Europe since the 1970s could have unveiled rapid Arctic greenhouse gas warming.

  11. Arctic Climate and Atmospheric Planetary Waves

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Haekkinen, S.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave 1 pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach for determining significant forcing patterns of sea ice and high-latitude variability.

  12. Arctic Climate and Atmospheric Planetary Waves

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Haekkinen, S.

    2000-01-01

    Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave I pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach to determine significant forcing patterns of sea ice and high-latitude variability.

  13. Pan-Arctic observations in GRENE Arctic Climate Change Research Project and its successor

    NASA Astrophysics Data System (ADS)

    Yamanouchi, Takashi

    2016-04-01

    We started a Japanese initiative - "Arctic Climate Change Research Project" - within the framework of the Green Network of Excellence (GRENE) Program, funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), in 2011. This Project targeted understanding and forecasting "Rapid Change of the Arctic Climate System and its Global Influences." Four strategic research targets are set by the Ministry: 1. Understanding the mechanism of warming amplification in the Arctic; 2. Understanding the Arctic climate system for global climate and future change; 3. Evaluation of the impacts of Arctic change on the weather and climate in Japan, marine ecosystems and fisheries; 4. Projection of sea ice distribution and Arctic sea routes. Through a network of universities and institutions in Japan, this 5-year Project involves more than 300 scientists from 39 institutions and universities. The National Institute of Polar Research (NIPR) works as the core institute and The Japan Agency for Marine- Earth Science and Technology (JAMSTEC) joins as the supporting institute. There are 7 bottom up research themes approved: the atmosphere, terrestrial ecosystems, cryosphere, greenhouse gases, marine ecology and fisheries, sea ice and Arctic sea routes and climate modeling, among 22 applications. The Project will realize multi-disciplinal study of the Arctic region and connect to the projection of future Arctic and global climatic change by modeling. The project has been running since the beginning of 2011 and in those 5 years pan-Arctic observations have been carried out in many locations, such as Svalbard, Russian Siberia, Alaska, Canada, Greenland and the Arctic Ocean. In particular, 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard, and intensive atmospheric observations were carried out in 2014 and 2015. In addition, the Arctic Ocean cruises by R/V "Mirai" (belonging to JAMSTEC) and other icebreakers belonging to other

  14. Communicating Climate and Ecosystem Change in the Arctic

    NASA Astrophysics Data System (ADS)

    Soreide, N. N.; Overland, J. E.; Calder, J. A.; Rodionov, S.

    2005-12-01

    There is an explosion of interest in Northern Hemisphere climate, highlighting the importance of recent changes in the Arctic on mid-latitude climate and its impact on marine and terrestrial ecosystems. Traditional sea ice and tundra dominated arctic ecosystems are being reorganizing into warmer sub-arctic ecosystem types. Over the previous two years we have developed a comprehensive, near real-time arctic change detection protocol to track physical and biological changes for presentation on the web: http://www.arctic.noaa.gov/detect. The effort provides a continuous update to the Arctic Climate Impact Assessment (ACIA) Report, released in November 2004. Principles for the protocol include an accessible narrative style, scientifically credible and objective indicators, notes multiple uses for the information, acknowledges uncertainties, and balances having too many indicators-which leads to information overload-and too few-which does not capture the complexity of the system. Screening criteria include concreteness, public awareness, being understandable, availability of historical time series, and sensitivity. The site provides sufficient information for an individual to make their own assessment regarding the balance of the evidence for tracking change. The product provides an overview, recent news, links to many arctic websites, and highlights climate, global impacts, land and marine ecosystems, and human consequences. Since its inception a year ago, it has averaged about 9000 hits an day on the web, and is a major information source as determined by Google search. The future direction focuses on understanding the causes for change. In spring 2005 we also presented a near real-time ecological and climatic surveillance website for the Bering Sea: www.beringclimate.noaa.gov. The site provides up-to-date information which ties northward shifts of fish, invertebrate and marine mammal populations to physical changes in the Arctic. This site is more technical than the

  15. Recent trends in energy flows through the Arctic climate system

    NASA Astrophysics Data System (ADS)

    Mayer, Michael; Haimberger, Leo

    2016-04-01

    While Arctic climate change can be diagnosed in many parameters, a comprehensive assessment of long-term changes and low frequency variability in the coupled Arctic energy budget still remains challenging due to the complex physical processes involved and the lack of observations. Here we draw on strongly improved observational capabilities of the past 15 years and employ observed radiative fluxes from CERES along with state-of-the-art atmospheric as well as coupled ocean-ice reanalyses to explore recent changes in energy flows through the Arctic climate system. Various estimates of ice volume and ocean heat content trends imply that the energy imbalance of the Arctic climate system was >1 Wm-2 during the 2000-2015 period, where most of the extra heat warmed the ocean and a comparatively small fraction was used to melt sea ice. The energy imbalance was partly fed by enhanced oceanic heat transports into the Arctic, especially in the mid 2000s. Seasonal trends of net radiation show a very clear signal of the ice-albedo feedback. Stronger radiative energy input during summer means increased seasonal oceanic heat uptake and accelerated sea ice melt. In return, lower minimum sea ice extent and higher SSTs lead to enhanced heat release from the ocean during fall season. These results are consistent with modeling studies finding an enhancement of the annual cycle of surface energy exchanges in a warming Arctic. Moreover, stronger heat fluxes from the ocean to the atmosphere in fall tend to warm the arctic boundary layer and reduce meridional temperature gradients, thereby reducing atmospheric energy transports into the polar cap. Although the observed results are a robust finding, extended high-quality datasets are needed to reliably separate trends from low frequency variability.

  16. Modelling the impacts of a dipole-like climatic state over the Arctic

    NASA Astrophysics Data System (ADS)

    Pasha Karami, Mehdi; de Vernal, Anne; Hu, Xianmin; Myers, Paul G.

    2015-04-01

    The Arctic dipole anomaly (ADA) features a pattern with opposite sea-level pressure anomalies over the Canadian Archipelago and the Barents Sea. Changes in the predominance of Arctic atmospheric circulation modes and the shift towards a dipole mode in the past decade played a role in the summer sea ice loss and sea ice-freshwater export from the Arctic to the North Atlantic. Reconstruction of sea ice cover variations during Holocene also suggests opposite anomalies in the Barents Sea versus either the western Arctic or the Fram Strait area similar to the ADA pattern. It is vital to study such physical processes that cause dramatic changes in the Arctic sea ice recalling the link between the ADA and the current climate change. Here we focus on the question of how a persistent ADA-like state affects the Arctic sea ice distribution and its outflow to the Atlantic Ocean. For this purpose, an eddy-permitting regional configuration of the NEMO coupled ocean/sea-ice model is used. The regional domain covers the Arctic Ocean and the Northern-Hemisphere Atlantic, with a horizontal resolution of 1/4 degree at the equator (ANHA4). For the present-day simulations, boundary conditions are obtained by taking the average over the years with a positive ADA and those with a negative ADA. In the Holocene scenario, global climate model data are used to force our regional model. To exclude the role of Bering Strait and the heat flux from the Pacific Ocean, we repeat the experiments with a closed Bering Strait since a nearly closed Bering configuration was possible for the Early Holocene. The model results are compared with the paleoclimate data from Arctic and subarctic seas.

  17. Interdisciplinary cooperation on impacts of climate change in the Arctic

    NASA Astrophysics Data System (ADS)

    Wardell, Lois; Chen, Linling; Strey, Sara

    2012-09-01

    Impact of Climate Change on Resources, Maritime Transport and Geopolitics in the Arctic and the Svalbard Area; Svalbard, Norway, 21-28 August 2011 Drastic changes in the Arctic climate directly relate to resource and transport development and complex geopolitical challenges in the Arctic. To encourage future interdisciplinary cooperation among political, social, and climate scientists, 30 early-career researchers from varied backgrounds—including climate change, resources, polar maritime transport, and geopolitics—assembled in Svalbard, Norway. Ola Johannessen, president of the Norwegian Scientific Academy of Polar Research, led this diverse group to highlight the importance of collaboration across disciplines for broadening the terms in which assessments are defined, thus collapsing distinctions between the physical and the human Arctic. He also highlighted the feasibility of conducting effective assessment exercises within short time frames. The group was also mentored by Willy Østreng, author of Science Without Boundaries: Interdisciplinarity in Research, Society, and Politics, who aided participants in understanding the process of interdisciplinary collaboration rather than creating an assemblage of discrete findings.

  18. Arctic Gas hydrate, Environment and Climate

    NASA Astrophysics Data System (ADS)

    Mienert, Jurgen; Andreassen, Karin; Bünz, Stefan; Carroll, JoLynn; Ferre, Benedicte; Knies, Jochen; Panieri, Giuliana; Rasmussen, Tine; Myhre, Cathrine Lund

    2015-04-01

    Arctic methane hydrate exists on land beneath permafrost regions and offshore in shelf and continental margins sediments. Methane or gas hydrate, an ice-like substrate, consists mainly of light hydrocarbons (mostly methane from biogenic sources but also ethane and propane from thermogenic sources) entrapped by a rigid cage of water molecules. The pressure created by the overlying water and sediments offshore stabilizes the CH4 in continental margins at a temperature range well above freezing point; consequently CH4 exists as methane ice beneath the seabed. Though the accurate volume of Arctic methane hydrate and thus the methane stored in hydrates throughout the Quaternary is still unknown it must be enormous if one considers the vast regions of Arctic continental shelves and margins as well as permafrost areas offshore and on land. Today's subseabed methane hydrate reservoirs are the remnants from the last ice age and remain elusive targets for both unconventional energy and as a natural methane emitter influencing ocean environments and ecosystems. It is still contentious at what rate Arctic warming may govern hydrate melting, and whether the methane ascending from the ocean floor through the hydrosphere reaches the atmosphere. As indicated by Greenland ice core records, the atmospheric methane concentration rose rapidly from ca. 500 ppb to ca. 750 ppb over a short time period of just 150 years at the termination of the younger Dryas period ca. 11600 years ago, but the dissociation of large quantities of methane hydrates on the ocean floor have not been documented yet (Brook et al., 2014 and references within). But with the major projected warming and sea ice melting trend (Knies et al., 2014) one may ask, for how long will CH4 stay trapped in methane hydrates if surface and deep-ocean water masses will warm and permafrost continuous to melt (Portnov et al. 2014). How much of the Arctic methane will be consumed by the micro- and macrofauna, how much will

  19. Arctic Shrub Growth Response to Climate Variation and Infrastructure Development on the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Ackerman, D.; Finlay, J. C.; Griffin, D.

    2015-12-01

    Woody shrub growth in the arctic tundra is increasing on a circumpolar scale. Shrub expansion alters land-atmosphere carbon fluxes, nutrient cycling, and habitat structure. Despite these ecosystem effects, the drivers of shrub expansion have not been precisely established at the landscape scale. This project examined two proposed anthropogenic drivers: global climate change and local infrastructure development, a press disturbance that generates high levels of dust deposition. Effects of global change were studied using dendrochronology to establish a relationship between climate and annual growth in Betula and Salix shrubs growing in the Alaskan low Arctic. To understand the spatial heterogeneity of shrub expansion, this analysis was replicated in shrub populations across levels of landscape properties including soil moisture and substrate age. Effects of dust deposition on normalized difference vegetation index (NDVI) and photosynthetic rate were measured on transects up to 625 meters from the Dalton Highway. Dust deposition rates decreased exponentially with distance from road, matching previous models of road dust deposition. NDVI tracked deposition rates closely, but photosynthetic rates were not strongly affected by deposition. These results suggest that dust deposition may locally bias remote sensing measurements such as NDVI, without altering internal physiological processes such as photosynthesis in arctic shrubs. Distinguishing between the effects of landscape properties, climate, and disturbance will improve our predictions of the biogeochemical feedbacks of arctic shrub expansion, with potential application in climate change modeling.

  20. Emissions and climate forcing from global and Arctic fishing vessels

    NASA Astrophysics Data System (ADS)

    McKuin, Brandi; Campbell, J. Elliott

    2016-02-01

    Fishing vessels were recently found to be the largest source of black carbon ship emissions in the Arctic, suggesting that the fishing sector should be a focus for future studies. Here we developed a global and Arctic emissions inventory for fishing vessel emissions of short-lived and long-lived climate forcers based on data from a wide range of vessel sizes, fuel sulfur contents, engine types, and operational characteristics. We found that previous work generally underestimated emissions of short-lived climate forcers due to a failure to account for small fishing vessels as well as variability in emission factors. In particular, global black carbon emissions were underestimated by an order of magnitude. Furthermore, our order of magnitude estimate of the net climate effect from these fishing vessel emissions suggests that short-lived climate forcing may be particularly important in regions where fuel has a low sulfur content. These results have implications for proposed maritime policies and provide a foundation for future climate simulations to forecast climate change impacts in the Arctic.

  1. The fate of the Arctic seaweed Fucus distichus under climate change: an ecological niche modeling approach.

    PubMed

    Jueterbock, Alexander; Smolina, Irina; Coyer, James A; Hoarau, Galice

    2016-03-01

    Rising temperatures are predicted to melt all perennial ice cover in the Arctic by the end of this century, thus opening up suitable habitat for temperate and subarctic species. Canopy-forming seaweeds provide an ideal system to predict the potential impact of climate-change on rocky-shore ecosystems, given their direct dependence on temperature and their key role in the ecological system. Our primary objective was to predict the climate-change induced range-shift of Fucus distichus, the dominant canopy-forming macroalga in the Arctic and subarctic rocky intertidal. More specifically, we asked: which Arctic/subarctic and cold-temperate shores of the northern hemisphere will display the greatest distributional change of F. distichus and how will this affect niche overlap with seaweeds from temperate regions? We used the program MAXENT to develop correlative ecological niche models with dominant range-limiting factors and 169 occurrence records. Using three climate-change scenarios, we projected habitat suitability of F. distichus - and its niche overlap with three dominant temperate macroalgae - until year 2200. Maximum sea surface temperature was identified as the most important factor in limiting the fundamental niche of F. distichus. Rising temperatures were predicted to have low impact on the species' southern distribution limits, but to shift its northern distribution limits poleward into the high Arctic. In cold-temperate to subarctic regions, new areas of niche overlap were predicted between F. distichus and intertidal macroalgae immigrating from the south. While climate-change threatens intertidal seaweeds in warm-temperate regions, seaweed meadows will likely flourish in the Arctic intertidal. Although this enriches biodiversity and opens up new seaweed-harvesting grounds, it will also trigger unpredictable changes in the structure and functioning of the Arctic intertidal ecosystem. PMID:27087933

  2. Climate warming decreases the survival of the little auk (Alle alle), a high Arctic avian predator

    PubMed Central

    Hovinen, Johanna E H; Welcker, Jorg; Descamps, Sébastien; Strøm, Hallvard; Jerstad, Kurt; Berge, Jørgen; Steen, Harald

    2014-01-01

    Delayed maturity, low fecundity, and high adult survival are traits typical for species with a long-life expectancy. For such species, even a small change in adult survival can strongly affect the population dynamics and viability. We examined the effects of both regional and local climatic variability on adult survival of the little auk, a long-lived and numerous Arctic seabird species. We conducted a mark-resighting study for a period of 8 years (2006-2013) simultaneously at three little auk breeding sites that are influenced by the West Spitsbergen Current, which is the main carrier of warm, Atlantic water into the Arctic. We found that the survival of adult little auks was negatively correlated with both the North Atlantic Oscillation (NAO) index and local summer sea surface temperature (SST), with a time lag of 2 and 1 year, respectively. The effects of NAO and SST were likely mediated through a change in food quality and/or availability: (1) reproduction, growth, and development of Arctic Calanus copepods, the main prey of little auks, are negatively influenced by a reduction in sea ice, reduced ice algal production, and an earlier but shorter lasting spring bloom, all of which result from an increased NAO; (2) a high sea surface temperature shortens the reproductive period of Arctic Calanus, decreasing the number of eggs produced. A synchronous variation in survival rates at the different colonies indicates that climatic forcing was similar throughout the study area. Our findings suggest that a predicted warmer climate in the Arctic will negatively affect the population dynamics of the little auk, a high Arctic avian predator. PMID:25247069

  3. 77 FR 68102 - Programs and Research Projects Affecting the Arctic; 99th Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ...; ] ARCTIC RESEARCH COMMISSION Programs and Research Projects Affecting the Arctic; 99th Meeting Notice is hereby given that the U.S. Arctic Research Commission will hold its 99th meeting in Vancouver, British... presentations concerning Arctic research activities The focus of the meeting will be reports and updates...

  4. Influence of climate model variability on projected Arctic shipping futures

    NASA Astrophysics Data System (ADS)

    Stephenson, Scott R.; Smith, Laurence C.

    2015-11-01

    Though climate models exhibit broadly similar agreement on key long-term trends, they have significant temporal and spatial differences due to intermodel variability. Such variability should be considered when using climate models to project the future marine Arctic. Here we present multiple scenarios of 21st-century Arctic marine access as driven by sea ice output from 10 CMIP5 models known to represent well the historical trend and climatology of Arctic sea ice. Optimal vessel transits from North America and Europe to the Bering Strait are estimated for two periods representing early-century (2011-2035) and mid-century (2036-2060) conditions under two forcing scenarios (RCP 4.5/8.5), assuming Polar Class 6 and open-water vessels with medium and no ice-breaking capability, respectively. Results illustrate that projected shipping viability of the Northern Sea Route (NSR) and Northwest Passage (NWP) depends critically on model choice. The eastern Arctic will remain the most reliably accessible marine space for trans-Arctic shipping by mid-century, while outcomes for the NWP are particularly model-dependent. Omitting three models (GFDL-CM3, MIROC-ESM-CHEM, and MPI-ESM-MR), our results would indicate minimal NWP potential even for routes from North America. Furthermore, the relative importance of the NSR will diminish over time as the number of viable central Arctic routes increases gradually toward mid-century. Compared to vessel class, climate forcing plays a minor role. These findings reveal the importance of model choice in devising projections for strategic planning by governments, environmental agencies, and the global maritime industry.

  5. The Arctic as a test case for an assessment of climate impacts on national security.

    SciTech Connect

    Taylor, Mark A.; Zak, Bernard Daniel; Backus, George A.; Ivey, Mark D.; Boslough, Mark Bruce Elrick

    2008-11-01

    The Arctic region is rapidly changing in a way that will affect the rest of the world. Parts of Alaska, western Canada, and Siberia are currently warming at twice the global rate. This warming trend is accelerating permafrost deterioration, coastal erosion, snow and ice loss, and other changes that are a direct consequence of climate change. Climatologists have long understood that changes in the Arctic would be faster and more intense than elsewhere on the planet, but the degree and speed of the changes were underestimated compared to recent observations. Policy makers have not yet had time to examine the latest evidence or appreciate the nature of the consequences. Thus, the abruptness and severity of an unfolding Arctic climate crisis has not been incorporated into long-range planning. The purpose of this report is to briefly review the physical basis for global climate change and Arctic amplification, summarize the ongoing observations, discuss the potential consequences, explain the need for an objective risk assessment, develop scenarios for future change, review existing modeling capabilities and the need for better regional models, and finally to make recommendations for Sandia's future role in preparing our leaders to deal with impacts of Arctic climate change on national security. Accurate and credible regional-scale climate models are still several years in the future, and those models are essential for estimating climate impacts around the globe. This study demonstrates how a scenario-based method may be used to give insights into climate impacts on a regional scale and possible mitigation. Because of our experience in the Arctic and widespread recognition of the Arctic's importance in the Earth climate system we chose the Arctic as a test case for an assessment of climate impacts on national security. Sandia can make a swift and significant contribution by applying modeling and simulation tools with internal collaborations as well as with outside

  6. Climate-driven regime shifts in Arctic marine benthos.

    PubMed

    Kortsch, Susanne; Primicerio, Raul; Beuchel, Frank; Renaud, Paul E; Rodrigues, João; Lønne, Ole Jørgen; Gulliksen, Bjørn

    2012-08-28

    Climate warming can trigger abrupt ecosystem changes in the Arctic. Despite the considerable interest in characterizing and understanding the ecological impact of rapid climate warming in the Arctic, few long time series exist that allow addressing these research goals. During a 30-y period (1980-2010) of gradually increasing seawater temperature and decreasing sea ice cover in Svalbard, we document rapid and extensive structural changes in the rocky-bottom communities of two Arctic fjords. The most striking component of the benthic reorganization was an abrupt fivefold increase in macroalgal cover in 1995 in Kongsfjord and an eightfold increase in 2000 in Smeerenburgfjord. Simultaneous changes in the abundance of benthic invertebrates suggest that the macroalgae played a key structuring role in these communities. The abrupt, substantial, and persistent nature of the changes observed is indicative of a climate-driven ecological regime shift. The ecological processes thought to drive the observed regime shifts are likely to promote the borealization of these Arctic marine communities in the coming years. PMID:22891319

  7. Climate change and sexual size dimorphism in an Arctic spider.

    PubMed

    Høye, Toke Thomas; Hammel, Jörg U; Fuchs, Thomas; Toft, Søren

    2009-08-23

    Climate change is advancing the onset of the growing season and this is happening at a particularly fast rate in the High Arctic. However, in most species the relative fitness implications for males and females remain elusive. Here, we present data on 10 successive cohorts of the wolf spider Pardosa glacialis from Zackenberg in High-Arctic, northeast Greenland. We found marked inter-annual variation in adult body size (carapace width) and this variation was greater in females than in males. Earlier snowmelt during both years of its biennial maturation resulted in larger adult body sizes and a skew towards positive sexual size dimorphism (females bigger than males). These results illustrate the pervasive influence of climate on key life-history traits and indicate that male and female responses to climate should be investigated separately whenever possible. PMID:19435831

  8. Climate change and sexual size dimorphism in an Arctic spider.

    PubMed

    Høye, Toke Thomas; Hammel, Jörg U; Fuchs, Thomas; Toft, Søren

    2009-08-23

    Climate change is advancing the onset of the growing season and this is happening at a particularly fast rate in the High Arctic. However, in most species the relative fitness implications for males and females remain elusive. Here, we present data on 10 successive cohorts of the wolf spider Pardosa glacialis from Zackenberg in High-Arctic, northeast Greenland. We found marked inter-annual variation in adult body size (carapace width) and this variation was greater in females than in males. Earlier snowmelt during both years of its biennial maturation resulted in larger adult body sizes and a skew towards positive sexual size dimorphism (females bigger than males). These results illustrate the pervasive influence of climate on key life-history traits and indicate that male and female responses to climate should be investigated separately whenever possible.

  9. Losing ground: past history and future fate of Arctic small mammals in a changing climate.

    PubMed

    Prost, Stefan; Guralnick, Robert P; Waltari, Eric; Fedorov, Vadim B; Kuzmina, Elena; Smirnov, Nickolay; van Kolfschoten, Thijs; Hofreiter, Michael; Vrieling, Klaas

    2013-06-01

    According to the IPCC, the global average temperature is likely to increase by 1.4-5.8 °C over the period from 1990 to 2100. In Polar regions, the magnitude of such climatic changes is even larger than in temperate and tropical biomes. This amplified response is particularly worrisome given that the so-far moderate warming is already impacting Arctic ecosystems. Predicting species responses to rapid warming in the near future can be informed by investigating past responses, as, like the rest of the planet, the Arctic experienced recurrent cycles of temperature increase and decrease (glacial-interglacial changes) in the past. In this study, we compare the response of two important prey species of the Arctic ecosystem, the collared lemming and the narrow-skulled vole, to Late Quaternary climate change. Using ancient DNA and Ecological Niche Modeling (ENM), we show that the two species, which occupy similar, but not identical ecological niches, show markedly different responses to climatic and environmental changes within broadly similar habitats. We empirically demonstrate, utilizing coalescent model-testing approaches, that collared lemming populations decreased substantially after the Last Glacial Maximum; a result consistent with distributional loss over the same period based on ENM results. Given this strong association, we projected the current niche onto future climate conditions based on IPCC 4.0 scenarios, and forecast accelerating loss of habitat along southern range boundaries with likely associated demographic consequences. Narrow-skulled vole distribution and demography, by contrast, was only moderately impacted by past climatic changes, but predicted future changes may begin to affect their current western range boundaries. Our work, founded on multiple lines of evidence suggests a future of rapidly geographically shifting Arctic small mammal prey communities, some of whom are on the edge of existence, and whose fate may have ramifications for the

  10. Losing ground: past history and future fate of Arctic small mammals in a changing climate.

    PubMed

    Prost, Stefan; Guralnick, Robert P; Waltari, Eric; Fedorov, Vadim B; Kuzmina, Elena; Smirnov, Nickolay; van Kolfschoten, Thijs; Hofreiter, Michael; Vrieling, Klaas

    2013-06-01

    According to the IPCC, the global average temperature is likely to increase by 1.4-5.8 °C over the period from 1990 to 2100. In Polar regions, the magnitude of such climatic changes is even larger than in temperate and tropical biomes. This amplified response is particularly worrisome given that the so-far moderate warming is already impacting Arctic ecosystems. Predicting species responses to rapid warming in the near future can be informed by investigating past responses, as, like the rest of the planet, the Arctic experienced recurrent cycles of temperature increase and decrease (glacial-interglacial changes) in the past. In this study, we compare the response of two important prey species of the Arctic ecosystem, the collared lemming and the narrow-skulled vole, to Late Quaternary climate change. Using ancient DNA and Ecological Niche Modeling (ENM), we show that the two species, which occupy similar, but not identical ecological niches, show markedly different responses to climatic and environmental changes within broadly similar habitats. We empirically demonstrate, utilizing coalescent model-testing approaches, that collared lemming populations decreased substantially after the Last Glacial Maximum; a result consistent with distributional loss over the same period based on ENM results. Given this strong association, we projected the current niche onto future climate conditions based on IPCC 4.0 scenarios, and forecast accelerating loss of habitat along southern range boundaries with likely associated demographic consequences. Narrow-skulled vole distribution and demography, by contrast, was only moderately impacted by past climatic changes, but predicted future changes may begin to affect their current western range boundaries. Our work, founded on multiple lines of evidence suggests a future of rapidly geographically shifting Arctic small mammal prey communities, some of whom are on the edge of existence, and whose fate may have ramifications for the

  11. Food and water security in a changing arctic climate

    NASA Astrophysics Data System (ADS)

    White, Daniel M.; Gerlach, S. Craig; Loring, Philip; Tidwell, Amy C.; Chambers, Molly C.

    2007-10-01

    In the Arctic, permafrost extends up to 500 m below the ground surface, and it is generally just the top metre that thaws in summer. Lakes, rivers, and wetlands on the arctic landscape are normally not connected with groundwater in the same way that they are in temperate regions. When the surface is frozen in winter, only lakes deeper than 2 m and rivers with significant flow retain liquid water. Surface water is largely abundant in summer, when it serves as a breeding ground for fish, birds, and mammals. In winter, many mammals and birds are forced to migrate out of the Arctic. Fish must seek out lakes or rivers deep enough to provide good overwintering habitat. Humans in the Arctic rely on surface water in many ways. Surface water meets domestic needs such as drinking, cooking, and cleaning as well as subsistence and industrial demands. Indigenous communities depend on sea ice and waterways for transportation across the landscape and access to traditional country foods. The minerals, mining, and oil and gas industries also use large quantities of surface water during winter to build ice roads and maintain infrastructure. As demand for this limited, but heavily-relied-upon resource continues to increase, it is now more critical than ever to understand the impacts of climate change on food and water security in the Arctic.

  12. Reconstructing the Climate and Ecology of an Arctic Pliocene Forest

    NASA Astrophysics Data System (ADS)

    Rybczynski, N.; Ballantyne, A.; Csank, A.; Matheus, P.

    2006-12-01

    Instrumental records reveal that the current rate of arctic warming greatly exceeds mean global warming. However, arctic temperatures during the Pliocene were considerably warmer than present, making it an excellent time period for investigating potential consequences of current warming trends. Pliocene-aged (4 to 5 Ma) peat deposits from Ellesmere Island are characterized by a remarkable fossil assemblage including 15 vertebrate taxa, 90 plant taxa and 101 invertebrate taxa. Among the fossils are well-preserved samples of an extinct larch (Larix groenlandii), which have been exploited as an archive of paleoclimatic information. Analysis of annual ring widths and oxygen isotopes suggest that Pliocene temperatures were 14.2 ° C warmer than today (-5.5 \\mp 1.9 ° C). Furthermore, temporal patterns in isotopic variability suggest that modes of variability that dominate modern arctic climates, such as the NAO, were also operating during the Pliocene. Isotopic analysis of fossil bone material may provide insight into the structure of past arctic ecosystems. Preliminary data suggest that carbon and nitrogen isotopes extracted from the collagen of fossil bone may provide a powerful new tool for investigating the response of arctic ecosystems to previously warm intervals in Earth's History.

  13. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic using a High-Resolution Regional Arctic Climate System Model

    SciTech Connect

    Lettenmaier, Dennis P

    2013-04-08

    Primary activities are reported in these areas: climate system component studies via one-way coupling experiments; development of the Regional Arctic Climate System Model (RACM); and physical feedback studies focusing on changes in Arctic sea ice using the fully coupled model.

  14. Dynamics of a recovering Arctic bird population: the importance of climate, density dependence, and site quality.

    PubMed

    Bruggeman, Jason E; Swem, Ted; Andersen, David E; Kennedy, Patricia L; Nigro, Debora

    2015-10-01

    Intrinsic and extrinsic factors affect vital rates and population-level processes, and understanding these factors is paramount to devising successful management plans for wildlife species. For example, birds time migration in response, in part, to local and broadscale climate fluctuations to initiate breeding upon arrival to nesting territories, and prolonged inclement weather early in the breeding season can inhibit egg-laying and reduce productivity. Also, density-dependent regulation occurs in raptor populations, as territory size is related to resource availability. Arctic Peregrine Falcons (Falco peregrinus tundrius; hereafter Arctic peregrine) have a limited and northern breeding distribution, including the Colville River Special Area (CRSA) in the National Petroleum Reserve-Alaska, USA. We quantified influences of climate, topography, nest productivity, prey habitat, density dependence, and interspecific competition affecting Arctic peregrines in the CRSA by applying the Dail-Madsen model to estimate abundance and vital rates of adults on nesting cliffs from 1981 through 2002. Arctic peregrine abundance increased throughout the 1980s, which spanned the population's recovery from DDT-induced reproductive failure, until exhibiting a stationary trend in the 1990s. Apparent survival rate (i.e., emigration; death) was negatively correlated with the number of adult Arctic peregrines on the cliff the previous year, suggesting effects of density-dependent population regulation. Apparent survival and arrival rates (i.e., immigration; recruitment) were higher during years with earlier snowmelt and milder winters, and apparent survival was positively correlated with nesting season maximum daily temperature. Arrival rate was positively correlated with average Arctic peregrine productivity along a cliff segment from the previous year and initial abundance was positively correlated with cliff height. Higher cliffs with documented higher productivity (presumably

  15. Dynamics of a recovering Arctic bird population: the importance of climate, density dependence, and site quality.

    PubMed

    Bruggeman, Jason E; Swem, Ted; Andersen, David E; Kennedy, Patricia L; Nigro, Debora

    2015-10-01

    Intrinsic and extrinsic factors affect vital rates and population-level processes, and understanding these factors is paramount to devising successful management plans for wildlife species. For example, birds time migration in response, in part, to local and broadscale climate fluctuations to initiate breeding upon arrival to nesting territories, and prolonged inclement weather early in the breeding season can inhibit egg-laying and reduce productivity. Also, density-dependent regulation occurs in raptor populations, as territory size is related to resource availability. Arctic Peregrine Falcons (Falco peregrinus tundrius; hereafter Arctic peregrine) have a limited and northern breeding distribution, including the Colville River Special Area (CRSA) in the National Petroleum Reserve-Alaska, USA. We quantified influences of climate, topography, nest productivity, prey habitat, density dependence, and interspecific competition affecting Arctic peregrines in the CRSA by applying the Dail-Madsen model to estimate abundance and vital rates of adults on nesting cliffs from 1981 through 2002. Arctic peregrine abundance increased throughout the 1980s, which spanned the population's recovery from DDT-induced reproductive failure, until exhibiting a stationary trend in the 1990s. Apparent survival rate (i.e., emigration; death) was negatively correlated with the number of adult Arctic peregrines on the cliff the previous year, suggesting effects of density-dependent population regulation. Apparent survival and arrival rates (i.e., immigration; recruitment) were higher during years with earlier snowmelt and milder winters, and apparent survival was positively correlated with nesting season maximum daily temperature. Arrival rate was positively correlated with average Arctic peregrine productivity along a cliff segment from the previous year and initial abundance was positively correlated with cliff height. Higher cliffs with documented higher productivity (presumably

  16. The state of climate change adaptation in the Arctic

    NASA Astrophysics Data System (ADS)

    Ford, James D.; McDowell, Graham; Jones, Julie

    2014-10-01

    The Arctic climate is rapidly changing, with wide ranging impacts on natural and social systems. A variety of adaptation policies, programs and practices have been adopted to this end, yet our understanding of if, how, and where adaptation is occurring is limited. In response, this paper develops a systematic approach to characterize the current state of adaptation in the Arctic. Using reported adaptations in the English language peer reviewed literature as our data source, we document 157 discrete adaptation initiatives between 2003 and 2013. Results indicate large variations in adaptation by region and sector, dominated by reporting from North America, particularly with regards to subsistence harvesting by Inuit communities. Few adaptations were documented in the European and Russian Arctic, or have a focus on the business and economy, or infrastructure sectors. Adaptations are being motivated primarily by the combination of climatic and non-climatic factors, have a strong emphasis on reducing current vulnerability involving incremental changes to existing risk management processes, and are primarily initiated and led at the individual/community level. There is limited evidence of trans-boundary adaptations or initiatives considering potential cross-scale/sector impacts.

  17. Climate change and environmental impacts on maternal and newborn health with focus on Arctic populations

    PubMed Central

    Rylander, Charlotta; Odland, Jon Ø.; Sandanger, Torkjel M.

    2011-01-01

    Background In 2007, the Intergovernmental Panel on Climate Change (IPCC) presented a report on global warming and the impact of human activities on global warming. Later the Lancet commission identified six ways human health could be affected. Among these were not environmental factors which are also believed to be important for human health. In this paper we therefore focus on environmental factors, climate change and the predicted effects on maternal and newborn health. Arctic issues are discussed specifically considering their exposure and sensitivity to long range transported contaminants. Methods Considering that the different parts of pregnancy are particularly sensitive time periods for the effects of environmental exposure, this review focuses on the impacts on maternal and newborn health. Environmental stressors known to affects human health and how these will change with the predicted climate change are addressed. Air pollution and food security are crucial issues for the pregnant population in a changing climate, especially indoor climate and food security in Arctic areas. Results The total number of environmental factors is today responsible for a large number of the global deaths, especially in young children. Climate change will most likely lead to an increase in this number. Exposure to the different environmental stressors especially air pollution will in most parts of the world increase with climate change, even though some areas might face lower exposure. Populations at risk today are believed to be most heavily affected. As for the persistent organic pollutants a warming climate leads to a remobilisation and a possible increase in food chain exposure in the Arctic and thus increased risk for Arctic populations. This is especially the case for mercury. The perspective for the next generations will be closely connected to the expected temperature changes; changes in housing conditions; changes in exposure patterns; predicted increased exposure to

  18. Past changes in Arctic terrestrial ecosystems, climate and UV radiation.

    PubMed

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus

    2004-11-01

    At the last glacial maximum, vast ice sheets covered many continental areas. The beds of some shallow seas were exposed thereby connecting previously separated landmasses. Although some areas were ice-free and supported a flora and fauna, mean annual temperatures were 10-13 degrees C colder than during the Holocene. Within a few millennia of the glacial maximum, deglaciation started, characterized by a series of climatic fluctuations between about 18,000 and 11,400 years ago. Following the general thermal maximum in the Holocene, there has been a modest overall cooling trend, superimposed upon which have been a series of millennial and centennial fluctuations in climate such as the "Little Ice Age spanning approximately the late 13th to early 19th centuries. Throughout the climatic fluctuations of the last 150,000 years, Arctic ecosystems and biota have been close to their minimum extent within the most recent 10,000 years. They suffered loss of diversity as a result of extinctions during the most recent large-magnitude rapid global warming at the end of the last glacial stage. Consequently, Arctic ecosystems and biota such as large vertebrates are already under pressure and are particularly vulnerable to current and projected future global warming. Evidence from the past indicates that the treeline will very probably advance, perhaps rapidly, into tundra areas, as it did during the early Holocene, reducing the extent of tundra and increasing the risk of species extinction. Species will very probably extend their ranges northwards, displacing Arctic species as in the past. However, unlike the early Holocene, when lower relative sea level allowed a belt of tundra to persist around at least some parts of the Arctic basin when treelines advanced to the present coast, sea level is very likely to rise in future, further restricting the area of tundra and other treeless Arctic ecosystems. The negative response of current Arctic ecosystems to global climatic conditions

  19. Past changes in Arctic terrestrial ecosystems, climate and UV radiation.

    PubMed

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus

    2004-11-01

    At the last glacial maximum, vast ice sheets covered many continental areas. The beds of some shallow seas were exposed thereby connecting previously separated landmasses. Although some areas were ice-free and supported a flora and fauna, mean annual temperatures were 10-13 degrees C colder than during the Holocene. Within a few millennia of the glacial maximum, deglaciation started, characterized by a series of climatic fluctuations between about 18,000 and 11,400 years ago. Following the general thermal maximum in the Holocene, there has been a modest overall cooling trend, superimposed upon which have been a series of millennial and centennial fluctuations in climate such as the "Little Ice Age spanning approximately the late 13th to early 19th centuries. Throughout the climatic fluctuations of the last 150,000 years, Arctic ecosystems and biota have been close to their minimum extent within the most recent 10,000 years. They suffered loss of diversity as a result of extinctions during the most recent large-magnitude rapid global warming at the end of the last glacial stage. Consequently, Arctic ecosystems and biota such as large vertebrates are already under pressure and are particularly vulnerable to current and projected future global warming. Evidence from the past indicates that the treeline will very probably advance, perhaps rapidly, into tundra areas, as it did during the early Holocene, reducing the extent of tundra and increasing the risk of species extinction. Species will very probably extend their ranges northwards, displacing Arctic species as in the past. However, unlike the early Holocene, when lower relative sea level allowed a belt of tundra to persist around at least some parts of the Arctic basin when treelines advanced to the present coast, sea level is very likely to rise in future, further restricting the area of tundra and other treeless Arctic ecosystems. The negative response of current Arctic ecosystems to global climatic conditions

  20. Arctic Hydrology and the role of feedbacks in the climate system (Invited)

    NASA Astrophysics Data System (ADS)

    Hinzman, L. D.

    2009-12-01

    The effects of a warming climate on the terrestrial regions of the Arctic are already quite apparent and impacts to the hydrologic system are also quite evident. The broadest impacts to the terrestrial arctic regions will result through consequent effects of changing permafrost structure and extent. As the climate differentially warms in summer and winter, the permafrost will become warmer, the active layer (the layer of soil above the permafrost that annually experiences freeze and thaw) will become thicker, the lower boundary of permafrost will become shallower and permafrost extent will decrease in area. These simple structural changes will affect every aspect of the surface water and energy balances and local ecology. Surface moisture and surface temperature are the main driving variables in local terrestrial and atmospheric linkages. Surface temperature is the linchpin in energy fluxes since it links atmospheric thermal gradients, forcing convective heat transfer, with the subsurface thermal gradients, driving conductive heat transfer. Soil moisture exerts a strong influence upon energy fluxes through controls on evaporative heat flux, phase change in thawing of permafrost, and indirect effects on thermal conductivity. In order to understand and predict ecosystem responses to a changing climate and the resultant feedbacks, it is critical to quantify the dynamic interactions of soil moisture and temperature with changes in permafrost as a function of climatic processes, landscape type, and vegetation. In future climate scenarios, the Arctic is expected to be warmer, and experience greater precipitation. With the lengthening of the summer season, however, more of this precipitation will occur as rain. The periods of potential evaporation, and transpiration will also increase. Oddly enough, even now, the Arctic may be considered a desert. The vast wetlands that cover large portions of Alaska, Canada and Siberia exist because permafrost prevents soil moisture and

  1. Development of Exhibit on Arctic Climate Change Called The Arctic: A Friend Acting Strangely Exhibition

    SciTech Connect

    Stauffer, Barbara W.

    2006-04-01

    The exhibition, The Arctic: A Friend Acting Strangely, was developed at the Smithsonian Institution’s National Museum of Natural History (NMNH) as a part of the museum’s Forces of Change exhibit series on global change. It opened to the public in Spring 2006, in conjunction with another Forces of Change exhibit on the Earth’s atmosphere called Change Is in the Air. The exhibit was a 2000 square-foot presentation that explored the forces and consequences of the changing Arctic as documented by scientists and native residents alike. Native peoples of the Arctic have always lived with year-to-year fluctuations in weather and ice conditions. In recent decades, they have witnessed that the climate has become unpredictable, the land and sea unfamiliar. An elder in Arctic Canada recently described the weather as uggianaqtuq —an Inuit word that can suggest strange, unexpected behavior, sometimes described as that of “a friend acting strangely.” Scientists too have been documenting dramatic changes in the Arctic. Air temperatures have warmed over most—though not all—of the Arctic since the 1950s; Arctic precipitation may have increased by as much as 8%; seasonal melting of the Greenland Ice Sheet has increased on average by 16% since 1979; polar-orbiting satellites have measured a 15¬–20% decline in sea ice extent since the 1970s; aircraft reconnaissance and ship observations show a steady decrease in sea ice since the 1950s. In response to this warming, plant distributions have begun to shift and animals are changing their migration routes. Some of these changes may have beneficial effects while others may bring hardship or have costly implications. And, many scientists consider arctic change to be a ‘bell-weather’ for large-scale changes in other regions of the world. The exhibition included text, photos artifacts, hands-on interactives and other exhibitry that illustrated the changes being documented by indigenous people and scientists alike.

  2. Rising to the Challenge of Climate Impact Assessment in the Arctic (Invited)

    NASA Astrophysics Data System (ADS)

    Hinzman, L. D.

    2013-12-01

    The environmental changes ongoing in Arctic Regions have clearly demonstrated the climate is changing however assessing and predicting the impacts upon the physical and biological systems remains an important research challenge. To truly understand the evolution of the environment in response to a warming climate, we cannot investigate single components in isolation. We must change our perspective to include the dynamic linkages and feedbacks among system components, including physical and biological processes and in some cases societal interactions. The land areas of the Arctic are changing rapidly. The permafrost is degrading, lakes are draining, soils are getting drier, plant and animal species are migrating northward, snow is melting earlier and returning later. The marine system is also experiencing marked changes, most notably loss of sea ice, warming of deeper layers, changes in cloudiness and weather, acidification and migration of species. Trends of decreasing sea ice and increased open-water fetch, combined with warming air and ground temperatures, result in higher wave energy, increased seasonal thaw, and accelerated coastal retreat along large parts of circum-Arctic coast. All of these changes are having a significant impact upon local environment, but these changes are occurring over such a large area, they are beginning to affect regional and perhaps even global climate. We will not be able accurately forecast the impacts of changing climate conditions until we can accurately incorporate the processes of those dynamics in the integrated system.

  3. Influence of the physical terrestrial Arctic in the eco-climate system.

    PubMed

    Saito, Kazuyuki; Zhang, Tingjun; Yang, Daqing; Marchenko, Sergei; Barry, Roger G; Romanovsky, Vladimir; Hinzman, Larry

    2013-12-01

    This synthesis paper provides a summary of the major components of the physical terrestrial Arctic and the influences of their changes upon the larger eco-climate system. Foci here are snow cover, permafrost, and land hydrology. During the last century, snow cover duration has shortened in a large portion of the circum-Arctic, mainly because of its early northward retreat in spring due to warming. Winter precipitation has generally increased, resulting in an increase in maximum snow depth over large areas. This is consistent with the increase in river discharge over large Russian watersheds. Soil temperature has also increased, and the active layer has deepened in most of the permafrost regions, whereas thinning of the seasonally frozen layer has been observed in areas not underlain by permafrost. These active components are mutually interrelated, conditioned by ambient micro- to landscape-level topography and local surface and subsurface conditions, and they are closely related with vegetation and ecology, as evidenced by evolution in the late Quaternary. Further, we provide examples and arguments for discussions on the pathways through which changes in the Arctic terrestrial system can affect or propagate to remote areas beyond the Arctic, reaching to the extratropics in the larger climate system. These considerations include dynamical and thermodynamical responses and feedbacks,'modification of hemisphere-scale atmospheric circulation associated with troposphere-stratosphere couplings, and moisture intrusion at a continental scale. PMID:24555309

  4. Climate change alters leaf anatomy, but has no effects on volatile emissions from Arctic plants.

    PubMed

    Schollert, Michelle; Kivimäenpää, Minna; Valolahti, Hanna M; Rinnan, Riikka

    2015-10-01

    Biogenic volatile organic compound (BVOC) emissions are expected to change substantially because of the rapid advancement of climate change in the Arctic. BVOC emission changes can feed back both positively and negatively on climate warming. We investigated the effects of elevated temperature and shading on BVOC emissions from arctic plant species Empetrum hermaphroditum, Cassiope tetragona, Betula nana and Salix arctica. Measurements were performed in situ in long-term field experiments in subarctic and high Arctic using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analysed by gas chromatography-mass spectrometry. In order to assess whether the treatments had resulted in anatomical adaptations, we additionally examined leaf anatomy using light microscopy and scanning electron microscopy. Against expectations based on the known temperature and light-dependency of BVOC emissions, the emissions were barely affected by the treatments. In contrast, leaf anatomy of the studied plants was significantly altered in response to the treatments, and these responses appear to differ from species found at lower latitudes. We suggest that leaf anatomical acclimation may partially explain the lacking treatment effects on BVOC emissions at plant shoot-level. However, more studies are needed to unravel why BVOC emission responses in arctic plants differ from temperate species.

  5. Arctic Ocean freshwater as a trigger for abrupt climate change

    NASA Astrophysics Data System (ADS)

    Bradley, Raymond; Condron, Alan; Coletti, Anthony

    2016-04-01

    The cause of the Younger Dryas cooling remains unresolved despite decades of debate. Current arguments focus on either freshwater from Glacial Lake Agassiz drainage through the St Lawrence or the MacKenzie river systems. High resolution ocean modeling suggests that freshwater delivered to the North Atlantic from the Arctic Ocean through Fram Strait would have had more of an impact on Atlantic Meridional Overturning Circulation (AMOC) than freshwater from the St Lawrence. This has been interpreted as an argument for a MacKenzie River /Lake Agassiz freshwater source. However, it is important to note that although the modeling identifies Fram Strait as the optimum location for delivery of freshwater to disrupt the AMOC, this does not mean the freshwater source came from Lake Agassiz. Another potential source of freshwater is the Arctic Ocean ice cover itself. During the LGM, ice cover was extremely thick - many tens of meters in the Canada Basin (at least), resulting in a hiatus in sediment deposition there. Extreme ice thickness was related to a stagnant circulation, very low temperatures and continuous accumulation of snow on top of a base of sea-ice. This resulted in a large accumulation of freshwater in the Arctic Basin. As sea-level rose and a more modern circulation regime became established in the Arctic, this freshwater was released from the Arctic Ocean through Fram Strait, leading to extensive sea-ice formation in the North Atlantic (Greenland Sea) and a major reduction in the AMOC. Here we present new model results and a review of the paleoceanographic evidence to support this hypothesis. The bottom line is that the Arctic Ocean was likely a major player in causing abrupt climate change in the past, via its influence on the AMOC. Although we focus here on the Younger Dryas, the Arctic Ocean has been repeatedly isolated from the world ocean during glacial periods of the past. When these periods of isolation ended, it is probable that there were significant

  6. Interglacial climates and the Atlantic meridional overturning circulation: is there an Arctic controversy?

    NASA Astrophysics Data System (ADS)

    Bauch, Henning A.

    2013-03-01

    Arctic palaeorecords are important to understand the "natural range" of forcing and feedback mechanisms within the context of past and present climate change in this temperature-sensitive region. A wide array of methods and archives now provide a robust understanding of the Holocene climate evolution. By comparison rather little is still known about older interglacials, and in particular, on the effects of the northward propagation of heat transfer via the Atlantic meridional ocean circulation (AMOC) into the Arctic. Terrestrial records from this area often indicate a warmer and moister climate during past interglacials than in the Holocene implying a more vigorous AMOC activity. This is in conflict with marine data. Although recognized as very prominent interglacials in Antarctic ice cores, cross-latitudinal surface ocean temperature reconstructions show that little of the surface ocean warmth still identified in the Northeast Atlantic during older interglacial peaks (e.g., MIS5e, 9, 11) was further conveyed into the polar latitudes, and that each interglacial developed its own specific palaeoclimate features. Interactive processes between water mass overturning and the hydrological system of the Arctic, and how both developed together out of a glacial period with its particular ice sheet configuration and relative sea-level history, determined the efficiency of an evolving interglacial AMOC. Because of that glacial terminations developed some very specific water mass characteristics, which also affected the climate evolution of the ensuing interglacial periods. Moreover, the observed contrasts in the Arctic-directed meridional ocean heat flux between past interglacials have implications for the palaeoclimatic evaluation of this polar region. Crucial environmental factors of the Arctic climate system, such as the highly dynamical interactions between deep water mass flow, surface ocean temperature/salinity, sea ice, and atmosphere, exert strong feedbacks on

  7. Will Arctic ground squirrels impede or accelerate climate-induced vegetation changes to the Arctic tundra?

    NASA Astrophysics Data System (ADS)

    Dalton, J.; Flower, C. E.; Brown, J.; Gonzalez-Meler, M. A.; Whelan, C.

    2014-12-01

    Considerable attention has been given to the climate feedbacks associated with predicted vegetation shifts in the Arctic tundra in response to global environmental change. However, little is known regarding the extent to which consumers can facilitate or respond to shrub expansion. Arctic ground squirrels, the largest and most northern ground squirrel, are abundant and widespread throughout the North American tundra. Their broad diet of seeds, flowers, herbage, bird's eggs and meat speaks to the need to breed, feed, and fatten in a span of some 12-16 weeks that separate their 8-9 month bouts of hibernation with the potential consequence to impact ecosystem dynamics. Therefore Arctic ground squirrels are a good candidate to evaluate whether consumers are mere responders (bottom-up effects) or drivers (top-down) of the observed and predicted vegetation changes. As a start towards this question, we measured the foraging intensity (giving-up densities) of Arctic ground squirrels in experimental food patches within which the squirrels experience diminishing returns as they seek the raisins and peanuts that we provided at the Toolik Lake field station in northern Alaska. If the squirrels show their highest feeding intensity in the shrubs, they may impede vegetation shifts by slowing the establishment and expansion of shrubs in the tundra. Conversely, if they show their lowest feeding intensity within shrub dominated areas, they may accelerate vegetation shifts. We found neither. Feeding intensity varied most among transects and times of day, and least along a tundra-to-shrub vegetation gradient. This suggests that the impacts of squirrels will be heterogeneous - in places responders and in others drivers. We should not be surprised then to see patches of accelerated and impeded vegetation changes in the tundra ecosystem. Some of these patterns may be predictable from the foraging behavior of Arctic ground squirrels.

  8. The potential impact of climate change on infectious diseases of Arctic fauna.

    PubMed

    Bradley, Michael; Kutz, Susan J; Jenkins, Emily; O'Hara, Todd M

    2005-12-01

    Climate change is already affecting Arctic species including infectious disease agents and greater changes are expected. Some infectious diseases are already increasing but future changes are difficult to predict because of the complexity of host-agent-environment relationships. However mechanisms related to climate change that will influence disease patterns are understood. Warmer temperatures will benefit free living bacteria and parasites whose survival and development is limited by temperature. Warmer temperatures could promote survivability, shorter development rates and transmission. Insects such as mosquitoes and ticks that transmit disease agents may also benefit from climate change as well as the diseases they spread. Climate change will have significant impacts on biodiversity. Disease agents of species that benefit from warming will likely become more prevalent. Host species stressed by changing environmental conditions may be more vulnerable to disease agents. Warming could lead to increased agriculture and other economic opportunities in the Arctic bringing people, domestic food animals, pets and invasive species and their disease agents into Northern regions. Climate warming may also favor the release of persistent environmental pollutants some of which can affect the immune system and may favor increased rates of some diseases.

  9. Impact of Atlantic Meridional Overturning Circulation (AMOC) Variability on Arctic Climate

    NASA Astrophysics Data System (ADS)

    Mahajan, S.; Zhang, R.; Delworth, T. L.

    2009-12-01

    Observations show a rapid decline of Arctic sea-ice extent and thickness, and a rapid warming in Arctic surface air temperatures (SAT) in the past decade. Recent observational studies confirm the amplification of SAT anomalies over the Arctic region, as previously suggested by several modeling studies. While climate model projections clearly show that increasing anthropogenic greenhouse gases lead to a warming trend over the Arctic, a recent study finds multidecadal variations of Arctic climate that are strongly correlated with the Atlantic Multidecadal Oscillation (AMO). The AMOC is often thought to be a major source of decadal/multidecadal variability in the climate system, and contributes to the observed AMO. The focus of this study is to evaluate the role of low frequency AMOC variability on Arctic climate in a 1000 years control simulation of the GFDL CM2.1 coupled climate model. Simulated Arctic sea-ice extent anomaly is found to be highly anti-correlated with Arctic SAT anomaly, similar to observations. The coupled climate model also simulates the amplification of Arctic SAT anomalies by a factor of 4 of global SAT anomalies. A strong correlation is also found between the simulated AMO and Arctic SAT and sea-ice extent anomalies on decadal time-scales. The AMO is mainly induced by low frequency AMOC variations in the control simulation. Spatially, the AMO demonstrates the largest influence on the Bering, Labrador and Nordic Seas sea-ice concentration anomalies, similar to the observed spatial pattern of the Arctic sea-ice declining trend since 1979. Both observations and climate model simulations suggest a strong role of AMOC on decadal Arctic climate variability. Our model results suggest that the intensifying AMOC, in addition to anthropogenic greenhouse gases induced global warming, might have also contributed to the recent decline in Arctic sea-ice.

  10. Manganese cycles in Arctic marine sediments - Climate signals or diagenesis?

    NASA Astrophysics Data System (ADS)

    März, C.; Stratmann, A.; Eckert, S.; Schnetger, B.; Brumsack, H.-J.

    2009-04-01

    In comparison to sediments from other parts of the world ocean, the inorganic geochemistry of Arctic Ocean sediments is poorly investigated. However, marked light to dark brown layers are well-known features of Quaternary Arctic sediments, and have been related to variable Mn contents. Brown layers represent intervals relatively rich in Mn (often > 1 wt.%), while yellowish-greyish intervals contain less Mn. As these brown layers are widespread in pelagic Quaternary deposits of the Arctic Ocean, there are attempts to use them as stratigraphic, age-equivalent marker horizons that are genetically related to global climate changes (e.g. Jakobsson et al., 2000; Löwemark et al., 2008). In the Arctic Ocean, other conventional stratigraphic methods often fail, therefore the use of Mn-rich layers as a chemostratigraphic tool seems to be a promising approach. However, several inorganic-geochemical and modelling studies of Mn cycles in the Arctic as well as in other parts of the world ocean have shown that multiple Mn layers in marine sediments can be created by non-steady state diagenetic processes, i.e. secondary Mn redistribution in the sediment due to microbially mediated dissolution-reprecipitation reactions (e.g. Li et al., 1969; Gobeil et al., 1997; Burdige, 2006; Katsev et al., 2006). Such biogeochemical processes can lead to rapid migration or fixation of redox boundaries in the sediment, resulting in the formation or (partial) destruction of metal-rich layers several thousands of years after sediment deposition. As this clearly would alter primary paleoenvironmental signals recorded in the sediments, we see an urgent need to unravel the real stratigraphic potential of Arctic Mn cycles before they are readily established as standard tools. For this purpose, we are studying Mn cycles in Arctic Ocean sediments recovered during R/V Polarstern expedition ARK XXIII/3 on the Mendeleev Ridge (East Siberian Sea). First results of pore water and sediment composition

  11. Arctic marine mammals and climate change: impacts and resilience.

    PubMed

    Moore, Sue E; Huntington, Henry P

    2008-03-01

    Evolutionary selection has refined the life histories of seven species (three cetacean [narwhal, beluga, and bowhead whales], three pinniped [walrus, ringed, and bearded seals], and the polar bear) to spatial and temporal domains influenced by the seasonal extremes and variability of sea ice, temperature, and day length that define the Arctic. Recent changes in Arctic climate may challenge the adaptive capability of these species. Nine other species (five cetacean [fin, humpback, minke, gray, and killer whales] and four pinniped [harp, hooded, ribbon, and spotted seals]) seasonally occupy Arctic and subarctic habitats and may be poised to encroach into more northern latitudes and to remain there longer, thereby competing with extant Arctic species. A synthesis of the impacts of climate change on all these species hinges on sea ice, in its role as: (1) platform, (2) marine ecosystem foundation, and (3) barrier to non-ice-adapted marine mammals and human commercial activities. Therefore, impacts are categorized for: (1) ice-obligate species that rely on sea ice platforms, (2) ice-associated species that are adapted to sea ice-dominated ecosystems, and (3) seasonally migrant species for which sea ice can act as a barrier. An assessment of resilience is far more speculative, as any number of scenarios can be envisioned, most of them involving potential trophic cascades and anticipated human perturbations. Here we provide resilience scenarios for the three ice-related species categories relative to four regions defined by projections of sea ice reductions by 2050 and extant shelf oceanography. These resilience scenarios suggest that: (1) some populations of ice-obligate marine mammals will survive in two regions with sea ice refugia, while other stocks may adapt to ice-free coastal habitats, (2) ice-associated species may find suitable feeding opportunities within the two regions with sea ice refugia and, if capable of shifting among available prey, may benefit from

  12. Arctic marine mammals and climate change: impacts and resilience.

    PubMed

    Moore, Sue E; Huntington, Henry P

    2008-03-01

    Evolutionary selection has refined the life histories of seven species (three cetacean [narwhal, beluga, and bowhead whales], three pinniped [walrus, ringed, and bearded seals], and the polar bear) to spatial and temporal domains influenced by the seasonal extremes and variability of sea ice, temperature, and day length that define the Arctic. Recent changes in Arctic climate may challenge the adaptive capability of these species. Nine other species (five cetacean [fin, humpback, minke, gray, and killer whales] and four pinniped [harp, hooded, ribbon, and spotted seals]) seasonally occupy Arctic and subarctic habitats and may be poised to encroach into more northern latitudes and to remain there longer, thereby competing with extant Arctic species. A synthesis of the impacts of climate change on all these species hinges on sea ice, in its role as: (1) platform, (2) marine ecosystem foundation, and (3) barrier to non-ice-adapted marine mammals and human commercial activities. Therefore, impacts are categorized for: (1) ice-obligate species that rely on sea ice platforms, (2) ice-associated species that are adapted to sea ice-dominated ecosystems, and (3) seasonally migrant species for which sea ice can act as a barrier. An assessment of resilience is far more speculative, as any number of scenarios can be envisioned, most of them involving potential trophic cascades and anticipated human perturbations. Here we provide resilience scenarios for the three ice-related species categories relative to four regions defined by projections of sea ice reductions by 2050 and extant shelf oceanography. These resilience scenarios suggest that: (1) some populations of ice-obligate marine mammals will survive in two regions with sea ice refugia, while other stocks may adapt to ice-free coastal habitats, (2) ice-associated species may find suitable feeding opportunities within the two regions with sea ice refugia and, if capable of shifting among available prey, may benefit from

  13. Evaluation of the Regional Arctic System Model (RASM) - Process-resolving Arctic Climate Simulation

    NASA Astrophysics Data System (ADS)

    Maslowski, Wieslaw

    2016-04-01

    The Regional Arctic System Model (RASM) has been developed to better understand the past and present operation of Arctic System at process scale and to predict its change at time scales from days to decades, in support of the US environmental assessment and prediction needs. RASM is a limited-area, fully coupled ice-ocean-atmosphere-land model that uses the Community Earth System Model (CESM) framework. It includes the Weather Research and Forecasting (WRF) model, the LANL Parallel Ocean Program (POP) and Community Ice Model (CICE) and the Variable Infiltration Capacity (VIC) land hydrology model. The ocean and sea ice models used in RASM are regionally configured versions of those used in CESM, while WRF replaces the Community Atmospheric Model (CAM). In addition, a streamflow routing (RVIC) model was recently implemented in RASM to transport the freshwater flux from the land surface to the Arctic Ocean. The model domain is configured at an eddy-permitting resolution of 1/12° (or ~9km) for the ice-ocean and 50 km for the atmosphere-land model components. It covers the entire Northern Hemisphere marine cryosphere, terrestrial drainage to the Arctic Ocean and its major inflow and outflow pathways, with optimal extension into the North Pacific / Atlantic to model the passage of cyclones into the Arctic. In addition, a 1/48° (or ~2.4km) grid for the ice-ocean model components has been recently configured. All RASM components are coupled at high frequency (currently at 20-minute intervals) to allow realistic representation of inertial interactions among the model components. In addition to an overview of RASM technical details, model results are presented from both fully coupled and subsets of RASM, where the atmospheric and land components are replaced with prescribed realistic atmospheric reanalysis data to evaluate model skill in representing seasonal climatology as well as interannual and multidecadal climate variability. Selected physical processes and resulting

  14. Arctic ecosystem structure and functioning shaped by climate and herbivore body size

    NASA Astrophysics Data System (ADS)

    Legagneux, P.; Gauthier, G.; Lecomte, N.; Schmidt, N. M.; Reid, D.; Cadieux, M.-C.; Berteaux, D.; Bêty, J.; Krebs, C. J.; Ims, R. A.; Yoccoz, N. G.; Morrison, R. I. G.; Leroux, S. J.; Loreau, M.; Gravel, D.

    2014-05-01

    Significant progress has been made in our understanding of species-level responses to climate change, but upscaling to entire ecosystems remains a challenge. This task is particularly urgent in the Arctic, where global warming is most pronounced. Here we report the results of an international collaboration on the direct and indirect effects of climate on the functioning of Arctic terrestrial ecosystems. Our data from seven terrestrial food webs spread along a wide range of latitudes (~1,500 km) and climates (Δ mean July temperature = 8.5 °C) across the circumpolar world show the effects of climate on tundra primary production, food-web structure and species interaction strength. The intensity of predation on lower trophic levels increased significantly with temperature, at approximately 4.5% per °C. Temperature also affected trophic interactions through an indirect effect on food-web structure (that is, diversity and number of interactions). Herbivore body size was a major determinant of predator-prey interactions, as interaction strength was positively related to the predator-prey size ratio, with large herbivores mostly escaping predation. There is potential for climate warming to cause a switch from bottom-up to top-down regulation of herbivores. These results are critical to resolving the debate on the regulation of tundra and other terrestrial ecosystems exposed to global change.

  15. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists.

    PubMed

    Kortsch, Susanne; Primicerio, Raul; Fossheim, Maria; Dolgov, Andrey V; Aschan, Michaela

    2015-09-01

    Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning.

  16. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists.

    PubMed

    Kortsch, Susanne; Primicerio, Raul; Fossheim, Maria; Dolgov, Andrey V; Aschan, Michaela

    2015-09-01

    Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning. PMID:26336179

  17. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists

    PubMed Central

    Kortsch, Susanne; Primicerio, Raul; Fossheim, Maria; Dolgov, Andrey V.; Aschan, Michaela

    2015-01-01

    Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning. PMID:26336179

  18. Climate change on arctic environment, ecosystem services and society (CLICHE)

    NASA Astrophysics Data System (ADS)

    Weckström, J.; Korhola, A.; Väliranta, M.; Seppä, H.; Luoto, M.; Tuittila, E.-S.; Leppäranta, M.; Kahilainen, K.; Saarinen, J.; Heikkinen, H.

    2012-04-01

    The predicted climate warming has raised many questions and concerns about its impacts on the environment and society. As a respond to the need of holistic studies comprising both of these areas, The Academy of Finland launched The Finnish Research Programme on Climate Change (FICCA 2011-2014) in spring 2010 with the main aim to focus on the interaction between the environment and society. Ultimately 11 national consortium projects were funded (total budget 12 million EUR). Here we shortly present the main objectives of the largest consortium project "Climate change on arctic environment, ecosystem services and society" (CLICHE). The CLICHE consortium comprises eight interrelated work packages (treeline, diversity, peatlands, snow, lakes, fish, tourism, and traditional livelihoods), each led by a prominent research group and a team leader. The research consortium has three main overall objectives: 1) Investigate, map and model the past, present and future climate change-induced changes in central ecosystems of the European Arctic with unprecedented precision 2) Deepen our understanding of the basic principles of ecosystem and social resilience and dynamics; identify key taxa, structures or processes that clearly indicate impending or realised global change through their loss, occurrence or behaviour, using analogues from the past (e.g. Holocene Thermal Maximum, Medieval Warm Period), experiments, observations and models 3) Develop adaptation and mitigation strategies to minimize the adverse effects of climate change on local communities, traditional livelihoods, fisheries, and tourism industry, and promote sustainable development of local community structures and enhance the quality of life of local human populations. As the project has started only recently no final results are available yet. However, the fieldwork as well as the co-operation between the research teams has thus far been very successful. Thus, the expectations for the final outcome of the project

  19. Climatic and biotic extreme events moderate long-term responses of above- and belowground sub-Arctic heathland communities to climate change.

    PubMed

    Bokhorst, Stef; Phoenix, Gareth K; Berg, Matty P; Callaghan, Terry V; Kirby-Lambert, Christopher; Bjerke, Jarle W

    2015-11-01

    Climate change impacts are not uniform across the Arctic region because interacting factors causes large variations in local ecosystem change. Extreme climatic events and population cycles of herbivores occur simultaneously against a background of gradual climate warming trends and can redirect ecosystem change along routes that are difficult to predict. Here, we present the results from sub-Arctic heath vegetation and its belowground micro-arthropod community in response to the two main drivers of vegetation damage in this region: extreme winter warming events and subsequent outbreaks of the defoliating autumnal moth caterpillar (Epirrita autumnata). Evergreen dwarf shrub biomass decreased (30%) following extreme winter warming events and again by moth caterpillar grazing. Deciduous shrubs that were previously exposed to an extreme winter warming event were not affected by the moth caterpillar grazing, while those that were not exposed to warming events (control plots) showed reduced (23%) biomass from grazing. Cryptogam cover increased irrespective of grazing or winter warming events. Micro-arthropods declined (46%) following winter warming but did not respond to changes in plant community. Extreme winter warming and caterpillar grazing suppressed the CO2 fluxes of the ecosystem. Evergreen dwarf shrubs are disadvantaged in a future sub-Arctic with more stochastic climatic and biotic events. Given that summer warming may further benefit deciduous over evergreen shrubs, event and trend climate change may both act against evergreen shrubs and the ecosystem functions they provide. This is of particular concern given that Arctic heath vegetation is typically dominated by evergreen shrubs. Other components of the vegetation showed variable responses to abiotic and biotic events, and their interaction indicates that sub-Arctic vegetation response to multiple pressures is not easy to predict from single-factor responses. Therefore, while biotic and climatic events may

  20. Climatic and biotic extreme events moderate long-term responses of above- and belowground sub-Arctic heathland communities to climate change.

    PubMed

    Bokhorst, Stef; Phoenix, Gareth K; Berg, Matty P; Callaghan, Terry V; Kirby-Lambert, Christopher; Bjerke, Jarle W

    2015-11-01

    Climate change impacts are not uniform across the Arctic region because interacting factors causes large variations in local ecosystem change. Extreme climatic events and population cycles of herbivores occur simultaneously against a background of gradual climate warming trends and can redirect ecosystem change along routes that are difficult to predict. Here, we present the results from sub-Arctic heath vegetation and its belowground micro-arthropod community in response to the two main drivers of vegetation damage in this region: extreme winter warming events and subsequent outbreaks of the defoliating autumnal moth caterpillar (Epirrita autumnata). Evergreen dwarf shrub biomass decreased (30%) following extreme winter warming events and again by moth caterpillar grazing. Deciduous shrubs that were previously exposed to an extreme winter warming event were not affected by the moth caterpillar grazing, while those that were not exposed to warming events (control plots) showed reduced (23%) biomass from grazing. Cryptogam cover increased irrespective of grazing or winter warming events. Micro-arthropods declined (46%) following winter warming but did not respond to changes in plant community. Extreme winter warming and caterpillar grazing suppressed the CO2 fluxes of the ecosystem. Evergreen dwarf shrubs are disadvantaged in a future sub-Arctic with more stochastic climatic and biotic events. Given that summer warming may further benefit deciduous over evergreen shrubs, event and trend climate change may both act against evergreen shrubs and the ecosystem functions they provide. This is of particular concern given that Arctic heath vegetation is typically dominated by evergreen shrubs. Other components of the vegetation showed variable responses to abiotic and biotic events, and their interaction indicates that sub-Arctic vegetation response to multiple pressures is not easy to predict from single-factor responses. Therefore, while biotic and climatic events may

  1. Influence of Sea Ice on Arctic Marine Sulfur Biogeochemistry in the Community Climate System Model

    SciTech Connect

    Deal, Clara; Jin, Meibing

    2013-06-30

    Global climate models (GCMs) have not effectively considered how responses of arctic marine ecosystems to a warming climate will influence the global climate system. A key response of arctic marine ecosystems that may substantially influence energy exchange in the Arctic is a change in dimethylsulfide (DMS) emissions, because DMS emissions influence cloud albedo. This response is closely tied to sea ice through its impacts on marine ecosystem carbon and sulfur cycling, and the ice-albedo feedback implicated in accelerated arctic warming. To reduce the uncertainty in predictions from coupled climate simulations, important model components of the climate system, such as feedbacks between arctic marine biogeochemistry and climate, need to be reasonably and realistically modeled. This research first involved model development to improve the representation of marine sulfur biogeochemistry simulations to understand/diagnose the control of sea-ice-related processes on the variability of DMS dynamics. This study will help build GCM predictions that quantify the relative current and possible future influences of arctic marine ecosystems on the global climate system. Our overall research objective was to improve arctic marine biogeochemistry in the Community Climate System Model (CCSM, now CESM). Working closely with the Climate Ocean Sea Ice Model (COSIM) team at Los Alamos National Laboratory (LANL), we added 1 sea-ice algae and arctic DMS production and related biogeochemistry to the global Parallel Ocean Program model (POP) coupled to the LANL sea ice model (CICE). Both CICE and POP are core components of CESM. Our specific research objectives were: 1) Develop a state-of-the-art ice-ocean DMS model for application in climate models, using observations to constrain the most crucial parameters; 2) Improve the global marine sulfur model used in CESM by including DMS biogeochemistry in the Arctic; and 3) Assess how sea ice influences DMS dynamics in the arctic marine

  2. Climate change and natural hazards in the Arctic

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Eichelberger, L. P.

    2015-12-01

    Climate change is motivating much of the science research in the Arctic. Natural hazards, which have always been with us and can be influenced by climate, also pose a serious threat to sustainability of Arctic communities, the Native cultures they support, and the health and wellbeing of their residents. These are themes of the US Chairship of the Arctic Council. For example, repetitive floods, often associated with spring ice jams, are a particularly severe problem for river communities. People live near rivers because access to food, water and river transportation support an indigenous subsistence lifestyle. Some settlement sites for Indigenous Peoples were mandated by distant authorities without regard to natural hazards, in Alaska no less than in other countries. Thus bad policy of the past casts a long shadow into the future. Remote communities are subject to multiple challenges, including natural hazards, access to education, and limited job opportunities. These intersect to reproduce structural vulnerability and have over time created a need for substantial support from government. In the past 40 years, the themes of "sustainability" and "self reliance" have become prominent strategies for governance at both state and local levels. Communities now struggle to demonstrate their sustainability while grappling with natural hazards and chronic poverty. In the extreme, the shifting of responsibility to resource-poor communities can be called "structural violence". Accepting the status quo can mean living without sanitation and reliable water supply, leading to the high observed rates of disease not normally encountered in developed countries. Many of the efforts to address climate change and natural hazards are complementary: monitoring the environment; forecasting extreme events; and community-based participatory research and planning. Natural disaster response is complementary to the Arctic Council's Search and Rescue (SAR) initiative, differing in that those

  3. Holocene climate change in Arctic Canada and Greenland

    NASA Astrophysics Data System (ADS)

    Briner, Jason P.; McKay, Nicholas P.; Axford, Yarrow; Bennike, Ole; Bradley, Raymond S.; de Vernal, Anne; Fisher, David; Francus, Pierre; Fréchette, Bianca; Gajewski, Konrad; Jennings, Anne; Kaufman, Darrell S.; Miller, Gifford; Rouston, Cody; Wagner, Bernd

    2016-09-01

    This synthesis paper summarizes published proxy climate evidence showing the spatial and temporal pattern of climate change through the Holocene in Arctic Canada and Greenland. Our synthesis includes 47 records from a recently published database of highly resolved Holocene paleoclimate time series from the Arctic (Sundqvist et al., 2014). We analyze the temperature histories represented by the database and compare them with paleoclimate and environmental information from 54 additional published records, mostly from datasets that did not fit the selection criteria for the Arctic Holocene database. Combined, we review evidence from a variety of proxy archives including glaciers (ice cores and glacial geomorphology), lake sediments, peat sequences, and coastal and deep-marine sediments. The temperature-sensitive records indicate more consistent and earlier Holocene warmth in the north and east, and a more diffuse and later Holocene thermal maximum in the south and west. Principal components analysis reveals two dominant Holocene trends, one with early Holocene warmth followed by cooling in the middle Holocene, the other with a broader period of warmth in the middle Holocene followed by cooling in the late Holocene. The temperature decrease from the warmest to the coolest portions of the Holocene is 3.0 ± 1.0 °C on average (n = 11 sites). The Greenland Ice Sheet retracted to its minimum extent between 5 and 3 ka, consistent with many sites from around Greenland depicting a switch from warm to cool conditions around that time. The spatial pattern of temperature change through the Holocene was likely driven by the decrease in northern latitude summer insolation through the Holocene, the varied influence of waning ice sheets in the early Holocene, and the variable influx of Atlantic Water into the study region.

  4. Will the Arctic Land Surface become Wetter or Drier in Response to a Warming Climate

    NASA Astrophysics Data System (ADS)

    Hinzman, L. D.; Rawlins, M.; Serreze, M.; Vorosmarty, C. J.; Walsh, J. E.

    2015-12-01

    There is much concern about a potentially "accelerated" hydrologic cycle, with associated extremes in weather and climate-related phenomena. Whether this translates into wetter or drier conditions across arctic landscapes remains an open question. Arctic ecosystems differ substantially from those in temperate regions, largely due to the interactions of extremes in climate and land surface characteristics. Ice-rich permafrost prevents percolation of rainfall or snowmelt water, often maintaining a moist to saturated active layer where the permafrost table is shallow. Permafrost may also block the lateral movement of groundwater, and act as a confining unit for water in sub- or intra-permafrost aquifers. However, as permafrost degrades, profound changes in interactions between groundwater and surface water occur that affect the partitioning among the water balance components with subsequent impacts to the surface energy balance and essential ecosystem processes. Most simulations of arctic climate project sustained increases in temperature and gradual increases in precipitation over the 21st century. However, most climatic models do not correctly represent the essential controls that permafrost exerts on hydrological, ecological, and climatological processes. If warming continues as projected, we expect large-scale changes in surface hydrology as permafrost degrades. Where groundwater gradients are downward (i.e. surface water will infiltrate to subsurface groundwater), as in most cases, we may expect improved drainage and drier soils, which would result in reduced evaporation and transpiration (ET). In some special cases, where the groundwater gradient is upward (as in many wetlands or springs) surface soils may become wetter or inundated as permafrost degrades. Further, since soil moisture is a primary factor controlling ecosystem processes, interactions between ecosystems, GHG emissions, and high-latitude climate must also be considered highly uncertain. These inter

  5. Changing climate: Geothermal evidence from permafrost in the Alaskan Arctic

    USGS Publications Warehouse

    Lachenbruch, A.H.; Marshall, B.V.

    1986-01-01

    Temperature profiles measured in permafrost in northernmost Alaska usually have anomalous curvature in the upper 100 meters or so. When analyzed by heat-conduction theory, the profiles indicate a variable but widespread secular warming of the permafrost surface, generally in the range of 2 to 4 Celsius degrees during the last few decades to a century. Although details of the climatic change cannot be resolved with existing data, there is little doubt of its general magnitude and timing; alternative explanations are limited by the fact that heat transfer in cold permafrost is exclusively by conduction. Since models of greenhouse warming predict climatic change will be greatest in the Arctic and might already be in progress, it is prudent to attempt to understand the rapidly changing thermal regime in this region.

  6. Identifying climate change threats to the arctic archaeological record

    NASA Astrophysics Data System (ADS)

    Murray, Maribeth; Jensen, Anne; Friesen, Max

    2011-05-01

    Global Climate Change and the Polar Archaeological Record; Tromsø, Norway, 15-16 February 2011 ; A workshop was held at the Institute of Archaeology and Social Anthropology, University of Tromsø, in Norway, to catalyze growing concern among polar archaeologists about global climate change and attendant threats to the polar archaeological and paleoecological records. Arctic archaeological sites contain an irreplaceable record of the histories of the many societies that have lived in the region over past millennia. Associated paleoecological deposits provide powerful proxy evidence for paleoclimate and ecosystem structure and function and direct evidence of species diversity, distributions, and genetic variability. Archaeological records can span most of the Holocene (the past ∼12,000 years), depending upon location, and paleoecological records extend even further. Most are largely unstudied, and, although extremely vulnerable to destruction, they are poorly monitored and not well protected. Yet these records are key to understanding how the Arctic has functioned as a system, how humans were integrated into it, and how humans may have shaped it. Such records provide a wide range of data that are not obtainable from sources such as ice and ocean cores; these data are needed for understanding the past, assessing current and projecting future conditions, and adapting to ongoing change.

  7. Status of Wind-Diesel Applications in Arctic Climates: Preprint

    SciTech Connect

    Baring-Gould, I.; Corbus, D.

    2007-12-01

    The rising cost of diesel fuel and the environmental regulation for its transportation, use, and storage, combined with the clear impacts of increased arctic temperatures, is driving remote communities to examine alternative methods of providing power. Over the past few years, wind energy has been increasingly used to reduce diesel fuel consumption, providing economic, environmental, and security benefits to the energy supply of communities from Alaska to Antarctica. This summary paper describes the current state of wind-diesel systems, reviews the operation of wind-diesel plants in cold climates, discusses current research activities pertaining to these systems, and addresses their technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems in Alaska will be reviewed. Specific focus will also be given to the control of power systems with large amounts of wind generation and the complexities of replacing diesel engine waste heat with excess wind energy, a key factor in assessing power plants for retrofit. A brief overview of steps for assessing the viability of retrofitting diesel power systems with wind technologies will also be provided. Because of the large number of isolated diesel minigrids, the market for adding wind to these systems is substantial, specifically in arctic climates and on islands that rely on diesel-only power generation.

  8. Relating Regional Arctic Sea Ice and climate extremes over Europe

    NASA Astrophysics Data System (ADS)

    Ionita-Scholz, Monica; Grosfeld, Klaus; Lohmann, Gerrit; Scholz, Patrick

    2016-04-01

    The potential increase of temperature extremes under climate change is a major threat to society, as temperature extremes have a deep impact on environment, hydrology, agriculture, society and economy. Hence, the analysis of the mechanisms underlying their occurrence, including their relationships with the large-scale atmospheric circulation and sea ice concentration, is of major importance. At the same time, the decline in Arctic sea ice cover during the last 30 years has been widely documented and it is clear that this change is having profound impacts at regional as well as planetary scale. As such, this study aims to investigate the relation between the autumn regional sea ice concentration variability and cold winters in Europe, as identified by the numbers of cold nights (TN10p), cold days (TX10p), ice days (ID) and consecutive frost days (CFD). We analyze the relationship between Arctic sea ice variation in autumn (September-October-November) averaged over eight different Arctic regions (Barents/Kara Seas, Beaufort Sea, Chukchi/Bering Seas, Central Arctic, Greenland Sea, Labrador Sea/Baffin Bay, Laptev/East Siberian Seas and Northern Hemisphere) and variations in atmospheric circulation and climate extreme indices in the following winter season over Europe using composite map analysis. Based on the composite map analysis it is shown that the response of the winter extreme temperatures over Europe is highly correlated/connected to changes in Arctic sea ice variability. However, this signal is not symmetrical for the case of high and low sea ice years. Moreover, the response of temperatures extreme over Europe to sea ice variability over the different Arctic regions differs substantially. The regions which have the strongest impact on the extreme winter temperature over Europe are: Barents/Kara Seas, Beaufort Sea, Central Arctic and the Northern Hemisphere. For the years of high sea ice concentration in the Barents/Kara Seas there is a reduction in the number

  9. Influence of global climatic processes on environment The Arctic seas

    NASA Astrophysics Data System (ADS)

    Kholmyansky, Mikhael; Anokhin, Vladimir; Kartashov, Alexandr

    2016-04-01

    One of the most actual problems of the present is changes of environment of Arctic regions under the influence of global climatic processes. Authors as a result of the works executed by them in different areas of the Russian Arctic regions, have received the materials characterising intensity of these processes. Complex researches are carried out on water area and in a coastal zone the White, the Barents, the Kara and the East-Siberian seas, on lake water areas of subarctic region since 1972 on the present. Into structure of researches enter: hydrophysical, cryological observations, direct measurements of temperatures, the analysis of the drill data, electrometric definitions of the parametres of a frozen zone, lithodynamic and geochemical definitions, geophysical investigations of boreholes, studying of glaciers on the basis of visual observations and the analysis of photographs. The obtained data allows to estimate change of temperature of a water layer, deposits and benthonic horizon of atmosphere for last 25 years. On the average they make 0,38⁰C for sea waters, 0,23⁰C for friable deposits and 0,72⁰C for atmosphere. Under the influence of temperature changes in hydrosphere and lithosphere of a shelf cryolithic zone changes the characteristics. It is possible to note depth increase of roof position of the cryolithic zone on the most part of the studied water area. Modern fast rise in temperature high-ice rocks composing coast, has led to avalanche process thermo - denudation and to receipt in the sea of quantity of a material of 1978 three times exceeding level Rise in temperature involves appreciable deviation borders of the Arctic glacial covers. On our monitoring measurements change of the maintenance of oxygen in benthonic area towards increase that is connected with reduction of the general salinity of waters at the expense of fresh water arriving at ice thawing is noticed. It, in turn, leads to change of a biogene part of ecosystem. The executed

  10. Arctic Sea Ice Thickness Distribution as an Indicator of Arctic Climate Change - Synthesis of Model Results and Observations

    NASA Astrophysics Data System (ADS)

    Maslowski, Wieslaw; Clement Kinney, Jaclyn; Jakacki, Jaromir; Osinski, Robert; Zwally, Jay

    2010-05-01

    The Arctic region is an integral part of the Earth's climate system through its influence on global surface energy and moisture fluxes and on atmospheric and oceanic circulation. Within the Arctic, its sea ice cover is possibly the most sensitive indicator of the polar amplified global warming and of the state of Arctic climate system as a whole. Hence changes in Arctic climate and the decline of multi-year sea ice cover have significant ramifications to the entire pan-Arctic region and beyond. Having the recorded average global surface temperature about 0.54°C (0.96°F) above the 20th Century average the decade of 2000-2009 has been the warmest of the 130-year record, with the maximum positive temperatures anomalies in the northern high latitude regions. Satellite records of the Arctic sea ice show a decreasing and accelerating trend in ice extent and concentration since the late 1979, as a result of the global warming. More importantly there is growing evidence that the Arctic sea ice thickness and volume have been decreasing at even faster rate. This means that our knowledge of the Arctic sea ice melt might be significantly biased due to the interpretation of 2-dimensional sea ice extent / concentration records only instead of ice thickness and volume. The rates of recent ice thickness and volume melt derived from our pan-Arctic coupled ice-ocean model results combined with recent remotely sensed data suggest an accelerating negative trend. This trend is robust and lends credence to the postulation that the Arctic not only might but it is likely to be ice-free during the summer in the near future. However, global climate models vary widely in their predictions of warming and the rate of Arctic ice melt, suggesting it may take anywhere from a couple of decades to more than a century to melt most of the summer sea ice cover. Also many regional models are limited in their representation of the rapid Arctic sea ice thinning and volume loss. The inability of models

  11. Arctic Council Nations Could Encourage Development of Climate Indicator: Flux to the Atmosphere from Arctic Permafrost Carbon

    NASA Astrophysics Data System (ADS)

    Ekwurzel, B.; Yona, L.; Natali, S.; Holmes, R. M.; Schuur, E.

    2015-12-01

    Permafrost regions store almost twice the carbon in the atmosphere (Tarnocai et al 2009). As climate warms a proportion of this carbon will be released as carbon dioxide and methane. The Arctic Council may be best suited to harness international scientific collaboration for policy relevant knowledge about the global impacts of permafrost thaw. Scientists in Arctic Council and observer states have historically collaborated on permafrost research (e.g. Permafrost Carbon Network, part of Study of Environmental Arctic Change (SEARCH) project). This work increased knowledge of permafrost carbon pool size and vulnerability. However, data gaps persist across the Arctic. Despite gaps, numerous studies directly inform international policy negotiations aiming to stay below 2° C. Some suggest "permafrost carbon feedback" may comprise 3 to 11% of total allowed emissions through 2100 under a RCP4.5 (Schaefer et al2014). Understanding and accounting for future permafrost atmospheric carbon release requires science and policy coordination that the Arctic Council could incentivize. For example, Council nations could convene scientists and stakeholders to develop a Permafrost-Climate Indicator providing more direct decision support than current permafrost indicators, and identify research needed for a periodic estimate of Arctic permafrost CO2 and CH4 emissions. This presentation covers current challenges scientists and policymakers may face to develop a practical and robust Permafrost Climate Indicator. For example, which timescales are most appropriate for international emissions commitments? Do policy-relevant timescales align with current scientific knowledge? What are the uncertainties and how can they be decreased? We present likely strengths and challenges of a Permafrost Climate Indicator co-developed by scientists and stakeholders. Potential greenhouse gas atmospheric flux from Arctic permafrost carbon may be greater than some nations' United Nations emissions reductions

  12. International conference on physiological process studies in the Arctic: (Implications for ecosystems response to climate change)

    SciTech Connect

    Chapin, F.S. II.

    1991-01-01

    The conference on physiological process studies in the Arctic was held in Toronto, Canada, to summarize the current understanding of plant physiological processes in the Arctic. Participants reviewed the current understanding of arctic ecophysiology and discussed the role of physiology in controlling ecosystem processes such as productivity and nutrient cycling. Emphasis was placed on ways in which ecophysiological studies might provide insight into possible responses of arctic ecosystems to global climatic change. The major conclusions of the workshop were that, although we know a great deal about the adaptations of arctic plants to their physical environment, the biotic interactions among plants and between plants and other organisms are more important in governing the distribution of plants in the Arctic. Future research in arctic physiological ecology should emphasize biotic interactions, feedbacks and time lags that modify plant response to environment, and the roles that plants play as regulators of ecosystem processes.

  13. Relevance of hydro-climatic change projection and monitoring for assessment of water cycle changes in the Arctic.

    PubMed

    Bring, Arvid; Destouni, Georgia

    2011-06-01

    Rapid changes to the Arctic hydrological cycle challenge both our process understanding and our ability to find appropriate adaptation strategies. We have investigated the relevance and accuracy development of climate change projections for assessment of water cycle changes in major Arctic drainage basins. Results show relatively good agreement of climate model projections with observed temperature changes, but high model inaccuracy relative to available observation data for precipitation changes. Direct observations further show systematically larger (smaller) runoff than precipitation increases (decreases). This result is partly attributable to uncertainties and systematic bias in precipitation observations, but still indicates that some of the observed increase in Arctic river runoff is due to water storage changes, for example melting permafrost and/or groundwater storage changes, within the drainage basins. Such causes of runoff change affect sea level, in addition to ocean salinity, and inland water resources, ecosystems, and infrastructure. Process-based hydrological modeling and observations, which can resolve changes in evapotranspiration, and groundwater and permafrost storage at and below river basin scales, are needed in order to accurately interpret and translate climate-driven precipitation changes to changes in freshwater cycling and runoff. In contrast to this need, our results show that the density of Arctic runoff monitoring has become increasingly biased and less relevant by decreasing most and being lowest in river basins with the largest expected climatic changes. PMID:21809779

  14. Relevance of hydro-climatic change projection and monitoring for assessment of water cycle changes in the Arctic.

    PubMed

    Bring, Arvid; Destouni, Georgia

    2011-06-01

    Rapid changes to the Arctic hydrological cycle challenge both our process understanding and our ability to find appropriate adaptation strategies. We have investigated the relevance and accuracy development of climate change projections for assessment of water cycle changes in major Arctic drainage basins. Results show relatively good agreement of climate model projections with observed temperature changes, but high model inaccuracy relative to available observation data for precipitation changes. Direct observations further show systematically larger (smaller) runoff than precipitation increases (decreases). This result is partly attributable to uncertainties and systematic bias in precipitation observations, but still indicates that some of the observed increase in Arctic river runoff is due to water storage changes, for example melting permafrost and/or groundwater storage changes, within the drainage basins. Such causes of runoff change affect sea level, in addition to ocean salinity, and inland water resources, ecosystems, and infrastructure. Process-based hydrological modeling and observations, which can resolve changes in evapotranspiration, and groundwater and permafrost storage at and below river basin scales, are needed in order to accurately interpret and translate climate-driven precipitation changes to changes in freshwater cycling and runoff. In contrast to this need, our results show that the density of Arctic runoff monitoring has become increasingly biased and less relevant by decreasing most and being lowest in river basins with the largest expected climatic changes.

  15. Arctic sea ice cover in connection with climate change

    NASA Astrophysics Data System (ADS)

    Alekseev, G. V.; Aleksandrov, E. I.; Glok, N. I.; Ivanov, N. E.; Smolyanitsky, V. M.; Kharlanenkova, N. E.; Yulin, A. V.

    2015-12-01

    Recently published studies on key issues in the evolution of Arctic sea ice cover are reviewed and attempts to answer disputable questions are made in the research part of the work. It is shown that climate warming, manifested in an increase in the surface air temperature, and reduction in the ice cover develop with a high degree of agreement in summer. Based on this fact, anomalies of the September ice-cover area have been retrieved from 1900. They show a significant decrease in the 1930-1940s, which is almost twice as low as in 2007-2012. The influence of fluctuations in the flow of warm and salty Atlantic water is noted in variations in the winter maximum of the ice-cover area in the Barents Sea. An accelerated positive trend has been ascertained for the air temperature in late autumn-early winter in 1993-2012 due to an increase in the open water area in late summer. Inherent regularities of the ice-cover-area variability made it possible to develop a prediction of the monthly values of sea-ice extent with a head time from 6 months to 2 years. Their strong correlation with summer air temperature is used to estimate the onset of summer ice clearance in the Arctic.

  16. Modeling dynamics of circum-arctic tundra plant communities in response to climate warming and grazing pressure

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Epstein, H. E.; Walker, D. A.; Forbes, B. C.; Vors, L. S.

    2011-12-01

    The Arctic is a complex system with strong interconnectedness among system components. Understanding the responses of the arctic tundra biome to a changing climate requires knowledge of the complex interactions among climate, soils, and the biological system. In this study, we investigate the individual and interactive effects of projected climate change and reindeer/caribou grazing across a variety of climate zones and soil nutrient levels on tundra plant community dynamics using an arctic vegetation model - ArcVeg. Our research questions include: 1) How does soil nutrient availability affect tundra vegetation responses to projected climate warming? 2) How does grazing affect tundra vegetation responses? 3) How do interactions of soil nutrients, climate warming and grazing affect tundra vegetation? We based our simulations on A1B scenario temperature data from the Intergovernmental Panel on Climate Change (IPCC), soil organic nitrogen data from Terrestrial Ecosystem Model (TEM) simulations and grazing pressure derived from reindeer/caribou population data from the CircumArctic Rangifer Monitoring and Assessment Network (CARMA). We found that in general tundra communities responded to warming with increased plant biomass, but the magnitude of the response is affected by the bioclimate zones, warming magnitude, available soil nutrients and grazing pressures. Regions with greater soil organic nitrogen responded to warming with greater biomass increase, Low Arctic tundra tended to have greater biomass increase than High Arctic tundra due to greater shrub abundance. However, such responses are mitigated by grazing. Regions with greater reindeer population and thus greater grazing intensity tended to have stronger negative effects on plant responses to warming than regions with less grazing. For example, in Subzone D, total biomass and NPP increases due to warming were about 71% and 43% in an Alaskan low grazing-intensity region, but 63% and 36% in a northwestern Canada

  17. Modelling the impact of climate change on the atmospheric transport and the fate of persistent organic pollutants in the Arctic

    NASA Astrophysics Data System (ADS)

    Hansen, K. M.; Christensen, J. H.; Geels, C.; Silver, J. D.; Brandt, J.

    2015-06-01

    The Danish Eulerian Hemispheric Model (DEHM) was applied to investigate how projected climate changes will affect the atmospheric transport of 13 persistent organic pollutants (POPs) to the Arctic and their environmental fate within the Arctic. Three sets of simulations were performed, one with present day emissions and initial environmental concentrations from a 20-year spin-up simulation, one with present day emissions and with initial environmental concentrations set to zero and one without emissions but with initial environmental concentrations from the 20-year spin-up simulation. Each set of simulations consisted of two 10-year time slices representing the present (1990-2000) and future (2090-2100) climate conditions. DEHM was driven using meteorological input from the global circulation model, ECHAM/MPI-OM, simulating the SRES (Special Report on Emissions Scenarios) A1B climate scenario. Under the applied climate and emission scenarios, the total mass of all compounds was predicted to be up to 55 % lower across the Northern Hemisphere at the end of the 2090s than in the 1990s. The mass of HCHs within the Arctic was predicted to be up to 38 % higher, whereas the change in mass of the PCBs was predicted to range from 38 % lower to 17 % higher depending on the congener and the applied initial environmental concentrations. The results of this study also indicate that contaminants with no or a short emission history will be more rapidly transported to and build up in the arctic environment in a future warmer climate. The process that dominates the environmental behaviour of POPs in the Arctic under a future warmer climate scenario is the shift in mass of POPs from the surface media to the atmosphere induced by the higher mean temperature. This is to some degree counteracted by higher degradation rates also following the higher mean temperature. The more dominant of these two processes depends on the physical-chemical properties of the compounds. Previous model

  18. COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL

    SciTech Connect

    Gutowski, William J.

    2013-02-07

    The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

  19. Climate change in the North American Arctic: A one health perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change is expected to increase the prevalence of acute and chronic diseases among human and animal populations within the Arctic and sub-Arctic latitudes of North America. Warmer temperatures are expected to increase disease risks from food-borne pathogens, water-borne diseases, and vector-...

  20. Biased thermohaline exchanges with the Arctic across the Iceland-Faroe Ridge in ocean climate models

    NASA Astrophysics Data System (ADS)

    Olsen, S. M.; Hansen, B.; Østerhus, S.; Quadfasel, D.; Valdimarsson, H.

    2016-04-01

    The northern limb of the Atlantic thermohaline circulation and its transport of heat and salt towards the Arctic strongly modulate the climate of the Northern Hemisphere. The presence of warm surface waters prevents ice formation in parts of the Arctic Mediterranean, and ocean heat is directly available for sea-ice melt, while salt transport may be critical for the stability of the exchanges. Through these mechanisms, ocean heat and salt transports play a disproportionally strong role in the climate system, and realistic simulation is a requisite for reliable climate projections. Across the Greenland-Scotland Ridge (GSR) this occurs in three well-defined branches where anomalies in the warm and saline Atlantic inflow across the shallow Iceland-Faroe Ridge (IFR) have been shown to be particularly difficult to simulate in global ocean models. This branch (IF-inflow) carries about 40 % of the total ocean heat transport into the Arctic Mediterranean and is well constrained by observation during the last 2 decades but associated with significant inter-annual fluctuations. The inconsistency between model results and observational data is here explained by the inability of coarse-resolution models to simulate the overflow across the IFR (IF-overflow), which feeds back onto the simulated IF-inflow. In effect, this is reduced in the model to reflect only the net exchange across the IFR. Observational evidence is presented for a substantial and persistent IF-overflow and mechanisms that qualitatively control its intensity. Through this, we explain the main discrepancies between observed and simulated exchange. Our findings rebuild confidence in modelled net exchange across the IFR, but reveal that compensation of model deficiencies here through other exchange branches is not effective. This implies that simulated ocean heat transport to the Arctic is biased low by more than 10 % and associated with a reduced level of variability, while the quality of the simulated salt

  1. Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)

    SciTech Connect

    Cassano, John

    2011-05-15

    The primary outcome of the project was the development of the Regional Arctic System Model (RASM) and evaluation of its individual model components, coupling among them and fully coupled model results. Overall, we have demonstrated that RASM produces realistic mean and seasonal surface climate as well as its interannual and decadal variability and trends.

  2. Permafrost-Affected Soils of the Russian Arctic and their Carbon Pools

    NASA Astrophysics Data System (ADS)

    Zubrzycki, S.; Kutzbach, L.; Pfeiffer, E.-M.

    2014-02-01

    Permafrost-affected soils have accumulated enormous pools of organic matter during the Quaternary Period. The area occupied by these soils amounts to more than 8.6 million km2, which is about 27% of all land areas north of 50° N. Therefore, permafrost-affected soils are considered to be one of the most important cryosphere elements within the climate system. Due to the cryopedogenic processes that form these particular soils and the overlying vegetation that is adapted to the arctic climate, organic matter has accumulated to the present extent of up to 1024 Pg (1 Pg = 1015 g = 1 Gt) of soil organic carbon stored within the uppermost three meters of ground. Considering the observed progressive climate change and the projected polar amplification, permafrost-affected soils will undergo fundamental property changes. Higher turnover and mineralization rates of the organic matter are consequences of these changes, which are expected to result in an increased release of climate-relevant trace gases into the atmosphere. As a result, permafrost regions with their distinctive soils are likely to trigger an important tipping point within the global climate system, with additional political and social implications. The controversy of whether permafrost regions continue accumulating carbon or already function as a carbon source remains open until today. An increased focus on this subject matter, especially in underrepresented Siberian regions, could contribute to a more robust estimation of the soil organic carbon pool of permafrost regions and at the same time improve the understanding of the carbon sink and source functions of permafrost-affected soils.

  3. Dynamics of Arctic and Sub-Arctic Climate and Atmospheric Circulation: Diagnosis of Mechanisms and Biases Using Data Assimilation

    SciTech Connect

    Eric T. DeWeaver

    2010-02-17

    The overall goal of work performed under this grant is to enhance understanding of simulations of present-day climate and greenhouse gas-induced climate change. The examination of present-day climate also includes diagnostic intercomparison of model simulations and observed mean climate and climate variability using reanalysis and satellite datasets. Enhanced understanding is desirable 1) as a prerequisite for improving simulations; 2) for assessing the credibility of model simulations and their usefulness as tools for decision support; and 3) as a means to identify robust behaviors which commonly occur over a wide range of models, and may yield insights regarding the dominant physical mechanisms which determine mean climate and produce climate change. A further objective is to investigate the use of data assimilation as a means for examining and correcting model biases. Our primary focus is on the Arctic, but the scope of the work was expanded to include the global climate system.

  4. Modelling impact of climate change on atmospheric transport and fate of persistent organic pollutants in the Arctic

    NASA Astrophysics Data System (ADS)

    Hansen, K. M.; Christensen, J. H.; Geels, C.; Silver, J. D.; Brandt, J.

    2015-03-01

    The Danish Eulerian Hemispheric Model (DEHM) was applied to investigate how projected climate changes will affect the atmospheric transport of 13 persistent organic pollutants (POPs) to the Artic and their environmental fate within the Arctic. Two sets of simulations were performed, one with initial environmental concentrations from a 20 year spin-up simulation and one with initial environmental concentrations set to zero. Each set of simulations consisted of two ten-year time slices representing the present (1990-2000) and future (2090-2100) climate conditions. The same POP emissions were applied in all simulations to ensure that the difference in predicted concentrations for each set of simulations only arises from the difference in climate input. DEHM was driven using meteorological input from the global circulation model, ECHAM/MPI-OM, simulating the SRES A1B climate scenario. Under the applied climate and emission scenarios, the total mass of all compounds was predicted to be up to 20% higher across the Northern Hemisphere. The mass of HCHs within the Arctic was predicted to be up to 39% higher, whereas the change in mass of the PCBs was predicted to range from 14% lower to 17% higher depending on the congener and the applied initial environmental concentrations. The results of this study also indicate that contaminants with no or a short emission history will be more rapidly transported to and build up in the arctic environment in a future warmer climate. The process that dominates the environmental behaviour of POPs in the Arctic under a future warmer climate scenario is the shift in mass of POPs from the surface media to the atmosphere induced by the higher mean temperature. This is to some degree counteracted by higher degradation rates also following the higher mean temperature. The more dominant of these two processes depend on the physical-chemical properties of the compounds. Previous model studies have predicted that the effect of a changed climate on

  5. Arctic marine climate of the early nineteenth century

    NASA Astrophysics Data System (ADS)

    Brohan, P.; Ward, C.; Willetts, G.; Wilkinson, C.; Allan, R.; Wheeler, D.

    2010-05-01

    The climate of the early nineteenth century is likely to have been significantly cooler than that of today, as it was a period of low solar activity (the Dalton minimum) and followed a series of large volcanic eruptions. Proxy reconstructions of the temperature of the period do not agree well on the size of the temperature change, so other observational records from the period are particularly valuable. Weather observations have been extracted from the reports of the noted whaling captain William Scoresby Jr., and from the records of a series of Royal Navy expeditions to the Arctic, preserved in the UK National Archives. They demonstrate that marine climate in 1810-1825 was marked by consistently cold summers, with abundant sea-ice. But although the period was significantly colder than the modern average, there was considerable variability: in the Greenland Sea the summers following the Tambora eruption (1816 and 1817) were noticeably warmer, and had less sea-ice coverage, than the years immediately preceding them; and the sea-ice coverage in Lancaster Sound in 1819 and 1820 was low even by modern standards.

  6. Arctic marine climate of the early nineteenth century

    NASA Astrophysics Data System (ADS)

    Brohan, P.; Ward, C.; Willetts, G.; Wilkinson, C.; Allan, R.; Wheeler, D.

    2010-02-01

    The climate of the early nineteenth century is likely to have been significantly cooler than that of today, as it was a period of low solar activity (the Dalton minimum) and followed a series of large volcanic eruptions. Proxy reconstructions of the temperature of the period do not agree well on the size of the temperature change, so other observational records from the period are particularly valuable. Weather observations have been extracted from the reports of the noted whaling captain William Scoresby Jr., and from the records of a series of Royal Navy expeditions to the Arctic, preserved in the UK National Archives. They demonstrate that marine climate in 1810-25 was marked by consistently cold summers, with abundant sea-ice. But although the period was significantly colder than the modern average, there was a lot of variability: in the Greenland Sea the summers following the Tambora eruption (1816 and 1817) were noticeably warmer, and had lower sea-ice coverage, than the years immediately preceding them; and the sea-ice coverage in Lancaster Sound in 1819 and 1820 was low even by modern standards.

  7. The effect on Arctic climate of atmospheric meridional energy-transport changes studied based on the CESM climate model

    NASA Astrophysics Data System (ADS)

    Grand Graversen, Rune

    2016-04-01

    The Arctic amplification of global warming and the pronounced Arctic sea-ice retreat constitute some of the most alarming signs of global climate change. These Arctic changes are likely a consequence of a combination of several processes, for instance enhanced uptake of solar radiation in the Arctic due to a lowering of the planetary albedo, and increase in the local Arctic greenhouse effect due to enhanced moister flux from lower latitudes. Many of the proposed processes appear to be dependent on each other, for instance an increase in water-vapour advection to the Arctic enhances the greenhouse effect in the Arctic and the longwave radiation to the surface which melts the sea ice and causes an increase in absorption of solar radiation. The effects of albedo changes have been investigated in earlier studies based on model experiments designed to examine these effects specifically. Here we instead focus on the effects of meridional transport changes into the Arctic, both of water vapour and dry-static energy. Hence we here present results of model experiments with the CESM climate model designed specifically to extract the effects of the changes of the two transport components.

  8. Arctic Warmth Becomes a Mid-Latitude Chill: Using Online Data To Teach Climate Change Science

    NASA Astrophysics Data System (ADS)

    Eichorn, David N.

    Climate change education is a growing sub-discipline of science education. This research reports on the use of the fundamental principles of atmospheric science to explain the potential impact of regional climate change across global latitudes. Since the Arctic is responding to climate change faster than any other place on earth, it offers us a real-time opportunity to teach the larger scale impacts of abrupt regional scale change. In this research I merged elements of both the atmospheric and climate sciences into an online course. The course uses principles of meteorology to teach climate change science and demonstrate cause and effect relationships within the atmosphere. Students learn how climate change in one part of the world impacts weather elsewhere through the use of animated and descriptive video lectures that explain basic atmospheric thermodynamics processes. This paper includes a lesson plan that shows how climatic warming in the Arctic causes colder US winter weather. Formative and summative evaluations taken from course evaluations and exams suggest using meteorology to teach climate change is an effective way to educate students in high school and undergraduate college level courses about cross latitudinal influences of climate change. Keywords: Climate Change, Global Warming, Arctic, Climate Literacy, Lesson Plan, Arctic Oscillation, Education

  9. On the Influence of North Pacific Sea Surface Temperature on the Arctic Winter Climate

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Newman, P. A.; Garfinkel, C. I.

    2012-01-01

    Differences between two ensembles of Goddard Earth Observing System Chemistry-Climate Model simulations isolate the impact of North Pacific sea surface temperatures (SSTs) on the Arctic winter climate. One ensemble of extended winter season forecasts is forced by unusually high SSTs in the North Pacific, while in the second ensemble SSTs in the North Pacific are unusually low. High Low differences are consistent with a weakened Western Pacific atmospheric teleconnection pattern, and in particular, a weakening of the Aleutian low. This relative change in tropospheric circulation inhibits planetary wave propagation into the stratosphere, in turn reducing polar stratospheric temperature in mid- and late winter. The number of winters with sudden stratospheric warmings is approximately tripled in the Low ensemble as compared with the High ensemble. Enhanced North Pacific SSTs, and thus a more stable and persistent Arctic vortex, lead to a relative decrease in lower stratospheric ozone in late winter, affecting the April clear-sky UV index at Northern Hemisphere mid-latitudes.

  10. Methane emissions from Alaska arctic tundra in response to climatic change

    SciTech Connect

    Livingston, G.P.; Morrissey, L.A.

    1992-03-01

    In situ observations of methane emissions from the Alaska North Slope in 1987 and 1989 provide insight into the environmental interactions regulating methane emissions and into the local- and regional-scale response of the arctic tundra to interannual environmental variability. Inferences regarding climate change are based on in situ measurements of methane emissions, regional landscape characterizations derived from Landsat Multispectral Scanner satellite data, and projected regional scale emissions based on observed interannual temperature differences and simulated changes in the spatial distribution of methane emissions. Results suggest that biogenic methane emissions from arctic tundra will be significantly perturbed by climatic change, leading to warmer summer soil temperatures and to vertical displacement of the regional water table. The effect of increased soil temperatures on methane emissions resulting from anaerobic decomposition in northern wetlands will be to both increase total emissions and to increase interannual and seasonal variability. The magnitude of these effects will be determined by those factors affecting the areal distribution of methane emission rates through regulation of the regional water table. At local scales, the observed 4.7 C increase in mid-summer soil temperatures between 1987 and 1989 resulted in a 3.2-fold increase in the rate of methane emissions from anaerobic soils.

  11. Diverging Plant and Ecosystem Strategies in Response to Climate Change in the High Arctic

    NASA Astrophysics Data System (ADS)

    Maseyk, K. S.; Welker, J. M.; Czimczik, C. I.; Lupascu, M.; Lett, C.; Seibt, U. H.

    2014-12-01

    Increasing summer precipitation means Arctic growing seasons are becoming wetter as well as warmer, but the effect of these coupled changes on tundra ecosystem functioning remains largely unknown. We have determined how warmer and wetter summers affect coupled carbon-water cycling in a High Arctic polar semi-desert ecosystem in NW Greenland. Measurements of ecosystem CO2 and water fluxes throughout the growing season and leaf ecophysiological traits (gas exchange, morphology, leaf chemistry) were made at a long-term climate change experiment. After 9 years of exposure to warmer (+ 4°C) and / or wetter (+ 50% precipitation) treatments, we found diverging plant strategies between the responses to warming with or without an increase in summer precipitation. Warming alone resulted in an increase in leaf nitrogen, mesophyll conductance and leaf-mass per area and higher rates of leaf-level photosynthesis, but with warming and wetting combined leaf traits remain largely unchanged. However, total leaf area increased with warming plus wetting but was unchanged with warming alone. The combined effect of these leaf trait and canopy adjustments is a decrease in ecosystem water-use efficiency (the ratio of net productivity to evapotranspiration) with warming only, but a substantial increase with combined warming and wetting. We conclude that increasing summer precipitation will alter tundra ecohydrological responses to warming; that leaf-level changes in ecophysiological traits have an upward cascading consequence for ecosystem and land surface-climate interactions; and the current relative resistance of High Arctic ecosystems to warming may mask biochemical and carbon cycling changes already underway.

  12. Modeling non-sorted circles along low Arctic climate gradient, Dalton highway, Alaska

    NASA Astrophysics Data System (ADS)

    Nicolsky, D. J.; Romanovsky, V. E.; Tipenko, G. S.; Walker, D. A.

    2005-12-01

    This research investigates cryoturbation processes in the Arctic tundra, and mechanisms that cause differential frost heave in the active layer. The project explores the influence of seasonal freeze/thaw cycles on the dynamics of frost boils north of the Alaska's Brook Range. The main question to be addressed is, "How changes in surface conditions such as vegetation, snow cover and climate affect the seasonal dynamics of water and heat within frost-boil systems?" A coupled thermo-mechanical model of the frost boil phenomena based on principles of non-smooth thermo-mechanics is presented. The soil is treated as a heterogeneous fully saturated mixture of ice, water and soil particles, which obeys laws of elasticity for slow deformations in a porous media. The pore water migration towards the freezing zone and its consequent freezing are the main driving forces of the soil deformation. The model includes the heat and mass conservation laws, continuity equation, the Clapeyron's equation, and an empirical formula, which relates unfrozen water content to temperature. We applied this model to investigate the sensitivity of a predicted differential frost heave, to thermo-rheological properties of the soil and other physical parameters. The model shows that the soil texture plays the decisive role in creating the differential frost heave. Modeling of frost-boil systems along the Arctic gradient and reaction of them to changes in climate, in the active layer depth and in vegetation cover is performed by specifying boundary conditions and soil properties. Using this model we explore interaction between vegetation cover and thermo-mechanical processes at several sites along the Dalton highway in the Arctic tundra.

  13. Dangerous climate change and the importance of adaptation for the Arctic's Inuit population

    NASA Astrophysics Data System (ADS)

    Ford, James D.

    2009-04-01

    The Arctic's climate is changing rapidly, to the extent that 'dangerous' climate change as defined by the United Nations Framework on Climate Change might already be occurring. These changes are having implications for the Arctic's Inuit population and are being exacerbated by the dependence of Inuit on biophysical resources for livelihoods and the low socio-economic-health status of many northern communities. Given the nature of current climate change and projections of a rapidly warming Arctic, climate policy assumes a particular importance for Inuit regions. This paper argues that efforts to stabilize and reduce greenhouse gas emissions are urgent if we are to avoid runaway climate change in the Arctic, but unlikely to prevent changes which will be dangerous for Inuit. In this context, a new policy discourse on climate change is required for Arctic regions—one that focuses on adaptation. The paper demonstrates that states with Inuit populations and the international community in general has obligations to assist Inuit to adapt to climate change through international human rights and climate change treaties. However, the adaptation deficit, in terms of what we know and what we need to know to facilitate successful adaptation, is particularly large in an Arctic context and limiting the ability to develop response options. Moreover, adaptation as an option of response to climate change is still marginal in policy negotiations and Inuit political actors have been slow to argue the need for adaptation assistance. A new focus on adaptation in both policy negotiations and scientific research is needed to enhance Inuit resilience and reduce vulnerability in a rapidly changing climate.

  14. Year-round effects of climate on demographic parameters of an arctic-nesting goose species.

    PubMed

    van Oudenhove, Louise; Gauthier, Gilles; Lebreton, Jean-Dominique

    2014-11-01

    Understanding how climate change will affect animal population dynamics remains a major challenge, especially in long-distant migrants exposed to different climatic regimes throughout their annual cycle. We evaluated the effect of temperature throughout the annual cycle on demographic parameters (age-specific survival and recruitment, breeding propensity and fecundity) of the greater snow goose (Chen caerulescens atlantica L.), an arctic-nesting species. As this is a hunted species, we used the theory of exploited populations to estimate hunting mortality separately from natural mortality in order to evaluate climatic effects only on the latter form of mortality. Our analysis was based on a 22-year marking study (n = 27,150 females) and included live recaptures at the breeding colony and dead recoveries from hunters. We tested the effect of climatic covariates by applying a procedure that accounts for unexplained environmental variation in the demographic parameter to a multistate capture-mark-recapture recruitment model. Breeding propensity, clutch size and hatching probability all increased with high temperatures on the breeding grounds. First-year survival to natural causes of mortality increased when temperature was high at the end of the summer, whereas adult survival was not affected by temperature. On the contrary, accession to reproduction decreased with warmer climatic conditions during the non-breeding season. Survival was strongly negatively related to hunting mortality in adults, as expected, but not in first-year birds, which suggests the possibility of compensation between natural and hunting mortality in the latter group. We show that events occurring both at and away from the breeding ground can affect the demography of migratory birds, either directly or through carryover effects, and sometimes in opposite ways. This highlights the need to account for the whole life cycle of an animal when attempting to project the response of populations to future

  15. Year-round effects of climate on demographic parameters of an arctic-nesting goose species.

    PubMed

    van Oudenhove, Louise; Gauthier, Gilles; Lebreton, Jean-Dominique

    2014-11-01

    Understanding how climate change will affect animal population dynamics remains a major challenge, especially in long-distant migrants exposed to different climatic regimes throughout their annual cycle. We evaluated the effect of temperature throughout the annual cycle on demographic parameters (age-specific survival and recruitment, breeding propensity and fecundity) of the greater snow goose (Chen caerulescens atlantica L.), an arctic-nesting species. As this is a hunted species, we used the theory of exploited populations to estimate hunting mortality separately from natural mortality in order to evaluate climatic effects only on the latter form of mortality. Our analysis was based on a 22-year marking study (n = 27,150 females) and included live recaptures at the breeding colony and dead recoveries from hunters. We tested the effect of climatic covariates by applying a procedure that accounts for unexplained environmental variation in the demographic parameter to a multistate capture-mark-recapture recruitment model. Breeding propensity, clutch size and hatching probability all increased with high temperatures on the breeding grounds. First-year survival to natural causes of mortality increased when temperature was high at the end of the summer, whereas adult survival was not affected by temperature. On the contrary, accession to reproduction decreased with warmer climatic conditions during the non-breeding season. Survival was strongly negatively related to hunting mortality in adults, as expected, but not in first-year birds, which suggests the possibility of compensation between natural and hunting mortality in the latter group. We show that events occurring both at and away from the breeding ground can affect the demography of migratory birds, either directly or through carryover effects, and sometimes in opposite ways. This highlights the need to account for the whole life cycle of an animal when attempting to project the response of populations to future

  16. Rapid Arctic Changes due to Infrastructure and Climate (RATIC) in the Russian North

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Kofinas, G.; Raynolds, M. K.; Kanevskiy, M. Z.; Shur, Y.; Ambrosius, K.; Matyshak, G. V.; Romanovsky, V. E.; Kumpula, T.; Forbes, B. C.; Khukmotov, A.; Leibman, M. O.; Khitun, O.; Lemay, M.; Allard, M.; Lamoureux, S. F.; Bell, T.; Forbes, D. L.; Vincent, W. F.; Kuznetsova, E.; Streletskiy, D. A.; Shiklomanov, N. I.; Fondahl, G.; Petrov, A.; Roy, L. P.; Schweitzer, P.; Buchhorn, M.

    2015-12-01

    The Rapid Arctic Transitions due to Infrastructure and Climate (RATIC) initiative is a forum developed by the International Arctic Science Committee (IASC) Terrestrial, Cryosphere, and Social & Human working groups for developing and sharing new ideas and methods to facilitate the best practices for assessing, responding to, and adaptively managing the cumulative effects of Arctic infrastructure and climate change. An IASC white paper summarizes the activities of two RATIC workshops at the Arctic Change 2014 Conference in Ottawa, Canada and the 2015 Third International Conference on Arctic Research Planning (ICARP III) meeting in Toyama, Japan (Walker & Pierce, ed. 2015). Here we present an overview of the recommendations from several key papers and posters presented at these conferences with a focus on oil and gas infrastructure in the Russian north and comparison with oil development infrastructure in Alaska. These analyses include: (1) the effects of gas- and oilfield activities on the landscapes and the Nenets indigenous reindeer herders of the Yamal Peninsula, Russia; (2) a study of urban infrastructure in the vicinity of Norilsk, Russia, (3) an analysis of the effects of pipeline-related soil warming on trace-gas fluxes in the vicinity of Nadym, Russia, (4) two Canadian initiatives that address multiple aspects of Arctic infrastructure called Arctic Development and Adaptation to Permafrost in Transition (ADAPT) and the ArcticNet Integrated Regional Impact Studies (IRIS), and (5) the effects of oilfield infrastructure on landscapes and permafrost in the Prudhoe Bay region, Alaska.

  17. Climate change effects on human health in a gender perspective: some trends in Arctic research

    PubMed Central

    Natalia, Kukarenko

    2011-01-01

    Background Climate change and environmental pollution have become pressing concerns for the peoples in the Arctic region. Some researchers link climate change, transformations of living conditions and human health. A number of studies have also provided data on differentiating effects of climate change on women's and men's well-being and health. Objective To show how the issues of climate and environment change, human health and gender are addressed in current research in the Arctic. The main purpose of this article is not to give a full review but to draw attention to the gaps in knowledge and challenges in the Arctic research trends on climate change, human health and gender. Methods A broad literature search was undertaken using a variety of sources from natural, medical, social science and humanities. The focus was on the keywords. Results Despite the evidence provided by many researchers on differentiating effects of climate change on well-being and health of women and men, gender perspective remains of marginal interest in climate change, environmental and health studies. At the same time, social sciences and humanities, and gender studies in particular, show little interest towards climate change impacts on human health in the Arctic. As a result, we still observe the division of labour between disciplines, the disciplinary-bound pictures of human development in the Arctic and terminology confusion. Conclusion Efforts to bring in a gender perspective in the Arctic research will be successful only when different disciplines would work together. Multidisciplinary research is a way to challenge academic/disciplinary homogeneity and their boundaries, to take advantage of the diversity of approaches and methods in production of new integrated knowledge. Cooperation and dialogue across disciplines will help to develop adequate indicators for monitoring human health and elaborating efficient policies and strategies to the benefit of both women and men in the Arctic

  18. Adaptive strategies and life history characteristics in a warming climate: salmon in the Arctic?

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Ruggerone, Gregory T.; Zimmerman, Christian E.

    2013-01-01

    In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.

  19. The Rossby Centre Regional Atmospheric Climate Model part II: application to the Arctic climate.

    PubMed

    Jones, Colin G; Wyser, Klaus; Ullerstig, Anders; Willén, Ulrika

    2004-06-01

    The Rossby Centre regional climate model (RCA2) has been integrated over the Arctic Ocean as part of the international ARCMIP project. Results have been compared to observations derived from the SHEBA data set. The standard RCA2 model overpredicts cloud cover and downwelling longwave radiation, during the Arctic winter. This error was improved by introducing a new cloud parameterization, which significantly improves the annual cycle of cloud cover. Compensating biases between clear sky downwelling longwave radiation and longwave radiation emitted from cloud base were identified. Modifications have been introduced to the model radiation scheme that more accurately treat solar radiation interaction with ice crystals. This leads to a more realistic representation of cloud-solar radiation interaction. The clear sky portion of the model radiation code transmits too much solar radiation through the atmosphere, producing a positive bias at the top of the frequent boundary layer clouds. A realistic treatment of the temporally evolving albedo, of both sea-ice and snow, appears crucial for an accurate simulation of the net surface energy budget. Likewise, inclusion of a prognostic snow-surface temperature seems necessary, to accurately simulate near-surface thermodynamic processes in the Arctic.

  20. STRUCTURAL AND AFFECTIVE ASPECTS OF CLASSROOM CLIMATE.

    ERIC Educational Resources Information Center

    WALBERG, HERBERT J.

    USING THE CLASSROOM AS THE UNIT OF ANALYSIS A 25 PERCENT RANDOM SAMPLE OF STUDENTS IN 72 CLASSES FROM ALL PARTS OF THE COUNTRY TOOK THE CLASSROOM CLIMATE QUESTIONNAIRE IN ORDER TO INVESTIGATE THE RELATIONSHIP BETWEEN STRUCTURAL (ORGANIZATIONAL) AND AFFECTIVE (PERSONAL INTERACTION BETWEEN GROUP MEMBERS) DIMENSIONS OF GROUP CLIMATE. REGRESSION AND…

  1. Climate Change in the North American Arctic: A One Health Perspective.

    PubMed

    Dudley, Joseph P; Hoberg, Eric P; Jenkins, Emily J; Parkinson, Alan J

    2015-12-01

    Climate change is expected to increase the prevalence of acute and chronic diseases among human and animal populations within the Arctic and subarctic latitudes of North America. Warmer temperatures are expected to increase disease risks from food-borne pathogens, water-borne diseases, and vector-borne zoonoses in human and animal populations of Arctic landscapes. Existing high levels of mercury and persistent organic pollutant chemicals circulating within terrestrial and aquatic ecosystems in Arctic latitudes are a major concern for the reproductive health of humans and other mammals, and climate warming will accelerate the mobilization and biological amplification of toxic environmental contaminants. The adverse health impacts of Arctic warming will be especially important for wildlife populations and indigenous peoples dependent upon subsistence food resources from wild plants and animals. Additional research is needed to identify and monitor changes in the prevalence of zoonotic pathogens in humans, domestic dogs, and wildlife species of critical subsistence, cultural, and economic importance to Arctic peoples. The long-term effects of climate warming in the Arctic cannot be adequately predicted or mitigated without a comprehensive understanding of the interactive and synergistic effects between environmental contaminants and pathogens in the health of wildlife and human communities in Arctic ecosystems. The complexity and magnitude of the documented impacts of climate change on Arctic ecosystems, and the intimacy of connections between their human and wildlife communities, makes this region an appropriate area for development of One Health approaches to identify and mitigate the effects of climate warming at the community, ecosystem, and landscape scales.

  2. Arctic sea ice response to atmospheric forcings with varying levels of anthropogenic warming and climate variability

    NASA Astrophysics Data System (ADS)

    Zhang, Jinlun; Steele, Michael; Schweiger, Axel

    2010-10-01

    Numerical experiments are conducted to project arctic sea ice responses to varying levels of future anthropogenic warming and climate variability over 2010-2050. A summer ice-free Arctic Ocean is likely by the mid-2040s if arctic surface air temperature (SAT) increases 4°C by 2050 and climate variability is similar to the past relatively warm two decades. If such a SAT increase is reduced by one-half or if a future Arctic experiences a range of SAT fluctuation similar to the past five decades, a summer ice-free Arctic Ocean would be unlikely before 2050. If SAT increases 4°C by 2050, summer ice volume decreases to very low levels (10-37% of the 1978-2009 summer mean) as early as 2025 and remains low in the following years, while summer ice extent continues to fluctuate annually. Summer ice volume may be more sensitive to warming while summer ice extent more sensitive to climate variability. The rate of annual mean ice volume decrease relaxes approaching 2050. This is because, while increasing SAT increases summer ice melt, a thinner ice cover increases winter ice growth. A thinner ice cover also results in a reduced ice export, which helps to further slow ice volume loss. Because of enhanced winter ice growth, arctic winter ice extent remains nearly stable and therefore appears to be a less sensitive climate indicator.

  3. Mammalian herbivores confer resilience of Arctic shrub-dominated ecosystems to changing climate.

    PubMed

    Kaarlejärvi, Elina; Hoset, Katrine S; Olofsson, Johan

    2015-09-01

    Climate change is resulting in a rapid expansion of shrubs in the Arctic. This expansion has been shown to be reinforced by positive feedbacks, and it could thus set the ecosystem on a trajectory toward an alternate, more productive regime. Herbivores, on the other hand, are known to counteract the effects of simultaneous climate warming on shrub biomass. However, little is known about the impact of herbivores on resilience of these ecosystems, that is, the capacity of a system to absorb disturbance and still remain in the same regime, retaining the same function, structure, and feedbacks. Here, we investigated how herbivores affect resilience of shrub-dominated systems to warming by studying the change of shrub biomass after a cessation of long-term experimental warming in a forest-tundra ecotone. As predicted, warming increased the biomass of shrubs, and in the absence of herbivores, shrub biomass in tundra continued to increase 4 years after cessation of the artificial warming, indicating that positive effects of warming on plant growth may persist even over a subsequent colder period. Herbivores contributed to the resilience of these systems by returning them back to the original low-biomass regime in both forest and tundra habitats. These results support the prediction that higher shrub biomass triggers positive feedbacks on soil processes and microclimate, which enable maintaining the rapid shrub growth even in colder climates. Furthermore, the results show that in our system, herbivores facilitate the resilience of shrub-dominated ecosystems to climate warming.

  4. Mammalian herbivores confer resilience of Arctic shrub-dominated ecosystems to changing climate.

    PubMed

    Kaarlejärvi, Elina; Hoset, Katrine S; Olofsson, Johan

    2015-09-01

    Climate change is resulting in a rapid expansion of shrubs in the Arctic. This expansion has been shown to be reinforced by positive feedbacks, and it could thus set the ecosystem on a trajectory toward an alternate, more productive regime. Herbivores, on the other hand, are known to counteract the effects of simultaneous climate warming on shrub biomass. However, little is known about the impact of herbivores on resilience of these ecosystems, that is, the capacity of a system to absorb disturbance and still remain in the same regime, retaining the same function, structure, and feedbacks. Here, we investigated how herbivores affect resilience of shrub-dominated systems to warming by studying the change of shrub biomass after a cessation of long-term experimental warming in a forest-tundra ecotone. As predicted, warming increased the biomass of shrubs, and in the absence of herbivores, shrub biomass in tundra continued to increase 4 years after cessation of the artificial warming, indicating that positive effects of warming on plant growth may persist even over a subsequent colder period. Herbivores contributed to the resilience of these systems by returning them back to the original low-biomass regime in both forest and tundra habitats. These results support the prediction that higher shrub biomass triggers positive feedbacks on soil processes and microclimate, which enable maintaining the rapid shrub growth even in colder climates. Furthermore, the results show that in our system, herbivores facilitate the resilience of shrub-dominated ecosystems to climate warming. PMID:25967156

  5. Climatic reconstructions in the North American arctic during the last 6000 years

    SciTech Connect

    Andrews, J.T.; Short, S.K.

    1983-07-11

    The objectives include: (1) building a data base of modern surface pollen samples from across the eastern and central Canadian arctic as well as along the North Slope of Alaska; (2) documenting changes in the pollen spectra at a series of peat and lake sites in northern Labrador, Baffin Island, and Keewatin; (3) preparing a series of transfer functions that relate modern climatic data to modern surface pollen spectra and applying the equations to fossil pollen spectra in the eastern Canadian arctic; and (4) discussing the significance of spikes of exotic tree and shrub pollen in high arctic peat and lake samples as paleoclimatic indicators.

  6. The Endangered Arctic, the Arctic as Resource Frontier: Canadian News Media Narratives of Climate Change and the North.

    PubMed

    Stoddart, Mark C J; Smith, Jillian

    2016-08-01

    The Arctic is one of the most radically altered parts of the world due to climate change, with significant social and cultural impacts as a result. Using discourse network analysis and qualitative textual analysis of articles published in the Globe and Mail and National Post during the period 2006 to 2010, we identify and analyze key frames that interpret the implications of climate change on the Arctic. We examine Canadian national news media coverage to ask: How does the Arctic enter media coverage of climate change? Is there evidence of a climate justice discourse in relation to regional disparities in the risks and harms of climate change between northern and southern Canada? Climate change in the Arctic is often framed through the lens of Canadian national interests, which downplays climate-related social impacts that are already occurring at subnational political and geographical scales. L'Arctique est une des régions du monde la plus radicalement altérée par le changement climatique, menant comme résultat des importants changements sociaux et culturels. En utilisant l'analyse des réseaux de discours ainsi que l'analyse textuelle qualitative des articles publiés dans le Globe and Mail et le National Post de 2006 à 2010, nous identifions and analysons des cadres clés qui servent à interpréter les conséquences du changement climatique dans l'Arctique. Nous examinons la couverture des médias nationaux canadiens pour pouvoir demander : comment est-ce que l'Arctique s'insère dans la couverture médiatique du changement climatique? Est-ce qu'il y a de la preuve d'un discours de la justice climatique en relation des disparités régionales des risques et méfaits du changement climatique entre le Canada du nord et du sud? Le changement climatique dans l'Arctique est souvent encadré à travers le prisme des intérêts nationaux canadiens, ce qui minimise les impacts sociaux reliés au climat qui se produisent actuellement aux échelons sous

  7. The Endangered Arctic, the Arctic as Resource Frontier: Canadian News Media Narratives of Climate Change and the North.

    PubMed

    Stoddart, Mark C J; Smith, Jillian

    2016-08-01

    The Arctic is one of the most radically altered parts of the world due to climate change, with significant social and cultural impacts as a result. Using discourse network analysis and qualitative textual analysis of articles published in the Globe and Mail and National Post during the period 2006 to 2010, we identify and analyze key frames that interpret the implications of climate change on the Arctic. We examine Canadian national news media coverage to ask: How does the Arctic enter media coverage of climate change? Is there evidence of a climate justice discourse in relation to regional disparities in the risks and harms of climate change between northern and southern Canada? Climate change in the Arctic is often framed through the lens of Canadian national interests, which downplays climate-related social impacts that are already occurring at subnational political and geographical scales. L'Arctique est une des régions du monde la plus radicalement altérée par le changement climatique, menant comme résultat des importants changements sociaux et culturels. En utilisant l'analyse des réseaux de discours ainsi que l'analyse textuelle qualitative des articles publiés dans le Globe and Mail et le National Post de 2006 à 2010, nous identifions and analysons des cadres clés qui servent à interpréter les conséquences du changement climatique dans l'Arctique. Nous examinons la couverture des médias nationaux canadiens pour pouvoir demander : comment est-ce que l'Arctique s'insère dans la couverture médiatique du changement climatique? Est-ce qu'il y a de la preuve d'un discours de la justice climatique en relation des disparités régionales des risques et méfaits du changement climatique entre le Canada du nord et du sud? Le changement climatique dans l'Arctique est souvent encadré à travers le prisme des intérêts nationaux canadiens, ce qui minimise les impacts sociaux reliés au climat qui se produisent actuellement aux échelons sous

  8. Effects of Arctic Sea Ice Decline on Weather and Climate: A Review

    NASA Astrophysics Data System (ADS)

    Vihma, Timo

    2014-09-01

    The areal extent, concentration and thickness of sea ice in the Arctic Ocean and adjacent seas have strongly decreased during the recent decades, but cold, snow-rich winters have been common over mid-latitude land areas since 2005. A review is presented on studies addressing the local and remote effects of the sea ice decline on weather and climate. It is evident that the reduction in sea ice cover has increased the heat flux from the ocean to atmosphere in autumn and early winter. This has locally increased air temperature, moisture, and cloud cover and reduced the static stability in the lower troposphere. Several studies based on observations, atmospheric reanalyses, and model experiments suggest that the sea ice decline, together with increased snow cover in Eurasia, favours circulation patterns resembling the negative phase of the North Atlantic Oscillation and Arctic Oscillation. The suggested large-scale pressure patterns include a high over Eurasia, which favours cold winters in Europe and northeastern Eurasia. A high over the western and a low over the eastern North America have also been suggested, favouring advection of Arctic air masses to North America. Mid-latitude winter weather is, however, affected by several other factors, which generate a large inter-annual variability and often mask the effects of sea ice decline. In addition, the small sample of years with a large sea ice loss makes it difficult to distinguish the effects directly attributable to sea ice conditions. Several studies suggest that, with advancing global warming, cold winters in mid-latitude continents will no longer be common during the second half of the twenty-first century. Recent studies have also suggested causal links between the sea ice decline and summer precipitation in Europe, the Mediterranean, and East Asia.

  9. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic Using a High-Resolution Regional Arctic Climate Model

    SciTech Connect

    Cassano, John

    2013-06-30

    The primary research task completed for this project was the development of the Regional Arctic Climate Model (RACM). This involved coupling existing atmosphere, ocean, sea ice, and land models using the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) coupler (CPL7). RACM is based on the Weather Research and Forecasting (WRF) atmospheric model, the Parallel Ocean Program (POP) ocean model, the CICE sea ice model, and the Variable Infiltration Capacity (VIC) land model. A secondary research task for this project was testing and evaluation of WRF for climate-scale simulations on the large pan-Arctic model domain used in RACM. This involved identification of a preferred set of model physical parameterizations for use in our coupled RACM simulations and documenting any atmospheric biases present in RACM.

  10. Climatic anomalous patterns associated with the Arctic and Polar cell strength variations

    NASA Astrophysics Data System (ADS)

    Qian, Weihong; Wu, Kaijun; Leung, Jeremy Cheuk-Hin

    2016-03-01

    The Arctic cell as a reversed and closed loop next to the Polar cell has been recently revealed in the Northern Hemisphere (NH). In this paper, we study the interannual variability of the Arctic and Polar cell strengths during 1979-2012, and their influence on surface air temperature (SAT), precipitation, and sea-ice concentration (SIC) at mid- and high-latitudes of the NH. We show that there is a significant negative correlation between the Arctic and Polar cell strengths. Both the Arctic and Polar cell strengths can well indicate the recurring climatic anomalies of SAT, precipitation, and SIC in their extreme winters. The surface large-scale cold-warm and dry-wet anomalous patterns in these extreme winters are directly linked with the vertical structure of height and temperature anomalies in the troposphere. Results suggest that the past climatic anomalies are better indicated by the strength anomalies of the Polar and Arctic cells than the traditional indices of mid-high latitude pattern such as the Arctic Oscillation and North Atlantic Oscillation. This study illustrates a three-dimensional picture of atmospheric variable anomalies in the troposphere that result in surface climatic anomalies.

  11. Dynamics of Arctic and Sub-Arctic Climate and Atmospheric Circulation: Diagnosis of Mechanisms and Biases Using Data Assimilation

    SciTech Connect

    Eric T. DeWeaver

    2010-01-19

    This is the final report for DOE grant DE-FG02-07ER64434 to Eric DeWeaver at the University of Wisconsin-Madison. The overall goal of work performed under this grant is to enhance understanding of simulations of present-day climate and greenhouse gas-induced climate change. Enhanced understanding is desirable 1) as a prerequisite for improving simulations; 2) for assessing the credibility of model simulations and their usefulness as tools for decision support; and 3) as a means to identify robust behaviors which commonly occur over a wide range of models, and may yield insights regarding the dominant physical mechanisms which determine mean climate and produce climate change. A furthe objective is to investigate the use of data assimilation as a means for examining and correcting model biases. Our primary focus is on the Arctic, but the scope of the work was expanded to include the global climate system to the extent that research targets of opportunity present themselves. Research performed under the grant falls into five main research areas: 1) a study of data assimilation using an ensemble filter with the atmospheric circulation model of the National Center for Atmospheric Research, in which both conventional observations and observations of the refraction of radio waves from GPS satellites were used to constrain the atmospheric state of the model; 2) research on the likely future status of polar bears, in which climate model simluations were used to assess the effectiveness of climate change mitigation efforts in preserving the habitat of polar bears, now considered a threatened species under global warming; 3) as assessment of the credibility of Arctic sea ice thickness simulations from climate models; 4) An examination of the persistence and reemergence of Northern Hemisphere sea ice area anomalies in climate model simulations and in observations; 5) An examination of the roles played by changes in net radiation and surface relative humidity in determine the

  12. Climate change and emissions impacts on atmospheric PAH transport to the Arctic.

    PubMed

    Friedman, Carey L; Zhang, Yanxu; Selin, Noelle E

    2014-01-01

    We investigate effects of 2000-2050 emissions and climate changes on the atmospheric transport of three polycyclic aromatic hydrocarbons (PAHs): phenanthrene (PHE), pyrene (PYR), and benzo[a]pyrene (BaP). We use the GEOS-Chem model coupled to meteorology from a general circulation model and focus on impacts to northern hemisphere midlatitudes and the Arctic. We project declines in anthropogenic emissions (up to 20%) and concentrations (up to 37%), with particle-bound PAHs declining more, and greater declines in midlatitudes versus the Arctic. Climate change causes relatively minor increases in midlatitude concentrations for the more volatile PHE and PYR (up to 4%) and decreases (3%) for particle-bound BaP. In the Arctic, all PAHs decline slightly under future climate (up to 2%). Overall, we observe a small 2050 "climate penalty" for volatile PAHs and "climate benefit" for particle-bound PAHs. The degree of penalty or benefit depends on competition between deposition and surface-to-air fluxes of previously deposited PAHs. Particles and temperature have greater impacts on future transport than oxidants, with particle changes alone accounting for 15% of BaP decline under 2050 emissions. Higher temperatures drive increasing surface-to-air fluxes that cause PHE and PYR climate penalties. Simulations suggest ratios of more-to-less volatile species can be used to diagnose signals of climate versus emissions and that these signals are best observed in the Arctic.

  13. Climate change and emissions impacts on atmospheric PAH transport to the Arctic.

    PubMed

    Friedman, Carey L; Zhang, Yanxu; Selin, Noelle E

    2014-01-01

    We investigate effects of 2000-2050 emissions and climate changes on the atmospheric transport of three polycyclic aromatic hydrocarbons (PAHs): phenanthrene (PHE), pyrene (PYR), and benzo[a]pyrene (BaP). We use the GEOS-Chem model coupled to meteorology from a general circulation model and focus on impacts to northern hemisphere midlatitudes and the Arctic. We project declines in anthropogenic emissions (up to 20%) and concentrations (up to 37%), with particle-bound PAHs declining more, and greater declines in midlatitudes versus the Arctic. Climate change causes relatively minor increases in midlatitude concentrations for the more volatile PHE and PYR (up to 4%) and decreases (3%) for particle-bound BaP. In the Arctic, all PAHs decline slightly under future climate (up to 2%). Overall, we observe a small 2050 "climate penalty" for volatile PAHs and "climate benefit" for particle-bound PAHs. The degree of penalty or benefit depends on competition between deposition and surface-to-air fluxes of previously deposited PAHs. Particles and temperature have greater impacts on future transport than oxidants, with particle changes alone accounting for 15% of BaP decline under 2050 emissions. Higher temperatures drive increasing surface-to-air fluxes that cause PHE and PYR climate penalties. Simulations suggest ratios of more-to-less volatile species can be used to diagnose signals of climate versus emissions and that these signals are best observed in the Arctic. PMID:24279957

  14. Variations in the Sensitivity of Shrub Growth to Climate Change along Arctic Environmental and Biotic Gradients

    NASA Astrophysics Data System (ADS)

    Beck, P. S. A.; Myers-Smith, I. H.; Elmendorf, S.; Georges, D.

    2015-12-01

    Despite evidence of rapid shrub expansion at many Arctic sites and the profound effects this has on ecosystem structure, biogeochemical cycling, and land-atmosphere feedbacks in the Arctic, the drivers of shrub growth remain poorly understood. The compilation of 41,576 annual shrub growth measurements made around the Arctic, allowed for the first systematic evaluation of the climate sensitivity of Arctic shrub growth, i.e. the strength of the relationship between annual shrub growth and monthly climate variables. The growth measurements were taken on 1821 plants of 25 species at 37 arctic and alpine sites, either as annual ring widths or as stem increments. We evaluated climate sensitivity of shrub growth for each genus-by-site combination in this data set based on the performance and parameters of linear mixed models that used CRU TS3.21 climate data as predictors of shrub growth between 1950 and 2010. 76% of genus-by-site combinations showed climate sensitive growth, but climate-growth relationships varied with soil moisture, species canopy height, and geographic position within the species ranges. Shrubs growing at sites with more soil moisture showed greater climate sensitivity, suggesting that water availability might limit shrub growth if continued warming isn't matched by a steady increase in soil moisture. Tall shrub species growing at their northern range limit were particularly climate sensitive causing climate sensitivity of shrubs to peak at the transition between Low and High Arctic, where carbon storage in permafrost is greatest. Local and regional studies have documented matching spatial and temporal patterns in dendrochronological measurements and satellite observations of vegetation indices both in boreal and Arctic regions. Yet the circumarctic comparison of patterns in dendrochronological and remote sensing data sets yielded poor levels of agreement. In much of the Arctic, steep environmental gradients generate fine spatial patterns of vegetation

  15. Wave heights in the 21st century Arctic Ocean simulated with a regional climate model

    NASA Astrophysics Data System (ADS)

    Khon, V. C.; Mokhov, I. I.; Pogarskiy, F. A.; Babanin, A.; Dethloff, K.; Rinke, A.; Matthes, H.

    2014-04-01

    While wave heights globally have been growing over recent decades, observations of their regional trends vary. Simulations of future wave climate can be achieved by coupling wave and climate models. At present, wave heights and their future trends in the Arctic Ocean remain unknown. We use the third-generation wave forecast model WAVEWATCH-III forced by winds and sea ice concentration produced within the regional model HIRHAM, under the anthropogenic scenario SRES-A1B. We find that significant wave height and its extremes will increase over different inner Arctic areas due to reduction of sea ice cover and regional wind intensification in the 21st century. The opposite tendency, with a slight reduction in wave height appears for the Atlantic sector and the Barents Sea. Our results demonstrate the complex wave response in the Arctic Ocean to a combined effect of wind and sea ice forcings in a climate-change scenario during the 21st century.

  16. General effects of climate change on Arctic fishes and fish populations.

    PubMed

    Reist, James D; Wrona, Frederick J; Prowse, Terry D; Power, Michael; Dempson, J Brian; Beamish, Richard J; King, Jacquelynne R; Carmichael, Theresa J; Sawatzky, Chantelle D

    2006-11-01

    Projected shifts in climate forcing variables such as temperature and precipitation are of great relevance to arctic freshwater ecosystems and biota. These will result in many direct and indirect effects upon the ecosystems and fish present therein. Shifts projected for fish populations will range from positive to negative in overall effect, differ among species and also among populations within species depending upon their biology and tolerances, and will be integrated by the fish within their local aquascapes. This results in a wide range of future possibilities for arctic freshwater and diadromous fishes. Owing to a dearth of basic knowledge regarding fish biology and habitat interactions in the north, complicated by scaling issues and uncertainty in future climate projections, only qualitative scenarios can be developed in most cases. This limits preparedness to meet challenges of climate change in the Arctic with respect to fish and fisheries.

  17. Response of Arctic temperature to changes in emissions of short-lived climate forcers

    NASA Astrophysics Data System (ADS)

    Sand, M.; Berntsen, T. K.; von Salzen, K.; Flanner, M. G.; Langner, J.; Victor, D. G.

    2016-03-01

    There is growing scientific and political interest in the impacts of climate change and anthropogenic emissions on the Arctic. Over recent decades temperatures in the Arctic have increased at twice the global rate, largely as a result of ice-albedo and temperature feedbacks. Although deep cuts in global CO2 emissions are required to slow this warming, there is also growing interest in the potential for reducing short-lived climate forcers (SLCFs; refs ,). Politically, action on SLCFs may be particularly promising because the benefits of mitigation are seen more quickly than for mitigation of CO2 and there are large co-benefits in terms of improved air quality. This Letter is one of the first to systematically quantify the Arctic climate impact of regional SLCFs emissions, taking into account black carbon (BC), sulphur dioxide (SO2), nitrogen oxides (NOx), volatile organic compounds (VOCs), organic carbon (OC) and tropospheric ozone (O3), and their transport processes and transformations in the atmosphere. This study extends the scope of previous works by including more detailed calculations of Arctic radiative forcing and quantifying the Arctic temperature response. We find that the largest Arctic warming source is from emissions within the Asian nations owing to the large absolute amount of emissions. However, the Arctic is most sensitive, per unit mass emitted, to SLCFs emissions from a small number of activities within the Arctic nations themselves. A stringent, but technically feasible mitigation scenario for SLCFs, phased in from 2015 to 2030, could cut warming by 0.2 (+/-0.17) K in 2050.

  18. Climate change in the marine Arctic in the early 21st century

    NASA Astrophysics Data System (ADS)

    Alekseev, Genrikh; Pnyushkov, Andrey; Ivanov, Nikolai; Balakin, Andrey

    2010-05-01

    The enhanced warming in the Arctic began in the middle of 1990s and maximized in 2007. During this period an abrupt shrinking of the summer ice extent occurred and significant positive anomaly of temperature in Atlantic Water (AW) layer in the Arctic Basin expanded over larger area. This climate shift coincided with the resumption of intensive field studies in the Arctic Ocean. The observations collected during the last two decades and especially in the frame of IPY 2007/08 international projects provided an enormous database of oceanographic, sea ice and atmospheric data that makes it possible to determine the climate shift in the marine Arctic, to compare the recent anomalies to those in 1970s and to link the Arctic climate shift to the global climate change. Observations show that since 1990 the surface air temperature (SAT) in the marine Arctic increased rapidly. The CMIP3 ensemble of climate models is seemed to underestimate the rise of SAT especially in summer. Time series of the AW layer parameters along with its pathway over the Arctic Basin during the period of 1930-2009 were compiled in order to trace the development of anomalies. Mean decadal oceanographic fields for 1990s and 2000s and for 2007 year were produced and its anomalies from 1970s were estimated. Rapid climate changes in the marine Arctic in 1990-2000s can not be accounted solely for the anthropogenic effect since the actually observed changes exceed the predictions of the global climate models. Our analysis emphasizes an important role of the increasing summer heat fluxes, as well as the influence of low latitude ocean variability and the solar activity. Other conclusion is that abrupt warming in the marine Arctic stopped in 2008-2009 and it is necessary to continue the monitoring of further changes. The studies were fulfilled in the frame of the AARI IPY projects, Applied Science Program of the Roshydromet and with support of the Russian Foundation for Basic Research (projects 06-05-64054a

  19. Arctic sea ice and climate change--will the ice disappear in this century?

    PubMed

    Johannessen, O M; Miles, M W

    2000-01-01

    A consensus among climate change prediction scenarios using coupled ocean-climate general circulation models (GCMs) is enhanced warming in the Arctic. This suggests that changes in the Arctic sea ice cover may provide early indications of global warming. Observational evidence of substantial changes in the ice cover has been found recently using data from satellites and submarines. Satellite-borne microwave sensor data analyses have established a 3% per decade decrease in the spatial extent of the Arctic ice cover in the past 20 years. Moreover, a 7% per decade decrease in thicker, multi-year (perennial) ice pack has been revealed. This apparent transformation is corroborated by independent data that indicate substantial decreases in the average ice thickness from 3.1 to 1.8 m from the 1950s/1970s to the mid 1990s, averaging about 4 cm per year. It remains uncertain whether these observed changes are manifestations of global warming or are the result of anomalous atmospheric circulation--or both. However, if the recent trends continue, the Arctic sea ice cover could disappear this century, at least in summer, with important consequences for the regional and global ocean-climate system. This article synthesizes recent variability and trends in Arctic sea ice in the perspective of global climate change, and discusses their potential ramifications. PMID:11077477

  20. Arctic sea ice and climate change--will the ice disappear in this century?

    PubMed

    Johannessen, O M; Miles, M W

    2000-01-01

    A consensus among climate change prediction scenarios using coupled ocean-climate general circulation models (GCMs) is enhanced warming in the Arctic. This suggests that changes in the Arctic sea ice cover may provide early indications of global warming. Observational evidence of substantial changes in the ice cover has been found recently using data from satellites and submarines. Satellite-borne microwave sensor data analyses have established a 3% per decade decrease in the spatial extent of the Arctic ice cover in the past 20 years. Moreover, a 7% per decade decrease in thicker, multi-year (perennial) ice pack has been revealed. This apparent transformation is corroborated by independent data that indicate substantial decreases in the average ice thickness from 3.1 to 1.8 m from the 1950s/1970s to the mid 1990s, averaging about 4 cm per year. It remains uncertain whether these observed changes are manifestations of global warming or are the result of anomalous atmospheric circulation--or both. However, if the recent trends continue, the Arctic sea ice cover could disappear this century, at least in summer, with important consequences for the regional and global ocean-climate system. This article synthesizes recent variability and trends in Arctic sea ice in the perspective of global climate change, and discusses their potential ramifications.

  1. Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of 5 years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anticorrelation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice!free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7% and 10%, respectively, as year average sea ice extent has decreased by 5% 7%. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Because longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  2. The Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of five years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anti-correlation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7 and 10 percent, respectively, as year average sea ice extent has decreased by 5 to 7 percent. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Since longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  3. Climate driven changes in hydrology, nutrient cycling, and food web dynamics in surface waters of the Arctic Coastal Plain, Alaska

    NASA Astrophysics Data System (ADS)

    Koch, J. C.; Wipfli, M.; Schmutz, J.; Gurney, K.

    2011-12-01

    Arctic ecosystems are changing rapidly as a result of a warming climate. While many areas of the arctic are expected to dry as a result of warming, the Arctic Coastal Plain (ACP) of Alaska, which extends from the Brooks Range north to the Beaufort Sea will likely become wetter, because subsurface hydrologic fluxes are constrained by thick, continuous permafrost. This landscape is characterized by large, oriented lakes and many smaller ponds that form in the low centers and troughs/edges of frost polygons. This region provides important breeding habitat for many migratory birds including loons, arctic terns, eiders, shorebirds, and white-fronted geese, among others. Increased hydrologic fluxes may provide a bottom-up control on the success of these species by altering the availability of food resources including invertebrates and fish. This work aimed to 1) characterize surface water fluxes and nutrient availability in the small streams and lake types of two study regions in the ACP, 2) predict how increased hydrological fluxes will affect the lakes, streams, and water chemistry, and 3) use nutrient additions to simulate likely changes in lake chemistry and invertebrate availability. Initial observations suggest that increasing wetland areas and availability of nutrients will result in increased invertebrate abundance, while the potential for drainage and terrestrialization of larger lakes may reduce fish abundance and overwintering habitat. These changes will likely have positive implications for insectivores and negative implications for piscivorous waterfowl.

  4. Climate change impacts on environmental and human exposure to mercury in the arctic.

    PubMed

    Sundseth, Kyrre; Pacyna, Jozef M; Banel, Anna; Pacyna, Elisabeth G; Rautio, Arja

    2015-03-31

    This paper reviews information from the literature and the EU ArcRisk project to assess whether climate change results in an increase or decrease in exposure to mercury (Hg) in the Arctic, and if this in turn will impact the risks related to its harmful effects. It presents the state-of-the art of knowledge on atmospheric mercury emissions from anthropogenic sources worldwide, the long-range transport to the Arctic, and it discusses the likely environmental fate and exposure effects on population groups in the Arctic under climate change conditions. The paper also includes information about the likely synergy effects (co-benefits) current and new climate change polices and mitigation options might have on mercury emissions reductions in the future. The review concludes that reductions of mercury emission from anthropogenic sources worldwide would need to be introduced as soon as possible in order to assure lowering the adverse impact of climate change on human health. Scientific information currently available, however, is not in the position to clearly answer whether climate change will increase or decrease the risk of exposure to mercury in the Arctic. New research should therefore be undertaken to model the relationships between climate change and mercury exposure.

  5. Climate Change Impacts on Environmental and Human Exposure to Mercury in the Arctic

    PubMed Central

    Sundseth, Kyrre; Pacyna, Jozef M.; Banel, Anna; Pacyna, Elisabeth G.; Rautio, Arja

    2015-01-01

    This paper reviews information from the literature and the EU ArcRisk project to assess whether climate change results in an increase or decrease in exposure to mercury (Hg) in the Arctic, and if this in turn will impact the risks related to its harmful effects. It presents the state-of-the art of knowledge on atmospheric mercury emissions from anthropogenic sources worldwide, the long-range transport to the Arctic, and it discusses the likely environmental fate and exposure effects on population groups in the Arctic under climate change conditions. The paper also includes information about the likely synergy effects (co-benefits) current and new climate change polices and mitigation options might have on mercury emissions reductions in the future. The review concludes that reductions of mercury emission from anthropogenic sources worldwide would need to be introduced as soon as possible in order to assure lowering the adverse impact of climate change on human health. Scientific information currently available, however, is not in the position to clearly answer whether climate change will increase or decrease the risk of exposure to mercury in the Arctic. New research should therefore be undertaken to model the relationships between climate change and mercury exposure. PMID:25837201

  6. Is "Warm Arctic, Cold Continent" A Fingerprint Pattern of Climate Change?

    NASA Astrophysics Data System (ADS)

    Hoerling, M. P.; Sun, L.; Perlwitz, J.

    2015-12-01

    Cold winters and cold waves have recently occurred in Europe, central Asia and the Midwest to eastern United States, even as global mean temperatures set record highs and Arctic amplification of surface warming continued. Since 1979, Central Asia winter temperatures have in fact declined. Conjecture has it that more cold extremes over the mid-latitude continents should occur due to global warming and the impacts of Arctic sea ice loss. A Northern Hemisphere temperature signal termed the "Warm Arctic, Cold Continent" pattern has thus been surmised. Here we use a multi-model approach to test the hypothesis that such a pattern is indeed symptomatic of climate change. Diagnosis of a large model ensemble of historical climate simulations shows some individual realizations to yield cooling trends over Central Asia, but importantly the vast majority show warming. The observed cooling has thus likely been a low probability state of internal variability, not a fingerprint of forced climate change. We show that daily temperature variations over continents decline in winter due to global warming, and cold waves become less likely. This is partly related to diminution of Arctic cold air reservoirs due to warming-induced sea ice loss. Nonetheless, we find some evidence and present a physical basis that Arctic sea ice loss alone can induce a winter cooling over Central Asia, though with a magnitude that is appreciably smaller than the overall radiative-forced warming signal. Our results support the argument that recent cooling trends over central Asia, and cold extreme events over the winter continents, have principally resulted from atmospheric internal variability and have been neither a forced response to Arctic seas ice loss nor a symptom of global warming. The paradigm of climate change is thus better expressed as "Warm Arctic, Warm Continent" for the NH winter.

  7. Interannual climate variations in Arctic as driven by the Global atmosphere oscillation

    NASA Astrophysics Data System (ADS)

    Serykh, Ilya; Byshev, Vladimir; Neiman, Victor; Sidorova, Alexandra; Sonechkin, Dmitry

    2015-04-01

    The present-day global climate change affects the Arctic basin substantially more because of the sea ice cover extinction and the permafrost melting. But there are essential variations of these effects from year to year. We believe that these variations might be a regional manifestation of a planetary-scale phenomenon named the Global atmospheric oscillation (GAO). GAO includes the well-known El Niño - Southern Oscillation (ENSO) process and similar processes in equatorial Atlantic and Indian Oceans within itself. The goal of this report is to present some arguments to support this point of view. For this goal, we have studied some interrelations between the above-mentioned Arctic anomalies and GAO as seen in global re-analyses of the sea level pressure (SLP) and near surface temperature (NST) for the period of 1920-2013. The mean global fields of SLP and NST have been computed for all El Niño events falling into this time period, and separately, for all and La Niña events. As a result, two (for SLP and NST as well) global fields of the mean El Niño/La Niña difference were obtained. Statistical significance of the non-zero values of these fields, i.e. the reality of GAO, was evaluated with the t-Student's test. It turned out that the main spatial structures of GAO, presented specifically by El Niño and La Niña events in Pacific region, exist at a very high level (up to 99%, t>4) of the significance. Therefore, one can conclude that the interannual-scale dynamics of GAO is actually reflected in the climate features of different regions of the Earth, including the Russian Arctic. In particular, when the boreal winter season coincides with an El Niño event GAO is indicative by a negative anomaly of NST (about -1°C) and a positive anomaly of SLP over the Arctic basin. In contrary, significant (about +1°C) positive anomaly of NST along with reduced SLP over the whole Arctic region is typical for any La Niña event (up to 95%, t>2). To control the reliability

  8. Responses of arctic tundra to experimental and observed changes in climate

    SciTech Connect

    Chapin, F.S. III; Shaver, G.R.; Giblin, A.E.; Nadelhoffer, K.J.; Laundre, J.A.

    1995-04-01

    The authors manipulated light, temperature, and nutrients in moist tussock tundra in Alaska to determine how global changes might affect community and ecosystem processes. Some of these manipulations altered nutrient availability, growth-form composition, net primary production, and species richness in less than a decade, indicating arctic vegetation at this site is sensitive to climatic change. In general, short-term (3-yr) responses were poor predictors of longer term (9-yr) changes in community composition. The longer term responses showed closer correspondence to patterns of vegetation distribution along environmental gradients. Nitrogen and phosphorus availability tended to increase with elevated temperature and in response to light attenuation. Nutrient addition increased biomass and production of deciduous shrubs but reduced growth of evergreen shrubs and nonvascular plants. Light attenuation reduced biomass of all growth forms. Elevated temperature enhanced shrub production but reduced production of nonvascular plants. The contrasting responses to temperature increase and to nutrient addition by different growth forms {open_quotes}canceled out{close_quotes} at the ecosystem level, buffering changes in ecosystem characteristics such as biomass, production, and nutrient uptake. The major effect of elevated temperature was to speed plant response to changes in soil resources and, in long term (9 yr), to increase nutrient availability. Species richness was reduced 30-50% by temperature and nutrient treatments. Declines in diversity occurred disproportionately in forbs and in mosses. During our 9-yr study (the warmest decade on record in the region), biomass of one dominant tundra species unexpectedly changed in control plots in the direction predicted by our experiments and by Holocene pollen records. This suggests that regional climatic warming may already be altering the species composition of Alaskan arctic tundra. 73 refs., 9 figs., 4 tabs.

  9. Arctic climate response to the termination of the African Humid Period

    NASA Astrophysics Data System (ADS)

    Muschitiello, Francesco; Zhang, Qiong; Sundqvist, Hanna S.; Davies, Frazer J.; Renssen, Hans

    2015-10-01

    The Earth's climate response to the rapid vegetation collapse at the termination of the African Humid Period (AHP) (5.5-5.0 kyr BP) is still lacking a comprehensive investigation. Here we discuss the sensitivity of mid-Holocene Arctic climate to changes in albedo brought by a rapid desertification of the Sahara. By comparing a network of surface temperature reconstructions with output from a coupled global climate model, we find that, through a system of land-atmosphere feedbacks, the end of the AHP reduced the atmospheric and oceanic poleward heat transport from tropical to high northern latitudes. This entails a general weakening of the mid-latitude Westerlies, which results in a shift towards cooling over the Arctic and North Atlantic regions, and a change from positive to negative Arctic Oscillation-like conditions. This mechanism would explain the sign of rapid hydro-climatic perturbations recorded in several reconstructions from high northern latitudes at 5.5-5.0 kyr BP, suggesting that these regions are sensitive to changes in Saharan land cover during the present interglacial. This is central in the debate surrounding Arctic climate amplification and future projections for subtropical precipitation changes.

  10. Assessing climate impacts and risks of ocean albedo modification in the Arctic

    NASA Astrophysics Data System (ADS)

    Mengis, N.; Martin, T.; Keller, D. P.; Oschlies, A.

    2016-05-01

    The ice albedo feedback is one of the key factors of accelerated temperature increase in the high northern latitudes under global warming. This study assesses climate impacts and risks of idealized Arctic Ocean albedo modification (AOAM), a proposed climate engineering method, during transient climate change simulations with varying representative concentration pathway (RCP) scenarios. We find no potential for reversing trends in all assessed Arctic climate metrics under increasing atmospheric CO2 concentrations. AOAM only yields an initial offset during the first years after implementation. Nevertheless, sea ice loss can be delayed by 25(60) years in the RCP8.5(RCP4.5) scenario and the delayed thawing of permafrost soils in the AOAM simulations prevents up to 40(32) Pg of carbon from being released by 2100. AOAM initially dampens the decline of the Atlantic Meridional Overturning and delays the onset of open ocean deep convection in the Nordic Seas under the RCP scenarios. Both these processes cause a subsurface warming signal in the AOAM simulations relative to the default RCP simulations with the potential to destabilize Arctic marine gas hydrates. Furthermore, in 2100, the RCP8.5 AOAM simulation diverts more from the 2005-2015 reference state in many climate metrics than the RCP4.5 simulation without AOAM. Considering the demonstrated risks, we conclude that concerning longer time scales, reductions in emissions remain the safest and most effective way to prevent severe changes in the Arctic.

  11. Changing Climate Is Affecting Agriculture in the U.S.

    MedlinePlus

    ... Progress Report (PDF, 11.3MB, May 2016) Changing Climate Is Affecting Agriculture in the U.S. Climate change ... by 2050. Preparing for Increased Weather Risks Regional Climate Hubs In an effort to mitigate climate-related ...

  12. Increasing shrub abundance and N addition in Arctic tundra affect leaf and root litter decomposition differently

    NASA Astrophysics Data System (ADS)

    McLaren, J.; van de Weg, M. J.; Shaver, G. R.; Gough, L.

    2013-12-01

    Changes in global climate have resulted in a ';greening' of the Arctic as the abundance of deciduous shrub species increases. Consequently, not only the living plant community, but also the litter composition changes, which in turn can affect carbon turnover patterns in the Arctic. We examined effects of changing litter composition (both root and leaf litter) on decomposition rates with a litter bag study, and specifically focused on the impact of deciduous shrub Betula nana litter on litter decomposition from two evergreen shrubs (Ledum palustre, and Vaccinium vitis-idaea) and one graminoid (Eriophorum vaginatum) species. Additionally, we investigated how decomposition was affected by nutrient availability by placing the litterbags in an ambient and a fertilized moist acidic tundra environment. Measurements were carried out seasonally over 2 years (after snow melt, mid-growing season, end growing season). We measured litter mass loss over time, as well as the respiration rates (standardized for temperature and moisture) and temperature sensitivity of litter respiration at the time of harvesting the litter bags. For leaves, Betula litter decomposed faster than the other three species, with Eriophorum leaves decomposing the slowest. This pattern was observed for both mass loss and litter respiration rates, although the differences in respiration became smaller over time. Surprisingly, combining Betula with any other species resulted in slower overall weight loss rates than would be predicted based on monoculture weight loss rates. This contrasted with litter respiration at the time of sampling, which showed a positive mixing effect of adding Betula leaf liter to the other species. Apparently, during the first winter months (September - May) Betula litter decomposition is negatively affected by mixing the species and this legacy can still be observed in the total mass loss results later in the year. For root litter there were fewer effects of species identity on root

  13. Response of Arctic Temperature to Changes in Emissions of Short-Lived Climate Forcers

    NASA Astrophysics Data System (ADS)

    Sand, M.; Berntsen, T.; von Salzen, K.; Flanner, M.; Langner, J.; Victor, D. G.

    2015-12-01

    There is growing scientific and political interest in the impacts of climate change and anthropogenic emissions on the Arctic. Over recent decades temperatures in the Arctic have increased twice the global rate, largely due to ice albedo and temperature feedbacks. While deep cuts in global CO2 emissions are required to slow this warming, there is also growing interest in the potential for reducing short lived climate forcers (SLCFs). Politically, action on SLCFs may be particularly promising because the benefits of mitigation appear promptly and there are large co-benefits in terms of improved air quality. This study is the first to systematically quantify the Arctic climate impact of regional SLCF emissions, taking into account BC, sulphur dioxide (SO2), nitrogen oxides (NOx), volatile hydrocarbons (VOC), organic carbon (OC) and tropospheric ozone, their transport processes and transformations in the atmosphere. Using several chemical transport models we perform detailed radiative forcing calculations from emissions of these species. Geographically we separate emissions into seven source regions that correspond with the national groupings of the Arctic Council, the leading body organizing international policy in the region (the United States, Canada, the Nordic countries, the rest of Europe, Russia, East and South Asia, and the rest of the world). We look at six main sectors known to account for [nearly all] of these emissions: households (domestic), energy/industry/waste, transport, agricultural fires, grass/forest fires, and gas flaring. We find that the largest Arctic warming source is from emissions within the Asian nations. However, the Arctic is most sensitive, per unit mass emitted, to SLCFs emissions from a small number of activities within the Arctic nations themselves. A stringent, but technically feasible SLCFs mitigation scenario, phased in from 2015 through 2030, can cut warming by 0.2 K in 2050.

  14. Response of Arctic Temperature to Changes in Emissions of Short-Lived Climate Forcers

    NASA Astrophysics Data System (ADS)

    Sand, M.; Berntsen, T.; von Salzen, K.; Flanner, M.; Langner, J.; Victor, D. G.

    2014-12-01

    There is growing scientific and political interest in the impacts of climate change and anthropogenic emissions on the Arctic. Over recent decades temperatures in the Arctic have increased twice the global rate, largely due to ice albedo and temperature feedbacks. While deep cuts in global CO2 emissions are required to slow this warming, there is also growing interest in the potential for reducing short lived climate forcers (SLCFs). Politically, action on SLCFs may be particularly promising because the benefits of mitigation appear promptly and there are large co-benefits in terms of improved air quality. This study is the first to systematically quantify the Arctic climate impact of regional SLCF emissions, taking into account BC, sulphur dioxide (SO2), nitrogen oxides (NOx), volatile hydrocarbons (VOC), organic carbon (OC) and tropospheric ozone, their transport processes and transformations in the atmosphere. Using several chemical transport models we perform detailed radiative forcing calculations from emissions of these species. Geographically we separate emissions into seven source regions that correspond with the national groupings of the Arctic Council, the leading body organizing international policy in the region (the United States, Canada, the Nordic countries, the rest of Europe, Russia, East and South Asia, and the rest of the world). We look at six main sectors known to account for [nearly all] of these emissions: households (domestic), energy/industry/waste, transport, agricultural fires, grass/forest fires, and gas flaring. We find that the largest Arctic warming source is from emissions within the Asian nations. However, the Arctic is most sensitive, per unit mass emitted, to SLCFs emissions from a small number of activities within the Arctic nations themselves. A stringent, but technically feasible SLCFs mitigation scenario, phased in from 2015 through 2030, can cut warming by 0.2 K in 2050.

  15. Effects of Climate Change on the Freshwaters of Arctic and Subarctic North America

    NASA Astrophysics Data System (ADS)

    Rouse, Wayne R.; Douglas, Marianne S. V.; Hecky, Robert E.; Hershey, Anne E.; Kling, George W.; Lesack, Lance; Marsh, Philip; McDonald, Michael; Nicholson, Barbara J.; Roulet, Nigel T.; Smol, John P.

    1997-06-01

    Region 2 comprises arctic and subarctic North America and is underlain by continuous or discontinuous permafrost. Its freshwater systems are dominated by a low energy environment and cold region processes. Central northern areas are almost totally influenced by arctic air masses while Pacific air becomes more prominent in the west, Atlantic air in the east and southern air masses at the lower latitudes. Air mass changes will play an important role in precipitation changes associated with climate warming. The snow season in the region is prolonged resulting in long-term storage of water so that the spring flood is often the major hydrological event of the year, even though, annual rainfall usually exceeds annual snowfall. The unique character of ponds and lakes is a result of the long frozen period, which affects nutrient status and gas exchange during the cold season and during thaw. GCM models are in close agreement for this region and predict temperature increases as large as 4°C in summer and 9°C in winter for a 2 × CO2 scenario. Palaeoclimate indicators support the probability that substantial temperature increases have occurred previously during the Holocene. The historical record indicates a temperature increase of > 1°C in parts of the region during the last century. GCM predictions of precipitation change indicate an increase, but there is little agreement amongst the various models on regional disposition or magnitude. Precipitation change is as important as temperature change in determining the water balance. The water balance is critical to every aspect of hydrology and limnology in the far north. Permafrost close to the surface plays a major role in freshwater systems because it often maintains lakes and wetlands above an impermeable frost table, which limits the water storage capabilities of the subsurface. Thawing associated with climate change would, particularly in areas of massive ice, stimulate landscape changes, which can affect every aspect

  16. Benzothiadiazole affects the leaf proteome in arctic bramble (Rubus arcticus).

    PubMed

    Hukkanen, Anne; Kokko, Harri; Buchala, Antony; Häyrinen, Jukka; Kärenlampi, Sirpa

    2008-11-01

    Benzothiadiazole (BTH) induces resistance to the downy mildew pathogen, Peronospora sparsa, in arctic bramble, but the basis for the BTH-induced resistance is unknown. Arctic bramble cv. Mespi was treated with BTH to study the changes in leaf proteome and to identify proteins with a putative role in disease resistance. First, BTH induced strong expression of one PR-1 protein isoform, which was also induced by salicylic acid (SA). The PR-1 was responsive to BTH and exogenous SA despite a high endogenous SA content (20-25 microg/g fresh weight), which increased to an even higher level after treatment with BTH. Secondly, a total of 792 protein spots were detected in two-dimensional gel electrophoresis, eight proteins being detected solely in the BTH-treated plants. BTH caused up- or down-regulation of 72 and 31 proteins, respectively, of which 18 were tentatively identified by mass spectrometry. The up-regulation of flavanone-3-hydroxylase, alanine aminotransferase, 1-aminocyclopropane-1-carboxylate oxidase, PR-1 and PR-10 proteins may partly explain the BTH-induced resistance against P. sparsa. Other proteins with changes in intensity appear to be involved in, for example, energy metabolism and protein processing. The decline in ATP synthase, triosephosphate isomerase, fructose bisphosphate aldolase and glutamine synthetase suggests that BTH causes significant changes in primary metabolism, which provides one possible explanation for the decreased vegetative growth of foliage and rhizome observed in BTH-treated plants.

  17. Benzothiadiazole affects the leaf proteome in arctic bramble (Rubus arcticus).

    PubMed

    Hukkanen, Anne; Kokko, Harri; Buchala, Antony; Häyrinen, Jukka; Kärenlampi, Sirpa

    2008-11-01

    Benzothiadiazole (BTH) induces resistance to the downy mildew pathogen, Peronospora sparsa, in arctic bramble, but the basis for the BTH-induced resistance is unknown. Arctic bramble cv. Mespi was treated with BTH to study the changes in leaf proteome and to identify proteins with a putative role in disease resistance. First, BTH induced strong expression of one PR-1 protein isoform, which was also induced by salicylic acid (SA). The PR-1 was responsive to BTH and exogenous SA despite a high endogenous SA content (20-25 microg/g fresh weight), which increased to an even higher level after treatment with BTH. Secondly, a total of 792 protein spots were detected in two-dimensional gel electrophoresis, eight proteins being detected solely in the BTH-treated plants. BTH caused up- or down-regulation of 72 and 31 proteins, respectively, of which 18 were tentatively identified by mass spectrometry. The up-regulation of flavanone-3-hydroxylase, alanine aminotransferase, 1-aminocyclopropane-1-carboxylate oxidase, PR-1 and PR-10 proteins may partly explain the BTH-induced resistance against P. sparsa. Other proteins with changes in intensity appear to be involved in, for example, energy metabolism and protein processing. The decline in ATP synthase, triosephosphate isomerase, fructose bisphosphate aldolase and glutamine synthetase suggests that BTH causes significant changes in primary metabolism, which provides one possible explanation for the decreased vegetative growth of foliage and rhizome observed in BTH-treated plants. PMID:19019008

  18. Impacts of Arctic Climate Change on Tundra Fire Regimes at Interannual to Millennial Timescales

    NASA Astrophysics Data System (ADS)

    Hu, F.; Young, A. M.; Chipman, M. L.; Duffy, P.; Higuera, P. E.

    2014-12-01

    Tundra burning is emerging as a key process in the rapidly changing Arctic, and knowledge of tundra fire-regime responses to climate change is essential for projecting Earth system dynamics. This presentation will focus on climate-fire relationships in the Arctic, spatiotemporal patterns of Holocene tundra burning, and the effects of tundra burning on carbon cycling. Analysis of historical records reveals that across the Arctic, tundra burning occurred primarily in areas where mean summer temperature exceeded 9 °C and total summer precipitation was below 115 mm. In Alaska, summer temperature and precipitation explain >90% of the interannual variability in tundra area burned from AD 1950-2009, with thresholds of 10.5 °C and 140 mm. These patterns imply tipping points in tundra fire-regime responses to climate change. The frequency of tundra fires has varied greatly across space and through time. Approximately 1.0% of the circum-Arctic tundra burned from AD 2002-2013, and 4.5% of the Alaskan tundra burned from AD 1950-2009. The latter encompassed ecoregions with fire rotation periods ranging from ~400 to 13,640 years. Charcoal analysis of lake sediments also shows that Arctic tundra can sustain a wide range of fire regimes. Fires were rare on the Alaskan North Slope throughout the Holocene, implying that the climate thresholds evident in the historical records have seldom been crossed. In contrast, in areas of NW Alaska, tundra has burned regularly at 100-250 year intervals during the late Holocene. Tundra burning may cause sudden releases of the enormous amount of Arctic soil C. Charcoal particles from recent burns yielded 14C ages of AD 1952-2006. Thus the C consumed in recent fires may recover through vegetation succession. However, our results suggest that in areas that have burned multiple times in recent decades, old soil C is vulnerable to future fires.

  19. Does Change in the Arctic Sea Ice Indicate Climate Change? A Lesson Using Geospatial Technology

    ERIC Educational Resources Information Center

    Bock, Judith K.

    2011-01-01

    The Arctic sea ice has not since melted to the 2007 extent, but annual summer melt extents do continue to be less than the decadal average. Climate fluctuations are well documented by geologic records. Averages are usually based on a minimum of 10 years of averaged data. It is typical for fluctuations to occur from year to year and season to…

  20. How Spatial Variation in Areal Extent and Configuration of Labile Vegetation States Affect the Riparian Bird Community in Arctic Tundra

    PubMed Central

    Henden, John-André; Yoccoz, Nigel G.; Ims, Rolf A.; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets

  1. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    PubMed

    Henden, John-André; Yoccoz, Nigel G; Ims, Rolf A; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets

  2. Key Findings of the AMAP 2015 Assessment on Black Carbon and Tropospheric Ozone as Arctic Climate Forcers

    NASA Astrophysics Data System (ADS)

    Quinn, P.

    2015-12-01

    The Arctic Monitoring and Assessment Programme (AMAP) established an Expert Group on Short-Lived Climate Forcers (SLCFs) in 2009 with the goal of reviewing the state of science surrounding SLCFs in the Arctic and recommending science tasks to improve the state of knowledge and its application to policy-making. In 2011, the result of the Expert Group's work was published in a technical report entitled The Impact of Black Carbon on Arctic Climate (AMAP, 2011). That report focused entirely on black carbon (BC) and co-emitted organic carbon (OC). The SLCFs Expert Group then expanded its scope to include all species co-emitted with BC as well as tropospheric ozone. An assessment report, entitled Black Carbon and Tropospheric Ozone as Arctic Climate Forcers, was published in 2015. The assessment includes summaries of measurement methods and emissions inventories of SLCFs, atmospheric transport of SLCFs to and within the Arctic, modeling methods for estimating the impact of SLCFs on Arctic climate, model-measurement inter-comparisons, trends in concentrations of SLCFs in the Arctic, and a literature review of Arctic radiative forcing and climate response. In addition, three Chemistry Climate Models and five Chemistry Transport Models were used to calculate Arctic burdens of SLCFs and precursors species, radiative forcing, and Arctic temperature response to the forcing. Radiative forcing was calculated for the direct atmospheric effect of BC, BC-snow/ice effect, and cloud indirect effects. Forcing and temperature response associated with different source sectors (Domestic, Energy+Industry+Waste, Transport, Agricultural waste burning, Forest fires, and Flaring) and source regions (United States, Canada, Russia, Nordic Countries, Rest of Europe, East and South Asia, Arctic, mid-latitudes, tropics, southern hemisphere) were calculated. To enable an evaluation of the cost-effectiveness of regional emission mitigation options, the normalized impacts (i.e., impacts per unit

  3. Climate-Driven Effects of Fire on Winter Habitat for Caribou in the Alaskan-Yukon Arctic

    PubMed Central

    Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas. PMID

  4. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.

    PubMed

    Gustine, David D; Brinkman, Todd J; Lindgren, Michael A; Schmidt, Jennifer I; Rupp, T Scott; Adams, Layne G

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21%) than the Central Arctic herd that wintered primarily in the arctic tundra (-11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  5. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic

    USGS Publications Warehouse

    Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  6. Sensitivity of the Regional Arctic System Model surface climate to ice-ocean state

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Maslowski, W.; Osinski, R.; Cassano, J. J.; Craig, A.; Duvivier, A.; Fisel, B. J.; Gutowski, W. J.; Higgins, M.; Hughes, M. R.; Lettenmaier, D. P.; Nijssen, B.

    2012-12-01

    The Regional Arctic System Model (RASM) is a high-resolution Earth System model extending across the Arctic Ocean, its marginal seas, the Arctic drainage basin, and including the Coordinated Regional Downscaling Experiment (CORDEX) Arctic domain. RASM uses the flux coupler (CPL7) within the Community Earth System Model framework to couple regional configurations of the Weather Research and Forecasting model (WRF), Parallel Ocean Program (POP), Los Alamos sea ice model (CICE), and Variable Infiltration Capacity land hydrology model (VIC). Work is also underway to incorporate the Community Ice Sheet Model (CISM) as well as glacier, ice cap and dynamic vegetation models. As part of RASM development, coupled simulations are being prepared for the CORDEX Arctic domain, which is unique among CORDEX regions by being centered over the ocean. Up to this point, there has been uncertainty over how much initial and surface conditions in the ice-ocean boundary layer influence the surface climate of the Arctic in RASM, relative to regional atmospheric model constraints, such as spectral nudging and boundary conditions. We present results that suggest there is a significant dependency on the initial sea ice conditions on decadal timescales within RASM. This has important implications for (i) how results from different regional artic models may be combined and compared in CORDEX and (ii) appropriate methods for ensemble generation in regional polar models. We will also present results illustrating the influence of sub-hourly sea ice deformation on decadal climate in RASM, highlighting an important reason why fully coupled and high-resolution regional models are essential for regional Arctic downscaling.

  7. Observed and projected climate change implications for urban infrastructure and society in the Russian Arctic

    NASA Astrophysics Data System (ADS)

    Streletskiy, D. A.; Shiklomanov, N. I.; Efimov, S. V.; Shkolnik, I.

    2012-12-01

    The discoveries of mineral resources followed by an extensive economic development of the Russian North in 1960s led to a development of complex infrastructure on permafrost and urbanization of the Russian Arctic. Despite the mass migration from the northern regions, followed by the collapse of the Soviet Union and the diminishing government support, the Russian Arctic inherited massive infrastructure and remained predominantly urban. Currently, only in five districts bordering Arctic Ocean more than 1.4 million people live in urban-style buildings built on permafrost. Majority of the buildings are constructed assuming the equilibrium conditions of heat-exchange between atmosphere and permafrost underneath. This is usually achieved by construction on piles with ventilated cellars allowing ground cooling in a winter and shading in a summer. The ability of the foundations to carry structural load or foundation bearing capacity (FBC) depends on permafrost properties and changes according to permafrost temperature and active-layer depth. Climate warming observed in recent decades created conditions of diminishing FBC and resulted in deformations and failures of structures built on permafrost. This work is focused on quantitative assessment of these changes at a regional scale. In order to estimate the role of climate change on stability of structures build according to the passive principle, the permafrost-geotechnical model was developed. The historical changes were assessed by comparing model results for period associated with industrialization and construction boom in the Russian North (1965-1975) and present conditions (1995-2005) using NCEP climatic datasets. Projected changes in FBC according to A2 IPCC scenario for the mid-21st century (2041-2060) relative to baseline period (1981-2000) were assessed using output from the ensemble of MGO RCM climate change simulations. It has been found that substantial decrease in FBC will likely occur for the majority of

  8. Projected Impact of Climate Change on the Water and Salt Budgets of the Arctic Ocean by a Global Climate Model

    NASA Technical Reports Server (NTRS)

    Miller, James R.; Russell, Gary L.

    1996-01-01

    The annual flux of freshwater into the Arctic Ocean by the atmosphere and rivers is balanced by the export of sea ice and oceanic freshwater. Two 150-year simulations of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. Relative to the control, the last 50-year period of the GHG experiment indicates that the total inflow of water from the atmosphere and rivers increases by 10% primarily due to an increase in river discharge, the annual sea-ice export decreases by about half, the oceanic liquid water export increases, salinity decreases, sea-ice cover decreases, and the total mass and sea-surface height of the Arctic Ocean increase. The closed, compact, and multi-phased nature of the hydrologic cycle in the Arctic Ocean makes it an ideal test of water budgets that could be included in model intercomparisons.

  9. Climate change: Increasing shrub abundance in the Arctic

    NASA Astrophysics Data System (ADS)

    Sturm, Matthew; Racine, Charles; Tape, Kenneth

    2001-05-01

    The warming of the Alaskan Arctic during the past 150 years has accelerated over the last three decades and is expected to increase vegetation productivity in tundra if shrubs become more abundant; indeed, this transition may already be under way according to local plot studies and remote sensing. Here we present evidence for a widespread increase in shrub abundance over more than 320 km of Arctic landscape during the past 50 years, based on a comparison of historic and modern aerial photographs. This expansion will alter the partitioning of energy in summer and the trapping and distribution of snow in winter, as well as increasing the amount of carbon stored in a region that is believed to be a net source of carbon dioxide.

  10. Climate-driven regime shifts in the biological communities of arctic lakes

    PubMed Central

    Smol, John P.; Wolfe, Alexander P.; Birks, H. John B.; Douglas, Marianne S. V.; Jones, Vivienne J.; Korhola, Atte; Pienitz, Reinhard; Rühland, Kathleen; Sorvari, Sanna; Antoniades, Dermot; Brooks, Stephen J.; Fallu, Marie-Andrée; Hughes, Mike; Keatley, Bronwyn E.; Laing, Tamsin E.; Michelutti, Neal; Nazarova, Larisa; Nyman, Marjut; Paterson, Andrew M.; Perren, Bianca; Quinlan, Roberto; Rautio, Milla; Saulnier-Talbot, Émilie; Siitonen, Susanna; Solovieva, Nadia; Weckström, Jan

    2005-01-01

    Fifty-five paleolimnological records from lakes in the circumpolar Arctic reveal widespread species changes and ecological reorganizations in algae and invertebrate communities since approximately anno Domini 1850. The remoteness of these sites, coupled with the ecological characteristics of taxa involved, indicate that changes are primarily driven by climate warming through lengthening of the summer growing season and related limnological changes. The widespread distribution and similar character of these changes indicate that the opportunity to study arctic ecosystems unaffected by human influences may have disappeared. PMID:15738395

  11. Climate Change, Permafrost and Infrastructure: Task Force Report of the U.S. Arctic Research Commission

    NASA Astrophysics Data System (ADS)

    Brigham, L. W.; Nelson, F. E.

    2003-12-01

    During 2002 the U.S. Arctic Research Commission chartered a task force on climate change, permafrost and infrastructure impacts. The task force was asked to identify key issues and research needs to foster a greater understanding of global change impacts on permafrost in the Arctic and their importance to natural and human systems. Permafrost was found to play three key roles in the context of climatic change: as a record keeper by functioning as a temperature archive; as a translator of climate change through subsidence and related impacts; and, as a facilitator of further change through its impacts on the global carbon cycle. Evidence of widespread warming of permafrost and observations of thawing have serious implications for Alaska's transportation network, for the trans-Alaska pipeline, and for nearly 100,000 Alaskans living in areas of permafrost. These impacts resulting from changing permafrost must be met by a timely, well-informed, and coordinated response by a host of federal and state organizations. Key task force findings include: requirements for a dedicated U.S. federal permafrost research program; data management needs; baseline permafrost mapping in Alaska; basic permafrost research focusing on process studies and modeling; and, applied permafrost research on design criteria and contaminants in permafrost environments. This report to the Commissioners makes specific recommendations to seven federal agencies, the State of Alaska, and the National Research Council. These recommendations will be incorporated in future Arctic research planning documents of the U.S. Arctic Research Commission.

  12. Transport Regimes of Air Masses Affecting the Tropospheric Composition of the Canadian and European Arctic During RACEPAC 2014 and NETCARE 2014/2015

    NASA Astrophysics Data System (ADS)

    Bozem, H.; Hoor, P. M.; Koellner, F.; Kunkel, D.; Schneider, J.; Schulz, C.; Herber, A. B.; Borrmann, S.; Wendisch, M.; Ehrlich, A.; Leaitch, W. R.; Willis, M. D.; Burkart, J.; Thomas, J. L.; Abbatt, J.

    2015-12-01

    The Arctic is warming much faster than any other place in the world and undergoes a rapid change dominated by a changing climate in this region. The impact of polluted air masses traveling to the Arctic from various remote sources significantly contributes to the observed climate change, in contrast there are additional local emission sources contributing to the level of pollutants (trace gases and aerosol). Processes affecting the emission and transport of these pollutants are not well understood and need to be further investigated. We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories we analyze the transport regimes prevalent during spring (RACEPAC 2014 and NETCARE 2015) and summer (NETCARE 2014) in the observed region. Whereas the eastern part of the Canadian Arctic is affected by air masses with their origin in Asia, in the central and western parts of the Canadian and European Arctic air masses from North America are predominant at the time of the measurement. In general the more northern parts of the Arctic were relatively unaffected by pollution from mid-latitudes since air masses mostly travel within the polar dome, being quite isolated. Associated mixing ratios of CO and CO2 fit into the seasonal cycle observed at NOAA ground stations throughout the Arctic, but show a more mid-latitudinal characteristic at higher altitudes. The transition is remarkably sharp and allows for a chemical definition of the polar dome. At low altitudes, synoptic disturbances transport polluted air masses from mid-latitudes into regions of the polar dome. These air masses contribute to the Arctic pollution background, but also

  13. An overview of effects of climate change on selected arctic freshwater and anadromous fishes.

    PubMed

    Reist, James D; Wrona, Frederick J; Prowse, Terry D; Power, Michael; Dempson, J Brian; King, Jacquelynne R; Beamish, Richard J

    2006-11-01

    Arctic freshwater and diadromous fish species will respond to the various effects of climate change in many ways. For wide-ranging species, many of which are key components of northern aquatic ecosystems and fisheries, there is a large range of possible responses due to inter- and intra-specific variation, differences in the effects of climate drivers within ACIA regions, and differences in drivers among regions. All this diversity, coupled with limited understanding of fish responses to climate parameters generally, permits enumeration only of a range of possible responses which are developed here for selected important fishes. Accordingly, in-depth examination is required of possible effects within species within ACIA regions, as well as comparative studies across regions. Two particularly important species (Arctic char and Atlantic salmon) are examined as case studies to provide background for such studies.

  14. Response of ice cover on shallow Arctic lakes to contemporary climate conditions: Numerical modeling and remote sensing data analysis

    NASA Astrophysics Data System (ADS)

    Duguay, C.; Surdu, C.; Brown, L.; Samuelsson, P.

    2012-04-01

    Lake ice cover has been shown to be a robust indicator of climate variability and change. Recent studies have demonstrated that break-up dates, in particular, have been occurring earlier in many parts of the Northern Hemisphere over the last 50 years in response to warmer climatic conditions in the winter and spring seasons. The impacts of trends in air temperature and winter precipitation over the last five decades and those projected by global climate models will affect the timing and duration of ice cover (and ice thickness) on Arctic lakes. This will likely, in turn, have an important feedback effect on energy, water, and biogeochemical cycling in various regions of the Arctic. In the case of shallow tundra lakes, many of which are less than 3-m deep, warmer climate conditions could result in a smaller fraction of lakes that freeze to their bed in winter since thinner ice covers are expected to develop. Shallow lakes of the coastal plain of northern Alaska, and other similar regions of the Arctic, have likely been experiencing changes in seasonal ice thickness (and phenology) over the last few decades but these have not yet been documented. This paper presents results from a numerical lake ice modeling experiment and the analysis of ERS-1/2 synthetic aperture radar (SAR) data to elucidate the response of ice cover (thickness, freezing to bed, and phenology) on shallow lakes of the North Slope of Alaska (NSA)to climate conditions over the last three decades. New downscaled data specific for the Arctic domain (at a resolution of 0.44 degrees using ERA Interim Reanalysis as boundary condition) produced by the Rossby Centre regional atmospheric model (RCA4) was used to force the Canadian Lake Ice Model (CLIMo) for the period 1979-2010. Output from CLIMo included freeze-up and break-up dates as well as ice thickness on a daily basis. ERS-1/2 data was used to map areas of shallow lakes that freeze to bed and when this happens (timing) in winter for the period 1991

  15. Regional Arctic System Model (RASM): A Tool to Address the U.S. Priorities and Advance Capabilities for Arctic Climate Modeling and Prediction

    NASA Astrophysics Data System (ADS)

    Maslowski, W.; Roberts, A.; Cassano, J. J.; Gutowski, W. J., Jr.; Nijssen, B.; Osinski, R.; Zeng, X.; Brunke, M.; Duvivier, A.; Hamman, J.; Hossainzadeh, S.; Hughes, M.; Seefeldt, M. W.

    2015-12-01

    The Arctic is undergoing some of the most coordinated rapid climatic changes currently occurring anywhere on Earth, including the retreat of the perennial sea ice cover, which integrates forcing by, exchanges with and feedbacks between atmosphere, ocean and land. While historical reconstructions from Earth System Models (ESMs) are in broad agreement with these changes, the rate of change in ESMs generally remains outpaced by observations. Reasons for that relate to a combination of coarse resolution, inadequate parameterizations, under-represented processes and a limited knowledge of physical interactions. We demonstrate the capability of the Regional Arctic System Model (RASM) in addressing some of the ESM limitations in simulating observed variability and trends in arctic surface climate. RASM is a high resolution, pan-Arctic coupled climate model with the sea ice and ocean model components configured at an eddy-permitting resolution of 1/12o and the atmosphere and land hydrology model components at 50 km resolution, which are all coupled at 20-minute intervals. RASM is an example of limited-area, process-resolving, fully coupled ESM, which due to the constraints from boundary conditions facilitates detailed comparisons with observational statistics that are not possible with ESMs. The overall goal of RASM is to address key requirements published in the Navy Arctic Roadmap: 2014-2030 and in the Implementation Plan for the National Strategy for the Arctic Region, regarding the need for advanced modeling capabilities for operational forecasting and strategic climate predictions through 2030. The main science objectives of RASM are to advance understanding and model representation of critical physical processes and feedbacks of importance to sea ice thickness and area distribution. RASM results are presented to quantify relative contributions by (i) resolved processes and feedbacks as well as (ii) sensitivity to space dependent sub-grid parameterizations to better

  16. Regional climate responses to geoengineering with tropical and Arctic SO2 injections

    NASA Astrophysics Data System (ADS)

    Robock, Alan; Oman, Luke; Stenchikov, Georgiy L.

    2008-08-01

    Anthropogenic stratospheric aerosol production, so as to reduce solar insolation and cool Earth, has been suggested as an emergency response to geoengineer the planet in response to global warming. While volcanic eruptions have been suggested as innocuous examples of stratospheric aerosols cooling the planet, the volcano analog actually argues against geoengineering because of ozone depletion and regional hydrologic and temperature responses. To further investigate the climate response, here we simulate the climate response to both tropical and Arctic stratospheric injection of sulfate aerosol precursors using a comprehensive atmosphere-ocean general circulation model, the National Aeronautics and Space Administration Goddard Institute for Space Studies ModelE. We inject SO2 and the model converts it to sulfate aerosols, transports the aerosols and removes them through dry and wet deposition, and calculates the climate response to the radiative forcing from the aerosols. We conduct simulations of future climate with the Intergovernmental Panel on Climate Change A1B business-as-usual scenario both with and without geoengineering and compare the results. We find that if there were a way to continuously inject SO2 into the lower stratosphere, it would produce global cooling. Tropical SO2 injection would produce sustained cooling over most of the world, with more cooling over continents. Arctic SO2 injection would not just cool the Arctic. Both tropical and Arctic SO2 injection would disrupt the Asian and African summer monsoons, reducing precipitation to the food supply for billions of people. These regional climate anomalies are but one of many reasons that argue against the implementation of this kind of geoengineering.

  17. Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Leibman, M. O.; Epstein, H. E.; Forbes, B. C.; Bhatt, U. S.; Raynolds, M. K.; Comiso, J. C.; Gubarkov, A. A.; Khomutov, A. V.; Jia, G. J.; Kaarlejärvi, E.; Kaplan, J. O.; Kumpula, T.; Kuss, P.; Matyshak, G.; Moskalenko, N. G.; Orekhov, P.; Romanovsky, V. E.; Ukraientseva, N. G.; Yu, Q.

    2009-10-01

    The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood. Changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity. Here we use a 25 year time series of AVHRR-derived NDVI data (AVHRR: advanced very high resolution radiometer), climate analysis, a global geographic information database and ground-based studies to examine the spatial and temporal patterns of vegetation greenness on the Yamal Peninsula, Russia. We assess the effects of climate change, gas-field development, reindeer grazing and permafrost degradation. In contrast to the case for Arctic North America, there has not been a significant trend in summer temperature or NDVI, and much of the pattern of NDVI in this region is due to disturbances. There has been a 37% change in early-summer coastal sea-ice concentration, a 4% increase in summer land temperatures and a 7% change in the average time-integrated NDVI over the length of the satellite observations. Gas-field infrastructure is not currently extensive enough to affect regional NDVI patterns. The effect of reindeer is difficult to quantitatively assess because of the lack of control areas where reindeer are excluded. Many of the greenest landscapes on the Yamal are associated with landslides and drainage networks that have resulted from ongoing rapid permafrost degradation. A warming climate and enhanced winter snow are likely to exacerbate positive feedbacks between climate and permafrost thawing. We present a diagram that summarizes the social and ecological factors that influence Arctic NDVI. The NDVI should be viewed as a powerful monitoring tool that integrates the cumulative effect of a multitude of factors affecting Arctic land-cover change.

  18. A Friend Acting Strangely: an Exhibition on Climate Change in the Arctic

    NASA Astrophysics Data System (ADS)

    Stauffer, B. W.; Fitzhugh, W. W.; Krupnik, I.; Mannes, J.; Rusk, K.

    2003-12-01

    The Arctic: A Friend Acting Strangely is a new exhibit being developed at the Smithsonian Institution's National Museum of Natural History (NMNH) as a part of the museum's Forces of Change exhibit series on global change issues. The exhibit will open to the public in Summer 2004 and is the third component of the series. The other two components are about El Niño (El Niño's Powerful Reach) and atmospheric chemistry (Change is in the Air). The Arctic exhibit's underlying theme is that current global change is causing such rapid shifts in Arctic weather and the polar environment that it has become `strange,' - or unpredictable - to its residents. The speed of change in Arctic ice and climate patterns, ocean and terrestrial ecosystems, and wildlife creates a great challenge for polar scientists; but it also advances beyond the experience and memory of northern indigenous people, who know it so well. The key issues the NMNH team faces in preparing the new exhibit are: how to document and display the forces and consequences of rapid change; how to make complex scientific processes and research comprehensible to visitors; and how to engage the general public in the on-going discussion. Because current shifts in the Arctic environment have been observed and recorded in much detail by scientists and Native residents alike, this topic offers unique opportunities beyond the museum presentation, including outreach through public programs and the Internet. The exhibit is being developed jointly by the NMNH Arctic Studies Center and Office of the Exhibits, and in close collaboration with NOAA' Office of Arctic Research, NSF' new Study of Environmental Arctic Change (SEARCH) initiative, and NASA's Earth Science Enterprise. Exhibit components will include objects, text, graphic panels, video, and a computer interactive. Special efforts will be made to present the voices and opinions of Arctic indigenous people who experience new challenges to their traditional subsistence

  19. Climate trends in the Arctic as observed from space

    PubMed Central

    Comiso, Josefino C; Hall, Dorothy K

    2014-01-01

    The Arctic is a region in transformation. Warming in the region has been amplified, as expected from ice-albedo feedback effects, with the rate of warming observed to be ∼0.60 ± 0.07°C/decade in the Arctic (>64°N) compared to ∼0.17°C/decade globally during the last three decades. This increase in surface temperature is manifested in all components of the cryosphere. In particular, the sea ice extent has been declining at the rate of ∼3.8%/decade, whereas the perennial ice (represented by summer ice minimum) is declining at a much greater rate of ∼11.5%/decade. Spring snow cover has also been observed to be declining by −2.12%/decade for the period 1967–2012. The Greenland ice sheet has been losing mass at the rate of ∼34.0 Gt/year (sea level equivalence of 0.09 mm/year) during the period from 1992 to 2011, but for the period 2002–2011, a higher rate of mass loss of ∼215 Gt/year has been observed. Also, the mass of glaciers worldwide declined at the rate of 226 Gt/year from 1971 to 2009 and 275 Gt/year from 1993 to 2009. Increases in permafrost temperature have also been measured in many parts of the Northern Hemisphere while a thickening of the active layer that overlies permafrost and a thinning of seasonally frozen ground has also been reported. To gain insight into these changes, comparative analysis with trends in clouds, albedo, and the Arctic Oscillation is also presented. How to cite this article:WIREs Clim Change 2014, 5:389�409. doi: 10.1002/wcc.277 PMID:25810765

  20. Climate Trends in the Arctic as Observed from Space

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Hall, Dorothy K.

    2014-01-01

    The Arctic is a region in transformation. Warming in the region has been amplified, as expected from ice-albedo feedback effects, with the rate of warming observed to be approx. 0.60+/-0.07 C/decade in the Arctic (>64degN) compared to approx. 0.17 C/decade globally during the last three decades. This increase in surface temperature is manifested in all components of the cryosphere. In particular, the sea ice extent has been declining at the rate of approx. 3.8%/decade, whereas the perennial ice (represented by summer ice minimum) is declining at a much greater rate of approx.11.5%/decade. Spring snow cover has also been observed to be declining by -2.12%/decade for the period 1967-2012. The Greenland ice sheet has been losing mass at the rate of approx. 34.0Gt/year (sea level equivalence of 0.09 mm/year) during the period from 1992 to 2011, but for the period 2002-2011, a higher rate of mass loss of approx. 215 Gt/year has been observed. Also, the mass of glaciers worldwide declined at the rate of 226 Gt/year from 1971 to 2009 and 275 Gt/year from 1993 to 2009. Increases in permafrost temperature have also been measured in many parts of the Northern Hemisphere while a thickening of the active layer that overlies permafrost and a thinning of seasonally frozen ground has also been reported. To gain insight into these changes, comparative analysis with trends in clouds, albedo, and the Arctic Oscillation is also presented.

  1. The Opening of the Arctic-Atlantic Gateway: Tectonic, Oceanographic and Climatic Dynamics - an IODP Initiative

    NASA Astrophysics Data System (ADS)

    Geissler, Wolfram; Knies, Jochen

    2016-04-01

    The modern polar cryosphere reflects an extreme climate state with profound temperature gradients towards high-latitudes. It developed in association with stepwise Cenozoic cooling, beginning with ephemeral glaciations and the appearance of sea ice in the late middle Eocene. The polar ocean gateways played a pivotal role in changing the polar and global climate, along with declining greenhouse gas levels. The opening of the Drake Passage finalized the oceanographic isolation of Antarctica, some 40 Ma ago. The Arctic Ocean was an isolated basin until the early Miocene when rifting and subsequent sea-floor spreading started between Greenland and Svalbard, initiating the opening of the Fram Strait / Arctic-Atlantic Gateway (AAG). Although this gateway is known to be important in Earth's past and modern climate, little is known about its Cenozoic development. However, the opening history and AAG's consecutive widening and deepening must have had a strong impact on circulation and water mass exchange between the Arctic Ocean and the North Atlantic. To study the AAG's complete history, ocean drilling at two primary sites and one alternate site located between 73°N and 78°N in the Boreas Basin and along the East Greenland continental margin are proposed. These sites will provide unprecedented sedimentary records that will unveil (1) the history of shallow-water exchange between the Arctic Ocean and the North Atlantic, and (2) the development of the AAG to a deep-water connection and its influence on the global climate system. The specific overarching goals of our proposal are to study: (1) the influence of distinct tectonic events in the development of the AAG and the formation of deep water passage on the North Atlantic and Arctic paleoceanography, and (2) the role of the AAG in the climate transition from the Paleogene greenhouse to the Neogene icehouse for the long-term (~50 Ma) climate history of the northern North Atlantic. Getting a continuous record of the

  2. Changes in Arctic and Antarctic Sea Ice as a Microcosm of Global Climate Change

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2014-01-01

    Polar sea ice is a key element of the climate system and has now been monitored through satellite observations for over three and a half decades. The satellite observations reveal considerable information about polar ice and its changes since the late 1970s, including a prominent downward trend in Arctic sea ice coverage and a much lesser upward trend in Antarctic sea ice coverage, illustrative of the important fact that climate change entails spatial contrasts. The decreasing ice coverage in the Arctic corresponds well with contemporaneous Arctic warming and exhibits particularly large decreases in the summers of 2007 and 2012, influenced by both preconditioning and atmospheric conditions. The increasing ice coverage in the Antarctic is not as readily explained, but spatial differences in the Antarctic trends suggest a possible connection with atmospheric circulation changes that have perhaps been influenced by the Antarctic ozone hole. The changes in the polar ice covers and the issues surrounding those changes have many commonalities with broader climate changes and their surrounding issues, allowing the sea ice changes to be viewed in some important ways as a microcosm of global climate change.

  3. Tracking Particulate Organic Matter Characteristics in Major Arctic Rivers: Indicators of Watershed-Scale Climate Impacts

    NASA Astrophysics Data System (ADS)

    McClelland, J. W.; Griffin, C. G.; Holmes, R. M.; Peterson, B. J.; Raymond, P. A.; Spencer, R. G.; Striegl, R. G.; Tank, S. E.

    2015-12-01

    Six large rivers, including the Yukon and Mackenzie in North America and the Yenisey, Ob', Lena, and Kolyma in Eurasia, drain the majority of the watershed area surrounding the Arctic Ocean. Parallel sampling programs were initiated at downstream locations on these rivers in 2003 to improve estimates of fluvial export and track large-scale perturbations associated with climate change. Over a decade later, synthesis of water chemistry data from these ongoing sampling efforts provides an unprecedented opportunity to 1) examine similarities and differences among the major Arctic rivers, and 2) think critically about how changes in various water chemistry parameters may or may not inform us about climate change impacts. River-borne organic matter characteristics may be particularly telling because mass flux values and composition/source indicators vary with hydrology and permafrost coverage. However, separating climate impacts that occur within river corridors from those that occur beyond them may be difficult, especially when considering changes in particulate organic matter (POM) loads. Data on suspended POM yields, C:N ratios, stable isotope ratios, and radiocarbon content in the major Arctic rivers show marked spatial, seasonal, and interannual variability that is helpful for thinking about how climate change effects may manifest in the future, but it will be challenging to separate changes in POM related to bank erosion and suspension/deposition of in situ sediment stocks from changes in POM that may be linked to processes such as permafrost thaw occurring across the broader landscape.

  4. Climate, icing, and wild arctic reindeer: past relationships and future prospects.

    PubMed

    Hansen, Brage Bremset; Aanes, Ronny; Herfindal, Ivar; Kohler, Jack; Saether, Bernt-Erik

    2011-10-01

    Across the Arctic, heavy rain-on-snow (ROS) is an "extreme" climatic event that is expected to become increasingly frequent with global warming. This has potentially large ecosystem implications through changes in snowpack properties and ground-icing, which can block the access to herbivores' winter food and thereby suppress their population growth rates. However, the supporting empirical evidence for this is still limited. We monitored late winter snowpack properties to examine the causes and consequences of ground-icing in a Svalbard reindeer (Rangifer tarandus platyrhynchus) metapopulation. In this high-arctic area, heavy ROS occurred annually, and ground-ice covered from 25% to 96% of low-altitude habitat in the sampling period (2000-2010). The extent of ground-icing increased with the annual number of days with heavy ROS (> or = 10 mm) and had a strong negative effect on reindeer population growth rates. Our results have important implications as a downscaled climate projection (2021-2050) suggests a substantial future increase in ROS and icing. The present study is the first to demonstrate empirically that warmer and wetter winter climate influences large herbivore population dynamics by generating ice-locked pastures. This may serve as an early warning of the importance of changes in winter climate and extreme weather events in arctic ecosystems.

  5. Uncertainty in climate model projections of Arctic sea ice decline: An evaluation relevant to polar bears

    USGS Publications Warehouse

    DeWeaver, Eric

    2007-01-01

    This report describes uncertainties in climate model simulations of Arctic sea ice decline, and proposes a selection criterion for models to be used in projecting polar bear (Ursus maritimus) habitat loss. Uncertainties in model construction are discussed first, both for climate models in general and for their sea ice component models. A key point in the discussion is that the inherent climate sensitivity of sea ice leads inevitably to uncertainty in simulations of sea ice decline. The ability of climate models to simulate gross properties of Arctic ice cover, including the annual mean, seasonal cycle, and recent trends, is then assessed, followed by a review of model projections of 21st Century decline. The proposed selection criterion selects models with less than 20% error in their simulations of present-day September sea ice extent, where extent is defined as the area of the Arctic with at least 50% ice cover. Of the 10 models satisfying this criterion, all lose at least 30% of their September ice extent, and 4 lose over 80% of their September ice by the middle of the 21st Century (years 2045 to 2055). By the end of the 21st Century (years 2090 to 2099), seven of the models are essentially ice free in September.

  6. Eocene climate and Arctic paleobathymetry: A tectonic sensitivity study using GISS ModelE-R

    NASA Astrophysics Data System (ADS)

    Roberts, C. D.; Legrande, A. N.; Tripati, A. K.

    2009-12-01

    The early Paleogene (65-45 million years ago, Ma) was a ‘greenhouse’ interval with global temperatures warmer than any other time in the last 65 Ma. This period was characterized by high levels of CO2, warm high-latitudes, warm surface-and-deep oceans, and an intensified hydrological cycle. Sediments from the Arctic suggest that the Eocene surface Arctic Ocean was warm, brackish, and episodically enabled the freshwater fern Azolla to bloom. The precise mechanisms responsible for the development of these conditions remain uncertain. We present equilibrium climate conditions derived from a fully-coupled, water-isotope enabled, general circulation model (GISS ModelE-R) configured for the early Eocene. We also present model-data comparison plots for key climatic variables (SST and δ18O) and analyses of the leading modes of variability in the tropical Pacific and North Atlantic regions. Our tectonic sensitivity study indicates that Northern Hemisphere climate would have been very sensitive to the degree of oceanic exchange through the seaways connecting the Arctic to the Atlantic and Tethys. By restricting these seaways, we simulate freshening of the surface Arctic Ocean to ~6 psu and warming of sea-surface temperatures by 2°C in the North Atlantic and 5-10°C in the Labrador Sea. Our results may help explain the occurrence of low-salinity tolerant taxa in the Arctic Ocean during the Eocene and provide a mechanism for enhanced warmth in the north western Atlantic. We also suggest that the formation of a volcanic land-bridge between Greenland and Europe could have caused increased ocean convection and warming of intermediate waters in the Atlantic. If true, this result is consistent with the theory that bathymetry changes may have caused thermal destabilisation of methane clathrates in the Atlantic.

  7. Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies

    SciTech Connect

    Menon, Surabi; Quinn, P.K.; Bates, T.S.; Baum, E.; Doubleday, N.; Fiore, A.M.; Flanner, M.; Fridlind, A.; Garrett, T.J.; Koch, D.; Menon, S.; Shindell, D.; Stohl, A.; Warren, S.G.

    2007-09-24

    Several short-lived pollutants known to impact Arctic climate may be contributing to the accelerated rates of warming observed in this region relative to the global annually averaged temperature increase. Here, we present a summary of the short-lived pollutants that impact Arctic climate including methane, tropospheric ozone, and tropospheric aerosols. For each pollutant, we provide a description of the major sources and the mechanism of forcing. We also provide the first seasonally averaged forcing and corresponding temperature response estimates focused specifically on the Arctic. The calculations indicate that the forcings due to black carbon, methane, and tropospheric ozone lead to a positive surface temperature response indicating the need to reduce emissions of these species within and outside the Arctic. Additional aerosol species may also lead to surface warming if the aerosol is coincident with thin, low lying clouds. We suggest strategies for reducing the warming based on current knowledge and discuss directions for future research to address the large remaining uncertainties.

  8. Arctic climate and its interaction with lower latitudes under different levels of anthropogenic warming in a global coupled climate model

    NASA Astrophysics Data System (ADS)

    Koenigk, Torben; Brodeau, Laurent

    2016-09-01

    Three quasi-equilibrium simulations using constant greenhouse gas forcing corresponding to years 2000, 2015 and 2030 have been performed with the global coupled model EC-Earth in order to analyze the Arctic climate and interactions with lower latitudes under different levels of anthropogenic warming. The model simulations indicate an accelerated warming and ice extent reduction in the Arctic between the year-2030 and year-2015 simulations compared to the change between the year-2015 and year-2000 simulations. Both Arctic warming and sea ice reduction are closely linked to the increase of ocean heat transport into the Arctic, particularly through the Barents Sea Opening. Decadal variations of Arctic sea ice extent and ice volume are of the same order of magnitude as the observed ice extent reductions in the last 30 years and are dominated by the variability of the ocean heat transports through the Barents Sea Opening and the Bering Strait. Despite a general warming of mid and high northern latitudes, a substantial cooling is found in the subpolar gyre of the North Atlantic under year-2015 and year-2030 conditions. This cooling is related to a strong reduction in the AMOC, itself due to reduced deep water formation in the Labrador Sea. The observed trend towards a more negative phase of the North Atlantic Oscillation (NAO) and the observed linkage between autumn Arctic ice variations and NAO are reproduced in our model simulations for selected 30-year periods but are not robust over longer time periods. This indicates that the observed linkages between ice and NAO might not be robust in reality either, and that the observational time period is still too short to reliably separate the trend from the natural variability.

  9. Declining Sea Ice Extent Links Early Winter Climate to Changing Arctic Lakes

    NASA Astrophysics Data System (ADS)

    Alexeev, V. A.; Arp, C. D.; Jones, B. M.; Cai, L.

    2015-12-01

    Lakes on the Alaskan North Slope regulate surface energy balance and interactions with permafrost as well as providing important habitat. Winter lake ice regimes (floating-ice or bedfast-ice conditions) determine whether lakes develop and maintain taliks and can support overwintering fish habitat. Lake ice thickness is a key variable determining whether a lake has a bedfast or floating-ice regime. Recent observations suggest a trend towards more lakes with floating-ice conditions due to thinner ice growth, but the broader scale associated climate conditions driving these regime shift are less certain. This study finds that the changing arctic summer/fall sea ice conditions might be affecting lake ice thickness on the North Slope. Late ocean freeze-up near the Alaskan coast leads to warmer weather and more snowfall in the early winter. Warmer early winters and thicker snowpack result in thinner lake ice the following winter thus potentially developing more ice-floating lakes before the start of the summer. Experiments with a regional atmospheric model WRF for two years with very different sea ice conditions indicate that the extent of open water next to the North Slope is a crucial factor for developing thicker snowpack, also warmer air temperature in early winter.

  10. The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic?

    PubMed

    Nielsen, Uffe N; Wall, Diana H

    2013-03-01

    The polar regions are experiencing rapid climate change with implications for terrestrial ecosystems. Here, despite limited knowledge, we make some early predictions on soil invertebrate community responses to predicted twenty-first century climate change. Geographic and environmental differences suggest that climate change responses will differ between the Arctic and Antarctic. We predict significant, but different, belowground community changes in both regions. This change will be driven mainly by vegetation type changes in the Arctic, while communities in Antarctica will respond to climate amelioration directly and indirectly through changes in microbial community composition and activity, and the development of, and/or changes in, plant communities. Climate amelioration is likely to allow a greater influx of non-native species into both the Arctic and Antarctic promoting landscape scale biodiversity change. Non-native competitive species could, however, have negative effects on local biodiversity particularly in the Arctic where the communities are already species rich. Species ranges will shift in both areas as the climate changes potentially posing a problem for endemic species in the Arctic where options for northward migration are limited. Greater soil biotic activity may move the Arctic towards a trajectory of being a substantial carbon source, while Antarctica could become a carbon sink.

  11. Signs of the Land: Reaching Arctic Communities Facing Climate Change

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Chase, M. J.; Demientieff, S.; Pfirman, S. L.; Brunacini, J.

    2014-12-01

    In July 2014, a diverse and intergenerational group of Alaskan Natives came together on Howard Luke's Galee'ya Camp by the Tanana River in Fairbanks, Alaska to talk about climate change and it's impacts on local communities. Over a period of four days, the Signs of the Land Climate Change Camp wove together traditional knowledge, local observations, Native language, and climate science through a mix of storytelling, presentations, dialogue, and hands-on, community-building activities. This camp adapted the model developed several years ago under the Association for Interior Native Educators (AINE)'s Elder Academy. Part of the Polar Learning and Responding Climate Change Education Partnership, the Signs of the Land Climate Change Camp was developed and conducted collaboratively with multiple partners to test a model for engaging indigenous communities in the co-production of climate change knowledge, communication tools, and solutions-building. Native Alaskans have strong subsistence and cultural connections to the land and its resources, and, in addition to being keen observers of their environment, have a long history of adapting to changing conditions. Participants in the camp included Elders, classroom teachers, local resource managers and planners, community members, and climate scientists. Based on their experiences during the camp, participants designed individualized outreach plans for bringing culturally-responsive climate learning to their communities and classrooms throughout the upcoming year. Plans included small group discussions, student projects, teacher training, and conference presentations.

  12. A High-Latitude Winter Continental Low Cloud Feedback Suppresses Arctic Air Formation in Warmer Climates

    NASA Astrophysics Data System (ADS)

    Cronin, T.; Tziperman, E.; Li, H.

    2015-12-01

    High latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. It has also been found that the high-latitude lapse rate feedback plays an important role in Arctic amplification of climate change in climate model simulations, but we have little understanding of why lapse rates at high latitudes change so strongly with warming. To better understand these problems, we study Arctic air formation - the process by which a high-latitude maritime air mass is advected over a continent during polar night, cooled at the surface by radiation, and transformed into a much colder continental polar air mass - and its sensitivity to climate warming. We use a single-column version of the WRF model to conduct two-week simulations of the cooling process across a wide range of initial temperature profiles and microphysics schemes, and find that a low cloud feedback suppresses Arctic air formation in warmer climates. This cloud feedback consists of an increase in low cloud amount with warming, which shields the surface from radiative cooling, and increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ~10 days for initial maritime surface air temperatures of 20 oC. Given that this is about the time it takes an air mass starting over the Pacific to traverse the north American continent, this suggests that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates. We find that CMIP5 climate model runs show large increases in cloud water path and surface cloud longwave forcing in warmer climates, consistent with the proposed low-cloud feedback

  13. Effects of climate change and UV radiation on fisheries for arctic freshwater and anadromous species.

    PubMed

    Reist, James D; Wrona, Frederick J; Prowse, Terry D; Dempson, J Brian; Power, Michael; Köck, Günter; Carmichael, Theresa J; Sawatzky, Chantelle D; Lehtonen, Hannu; Tallman, Ross F

    2006-11-01

    Fisheries for arctic freshwater and diadromous fish species contribute significantly to northern economies. Climate change, and to a lesser extent increased ultraviolet radiation, effects in freshwaters will have profound effects on fisheries from three perspectives: quantity of fish available, quality of fish available, and success of the fishers. Accordingly, substantive adaptation will very likely be required to conduct fisheries sustainably in the future as these effects take hold. A shift to flexible and rapidly responsive 'adaptive management' of commercial fisheries will be necessary; local land- and resource-use patterns for subsistence fisheries will change; and, the nature, management and place for many recreational fisheries will change. Overall, given the complexity and uncertainty associated with climate change and related effects on arctic freshwaters and their biota, a much more conservative approach to all aspects of fishery management will be required to ensure ecosystems and key fished species retain sufficient resiliency and capacity to meet future changes.

  14. Wave climate and trends along the eastern Chukchi Arctic Alaska coast

    USGS Publications Warehouse

    Erikson, L.H.; Storlazzi, C.D.; Jensen, R.E.

    2011-01-01

    Due in large part to the difficulty of obtaining measurements in the Arctic, little is known about the wave climate along the coast of Arctic Alaska. In this study, numerical model simulations encompassing 40 years of wave hind-casts were used to assess mean and extreme wave conditions. Results indicate that the wave climate was strongly modulated by large-scale atmospheric circulation patterns and that mean and extreme wave heights and periods exhibited increasing trends in both the sea and swell frequency bands over the time-period studied (1954-2004). Model simulations also indicate that the upward trend was not due to a decrease in the minimum icepack extent. ?? 2011 ASCE.

  15. Climate-chemistry interaction affecting tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Mao, Huiting

    1999-09-01

    Tropospheric ozone, an important radiative-chemical species, has been observed increasing especially at northern midlatitudes during the past few decades. This dissertation addresses climate-chemistry interaction associated with such increases in three aspects using observations as well as atmospheric chemistry and climate models. Ozone impact on climate is first evaluated by radiative forcing calculations due to observed ozone changes. It is found that a 10% increase in tropospheric ozone causes a radiative forcing of 0.17 Wm-2 using a fixed temperature (FT) method or 0.13 Wm-2 using a fixed dynamic heating (FDH) method, which is comparable to the radiative forcing 0.26 (FT) and -0.09 Wm-2 (FDH) caused by the stratospheric ozone depletion during the 1980s. Second, radiative forcing due to changes in ozone precursors is estimated. Ozone changes in response to a 20% reduction in surface NOx emission in six regions around the globe differ between regions. A maximum decrease in ozone column reaches 5% in southeast Asia and the central Atlantic Ocean, inducing a local radiative forcing of up to -0.1 Wm-2 in those regions. It indicates that surface NOx emission changes can potentially affect regional climate. Third, the effects of climate and climate changes on atmospheric chemistry are addressed with two studies. One study investigates the effects of global warming on methane and ozone, and another looks into cloud effects on photodissociation rate constants. Calculations based on the IPCC business-as-usual scenario indicate that by 2050, temperature and moisture increases can suppress methane and tropospheric ozone increases by 17% and 11%, respectively, in reference to the 1990 concentrations. The combined effects offset the global warming induced forcing 3.90 Wm -2 by -0.46 Wm-2. A one-dimensional study suggests that a typical cirrus cloud (τ = 2) can significantly increase J(O1D) and J(NO2) around the tropopause with a maximum of 21%. Geographical and seasonal

  16. An estimated cost of lost climate regulation services caused by thawing of the Arctic cryosphere.

    PubMed

    Euskirchen, Eugénie S; Goodstein, Eban S; Huntington, Henry P

    2013-12-01

    Recent and expected changes in Arctic sea ice cover, snow cover, and methane emissions from permafrost thaw are likely to result in large positive feedbacks to climate warming. There is little recognition of the significant loss in economic value that the disappearance of Arctic sea ice, snow, and permafrost will impose on humans. Here, we examine how sea ice and snow cover, as well as methane emissions due to changes in permafrost, may potentially change in the future, to year 2100, and how these changes may feed back to influence the climate. Between 2010 and 2100, the annual costs from the extra warming due to a decline in albedo related to losses of sea ice and snow, plus each year's methane emissions, cumulate to a present value cost to society ranging from US$7.5 trillion to US$91.3 trillion. The estimated range reflects uncertainty associated with (1) the extent of warming-driven positive climate feedbacks from the thawing cryosphere and (2) the expected economic damages per metric ton of CO2 equivalents that will be imposed by added warming, which depend, especially, on the choice of discount rate. The economic uncertainty is much larger than the uncertainty in possible future feedback effects. Nonetheless, the frozen Arctic provides immense services to all nations by cooling the earth's temperature: the cryosphere is an air conditioner for the planet. As the Arctic thaws, this critical, climate-stabilizing ecosystem service is being lost. This paper provides a first attempt to monetize the cost of some of those lost services.

  17. An estimated cost of lost climate regulation services caused by thawing of the Arctic cryosphere.

    PubMed

    Euskirchen, Eugénie S; Goodstein, Eban S; Huntington, Henry P

    2013-12-01

    Recent and expected changes in Arctic sea ice cover, snow cover, and methane emissions from permafrost thaw are likely to result in large positive feedbacks to climate warming. There is little recognition of the significant loss in economic value that the disappearance of Arctic sea ice, snow, and permafrost will impose on humans. Here, we examine how sea ice and snow cover, as well as methane emissions due to changes in permafrost, may potentially change in the future, to year 2100, and how these changes may feed back to influence the climate. Between 2010 and 2100, the annual costs from the extra warming due to a decline in albedo related to losses of sea ice and snow, plus each year's methane emissions, cumulate to a present value cost to society ranging from US$7.5 trillion to US$91.3 trillion. The estimated range reflects uncertainty associated with (1) the extent of warming-driven positive climate feedbacks from the thawing cryosphere and (2) the expected economic damages per metric ton of CO2 equivalents that will be imposed by added warming, which depend, especially, on the choice of discount rate. The economic uncertainty is much larger than the uncertainty in possible future feedback effects. Nonetheless, the frozen Arctic provides immense services to all nations by cooling the earth's temperature: the cryosphere is an air conditioner for the planet. As the Arctic thaws, this critical, climate-stabilizing ecosystem service is being lost. This paper provides a first attempt to monetize the cost of some of those lost services. PMID:24555313

  18. Collaborative Research. Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    SciTech Connect

    Zhuang, Qianlai; Schlosser, Courtney; Melillo, Jerry; Walter, Katey

    2015-09-15

    Our overall goal is to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically-forced climate warming, and the conditions under which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes to the landscape of wetlands and lakes, especially thermokarst (thaw) lakes, across the Arctic. Through a suite of numerical experiments that encapsulate the fundamental processes governing methane emissions and carbon exchanges – as well as their coupling to the global climate system - we intend to test the following hypothesis in the proposed research: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and stimulates large increases in methane emissions (via thermokarst lakes and poorly-drained wetland areas upon thawing permafrost along with microbial metabolic responses to higher temperatures) and increases in carbon dioxide emissions from well-drained areas. Besides changes in biogeochemistry, this threshold will also influence global energy dynamics through effects on surface albedo, evapotranspiration and water vapor. These changes would outweigh any increased uptake of carbon (e.g. from peatlands and higher plant photosynthesis) and would result in a strong, positive feedback to global climate warming.

  19. Pcw/phemos for Arctic Weather, Climate and Air Quality: a Quasi-Geostationary View of the Arctic and Environs

    NASA Astrophysics Data System (ADS)

    McConnell, J. C.; O'Neill, N. T.; McElroy, C. T.; Solheim, B.; Buijs, H.; Rahnama, P.; Walker, K. A.; Martin, R. V.; Sioris, C.; Garand, L.; Trichtchenko, A.; Nassar, R.

    2011-12-01

    The Arctic is a region of rapid climate change with warming temperatures and depleting multi-year ice which may be exacerbated by transport of black carbon from the burning of the boreal forest and anthropogenic material from mid- and high-latitudes. It is also the source of winter storms delivering cold air to lower latitudes. Currently data are available for these areas from polar orbiting satellites, but only intermittently at a given location as the satellites pass overhead. The Canadian Space Agency, in concert with other government departments, is considering launching the PCW (Polar Communications and Weather) mission which would use two satellites each in a 16 hour TAP or 12 hour Molniya orbit (very high eccentricity with an apogee of ~ 6Re) which is a quasi-stationary orbit close to apogee ( 4 hours) to give 24x7 (continuous) coverage of the Arctic region. The baseline PCW meteorological instrument which would deliver operational meteorological data to the forecasting community is a 20-channel spectral imager similar to MODIS or ABI. The CSA is exploring the possibility of science instruments for atmospheric, plasma and auroral science. Currently the CSA has launched a Phase-A study for the development of an atmospheric package, called PHEMOS, led by ABB Bomen, with COM DEV and a group of atmospheric scientists from university and government. We will present the case for the development of a suite of innovative imaging instruments to provide essential Arctic weather, climate and air quality data from the PCW satellites. The science goals of the PHEMOS instruments (imaging FTS, UV-Vis spectrometer) in concert with those of the PCW multi-spectral imager are the provision of basic weather information, the collection of synoptic-scale air quality (gas and aerosol) measurements to better understand the impact of industrial and agricultural pollution, boreal forest fire smoke and volcanic aerosols on mid- and high latitudes as well as the acquisition of column

  20. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data.

    PubMed

    Macdonald, R W; Harner, T; Fyfe, J

    2005-04-15

    possibility, presently difficult to predict, is combination of immune suppression together with expanding ranges of disease vectors. Finally, biotransport through migratory species is exceptionally vulnerable to changes in migration strength or in migration pathway-in the Arctic, change in the distribution of ice and temperature may already have caused such changes. Hydrocarbons, which tend to impact surfaces, will be mostly affected by change in the ice climate (distribution and drift tracks). Perhaps the most dramatic changes will occur because our view of the Arctic Ocean will change as it becomes more amenable to transport, tourism and mineral exploration on the shelves. Radionuclides have tended not to produce a radiological problem in the Arctic; nevertheless one pathway, the ice, remains a risk because it can accrue, concentrate and transport radio-contaminated sediments. This pathway is sensitive to where ice is produced, what the transport pathways of ice are, and where ice is finally melted-all strong candidates for change during the coming century. The changes that have already occurred in the Arctic and those that are projected to occur have an effect on contaminant time series including direct measurements (air, water, biota) or proxies (sediment cores, ice cores, archive material). Although these 'system' changes can alter the flux and concentrations at given sites in a number of obvious ways, they have been all but ignored in the interpretation of such time series. To understand properly what trends mean, especially in complex 'recorders' such as seals, walrus and polar bears, demands a more thorough approach to time series by collecting data in a number of media coherently. Presently, a major reservoir for contaminants and the one most directly connected to biological uptake in species at greatest risk-the ocean-practically lacks such time series.

  1. Arctic sea ice area in CMIP3 and CMIP5 climate model ensembles - variability and change

    NASA Astrophysics Data System (ADS)

    Semenov, V. A.; Martin, T.; Behrens, L. K.; Latif, M.

    2015-02-01

    The shrinking Arctic sea ice cover observed during the last decades is probably the clearest manifestation of ongoing climate change. While climate models in general reproduce the sea ice retreat in the Arctic during the 20th century and simulate further sea ice area loss during the 21st century in response to anthropogenic forcing, the models suffer from large biases and the model results exhibit considerable spread. The last generation of climate models from World Climate Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5), when compared to the previous CMIP3 model ensemble and considering the whole Arctic, were found to be more consistent with the observed changes in sea ice extent during the recent decades. Some CMIP5 models project strongly accelerated (non-linear) sea ice loss during the first half of the 21st century. Here, complementary to previous studies, we compare results from CMIP3 and CMIP5 with respect to regional Arctic sea ice change. We focus on September and March sea ice. Sea ice area (SIA) variability, sea ice concentration (SIC) variability, and characteristics of the SIA seasonal cycle and interannual variability have been analysed for the whole Arctic, termed Entire Arctic, Central Arctic and Barents Sea. Further, the sensitivity of SIA changes to changes in Northern Hemisphere (NH) averaged temperature is investigated and several important dynamical links between SIA and natural climate variability involving the Atlantic Meridional Overturning Circulation (AMOC), North Atlantic Oscillation (NAO) and sea level pressure gradient (SLPG) in the western Barents Sea opening serving as an index of oceanic inflow to the Barents Sea are studied. The CMIP3 and CMIP5 models not only simulate a coherent decline of the Arctic SIA but also depict consistent changes in the SIA seasonal cycle and in the aforementioned dynamical links. The spatial patterns of SIC variability improve in the CMIP5 ensemble, particularly in summer. Both

  2. Assessing the links between Greenland Ice Sheet Surface Mass Balance and Arctic climate using Climate Models and Observations

    NASA Astrophysics Data System (ADS)

    Mottram, Ruth; Rodehacke, Christian; Boberg, Fredrik; Langen, Peter; Sloth Madsen, Marianne; Høyer Svendsen, Synne; Yang, Shuting; Hesselbjerg Christensen, Jens; Olesen, Martin

    2016-04-01

    Changes in different parts of the Arctic cryosphere may have knock-on effects on other parts of the system. The fully coupled climate model EC-Earth, which includes the ice sheet model PISM, is a useful tool to examine interactions between sea ice, ice sheet, ocean and atmosphere. Here we present results from EC-Earth experimental simulations that show including an interactive ice sheet model changes ocean circulation, sea ice extent and regional climate with, for example, a dampening of the expected increase in Arctic temperatures under the RCP scenarios when compared with uncoupled experiments. However, the relatively coarse resolution of the climate model likely influences the calculated surface mass balance forcing applied to the ice sheet model and it is important therefore to evaluate the model performance over the ice sheet. Here, we assess the quality of the climate forcing from the GCM to the ice sheet model by comparing the energy balance and surface mass balance (SMB) output from EC-Earth with that from a regional climate model (RCM) run at very high resolution (0.05 degrees) over Greenland. The RCM, HIRHAM5, has been evaluated over a wide range of climate parameters for Greenland which allows us to be confident it gives a representative climate forcing for the Greenland ice sheet. To evaluate the internal variability in the climate forcing, we compare simulations from HIRHAM5 forced with both the EC-Earth historical emissions and the ERA-Interim reanalysis on the boundaries. The EC-Earth-PISM RCP8.5 scenario is also compared with an EC-Earth run without an ice sheet to assess the impact of an interactive ice sheet on likely future changes. To account for the resolution difference between the models we downscale both EC-Earth and HIRHAM5 simulations with a simple offline energy balance model (EBM).

  3. Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)

    NASA Astrophysics Data System (ADS)

    Dethloff, Klaus; Rex, Markus; Shupe, Matthew

    2016-04-01

    The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) is an international initiative under the International Arctic Science Committee (IASC) umbrella that aims to improve numerical model representations of sea ice, weather, and climate processes through coupled system observations and modeling activities that link the central Arctic atmosphere, sea ice, ocean, and the ecosystem. Observations of many critical parameters such as cloud properties, surface energy fluxes, atmospheric aerosols, small-scale sea-ice and oceanic processes, biological feedbacks with the sea-ice ice and ocean, and others have never been made in the central Arctic in all seasons, and certainly not in a coupled system fashion. The primary objective of MOSAiC is to develop a better understanding of these important coupled-system processes so they can be more accurately represented in regional- and global-scale weather- and climate models. Such enhancements will contribute to improved modeling of global climate and weather, and Arctic sea-ice predictive capabilities. The MOSAiC observations are an important opportunity to gather the high quality and comprehensive observations needed to improve numerical modeling of critical, scale-dependent processes impacting Arctic predictability given diminished sea ice coverage and increased model complexity. Model improvements are needed to understand the effects of a changing Arctic on mid-latitude weather and climate. MOSAiC is specifically designed to provide the multi-parameter, coordinated observations needed to improve sub-grid scale model parameterizations especially with respect to thinner ice conditions. To facilitate, evaluate, and develop the needed model improvements, MOSAiC will employ a hierarchy of modeling approaches ranging from process model studies, to regional climate model intercomparisons, to operational forecasts and assimilation of real-time observations. Model evaluations prior to the field program will

  4. Climate and Cryosphere (CliC) Project and its Interest in Arctic Hydrology Research

    NASA Astrophysics Data System (ADS)

    Yang, D.; Prowse, T. D.; Steffen, K.; Ryabinin, V.

    2009-12-01

    The cryosphere is an important and dynamic component of the global climate system. The global cryosphere is changing rapidly, with changes in the Polar Regions receiving particular attention during the International Polar Year 2007-2008. The Climate and Cryosphere (CliC) Project is a core project of the World Climate Research Programme (WCRP) and is co-sponsored by WCRP, SCAR (Scientific Committee for Antarctic Research) and IASC (International Committee for Antarctic Research). The principal goal of CliC is to assess and quantify the impacts that climatic variability and change have on components of the cryosphere and the consequences of these impacts for the climate system. To achieve its objectives, CliC coordinates international and regional projects, partners with other organizations in joint initiatives, and organizes panels and working groups to lead and coordinate advanced research aimed at closing identified gaps in scientific knowledge about climate and cryosphere. The terrestrial cryosphere includes land areas where snow cover, lake- and river-ice, glaciers and ice caps, permafrost and seasonally frozen ground and solid precipitation occur. The main task of this theme is to improve estimates and quantify the uncertainty of water balance and related energy flux components in cold climate regions. This includes precipitation (both solid and liquid) distribution, properties of snow, snow melt, evapotranspiration, sublimation, water movement through frozen and unfrozen ground, water storage in watersheds, river- and lake-ice properties and processes, and river runoff. The focus of this theme includes two specific issues: the role of permafrost and frozen ground in the carbon balance, and precipitation in cold climates. Hydrological studies of cold regions will provide a key contribution to the new theme crosscut, which focuses on the cryospheric input to the freshwater balance of the Arctic. This presentation will provide an overview and update of recent

  5. Simulation of the modern arctic climate by the NCAR CCM1

    NASA Technical Reports Server (NTRS)

    Bromwich, David H.; Tzeng, Ren-Yow; Parish, Thomas, R.

    1994-01-01

    The National Center of Atmospheric Research (NCAR) Community Climate Model Version 1 (CCM1's) simulation of the modern arctic climate is evaluated by comparing a five-year seasonal cycle simulation with the European Center for Medium-Range Weather Forecasts (ECMWF) global analyses. The sea level pressure (SLP), storm tracks, vertical cross section of height, 500-hPa height, total energy budget, and moisture budget are analyzed to investigate the biases in the simulated arctic climate. The results show that the model simulates anomalously low SLP, too much storm activity, and anomalously strong baroclinicity to the west of Greenland and vice versa to the east of Greenland. This bias is mainly attributed to the model's topographic representation of Greenland. First, the broadened Greenland topography in the model distorts the path of cyclone waves over the North Atlantic Ocean. Second, the model oversimulates the ridge over Greenland, which intensifies its blocking effect and steers the cyclone waves clockwise around it and hence produces an artificial circum-Greenland trough. These biases are significantly alleviated when the horizontal resolution increases to T42. Over the Arctic basin, the model simulates large amounts of low-level (stratus) clouds in winter and almost no stratus in summer, which is opposite to the observations. This bias is mainly due to the location of the simulated SLP features and the negative anomaly of storm activity, which prevent the transport of moisture into this region during summer but favor this transport in winter. The moisture budget analysis shows that the model's net annual precipitation (P-E) between 70 deg N and the North Pole is 6.6 times larger than the observations and the model transports six times more moisture into this region. The bias in the advection term is attributed to the positive moisture fixer scheme and the distorted flow pattern. However, the excessive moisture transport into the Arctic basin does not solely

  6. Recent, unprecedented, arctic ozone losses: climate change or large interannual variability?

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Polvani, L. M.

    2012-04-01

    The record ozone loss over the Arctic in the spring of 2011 [e.g., Manney et al., 2011] highlights the importance of a detailed understanding of the connection between cold polar temperatures, polar stratospheric clouds (PSCs) and column ozone. Several studies have analyzed the empirical relationship between PSC volume (Vpsc) and ozone loss in the Arctic [e.g., Rex et al., 2006], and put forward the hypothesis that the coldest Arctic winters are getting colder and therefore anomalous ozone losses in the Arctic are likely to increase in the coming decades. In the present study we analyze trends and variability in polar temperatures, Vpsc and column ozone, using both reanalysis products (ERA40, MERRA) and numerical model output (from selected models participating in the Chemistry-Climate Model Validation Activity). Beyond considering mean values, we employ a variety of statistical measures for extremes (i.e., high quantiles) in order to identify possible changes in the frequency distribution of polar temperatures and Vpsc, and attempt to determine whether the recent occurrences of record ozone loss are indicative of statistically significant trends or simply a reflection of large natural variability.

  7. Simulation of Climatic Changes in the Arctic and North Atlantic During Recent Decades

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    The interactions of the atmosphere and ice-ocean system in the Arctic will be studied using a coupled ice-ocean model which will also use ice drift derived from microwave observations as forcing. We especially search for linkages between the recent large climatic shifts in the Arctic Ocean and atmosphere for which period we also have microwave sea ice data. The coupled model area covers the whole N. Atlantic thus interactions between the lower latitudes are also investigated because we anticipate that the same large scale atmospheric patterns which dominate the midlatitudes extend their influence on the Arctic. The model hindcast for 1951-1993 shows clear decadal variability in the leading modes of ocean circulation. No specific low-freq modes are expected for the ice drift because its spectrum is white. However, the ice drift exhibits two see-saw patterns in response to the leading atmospheric circulation mode ('Arctic Oscillation'), one of them is the well-known out of phase relationship between Baffin Bay and Barents-Kara Seas, the other one is between Siberian shelf and Alaskan Coast (Hakkinen and Geiger, 2000).

  8. Evolution of anomalies of salinity of surface waters of Arctic Ocean and their possible influence on climate changes

    NASA Astrophysics Data System (ADS)

    Popov, A.; Rubchenia, A.

    2009-04-01

    Numerous of model simulations of ice extent in Arctic Ocean predict almost full disappearance of sea ice in Arctic regions by 2050. However, the nature, as against models, does not suffer the unidirectional processes. By means of various feedback responses system aspires to come in an equilibrium condition. In Arctic regions one of the most powerful generators of a negative feedback is the fresh-water stream to Greenland Sea and Northern Atlantic. Increasing or decreasing of a fresh-water volume from the Arctic basin to Greenland Sea and Northern Atlantic results in significant changes in climatic system. At the Oceanology department of Arctic and Antarctic Research Institute (AARI) (St-Petersburg, Russia) in 2007, on the basis of the incorporated Russian-American database of the oceanographic data, reconstruction of long-term time series of average salinity of ocean surface was executed. The received time series describes the period from 1950 to 1993. For allocation of the processes determining formation of changes of average salinity of surface waters in Arctic basin the correlation analysis of interrelation of the received time series and several physical parameters which could affect formation of changes of salinity was executed. We found counter-intuitive result: formation of long-term changes of average salinity of surface waters of Arctic basin in the winter period does not depend on changes of a Siberian rivers runoff. Factors of correlation do not exceed -0,31. At the same time, clear inverse relationship of salinity of surface waters from volumes of the ice formed in flaw lead polynyas of the Siberian shelf seas is revealed. In this case factors of correlation change from -0,56 to -0,7. The maximum factor of correlation is -0,7. It characterizes interrelation of total volume of the ice formed in flaw lead polynyas of all seas of the Siberian shelf and average salinity of surface waters of Arctic basin. Thus, at increase of volumes of the ice formed in

  9. Simulation of the modern arctic climate by the NCAR CCM1

    SciTech Connect

    Bromwich, D.H.; Tzeng, R.Y. ); Parish, T.R. )

    1994-07-01

    The NCAR CCM1's simulation of the modern arctic climate is evaluated by comparing a five-year seasonal cycle simulation with the ECMWF global analyses. The sea level pressure (SLP), storm tracks, vertical cross section of height, 500-hPa height, total energy budget, and moisture budget are analyzed to investigate the biases in the simulated arctic climate. The results show that the model simulates anomalously low SLP, too much activity, and anomalously strong baroclinicity to the west of Greenland and vice versa to the east of Greenland. This bias is mainly attributed to the model's topographic representation of Greenland. First, the broadened Greenland topography in the model distorts the path of cyclone waves over the North Atlantic Ocean. Second, the model oversimulates the ridge over Greenland, which intensifies its blocking effect and steers the cyclone waves clockwise around it and hence produces an artificial [open quotes]circum-Greenland[close quotes] trough. These biases are significantly alleviated when the horizontal resolution increases to T42. Over the Arctic basin, the modal simulates large amounts of low-level (stratus) clouds in winter and almost no stratus in summer, which is opposite to the observations. This bias is mainly due to the location of the simulated SLP features and the negative anomaly of storm activity, which prevent the transport of moisture into this region during summer but favor this transport in winter. 26 refs., 14 figs., 42 tabs.

  10. Arctic Spring Transition in Warming Climate: A Study Using Reanalysis Dataset

    NASA Astrophysics Data System (ADS)

    De, B.; Zhang, X.

    2014-12-01

    An increased warming trend over the Arctic in recent years has been documented using observations, and is expected to continue by climate model projections. This increase may shift the springtime transition time, resulting in a longer sea-ice melt and vegetation growing period over the Arctic. In this study, we investigated variability of and changes in the spring transition in a warming climate and examined attributions of various dynamic and thermodynamic processes. The results demonstrate a dramatic increase in springtime surface air temperature (SAT) over the Arctic since 1979. Physical analysis reveals the importance of large-scale poleward moisture and energy advection accompanied by an enhancement in net downward radiation flux, which result in the surface warming. The cloudiness could impact the surface radiation budget and retreat of sea ice cover reduces surface albedo, making an additional contribution to the surface warming. In addition to the overall evaluation of these physical processes, composite analysis suggests that relative contributions from these processes to the increased springtime SAT vary across different geographic sub-regions.

  11. Marine Mammals and Climate Change in the Pacific Arctic: Impacts & Resilience

    NASA Astrophysics Data System (ADS)

    Moore, S. E.

    2014-12-01

    Extreme reductions in Arctic sea ice extent and thickness have become a hallmark of climate change, but impacts to the marine ecosystem are poorly understood. As top predators, marine mammals must adapt to biological responses to physical forcing and thereby become sentinels to ecosystem variability and reorganization. Recent sea ice retreats have influenced the ecology of marine mammals in the Pacific Arctic sector. Walruses now often haul out by the thousands along the NW Alaska coast in late summer, and reports of harbor porpoise, humpback, fin and minke whales in the Chukchi Sea demonstrate that these temperate species routinely occur there. In 2010, satellite tagged bowhead whales from Atlantic and Pacific populations met in the Northwest Passage, an overlap thought precluded by sea ice since the Holocene. To forage effectively, baleen whales must target dense patches of zooplankton and small fishes. In the Pacific Arctic, bowhead and gray whales appear to be responding to enhanced prey availability delivered both by new production and advection pathways. Two programs, the Distributed Biological Observatory (DBO) and the Synthesis of Arctic Research (SOAR), include tracking of marine mammal and prey species' responses to ecosystem shifts associated with sea ice loss. Both programs provide an integrated-ecosystem baseline in support of the development of a web-based Marine Mammal Health Map, envisioned as a component of the U.S. Integrated Ocean Observing System (IOOS). An overarching goal is to identify ecological patterns for marine mammals in the 'new' Arctic, as a foundation for integrative research, local response and adaptive management.

  12. Climate change and infectious diseases in the Arctic: establishment of a circumpolar working group.

    PubMed

    Parkinson, Alan J; Evengard, Birgitta; Semenza, Jan C; Ogden, Nicholas; Børresen, Malene L; Berner, Jim; Brubaker, Michael; Sjöstedt, Anders; Evander, Magnus; Hondula, David M; Menne, Bettina; Pshenichnaya, Natalia; Gounder, Prabhu; Larose, Tricia; Revich, Boris; Hueffer, Karsten; Albihn, Ann

    2014-01-01

    The Arctic, even more so than other parts of the world, has warmed substantially over the past few decades. Temperature and humidity influence the rate of development, survival and reproduction of pathogens and thus the incidence and prevalence of many infectious diseases. Higher temperatures may also allow infected host species to survive winters in larger numbers, increase the population size and expand their habitat range. The impact of these changes on human disease in the Arctic has not been fully evaluated. There is concern that climate change may shift the geographic and temporal distribution of a range of infectious diseases. Many infectious diseases are climate sensitive, where their emergence in a region is dependent on climate-related ecological changes. Most are zoonotic diseases, and can be spread between humans and animals by arthropod vectors, water, soil, wild or domestic animals. Potentially climate-sensitive zoonotic pathogens of circumpolar concern include Brucella spp., Toxoplasma gondii, Trichinella spp., Clostridium botulinum, Francisella tularensis, Borrelia burgdorferi, Bacillus anthracis, Echinococcus spp., Leptospira spp., Giardia spp., Cryptosporida spp., Coxiella burnetti, rabies virus, West Nile virus, Hantaviruses, and tick-borne encephalitis viruses.

  13. Climate change and infectious diseases in the Arctic: establishment of a circumpolar working group

    PubMed Central

    Parkinson, Alan J.; Evengard, Birgitta; Semenza, Jan C.; Ogden, Nicholas; Børresen, Malene L.; Berner, Jim; Brubaker, Michael; Sjöstedt, Anders; Evander, Magnus; Hondula, David M.; Menne, Bettina; Pshenichnaya, Natalia; Gounder, Prabhu; Larose, Tricia; Revich, Boris; Hueffer, Karsten; Albihn, Ann

    2014-01-01

    The Arctic, even more so than other parts of the world, has warmed substantially over the past few decades. Temperature and humidity influence the rate of development, survival and reproduction of pathogens and thus the incidence and prevalence of many infectious diseases. Higher temperatures may also allow infected host species to survive winters in larger numbers, increase the population size and expand their habitat range. The impact of these changes on human disease in the Arctic has not been fully evaluated. There is concern that climate change may shift the geographic and temporal distribution of a range of infectious diseases. Many infectious diseases are climate sensitive, where their emergence in a region is dependent on climate-related ecological changes. Most are zoonotic diseases, and can be spread between humans and animals by arthropod vectors, water, soil, wild or domestic animals. Potentially climate-sensitive zoonotic pathogens of circumpolar concern include Brucella spp., Toxoplasma gondii, Trichinella spp., Clostridium botulinum, Francisella tularensis, Borrelia burgdorferi, Bacillus anthracis, Echinococcus spp., Leptospira spp., Giardia spp., Cryptosporida spp., Coxiella burnetti, rabies virus, West Nile virus, Hantaviruses, and tick-borne encephalitis viruses. PMID:25317383

  14. The influence of climate change and the timing of stratospheric warmings on Arctic ozone depletion

    SciTech Connect

    Austin, J.; Butchart, N.

    1994-01-20

    A three-dimensional model is presented to evaluate the influence of climatic change and increased carbon dioxide concentrations on ozone depletion in the Arctic region. Satellite data showing the time of stratospheric warmings during the winters of 1979-1992 is used in a series of idealized experiments where the timing of the warmings is varied by using different geopotential wave amplitudes. Results of the experiments indicate that for doubled atmospheric carbon dioxide levels, an ozone hole in the Arctic is more likely to develop during years where late stratospheric warming has occurred after a relatively quiescent winter. The validity of this model is dependent on the future composition and temperature of the stratosphere. 43 refs., 21 figs.

  15. Testing massive Arctic sea ice export as a trigger for abrupt climate change

    NASA Astrophysics Data System (ADS)

    Coletti, Anthony; Condron, Alan; Bradley, Raymond

    2014-05-01

    The discharge of freshwater from glacial lakes to the North Atlantic is repeatedly cited as the main trigger for abrupt centennial to millennial length climate change during the last deglaciation. Broecker et al., (1989) was a proponent of this idea suggesting that abrupt re-routing of pro-glacial lake freshwater to the North Atlantic through the St. Lawrence Valley weakened the strength of the AMOC. Yet, evidence for this is lacking, freshwater estimates in these lakes are relatively small and flood durations are rather short (<5 years), suggesting that floods may not have been the only mechanism driving these climate shifts. Using sophisticated ocean modeling, it has been shown that the release of freshwater originating from the Arctic is more effective at weakening the AMOC compared to freshwater released further south. Here we investigate whether the break-up and mobilization of thick Arctic sea-ice would have supplied enough freshwater to the Nordic Seas to sufficiently cause dampening of the AMOC and hinder NADW formation in the sub-polar North Atlantic. We use numerical climate models to assess 1) the maximum thickness of sea ice that can be formed during glacial periods and the volume of freshwater in the ice, 2) the mechanism which caused the collapse and mobilization of arctic sea-ice into the North Atlantic and 3) the impact of melting sea-ice on global ocean circulation. This hypothesis focuses on the potential impacts of sea-ice as a forcing mechanism for abrupt climate change events on geologic time scales.

  16. Wave climate in the Arctic 1992-2014: seasonality and trends

    NASA Astrophysics Data System (ADS)

    Stopa, Justin E.; Ardhuin, Fabrice; Girard-Ardhuin, Fanny

    2016-07-01

    Over the past decade, the diminishing Arctic sea ice has impacted the wave field, which depends on the ice-free ocean and wind. This study characterizes the wave climate in the Arctic spanning 1992-2014 from a merged altimeter data set and a wave hindcast that uses CFSR winds and ice concentrations from satellites as input. The model performs well, verified by the altimeters, and is relatively consistent for climate studies. The wave seasonality and extremes are linked to the ice coverage, wind strength, and wind direction, creating distinct features in the wind seas and swells. The altimeters and model show that the reduction of sea ice coverage causes increasing wave heights instead of the wind. However, trends are convoluted by interannual climate oscillations like the North Atlantic Oscillation (NAO) and Pacific Decadal Oscillation. In the Nordic Greenland Sea the NAO influences the decreasing wind speeds and wave heights. Swells are becoming more prevalent and wind-sea steepness is declining. The satellite data show the sea ice minimum occurs later in fall when the wind speeds increase. This creates more favorable conditions for wave development. Therefore we expect the ice freeze-up in fall to be the most critical season in the Arctic and small changes in ice cover, wind speeds, and wave heights can have large impacts to the evolution of the sea ice throughout the year. It is inconclusive how important wave-ice processes are within the climate system, but selected events suggest the importance of waves within the marginal ice zone.

  17. HOW WILL GLOBAL CLIMATE CHANGE AFFECT PARASITES?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : Parasites are integral components of complex biotic assemblages that comprise the biosphere. Host switching correlated with episodic climate-change events are common in evolutionary and ecological time. Global climate change produces ecological perturbation, manifested in major geographical/pheno...

  18. Postglacial sea-level rise and its impact on the circum-arctic Holocene climate evolution

    NASA Astrophysics Data System (ADS)

    Bauch, Henning; Abramova, Ekaterina; Alenius, Teija; Saarnisto, Matti

    2016-04-01

    The global sea-level rise after the last glaciation not only affected the surface properties (circulation, T-S, sea ice seasonality) of the Arctic Ocean and nearby seas it also had a strong impact on the Holocene development of the shallow North Siberian shelf systems and the environmental evolution of the adjacent hinterland areas. In this region sea level reconstructions indicate the postglacial highstand occurred some time in the middle Holocene, between 6 to 5 ka (Klemann et al., 2015). After that time the sedimentary regime of the shelf seas stabilized as noted in a drastic decrease in sedimentation rates observed in all sediment cores taken from middle to outer shelf water depths of the Laptev Sea (Bauch et al. 2001). But, at water depths lower than 30 meters - i.e., in the inner shelf and nearer to the coasts - sedimentation continued at relatively higher rates, presumably due to input of terrigenous material from river runoff as well as coastal erosion. In relation to the latter process, the huge Lena Delta should comprise a region of sediment catchment where aggradation wins over erosion. However, little is known about the detailed history of this delta during the second half of the Holocene. We therefore have investigated three islands within the Lena Delta. All of these are comprised of massive peat of several meters in thickness. Picking discrete specimens of water mosses (Sphagnum) only, we have carefully dated these peat sections. The depth/age relation of the sampled profiles reflect the growth rate of peat, and thus, the islands. It shows that the islands' history above the present-day delta sea level is about 4000 yrs. old. Moreover, a significant change in peat growth is noted after 2500 yrs BP in both, accumulation and composition, and allows the conclusion of a major shift in Arctic environmental conditions since then. Thus, our results add further information also for other coastal studies, as the ongoing degradation of the rather vulnerable

  19. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra

    PubMed Central

    Gauthier, Gilles; Bêty, Joël; Cadieux, Marie-Christine; Legagneux, Pierre; Doiron, Madeleine; Chevallier, Clément; Lai, Sandra; Tarroux, Arnaud; Berteaux, Dominique

    2013-01-01

    Arctic wildlife is often presented as being highly at risk in the face of current climate warming. We use the long-term (up to 24 years) monitoring records available on Bylot Island in the Canadian Arctic to examine temporal trends in population attributes of several terrestrial vertebrates and in primary production. Despite a warming trend (e.g. cumulative annual thawing degree-days increased by 37% and snow-melt date advanced by 4–7 days over a 23-year period), we found little evidence for changes in the phenology, abundance or productivity of several vertebrate species (snow goose, foxes, lemmings, avian predators and one passerine). Only primary production showed a response to warming (annual above-ground biomass of wetland graminoids increased by 123% during this period). We nonetheless found evidence for potential mismatches between herbivores and their food plants in response to warming as snow geese adjusted their laying date by only 3.8 days on average for a change in snow-melt of 10 days, half of the corresponding adjustment shown by the timing of plant growth (7.1 days). We discuss several reasons (duration of time series, large annual variability, amplitude of observed climate change, nonlinear dynamic or constraints imposed by various rate of warming with latitude in migrants) to explain the lack of response by herbivores and predators to climate warming at our study site. We also show how length and intensity of monitoring could affect our ability to detect temporal trends and provide recommendations for future monitoring. PMID:23836788

  20. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra.

    PubMed

    Gauthier, Gilles; Bêty, Joël; Cadieux, Marie-Christine; Legagneux, Pierre; Doiron, Madeleine; Chevallier, Clément; Lai, Sandra; Tarroux, Arnaud; Berteaux, Dominique

    2013-08-19

    Arctic wildlife is often presented as being highly at risk in the face of current climate warming. We use the long-term (up to 24 years) monitoring records available on Bylot Island in the Canadian Arctic to examine temporal trends in population attributes of several terrestrial vertebrates and in primary production. Despite a warming trend (e.g. cumulative annual thawing degree-days increased by 37% and snow-melt date advanced by 4-7 days over a 23-year period), we found little evidence for changes in the phenology, abundance or productivity of several vertebrate species (snow goose, foxes, lemmings, avian predators and one passerine). Only primary production showed a response to warming (annual above-ground biomass of wetland graminoids increased by 123% during this period). We nonetheless found evidence for potential mismatches between herbivores and their food plants in response to warming as snow geese adjusted their laying date by only 3.8 days on average for a change in snow-melt of 10 days, half of the corresponding adjustment shown by the timing of plant growth (7.1 days). We discuss several reasons (duration of time series, large annual variability, amplitude of observed climate change, nonlinear dynamic or constraints imposed by various rate of warming with latitude in migrants) to explain the lack of response by herbivores and predators to climate warming at our study site. We also show how length and intensity of monitoring could affect our ability to detect temporal trends and provide recommendations for future monitoring.

  1. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra.

    PubMed

    Gauthier, Gilles; Bêty, Joël; Cadieux, Marie-Christine; Legagneux, Pierre; Doiron, Madeleine; Chevallier, Clément; Lai, Sandra; Tarroux, Arnaud; Berteaux, Dominique

    2013-08-19

    Arctic wildlife is often presented as being highly at risk in the face of current climate warming. We use the long-term (up to 24 years) monitoring records available on Bylot Island in the Canadian Arctic to examine temporal trends in population attributes of several terrestrial vertebrates and in primary production. Despite a warming trend (e.g. cumulative annual thawing degree-days increased by 37% and snow-melt date advanced by 4-7 days over a 23-year period), we found little evidence for changes in the phenology, abundance or productivity of several vertebrate species (snow goose, foxes, lemmings, avian predators and one passerine). Only primary production showed a response to warming (annual above-ground biomass of wetland graminoids increased by 123% during this period). We nonetheless found evidence for potential mismatches between herbivores and their food plants in response to warming as snow geese adjusted their laying date by only 3.8 days on average for a change in snow-melt of 10 days, half of the corresponding adjustment shown by the timing of plant growth (7.1 days). We discuss several reasons (duration of time series, large annual variability, amplitude of observed climate change, nonlinear dynamic or constraints imposed by various rate of warming with latitude in migrants) to explain the lack of response by herbivores and predators to climate warming at our study site. We also show how length and intensity of monitoring could affect our ability to detect temporal trends and provide recommendations for future monitoring. PMID:23836788

  2. Contrasted climatic trends in the Atlantic vs. Pacific gateways of the Arctic Ocean during the Holocene

    NASA Astrophysics Data System (ADS)

    de Vernal, A.; Hillaire-Marcel, C.; Rochon, A.

    2013-12-01

    The reconstruction of sea-surface conditions including sea ice cover was undertaken based on about 20 marine sediment cores collected in the Arctic Ocean and subarctic seas. The approach has been standardized and mostly relies on the modern analogue technique applied to dinoflagellate cyst assemblages, which permit simultaneous estimates of sea ice cover, summer sea-surface temperature and salinity. The results show some regionalism in both trends, amplitude and overall variability. In general, changes of small amplitude are recorded in the Canadian Arctic whereas a slight cooling trend with an increasing sea ice cover characterizes the Northern Baffin Bay and Fram Strait areas from mid to late Holocene. In contrast, the Chukchi Sea records show large amplitude variations with millennial pacing making difficult to define any trend. The Chukchi Sea data indicate reduced sea ice and warmer conditions during the mid-Holocene, notably around 6.5 and 3.5 ka, and also point to important variations during the last millennium. The overall results suggest a higher variability thus sensitivity to climate change, in the Chukchi Sea area than in the Eastern parts of the Arctic and subarctic regions, which are largely influenced by northern branches of the North Atlantic Drift. The climate sensitivity of the Chukchi Sea area may be related to the proximity of the Pacific gateway. Strong linkages between sea-surface conditions, sea ice cover and export rate seem tightly linked there with large scale atmospheric synopses in the North Pacific and possibly the tropical Pacific. The apparent consistency of the Mount Logan record (Fisher et al., the Holocene 2008) with those of the Chukchi Sea (de Vernal et al., Quat. Sci. Rev. 2013) tends to support the hypothesis of a strong influence of North Pacific atmospheric teleconnections on sea-surface conditions in the Western Arctic.

  3. How will the greening of the Arctic affect an important prey species and disturbance agent? Vegetation effects on arctic ground squirrels.

    PubMed

    Wheeler, H C; Chipperfield, J D; Roland, C; Svenning, J-C

    2015-07-01

    Increases in terrestrial primary productivity across the Arctic and northern alpine ecosystems are leading to altered vegetation composition and stature. Changes in vegetation stature may affect predator-prey interactions via changes in the prey's ability to detect predators, changes in predation pressure, predator identity and predator foraging strategy. Changes in productivity and vegetation composition may also affect herbivores via effects on forage availability and quality. We investigated if height-dependent effects of forage and non-forage vegetation determine burrowing extent and activity of arctic ground squirrels (Urocitellus parryii). We collected data on burrow networks and activity of arctic ground squirrels across long-term vegetation monitoring sites in Denali National Park and Preserve, Alaska. The implications of height-specific cover of potential forage and non-forage vegetation on burrowing behaviour and habitat suitability for arctic ground squirrels were investigated using hierarchical Bayesian modelling. Increased cover of forbs was associated with more burrows and burrow systems, and higher activity of systems, for all forb heights. No other potential forage functional group was related to burrow distribution and activity. In contrast, height-dependent negative effects of non-forage vegetation were observed, with cover over 50-cm height negatively affecting the number of burrows, systems and system activity. Our results demonstrate that increases in vegetation productivity have dual, potentially counteracting effects on arctic ground squirrels via changes in forage and vegetation stature. Importantly, increases in tall-growing woody vegetation (shrubs and trees) have clear negative effects, whereas increases in forb should benefit arctic ground squirrels. PMID:25666700

  4. How will the greening of the Arctic affect an important prey species and disturbance agent? Vegetation effects on arctic ground squirrels.

    PubMed

    Wheeler, H C; Chipperfield, J D; Roland, C; Svenning, J-C

    2015-07-01

    Increases in terrestrial primary productivity across the Arctic and northern alpine ecosystems are leading to altered vegetation composition and stature. Changes in vegetation stature may affect predator-prey interactions via changes in the prey's ability to detect predators, changes in predation pressure, predator identity and predator foraging strategy. Changes in productivity and vegetation composition may also affect herbivores via effects on forage availability and quality. We investigated if height-dependent effects of forage and non-forage vegetation determine burrowing extent and activity of arctic ground squirrels (Urocitellus parryii). We collected data on burrow networks and activity of arctic ground squirrels across long-term vegetation monitoring sites in Denali National Park and Preserve, Alaska. The implications of height-specific cover of potential forage and non-forage vegetation on burrowing behaviour and habitat suitability for arctic ground squirrels were investigated using hierarchical Bayesian modelling. Increased cover of forbs was associated with more burrows and burrow systems, and higher activity of systems, for all forb heights. No other potential forage functional group was related to burrow distribution and activity. In contrast, height-dependent negative effects of non-forage vegetation were observed, with cover over 50-cm height negatively affecting the number of burrows, systems and system activity. Our results demonstrate that increases in vegetation productivity have dual, potentially counteracting effects on arctic ground squirrels via changes in forage and vegetation stature. Importantly, increases in tall-growing woody vegetation (shrubs and trees) have clear negative effects, whereas increases in forb should benefit arctic ground squirrels.

  5. Evaluating climate variables, indexes and thresholds governing Arctic urban sustainability: case study of Russian permafrost regions

    NASA Astrophysics Data System (ADS)

    Anisimov, O. A.; Kokorev, V.

    2013-12-01

    Addressing Arctic urban sustainability today forces planners to deal with the complex interplay of multiple factors, including governance and economic development, demography and migration, environmental changes and land use, changes in the ecosystems and their services, and climate change. While the latter can be seen as a factor that exacerbates the existing vulnerabilities to other stressors, changes in temperature, precipitation, snow, river and lake ice, and the hydrological regime also have direct implications for the cities in the North. Climate change leads to reduced demand for heating energy, on one hand, and heightened concerns about the fate of the infrastructure built upon thawing permafrost, on the other. Changes in snowfall are particularly important and have direct implications for the urban economy, as together with heating costs, expenses for snow removal from streets, airport runways, roofs and ventilation corridors underneath buildings erected on pile foundations on permafrost constitute the bulk of the city's maintenance budget. Many cities are located in river valleys and are prone to flooding that leads to enormous economic losses and casualties, including human deaths. The severity of the northern climate has direct implications for demographic changes governed by regional migration and labor flows. Climate could thus be viewed as an inexhaustible public resource that creates opportunities for sustainable urban development. Long-term trends show that climate as a resource is becoming more readily available in the Russian North, notwithstanding the general perception that globally climate change is one of the challenges facing humanity in the 21st century. In this study we explore the sustainability of the Arctic urban environment under changing climatic conditions. We identify key governing variables and indexes and study the thresholds beyond which changes in the governing climatic parameters have significant impact on the economy

  6. Atmospheric transport of persistent organic pollutants to and from the Arctic under present-day and future climate.

    PubMed

    Octaviani, Mega; Stemmler, Irene; Lammel, Gerhard; Graf, Hans F

    2015-03-17

    The long-term atmospheric cycling and fate of persistent organic pollutants under the influence of a changing climate is a concern. A GCM's realization of present-day (1970-1999) and future (2070-2099) climate, the latter under a medium scenario of greenhouse gas emissions, is used to study meridional transports and their correlations with the Arctic and North Atlantic Oscillations (AO and NAO). Regions of import and export maxima into the Arctic are identified along the Arctic Circle. It is found that, under future climate conditions, the net export of PCB153 out of the Arctic will increase. The meridional net flux pattern of this substance is expected to become independent of AO and NAO. For DDT, a trend of decreasing net Arctic import will reverse to an increasing trend 100 years after peak emission, which is partly due to more frequent AO and NAO positive phases. It is concluded that the long-term accumulation trends in the Arctic of other persistent pollutants, including so-called emerging pollutants, are subject to the substances' specific behavior and fate in the environment and need to be studied specifically. PMID:25686012

  7. Atmospheric transport of persistent organic pollutants to and from the Arctic under present-day and future climate.

    PubMed

    Octaviani, Mega; Stemmler, Irene; Lammel, Gerhard; Graf, Hans F

    2015-03-17

    The long-term atmospheric cycling and fate of persistent organic pollutants under the influence of a changing climate is a concern. A GCM's realization of present-day (1970-1999) and future (2070-2099) climate, the latter under a medium scenario of greenhouse gas emissions, is used to study meridional transports and their correlations with the Arctic and North Atlantic Oscillations (AO and NAO). Regions of import and export maxima into the Arctic are identified along the Arctic Circle. It is found that, under future climate conditions, the net export of PCB153 out of the Arctic will increase. The meridional net flux pattern of this substance is expected to become independent of AO and NAO. For DDT, a trend of decreasing net Arctic import will reverse to an increasing trend 100 years after peak emission, which is partly due to more frequent AO and NAO positive phases. It is concluded that the long-term accumulation trends in the Arctic of other persistent pollutants, including so-called emerging pollutants, are subject to the substances' specific behavior and fate in the environment and need to be studied specifically.

  8. Contaminant loading in remote Arctic lakes affects cellular stress-related proteins expression in feral charr.

    USGS Publications Warehouse

    Wiseman, Steve; Jorgensen, Even H.; Maule, Alec G.; Vijayan, Mathilakath M.

    2011-01-01

    The remote Arctic lakes on Bjornoya Island, Norway, offer a unique opportunity to study possible affect of lifelong contaminant exposure in wild populations of landlocked Arctic charr (Salvelinus alpinus). This is because Lake Ellasjoen has persistent organic pollutant (POP) levels that are significantly greater than in the nearby Lake Oyangen. We examined whether this differential contaminant loading was reflected in the expression of protein markers of exposure and effect in the native fish. We assessed the expressions of cellular stress markers, including cytochrome P4501A (Cyp1A), heat shock protein 70 (hsp70), and glucocorticoid receptor (GR) in feral charr from the two lakes. The average polychlorinated biphenyl (PCB) load in the charr liver from Ellasjoen was approximately 25-fold higher than in individuals from Oyangen. Liver Cyp1A protein expression was significantly higher in individuals from Ellasjoen compared with Oyangen, confirming differential PCB exposure. There was no significant difference in hsp70 protein expression in charr liver between the two lakes. However, brain hsp70 protein expression was significantly elevated in charr from Ellasjoen compared with Oyangen. Also, liver GR protein expression was significantly higher in the Ellasjoen charr compared with Oyangen charr. Taken together, our results suggest changes to cellular stress-related protein expression as a possible adaptation to chronic-contaminant exposure in feral charr in the Norwegian high-Arctic.

  9. Pirate attacks affect Indian Ocean climate research

    NASA Astrophysics Data System (ADS)

    Smith, Shawn R.; Bourassa, Mark A.; Long, Michael

    2011-07-01

    Pirate attacks in the Gulf of Aden and the Indian Ocean off the coast of Somalia nearly doubled from 111 in 2008 to 217 in 2009 [International Maritime Bureau, 2009, International Maritime Bureau, 2010]. Consequently, merchant vessel traffic in the area around Somalia significantly decreased. Many of these merchant vessels carry instruments that record wind and other weather conditions near the ocean surface, and alterations in ship tracks have resulted in a hole sized at about 2.5 million square kilometers in the marine weather-observing network off the coast of Somalia. The data void exists in the formation region of the Somali low-level jet, a wind pattern that is one of the main drivers of the Indian summer monsoon. Further, a stable, multidecadal record has been interrupted, and consequently, long-term analyses of the jet derived from surface wind data are now showing artificial anomalies that will affect efforts by scientists to identify interannual to decadal variations in the climate of the northwestern Indian Ocean.

  10. Large herbivore grazing affects the vegetation structure and greenhouse gas balance in a high arctic mire

    NASA Astrophysics Data System (ADS)

    Falk, Julie Maria; Schmidt, Niels Martin; Christensen, Torben R.; Ström, Lena

    2015-04-01

    Herbivory is an important part of most ecosystems and affects the ecosystems’ carbon balance both directly and indirectly. Little is known about herbivory and its impact on the carbon balance in high arctic mire ecosystems. We hypothesized that trampling and grazing by large herbivores influences the vegetation density and composition and thereby also the carbon balance. In 2010, we established fenced exclosures in high arctic Greenland to prevent muskoxen (Ovibos moschatus) from grazing. During the growing seasons of 2011 to 2013 we measured CO2 and CH4 fluxes in these ungrazed blocks and compared them to blocks subjected to natural grazing. Additionally, we measured depth of the water table and active layer, soil temperature, and in 2011 and 2013 an inventory of the vegetation density and composition were made. In 2013 a significant decrease in total number of vascular plant (33-44%) and Eriophorum scheuchzeri (51-53%) tillers were found in ungrazed plots, the moss-layer and amount of litter had also increased substantially in these plots. This resulted in a significant decrease in net ecosystem uptake of CO2 (47%) and likewise a decrease in CH4 emission (44%) in ungrazed plots in 2013. While the future of the muskoxen in a changing arctic is unknown, this experiment points to a potentially large effect of large herbivores on the carbon balance in natural Arctic ecosystems. It thus sheds light on the importance of grazing mammals, and hence adds to our understanding of natural ecosystem greenhouse gas balance in the past and in the future.

  11. Remote sensing of aerosols in the Arctic for an evaluation of global climate model simulations

    PubMed Central

    Glantz, Paul; Bourassa, Adam; Herber, Andreas; Iversen, Trond; Karlsson, Johannes; Kirkevåg, Alf; Maturilli, Marion; Seland, Øyvind; Stebel, Kerstin; Struthers, Hamish; Tesche, Matthias; Thomason, Larry

    2014-01-01

    In this study Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua retrievals of aerosol optical thickness (AOT) at 555 nm are compared to Sun photometer measurements from Svalbard for a period of 9 years. For the 642 daily coincident measurements that were obtained, MODIS AOT generally varies within the predicted uncertainty of the retrieval over ocean (ΔAOT = ±0.03 ± 0.05 · AOT). The results from the remote sensing have been used to examine the accuracy in estimates of aerosol optical properties in the Arctic, generated by global climate models and from in situ measurements at the Zeppelin station, Svalbard. AOT simulated with the Norwegian Earth System Model/Community Atmosphere Model version 4 Oslo global climate model does not reproduce the observed seasonal variability of the Arctic aerosol. The model overestimates clear-sky AOT by nearly a factor of 2 for the background summer season, while tending to underestimate the values in the spring season. Furthermore, large differences in all-sky AOT of up to 1 order of magnitude are found for the Coupled Model Intercomparison Project phase 5 model ensemble for the spring and summer seasons. Large differences between satellite/ground-based remote sensing of AOT and AOT estimated from dry and humidified scattering coefficients are found for the subarctic marine boundary layer in summer. Key Points Remote sensing of AOT is very useful in validation of climate models PMID:25821664

  12. The Arctic Holocene Transitions Proxy Climate Database — Principal Millennial-Scale Patterns

    NASA Astrophysics Data System (ADS)

    Kaufman, D. S.; McKay, N.

    2014-12-01

    The Arctic Holocene Transitions (AHT) Project is a community-based, PAGES-endorsed effort to investigate centennial-scale variability in the Arctic climate system during the Holocene, and to understand the feedbacks that lead to pronounced changes. The AHT project recently released a major database of Arctic Holocene proxy climate records (Clim. Past-Disc. 10:1). The systematic review of marine and terrestrial proxy climate time series is based on quantitative screening criteria with new approaches for assessing the geochronological accuracy of age models and for characterizing the climate variables represented by the proxies. Records from only 39% of the sites could be found in the primary paleoclimate data repositories, underscoring the importance of such community-based efforts to assembling a comprehensive product. The database authors, including representatives from six Arctic regions, considered published records from nearly 500 sites. Of these, time series from 170 sites met the criteria for inclusion in the database. Namely, the records are located north of 58°N, extend back at least to 6 cal ka (84% extend back > 8 ka), are resolved at sub-millennial scale (at least one value every 400 ± 200 yr) and have age models constrained by at least one age every 3000 yr. The database contains proxy records from lake sediment (60%), marine sediment (32%), glacier ice (5%), and other sources. Most (60%) reflect temperature (mainly summer warmth) and are primarily based on pollen, chironomid or diatom assemblages. Many (15%) reflect some aspect of hydroclimate as inferred from stable isotopes, pollen assemblages, and other indicators. Principal component (PC) analyses indicates that the predominant pattern of change in temperature-sensitive time series is a ramp between 5 and 3 ka that separates millennial-long intervals of less-pronounced change. This shift corresponds to cooling at most sites, but a substantial fraction of sites warm across this transition. Between

  13. Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic.

    PubMed

    Lescord, Gretchen L; Kidd, Karen A; Kirk, Jane L; O'Driscoll, Nelson J; Wang, Xiaowa; Muir, Derek C G

    2015-03-15

    In temperate regions of Canada, mercury (Hg) concentrations in biota and the magnitude of Hg biomagnification through food webs vary between neighboring lakes and are related to water chemistry variables and physical lake features. However, few studies have examined factors affecting the variable Hg concentrations in landlocked Arctic char (Salvelinus alpinus) or the biomagnification of Hg through their food webs. We estimated the food web structure of six high Arctic lakes near Resolute Bay, Nunavut, Canada, using stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopes and measured Hg (total Hg (THg) in char, the only fish species, and methylmercury (MeHg) in chironomids and zooplankton) concentrations in biota collected in 2010 and 2011. Across lakes, δ(13)C showed that benthic carbon (chironomids) was the dominant food source for char. Regression models of log Hg versus δ(15)N (of char and benthic invertebrates) showed positive and significant slopes, indicting Hg biomagnification in all lakes, and higher slopes in some lakes than others. However, no principal components (PC) generated using all water chemistry data and physical characteristics of the lakes predicted the different slopes. The PC dominated by aqueous ions was a negative predictor of MeHg concentrations in chironomids, suggesting that water chemistry affects Hg bioavailability and MeHg concentrations in these lower-trophic-level organisms. Furthermore, regression intercepts were predicted by the PCs dominated by catchment area, aqueous ions, and MeHg. Weaker relationships were also found between THg in small char or MeHg in pelagic invertebrates and the PCs dominated by catchment area, and aqueous nitrate and MeHg. Results from these high Arctic lakes suggest that Hg biomagnification differs between systems and that their physical and chemical characteristics affect Hg concentrations in lower-trophic-level biota.

  14. Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic.

    PubMed

    Lescord, Gretchen L; Kidd, Karen A; Kirk, Jane L; O'Driscoll, Nelson J; Wang, Xiaowa; Muir, Derek C G

    2015-03-15

    In temperate regions of Canada, mercury (Hg) concentrations in biota and the magnitude of Hg biomagnification through food webs vary between neighboring lakes and are related to water chemistry variables and physical lake features. However, few studies have examined factors affecting the variable Hg concentrations in landlocked Arctic char (Salvelinus alpinus) or the biomagnification of Hg through their food webs. We estimated the food web structure of six high Arctic lakes near Resolute Bay, Nunavut, Canada, using stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopes and measured Hg (total Hg (THg) in char, the only fish species, and methylmercury (MeHg) in chironomids and zooplankton) concentrations in biota collected in 2010 and 2011. Across lakes, δ(13)C showed that benthic carbon (chironomids) was the dominant food source for char. Regression models of log Hg versus δ(15)N (of char and benthic invertebrates) showed positive and significant slopes, indicting Hg biomagnification in all lakes, and higher slopes in some lakes than others. However, no principal components (PC) generated using all water chemistry data and physical characteristics of the lakes predicted the different slopes. The PC dominated by aqueous ions was a negative predictor of MeHg concentrations in chironomids, suggesting that water chemistry affects Hg bioavailability and MeHg concentrations in these lower-trophic-level organisms. Furthermore, regression intercepts were predicted by the PCs dominated by catchment area, aqueous ions, and MeHg. Weaker relationships were also found between THg in small char or MeHg in pelagic invertebrates and the PCs dominated by catchment area, and aqueous nitrate and MeHg. Results from these high Arctic lakes suggest that Hg biomagnification differs between systems and that their physical and chemical characteristics affect Hg concentrations in lower-trophic-level biota. PMID:24909711

  15. Latitudinal distribution of the recent Arctic warming

    SciTech Connect

    Chylek, Petr; Lesins, Glen K; Wang, Muyin

    2010-12-08

    Increasing Arctic temperature, disappearance of Arctic sea ice, melting of the Greenland ice sheet, sea level rise, increasing strength of Atlantic hurricanes are these impending climate catastrophes supported by observations? Are the recent data really unprecedented during the observational records? Our analysis of Arctic temperature records shows that the Arctic and temperatures in the 1930s and 1940s were almost as high as they are today. We argue that the current warming of the Arctic region is affected more by the multi-decadal climate variability than by an increasing concentration of carbon dioxide. Unfortunately, none of the existing coupled Atmosphere-Ocean General Circulation Models used in the IPCC 2007 cIimate change assessment is able to reproduce neither the observed 20th century Arctic cIimate variability nor the latitudinal distribution of the warming.

  16. Identifying the main drivers of soil carbon response to climate change in arctic and boreal Alaska.

    NASA Astrophysics Data System (ADS)

    Genet, H.; McGuire, A. D.; He, Y.; Johnson, K.; Wylie, B. K.; Pastick, N. J.; Zhuang, Q.; Zhu, Z.

    2015-12-01

    Boreal and arctic regions represent the largest reservoir of carbon among terrestrial biomes. Most of this carbon is stored deep in the soil in permafrost where frozen organic matter is protected from decomposition. The vulnerability of soil carbon stocks to a changing climate in high latitudes depends on a number of physical and ecological processes. The importance of these processes in controlling the dynamics of soil carbon stocks vary across regions because of variability in vegetation composition, drainage condition, and permafrost characteristics. To better understand the main drivers of the vulnerability of soil carbon stocks to climate change in Alaska, we ran a process-based ecosystem model, the Terrestrial Ecosystem Model. This model explicitly simulates interactions between the carbon cycle and permafrost dynamics and was coupled with a disturbance model and a model of biogenic methane dynamics to assess historical and projected soil carbon dynamics in Alaska, from 1950 to 2100. The uncertainties related to climate, fire regime and atmospheric CO2projections on soil carbon dynamics were quantified by running simulations using climate projections from 2 global circulation models, 3 fossil fuel emission scenarios and 3 alternative fire management scenarios. During the historical period [1950-2009], soil carbon stocks increased by 4.7 TgC/yr in Alaska. Soil carbon stocks decreased in boreal Alaska due to substantial fire activity in the early 2000's. This loss was offset by carbon accumulation in the arctic. Changes in soil carbon stocks from 2010 to 2099 ranged from 8.9 to 25.6 TgC/yr, depending on the climate projections. Soil carbon accumulation was slower in lowlands than in uplands and slower in the boreal than in the arctic regions because of the negative effect of fire activity on soil carbon stocks. Tundra ecosystems were more vulnerable to carbon loss from fire than forest ecosystems because of a lower productivity. As a result, the increase in

  17. The Student-PARTNERS Project: Engaging Students, Teachers, and the Public in the Study of the Arctic and Global Climate Change

    NASA Astrophysics Data System (ADS)

    Holmes, R. M.; Zhulidov, A.; Gurtovaya, T.; Bulygina, E.; Braun, L.; Clapp, A.; Laroche, M.; Andreeva, Y.; Suslova, A.; Cheng, S.; Guerrero, M. L.; Kelly, M.; Vtornikova, E.; Sokolova, G.; Chuprov, V.

    2006-12-01

    The International Polar Year provides an excellent opportunity to highlight the importance of the Arctic to the Earth's climate system and at the same time engage the public in the investigation of one of the most pressing issues facing humanity, global climate change. The Student-PARTNERS Project, recently funded by the National Science Foundation's Arctic Sciences Section, is involving students, their teachers, and their communities in hands-on arctic research as a means of exciting them about science and motivating them to consider solutions to the energy/climate challenge. The project focuses on the hydrology and biogeochemistry of major arctic rivers in Siberia, Canada, and Alaska, and how changes in arctic rivers caused by global warming have the potential to impact ocean salinity, ocean circulation, and consequently global climate. Students and teachers from around the Arctic as well as from a growing number of schools outside of the Arctic are working together on this project. Participants are encouraged to view the earth as a system, where changes in the Arctic can lead to changes is regions far removed from the Arctic, and vice versa. The science is also advanced, as local involvement in the research allows a far greater range of samples to be collected from rivers around the Arctic than would otherwise be possible. An unintended benefit of the project is that it facilitates our research reaching an expanded audience, as student involvement tends to capture the public's interest, creating an opening for discussing the underlying science.

  18. Disentangling the effects of climate and local ecosystem dynamics on carbon accumulation in boreal and low-Arctic peatlands in northern Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Camill, P.; Hall, A.; Westervelt, A.; Adams, C.; Umbanhowar, C. E.; Geiss, C. E.; Edlund, M.

    2012-12-01

    High-latitude peatlands store a vast quantity of soil carbon that may be susceptible to current and future changes in warming, aridity, thermokarst, and fire. Understanding the processes affecting rates of carbon storage in these systems is therefore important for assessing potential biosphere feedbacks on climate. Regional climatic changes have the potential to affect C storage by changing the balance of NPP and decomposition. Superimposed on these broader climatic signals are local processes, such as succession and fire, which can change peat accumulation rates by altering community composition, NPP, decomposition, and peat consumption. Peatland sedimentary records provide useful historical archives for assessing the impacts of regional climatic factors, local factors, and possible interactions between climate and local factors on long-term carbon accumulation rates. We present stratigraphic data from 42 permafrost peat cores in two regions (boreal and low-Arctic) of northern Manitoba that allow us to examine the effects of climate changes in space (across a latitudinal gradient) and time (Holocene), including past events such as the Holocene Thermal Maximum (HTM) and Neoglacial Cooling (NGC). Macroscopic charcoal was used as a proxy of fire severity. Age control was achieved with calibrated AMS 14C dates (multiple dates for most cores). The timing and relative magnitude of past climatic change were constrained by published lake sediment proxies. Results indicate that mean regional rates of carbon accumulation during the Holocene in the low-Arctic region were approximately half (5-30 g-C m-2y-1) the rates in the boreal region (15-60 g-C m-2y-1). Despite these regional differences, the temporal trends between regions were similar, with higher rates of C accumulation during the HTM in the boreal site (~8,000-6,000 B.P.) and the low-Arctic site (~6,500-3,000 B.P.) and lower C accumulation rates in both regions during NGC. The mode of regional fire severity occurred

  19. The climate of the Taimyr Peninsula in the Holocene and a Forecast of Climatic Changes in the Arctic

    NASA Astrophysics Data System (ADS)

    Ukraintseva, V.

    2009-04-01

    Based on the data of the spore-pollen and radiocarbon methods during our research of a peat bog in the south-eastern part of the Taimyr Peninsula we discovered for the first time the natural dynamics of the climate for this region during the period of the last 10 500 years [2, 3] and made a long-term forecast of climatic changes both for the Taimyr Peninsula and for other Arctic regions. By the quantitative characteristics of the climate and their dynamics in time, reconstructed for the basin of the Fomich River (71 ° 42 ' North, 108 ° 03 ' East) and for the Taimyr Peninsula on the whole, we have established two climatic types: tundra (10500 ±140 years BP- 7040 ± 60 years BP) and forest (5720± 60 years BP - 500 ± 60 years BP to the present time). In the first half of the Holocene the climate there was rather stable; only 7530 years ago a sharp cooling took place; the second half of the Holocene, beginning with 5720 years ago, is characterized by alternating fluctuations in the climate [3]. Taking only the palaeoclimatic reconstructions as a basis, we can talk about a trend of climatic changes in the future. However comparing the Sun activity` forecast, expressed in Wolf units (Max W), made by V.N. Kupetsky [1], with the climatic characteristics, which we have reconstructed, we could then make a more precise forecast of climatic changes for the Taimyr Peninsula and the Russian part of the Arctic (Table). The above forecast lets us make the following basically important conclusions: (1) the climate`s warming, which is currently being observed on the Earth (the 23rd cycle of the Sun`s activity) will last till 2011; (2) during the following two cycles (24th and 25th) the Sun`s activity will decrease to 100-110 Wolf units, which will cause a cooling of the climate on the Earth; (3) in the following, the 26th cycle, the Sun`s activity will increase up to 130 Wolf units, which will cause a warming of the climate; (4) in the 27th cycle (2037-2048) the Sun`s activity

  20. Impact of climate change on zooplankton communities, seabird populations and arctic terrestrial ecosystem—A scenario

    NASA Astrophysics Data System (ADS)

    Stempniewicz, Lech; Błachowiak-Samołyk, Katarzyna; Węsławski, Jan M.

    2007-11-01

    Many arctic terrestrial ecosystems suffer from a permanent deficiency of nutrients. Marine birds that forage at sea and breed on land can transport organic matter from the sea to land, and thus help to initiate and sustain terrestrial ecosystems. This organic matter initiates the emergence of local tundra communities, increasing primary and secondary production and species diversity. Climate change will influence ocean circulation and the hydrologic regime, which will consequently lead to a restructuring of zooplankton communities between cold arctic waters, with a dominance of large zooplankton species, and Atlantic waters in which small species predominate. The dominance of large zooplankton favours plankton-eating seabirds, such as the little auk ( Alle alle), while the presence of small zooplankton redirects the food chain to plankton-eating fish, up through to fish-eating birds (e.g., guillemots Uria sp.). Thus, in regions where the two water masses compete for dominance, such as in the Barents Sea, plankton-eating birds should dominate the avifauna in cold periods and recess in warmer periods, when fish-eaters should prevail. Therefore under future anthropogenic climate scenarios, there could be serious consequences for the structure and functioning of the terrestrial part of arctic ecosystems, due in part to changes in the arctic marine avifauna. Large colonies of plankton-eating little auks are located on mild mountain slopes, usually a few kilometres from the shore, whereas colonies of fish-eating guillemots are situated on rocky cliffs at the coast. The impact of guillemots on the terrestrial ecosystems is therefore much smaller than for little auks because of the rapid washing-out to sea of the guano deposited on the seabird cliffs. These characteristics of seabird nesting sites dramatically limit the range of occurrence of ornithogenic soils, and the accompanying flora and fauna, to locations where talus-breeding species occur. As a result of climate

  1. Inter-model diversity in jet stream changes and its relation to Arctic climate in CMIP5

    NASA Astrophysics Data System (ADS)

    Yim, Bo Young; Min, Hong Sik; Kug, Jong-Seong

    2016-07-01

    We examined how coupled general circulation models (CGCMs) simulate changes in the jet stream differently under greenhouse warming, and how this inter-model diversity is related to the simulated Arctic climate changes by analyzing the simulation of the Coupled Model Intercomparison Project Phase 5. Although the jet stream in the multi-model ensemble mean shifts poleward, a considerable diversity exists among the 34 CGCMs. We found that inter-model differences in zonal wind responses, especially in terms of meridional shift of the midlatitude jet, are highly dependent on Arctic surface warming and lower stratospheric cooling. Specifically, the midlatitude jet tends to shift relatively equatorward (poleward) in the models with stronger (weaker) Arctic surface warming, whereas the jet tends to shift relatively poleward (equatorward) in the models with stronger (weaker) Arctic lower stratospheric cooling.

  2. Climatic interpretation of Paleogene and Early Neogene spore-pollen floras from Spitsbergen and Arctic Canada

    SciTech Connect

    Norris, G.; Head, M.J.

    1985-01-01

    A relatively complete spore-pollen record through the Late Paleocene and possible Early Eocene from Spitsbergen (lat. 78/sup 0/C long 15/sup 0/E) comprises assemblages commonly with a high conifer and fern content and with moderate triporate angiosperm values. Assemblages are notably dissimilar from those at mid-latitudes and include a number of species which do not appear in Europe until Oligocene or earlier times. This all suggests that the climate varied within a temperate regime. Conifer and fern spores remain abundant but angiosperm pollen is much more diverse and includes taxa referable to Ulmus, Alnus, Juglans, Liquidambar, Pterocarya, Tilia, Fagus, Nyssa, Ilex, .Nuphar, and the Onagraceae which collectively indicate a moderately warm temperate climate. These assemblages thus predate putative Oligocene cooling and fix a maximum possible age limit for its initiation in this area. Eocene floras of the eastern Canadian Arctic (80/sup 0/N, 100/sup 0/W) have been interpreted as sub-tropical but may be warm temperate. Late Eocene spore-pollen assemblages from the Beaufort-Mackenzie Basin of western Arctic Canada (l at 69/sup 0/N, long 134/sup 0/W) are similar to those from Spitsbergen. Species diversity decreases near the Eocene/Oligocene boundary notably related to disappearance of thermophylic taxa indicating cooling for at least part of the Early and Middle Oligocene interval. Warm temperate or temperate floras were reestablished in the Late Oligocene and Miocene of Arctic Canada but were replaced by boreal tundra floras in the Pliocene at latest.

  3. Regional Arctic sea ice variations as predictor for winter climate conditions

    NASA Astrophysics Data System (ADS)

    Koenigk, Torben; Caian, Mihaela; Nikulin, Grigory; Schimanke, Semjon

    2016-01-01

    Seasonal prediction skill of winter mid and high northern latitudes climate from sea ice variations in eight different Arctic regions is analyzed using detrended ERA-interim data and satellite sea ice data for the period 1980-2013. We find significant correlations between ice areas in both September and November and winter sea level pressure, air temperature and precipitation. The prediction skill is improved when using November sea ice conditions as predictor compared to September. This is particularly true for predicting winter NAO-like patterns and blocking situations in the Euro-Atlantic area. We find that sea ice variations in Barents Sea seem to be most important for the sign of the following winter NAO—negative after low ice—but amplitude and extension of the patterns are modulated by Greenland and Labrador Seas ice areas. November ice variability in the Greenland Sea provides the best prediction skill for central and western European temperature and ice variations in the Laptev/East Siberian Seas have the largest impact on the blocking number in the Euro-Atlantic region. Over North America, prediction skill is largest using September ice areas from the Pacific Arctic sector as predictor. Composite analyses of high and low regional autumn ice conditions reveal that the atmospheric response is not entirely linear suggesting changing predictive skill dependent on sign and amplitude of the anomaly. The results confirm the importance of realistic sea ice initial conditions for seasonal forecasts. However, correlations do seldom exceed 0.6 indicating that Arctic sea ice variations can only explain a part of winter climate variations in northern mid and high latitudes.

  4. Nye Lecture: Snow Crystals, Shrubs, and the Changing Climate of the Arctic

    NASA Astrophysics Data System (ADS)

    Sturm, M.

    2005-12-01

    At the peak of winter, snow covers more than 45 million km2 of the northern hemisphere. More than 90 percent of this snow will melt before the end of the following summer. In the southern part of this snow-covered area, the seasonal pack is ephemeral, lasting but a few short weeks, but with increasing latitude (or altitude), it lasts much longer. In arctic and alpine locations it can persist for 9 months of the year. In these more extreme locations, the snow is an essential element of the ecosystem, both acting upon, and being acted on, by the biota. For historical reasons, our understanding of snow cover and its interactions has come from two disparate scientific sources: geophysicists working on glaciers and avalanches who were trying to understand snow properties and to develop a physical basis for snow science, and ecologists who were trying to understand the impact of snow on plants, animals, and humans. With the recognition now that snow is both a passive and active agent, we are seeing an increasing number of studies wherein both of these traditional approaches are combined. Geophysicists are learning the Latin names of shrubs while botanist can now identify wind slab. A personal example that illustrates the necessity of this melding process has been our effort to understand the climatic implications of Arctic snow-shrub interactions. We have had to combine traditional snow geophysical studies (i.e., crystal growth, thermal processes, light reflection) with traditional ecological studies (i.e., competition, carbon and nitrogen cycling). Through this process we have discovered that snow-shrub interactions, or more broadly, snow-vegetation interactions, are helping to push the Arctic down a warming trajectory that has global implications. Soil microbes and snow crystals, wind-blown snow and shrubs, are all leading actors in a climate change drama whose outcome is of concern to us all.

  5. How is climate warming altering the carbon cycle of a tundra ecosystem in the Siberian Arctic?

    NASA Astrophysics Data System (ADS)

    Belelli Marchesini, Luca; (Ko) van Huissteden, Jacobus; van der Molen, Michiel; Parmentier, Frans-Jan W.; Maximov, Trofim; Budishchev, Artem; Gallagher, Angela; (Han) Dolman, Albertus J.

    2015-04-01

    Climate has been warming over the the Arctic region with the strongest anomalies taking place in autumn and winter for the period 2000-2010, particularly in northern Eurasia. The quantification of the impact on climate warming on the degradation of permafrost and the associated potential release to the atmosphere of carbon stocked in the soil under the form of greenhouse gases, thus further increasing the radiative forcing of the atmosphere, is currently a matter of scientific debate. The positive trend in primary productivity in the last decades inferred by vegetation indexes (NDVI) and confirmed by observations on the enhanced growth of shrub vegetation represents indeed a contrasting process that, if prevalent could offset GHG emissions or even strengthen the carbon sink over the Arctic tundra. At the site of Kytalyk, in north-eastern Siberia, net fluxes of CO2 at ecosystem scale (NEE) have been monitored by eddy covariance technique since 2003. While presenting the results of the seasonal (snow free period) and inter-annual variability of NEE, conceived as the interplay between meteorological drivers and ecosystem responses, we test the role of climate as the main source of NEE variability in the last decade using a data oriented statistical approach. The impact of the timing and duration of the snow free period on the seasonal carbon budget is also considered. Finally, by including the results of continuous micrometeorological observations of methane fluxes taken during summer 2012, corroborated with seasonal CH4 budgets from two previous shorter campaigns (2008, 2009), as well as an experimentally determined estimate of dissolved organic carbon (DOC) flux, we provide an assessment of the carbon budget and its stability over time. The examined tundra ecosystem was found to sequester CO2 during the snow free season with relatively small inter-annual variability (-97.9±12.1gC m-2) during the last decade and without any evident trend despite the carbon uptake

  6. Wildfires in northern Eurasia affect the budget of black carbon in the Arctic - a 12-year retrospective synopsis (2002-2013)

    NASA Astrophysics Data System (ADS)

    Evangeliou, N.; Balkanski, Y.; Hao, W. M.; Petkov, A.; Silverstein, R. P.; Corley, R.; Nordgren, B. L.; Urbanski, S. P.; Eckhardt, S.; Stohl, A.; Tunved, P.; Crepinsek, S.; Jefferson, A.; Sharma, S.; Nøjgaard, J. K.; Skov, H.

    2016-06-01

    In recent decades much attention has been given to the Arctic environment, where climate change is happening rapidly. Black carbon (BC) has been shown to be a major component of Arctic pollution that also affects the radiative balance. In the present study, we focused on how vegetation fires that occurred in northern Eurasia during the period of 2002-2013 influenced the budget of BC in the Arctic. For simulating the transport of fire emissions from northern Eurasia to the Arctic, we adopted BC fire emission estimates developed independently by GFED3 (Global Fire Emissions Database) and FEI-NE (Fire Emission Inventory - northern Eurasia). Both datasets were based on fire locations and burned areas detected by MODIS (Moderate resolution Imaging Spectroradiometer) instruments on NASA's (National Aeronautics and Space Administration) Terra and Aqua satellites. Anthropogenic sources of BC were adopted from the MACCity (Monitoring Atmospheric Composition and Climate and megacity Zoom for the Environment) emission inventory.During the 12-year period, an average area of 250 000 km2 yr-1 was burned in northern Eurasia (FEI-NE) and the global emissions of BC ranged between 8.0 and 9.5 Tg yr-1 (FEI-NE+MACCity). For the BC emitted in the Northern Hemisphere (based on FEI-NE+MACCity), about 70 % originated from anthropogenic sources and the rest from biomass burning (BB). Using the FEI-NE+MACCity inventory, we found that 102 ± 29 kt yr-1 BC was deposited in the Arctic (defined here as the area north of 67° N) during the 12 years simulated, which was twice as much as when using the MACCity inventory (56 ± 8 kt yr-1). The annual mass of BC deposited in the Arctic from all sources (FEI-NE in northern Eurasia, MACCity elsewhere) is significantly higher by about 37 % in 2009 (78 vs. 57 kt yr-1) to 181 % in 2012 (153 vs. 54 kt yr-1), compared to the BC deposited using just the MACCity emission inventory. Deposition of BC in the Arctic from BB sources in the Northern Hemisphere

  7. The Arctic Climate Modeling Program: K-12 Geoscience Professional Development for Rural Educators

    NASA Astrophysics Data System (ADS)

    Bertram, K. B.

    2009-12-01

    Helping teachers and students connect with scientists is the heart of the Arctic Climate Modeling Program (ACMP), funded from 2005-09 by the National Science Foundation’s Innovative Technology Experience for Students and Teachers. ACMP offered progressive yearlong science, technology and math (STM) professional development that prepared teachers to train youth in workforce technologies used in Arctic research. ACMP was created for the Bering Strait School District, a geographically isolated area with low standardized test scores, high dropout rates, and poverty. Scientists from around the globe have converged in this region and other areas of the Arctic to observe and measure changes in climate that are significant, accelerating, and unlike any in recorded history. Climate literacy (the ability to understand Earth system science and to make scientifically informed decisions about climate changes) has become essential for this population. Program resources were designed in collaboration with scientists to mimic the processes used to study Arctic climate. Because the Bering Strait School District serves a 98 percent Alaska Native student population, ACMP focused on best practices shown to increase the success of minority students. Significant research indicates that Alaska Native students succeed academically at higher rates when instruction addresses topics of local interest, links education to the students’ physical and cultural environment, uses local knowledge and culture in the curriculum, and incorporates hands-on, inquiry-based lessons in the classroom. A seven-partner consortium of research institutes and Alaska Native corporations created ACMP to help teachers understand their role in nurturing STM talent and motivating students to explore geoscience careers. Research underscores the importance of increasing school emphasis in content areas, such as climate, that facilitate global awareness and civic responsibility, and that foster critical thinking and

  8. Regional seasonal forecasts of the Arctic sea ice in two coupled climate models

    NASA Astrophysics Data System (ADS)

    Chevallier, Matthieu; Guémas, Virginie; Salas y Mélia, David; Doblas-Reyes, Francisco

    2015-04-01

    The predictive capabilities of two state-of-the-art coupled atmosphere-ocean global climate models (CNRM-CM5.1 and EC-Earth v2.3) in seasonal forecasting of the Arctic sea ice will be presented with a focus on regional skill. 5-month hindcasts of September sea ice area in the Arctic peripherial seas (Barents-Kara seas, Laptev-East Siberian seas, Chukchi sea and Beaufort sea) and March sea ice area in the marginal ice zones (Barents, Greenland, Labrador, Bering and Okhotsk sea) have been produced over the period 1990-2009. Systems mainly differ with respect to the initialization strategy, the ensemble generation techniques and the sea ice components. Predictive skill, assessed in terms of actual and potential predictability, is comparable in the two systems for both summer and winter hindcasts. Most interestingly, the multi-model prediction is often better than individual predictions in several sub-basins, including the Barents sea in the winter and most shelf seas in the summer. Systematic biases are also reduced using the multi-model predictions. Results from this study show that a regional zoom of global seasonal forecasts could be useful for operational needs. This study also show that the multi-model approach may be the step forward in producing accurate and reliable seasonal forecasts based on coupled global climate models.

  9. Climate change and water security with a focus on the Arctic.

    PubMed

    Evengard, Birgitta; Berner, Jim; Brubaker, Michael; Mulvad, Gert; Revich, Boris

    2011-01-01

    Water is of fundamental importance for human life; access to water of good quality is of vital concern for mankind. Currently however, the situation is under severe pressure due to several stressors that have a clear impact on access to water. In the Arctic, climate change is having an impact on water availability by melting glaciers, decreasing seasonal rates of precipitation, increasing evapotranspiration, and drying lakes and rivers existing in permafrost grounds. Water quality is also being impacted as manmade pollutants stored in the environment are released, lowland areas are flooded with salty ocean water during storms, turbidity from permafrost-driven thaw and erosion is increased, and the growth or emergence of natural pollutants are increased. By 2030 it is estimated that the world will need to produce 50% more food and energy which means a continuous increase in demand for water. Decisionmakers will have to very clearly include life quality aspects of future generations in the work as impact of ongoing changes will be noticeable, in many cases, in the future. This article will focus on effects of climate-change on water security with an Arctic perspective giving some examples from different countries how arising problems are being addressed. PMID:22043217

  10. Climate change and water security with a focus on the Arctic.

    PubMed

    Evengard, Birgitta; Berner, Jim; Brubaker, Michael; Mulvad, Gert; Revich, Boris

    2011-01-01

    Water is of fundamental importance for human life; access to water of good quality is of vital concern for mankind. Currently however, the situation is under severe pressure due to several stressors that have a clear impact on access to water. In the Arctic, climate change is having an impact on water availability by melting glaciers, decreasing seasonal rates of precipitation, increasing evapotranspiration, and drying lakes and rivers existing in permafrost grounds. Water quality is also being impacted as manmade pollutants stored in the environment are released, lowland areas are flooded with salty ocean water during storms, turbidity from permafrost-driven thaw and erosion is increased, and the growth or emergence of natural pollutants are increased. By 2030 it is estimated that the world will need to produce 50% more food and energy which means a continuous increase in demand for water. Decisionmakers will have to very clearly include life quality aspects of future generations in the work as impact of ongoing changes will be noticeable, in many cases, in the future. This article will focus on effects of climate-change on water security with an Arctic perspective giving some examples from different countries how arising problems are being addressed.

  11. Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions

    USGS Publications Warehouse

    Isaksen, Ivar S.A.; Gauss, Michael; Myhre, Gunnar; Walter Anthony, Katey M.; Ruppel, Carolyn

    2011-01-01

    The magnitude and feedbacks of future methane release from the Arctic region are unknown. Despite limited documentation of potential future releases associated with thawing permafrost and degassing methane hydrates, the large potential for future methane releases calls for improved understanding of the interaction of a changing climate with processes in the Arctic and chemical feedbacks in the atmosphere. Here we apply a “state of the art” atmospheric chemistry transport model to show that large emissions of CH4 would likely have an unexpectedly large impact on the chemical composition of the atmosphere and on radiative forcing (RF). The indirect contribution to RF of additional methane emission is particularly important. It is shown that if global methane emissions were to increase by factors of 2.5 and 5.2 above current emissions, the indirect contributions to RF would be about 250% and 400%, respectively, of the RF that can be attributed to directly emitted methane alone. Assuming several hypothetical scenarios of CH4 release associated with permafrost thaw, shallow marine hydrate degassing, and submarine landslides, we find a strong positive feedback on RF through atmospheric chemistry. In particular, the impact of CH4 is enhanced through increase of its lifetime, and of atmospheric abundances of ozone, stratospheric water vapor, and CO2 as a result of atmospheric chemical processes. Despite uncertainties in emission scenarios, our results provide a better understanding of the feedbacks in the atmospheric chemistry that would amplify climate warming.

  12. Building Partnerships and Research Collaborations to Address the Impacts of Arctic Change: The North Atlantic Climate Change Collaboration (NAC3)

    NASA Astrophysics Data System (ADS)

    Polk, J.; North, L. A.; Strenecky, B.

    2015-12-01

    Changes in Arctic warming influence the various atmospheric and oceanic patterns that drive Caribbean and mid-latitude climate events, including extreme events like drought, tornadoes, and flooding in Kentucky and the surrounding region. Recently, the establishment of the North Atlantic Climate Change Collaboration (NAC3) project at Western Kentucky University (WKU) in partnership with the University of Akureyri (UNAK), Iceland Arctic Cooperation Network (IACN), and Caribbean Community Climate Change Centre (CCCCC) provides a foundation from which to engage students in applied research from the local to global levels and more clearly understand the many tenets of climate change impacts in the Arctic within both a global and local community context. The NAC3 project encompasses many facets, including joint international courses, student internships, economic development, service learning, and applied research. In its first phase, the project has generated myriad outcomes and opportunities for bridging STEM disciplines with other fields to holistically and collaboratively address specific human-environmental issues falling under the broad umbrella of climate change. WKU and UNAK students desire interaction and exposure to other cultures and regions that are threatened by climate change and Iceland presents a unique opportunity to study influences such as oceanic processes, island economies, sustainable harvest of fisheries, and Arctic influences on climate change. The project aims to develop a model to bring partners together to conduct applied research on the complex subject of global environmental change, particularly in the Arctic, while simultaneously focusing on changing how we learn, develop community, and engage internationally to understand the impacts and find solutions.

  13. Microbial Functional Potential and Community Composition in Permafrost-Affected Soils of the NW Canadian Arctic

    PubMed Central

    Frank-Fahle, Béatrice A.; Yergeau, Étienne; Greer, Charles W.; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic. PMID:24416279

  14. Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic.

    PubMed

    Frank-Fahle, Béatrice A; Yergeau, Etienne; Greer, Charles W; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic.

  15. Remote sensing aides studies of climate and wildlife in the Arctic-on land, at sea, and in the air (Invited)

    NASA Astrophysics Data System (ADS)

    Douglas, D. C.; Durner, G. M.; Gill, R. E.; Griffith, B.; Schmutz, J. A.

    2013-12-01

    Every day a variety of remote sensing technologies collects large volumes of data that are supporting new analyses and new interpretations about how weather and climate influence the status and distribution of wildlife populations worldwide. Understanding how climate presently affects wildlife is crucial for projecting how climate change could affect wildlife in the future. This talk highlights climate-related wildlife studies by the US Geological Survey in the Arctic. The Arctic is experiencing some of the most pronounced climate changes on earth, raising concerns for species that have evolved seasonal migration strategies tuned to habitat availability and quality. On land, large herbivores such as caribou select concentrated calving areas with high abundance of rapidly growing vegetation and calf survival increases with earlier green-up and with the quantity of food available to cows at peak lactation. Geese time their migrations and reproductive efforts to coincide with optimal plant phenology and peak nutrient availability and departures from this synchrony can influence the survival of goslings. At sea, the habitats of polar bears and other sea-ice-dependent species have dramatically changed over just the past two decades. The ice pack is comprised of younger ice that melts much more extensively during summer-a trend projected to continue by all general circulation models under all but the most aggressive greenhouse gas mitigation scenarios. Studies show that by mid-century optimal polar bear habitats will be so reduced that the species may become extirpated from some regions of the Arctic. In the air, a variety of shorebird species make non-stop endurance flights between northern and southern hemispheres. The bar-tailed godwit undertakes a trans-Pacific flight between Alaska and Australasia that lasts more than seven days and spans more than 10,000 km. Studies show that godwits time their flights to coincide with favorable wind conditions, but stochastic

  16. Climate change and consequences in the Arctic: perception of climate change by the Nenets people of Vaigach Island

    PubMed Central

    Davydov, Alexander N.; Mikhailova, Galina V.

    2011-01-01

    Background Arctic climate change is already having a significant impact on the environment, economic activity, and public health. For the northern peoples, traditions and cultural identity are closely related to the natural environment so any change will have consequences for society in several ways. Methods A questionnaire was given to the population on the Vaigach island, the Nenets who rely to a large degree on hunting, fishing and reindeer herding for survival. Semi-structured interviews were also conducted about perception of climate change. Results Climate change is observed and has already had an impact on daily life according to more than 50% of the respondents. The winter season is now colder and longer and the summer season colder and shorter. A decrease in standard of living was noticeable but few were planning to leave. Conclusion Climate change has been noticed in the region and it has a negative impact on the standard of living for the Nenets. However, as of yet they do not want to leave as cultural identity is important for their overall well-being. PMID:22091216

  17. Sensitivity of Pliocene Arctic climate to orbital forcing, atmospheric CO2 and sea ice albedo parameterisation

    NASA Astrophysics Data System (ADS)

    Howell, Fergus; Haywood, Alan; Pickering, Steven

    2016-04-01

    General circulation model (GCM) simulations of the mid-Pliocene Warm Period (mPWP, 3.264 to 3.025 Myr ago) do not reproduce the magnitude of Northern Hemisphere high latitude surface air and sea surface temperature (SAT and SST) warming that proxy data indicates. There is also large uncertainty regarding the state of sea ice cover in the mPWP. Evidence for both perennial and seasonal mPWP Arctic sea ice is found in analyses of marine sediments, whilst in a multi-model ensemble of mPWP climate simulations, half of the ensemble simulated ice-free summer Arctic conditions. Given the strong influence that sea ice exerts on high latitude temperatures, a better understanding of the nature of mPWP Arctic sea ice would be highly beneficial in understanding proxy derived estimates of high latitude surface temperature change, and the ability of climate models to reproduce this. In GCM simulations, the mPWP is typically represented with fixed orbital forcing, usually identical to modern, and atmospheric CO2 concentrations of ˜ 400 ppm. However, orbital forcing varied over the ˜ 240,000 years of the mPWP, and it is likely that atmospheric CO2 varied as well. A previous study has suggested that the parameterisation of sea ice albedo in the HadCM3 GCM may not reflect the sea ice albedo for a warmer climate, where seasonal sea ice constitutes a greater proportion of the Arctic sea ice cover. These three factors, in isolation and combined, can greatly influence the simulation of Arctic sea ice cover and the degree of high latitude surface temperature warming. This paper explores the impact of various combinations of potential mPWP orbital forcing, atmospheric CO2 concentrations and minimum sea ice albedo on sea ice extent and high latitude warming. The focus is on the Northern Hemisphere, due to availability of proxy data, and the large data-model discrepancies in this region. Changes in orbital forcings are demonstrated to be sufficient to alter the Arctic sea ice simulated by

  18. New insights into the Weichselian environment and climate of the East Siberian Arctic, derived from fossil insects, plants, and mammals

    NASA Astrophysics Data System (ADS)

    Sher, A. V.; Kuzmina, S. A.; Kuznetsova, T. V.; Sulerzhitsky, L. D.

    2005-03-01

    Multidisciplinary study of a key section on the Laptev Sea Coast (Bykovsky Peninsula, east Lena Delta) in 1998-2001 provides the most complete record of Middle and Late Weichselian environments in the East Siberian Arctic. The 40-m high Mamontovy Khayata cliff is a typical Ice Complex section built of icy silts with a network of large syngenetic polygonal ice wedges, and is richly fossiliferous. In combination with pollen, plant macrofossil and mammal fossils, a sequence of ca 70 insect samples provides a new interpretation of the environment and climate of the area between ca 50 and 12 ka. The large number of radiocarbon dates from the section, together with an extensive 14C database on mammal bones, allows chronological correlation of the various proxies. The Bykovsky record shows how climate change, and the Last Glacial Maximum in particular, affected terrestrial organisms such as insects and large grazing mammals. Both during the presumed "Karginsky Interstadial" (MIS 3) and the Sartanian Glacial (MIS 2), the vegetation remained a mosaic arctic grassland with relatively high diversity of grasses and herbs and dominance of xeric habitats: the tundra-steppe type. This biome was supported by a constantly very continental climate, caused by low sea level and enormous extension of shelf land. Variations within the broad pattern were caused mainly by fluctuations in summer temperature, related to global trends but overprinted by the effect of continentality. No major changes in humidity were observed nor were advances of modern-type forest or forest-tundra recorded, suggesting a major revision of the "Karginsky Interstadial" paradigm. The changing subtypes of the tundra-steppe environment were persistently favourable for mammalian grazers, which inhabited the shelf lowlands throughout the studied period. Mammal population numbers were lowered during the LGM, especially toward its end, and then flourished in a short, but impressive peak in the latest Weichselian, just

  19. Early Cretaceous vegetation and climate change at high latitude: palynological evidence from Isachsen Formation, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Galloway, Jennifer M.; Tullius, Dylan N.; Evenchick, Carol A.; Swindles, Graeme T.; Hadlari, Thomas; Embry, Ashton

    2015-04-01

    Understanding the behaviour of global climate during relatively warm periods in Earth's history, such as the Cretaceous Period, advances our overall understanding of the climate system and provides insight on drivers of climate change over geologic time. While it has been suggested that the Valanginian Age represents the first episode of Cretaceous greenhouse climate conditions with relatively equable warm temperatures, mounting evidence suggests that this time was relatively cool. A paucity of paleoclimate data currently exists for polar regions compared to mid- and low-latitudes and this is particularly true for the Canadian Arctic. There is also a lack of information about the terrestrial realm as most paleoclimate studies have been based on marine material. Here we present quantitative pollen and spore data obtained from the marginal marine and deltaic-fluvial Isachsen Formation of the Sverdrup Basin, Canadian Arctic, to better understand the long-term vegetation and climate history of polar regions during the warm but variable Early Cretaceous (Valanginian to Early Aptian). Detrended correspondence analysis of main pollen and spore taxa is used to derive three ecological groupings influenced by moisture and disturbance based on the botanical affinities of palynomorphs: 1) a mixed coniferous assemblage containing both lowland and upland components; 2) a conifer-filicopsid community that likely grew in dynamic lowland habitats; and, 3) a mature dry lowland community composed of Cheirolepidaceans. Stratigraphic changes in the relative abundance of pollen and spore taxa reflect climate variability in this polar region during the ~20 Mya history of the Isachsen Formation. The late Valanginian was relatively cool and moist and promoted lowland conifer-filicopsid communities. Warming in the Hauterivian resulted in the expansion coniferous communities in well-drained or arid hinterlands. A return to relatively cool and moist conditions in the Barremian resulted in the

  20. Influence of Climate Warming on Arctic Mammals? New Insights from Ancient DNA Studies of the collared lemming Dicrostonyx torquatus.

    NASA Astrophysics Data System (ADS)

    Prost, Stefan; Smirnov, Nickolay; Fedorov, Vadim B.; Sommer, Robert S.; Stiller, Mathias; Nagel, Doris; Knapp, Michael; Hofreiter, Michael

    2010-05-01

    Global temperature increased by approximately half a degree (Celsius) within the last 150 years. Even this moderate warming had major impacts on Earth's ecological and biological systems, especially in the Arctic where the magnitude of abiotic changes even exceeds those in temperate and tropical biomes. Therefore, understanding the biological consequences of climate change on high latitudes is of critical importance for future conservation of the species living in this habitat. The past 25,000 years can be used as a model for such changes, as they were marked by prominent climatic changes that influenced geographic distribution, demographic history and pattern of genetic variation of many extant species. We sequenced ancient and modern DNA of the collared lemming (Dicrostonyx torquatus), which is a key species of the arctic biota, from a single site (Pymva Shor, Northern Pre Urals, Russia) to see if climate warming events after the Last Glacial Maximum (LGM) had detectable effects on the genetic variation of this arctic rodent species, which is strongly associated with cold and dry climate. Using three dimensional network reconstruction and model-based approaches such as Approximate Bayesian Computation and Markov Chain Monte Carlo based Bayesian inference we show that there is evidence for a population decline in the collared lemming following the LGM, with the population size dropping to a minimum during the Greenland Interstadial 1 (Blling/Allerd) warming phase at 14.5 kyrs BP. Our results show that previous climate warming events had a strong influence on collard lemming populations. A similar population reduction due to predicted future climate change would have severe effects on the arctic ecosystem, as collared lemmings are a key species in the trophic interactions and ecosystem processes in the Arctic.

  1. Weather anomalies affect Climate Change microblogging intensity

    NASA Astrophysics Data System (ADS)

    Molodtsova, T.; Kirilenko, A.

    2012-12-01

    There is a huge gap between the scientific consensus and public understanding of climate change. Climate change has become a political issue and a "hot" topic in mass media that only adds the complexity to forming the public opinion. Scientists operate in scientific terms, not necessarily understandable by general public, while it is common for people to perceive the latest weather anomaly as an evidence of climate change. In 1998 Hansen et al. introduced a concept of an objectively measured subjective climate change indicator, which can relate public feeling that the climate is changing to the observed meteorological parameters. We tested this concept in a simple example of a temperature-based index, which we related to microblogging activity. Microblogging is a new form of communication in which the users describe their current status in short Internet messages. Twitter (http://twitter.com), is currently the most popular microblogging platform. There are multiple reasons, why this data is particularly valuable to the researches interested in social dynamics: microblogging is widely used to publicize one's opinion with the public; has broad, diverse audience, represented by users from many countries speaking different languages; finally, Twitter contains an enormous number of data, e.g., there were 1,284,579 messages related to climate change from 585,168 users in the January-May data collection. We collected the textual data entries, containing words "climate change" or "global warming" from the 1st of January, 2012. The data was retrieved from the Internet every 20 minutes using a specially developed Python code. Using geolocational information, blog entries originating from the New York urbanized area were selected. These entries, used as a source of public opinion on climate change, were related to the surface temperature, obtained from La Guardia airport meteorological station. We defined the "significant change" in the temperature index as deviation of the

  2. The role of declining Arctic sea ice in recent decreasing terrestrial Arctic snow depths

    NASA Astrophysics Data System (ADS)

    Park, Hotaek; Walsh, John E.; Kim, Yongwon; Nakai, Taro; Ohata, Tetsuo

    2013-06-01

    The dramatic decline in Arctic sea ice cover is anticipated to influence atmospheric temperatures and circulation patterns. These changes will affect the terrestrial climate beyond the boundary of the Arctic, consequently modulating terrestrial snow cover. Therefore, an improved understanding of the relationship between Arctic sea ice and snow depth over the terrestrial Arctic is warranted. We examined responses of snow depth to the declining Arctic sea ice extent in September, during the period of 1979-2006. The major reason for a focus on snow depth, rather than snow cover, is because its variability has a climatic memory that impacts hydrothermal processes during the following summer season. Analyses of combined data sets of satellite measurements of sea ice extent and snow depth, simulated by a land surface model (CHANGE), suggested that an anomalously larger snow depth over northeastern Siberia during autumn and winter was significantly correlated to the declining September Arctic sea ice extent, which has resulted in cooling temperatures, along with an increase in precipitation. Meanwhile, the reduction of Arctic sea ice has amplified warming temperatures in North America, which has readily offset the input of precipitation to snow cover, consequently further decreasing snow depth. However, a part of the Canadian Arctic recorded an increase in snow depth driven locally by the diminishing September Arctic sea ice extent. Decreasing snow depth at the hemispheric scale, outside the northernmost regions (i.e., northeastern Siberia and Canadian Arctic), indicated that Arctic amplification related to the diminishing Arctic sea ice has already impacted the terrestrial Arctic snow depth. The strong reduction in Arctic sea ice anticipated in the future also suggests a potential long-range impact on Arctic snow cover. Moreover, the snow depth during the early snow season tends to contribute to the warming of soil temperatures in the following summer, at least in the

  3. Impact of declining Arctic sea ice on recent decreasing terrestrial Arctic snow depths

    NASA Astrophysics Data System (ADS)

    PARK, H.; Walsh, J. E.; Kim, Y.; Nakai, T.; Ohata, T.

    2012-12-01

    The dramatic decline in Arctic sea ice cover is anticipated to influence atmospheric temperatures and circulation patterns. These changes will affect the terrestrial climate beyond the boundary of the Arctic, consequently modulating terrestrial snow cover. Therefore, an improved understanding of the relationship between Arctic sea ice and snow depth over the terrestrial Arctic is warranted. We examined responses of snow depth to the declining Arctic sea ice extent in September, during the period of 1979-2006. The major reason for a focus on snow depth, rather than snow cover, is because its variability has a climatic memory that impacts hydrothermal processes during the following summer season. Analyses of combined data sets of satellite measurements of sea ice extent and snow depth, simulated by a land surface model (CHANGE), suggested that an anomalously larger snow depth over northeastern Siberia during autumn and winter was significantly correlated to the declining September Arctic sea ice extent, which has resulted in cooling temperatures, along with an increase in precipitation. Meanwhile, the reduction of Arctic sea ice has amplified warming temperatures in North America, which has readily offset the input of precipitation to snow cover, consequently further decreasing snow depth. However, a part of the Canadian Arctic recorded an increase in snow depth driven locally by the diminishing September Arctic sea ice extent. Decreasing snow depth at the hemispheric scale, outside the northernmost regions (i.e., northeastern Siberia and Canadian Arctic), indicated that Arctic amplification related to the diminishing Arctic sea ice has already impacted the terrestrial Arctic snow depth. The strong reduction in Arctic sea ice anticipated in the future also suggests a potential long-range impact on Arctic snow cover. Moreover, the snow depth during the early snow season tends to contribute to the warming of soil temperatures in the following summer, at least in the

  4. Late Holocene Peat Growth at the Northern Siberian Periphery and its Relation to Arctic Climate Change

    NASA Astrophysics Data System (ADS)

    Bauch, H. A.; Abramova, E.; Alenius, T.; Saarnisto, M.

    2014-12-01

    During the last postglacial evolution of the shallow northern Siberian shelf systems regional sea level in the Arctic came to its Holocene highstand some time between 5 to 6 ka. After that time a general stabilization of the sedimentary regime occurred. That is well noted in a drastic decrease in sedimentation rates observed in all sediment cores taken from middle to outer shelf water depths of the Laptev Sea. But, at water depths lower than 30 meters - i.e., in the inner shelf and nearer to the coasts - sedimentation continued at relatively higher rates, presumably due to input of terrigenous material from river runoff as well as coastal erosion. Compared with that latter process, the huge Lena Delta should comprise a region of sediment catchment where aggradation wins over erosion. However, little is known about the detailed history of this delta during the second half of the Holocene. In order to gain more insight into this issue we have investigated three islands within the Lena Delta. All of these are comprised of massive peat of several meters in thickness. Picking discrete specimens of water mosses (Sphagnum) only, we have radiocarbon-dated these peat sections. The depth/age relation of the sampled profiles reflect the growth rate of peat. It shows that the islands' history above the present-day delta-sea level is about 4000 yrs. old. Moreover, a significant change in peat growth occurred after 2500 yrs BP in both, accumulation and composition, and allows the conclusion of a major shift in Arctic environmental conditions since then. Thus, our results may add further information also for other coastal studies, as the ongoing degradation of the rather vulnerable permafrost coast in the Laptev Sea and elsewhere along the North Siberian margin is often mentioned in context with recent Arctic climate change due to global warming.

  5. 1,500-Year Cycle in Holocene Climate from Burial Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Finkenbinder, M. S.; Abbott, M. B.; Dorfman, J. M.; Finney, B.; Stoner, J. S.

    2014-12-01

    Millennial-scale fluctuations in climate conditions are commonly observed in Holocene paleoclimate archives, however the meaning of these variations including whether they might arise from internal or external forcing are still actively debated. Proxy evidence of millennial-scale variability is most clearly present in a few specific parts of the world (e.g. North Atlantic region), whereas a lack of evidence from many other regions may result from a lack of observations or a lack of signal. Here we present the first evidence for such variations in Arctic Alaska using sedimentological and geochemical analyses from Burial Lake (68.43°N, 159.17°W; 460 m above sea level) in the western Brooks Range. We measured biogenic silica (BSi), total organic carbon, total nitrogen, C/N ratios, dry bulk density, magnetic susceptibility and magnetic remanence measurements, and elemental abundances from scanning XRF and use radiocarbon dating on terrestrial macrofossils to establish age control. Large fluctuations in biogenic silica and related proxies at millennial time scales over the last 10,000 cal yr BP are attributed to changes in aquatic productivity, which is indirectly mediated by climate through changes in the duration of the ice-free growing season and the availability of limiting nutrients. Spectral and wavelet analysis of the BSi record indicates a significant 1,500-yr cycle (above 95% confidence) emerges by ~6,000 cal yr BP. Comparison of BSi with reconstructed total solar irradiance reveals a low correlation (r2 = 0.01), suggesting no direct solar forcing of aquatic productivity. A comparison with Northern Hemisphere wide records shows no consistent phase relationship between the timing of maxima/minima in our BSi record. These results are consistent with previous work showing a strong middle Holocene transition into a ~1500-yr cycle. Similar timing for the emergence of an ~1500-yr cycle are found in proxies sensitive to thermohaline circulation and deep water

  6. Modelling carbon responses of tundra ecosystems to historical and projected climate: Sensitivity of pan-Arctic carbon storage to temporal and spatial variation in climate

    USGS Publications Warehouse

    McGuire, A.D.; Clein, J.S.; Melillo, J.M.; Kicklighter, D.W.; Meier, R.A.; Vorosmarty, C.J.; Serreze, M.C.

    2000-01-01

    Historical and projected climate trends for high latitudes show substantial temporal and spatial variability. To identify uncertainties in simulating carbon (C) dynamics for pan-Arctic tundra, we compare the historical and projected responses of tundra C storage from 1921 to 2100 between simulations by the Terrestrial Ecosystem Model (TEM) for the pan-Arctic and the Kuparuk River Basin, which was the focus of an integrated study of C dynamics from 1994 to 1996. In the historical period from 1921 to 1994, the responses of net primary production (NPP) and heterotrophic respiration (RH) simulated for the Kuparuk River Basin and the pan-Arctic are correlated with the same factors; NPP is positively correlated with net nitrogen mineralization (NMIN) and RH is negatively correlated with mean annual soil moisture. In comparison to the historical period, the spatially aggregated responses of NPP and RH for the Kuparuk River Basin and the pan-Arctic in our simulations for the projected period have different sensitivities to temperature, soil moisture and NMIN. In addition to being sensitive to soil moisture during the projected period, RH is also sensitive to temperature and there is a significant correlation between RH and NMIN. We interpret the increases in NPP during the projected period as being driven primarily by increases in NMIN, and that the correlation between NPP and temperature in the projected period is a result primarily of the causal linkage between temperature, RH, and NMIN. Although similar factors appear to be controlling simulated regional-and biome-scale C dynamics, simulated C dynamics at the two scales differ in magnitude with higher increases in C storage simulated for the Kuparuk River Basin than for the pan-Arctic at the end of the historical period and throughout the projected period. Also, the results of the simulations indicate that responses of C storage show different climate sensitivities at regional and pan-Arctic spatial scales and that

  7. Multiproxy paleoecological evidence of Holocene climatic changes on the Boothia Peninsula, Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Fortin, Marie-Claude; Gajewski, Konrad

    2016-05-01

    A study of chironomid remains in the sediments of Lake JR01 on the Boothia Peninsula in the Central Canadian Arctic provides a high-resolution record of mean July air temperatures for the last 6.9 ka. Diatom and pollen studies have previously been published from this core. Peak Holocene temperatures occurred prior to 5.0 ka, a time when overall aquatic and terrestrial biological production was high. Chironomid-inferred summer air temperatures reached up to 7.5°C during this period. The region of Lake JR01 cooled over the mid- to late-Holocene, with high biological production between 6.1 and 5.4 ka. Biological production decreased again at ˜2 ka and the rate of cooling increased in the past 2 ka, with coolest temperatures occurring between 0.46 and 0.36 ka, coinciding with the Little Ice Age. Although biological production increased in the last 150 yr, the reconstructed temperatures do not indicate a warming during this time. During transitions, either warming or cooling, chironomid production increases, suggesting an ecosystem-level response to climate variability, seen at a number of lakes across the Arctic.

  8. Climate change and the loss of organic archaeological deposits in the Arctic.

    PubMed

    Hollesen, Jørgen; Matthiesen, Henning; Møller, Anders Bjørn; Westergaard-Nielsen, Andreas; Elberling, Bo

    2016-01-01

    The Arctic is warming twice as fast as the global average with overlooked consequences for the preservation of the rich cultural and environmental records that have been stored for millennia in archaeological deposits. In this article, we investigate the oxic degradation of different types of organic archaeological deposits located in different climatic zones in West and South Greenland. The rate of degradation is investigated based on measurements of O2 consumption, CO2 production and heat production at different temperatures and water contents. Overall, there is good consistency between the three methods. However, at one site the, O2 consumption is markedly higher than the CO2 production, highlighting the importance of combining several measures when assessing the vulnerability of organic deposits. The archaeological deposits are highly vulnerable to degradation regardless of age, depositional and environmental conditions. Degradation rates of the deposits are more sensitive to increasing temperatures than natural soils and the process is accompanied by a high microbial heat production that correlates significantly with their total carbon content. We conclude that organic archaeology in the Arctic is facing a critical challenge that requires international action. PMID:27356878

  9. Climatic change of sea ice mean thickness in the Arctic basin

    SciTech Connect

    Nagurny, A.P.

    1996-12-31

    A method for automatically monitoring sea ice thickness by measuring ice-plate vibration is proposed. Two energy maximums are clearly manifested in the spectrum of ice cover vibrations, corresponding to the resonant waves (the equality of ice eigen frequency as a plate and upper water layer without ice cover) and to the waves at the minimum of the dispersion curve of the ice-water system. The free vibrations of the resonant waves have low amplitudes and can be adequately described by linear theory of elastic gravity wave propagation. Data are presented for sea ice thickness determined by measuring elastic-gravity waves at points in the Arctic basin for the years 1970 through 1992. During this period, a linear decrease in sea ice thickness was observed. The thickness decreased by 12-14 centimeters, or 3 to 4% of average thickenss, overall. Taking into account the significant scattering of data, a trend of climatic warming in the atmosphere-Arctic Ocean system is indicated. 11 refs., 2 figs.

  10. Climate change and the loss of organic archaeological deposits in the Arctic

    NASA Astrophysics Data System (ADS)

    Hollesen, Jørgen; Matthiesen, Henning; Møller, Anders Bjørn; Westergaard-Nielsen, Andreas; Elberling, Bo

    2016-06-01

    The Arctic is warming twice as fast as the global average with overlooked consequences for the preservation of the rich cultural and environmental records that have been stored for millennia in archaeological deposits. In this article, we investigate the oxic degradation of different types of organic archaeological deposits located in different climatic zones in West and South Greenland. The rate of degradation is investigated based on measurements of O2 consumption, CO2 production and heat production at different temperatures and water contents. Overall, there is good consistency between the three methods. However, at one site the, O2 consumption is markedly higher than the CO2 production, highlighting the importance of combining several measures when assessing the vulnerability of organic deposits. The archaeological deposits are highly vulnerable to degradation regardless of age, depositional and environmental conditions. Degradation rates of the deposits are more sensitive to increasing temperatures than natural soils and the process is accompanied by a high microbial heat production that correlates significantly with their total carbon content. We conclude that organic archaeology in the Arctic is facing a critical challenge that requires international action.

  11. Multiproxy paleoecological evidence of Holocene climatic changes on the Boothia Peninsula, Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Fortin, Marie-Claude; Gajewski, Konrad

    2016-05-01

    A study of chironomid remains in the sediments of Lake JR01 on the Boothia Peninsula in the Central Canadian Arctic provides a high-resolution record of mean July air temperatures for the last 6.9 ka. Diatom and pollen studies have previously been published from this core. Peak Holocene temperatures occurred prior to 5.0 ka, a time when overall aquatic and terrestrial biological production was high. Chironomid-inferred summer air temperatures reached up to 7.5°C during this period. The region of Lake JR01 cooled over the mid- to late-Holocene, with high biological production between 6.1 and 5.4 ka. Biological production decreased again at ∼2 ka and the rate of cooling increased in the past 2 ka, with coolest temperatures occurring between 0.46 and 0.36 ka, coinciding with the Little Ice Age. Although biological production increased in the last 150 yr, the reconstructed temperatures do not indicate a warming during this time. During transitions, either warming or cooling, chironomid production increases, suggesting an ecosystem-level response to climate variability, seen at a number of lakes across the Arctic.

  12. Climate change and the loss of organic archaeological deposits in the Arctic

    PubMed Central

    Hollesen, Jørgen; Matthiesen, Henning; Møller, Anders Bjørn; Westergaard-Nielsen, Andreas; Elberling, Bo

    2016-01-01

    The Arctic is warming twice as fast as the global average with overlooked consequences for the preservation of the rich cultural and environmental records that have been stored for millennia in archaeological deposits. In this article, we investigate the oxic degradation of different types of organic archaeological deposits located in different climatic zones in West and South Greenland. The rate of degradation is investigated based on measurements of O2 consumption, CO2 production and heat production at different temperatures and water contents. Overall, there is good consistency between the three methods. However, at one site the, O2 consumption is markedly higher than the CO2 production, highlighting the importance of combining several measures when assessing the vulnerability of organic deposits. The archaeological deposits are highly vulnerable to degradation regardless of age, depositional and environmental conditions. Degradation rates of the deposits are more sensitive to increasing temperatures than natural soils and the process is accompanied by a high microbial heat production that correlates significantly with their total carbon content. We conclude that organic archaeology in the Arctic is facing a critical challenge that requires international action. PMID:27356878

  13. Projected Impact of Climate Change on the Energy Budget of the Arctic Ocean by a Global Climate Model

    NASA Technical Reports Server (NTRS)

    Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)

    2001-01-01

    The annual energy budget of the Arctic Ocean is characterized by a net heat loss at the air-sea interface that is balanced by oceanic heat transport into the Arctic. The energy loss at the air-sea interface is due to the combined effects of radiative, sensible, and latent heat fluxes. The inflow of heat by the ocean can be divided into two components: the transport of water masses of different temperatures between the Arctic and the Atlantic and Pacific Oceans and the export of sea ice, primarily through Fram Strait. Two 150-year simulations (1950-2099) of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. One is a control simulation for the present climate with constant 1950 atmospheric composition, and the other is a transient experiment with observed GHGs from 1950 to 1990 and 0.5% annual compounded increases of CO2 after 1990. For the present climate the model agrees well with observations of radiative fluxes at the top of the atmosphere, atmospheric advective energy transport into the Arctic, and surface air temperature. It also simulates the seasonal cycle and summer increase of cloud cover and the seasonal cycle of sea-ice cover. In addition, the changes in high-latitude surface air temperature and sea-ice cover in the GHG experiment are consistent with observed changes during the last 40 and 20 years, respectively. Relative to the control, the last 50-year period of the GHG experiment indicates that even though the net annual incident solar radiation at the surface decreases by 4.6 W(per square meters) (because of greater cloud cover and increased cloud optical depth), the absorbed solar radiation increases by 2.8 W(per square meters) (because of less sea ice). Increased cloud cover and warmer air also cause increased downward thermal radiation at the surface so that the net radiation into the ocean increases by 5.0 Wm-2. The annual increase in radiation into the ocean, however, is

  14. How does spatial variability of climate affect catchment streamflow predictions?

    EPA Science Inventory

    Spatial variability of climate can negatively affect catchment streamflow predictions if it is not explicitly accounted for in hydrologic models. In this paper, we examine the changes in streamflow predictability when a hydrologic model is run with spatially variable (distribute...

  15. Studies of dynamical processes affecting global climate

    SciTech Connect

    Keller, C.; Cooper, D.; Eichinger, W.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at the Los Alamos National Laboratory (LANL). The main objective was, by a combined theoretical and observational approach, to develop improved models of dynamic processes in the oceans and atmosphere and to incorporate them into large climate codes, chiefly in four main areas: numerical physics, chemistry, water vapor, and ocean-atmosphere interactions. Main areas of investigation included studies of: cloud parameterizations for global climate codes, Lidar and the planetary boundary layer, chemistry, climate variability using coupled ocean-atmospheric models, and numerical physical methods. This project employed a unique approach that included participation of a number of University of California faculty, postdoctoral fellows and graduate students who collaborated with Los Alamos research staff on specific tasks, thus greatly enhancing the research output. Overall accomplishments during the sensing of the atmospheric planetary were: (1) first two- and three-dimensional remote sensing of the atmospheric planetary boundary layer using Lidars, (2) modeling of 20-year cycle in both pressure and sea surface temperatures in North Pacific, (3) modeling of low frequency internal variability, (4) addition of aerosols to stratosphere to simulate Pinatubo effect on ozone, (5) development of fast, comprehensive chemistry in the troposphere for urban pollution studies, (6) new prognostic cloud parameterization in global atmospheric code remedied problems with North Pacific atmospheric circulation and excessive equatorial precipitation, (7) development of a unique aerosol analysis technique, the aerosol time-of-flight mass spectrometer (ATOFMS), which allows real-time analysis of the size and chemical composition of individual aerosol particles, and (8) numerical physics applying Approximate Inertial Manifolds to ocean circulation. 14 refs., 6 figs.

  16. Sensitivity of Pliocene Arctic climate to orbital forcing, atmospheric CO2 and sea ice albedo parameterisation

    NASA Astrophysics Data System (ADS)

    Howell, Fergus W.; Haywood, Alan M.; Dowsett, Harry J.; Pickering, Steven J.

    2016-05-01

    General circulation model (GCM) simulations of the mid-Pliocene Warm Period (mPWP, 3.264 to 3.025 Myr ago) do not reproduce the magnitude of Northern Hemisphere high latitude surface air and sea surface temperature (SAT and SST) warming that proxy data indicate. There is also large uncertainty regarding the state of sea ice cover in the mPWP. Evidence for both perennial and seasonal mPWP Arctic sea ice is found through analyses of marine sediments, whilst in a multi-model ensemble of mPWP climate simulations, half of the ensemble simulated ice-free summer Arctic conditions. Given the strong influence that sea ice exerts on high latitude temperatures, an understanding of the nature of mPWP Arctic sea ice would be highly beneficial. Using the HadCM3 GCM, this paper explores the impact of various combinations of potential mPWP orbital forcing, atmospheric CO2 concentrations and minimum sea ice albedo on sea ice extent and high latitude warming. The focus is on the Northern Hemisphere, due to availability of proxy data, and the large data-model discrepancies in this region. Changes in orbital forcings are demonstrated to be sufficient to alter the Arctic sea ice simulated by HadCM3 from perennial to seasonal. However, this occurs only when atmospheric CO2 concentrations exceed 300 ppm. Reduction of the minimum sea ice albedo from 0.5 to 0.2 is also sufficient to simulate seasonal sea ice, with any of the combinations of atmospheric CO2 and orbital forcing. Compared to a mPWP control simulation, monthly mean increases north of 60°N of up to 4.2 °C (SST) and 9.8 °C (SAT) are simulated. With varying CO2, orbit and sea ice albedo values we are able to reproduce proxy temperature records that lean towards modest levels of high latitude warming, but other proxy data showing greater warming remain beyond the reach of our model. This highlights the importance of additional proxy records at high latitudes and ongoing efforts to compare proxy signals between sites.

  17. USGS Arctic science strategy

    USGS Publications Warehouse

    Shasby, Mark; Smith, Durelle

    2015-07-17

    The United States is one of eight Arctic nations responsible for the stewardship of a polar region undergoing dramatic environmental, social, and economic changes. Although warming and cooling cycles have occurred over millennia in the Arctic region, the current warming trend is unlike anything recorded previously and is affecting the region faster than any other place on Earth, bringing dramatic reductions in sea ice extent, altered weather, and thawing permafrost. Implications of these changes include rapid coastal erosion threatening villages and critical infrastructure, potentially significant effects on subsistence activities and cultural resources, changes to wildlife habitat, increased greenhouse-gas emissions from thawing permafrost, threat of invasive species, and opening of the Arctic Ocean to oil and gas exploration and increased shipping. The Arctic science portfolio of the U.S. Geological Survey (USGS) and its response to climate-related changes focuses on landscapescale ecosystem and natural resource issues and provides scientific underpinning for understanding the physical processes that shape the Arctic. The science conducted by the USGS informs the Nation's resource management policies and improves the stewardship of the Arctic Region.

  18. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections

    NASA Astrophysics Data System (ADS)

    Kaplan, J. O.; Bigelow, N. H.; Prentice, I. C.; Harrison, S. P.; Bartlein, P. J.; Christensen, T. R.; Cramer, W.; Matveyeva, N. V.; McGuire, A. D.; Murray, D. F.; Razzhivin, V. Y.; Smith, B.; Walker, D. A.; Anderson, P. M.; Andreev, A. A.; Brubaker, L. B.; Edwards, M. E.; Lozhkin, A. V.

    2003-10-01

    Large variations in the composition, structure, and function of Arctic ecosystems are determined by climatic gradients, especially of growing-season warmth, soil moisture, and snow cover. A unified circumpolar classification recognizing five types of tundra was developed. The geographic distributions of vegetation types north of 55°N, including the position of the forest limit and the distributions of the tundra types, could be predicted from climatology using a small set of plant functional types embedded in the biogeochemistry-biogeography model BIOME4. Several palaeoclimate simulations for the last glacial maximum (LGM) and mid-Holocene were used to explore the possibility of simulating past vegetation patterns, which are independently known based on pollen data. The broad outlines of observed changes in vegetation were captured. LGM simulations showed the major reduction of forest, the great extension of graminoid and forb tundra, and the restriction of low- and high-shrub tundra (although not all models produced sufficiently dry conditions to mimic the full observed change). Mid-Holocene simulations reproduced the contrast between northward forest extension in western and central Siberia and stability of the forest limit in Beringia. Projection of the effect of a continued exponential increase in atmospheric CO2 concentration, based on a transient ocean-atmosphere simulation including sulfate aerosol effects, suggests a potential for larger changes in Arctic ecosystems during the 21st century than have occurred between mid-Holocene and present. Simulated physiological effects of the CO2 increase (to >700 ppm) at high latitudes were slight compared with the effects of the change in climate.

  19. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections

    USGS Publications Warehouse

    Kaplan, J.O.; Bigelow, N.H.; Prentice, I.C.; Harrison, S.P.; Bartlein, P.J.; Christensen, T.R.; Cramer, W.; Matveyeva, N.V.; McGuire, A.D.; Murray, D.F.; Razzhivin, V.Y.; Smith, B.; Walker, D. A.; Anderson, P.M.; Andreev, A.A.; Brubaker, L.B.; Edwards, M.E.; Lozhkin, A.V.

    2003-01-01

    Large variations in the composition, structure, and function of Arctic ecosystems are determined by climatic gradients, especially of growing-season warmth, soil moisture, and snow cover. A unified circumpolar classification recognizing five types of tundra was developed. The geographic distributions of vegetation types north of 55??N, including the position of the forest limit and the distributions of the tundra types, could be predicted from climatology using a small set of plant functional types embedded in the biogeochemistry-biogeography model BIOME4. Several palaeoclimate simulations for the last glacial maximum (LGM) and mid-Holocene were used to explore the possibility of simulating past vegetation patterns, which are independently known based on pollen data. The broad outlines of observed changes in vegetation were captured. LGM simulations showed the major reduction of forest, the great extension of graminoid and forb tundra, and the restriction of low- and high-shrub tundra (although not all models produced sufficiently dry conditions to mimic the full observed change). Mid-Holocene simulations reproduced the contrast between northward forest extension in western and central Siberia and stability of the forest limit in Beringia. Projection of the effect of a continued exponential increase in atmospheric CO2 concentration, based on a transient ocean-atmosphere simulation including sulfate aerosol effects, suggests a potential for larger changes in Arctic ecosystems during the 21st century than have occurred between mid-Holocene and present. Simulated physiological effects of the CO2 increase (to > 700 ppm) at high latitudes were slight compared with the effects of the change in climate.

  20. Northeast Greenland Caves Project: first results from a speleothem-derived record of climate change for the Arctic

    NASA Astrophysics Data System (ADS)

    Moseley, Gina; Edwards, R. Lawrence; Cheng, Hai; Lu, Yanbin; Spoetl, Christoph

    2016-04-01

    Multiple lines of evidence currently exist that demonstrate the climate is changing across our planet, and that the Arctic in particular is highly sensitive to these changes, warming up twice as fast as the global average. Understanding how the climate in the Arctic will develop in the future and its subsequent effects is thus a major concern. In order to improve understanding of the climate system within the Arctic, we have collected a suite of calcite flowstone samples from solution-formed caves in the Ordovician-Silurian Centrum limestone of Kronprins Christian Land, Northeast Greenland. Under contemporary conditions, the region is arid, barren, and permanently frozen, however, the presence of these caves and thick flowstone deposits indicates a previous milder climate. During the summer of 2015, 26 caves were documented at 80.4 degrees north, and 16 speleothem samples collected. Here we present the results of the first U-Th dating and stable isotope analyses. U-Th ages show that the flowstone was deposited intermittently between 220 and 500 thousand years ago (ka) with additional smaller growth periods at c. 108 and 5.7 ka, thus indicating the presence of flowing water at these times. δ18O of the speleothem calcite varies between c. -12 and -16.5 ‰ and displays millennial-scale variability. Our initial results thus demonstrate the potential of these speleothem deposits for extending our knowledge of Greenland's climate beyond the limit of the Greenland ice cores.

  1. Landscape fragmentation affects responses of avian communities to climate change.

    PubMed

    Jarzyna, Marta A; Porter, William F; Maurer, Brian A; Zuckerberg, Benjamin; Finley, Andrew O

    2015-08-01

    Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well-documented, there is a paucity of studies on climate-mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human-dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20-year period using data from the New York State Breeding Atlases collected during 1980-1985 and 2000-2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change

  2. Landscape fragmentation affects responses of avian communities to climate change.

    PubMed

    Jarzyna, Marta A; Porter, William F; Maurer, Brian A; Zuckerberg, Benjamin; Finley, Andrew O

    2015-08-01

    Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well-documented, there is a paucity of studies on climate-mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human-dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20-year period using data from the New York State Breeding Atlases collected during 1980-1985 and 2000-2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change

  3. Improved cloud parameterization for Arctic climate simulations based on satellite data

    NASA Astrophysics Data System (ADS)

    Klaus, Daniel; Dethloff, Klaus; Dorn, Wolfgang; Rinke, Annette

    2015-04-01

    The defective representation of Arctic cloud processes and properties remains a crucial problem in climate modelling and in reanalysis products. Satellite-based cloud observations (MODIS and CPR/CALIOP) and single-column model simulations (HIRHAM5-SCM) were exploited to evaluate and improve the simulated Arctic cloud cover of the atmospheric regional climate model HIRHAM5. The ECMWF reanalysis dataset 'ERA-Interim' (ERAint) was used for the model initialization, the lateral boundary forcing as well as the dynamical relaxation inside the pan-Arctic domain. HIRHAM5 has a horizontal resolution of 0.25° and uses 40 pressure-based and terrain-following vertical levels. In comparison with the satellite observations, the HIRHAM5 control run (HH5ctrl) systematically overestimates total cloud cover, but to a lesser extent than ERAint. The underestimation of high- and mid-level clouds is strongly outweighed by the overestimation of low-level clouds. Numerous sensitivity studies with HIRHAM5-SCM suggest (1) the parameter tuning, enabling a more efficient Bergeron-Findeisen process, combined with (2) an extension of the prognostic-statistical (PS) cloud scheme, enabling the use of negatively skewed beta distributions. This improved model setup was then used in a corresponding HIRHAM5 sensitivity run (HH5sens). While the simulated high- and mid-level cloud cover is improved only to a limited extent, the large overestimation of low-level clouds can be systematically and significantly reduced, especially over sea ice. Consequently, the multi-year annual mean area average of total cloud cover with respect to sea ice is almost 14% lower than in HH5ctrl. Overall, HH5sens slightly underestimates the observed total cloud cover but shows a halved multi-year annual mean bias of 2.2% relative to CPR/CALIOP at all latitudes north of 60° N. Importantly, HH5sens produces a more realistic ratio between the cloud water and ice content. The considerably improved cloud simulation manifests in

  4. Atmospheric transport of persistent organic pollutants to the Arctic, today and in a future climate

    NASA Astrophysics Data System (ADS)

    Octaviani, Mega; Stemmler, Irene; Lammel, Gerhard

    2013-04-01

    Persistent organic pollutants are of great concern because of their long residence time and long-range transport potential in the environment and because they are readily bioaccumulated along food chains and toxic for wildlife and humans. A multicompartment model is used to study global-scale and long term chemodynamics of anthropogenic organic substances in the Earth system. Model components are the atmosphere (ECHAM5) and ocean general circulation models (MPIOM), which include dynamic sub-models for atmospheric aerosols and the marine biogeochemistry, two-dimensional surface compartments (topsoil, vegetation surfaces, ice, and temporal snow cover) and intercompartmental mass exchange process parameterisations [1-3]. The transports into and out of the Arctic (66° N) are characterized for 1950-2000 under one realisation of present-day climate [4-5] and for 2001-2100 under one realisation of future climate (greenhouse gas emission scenario A1B of IPCC-AR4). Despite decaying primary emissions (since decades) polychlorinated biphenyls (PCB) and dichlorodimephenyltrichloromethane (DDT) are continuing to accumulate in the Arctic, which is fed by atmospheric transports. The main regions of import (and export) are identified and the vertical distribution and seasonalities are characterized. Changes by the end of the 21st century are discussed in the context of a major teleconnection, i.e. the Arctic Oscillation. References [1] Guglielmo F, Lammel G, Maier-Reimer E: Global environmental cycling of DDT and ?-HCH in the 1980s - a study using a coupled atmosphere and ocean general circulation model. Chemosphere 76 (2009) 1509-1517 [2] Stemmler I, Lammel G: Cycling of DDT in the global oceans 1950-2002: World ocean returns the pollutant. Geophys. Res. Lett. 36 (2009) L24602 [3] Hofmann L, Stemmler I, Lammel G: The impact of organochlorines cycling in the cryosphere on their global distributions and fate - 2. Land ice and temporary snow cover. Environ. Pollut. 162 (2012) 482

  5. Peeking Under the Ice… Literally: Records of Arctic Climate Change from Radiocarbon Dating Moss Emerging from Beneath Retreating Glaciers

    NASA Astrophysics Data System (ADS)

    Briner, J. P.; Schweinsberg, A.; Miller, G. H.; Lifton, N. A.; Beel, C. R.; Bennike, O.

    2014-12-01

    Dramatic changes are taking place throughout the Arctic. Many glaciers have already melted away completely, and most others are well on their way as rising snowline elevations promise continued glacier retreat. Emerging from beneath retreating glacier margins is a landscape rich in information about past climate and glacier changes. Within newly exposed bedrock is an inventory of cosmogenic nuclides that archive past ice cover timing and duration. Lake basins re-appearing due to retreating ice preserve sediment archives that tell of cooling climate and advancing ice. And ancient surfaces vegetated with tundra communities that have long been entombed beneath frozen-bedded ice caps are now being revealed for the first time in millennia. This presentation will focus on the climate and glacier record derived from radiocarbon dating of in situ moss recently exhumed from retreating local ice cap margins on western Greenland. Dozens of radiocarbon ages from moss group into several distinct modes, which are interpreted as discrete times of persistent summer cooling and resultant glacier expansion. The data reveal a pattern of glacier expansion beginning ~5000 years ago, followed by periods of glacier growth around 3500 and 1500 years ago. Because these times of glacier expansion are recorded at many sites in western Greenland and elsewhere in the Arctic, they are interpreted as times of step-wise summer cooling events during the Holocene. These non-linear climate changes may be a result of feedbacks that amplify linear insolation forcing of Holocene climate. In addition to these insights into the Arctic climate system, the antiquity of many radiocarbon ages of ice-killed moss indicate that many arctic surfaces are being re-exposed for the first time in millennia due to retreating ice, emphasizing the unprecedented nature of current summer warming.

  6. Polar stratospheric ozone: interactions with climate change, results from the EU project RECONCILE, and the 2010/11 Arctic ozone hole

    NASA Astrophysics Data System (ADS)

    von Hobe, Marc

    2013-04-01

    One of the most profound and well known examples of human impacts on atmospheric chemistry is the so called ozone hole. During the second half of the 20th century, anthropogenic emissions of chlorofluorocarbons (CFCs) led to a significant increase in stratospheric chlorine levels and hence the rate of ozone removal by catalytic cycles involving chlorine. While CFCs were essentially banned by the 1987 Montreal Protocol and its subsequent amendments, and stratospheric chlorine levels have recently started to decline again, another anthropogenic influence may at least delay the recovery of the stratospheric ozone layer: climate change, with little doubt a result of human emissions of carbon dioxide and other greenhouse gases, has led to changes in stratospheric temperature and circulation. The large ozone losses that typically occur in polar regions in spring are particularly affected by these changes. Here, we give an overview of the ozone-climate interactions affecting polar stratospheric ozone loss, and present latest results from the international research project RECONCILE funded by the European Commission. Remaining open questions will be discussed including the possible impacts of recently suggested geoengineering concepts to artificially enhance the stratospheric aerosol loading. A special focus will also be put on the 2010/11 Arctic winter that saw the first Arctic Ozone hole, including an impact study on surface UV radiation in the densely populated northern mid-latitudes.

  7. Climate change, its consequences in the Arctic and around the world

    NASA Astrophysics Data System (ADS)

    Jayer, Sophie; Le Divenah, Claudie; Rosetti, Alexandra

    2010-05-01

    CLIMATE CHANGE, ITS CONSEQUENCES IN THE ARCTIC AND AROUND THE WORLD This project has been led in a French European Class either in physics, chemistry, geology, biology and English by: - Sophie Jayer (Biology and geology teacher) - Claudie Le Divenah (Physics and Chemistry teacher) - Alexandra Rosetti (English teacher) As it was a European class, all the classes were held in English. The goals were - to have the students study both sciences and English - to show them that all these subjects were linked in real life and how important English was for scientists - To give them a glimpse of what scientific researches were both in the field and in a lab - To get them involved in the polar year - To make them work on the notion of world citizenship and raise their awareness about the issue of sustainable development We first introduced the Damocles and Tara project to the pupils. Then we studied the Arctic's geography, their inhabitants and ecosystem (Biology and English). In physics and chemistry, they talked about their working conditions, equipments and what kind of analysis they would do. In geology, we studied the evolution of the sea ice and its consequences but also climate changes of the past, the influence of climate on human history and the evidences of global warming nowadays (the pupils had to find information and to make a presentation about different climate events that could be evidence of global warming). A man who works on a research boat for a French national organization came in our class and was able to present his work, the conditions of life on board and to answer the pupils' questions. This is a quick summary of our work. If you need any additional information before the GIFT, please contact me at: sophie.jayer@neuf.fr or Sophie Jayer 61 A route de Paris 78550 Bazainville 0033 (0)1 34 87 61 06 0033 (0)6 20 53 84 65 (mobile) Our group teaches at Emilie de Breteuil High School In Montigny le Bretonneux, 30 km southwest of Paris Lycée Emilie de

  8. Development of an advanced regional climate-ecosystem model for Arctic applications

    NASA Astrophysics Data System (ADS)

    Chaudhary, Nitin; Smith, Benjamin; Miller, Paul

    2013-04-01

    Cryospheric processes together with their feedbacks play a crucial role in determining rates and patterns of future warming over high-latitude regions. Cryospheric processes including permafrost as well as peatland and associated vegetation, hydrological and biogeochemical dynamics are not well represented in land surface schemes (LSS) of most climate models. As a step in this direction, we describe a scheme to include the coupled dynamics of vegetation, hydrology and peat accumulation under climate forcing within a detailed vegetation dynamics-biogeochemistry model, LPJ GUESS (Smith et al. 2001; Miller et al., in preparation). In the first step, a one-dimensional (1D) landscape scale peat accumulation and two dimensional (2D) micro-topographical models have been developed. For the parameterisation and validation of these models, good quality datasets are being used which are collected at various locations around the Arctic. Building on these, a three-dimensional (3D) scheme will be incorporated in a version of LPJ-GUESS that already includes patch-scale vegetation dynamics and soil carbon cycling, as well as a one-dimensional hydrology scheme. The patches in the 3D model will be treated as adjacent micro-patches in a grid and depending on underlying micro-topography water will flow from higher to lower patches. The 2D and 3D models will help in simulating hummock and hollow structure which is typical for Northern peatlands based on the cyclic regeneration theory (von Post and Sernander, 1910). The resulting models will be incorporated within the biospheric component of a regional climate-ecosystem model, RCA-GUESS (Smith et al., 2010) and used to investigate feedbacks related to the dynamics of peatlands, permafrost and emissions of the greenhouse gases, mainly CO2 and CH4 across the Arctic region. References- Smith B, Prentice IC, and Skyes MT. 2001. Representation of vegetation dynamics in modelling of European ecosystems: comparison of two contrasting

  9. Simulating the effects of climate change and climate variability on carbon dynamics in Arctic tundra

    NASA Astrophysics Data System (ADS)

    Stieglitz, Marc; Giblin, Anne; Hobbie, John; Williams, Matthew; Kling, George

    2000-12-01

    Through a simple modeling exercise, three mechanisms have been identified, each operating at a different timescale, that may govern carbon dynamics in Arctic tundra regions and partially explain observed CO2 flux variability. At short timescales the biosphere reacts to meteorological forcing. Drier conditions are associated with aerobic soil decomposition, a large CO2efflux, and a net ecosystem loss of carbon. Cooler and moister conditions favor slower anaerobic decomposition in soils, good growing conditions, and terrestrial carbon sequestration. At intermediate timescales, periods of terrestrial carbon loss are directly linked to periods of carbon sequestration by the ability of the ecosystem to retain labile nitrogen. Labile nitrogen released to the soil during periods when the tundra is a source of carbon (soil respiration > net primary productivity) is retained within the ecosystem and accessed during periods when carbon sequestration is favored (net primary productivity > soil respiration). Finally, the ability of vegetation to respond to long-term changes in soil nutrient status via changes in leaf nitrogen and leaf area index modulates this dynamic at intermediate to long timescales.

  10. McCall Glacier record of Arctic climate change: Interpreting a northern Alaska ice core with regional water isotopes

    NASA Astrophysics Data System (ADS)

    Klein, E. S.; Nolan, M.; McConnell, J.; Sigl, M.; Cherry, J.; Young, J.; Welker, J. M.

    2016-01-01

    We explored modern precipitation and ice core isotope ratios to better understand both modern and paleo climate in the Arctic. Paleoclimate reconstructions require an understanding of how modern synoptic climate influences proxies used in those reconstructions, such as water isotopes. Therefore we measured periodic precipitation samples at Toolik Lake Field Station (Toolik) in the northern foothills of the Brooks Range in the Alaskan Arctic to determine δ18O and δ2H. We applied this multi-decadal local precipitation δ18O/temperature regression to ∼65 years of McCall Glacier (also in the Brooks Range) ice core isotope measurements and found an increase in reconstructed temperatures over the late-20th and early-21st centuries. We also show that the McCall Glacier δ18O isotope record is negatively correlated with the winter bidecadal North Pacific Index (NPI) climate oscillation. McCall Glacier deuterium excess (d-excess, δ2H - 8*δ18O) values display a bidecadal periodicity coherent with the NPI and suggest shifts from more southwestern Bering Sea moisture sources with less sea ice (lower d-excess values) to more northern Arctic Ocean moisture sources with more sea ice (higher d-excess values). Northern ice covered Arctic Ocean McCall Glacier moisture sources are associated with weak Aleutian Low (AL) circulation patterns and the southern moisture sources with strong AL patterns. Ice core d-excess values significantly decrease over the record, coincident with warmer temperatures and a significant reduction in Alaska sea ice concentration, which suggests that ice free northern ocean waters are increasingly serving as terrestrial precipitation moisture sources; a concept recently proposed by modeling studies and also present in Greenland ice core d-excess values during previous transitions to warm periods. This study also shows the efficacy and importance of using ice cores from Arctic valley glaciers in paleoclimate reconstructions.

  11. Chemistry and dynamics of the Arctic winter 2015/2016: Simulations with the Chemistry-Climate Model EMAC

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Kirner, Ole; Sinnhuber, Bjoern-Martin; Ruhnke, Roland; Hoepfner, Michael; Woiwode, Wolfgang; Oelhaf, Hermann; Santee, Michelle L.; Manney, Gloria L.; Froidevaux, Lucien; Murtagh, Donal; Braesicke, Peter

    2016-04-01

    Model simulations of the Arctic winter 2015/2016 were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the POLSTRACC (Polar Stratosphere in a Changing Climate) project. The POLSTRACC project is a HALO mission (High Altitude and LOng Range Research Aircraft) that aims to investigate the structure, composition and evolution of the Arctic Upper Troposphere Lower Stratosphere (UTLS) in a changing climate. Especially, the chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, polar stratospheric clouds as well as cirrus clouds are investigated. The model simulations were performed with a resolution of T42L90, corresponding to a quadratic Gaussian grid of approximately 2.8°× 2.8° degrees in latitude and longitude, and 90 vertical layers from the surface up to 0.01 hPa (approx. 80 km). A Newtonian relaxation technique of the prognostic variables temperature, vorticity, divergence and surface pressure towards ECMWF data was applied above the boundary layer and below 10 hPa, in order to nudge the model dynamics towards the observed meteorology. During the Arctic winter 2015/2016 a stable vortex formed in early December, with a cold pool where temperatures reached below the Nitric Acid Trihydrate (NAT) existence temperature of 195 K, thus allowing Polar Stratospheric Clouds (PSCs) to form. The early winter has been exceptionally cold and satellite observations indicate that sedimenting PSC particles have lead to denitrification as well as dehydration of stratospheric layers. In this presentation an overview of the chemistry and dynamics of the Arctic winter 2015/2016 as simulated with EMAC will be given and comparisons to satellite observations such as e.g. Aura/MLS and Odin/SMR will be shown.

  12. Climate driven release of carbon and mercury from permafrost mires increases mercury loading to sub-arctic lakes.

    PubMed

    Rydberg, Johan; Klaminder, Jonatan; Rosén, Peter; Bindler, Richard

    2010-09-15

    In sub-arctic and arctic regions mercury is an element of concern for both wildlife and humans. Over thousands of years large amounts of atmospherically deposited mercury, both from natural and anthropogenic sources, have been sequestered together with carbon in northern peatlands. Many of these peatlands are currently underlain by permafrost, which controls mire stability and hydrology. With the ongoing climate change there is concern that permafrost thawing will turn large areas of these northern peatlands from carbon/mercury-sinks into much wetter carbon/mercury-sources. Here we can show that such a change in mire structure in the sub-arctic Stordalen mire in northern Sweden actually is responsible for an increased export of mercury to the adjacent lake Inre Harrsjön. We also show that sediment mercury accumulation rates during a warm period in the pre-industrial past were higher than in the 1970s when atmospheric input peaked, indicating that in areas with permafrost, climate can have an effect on mercury loading to lakes as large as anthropogenic emissions. Thawing of permafrost and the subsequent export of carbon is a widespread phenomenon, and the projection is that it will increase even more in the near future. Together with our observations from Stordalen, this makes northern peatlands into a substantial source of mercury, at risk of being released into sensitive arctic freshwater and marine systems.

  13. Sensitivity of permafrost carbon release to past climate change in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Gaglioti, B.; Mann, D. H.; Wooller, M. J.; Jones, B. M.; Farquharson, L. M.; Pohlman, J.

    2015-12-01

    Warming may cause arctic permafrost to thaw and release large stores of carbon (C) downstream and into the atmosphere. Documenting how permafrost-C release responded to prehistoric warming events can help determine its sensitivity to future climate change. We did this by first quantifying past climate change in Arctic Alaska over the last 15,000 years using oxygen isotope ratios in ancient wood cellulose, which is a proxy for summer temperatures and moisture sources. We then used radiocarbon (14C) age-offsets in lake sediment to determine how much permafrost C was being released over this same time period. A 14C age-offset is the difference between the true age of deposition determined by the 14C ages of delicate, terrestrial plant remains and the age of bulk sediment from the same stratigraphic layer. This bulk sediment contains ancient C derived from permafrost in the lake's watershed. Shifts in the magnitude of the age-offset over time provide a proxy for changes in the relative amount of permafrost C being released. Today, the age-offset in our study lake is 2,000 calibrated years before present (cal yr BP), which is the lowest it has been over the last 15,000 years. During the warmer-than-present, Bølling-Allerød period (BA; 14,700-12,900 cal yr BP), and the Holocene Thermal Maximum (HTM; 11,700-8,500 cal yr BP), the age offset reached 4,000-6,000 cal yr, indicating large inputs of ancient C to the lake via permafrost thaw. This enhanced input of ancient C was interrupted during the cold and dry Younger Dryas interval (YD; 12,900-11,700 cal yr BP). Interestingly, age-offsets during the YD were similar to today's, suggesting that the insulating peat layer now covering much of the LOP watershed is stabilizing permafrost C in the face of recent warming. However, this buffering capacity has a limit, and judging by the heightened influx of permafrost C during the HTM, this limit may be reached if summer temperatures warm a further 2-3°C. Temperature and

  14. Paradoxical cold conditions during the medieval climate anomaly in the Western Arctic.

    PubMed

    Jomelli, Vincent; Lane, Timothy; Favier, Vincent; Masson-Delmotte, Valerie; Swingedouw, Didier; Rinterknecht, Vincent; Schimmelpfennig, Irene; Brunstein, Daniel; Verfaillie, Deborah; Adamson, Kathryn; Leanni, Laëtitia; Mokadem, Fatima

    2016-01-01

    In the Northern Hemisphere, most mountain glaciers experienced their largest extent in the last millennium during the Little Ice Age (1450 to 1850 CE, LIA), a period marked by colder hemispheric temperatures than the Medieval Climate Anomaly (950 to 1250 CE, MCA), a period which coincided with glacier retreat. Here, we present a new moraine chronology based on (36)Cl surface exposure dating from Lyngmarksbræen glacier, West Greenland. Consistent with other glaciers in the western Arctic, Lyngmarksbræen glacier experienced several advances during the last millennium, the first one at the end of the MCA, in ~1200 CE, was of similar amplitude to two other advances during the LIA. In the absence of any significant changes in accumulation records from South Greenland ice cores, we attribute this expansion to multi-decadal summer cooling likely driven by volcanic and/or solar forcing, and associated regional sea-ice feedbacks. Such regional multi-decadal cold conditions at the end of the MCA are neither resolved in temperature reconstructions from other parts of the Northern Hemisphere, nor captured in last millennium climate simulations.

  15. Paradoxical cold conditions during the medieval climate anomaly in the Western Arctic

    NASA Astrophysics Data System (ADS)

    2016-09-01

    In the Northern Hemisphere, most mountain glaciers experienced their largest extent in the last millennium during the Little Ice Age (1450 to 1850 CE, LIA), a period marked by colder hemispheric temperatures than the Medieval Climate Anomaly (950 to 1250 CE, MCA), a period which coincided with glacier retreat. Here, we present a new moraine chronology based on 36Cl surface exposure dating from Lyngmarksbræen glacier, West Greenland. Consistent with other glaciers in the western Arctic, Lyngmarksbræen glacier experienced several advances during the last millennium, the first one at the end of the MCA, in ~1200 CE, was of similar amplitude to two other advances during the LIA. In the absence of any significant changes in accumulation records from South Greenland ice cores, we attribute this expansion to multi-decadal summer cooling likely driven by volcanic and/or solar forcing, and associated regional sea-ice feedbacks. Such regional multi-decadal cold conditions at the end of the MCA are neither resolved in temperature reconstructions from other parts of the Northern Hemisphere, nor captured in last millennium climate simulations.

  16. Carbon and nutrient responses to fire and climate warming in Alaskan arctic tundra

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Rastetter, E. B.; Shaver, G. R.; Rocha, A. V.; Kwiatkowski, B.; Pearce, A.; Zhuang, Q.; Mishra, U.

    2015-12-01

    Fire frequency has dramatically increased in the tundra of northern Alaska, which has major implications for the carbon budget of the region and the functioning of these ecosystems that support important wildlife species. We applied the Multiple Element Limitation (MEL) model to investigate both the short- and long-term post-fire succession of plant and soil carbon, nitrogen, and phosphorus fluxes and stocks along a burn severity gradient in the 2007 Anaktuvuk River Fire scar in northern Alaska. We compared the patterns of biomass and soil carbon, nitrogen and phosphorus recoveries with different burn severities and warming intensities. Modeling results indicated that the early regrowth of post-fire tundra vegetation was limited primarily by its canopy photosynthetic potential, rather than nutrient availability. The long-term recovery of C balance from fire disturbance is mainly determined by the internal redistribution of nutrients among ecosystem components, rather than the supply of nutrients from external sources (e.g., nitrogen deposition and fixation, phosphorus weathering). Soil organic matter is the principal source of plant-available nutrients and determines the spatial variation of vegetation biomass across the North Slope of Alaska. Across the North Slope of Alaska, we examined the effects of changes in N and P cycles on tundra C budgets under climate warming. Our results indicate that the ongoing climate warming in Arctic enhances mineralization and leads to a net transfer of nutrient from soil organic matter to vegetation, thereby stimulating tundra plant growth and increased C sequestration in the tundra ecosystems.

  17. Paradoxical cold conditions during the medieval climate anomaly in the Western Arctic

    PubMed Central

    Jomelli, Vincent; Lane, Timothy; Favier, Vincent; Masson-Delmotte, Valerie; Swingedouw, Didier; Rinterknecht, Vincent; Schimmelpfennig, Irene; Brunstein, Daniel; Verfaillie, Deborah; Adamson, Kathryn; Leanni, Laëtitia; Mokadem, Fatima; Aumaître, Georges; Bourlès, Didier L.; Keddadouche, Karim

    2016-01-01

    In the Northern Hemisphere, most mountain glaciers experienced their largest extent in the last millennium during the Little Ice Age (1450 to 1850 CE, LIA), a period marked by colder hemispheric temperatures than the Medieval Climate Anomaly (950 to 1250 CE, MCA), a period which coincided with glacier retreat. Here, we present a new moraine chronology based on 36Cl surface exposure dating from Lyngmarksbræen glacier, West Greenland. Consistent with other glaciers in the western Arctic, Lyngmarksbræen glacier experienced several advances during the last millennium, the first one at the end of the MCA, in ~1200 CE, was of similar amplitude to two other advances during the LIA. In the absence of any significant changes in accumulation records from South Greenland ice cores, we attribute this expansion to multi-decadal summer cooling likely driven by volcanic and/or solar forcing, and associated regional sea-ice feedbacks. Such regional multi-decadal cold conditions at the end of the MCA are neither resolved in temperature reconstructions from other parts of the Northern Hemisphere, nor captured in last millennium climate simulations. PMID:27609585

  18. Paradoxical cold conditions during the medieval climate anomaly in the Western Arctic.

    PubMed

    Jomelli, Vincent; Lane, Timothy; Favier, Vincent; Masson-Delmotte, Valerie; Swingedouw, Didier; Rinterknecht, Vincent; Schimmelpfennig, Irene; Brunstein, Daniel; Verfaillie, Deborah; Adamson, Kathryn; Leanni, Laëtitia; Mokadem, Fatima

    2016-01-01

    In the Northern Hemisphere, most mountain glaciers experienced their largest extent in the last millennium during the Little Ice Age (1450 to 1850 CE, LIA), a period marked by colder hemispheric temperatures than the Medieval Climate Anomaly (950 to 1250 CE, MCA), a period which coincided with glacier retreat. Here, we present a new moraine chronology based on (36)Cl surface exposure dating from Lyngmarksbræen glacier, West Greenland. Consistent with other glaciers in the western Arctic, Lyngmarksbræen glacier experienced several advances during the last millennium, the first one at the end of the MCA, in ~1200 CE, was of similar amplitude to two other advances during the LIA. In the absence of any significant changes in accumulation records from South Greenland ice cores, we attribute this expansion to multi-decadal summer cooling likely driven by volcanic and/or solar forcing, and associated regional sea-ice feedbacks. Such regional multi-decadal cold conditions at the end of the MCA are neither resolved in temperature reconstructions from other parts of the Northern Hemisphere, nor captured in last millennium climate simulations. PMID:27609585

  19. Polar cloud observatory at Ny-Ålesund in GRENE Arctic Climate Change Research Project

    NASA Astrophysics Data System (ADS)

    Yamanouchi, Takashi; Takano, Toshiaki; Shiobara, Masataka; Okamoto, Hajime; Koike, Makoto; Ukita, Jinro

    2016-04-01

    Cloud is one of the main processes in the climate system and especially a large feed back agent for Arctic warming amplification (Yoshimori et al., 2014). From this reason, observation of polar cloud has been emphasized and 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard in 2013 as one of the basic infrastructure in the GRENE (Green Network of Excellence Program) Arctic Climate Change Research Project. The radar, "FALCON-A", is a FM-CW (frequency modulated continuous wave) Doppler radar, developed for Arctic use by Chiba University (PI: T. Takano) in 2012, following its prototype, "FALCON-1" which was developed in 2006 (Takano et al., 2010). The specifications of the radar are, central frequency: 94.84 GHz; antenna power: 1 W; observation height: up to 15 km; range resolution: 48 m; beam width: 0.2 degree (15 m at 5 km); Doppler width: 3.2 m/s; time interval: 10 sec, and capable of archiving high sensitivity and high spatial and time resolution. An FM-CW type radar realizes similar sensitivity with much smaller parabolic antennas separated 1.4 m from each other used for transmitting and receiving the wave. Polarized Micro-Pulse Lidar (PMPL, Sigma Space MPL-4B-IDS), which is capable to measure the backscatter and depolarization ratio, has also been deployed to Ny-Ålesund in March 2012, and now operated to perform collocated measurements with FALCON-A. Simultaneous measurement data from collocated PMPL and FALCON-A are available for synergetic analyses of cloud microphysics. Cloud mycrophysics, such as effective radius of ice particles and ice water content, are obtained from the analysis based on algorithm, which is modified for ground-based measurements from Okamoto's retrieval algorithm for satellite based cloud profiling radar and lidar (CloudSat and CALIPSO; Okamoto et al., 2010). Results of two years will be shown in the presentation. Calibration is a point to derive radar reflectivity (dBZ) from original intensity data

  20. Light treatment improves sleep quality and negative affectiveness in high arctic residents during winter.

    PubMed

    Paul, Michel A; Love, Ryan J; Hawton, Andrea; Brett, Kaighley; McCreary, Donald R; Arendt, Josephine

    2015-01-01

    The seasonal extremes of photoperiod in the high Arctic place particular strain on the human circadian system, which leads to trouble sleeping and increased feelings of negative affect in the winter months. To qualify for our study, potential participants had to have been at Canadian Forces Station (CFS) Alert (82° 30' 00″ N) for at least 2 weeks. Subjects filled out questionnaires regarding sleep difficulty, psychological well-being and mood and wore Actigraphs to obtain objective sleep data. Saliva was collected at regular intervals on two occasions, 2 weeks apart, to measure melatonin and assess melatonin onset. Individuals with a melatonin rhythm that was in disaccord with their sleep schedule were given individualized daily light treatment interventions based on their pretreatment salivary melatonin profile. The light treatment prescribed to seven of the twelve subjects was effective in improving sleep quality both subjectively, based on questionnaire results, and objectively, based on the actigraphic data. The treatment also caused a significant reduction in negative affect among the participants. Since the treatment is noninvasive and has minimal associated side effects, our results support the use of the light visors at CFS Alert and other northern outposts during the winter for individuals who are experiencing sleep difficulty or low mood. PMID:25580574

  1. Arctic Lake Water Temperature Patterns as Impacted by Climatic and Geomorphic Controls

    NASA Astrophysics Data System (ADS)

    Hinkel, K. M.; Sheng, Y.; Lenters, J. D.; Lyons, E. A.; Beck, R. A.

    2010-12-01

    Water temperature profile measurements were collected from 12 arctic lakes on the Arctic Coastal Plain of northern Alaska in summer 2010 as part of a network of lakes being studied. The lakes (> 1 km2) are underlain by permafrost and extend inland across some 150 km - from the Arctic coast near Barrow southward to the foothills of the Brooks Range. Regionally, lake water temperature patterns over the area are concordant and demonstrate rapid warming in late June and mid-August, with significant cooling in the second week of August. Locally, ice meltout occurs about 2-4 weeks later on lakes near the coast due to cooler temperatures and cloudy conditions associated with maritime conditions. Developed in flat marine silts, the coastal lake basins tend to be shallow (2-3 m) and of uniform depth; strong and persistent winds limit thermal stratification, and mid-summer (1 July - 15 Aug) near-surface water temperature averages 6.8°C. About 100 km further inland, in the sandy rolling topography near Atqasuk, lakes are characterized by broad shelves and deeper (2-4 m) central pools. Temperature stratification is minor (<0.5°C) and occurs only on calm, sunny days; mid-summer surface temperatures (11.6°C) are considerably warmer than lakes near the coast. Lakes here and farther south exhibit both diurnal and synoptic-scale variations in temperature. The southernmost lakes are warmest, averaging 13.0°C during the mid-summer period. Very shallow lakes (< 1 m) tend to become ice-free earlier and respond faster to air temperature forcing. Lakes in the south are developed in sand dunes and are generally 2-3 m deep. However, where the expanding lake encroaches on a dune flank at an actively eroding bluff, nearshore pools develop that can be 4-7 m deep. During calm and sunny periods lasting 7-10 days, thermal stratification occurs and the water temperature near the lake bed remains 4-7°C cooler than the surface. At one exposure, lacustrine silts were found beneath the aeolian

  2. How Climate Change Affects Water Resources in the Alps

    NASA Astrophysics Data System (ADS)

    Schädler, B.

    2009-04-01

    Water resources in the Alps are abundant, but long term observed climatological, glaciological and hydrological time series clearly show ongoing climate changes. And regional climate change scenarios indicate even more changes. Will we experience more severe natural disasters in the Alps and will water scarcity affect alpine agriculture and tourism? Or might the importance of the Alps as «Water Tower of Europe» even grow?

  3. Seasonal greening of an Arctic ecosystem in response to early snowmelt and climate warming: do plant community responses differ from species responses?

    NASA Astrophysics Data System (ADS)

    Steltzer, H.; Weintraub, M. N.; Sullivan, P.; Wallenstein, M. D.; Schimel, J.; Darrouzet-Nardi, A.; Shory, R.; Livensperger, C.; Melle, C.; Segal, A. D.; Daly, K.; Tsosie, T.

    2011-12-01

    In the Arctic and around the world, earlier plant growth and a longer growing season are indications that warmer temperatures or other global changes are changing the seasonality of the Earth's ecosystems. These changes in plant life histories have multi-trophic level consequences that affect food webs and biogeochemical cycles. Both the response of the plant community and of individual species can affect food and habitat resources for animals or nutrient resources for microbes. Our aim was to determine if the response of an Arctic plant community differs from individual species responses to climate change. For two years in an early snowmelt and climate warming experiment in moist acidic tussock tundra, we observed the seasonal greening of the ecosystem through near-surface measurements of surface greenness and through direct observations of the timing of plant life history events for five to eight common species that differ in growth form. In 2010 when snowmelt was accelerated by 4 days, earlier snowmelt alone or in combination with climate warming extended the life history of the dominant graminoids (E. vaginatum and C. bigelowii) and willow (S. pulchra) by 3 to 4 days. For these species, new leaf production began earlier, while the timing of senescence was similar to the controls. The effect of earlier snowmelt on the life histories of birch (B. nana) and cranberry (V. vitis-idaea) was less, but warming alone tended to increase life history duration. Warming led to earlier leaf expansion for birch and delayed senescence for cranberry. We found that the onset of greening for the plant community began four days earlier, due to the earlier loss of snow cover, and that warming accelerated the rate of greening. Peak season ended 4 days earlier in response to earlier snowmelt and climate warming, due to earlier senescence by birch. In 2011, our manipulation of the snowpack by increasing energy absorption accelerated snowmelt by 15 days and control plots were snowfree

  4. Climate-induced changes in autumn impact spring breeding phenology and reproductive fitness in arctic ground squirrels

    NASA Astrophysics Data System (ADS)

    Sheriff, M. J.; Buck, L.; Barnes, B. M.

    2012-12-01

    Rapid climate change and shifts in seasonality can threaten the reproductive success of organisms and have negative consequences for species' range and even persistence. Focus on unidirectional effects of earlier springs and onset of reproduction do not consider effects warming may also have on autumn conditions. Shifts in the timing and duration of autumn conditions may influence spring breeding since earlier autumns may constrain offspring's winter preparation, forcing animals to breed earlier in the spring, while prolonged autumns may extend the time offspring have for winter preparation; this effect may alleviating the necessity of breeding early in spring and ultimately increase reproductive fitness. In the Arctic, warming and change in seasonality is occurring at unprecedented rates that are two to three times that of the global average. Further, rates are accelerating from about 0.15-0.17°C per decade (1961-1990) to about 0.3-0.4°C per decade. Unlike in temperate regions, arctic warming has had and is predicted to continue having major heterogeneous effects on the extent of seasonal snow cover. Future scenarios involve deeper and prolonged spring snow cover due to increased winter precipitation and frequency of spring snowstorms in some areas and reduced snow depth and earlier snowmelt with increased warming, wind, and winter precipitation falling as rain in other areas. Under both scenarios autumn is expected to become later in the year, potentially prolonging the snow free season. Snow cover is extremely important for many arctic animals controlling microclimates, defining the beginning and length of the growing season, affecting plant productivity, and allowing access to food resources. Using long-term data from two nearby populations of free-living arctic ground squirrels (AGS) that includes fine-scale information on timing of hibernation and reproduction, we found that seasonal differences in snow cover significantly influenced AGS breeding phenology

  5. DOE Final Report on Collaborative Research. Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    SciTech Connect

    Zhuang, Qianlai; Schlosser, C. Adam; Melillo, Jerry M.; Anthony, Katey Walter; Kicklighter, David; Gao, Xiang

    2015-11-03

    Our overall goal is to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically-forced climate warming, and the conditions under which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes to the landscape of wetlands and lakes, especially thermokarst (thaw) lakes, across the Arctic. Through a suite of numerical experiments that encapsulate the fundamental processes governing methane emissions and carbon exchanges – as well as their coupling to the global climate system - we intend to test the following hypothesis in the proposed research: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and stimulates large increases in methane emissions (via thermokarst lakes and poorly-drained wetland areas upon thawing permafrost along with microbial metabolic responses to higher temperatures) and increases in carbon dioxide emissions from well-drained areas. Besides changes in biogeochemistry, this threshold will also influence global energy dynamics through effects on surface albedo, evapotranspiration and water vapor. These changes would outweigh any increased uptake of carbon (e.g. from peatlands and higher plant photosynthesis) and would result in a strong, positive feedback to global climate warming.

  6. Climate change: Numerical modelling of sedimentation and coastal processes, eastern Canadian Arctic

    SciTech Connect

    Syvitski, J.P.M. ); Andrews, J.T. )

    1994-08-01

    We use three sequential [open quotes]water-sediment transport[close quotes] numerical models to evaluate changes in fluvial sediment outputs for two near-future contrasting climate-change scenarios (warmer summers or warmer and moister winters) for the eastern Canadian Arctic. Our integrated model generates values for deposition into a fiord basin. The effects of climate warming are imposed on 200-yr fluctuations in relative sea level (base level) that in turn have a long-term forcing associated with late Quaternary glacial unloading. Thus some areas are submerging (around the periphery of the former ice sheet) and others are emerging (inland at the heads of fiords). Small, short-term changes in sea level may involve meltwater supply to the world ocean from the melting of glaciers and ice sheets, and sea water expansion with a warming ocean. Alternatively, large ice sheets may also thicken over the short term (200 yr), thereby withdrawing water from the global hydrological cycle. Both climate scenarios result in an increased sediment flux over the next 200 yr. However, warmer summers will have the largest impact by (1) causing ice caps to melt, (2) inducing more expansive and turbid river plumes, (3) increasing progradation of the coastline into the sea, (4) raising relative sea level, and by (5) increasing the number and size of turbidity currents generated off river mouths. Warmer and moister winters that may lead to deviations from these impacts include (1) growth of ice caps, (2) fall of relative sea level, (3) stability of coastlines as increased sediment delivery keeps pace with changes in regional relative sea level, and (4) fewer basin turbidity currents, as more of the bedload is trapped on top of sandur surfaces. 55 refs., 11 figs., 2 tabs.

  7. Using the Arts as a Bridge to Public Understanding of Data-Intensive Earth Science Research through Climate Prisms: The Arctic

    NASA Astrophysics Data System (ADS)

    Samsel, F.; Deck, L. T.; Wilson, C. J.; Rodriguez-Acosta, M.

    2015-12-01

    An ever-growing body of research in Informal Science Education is showing that the arts contribute greatly to engaging the free-choice science learner. This kind of learning goes on outside of the classroom, notably in science centers and museums, where novel, experiential approaches can be piloted. A new exhibit, Climate Prisms: The Arctic, is being mounted by a team of artists and scientists at the Bradbury Science Museum of Los Alamos National Laboratory. It presents the pipeline from collecting soil samples in the Arctic to analyzing them in the labs to the statistical analysis of the findings and on to the input into the climate model, using prisms of art: visual art, poetry, scientific text, information graphics, field imagery and others. The presentation encourages users to view Arctic science through these different lenses. Each person plots their own path, moving through the content at the pace and level that best enables them to engage with the material. With the entry points through multiple artistic voices, learners hearts and feelings are directly reached, building primarily affective connections and then curiosity, rather than cognitive. The project itself is a large display screen driven by a touch interface designed for individual or small group viewing. Content paths are determined by an underlying system of tags, levels, content categories and related research areas. A screen shows a set of images. Each image can be accessed to provide image-specific information or can be a launching pad for a new set of related content and images that allows the user to continue on their exploration journey. Each person, each time they visit, creates a unique path through over 2000 pieces of content according to the unique set of learning assets and interests they bring with them at that visit. Embedded assessment will log basic demographics and each individual foray through the content. These assessments will be analyzed to explore trends of use and drive

  8. How fast is Arctic climate really changing? An insight from recent past, present day and near future coupled model simulations

    NASA Astrophysics Data System (ADS)

    Koenigk, Torben; Brodeau, Laurent

    2016-04-01

    Three quasi-equilibrium simulations using constant greenhouse gas forcing corresponding to years 2000, 2015 and 2030 have been performed with the global coupled model EC-Earth in order to analyze recent past and possible near future changes in the Arctic climate. The model simulations indicate an accelerated warming and ice extent reduction in the Arctic in near future conditions compared to the recent past. Both Arctic warming and sea ice reduction are closely linked to the increase of ocean heat transport into the Arctic, particularly through the Barents Sea Opening. Decadal variations of Arctic sea ice extent and ice volume are of the same order of magnitude as the observed ice extent reductions in the last 30 years and are dominated by the variability of the ocean heat transports through the Barents Sea Opening and the Bering Strait. Despite a general warming of mid and high northern latitudes, a substantial cooling is found in the subpolar gyre of the North Atlantic in the near future simulation. This cooling is related to a strong reduction in the AMOC, which is mainly caused by reduced deep water formation in the Labrador Sea. The observed trend towards a more negative phase of the North Atlantic Oscillation (NAO) and the observed linkage between autumn Arctic ice variations and NAO are reproduced in our model simulations for selected 30-year periods but are not robust over longer time periods. This indicates that the observed linkages between ice and NAO might not be robust in reality either, and that the observational time period is still too short to reliably separate the trend from the natural variability.

  9. Adaptation strategies to climate change in the Arctic: a global patchwork of reactive community-scale initiatives

    NASA Astrophysics Data System (ADS)

    Loboda, Tatiana V.

    2014-11-01

    Arctic regions have experienced and will continue to experience the greatest rates of warming compared to any other region of the world. The people living in the Arctic are considered among most vulnerable to the impacts of environmental change ranging from decline in natural resources to increasing mental health concerns (IPCC 2014 Climate Change 2014: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press)). A meta-analysis study by Ford et al (2014 Environ. Res. Lett. 9 104005) has assessed the volume, scope and geographic distribution of reported in the English language peer-reviewed literature initiatives for adaptation to climate change in the Arctic. Their analysis highlights the reactive nature of the adopted policies with a strong emphasis on local and community-level policies mostly targeting indigenous population in Canada and Alaska. The study raises concerns about the lack of monitoring and evaluation mechanism to track the success rate of the existing policies and the need for long-term strategic planning in adaption policies spanning international boundaries and including all groups of population.

  10. Regional Climate Modeling of Volcanic Eruptions and the Arctic Climate System: A Baffin Island Case Study

    NASA Astrophysics Data System (ADS)

    Losic, M.; Robock, A.

    2010-12-01

    It is well-understood that the effects of volcanic aerosol loading into the stratosphere are transient, with global cooling lasting only a few years after a single large eruption. Geological evidence collected from Northern Baffin Island, Canada, suggests ice cap growth began soon after a succession of several large eruptions in the 13th century, and they did not start to melt until roughly a century ago. We investigate which feedbacks allowed these ice caps to be maintained long after the transient forcing of the volcanic aerosols, by conducting sensitivity studies with the Weather Research and Forecasting (WRF) Model and Polar WRF, a version of WRF developed specifically for the polar regions. Results from an ensemble of month-long regional simulations over Baffin Island suggest that better treatment of snow and ice in Polar WRF improves our regional climate simulations. Thus, sensitivity test results from decade-long runs with imposed changes to boundary condition temperatures and carbon dioxide concentrations using Polar WRF are presented. Preliminary findings suggest that not only large scale but localized climate feedbacks play an important role in the responses of the ice caps after temperature and carbon dioxide forcings are applied. The results from these and further sensitivity tests will provide insight into the influence of regional feedbacks on the persistence of these ice caps long after the 13th century eruptions.

  11. Influence of Climate Warming on Arctic Mammals? New Insights from Ancient DNA Studies of the Collared Lemming Dicrostonyx torquatus

    PubMed Central

    Prost, Stefan; Smirnov, Nickolay; Fedorov, Vadim B.; Sommer, Robert S.; Stiller, Mathias; Nagel, Doris; Knapp, Michael; Hofreiter, Michael

    2010-01-01

    Background Global temperature increased by approximately half a degree (Celsius) within the last 150 years. Even this moderate warming had major impacts on Earth's ecological and biological systems, especially in the Arctic where the magnitude of abiotic changes even exceeds those in temperate and tropical biomes. Therefore, understanding the biological consequences of climate change on high latitudes is of critical importance for future conservation of the species living in this habitat. The past 25,000 years can be used as a model for such changes, as they were marked by prominent climatic changes that influenced geographical distribution, demographic history and pattern of genetic variation of many extant species. We sequenced ancient and modern DNA of the collared lemming (Dicrostonyx torquatus), which is a key species of the arctic biota, from a single site (Pymva Shor, Northern Pre Urals, Russia) to see if climate warming events after the Last Glacial Maximum had detectable effects on the genetic variation of this arctic rodent species, which is strongly associated with a cold and dry climate. Results Using three dimensional network reconstructions we found a dramatic decline in genetic diversity following the LGM. Model-based approaches such as Approximate Bayesian Computation and Markov Chain Monte Carlo based Bayesian inference show that there is evidence for a population decline in the collared lemming following the LGM, with the population size dropping to a minimum during the Greenland Interstadial 1 (Bølling/Allerød) warming phase at 14.5 kyrs BP. Conclusion Our results show that previous climate warming events had a strong influence on genetic diversity and population size of collared lemmings. Due to its already severely compromised genetic diversity a similar population reduction as a result of the predicted future climate change could completely abolish the remaining genetic diversity in this population. Local population extinctions of collared

  12. Comparative analysis of land, marine, and satellite observations of methane in the lower Atmosphere in the Russian Arctic under conditions of climate change

    NASA Astrophysics Data System (ADS)

    Anisimov, O. A.; Kokorev, V. A.

    2015-12-01

    Land, marine, and satellite observations have been used to study changes in methane concentrations in the lower atmosphere during the warm months of the year (July through October) in Arctic regions having different potentials for methane production. The Atmospheric Infrared Sounder (AIRS) data for 2002-2013 are used to explore the interplay between local methane sources in the terrestrial region of the Eurasian Arctic and on the Arctic shelf over the warm period of the year. Linear trends in atmospheric methane concentrations over different Arctic regions are calculated, and a hypothesis of the relation of concentration variations to climatic parameters is tested. The combination of land, marine, and satellite observation is used to develop a conceptual model of the atmospheric methane field in the terrestrial part of the Russian Arctic and on the Arctic shelf. It is shown that the modern methane growth rate in the Arctic does not exceed the Northern Hemisphere mean. It is concluded that the methane emission in the Arctic has little effect on global climate compared to other factors.

  13. The Role of Snow Cover in Affecting Pan-Arctic Soil Freeze/Thaw and Carbon Dynamics

    NASA Astrophysics Data System (ADS)

    Yi, Y.; Kimball, J. S.; Rawlins, M. A.; Moghaddam, M.; Euskirchen, E. S.

    2015-12-01

    Satellite data records spanning the past 3 decades indicate widespread reductions (~0.8-1.3 days decade-1) in mean annual snow cover and frozen season duration across the pan-Arctic domain, coincident with regional climate warming. How the northern soil carbon pool responds to these changes will have a large impact on projected regional and global climate trends. The objective of this study was to assess how northern soil thermal and carbon dynamics respond to changes in surface snow cover and freeze/thaw (F/T) cycles indicated from satellite observations. We developed a coupled permafrost, hydrology and carbon model framework to investigate the sensitivity of soil organic carbon stocks and soil decomposition to recent climate variations across the pan-Arctic region from 1982 to 2010. The model simulations were also evaluated against satellite observation records on snow cover and F/T processes. Our results indicate that surface warming promotes wide-spread soil thawing and active layer deepening due to strong control of surface air temperature on upper (<0.5 m) soil temperatures during the warm season. Earlier spring snowmelt and shorter seasonal snow cover duration with regional warming will mostly likely enhance soil warming in warmer climate zones (mean annual Tair>-5°C) and promote permafrost degradation in these areas. Our results also show that seasonal snow cover has a large impact on soil temperatures, whereby increases in snow cover promote deeper (≥0.5 m) soil layer warming and soil respiration, while inhibiting soil decomposition from surface (≤0.2 m) soil layers, especially in colder climate zones (mean annual Tair≤-10 °C). This non-linear relationship between snow cover and soil decomposition is particularly important in permafrost areas, where a large amount of soil carbon is stored in deep perennial frozen soils that are potentially vulnerable to thawing, with resulting mobilization and accelerated carbon losses from near-term climate change.

  14. Dynamics of Arctic and Sub-Arctic Climate and Atmospheric Circulation: Diagnosis of Mechanisms and Model Biases Using data Assimilation

    SciTech Connect

    Sumant Nigam

    2013-02-05

    These five publications are summarized: Key role of the Atlantic Multidecadal Oscillation in 20th century drought and wet periods over the Great Plains; A Sub-Seasonal Teleconnection Analysis: PNA Development and Its Relationship to the NAO; AMO's Structure and Climate Footprint in Observations and IPCC AR5 Climate Simulations; The Atlantic Multidecadal Oscillation in 20th Century Climate Simulations: Uneven Progress from CMIP3 to CMIP5; and Tropical Atlantic Biases in CCSM4.

  15. GRACE Results and Their Impact: Climate Change in Siberia and Northern Canada and the Freshening of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Dickey, J. O.; Marcus, S. L.; Seitz, F.

    2006-12-01

    Discharges from the land masses surrounding the Arctic Ocean form a key component of its freshwater budget, which in turn plays a critical role in regulating its internal dynamics. Especially during summer, runoff from the Yenisey, Lena and Kolyma basins in Siberia, and the Mackenzie basin in Canada, leads to the formation of a cold Arctic halocline near the surface which strongly impacts the processes of vertical mixing and sea ice formation. To understand the impacts of global change on these processes, therefore, it is critical to gain an accurate assessment of freshwater inputs to the Artic Ocean and their changes as the climate warms. Due to its high orbital inclination and low altitude, the GRACE constellation provides comprehensive geographical coverage, on length scales sufficiently small to resolve the individual catchment basins that provide a major source of freshwater to the Arctic Ocean. Here we explore the impact of GRACE data on tracking changes in Arctic freshwater runoff and its sources, using comparisons with estimated river discharge and net precipitation to form water mass budgets for the individual basins listed above. Changes on both seasonal and interannual timescales will be investigated.

  16. A closer investigation of associations between Autumn Arctic sea ice and central and east Eurasian winter climate

    NASA Astrophysics Data System (ADS)

    Wang, Shaoyin; Liu, Jiping

    2016-04-01

    Whether recent Arctic sea ice loss is responsible for recent severe winters over mid-latitude continents has emerged as a major debate among climate scientists owing to short records of observations and large internal variability in mid- and high-latitudes. In this study, we divide the evolution of autumn Arctic sea ice extent during 1979-2014 into three epochs, 1979-1986 (high), 1987-2006 (moderate) and 2007-2014 (low), using a regime shift identification method. We then compare the associations between autumn Arctic sea ice and winter climate anomalies over central and eastern Eurasia for the three epochs with focus not only on the mean state, but also the extreme events. The results show robust and detectable signals of sea ice loss in weather and climate over western Siberia and East Asia. For the mean state, anomalous low sea ice extent is associated with a strengthening of the Siberian high pressure, a weakening of westerly winds over north Asia, leading to cold anomalies in central Asia and northern China. For the extreme events, the latitude (speed) of the jet stream shifts southward (reduces), the wave extent amplifies, blocking high events increase over Ural Mountains, leading to increased frequency of cold air outbreaks extending from central Asia to northeast China. These associations bear a high degree of similarity to the observed atmospheric anomalies during the low sea ice epoch. By contrast, the patterns of atmospheric anomalies for the high sea ice epoch are different from those congruent with sea ice variability, which is related to the persistent negative phase of the Arctic Oscillation. We also found that the ENSO plays a minor role in the determination of the observed atmospheric anomalies for the three epochs. Support for these observational analysis is largely corroborated by independent atmospheric model simulations.

  17. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing

    PubMed Central

    Marshall, John; Armour, Kyle C.; Scott, Jeffery R.; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G.; Bitz, Cecilia M.

    2014-01-01

    In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around ‘climate response functions’ (CRFs), i.e. the response of the climate to ‘step’ changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an

  18. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing.

    PubMed

    Marshall, John; Armour, Kyle C; Scott, Jeffery R; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G; Bitz, Cecilia M

    2014-07-13

    In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around 'climate response functions' (CRFs), i.e. the response of the climate to 'step' changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate

  19. Study on regional responses of pan-Arctic terrestrial ecosystems to recent climate variability using satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Ke

    I applied a satellite remote sensing based production efficiency model (PEM) using an integrated AVHRR and MODIS FPAR/LAI time series with a regionally corrected NCEP/NCAR reanalysis surface meteorology and NASA/GEWEX shortwave solar radiation inputs to assess annual terrestrial net primary productivity (NPP) for the pan-Arctic basin and Alaska from 1983 to 2005. I developed a satellite remote sensing based evapotranspiration (ET) algorithm using GIMMS NDVI with the above meteorology inputs to assess spatial patterns and temporal trends in ET over the pan-Arctic region. I then analyzed associated changes in the regional water balance defined as the difference between precipitation (P) and ET. I finally analyzed the effects of regional climate oscillations on vegetation productivity and the regional water balance. The results show that low temperature constraints on Boreal-Arctic NPP are decreasing by 0.43% per year (P < 0.001), whereas a positive trend in vegetation moisture constraints of 0.49% per year ( P = 0.04) are offsetting the potential benefits of longer growing seasons and contributing to recent drought related disturbances in NPP. The PEM simulations of NPP seasonality, annual anomalies and trends are similar to stand inventory network measurements of boreal aspen stem growth ( r = 0.56; P = 0.007) and atmospheric CO2 measurement based estimates of the timing of growing season onset ( r = 0.78; P < 0.001). The simulated monthly ET results agree well (RMSE=8.3 mm month-1; R2=0.89) with tower measurements for regionally dominant land cover types. Generally positive trends in ET, precipitation and available river discharge measurements imply that the pan-Arctic terrestrial water cycle is intensifying. Increasing water deficits occurred in some boreal and temperate grassland regions, which agree with regional drought records and recent satellite observations of vegetation browning and productivity decreases. Climate oscillations including Arctic Oscillation

  20. Spring melt ponds drive Arctic September ice at past, present and future climates in coupled climate simulation

    NASA Astrophysics Data System (ADS)

    Schroeder, David; Feltham, Danny; Rae, Jamie; Flocco, Daniela; Ridley, Jeff; Blockley, Edd

    2016-04-01

    Stand-alone sea ice simulations with a physical based melt pond model reveal a strong correlation between the simulated spring pond fraction and the observed as well as simulated September sea ice extent for the period 1979 to 2014. This is explained by a positive feedback mechanism: more ponds reduce the albedo; a lower albedo causes more melting; more melting increases pond fraction. This feedback process is a potential reason for the acceleration of Arctic sea ice decrease in the last decade and the failure of many climate models (without an implicit pond model) to simulate the observed decrease. We implemented the Los Alamos sea ice model CICE 5 including our physical based melt pond model into the latest version of the Hadley Centre coupled climate model, HadGEM3. The model surface shortwave radiation scheme has been adjusted to account for pond fraction and depth. We performed three 55-year HadGEM3 simulations with constant external forcing for the years 1985, 2010 and 2035. In all three simulations we find a strong correlation between the April/May pond fraction and the September sea ice extent with correlation coefficients R1985 = -0.86, R2010 = -0.83 and R2035 = -0.79. Based on the correlation we can perform forecasts with remarkable skill values of S1985 = 0.50, S2010 = 0.36 and S2035 = 0.40. We calculate the skill as S = 1 - σferr2/ σref2, where σref2 is the variance of the de-trended climatology and σferr2 the forecast error variance. Altogether our three simulations cover a large range of September sea ice extent from maximum values of 8.5 million km2 for the 1985 run down to 1.5 million km2 for the 2035 run. We demonstrate that spring melt ponds are an important driver for summer ice melt and the consequent minimum ice extent for current and future climate conditions.

  1. Investigating the atmospheric response to future sea ice loss in the western Arctic using a fully coupled global climate model

    NASA Astrophysics Data System (ADS)

    Gervais, M.; Tremblay, B.; Gyakum, J. R.; Atallah, E.

    2014-12-01

    Sea ice in the Arctic is experiencing declines that are projected to result in a purely seasonal ice cover regime in the 22nd century. In regions of sea ice loss, this will lead to a local changes in the sensible and latent heat flux from the ocean to the atmosphere. Subsequent impacts on mid-latitude weather and climate may occur, for example through changes in air mass generation and properties, mass fields, and jet stream dynamics. The goal of this research is to examine the remote influences of sea ice loss on the atmosphere, with particular focus on loss in the western Arctic. Many studies have been conducted using atmospheric component models forced with specified (reduced) sea ice concentration and sea surface temperatures. These studies have the advantage of clearly separating the signal of sea ice loss from other changes in the climate system, however the experimental configuration neglects the inclusion of atmosphere-ocean feedbacks. The approach used in this study is to employ simulations of future climate using a fully coupled global climate model (GCM) from the Climate Model Intercomparison Project 5 (CMIP5) and applies a self organizing maps technique to identify spatial and temporal patterns in air masses, mass fields and sea ice concentration. Relationships between the atmospheric self organizing map patterns and sea ice concentrations in the model are used to identify dynamical links between sea ice loss and atmospheric variability in the context of a fully coupled model. Causes of inter-annual variability in western Arctic winter sea ice are investigated, as they pertain to a potential mechanism for predictability of this atmosphere-ocean-sea ice interaction and it's impacts over North America.

  2. The Svalbard REU Program: Undergraduates Pursuing Arctic Climate Change Research on Svalbard, Norway

    NASA Astrophysics Data System (ADS)

    Roof, S.; Werner, A.

    2007-12-01

    The Svalbard Research Experiences for Undergraduates (REU) program sponsored by the Arctic Natural Sciences Program of the National Science Foundation has been successfully providing international field research experiences since 2004. Each year, 7-9 undergraduate students have participated in 4-5 weeks of glacial geology and climate change fieldwork on Spitsbergen in the Svalbard archipelago in the North Atlantic (76- 80° N lat.). While we continue to learn new and better ways to run our program, we have learned specific management and pedagogical strategies that allow us to streamline our logistics and to provide genuine, meaningful research opportunities to undergraduate students. We select student participants after extensive nationwide advertising and recruiting. Even before applying to the program, students understand that they will be doing meaningful climate change science, will take charge of their own project, and will be expected to continue their research at their home institution. We look for a strong commitment of support from a student's advisor at their home institution before accepting students into our program. We present clear information, including participant responsibilities, potential risks and hazards, application procedures, equipment needed, etc on our program website. The website also provides relevant research papers and data and results from previous years, so potential participants can see how their efforts will contribute to growing body of knowledge. New participants meet with the previous years' participants at a professional meeting (our "REUnion") before they start their field experience. During fieldwork, students are expected to develop research questions and test their own hypotheses while providing and responding to peer feedback. Professional assessment by an independent expert provides us with feedback that helps us improve logistical procedures and shape our educational strategies. The assessment also shows us how

  3. Multiple climatic signals inferred from the varved sediments of a coastal lake in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Amann, Benjamin; Lamoureux, Scott F.

    2016-04-01

    The Arctic is extremely sensitive to climate change, and an influential part of the global climate system. However, the assessment of climate change and impacts from the Arctic remains a challenge mainly due to short and sparse meteorological records. In this context, data from natural paleoclimate archives are fundamental to place climate variability into perspective and assess the sensitivity of Earth's climate to natural and anthropogenic forcings. In particular, Arctic lakes are excellent potential archives. They are sensitive to extreme seasonal variations in surface processes and have a limited direct human impact. Nevertheless, the study of Arctic lakes is an analytical and technical challenge because: (i) limnological information are often lacking due to difficult accessibility; (ii) 210Pb inventories are low and terrestrial macrofossils for 14C dating are rare, which limits the development of precise sediment chronologies; and (iii) sediment accumulation rates are often low, which may restrict the temporal resolution and length of the paleoclimate records. Here, we present a high-resolution record from the varved sediments (annual laminations) of a saline coastal lake located in the Canadian High Arctic (unofficial name Chevalier Lake; Melville Island, NT). The particular interest of this location is the catchment area: 152 times larger than the lake area (Ac = 350 km²; AL = 2.3 km²). This particularity generates high sedimentation rates, atypical of previously studied arctic lakes. Two sediment cores were recovered from the centre and a more proximal zone of the lake. We used microstratigraphy supported by X-ray fluorescence data (Zr/K for particle size, Fe/Rb for the winter clay cap distinction) to develop a precise and cross-dated varve chronology covering the last 400 years. Dating of the uppermost section could be validated with preliminary 137Cs data. Stratigraphical analysis reveals the presence of three sediment units within the meter

  4. In Brief: Arctic Report Card

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-11-01

    The 2009 annual update of the Arctic Report Card, issued on 22 October, indicates that “warming of the Arctic continues to be widespread, and in some cases dramatic. Linkages between air, land, sea, and biology are evident.” The report, a collaborative effort of 71 national and international scientists initiated in 2006 by the Climate Program Office of the U.S. National Oceanic and Atmospheric Administration (NOAA), highlights several concerns, including a change in large-scale wind patterns affected by the loss of summer sea ice; the replacement of multiyear sea ice by first-year sea ice; warmer and fresher water in the upper ocean linked to new ice-free areas; and the effects of the loss of sea ice on Arctic plant, animal, and fish species. “Climate change is happening faster in the Arctic than any other place on Earth-and with wide-ranging consequences,” said NOAA administrator Jane Lubchenco. “This year“s Arctic Report Card underscores the urgency of reducing greenhouse gas pollution and adapting to climate changes already under way.”

  5. The impact of precession changes on the Arctic climate during the last interglacial glacial transition

    NASA Astrophysics Data System (ADS)

    Khodri, Myriam; Cane, Mark A.; Kukla, George; Gavin, Joyce; Braconnot, Pascale

    2005-07-01

    Three sensitivity experiments using an Ocean Atmosphere General Circulation Model (OAGCM) are conducted to simulate the climate impact of precession. The relative contributions of components of the hydrological cycle including the albedo of Arctic sea ice, advection of atmospheric water vapor and sea surface temperature to the summer Arctic melt process are evaluated. Timing of the perihelion is varied in each experiment with meteorological spring (SP), winter (WP) and autumn (AP) perihelion corresponding to conditions at 110, 115 and 120 ky BP, respectively. Obliquity is unchanged at the 115 ky level which is lower than today. The experiments are assessed relative to the present day control, which has been shown to simulate current conditions based on observations. In the SP experiment, top of the atmosphere (TOA) insolation is weaker than today between the summer solstice and autumnal equinox. In the AP case representing the interglacial, it is less intense between vernal equinox and summer solstice but stronger during the remainder of the year. Although the incident solar radiation is reduced in summer in the SP experiment, increased melting of snow is found primarily as a result of feedbacks from the delayed seasonal cycle of hydrologic components. This is in contrast to both the WP and AP cases in which the perennial snow cover is simulated. At the time of the last glacial inception, 115 ky BP, the WP experiment shows lower insolation to the high northern latitudes in late spring and summer mainly as a result of lower obliquity than today. Dynamical ocean-atmosphere interactions in response to precession maintain the reduced sea ice melting in late spring, strengthen the annual equator-to-pole sea surface temperature (SST) gradient and increase atmospheric moisture convergence in glaciation-sensitive regions. In both the WP and AP experiments seasonal sea ice melting is weakened resulting in pronounced outgoing radiative flux at the locations of expanded sea

  6. Regional Climate Modeling over the Glaciated Regions of the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Gready, Benjamin P.

    The Canadian Arctic Islands (CAI) contain the largest concentration of terrestrial ice outside of the continental ice sheets. Mass loss from this region has recently increased sharply due to above average summer temperatures. Thus, increasing the understanding of the mechanisms responsible for mass loss from this region is critical. Previously, Regional Climate Models (RCMs) have been utilized to estimate climatic balance over Greenland and Antarctica. This method offers the opportunity to study a full suite of climatic variables over extensive spatially distributed grids. However, there are doubts of the applicability of such models to the CAI, given the relatively complex topography of the CAI. To test RCMs in the CAI, the polar version of the regional climate model MM5 was run at high resolution over Devon Ice Cap. At low altitudes, residuals (computed through comparisons with in situ measurements) in the net radiation budget were driven primarily by residuals in net shortwave (NSW) radiation. Residuals in NSW are largely due to inaccuracies in modeled cloud cover and modeled albedo. Albedo on glaciers and ice sheets is oversimplified in Polar MM5 and its successor, the Polar version of the Weather Research and Forecast model (Polar WRF), and is an obvious place for model improvement. Subsequently, an inline parameterization of albedo for Polar WRF was developed as a function of the depth, temperature and age of snow. The parameterization was able to reproduce elevation gradients of seasonal mean albedo derived from satellite albedo measurements (MODIS MOD10A1 daily albedo), on the western slope of the Greenland Ice Sheet for three years. Feedbacks between modelled albedo and modelled surface energy budget components were identified. The shortwave radiation flux feeds back positively with changes to albedo, whereas the longwave, turbulent and ground energy fluxes all feed back negatively, with a maximum combined magnitude of two thirds of the shortwave feedback

  7. Deep lakes in the Polar Urals - unique archives for reconstructing the Quaternary climate and glacial history in the Russian Arctic

    NASA Astrophysics Data System (ADS)

    Svendsen, J.; Gyllencreutz, R.; Henriksen, M.; Lohne, O. S.; Mangerud, J.; Nazarov, D.

    2009-12-01

    A lake coring campaign in the Polar Urals is carried out within the framework of the Norwegian-Russian IPY-project “The Ice Age Development and Human Settlement in Northern Eurasia” (ICEHUS). The overall aim of the project is to improve the description and understanding of the Late Quaternary environmental and climate changes in the Russian Arctic and how these changes may have affected the early human occupation. In order to obtain a continuous record of climate variability back in time seismic records and sediment cores have been collected from selected mountain lakes. The summer of 2009 we cored two lakes situated near the water shed in the interior northernmost Urals. Seismic profiles show that both these glacially eroded basins contain thick sequences of Quaternary sediments. The thickest strata were found in Bolshoye Shuchye, the largest and deepest lake in the Ural Mountains. This lake is 13 km long and 140 m deep and contains more than 130 m of acoustically laminated sediments. These strata probably accumulated over a rather long time span, possibly covering several interglacial-glacial cycles. Up to 24 m long cores were obtained from the lake floors. We anticipate that they will provide unique high resolution records of the climate and glacial history during the last Ice Age. The seismic records and the sediment cores will form a well-founded basis for assessing the potential and possibilities to core also the deeper strata that could not be reached with the applied coring equipment. In view of the obtained results from the investigated basins, as well as other geological and geochronological data from the surrounding areas, we find it highly unlikely that any glaciers extended into these lakes during the Last Glacial Maximum (LGM), supporting our current hypothesis that the local glaciers in the Polar Urals remained small during the LGM. Our observations indicate that the mountain valleys have been essentially ice free since Marine Isotope Stage 4, at

  8. Arctic and boreal ecosystems of western North America as components of the climate system

    USGS Publications Warehouse

    Chapin, F. S.; McGuire, A.D.; Randerson, J.; Pielke, R.; Baldocchi, D.; Hobbie, S.E.; Roulet, Nigel; Eugster, W.; Kasischke, E.; Rastetter, E.B.; Zimov, S.A.; Running, S.W.

    2000-01-01

    Synthesis of results from several Arctic and boreal research programmes provides evidence for the strong role of high-latitude ecosystems in the climate system. Average surface air temperature has increased 0.3??C per decade during the twentieth century in the western North American Arctic and boreal forest zones. Precipitation has also increased, but changes in soil moisture are uncertain. Disturbance rates have increased in the boreal forest; for example, there has been a doubling of the area burned in North America in the past 20 years. The disturbance regime in tundra may not have changed. Tundra has a 3-6-fold higher winter albedo than boreal forest, but summer albedo and energy partitioning differ more strongly among ecosystems within either tundra or boreal forest than between these two biomes. This indicates a need to improve our understanding of vegetation dynamics within, as well as between, biomes. If regional surface warming were to continue, changes in albedo and energy absorption would likely act as a positive feedback to regional warming due to earlier melting of snow and, over the long term, the northward movement of treeline. Surface drying and a change in dominance from mosses to vascular plants would also enhance sensible heat flux and regional warming in tundra. In the boreal forest of western North America, deciduous forests have twice the albedo of conifer forests in both winter and summer, 50-80% higher evapotranspiration, and therefore only 30-50% of the sensible heat flux of conifers in summer. Therefore, a warming-induced increase in fire frequency that increased the proportion of deciduous forests in the landscape, would act as a negative feedback to regional warming. Changes in thermokarst and the aerial extent of wetlands, lakes, and ponds would alter high-latitude methane flux. There is currently a wide discrepancy among estimates of the size and direction of CO2 flux between high-latitude ecosystems and the atmosphere. These

  9. Backyard of the rich north: the climate change-related vicious circle of the Arctic zone.

    PubMed

    Varis, Olli

    2006-06-01

    The Arctic zone is full of controversies, unknowns, contrasts, and challenges. The following example is enlightening. Saudi Arabia is a country that has been considered to have almost unlimited possibilities because of its enormous oil earnings. The country has US$60 thousand million purchasing power parity oil income each year for its mere 22 million inhabitants. Astonishingly, the Arctic zone's income from oil, gas, and minerals is at least as large as that of Saudi Arabia, modestly estimated, but the Arctic has less than 4 million people. Most money, however, flows away from the tundra, yet social and environmental problems remain there. A part of the side effect of consuming these resources-largely fossil fuels-returns to the Arctic in the form of greenhouse warming and all its consequences. The Arctic zone now warms at approximately double the rate of the world average.

  10. Effect of recent climate change on Arctic Pb pollution: a comparative study of historical records in lake and peat sediments.

    PubMed

    Liu, Xiaodong; Jiang, Shan; Zhang, Pengfei; Xu, Liqiang

    2012-01-01

    Historical changes of anthropogenic Pb pollution were reconstructed based on Pb concentrations and isotope ratios in lake and peat sediment profiles from Ny-Ålesund of Arctic. The calculated excess Pb isotope ratios showed that Pb pollution largely came from west Europe and Russia. The peat profile clearly reflected the historical changes of atmospheric deposition of anthropogenic Pb into Ny-Ålesund, and the result showed that anthropogenic Pb peaked at 1960s-1970s, and thereafter a significant recovery was observed by a rapid increase of (206)Pb/(207)Pb ratios and a remarkable decrease in anthropogenic Pb contents. In contrast to the peat record, the longer lake record showed relatively high anthropogenic Pb contents and a persistent decrease of (206)Pb/(207)Pb ratios within the uppermost samples, suggesting that climate-sensitive processes such as catchment erosion and meltwater runoff might have influenced the recent change of Pb pollution record in the High Arctic lake sediments.

  11. A global 3-D model to simulate long-range transport of PAHs: Effect of climate on transport to the Arctic

    NASA Astrophysics Data System (ADS)

    Friedman, C. L.; Selin, N. E.

    2011-12-01

    We simulate the long-range transport of polycyclic aromatic hydrocarbons (PAHs) to the Arctic under present and future climate using a global 3-D chemical transport model (GEOS-Chem). PAHs, toxic byproducts of combustion, reach the Arctic by long-range atmospheric transport. PAHs are semivolatile compounds that partition between the gas and particle phases. We implement temperature-dependent PAH partitioning into hydrophobic organic carbon (OC) and black carbon (BC) aerosols in the model to simulate this behavior. First, we test the validity of the model by comparing results to global measurements of the PAHs phenanthrene (PHE), pyrene (PYR), and benzo[a]pyrene (BaP) and find that for mean global and mean Arctic concentrations, measurements and model results are not statistically different and that the model captures 64 - 74% (r2s) of the concentration variability in non-urban locations. We then simulate daily transport of PHE, PYR, and BaP to the Arctic for the years 2005-2009. Preliminary results suggest the model captures up to 50% (r2s) of the variability in Arctic concentrations, and is able to capture episodic events. Source-receptor analyses indicate European and Russian sources account for approximately 80% of PAHs in the Arctic. The sensitivity of PAH transport to simulated future climate meteorology (GCAP) and to variable OC and BC concentrations is investigated, particularly with respect to transport to the Arctic and remote exposures. The implications for regional and global PAH regulatory policies are discussed.

  12. Large-scale climatic patterns and area affected by mountain pine beetle in British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Macias Fauria, Marc; Johnson, E. A.

    2009-03-01

    We present evidence of high spatial synchrony in an area affected by mountain pine beetle (MPB, Dendroctonus ponderosae) across large distances in British Columbia, Canada, in a study of a spatially explicit database of an area affected by MPB-caused tree mortality for the period 1959-2002. We further show that large-scale climatic patterns (Pacific Decadal Oscillation (PDO) and, to a lesser degree, Arctic Oscillation (AO)) are strongly related to the observed MPB synchrony, and that they probably operate through controlling the frequency of extreme cold winter temperatures that affect MPB larvae survival. A smaller portion of the data's variability is linked to the onset of the two largest outbreaks in the studied period and might be attributed to dispersal from outbreak-prone areas or else to differences in microhabitat (e.g., host availability) in these regions. The onset of a warm PDO phase in 1976 favored MPB outbreaks by reducing the occurrence of extremely low winter temperatures province-wide. Likewise, the exceptionally high and persistent AO values of the late 1980s and 1990s enhanced MPB activity in the southern and northern parts of the region. Summer warmth cannot be discarded as an important agent at smaller scales.

  13. The Impact of Climate Change on Microbial Communities and Carbon Cycling in High Arctic Permafrost Soil from Spitsbergen, Northern Norway

    NASA Astrophysics Data System (ADS)

    de Leon, K. C.; Schwery, D.; Yoshikawa, K.; Christiansen, H. H.; Pearce, D.

    2014-12-01

    Permafrost-affected soils are among the most fragile ecosystems in which current microbial controls on organic matter decomposition are changing as a result of climate change. Warmer conditions in the high Arctic will lead to a deepening of the seasonal active layer of permafrost, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. The viable and non-viable fractions of the microbial community in a permafrost soil from Adventdalen, Spitsbergen, Norway were subjected to a comprehensive investigation using culture-dependent and culture-independent methods. Molecular analyses using FISH (with CTC-DAPI) and amplified rDNA restriction analysis (ARDRA) on a 257cm deep core, revealed the presence of all major microbial soil groups, with the active layer having more viable cells, and a higher microbial community diversity. Carbon dioxide (CO2) and methane (CH4) flux measurements were performed to show the amount of C stored in the sample. We demonstrated that the microbial community composition from the soil in the center of the core was most likely influenced by small scale variations in environmental conditions. Community structure showed distinct shift of presence of bacterial groups along the vertical temperature gradient profile and microbial counts and diversity was found to be highest in the surface layers, decreasing with depth. It was observed that soil properties driving microbial diversity and functional potential varied across the permafrost table. Data on the variability of CO2 and CH4 distribution described in peat structure heterogeneity are important for modeling emissions on a larger scale. Furthermore, linking microbial biomass to gas distribution may elucidate the cause of peak CO2 and CH4 and their changes in relation to environmental change and peat composition.

  14. Spatial changes of Extended De Martonne climatic zones affected by climate change in Iran

    NASA Astrophysics Data System (ADS)

    Rahimi, Jaber; Ebrahimpour, Meisam; Khalili, Ali

    2013-05-01

    In order to better understand the effect associated with global climate change on Iran's climate condition, it is important to quantify possible shifts in different climatic types in the future. To this end, monthly mean minimum and maximum temperature, and precipitation from 181 synoptic meteorological stations (average 1970-2005) have been collected from the meteorological organization of Iran. In this paper, to study spatial changes of Iran's climatic zones affected by climate changes, Extended De Martonne's classification (originally formulated by De Martonne and extended by Khalili (1992)) was used. Climate change scenarios were simulated in two future climates (average conditions during the 2050s and the 2080s) under each of the SRES A1B and A2, for the CSIRO-MK3, HadCM3, and CGCM3 climate models. Coarse outputs of GCMs were downscaled by delta method. We produced all maps for three time periods (one for the current and two for the future) according to Extended De Martonne's classification. Finally, for each climatic zone, changes between the current and the future were compared. As the main result, simulated changes indicate shifts to warmer and drier zones. For example, in the current, extra arid-cold ( A1.1m2) climate is covering the largest area of the country (21.4 %), whereas in both A1B and A2 scenarios in the 2050s and the 2080s, extra arid-moderate ( A1.1m3) and extra arid-warm ( A1.1m4) will be the climate and will occupy the largest area of the country, about 21 and 38 %, respectively. This analysis suggests that the global climate change will have a profound effect on the future distribution of severe aridity in Iran.

  15. Predicting when climate-driven phenotypic change affects population dynamics.

    PubMed

    McLean, Nina; Lawson, Callum R; Leech, Dave I; van de Pol, Martijn

    2016-06-01

    Species' responses to climate change are variable and diverse, yet our understanding of how different responses (e.g. physiological, behavioural, demographic) relate and how they affect the parameters most relevant for conservation (e.g. population persistence) is lacking. Despite this, studies that observe changes in one type of response typically assume that effects on population dynamics will occur, perhaps fallaciously. We use a hierarchical framework to explain and test when impacts of climate on traits (e.g. phenology) affect demographic rates (e.g. reproduction) and in turn population dynamics. Using this conceptual framework, we distinguish four mechanisms that can prevent lower-level responses from impacting population dynamics. Testable hypotheses were identified from the literature that suggest life-history and ecological characteristics which could predict when these mechanisms are likely to be important. A quantitative example on birds illustrates how, even with limited data and without fully-parameterized population models, new insights can be gained; differences among species in the impacts of climate-driven phenological changes on population growth were not explained by the number of broods or density dependence. Our approach helps to predict the types of species in which climate sensitivities of phenotypic traits have strong demographic and population consequences, which is crucial for conservation prioritization of data-deficient species.

  16. Predicting when climate-driven phenotypic change affects population dynamics.

    PubMed

    McLean, Nina; Lawson, Callum R; Leech, Dave I; van de Pol, Martijn

    2016-06-01

    Species' responses to climate change are variable and diverse, yet our understanding of how different responses (e.g. physiological, behavioural, demographic) relate and how they affect the parameters most relevant for conservation (e.g. population persistence) is lacking. Despite this, studies that observe changes in one type of response typically assume that effects on population dynamics will occur, perhaps fallaciously. We use a hierarchical framework to explain and test when impacts of climate on traits (e.g. phenology) affect demographic rates (e.g. reproduction) and in turn population dynamics. Using this conceptual framework, we distinguish four mechanisms that can prevent lower-level responses from impacting population dynamics. Testable hypotheses were identified from the literature that suggest life-history and ecological characteristics which could predict when these mechanisms are likely to be important. A quantitative example on birds illustrates how, even with limited data and without fully-parameterized population models, new insights can be gained; differences among species in the impacts of climate-driven phenological changes on population growth were not explained by the number of broods or density dependence. Our approach helps to predict the types of species in which climate sensitivities of phenotypic traits have strong demographic and population consequences, which is crucial for conservation prioritization of data-deficient species. PMID:27062059

  17. Cloud-Scale Numerical Modeling of the Arctic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Krueger, Steven K.

    1998-01-01

    The interactions between sea ice, open ocean, atmospheric radiation, and clouds over the Arctic Ocean exert a strong influence on global climate. Uncertainties in the formulation of interactive air-sea-ice processes in global climate models (GCMs) result in large differences between the Arctic, and global, climates simulated by different models. Arctic stratus clouds are not well-simulated by GCMs, yet exert a strong influence on the surface energy budget of the Arctic. Leads (channels of open water in sea ice) have significant impacts on the large-scale budgets during the Arctic winter, when they contribute about 50 percent of the surface fluxes over the Arctic Ocean, but cover only 1 to 2 percent of its area. Convective plumes generated by wide leads may penetrate the surface inversion and produce condensate that spreads up to 250 km downwind of the lead, and may significantly affect the longwave radiative fluxes at the surface and thereby the sea ice thickness. The effects of leads and boundary layer clouds must be accurately represented in climate models to allow possible feedbacks between them and the sea ice thickness. The FIRE III Arctic boundary layer clouds field program, in conjunction with the SHEBA ice camp and the ARM North Slope of Alaska and Adjacent Arctic Ocean site, will offer an unprecedented opportunity to greatly improve our ability to parameterize the important effects of leads and boundary layer clouds in GCMs.

  18. How will climate change affect vine behaviour in different soils?

    NASA Astrophysics Data System (ADS)

    Leibar, Urtzi; Aizpurua, Ana; Morales, Fermin; Pascual, Inmaculada; Unamunzaga, Olatz

    2014-05-01

    and water-deficit had a clear influence on the grape phenological development and composition, whilst soil affected root configuration and anthocyanins concentration. Effects of climate change and water availability on different soil conditions should be considered to take full advantage or mitigate the consequences of the future climate conditions.

  19. American mastodon extirpation in the Arctic and Subarctic predates human colonization and terminal Pleistocene climate change

    PubMed Central

    Zazula, Grant D.; MacPhee, Ross D. E.; Metcalfe, Jessica Z.; Reyes, Alberto V.; Brock, Fiona; Druckenmiller, Patrick S.; Groves, Pamela; Harington, C. Richard; Hodgins, Gregory W. L.; Kunz, Michael L.; Longstaffe, Fred J.; Mann, Daniel H.; McDonald, H. Gregory; Nalawade-Chavan, Shweta; Southon, John R.

    2014-01-01

    Existing radiocarbon (14C) dates on American mastodon (Mammut americanum) fossils from eastern Beringia (Alaska and Yukon) have been interpreted as evidence they inhabited the Arctic and Subarctic during Pleistocene full-glacial times (∼18,000 14C years B.P.). However, this chronology is inconsistent with inferred habitat preferences of mastodons and correlative paleoecological evidence. To establish a last appearance date (LAD) for M. americanum regionally, we obtained 53 new 14C dates on 36 fossils, including specimens with previously published dates. Using collagen ultrafiltration and single amino acid (hydroxyproline) methods, these specimens consistently date to beyond or near the ∼50,000 y B.P. limit of 14C dating. Some erroneously “young” 14C dates are due to contamination by exogenous carbon from natural sources and conservation treatments used in museums. We suggest mastodons inhabited the high latitudes only during warm intervals, particularly the Last Interglacial [Marine Isotope Stage (MIS) 5] when boreal forests existed regionally. Our 14C dataset suggests that mastodons were extirpated from eastern Beringia during the MIS 4 glacial interval (∼75,000 y ago), following the ecological shift from boreal forest to steppe tundra. Mastodons thereafter became restricted to areas south of the continental ice sheets, where they suffered complete extinction ∼10,000 14C years B.P. Mastodons were already absent from eastern Beringia several tens of millennia before the first humans crossed the Bering Isthmus or the onset of climate changes during the terminal Pleistocene. Local extirpations of mastodons and other megafaunal populations in eastern Beringia were asynchrononous and independent of their final extinction south of the continental ice sheets. PMID:25453065

  20. American mastodon extirpation in the Arctic and Subarctic predates human colonization and terminal Pleistocene climate change.

    PubMed

    Zazula, Grant D; MacPhee, Ross D E; Metcalfe, Jessica Z; Reyes, Alberto V; Brock, Fiona; Druckenmiller, Patrick S; Groves, Pamela; Harington, C Richard; Hodgins, Gregory W L; Kunz, Michael L; Longstaffe, Fred J; Mann, Daniel H; McDonald, H Gregory; Nalawade-Chavan, Shweta; Southon, John R

    2014-12-30

    Existing radiocarbon ((14)C) dates on American mastodon (Mammut americanum) fossils from eastern Beringia (Alaska and Yukon) have been interpreted as evidence they inhabited the Arctic and Subarctic during Pleistocene full-glacial times (∼ 18,000 (14)C years B.P.). However, this chronology is inconsistent with inferred habitat preferences of mastodons and correlative paleoecological evidence. To establish a last appearance date (LAD) for M. americanum regionally, we obtained 53 new (14)C dates on 36 fossils, including specimens with previously published dates. Using collagen ultrafiltration and single amino acid (hydroxyproline) methods, these specimens consistently date to beyond or near the ∼ 50,000 y B.P. limit of (14)C dating. Some erroneously "young" (14)C dates are due to contamination by exogenous carbon from natural sources and conservation treatments used in museums. We suggest mastodons inhabited the high latitudes only during warm intervals, particularly the Last Interglacial [Marine Isotope Stage (MIS) 5] when boreal forests existed regionally. Our (14)C dataset suggests that mastodons were extirpated from eastern Beringia during the MIS 4 glacial interval (∼ 75,000 y ago), following the ecological shift from boreal forest to steppe tundra. Mastodons thereafter became restricted to areas south of the continental ice sheets, where they suffered complete extinction ∼ 10,000 (14)C years B.P. Mastodons were already absent from eastern Beringia several tens of millennia before the first humans crossed the Bering Isthmus or the onset of climate changes during the terminal Pleistocene. Local extirpations of mastodons and other megafaunal populations in eastern Beringia were asynchrononous and independent of their final extinction south of the continental ice sheets.

  1. Temporal constraints on future accumulation-area loss of a major Arctic ice cap due to climate change (Vestfonna, Svalbard).

    PubMed

    Möller, Marco; Schneider, Christoph

    2015-01-01

    Arctic glaciers and ice caps are major contributors to past, present and future sea-level fluctuations. Continued global warming may eventually lead to the equilibrium line altitudes of these ice masses rising above their highest points, triggering unstoppable downwasting. This may feed future sea-level rise considerably. We here present projections for the timing of equilibrium-line loss at the major Arctic ice cap Vestfonna, Svalbard. The projections are based on spatially distributed climatic mass balance modelling driven by the outputs of multiple climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) forced by the Representative Concentration Pathways (RCPs) 2.6, 4.5, 6.0 and 8.5. Results indicate strongly decreasing climatic mass balances over the 21(st) century for all RCPs considered. Glacier-wide mass-balance rates will drop down to -4 m a(-1) w.e. (water equivalent) at a maximum. The date at which the equilibrium line rises above the summit of Vestfonna (630 m above sea level) is calculated to range between 2040 and 2150, depending on scenario. PMID:25628045

  2. Temporal constraints on future accumulation-area loss of a major Arctic ice cap due to climate change (Vestfonna, Svalbard).

    PubMed

    Möller, Marco; Schneider, Christoph

    2015-01-28

    Arctic glaciers and ice caps are major contributors to past, present and future sea-level fluctuations. Continued global warming may eventually lead to the equilibrium line altitudes of these ice masses rising above their highest points, triggering unstoppable downwasting. This may feed future sea-level rise considerably. We here present projections for the timing of equilibrium-line loss at the major Arctic ice cap Vestfonna, Svalbard. The projections are based on spatially distributed climatic mass balance modelling driven by the outputs of multiple climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) forced by the Representative Concentration Pathways (RCPs) 2.6, 4.5, 6.0 and 8.5. Results indicate strongly decreasing climatic mass balances over the 21(st) century for all RCPs considered. Glacier-wide mass-balance rates will drop down to -4 m a(-1) w.e. (water equivalent) at a maximum. The date at which the equilibrium line rises above the summit of Vestfonna (630 m above sea level) is calculated to range between 2040 and 2150, depending on scenario.

  3. Temporal constraints on future accumulation-area loss of a major Arctic ice cap due to climate change (Vestfonna, Svalbard)

    PubMed Central

    Möller, Marco; Schneider, Christoph

    2015-01-01

    Arctic glaciers and ice caps are major contributors to past, present and future sea-level fluctuations. Continued global warming may eventually lead to the equilibrium line altitudes of these ice masses rising above their highest points, triggering unstoppable downwasting. This may feed future sea-level rise considerably. We here present projections for the timing of equilibrium-line loss at the major Arctic ice cap Vestfonna, Svalbard. The projections are based on spatially distributed climatic mass balance modelling driven by the outputs of multiple climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) forced by the Representative Concentration Pathways (RCPs) 2.6, 4.5, 6.0 and 8.5. Results indicate strongly decreasing climatic mass balances over the 21st century for all RCPs considered. Glacier-wide mass-balance rates will drop down to −4 m a−1 w.e. (water equivalent) at a maximum. The date at which the equilibrium line rises above the summit of Vestfonna (630 m above sea level) is calculated to range between 2040 and 2150, depending on scenario. PMID:25628045

  4. Cumulative effects of climate warming and other human activities on freshwaters of Arctic and subarctic North America.

    PubMed

    Schindler, David W; Smol, John P

    2006-06-01

    Despite their generally isolated geographic locations, the freshwaters of the north are subjected to a wide spectrum of environmental stressors. High-latitude regions are especially sensitive to the effects of recent climatic warming, which have already resulted in marked regime shifts in the biological communities of many Arctic lakes and ponds. Important drivers of these limnological changes have included changes in the amount and duration of snow and ice cover, and, for rivers and lakes in their deltas, the frequency and extent of spring floods. Other important climate-related shifts include alterations in evaporation and precipitation ratios, marked changes in the quality and quantity of lake and river water inflows due to accelerated glacier and permafrost melting, and declining percentages of precipitation that falls as snow. The depletion of stratospheric ozone over the north, together with the clarity of many Arctic lakes, renders them especially susceptible to damage from ultraviolet radiation. In addition, the long-range atmospheric transport of pollutants, coupled with the focusing effects of contaminant transport from biological vectors to some local ecosystems (e.g., salmon nursery lakes, ponds draining seabird colonies) and biomagnification in long food chains, have led to elevated concentrations of many persistent organic pollutants (e.g., insecticides, which have never been used in Arctic regions) and other pollutants (e.g., mercury). Rapid development of gas and oil pipelines, mining for diamonds and metals, increases in human populations, and the development of all-season roads, seaports, and hydroelectric dams will stress northern aquatic ecosystems. The cumulative effects of these stresses will be far more serious than those caused by changing climate alone. PMID:16944640

  5. The Role of Disturbance in Arctic Ecosystem Response to a Changing Climate

    NASA Astrophysics Data System (ADS)

    Hinzman, L. D.

    2014-12-01

    Wildfires in the tundra regions and the boreal forest project an immediate effect upon the surface energy and water budget by drastically altering the surface albedo, roughness, infiltration rates, and moisture absorption capacity in organic soils. Although fires create a sudden and drastic change to the landcover, it is only the beginning of a long process of recovery and perhaps a shift to a different successional pathway. In permafrost regions, these effects become part of a process of long-term (20-50 years) cumulative impacts. Burn severity may largely determine immediate impacts and long-term disturbance trajectories. As transpiration decreases or ceases, soil moisture increases markedly, remaining quite wet throughout the year. Because the insulating quality of the organic layer is removed during fires, permafrost begins to thaw near the surface and warm to greater depths. Within a few years, it may thaw to the point where it can no longer completely refreeze every winter, creating a permanently thawed layer in the soil called a talik. After formation of a talik, soils can drain internally throughout the year. At this point, soils may become quite dry, as the total precipitation received annually in the Arctic is quite low. The local ecological community must continuously adapt to the changing soil thermal and moisture regimes. The wet soils found over shallow permafrost favor black spruce forests. After a fire creates a deeper permafrost table (thicker active layer) the invading tree species tend to be birch or alder. The hydrologic and thermal regime of the soil is the primary factor controlling these vegetation trajectories and the subsequent changes in surface mass and energy fluxes. The complexities of a changing climate accentuate these processes of change and complicate predictions of the resulting vegetation trajectories. Understanding these shifts in vegetative communities and quantifying the consequences of thawing permafrost can only be

  6. Phototoxicity of pyrene affects benthic algae and bacteria from the Arctic.

    PubMed

    Petersen, Dorthe G; Reichenberg, Fredrik; Dahllöf, Ingela

    2008-02-15

    Phototoxicity of polycyclic aromatic hydrocarbons (PAHs) in the Arctic is important to study since the future PAH load is likely to increase. In combination with the increased UV-light penetration due to ozone layer thinning, phototoxicity may be a potential problem for arctic areas. The aim of this study was to evaluate effects of pyrene and phototoxicity of pyrene on natural algae and bacteria from arctic sediments. Sediments from a shallow-water marine baywere spiked with different pyrene concentrations. Microcosms containing the sediment were incubated under three light regimes, natural sunlight with UV-light, natural sunlight without UV-light, and dark. Significant effects were evident at low pyrene concentrations, particularly in presence of UV-light, indicating phototoxicity. The microalgae were especially sensitive to the phototoxicity of pyrene. Already atthe lowest pyrene concentration (Cfree: 4 nM) algal 14C-incorporation and chlorophyll a content were reduced. The toxic effects of pyrene on the microalgae probably led to the release of organic matter. In agreement with this, bacterial activity increased at high pyrene concentrations indicated by increased oxygen consumption and increased release of inorganic N and P from the sediment. This study indicates that phototoxicity of PAHs may be relevant for sediment communities from shallow marine arctic areas at environmentally relevant pyrene concentrations.

  7. Affects of Changes in Sea Ice Cover on Bowhead Whales and Subsistence Whaling in the Western Arctic

    NASA Astrophysics Data System (ADS)

    Moore, S.; Suydam, R.; Overland, J.; Laidre, K.; George, J.; Demaster, D.

    2004-12-01

    Global warming may disproportionately affect Arctic marine mammals and disrupt traditional subsistence hunting activities. Based upon analyses of a 24-year time series (1979-2002) of satellite-derived sea ice cover, we identified significant positive trends in the amount of open-water in three large and five small-scale regions in the western Arctic, including habitats where bowhead whales (Balaena mysticetus) feed or are suspected to feed. Bowheads are the only mysticete whale endemic to the Arctic and a cultural keystone species for Native peoples from northwestern Alaska and Chukotka, Russia. While copepods (Calanus spp.) are a mainstay of the bowhead diet, prey sampling conducted in the offshore region of northern Chukotka and stomach contents from whales harvested offshore of the northern Alaskan coast indicate that euphausiids (Thysanoessa spp.) advected from the Bering Sea are also common prey in autumn. Early departure of sea ice has been posited to control availability of zooplankton in the southeastern Bering Sea and in the Cape Bathurst polynya in the southeastern Canadian Beaufort Sea, with maximum secondary production associated with a late phytoplankton bloom in insolatoin-stratified open water. While it is unclear if declining sea-ice has directly affected production or advection of bowhead prey, an extension of the open-water season increases opportunities for Native subsistence whaling in autumn. Therefore, bowhead whales may provide a nexus for simultaneous exploration of the effects sea ice reduction on pagophillic marine mammals and on the social systems of the subsistence hunting community in the western Arctic. The NOAA/Alaska Fisheries Science Center and NSB/Department of Wildlife Management will investigate bowhead whale stock identity, seasonal distribution and subsistence use patterns during the International Polar Year, as an extension of research planned for 2005-06. This research is in response to recommendations from the Scientific

  8. Communicating climate science to high school students in the Arctic: Adventure Learning @ Greenland

    NASA Astrophysics Data System (ADS)

    Hougham, R. J.; Miller, B.; Cox, C. J.

    2012-12-01

    Adventure Learning @ Greenland (AL@GL) engaged high school students in atmospheric research in the Arctic and in local environments to enhance climate literacy. The overarching objective for this project was to support climate literacy in high school students, specifically the concept of energy exchange between the Earth, atmosphere, and space. The goal then is to produce a model of education and outreach for remote STEM research that can be used to meaningfully engage K-12 and public communities. Over the course of the program experience, students conducted scientific inquiry associated with their place that supported a more focused science content at a field location. Approximately 45 students participated in the hybrid learning environments as part of this project at multiple locations in Idaho, USA, and Greenland. In Greenland, the Summit Camp research station located on the Greenland Ice Sheet was the primary location. The AL@GL project provided a compelling opportunity to engage students in an inquiry-based curriculum alongside a cutting-edge geophysical experiment at Summit: the Integrated Characterization of Energy, Clouds, Atmospheric state, and Precipitation at Summit (ICECAPS) experiment. ICECAPS measures parameters that are closely tied to those identified in student misconceptions. Thus, ICECAPS science and the AL@ approach combined to create a learning environment that was practical, rich, and engaging. Students participating in this project were diverse, rural, and traditionally underrepresented. Groups included: students participating in a field school at Kangerlussuaq, Greenland and Summit Station as members of the JSEP; students at MOSS will were part of the Upward Bound Math Science (UBMS) and HOIST (Helping Orient Indian Students and Teachers) project. These project serve high school students who are first college generation and from low-income families. JSEP is an international group of students from the United States, Greenland, and Denmark

  9. Climate affects predator control of an herbivore outbreak.

    PubMed

    Preisser, Evan L; Strong, Donald R

    2004-05-01

    Herbivore outbreaks and the accompanying devastation of plant biomass can have enormous ecological effects. Climate directly affects such outbreaks through plant stress or alterations in herbivore life-history traits. Large-scale variation in climate can indirectly affect outbreaks through trophic interactions, but the magnitude of such effects is unknown. On the California coast, rainfall in years during and immediately previous to mass lupine mortality was two-thirds that of years without such mortality. However, neither mature lupines nor their root-feeding herbivores are directly affected by annual variation in rainfall. By increasing soil moisture to levels characteristic of summers following El Niño/Southern Oscillation (ENSO) events, we increased persistence of a predator (the entomopathogenic nematode Heterorhabditis marelatus). This led to suppression of an outbreak of the herbivorous moth Hepialus californicus, indirectly protecting bush lupine (Lupinus arboreus). Our results are consistent with the marine-oriented Menge-Sutherland hypothesis (Menge and Sutherland 1987) that abiotic stress has greater effects on higher than on lower trophic levels. The mechanisms producing these results differ from those proposed by Menge-Sutherland, however, highlighting differences between trophic processes in underground and terrestrial/marine food webs. Our evidence suggests that herbivore outbreaks and mass lupine mortality are indirectly affected by ENSO's facilitation of top-down control in this food web.

  10. Global water resources affected by human interventions and climate change

    PubMed Central

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D.; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future. PMID:24344275

  11. Global water resources affected by human interventions and climate change.

    PubMed

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D; Wada, Yoshihide; Wisser, Dominik

    2014-03-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.

  12. Landfast ice affects the stability of the Arctic halocline: Evidence from a numerical model

    NASA Astrophysics Data System (ADS)

    Itkin, Polona; Losch, Martin; Gerdes, Rüdiger

    2015-04-01

    Landfast ice covers large surface areas of the winter Siberian Seas. The immobile landfast ice cover inhibits divergent and convergent motion, hence dynamical sea ice growth and redistribution, decouples winter river plumes in coastal seas from the atmosphere, and positions polynyas at the landfast ice edge offshore. In spite of the potentially large effects, state-of-the-art numerical models usually do not represent landfast ice in its correct extent. A simple parametrization of landfast ice based on bathymetry and internal sea ice strength is introduced and its effects on the simulated Arctic Ocean are demonstrated. The simulations suggest that the Siberian landfast ice impacts the Arctic halocline stability through enhanced brine production in polynyas located closer to the shelf break and by redirecting river water to the Canadian Basin. These processes strengthen the halocline in the Canadian Basin, but erode its stability in the Makarov and Eurasian Basins.

  13. Comparative phylogeography highlights the double-edged sword of climate change faced by arctic- and alpine-adapted mammals.

    PubMed

    Lanier, Hayley C; Gunderson, Aren M; Weksler, Marcelo; Fedorov, Vadim B; Olson, Link E

    2015-01-01

    Recent studies suggest that alpine and arctic organisms may have distinctly different phylogeographic histories from temperate or tropical taxa, with recent range contraction into interglacial refugia as opposed to post-glacial expansion out of refugia. We use a combination of phylogeographic inference, demographic reconstructions, and hierarchical Approximate Bayesian Computation to test for phylodemographic concordance among five species of alpine-adapted small mammals in eastern Beringia. These species (Collared Pikas, Hoary Marmots, Brown Lemmings, Arctic Ground Squirrels, and Singing Voles) vary in specificity to alpine and boreal-tundra habitat but share commonalities (e.g., cold tolerance and nunatak survival) that might result in concordant responses to Pleistocene glaciations. All five species contain a similar phylogeographic disjunction separating eastern and Beringian lineages, which we show to be the result of simultaneous divergence. Genetic diversity is similar within each haplogroup for each species, and there is no support for a post-Pleistocene population expansion in eastern lineages relative to those from Beringia. Bayesian skyline plots for four of the five species do not support Pleistocene population contraction. Brown Lemmings show evidence of late Quaternary demographic expansion without subsequent population decline. The Wrangell-St. Elias region of eastern Alaska appears to be an important zone of recent secondary contact for nearctic alpine mammals. Despite differences in natural history and ecology, similar phylogeographic histories are supported for all species, suggesting that these, and likely other, alpine- and arctic-adapted taxa are already experiencing population and/or range declines that are likely to synergistically accelerate in the face of rapid climate change. Climate change may therefore be acting as a double-edged sword that erodes genetic diversity within populations but promotes divergence and the generation of

  14. Comparative Phylogeography Highlights the Double-Edged Sword of Climate Change Faced by Arctic- and Alpine-Adapted Mammals

    PubMed Central

    Lanier, Hayley C.; Gunderson, Aren M.; Weksler, Marcelo; Fedorov, Vadim B.; Olson, Link E.

    2015-01-01

    Recent studies suggest that alpine and arctic organisms may have distinctly different phylogeographic histories from temperate or tropical taxa, with recent range contraction into interglacial refugia as opposed to post-glacial expansion out of refugia. We use a combination of phylogeographic inference, demographic reconstructions, and hierarchical Approximate Bayesian Computation to test for phylodemographic concordance among five species of alpine-adapted small mammals in eastern Beringia. These species (Collared Pikas, Hoary Marmots, Brown Lemmings, Arctic Ground Squirrels, and Singing Voles) vary in specificity to alpine and boreal-tundra habitat but share commonalities (e.g., cold tolerance and nunatak survival) that might result in concordant responses to Pleistocene glaciations. All five species contain a similar phylogeographic disjunction separating eastern and Beringian lineages, which we show to be the result of simultaneous divergence. Genetic diversity is similar within each haplogroup for each species, and there is no support for a post-Pleistocene population expansion in eastern lineages relative to those from Beringia. Bayesian skyline plots for four of the five species do not support Pleistocene population contraction. Brown Lemmings show evidence of late Quaternary demographic expansion without subsequent population decline. The Wrangell-St. Elias region of eastern Alaska appears to be an important zone of recent secondary contact for nearctic alpine mammals. Despite differences in natural history and ecology, similar phylogeographic histories are supported for all species, suggesting that these, and likely other, alpine- and arctic-adapted taxa are already experiencing population and/or range declines that are likely to synergistically accelerate in the face of rapid climate change. Climate change may therefore be acting as a double-edged sword that erodes genetic diversity within populations but promotes divergence and the generation of

  15. Comparative phylogeography highlights the double-edged sword of climate change faced by arctic- and alpine-adapted mammals.

    PubMed

    Lanier, Hayley C; Gunderson, Aren M; Weksler, Marcelo; Fedorov, Vadim B; Olson, Link E

    2015-01-01

    Recent studies suggest that alpine and arctic organisms may have distinctly different phylogeographic histories from temperate or tropical taxa, with recent range contraction into interglacial refugia as opposed to post-glacial expansion out of refugia. We use a combination of phylogeographic inference, demographic reconstructions, and hierarchical Approximate Bayesian Computation to test for phylodemographic concordance among five species of alpine-adapted small mammals in eastern Beringia. These species (Collared Pikas, Hoary Marmots, Brown Lemmings, Arctic Ground Squirrels, and Singing Voles) vary in specificity to alpine and boreal-tundra habitat but share commonalities (e.g., cold tolerance and nunatak survival) that might result in concordant responses to Pleistocene glaciations. All five species contain a similar phylogeographic disjunction separating eastern and Beringian lineages, which we show to be the result of simultaneous divergence. Genetic diversity is similar within each haplogroup for each species, and there is no support for a post-Pleistocene population expansion in eastern lineages relative to those from Beringia. Bayesian skyline plots for four of the five species do not support Pleistocene population contraction. Brown Lemmings show evidence of late Quaternary demographic expansion without subsequent population decline. The Wrangell-St. Elias region of eastern Alaska appears to be an important zone of recent secondary contact for nearctic alpine mammals. Despite differences in natural history and ecology, similar phylogeographic histories are supported for all species, suggesting that these, and likely other, alpine- and arctic-adapted taxa are already experiencing population and/or range declines that are likely to synergistically accelerate in the face of rapid climate change. Climate change may therefore be acting as a double-edged sword that erodes genetic diversity within populations but promotes divergence and the generation of

  16. On assessment of the relationship between changes of sea ice extent and climate in the Arctic

    NASA Astrophysics Data System (ADS)

    Alekseev, Genrikh; Glok, Natalia; Smirnov, Alexander

    2016-04-01

    An increase of surface air temperature (SAT) in the marine Arctic (a part of the Arctic covered with sea ice in winter) shows a good relationship with reduction of sea ice extent (SIE) in summer. For instance, a strong correlation (a coefficient equal to -0.93) was found between the summer SAT in the marine Arctic and satellite-derived 1980-2014 September sea ice index (the average of sea ice extent in the Arctic since 1978, in millions of sq. km). Based on this finding anomalies of Arctic September SIE were reconstructed from the beginning of twentieth century using linear regression relationship. This reconstructed SIE shows a substantial decrease in the 1930-40s with a minimum occurring in 1936, which, however, is only a half of the decline in 2012. An impact of the inflow of warm and salty Atlantic water on winter SIE was evaluated as an example for the Barents Sea. This evaluation reveals a coherent spatial pattern of the Atlantic water spreading, presented by surface salinity distribution, and the position of sea-ice edge, and significant correlation between the inflow of the Atlantic water and maximal SIE.

  17. Endocrine-Disrupting Chemicals and Climate Change: A Worst-Case Combination for Arctic Marine Mammals and Seabirds?

    PubMed Central

    Jenssen, Bjørn Munro

    2006-01-01

    The effects of global change on biodiversity and ecosystem functioning encompass multiple complex dynamic processes. Climate change and exposure to endocrine-disrupting chemicals (EDCs) are currently regarded as two of the most serious anthropogenic threats to biodiversity and ecosystems. We should, therefore, be especially concerned about the possible effects of EDCs on the ability of Arctic marine mammals and seabirds to adapt to environmental alterations caused by climate change. Relationships between various organochlorine compounds, necessary such as polychlorinated biphenyls, dichlorophenyldichloroethylene, hexachlorobenzene, and oxychlordane, and hormones in Arctic mammals and seabirds imply that these chemicals pose a threat to endocrine systems of these animals. The most pronounced relationships have been reported with the thyroid hormone system, but effects are also seen in sex steroid hormones and cortisol. Even though behavioral and morphological effects of persistent organic pollutants are consistent with endocrine disruption, no direct evidence exists for such relationships. Because different endocrine systems are important for enabling animals to respond adequately to environmental stress, EDCs may interfere with adaptations to increased stress situations. Such interacting effects are likely related to adaptive responses regulated by the thyroid, sex steroid, and glucocorticosteroid systems. PMID:16818250

  18. Endocrine-disrupting chemicals and climate change: A worst-case combination for arctic marine mammals and seabirds?

    PubMed

    Jenssen, Bjørn Munro

    2006-04-01

    The effects of global change on biodiversity and ecosystem functioning encompass multiple complex dynamic processes. Climate change and exposure to endocrine-disrupting chemicals (EDCs) are currently regarded as two of the most serious anthropogenic threats to biodiversity and ecosystems. We should, therefore, be especially concerned about the possible effects of EDCs on the ability of Arctic marine mammals and seabirds to adapt to environmental alterations caused by climate change. Relationships between various organochlorine compounds, necessary such as polychlorinated biphenyls, dichlorophenyldichloroethylene, hexachlorobenzene, and oxychlordane, and hormones in Arctic mammals and seabirds imply that these chemicals pose a threat to endocrine systems of these animals. The most pronounced relationships have been reported with the thyroid hormone system, but effects are also seen in sex steroid hormones and cortisol. Even though behavioral and morphological effects of persistent organic pollutants are consistent with endocrine disruption, no direct evidence exists for such relationships. Because different endocrine systems are important for enabling animals to respond adequately to environmental stress, EDCs may interfere with adaptations to increased stress situations. Such interacting effects are likely related to adaptive responses regulated by the thyroid, sex steroid, and glucocorticosteroid systems.

  19. Climate Change and Thawing Permafrost in Two Iñupiaq Communities of Alaska's Arctic: Observations, Implications, and Resilience

    NASA Astrophysics Data System (ADS)

    Woodward, A.; Kofinas, G.

    2013-12-01

    For thousands of years the Iñupiat of northern Alaska have relied on ecosystems underlain by permafrost for material and cultural resources. As permafrost thaws across the Arctic, these social-ecological systems are changing rapidly. Community-based research and extensive local knowledge of Iñupiaq villagers offer unique and valuable contributions to understanding permafrost change and its implications for humans. We partnered with two Iñupiaq communities in Alaska's Arctic to investigate current and potential effects of thawing permafrost on social-ecological systems. Anaktuvuk Pass is situated on thaw-stable consolidated gravel in the Brooks Range, while Selawik rests on ice-rich permafrost in Beringia lowland tundra. Using the transdisciplinary approach of resilience theory and mixed geophysical and ethnographic methods, we measured active layer thaw depths and documented local knowledge about climate and permafrost change. Thaw depths were greater overall in Selawik. Residents of both communities reported a variety of changes in surface features, hydrology, weather, flora, and fauna that they attribute to thawing permafrost and / or climate change. Overall, Selawik residents described more numerous and extreme examples of such changes, expressed higher degrees of certainty that change is occurring, and anticipated more significant and negative implications for their way of life than did residents of Anaktuvuk Pass. Of the two villages, Selawik faces greater and more immediate challenges to the resilience of its social-ecological system as permafrost thaws.

  20. On the effects of constraining atmospheric circulation in a coupled atmosphere-ocean Arctic regional climate model

    NASA Astrophysics Data System (ADS)

    Berg, Peter; Döscher, Ralf; Koenigk, Torben

    2016-06-01

    Impacts of spectral nudging on simulations of Arctic climate in coupled simulations have been investigated in a set of simulations with a regional climate model (RCM). The dominantly circumpolar circulation in the Arctic lead to weak constraints on the lateral boundary conditions (LBCs) for the RCM, which causes large internal variability with strong deviations from the driving model. When coupled to an ocean and sea ice model, this results in sea ice concentrations that deviate from the observed spatial distribution. Here, a method of spectral nudging is applied to the atmospheric model RCA4 in order to assess the potentials for improving results for the sea ice concentrations when coupled to the RCO ocean-sea ice model. The spectral nudging applied to reanalysis driven simulations significantly improves the generated sea ice regarding its temporal evolution, extent and inter-annual trends, compared to simulations with standard LBC nesting. The method is furthermore evaluated with driving data from two CMIP5 GCM simulations for current and future conditions. The GCM biases are similar to the RCA4 biases with ERA-Interim, however, the spectral nudging still improves the surface winds enough to show improvements in the simulated sea ice. For both GCM downscalings, the spectrally nudged version retains a larger sea ice extent in September further into the future. Depending on the sea ice formulation in the GCM, the temporal evolution of the regional sea ice model can deviate strongly.

  1. Climate variability in the Siberian Arctic over the past millennium: midge-based inferences from lakes of the Sakha (Yakutia) Republic

    NASA Astrophysics Data System (ADS)

    Ilyashuk, Boris; van Hardenbroek, Maarten; Heiri, Oliver; Lotter, André F.

    2010-05-01

    Our study aims at reconstructing climatic variability and climate impact on lakes over the past millennium in the Siberian Arctic, the coldest region of Eurasia. Here we present climate inferences based on the stratigraphic analysis of fossil chironomid assemblages (non-biting midges) from sediments of three arctic lakes (one millennial and two centennial records) located in the northeastern part of the Sakha (Yakutia) Republic (70°N, 147°E). Changes in chironomid assemblages in the millennial record clearly show the most significant climatic events of the past millennium, namely the Medieval Warm Period, the Little Ice Age, and the recent warming of 20th century. During relatively warm phases chironomid assemblages are dominated by the warm-adapted Chironomus anthracinus-type, whereas cooler phases are characterized by taxa such as Micropsectra insignilobus-type and Sergentia coracina-type. The pattern of chironomid-inferred climate changes in this Asian part of the Arctic, as represented by chironomid sample scores in a Principal Components Analysis (PCA), is comparable to that recorded in a tree-ring based summer air temperature reconstruction from this region, and broadly similar to those found in other high-resolution millennial records across the European and Western Hemisphere Arctic (e.g., Svalbard, Greenland, the Canadian Arctic). The recent warming of the 20th century is also well visible in both centennial chironomid records. PCA scores for the chironomid samples of recent decades fall outside the range of variability during the first half of the 20th century but are within the range of the millennial-scale variability. Our reconstructions suggest that the recent warming is unusual in the context of the variability of the past centuries but is, within the millennial climate variability, comparable to the Medieval Climate Anomaly.

  2. Is the Climate of Bering Sea Warming and Affecting the Ecosystem?

    NASA Astrophysics Data System (ADS)

    Overland, James E.; Stabeno, Phyllis J.

    2004-08-01

    Observations from the Bering Sea are good indicators of decadal shifts in climate, as the Bering is a transition region between the cold, dry Arctic air mass to the north, and the moist, relatively warm maritime air mass to the south. The Bering Sea is also a transition region between Arctic and sub-Arctic ecosystems; this boundary can be loosely identified with the extent of winter sea-ice cover. Like a similar transition zone in the eastern North Atlantic, the Bering Sea is experiencing a northward biogeographical shift in response to changing temperature and atmospheric forcing. If this shift continues over the next decade, it will have major impacts on commercial and subsistence harvests as Arctic species are displaced by sub-Arctic species. The stakes are enormous, as this rich and diverse ecosystem currently provides 47% of the U.S. fishery production by weight, and is home to 80% of the U.S. sea bird population, 95% of northern fur seals, and major populations of Steller sea lions, walrus, and whales.

  3. The Arctic CH4 sink and its implications for the permafrost carbon feedbacks to the global climate system

    NASA Astrophysics Data System (ADS)

    Juncher Jørgensen, Christian; Christiansen, Jesper; Mariager, Tue; Hugelius, Gustaf

    2016-04-01

    Using atmospheric methane (CH4), certain soil microbes are able to sustain their metabolism, and in turn remove this powerful greenhouse gas from the atmosphere. While the process of CH4 oxidation is a common feature in most natural and unmanaged ecosystems in temperate and boreal ecosystems, the interactions between soil physical properties and abiotic process drivers, net landscape exchange and spatial patterns across Arctic drylands remains highly uncertain. Recent works show consistent CH4 comsumption in upland dry tundra soils in Arctic and High Arctic environments (Christiansen et al., 2014, Biogeochemistry 122; Jørgensen et al., 2015, Nature Geoscience 8; Lau et al., 2015, The ISME Journal 9). In these dominantly dry or barren soil ecosystems, CH4 consumption has been observed to significantly exceed the amounts of CH4 emitted from adjacent wetlands. These observations point to a potentially important but largely overlooked component of the global soil-climate system interaction and a counterperspective to the conceptual understanding of the Arctic being a only a source of CH4. However, due to our limited knowledge of spatiotemporal occurrence of CH4 consumption across a wider range of the Arctic landscape we are left with substantial uncertainites and an overall unconstrained range estimate of this terrestrial CH4 sink and its potential effects on permafrost carbon feedback to the atmospheric CH4 concentration. To address this important knowledge gap and identify the most relevant spatial scaling parameters, we studied in situ CH4 net exchange across a large landscape transect on West Greenland. The transect representated soils formed from the dominant geological parent materials of dry upland tundra soils found in the ice-free land areas of Western Greenland, i.e. 1) granitic/gneissic parent material, 2) basaltic parent material and 3) sedimentary deposits. Results show that the dynamic variations in soil physical properties and soil hydrology exerts an

  4. The Blazing Arctic? Linkages of Tundra Fire Regimes to Climatic Change and Implications for Carbon Cycling (Invited)

    NASA Astrophysics Data System (ADS)

    Hu, F.; Higuera, P. E.; Walsh, J. E.; Chapman, W.; Duffy, P.; Brubaker, L.; Chipman, M. L.

    2010-12-01

    Among the major challenges in anticipating Arctic changes are “surprises” stemming from changes in system components that have remained relatively stable in the historic record. Tundra burning is potentially one such component. We conducted charcoal analysis of lake sediments from several tundra regions to evaluate the uniqueness of recent tundra fires, and examined potential climatic controls of Alaskan tundra fires from CE 1950-2009. A striking example of tundra burning is the 2007 Anaktuvuk River (AR) Fire, an unusually large fire in the tundra of the Alaskan Arctic. This fire doubled the area burned north of 68 oN in that region since record keeping began in 1950. Analysis of lake-sediment cores reveals peak values of charcoal accumulation corresponding to the AR Fire in 2007, with no evidence of other fire events in that area throughout the past five millennia. However, a number of tundra fires, including one as large as the AR Fire, have occurred over the past 60 years in western Alaska, where average summer temperatures are substantially higher than the AR area. In addition, charcoal analysis of lake sediments from interior and northwestern Alaska suggests that during certain periods of the Late Glacial and Holocene, tundra fire frequencies were as high as those of the modern boreal forests. These records along with the AR and historic fires demonstrate that tundra ecosystems support diverse fire regimes and can burn frequently. Reconciling these dramatic differences in tundra fire regimes requires knowledge of climate-fire relationships. Atmospheric reanalysis suggests that the AR Fire was favored by exceptionally warm/dry weather conditions in summer and early autumn. Boosted regression tree modeling shows that warm, dry summer conditions can explain up to 95% of the inter-annual variability in tundra area burned throughout Alaska over the past 60 years and that the response of tundra burning to climatic warming is non-linear. Additionally, tundra area

  5. The Response to Climate Change of the Cold Arctic Halocline, Shielding Sea Ice from the Warm Deep Water Below

    NASA Astrophysics Data System (ADS)

    Reddy, T. E.; Palmer, M. A.; Arrigo, K. R.; Holland, D. M.

    2011-12-01

    The cold halocline layer of the Arctic Ocean shields the ice cover from an upward flux of heat from the underlying warm Atlantic water. Since this cold layer insulates the surface layer and ice from the heat below, changes in heat content and depth of this layer may have a profound effect on the surface energy and mass balance of sea ice in this region. In contrast to the halocline in the Eastern Arctic basins, the halocline in the Canadian basin is more complex with waters coming from both the Atlantic and Pacific. In this research study, we explored the physical environment of two Arctic shelf regions: the Alaskan Shelf and the Mackenzie Shelf. Here, we compare results from the Mackenzie Alaskan Shelf System (MASS) model (with which we run coupled ocean-ice-atmosphere simulations) to field data from two sets of cruises to the area: the Canadian Arctic Shelf Exchange Study (CASES) to the Mackenzie Shelf and Beaufort Sea and the Shelf-Basin Interaction (SBI) study to the Alaskan Shelf and Chukchi and Beaufort Seas. We investigate the physical connections of the shelves, slopes, and deep basins using results from our model. Heat content in the Atlantic waters below the halocline is large enough to begin melting ice from below if this barrier is weakened or perturbed. One key goal of this study is exploring how this barrier reacts to potential future changes, including the singular and combined affects of increased air temperature and increased wind speed, as well as decreased ice cover. While the perturbations had little effect on the Alaskan Shelf, results of note on the Mackenzie Shelf include a thickening of the halocline in the spring in the increased wind run and a diminishment of the halocline in the fall in both runs in which temperature increased (increased temperature only and increased winds and temperature together). The surface waters were notably warmer in both of these increased temperature runs, with tremendous implications for sea ice cover.

  6. On the impact of arctic wetlands on the climate system: Model sensitivity simulations with MIROC5 AGCM and the simplified wetland scheme

    NASA Astrophysics Data System (ADS)

    Nitta, T.; Yoshimura, K.; Abe-Ouchi, A.

    2015-12-01

    There are many wetlands and lakes in the Arctic. They influence the surface water and energy budget, surface hydrology, and hence climate. In the present study, we examine a simplified wetland scheme that stores part of snowmelt with MATSIRO land surface model in a climate model, MIROC5. We conduct AGCM experiments using MIROC5 with climatological monthly SST and sea ice boundary conditions from 1979 to 1996 with and without the simplified wetland scheme. First, we compare simulated climatology of soil moisture in JJA with satellite based observation data. The result shows that eastern Eurasia has wet bias, and western Eurasia and North America except Alaska have dry bias; this might be caused by precipitation biases. The simulated soil moisture with the wetland scheme increases in high latitudes, about 0.2 for the most affected regions. Then, we evaluate simulated precipitation and surface air temperature using JRA55 reanalysis dataset. In the experiment without the wetland scheme, warm bias exists in most of the land area. By introducing the wetland scheme, the warm bias decreases because the latent heat flux increases and the sensible heat flux decreases. Simulated precipitation without the wetland scheme shows similar bias in soil moisture. It decreases in western Eurasia with the wetland scheme. Further, we evaluate the land-atmosphere coupling strength using rank correlation coefficient of soil moisture and lifting condensation level. The result shows that the effects of wetlands reduce the coupling strength.

  7. Floodplains, permafrost, cottonwood trees, and peat: What happened the last time climate warmed suddenly in arctic Alaska?

    NASA Astrophysics Data System (ADS)

    Mann, Daniel H.; Groves, Pamela; Reanier, Richard E.; Kunz, Michael L.

    2010-12-01

    We use the stratigraphy of floodplains on Alaska's North Slope to describe how tundra watersheds responded to climate changes over the last 15,000 calibrated years BP (15 cal ka BP). Two episodes of extremely rapid floodplain alluviation occurred during the Pleistocene-Holocene transition, one between 14 and 12.8 cal ka BP and the other between 11.5 and 9.5 cal ka BP. These aggradation episodes coincided with periods of warming in summer when cottonwood ( Populus balsamifera L.) expanded its range, peatlands became established, and widespread thermokarst occurred. The two aggradation episodes were separated by a period of floodplain incision during the Younger Dryas under cooler and possibly drier conditions. At times of increasing summer warmth, melting permafrost and enhanced precipitation probably triggered widespread mass wasting on hillslopes that overwhelmed the capacity of streams to transport sediment downstream, and rapid floodplain aggradation resulted. After peatlands became widespread in the early Holocene, rivers slowly incised their valley fills. Because major pulses of sediment input were limited to times of rapid thaw and increasing moisture, many floodplains on the North Slope have been effectively decoupled from upstream hillslopes for much of the past 15,000 years. Our findings: (a) confirm the sensitivity of arctic watersheds to rapid warming in summer, (b) emphasize the importance of hillslope mass wasting in landscape-scale responses to climate change, and (c) suggest that the presence of peatland on this arctic landscape today has raised its geomorphic response threshold to climate warming compared to what it was 14,000 years ago.

  8. Heating up Climate Literacy Education: Understanding Teachers' and Students' Motivational and Affective Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Sinatra, G. M.

    2011-12-01

    Changing students' ideas about controversial scientific issues, such as human-induced climate change, presents unique challenges for educators (Lombardi & Sinatra, 2010; Sinatra & Mason, 2008). First, climate science is complex and requires "systems thinking," or the ability to think and reason abstractly about emergent systems (Goldstone & Sakamoto, 2003). Appreciating the intricacies of complex systems and emergent processes has proven challenging for students (Chi, 2005). In addition to these challenges, there are specific misconceptions that may lead thinking astray on the issue of global climate change, such as the distinction between weather and climate (Lombardi & Sinatra, 2010). As an example, when students are asked about their views on climate change, they often recall individual storm events or very cold periods and use their personal experiences and recollections of short-term temperature fluctuations to assess whether the planet is warming. Beyond the conceptual difficulties, controversial topics offer another layer of challenge. Such topics are often embedded in complex socio-cultural and political contexts, have a high degree of uncertainty, and may be perceived by individuals as in conflict with their personal or religious beliefs (Levinson, 2006, Sinatra, Kardash, Taasoobshirazi, & Lombardi, 2011). Individuals are often committed to their own views on socio-scientific issues and this commitment may serve as a motivation to actively resist new ideas (Dole & Sinatra, 1998). Individuals may also have strong emotions associated with their misconceptions (Broughton, Pekrun, & Sinatra, 2011). Negative emotions, misconceptions, and resistance do not make a productive combination for learning. Further, teachers who find human-induced climate change implausible have been shown to hold negative emotions about having to teach about climate change (Lombardi & Sinatra, in preparation), which could affect how they present the topic to students. In this

  9. Improvement in Simulation of Eurasian Winter Climate Variability with a Realistic Arctic Sea Ice Condition in an Atmospheric GCM

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong

    2012-01-01

    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988-2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to approx. 0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated.

  10. Near-Surface Meteorology During the Arctic Summer Cloud Ocean Study (ASCOS): Evaluation of Reanalyses and Global Climate Models.

    NASA Technical Reports Server (NTRS)

    De Boer, G.; Shupe, M.D.; Caldwell, P.M.; Bauer, Susanne E.; Persson, O.; Boyle, J.S.; Kelley, M.; Klein, S.A.; Tjernstrom, M.

    2014-01-01

    Atmospheric measurements from the Arctic Summer Cloud Ocean Study (ASCOS) are used to evaluate the performance of three atmospheric reanalyses (European Centre for Medium Range Weather Forecasting (ECMWF)- Interim reanalysis, National Center for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) reanalysis, and NCEP-DOE (Department of Energy) reanalysis) and two global climate models (CAM5 (Community Atmosphere Model 5) and NASA GISS (Goddard Institute for Space Studies) ModelE2) in simulation of the high Arctic environment. Quantities analyzed include near surface meteorological variables such as temperature, pressure, humidity and winds, surface-based estimates of cloud and precipitation properties, the surface energy budget, and lower atmospheric temperature structure. In general, the models perform well in simulating large-scale dynamical quantities such as pressure and winds. Near-surface temperature and lower atmospheric stability, along with surface energy budget terms, are not as well represented due largely to errors in simulation of cloud occurrence, phase and altitude. Additionally, a development version of CAM5, which features improved handling of cloud macro physics, has demonstrated to improve simulation of cloud properties and liquid water amount. The ASCOS period additionally provides an excellent example of the benefits gained by evaluating individual budget terms, rather than simply evaluating the net end product, with large compensating errors between individual surface energy budget terms that result in the best net energy budget.

  11. Attribution of the Recent Winter Arctic warming and Sea-Ice Decline with Observation-based Data and Coupled Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Lee, S.; Park, D. S. R.; Feldstein, S. B.; Franzke, C. L. E.

    2015-12-01

    Wintertime Arctic sea ice extent has been declining since the late 20th century, particularly over the Atlantic sector that encompasses the Barents-Kara Seas and Baffin Bay. This sea-ice decline is attributable to various Arctic environmental changes, such as enhanced downward infrared radiation (IR), preseason sea-ice reduction, enhanced inflow of warm Atlantic water into the Arctic Ocean, and sea-ice export. However, their relative contributions are uncertain. Utilizing ERA-Interim reanalysis and satellite-based data, it is shown here that a positive trend of downward IR accounts for nearly half of the sea-ice concentration (SIC) decline during the 1979-2011 winter over the Atlantic sector. Furthermore, we find that the Arctic downward IR increase is driven by horizontal atmospheric water flux and warm air advection into the Arctic, and not by evaporation and surface heat flux from the Arctic Ocean. These horizontal heat fluxes are linked to La-Nina-like tropical convection. In all CMIP5 climate models that are analyzed here, high pattern correlations are found between the surface air temperature trend and downward IR trend. However, there are two groups of CMIP5 models: one with small correlations between the Arctic surface air temperature trend and the surface heat flux trend (Group 1), and the other with large correlations (Group 2) between the same two variables. There is evidence that the Group 1 models are consistent with the aforementioned observation-based finding that the Arctic warming is closely related to large-scale circulation changes. In contrast, the Group 2 models are at odds with this observation in that their Arctic warming is more closely tied to surface heat fluxes than with the large-scale circulation change. Interestingly, while Group 1 models have a warm or weak bias, Group 2 models have large cold biases in the Arctic. This difference suggests that deficiencies that cause the cold bias of the mean state may contribute to the surface heat

  12. Microbial adaptation to temperature increases the vulnerability of carbon stocks in Arctic and Boreal soils to climate change

    NASA Astrophysics Data System (ADS)

    Karhu, Kristiina; Auffret, Marc; Dungait, Jennifer; Fraser, Fiona; Hopkins, David; Prosser, James; Singh, Brajesh; Subke, Jens-Arne; Wookey, Philip; Ågren, Göran; Hartley, Iain

    2013-04-01

    There are concerns that global warming may stimulate decomposition rates in soils, leading to a substantial release of CO2 to the atmosphere, and thus accelerating rates of 21st century climate change. However, there is growing recognition that adaptation of soil microbial communities to changes in their prevailing thermal regime may alter the potential rate of carbon release. Critically, recent studies have produced conflicting results in terms of whether adaptation of soil microbial communities to temperature reduces (thermal acclimation) or enhances (enhancement) the direct effects of temperature changes on decomposition rates. This lack of understanding adds considerably to uncertainty in predictions of the magnitude and direction of carbon-cycle feedbacks to climate change. Investigating the impacts of adaptation to temperature is currently only possible in controlled laboratory experiments, in which fluctuations in substrate availability can be minimised. We developed a approach which involves incubating soils at 3°C above mean annual temperature (MAT), until respiration rates stabilise, then cooling by 6°C (MAT -3 °C) and determining the potential for respiration rates to recover during extended exposure to lower temperatures. Our approach avoids the issues associated with substrate depletion in warming studies, but still tests whether adaptation enhances or reduces the direct impact of temperature on microbial activity. In contrast to many other studies, our initial research clearly demonstrated enhancement in Arctic soils. Here we present results from a new project which has extended the approach to soils sampled from contrasting Arctic, Boreal, temperate, Mediterranean and tropical ecosystems. This study represents one of the most extensive investigations undertaken into the potential for thermal acclimation, and/or enhancement, under contrasting environmental conditions. We also attempted to disentangle the mechanisms underlying the observed responses

  13. Factors Affecting the Sensitivity of Permafrost to Climate Change

    NASA Astrophysics Data System (ADS)

    Jorgenson, T.; Romanovsky, V.; Harden, J.; Shur, Y.; Hinzman, L.; Marchenko, S.; Bolton, R.; O'Donnell, J.

    2009-05-01

    Permafrost aggradation and degradation are affected by numerous geomorphological and ecological properties of the landscape that confound our ability to accurately predict the response of permafrost to climate change. Permafrost can persist at mean annual air temperatures (MAAT) of +2 °C and can degrade at MAAT of -15 °C with the help of surface water. Permafrost is decoupled from the atmosphere by the active layer, thus, its thermal regime is mediated by numerous factors such as topography, soil texture, organic-matter accumulation, vegetation, snow, surface water, groundwater movement, and disturbance. Topography affects the amount of solar radiation to the soil surface, causing permafrost in the discontinuous zone to occur generally on north-facing slopes that receive less direct radiation and on flat, low- lying areas where vegetation and organic soils have a greater insulating effect and where air temperatures tend to be colder during winter inversions. Soil texture affects soil moisture and thermal properties. For instance, gravelly soils tend to be well-drained with little difference between thermal conductivities when frozen or thawed. In contrast, surface organic soils, as well as clayey and silty soils, in lowland areas tend to be poorly drained and have much higher thermal conductivities when frozen in winter than unfrozen in summer. In well- drained upland sites, however, organic soils typically are well below saturation. Differences in frozen and unfrozen thermal conductivities lead to more rapid heat loss in winter, depending on snow, and slower heat penetration in summer. Vegetation has important effects through interception of solar radiation, growth of mosses, accumulation of organic matter, and interception of snow by trees and shrubs. Snow protects soil from cooling in winter. Thus, the seasonality (e.g., timing of snowfall in early winter) and depth of snow are very important. Surface water provides an important positive feedback that enhances

  14. Radiocarbon age-offsets in an arctic lake reveal the long-term response of permafrost carbon to climate change

    USGS Publications Warehouse

    Gaglioti, Benjamin V.; Mann, Daniel H.; Jones, Benjamin M.; Pohlman, John W.; Kunz, Michael L.; Wooller, Matthew J.

    2014-01-01

    Continued warming of the Arctic may cause permafrost to thaw and speed the decomposition of large stores of soil organic carbon (OC), thereby accentuating global warming. However, it is unclear if recent warming has raised the current rates of permafrost OC release to anomalous levels or to what extent soil carbon release is sensitive to climate forcing. Here we use a time series of radiocarbon age-offsets (14C) between the bulk lake sediment and plant macrofossils deposited in an arctic lake as an archive for soil and permafrost OC release over the last 14,500 years. The lake traps and archives OC imported from the watershed and allows us to test whether prior warming events stimulated old carbon release and heightened age-offsets. Today, the age-offset (2 ka; thousand of calibrated years before A.D. 1950) and the depositional rate of ancient OC from the watershed into the lake are relatively low and similar to those during the Younger Dryas cold interval (occurring 12.9–11.7 ka). In contrast, age-offsets were higher (3.0–5.0 ka) when summer air temperatures were warmer than present during the Holocene Thermal Maximum (11.7–9.0 ka) and Bølling-Allerød periods (14.5–12.9 ka). During these warm times, permafrost thaw contributed to ancient OC depositional rates that were ~10 times greater than today. Although permafrost OC was vulnerable to climate warming in the past, we suggest surface soil organic horizons and peat are presently limiting summer thaw and carbon release. As a result, the temperature threshold to trigger widespread permafrost OC release is higher than during previous warming events.

  15. Connecting process to high resolution paleorecords: long term investigations of linked Arctic climate-hydrology-lacustrine sedimentary processes

    NASA Astrophysics Data System (ADS)

    Lamoureux, S. F.; Normandeau, A.

    2015-12-01

    High resolution lacustrine sedimentary sequences hold substantial potential for paleoenvironmental analyses, particularly in regions where few alternatives are available. Increased attention to quantifying processes that generate sedimentary facies has yielded increasingly detailed environmental interpretations but these efforts have been limited by available field data. The Cape Bounty Arctic Watershed Observatory (CBAWO) was initiated in 2003 to develop a long term site to evaluate the controls over sediment transport and the formation of clastic sedimentary records. This program in the Canadian Arctic has supported 13 years of research in paired watersheds and lakes, both of which contain clastic varves. Results from 2003-14 demonstrate how multiple climatic factors delivery sediment in a complex manner. This comparatively simple hydroclimatic system is dominated by runoff and sediment transport from spring snowmelt, with clear associations between catchment snow water equivalence (or total runoff) and sediment yield, with discharge limited by snow exhaustion as the season progresses. Major rainfall can constitute a dominant contribution to seasonal sediment yield, but antecedent conditions can significantly reduce runoff markedly. Hence, these results indicate two primary competing hydroclimatic factors that control catchment sediment yield, both with independent climatic and hydrological factors. Additionally, the impact of landscape disturbance on downstream sediment yield has been evaluated following a major episode of permafrost thaw in 2007. Results show that localized slope disturbances resulted in enhanced erosion but downstream fluvial storage reduced the magnitude of transport. Sediment from disturbances will be gradually released and may generate decadal-scale sediment delivery changes in the downstream record. Collectively, this research indicates multiple controls over the formation of clastic varves. Advances in high resolution sedimentary

  16. Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The Arctic Ocean is the smallest of the Earth's four major oceans, covering 14x10(exp 6) sq km located entirely within the Arctic Circle (66 deg 33 min N). It is a major player in the climate of the north polar region and has a variable sea ice cover that tends to increase its sensitivity to climate change. Its temperature, salinity, and ice cover have all undergone changes in the past several decades, although it is uncertain whether these predominantly reflect long-term trends, oscillations within the system, or natural variability. Major changes include a warming and expansion of the Atlantic layer, at depths of 200-900 m, a warming of the upper ocean in the Beaufort Sea, a considerable thinning (perhaps as high as 40%) of the sea ice cover, a lesser and uneven retreat of the ice cover (averaging approximately 3% per decade), and a mixed pattern of salinity increases and decreases.

  17. Arctic hydroclimatology

    NASA Astrophysics Data System (ADS)

    Cherry, Jessica Ellen

    Arctic air temperature, precipitation, ground temperature, river runoff, clouds, and radiation are all changing quickly in a warming climate. Interactions and feedbacks between these features are not well understood. In particular, the relative role of local climate processes and large-scale ocean-atmosphere dynamics in driving observed Arctic changes is difficult to ascertain because of the sparsity of observations, inaccuracy of those that do exist, biases in global circulation models and analyses, and fundamental physics of the Arctic region. Four studies of Arctic hydroclimatology herein attempt to overcome these challenges. The first study, analysis of the Lena river basin hydroclimatology, shows canonical acceleration of the hydrologic cycle and amplification of global warming. Winter and spring are warming and increased frozen precipitation is contributing to permafrost melting by increasing soil insulation. Increasing runoff and soil moisture is leading to increasing evapotranspiration and changes in clouds. Changes in clouds are cooling summer days but warming summer nights, melting additional permafrost. Model simulations suggests that a deepening active layer will lead to an increasingly wet Arctic. The second two studies describe the development of the Pan-Arctic Snowfall Reconstruction (PASR). This product addresses the problem of cold season precipitation gauge biases for 1940-1999. The NASA Interannual-to-Seasonal Prediction Project Catchment-based Land Surface Model is used to reconstruct solid precipitation from observed snow depth and surface air temperatures. Error estimation is done via controlled simulations at Reynolds Creek Experimental Watershed, in Idaho. The method is then applied to stations in the pan-Arctic hydrological catchment. Comparison with existing products suggests that the PASR is a better estimate of actual snowfall for hydroclimatological studies. The final chapter is a case study on hydroclimatological variability driven by

  18. Floodplain Responses to Rapid Climate Changes at the End of the Last Ice Age in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Mann, D. H.; Groves, P.; Kunz, M.

    2010-12-01

    We use the stratigraphy of flood plains on Alaska’s North Slope to describe how tundra watersheds responded to climate changes in the past. Our most detailed records cover the last 15,000 calibrated years BP (15 cal ka BP), and less complete records extend back to ca. 50 cal ka BP. Two episodes of rapid floodplain aggradation (4-65 mm yr-1) occurred during the Pleistocene-Holocene transition, one between 13.6 and 12.8 cal ka BP and the other between 11.2 and 10 cal ka BP. These aggradation episodes coincided with rapid climatic warming in the region when cottonwood (Populus balsamifera L.) expanded its range, peatlands became established, and melting permafrost triggered widespread thermokarst. At these times of rapid warming, mass movements caused by thermokarst probably overwhelmed the capacity of streams to transport sediment downstream, and rapid aggradation resulted. The two aggradation episodes were separated by a period of floodplain incision during Younger Dryas under cooler and possibly drier conditions. After peatlands became widespread during the early Holocene, rivers slowly incised their valley fills. Because major pulses of sediment input were limited to times of rapid thaw, many floodplains on the North Slope have been effectively decoupled from nearby hillslopes for much of the last 15 cal ka BP. Our findings confirm the sensitivity of arctic watersheds to rapid climate changes, emphasize the importance of thermokarst in the responses of tundra streams to warming climate, and suggest that the presence of widespread peat has raised the geomorphic response threshold of these fluvial systems to ongoing climate warming.

  19. Direct and indirect climatic drivers of biotic interactions: ice-cover and carbon runoff shaping Arctic char Salvelinus alpinus and brown trout Salmo trutta competitive asymmetries.

    PubMed

    Ulvan, Eva M; Finstad, Anders G; Ugedal, Ola; Berg, Ole Kristian

    2012-01-01

    One of the major challenges in ecological climate change impact science is to untangle the climatic effects on biological interactions and indirect cascading effects through different ecosystems. Here, we test for direct and indirect climatic drivers on competitive impact of Arctic char (Salvelinus alpinus L.) on brown trout (Salmo trutta L.) along a climate gradient in central Scandinavia, spanning from coastal to high-alpine environments. As a measure of competitive impact, trout food consumption was measured using (137)Cs tracer methodology both during the ice-covered and ice-free periods, and contrasted between lakes with or without char coexistence along the climate gradient. Variation in food consumption between lakes was best described by a linear mixed effect model including a three-way interaction between the presence/absence of Arctic char, season and Secchi depth. The latter is proxy for terrestrial dissolved organic carbon run-off, strongly governed by climatic properties of the catchment. The presence of Arctic char had a negative impact on trout food consumption. However, this effect was stronger during ice-cover and in lakes receiving high carbon load from the catchment, whereas no effect of water temperature was evident. In conclusion, the length of the ice-covered period and the export of allochthonous material from the catchment are likely major, but contrasting, climatic drivers of the competitive interaction between two freshwater lake top predators. While future climatic scenarios predict shorter ice-cover duration, they also predict increased carbon run-off. The present study therefore emphasizes the complexity of cascading ecosystem effects in future effects of climate change on freshwater ecosystems.

  20. Paleoeskimo Demographic History in the Canadian Arctic (ca. 4800-800 B.P.) and its Relationship to Mid-Late Holocene Climate Variability.

    NASA Astrophysics Data System (ADS)

    Savelle, J. M.

    2014-12-01

    Paleoeskimos were the first occupants of the central and eastern Canadian Arctic, spreading east from the Bering Strait region beginning approximately 4800 B.P., and occupied much of the Canadian Arctic through to their eventual disappearance ca. 800 B.P. Extensive regional archaeological site surveys throughout this area by the author and Arthur S. Dyke indicate that Paleoskimo populations underwent a series of population 'boom' (rapid expansion) and 'bust' (population declines and local extinctions) over the 4,000 year occupation history, including in the purported stable 'core area' of Foxe Basin. In this paper, we examine the contemporaneity of the local boom and bust cycles in a pan-Canadian Arctic context, and in turn examine the relationship of these cycles to mid-late Holocene climate variability.

  1. Modeling the Oceanic Exchanges Across the Main Arctic Gateways with Emphasis on Atlantic Water and Its Impact on Sea Ice and Climate

    NASA Astrophysics Data System (ADS)

    Maslowski, Wieslaw; Osinski, Robert; Clement Kinney, Jaclyn; Roberts, Andrew; DiMaggio, Dominic; Craig, Anthony