Science.gov

Sample records for affecting brain development

  1. Starting Smart: How Early Experiences Affect Brain Development. Second Edition.

    ERIC Educational Resources Information Center

    Hawley, Theresa

    Based on recent research, it is now believed that brain growth is highly dependent upon children's early experiences. Neurons allow communication and coordinated functioning among various brain areas. Brain development after birth consists of an ongoing process of wiring and rewiring the connections among neurons. The forming and breaking of…

  2. Beyond Brain Growth: Other Factors Affecting Cognitive Development.

    ERIC Educational Resources Information Center

    Stefanich, Greg; Aldridge, Mary Nan

    The intellectual model of Jean Piaget asserts that individuals pass through a series of various intellectual stages as they mature. Human development is categorized into four basic stages: (1) sensory motor stage, which lasts from birth to about eighteen months; (2) preoperational stage, lasting from eighteen months to about seven years; (3)…

  3. Developing Connections for Affective Regulation: Age-Related Changes in Emotional Brain Connectivity

    ERIC Educational Resources Information Center

    Perlman, Susan B.; Pelphrey, Kevin A.

    2011-01-01

    The regulation of affective arousal is a critical aspect of children's social and cognitive development. However, few studies have examined the brain mechanisms involved in the development of this aspect of "hot" executive functioning. This process has been conceptualized as involving prefrontal control of the amygdala. Here, using functional…

  4. Early Supplementation of Phospholipids and Gangliosides Affects Brain and Cognitive Development in Neonatal Piglets123

    PubMed Central

    Liu, Hongnan; Radlowski, Emily C; Conrad, Matthew S; Li, Yao; Dilger, Ryan N; Johnson, Rodney W

    2014-01-01

    Background: Because human breast milk is a rich source of phospholipids and gangliosides and breastfed infants have improved learning compared with formula-fed infants, the importance of dietary phospholipids and gangliosides for brain development is of interest. Objective: We sought to determine the effects of phospholipids and gangliosides on brain and cognitive development. Methods: Male and female piglets from multiple litters were artificially reared and fed formula containing 0% (control), 0.8%, or 2.5% Lacprodan PL-20 (PL-20; Arla Foods Ingredients), a phospholipid/ganglioside supplement, from postnatal day (PD) 2 to PD28. Beginning on PD14, performance in a spatial T-maze task was assessed. At PD28, brain MRI data were acquired and piglets were killed to obtain hippocampal tissue for metabolic profiling. Results: Diet affected maze performance, with piglets that were fed 0.8% and 2.5% PL-20 making fewer errors than control piglets (80% vs. 75% correct on average; P < 0.05) and taking less time to make a choice (3 vs. 5 s/trial; P < 0.01). Mean brain weight was 5% higher for piglets fed 0.8% and 2.5% PL-20 (P < 0.05) than control piglets, and voxel-based morphometry revealed multiple brain areas with greater volumes and more gray and white matter in piglets fed 0.8% and 2.5% PL-20 than in control piglets. Metabolic profiling of hippocampal tissue revealed that multiple phosphatidylcholine-related metabolites were altered by diet. Conclusion: In summary, dietary phospholipids and gangliosides improved spatial learning and affected brain growth and composition in neonatal piglets. PMID:25411030

  5. Starting Smart: How Early Experiences Affect Brain Development. An Ounce of Prevention Fund Paper.

    ERIC Educational Resources Information Center

    Ounce of Prevention Fund.

    Recent research has provided great insight into the impact of early experience on brain development. It is now believed that brain growth is highly dependent upon early experiences. Neurons allow communication and coordinated functioning among various brain areas. Brain development after birth consists of an ongoing process of wiring and rewiring…

  6. Social brain development and the affective consequences of ostracism in adolescence.

    PubMed

    Sebastian, Catherine; Viding, Essi; Williams, Kipling D; Blakemore, Sarah-Jayne

    2010-02-01

    Recent structural and functional imaging studies have provided evidence for continued development of brain regions involved in social cognition during adolescence. In this paper, we review this rapidly expanding area of neuroscience and describe models of neurocognitive development that have emerged recently. One implication of these models is that neural development underlies commonly observed adolescent phenomena such as susceptibility to peer influence and sensitivity to peer rejection. Experimental behavioural evidence of rejection sensitivity in adolescence is currently sparse. Here, we describe a study that directly compared the affective consequences of an experimental ostracism manipulation (Cyberball) in female adolescents and adults. The ostracism condition led to significantly greater affective consequences in the adolescents compared with adults. This suggests that the ability to regulate distress resulting from ostracism continues to develop between adolescence and adulthood. The results are discussed in the context of models of neurocognitive development.

  7. Prenatal caffeine intake differently affects synaptic proteins during fetal brain development.

    PubMed

    Mioranzza, Sabrina; Nunes, Fernanda; Marques, Daniela M; Fioreze, Gabriela T; Rocha, Andréia S; Botton, Paulo Henrique S; Costa, Marcelo S; Porciúncula, Lisiane O

    2014-08-01

    Caffeine is the psychostimulant most consumed worldwide. However, little is known about its effects during fetal brain development. In this study, adult female Wistar rats received caffeine in drinking water (0.1, 0.3 and 1.0 g/L) during the active cycle in weekdays, two weeks before mating and throughout pregnancy. Cerebral cortex and hippocampus from embryonic stages 18 or 20 (E18 or E20, respectively) were collected for immunodetection of the following synaptic proteins: brain-derived neurotrophic factor (BDNF), TrkB receptor, Sonic Hedgehog (Shh), Growth Associated Protein 43 (GAP-43) and Synaptosomal-associated Protein 25 (SNAP-25). Besides, the estimation of NeuN-stained nuclei (mature neurons) and non-neuronal nuclei was verified in both brain regions and embryonic periods. Caffeine (1.0 g/L) decreased the body weight of embryos at E20. Cortical BDNF at E18 was decreased by caffeine (1.0 g/L), while it increased at E20, with no major effects on TrkB receptors. In the hippocampus, caffeine decreased TrkB receptor only at E18, with no effects on BDNF. Moderate and high doses of caffeine promoted an increase in Shh in both brain regions at E18, and in the hippocampus at E20. Caffeine (0.3g/L) decreased GAP-43 only in the hippocampus at E18. The NeuN-stained nuclei increased in the cortex at E20 by lower dose and in the hippocampus at E18 by moderate dose. Our data revealed that caffeine transitorily affect synaptic proteins during fetal brain development. The increased number of NeuN-stained nuclei by prenatal caffeine suggests a possible acceleration of the telencephalon maturation. Although some modifications in the synaptic proteins were transient, our data suggest that caffeine even in lower doses may alter the fetal brain development.

  8. Brain Development

    MedlinePlus

    ... developed the f… Series Healthy Minds: Nurturing Your Child's Development Each of these age-based handouts are based ... report from the National Academy of Sciences on child and brain development. Podcast Nurturing Brain Development From Birth to Three ...

  9. How Body Affects Brain.

    PubMed

    Suzuki, Wendy A

    2016-08-09

    Studies show that physical exercise can affect a range of brain and cognitive functions. However, little is known about the peripheral signals that initiate these central changes. Moon et al. (2016) provide exciting new evidence that a novel myokine, cathepsin B (CTSB), released with exercise is associated with improved memory.

  10. Social Brain Development and the Affective Consequences of Ostracism in Adolescence

    ERIC Educational Resources Information Center

    Sebastian, Catherine; Viding, Essi; Williams, Kipling D.; Blakemore, Sarah-Jayne

    2010-01-01

    Recent structural and functional imaging studies have provided evidence for continued development of brain regions involved in social cognition during adolescence. In this paper, we review this rapidly expanding area of neuroscience and describe models of neurocognitive development that have emerged recently. One implication of these models is…

  11. Maternal administration of flutamide during late gestation affects the brain and reproductive organs development in the rat male offspring.

    PubMed

    Pallarés, M E; Adrover, E; Imsen, M; González, D; Fabre, B; Mesch, V; Baier, C J; Antonelli, M C

    2014-10-10

    We have previously demonstrated that male rats exposed to stress during the last week of gestation present age-specific impairments of brain development. Since the organization of the fetal developing brain is subject to androgen exposure and prenatal stress was reported to disrupt perinatal testosterone surges, the aim of this research was to explore whether abnormal androgen concentrations during late gestation affects the morphology of the prefrontal cortex (PFC), hippocampus (HPC) and ventral tegmental area (VTA), three major areas that were shown to be affected by prenatal stress in our previous studies. We administered 10-mg/kg/day of the androgen receptor antagonist flutamide (4'nitro-3'-trifluoromethylsobutyranilide) or vehicle injections to pregnant rats from days 15-21 of gestation. The antiandrogenic effects of flutamide were confirmed by the analysis of androgen-dependent developmental markers: flutamide-exposed rats showed reduced anogenital distance, delay in the completion of testis descent, hypospadias, cryptorchidism and atrophied seminal vesicles. Brain morphological studies revealed that prenatal flutamide decreased the number of MAP2 (a microtubule-associated protein type 2, present almost exclusively in dendrites) immunoreactive neuronal processes in all evaluated brain areas, both in prepubertal and adult offspring, suggesting that prenatal androgen disruption induces long-term reductions of the dendritic arborization of several brain structures, affecting the normal connectivity between areas. Moreover, the number of tyrosine hydroxylase (TH)-immunopositive neurons in the VTA of prepubertal offspring was reduced in flutamide rats but reach normal values at adulthood. Our results demonstrate that the effects of prenatal flutamide on the offspring brain morphology resemble several prenatal stress effects suggesting that the mechanism of action of prenatal stress might be related to the impairment of the organizational role of androgens on brain

  12. Experimental exposure to urban and pink noise affects brain development and song learning in zebra finches (Taenopygia guttata)

    PubMed Central

    Curcio, Michael T.; Swaddle, John P.; MacDougall-Shackleton, Scott A.

    2016-01-01

    Recently, numerous studies have observed changes in bird vocalizations—especially song—in urban habitats. These changes are often interpreted as adaptive, since they increase the active space of the signal in its environment. However, the proximate mechanisms driving cross-generational changes in song are still unknown. We performed a captive experiment to identify whether noise experienced during development affects song learning and the development of song-control brain regions. Zebra finches (Taeniopygia guttata) were bred while exposed, or not exposed, to recorded traffic urban noise (Study 1) or pink noise (Study 2). We recorded the songs of male offspring and compared these to fathers’ songs. We also measured baseline corticosterone and measured the size of song-control brain regions when the males reached adulthood (Study 1 only). While male zebra finches tended to copy syllables accurately from tutors regardless of noise environment, syntax (the ordering of syllables within songs) was incorrectly copied affected by juveniles exposed to noise. Noise did not affect baseline corticosterone, but did affect the size of brain regions associated with song learning: these regions were smaller in males that had been had been exposed to recorded traffic urban noise in early development. These findings provide a possible mechanism by which noise affects behaviour, leading to potential population differences between wild animals occupying noisier urban environments compared with those in quieter habitats. PMID:27602270

  13. In Utero Exposure to Diethylhexyl Phthalate Affects Rat Brain Development: A Behavioral and Genomic Approach

    PubMed Central

    Lin, Han; Yuan, Kaiming; Li, Linyan; Liu, Shiwen; Li, Senlin; Hu, Guoxin; Lian, Qing-Quan; Ge, Ren-Shan

    2015-01-01

    Diethylhexyl phthalate (DEHP) is one of the most widely utilized phthalate plasticizers. Previous studies have demonstrated that gestational or postnatal DEHP exposure induced adverse effects on rat brain development and function. In this study, we investigated the effects of gestational DEHP exposure on gene expression profiling in neonatal rat brain and cognitive function change at adulthood. Adult Sprague Dawley dams were orally treated with 10 or 750 mg/kg DEHP from gestational day 12 to 21. Some male pups were euthanized at postnatal day 1 for gene expression profiling, and the rest males were retained for water maze testing on postnatal day (PND) 56. DEHP showed dose-dependent impairment of learning and spatial memory from PND 56 to 63. Genome-wide microarray analysis showed that 10 and 750 mg/kg DEHP altered the gene expression in the neonatal rat brain. Ccnd1 and Cdc2, two critical genes for neuron proliferation, were significantly down-regulated by DEHP. Interestingly, 750 mg/kg DEHP significantly increased Pmch level. Our study demonstrated the changed gene expression patterns after in utero DEHP exposure might partially contribute to the deficit of cognitive function at adulthood. PMID:26516888

  14. Repeated exposure of the developing rat brain to magnetic resonance imaging did not affect neurogenesis, cell death or memory function

    SciTech Connect

    Zhu, Changlian; Gao, Jianfeng; Li, Qian; Huang, Zhiheng; Zhang, Yu; Li, Hongfu; Kuhn, Hans-Georg; Blomgren, Klas

    2011-01-07

    Research highlights: {yields} The effect of MRI on the developing brain is a matter of debate. {yields} Repeated exposure to MRI did not affect neurogenesis. {yields} Memory function was not affected by repeated MRI during development. {yields} Neither late gestation nor young postnatal brains were affected by MRI. {yields} Repeated MRI did not cause cell death in the neurogenic region of the hippocampus. -- Abstract: The effect of magnetic fields on the brain is a matter of debate. The objective of this study was to investigate whether repeated exposure to strong magnetic fields, such as during magnetic resonance imaging (MRI), could elicit changes in the developing rat brain. Embryonic day 15 (E15) and postnatal day 14 (P14) rats were exposed to MRI using a 7.05 T MR system. The animals were anesthetized and exposed for 35 min per day for 4 successive days. Control animals were anesthetized but no MRI was performed. Body temperature was maintained at 37 {sup o}C. BrdU was injected after each session (50 mg/kg). One month later, cell proliferation, neurogenesis and astrogenesis in the dentate gyrus were evaluated, revealing no effects of MRI, neither in the E15, nor in the P14 group. DNA damage in the dentate gyrus in the P14 group was evaluated on P18, 1 day after the last session, using TUNEL staining. There was no difference in the number of TUNEL-positive cells after MRI compared with controls, neither in mature neurons, nor in newborn progenitors (BrdU/TUNEL double-labeled cells). Novel object recognition was performed to assess memory function 1 month after MRI. There was no difference in the recognition index observed after MRI compared with the control rats, neither for the E15, nor for the P14 group. In conclusion, repeated exposure to MRI did not appear to affect neurogenesis, cell death or memory function in rats, neither in late gestation (E15-E18) nor in young postnatal (P14-P17) rats.

  15. Prenatal exposure to common environmental factors affects brain lipids and increases risk of developing autism spectrum disorders.

    PubMed

    Wong, Christine T; Wais, Joshua; Crawford, Dorota A

    2015-11-01

    The prevalence of autism spectrum disorders (ASDs) has been on the rise over recent years. The presence of diverse subsets of candidate genes in each individual with an ASD and the vast variability of phenotypical differences suggest that the interference of an exogenous environmental component may greatly contribute to the development of ASDs. The lipid mediator prostaglandin E2 (PGE2 ) is released from phospholipids of cell membranes, and is important in brain development and function; PGE2 is involved in differentiation, synaptic plasticity and calcium regulation. The previous review already described extrinsic factors, including deficient dietary supplementation, and exposure to oxidative stress, infections and inflammation that can disrupt signaling of the PGE2 pathway and contribute to ASDs. In this review, the structure and establishment of two key protective barriers for the brain during early development are described: the blood-brain barrier; and the placental barrier. Then, the first comprehensive summary of other environmental factors, such as exposure to chemicals in air pollution, pesticides and consumer products, which can also disturb PGE2 signaling and increase the risk for developing ASDs is provided. Also, how these exogenous agents are capable of crossing the protective barriers of the brain during critical developmental periods when barrier components are still being formed is described. This review underlines the importance of avoiding or limiting exposure to these factors during vulnerable periods in development.

  16. [Brain development and plasticity].

    PubMed

    Martinez-Morga, M; Martinez, S

    2016-01-01

    Neurodevelopmental disorders are associated to functional anomalies of the brain that become manifest early on in life. Traditionally, they have been related almost exclusively to the appearance of intellectual disability and delayed psychomotor development. The causes of these disorders have been partially described, and include anomalies due to genetic causes (Down syndrome, fragile X syndrome, etc.), exposure to toxic factors during pregnancy (foetal alcohol syndrome), infections (cytomegalovirus, toxoplasmosis, etc.) or other alterations, including a status of great immaturity at birth (very preterm). Epidemiological data based on a better knowledge of the diseases affecting the central nervous system suggest that some mental disorders, which appear in adolescence or early adulthood, also have their origin in anomalies in brain development. This review aims to offer an overview of brain development. Some of the cellular and molecular processes that may account for the similarities and differences in the phenotypes that generate alterations affecting normal development are also analysed. The study is conducted with a view to clearly identifying processes that are susceptible to modification by means of therapeutic intervention consisting in an early care programme.

  17. Flow of affective information between communicating brains.

    PubMed

    Anders, Silke; Heinzle, Jakob; Weiskopf, Nikolaus; Ethofer, Thomas; Haynes, John-Dylan

    2011-01-01

    When people interact, affective information is transmitted between their brains. Modern imaging techniques permit to investigate the dynamics of this brain-to-brain transfer of information. Here, we used information-based functional magnetic resonance imaging (fMRI) to investigate the flow of affective information between the brains of senders and perceivers engaged in ongoing facial communication of affect. We found that the level of neural activity within a distributed network of the perceiver's brain can be successfully predicted from the neural activity in the same network in the sender's brain, depending on the affect that is currently being communicated. Furthermore, there was a temporal succession in the flow of affective information from the sender's brain to the perceiver's brain, with information in the perceiver's brain being significantly delayed relative to information in the sender's brain. This delay decreased over time, possibly reflecting some 'tuning in' of the perceiver with the sender. Our data support current theories of intersubjectivity by providing direct evidence that during ongoing facial communication a 'shared space' of affect is successively built up between senders and perceivers of affective facial signals.

  18. Early environmental enrichment affects neurobehavioral development and prevents brain damage in rats submitted to neonatal hypoxia-ischemia.

    PubMed

    Schuch, Clarissa Pedrini; Diaz, Ramiro; Deckmann, Iohanna; Rojas, Joseane Jiménez; Deniz, Bruna Ferrary; Pereira, Lenir Orlandi

    2016-03-23

    Our previous results demonstrated improved cognition in adolescent rats housed in environmental enrichment (EE) that underwent neonatal hypoxia-ischemia (HI). The aim of this study was to investigate the effects of early EE on neurobehavioral development and brain damage in rats submitted to neonatal HI. Wistar rats were submitted to the HI procedure on the 7th postnatal day (PND) and housed in an enriched environment (8th-20th PND). The maturation of physical characteristics and the neurological reflexes were evaluated and the volume of striatum, corpus callosum and neocortex was measured. Data analysis demonstrated a clear effect of EE on neurobehavioral development; also, daily performance was improved in enriched rats on righting, negative geotaxis and cliff aversion reflex. HI caused a transient motor deficit on gait latency. Brain atrophy was found in HI animals and this damage was partially prevented by the EE. In conclusion, early EE stimulated neurobehavioral development in neonate rats and also protects the neocortex and the corpus callosum from atrophy following HI. These findings reinforce the potential of EE as a strategy for rehabilitation following neonatal HI and provide scientific support to the use of this therapeutic strategy in the treatment of neonatal brain injuries in humans.

  19. Affective brain-computer music interfacing

    NASA Astrophysics Data System (ADS)

    Daly, Ian; Williams, Duncan; Kirke, Alexis; Weaver, James; Malik, Asad; Hwang, Faustina; Miranda, Eduardo; Nasuto, Slawomir J.

    2016-08-01

    Objective. We aim to develop and evaluate an affective brain-computer music interface (aBCMI) for modulating the affective states of its users. Approach. An aBCMI is constructed to detect a user's current affective state and attempt to modulate it in order to achieve specific objectives (for example, making the user calmer or happier) by playing music which is generated according to a specific affective target by an algorithmic music composition system and a case-based reasoning system. The system is trained and tested in a longitudinal study on a population of eight healthy participants, with each participant returning for multiple sessions. Main results. The final online aBCMI is able to detect its users current affective states with classification accuracies of up to 65% (3 class, p\\lt 0.01) and modulate its user's affective states significantly above chance level (p\\lt 0.05). Significance. Our system represents one of the first demonstrations of an online aBCMI that is able to accurately detect and respond to user's affective states. Possible applications include use in music therapy and entertainment.

  20. Paracetamol (acetaminophen) administration during neonatal brain development affects cognitive function and alters its analgesic and anxiolytic response in adult male mice.

    PubMed

    Viberg, Henrik; Eriksson, Per; Gordh, Torsten; Fredriksson, Anders

    2014-03-01

    Paracetamol (acetaminophen) is one of the most commonly used drugs for the treatment of pain and fever in children, both at home and in the clinic, and is now also found in the environment. Paracetamol is known to act on the endocannabinoid system, involved in normal development of the brain. We examined if neonatal paracetamol exposure could affect the development of the brain, manifested as adult behavior and cognitive deficits, as well as changes in the response to paracetamol. Ten-day-old mice were administered a single dose of paracetamol (30 mg/kg body weight) or repeated doses of paracetamol (30 + 30 mg/kg body weight, 4h apart). Concentrations of paracetamol and brain-derived neurotrophic factor (BDNF) were measured in the neonatal brain, and behavioral testing was done when animals reached adulthood. This study shows that acute neonatal exposure to paracetamol (2 × 30 mg) results in altered locomotor activity on exposure to a novel home cage arena and a failure to acquire spatial learning in adulthood, without affecting thermal nociceptive responding or anxiety-related behavior. However, mice neonatally exposed to paracetamol (2 × 30 mg) fail to exhibit paracetamol-induced antinociceptive and anxiogenic-like behavior in adulthood. Behavioral alterations in adulthood may, in part, be due to paracetamol-induced changes in BDNF levels in key brain regions at a critical time during development. This indicates that exposure to and presence of paracetamol during a critical period of brain development can induce long-lasting effects on cognitive function and alter the adult response to paracetamol in mice.

  1. The marine toxin domoic acid may affect the developing brain by activation of neonatal brain microglia and subsequent neurotoxic mediator generation.

    PubMed

    Mayer, A M

    2000-05-01

    Amnesic shellfish poisoning, one of the shellfish poisoning syndromes, is caused by the marine diatom toxin domoic acid (DOM). While in adult rats, mice, monkeys and humans DOM poorly penetrates the blood-brain barrier, DOM has been shown to be very toxic to fetal in newborn mice, because the blood-brain barrier is incomplete during neurodevelopment. This fact may explain why neonates show a higher sensitivity to neurotoxins like DOM as compared to adult animals. Mechanistic studies on DOM's neurotoxicity have mainly concentrated on the investigation of DOM's effect on neuronal tissue. Recent studies have shown that glia is also involved in DOM's neurotoxicity to the adult as well as the developing nervous system. The scientific literature strongly supports the hypothesis that the microglia may play a critical role in mediating DOM's neurotoxic effects. However, the effect of DOM on microglia has not been systematically investigated. The literature supporting our hypothesis is presented and discussed.

  2. The utility of zebrafish to study the mechanisms by which ethanol affects social behavior and anxiety during early brain development.

    PubMed

    Parker, Matthew O; Annan, Leonette V; Kanellopoulos, Alexandros H; Brock, Alistair J; Combe, Fraser J; Baiamonte, Matteo; Teh, Muy-Teck; Brennan, Caroline H

    2014-12-03

    Exposure to moderate levels of ethanol during brain development has a number of effects on social behavior but the molecular mechanisms that mediate this are not well understood. Gaining a better understanding of these factors may help to develop therapeutic interventions in the future. Zebrafish offer a potentially useful model in this regard. Here, we introduce a zebrafish model of moderate prenatal ethanol exposure. Embryos were exposed to 20mM ethanol for seven days (48hpf-9dpf) and tested as adults for individual social behavior and shoaling. We also tested their basal anxiety with the novel tank diving test. We found that the ethanol-exposed fish displayed reductions in social approach and shoaling, and an increase in anxiety in the novel tank test. These behavioral differences corresponded to differences in hrt1aa, slc6a4 and oxtr expression. Namely, acute ethanol caused a spike in oxtr and ht1aa mRNA expression, which was followed by down-regulation at 7dpf, and an up-regulation in slc6a4 at 72hpf. This study confirms the utility of zebrafish as a model system for studying the molecular basis of developmental ethanol exposure. Furthermore, it proposes a putative developmental mechanism characterized by ethanol-induced OT inhibition leading to suppression of 5-HT and up-regulation of 5-HT1A, which leads, in turn, to possible homeostatic up-regulation of 5-HTT at 72hpf and subsequent imbalance of the 5-HT system.

  3. The utility of zebrafish to study the mechanisms by which ethanol affects social behavior and anxiety during early brain development

    PubMed Central

    Parker, Matthew O.; Annan, Leonette V.; Kanellopoulos, Alexandros H.; Brock, Alistair J.; Combe, Fraser J.; Baiamonte, Matteo; Teh, Muy-Teck; Brennan, Caroline H.

    2014-01-01

    Exposure to moderate levels of ethanol during brain development has a number of effects on social behavior but the molecular mechanisms that mediate this are not well understood. Gaining a better understanding of these factors may help to develop therapeutic interventions in the future. Zebrafish offer a potentially useful model in this regard. Here, we introduce a zebrafish model of moderate prenatal ethanol exposure. Embryos were exposed to 20 mM ethanol for seven days (48hpfs–9dpf) and tested as adults for individual social behavior and shoaling. We also tested their basal anxiety with the novel tank diving test. We found that the ethanol-exposed fish displayed reductions in social approach and shoaling, and an increase in anxiety in the novel tank test. These behavioral differences corresponded to differences in hrt1aa, slc6a4 and oxtr expression. Namely, acute ethanol caused a spike in oxtr and ht1aa mRNA expression, which was followed by down-regulation at 7dpf, and an up-regulation in slc6a4 at 72hpf. This study confirms the utility of zebrafish as a model system for studying the molecular basis of developmental ethanol exposure. Furthermore, it proposes a putative developmental mechanism characterized by ethanol-induced OT inhibition leading to suppression of 5-HT and up-regulation of 5-HT1A, which leads, in turn, to possible homeostatic up-regulation of 5-HTT at 72hpf and subsequent imbalance of the 5-HT system. PMID:24690524

  4. Nutrients affecting brain composition and behavior

    NASA Technical Reports Server (NTRS)

    Wurtman, R. J.

    1987-01-01

    This review examines the changes in brain composition and in various brain functions, including behavior, that can follow the ingestion of particular foods or nutrients. It details those that are best understood: the increases in serotonin, catecholamine, or acetylcholine synthesis that can occur subsequent to food-induced increases in brain levels of tryptophan, tyrosine, or choline; it also discusses the various processes that must intervene between the mouth and the synapse, so to speak, in order for a nutrient to affect neurotransmission, and it speculates as to additional brain chemicals that may ultimately be found to be affected by changes in the availability of their nutrient precursors. Because the brain chemicals best known to be nutrient dependent overlap with those thought to underlie the actions of most of the drugs used to treat psychiatric diseases, knowledge of this dependence may help the psychiatrist to understand some of the pathologic processes occurring in his/her patients, particularly those with appetitive symptoms. At the very least, such knowledge should provide the psychiatrist with objective criteria for judging when to take seriously assertions that particular foods or nutrients do indeed affect behavior (e.g., in hyperactive children). If the food can be shown to alter neurotransmitter release, it may be behaviorally-active; however, if it lacks a discernible neurochemical effect, the likelihood that it really alters behavior is small.

  5. Tumor necrosis factor-alpha during neonatal brain development affects anxiety- and depression-related behaviors in adult male and female mice.

    PubMed

    Babri, Shirin; Doosti, Mohammad-Hossein; Salari, Ali-Akbar

    2014-03-15

    A nascent literature suggests that neonatal infection is a risk factor for the development of brain, behavior and hypothalamic-pituitary-adrenal axis which can affect anxiety- and depression-related behaviors in later life. It has been documented that neonatal infection raises the concentrations of tumor necrosis factor-alpha (TNF-α) in neonate rodents and such infections may result in neonatal brain injury, at least in part, through pro-inflammatory cytokines. In addition, previous studies have shown that TNF-α is involved in cellular differentiation, neurogenesis and programmed cell death during the development of the central nervous system. We investigated for the first time whether neonatal exposure to TNF-α can affect body weight, stress-induced corticosterone (COR), anxiety- and depression-related behaviors in adult mice. In the present study, neonatal mice were treated to recombinant mouse TNF-α (0.2, 0.4, 0.7 and 1 μg/kg) or saline on postnatal days 3 and 5, then adult male and female mice were exposed to different behavioral tests. The results indicated that neonatal TNF-α treatment reduced body weight in neonatal period in both sexes. In addition, this study presents findings indicating that high doses of TNF- increase stress-induced COR levels, anxiety- and depression-related behaviors in adult males, but increase levels of anxiety without significantly influencing depression in adult female mice [corrected]. Our findings suggest that TNF-α exposure during neonatal period can alter brain and behavior development in a dose and sex-dependent manner in mice.

  6. Imaging brain development: the adolescent brain.

    PubMed

    Blakemore, Sarah-Jayne

    2012-06-01

    The past 15 years have seen a rapid expansion in the number of studies using neuroimaging techniques to investigate maturational changes in the human brain. In this paper, I review MRI studies on structural changes in the developing brain, and fMRI studies on functional changes in the social brain during adolescence. Both MRI and fMRI studies point to adolescence as a period of continued neural development. In the final section, I discuss a number of areas of research that are just beginning and may be the subject of developmental neuroimaging in the next twenty years. Future studies might focus on complex questions including the development of functional connectivity; how gender and puberty influence adolescent brain development; the effects of genes, environment and culture on the adolescent brain; development of the atypical adolescent brain; and implications for policy of the study of the adolescent brain.

  7. Serotonin and brain development.

    PubMed

    Sodhi, Monsheel S K; Sanders-Bush, Elaine

    2004-01-01

    The role of the serotonergic system in the neuroplastic events that create, repair, and degenerate the brain has been explored. Synaptic plasticity occurs throughout life and is critical during brain development. Evidence from biochemical, pharmacological, and clinical studies demonstrates the huge importance of an intact serotonergic system for normal central nervous system (CNS)function. Serotonin acts as a growth factor during embryogenesis, and serotonin receptor activity forms a crucial part of the cascade of events leading to changes in brain structure. The serotonergic system interacts with brain-derived neurotrophic factor (BDNF), S100beta, and other chemical messengers, in addition to ts cross talk with the GABAergic, glutamatergic, and dopaminergic neurotransmitter systems. Disruption of these processes may contribute to CNS disorders that have been associated with impaired development. Furthermore, many psychiatric drugs alter serotonergic activity and have been shown to create changes in brain structure with long-term treatment. However, the mechanisms for their therapeutic efficacy are still unclear. Treatments for psychiatric illness are usually chronic and alleviate psychiatric symptoms, rather than cure these diseases. Therefore, greater exploration of the serotonin system during brain development and growth could lead to real progress in the discovery of treatments for mental disorders.

  8. Infections and Brain Development

    PubMed Central

    Cordeiro, Christina N.; Tsimis, Michael; Burd, Irina

    2016-01-01

    Several different bodies of evidence support a link between infection and altered brain development. Maternal infections, such as influenza and human immunodeficiency virus, have been linked to the development of autism spectrum disorders, differences in cognitive test scores, and bipolar disorder; an association that has been shown in both epidemiologic and retrospective studies. Several viral, bacterial, and parasitic illnesses are associated with alterations in fetal brain structural anomalies including brain calcifications and hydrocephalus. The process of infection can activate inflammatory pathways causing the release of various proinflammatory biomarkers and histological changes consistent with an infectious intrauterine environment (chorioamnionitis) or umbilical cord (funisitis). Elevations in inflammatory cytokines are correlated with cerebral palsy, schizophrenias, and autism. Animal studies indicate that the balance of proinflammatory and anti-inflammatory cytokines is critical to the effect prenatal inflammation plays in neurodevelopment. Finally, chorioamnionitis is associated with cerebral palsy and other abnormal neurodevelopmental outcomes. In conclusion, a plethora of evidence supports, albeit with various degrees of certainty, the theory that maternal infection and inflammation that occur during critical periods of fetal development could theoretically alter brain structure and function in a time-sensitive manner. PMID:26490164

  9. Diagnosing pseudobulbar affect in traumatic brain injury

    PubMed Central

    Engelman, William; Hammond, Flora M; Malec, James F

    2014-01-01

    Pseudobulbar affect (PBA) is defined by episodes of involuntary crying and/or laughing as a result of brain injury or other neurological disease. Epidemiology studies show that 5.3%–48.2% of people with traumatic brain injury (TBI) may have symptoms consistent with (or suggestive of) PBA. Yet it is a difficult and often overlooked condition in individuals with TBI, and is easily confused with depression or other mood disorders. As a result, it may be undertreated and persist for longer than it should. This review presents the signs and symptoms of PBA in patients with existing TBI and outlines how to distinguish PBA from other similar conditions. It also compares and contrasts the different diagnostic criteria found in the literature and briefly mentions appropriate treatments. This review follows a composite case with respect to the clinical course and treatment for PBA and presents typical challenges posed to a provider when diagnosing PBA. PMID:25336956

  10. Trisomy and early brain development

    PubMed Central

    Haydar, Tarik F.; Reeves, Roger H.

    2011-01-01

    Trisomy for human chromosome 21 (Hsa21) results in Down syndrome (DS). The finished human genome sequence provides a thorough catalog of the genetic elements whose altered dosage perturbs development and function in DS. However, understanding how small alterations in the steady state transcript levels for <2% of human genes can disrupt development and function of essentially every cell presents a more complicated problem. Mouse models that recapitulate specific aspects of DS have been used to identify changes in brain morphogenesis and function. Here we provide a few examples of how trisomy for specific genes affects the development of the cortex and cerebellum to illustrate how gene dosage effects might contribute to divergence between the trisomic and euploid brains. PMID:22169531

  11. Brain plasticity in the developing brain.

    PubMed

    Kolb, Bryan; Mychasiuk, Richelle; Muhammad, Arif; Gibb, Robbin

    2013-01-01

    The developing normal brain shows a remarkable capacity for plastic change in response to a wide range of experiences including sensory and motor experience, psychoactive drugs, parent-child relationships, peer relationships, stress, gonadal hormones, intestinal flora, diet, and injury. The effects of injury vary with the precise age-at-injury, with the general result being that injury during cell migration and neuronal maturation has a poor functional outcome, whereas similar injury during synaptogenesis has a far better outcome. A variety of factors influence functional outcome including the nature of the behavior in question and the age at behavioral assessment as well as pre- and postinjury experiences. Here, we review the phases of brain development, how factors influence brain, and behavioral development in both the normal and perturbed brain, and propose mechanisms that may underlie these effects.

  12. Novel Neuroimaging Methods to Understand How HIV Affects the Brain

    PubMed Central

    Thompson, Paul

    2015-01-01

    In much of the developed world, the HIV epidemic has largely been controlled by anti-retroviral treatment. Even so, there is growing concern that HIV-infected individuals may be at risk for accelerated brain aging, and a range of cognitive impairments. What promotes or resists these changes is largely unknown. There is also interest in discovering factors that promote resilience to HIV, and combat its adverse effects in children. Here we review recent developments in brain imaging that reveal how the virus affects the brain. We relate these brain changes to changes in blood markers, cognitive function, and other patient outcomes or symptoms, such as apathy or neuropathic pain. We focus on new and emerging techniques, including new variants of brain MRI. Diffusion tensor imaging, for example, can map the brain’s structural connections while fMRI can uncover functional connections. Finally, we suggest how large-scale global research alliances, such as ENIGMA, may resolve controversies over effects where evidence is now lacking. These efforts pool scans from tens of thousands of individuals, and offer a source of power not previously imaginable for brain imaging studies. PMID:25902966

  13. Electromagnetic field and brain development.

    PubMed

    Kaplan, Suleyman; Deniz, Omur Gulsum; Önger, Mehmet Emin; Türkmen, Aysın Pınar; Yurt, Kıymet Kübra; Aydın, Işınsu; Altunkaynak, Berrin Zuhal; Davis, Devra

    2016-09-01

    Rapid advances in technology involve increased exposures to radio-frequency/microwave radiation from mobile phones and other wireless transmitting devices. As cell phones are held close to the head during talking and often stored next to the reproductive organs, studies are mostly focused on the brain. In fact, more research is especially needed to investigate electromagnetic field (EMF)'s effects on the central nervous system (CNS). Several studies clearly demonstrate that EMF emitted by cell phones could affect a range of body systems and functions. Recent work has demonstrated that EMF inhibit the formation and differentiation of neural stem cells during embryonic development and also affect reproductive and neurological health of adults that have undergone prenatal exposure. The aim of this review is to discuss the developing CNS and explain potential impacts of EMF on this system.

  14. Cardiac Arrest-Induced Global Brain Hypoxia-Ischemia during Development Affects Spontaneous Activity Organization in Rat Sensory and Motor Thalamocortical Circuits during Adulthood.

    PubMed

    Shoykhet, Michael; Middleton, Jason W

    2016-01-01

    Normal maturation of sensory information processing in the cortex requires patterned synaptic activity during developmentally regulated critical periods. During early development, spontaneous synaptic activity establishes required patterns of synaptic input, and during later development it influences patterns of sensory experience-dependent neuronal firing. Thalamocortical neurons occupy a critical position in regulating the flow of patterned sensory information from the periphery to the cortex. Abnormal thalamocortical inputs may permanently affect the organization and function of cortical neuronal circuits, especially if they occur during a critical developmental window. We examined the effect of cardiac arrest (CA)-associated global brain hypoxia-ischemia in developing rats on spontaneous and evoked firing of somatosensory thalamocortical neurons and on large-scale correlations in the motor thalamocortical circuit. The mean spontaneous and sensory-evoked firing rate activity and variability were higher in CA injured rats. Furthermore, spontaneous and sensory-evoked activity and variability were correlated in uninjured rats, but not correlated in neurons from CA rats. Abnormal activity patterns of ventroposterior medial nucleus (VPm) neurons persisted into adulthood. Additionally, we found that neurons in the entopeduncular nucleus (EPN) in the basal ganglia had lower firing rates yet had higher variability and higher levels of burst firing after injury. Correlated levels of power in local field potentials (LFPs) between the EPN and the motor cortex (MCx) were also disrupted by injury. Our findings indicate that hypoxic-ischemic injury during development leads to abnormal spontaneous and sensory stimulus-evoked input patterns from thalamus to cortex. Abnormal thalamic inputs likely permanently and detrimentally affect the organization of cortical circuitry and processing of sensory information. Hypoxic-ischemic injury also leads to abnormal single neuron and

  15. Cardiac Arrest-Induced Global Brain Hypoxia-Ischemia during Development Affects Spontaneous Activity Organization in Rat Sensory and Motor Thalamocortical Circuits during Adulthood

    PubMed Central

    Shoykhet, Michael; Middleton, Jason W.

    2016-01-01

    Normal maturation of sensory information processing in the cortex requires patterned synaptic activity during developmentally regulated critical periods. During early development, spontaneous synaptic activity establishes required patterns of synaptic input, and during later development it influences patterns of sensory experience-dependent neuronal firing. Thalamocortical neurons occupy a critical position in regulating the flow of patterned sensory information from the periphery to the cortex. Abnormal thalamocortical inputs may permanently affect the organization and function of cortical neuronal circuits, especially if they occur during a critical developmental window. We examined the effect of cardiac arrest (CA)-associated global brain hypoxia-ischemia in developing rats on spontaneous and evoked firing of somatosensory thalamocortical neurons and on large-scale correlations in the motor thalamocortical circuit. The mean spontaneous and sensory-evoked firing rate activity and variability were higher in CA injured rats. Furthermore, spontaneous and sensory-evoked activity and variability were correlated in uninjured rats, but not correlated in neurons from CA rats. Abnormal activity patterns of ventroposterior medial nucleus (VPm) neurons persisted into adulthood. Additionally, we found that neurons in the entopeduncular nucleus (EPN) in the basal ganglia had lower firing rates yet had higher variability and higher levels of burst firing after injury. Correlated levels of power in local field potentials (LFPs) between the EPN and the motor cortex (MCx) were also disrupted by injury. Our findings indicate that hypoxic-ischemic injury during development leads to abnormal spontaneous and sensory stimulus-evoked input patterns from thalamus to cortex. Abnormal thalamic inputs likely permanently and detrimentally affect the organization of cortical circuitry and processing of sensory information. Hypoxic-ischemic injury also leads to abnormal single neuron and

  16. Antiepileptic drugs and brain development.

    PubMed

    Ikonomidou, Chrysanthy; Turski, Lechoslaw

    2010-01-01

    Epilepsy, the most common neurological disorder in young humans, has its highest incidence during the first year of life. Antiepileptic drugs (AEDs) which are used to treat seizures in infants, children and pregnant women target ion channels, neurotransmitters and second messenger systems in the brain. The same targets regulate brain processes essential both for propagation of seizures and for brain development, learning, memory and emotional behavior. Here we review adverse effects of AEDs in the developing mammalian brain. In addition, we discuss mechanisms explaining adverse effects of AEDs in the developing mammalian brain including interference with cell proliferation and migration, neurogenesis, axonal arborization, synaptogenesis, synaptic plasticity and physiological apoptotic cell death.

  17. Experience and the Developing Brain.

    ERIC Educational Resources Information Center

    Kolb, Bryan

    2000-01-01

    Recent research findings show that experiences alter the anatomical structure of the brain, that the effects of experience on the brain differ at different ages and between males and females, and that brain development is not complete until about age 18. (SV)

  18. Should what we know about neurobehavioral development, complex congenital heart disease, and brain maturation affect the timing of corrective cardiac surgery?

    PubMed

    DiNardo, James A

    2011-07-01

    Despite remarkable improvements in perioperative care, adverse neurobehavioral outcomes following neonatal and infant cardiac surgery are commonplace and are associated with substantial morbidity. It is becoming increasingly clear that complex congenital heart disease is associated with both abnormalities in neuroanatomic development and a delay in fetal brain maturation. Substantial cerebral ischemic/hypoxic injury has been detected in neonates with complex congenital heart disease both prior to and following corrective cardiac surgery. The brain of the neonate with complex congenital heart disease appears to be uniquely vulnerable to the types of ischemic/hypoxic injury associated with perioperative care. It remains to be determined whether delaying surgical correction to allow for brain maturation will be associated with improvements in neurobehavioral outcomes.

  19. Language and the Developing Brain.

    ERIC Educational Resources Information Center

    Eliot, Lise

    2001-01-01

    Discusses the centers of language in the brain and the critical period for language acquisition. Explains developmental milestones of language development--receptive language, babbling, short phrases, full sentences--in the context of brain development. Emphasizes parents' role in language development, including talking to the child, dialogic…

  20. Factors affecting the cerebral network in brain tumor patients.

    PubMed

    Heimans, Jan J; Reijneveld, Jaap C

    2012-06-01

    Brain functions, including cognitive functions, are frequently disturbed in brain tumor patients. These disturbances may result from the tumor itself, but also from the treatment directed against the tumor. Surgery, radiotherapy and chemotherapy all may affect cerebral functioning, both in a positive as well as in a negative way. Apart from the anti-tumor treatment, glioma patients often receive glucocorticoids and anti-epileptic drugs, which both also have influence on brain functioning. The effect of a brain tumor on cerebral functioning is often more global than should be expected on the basis of the local character of the disease, and this is thought to be a consequence of disturbance of the cerebral network as a whole. Any network, whether it be a neural, a social or an electronic network, can be described in parameters assessing the topological characteristics of that particular network. Repeated assessment of neural network characteristics in brain tumor patients during their disease course enables study of the dynamics of neural networks and provides more insight into the plasticity of the diseased brain. Functional MRI, electroencephalography and especially magnetoencephalography are used to measure brain function and the signals that are being registered with these techniques can be analyzed with respect to network characteristics such as "synchronization" and "clustering". Evidence accumulates that loss of optimal neural network architecture negatively impacts complex cerebral functioning and also decreases the threshold to develop epileptic seizures. Future research should be focused on both plasticity of neural networks and the factors that have impact on that plasticity as well as the possible role of assessment of neural network characteristics in the determination of cerebral function during the disease course.

  1. Brain development, experience, and behavior.

    PubMed

    Kolb, Bryan; Mychasiuk, Richelle; Gibb, Robbin

    2014-10-01

    Brain development progresses through a series of stages beginning with neurogenesis and progressing to neural migration, maturation, synaptogenesis, pruning, and myelin formation. This review examines the literature on how early experiences alter brain development, including environmental events such as sensory stimuli, early stress, psychoactive drugs, parent-child relationships, peer relationships, intestinal flora, diet, and radiation. This sensitivity of the brain to early experiences has important implications for understanding neurodevelopmental disorders as well as the effect of medical interventions in children.

  2. The Basics of Brain Development

    PubMed Central

    Stiles, Joan

    2010-01-01

    Over the past several decades, significant advances have been made in our understanding of the basic stages and mechanisms of mammalian brain development. Studies elucidating the neurobiology of brain development span the levels of neural organization from the macroanatomic, to the cellular, to the molecular. Together this large body of work provides a picture of brain development as the product of a complex series of dynamic and adaptive processes operating within a highly constrained, genetically organized but constantly changing context. The view of brain development that has emerged from the developmental neurobiology literature presents both challenges and opportunities to psychologists seeking to understand the fundamental processes that underlie social and cognitive development, and the neural systems that mediate them. This chapter is intended to provide an overview of some very basic principles of brain development, drawn from contemporary developmental neurobiology, that may be of use to investigators from a wide range of disciplines. PMID:21042938

  3. Developing Effective Affective Assessment Practices

    ERIC Educational Resources Information Center

    Glennon, William; Hart, Aaron; Foley, John T.

    2015-01-01

    Physical educators generally understand the importance of the affective domain for student growth and development. However, many teachers struggle with assessing affective behaviors in a way that can be documented and reported. The five-step process outlined in this article can assist teachers in developing an effective way to assess the affective…

  4. Adolescent Brain Development and Drugs

    ERIC Educational Resources Information Center

    Winters, Ken C.; Arria, Amelia

    2011-01-01

    Research now suggests that the human brain is still maturing during adolescence. The developing brain may help explain why adolescents sometimes make decisions that are risky and can lead to safety or health concerns, including unique vulnerabilities to drug abuse. This article explores how this new science may be put to use in our prevention and…

  5. Family poverty affects the rate of human infant brain growth.

    PubMed

    Hanson, Jamie L; Hair, Nicole; Shen, Dinggang G; Shi, Feng; Gilmore, John H; Wolfe, Barbara L; Pollak, Seth D

    2013-01-01

    Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems.

  6. Family Poverty Affects the Rate of Human Infant Brain Growth

    PubMed Central

    Hanson, Jamie L.; Hair, Nicole; Shen, Dinggang G.; Shi, Feng; Gilmore, John H.; Wolfe, Barbara L.; Pollak, Seth D.

    2013-01-01

    Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems. PMID:24349025

  7. Use of deep brain stimulation for major affective disorders

    PubMed Central

    Mi, Kuanqing

    2016-01-01

    The multifactorial etiology of major affective disorders, such as major depression and bipolar disorder, poses a challenge for identification of effective treatments. In a substantial number of patients, psychopharmacologic treatment does not lead to effective continuous symptom relief. The use of deep brain stimulation (DBS) for treatment-resistant patients is an investigational approach that has recently produced promising results. The recent development of safer stereotaxic neurosurgery, and the combination with functional neuroimaging to map the affected brain circuits, have led to the investigation of DBS as a potential strategy to treat major mood disorders. Several independent clinical studies have recently shown that chronic DBS treatment leads to remission of symptoms in a high number of treatment-resistant patients for major depression and bipolar disorder. In conclusion, the existing proof-of-principle that DBS can be an effective intervention for treatment-resistant depression opens new avenues for treatment. However, multicenter, randomized and blind trials need to confirm efficacy and be approved after the most recent failures. Patient selection and surgical-related improvements are key issues that remain to be addressed to help deliver more precise and customized treatment. PMID:27698736

  8. Thyroid hormone, brain development, and the environment.

    PubMed Central

    Zoeller, Thomas R; Dowling, Amy L S; Herzig, Carolyn T A; Iannacone, Eric A; Gauger, Kelly J; Bansal, Ruby

    2002-01-01

    Thyroid hormone is essential for normal brain development. Therefore, it is a genuine concern that thyroid function can be altered by a very large number of chemicals routinely found in the environment and in samples of human and wildlife tissues. These chemicals range from natural to manufactured compounds. They can produce thyroid dysfunction when they are absent from the diet, as in the case of iodine, or when they are present in the diet, as in the case of thionamides. Recent clinical evidence strongly suggests that brain development is much more sensitive to thyroid hormone excess or deficit than previously believed. In addition, recent experimental research provides new insight into the developmental processes affected by thyroid hormone. Based on the authors' research focusing on the ability of polychlorinated biphenyls to alter the expression of thyroid hormone-responsive genes in the developing brain, this review provides background information supporting a new way of approaching risk analysis of thyroid disruptors. PMID:12060829

  9. Estradiol and the Developing Brain

    PubMed Central

    McCarthy, Margaret M.

    2009-01-01

    Estradiol is the most potent and ubiquitous member of a class of steroid hormones called estrogens. Fetuses and newborns are exposed to estradiol derived from their mother, their own gonads, and synthesized locally in their brains. Receptors for estradiol are nuclear transcription factors that regulate gene expression but also have actions at the membrane, including activation of signal transduction pathways. The developing brain expresses high levels of receptors for estradiol. The actions of estradiol on developing brain are generally permanent and range from establishment of sex differences to pervasive trophic and neuroprotective effects. Cellular end points mediated by estradiol include the following: 1) apoptosis, with estradiol preventing it in some regions but promoting it in others; 2) synaptogenesis, again estradiol promotes in some regions and inhibits in others; and 3) morphometry of neurons and astrocytes. Estradiol also impacts cellular physiology by modulating calcium handling, immediate-early-gene expression, and kinase activity. The specific mechanisms of estradiol action permanently impacting the brain are regionally specific and often involve neuronal/glial cross-talk. The introduction of endocrine disrupting compounds into the environment that mimic or alter the actions of estradiol has generated considerable concern, and the developing brain is a particularly sensitive target. Prostaglandins, glutamate, GABA, granulin, and focal adhesion kinase are among the signaling molecules co-opted by estradiol to differentiate male from female brains, but much remains to be learned. Only by understanding completely the mechanisms and impact of estradiol action on the developing brain can we also understand when these processes go awry. PMID:18195084

  10. Brain response to affective pictures in the chimpanzee.

    PubMed

    Hirata, Satoshi; Matsuda, Goh; Ueno, Ari; Fukushima, Hirokata; Fuwa, Koki; Sugama, Keiko; Kusunoki, Kiyo; Tomonaga, Masaki; Hiraki, Kazuo; Hasegawa, Toshikazu

    2013-01-01

    Advancement of non-invasive brain imaging techniques has allowed us to examine details of neural activities involved in affective processing in humans; however, no comparative data are available for chimpanzees, the closest living relatives of humans. In the present study, we measured event-related brain potentials in a fully awake adult chimpanzee as she looked at affective and neutral pictures. The results revealed a differential brain potential appearing 210 ms after presentation of an affective picture, a pattern similar to that in humans. This suggests that at least a part of the affective process is similar between humans and chimpanzees. The results have implications for the evolutionary foundations of emotional phenomena, such as emotional contagion and empathy.

  11. Glycine receptors and brain development

    PubMed Central

    Avila, Ariel; Nguyen, Laurent; Rigo, Jean-Michel

    2013-01-01

    Glycine receptors (GlyRs) are ligand-gated chloride ion channels that mediate fast inhibitory neurotransmission in the spinal cord and the brainstem. There, they are mainly involved in motor control and pain perception in the adult. However, these receptors are also expressed in upper regions of the central nervous system, where they participate in different processes including synaptic neurotransmission. Moreover, GlyRs are present since early stages of brain development and might influence this process. Here, we discuss the current state of the art regarding GlyRs during embryonic and postnatal brain development in light of recent findings about the cellular and molecular mechanisms that control brain development. PMID:24155690

  12. DHA Effects in Brain Development and Function.

    PubMed

    Lauritzen, Lotte; Brambilla, Paolo; Mazzocchi, Alessandra; Harsløf, Laurine B S; Ciappolino, Valentina; Agostoni, Carlo

    2016-01-04

    Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders.

  13. DHA Effects in Brain Development and Function

    PubMed Central

    Lauritzen, Lotte; Brambilla, Paolo; Mazzocchi, Alessandra; Harsløf, Laurine B. S.; Ciappolino, Valentina; Agostoni, Carlo

    2016-01-01

    Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders. PMID:26742060

  14. Gut microbial communities modulating brain development and function.

    PubMed

    Al-Asmakh, Maha; Anuar, Farhana; Zadjali, Fahad; Rafter, Joseph; Pettersson, Sven

    2012-01-01

    Mammalian brain development is initiated in utero and internal and external environmental signals can affect this process all the way until adulthood. Recent observations suggest that one such external cue is the indigenous microbiota which has been shown to affect developmental programming of the brain. This may have consequences for brain maturation and function that impact on cognitive functions later in life. This review discusses these recent findings from a developmental perspective.

  15. ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide.

    PubMed

    Thompson, Paul M; Andreassen, Ole A; Arias-Vasquez, Alejandro; Bearden, Carrie E; Boedhoe, Premika S; Brouwer, Rachel M; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cannon, Dara M; Cohen, Ronald A; Conrod, Patricia J; Dale, Anders M; Deary, Ian J; Dennis, Emily L; de Reus, Marcel A; Desrivieres, Sylvane; Dima, Danai; Donohoe, Gary; Fisher, Simon E; Fouche, Jean-Paul; Francks, Clyde; Frangou, Sophia; Franke, Barbara; Ganjgahi, Habib; Garavan, Hugh; Glahn, David C; Grabe, Hans J; Guadalupe, Tulio; Gutman, Boris A; Hashimoto, Ryota; Hibar, Derrek P; Holland, Dominic; Hoogman, Martine; Pol, Hilleke E Hulshoff; Hosten, Norbert; Jahanshad, Neda; Kelly, Sinead; Kochunov, Peter; Kremen, William S; Lee, Phil H; Mackey, Scott; Martin, Nicholas G; Mazoyer, Bernard; McDonald, Colm; Medland, Sarah E; Morey, Rajendra A; Nichols, Thomas E; Paus, Tomas; Pausova, Zdenka; Schmaal, Lianne; Schumann, Gunter; Shen, Li; Sisodiya, Sanjay M; Smit, Dirk J A; Smoller, Jordan W; Stein, Dan J; Stein, Jason L; Toro, Roberto; Turner, Jessica A; van den Heuvel, Martijn P; van den Heuvel, Odile L; van Erp, Theo G M; van Rooij, Daan; Veltman, Dick J; Walter, Henrik; Wang, Yalin; Wardlaw, Joanna M; Whelan, Christopher D; Wright, Margaret J; Ye, Jieping

    2017-01-15

    In this review, we discuss recent work by the ENIGMA Consortium (http://enigma.ini.usc.edu) - a global alliance of over 500 scientists spread across 200 institutions in 35 countries collectively analyzing brain imaging, clinical, and genetic data. Initially formed to detect genetic influences on brain measures, ENIGMA has grown to over 30 working groups studying 12 major brain diseases by pooling and comparing brain data. In some of the largest neuroimaging studies to date - of schizophrenia and major depression - ENIGMA has found replicable disease effects on the brain that are consistent worldwide, as well as factors that modulate disease effects. In partnership with other consortia including ADNI, CHARGE, IMAGEN and others(1), ENIGMA's genomic screens - now numbering over 30,000 MRI scans - have revealed at least 8 genetic loci that affect brain volumes. Downstream of gene findings, ENIGMA has revealed how these individual variants - and genetic variants in general - may affect both the brain and risk for a range of diseases. The ENIGMA consortium is discovering factors that consistently affect brain structure and function that will serve as future predictors linking individual brain scans and genomic data. It is generating vast pools of normative data on brain measures - from tens of thousands of people - that may help detect deviations from normal development or aging in specific groups of subjects. We discuss challenges and opportunities in applying these predictors to individual subjects and new cohorts, as well as lessons we have learned in ENIGMA's efforts so far.

  16. Stress and the developing adolescent brain.

    PubMed

    Eiland, L; Romeo, R D

    2013-09-26

    Adolescence is a time of continued brain maturation, particularly in limbic and cortical regions, which undoubtedly plays a role in the physiological and emotional changes coincident with adolescence. An emerging line of research has indicated that stressors experienced during this crucial developmental stage may affect the trajectory of this neural maturation and contribute to the increase in psychological morbidities, such as anxiety and depression, often observed during adolescence. In this review, we discuss the short- and long-term effects of periadolescent stress exposure on the structure and function of the brain. More specifically, we examine how stress at prepubertal and early adolescent stages of development affects the morphological plasticity of limbic and cortical brain regions, as well as the enduring effects of adolescent stress exposure on these brain regions in adulthood. We suggest that, due to a number of converging factors during this period of maturation, the adolescent brain may be particularly sensitive to stress-induced neurobehavioral dysfunctions with important consequences on an individual's immediate and long-term health and well-being.

  17. Early Adverse Experiences and the Developing Brain

    PubMed Central

    Bick, Johanna; Nelson, Charles A

    2016-01-01

    Children exposed to various forms of adversity early in life are at increased risk for a broad range of developmental difficulties, affecting both cognitive and emotional adjustment. We review a growing body of evidence suggesting that exposure to adverse circumstances affects the developing brain in ways that increase risk for a myriad of problems. We focus on two forms of adversity, one in which children are exposed to childhood maltreatment in family environments, and another in which children are exposed to extreme psychosocial deprivation in contexts of institutional rearing. We discuss ways in which each of these experiences represent violations of species-expected caregiving conditions, thereby imposing challenges to the developing brain. We also review emerging data pointing to the effectiveness of early intervention in remediating neurodevelopmental consequences associated with maltreatment or institutional rearing. We conclude by discussing implications of this work for public health efforts and highlight important directions for the field. PMID:26334107

  18. Development of the Teenage Brain

    ERIC Educational Resources Information Center

    Choudhury, Suparna; Charman, Tony; Blakemore, Sarah-Jayne

    2008-01-01

    Adolescence is a time characterized by change--hormonally, physically, and mentally. We now know that some brain areas, particularly the frontal cortex, continue to develop well beyond childhood. There are two main changes with puberty. First, there is an increase in axonal myelination, which increases transmission speed. Second, there is a…

  19. Affective state and community integration after traumatic brain injury.

    PubMed

    Juengst, Shannon B; Arenth, Patricia M; Raina, Ketki D; McCue, Michael; Skidmore, Elizabeth R

    2014-12-01

    Previous studies investigating the relationship between affective state and community integration have focused primarily on the influence of depression and anxiety. In addition, they have focused on frequency of participation in various activities, failing to address an individual's subjective satisfaction with participation. The purpose of this study was to examine how affective state contributes to frequency of participation and satisfaction with participation after traumatic brain injury among participants with and without a current major depressive episode. Sixty-four community-dwelling participants with a history of complicated mild-to-severe traumatic brain injury participated in this cross-sectional cohort study. High positive affect contributed significantly to frequency of participation (β = 0.401, P = 0.001), and both high positive affect and low negative affect significantly contributed to better satisfaction with participation (F2,61 = 13.63, P < 0.001). Further investigation to assess the direction of these relationships may better inform effective targets for intervention. These findings highlight the importance of assessing affective state after traumatic brain injury and incorporating a subjective measure of participation when considering community integration outcomes.

  20. Neuroscience of affect: brain mechanisms of pleasure and displeasure.

    PubMed

    Berridge, Kent C; Kringelbach, Morten L

    2013-06-01

    Affective neuroscience aims to understand how affect (pleasure or displeasure) is created by brains. Progress is aided by recognizing that affect has both objective and subjective features. Those dual aspects reflect that affective reactions are generated by neural mechanisms, selected in evolution based on their real (objective) consequences for genetic fitness. We review evidence for neural representation of pleasure in the brain (gained largely from neuroimaging studies), and evidence for the causal generation of pleasure (gained largely from brain manipulation studies). We suggest that representation and causation may actually reflect somewhat separable neuropsychological functions. Representation reaches an apex in limbic regions of prefrontal cortex, especially orbitofrontal cortex, influencing decisions and affective regulation. Causation of core pleasure or 'liking' reactions is much more subcortically weighted, and sometimes surprisingly localized. Pleasure 'liking' is especially generated by restricted hedonic hotspot circuits in nucleus accumbens (NAc) and ventral pallidum. Another example of localized valence generation, beyond hedonic hotspots, is an affective keyboard mechanism in NAc for releasing intense motivations such as either positively valenced desire and/or negatively valenced dread.

  1. Anesthetics and the developing brain.

    PubMed

    Yudkowitz, Francine S

    2010-03-01

    In the past decade, concern has been raised about the safety of anesthetic agents on the developing brain. Animal studies have shown an increase in apoptosis in the developing brain when exposed to N-methyl-D-asparate receptor blockers and/or gamma-aminobutyric acid receptor agonists that is related to the dose and duration of anesthetic agents. Whether these studies can be extrapolated to humans is being investigated. The Food and Drug Administration in 2007 convened an advisory committee to look at this issue. They found that the animal data available were inadequate to extrapolate to humans and determined that human studies were necessary. Human studies are underway but the challenge they face is how to delineate the effects of anesthesia from those of the underlying medical condition and surgery itself. At this time, we must continue to make decisions based on the known risks and benefits of anesthetics and apply it on an individual basis.

  2. Cannabis and adolescent brain development.

    PubMed

    Lubman, Dan I; Cheetham, Ali; Yücel, Murat

    2015-04-01

    Heavy cannabis use has been frequently associated with increased rates of mental illness and cognitive impairment, particularly amongst adolescent users. However, the neurobiological processes that underlie these associations are still not well understood. In this review, we discuss the findings of studies examining the acute and chronic effects of cannabis use on the brain, with a particular focus on the impact of commencing use during adolescence. Accumulating evidence from both animal and human studies suggests that regular heavy use during this period is associated with more severe and persistent negative outcomes than use during adulthood, suggesting that the adolescent brain may be particularly vulnerable to the effects of cannabis exposure. As the endocannabinoid system plays an important role in brain development, it is plausible that prolonged use during adolescence results in a disruption in the normative neuromaturational processes that occur during this period. We identify synaptic pruning and white matter development as two processes that may be adversely impacted by cannabis exposure during adolescence. Potentially, alterations in these processes may underlie the cognitive and emotional deficits that have been associated with regular use commencing during adolescence.

  3. Factors affecting intellectual outcome in pediatric brain tumor patients

    SciTech Connect

    Ellenberg, L.; McComb, J.G.; Siegel, S.E.; Stowe, S.

    1987-11-01

    A prospective study utilizing repeated intellectual testing was undertaken in 73 children with brain tumors consecutively admitted to Childrens Hospital of Los Angeles over a 3-year period to determine the effect of tumor location, extent of surgical resection, hydrocephalus, age of the child, radiation therapy, and chemotherapy on cognitive outcome. Forty-three patients were followed for at least two sequential intellectual assessments and provide the data for this study. Children with hemispheric tumors had the most general cognitive impairment. The degree of tumor resection, adequately treated hydrocephalus, and chemotherapy had no bearing on intellectual outcome. Age of the child affected outcome mainly as it related to radiation. Whole brain radiation therapy was associated with cognitive decline. This was especially true in children below 7 years of age, who experienced a very significant loss of function after whole brain radiation therapy.

  4. Cooing, Crying, Cuddling: Infant Brain Development. [Videotape].

    ERIC Educational Resources Information Center

    National Association for the Education of Young Children, Washington, DC.

    Noting recent neuroscience research findings suggesting that caregivers play a vital role in brain development, this videotape explores the process of brain development during the first 15 months of life and presents implications for infant care. Part 1 of the 28-minute video discusses basic infant development and brain research, focusing on how…

  5. Educating the Human Brain. Human Brain Development Series

    ERIC Educational Resources Information Center

    Posner, Michael I.; Rothbart, Mary K.

    2006-01-01

    "Educating the Human Brain" is the product of a quarter century of research. This book provides an empirical account of the early development of attention and self regulation in infants and young children. It examines the brain areas involved in regulatory networks, their connectivity, and how their development is influenced by genes and…

  6. Genetic defects in folate and cobalamin pathways affecting the brain.

    PubMed

    Kirsch, Susanne H; Herrmann, Wolfgang; Obeid, Rima

    2013-01-01

    Folate and cobalamin are necessary for early brain development and function. Deficiency of folate or cobalamin during pregnancy can cause severe malformation in the central nervous system such as neural tube defects. After birth, folate and cobalamin deficiency can cause anemia, failure to thrive, recurrent infections, psychiatric and neurological symptoms. The folate and the homocysteine metabolic pathways interact at a central step where 5-methyltetrahydrofolate donates its methyl group to homocysteine to produce methionine and tetrahydrofolate. Methyl cobalamin and folate interact at this critical step. Both nutrients have a crucial role in DNA synthesis and in delivering S-adenosylmethionine, the universal methyl donor. Severe and mild inherited disorders in folate and cobalamin pathways have been described. The two groups of disorders share some similarities, but differ in the molecular mechanism, metabolic dysregulation, and disease management. This review summarizes selected disorders, including rare and common mutations that affect folate and cobalamin absorption, transport, or dependent enzymes. When the mutations are discovered early enough, many of the described disorders are easily treatable by B vitamin supplementation, which often prevents or reverses the manifestation of the disease. Therefore, the screening for mutations is recommended and should be carried out as early as possible: after occurrence of the first symptoms or when a certain constellations of the folate and cobalamin related markers are measured, such as elevated homocysteine and/or methylmalonic acid.

  7. Traumatic Brain Injury Severity Affects Neurogenesis in Adult Mouse Hippocampus.

    PubMed

    Wang, Xiaoting; Gao, Xiang; Michalski, Stephanie; Zhao, Shu; Chen, Jinhui

    2016-04-15

    Traumatic brain injury (TBI) has been proven to enhance neural stem cell (NSC) proliferation in the hippocampal dentate gyrus. However, various groups have reported contradictory results on whether TBI increases neurogenesis, partially due to a wide range in the severities of injuries seen with different TBI models. To address whether the severity of TBI affects neurogenesis in the injured brain, we assessed neurogenesis in mouse brains receiving different severities of controlled cortical impact (CCI) with the same injury device. The mice were subjected to mild, moderate, or severe TBI by a CCI device. The effects of TBI severity on neurogenesis were evaluated at three stages: NSC proliferation, immature neurons, and newly-generated mature neurons. The results showed that mild TBI did not affect neurogenesis at any of the three stages. Moderate TBI promoted NSC proliferation without increasing neurogenesis. Severe TBI increased neurogenesis at all three stages. Our data suggest that the severity of injury affects adult neurogenesis in the hippocampus, and thus it may partially explain the inconsistent results of different groups regarding neurogenesis following TBI. Further understanding the mechanism of TBI-induced neurogenesis may provide a potential approach for using endogenous NSCs to protect against neuronal loss after trauma.

  8. Iron deficiency and brain development.

    PubMed

    Lozoff, Betsy; Georgieff, Michael K

    2006-09-01

    Iron deficiency (ID) is common in pregnant women and infants worldwide. Rodent models show that ID during gestation/lactation alters neurometabolism, neurotransmitters, myelination, and gene/protein profiles before and after iron repletion at weaning. Human infants with iron deficiency anemia test lower in cognitive, motor, social-emotional, and neurophysiologic development than comparison group infants. Iron therapy does not consistently improve developmental outcome, with long-term differences observed. Poorer outcome has also been shown in human and monkey infants with fetal/neonatal ID. Recent randomized trials of infant iron supplementation show benefits, indicating that adverse effects can be prevented and/or reversed with iron earlier in development or before ID becomes severe or chronic. This body of research emphasizes the importance of protecting the developing brain from ID.

  9. Self-Representation and Brain Development

    ERIC Educational Resources Information Center

    Lewis, Michael; Carmody, Dennis P.

    2008-01-01

    This study examined the relation between self-representation and brain development in infants and young children. Self-representation was assessed by mirror recognition, personal pronoun use, and pretend play. Structural brain images were obtained from magnetic resonance imaging (MRI). Brain development was assessed by a quantitative measure of…

  10. Imaging Brain Development: Benefiting from Individual Variability

    PubMed Central

    Sharda, Megha; Foster, Nicholas E.V.; Hyde, Krista L.

    2015-01-01

    Human brain development is a complex process that evolves from early childhood to young adulthood. Major advances in brain imaging are increasingly being used to characterize the developing brain. These advances have further helped to elucidate the dynamic maturational processes that lead to the emergence of complex cognitive abilities in both typical and atypical development. However, conventional approaches involve categorical group comparison models and tend to disregard the role of widespread interindividual variability in brain development. This review highlights how this variability can inform our understanding of developmental processes. The latest studies in the field of brain development are reviewed, with a particular focus on the role of individual variability and the consequent heterogeneity in brain structural and functional development. This review also highlights how such heterogeneity might be utilized to inform our understanding of complex neuropsychiatric disorders and recommends the use of more dimensional approaches to study brain development. PMID:26648753

  11. A Culture-Behavior-Brain Loop Model of Human Development.

    PubMed

    Han, Shihui; Ma, Yina

    2015-11-01

    Increasing evidence suggests that cultural influences on brain activity are associated with multiple cognitive and affective processes. These findings prompt an integrative framework to account for dynamic interactions between culture, behavior, and the brain. We put forward a culture-behavior-brain (CBB) loop model of human development that proposes that culture shapes the brain by contextualizing behavior, and the brain fits and modifies culture via behavioral influences. Genes provide a fundamental basis for, and interact with, the CBB loop at both individual and population levels. The CBB loop model advances our understanding of the dynamic relationships between culture, behavior, and the brain, which are crucial for human phylogeny and ontogeny. Future brain changes due to cultural influences are discussed based on the CBB loop model.

  12. Functional brain imaging across development.

    PubMed

    Rubia, Katya

    2013-12-01

    The developmental cognitive neuroscience literature has grown exponentially over the last decade. This paper reviews the functional magnetic resonance imaging (fMRI) literature on brain function development of typically late developing functions of cognitive and motivation control, timing and attention as well as of resting state neural networks. Evidence shows that between childhood and adulthood, concomitant with cognitive maturation, there is progressively increased functional activation in task-relevant lateral and medial frontal, striatal and parieto-temporal brain regions that mediate these higher level control functions. This is accompanied by progressively stronger functional inter-regional connectivity within task-relevant fronto-striatal and fronto-parieto-temporal networks. Negative age associations are observed in earlier developing posterior and limbic regions, suggesting a shift with age from the recruitment of "bottom-up" processing regions towards "top-down" fronto-cortical and fronto-subcortical connections, leading to a more mature, supervised cognition. The resting state fMRI literature further complements this evidence by showing progressively stronger deactivation with age in anti-correlated task-negative resting state networks, which is associated with better task performance. Furthermore, connectivity analyses during the resting state show that with development increasingly stronger long-range connections are being formed, for example, between fronto-parietal and fronto-cerebellar connections, in both task-positive networks and in task-negative default mode networks, together with progressively lesser short-range connections, suggesting progressive functional integration and segregation with age. Overall, evidence suggests that throughout development between childhood and adulthood, there is progressive refinement and integration of both task-positive fronto-cortical and fronto-subcortical activation and task-negative deactivation, leading to

  13. Development of the Young Brain

    MedlinePlus Videos and Cool Tools

    ... 3 items) Mental Health Services Research (4 items) Genetics (3 items) Brain Anatomy and Physiology (9 items) ... 3 items) Mental Health Services Research (4 items) Genetics (3 items) Brain Anatomy and Physiology (9 items) ...

  14. Adolescent brain development, substance use, and psychotherapeutic change.

    PubMed

    Wetherill, Reagan; Tapert, Susan F

    2013-06-01

    Adolescence is a unique developmental period characterized by major physiological, psychological, social, and brain changes, as well as an increased incidence of maladaptive, addictive behaviors. With the use of MRI techniques, researchers have been able to provide a better understanding of adolescent brain maturation and how neurodevelopment affects cognition and behavior. This review discusses adolescent brain development and its potential influence on psychotherapeutic change. We focus on cognitive-behavioral and mindfulness-based approaches for treating substance use and highlight potential brain mechanisms underlying response to psychotherapy. Finally, we discuss integrative neuroimaging and treatment studies and potential opportunities for advancing the treatment of adolescent addictive behaviors.

  15. Do brain lesions in stroke affect basic emotions and attachment?

    PubMed

    Farinelli, Marina; Panksepp, Jaak; Gestieri, Laura; Maffei, Monica; Agati, Raffaele; Cevolani, Daniela; Pedone, Vincenzo; Northoff, Georg

    2015-01-01

    The aim of the current study was to investigate basic emotions and attachment in a sample of 86 stroke patients. We included a control group of 115 orthopedic patients (matched for age and cognitive status) without brain lesions to control for unspecific general illness effects of a traumatic recent event on basic emotions and attachment. In order to measure basic emotions and attachment style we applied the Affective Neuroscience Personality Scale (ANPS) and the Attachment Style Questionnaire (ASQ). The stroke patients showed significantly different scores in the SEEKING, SADNESS, and ANGER subscales of the ANPS as well as in the Relationship as Secondary Attachment dimension of the ASQ when compared to the control group. These differences show a pattern influenced by lesion location mainly as concerns basic emotions. Anterior, medial, left, and subcortical patients provide scores significantly lower in ANPS-SEEKING than the control group; ANPS-SADNESS scores in anterior, right, medial, and subcortical patients were significantly higher than those of the control group. ANPS-ANGER scores in posterior, right, and lateral patients were significantly higher than those in the control group; finally, the ANPS-FEAR showed slightly lower scores in posterior patients than in the control group. Minor effects on brain lesions were also individuated in the attachment style. Anterior lesion patients showed a significantly higher average score in the ASQ-Need for Approval subscale than the control group. ASQ-Confidence subscale scores differed significantly in stroke patients with lesions in medial brain regions when compared to control subjects. Scores at ANPS and ASQ subscales appear significantly more correlated in stroke patients than in the control group. Such finding of abnormalities, especially concerning basic emotions in stroke brain-lesioned patients, indicates that the effect of brain lesions may enhance the interrelation between basic emotions and attachment with

  16. The Indispensable Roles of Microglia and Astrocytes during Brain Development

    PubMed Central

    Reemst, Kitty; Noctor, Stephen C.; Lucassen, Paul J.; Hol, Elly M.

    2016-01-01

    Glia are essential for brain functioning during development and in the adult brain. Here, we discuss the various roles of both microglia and astrocytes, and their interactions during brain development. Although both cells are fundamentally different in origin and function, they often affect the same developmental processes such as neuro-/gliogenesis, angiogenesis, axonal outgrowth, synaptogenesis and synaptic pruning. Due to their important instructive roles in these processes, dysfunction of microglia or astrocytes during brain development could contribute to neurodevelopmental disorders and potentially even late-onset neuropathology. A better understanding of the origin, differentiation process and developmental functions of microglia and astrocytes will help to fully appreciate their role both in the developing as well as in the adult brain, in health and disease. PMID:27877121

  17. Brain development in infants born preterm: looking beyond injury.

    PubMed

    Duerden, Emma G; Taylor, Margot J; Miller, Steven P

    2013-06-01

    Infants born very preterm are high risk for acquired brain injury and disturbances in brain maturation. Although survival rates for preterm infants have increased in the last decades owing to improved neonatal intensive care, motor disabilities including cerebral palsy persist, and impairments in cognitive, language, social, and executive functions have not decreased. Evidence from neuroimaging studies exploring brain structure, function, and metabolism has indicated abnormalities in the brain development trajectory of very preterm-born infants that persist through to adulthood. In this chapter, we review neuroimaging approaches for the identification of brain injury in the preterm neonate. Advances in medical imaging and availability of specialized equipment necessary to scan infants have facilitated the feasibility of conducting longitudinal studies to provide greater understanding of early brain injury and atypical brain development and their effects on neurodevelopmental outcome. Improved understanding of the risk factors for acquired brain injury and associated factors that affect brain development in this population is setting the stage for improving the brain health of children born preterm.

  18. Environmental issues affecting CCT development

    SciTech Connect

    Reidy, M.

    1997-12-31

    While no final legislative schedule has been set for the new Congress, two issues with strong environmental ramifications which are likely to affect the coal industry seem to top the list of closely watched debates in Washington -- the Environmental Protection Agency`s proposed new ozone and particulate matter standards and utility restructuring. The paper discusses the background of the proposed standards, public comment, the Congressional review of regulations, other legislative options, and utility restructuring.

  19. Testosterone affects language areas of the adult human brain

    PubMed Central

    Hahn, Andreas; Kranz, Georg S.; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.

    2016-01-01

    Abstract Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high‐dose hormone application in adult female‐to‐male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel‐based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting‐state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone‐dependent neuroplastic adaptations in adulthood within language‐specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738–1748, 2016. © 2016 Wiley Periodicals, Inc. PMID:26876303

  20. Testosterone affects language areas of the adult human brain.

    PubMed

    Hahn, Andreas; Kranz, Georg S; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F; Lanzenberger, Rupert

    2016-05-01

    Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high-dose hormone application in adult female-to-male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel-based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting-state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone-dependent neuroplastic adaptations in adulthood within language-specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738-1748, 2016. © 2016 Wiley Periodicals, Inc.

  1. Dehydration affects brain structure and function in healthy adolescents.

    PubMed

    Kempton, Matthew J; Ettinger, Ulrich; Foster, Russell; Williams, Steven C R; Calvert, Gemma A; Hampshire, Adam; Zelaya, Fernando O; O'Gorman, Ruth L; McMorris, Terry; Owen, Adrian M; Smith, Marcus S

    2011-01-01

    It was recently observed that dehydration causes shrinkage of brain tissue and an associated increase in ventricular volume. Negative effects of dehydration on cognitive performance have been shown in some but not all studies, and it has also been reported that an increased perceived effort may be required following dehydration. However, the effects of dehydration on brain function are unknown. We investigated this question using functional magnetic resonance imaging (fMRI) in 10 healthy adolescents (mean age = 16.8, five females). Each subject completed a thermal exercise protocol and nonthermal exercise control condition in a cross-over repeated measures design. Subjects lost more weight via perspiration in the thermal exercise versus the control condition (P < 0.0001), and lateral ventricle enlargement correlated with the reduction in body mass (r = 0.77, P = 0.01). Dehydration following the thermal exercise protocol led to a significantly stronger increase in fronto-parietal blood-oxygen-level-dependent (BOLD) response during an executive function task (Tower of London) than the control condition, whereas cerebral perfusion during rest was not affected. The increase in BOLD response after dehydration was not paralleled by a change in cognitive performance, suggesting an inefficient use of brain metabolic activity following dehydration. This pattern indicates that participants exerted a higher level of neuronal activity in order to achieve the same performance level. Given the limited availability of brain metabolic resources, these findings suggest that prolonged states of reduced water intake may adversely impact executive functions such as planning and visuo-spatial processing.

  2. Normal development of brain circuits.

    PubMed

    Tau, Gregory Z; Peterson, Bradley S

    2010-01-01

    Spanning functions from the simplest reflex arc to complex cognitive processes, neural circuits have diverse functional roles. In the cerebral cortex, functional domains such as visual processing, attention, memory, and cognitive control rely on the development of distinct yet interconnected sets of anatomically distributed cortical and subcortical regions. The developmental organization of these circuits is a remarkably complex process that is influenced by genetic predispositions, environmental events, and neuroplastic responses to experiential demand that modulates connectivity and communication among neurons, within individual brain regions and circuits, and across neural pathways. Recent advances in neuroimaging and computational neurobiology, together with traditional investigational approaches such as histological studies and cellular and molecular biology, have been invaluable in improving our understanding of these developmental processes in humans in both health and illness. To contextualize the developmental origins of a wide array of neuropsychiatric illnesses, this review describes the development and maturation of neural circuits from the first synapse through critical periods of vulnerability and opportunity to the emergent capacity for cognitive and behavioral regulation, and finally the dynamic interplay across levels of circuit organization and developmental epochs.

  3. Neurovascular coupling develops alongside neural circuits in the postnatal brain.

    PubMed

    Kozberg, Mariel G; Hillman, Elizabeth M C

    2016-01-01

    In the adult brain, increases in local neural activity are accompanied by increases in regional blood flow. This relationship between neural activity and hemodynamics is termed neurovascular coupling and provides the blood flow-dependent contrast detected in functional magnetic resonance imaging (fMRI). Neurovascular coupling is commonly assumed to be consistent and reliable from birth; however, numerous studies have demonstrated markedly different hemodynamics in the early postnatal brain. Our recent study in J. Neuroscience examined whether different hemodynamics in the immature brain are driven by differences in the underlying spatiotemporal properties of neural activity during this period of robust neural circuit expansion. Using a novel wide-field optical imaging technique to visualize both neural activity and hemodynamics in the mouse brain, we observed longer duration and increasingly complex patterns of neural responses to stimulus as cortical connectivity developed over time. However, imaging of brain blood flow, oxygenation, and metabolism in the same mice demonstrated an absence of coupled blood flow responses in the newborn brain. This lack of blood flow coupling was shown to lead to oxygen depletions following neural activations - depletions that may affect the duration of sustained neural responses and could be important to the vascular patterning of the rapidly developing brain. These results are a step toward understanding the unique neurovascular and neurometabolic environment of the newborn brain, and provide new insights for interpretation of fMRI BOLD studies of early brain development.

  4. Thyroid, brain and mood modulation in affective disorder: insights from molecular research and functional brain imaging.

    PubMed

    Bauer, M; London, E D; Silverman, D H; Rasgon, N; Kirchheiner, J; Whybrow, P C

    2003-11-01

    The efficacy resulting from adjunctive use of supraphysiological doses of levothyroxine has emerged as a promising approach to therapy and prophylaxis for refractory mood disorders. Most patients with mood disorders who receive treatment with supraphysiological doses of levothyroxine have normal peripheral thyroid hormone levels, and also respond differently to the hormone and tolerate it better than healthy individuals and patients with primary thyroid diseases. Progress in molecular and functional brain imaging techniques has provided a new understanding of these phenomena, illuminating the relationship between thyroid function, mood modulation and behavior. Thyroid hormones are widely distributed in the brain and have a multitude of effects on the central nervous system. Notably many of the limbic system structures where thyroid hormone receptors are prevalent have been implicated in the pathogenesis of mood disorders. The influence of the thyroid system on neurotransmitters (particularly serotonin and norepinephrine), which putatively play a major role in the regulation of mood and behavior, may contribute to the mechanisms of mood modulation. Recent functional brain imaging studies using positron emission tomography (PET) with [ (18)F]-fluorodeoxyglucose demonstrated that thyroid hormone treatment with levothyroxine affects regional brain metabolism in patients with hypothyroidism and bipolar disorder. Theses studies confirm that thyroid hormones are active in modulating metabolic function in the mature adult brain, and provide intriging neuroanatomic clues that may guide future research.

  5. Reading Enjoyment and Affective Development.

    ERIC Educational Resources Information Center

    Reporting on Reading, 1978

    1978-01-01

    The articles in this publication offer ideas for developing enjoyment of reading in children. Among the topics discussed are the following: the need for teachers and parents to build children's self-esteem through increasing their experiences of success, their expectations of success, and the value they place on reading; methods for increasing…

  6. Affective neuroscience of the emotional BrainMind: evolutionary perspectives and implications for understanding depression

    PubMed Central

    Panksepp, Jaak

    2010-01-01

    Cross-species affective neuroscience studies confirm that primary-process emotional feelings are organized within primitive subcortical regions of the brain that are anatomically, neurochemically, and functionally homologous in all mammals that have been studied. Emotional feelings (affects) are intrinsic values that inform animals how they are faring in the quest to survive. The various positive affects indicate that animals are returning to “comfort zones” that support survival, and negative affects reflect “discomfort zones” that indicate that animals are in situations that may impair survival. They are ancestral tools for living - evolutionary memories of such importance that they were coded into the genome in rough form (as primary brain processes), which are refined by basic learning mechanisms (secondary processes) as well as by higher-order cognitions/thoughts (tertiary processes). To understand why depression feels horrible, we must fathom the affective infrastructure of the mammalian brain. Advances in our understanding of the nature of primary-process emotional affects can promote the development of better preclinical models of psychiatric disorders and thereby also allow clinicians new and useful ways to understand the foundational aspects of their clients' problems. These networks are of clear importance for understanding psychiatric disorders and advancing psychiatric practice. PMID:21319497

  7. Timing of light exposure affects mood and brain circuits

    PubMed Central

    Bedrosian, T A; Nelson, R J

    2017-01-01

    Temporal organization of physiology is critical for human health. In the past, humans experienced predictable periods of daily light and dark driven by the solar day, which allowed for entrainment of intrinsic circadian rhythms to the environmental light–dark cycles. Since the adoption of electric light, however, pervasive exposure to nighttime lighting has blurred the boundaries of day and night, making it more difficult to synchronize biological processes. Many systems are under circadian control, including sleep–wake behavior, hormone secretion, cellular function and gene expression. Circadian disruption by nighttime light perturbs those processes and is associated with increasing incidence of certain cancers, metabolic dysfunction and mood disorders. This review focuses on the role of artificial light at night in mood regulation, including mechanisms through which aberrant light exposure affects the brain. Converging evidence suggests that circadian disruption alters the function of brain regions involved in emotion and mood regulation. This occurs through direct neural input from the clock or indirect effects, including altered neuroplasticity, neurotransmission and clock gene expression. Recently, the aberrant light exposure has been recognized for its health effects. This review summarizes the evidence linking aberrant light exposure to mood. PMID:28140399

  8. Timing of light exposure affects mood and brain circuits.

    PubMed

    Bedrosian, T A; Nelson, R J

    2017-01-31

    Temporal organization of physiology is critical for human health. In the past, humans experienced predictable periods of daily light and dark driven by the solar day, which allowed for entrainment of intrinsic circadian rhythms to the environmental light-dark cycles. Since the adoption of electric light, however, pervasive exposure to nighttime lighting has blurred the boundaries of day and night, making it more difficult to synchronize biological processes. Many systems are under circadian control, including sleep-wake behavior, hormone secretion, cellular function and gene expression. Circadian disruption by nighttime light perturbs those processes and is associated with increasing incidence of certain cancers, metabolic dysfunction and mood disorders. This review focuses on the role of artificial light at night in mood regulation, including mechanisms through which aberrant light exposure affects the brain. Converging evidence suggests that circadian disruption alters the function of brain regions involved in emotion and mood regulation. This occurs through direct neural input from the clock or indirect effects, including altered neuroplasticity, neurotransmission and clock gene expression. Recently, the aberrant light exposure has been recognized for its health effects. This review summarizes the evidence linking aberrant light exposure to mood.

  9. Information superhighway: Issues affecting development

    NASA Astrophysics Data System (ADS)

    1994-09-01

    Technological advances in the transmission of voice, video, and data are fostering fundamental changes in the telecommunications industry. For example, large local telephone companies plan to offer video services in competition with cable and broadcast television, while cable television companies plan to offer local telephone service over their wires in competition with the local telephone companies. The administration believes that these technological changes provide the opportunity to develop an 'Information Superhighway' that could provide every element of society with ready access to data, voice, and video communications. Concurrently, the Congress is considering sweeping changes to telecommunications regulations to keep pace with this dynamic industry. GAO prepared this report to serve as an overview of three key issues that decisionmakers may face as they deliberate telecommunications legislation; it focuses on three pivotal issues they face in formulating new telecommunications legislation: (1) managing the transition to a more competitive local telecommunications marketplace; (2) ensuring that all consumers have access to affordable telecommunications as competition develops; and (3) ensuring that the Information Superhighway provides adequate security, privacy, reliability, and interoperability.

  10. How Early Events Affect Growing Brains. An Interview with Neuroscientist Pat Levitt

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2006

    2006-01-01

    Recent advances in neuroscience show clearly how experience can change brain neurochemicals, and how this in turn affects the way the brain functions. As a result, early negative events actually get built into the growing brain's neurochemistry, altering the brain's architecture. Research is continuing to investigate how children with genetic…

  11. Hand in glove: brain and skull in development and dysmorphogenesis.

    PubMed

    Richtsmeier, Joan T; Flaherty, Kevin

    2013-04-01

    The brain originates relatively early in development from differentiated ectoderm that forms a hollow tube and takes on an exceedingly complex shape with development. The skull is made up of individual bony elements that form from neural crest- and mesoderm-derived mesenchyme that unite to provide support and protection for soft tissues and spaces of the head. The meninges provide a protective and permeable membrane between brain and skull. Across evolutionary and developmental time, dynamic changes in brain and skull shape track one another so that their integration is evidenced in two structures that fit soundly regardless of changes in biomechanical and physiologic functions. Evidence for this tight correspondence is also seen in diseases of the craniofacial complex that are often classified as diseases of the skull (e.g., craniosynostosis) or diseases of the brain (e.g., holoprosencephaly) even when both tissues are affected. Our review suggests a model that links brain and skull morphogenesis through coordinated integration of signaling pathways (e.g., FGF, TGFβ, Wnt) via processes that are not currently understood, perhaps involving the meninges. Differences in the earliest signaling of biological structure establish divergent designs that will be enhanced during morphogenesis. Signaling systems that pattern the developing brain are also active in patterning required for growth and assembly of the skull and some members of these signaling families have been indicated as causal for craniofacial diseases. Because cells of early brain and skull are sensitive to similar signaling families, variation in the strength or timing of signals or shifts in patterning boundaries that affect one system (neural or skull) could also affect the other system and appropriate co-adjustments in development would be made. Interactions of these signaling systems and of the tissues that they pattern are fundamental to the consistent but labile functional and structural association

  12. Practical MRI atlas of neonatal brain development

    SciTech Connect

    Barkovich, A.J.; Truwit, C.L.

    1990-01-01

    This book is an anatomical reference for cranial magnetic resonance imaging (MRI) studies in neonates and infants. It contains 122 clear, sharp MRI scans and drawings showing changes in the normal appearance of the brain and skull during development. Sections of the atlas depict the major processes of maturation: brain myelination, development of the corpus callosum, development of the cranial bone marrow, and iron deposition in the brain. High-quality scans illustrate how these changes appear on magnetic resonance images during various stages of development.

  13. Affective Interaction with a Virtual Character Through an fNIRS Brain-Computer Interface.

    PubMed

    Aranyi, Gabor; Pecune, Florian; Charles, Fred; Pelachaud, Catherine; Cavazza, Marc

    2016-01-01

    Affective brain-computer interfaces (BCI) harness Neuroscience knowledge to develop affective interaction from first principles. In this article, we explore affective engagement with a virtual agent through Neurofeedback (NF). We report an experiment where subjects engage with a virtual agent by expressing positive attitudes towards her under a NF paradigm. We use for affective input the asymmetric activity in the dorsolateral prefrontal cortex (DL-PFC), which has been previously found to be related to the high-level affective-motivational dimension of approach/avoidance. The magnitude of left-asymmetric DL-PFC activity, measured using functional near infrared spectroscopy (fNIRS) and treated as a proxy for approach, is mapped onto a control mechanism for the virtual agent's facial expressions, in which action units (AUs) are activated through a neural network. We carried out an experiment with 18 subjects, which demonstrated that subjects are able to successfully engage with the virtual agent by controlling their mental disposition through NF, and that they perceived the agent's responses as realistic and consistent with their projected mental disposition. This interaction paradigm is particularly relevant in the case of affective BCI as it facilitates the volitional activation of specific areas normally not under conscious control. Overall, our contribution reconciles a model of affect derived from brain metabolic data with an ecologically valid, yet computationally controllable, virtual affective communication environment.

  14. Affective Interaction with a Virtual Character Through an fNIRS Brain-Computer Interface

    PubMed Central

    Aranyi, Gabor; Pecune, Florian; Charles, Fred; Pelachaud, Catherine; Cavazza, Marc

    2016-01-01

    Affective brain-computer interfaces (BCI) harness Neuroscience knowledge to develop affective interaction from first principles. In this article, we explore affective engagement with a virtual agent through Neurofeedback (NF). We report an experiment where subjects engage with a virtual agent by expressing positive attitudes towards her under a NF paradigm. We use for affective input the asymmetric activity in the dorsolateral prefrontal cortex (DL-PFC), which has been previously found to be related to the high-level affective-motivational dimension of approach/avoidance. The magnitude of left-asymmetric DL-PFC activity, measured using functional near infrared spectroscopy (fNIRS) and treated as a proxy for approach, is mapped onto a control mechanism for the virtual agent’s facial expressions, in which action units (AUs) are activated through a neural network. We carried out an experiment with 18 subjects, which demonstrated that subjects are able to successfully engage with the virtual agent by controlling their mental disposition through NF, and that they perceived the agent’s responses as realistic and consistent with their projected mental disposition. This interaction paradigm is particularly relevant in the case of affective BCI as it facilitates the volitional activation of specific areas normally not under conscious control. Overall, our contribution reconciles a model of affect derived from brain metabolic data with an ecologically valid, yet computationally controllable, virtual affective communication environment. PMID:27462216

  15. Self-Control and the Developing Brain

    ERIC Educational Resources Information Center

    Tarullo, Amanda R.; Obradovic, Jelena; Gunnar, Megan R.

    2009-01-01

    Self-control is a skill that children need to succeed academically, socially, and emotionally. Brain regions essential to self-control are immature at birth and develop slowly throughout childhood. From ages 3 to 6 years, as these brain regions become more mature, children show improved ability to control impulses, shift their attention flexibly,…

  16. Epigenetics of the Developing Brain

    ERIC Educational Resources Information Center

    Champagne, Frances A.

    2015-01-01

    Advances in understanding of the dynamic molecular interplay between DNA and its surrounding proteins suggest that epigenetic mechanisms are a critical link between early life experiences (e.g., prenatal stress, parent-offspring interactions) and long-term changes in brain and behavior. Although much of this evidence comes from animal studies,…

  17. Hox genes and brain development in Drosophila.

    PubMed

    Reichert, Heinrich; Bello, Bruno

    2010-01-01

    Hox genes are prominently expressed in the developing brain and ventral ganglia of Drosophila. In the embryonic brain, the Hox genes labial and Deformed are essential for the establishment of regionalized neuronal identity; in their absence cells are generated in the brain but fail to acquire appropriate neuronal features. Genetic analyses reveal that Hox proteins are largely equivalent in their action in embryonic brain development and that their expression is under the control of cross-regulatory interactions among Hox genes that are similar to those found in embryogenesis of trunk segments. Hox genes have a different role in postembryonic brain development. During the larval phase of CNS development, reactivation of specific Hox genes terminates neural proliferation by induction of apoptotic cell death in neural stem cell-like progenitors called neuroblasts. This reactivation process is tightly controlled by epigenetic mechanisms requiring the Polycomb group of genes. Many features of Hox gene action in Drosophila brain development are evolutionarily conserved and are manifest in brain development of vertebrates.

  18. Effects of embryonic cyclosporine exposures on brain development and behavior.

    PubMed

    Clift, Danielle E; Thorn, Robert J; Passarelli, Emily A; Kapoor, Mrinal; LoPiccolo, Mary K; Richendrfer, Holly A; Colwill, Ruth M; Creton, Robbert

    2015-04-01

    Cyclosporine, a calcineurin inhibitor, is successfully used as an immunosuppressant in transplant medicine. However, the use of this pharmaceutical during pregnancy is concerning since calcineurin is thought to play a role in neural development. The risk for human brain development is difficult to evaluate because of a lack of basic information on the sensitive developmental times and the potentially pleiotropic effects on brain development and behavior. In the present study, we use zebrafish as a model system to examine the effects of embryonic cyclosporine exposures. Early embryonic exposures reduced the size of the eyes and brain. Late embryonic exposures did not affect the size of the eyes or brain, but did lead to substantial behavioral defects at the larval stages. The cyclosporine-exposed larvae displayed a reduced avoidance response to visual stimuli, low swim speeds, increased resting, an increase in thigmotaxis, and changes in the average distance between larvae. Similar results were obtained with the calcineurin inhibitor FK506, suggesting that most, but not all, effects on brain development and behavior are mediated by calcineurin inhibition. Overall, the results show that cyclosporine can induce either structural or functional brain defects, depending on the exposure window. The observed functional brain defects highlight the importance of quantitative behavioral assays when evaluating the risk of developmental exposures.

  19. Volumetric Intraoperative Brain Deformation Compensation: Model Development and Phantom Validation

    PubMed Central

    DeLorenzo, Christine; Papademetris, Xenophon; Staib, Lawrence H.; Vives, Kenneth P.; Spencer, Dennis D.; Duncan, James S.

    2012-01-01

    During neurosurgery, nonrigid brain deformation may affect the reliability of tissue localization based on preoperative images. To provide accurate surgical guidance in these cases, preoperative images must be updated to reflect the intraoperative brain. This can be accomplished by warping these preoperative images using a biomechanical model. Due to the possible complexity of this deformation, intraoperative information is often required to guide the model solution. In this paper, a linear elastic model of the brain is developed to infer volumetric brain deformation associated with measured intraoperative cortical surface displacement. The developed model relies on known material properties of brain tissue, and does not require further knowledge about intraoperative conditions. To provide an initial estimation of volumetric model accuracy, as well as determine the model’s sensitivity to the specified material parameters and surface displacements, a realistic brain phantom was developed. Phantom results indicate that the linear elastic model significantly reduced localization error due to brain shift, from >16 mm to under 5 mm, on average. In addition, though in vivo quantitative validation is necessary, preliminary application of this approach to images acquired during neocortical epilepsy cases confirms the feasibility of applying the developed model to in vivo data. PMID:22562728

  20. Limitations on the developing preterm brain: impact of periventricular white matter lesions on brain connectivity and cognition.

    PubMed

    Pavlova, Marina A; Krägeloh-Mann, Ingeborg

    2013-04-01

    Brain lesions to the white matter in peritrigonal regions, periventricular leukomalacia, in children who were born prematurely represent an important model for studying limitations on brain development. The lesional pattern is of early origin and bilateral, that constrains the compensatory potential of the brain. We suggest that (i) topography and severity of periventricular lesions may have a long-term predictive value for cognitive and social capabilities in preterm birth survivors; and (ii) periventricular lesions may impact cognitive and social functions by affecting brain connectivity, and thereby, the dissociable neural networks underpinning these functions. A further pathway to explore is the relationship between cerebral palsy and cognitive outcome. Restrictions caused by motor disability may affect active exploration of surrounding and social participation that may in turn differentially impinge on cognitive development and social cognition. As an outline for future research, we underscore sex differences, as the sex of a preterm newborn may shape the mechanisms by which the developing brain is affected.

  1. Affective psychosis, Hashimoto's thyroiditis, and brain perfusion abnormalities: case report

    PubMed Central

    2007-01-01

    Background It has recently become evident that circulating thyroid antibodies are found in excess among patients suffering from mood disorders. Moreover, a manic episode associated with Hashimoto's thyroiditis has recently been reported as the first case of bipolar disorder due to Hashimoto's encephalopathy. We report a case in which Hashimoto's thyroiditis was suspected to be involved in the deteriorating course of mood disorder and discuss potential pathogenic mechanisms linking thyroid autoimmunity with psychopathology. Case presentation A 43-year-old woman, with a history of recurrent depression since the age of 31, developed manic, psychotic, and soft neurological symptoms across the last three years in concomitance with her first diagnosis of Hashimoto's thyroiditis. The patient underwent a thorough medical and neurological workup. Circulating thyroperoxidase antibodies were highly elevated but thyroid function was adequately maintained with L-thyroxine substitution. EEG was normal and no other signs of current CNS inflammation were evidenced. However, brain magnetic resonance imaging evidenced several non-active lesions in the white matter from both hemispheres, suggestive of a non-specific past vasculitis. Brain single-photon emission computed tomography showed cortical perfusion asymmetry particularly between frontal lobes. Conclusion We hypothesize that abnormalities in cortical perfusion might represent a pathogenic link between thyroid autoimmunity and mood disorders, and that the rare cases of severe Hashimoto's encephalopathy presenting with mood disorder might be only the tip of an iceberg. PMID:18096026

  2. The brain's emotional foundations of human personality and the Affective Neuroscience Personality Scales.

    PubMed

    Davis, Kenneth L; Panksepp, Jaak

    2011-10-01

    Six of the primary-process subcortical brain emotion systems - SEEKING, RAGE, FEAR, CARE, GRIEF and PLAY - are presented as foundational for human personality development, and hence as a potentially novel template for personality assessment as in the Affective Neurosciences Personality Scales (ANPS), described here. The ANPS was conceptualized as a potential clinical research tool, which would help experimentalists and clinicians situate subjects and clients in primary-process affective space. These emotion systems are reviewed in the context of a multi-tiered framing of consciousness spanning from primary affect, which encodes biological valences, to higher level tertiary (thought mediated) processing. Supporting neuroscience research is presented along with comparisons to Cloninger's Temperament and Character Inventory and the Five Factor Model (FFM). Suggestions are made for grounding the internal structure of the FFM on the primal emotional systems recognized in affective neuroscience, which may promote substantive dialog between human and animal research traditions. Personality is viewed in the context of Darwinian "continuity" with the inherited subcortical brain emotion systems being foundational, providing major forces for personality development in both humans and animals, and providing an affective infrastructure for an expanded five factor descriptive model applying to normal and clinical human populations as well as mammals generally. Links with ontogenetic and epigenetic models of personality development are also presented. Potential novel clinical applications of the CARE maternal-nurturance system and the PLAY system are also discussed.

  3. Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain.

    PubMed

    Barrett, Lisa Feldman; Satpute, Ajay Bhaskar

    2013-06-01

    Understanding how a human brain creates a human mind ultimately depends on mapping psychological categories and concepts to physical measurements of neural response. Although it has long been assumed that emotional, social, and cognitive phenomena are realized in the operations of separate brain regions or brain networks, we demonstrate that it is possible to understand the body of neuroimaging evidence using a framework that relies on domain general, distributed structure-function mappings. We review current research in affective and social neuroscience and argue that the emerging science of large-scale intrinsic brain networks provides a coherent framework for a domain-general functional architecture of the human brain.

  4. Dynamics of subcellular proteomes during brain development.

    PubMed

    McClatchy, Daniel B; Liao, Lujian; Lee, Ji Hyoung; Park, Sung Kyu; Yates, John R

    2012-04-06

    Many neurological disorders are caused by perturbations during brain development, but these perturbations cannot be readily identified until there is comprehensive description of the development process. In this study, we performed mass spectrometry analysis of the synaptosomal and mitochondrial fractions from three rat brain regions at four postnatal time points. To quantitate our analysis, we employed (15)N labeled rat brains using a technique called SILAM (stable isotope labeling in mammals). We quantified 167429 peptides and identified over 5000 statistically significant changes during development including known disease-associated proteins. Global analysis revealed distinct trends between the synaptic and nonsynaptic mitochondrial proteomes and common protein networks between regions each consisting of a unique array of expression patterns. Finally, we identified novel regulators of neurodevelopment that possess the identical temporal pattern of known regulators of neurodevelopment. Overall, this study is the most comprehensive quantitative analysis of the developing brain proteome to date, providing an important resource for neurobiologists.

  5. Neurovascular coupling and energy metabolism in the developing brain

    PubMed Central

    Kozberg, M.; Hillman, E.

    2016-01-01

    In the adult brain, increases in local neural activity are almost always accompanied by increases in local blood flow. However, many functional imaging studies of the newborn and developing human brain have observed patterns of hemodynamic responses that differ from adult responses. Among the proposed mechanisms for the observed variations is that neurovascular coupling itself is still developing in the perinatal brain. Many of the components thought to be involved in actuating and propagating this hemodynamic response are known to still be developing postnatally, including perivascular cells such as astrocytes and pericytes. Both neural and vascular networks expand and are then selectively pruned over the first year of human life. Additionally, the metabolic demands of the newborn brain are still evolving. These changes are highly likely to affect early postnatal neurovascular coupling, and thus may affect functional imaging signals in this age group. This chapter will discuss the literature relating to neurovascular development. Potential effects of normal and aberrant development of neurovascular coupling on the newborn brain will also be explored, as well as ways to effectively utilize imaging techniques that rely on hemodynamic modulation such as fMRI and NIRS in younger populations. PMID:27130418

  6. Affect development as a need to preserve homeostasis.

    PubMed

    Dönmez, Aslıhan; Ceylan, Mehmet Emin; Ünsalver, Barış Önen

    2016-03-01

    In this review, we aim to present our hypothesis about the neural development of affect. According to this view, affect develops at a multi-layered process, and as a mediator between drives, emotion and cognition. This development is parallel to the evolution of the brain from reptiles to mammals. There are five steps in this process: (1) Because of the various environmental challenges, changes in the autonomic nervous system occur and homeostasis becomes destabilized; (2) Drives arise from the destabilized homeostasis; (3) Drives trigger the neural basis of the basic emotional systems; (4) These basic emotions evolve into affect to find the particular object to invest the emotional energy; and (5) In the final stage, cognition is added to increase the possibility of identifying a particular object. In this paper, we will summarize the rationale behind this view, which is based on neuroscientific proofs, such as evolution of autonomic nervous system, neural basis the raw affective states, the interaction between affect and cognition, related brain areas, related neurotransmitters, as well as some clinical examples.

  7. Zika Virus Targeting in the Developing Brain.

    PubMed

    van den Pol, Anthony N; Mao, Guochao; Yang, Yang; Ornaghi, Sara; Davis, John N

    2017-02-22

    Zika virus (ZIKV), a positive-sense RNA flavivirus, has attracted considerable attention recently for its potential to cause serious neurological problems, including microcephaly, cortical thinning, and blindness during early development. Recent findings suggest that ZIKV infection of the brain can occur not only during very early stages of development, but also in later fetal/early neonatal stages of maturation. Surprisingly, after peripheral inoculation of immunocompetent mice on the day of birth, the first cells targeted throughout the brain were isolated astrocytes. At later stages, more neurons showed ZIKV immunoreactivity, in part potentially due to ZIKV release from infected astrocytes. In all developing mice studied, we detected infection of retinal neurons; in many mice, this was also associated with infection of the lateral geniculate, suprachiasmatic nuclei, and superior colliculus, suggesting a commonality for the virus to infect cells of the visual system. Interestingly, in mature mice lacking a Type 1 interferon response (IFNR(-/-)), after inoculation of the eye, the initial majority of infected cells in the visual system were glial cells along the optic tract. ZIKV microinjection into the somatosensory cortex on one side of the normal mouse brain resulted in mirror infection restricted to the contralateral somatosensory cortex without any infection of midline brain regions, indicating the virus can move by axonal transport to synaptically coupled brain loci. These data support the view that ZIKV shows considerable complexity in targeting the CNS and may target different cells at different stages of brain development.SIGNIFICANCE STATEMENT Zika virus (ZIKV) can cause substantial damage to the developing human brain. Here we examine a developmental mouse model of ZIKV infection in the newborn mouse in which the brain is developmentally similar to a second-trimester human fetus. After peripheral inoculation, the virus entered the CNS in all mice tested

  8. Development of a model for whole brain learning of physiology.

    PubMed

    Eagleton, Saramarie; Muller, Anton

    2011-12-01

    In this report, a model was developed for whole brain learning based on Curry's onion model. Curry described the effect of personality traits as the inner layer of learning, information-processing styles as the middle layer of learning, and environmental and instructional preferences as the outer layer of learning. The model that was developed elaborates on these layers by relating the personality traits central to learning to the different quadrants of brain preference, as described by Neethling's brain profile, as the inner layer of the onion. This layer is encircled by the learning styles that describe different information-processing preferences for each brain quadrant. For the middle layer, the different stages of Kolb's learning cycle are classified into the four brain quadrants associated with the different brain processing strategies within the information processing circle. Each of the stages of Kolb's learning cycle is also associated with a specific cognitive learning strategy. These two inner circles are enclosed by the circle representing the role of the environment and instruction on learning. It relates environmental factors that affect learning and distinguishes between face-to-face and technology-assisted learning. This model informs on the design of instructional interventions for physiology to encourage whole brain learning.

  9. Human Behavior, Learning, and the Developing Brain: Typical Development

    ERIC Educational Resources Information Center

    Coch, Donna, Ed.; Fischer, Kurt W., Ed.; Dawson, Geraldine, Ed.

    2010-01-01

    This volume brings together leading authorities from multiple disciplines to examine the relationship between brain development and behavior in typically developing children. Presented are innovative cross-sectional and longitudinal studies that shed light on brain-behavior connections in infancy and toddlerhood through adolescence. Chapters…

  10. Seizures and antiepileptic drugs: does exposure alter normal brain development?

    PubMed

    Marsh, Eric D; Brooks-Kayal, Amy R; Porter, Brenda E

    2006-12-01

    Seizures and antiepileptic drugs (AEDs) affect brain development and have long-term neurological consequences. The specific molecular and cellular changes, the precise timing of their influence during brain development, and the full extent of the long-term consequences of seizures and AEDs exposure have not been established. This review critically assesses both the basic and clinical science literature on the effects of seizures and AEDs on the developing brain and finds that evidence exists to support the hypothesis that both seizures and antiepileptic drugs influence a variety of biological process, at specific times during development, which alter long-term cognition and epilepsy susceptibility. More research, both clinical and experimental, is needed before changes in current clinical practice, based on the scientific data, can be recommended.

  11. Asymmetry of the Brain: Development and Implications.

    PubMed

    Duboc, Véronique; Dufourcq, Pascale; Blader, Patrick; Roussigné, Myriam

    2015-01-01

    Although the left and right hemispheres of our brains develop with a high degree of symmetry at both the anatomical and functional levels, it has become clear that subtle structural differences exist between the two sides and that each is dominant in processing specific cognitive tasks. As the result of evolutionary conservation or convergence, lateralization of the brain is found in both vertebrates and invertebrates, suggesting that it provides significant fitness for animal life. This widespread feature of hemispheric specialization has allowed the emergence of model systems to study its development and, in some cases, to link anatomical asymmetries to brain function and behavior. Here, we present some of what is known about brain asymmetry in humans and model organisms as well as what is known about the impact of environmental and genetic factors on brain asymmetry development. We specifically highlight the progress made in understanding the development of epithalamic asymmetries in zebrafish and how this model provides an exciting opportunity to address brain asymmetry at different levels of complexity.

  12. Changing brains: how longitudinal functional magnetic resonance imaging studies can inform us about cognitive and social-affective growth trajectories.

    PubMed

    Crone, Eveline A; Elzinga, Bernet M

    2015-01-01

    Brain imaging studies have demonstrated widespread changes in brain networks which support cognitive and social-affective development. These conclusions, however, are largely based on cross-sectional comparisons, which limits the possibility to investigate growth trajectories and detect individual changes. Understanding individual growth patterns is crucial if we want to ultimately understand how brain development is sensitive to environmental influences such as educational or psychological interventions or childhood maltreatment. Recently, longitudinal brain imaging studies in children and adolescents have taken the first steps into examining cognitive and social-affective brain functions longitudinally with several compelling findings. First, longitudinal measurements show that activations in some brain regions, such as the prefrontal, temporal, and parietal cortex, are relatively stable over time and can be used as predictors for cognitive functions, whereas activations in other brain regions, such as the amygdala and ventral striatum, are much more variable over time. Second, developmental studies reveal how these changes are related to age, puberty, and changes in performance. These findings have implications for understanding how environmental factors influence brain development. An important future direction will be to examine individual characteristics (e.g., genetic, temperamental, personality) which make individuals differentially susceptible to their environment.

  13. Neurotoxic effects of MDMA (ecstasy) on the developing rodent brain.

    PubMed

    Dzietko, M; Sifringer, M; Klaus, J; Endesfelder, S; Brait, D; Hansen, H H; Bendix, I; Felderhoff-Mueser, U

    2010-08-01

    The incidence of methamphetamine abuse is particularly high in adolescents and is a common problem among women of childbearing age, leading to an increasing number of children with prenatal exposure. MDMA (3,4-methylenedioxymethamphetamine, ecstasy) is an amphetamine-like stimulant and is known to induce apoptotic damage to fine serotonergic fibers in the adult rat brain. Little is known about toxic effects of MDMA and potential underlying molecular mechanisms in the developing brain. Here, we investigated whether MDMA exposure during the period of rapid brain growth causes neurodegeneration in the developing rat brain. MDMA significantly enhanced neuronal death in the brains of 6-day-old rat pups at a dose of 60 mg/kg, but no significant toxicity was detected at the ages of 14 and 21 days. Brain regions mainly affected were the cortex, septum, thalamus, hypothalamus and the cornu ammonis 1 region. To explore possible molecular mechanisms involved in this neurodegenerative process, we investigated the impact of MDMA on the expression of the neurotrophins brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and nerve growth factor. Neonatal exposure of 6-day-old rats to MDMA triggered a considerable increase in cortical BDNF and NT-3 levels. Moreover, P7 CD1/BDNF knockout mice were noticeably more sensitive to MDMA exposure as compared to their wild-type age-matched littermates. These data suggest that a single injection of MDMA causes neurodegeneration in the neonatal rat brain. The upregulation of BDNF and NT-3 expression may indicate an important compensatory mechanism leading to the survival of neuronal cells in the developing brain.

  14. The developing brain in a multitasking world.

    PubMed

    Rothbart, Mary K; Posner, Michael I

    2015-03-01

    To understand the problem of multitasking, it is necessary to examine the brain's attention networks that underlie the ability to switch attention between stimuli and tasks and to maintain a single focus among distractors. In this paper we discuss the development of brain networks related to the functions of achieving the alert state, orienting to sensory events, and developing self-control. These brain networks are common to everyone, but their efficiency varies among individuals and reflects both genes and experience. Training can alter brain networks. We consider two forms of training: (1) practice in tasks that involve particular networks, and (2) changes in brain state through such practices as meditation that may influence many networks. Playing action video games and multitasking are themselves methods of training the brain that can lead to improved performance but also to overdependence on media activity. We consider both of these outcomes and ideas about how to resist overdependence on media. Overall, our paper seeks to inform the reader about what has been learned about attention that can influence multitasking over the course of development.

  15. Reading skill and structural brain development.

    PubMed

    Houston, Suzanne M; Lebel, Catherine; Katzir, Tami; Manis, Franklin R; Kan, Eric; Rodriguez, Genevieve G; Sowell, Elizabeth R

    2014-03-26

    Reading is a learned skill that is likely influenced by both brain maturation and experience. Functional imaging studies have identified brain regions important for skilled reading, but the structural brain changes that co-occur with reading acquisition remain largely unknown. We investigated maturational volume changes in brain reading regions and their association with performance on reading measures. Sixteen typically developing children (5-15 years old, eight boys, mean age of sample=10.06 ± 3.29) received two MRI scans (mean interscan interval=2.19 years), and were administered a battery of cognitive measures. Volume changes between time points in five bilateral cortical regions of interest were measured, and assessed for relationships to three measures of reading. Better baseline performances on measures of word reading, fluency, and rapid naming, independent of age and total cortical gray matter volume change, were associated with volume decrease in the left inferior parietal cortex. Better baseline performance on a rapid naming measure was associated with volume decrease in the left inferior frontal region. These results suggest that children who are better readers, and who perhaps read more than less skilled readers, exhibit different development trajectories in brain reading regions. Understanding relationships between reading performance, reading experience, and brain maturation trajectories may help with the development and evaluation of targeted interventions.

  16. Early developmental gene enhancers affect subcortical volumes in the adult human brain.

    PubMed

    Becker, Martin; Guadalupe, Tulio; Franke, Barbara; Hibar, Derrek P; Renteria, Miguel E; Stein, Jason L; Thompson, Paul M; Francks, Clyde; Vernes, Sonja C; Fisher, Simon E

    2016-05-01

    Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype-phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations. Hum Brain Mapp 37:1788-1800, 2016. © 2016 Wiley Periodicals, Inc.

  17. Microglia development follows a stepwise program to regulate brain homeostasis.

    PubMed

    Matcovitch-Natan, Orit; Winter, Deborah R; Giladi, Amir; Vargas Aguilar, Stephanie; Spinrad, Amit; Sarrazin, Sandrine; Ben-Yehuda, Hila; David, Eyal; Zelada González, Fabiola; Perrin, Pierre; Keren-Shaul, Hadas; Gury, Meital; Lara-Astaiso, David; Thaiss, Christoph A; Cohen, Merav; Bahar Halpern, Keren; Baruch, Kuti; Deczkowska, Aleksandra; Lorenzo-Vivas, Erika; Itzkovitz, Shalev; Elinav, Eran; Sieweke, Michael H; Schwartz, Michal; Amit, Ido

    2016-08-19

    Microglia, the resident myeloid cells of the central nervous system, play important roles in life-long brain maintenance and in pathology. Despite their importance, their regulatory dynamics during brain development have not been fully elucidated. Using genome-wide chromatin and expression profiling coupled with single-cell transcriptomic analysis throughout development, we found that microglia undergo three temporal stages of development in synchrony with the brain--early, pre-, and adult microglia--which are under distinct regulatory circuits. Knockout of the gene encoding the adult microglia transcription factor MAFB and environmental perturbations, such as those affecting the microbiome or prenatal immune activation, led to disruption of developmental genes and immune response pathways. Together, our work identifies a stepwise microglia developmental program integrating immune response pathways that may be associated with several neurodevelopmental disorders.

  18. Tracheal decannulation protocol in patients affected by traumatic brain injury.

    PubMed

    Zanata, Isabel de Lima; Santos, Rosane Sampaio; Hirata, Gisela Carmona

    2014-04-01

    Introduction The frequency of tracheostomy in patients with traumatic brain injury (TBI) contrasts with the lack of objective criteria for its management. The study arose from the need for a protocol in the decision to remove the tracheal tube. Objective To evaluate the applicability of a protocol for tracheal decannulation. Methods A prospective study with 20 patients, ranging between 21 and 85 years of age (average 33.55), 4 of whom were women (20%) and 16 were men (80%). All patients had been diagnosed by a neurologist as having TBI, and the anatomical region of the lesion was known. Patients were evaluated following criteria for tracheal decannulation through a clinical evaluation protocol developed by the authors. Results Decannulation was performed in 12 (60%) patients. Fourteen (70%) had a score greater than 8 on the Glasgow Coma Scale and only 2 (14%) of these were not able to undergo decannulation. Twelve (60%) patients maintained the breathing pattern with occlusion of the tube and were successfully decannulated. Of the 20 patients evaluated, 11 (55%) showed no signs suggestive of tracheal aspiration, and of these, 9 (82%) began training on occlusion of the cannula. The protocol was relevant to establish the beginning of the decannulation process. The clinical assessment should focus on the patient's condition to achieve early tracheal decannulation. Conclusion This study allowed, with the protocol, to establish six criteria for tracheal decannulation: level of consciousness, respiration, tracheal secretion, phonation, swallowing, and coughing.

  19. Tracheal Decannulation Protocol in Patients Affected by Traumatic Brain Injury

    PubMed Central

    Zanata, Isabel de Lima; Santos, Rosane Sampaio; Hirata, Gisela Carmona

    2014-01-01

    Introduction The frequency of tracheostomy in patients with traumatic brain injury (TBI) contrasts with the lack of objective criteria for its management. The study arose from the need for a protocol in the decision to remove the tracheal tube. Objective To evaluate the applicability of a protocol for tracheal decannulation. Methods A prospective study with 20 patients, ranging between 21 and 85 years of age (average 33.55), 4 of whom were women (20%) and 16 were men (80%). All patients had been diagnosed by a neurologist as having TBI, and the anatomical region of the lesion was known. Patients were evaluated following criteria for tracheal decannulation through a clinical evaluation protocol developed by the authors. Results Decannulation was performed in 12 (60%) patients. Fourteen (70%) had a score greater than 8 on the Glasgow Coma Scale and only 2 (14%) of these were not able to undergo decannulation. Twelve (60%) patients maintained the breathing pattern with occlusion of the tube and were successfully decannulated. Of the 20 patients evaluated, 11 (55%) showed no signs suggestive of tracheal aspiration, and of these, 9 (82%) began training on occlusion of the cannula. The protocol was relevant to establish the beginning of the decannulation process. The clinical assessment should focus on the patient's condition to achieve early tracheal decannulation. Conclusion This study allowed, with the protocol, to establish six criteria for tracheal decannulation: level of consciousness, respiration, tracheal secretion, phonation, swallowing, and coughing. PMID:25992074

  20. Factors affecting post-stroke motor recovery: Implications on neurotherapy after brain injury.

    PubMed

    Alawieh, Ali; Zhao, Jing; Feng, Wuwei

    2016-08-13

    Neurological disorders are a major cause of chronic disability globally among which stroke is a leading cause of chronic disability. The advances in the medical management of stroke patients over the past decade have significantly reduced mortality, but at the same time increased numbers of disabled survivors. Unfortunately, this reduction in mortality was not paralleled by satisfactory therapeutics and rehabilitation strategies that can improve functional recovery of patients. Motor recovery after brain injury is a complex, dynamic, and multifactorial process in which an interplay among genetic, pathophysiologic, sociodemographic and therapeutic factors determines the overall recovery trajectory. Although stroke recovery is the most well-studied form of post-injury neuronal recovery, a thorough understanding of the pathophysiology and determinants affecting stroke recovery is still lacking. Understanding the different variables affecting brain recovery after stroke will not only provide an opportunity to develop therapeutic interventions but also allow for developing personalized platforms for patient stratification and prognosis. We aim to provide a narrative review of major determinants for post-stroke recovery and their implications in other forms of brain injury.

  1. Environmental Factors Affecting Preschoolers' Motor Development

    ERIC Educational Resources Information Center

    Venetsanou, Fotini; Kambas, Antonis

    2010-01-01

    The process of development occurs according to the pattern established by the genetic potential and also by the influence of environmental factors. The aim of the present study was to focus on the main environmental factors affecting motor development. The review of the literature revealed that family features, such as socioeconomic status,…

  2. Brain Development and Early Learning: Research on Brain Development. Quality Matters. Volume 1, Winter 2007

    ERIC Educational Resources Information Center

    Edie, David; Schmid, Deborah

    2007-01-01

    For decades researchers have been aware of the extraordinary development of a child's brain during the first five years of life. Recent advances in neuroscience have helped crystallize earlier findings, bringing new clarity and understanding to the field of early childhood brain development. Children are born ready to learn. They cultivate 85…

  3. Aligning Technology Education Teaching with Brain Development

    ERIC Educational Resources Information Center

    Katsioloudis, Petros

    2015-01-01

    This exploratory study was designed to determine if there is a level of alignment between technology education curriculum and theories of intellectual development. The researcher compared Epstein's Brain Growth Theory and Piaget's Status of Intellectual Development with technology education curriculum from Australia, England, and the United…

  4. Still Developing: Teenagers, Brains, and the Arts

    ERIC Educational Resources Information Center

    Smith, Claire Annelise

    2011-01-01

    In seeking an understanding of the teenage brain, this author was struck by the interplay between the development of executive functioning and the development of the system that controls emotions and memory. This in turn has impacted her work as a member of faculty at a seminary with responsibilities for both directing a program with high school…

  5. Positive Youth Cultures and the Developing Brain

    ERIC Educational Resources Information Center

    Laursen, Erik K.

    2009-01-01

    The maturation of the adolescent brain is focused on two tasks: developing autonomy and understanding self in context of the community. Therefore, parents and other adults must assure that young people have multiple opportunities to interact in supportive environments where they can develop the capacity to self-regulate and achieve autonomy.…

  6. Fetal Brain Behavior and Cognitive Development.

    ERIC Educational Resources Information Center

    Joseph, R.

    2000-01-01

    Presents information on prenatal brain development, detailing the functions controlled by the medulla, pons, and midbrain, and the implications for cognitive development. Concludes that fetal cognitive motor activity, including auditory discrimination, orienting, the wake-sleep cycle, fetal heart rate accelerations, and defensive reactions,…

  7. Early Brain Development Research Review and Update

    ERIC Educational Resources Information Center

    Schiller, Pam

    2010-01-01

    Thanks to imaging technology used in neurobiology, people have access to useful and critical information regarding the development of the human brain. This information allows them to become much more effective in helping children in their early development. In fact, when people base their practices on the findings from medical science research,…

  8. Brain development during the preschool years

    PubMed Central

    Brown, Timothy T.; Jernigan, Terry L.

    2012-01-01

    The preschool years represent a time of expansive psychological growth, with the initial expression of many psychological abilities that will continue to be refined into young adulthood. Likewise, brain development during this age is characterized by its “blossoming” nature, showing some of its most dynamic and elaborative anatomical and physiological changes. In this article, we review human brain development during the preschool years, sampling scientific evidence from a variety of sources. First, we cover neurobiological foundations of early postnatal development, explaining some of the primary mechanisms seen at a larger scale within neuroimaging studies. Next, we review evidence from both structural and functional imaging studies, which now accounts for a large portion of our current understanding of typical brain development. Within anatomical imaging, we focus on studies of developing brain morphology and tissue properties, including diffusivity of white matter fiber tracts. We also present new data on changes during the preschool years in cortical area, thickness, and volume. Physiological brain development is then reviewed, touching on influential results from several different functional imaging and recording modalities in the preschool and early school-age years, including positron emission tomography (PET), electroencephalography (EEG) and event-related potentials (ERP), functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and near-infrared spectroscopy (NIRS). Here, more space is devoted to explaining some of the key methodological factors that are required for interpretation. We end with a section on multimodal and multidimensional imaging approaches, which we believe will be critical for increasing our understanding of brain development and its relationship to cognitive and behavioral growth in the preschool years and beyond. PMID:23007644

  9. Brain development during the preschool years.

    PubMed

    Brown, Timothy T; Jernigan, Terry L

    2012-12-01

    The preschool years represent a time of expansive mental growth, with the initial expression of many psychological abilities that will continue to be refined into young adulthood. Likewise, brain development during this age is characterized by its "blossoming" nature, showing some of its most dynamic and elaborative anatomical and physiological changes. In this article, we review human brain development during the preschool years, sampling scientific evidence from a variety of sources. First, we cover neurobiological foundations of early postnatal development, explaining some of the primary mechanisms seen at a larger scale within neuroimaging studies. Next, we review evidence from both structural and functional imaging studies, which now accounts for a large portion of our current understanding of typical brain development. Within anatomical imaging, we focus on studies of developing brain morphology and tissue properties, including diffusivity of white matter fiber tracts. We also present new data on changes during the preschool years in cortical area, thickness, and volume. Physiological brain development is then reviewed, touching on influential results from several different functional imaging and recording modalities in the preschool and early school-age years, including positron emission tomography (PET), electroencephalography (EEG) and event-related potentials (ERP), functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and near-infrared spectroscopy (NIRS). Here, more space is devoted to explaining some of the key methodological factors that are required for interpretation. We end with a section on multimodal and multidimensional imaging approaches, which we believe will be critical for increasing our understanding of brain development and its relationship to cognitive and behavioral growth in the preschool years and beyond.

  10. miRNAs in brain development

    SciTech Connect

    Petri, Rebecca; Malmevik, Josephine; Fasching, Liana; Åkerblom, Malin; Jakobsson, Johan

    2014-02-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. In the brain, a large number of miRNAs are expressed and there is a growing body of evidence demonstrating that miRNAs are essential for brain development and neuronal function. Conditional knockout studies of the core components in the miRNA biogenesis pathway, such as Dicer and DGCR8, have demonstrated a crucial role for miRNAs during the development of the central nervous system. Furthermore, mice deleted for specific miRNAs and miRNA-clusters demonstrate diverse functional roles for different miRNAs during the development of different brain structures. miRNAs have been proposed to regulate cellular functions such as differentiation, proliferation and fate-determination of neural progenitors. In this review we summarise the findings from recent studies that highlight the importance of miRNAs in brain development with a focus on the mouse model. We also discuss the technical limitations of current miRNA studies that still limit our understanding of this family of non-coding RNAs and propose the use of novel and refined technologies that are needed in order to fully determine the impact of specific miRNAs in brain development. - Highlights: • miRNAs are essential for brain development and neuronal function. • KO of Dicer is embryonically lethal. • Conditional Dicer KO results in defective proliferation or increased apoptosis. • KO of individual miRNAs or miRNA families is necessary to determine function.

  11. Developing brain as a target of toxicity.

    PubMed Central

    Rodier, P M

    1995-01-01

    The human brain forms over an unusually long period compared to other organs. While most of the basic structure is laid down before birth, neuron proliferation and migration continue in the postnatal period. The blood-brain barrier is not fully developed until the middle of the first year of life. The number of synaptic connections between neurons reaches a peak around age two and is then trimmed back by about half. Similarly, there is great postnatal activity in the development of receptors and transmitter systems as well as in the production of myelin. Many of the toxic agents known to damage the developing brain interfere with one or more of these developmental processes. Those with antimitotic action, such as X-ray and methyl mercury, have distinctly different effects on structure depending on which neurons are forming at the time of exposure. Vulnerability to agents that interfere with cell production decreases rapidly over the early postnatal period. Other toxic substances, such as psychoactive drugs and agents that alter hormone levels, are especially hazardous during synaptogenesis and the development of transmitter systems, and thus continue to be damaging for years after birth. Still other toxic substances such as lead, seem to have their greatest effects during even later stages of brain development, perhaps by interfering with the trimming back of connections. Guidelines designed to protect human populations from developmental neurotoxicity need to take into account the changing sensitivity of the brain as it passes through different developmental stages, as well as the fundamental differences in the effects of toxicants on the mature and the developing brain. PMID:8549496

  12. Brain Development and Its Relationship to Early Childhood Education.

    ERIC Educational Resources Information Center

    Slegers, Brenda

    New research on brain development has profound implications in the areas of child development and education. This review of the research describes how the brain develops to shape children's growing intelligence, addressing such questions as: (1) What are the brain's functions? (2) What are the critical or sensitive periods in brain development?…

  13. Development of cognitive and affective control networks and decision making.

    PubMed

    Kar, Bhoomika R; Vijay, Nivita; Mishra, Shreyasi

    2013-01-01

    Cognitive control and decision making are two important research areas in the realm of higher-order cognition. Control processes such as interference control and monitoring in cognitive and affective contexts have been found to influence the process of decision making. Development of control processes follows a gradual growth pattern associated with the prolonged maturation of underlying neural circuits including the lateral prefrontal cortex, anterior cingulate, and the medial prefrontal cortex. These circuits are also involved in the control of processes that influences decision making, particularly with respect to choice behavior. Developmental studies on affective control have shown distinct patterns of brain activity with adolescents showing greater activation of amygdala whereas adults showing greater activity in ventral prefrontal cortex. Conflict detection, monitoring, and adaptation involve anticipation and subsequent performance adjustments which are also critical to complex decision making. We discuss the gradual developmental patterns observed in two of our studies on conflict monitoring and adaptation in affective and nonaffective contexts. Findings of these studies indicate the need to look at the differences in the effects of the development of cognitive and affective control on decision making in children and particularly adolescents. Neuroimaging studies have shown the involvement of separable neural networks for cognitive (medial prefrontal cortex and anterior cingulate) and affective control (amygdala, ventral medial prefrontal cortex) shows that one system can affect the other also at the neural level. Hence, an understanding of the interaction and balance between the cognitive and affective brain networks may be crucial for self-regulation and decision making during the developmental period, particularly late childhood and adolescence. The chapter highlights the need for empirical investigation on the interaction between the different aspects

  14. The developing brain in a multitasking world

    PubMed Central

    Rothbart, Mary K.; Posner, Michael I.

    2015-01-01

    To understand the problem of multitasking, it is necessary to examine the brain’s attention networks that underlie the ability to switch attention between stimuli and tasks and to maintain a single focus among distractors. In this paper we discuss the development of brain networks related to the functions of achieving the alert state, orienting to sensory events, and developing self-control. These brain networks are common to everyone, but their efficiency varies among individuals and reflects both genes and experience. Training can alter brain networks. We consider two forms of training: (1) practice in tasks that involve particular networks, and (2) changes in brain state through such practices as meditation that may influence many networks. Playing action video games and multitasking are themselves methods of training the brain that can lead to improved performance but also to overdependence on media activity. We consider both of these outcomes and ideas about how to resist overdependence on media. Overall, our paper seeks to inform the reader about what has been learned about attention that can influence multitasking over the course of development. PMID:25821335

  15. Early bilingualism, language attainment, and brain development.

    PubMed

    Berken, Jonathan A; Gracco, Vincent L; Klein, Denise

    2016-09-01

    The brain demonstrates a remarkable capacity to undergo structural and functional change in response to experience throughout the lifespan. Evidence suggests that, in many domains of skill acquisition, the manifestation of this neuroplasticity depends on the age at which learning begins. The fact that most skills are acquired late in childhood or in adulthood has proven to be a limitation in studies aimed at determining the relationship between age of acquisition and brain plasticity. Bilingualism, however, provides an optimal model for discerning differences in how the brain wires when a skill is acquired from birth, when the brain circuitry for language is being constructed, versus later in life, when the pathways subserving the first language are already well developed. This review examines some of the existing knowledge about optimal periods in language development, with particular attention to the attainment of native-like phonology. It focuses on the differences in brain structure and function between simultaneous and sequential bilinguals and the compensatory mechanisms employed when bilingualism is achieved later in life, based on evidence from studies using a variety of neuroimaging modalities, including positron emission tomography (PET), task-based and resting-state functional magnetic resonance imaging (fMRI), and structural MRI. The discussion concludes with the presentation of recent neuroimaging studies that explore the concept of nested optimal periods in language development and the different neural paths to language proficiency taken by simultaneous and sequential bilinguals, with extrapolation to general notions of the relationship between age of acquisition and ultimate skill performance.

  16. Understanding adolescent brain development and its implications for the clinician.

    PubMed

    White, Aaron M

    2009-04-01

    Contrary to long-held beliefs about brain development, widespread changes occur in the brain during the adolescent years. These changes involve a shift in control over behavior away from regions geared toward emotional processing, such as the amygdala and reward system, toward the frontal lobes, which are involved in making plans for the future, suppressing impulses, weighing options, and other critical cognitive skills needed to function in the adult world. Experience-dependant sculpting of these developing circuits ensures that each adolescent will be customized to fit the demands of his or her environment, healthy or otherwise. As adolescent brain development unfolds, risk-taking, substance use, and the emergence of psychological pathologies are common. Many recreational and prescription drugs affect adolescents and adults differently, both short-term and long-term. In this review, the changes that take place in the brain during the adolescent years are explored. What happens, how these changes can go awry, and how to help keep adolescent brain development on track will he axamined

  17. Mechanical origins of rightward torsion in early chick brain development

    NASA Astrophysics Data System (ADS)

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Taber, Larry

    2015-03-01

    During early development, the neural tube of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This torsional deformation is one of the major organ-level left-right asymmetry events in development. Previous studies suggested that bending is mainly due to differential growth, however, the mechanism for torsion remains poorly understood. Since the heart almost always loops rightwards that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is lacking, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. Moreover, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model and a 3D printed physical model are employed to help interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, and further reveals that the asymmetric development in one organ can induce the asymmetry of another developing organ through mechanics, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''. Z.C. is supported by the Society in Science - Branco Weiss fellowship, administered by ETH Zurich. L.A.T acknowledges the support from NIH Grants R01 GM075200 and R01 NS070918.

  18. Sex, stress and the brain: interactive actions of hormones on the developing and adult brain.

    PubMed

    McEwen, B S

    2014-12-01

    The brain is a target of steroid hormone actions that affect brain architecture, molecular and neurochemical processes, behavior and neuroprotection via both genomic and non-genomic actions. Estrogens have such effects throughout the brain and this article provides an historical and current view of how this new view has come about and how it has affected the study of sex differences, as well as other areas of neuroscience, including the effects of stress on the brain.

  19. Global Epigenomic Reconfiguration During Mammalian Brain Development

    PubMed Central

    Nery, Joseph R.; Urich, Mark; Puddifoot, Clare A.; Johnson, Nicholas D.; Lucero, Jacinta; Huang, Yun; Dwork, Andrew J.; Schultz, Matthew D.; Yu, Miao; Tonti-Filippini, Julian; Heyn, Holger; Hu, Shijun; Wu, Joseph C.; Rao, Anjana; Esteller, Manel; He, Chuan; Haghighi, Fatemeh G.; Sejnowski, Terrence J.; Behrens, M. Margarita; Ecker, Joseph R.

    2013-01-01

    DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity. PMID:23828890

  20. Brain size affects female but not male survival under predation threat

    PubMed Central

    Kotrschal, Alexander; Buechel, Séverine D; Zala, Sarah M; Corral-Lopez, Alberto; Penn, Dustin J; Kolm, Niclas; Sorci, Gabriele

    2015-01-01

    There is remarkable diversity in brain size among vertebrates, but surprisingly little is known about how ecological species interactions impact the evolution of brain size. Using guppies, artificially selected for large and small brains, we determined how brain size affects survival under predation threat in a naturalistic environment. We cohoused mixed groups of small- and large-brained individuals in six semi-natural streams with their natural predator, the pike cichlid, and monitored survival in weekly censuses over 5 months. We found that large-brained females had 13.5% higher survival compared to small-brained females, whereas the brain size had no discernible effect on male survival. We suggest that large-brained females have a cognitive advantage that allows them to better evade predation, whereas large-brained males are more colourful, which may counteract any potential benefits of brain size. Our study provides the first experimental evidence that trophic interactions can affect the evolution of brain size. PMID:25960088

  1. The Neonatal Connectome During Preterm Brain Development.

    PubMed

    van den Heuvel, Martijn P; Kersbergen, Karina J; de Reus, Marcel A; Keunen, Kristin; Kahn, René S; Groenendaal, Floris; de Vries, Linda S; Benders, Manon J N L

    2015-09-01

    The human connectome is the result of an elaborate developmental trajectory. Acquiring diffusion-weighted imaging and resting-state fMRI, we studied connectome formation during the preterm phase of macroscopic connectome genesis. In total, 27 neonates were scanned at week 30 and/or week 40 gestational age (GA). Examining the architecture of the neonatal anatomical brain network revealed a clear presence of a small-world modular organization before term birth. Analysis of neonatal functional connectivity (FC) showed the early formation of resting-state networks, suggesting that functional networks are present in the preterm brain, albeit being in an immature state. Moreover, structural and FC patterns of the neonatal brain network showed strong overlap with connectome architecture of the adult brain (85 and 81%, respectively). Analysis of brain development between week 30 and week 40 GA revealed clear developmental effects in neonatal connectome architecture, including a significant increase in white matter microstructure (P < 0.01), small-world topology (P < 0.01) and interhemispheric FC (P < 0.01). Computational analysis further showed that developmental changes involved an increase in integration capacity of the connectivity network as a whole. Taken together, we conclude that hallmark organizational structures of the human connectome are present before term birth and subject to early development.

  2. Physical Activity Affects Brain Integrity in HIV + Individuals

    PubMed Central

    Ortega, Mario; Baker, Laurie M.; Vaida, Florin; Paul, Robert; Basco, Brian; Ances, Beau M.

    2015-01-01

    Prior research has suggested benefits of aerobic physical activity (PA) on cognition and brain volumes in HIV uninfected (HIV−) individuals, however, few studies have explored the relationships between PA and brain integrity (cognition and structural brain volumes) in HIV-infected (HIV +) individuals. Seventy HIV + individuals underwent neuropsychological testing, structural neuroimaging, laboratory tests, and completed a PA questionnaire, recalling participation in walking, running, and jogging activities over the last year. A PA engagement score of weekly metabolic equivalent (MET) hr of activity was calculated using a compendium of PAs. HIV + individuals were classified as physically active (any energy expended above resting expenditure, n = 22) or sedentary (n = 48). Comparisons of neuropsychological performance, grouped by executive and motor domains, and brain volumes were completed between groups. Physically active and sedentary HIV + individuals had similar demographic and laboratory values, but the active group had higher education (14.0 vs. 12.6 years, p = .034). Physically active HIV + individuals performed better on executive (p = .040, unadjusted; p = .043, adjusted) but not motor function (p = .17). In addition, among the physically active group the amount of physical activity (METs) positively correlated with executive (Pearson’s r = 0.45, p = 0.035) but not motor (r = 0.21; p = .35) performance. In adjusted analyses the physically active HIV + individuals had larger putamen volumes (p = .019). A positive relationship exists between PA and brain integrity in HIV + individuals. Results from the present study emphasize the importance to conduct longitudinal interventional investigation to determine if PA improves brain integrity in HIV + individuals. PMID:26581799

  3. Haemopexin affects iron distribution and ferritin expression in mouse brain

    PubMed Central

    Morello, Noemi; Tonoli, Elisabetta; Logrand, Federica; Fiorito, Veronica; Fagoonee, Sharmila; Turco, Emilia; Silengo, Lorenzo; Vercelli, Alessandro; Altruda, Fiorella; Tolosano, Emanuela

    2009-01-01

    Haemopexin (Hx) is an acute phase plasma glycoprotein, mainly produced by the liver and released into plasma where it binds heme with high affinity and delivers it to the liver. This system provides protection against free heme-mediated oxidative stress, limits access by pathogens to heme and contributes to iron homeostasis by recycling heme iron. Hx protein has been found in the sciatic nerve, skeletal muscle, retina, brain and cerebrospinal fluid (CSF). Recently, a comparative proteomic analysis has shown an increase of Hx in CSF from patients with Alzheimer’s disease, thus suggesting its involvement in heme detoxification in brain. Here, we report that Hx is synthesised in brain by the ventricular ependymal cells. To verify whether Hx is involved in heme scavenging in brain, and consequently, in the control of iron level, iron deposits and ferritin expression were analysed in cerebral regions known for iron accumulation. We show a twofold increase in the number of iron-loaded oligodendrocytes in the basal ganglia and thalamus of Hx-null mice compared to wild-type controls. Interestingly, there was no increase in H- and L-ferritin expression in these regions. This condition is common to several human neurological disorders such as Alzheimer’s disease and Parkinson’s disease in which iron loading is not associated with an adequate increase in ferritin expression. However, a strong reduction in the number of ferritin-positive cells was observed in the cerebral cortex of Hx-null animals. Consistent with increased iron deposits and inadequate ferritin expression, malondialdehyde level and Cu–Zn superoxide dismutase-1 expression were higher in the brain of Hx-null mice than in that of wild-type controls. These data demonstrate that Hx plays an important role in controlling iron distribution within brain, thus suggesting its involvement in iron-related neurodegenerative diseases. PMID:19120692

  4. Default, Cognitive, and Affective Brain Networks in Human Tinnitus

    DTIC Science & Technology

    2014-10-01

    fMRI session 1 in which subjects perform a working memory task (“2-Back”) and a simple detection task (“Detect 1’s”) based on (a) visual and (b...two major brain networks: the cognitive control network (CCN) and the default mode network (DMN). Using fMRI , we are examining brain activation in...subjects performing cognitive tasks that engage the CCN and DMN. One task is heavily reliant on working memory (N-back) and the other on selective

  5. Medical Perspectives on Brain Damage and Development. Revised.

    ERIC Educational Resources Information Center

    McCrae, Marcia Q.

    The author describes damage and normal development of the brain, as well as assessment and intervention with brain-damaged children. After a brief introduction on the complex and delicate process of brain development and a review of incidence, aspects of etiology such as genetic and postnatal causes are discussed. Brain development is examined…

  6. Thyroid hormone receptors in brain development and function.

    PubMed

    Bernal, Juan

    2007-03-01

    Thyroid hormones are important during development of the mammalian brain, acting on migration and differentiation of neural cells, synaptogenesis, and myelination. The actions of thyroid hormones are mediated through nuclear thyroid hormone receptors (TRs) and regulation of gene expression. The purpose of this article is to review the role of TRs in brain maturation. In developing humans maternal and fetal thyroid glands provide thyroid hormones to the fetal brain, but the timing of receptor ontogeny agrees with clinical data on the importance of the maternal thyroid gland before midgestation. Several TR isoforms, which are encoded by the THRA and THRB genes, are expressed in the brain, with the most common being TRalpha1. Deletion of TRalpha1 in rodents is not, however, equivalent to hormone deprivation and, paradoxically, even prevents the effects of hypothyroidism. Unliganded receptor activity is, therefore, probably an important factor in causing the harmful effects of hypothyroidism. Accordingly, expression of a mutant receptor with impaired triiodothyronine (T(3)) binding and dominant negative activity affected cerebellar development and motor performance. TRs are also involved in adult brain function. TRalpha1 deletion, or expression of a dominant negative mutant receptor, induces consistent behavioral changes in adult mice, leading to severe anxiety and morphological changes in the hippocampus.

  7. Growth Hormone Deficiency, Brain Development, and Intelligence

    ERIC Educational Resources Information Center

    Meyer-Bahlburg, Heino F. L.; And Others

    1978-01-01

    Available from: American Medical Association, 535 N. Dearborn Street, Chicago, Illinois 60610. In order to determine what effect, if any, growth hormone (GH) has on human brain development, 29 patients (mean age 11.7 years) with GH deficiency were selected according to the following criteria: no evidence of reversible GH deficiency, onset of…

  8. Cognitive Development in Children with Brain Damage.

    ERIC Educational Resources Information Center

    Bortner, Morton

    Presented is a report on a cross-sectional and longitudinal study concerned with the course of intellectual development in 210 children (6-12 years old) educationally designated as brain damaged (learning disabled and/or behavior problems) and assigned to special school placement. The report is divided into four sections which focus on…

  9. Stress, Early Brain Development, and Behavior.

    ERIC Educational Resources Information Center

    Gunnar, Megan R.; Barr, Ronald G.

    1998-01-01

    Reviews research on the effect of stress hormones, particularly glucocorticoids, on the brain and early development. It describes the psychological and social processes that reduce stress hormone responses to threatening and painful procedures. Research on the cognitive and emotional effects of synthetic glucocorticoids is also discussed.…

  10. Early life stress affects limited regional brain activity in depression.

    PubMed

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-05-03

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients.

  11. Early life stress affects limited regional brain activity in depression

    PubMed Central

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients. PMID:27138376

  12. Default, Cognitive, and Affective Brain Networks in Human Tinnitus

    DTIC Science & Technology

    2015-10-01

    Mapping (SPM8; a freely available fMRI analysis package), fMRI and structural imaging data from each session were aligned to a standard brain atlas...maps are superimposed on a mean of structural scans (average over subjects contributing to the activation maps). 3.3 Implication of results for the

  13. Continuous theta burst transcranial magnetic stimulation affects brain functional connectivity.

    PubMed

    Dan Cao; Yingjie Li; Ling Wei; Yingying Tang

    2016-08-01

    Prefrontal cortex (PFC) plays an important role in the emotional processing as well as in the functional brain network. Hyperactivity in the right dorsolateral prefrontal cortex (DLPFC) would be found in anxious participants. However, it is still unclear what the role of PFC played in a resting functional network. Continuous theta burst transcranial magnetic stimulation (cTBS) is an effective tool to create virtual lesions on brain regions. In this paper, we applied cTBS over right prefrontal area, and investigated the effects of cTBS on the brain activity for functional connectivity by the method of graph theory. We recorded 64-channels EEG on thirteen healthy participants in the resting condition and emotional tasks before and after 40 s of cTBS. This work focused on the effect of cTBS on cortical activities in the resting condition by calculating the coherence between EEG channels and building functional networks before and after cTBS in the delta, theta, alpha and beta bands. Results revealed that 1) The functional connectivity after cTBS was significantly increased compared with that before cTBS in delta, theta, alpha and beta bands in the resting condition; 2) The efficiency-cost reached the maximum before and after cTBS both with the cost about 0.3 in the bands above, which meant that the information transmission of functional brain network with this cost was highly efficient; 3) the clustering coefficient and path length after cTBS was significantly increased in delta, theta and beta bands. In conclusion, cTBS over PFC indeed enhanced the functional connectivity in the resting condition. In addition, the information transmission in the resting brain network was highly efficient with the cost about 0.3.

  14. A hierarchical coherent-gene-group model for brain development.

    PubMed

    Tsigelny, I F; Kouznetsova, V L; Baitaluk, M; Changeux, J-P

    2013-03-01

    We have described a strategy to analyze the data available on brain genes expression, using the concept of coherent-gene groups controlled by transcription factors (TFs). A hierarchical model of gene-expression patterns during brain development was established that identified the genes assumed to behave as functionally coding. Analysis of the concerned signaling pathways and processes showed distinct temporal gene-expression patterns in relation with neurogenesis/synaptogenesis. We identified the hierarchical tree of TF networks that determined the patterns of genes expressed during brain development. Some 'master TFs' at the top level of the hierarchy regulated the expression of gene groups. Enhanced/decreased activity of a few master TFs may explain paradoxes raised by the genetic determination of autism-spectrum disorders and schizophrenia. Our analysis showed gene-TF networks, common or related, to these disorders that exhibited two maxima of expression, one in the prenatal and the other at early postnatal period of development, consistent with the view that these disorders originate in the prenatal period, develop in the postnatal period, and reach the ultimate neural and behavioral phenotype with different sets of genes regulating each of these periods. We proposed a strategy for drug design based upon the temporal patterns of expression of the concerned TFs. Ligands targeting specific TFs can be designed to specifically affect the pathological evolution of the mutated gene(s) in genetically predisposed patients when administered at relevant stages of brain development.

  15. Fetal Glucocorticoid Exposure is Associated with Preadolescent Brain Development

    PubMed Central

    Davis, Elysia Poggi; Sandman, Curt A.; Buss, Claudia; Wing, Deborah A.; Head, Kevin

    2013-01-01

    Background Glucocorticoids play a critical role in normative regulation of fetal brain development. Exposure to excessive levels may have detrimental consequences and disrupt maturational processes. This may especially be true when synthetic glucocorticoids are administered during the fetal period, as they are to women in preterm labor. The present study investigated the consequences for brain development and affective problems of fetal exposure to synthetic glucocorticoids. Methods Brain development and affective problems were evaluated in fifty-four children (56% female), ages 6 to 10, who were full term at birth. Children were recruited into two groups: those with and without fetal exposure to synthetic glucocorticoids. Structural magnetic resonance imaging (MRI) scans were acquired and cortical thickness was determined. Child affective problems were assessed using the Child Behavior Checklist. Results Children in the fetal glucocorticoid exposure group showed significant and bilateral cortical thinning. The largest group differences were in the rostral anterior cingulate cortex (rACC). Over 30% of the rACC was thinner among children with fetal glucocorticoid exposure. Further, children with more affective problems had a thinner left rACC. Conclusions Fetal exposure to synthetic glucocorticoids has neurological consequences that persist for at least 6 to 10 years. Children with fetal glucocorticoid exposure had a thinner cortex primarily in the rACC. Our data indicating that the rACC is associated with affective problems in conjunction with evidence that this region is involved in affective disorders raises the possibility that glucocorticoid associated neurological changes increase vulnerability to mental health problems. PMID:23611262

  16. Recent developments in affective recommender systems

    NASA Astrophysics Data System (ADS)

    Katarya, Rahul; Verma, Om Prakash

    2016-11-01

    Recommender systems (RSs) are playing a significant role since 1990s as they provide relevant, personalized information to the users over the internet. Lots of work have been done in information filtering, utilization, and application related to RS. However, an important area recently draws our attention which is affective recommender system. Affective recommender system (ARS) is latest trending area of research, as publication in this domain are few and recently published. ARS is associated with human behaviour, human factors, mood, senses, emotions, facial expressions, body gesture and physiological with human-computer interaction (HCI). Due to this assortment and various interests, more explanation is required, as it is in premature phase and growing as compared to other fields. So we have done literature review (LR) in the affective recommender systems by doing classification, incorporate reputed articles published from the year 2003 to February 2016. We include articles which highlight, analyse, and perform a study on affective recommender systems. This article categorizes, synthesizes, and discusses the research and development in ARS. We have classified and managed ARS papers according to different perspectives: research gaps, nature, algorithm or method adopted, datasets, the platform on executed, types of information and evaluation techniques applied. The researchers and professionals will positively support this survey article for understanding the current position, research in affective recommender systems and will guide future trends, opportunity and research focus in ARS.

  17. Vibrotactile Discrimination Training Affects Brain Connectivity in Profoundly Deaf Individuals.

    PubMed

    González-Garrido, Andrés A; Ruiz-Stovel, Vanessa D; Gómez-Velázquez, Fabiola R; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Salido-Ruiz, Ricardo A; Espinoza-Valdez, Aurora; Campos, Luis R

    2017-01-01

    Early auditory deprivation has serious neurodevelopmental and cognitive repercussions largely derived from impoverished and delayed language acquisition. These conditions may be associated with early changes in brain connectivity. Vibrotactile stimulation is a sensory substitution method that allows perception and discrimination of sound, and even speech. To clarify the efficacy of this approach, a vibrotactile oddball task with 700 and 900 Hz pure-tones as stimuli [counterbalanced as target (T: 20% of the total) and non-target (NT: 80%)] with simultaneous EEG recording was performed by 14 profoundly deaf and 14 normal-hearing (NH) subjects, before and after a short training period (five 1-h sessions; in 2.5-3 weeks). A small device worn on the right index finger delivered sound-wave stimuli. The training included discrimination of pure tone frequency and duration, and more complex natural sounds. A significant P300 amplitude increase and behavioral improvement was observed in both deaf and normal subjects, with no between group differences. However, a P3 with larger scalp distribution over parietal cortical areas and lateralized to the right was observed in the profoundly deaf. A graph theory analysis showed that brief training significantly increased fronto-central brain connectivity in deaf subjects, but not in NH subjects. Together, ERP tools and graph methods depicted the different functional brain dynamic in deaf and NH individuals, underlying the temporary engagement of the cognitive resources demanded by the task. Our findings showed that the index-fingertip somatosensory mechanoreceptors can discriminate sounds. Further studies are necessary to clarify brain connectivity dynamics associated with the performance of vibrotactile language-related discrimination tasks and the effect of lengthier training programs.

  18. Vibrotactile Discrimination Training Affects Brain Connectivity in Profoundly Deaf Individuals

    PubMed Central

    González-Garrido, Andrés A.; Ruiz-Stovel, Vanessa D.; Gómez-Velázquez, Fabiola R.; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Salido-Ruiz, Ricardo A.; Espinoza-Valdez, Aurora; Campos, Luis R.

    2017-01-01

    Early auditory deprivation has serious neurodevelopmental and cognitive repercussions largely derived from impoverished and delayed language acquisition. These conditions may be associated with early changes in brain connectivity. Vibrotactile stimulation is a sensory substitution method that allows perception and discrimination of sound, and even speech. To clarify the efficacy of this approach, a vibrotactile oddball task with 700 and 900 Hz pure-tones as stimuli [counterbalanced as target (T: 20% of the total) and non-target (NT: 80%)] with simultaneous EEG recording was performed by 14 profoundly deaf and 14 normal-hearing (NH) subjects, before and after a short training period (five 1-h sessions; in 2.5–3 weeks). A small device worn on the right index finger delivered sound-wave stimuli. The training included discrimination of pure tone frequency and duration, and more complex natural sounds. A significant P300 amplitude increase and behavioral improvement was observed in both deaf and normal subjects, with no between group differences. However, a P3 with larger scalp distribution over parietal cortical areas and lateralized to the right was observed in the profoundly deaf. A graph theory analysis showed that brief training significantly increased fronto-central brain connectivity in deaf subjects, but not in NH subjects. Together, ERP tools and graph methods depicted the different functional brain dynamic in deaf and NH individuals, underlying the temporary engagement of the cognitive resources demanded by the task. Our findings showed that the index-fingertip somatosensory mechanoreceptors can discriminate sounds. Further studies are necessary to clarify brain connectivity dynamics associated with the performance of vibrotactile language-related discrimination tasks and the effect of lengthier training programs. PMID:28220063

  19. Development. The decade of the developing brain.

    PubMed

    Jessell, T M; Sanes, J R

    2000-10-01

    Our understanding of neural development has advanced dramatically over the past decade. Significant insights have now been obtained into seven fundamental developmental processes: first, induction of the neural plate; second, regionalization of the neural tube along the dorsoventral and anteroposterior axes; third, generation of neurons and glia from multipotential precursors; fourth, apoptotic cell death; fifth, migration of neurons; sixth, guidance of axons to their targets; and seventh, formation of synapses.

  20. Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function.

    PubMed

    Baruch, Kuti; Deczkowska, Aleksandra; David, Eyal; Castellano, Joseph M; Miller, Omer; Kertser, Alexander; Berkutzki, Tamara; Barnett-Itzhaki, Zohar; Bezalel, Dana; Wyss-Coray, Tony; Amit, Ido; Schwartz, Michal

    2014-10-03

    Aging-associated cognitive decline is affected by factors produced inside and outside the brain. By using multiorgan genome-wide analysis of aged mice, we found that the choroid plexus, an interface between the brain and the circulation, shows a type I interferon (IFN-I)-dependent gene expression profile that was also found in aged human brains. In aged mice, this response was induced by brain-derived signals, present in the cerebrospinal fluid. Blocking IFN-I signaling within the aged brain partially restored cognitive function and hippocampal neurogenesis and reestablished IFN-II-dependent choroid plexus activity, which is lost in aging. Our data identify a chronic aging-induced IFN-I signature, often associated with antiviral response, at the brain's choroid plexus and demonstrate its negative influence on brain function, thereby suggesting a target for ameliorating cognitive decline in aging.

  1. Adolescent brain development in normality and psychopathology

    PubMed Central

    LUCIANA, MONICA

    2014-01-01

    Since this journal’s inception, the field of adolescent brain development has flourished, as researchers have investigated the underpinnings of adolescent risk-taking behaviors. Explanations based on translational models initially attributed such behaviors to executive control deficiencies and poor frontal lobe function. This conclusion was bolstered by evidence that the prefrontal cortex and its interconnections are among the last brain regions to structurally and functionally mature. As substantial heterogeneity of prefrontal function was revealed, applications of neuroeconomic theory to adolescent development led to dual systems models of behavior. Current epidemiological trends, behavioral observations, and functional magnetic resonance imaging based brain activity patterns suggest a quadratic increase in limbically mediated incentive motivation from childhood to adolescence and a decline thereafter. This elevation occurs in the context of immature prefrontal function, so motivational strivings may be difficult to regulate. Theoretical models explain this patterning through brain-based accounts of subcortical–cortical integration, puberty-based models of adolescent sensation seeking, and neurochemical dynamics. Empirically sound tests of these mechanisms, as well as investigations of biology–context interactions, represent the field’s most challenging future goals, so that applications to psychopathology can be refined and so that developmental cascades that incorporate neurobiological variables can be modeled. PMID:24342843

  2. Adolescent brain development in normality and psychopathology.

    PubMed

    Luciana, Monica

    2013-11-01

    Since this journal's inception, the field of adolescent brain development has flourished, as researchers have investigated the underpinnings of adolescent risk-taking behaviors. Explanations based on translational models initially attributed such behaviors to executive control deficiencies and poor frontal lobe function. This conclusion was bolstered by evidence that the prefrontal cortex and its interconnections are among the last brain regions to structurally and functionally mature. As substantial heterogeneity of prefrontal function was revealed, applications of neuroeconomic theory to adolescent development led to dual systems models of behavior. Current epidemiological trends, behavioral observations, and functional magnetic resonance imaging based brain activity patterns suggest a quadratic increase in limbically mediated incentive motivation from childhood to adolescence and a decline thereafter. This elevation occurs in the context of immature prefrontal function, so motivational strivings may be difficult to regulate. Theoretical models explain this patterning through brain-based accounts of subcortical-cortical integration, puberty-based models of adolescent sensation seeking, and neurochemical dynamics. Empirically sound tests of these mechanisms, as well as investigations of biology-context interactions, represent the field's most challenging future goals, so that applications to psychopathology can be refined and so that developmental cascades that incorporate neurobiological variables can be modeled.

  3. Comprehensive transcriptional map of primate brain development

    PubMed Central

    Bakken, Trygve E.; Miller, Jeremy A.; Ding, Song-Lin; Sunkin, Susan M.; Smith, Kimberly A.; Ng, Lydia; Szafer, Aaron; Dalley, Rachel A.; Royall, Joshua J.; Lemon, Tracy; Shapouri, Sheila; Aiona, Kaylynn; Arnold, James; Bennett, Jeffrey L.; Bertagnolli, Darren; Bickley, Kristopher; Boe, Andrew; Brouner, Krissy; Butler, Stephanie; Byrnes, Emi; Caldejon, Shiella; Carey, Anita; Cate, Shelby; Chapin, Mike; Chen, Jefferey; Dee, Nick; Desta, Tsega; Dolbeare, Tim A.; Dotson, Nadia; Ebbert, Amanda; Fulfs, Erich; Gee, Garrett; Gilbert, Terri L.; Goldy, Jeff; Gourley, Lindsey; Gregor, Ben; Gu, Guangyu; Hall, Jon; Haradon, Zeb; Haynor, David R.; Hejazinia, Nika; Hoerder-Suabedissen, Anna; Howard, Robert; Jochim, Jay; Kinnunen, Marty; Kriedberg, Ali; Kuan, Chihchau L.; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Luong, Lon; Mastan, Naveed; May, Ryan; Melchor, Jose; Mosqueda, Nerick; Mott, Erika; Ngo, Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D.; Parry, Sheana; Pendergraft, Julie; Potekhina, Lydia; Reding, Melissa; Riley, Zackery L.; Roberts, Tyson; Rogers, Brandon; Roll, Kate; Rosen, David; Sandman, David; Sarreal, Melaine; Shapovalova, Nadiya; Shi, Shu; Sjoquist, Nathan; Sodt, Andy J.; Townsend, Robbie; Velasquez, Lissette; Wagley, Udi; Wakeman, Wayne B.; White, Cassandra; Bennett, Crissa; Wu, Jennifer; Young, Rob; Youngstrom, Brian L.; Wohnoutka, Paul; Gibbs, Richard A.; Rogers, Jeffrey; Hohmann, John G.; Hawrylycz, Michael J.; Hevner, Robert F.; Molnár, Zoltán; Phillips, John W.; Dang, Chinh; Jones, Allan R.; Amaral, David G.; Bernard, Amy; Lein, Ed S.

    2017-01-01

    The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high resolution transcriptional atlas of rhesus monkey brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical parcellation of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons, and cortical layers and areas acquire adult-like molecular profiles surprisingly late postnatally. Disparate cell populations exhibit distinct developmental timing but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, and approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny. PMID:27409810

  4. Aromatase, estrogen receptors and brain development in fish and amphibians.

    PubMed

    Coumailleau, Pascal; Pellegrini, Elisabeth; Adrio, Fátima; Diotel, Nicolas; Cano-Nicolau, Joel; Nasri, Ahmed; Vaillant, Colette; Kah, Olivier

    2015-02-01

    Estrogens affect brain development of vertebrates, not only by impacting activity and morphology of existing circuits, but also by modulating embryonic and adult neurogenesis. The issue is complex as estrogens can not only originate from peripheral tissues, but also be locally produced within the brain itself due to local aromatization of androgens. In this respect, teleost fishes are quite unique because aromatase is expressed exclusively in radial glial cells, which represent pluripotent cells in the brain of all vertebrates. Expression of aromatase in the brain of fish is also strongly stimulated by estrogens and some androgens. This creates a very intriguing positive auto-regulatory loop leading to dramatic aromatase expression in sexually mature fish with elevated levels of circulating steroids. Looking at the effects of estrogens or anti-estrogens in the brain of adult zebrafish showed that estrogens inhibit rather than stimulate cell proliferation and newborn cell migration. The functional meaning of these observations is still unclear, but these data suggest that the brain of fish is experiencing constant remodeling under the influence of circulating steroids and brain-derived neurosteroids, possibly permitting a diversification of sexual strategies, notably hermaphroditism. Recent data in frogs indicate that aromatase expression is limited to neurons and do not concern radial glial cells. Thus, until now, there is no other example of vertebrates in which radial progenitors express aromatase. This raises the question of when and why these new features were gained and what are their adaptive benefits. This article is part of a Special Issue entitled: Nuclear receptors in animal development.

  5. Breakfast staple types affect brain gray matter volume and cognitive function in healthy children.

    PubMed

    Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kawashima, Ryuta

    2010-12-08

    Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ) in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume) and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent) of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI) of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence.

  6. Identification of Differentially Expressed Genes through Integrated Study of Alzheimer’s Disease Affected Brain Regions

    PubMed Central

    Berretta, Regina; Moscato, Pablo

    2016-01-01

    Background Alzheimer’s disease (AD) is the most common form of dementia in older adults that damages the brain and results in impaired memory, thinking and behaviour. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. In the past decade, several studies have reported many genes that are associated with AD. This wealth of information has become difficult to follow and interpret as most of the results are conflicting. In that case, it is worth doing an integrated study of multiple datasets that helps to increase the total number of samples and the statistical power in detecting biomarkers. In this study, we present an integrated analysis of five different brain region datasets and introduce new genes that warrant further investigation. Methods The aim of our study is to apply a novel combinatorial optimisation based meta-analysis approach to identify differentially expressed genes that are associated to AD across brain regions. In this study, microarray gene expression data from 161 samples (74 non-demented controls, 87 AD) from the Entorhinal Cortex (EC), Hippocampus (HIP), Middle temporal gyrus (MTG), Posterior cingulate cortex (PC), Superior frontal gyrus (SFG) and visual cortex (VCX) brain regions were integrated and analysed using our method. The results are then compared to two popular meta-analysis methods, RankProd and GeneMeta, and to what can be obtained by analysing the individual datasets. Results We find genes related with AD that are consistent with existing studies, and new candidate genes not previously related with AD. Our study confirms the up-regualtion of INFAR2 and PTMA along with the down regulation of GPHN, RAB2A, PSMD14 and FGF. Novel genes PSMB2, WNK1, RPL15, SEMA4C, RWDD2A and LARGE are found to be differentially expressed across all brain regions. Further investigation on these genes may provide new insights into the development of AD

  7. Circadian clocks, brain function, and development.

    PubMed

    Frank, Ellen; Sidor, Michelle M; Gamble, Karen L; Cirelli, Chiara; Sharkey, Katherine M; Hoyle, Nathaniel; Tikotzky, Liat; Talbot, Lisa S; McCarthy, Michael J; Hasler, Brant P

    2013-12-01

    Circadian clocks are temporal interfaces that organize biological systems and behavior to dynamic external environments. Components of the molecular clock are expressed throughout the brain and are centrally poised to play an important role in brain function. This paper focuses on key issues concerning the relationship among circadian clocks, brain function, and development, and discusses three topic areas: (1) sleep and its relationship to the circadian system; (2) systems development and psychopathology (spanning the prenatal period through late life); and (3) circadian factors and their application to neuropsychiatric disorders. We also explore circadian genetics and psychopathology and the selective pressures on the evolution of clocks. Last, a lively debate is presented on whether circadian factors are central to mood disorders. Emerging from research on circadian rhythms is a model of the interaction among genes, sleep, and the environment that converges on the circadian clock to influence susceptibility to developing psychopathology. This model may lend insight into effective treatments for mood disorders and inform development of new interventions.

  8. Antenatal steroids and the developing brain

    PubMed Central

    Whitelaw, A.; Thoresen, M.

    2000-01-01

    Randomised clinical trials show that two injections of corticosteroid into the mother before preterm delivery reduce respiratory distress syndrome, neonatal mortality, and intraventricular haemorrhage. However, repeated courses of antenatal steroid are not backed by such evidence of safety and efficacy. Animal studies have shown that maternal corticosteroid delays myelination and reduces the growth of all fetal brain areas particularly the hippocampus. Corticosteroids may reduce or enhance hypoxic-ischaemic injury to the developing brain depending on timing and dosage. Clinical trials of maternally administered corticosteroid show no evidence of increased disability on follow up but numbers are small. Postnatal trials of dexamethasone when brain maturity is still preterm show a significant increase in later disability in the dexamethasone treated groups. There is evidence from randomised trials, retrospective data, experiments on pregnant mice, and the chemical make up of the preparations that betamethasone may be safer and more protective of the immature brain than dexamethasone. Single course corticosteroid treatment before preterm delivery must still be recommended as a life saving and cost effective intervention, but clinicians may wish to change from using dexamethasone to betamethasone. In view of the animal and postnatal data, clinicians should be cautious with repeated courses of antenatal corticosteroids and repetition may be unnecessary for lung maturity.

 PMID:10952714

  9. Tasting calories differentially affects brain activation during hunger and satiety.

    PubMed

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2015-02-15

    An important function of eating is ingesting energy. Our objectives were to assess whether oral exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to determine in how far these responses are modulated by hunger state and sweetness. Thirty women tasted three stimuli in two motivational states (hunger and satiety) while their brain responses were measured using functional magnetic resonance imaging in a randomized crossover design. Stimuli were solutions of sucralose (sweet, no energy), maltodextrin (non-sweet, energy) and sucralose+maltodextrin (sweet, energy). We found no main effect of energy content and no interaction between energy content and sweetness. However, there was an interaction between hunger state and energy content in the median cingulate (bilaterally), ventrolateral prefrontal cortex, anterior insula and thalamus. This indicates that the anterior insula and thalamus, areas in which hunger state and taste of a stimulus are integrated, also integrate hunger state with caloric content of a taste stimulus. Furthermore, in the median cingulate and ventrolateral prefrontal cortex, tasting energy resulted in more activation during satiety compared to hunger. This finding indicates that these areas, which are known to be involved in processes that require approach and avoidance, are also involved in guiding ingestive behavior. In conclusion, our results suggest that energy sensing is a hunger state dependent process, in which the median cingulate, ventrolateral prefrontal cortex, anterior insula and thalamus play a central role by integrating hunger state with stimulus relevance.

  10. Structural brain development between childhood and adulthood: Convergence across four longitudinal samples.

    PubMed

    Mills, Kathryn L; Goddings, Anne-Lise; Herting, Megan M; Meuwese, Rosa; Blakemore, Sarah-Jayne; Crone, Eveline A; Dahl, Ronald E; Güroğlu, Berna; Raznahan, Armin; Sowell, Elizabeth R; Tamnes, Christian K

    2016-11-01

    Longitudinal studies including brain measures acquired through magnetic resonance imaging (MRI) have enabled population models of human brain development, crucial for our understanding of typical development as well as neurodevelopmental disorders. Brain development in the first two decades generally involves early cortical grey matter volume (CGMV) increases followed by decreases, and monotonic increases in cerebral white matter volume (CWMV). However, inconsistencies regarding the precise developmental trajectories call into question the comparability of samples. This issue can be addressed by conducting a comprehensive study across multiple datasets from diverse populations. Here, we present replicable models for gross structural brain development between childhood and adulthood (ages 8-30years) by repeating analyses in four separate longitudinal samples (391 participants; 852 scans). In addition, we address how accounting for global measures of cranial/brain size affect these developmental trajectories. First, we found evidence for continued development of both intracranial volume (ICV) and whole brain volume (WBV) through adolescence, albeit following distinct trajectories. Second, our results indicate that CGMV is at its highest in childhood, decreasing steadily through the second decade with deceleration in the third decade, while CWMV increases until mid-to-late adolescence before decelerating. Importantly, we show that accounting for cranial/brain size affects models of regional brain development, particularly with respect to sex differences. Our results increase confidence in our knowledge of the pattern of brain changes during adolescence, reduce concerns about discrepancies across samples, and suggest some best practices for statistical control of cranial volume and brain size in future studies.

  11. The development of brain network architecture.

    PubMed

    Wierenga, Lara M; van den Heuvel, Martijn P; van Dijk, Sarai; Rijks, Yvonne; de Reus, Marcel A; Durston, Sarah

    2016-02-01

    Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes in network topology and regional developmental patterns during childhood and adolescence. We acquired two sets of Diffusion Weighted Imaging-scans and anatomical T1-weighted scans. The first dataset included 85 typically developing individuals (53 males; 32 females), aged between 7 and 23 years and was acquired on a Philips Achieva 1.5 Tesla scanner. A second dataset (N = 38) was acquired on a different (but identical) 1.5 T scanner and was used for independent replication of our results. We reconstructed whole brain networks using tractography. We operationalized fiber tract development as changes in mean diffusivity and radial diffusivity with age. Most fibers showed maturational changes in mean and radial diffusivity values throughout childhood and adolescence, likely reflecting increasing white matter integrity. The largest age-related changes were observed in association fibers within and between the frontal and parietal lobes. Furthermore, there was a simultaneous age-related decrease in average path length (P < 0.0001), increase in node strength (P < 0.0001) as well as network clustering (P = 0.001), which may reflect fine-tuning of topological organization. These results suggest a sequential maturational model where connections between unimodal regions strengthen in childhood, followed by connections from these unimodal regions to association regions, while adolescence is characterized by the strengthening of connections between association regions within the frontal and parietal cortex. Hum Brain Mapp 37:717-729, 2016. © 2015 Wiley Periodicals, Inc.

  12. A preliminary comparison of flat affect schizophrenics and brain-damaged patients on measures of affective processing.

    PubMed

    Borod, J C; Alpert, M; Brozgold, A; Martin, C; Welkowitz, J; Diller, L; Peselow, E; Angrist, B; Lieberman, A

    1989-04-01

    Flat affect is a major component of schizophrenia and is often also seen in neurological disorders. A preliminary set of comparisons were conducted to delineate neuropsychological mechanisms underlying flat affect in schizophrenia, and new measures are described for the assessment of affective deficits in clinical populations. Subjects were schizophrenic with flat affect (SZs), right brain-damaged (RBD), Parkinson's Disease (PDs), and normal control (NC) right-handed adults. Subjects were administered affective measures of expression and perception in both facial and vocal channels. For both perceptual and expressive tasks the SZs performed significantly less accurately than the NCs and the PDs but did not differ from the RBDs. This was the case for both face and voice. This finding lends support to the speculation that right hemisphere mechanisms, especially cortical ones, may be compromised among schizophrenics with flat affect.

  13. Sustained sleep fragmentation affects brain temperature, food intake and glucose tolerance in mice.

    PubMed

    Baud, Maxime O; Magistretti, Pierre J; Petit, Jean-Marie

    2013-02-01

    Sleep fragmentation is present in numerous sleep pathologies and constitutes a major feature of patients with obstructive sleep apnea. A prevalence of metabolic syndrome, diabetes and obesity has been shown to be associated to obstructive sleep apnea. While sleep fragmentation has been shown to impact sleep homeostasis, its specific effects on metabolic variables are only beginning to emerge. In this context, it is important to develop realistic animal models that would account for chronic metabolic effects of sleep fragmentation. We developed a 14-day model of instrumental sleep fragmentation in mice, and show an impact on both brain-specific and general metabolism. We first report that sleep fragmentation increases food intake without affecting body weight. This imbalance was accompanied by the inability to adequately decrease brain temperature during fragmented sleep. In addition, we report that sleep-fragmented mice develop glucose intolerance. We also observe that sleep fragmentation slightly increases the circadian peak level of glucocorticoids, a factor that may be involved in the observed metabolic effects. Our results confirm that poor-quality sleep with sustained sleep fragmentation has similar effects on general metabolism as actual sleep loss. Altogether, these results strongly suggest that sleep fragmentation is an aggravating factor for the development of metabolic dysfunctions that may be relevant for sleep disorders such as obstructive sleep apnea.

  14. Developing Attention: Behavioral and Brain Mechanisms

    PubMed Central

    Posner, Michael I.; Rothbart, Mary K.; Sheese, Brad E.; Voelker, Pascale

    2014-01-01

    Brain networks underlying attention are present even during infancy and are critical for the developing ability of children to control their emotions and thoughts. For adults, individual differences in the efficiency of attentional networks have been related to neuromodulators and to genetic variations. We have examined the development of attentional networks and child temperament in a longitudinal study from infancy (7 months) to middle childhood (7 years). Early temperamental differences among infants, including smiling and laughter and vocal reactivity, are related to self-regulation abilities at 7 years. However, genetic variations related to adult executive attention, while present in childhood, are poor predictors of later control, in part because individual genetic variationmay have many small effects and in part because their influence occurs in interaction with caregiver behavior and other environmental influences. While brain areas involved in attention are present during infancy, their connectivity changes and leads to improvement in control of behavior. It is also possible to influence control mechanisms through training later in life. The relation between maturation and learning may allow advances in our understanding of human brain development. PMID:25110757

  15. Maternal antibodies and developing blood-brain barrier.

    PubMed

    Kowal, Czeslawa; Athanassiou, Andrew; Chen, Huiyi; Diamond, Betty

    2015-12-01

    We briefly review the protective role of maternal antibodies during fetal development and at early postnatal stages. We describe antibody delivery to fetuses, particularly in the context of the developing blood-brain barrier (BBB), and present the essential concepts regarding the adult BBB, together with existing information on the prenatal developing BBB. We focus on maternal antibody transfer to the developing brain and the consequences of the presence of pathogenic antibodies at early stages of brain development on subsequent brain dysfunction.

  16. Brain network analysis reveals affected connectome structure in bipolar I disorder.

    PubMed

    Collin, Guusje; van den Heuvel, Martijn P; Abramovic, Lucija; Vreeker, Annabel; de Reus, Marcel A; van Haren, Neeltje E M; Boks, Marco P M; Ophoff, Roel A; Kahn, René S

    2016-01-01

    The notion that healthy brain function emerges from coordinated neural activity constrained by the brain's network of anatomical connections--i.e., the connectome--suggests that alterations in the connectome's wiring pattern may underlie brain disorders. Corroborating this hypothesis, studies in schizophrenia are indicative of altered connectome architecture including reduced communication efficiency, disruptions of central brain hubs, and affected "rich club" organization. Whether similar deficits are present in bipolar disorder is currently unknown. This study examines structural connectome topology in 216 bipolar I disorder patients as compared to 144 healthy controls, focusing in particular on central regions (i.e., brain hubs) and connections (i.e., rich club connections, interhemispheric connections) of the brain's network. We find that bipolar I disorder patients exhibit reduced global efficiency (-4.4%, P =0.002) and that this deficit relates (r = 0.56, P < 0.001) to reduced connectivity strength of interhemispheric connections (-13.0%, P = 0.001). Bipolar disorder patients were found not to show predominant alterations in the strength of brain hub connections in general, or of connections spanning brain hubs (i.e., "rich club" connections) in particular (all P > 0.1). These findings highlight a role for aberrant brain network architecture in bipolar I disorder with reduced global efficiency in association with disruptions in interhemispheric connectivity, while the central "rich club" system appears not to be particularly affected.

  17. Can Cholesterol Metabolism Modulation Affect Brain Function and Behavior?

    PubMed

    Cartocci, Veronica; Servadio, Michela; Trezza, Viviana; Pallottini, Valentina

    2017-02-01

    Cholesterol is an important component for cell physiology. It regulates the fluidity of cell membranes and determines the physical and biochemical properties of proteins. In the central nervous system, cholesterol controls synapse formation and function and supports the saltatory conduction of action potential. In recent years, the role of cholesterol in the brain has caught the attention of several research groups since a breakdown of cholesterol metabolism has been associated with different neurodevelopmental and neurodegenerative diseases, and interestingly also with psychiatric conditions. The aim of this review is to summarize the current knowledge about the connection between cholesterol dysregulation and various neurologic and psychiatric disorders based on clinical and preclinical studies. J. Cell. Physiol. 232: 281-286, 2017. © 2016 Wiley Periodicals, Inc.

  18. Visual performance and brain structures in the developing brain of pre-term infants.

    PubMed

    Ramenghi, Luca Antonio; Ricci, Daniela; Mercuri, Eugenio; Groppo, Michela; De Carli, Agnese; Ometto, Alessandra; Fumagalli, Monica; Bassi, Laura; Pisoni, Silvia; Cioni, Giovanni; Mosca, Fabio

    2010-07-01

    The presence of abnormal visual function has been related to overt lesions in the thalami, peritrigonal white matter (such as cavitational-necrotic periventricular leucomalacia) and optic radiations, and also to the extent of occipital cortex involvement. The normal development of visual function seems to depend on the integrity of a network that includes not only optic radiations and the primary visual cortex but also other cortical and subcortical areas, such as the frontal or temporal lobes or basal ganglia, which have been found to play a topical role in the development of vision. Therefore, the complex functions and functional connectivity of the developing brain of premature infants can be studied only with highly sophisticated techniques such as diffusion tensor tractography. The combined use of visual tests and neonatal structural and functional neuroimaging, which have become available for newborn infants, provides a better understanding of the correlation between structure and function from early life. This appears to be particularly relevant considering the essential role of early visual function in cognitive development. The identification of early visual impairment is also important, as it allows for early enrolment in intervention programmes. The association of clinical and functional studies to newer imaging techniques, which are being increasingly used also in neonates, are likely to provide further information on early aspects of vision and the mechanisms underlying brain plasticity, which are still not fully understood. Early exposure to a difficult postnatal environment together with early and unexpected removal from a protective milieu are exclusive and peculiar factors of prematurity that interfere with the normal development of the visual system in pre-term babies. The problem is further compounded by the influence of different perinatal brain lesions affecting the developing brain of premature babies. Nevertheless, in the last few decades

  19. Environmental enrichment lessens cognitive decline in APP23 mice without affecting brain sirtuin expression.

    PubMed

    Polito, Letizia; Chierchia, Armando; Tunesi, Marta; Bouybayoune, Ihssane; Kehoe, Patrick Gavin; Albani, Diego; Forloni, Gianluigi

    2014-01-01

    Environmental enrichment (EE) is a non-pharmacological intervention reported to counteract pathological signs in models of Alzheimer's disease (AD). We developed EE protocols in APP23 mice and evaluated how they influenced cognitive decline and brain amyloid-β (Aβ) burden. We also investigated the involvement of sirtuins (SIRTs) as a possible molecular mediator of EE, by assessing hippocampal and cortical mRNA and protein levels of the SIRT family members (SIRT1 to SIRT7). APP23 transgenic mice were moved to EE cages (TG-EEs) starting from 3 months of age. TG-EEs were compared to transgenic mice housed in standard cages (TG-SHs) and to wild-type littermates in the two housing conditions (WT-EEs and WT-SHs). At 7 months of age, all mice were tested for behavioral performance with Morris Water Maze (MWM) and visual novel Object Recognition Test (vORT). After a month, a group underwent biochemical analyses, while another group continued in the EE environment till 18 months of age, when Aβ plaque load was assessed. At 7 months, TG-SHs had impaired behavioral performance in MWM and vORT. In contrast, TG-EE mice had restored behavioral performance. At 8 months, EE did not affect AβPP expression or processing, Aβ40/42, pGlu-Aβ3-40/3-42, or Aβ oligomer level. The expression of two Aβ degrading enzymes (insulin degrading enzyme and neprilysin) was not modulated by EE. Brain sirtuin mRNA and protein levels were unchanged, while brain-derived neurotrophic factor expression increased after EE. Aβ deposition was attenuated in 18-month-old TG-EE mice, without apparent reduction of neuroinflammatory signs. We suggest that EE had a beneficial effect on cognitive performance and lessened long-term Aβ accumulation, but brain sirtuin expression was not modulated when cognitive impairment was restored.

  20. Peroxisomes in brain development and function☆

    PubMed Central

    Berger, Johannes; Dorninger, Fabian; Forss-Petter, Sonja; Kunze, Markus

    2016-01-01

    Peroxisomes contain numerous enzymatic activities that are important for mammalian physiology. Patients lacking either all peroxisomal functions or a single enzyme or transporter function typically develop severe neurological deficits, which originate from aberrant development of the brain, demyelination and loss of axonal integrity, neuroinflammation or other neurodegenerative processes. Whilst correlating peroxisomal properties with a compilation of pathologies observed in human patients and mouse models lacking all or individual peroxisomal functions, we discuss the importance of peroxisomal metabolites and tissue- and cell type-specific contributions to the observed brain pathologies. This enables us to deconstruct the local and systemic contribution of individual metabolic pathways to specific brain functions. We also review the recently discovered variability of pathological symptoms in cases with unexpectedly mild presentation of peroxisome biogenesis disorders. Finally, we explore the emerging evidence linking peroxisomes to more common neurological disorders such as Alzheimer’s disease, autism and amyotrophic lateral sclerosis. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann. PMID:26686055

  1. Evaluating How Circle of Willis Topology Affects Embolus Distribution in the Brain

    NASA Astrophysics Data System (ADS)

    Jani, Neel; Mukherjee, Debanjan; Shadden, Shawn

    2016-11-01

    Embolic stroke occurs when fragmented cellular or acellular material (emboli) travels to the brain to occlude an artery. Understanding the transport of emboli across unsteady, pulsatile flow in complex arterial geometries is challenging and influenced by a range of factors, including patient anatomy. The work herein develops the modeling and mechanistic understanding of how embolus transport is affected by the arterial connections at the base of the brain known as the Circle of Willis (CoW). A majority of the human population has an incomplete CoW anatomy, with connections either missing or ill-developed. We employ numerical simulations combining image-based modeling, computational fluid dynamics, discrete particle dynamics, and a sampling based analysis to compare collateral flow through the most prevalent CoW topologies, to determine embolus distribution fractions among vessels in the CoW, and to investigate the role of inertial effects in causing differences in flow and embolus distribution. The computational framework developed enables characterization of the complex interplay of anatomy, hemodynamics, and embolus properties in the context of embolic stroke as well as statistical analysis of embolism risks across common CoW variations.

  2. Seasonal difference in brain serotonin transporter binding predicts symptom severity in patients with seasonal affective disorder.

    PubMed

    Mc Mahon, Brenda; Andersen, Sofie B; Madsen, Martin K; Hjordt, Liv V; Hageman, Ida; Dam, Henrik; Svarer, Claus; da Cunha-Bang, Sofi; Baaré, William; Madsen, Jacob; Hasholt, Lis; Holst, Klaus; Frokjaer, Vibe G; Knudsen, Gitte M

    2016-05-01

    Cross-sectional neuroimaging studies in non-depressed individuals have demonstrated an inverse relationship between daylight minutes and cerebral serotonin transporter; this relationship is modified by serotonin-transporter-linked polymorphic region short allele carrier status. We here present data from the first longitudinal investigation of seasonal serotonin transporter fluctuations in both patients with seasonal affective disorder and in healthy individuals. Eighty (11)C-DASB positron emission tomography scans were conducted to quantify cerebral serotonin transporter binding; 23 healthy controls with low seasonality scores and 17 patients diagnosed with seasonal affective disorder were scanned in both summer and winter to investigate differences in cerebral serotonin transporter binding across groups and across seasons. The two groups had similar cerebral serotonin transporter binding in the summer but in their symptomatic phase during winter, patients with seasonal affective disorder had higher serotonin transporter than the healthy control subjects (P = 0.01). Compared to the healthy controls, patients with seasonal affective disorder changed their serotonin transporter significantly less between summer and winter (P < 0.001). Further, the change in serotonin transporter was sex- (P = 0.02) and genotype- (P = 0.04) dependent. In the patients with seasonal affective disorder, the seasonal change in serotonin transporter binding was positively associated with change in depressive symptom severity, as indexed by Hamilton Rating Scale for Depression - Seasonal Affective Disorder version scores (P = 0.01). Our findings suggest that the development of depressive symptoms in winter is associated with a failure to downregulate serotonin transporter levels appropriately during exposure to the environmental stress of winter, especially in individuals with high predisposition to affective disorders.media-1vid110.1093/brain/aww043_video_abstractaww043_video_abstract.

  3. Axonal localization of Ca2+-dependent activator protein for secretion 2 is critical for subcellular locality of brain-derived neurotrophic factor and neurotrophin-3 release affecting proper development of postnatal mouse cerebellum.

    PubMed

    Sadakata, Tetsushi; Kakegawa, Wataru; Shinoda, Yo; Hosono, Mayu; Katoh-Semba, Ritsuko; Sekine, Yukiko; Sato, Yumi; Saruta, Chihiro; Ishizaki, Yasuki; Yuzaki, Michisuke; Kojima, Masami; Furuichi, Teiichi

    2014-01-01

    Ca2+-dependent activator protein for secretion 2 (CAPS2) is a protein that is essential for enhanced release of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) from cerebellar granule cells. We previously identified dex3, a rare alternative splice variant of CAPS2, which is overrepresented in patients with autism and is missing an exon 3 critical for axonal localization. We recently reported that a mouse model CAPS2Δex3/Δex3 expressing dex3 showed autistic-like behavioral phenotypes including impaired social interaction and cognition and increased anxiety in an unfamiliar environment. Here, we verified impairment in axonal, but not somato-dendritic, localization of dex3 protein in cerebellar granule cells and demonstrated cellular and physiological phenotypes in postnatal cerebellum of CAPS2Δex3/Δex3 mice. Interestingly, both BDNF and NT-3 were markedly reduced in axons of cerebellar granule cells, resulting in a significant decrease in their release. As a result, dex3 mice showed developmental deficits in dendritic arborization of Purkinje cells, vermian lobulation and fissurization, and granule cell precursor proliferation. Paired-pulse facilitation at parallel fiber-Purkinje cell synapses was also impaired. Together, our results indicate that CAPS2 plays an important role in subcellular locality (axonal vs. somato-dendritic) of enhanced BDNF and NT-3 release, which is indispensable for proper development of postnatal cerebellum.

  4. Puberty-related influences on brain development.

    PubMed

    Giedd, Jay N; Clasen, Liv S; Lenroot, Rhoshel; Greenstein, Dede; Wallace, Gregory L; Ordaz, Sarah; Molloy, Elizabeth A; Blumenthal, Jonathan D; Tossell, Julia W; Stayer, Catherine; Samango-Sprouse, Carole A; Shen, Dinggang; Davatzikos, Christos; Merke, Deborah; Chrousos, George P

    2006-07-25

    Puberty is a time of striking changes in cognition and behavior. To indirectly assess the effects of puberty-related influences on the underlying neuroanatomy of these behavioral changes we will review and synthesize neuroimaging data from typically developing children and adolescents and from those with anomalous hormone or sex chromosome profiles. The trajectories (size by age) of brain morphometry differ between boys and girls, with girls generally reaching peak gray matter thickness 1-2 years earlier than boys. Both boys and girls with congenital adrenal hyperplasia (characterized by high levels of intrauterine testosterone), have smaller amygdala volume but the brain morphometry of girls with CAH did not otherwise significantly differ from controls. Subjects with XXY have gray matter reductions in the insula, temporal gyri, amygdala, hippocampus, and cingulate-areas consistent with the language-based learning difficulties common in this group.

  5. Brain systems for assessing the affective value of faces

    PubMed Central

    Said, Christopher P.; Haxby, James V.; Todorov, Alexander

    2011-01-01

    Cognitive neuroscience research on facial expression recognition and face evaluation has proliferated over the past 15 years. Nevertheless, large questions remain unanswered. In this overview, we discuss the current understanding in the field, and describe what is known and what remains unknown. In §2, we describe three types of behavioural evidence that the perception of traits in neutral faces is related to the perception of facial expressions, and may rely on the same mechanisms. In §3, we discuss cortical systems for the perception of facial expressions, and argue for a partial segregation of function in the superior temporal sulcus and the fusiform gyrus. In §4, we describe the current understanding of how the brain responds to emotionally neutral faces. To resolve some of the inconsistencies in the literature, we perform a large group analysis across three different studies, and argue that one parsimonious explanation of prior findings is that faces are coded in terms of their typicality. In §5, we discuss how these two lines of research—perception of emotional expressions and face evaluation—could be integrated into a common, cognitive neuroscience framework. PMID:21536552

  6. Thyroid hormones states and brain development interactions.

    PubMed

    Ahmed, Osama M; El-Gareib, A W; El-Bakry, A M; Abd El-Tawab, S M; Ahmed, R G

    2008-04-01

    The action of thyroid hormones (THs) in the brain is strictly regulated, since these hormones play a crucial role in the development and physiological functioning of the central nervous system (CNS). Disorders of the thyroid gland are among the most common endocrine maladies. Therefore, the objective of this study was to identify in broad terms the interactions between thyroid hormone states or actions and brain development. THs regulate the neuronal cytoarchitecture, neuronal growth and synaptogenesis, and their receptors are widely distributed in the CNS. Any deficiency or increase of them (hypo- or hyperthyroidism) during these periods may result in an irreversible impairment, morphological and cytoarchitecture abnormalities, disorganization, maldevelopment and physical retardation. This includes abnormal neuronal proliferation, migration, decreased dendritic densities and dendritic arborizations. This drastic effect may be responsible for the loss of neurons vital functions and may lead, in turn, to the biochemical dysfunctions. This could explain the physiological and behavioral changes observed in the animals or human during thyroid dysfunction. It can be hypothesized that the sensitive to the thyroid hormones is not only remarked in the neonatal period but also prior to birth, and THs change during the development may lead to the brain damage if not corrected shortly after the birth. Thus, the hypothesis that neurodevelopmental abnormalities might be related to the thyroid hormones is plausible. Taken together, the alterations of neurotransmitters and disturbance in the GABA, adenosine and pro/antioxidant systems in CNS due to the thyroid dysfunction may retard the neurogenesis and CNS growth and the reverse is true. In general, THs disorder during early life may lead to distortions rather than synchronized shifts in the relative development of several central transmitter systems that leads to a multitude of irreversible morphological and biochemical

  7. Developing Hierarchical Structures Integrating Cognition and Affect.

    ERIC Educational Resources Information Center

    Hurst, Barbara Martin

    Several categories of the affective domain are important to the schooling process. Schools are delegated the responsibility of helping students to clarify their esthetic, instrumental, and moral values. Three areas of affect are related to student achievement: subject-related affect, school-related affect, and academic self concept. In addition,…

  8. Developmental thyroid hormone insufficiency and brain development: A role for brain-derived neurotrophic factor (BDNF)?*

    EPA Science Inventory

    Thyroid hormones (TH) are essential for normal brain development. Even subclinical hypothyroidism experienced in utero can result in neuropsychological deficits in children despite normal thyroid status at birth. Neurotrophins have been implicated in a host of brain cellular func...

  9. Drinking Water and the Developing Brain.

    PubMed

    Silbergeld, Ellen K

    2016-01-01

    While the problem of unsafe tap water in Flint, Michigan fueled outrage and better awareness in regard to the hazards of lead in tap water, the problem has existed in city after city for years in the US and in other countries. Our author, a winner of the MacArthur Foundation "genius" grant for her work in identifying preventable causes of human disease related to environmental exposures, points out that problems extend well beyond lead. Many potentially harmful contaminants have yet to be evaluated, much less regulated. Her article examines a number of neurotoxins and related issues as they pertain to brain development.

  10. Epigenetic Influences on Brain Development and Plasticity

    PubMed Central

    Fagiolini, Michela; Jensen, Catherine L.; Champagne, Frances A.

    2009-01-01

    A fine interplay exists between sensory experience and innate genetic programs leading to the sculpting of neuronal circuits during early brain development. Recent evidence suggests that the dynamic regulation of gene expression through epigenetic mechanisms is at the interface between environmental stimuli and long-lasting molecular, cellular and complex behavioral phenotypes acquired during periods of developmental plasticity. Understanding these mechanisms may give insight into the formation of critical periods and provide new strategies for increasing plasticity and adaptive change in adulthood. PMID:19545993

  11. Epigenetic and transgenerational reprogramming of brain development.

    PubMed

    Bale, Tracy L

    2015-06-01

    Neurodevelopmental programming - the implementation of the genetic and epigenetic blueprints that guide and coordinate normal brain development - requires tight regulation of transcriptional processes. During prenatal and postnatal time periods, epigenetic processes fine-tune neurodevelopment towards an end product that determines how an organism interacts with and responds to exposures and experiences throughout life. Epigenetic processes also have the ability to reprogramme the epigenome in response to environmental challenges, such as maternal stress, making the organism more or less adaptive depending on the future challenges presented. Epigenetic marks generated within germ cells as a result of environmental influences throughout life can also shape future generations long before conception occurs.

  12. Brain evolution and development: adaptation, allometry and constraint

    PubMed Central

    Barton, Robert A.

    2016-01-01

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. PMID:27629025

  13. Control of Brain Development, Function, and Behavior by the Microbiome

    PubMed Central

    Sampson, Timothy R.; Mazmanian, Sarkis K.

    2015-01-01

    Animals share an intimate and life-long partnership with a myriad of resident microbial species, collectively referred to as the microbiota. Symbiotic microbes have been shown to regulate nutrition and metabolism, and are critical for the development and function of the immune system. More recently, studies have suggested that gut bacteria can impact neurological outcomes – altering behavior and potentially affecting the onset and/or severity of nervous system disorders. In this review, we highlight emerging evidence that the microbiome extends its influence to the brain via various pathways connecting the gut to the central nervous system. While understanding and appreciation of a gut microbial impact on neurological function is nascent, unraveling gut-microbiome-brain connections holds the promise of transforming the neurosciences and revealing potentially novel etiologies for psychiatric and neurodegenerative disorders. PMID:25974299

  14. Using MARCM to study Drosophila brain development.

    PubMed

    Viktorin, Gudrun

    2014-01-01

    Mosaic analysis with a repressible cell marker (MARCM) generates positively labeled, wild-type or mutant mitotic clones by unequally distributing a repressor of a cell lineage marker, originally tubP-driven GAL80 repressing the GAL4/UAS system. Variations of the technique include labeling of both sister clones (twin spot MARCM), the simultaneous use of two different drivers within the same clone (dual MARCM), as well as the use of different repressible transcription systems (Q-MARCM). MARCM can be combined with any UAS-based construct, such as localized GFP fusions to visualize subcellular compartments, genes for rescue and ectopic expression, and modifiers of neural activity. A related technique, the twin spot generator, generates positively labeled clones without the use of a repressor, thus minimizing the lag time between clone induction and appearance of label. The present protocol provides a detailed description of a standard MARCM analysis of brain development that includes generation of MARCM stocks and crosses, induction of clones, brain dissection at various stages of development, immunohistochemistry, and confocal microscopy, and can be modified for similar experiments involving mitotic clones.

  15. Peripheral lipopolysaccharide administration transiently affects expression of brain-derived neurotrophic factor, corticotropin and proopiomelanocortin in mouse brain.

    PubMed

    Schnydrig, Sabine; Korner, Lukas; Landweer, Svenja; Ernst, Beat; Walker, Gaby; Otten, Uwe; Kunz, Dieter

    2007-12-11

    Peripheral inflammation induced by intraperitoneal (i.p.) injection of Lipopolysaccharide (LPS) is known to cause functional impairments in the brain affecting memory and learning. One of mechanisms may be the interference with neurotrophin (NT) expression and function. In the current study we administered a single, high dose of LPS (3mg/kg, i.p.) into mice and investigated changes in brain-derived neurotrophic factor (BDNF) gene expression within 1-6 days after LPS injection. Crude synaptosomes were isolated from brain tissue and subjected to Western-blot analyses. We found transient reductions in synaptosomal proBDNF- and BDNF protein expression, with a maximal decrease at day 3 as compared to saline injected controls. The time course of reduction of BDNF mRNA in whole brain extracts parallels the decrease in protein levels in synaptosomes. LPS effects in the central nervous system (CNS) are known to crucially involve the activation of the hypothalamic-pituitary-adrenal (HPA) axis. We analysed the time course of corticotropin releasing hormone (CRH)- and proopiomelanocortin (POMC) mRNA expression. As observed for BDNF-, CRH- and POMC mRNA levels are also significantly reduced on day 3 indicating a comparable time course. These results suggest that peripheral inflammation causes a reduction of trophic supply in the brain, including BDNF at synaptic sites. The mechanisms involved could be a negative feedback of the activated HPA axis.

  16. Brain development and the nature versus nurture debate.

    PubMed

    Stiles, Joan

    2011-01-01

    Over the past three decades, developmental neurobiologists have made tremendous progress in defining basic principles of brain development. This work has changed the way we think about how brains develop. Thirty years ago, the dominant model was strongly deterministic. The relationship between brain and behavioral development was viewed as unidirectional; that is, brain maturation enables behavioral development. The advent of modern neurobiological methods has provided overwhelming evidence that it is the interaction of genetic factors and the experience of the individual that guides and supports brain development. Brains do not develop normally in the absence of critical genetic signaling, and they do not develop normally in the absence of essential environmental input. The fundamental facts about brain development should be of critical importance to neuropsychologists trying to understand the relationship between brain and behavioral development. However, the underlying assumptions of most contemporary psychological models reflect largely outdated ideas about how the biological system develops and what it means for something to be innate. Thus, contemporary models of brain development challenge the foundational constructs of the nature versus nurture formulation in psychology. The key to understanding the origins and emergence of both the brain and behavior lies in understanding how inherited and environmental factors are engaged in the dynamic and interactive processes that define and guide development of the neurobehavioral system.

  17. Lipid transport and human brain development.

    PubMed

    Betsholtz, Christer

    2015-07-01

    How the human brain rapidly builds up its lipid content during brain growth and maintains its lipids in adulthood has remained elusive. Two new studies show that inactivating mutations in MFSD2A, known to be expressed specifically at the blood-brain barrier, lead to microcephaly, thereby offering a simple and surprising solution to an old enigma.

  18. Leveraging Affective Learning for Developing Future Airmen

    DTIC Science & Technology

    2009-11-01

    sity, the United States Air Force, the Department of Defense, or any other US government agency. Cleared for public release: distribution unlimited...clude affective objectives in their lessons. A student’s affective state influences his or her learning pre- disposition, and educators should consider...but may not be possible for a large number of students or for dispersed learning activity. The ability to discern the affective state of students

  19. Genomic connectivity networks based on the BrainSpan atlas of the developing human brain

    NASA Astrophysics Data System (ADS)

    Mahfouz, Ahmed; Ziats, Mark N.; Rennert, Owen M.; Lelieveldt, Boudewijn P. F.; Reinders, Marcel J. T.

    2014-03-01

    The human brain comprises systems of networks that span the molecular, cellular, anatomic and functional levels. Molecular studies of the developing brain have focused on elucidating networks among gene products that may drive cellular brain development by functioning together in biological pathways. On the other hand, studies of the brain connectome attempt to determine how anatomically distinct brain regions are connected to each other, either anatomically (diffusion tensor imaging) or functionally (functional MRI and EEG), and how they change over development. A global examination of the relationship between gene expression and connectivity in the developing human brain is necessary to understand how the genetic signature of different brain regions instructs connections to other regions. Furthermore, analyzing the development of connectivity networks based on the spatio-temporal dynamics of gene expression provides a new insight into the effect of neurodevelopmental disease genes on brain networks. In this work, we construct connectivity networks between brain regions based on the similarity of their gene expression signature, termed "Genomic Connectivity Networks" (GCNs). Genomic connectivity networks were constructed using data from the BrainSpan Transcriptional Atlas of the Developing Human Brain. Our goal was to understand how the genetic signatures of anatomically distinct brain regions relate to each other across development. We assessed the neurodevelopmental changes in connectivity patterns of brain regions when networks were constructed with genes implicated in the neurodevelopmental disorder autism (autism spectrum disorder; ASD). Using graph theory metrics to characterize the GCNs, we show that ASD-GCNs are relatively less connected later in development with the cerebellum showing a very distinct expression of ASD-associated genes compared to other brain regions.

  20. Prenatal Drug Exposure Affects Neonatal Brain Functional Connectivity

    PubMed Central

    Salzwedel, Andrew P.; Vachet, Clement; Gerig, Guido; Lin, Weili

    2015-01-01

    Prenatal drug exposure, particularly prenatal cocaine exposure (PCE), incurs great public and scientific interest because of its associated neurodevelopmental consequences. However, the neural underpinnings of PCE remain essentially uncharted, and existing studies in school-aged children and adolescents are confounded greatly by postnatal environmental factors. In this study, leveraging a large neonate sample (N = 152) and non-invasive resting-state functional magnetic resonance imaging, we compared human infants with PCE comorbid with other drugs (such as nicotine, alcohol, marijuana, and antidepressant) with infants with similar non-cocaine poly drug exposure and drug-free controls. We aimed to characterize the neural correlates of PCE based on functional connectivity measurements of the amygdala and insula at the earliest stage of development. Our results revealed common drug exposure-related connectivity disruptions within the amygdala–frontal, insula–frontal, and insula–sensorimotor circuits. Moreover, a cocaine-specific effect was detected within a subregion of the amygdala–frontal network. This pathway is thought to play an important role in arousal regulation, which has been shown to be irregular in PCE infants and adolescents. These novel results provide the earliest human-based functional delineations of the neural-developmental consequences of prenatal drug exposure and thus open a new window for the advancement of effective strategies aimed at early risk identification and intervention. PMID:25855194

  1. Physical biology of human brain development

    PubMed Central

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2015-01-01

    Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view toward surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales–from phenomena on the cellular level toward form and function on the organ level–to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia. PMID:26217183

  2. Physical biology of human brain development.

    PubMed

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2015-01-01

    Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view toward surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level toward form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia.

  3. Cadmium affects retinogenesis during zebrafish embryonic development

    SciTech Connect

    Hen Chow, Elly Suk; Yu Hui, Michelle Nga; Cheng, Chi Wa; Cheng, Shuk Han

    2009-02-15

    Ocular malformations are commonly observed in embryos of aquatic species after exposure to toxicants. Using zebrafish embryos as the model organism, we showed that cadmium exposure from sphere stage (4 hpf) to end of segmentation stage (24 hpf) induced microphthalmia in cadmium-treated embryos. Embryos with eye defects were then assessed for visual abilities. Cadmium-exposed embryos were behaviorally blind, showing hyperpigmentation and loss of camouflage response to light. We investigated the cellular basis of the formation of the small eyes phenotype and the induction of blindness by studying retina development and retinotectal projections. Retinal progenitors were found in cadmium-treated embryos albeit in smaller numbers. The number of retinal ganglion cells (RGC), the first class of retinal cells to differentiate during retinogenesis, was reduced, while photoreceptor cells, the last batch of retinal neurons to differentiate, were absent. Cadmium also affected the propagation of neurons in neurogenic waves. The neurons remained in the ventronasal area and failed to spread across the retina. Drastically reduced RGC axons and disrupted optic stalk showed that the optic nerves did not extend from the retina beyond the chiasm into the tectum. Our data suggested that impairment in neuronal differentiation of the retina, disruption in RGC axon formation and absence of cone photoreceptors were the causes of microphthalmia and visual impairment in cadmium-treated embryos.

  4. Brain development in preterm infants assessed using advanced MRI techniques.

    PubMed

    Tusor, Nora; Arichi, Tomoki; Counsell, Serena J; Edwards, A David

    2014-03-01

    Infants who are born preterm have a high incidence of neurocognitive and neurobehavioral abnormalities, which may be associated with impaired brain development. Advanced magnetic resonance imaging (MRI) approaches, such as diffusion MRI (d-MRI) and functional MRI (fMRI), provide objective and reproducible measures of brain development. Indices derived from d-MRI can be used to provide quantitative measures of preterm brain injury. Although fMRI of the neonatal brain is currently a research tool, future studies combining d-MRI and fMRI have the potential to assess the structural and functional properties of the developing brain and its response to injury.

  5. Energetic and nutritional constraints on infant brain development: implications for brain expansion during human evolution.

    PubMed

    Cunnane, Stephen C; Crawford, Michael A

    2014-12-01

    The human brain confronts two major challenges during its development: (i) meeting a very high energy requirement, and (ii) reliably accessing an adequate dietary source of specific brain selective nutrients needed for its structure and function. Implicitly, these energetic and nutritional constraints to normal brain development today would also have been constraints on human brain evolution. The energetic constraint was solved in large measure by the evolution in hominins of a unique and significant layer of body fat on the fetus starting during the third trimester of gestation. By providing fatty acids for ketone production that are needed as brain fuel, this fat layer supports the brain's high energy needs well into childhood. This fat layer also contains an important reserve of the brain selective omega-3 fatty acid, docosahexaenoic acid (DHA), not available in other primates. Foremost amongst the brain selective minerals are iodine and iron, with zinc, copper and selenium also being important. A shore-based diet, i.e., fish, molluscs, crustaceans, frogs, bird's eggs and aquatic plants, provides the richest known dietary sources of brain selective nutrients. Regular access to these foods by the early hominin lineage that evolved into humans would therefore have helped free the nutritional constraint on primate brain development and function. Inadequate dietary supply of brain selective nutrients still has a deleterious impact on human brain development on a global scale today, demonstrating the brain's ongoing vulnerability. The core of the shore-based paradigm of human brain evolution proposes that sustained access by certain groups of early Homo to freshwater and marine food resources would have helped surmount both the nutritional as well as the energetic constraints on mammalian brain development.

  6. Rapid and Quantitative Assay of Amyloid-Seeding Activity in Human Brains Affected with Prion Diseases

    PubMed Central

    Takatsuki, Hanae; Satoh, Katsuya; Sano, Kazunori; Fuse, Takayuki; Nakagaki, Takehiro; Mori, Tsuyoshi; Ishibashi, Daisuke; Mihara, Ban; Takao, Masaki; Iwasaki, Yasushi; Yoshida, Mari; Atarashi, Ryuichiro; Nishida, Noriyuki

    2015-01-01

    The infectious agents of the transmissible spongiform encephalopathies are composed of amyloidogenic prion protein, PrPSc. Real-time quaking-induced conversion can amplify very small amounts of PrPSc seeds in tissues/body fluids of patients or animals. Using this in vitro PrP-amyloid amplification assay, we quantitated the seeding activity of affected human brains. End-point assay using serially diluted brain homogenates of sporadic Creutzfeldt–Jakob disease patients demonstrated that 50% seeding dose (SD50) is reached approximately 1010/g brain (values varies 108.79–10.63/g). A genetic case (GSS-P102L) yielded a similar level of seeding activity in an autopsy brain sample. The range of PrPSc concentrations in the samples, determined by dot-blot assay, was 0.6–5.4 μg/g brain; therefore, we estimated that 1 SD50 unit was equivalent to 0.06–0.27 fg of PrPSc. The SD50 values of the affected brains dropped more than three orders of magnitude after autoclaving at 121°C. This new method for quantitation of human prion activity provides a new way to reduce the risk of iatrogenic prion transmission. PMID:26070208

  7. Dynamic changes in brain activations and functional connectivity during affectively different tactile stimuli.

    PubMed

    Hua, Qing-Ping; Zeng, Xiang-Zhu; Liu, Jian-Yu; Wang, Jin-Yan; Guo, Jian-You; Luo, Fei

    2008-01-01

    In the present study, we compared brain activations produced by pleasant, neutral and unpleasant touch, to the anterior lateral surface of lower leg of human subjects. It was found that several brain regions, including the contralateral primary somatosensory area (SI), bilateral secondary somatosensory area (SII), as well as contralateral middle and posterior insula cortex were commonly activated under the three touch conditions. In addition, pleasant and unpleasant touch conditions shared a few brain regions including the contralateral posterior parietal cortex (PPC) and bilateral premotor cortex (PMC). Unpleasant touch specifically activated a set of pain-related brain regions such as contralateral supplementary motor area (SMA) and dorsal parts of bilateral anterior cingulated cortex, etc. Brain regions specifically activated by pleasant touch comprised bilateral lateral orbitofrontal cortex (OFC), posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC), intraparietal cortex and left dorsal lateral prefrontal cortex (DLPFC). Using a novel functional connectivity model based on graph theory, we showed that a series of brain regions related to affectively different touch had significant functional connectivity during the resting state. Furthermore, it was found that such a network can be modulated between affectively different touch conditions.

  8. Alcohol-induced brain growth restrictions (microencephaly) were not affected by concurrent exposure to cocaine during the brain growth spurt.

    PubMed

    Chen, W J; Andersen, K H; West, J R

    1994-09-01

    The prevalence of concomitant use of alcohol and cocaine among drug abusers has raised concern about the possible increased risk of fetal damage. The aim of this study was to assess the interactive effects of alcohol and cocaine on lethality, somatic growth, and brain growth using an animal model system. Sprague-Dawley rat pups were used as subjects. They were randomly assigned to 1 of the 9 artificially reared groups which varied with respect to the combination treatments of cocaine (0, 40, or 60 mg/kg) and alcohol (0, 3.3, or 4.5 g/kg). All artificially reared pups were given daily cocaine and alcohol treatments during a major part of the brain growth spurt period (postnatal days 4-9). An additional group of suckled control animals raised by their natural dams was included to control for artificial rearing. The results are summarized as follows: 1) Drug-induced lethality was higher in cocaine-treated groups when compared with non-cocaine-treated groups, and the concurrent administration of high doses of alcohol and cocaine significantly increased the mortality rate. 2) Somatic growth, in terms of body weight, was not affected by alcohol, cocaine, or the combination of both drugs using the artificial rearing technique. 3) Alcohol exposure during this brain growth spurt period significantly reduced whole brain weight, as well as forebrain, cerebellum, and brain stem weights. 4) In contrast to alcohol, cocaine failed to exert a detrimental effect on brain weight measures during this early postnatal period.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Affection of Fundamental Brain Activity By Using Sounds For Patients With Prosodic Disorders: A Pilot Study

    NASA Astrophysics Data System (ADS)

    Imai, Emiko; Katagiri, Yoshitada; Seki, Keiko; Kawamata, Toshio

    2011-06-01

    We present a neural model of the production of modulated speech streams in the brain, referred to as prosody, which indicates the limbic structure essential for producing prosody both linguistically and emotionally. This model suggests that activating the fundamental brain including monoamine neurons at the basal ganglia will potentially contribute to helping patients with prosodic disorders coming from functional defects of the fundamental brain to overcome their speech problem. To establish effective clinical treatment for such prosodic disorders, we examine how sounds affect the fundamental activity by using electroencephalographic measurements. Throughout examinations with various melodious sounds, we found that some melodies with lilting rhythms successfully give rise to the fast alpha rhythms at the electroencephalogram which reflect the fundamental brain activity without any negative feelings.

  10. Maternal antibodies and developing blood–brain barrier

    PubMed Central

    Athanassiou, Andrew; Chen, Huiyi; Diamond, Betty

    2016-01-01

    We briefly review the protective role of maternal antibodies during fetal development and at early postnatal stages. We describe antibody delivery to fetuses, particularly in the context of the developing blood–brain barrier (BBB), and present the essential concepts regarding the adult BBB, together with existing information on the prenatal developing BBB. We focus on maternal antibody transfer to the developing brain and the consequences of the presence of pathogenic antibodies at early stages of brain development on subsequent brain dysfunction. PMID:26507553

  11. Adolescent Brain and Cognitive Developments: Implications for Clinical Assessment in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Ciccia, Angela Hein; Meulenbroek, Peter; Turkstra, Lyn S.

    2009-01-01

    Adolescence is a time of significant physical, social, and emotional developments, accompanied by changes in cognitive and language skills. Underlying these are significant developments in brain structures and functions including changes in cortical and subcortical gray matter and white matter tracts. Among the brain regions that develop during…

  12. Foods and food constituents that affect the brain and human behavior

    NASA Technical Reports Server (NTRS)

    Lieberman, Harris R.; Wurtman, Richard J.

    1986-01-01

    Until recently, it was generally believed that brain function was usually independent of day-to-day metabolic changes associated with consumption of food. Although it was acknowledged that peripheral metabolic changes associated with hunger or satiety might affect brain function, other effects of foods on the brain were considered unlikely. However, in 1971, Fernstrom and Wurtman discovered that under certain conditions, the protein-to-carbohydrate ratio of a meal could affect the concentration of a particular brain neurotransmitter. That neurotransmitter, serotonin, participates in the regulation of a variety of central nervous system (CNS) functions including sleep, pain sensitivity, aggression, and patterns of nutrient selection. The activity of other neurotransmitter systems has also been shown to be, under certain conditions, affected by dietary constituents which are given either as ordinary foods or in purified form. For example, the CNS turnover of two catecholamine neurotransmitters, dopamine and norepinephrine, can be altered by ingestion of their amino acid precursor, tyrosine, when neurons that release these monoamines are firing frequently. Similarly, lecithin, a dietary source of choline, and choline itself have been shown to increase the synthesis of acetylcholine when cholinergic neurons are very active. It is possible that other neurotransmitters could also be affected by precursor availability or other, as yet undiscovered peripheral factors governed by food consumption. The effects of food on neurotransmitters and behavior are discussed.

  13. Affective-Motivational Brain Responses to Direct Gaze in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Kylliainen, Anneli; Wallace, Simon; Coutanche, Marc N.; Leppanen, Jukka M.; Cusack, James; Bailey, Anthony J.; Hietanen, Jari K.

    2012-01-01

    Background: It is unclear why children with autism spectrum disorders (ASD) tend to be inattentive to, or even avoid eye contact. The goal of this study was to investigate affective-motivational brain responses to direct gaze in children with ASD. To this end, we combined two measurements: skin conductance responses (SCR), a robust arousal…

  14. The Sad, the Angry, and the Asymmetrical Brain: Dichotic Listening Studies of Negative Affect and Depression

    ERIC Educational Resources Information Center

    Gadea, Marien; Espert, Raul; Salvador, Alicia; Marti-Bonmati, Luis

    2011-01-01

    Dichotic Listening (DL) is a valuable tool to study emotional brain lateralization. Regarding the perception of sadness and anger through affective prosody, the main finding has been a left ear advantage (LEA) for the sad but contradictory data for the anger prosody. Regarding an induced mood in the laboratory, its consequences upon DL were a…

  15. Zinc and the ERK Kinases in the Developing Brain

    PubMed Central

    Nuttall, J. R.

    2015-01-01

    This article reviews evidence in support of the hypothesis that impaired activation of the extracellular signal-regulated kinases (ERK1/2) contributes to the disruptions in neurodevelopment associated with zinc deficiency. These kinases are implicated in major events of brain development, including proliferation of progenitor cells, neuronal migration, differentiation, and apoptotic cell death. In humans, mutations in ERK1/2 genes have been associated with neuro-cardio-facial-cutaneous syndromes. ERK1/2 deficits in mice have revealed impaired neurogenesis, altered cellularity, and behavioral abnormalities. Zinc is an important modulator of ERK1/2 signaling. Conditions of both zinc deficiency and excess affect ERK1/2 phosphorylation in fetal and adult brains. Hypophosphorylation of ERK1/2, associated with decreased zinc availability in cell cultures, is accompanied by decreased proliferation and an arrest of the cell cycle at the G0/G1 phase. Zinc and ERK1/2 have both been shown to modulate neural progenitor cell proliferation and cell death in the brain. Furthermore, behavioral deficits resulting from developmental zinc deficiency are similar to those observed in mice with decreased ERK1/2 signaling. For example, impaired performance on behavioral tests of learning and memory; such as the Morris water maze, fear conditioning, and the radial arm maze; has been reported in both animals exposed to developmental zinc deficiency and transgenic mice with decreased ERK signaling. Future study should clarify the mechanisms through which a dysregulation of ERK1/2 may contribute to altered brain development associated with dietary zinc deficiency and with conditions that limit zinc availability. PMID:22095091

  16. Cannabis and the developing brain: insights from behavior.

    PubMed

    Trezza, Viviana; Cuomo, Vincenzo; Vanderschuren, Louk J M J

    2008-05-13

    The isolation and identification, in 1964, of delta-9-tetrahydrocannabinol (THC), the primary psychoactive compound in cannabis, opened the door to a whole new field of medical research. The exploration of the therapeutic potential of THC and other natural and synthetic cannabinoid compounds was paralleled by the discovery of the endocannabinoid system, comprising cannabinoid receptors and their endogenous ligands, which offered exciting new insights into brain function. Besides its well-known involvement in specific brain functions, such as control of movement, memory and emotions, the endocannabinoid system plays an important role in fundamental developmental processes such as cell proliferation, migration and differentiation. For this reason, changes in its activity during stages of high neuronal plasticity, such as the perinatal and the adolescent period, can have long-lasting neurobehavioral consequences. Here, we summarize human and animal studies examining the behavioral and neurobiological effects of in utero and adolescent exposure to cannabis. Since cannabis preparations are widely used and abused by young people, including pregnant women, understanding how cannabinoid compounds affect the developing brain, leading to neurobehavioral alterations or neuropsychiatric disorders later in life, is a serious health issue. In addition, since the endocannabinoid system is emerging as a novel therapeutic target for the treatment of several neuropsychiatric diseases, a detailed investigation of possible adverse effects of cannabinoid compounds on the central nervous system (CNS) of immature individuals is warranted.

  17. [The child's brain: normal (unaltered) development and development altered by perinatal injury].

    PubMed

    Marín-Padilla, Miguel

    2013-09-06

    In this study we analyse some of the morphological and functional aspects of normal and altered development (the latter due to perinatal injury) in the child's brain. Both normal and altered development are developmental processes that progressively interconnect the different regions. The neuropathological development of subpial and periventricular haemorrhages, as well as that of white matter infarct, are analysed in detail. Any kind of brain damage causes a local lesion with possible remote repercussions. All the components (neurons, fibres, blood capillaries and neuroglias) of the affected region undergo alterations. Those that are destroyed are eliminated by the inflammatory process and those that survive are transformed. The pyramidal neurons with amputated apical dendrites are transformed and become stellate cells, the axonal terminals and those of the radial glial cells are regenerated and the region involved is reinnervated and revascularised with an altered morphology and function (altered local corticogenesis). The specific microvascular system of the grey matter protects its neurons from infarction of the white matter. Although it survives, the grey matter is left disconnected from the afferent and efferent fibres, amputated by the infarct with alterations affecting its morphology and possibly its functioning (altered local corticogenesis). Any local lesion can modify the morphological and functional development of remote regions that are functionally interconnected with it (altered remote corticogenesis). We suggest that any local brain injury can alter the morphology and functioning of the regions that are morphologically and functionally interconnected with it and thus end up affecting the child's neurological and psychological development. These changes can cross different regions of the brain (epileptic auras) and, if they eventually reach the motor region, will give rise to the motor storm that characterises epilepsy.

  18. Waterborne lead affects circadian variations of brain neurotransmitters in fathead minnows

    SciTech Connect

    Spieler, R.E.; Russo, A.C.; Weber, D.N.

    1995-09-01

    Lead is a potent neurotoxin affecting brain levels of a number of vertebrate neurotransmitters. Reports on these effects are, however, not consistent either among or within species. For example, with lead-intoxicated rats there are reports of decreased acetylcholine (ACh) release and decreased ACh brain levels as well as reports of increased levels or no change in levels. Also, with rats there are reports of increased levels, decreased levels, or no change in brain catecholamines, with lead producing similar changes in both norephinephrine (NE) and dopamine (DA) in some cases and differences in response between the two in others. Although most early reports dealt with whole brain levels, reports on neurotransmitter levels in specific brain regions can be equally conflicting. Similar sorts of discrepancies exist among studies with fishes. Much of the variation among studies on lead effects on neurotransmitters is, no doubt, due to differences among the studies in variables such as: species, age, dosage and duration, route of administration. However, lead can apparently affect circadian locomotor rhythms of both rats and fishes. Therefore, another possible cause for the variation among studies is that there is an interaction among dosage, sampling time and endogenous rhythms. A lead-produced phase shift or disruption in endogenous neurotransmitter rhythms could in turn elicit a host of varying results and interpretations depending on the circadian time of sampling. We elected to examine this possibility in the fathead minnow, Pimephales promelas, a freshwater species widely used for toxicity studies. 15 refs., 3 figs.

  19. Supporting Parents with Two Essential Understandings: Attachment and Brain Development.

    ERIC Educational Resources Information Center

    Berger, Eugenia Hepworth

    1999-01-01

    Readiness to learn is a constant state. Two critical aspects of early childhood provide parents sufficient understanding of their child's development: attachment and brain development. Children develop attachments to caregivers but need consistent parental care and love. Human brains continue to quickly grow during the first two years of life.…

  20. Early Development and the Brain: Teaching Resources for Educators

    ERIC Educational Resources Information Center

    Gilkerson, Linda, Ed.; Klein, Rebecca, Ed.

    2008-01-01

    This nine-unit curriculum translates current scientific research on early brain development into practical suggestions to help early childhood professionals understand the reciprocal link between caregiving and brain development. The curriculum was created and extensively field-tested by the Erikson Institute Faculty Development Project on the…

  1. Female brain size affects the assessment of male attractiveness during mate choice

    PubMed Central

    Corral-López, Alberto; Bloch, Natasha I.; Kotrschal, Alexander; van der Bijl, Wouter; Buechel, Severine D.; Mank, Judith E.; Kolm, Niclas

    2017-01-01

    Mate choice decisions are central in sexual selection theory aimed to understand how sexual traits evolve and their role in evolutionary diversification. We test the hypothesis that brain size and cognitive ability are important for accurate assessment of partner quality and that variation in brain size and cognitive ability underlies variation in mate choice. We compared sexual preference in guppy female lines selected for divergence in relative brain size, which we have previously shown to have substantial differences in cognitive ability. In a dichotomous choice test, large-brained and wild-type females showed strong preference for males with color traits that predict attractiveness in this species. In contrast, small-brained females showed no preference for males with these traits. In-depth analysis of optomotor response to color cues and gene expression of key opsins in the eye revealed that the observed differences were not due to differences in visual perception of color, indicating that differences in the ability to process indicators of attractiveness are responsible. We thus provide the first experimental support that individual variation in brain size affects mate choice decisions and conclude that differences in cognitive ability may be an important underlying mechanism behind variation in female mate choice. PMID:28345039

  2. Plasticity during Early Brain Development Is Determined by Ontogenetic Potential.

    PubMed

    Krägeloh-Mann, Ingeborg; Lidzba, Karen; Pavlova, Marina A; Wilke, Marko; Staudt, Martin

    2017-04-01

    Two competing hypotheses address neuroplasticity during early brain development: the "Kennard principle" describes the compensatory capacities of the immature developing CNS as superior to those of the adult brain, whereas the "Hebb principle" argues that the young brain is especially sensitive to insults. We provide evidence that these principles are not mutually exclusive. Following early brain lesions that are unilateral, the brain can refer to homotopic areas of the healthy hemisphere. This potential for reorganization is unique to the young brain but available only when, during ontogenesis of brain development, these areas have been used for the functions addressed. With respect to motor function, ipsilateral motor tracts can be recruited, which are only available during early brain development. Language can be reorganized to the right after early left hemispheric lesions, as the representation of the language network is initially bilateral. However, even in these situations, compensatory capacities of the developing brain are found to have limitations, probably defined by early determinants. Thus, plasticity and adaptivity are seen only within ontogenetic potential; that is, axonal or cortical structures cannot be recruited beyond early developmental possibilities. The young brain is probably more sensitive and vulnerable to lesions when these are bilateral. This is shown here for bilateral periventricular white matter lesions that clearly have an impact on cortical architecture and function, thus probably interfering with early network building.

  3. Associations between early adrenarche, affective brain function and mental health in children.

    PubMed

    Whittle, Sarah; Simmons, Julian G; Byrne, Michelle L; Strikwerda-Brown, Cherie; Kerestes, Rebecca; Seal, Marc L; Olsson, Craig A; Dudgeon, Paul; Mundy, Lisa K; Patton, George C; Allen, Nicholas B

    2015-09-01

    Early timing of adrenarche, associated with relatively high levels of Dehydroepiandrosterone (DHEA) in children, has been associated with mental health and behavioral problems. However, little is known about effects of adreneracheal timing on brain function. The aim of this study was to investigate the effects of early adrenarche (defined by high DHEA levels independent of age) on affective brain function and symptoms of psychopathology in late childhood (N = 83, 43 females, M age 9.53 years, s.d. 0.34 years). Results showed that higher DHEA levels were associated with decreased affect-related brain activity (i) in the mid-cingulate cortex in the whole sample, and (ii) in a number of cortical and subcortical regions in female but not male children. Higher DHEA levels were also associated with increased externalizing symptoms in females, an association that was partly mediated by posterior insula activation to happy facial expressions. These results suggest that timing of adrenarche is an important moderator of affect-related brain function, and that this may be one mechanism linking early adrenarche to psychopathology.

  4. Associations between early adrenarche, affective brain function and mental health in children

    PubMed Central

    Whittle, Sarah; Simmons, Julian G.; Byrne, Michelle L.; Strikwerda-Brown, Cherie; Kerestes, Rebecca; Seal, Marc L.; Olsson, Craig A.; Dudgeon, Paul; Mundy, Lisa K.; Patton, George C.

    2015-01-01

    Early timing of adrenarche, associated with relatively high levels of Dehydroepiandrosterone (DHEA) in children, has been associated with mental health and behavioral problems. However, little is known about effects of adreneracheal timing on brain function. The aim of this study was to investigate the effects of early adrenarche (defined by high DHEA levels independent of age) on affective brain function and symptoms of psychopathology in late childhood (N = 83, 43 females, M age 9.53 years, s.d. 0.34 years). Results showed that higher DHEA levels were associated with decreased affect-related brain activity (i) in the mid-cingulate cortex in the whole sample, and (ii) in a number of cortical and subcortical regions in female but not male children. Higher DHEA levels were also associated with increased externalizing symptoms in females, an association that was partly mediated by posterior insula activation to happy facial expressions. These results suggest that timing of adrenarche is an important moderator of affect-related brain function, and that this may be one mechanism linking early adrenarche to psychopathology. PMID:25678548

  5. [Development of gene therapy in major brain diseases].

    PubMed

    Fan, Li; Jiang, Xin-guo

    2010-09-01

    In recent years, the development of molecular biology and medicine has prompted the research of gene therapy for brain diseases. In this review, we summarized the current gene therapy approaches of major brain diseases. Against the pathogenesis of major brain diseases, including brain tumors, Parkinson's disease, Alzheimer's disease and cerebrovascular disorders, there are several effective gene therapy strategies. It is no doubt that, gene therapy, as a novel treatment, is of great significance for understanding the causes, as well as comprehensive treatment for brain diseases.

  6. Neonatal hypothyroidism affects the adenine nucleotides metabolism in astrocyte cultures from rat brain.

    PubMed

    Braganhol, Elizandra; Bruno, Alessandra Nejar; Bavaresco, Luci; Barreto-Chaves, Maria Luiza M; Sarkis, João José Freitas; Battastini, Ana Maria Oliveira

    2006-04-01

    Neonatal hypothyroidism is associated with multiple and severe brain alterations. We recently demonstrated a significant increase in hydrolysis of AMP to adenosine in brain of hypothyroid rats at different ages. However, the origin of this effect was unclear. Considering the effects of adenine nucleotides to brain functions and the harmful effects of neonatal hypothyroidism to normal development of the central nervous system, in this study we investigated the metabolism of adenine nucleotides in hippocampal, cortical and cerebellar astrocyte cultures from rats submitted to neonatal hypothyroidism. ATP and AMP hydrolysis were enhanced by 52 and 210%, respectively, in cerebellar astrocytes from hypothyroid rats. In hippocampus of hypothyroid rats, the 47% increase in AMP hydrolysis was significantly reverted when the astrocytes were treated with T3. Therefore, the imbalance in the ATP and adenosine levels in astrocytes, during brain development, may contribute to some of the effects described in neonatal hypothyroidism.

  7. Aquaporin7 expression during perinatal development of mouse brain.

    PubMed

    Shin, Incheol; Kim, Hyun J; Lee, Jae E; Gye, Myung C

    2006-12-01

    Emerging evidence suggests that brain aquaporins (AQPs) play important roles in the dynamic regulation of brain water homeostasis and the production of cerebrospinal fluid (CSF) under normal, as well as pathological, conditions. To date, the spatiotemporal expression patterns of AQP1, 4, and 9 have been elucidated in brain tissues. However, the expression of AQP7, an aquaglyceroporin associated with brain development, has not been shown. In the present study, we examined expression of AQP7 during perinatal and adult brain development in the mouse. Throughout brain development, the immunoreactivity of AQP7 was largely found in the choroid plexus (CP). AQP7 immunoreactivity in ependyma (Ep), pia, and blood vessels (BV) was increased during perinatal to postnatal development. Cells in the different layers of cerebral cortex became a little positive for AQP7 immunoreactivity during postnatal development. Optimized semi-quantitative RT-PCR and Western blot analysis revealed that AQP7 mRNA and protein levels increased during perinatal development of brain. To our knowledge, this is the first report on the pattern of AQP7 expression in brain tissues. These results suggest that AQP7 is an important structural element in the choroid plexus and is possibly involved in the production of CSF during brain development in mice.

  8. Regional brain activation as a biological marker of affective responsivity to acute exercise: influence of fitness.

    PubMed

    Petruzzello, S J; Hall, E E; Ekkekakis, P

    2001-01-01

    Previous research has shown that regional brain activation, assessed via frontal electroencephalographic (EEG) asymmetry, predicts affective responsivity to aerobic exercise. To replicate and extend this work, in the present study we examined whether resting brain activation was associated with affective responses to an acute bout of aerobic exercise and the extent to which aerobic fitness mediated this relationship. Participants (high-fit, n = 22; low/moderate-fit, n = 45) ran on a treadmill for 30 min at 75% VO2max. EEG and affect were assessed pre- and 0-, 10-, 20-, and 30-min postexercise. Resting EEG asymmetry predicted positive affect (as measured by the energetic arousal subscale of the Activation Deactivation Adjective Check List) postexercise. Furthermore, resting frontal EEG asymmetry predicted affect only in the high-fit group, suggesting the effect might be mediated by some factor related to fitness. It was also shown that subjects with relatively greater left frontal activation had significantly more energy (i.e., activated pleasant affect) following exercise than subjects with relatively greater right frontal activation. In conclusion, aerobic fitness influenced the relationship between resting frontal asymmetry and exercise-related affective responsivity.

  9. Variables Affecting Economic Development of Wind Energy

    SciTech Connect

    Lantz, E.; Tegen, S.

    2008-07-01

    NREL's JEDI Wind model performed an analysis of wind-power-related economic development drivers. Economic development benefits for wind and coal were estimated using NREL's JEDI Wind and JEDI Coal models.

  10. Cognition and Affect in Early Literacy Development.

    ERIC Educational Resources Information Center

    McNamee, Gillian D.; And Others

    1985-01-01

    Using Vygotsky's theory of development, explores the significance of storytelling and dramatization activities on the intellectual and emotional development of preschool children. Results indicate that dramatizing of children's stories enhances the storytelling of preschool children and, thus, influences their literacy development. (DST)

  11. The effects of vitamin D on brain development and adult brain function.

    PubMed

    Kesby, James P; Eyles, Darryl W; Burne, Thomas H J; McGrath, John J

    2011-12-05

    A role for vitamin D in brain development and function has been gaining support over the last decade. Multiple lines of evidence suggest that this vitamin is actually a neuroactive steroid that acts on brain development, leading to alterations in brain neurochemistry and adult brain function. Early deficiencies have been linked with neuropsychiatric disorders, such as schizophrenia, and adult deficiencies have been associated with a host of adverse brain outcomes, including Parkinson's disease, Alzheimer's disease, depression and cognitive decline. This review summarises the current state of research on the actions of vitamin D in the brain and the consequences of deficiencies in this vitamin. Furthermore, we discuss specific implications of vitamin D status on the neurotransmitter, dopamine.

  12. Methamphetamine exposure during brain development alters the brain acetylcholine system in adolescent mice.

    PubMed

    Siegel, Jessica A; Park, Byung S; Raber, Jacob

    2011-10-01

    Children exposed to methamphetamine during brain development as a result of maternal drug use have long-term hippocampus-dependent cognitive impairments, but the mechanisms underlying these impairments are not understood. The acetylcholine system plays an important role in cognitive function and potential methamphetamine-induced acetylcholine alterations may be related to methamphetamine-induced cognitive impairments. In this study, we investigated the potential long-term effects of methamphetamine exposure during hippocampal development on the acetylcholine system in adolescence mice on postnatal day 30 and in adult mice on postnatal day 90. Methamphetamine exposure increased the density of acetylcholine neurons in regions of the basal forebrain and the area occupied by acetylcholine axons in the hippocampus in adolescent female mice. In contrast, methamphetamine exposure did not affect the density of GABA cells or total neurons in the basal forebrain. Methamphetamine exposure also increased the number of muscarinic acetylcholine receptors in the hippocampus of adolescent male and female mice. Our results demonstrate for the first time that methamphetamine exposure during hippocampal development affects the acetylcholine system in adolescent mice and that these changes are more profound in females than males.

  13. Intra-Uterine Undernutrition and Brain Development

    ERIC Educational Resources Information Center

    Chase, H. Peter; And Others

    1971-01-01

    Results of studies with undernourished guinea pig mothers and their offspring suggest that adequate postnatal nutrition can offset some, but not all of the brain biochemical changes resulting from fetal undernutrition. (Author/KW)

  14. Insults to the Developing Brain and Impact on Neurodevelopmental Outcome

    ERIC Educational Resources Information Center

    Adams-Chapman, Ira

    2009-01-01

    Premature infants have a disproportionately increased risk for brain injury based on several mechanisms including intraventricular hemorrhage, ischemia and the vulnerability of developing neuronal progenitor cells. Injury to the developing brain often results in neurologic abnormalities that can be correlated with a structural lesion; however more…

  15. Implications of Right Brain Research on Curriculum Development.

    ERIC Educational Resources Information Center

    MacKinnon, Colin

    The idea that the brain may be more complex and varied in the ways that it responds to and interprets information than is generally recognized suggests that both the left and right hemispheres are in need of total development. In discussing the development of curriculum that will bring into harmony the functions of both brain hemispheres, it is…

  16. Rethinking the Brain: New Insights into Early Development.

    ERIC Educational Resources Information Center

    Shore, Rima

    Recent research on early brain development holds several implications for parents, teachers, health professionals, and policymakers. This report, based on the proceedings from a 1996 national conference on the importance of early brain development for the nation's future well-being, highlights major findings, summarizes their implications for…

  17. Effects of DTNBP1 Genotype on Brain Development in Children

    ERIC Educational Resources Information Center

    Tognin, Stefania; Viding, Essi; McCrory, Eamon J.; Taylor, Lauren; O'Donovan, Michael C.; McGuire, Philip; Mechelli, Andrea

    2011-01-01

    Background: Schizophrenia is a neurodevelopmental disorder, and risk genes are thought to act through disruption of brain development. Several genetic studies have identified dystrobrevin-binding protein 1 (DTNBP1, also known as dysbindin) as a potential susceptibility gene for schizophrenia, but its impact on brain development is poorly…

  18. How Acute Total Sleep Loss Affects the Attending Brain: A Meta-Analysis of Neuroimaging Studies

    PubMed Central

    Ma, Ning; Dinges, David F.; Basner, Mathias; Rao, Hengyi

    2015-01-01

    Study Objectives: Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. Design: Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. Methods: The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. Results: The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. Conclusion: Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity. Citation: Ma N, Dinges DF, Basner M, Rao H. How acute total

  19. Cognition and affective style: Individual differences in brain electrical activity during spatial and verbal tasks.

    PubMed

    Bell, Martha Ann; Fox, Nathan A

    2003-12-01

    Relations between brain electrical activity and performance on two cognitive tasks were examined in a normal population selected to be high on self-reported measures of Positive or Negative Affectivity. Twenty-five right-handed women, from an original pool of 308 college undergraduates, were the participants. EEG was recorded during baseline and during psychometrically matched spatial and verbal tasks. As predicted, participants who were high in Positive Affectivity performed equally well on the verbal and spatial tasks, while participants who were high in Negative Affectivity had spatial scores that were lower than their verbal scores. There were no group differences in baseline EEG. Both groups exhibited left central activation (i.e., alpha suppression) during the verbal and spatial tasks. When EEG data were analyzed separately for the group high in Positive Affectivity, there was evidence of parietal activation for the spatial task relative to the verbal task. The EEG data for the group high in Negative Affectivity had comparable EEG power values during verbal and spatial tasks at parietal scalp locations. These data suggest that, within a selected normal population, differences in affective style may interact with cognitive performance and with the brain electrical activity associated with that performance.

  20. Drugs, biogenic amine targets and the developing brain.

    PubMed

    Frederick, Aliya L; Stanwood, Gregg D

    2009-01-01

    Defects in the development of the brain have a profound impact on mature brain functions and underlying psychopathology. Classical neurotransmitters and neuromodulators, such as dopamine, serotonin, norepinephrine, acetylcholine, glutamate and GABA, have pleiotropic effects during brain development. In other words, these molecules produce multiple diverse effects to serve as regulators of distinct cellular functions at different times in neurodevelopment. These systems are impacted upon by abuse of a variety of illicit drugs, neurotherapeutics and environmental contaminants. In this review, we describe the impact of drugs and chemicals on brain formation and function in animal models and in human populations, highlighting sensitive periods and effects that may not emerge until later in life.

  1. The impoverished brain: disparities in maternal education affect the neural response to sound.

    PubMed

    Skoe, Erika; Krizman, Jennifer; Kraus, Nina

    2013-10-30

    Despite the prevalence of poverty worldwide, little is known about how early socioeconomic adversity affects auditory brain function. Socioeconomically disadvantaged children are underexposed to linguistically and cognitively stimulating environments and overexposed to environmental toxins, including noise pollution. This kind of sensory impoverishment, we theorize, has extensive repercussions on how the brain processes sound. To characterize how this impoverishment affects auditory brain function, we compared two groups of normal-hearing human adolescents who attended the same schools and who were matched in age, sex, and ethnicity, but differed in their maternal education level, a correlate of socioeconomic status (SES). In addition to lower literacy levels and cognitive abilities, adolescents from lower maternal education backgrounds were found to have noisier neural activity than their classmates, as reflected by greater activity in the absence of auditory stimulation. Additionally, in the lower maternal education group, the neural response to speech was more erratic over repeated stimulation, with lower fidelity to the input signal. These weaker, more variable, and noisier responses are suggestive of an inefficient auditory system. By studying SES within a neuroscientific framework, we have the potential to expand our understanding of how experience molds the brain, in addition to informing intervention research aimed at closing the achievement gap between high-SES and low-SES children.

  2. Influence of dietary gangliosides on neonatal brain development.

    PubMed

    McJarrow, Paul; Schnell, Nicholas; Jumpsen, Jacqueline; Clandinin, Tom

    2009-08-01

    Gangliosides are sialic acid-containing glycosphingolipids. Gangliosides are found in human milk; understanding of the potential role of gangliosides in infant development is emerging, with suggested roles in the brain and gut. Ganglioside accretion in the developing brain is highest in utero and in early neonatal life, during the periods of dendritic branching and new synapse formation. Further, brain contains the highest relative ganglioside content in the body, particularly in neuronal cell membranes concentrated in the area of the synaptic membrane. Gangliosides are known to play a role in neuronal growth, migration and maturation, neuritogenesis, synaptogenesis, and myelination. In addition to their roles in development and structure of the brain, gangliosides also play a functional role in nerve cell communication. It is less well known whether dietary gangliosides can influence the development of cognitive function. This review summarizes current knowledge on the role gangliosides play in brain development.

  3. GABA and Glutamate Pathways Are Spatially and Developmentally Affected in the Brain of Mecp2-Deficient Mice

    PubMed Central

    Matagne, Valérie; Ghata, Adeline; Villard, Laurent; Roux, Jean-Christophe

    2014-01-01

    Proper brain functioning requires a fine-tuning between excitatory and inhibitory neurotransmission, a balance maintained through the regulation and release of glutamate and GABA. Rett syndrome (RTT) is a rare genetic disorder caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene affecting the postnatal brain development. Dysfunctions in the GABAergic and glutamatergic systems have been implicated in the neuropathology of RTT and a disruption of the balance between excitation and inhibition, together with a perturbation of the electrophysiological properties of GABA and glutamate neurons, were reported in the brain of the Mecp2-deficient mouse. However, to date, the extent and the nature of the GABA/glutamate deficit affecting the Mecp2-deficient mouse brain are unclear. In order to better characterize these deficits, we simultaneously analyzed the GABA and glutamate levels in Mecp2-deficient mice at 2 different ages (P35 and P55) and in several brain areas. We used a multilevel approach including the quantification of GABA and glutamate levels, as well as the quantification of the mRNA and protein expression levels of key genes involved in the GABAergic and glutamatergic pathways. Our results show that Mecp2-deficient mice displayed regional- and age-dependent variations in the GABA pathway and, to a lesser extent, in the glutamate pathway. The implication of the GABA pathway in the RTT neuropathology was further confirmed using an in vivo treatment with a GABA reuptake inhibitor that significantly improved the lifespan of Mecp2-deficient mice. Our results confirm that RTT mouse present a deficit in the GABAergic pathway and suggest that GABAergic modulators could be interesting therapeutic agents for this severe neurological disorder. PMID:24667344

  4. Affective Brain-Computer Interfaces As Enabling Technology for Responsive Psychiatric Stimulation

    PubMed Central

    Widge, Alik S.; Dougherty, Darin D.; Moritz, Chet T.

    2014-01-01

    There is a pressing clinical need for responsive neurostimulators, which sense a patient’s brain activity and deliver targeted electrical stimulation to suppress unwanted symptoms. This is particularly true in psychiatric illness, where symptoms can fluctuate throughout the day. Affective BCIs, which decode emotional experience from neural activity, are a candidate control signal for responsive stimulators targeting the limbic circuit. Present affective decoders, however, cannot yet distinguish pathologic from healthy emotional extremes. Indiscriminate stimulus delivery would reduce quality of life and may be actively harmful. We argue that the key to overcoming this limitation is to specifically decode volition, in particular the patient’s intention to experience emotional regulation. Those emotion-regulation signals already exist in prefrontal cortex (PFC), and could be extracted with relatively simple BCI algorithms. We describe preliminary data from an animal model of PFC-controlled limbic brain stimulation and discuss next steps for pre-clinical testing and possible translation. PMID:25580443

  5. Affective Brain-Computer Interfaces As Enabling Technology for Responsive Psychiatric Stimulation.

    PubMed

    Widge, Alik S; Dougherty, Darin D; Moritz, Chet T

    2014-04-01

    There is a pressing clinical need for responsive neurostimulators, which sense a patient's brain activity and deliver targeted electrical stimulation to suppress unwanted symptoms. This is particularly true in psychiatric illness, where symptoms can fluctuate throughout the day. Affective BCIs, which decode emotional experience from neural activity, are a candidate control signal for responsive stimulators targeting the limbic circuit. Present affective decoders, however, cannot yet distinguish pathologic from healthy emotional extremes. Indiscriminate stimulus delivery would reduce quality of life and may be actively harmful. We argue that the key to overcoming this limitation is to specifically decode volition, in particular the patient's intention to experience emotional regulation. Those emotion-regulation signals already exist in prefrontal cortex (PFC), and could be extracted with relatively simple BCI algorithms. We describe preliminary data from an animal model of PFC-controlled limbic brain stimulation and discuss next steps for pre-clinical testing and possible translation.

  6. Perchlorate exposure induces hypothyroidism and affects thyroid-responsive genes in liver but not brain of quail chicks.

    PubMed

    Chen, Yu; McNabb, F M Anne; Sible, Jill C

    2009-10-01

    Ground-dwelling birds in perchlorate-contaminated areas are exposed to perchlorate ion, a known thyroid disruptor, and might be vulnerable to the developmental effects of perchlorate-induced hypothyroidism. We hypothesized that perchlorate-induced hypothyroidism would alter the expression of thyroid-responsive genes involved in thyroid hormone (TH) regulation and in the development of target organ function. Japanese quail chicks were exposed to 2000 mg/L ammonium perchlorate in drinking water for 7.5 weeks beginning on day 5 posthatch. Hypothyroidism was evident after 2 weeks of exposure as lower plasma THs and lower TH content in exposed chicks than in controls. The degree of hypothyroidism was increased at 7.5 weeks, as indicated by significant thyroid gland hypertrophy and sustained changes in thyroid function. After 2 weeks of exposure, hypothyroidism increased type 2 5'-deiodinase (D2) mRNA level and decreased Spot 14 (SP14) mRNA level in the liver, whereas D2 mRNA and RC3 mRNA levels in brain were not affected. After 7.5 weeks of exposure, mRNA levels in the exposed group did not differ from those in controls in either the liver or brain, suggesting the responsiveness of these genes to THs decreased during development. These results suggest that the brain, but not the liver, was protected from the effects of hypothyroidism, probably by changes in D2 activity at the protein level and/or regulation of TH entry and exit from the brain. We concluded that perchlorate exposure caused hypothyroidism in young Japanese quail and affected the expression of thyroid-responsive genes during early posthatch development.

  7. Blood-brain barrier dysfunction in disorders of the developing brain

    PubMed Central

    Moretti, Raffaella; Pansiot, Julien; Bettati, Donatella; Strazielle, Nathalie; Ghersi-Egea, Jean-François; Damante, Giuseppe; Fleiss, Bobbi; Titomanlio, Luigi; Gressens, Pierre

    2015-01-01

    Disorders of the developing brain represent a major health problem. The neurological manifestations of brain lesions can range from severe clinical deficits to more subtle neurological signs or behavioral problems and learning disabilities, which often become evident many years after the initial damage. These long-term sequelae are due at least in part to central nervous system immaturity at the time of the insult. The blood-brain barrier (BBB) protects the brain and maintains homeostasis. BBB alterations are observed during both acute and chronic brain insults. After an insult, excitatory amino acid neurotransmitters are released, causing reactive oxygen species (ROS)-dependent changes in BBB permeability that allow immune cells to enter and stimulate an inflammatory response. The cytokines, chemokines and other molecules released as well as peripheral and local immune cells can activate an inflammatory cascade in the brain, leading to secondary neurodegeneration that can continue for months or even years and finally contribute to post-insult neuronal deficits. The role of the BBB in perinatal disorders is poorly understood. The inflammatory response, which can be either acute (e.g., perinatal stroke, traumatic brain injury) or chronic (e.g., perinatal infectious diseases) actively modulates the pathophysiological processes underlying brain injury. We present an overview of current knowledge about BBB dysfunction in the developing brain during acute and chronic insults, along with clinical and experimental data. PMID:25741233

  8. Mapping Functional Brain Development: Building a Social Brain through Interactive Specialization

    ERIC Educational Resources Information Center

    Johnson, Mark H.; Grossmann, Tobias; Kadosh, Kathrin Cohen

    2009-01-01

    The authors review a viewpoint on human functional brain development, interactive specialization (IS), and its application to the emerging network of cortical regions referred to as the "social brain." They advance the IS view in 2 new ways. First, they extend IS into a domain to which it has not previously been applied--the emergence of social…

  9. 125 Brain Games for Babies: Simple Games To Promote Early Brain Development.

    ERIC Educational Resources Information Center

    Silberg, Jackie

    Scientists believe that the stimulation that infants and young children receive determines which synapses form in the brain. This book presents 125 games for infants from birth to 12 months and is designed to nurture brain development. The book is organized chronologically in 3-month increments. Each game description includes information from…

  10. The role of mechanics during brain development.

    PubMed

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2014-12-01

    Convolutions are a classical hallmark of most mammalian brains. Brain surface morphology is often associated with intelligence and closely correlated to neurological dysfunction. Yet, we know surprisingly little about the underlying mechanisms of cortical folding. Here we identify the role of the key anatomic players during the folding process: cortical thickness, stiffness, and growth. To establish estimates for the critical time, pressure, and the wavelength at the onset of folding, we derive an analytical model using the Föppl-von-Kármán theory. Analytical modeling provides a quick first insight into the critical conditions at the onset of folding, yet it fails to predict the evolution of complex instability patterns in the post-critical regime. To predict realistic surface morphologies, we establish a computational model using the continuum theory of finite growth. Computational modeling not only confirms our analytical estimates, but is also capable of predicting the formation of complex surface morphologies with asymmetric patterns and secondary folds. Taken together, our analytical and computational models explain why larger mammalian brains tend to be more convoluted than smaller brains. Both models provide mechanistic interpretations of the classical malformations of lissencephaly and polymicrogyria. Understanding the process of cortical folding in the mammalian brain has direct implications on the diagnostics of neurological disorders including severe retardation, epilepsy, schizophrenia, and autism.

  11. The role of mechanics during brain development

    NASA Astrophysics Data System (ADS)

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2014-12-01

    Convolutions are a classical hallmark of most mammalian brains. Brain surface morphology is often associated with intelligence and closely correlated with neurological dysfunction. Yet, we know surprisingly little about the underlying mechanisms of cortical folding. Here we identify the role of the key anatomic players during the folding process: cortical thickness, stiffness, and growth. To establish estimates for the critical time, pressure, and the wavelength at the onset of folding, we derive an analytical model using the Föppl-von Kármán theory. Analytical modeling provides a quick first insight into the critical conditions at the onset of folding, yet it fails to predict the evolution of complex instability patterns in the post-critical regime. To predict realistic surface morphologies, we establish a computational model using the continuum theory of finite growth. Computational modeling not only confirms our analytical estimates, but is also capable of predicting the formation of complex surface morphologies with asymmetric patterns and secondary folds. Taken together, our analytical and computational models explain why larger mammalian brains tend to be more convoluted than smaller brains. Both models provide mechanistic interpretations of the classical malformations of lissencephaly and polymicrogyria. Understanding the process of cortical folding in the mammalian brain has direct implications on the diagnostics of neurological disorders including severe retardation, epilepsy, schizophrenia, and autism.

  12. The role of mechanics during brain development

    PubMed Central

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2014-01-01

    Convolutions are a classical hallmark of most mammalian brains. Brain surface morphology is often associated with intelligence and closely correlated to neurological dysfunction. Yet, we know surprisingly little about the underlying mechanisms of cortical folding. Here we identify the role of the key anatomic players during the folding process: cortical thickness, stiffness, and growth. To establish estimates for the critical time, pressure, and the wavelength at the onset of folding, we derive an analytical model using the Föppl-von-Kármán theory. Analytical modeling provides a quick first insight into the critical conditions at the onset of folding, yet it fails to predict the evolution of complex instability patterns in the post-critical regime. To predict realistic surface morphologies, we establish a computational model using the continuum theory of finite growth. Computational modeling not only confirms our analytical estimates, but is also capable of predicting the formation of complex surface morphologies with asymmetric patterns and secondary folds. Taken together, our analytical and computational models explain why larger mammalian brains tend to be more convoluted than smaller brains. Both models provide mechanistic interpretations of the classical malformations of lissencephaly and polymicrogyria. Understanding the process of cortical folding in the mammalian brain has direct implications on the diagnostics of neurological disorders including severe retardation, epilepsy, schizophrenia, and autism. PMID:25202162

  13. Cell proliferation and cell death are disturbed during prenatal and postnatal brain development after uranium exposure.

    PubMed

    Legrand, M; Elie, C; Stefani, J; N Florès; Culeux, C; Delissen, O; Ibanez, C; Lestaevel, P; Eriksson, P; Dinocourt, C

    2016-01-01

    The developing brain is more susceptible to neurotoxic compounds than adult brain. It is also well known that disturbances during brain development cause neurological disorders in adulthood. The brain is known to be a target organ of uranium (U) exposure and previous studies have noted that internal U contamination of adult rats induces behavioral disorders as well as affects neurochemistry and neurophysiological properties. In this study, we investigated whether depleted uranium (DU) exposure affects neurogenesis during prenatal and postnatal brain development. We examined the structural morphology of the brain, cell death and finally cell proliferation in animals exposed to DU during gestation and lactation compared to control animals. Our results showed that DU decreases cell death in the cortical neuroepithelium of gestational day (GD) 13 embryos exposed at 40mg/L and 120mg/L and of GD18 fetuses exposed at 120mg/L without modification of the number of apoptotic cells. Cell proliferation analysis showed an increase of BrdU labeling in the dentate neuroepithelium of fetuses from GD18 at 120mg/L. Postnatally, cell death is increased in the dentate gyrus of postnatal day (PND) 0 and PND5 exposed pups at 120mg/L and is associated with an increase of apoptotic cell number only at PND5. Finally, a decrease in dividing cells is observed in the dentate gyrus of PND21 rats developmentally exposed to 120mg/L DU, but not at PND0 and PND5. These results show that DU exposure during brain development causes opposite effects on cell proliferation and cell death processes between prenatal and postnatal development mainly at the highest dose. Although these modifications do not have a major impact in brain morphology, they could affect the next steps of neurogenesis and thus might disrupt the fine organization of the neuronal network.

  14. One-year high fat diet affects muscle-but not brain mitochondria.

    PubMed

    Jørgensen, Tenna; Grunnet, Niels; Quistorff, Bjørn

    2015-06-01

    It is well known that few weeks of high fat (HF) diet may induce metabolic disturbances and mitochondrial dysfunction in skeletal muscle. However, little is known about the effects of long-term HF exposure and effects on brain mitochondria are unknown. Wistar rats were fed either chow (13E% fat) or HF diet (60E% fat) for 1 year. The HF animals developed obesity, dyslipidemia, insulin resistance, and dysfunction of isolated skeletal muscle mitochondria: state 3 and state 4 were 30% to 50% increased (P<0.058) with palmitoyl carnitine (PC), while there was no effect with pyruvate as substrate. Adding also succinate in state 3 resulted in a higher substrate control ratio (SCR) with PC, but a lower SCR with pyruvate (P<0.05). The P/O2 ratio was lower with PC (P<0.004). However, similar tests on isolated brain mitochondria from the same animal showed no changes with the substrates relevant for brain (pyruvate and 3-hydroxybutyrate). Thus, long-term HF diet was associated with obesity, dyslipidemia, insulin resistance, and significantly altered mitochondrial function in skeletal muscle. Yet, brain mitochondria were unaffected. We suggest that the relative isolation of the brain due to the blood-brain barrier may play a role in this strikingly different phenotype of mitochondria from the two tissues of the same animal.

  15. Input and output constraints affecting irrigation development

    NASA Astrophysics Data System (ADS)

    Schramm, G.

    1981-05-01

    In many of the developing countries the expansion of irrigated agriculture is used as a major development tool for bringing about increases in agricultural output, rural economic growth and income distribution. Apart from constraints imposed by water availability, the major limitations considered to any acceleration of such programs are usually thought to be those of costs and financial resources. However, as is shown on the basis of empirical data drawn from Mexico, in reality the feasibility and effectiveness of such development programs is even more constrained by the lack of specialized physical and human factors on the input and market limitations on the output side. On the input side, the limited availability of complementary factors such as, for example, truly functioning credit systems for small-scale farmers or effective agricultural extension services impose long-term constraints on development. On the output side the limited availability, high risk, and relatively slow growth of markets for high-value crops sharply reduce the usually hoped-for and projected profitable crop mix that would warrant the frequently high costs of irrigation investments. Three conclusions are drawn: (1) Factors in limited supply have to be shadow-priced to reflect their high opportunity costs in alternative uses. (2) Re-allocation of financial resources from immediate construction of projects to longer-term increase in the supply of scarce, highly-trained manpower resources are necessary in order to optimize development over time. (3) Inclusion of high-value, high-income producing crops in the benefit-cost analysis of new projects is inappropriate if these crops could potentially be grown in already existing projects.

  16. Pericyte abundance affects sucrose permeability in cultures of rat brain microvascular endothelial cells.

    PubMed

    Parkinson, Fiona E; Hacking, Cindy

    2005-07-05

    The blood-brain barrier is a physical and metabolic barrier that restricts diffusion of blood-borne substances into brain. In vitro models of the blood-brain barrier are used to characterize this structure, examine mechanisms of damage and repair and measure permeability of test substances. The core component of in vitro models of the blood-brain barrier is brain microvascular endothelial cells. We cultured rat brain microvascular endothelial cells (RBMEC) from isolated rat cortex microvessels. After 2-14 days in vitro (DIV), immunohistochemistry of these cells showed strong labeling for zona occludens 1 (ZO-1), a tight junction protein expressed in endothelial cells. Pericytes were also present in these cultures, as determined by expression of alpha-actin. The present study was performed to test different cell isolation methods and to compare the resulting cell cultures for abundance of pericytes and for blood-brain barrier function, as assessed by 14C-sucrose flux. Two purification strategies were used. First, microvessels were preabsorbed onto uncoated plastic for 4 h, then unattached microvessels were transferred to coated culture ware. Second, microvessels were incubated with an antibody to platelet-endothelial cell adhesion molecule 1 (PECAM-1; CD31) precoupled to magnetic beads, and a magnetic separation procedure was performed. Our results indicate that immunopurification, but not preadsorption, was an effective method to purify microvessels and reduce pericyte abundance in the resulting cultures. This purification significantly reduced 14C-sucrose fluxes across cell monolayers. These data indicate that pericytes can interfere with the development of blood-brain barrier properties in in vitro models that utilize primary cultures of RBMECs.

  17. GLUT2-mediated glucose uptake and availability are required for embryonic brain development in zebrafish

    PubMed Central

    Marín-Juez, Rubén; Rovira, Mireia; Crespo, Diego; van der Vaart, Michiel; Spaink, Herman P; Planas, Josep V

    2015-01-01

    Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing. PMID:25294126

  18. Metabolic costs and evolutionary implications of human brain development.

    PubMed

    Kuzawa, Christopher W; Chugani, Harry T; Grossman, Lawrence I; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R; Wildman, Derek E; Sherwood, Chet C; Leonard, William R; Lange, Nicholas

    2014-09-09

    The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain's glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain-body metabolic trade-offs using the ratios of brain glucose uptake to the body's resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate.

  19. A Double Blind Trial of Divalproex Sodium for Affective Liability and Alcohol Use Following Traumatic Brain Injury

    DTIC Science & Technology

    2016-01-01

    Award Number: W81XWH-08-2-0652 TITLE: A Double Blind Trial of Divalproex Sodium for Affective Liability and Alcohol Use Following Traumatic Brain...of Divalproex Sodium for Affective Liability and Alcohol Use Following Traumatic Brain Injury 5b. GRANT NUMBER PT075168 5c. PROGRAM ELEMENT...expressed as affective lability, will decrease significantly in TBI subjects treated with divalproex sodium , a mood stabilizing medication, as

  20. Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice

    PubMed Central

    Wu, Kong-Yan; Zuo, Guo-Long; Li, Xiao-Feng; Ye, Qing; Deng, Yong-Qiang; Huang, Xing-Yao; Cao, Wu-Chun; Qin, Cheng-Feng; Luo, Zhen-Ge

    2016-01-01

    The recent Zika virus (ZIKV) epidemic in Latin America coincided with a marked increase in microcephaly in newborns. However, the causal link between maternal ZIKV infection and malformation of the fetal brain has not been firmly established. Here we show a vertical transmission of ZIKV in mice and a marked effect on fetal brain development. We found that intraperitoneal (i.p.) injection of a contemporary ZIKV strain in pregnant mice led to the infection of radial glia cells (RGs) of dorsal ventricular zone of the fetuses, the primary neural progenitors responsible for cortex development, and caused a marked reduction of these cortex founder cells in the fetuses. Interestingly, the infected fetal mice exhibited a reduced cavity of lateral ventricles and a discernable decrease in surface areas of the cortex. This study thus supports the conclusion that vertically transmitted ZIKV affects fetal brain development and provides a valuable animal model for the evaluation of potential therapeutic or preventative strategies. PMID:27174054

  1. Growth and development of the brain and impact on cognitive outcomes.

    PubMed

    Hüppi, Petra S

    2010-01-01

    Understanding human brain development from the fetal life to adulthood is of great clinical importance as many neurological and neurobehavioral disorders have their origin in early structural and functional cerebral maturation. The developing brain is particularly prone to being affected by endogenous and exogenous events through the fetal and early postnatal life. The concept of 'developmental plasticity or disruption of the developmental program' summarizes these events. Increases in white matter, which speed up communication between brain cells, growing complexity of neuronal networks suggested by gray and white matter changes, and environmentally sensitive plasticity are all essential aspects in a child's ability to mentalize and maintain the adaptive flexibility necessary for achieving high sociocognitive functioning. Advancement in neuroimaging has opened up new ways for examining the developing human brain in vivo, the study of the effects of early antenatal, perinatal and neonatal events on later structural and functional brain development resulting in developmental disabilities or developmental resilience. In this review, methods of quantitative assessment of human brain development, such as 3D-MRI with image segmentation, diffusion tensor imaging to assess connectivity and functional MRI to visualize brain function will be presented.

  2. What does the developing brain tell us about neural diseases?

    PubMed

    Stoeckli, Esther T

    2012-06-01

    In a recently published report, the European Brain Council estimated that the annual cost of brain disorders is larger than the cost of all other disease areas combined, including cardiovascular diseases, cancer, and diabetes. The World Health Organization concluded that approximately one-third of the total burden of disease in Europe is attributable to brain disorders. Therefore, drug development for neural diseases should flourish and attract large pharmaceutical companies and smaller enterprises alike. However, this is far from being the case: industry is cutting down on research and investment in brain disorders in Europe. Political reasons may be contributing to this, but they do not constitute the only explanation. An important reason for the decreasing interest and investment is the lack of drug targets in neural diseases. In order to change this, greater efforts at understanding the etiologies and pathogenetic mechanisms of disorders of both the developing and the adult brain are required. We need to strengthen basic research to understand the brain in health and disease. A shift from translational to basic research is required to meet the need for drugs and therapies in the future. In support of this, I summarize some recent studies indicating that the developing brain has much to offer in this respect. The processes and genes involved in brain development are linked to the etiologies not only of neurodevelopmental but also of neurodegenerative diseases.

  3. Questions about Brain Development = Preguntas sobre el desarrollo del cerebro.

    ERIC Educational Resources Information Center

    Southeastern Regional Vision for Education (SERVE), Tallahassee, FL.

    Noting that new research shows that a baby's earliest years shape how he or she grows later in life, this brochure, in English- and Spanish-language versions, provides brief answers to some important questions parents may have about their baby's brain. The questions answered are: (1) "Why is brain development a popular subject lately?; (2)…

  4. Maturing Brain Mechanisms and Developing Behavioral Language Skills

    ERIC Educational Resources Information Center

    Friedrich, Manuela; Friederici, Angela D.

    2010-01-01

    The relation between the maturation of brain mechanisms responsible for the N400 elicitation in the event-related brain potential (ERP) and the development of behavioral language skills was investigated in 12-month-old infants. ERPs to words presented in a picture-word priming paradigm were analyzed according to the infants' production and…

  5. Plasticity in the Developing Brain: Implications for Rehabilitation

    ERIC Educational Resources Information Center

    Johnston, Michael V.

    2009-01-01

    Neuronal plasticity allows the central nervous system to learn skills and remember information, to reorganize neuronal networks in response to environmental stimulation, and to recover from brain and spinal cord injuries. Neuronal plasticity is enhanced in the developing brain and it is usually adaptive and beneficial but can also be maladaptive…

  6. Brain Lateralization in Infancy: Implications for Development.

    ERIC Educational Resources Information Center

    Brooks, Rick

    Evidence that hemispheric asymmetry is present at birth comes from several sources: physical structure of the brain, hand preference, and responses to visual and auditory stimuli. In infancy, a hemisphere is activated only when exposed to an appropriate stimulus. Different stimuli seem to activate one hemisphere only, or at least one hemisphere…

  7. Glycolysis-mediated control of blood-brain barrier development and function.

    PubMed

    Salmina, Alla B; Kuvacheva, Natalia V; Morgun, Andrey V; Komleva, Yulia K; Pozhilenkova, Elena A; Lopatina, Olga L; Gorina, Yana V; Taranushenko, Tatyana E; Petrova, Lyudmila L

    2015-07-01

    The blood-brain barrier (BBB) consists of differentiated cells integrating in one ensemble to control transport processes between the central nervous system (CNS) and peripheral blood. Molecular organization of BBB affects the extracellular content and cell metabolism in the CNS. Developmental aspects of BBB attract much attention in recent years, and barriergenesis is currently recognized as a very important and complex mechanism of CNS development and maturation. Metabolic control of angiogenesis/barriergenesis may be provided by glucose utilization within the neurovascular unit (NVU). The role of glycolysis in the brain has been reconsidered recently, and it is recognized now not only as a process active in hypoxic conditions, but also as a mechanism affecting signal transduction, synaptic activity, and brain development. There is growing evidence that glycolysis-derived metabolites, particularly, lactate, affect barriergenesis and functioning of BBB. In the brain, lactate produced in astrocytes or endothelial cells can be transported to the extracellular space via monocarboxylate transporters (MCTs), and may act on the adjoining cells via specific lactate receptors. Astrocytes are one of the major sources of lactate production in the brain and significantly contribute to the regulation of BBB development and functioning. Active glycolysis in astrocytes is required for effective support of neuronal activity and angiogenesis, while endothelial cells regulate bioavailability of lactate for brain cells adjusting its bidirectional transport through the BBB. In this article, we review the current knowledge with regard to energy production in endothelial and astroglial cells within the NVU. In addition, we describe lactate-driven mechanisms and action of alternative products of glucose metabolism affecting BBB structural and functional integrity in developing and mature brain.

  8. The effects of child maltreatment on the developing brain.

    PubMed

    Glaser, Danya

    2014-09-01

    Lasting effects of child abuse and neglect are well recognised. Apart from physical effects resulting from injuries and neglect, the effects are on behaviour, emotional well-being, interpersonal relationships and cognitive functioning. These psychological aspects are now known to have their counterparts in brain structure, chemistry and function. The growing knowledge of brain development has shed new light on our understanding of the processes by which especially early abuse and neglect may have a profound effect on the child's later adjustment. The brain undergoes its greatest growth and development in the first years of life, (with a second phase in adolescence). While the sequence of development within the brain is genetically determined, the nature of this development is determined to a considerable extent on the young child's experiences. The absence of some experiences, such as extreme deprivation during sensitive periods of development may mean that certain functions will not develop. For most functions, the nature of experience will shape brain development. Negative experiences and certain ways of interaction will be incorporated into the brain's connectivity. While learning and new experiences continue throughout life, and their effects continue to be incorporated into brain structure and functioning, previous patterns cannot be erased, only added on to and more slowly. As we know from our adult experiences, learning is far faster in childhood. A further aspect of child maltreatment which has a profound effect on brain development is the significant neurobiological stress which the young, maltreated, child experiences. It is interesting to learn that secure attachment organisation protects the developing brain from the worst effects of the stress response. The effects of the experiences interact with the child's genetic resilience or vulnerability.

  9. The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology

    PubMed Central

    Posner, Jonathan; Russell, James A.; Peterson, Bradley S.

    2008-01-01

    The circumplex model of affect proposes that all affective states arise from cognitive interpretations of core neural sensations that are the product of two independent neurophysiological systems. This model stands in contrast to theories of basic emotions, which posit that a discrete and independent neural system subserves every emotion. We propose that basic emotion theories no longer explain adequately the vast number of empirical observations from studies in affective neuroscience, and we suggest that a conceptual shift is needed in the empirical approaches taken to the study of emotion and affective psychopathologies. The circumplex model of affect is more consistent with many recent findings from behavioral, cognitive neuroscience, neuroimaging, and developmental studies of affect. Moreover, the model offers new theoretical and empirical approaches to studying the development of affective disorders as well as the genetic and cognitive underpinnings of affective processing within the central nervous system. PMID:16262989

  10. Evaluating ambivalence: social-cognitive and affective brain regions associated with ambivalent decision-making.

    PubMed

    Nohlen, Hannah U; van Harreveld, Frenk; Rotteveel, Mark; Lelieveld, Gert-Jan; Crone, Eveline A

    2014-07-01

    Ambivalence is a state of inconsistency that is often experienced as affectively aversive. In this functional magnetic resonance imaging study, we investigated the role of cognitive and social-affective processes in the experience of ambivalence and coping with its negative consequences. We examined participants' brain activity during the dichotomous evaluation (pro vs contra) of pretested ambivalent (e.g. alcohol), positive (e.g. happiness) and negative (e.g. genocide) word stimuli. We manipulated evaluation relevance by varying the probability of evaluation consequences, under the hypothesis that ambivalence is experienced as more negative when outcomes are relevant. When making ambivalent evaluations, more activity was found in the anterior cingulate cortex, the insula, the temporal parietal junction (TPJ) and the posterior cingulate cortex (PCC)/precuneus, for both high and low evaluation relevance. After statistically conservative corrections, activity in the TPJ and PCC/precuneus was negatively correlated with experienced ambivalence after scanning, as measured by Priester and Petty's felt ambivalence scale (1996). The findings show that cognitive and social-affective brain areas are involved in the experience of ambivalence. However, these networks are differently associated with subsequent reduction of ambivalence, thus highlighting the importance of understanding both cognitive and affective processes involved in ambivalent decision-making.

  11. In vitro MRI of brain development.

    PubMed

    Rados, Marko; Judas, Milos; Kostović, Ivica

    2006-02-01

    In this review, we demonstrate the developmental appearance, structural features, and reorganization of transient cerebral zones and structures in the human fetal brain using a correlative histological and MRI analysis. The analysis of postmortem aldehyde-fixed specimens (age range: 10 postovulatory weeks to term) revealed that, at 10 postovulatory weeks, the cerebral wall already has a trilaminar appearance and consists of: (1) a ventricular zone of high cell-packing density; (2) an intermediate zone; (3) the cortical plate (in a stage of primary consolidation) with high MRI signal intensity. The anlage of the hippocampus is present as a prominent bulging in the thin limbic telencephalon. The early fetal telencephalon impar also contains the first commissural fibers and fornix bundles in the septal area. The ganglionic eminence is clearly visible as an expanded continuation of the proliferative ventricular zone. The basal ganglia showed an initial aggregation of cells. The most massive fiber system is in the hemispheric stalk, which is in continuity with thalamocortical fibers. During the mid-fetal period (15-22 postovulatory weeks), the typical fetal lamination pattern develops and the cerebral wall consists of the following zones: (a) a marginal zone (visible on MRI exclusively in the hippocampus); (b) the cortical plate with high cell-packing density and high MRI signal intensity; (c) the subplate zone, which is the most prominent zone rich in extracellular matrix and with a very low MRI signal intensity; (d) the intermediate zone (fetal "white matter"); (e) the subventricular zone; (f) the periventricular fiber-rich zone; (g) the ventricular zone. The ganglionic eminence is still a very prominent structure with an intense proliferative activity. During the next period (22-26 postovulatory weeks), there is the developmental peak of transient MRI features, caused by the high content of hydrophyllic extracellular matrix in the subplate zone and the accumulation

  12. Fetal jaw movement affects condylar cartilage development.

    PubMed

    Habib, H; Hatta, T; Udagawa, J; Zhang, L; Yoshimura, Y; Otani, H

    2005-05-01

    Using a mouse exo utero system to examine the effects of fetal jaw movement on the development of condylar cartilage, we assessed the effects of restraint of the animals' mouths from opening, by suture, at embryonic day (E)15.5. We hypothesized that pre-natal jaw movement is an important mechanical factor in endochondral bone formation of the mandibular condyle. Condylar cartilage was reduced in size, and the bone-cartilage margin was ill-defined in the sutured group at E18.5. Volume, total number of cells, and number of 5-bromo-2'-deoxyuridine-positive cells in the mesenchymal zone were lower in the sutured group than in the non-sutured group at E16.5 and E18.5. Hypertrophic chondrocytes were larger, whereas fewer apoptotic chondrocytes and osteoclasts were observed in the hypertrophic zone in the sutured group at E18.5. Analysis of our data revealed that restricted fetal TMJ movement influences the process of endochondral bone formation of condylar cartilage.

  13. Polystyrene nanoparticles affect Xenopus laevis development

    NASA Astrophysics Data System (ADS)

    Tussellino, Margherita; Ronca, Raffaele; Formiggini, Fabio; Marco, Nadia De; Fusco, Sabato; Netti, Paolo Antonio; Carotenuto, Rosa

    2015-02-01

    Exposing living organisms to nanoparticulates is potentially hazardous, in particular when it takes place during embryogenesis. In this investigation, we have studied the effects of 50-nm-uncoated polystyrene nanoparticles (PSNPs) as a model to investigate the suitability of their possible future employments. We have used the standardized Frog Embryo Teratogenesis Assay- Xenopus test during the early stages of larval development of Xenopus laevis, and we have employed either contact exposure or microinjections. We found that the embryos mortality rate is dose dependent and that the survived embryos showed high percentage of malformations. They display disorders in pigmentation distribution, malformations of the head, gut and tail, edema in the anterior ventral region, and a shorter body length compared with sibling untreated embryos. Moreover, these embryos grow more slowly than the untreated embryos. Expressions of the mesoderm markers, bra (T-box Brachyury gene), myod1 (myogenic differentiation1), and of neural crest marker sox9 (sex SRY (determining region Y-box 9) transcription factor sox9), are modified. Confocal microscopy showed that the nanoparticles are localized in the cytoplasm, in the nucleus, and in the periphery of the digestive gut cells. Our data suggest that PSNPs are toxic and show a potential teratogenic effect for Xenopus larvae. We hypothesize that these effects may be due either to the amount of NPs that penetrate into the cells and/or to the "corona" effect caused by the interaction of PSNPs with cytoplasm components. The three endpoints of our study, i.e., mortality, malformations, and growth inhibition, suggest that the tests we used may be a powerful and flexible bioassay in evaluating pollutants in aquatic embryos.

  14. Mapping functional brain development: Building a social brain through interactive specialization.

    PubMed

    Johnson, Mark H; Grossmann, Tobias; Cohen Kadosh, Kathrin

    2009-01-01

    The authors review a viewpoint on human functional brain development, interactive specialization (IS), and its application to the emerging network of cortical regions referred to as the social brain. They advance the IS view in 2 new ways. First, they extend IS into a domain to which it has not previously been applied--the emergence of social cognition and mentalizing computations in the brain. Second, they extend the implications of the IS view from the emergence of specialized functions within a cortical region to a focus on how different cortical regions with complementary functions become orchestrated into networks during human postnatal development.

  15. The roles of the amygdala in the affective regulation of body, brain, and behaviour

    NASA Astrophysics Data System (ADS)

    Mirolli, Marco; Mannella, Francesco; Baldassarre, Gianluca

    2010-09-01

    Despite the great amount of knowledge produced by the neuroscientific literature on affective phenomena, current models tackling non-cognitive aspects of behaviour are often bio-inspired but rarely bio-constrained. This paper presents a theoretical account of affective systems centred on the amygdala (Amg). This account aims to furnish a general framework and specific pathways to implement models that are more closely related to biological evidence. The Amg, which receives input from brain areas encoding internal states, innately relevant stimuli, and innately neutral stimuli, plays a fundamental role in the motivational and emotional processes of organisms. This role is based on the fact that Amg implements the two associative processes at the core of Pavlovian learning (conditioned stimulus (CS)-unconditioned stimulus (US) and CS-unconditioned response (UR) associations), and that it has the capacity of modulating these associations on the basis of internal states. These functionalities allow the Amg to play an important role in the regulation of the three fundamental classes of affective responses (namely, the regulation of body states, the regulation of brain states via neuromodulators, and the triggering of a number of basic behaviours fundamental for adaptation) and in the regulation of three high-level cognitive processes (namely, the affective labelling of memories, the production of goal-directed behaviours, and the performance of planning and complex decision-making). Our analysis is conducted within a methodological approach that stresses the importance of understanding the brain within an evolutionary/adaptive framework and with the aim of isolating general principles that can potentially account for the wider possible empirical evidence in a coherent fashion.

  16. Cerebral organoids model human brain development and microcephaly.

    PubMed

    Lancaster, Madeline A; Renner, Magdalena; Martin, Carol-Anne; Wenzel, Daniel; Bicknell, Louise S; Hurles, Matthew E; Homfray, Tessa; Penninger, Josef M; Jackson, Andrew P; Knoblich, Juergen A

    2013-09-19

    The complexity of the human brain has made it difficult to study many brain disorders in model organisms, highlighting the need for an in vitro model of human brain development. Here we have developed a human pluripotent stem cell-derived three-dimensional organoid culture system, termed cerebral organoids, that develop various discrete, although interdependent, brain regions. These include a cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes. Furthermore, cerebral organoids are shown to recapitulate features of human cortical development, namely characteristic progenitor zone organization with abundant outer radial glial stem cells. Finally, we use RNA interference and patient-specific induced pluripotent stem cells to model microcephaly, a disorder that has been difficult to recapitulate in mice. We demonstrate premature neuronal differentiation in patient organoids, a defect that could help to explain the disease phenotype. Together, these data show that three-dimensional organoids can recapitulate development and disease even in this most complex human tissue.

  17. Typical and atypical brain development: a review of neuroimaging studies.

    PubMed

    Dennis, Emily L; Thompson, Paul M

    2013-09-01

    In the course of development, the brain undergoes a remarkable process of restructuring as it adapts to the environment and becomes more efficient in processing information. A variety of brain imaging methods can be used to probe how anatomy, connectivity, and function change in the developing brain. Here we review recent discoveries regarding these brain changes in both typically developing individuals and individuals with neurodevelopmental disorders. We begin with typical development, summarizing research on changes in regional brain volume and tissue density, cortical thickness, white matter integrity, and functional connectivity. Space limits preclude the coverage of all neurodevelopmental disorders; instead, we cover a representative selection of studies examining neural correlates of autism, attention deficit/hyperactivity disorder, Fragile X, 22q11.2 deletion syndrome, Williams syndrome, Down syndrome, and Turner syndrome. Where possible, we focus on studies that identify an age by diagnosis interaction, suggesting an altered developmental trajectory. The studies we review generally cover the developmental period from infancy to early adulthood. Great progress has been made over the last 20 years in mapping how the brain matures with MR technology. With ever-improving technology, we expect this progress to accelerate, offering a deeper understanding of brain development, and more effective interventions for neurodevelopmental disorders.

  18. [Brain development of infant and MRI by diffusion tensor imaging].

    PubMed

    Dubois, J; Dehaene-Lambertz, G; Mangin, J-F; Le Bihan, D; Hüppi, P S; Hertz-Pannier, L

    2012-01-01

    Studying how the brain develops and becomes functional is important to understand how the man has been able to develop specific cognitive abilities, and to comprehend the complexity of some developmental pathologies. Thanks to magnetic resonance imaging (MRI), it is now possible to image the baby's immature brain and to consider subtle correlations between the brain anatomical development and the early acquisition of cognitive functions. Dedicated methodologies for image acquisition and post-treatment must then be used because the size of cerebral structures and the image contrast are very different in comparison with the adult brain, and because the examination length is a major constraint. Two recent studies have evaluated the developing brain under an original perspective. The first one has focused on cortical folding in preterm newborns, from 6 to 8 months of gestational age, assessed with T2-weighted conventional MRI. The second study has mapped the organization and maturation of white matter fiber bundles in 1- to 4-month-old healthy infants with diffusion tensor imaging (DTI). Both studies have enabled to highlight spatio-temporal differences in the brain regions' maturation, as well as early anatomical asymmetries between cerebral hemispheres. These studies emphasize the potential of MRI to evaluate brain development compared with the infant's psychomotor acquisitions after birth.

  19. Mapping Fetal Brain Development in utero Using MRI: The Big Bang of Brain Mapping

    PubMed Central

    Studholme, Colin

    2012-01-01

    The development of tools to construct and investigate probabilistic maps of the adult human brain from MRI have led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence, childhood and even neonatal and premature neonatal imaging. Looking even earlier in development, parallel developments in clinical fetal Magnetic Resonance Imaging (MRI) have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments that combine optimal fast MRI scans with techniques derived from computer vision that allow full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article will review the developments that have led us to this point, and examine the current state of the art in the fields of fast fetal imaging, motion correction and the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatio-temporal atlases will be examined, together with techniques to map fetal brain growth patterns. PMID:21568716

  20. Blood-brain barrier drug targeting: the future of brain drug development.

    PubMed

    Pardridge, William M

    2003-03-01

    As human longevity increases, the likelihood of the onset of diseases of the brain (and other organs) also increases. Clinical therapeutics offer useful long-term treatments, if not cures, if drugs can be delivered appropriately and effectively. Unfortunately, research in drug transport to the brain has not advanced very far. Through better characterization of the transport systems utilized within the blood-brain barrier, a greater understanding of how to exploit these systems will lead to effective treatments for brain disorders. Pardridge reviews the functions of the various known transport systems in the brain and discusses how the development of BBB drug-targeting programs in pharmaceutical and academic settings may lead to more efficacious treatments.

  1. Development of Large-Scale Functional Brain Networks in Children

    PubMed Central

    Supekar, Kaustubh; Musen, Mark; Menon, Vinod

    2009-01-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7–9 y) and 22 young-adults (ages 19–22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar “small-world” organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism. PMID:19621066

  2. The Importance of Vocal Affect to Bimodal Processing of Emotion: Implications for Individuals with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Zupan, Barbra; Neumann, Dawn; Babbage, Duncan R.; Willer, Barry

    2009-01-01

    Persons with traumatic brain injury (TBI) often have difficulty recognizing emotion in others. This is likely due to difficulties in interpreting non-verbal cues of affect. Although deficits in interpreting facial cues of affect are being widely explored, interpretation of vocal cues of affect has received much less attention. Accurate…

  3. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    PubMed

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  4. Webinar Presentation: The Impact of Toxins on the Developing Brain

    EPA Pesticide Factsheets

    This presentation, The Impact of Toxins on the Developing Brain, was given at the NIEHS/EPA Children's Centers 2015 Webinar Series: Historical Perspectives and Research Updates from Previously Funded Children's Centers held on Nov. 18, 2015.

  5. Diffusion tensor imaging for understanding brain development in early life.

    PubMed

    Qiu, Anqi; Mori, Susumu; Miller, Michael I

    2015-01-03

    The human brain rapidly develops during the final weeks of gestation and in the first two years following birth. Diffusion tensor imaging (DTI) is a unique in vivo imaging technique that allows three-dimensional visualization of the white matter anatomy in the brain. It has been considered to be a valuable tool for studying brain development in early life. In this review, we first introduce the DTI technique. We then review DTI findings on white matter development at the fetal stage and in infancy as well as DTI applications for understanding neurocognitive development and brain abnormalities in preterm infants. Finally, we discuss limitations of DTI and potential valuable imaging techniques for studying white matter myelination.

  6. Researchers Find Essential Brain Circuit in Visual Development

    MedlinePlus

    ... 26, 2013 Researchers find essential brain circuit in visual development NIH-funded study could lead to new ... image shows the binocular zone of the mouse visual cortex. Amblyopia occurs when one eye is impaired ...

  7. Clonal development and organization of the adult Drosophila central brain

    PubMed Central

    Yu, Hung-Hsiang; Awasaki, Takeshi; Schroeder, Mark David; Long, Fuhui; Yang, Jacob S.; He, Yisheng; Ding, Peng; Kao, Jui-Chun; Wu, Gloria Yueh-Yi; Peng, Hanchuan; Myers, Gene; Lee, Tzumin

    2013-01-01

    Summary Background The insect brain can be divided into neuropils that are formed by neurites of both local and remote origin. The complexity of the interconnections obscures how these neuropils are established and interconnected through development. The Drosophila central brain develops from a fixed number of neuroblasts (NBs) that deposit neurons in regional clusters. Results By determining individual NB clones and pursuing their projections into specific neuropils we unravel the regional development of the brain neural network. Exhaustive clonal analysis revealed 95 stereotyped neuronal lineages with characteristic cell body locations and neurite trajectories. Most clones show complex projection patterns, but despite the complexity, neighboring clones often co-innervate the same local neuropil(s) and further target a restricted set of distant neuropils. Conclusions These observations argue for regional clonal development of both neuropils and neuropil connectivity throughout the Drosophila central brain. PMID:23541733

  8. Towards Tunable Consensus Clustering for Studying Functional Brain Connectivity During Affective Processing.

    PubMed

    Liu, Chao; Abu-Jamous, Basel; Brattico, Elvira; Nandi, Asoke K

    2017-03-01

    In the past decades, neuroimaging of humans has gained a position of status within neuroscience, and data-driven approaches and functional connectivity analyses of functional magnetic resonance imaging (fMRI) data are increasingly favored to depict the complex architecture of human brains. However, the reliability of these findings is jeopardized by too many analysis methods and sometimes too few samples used, which leads to discord among researchers. We propose a tunable consensus clustering paradigm that aims at overcoming the clustering methods selection problem as well as reliability issues in neuroimaging by means of first applying several analysis methods (three in this study) on multiple datasets and then integrating the clustering results. To validate the method, we applied it to a complex fMRI experiment involving affective processing of hundreds of music clips. We found that brain structures related to visual, reward, and auditory processing have intrinsic spatial patterns of coherent neuroactivity during affective processing. The comparisons between the results obtained from our method and those from each individual clustering algorithm demonstrate that our paradigm has notable advantages over traditional single clustering algorithms in being able to evidence robust connectivity patterns even with complex neuroimaging data involving a variety of stimuli and affective evaluations of them. The consensus clustering method is implemented in the R package "UNCLES" available on http://cran.r-project.org/web/packages/UNCLES/index.html .

  9. Functional connectivity in the resting brain as biological correlate of the Affective Neuroscience Personality Scales.

    PubMed

    Deris, Nadja; Montag, Christian; Reuter, Martin; Weber, Bernd; Markett, Sebastian

    2017-02-15

    According to Jaak Panksepp's Affective Neuroscience Theory and the derived self-report measure, the Affective Neuroscience Personality Scales (ANPS), differences in the responsiveness of primary emotional systems form the basis of human personality. In order to investigate neuronal correlates of personality, the underlying neuronal circuits of the primary emotional systems were analyzed in the present fMRI-study by associating the ANPS to functional connectivity in the resting brain. N=120 healthy participants were invited for the present study. The results were reinvestigated in an independent, smaller sample of N=52 participants. A seed-based whole brain approach was conducted with seed-regions bilaterally in the basolateral and superficial amygdalae. The selection of seed-regions was based on meta-analytic data on affective processing and the Juelich histological atlas. Multiple regression analyses on the functional connectivity maps revealed associations with the SADNESS-scale in both samples. Functional resting-state connectivity between the left basolateral amygdala and a cluster in the postcentral gyrus, and between the right basolateral amygdala and clusters in the superior parietal lobe and subgyral in the parietal lobe was associated with SADNESS. No other ANPS-scale revealed replicable results. The present findings give first insights into the neuronal basis of the SADNESS-scale of the ANPS and support the idea of underlying neuronal circuits. In combination with previous research on genetic associations of the ANPS functional resting-state connectivity is discussed as a possible endophenotype of personality.

  10. Stress shifts brain activation towards ventral 'affective' areas during emotional distraction.

    PubMed

    Oei, Nicole Y L; Veer, Ilya M; Wolf, Oliver T; Spinhoven, Philip; Rombouts, Serge A R B; Elzinga, Bernet M

    2012-04-01

    Acute stress has been shown to impair working memory (WM), and to decrease prefrontal activation during WM in healthy humans. Stress also enhances amygdala responses towards emotional stimuli. Stress might thus be specifically detrimental to WM when one is distracted by emotional stimuli. Usually, emotional stimuli presented as distracters in a WM task slow down performance, while evoking more activation in ventral 'affective' brain areas, and a relative deactivation in dorsal 'executive' areas. We hypothesized that after acute social stress, this reciprocal dorsal-ventral pattern would be shifted towards greater increase of ventral 'affective' activation during emotional distraction, while impairing WM performance. To investigate this, 34 healthy men, randomly assigned to a social stress or control condition, performed a Sternberg WM task with emotional and neutral distracters inside an MRI scanner. Results showed that WM performance after stress tended to be slower during emotional distraction. Brain activations during emotional distraction was enhanced in ventral affective areas, while dorsal executive areas tended to show less deactivation after stress. These results suggest that acute stress shifts priority towards processing of emotionally significant stimuli, at the cost of WM performance.

  11. Intrauterine environment-genome interaction and children's development (1): Ethanol: a teratogen in developing brain.

    PubMed

    Fukui, Yoshihiro; Sakata-Haga, Hiromi

    2009-01-01

    Exposure to ethanol during prenatal development can have devastating consequences on developing fetuses, the so-called fetal alcohol spectrum disordres (FASD). Among FASD, cases that exhibit all of three criterion; 1) central nervous system dysfunction, 2) prenatal and postnatal growth deficiency, and 3) characteristic cranial/facial abnormalities, referred as fetal alcohol syndrome (FAS). Children born to drinking mothers may suffer from severe brain damage that is expressed by a variety of behavioral alterations. We examined the effects of ethanol exposure during brain development on brain morphogenesis and circadian rhythm using a rat model. Pregnant Sprague-Dawley (SD) rats were fed a liquid diet containing 2.5-5.0% (w/v) ethanol during gestational days 10 to 21. Mean daily ethanol consumption by these dams was 11.53 +/- 2.54 g/kg/day. In rats prenatally exposed to ethanol, ectopias on the cerebral cortex, aberrant distribution of hippocampal mossy fibers, and fusion of cerebellar folia were found. Rats exposed to ethanol during the prenatal or postnatal period suffered from a fragile synchronizing system of circadian rhythms in adulthood. Although the prevalence of FAS in Japan is lower than in the United States, the increasing number of Japanese women with the drinking habit are cause for great concern. However, the preventive action of FAS/FASD has been advanced recently, and now alcoholic beverages carry labels warning of the risk of drinking during pregnancy and breastfeeding of babies. Although little is still known about how ethanol affects brain development, the only and most certain way to prevent FAS/FASD is total abstinence from alcohol during pregnancy and breastfeeding.

  12. Brain-machine interfaces for space applications-research, technological development, and opportunities.

    PubMed

    Summerer, Leopold; Izzo, Dario; Rossini, Luca

    2009-01-01

    Recent advances in brain research and brain-machine interfaces suggest these devices could play a central role in future generation computer interfaces. Successes in the use of brain machine interfaces for patients affected by motor paralysis, as well as first developments of games and gadgets based on this technology have matured the field and brought brain-machine interfaces to the brink of more general usability and eventually of opening new markets. In human space flight, astronauts are the most precious "payload" and astronaut time is extremely valuable. Astronauts operate under difficult and unusual conditions since the absence of gravity renders some of the very simple tasks tedious and cumbersome. Therefore, computer interfaces are generally designed for safety and functionality. All improvements and technical aids to enhance their functionality and efficiency, while not compromising safety or overall mass requirements, are therefore of great interest. Brain machine interfaces show some interesting properties in this respect. It is however not obvious that devices developed for functioning on-ground can be used as hands-free interfaces for astronauts. This chapter intends to highlight the research directions of brain machine interfaces with the perceived highest potential impact on future space applications, and to present an overview of the long-term plans with respect to human space flight. We conclude by suggesting research and development steps considered necessary to include brain-machine interface technology in future architectures for human space flight.

  13. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    SciTech Connect

    Gazdzinski, Lisa M.; Cormier, Kyle; Lu, Fred G.; Lerch, Jason P.; Wong, C. Shun; Nieman, Brian J.

    2012-12-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  14. Does vitamin C deficiency affect cognitive development and function?

    PubMed

    Hansen, Stine Normann; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2014-09-19

    Vitamin C is a pivotal antioxidant in the brain and has been reported to have numerous functions, including reactive oxygen species scavenging, neuromodulation, and involvement in angiogenesis. Absence of vitamin C in the brain has been shown to be detrimental to survival in newborn SVCT2(-/-) mice and perinatal deficiency have shown to reduce hippocampal volume and neuron number and cause decreased spatial cognition in guinea pigs, suggesting that maternal vitamin C deficiency could have severe consequences for the offspring. Furthermore, vitamin C deficiency has been proposed to play a role in age-related cognitive decline and in stroke risk and severity. The present review discusses the available literature on effects of vitamin C deficiency on the developing and aging brain with particular focus on in vivo experimentation and clinical studies.

  15. Metabolic costs and evolutionary implications of human brain development

    PubMed Central

    Kuzawa, Christopher W.; Chugani, Harry T.; Grossman, Lawrence I.; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R.; Wildman, Derek E.; Sherwood, Chet C.; Leonard, William R.; Lange, Nicholas

    2014-01-01

    The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain’s glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain–body metabolic trade-offs using the ratios of brain glucose uptake to the body’s resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate. PMID:25157149

  16. Regional growth and atlasing of the developing human brain

    PubMed Central

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V.; Edwards, A. David; Counsell, Serena J.; Rueckert, Daniel

    2016-01-01

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45 weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. PMID:26499811

  17. Fetal Alcohol Syndrome and the Developing Socio-Emotional Brain

    ERIC Educational Resources Information Center

    Niccols, Alison

    2007-01-01

    Fetal alcohol syndrome (FAS) is currently recognized as the most common known cause of mental retardation, affecting from 1 to 7 per 1000 live-born infants. Individuals with FAS suffer from changes in brain structure, cognitive impairments, and behavior problems. Researchers investigating neuropsychological functioning have identified deficits in…

  18. Neuroimaging Studies of Normal Brain Development and Their Relevance for Understanding Childhood Neuropsychiatric Disorders

    ERIC Educational Resources Information Center

    Marsh, Rachel; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    Neuroimaging findings which identify normal brain development trajectories are presented. Results show that early brain development begins with the neural tube formation and ends with myelintation. How disturbances in brain development patterns are related to childhood psychiatric disorders is examined.

  19. Affective Development in Advanced Old Age: Analyses of Terminal Change in Positive and Negative Affect

    ERIC Educational Resources Information Center

    Schilling, Oliver K.; Wahl, Hans-Werner; Wiegering, Sarah

    2013-01-01

    Late-life development of affect may unfold terminal changes that are driven more by end-of-life processes and not so much by time since birth. This study aimed to explore time-to-death-related effects in measures of affect in a sample of the very old. We used longitudinal data (2 measurement occasions: 2002 and 2003) from 140 deceased…

  20. Predicting acute affective symptoms after deep brain stimulation surgery in Parkinson's disease.

    PubMed

    Schneider, Frank; Reske, Martina; Finkelmeyer, Andreas; Wojtecki, Lars; Timmermann, Lars; Brosig, Timo; Backes, Volker; Amir-Manavi, Atoosa; Sturm, Volker; Habel, Ute; Schnitzler, Alfons

    2010-01-01

    The current study aimed to investigate predictive markers for acute symptoms of depression and mania following deep brain stimulation (DBS) surgery of the subthalamic nucleus for the treatment of motor symptoms in Parkinson's disease (PD). Fourteen patients with PD (7 males) were included in a prospective longitudinal study. Neuropsychological tests, psychopathology scales and tests of motor functions were administered at several time points prior to and after neurosurgery. Pre-existing psychopathological and motor symptoms predicted postoperative affective side effects of DBS surgery. As these can easily be assessed, they should be considered along with other selection criteria for DBS surgery.

  1. Facial Affect Recognition Training Through Telepractice: Two Case Studies of Individuals with Chronic Traumatic Brain Injury.

    PubMed

    Williamson, John; Isaki, Emi

    2015-01-01

    The use of a modified Facial Affect Recognition (FAR) training to identify emotions was investigated with two case studies of adults with moderate to severe chronic (> five years) traumatic brain injury (TBI). The modified FAR training was administered via telepractice to target social communication skills. Therapy consisted of identifying emotions through static facial expressions, personally reflecting on those emotions, and identifying sarcasm and emotions within social stories and role-play. Pre- and post-therapy measures included static facial photos to identify emotion and the Prutting and Kirchner Pragmatic Protocol for social communication. Both participants with chronic TBI showed gains on identifying facial emotions on the static photos.

  2. Facial Affect Recognition Training Through Telepractice: Two Case Studies of Individuals with Chronic Traumatic Brain Injury

    PubMed Central

    WILLIAMSON, JOHN; ISAKI, EMI

    2015-01-01

    The use of a modified Facial Affect Recognition (FAR) training to identify emotions was investigated with two case studies of adults with moderate to severe chronic (> five years) traumatic brain injury (TBI). The modified FAR training was administered via telepractice to target social communication skills. Therapy consisted of identifying emotions through static facial expressions, personally reflecting on those emotions, and identifying sarcasm and emotions within social stories and role-play. Pre- and post-therapy measures included static facial photos to identify emotion and the Prutting and Kirchner Pragmatic Protocol for social communication. Both participants with chronic TBI showed gains on identifying facial emotions on the static photos. PMID:27563379

  3. [Animal models of injury and repair in developing brain].

    PubMed

    Cuestas, Eduardo; Caceres, Alfredo; Palacio, Santiago

    2007-01-01

    Animal models of injury and repair in developing brain. Brain injury is a major contributor to neonatal morbidity and mortality, a considerable group of these children will develop long term neurological sequels. Despite the great clinical and social significance and the advances in neonatal medicine, no therapy yet does exist that prevent or decrease detrimental effects in cases of neonatal brain injury. Our objective was to review recent research in relation to the hypothesis for repair mechanism in the developing brain, based in animal models that show developmental compensatory mechanisms that promote neural and functional plasticity. A better understanding of these adaptive mechanisms will help clinicians to apply knowledge derived from animals to human clinical situations.

  4. [Regulation of neurogenesis: factors affecting of new neurons formation in adult mammals brain].

    PubMed

    Respondek, Michalina; Buszman, Ewa

    2015-12-31

    Neurogenesis is a complex and multi-step process of generating completely functional neurons. This process in adult brain is based on pluripotentional neuronal stem cells (NSC), which are able to proliferation and differentiation into mature neurons or glial cells. NSC are located in subgranular zone inside hippocampus and in subventricular zone. The new neurons formation depends on many endo- and exogenous factors which modulate each step of neurogenesis. This article describes the most important regulators of adult neurogenesis, mainly: neurotrophins, growth factors, hormones, neurotransmitters and microenvironment of NSC. Some drugs, especially antipsychotics, antidepressants and normothymics may affect the neurogenic properties of adult brain. Moreover pathological processes such as neuroinflammation, stroke or epilepsy are able to induce proliferation of NSC. The proneurogenic effects of psychotropic drugs and pathological processes are associated with their ability to increase some hormones and neurotrophins level, as well as with rising the expression of antiapoptotic Bcl-2 protein and metalloproteinase MMP-2. Additionaly, some drugs, for example haloperidol, are able to block prolactin and dopaminergic neuroblasts receptors. Down-regulation of adult neurogenesis is associated with alcohol abuse and high stress level. Negative effect of many drugs, such as cytostatics, COX-2 inhibitors and opioides was also observed. The proneurogenic effect of described factors suggest their broad therapeutic potential and gives a new perspective on an effective and modern treatment of many neuropsychiatric disorders. This effect can also help to clarify the pathogenesis of disorders associated with proliferation and degeneration of adult brain cells.

  5. Repeated electrical stimulation of reward-related brain regions affects cocaine but not "natural" reinforcement.

    PubMed

    Levy, Dino; Shabat-Simon, Maytal; Shalev, Uri; Barnea-Ygael, Noam; Cooper, Ayelet; Zangen, Abraham

    2007-12-19

    Drug addiction is associated with long-lasting neuronal adaptations including alterations in dopamine and glutamate receptors in the brain reward system. Treatment strategies for cocaine addiction and especially the prevention of craving and relapse are limited, and their effectiveness is still questionable. We hypothesized that repeated stimulation of the brain reward system can induce localized neuronal adaptations that may either potentiate or reduce addictive behaviors. The present study was designed to test how repeated interference with the brain reward system using localized electrical stimulation of the medial forebrain bundle at the lateral hypothalamus (LH) or the prefrontal cortex (PFC) affects cocaine addiction-associated behaviors and some of the neuronal adaptations induced by repeated exposure to cocaine. Repeated high-frequency stimulation in either site influenced cocaine, but not sucrose reward-related behaviors. Stimulation of the LH reduced cue-induced seeking behavior, whereas stimulation of the PFC reduced both cocaine-seeking behavior and the motivation for its consumption. The behavioral findings were accompanied by glutamate receptor subtype alterations in the nucleus accumbens and the ventral tegmental area, both key structures of the reward system. It is therefore suggested that repeated electrical stimulation of the PFC can become a novel strategy for treating addiction.

  6. How genetics affects the brain to produce higher-level dysfunctions in myotonic dystrophy type 1.

    PubMed

    Serra, Laura; Petrucci, Antonio; Spanò, Barbara; Torso, Mario; Olivito, Giusy; Lispi, Ludovico; Costanzi-Porrini, Sandro; Giulietti, Giovanni; Koch, Giacomo; Giacanelli, Manlio; Caltagirone, Carlo; Cercignani, Mara; Bozzali, Marco

    2015-01-01

    Myotonic dystrophy type 1 (DM1) is a multisystemic disorder dominated by muscular impairment and brain dysfunctions. Although brain damage has previously been demonstrated in DM1, its associations with the genetics and clinical/neuropsychological features of the disease are controversial. This study assessed the differential role of gray matter (GM) and white matter (WM) damage in determining higher-level dysfunctions in DM1. Ten patients with genetically confirmed DM1 and 16 healthy How genetics affects the brain to produce higher-level dysfunctions in myotonic dystrophy type 1 matched controls entered the study. The patients underwent a neuropsychological assessment and quantification of CTG triplet expansion. All the subjects underwent MR scanning at 3T, with studies including T1-weighted volumes and diffusion-weighted images. Voxel-based morphometry and tractbased spatial statistics were used for unbiased quantification of regional GM atrophy and WM integrity. The DM1 patients showed widespread involvement of both tissues. The extent of the damage correlated with CTG triplet expansion and cognition. This study supports the idea that genetic abnormalities in DM1mainly target the WM, but GM involvement is also crucial in determining the clinical characteristics of DM1.

  7. Reconciling cognitive and affective neuroscience perspectives on the brain basis of emotional experience.

    PubMed

    Panksepp, Jaak; Lane, Richard D; Solms, Mark; Smith, Ryan

    2016-09-15

    The "affective" and "cognitive" neuroscience approaches to understanding emotion (AN and CN, respectively) represent potentially synergistic, but as yet unreconciled, theoretical perspectives, which may in part stem from the methods that these distinct perspectives routinely employ-one focusing on animal brain emotional systems (AN) and one on diverse human experimental approaches (CN). Here we present an exchange in which each approach (1) describes its own theoretical perspective, (2) offers a critique of the other perspective, and then (3) responds to each other's critique. We end with a summary of points of agreement and disagreement, and describe possible future experiments that could help resolve the remaining controversies. Future work should (i) further characterize the structure/function of subcortical circuitry with respect to its role in generating emotion, and (ii) further investigate whether sub-neocortical activations alone are sufficient (as opposed to merely necessary) for affective experiences, or whether subsequent cortical representation of an emotional response is also required.

  8. Brain development and cognitive, psychosocial, and psychiatric functioning in classical 21-hydroxylase deficiency.

    PubMed

    Meyer-Bahlburg, Heino F L

    2011-01-01

    The disturbance of the hypothalamic-pituitary- adrenal axis characteristic of congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is likely to affect brain development, yet neuroanatomic work is only beginning. Fetal hyperandrogenemia in 46, XX 21-OHD leads to masculinized brain organization and, consequently, at later stages of development, to masculinized gender-related behavior and cognitive function, including, although relatively uncommonly, gender identity. Genital masculinization as well as its surgical treatment has implications for social stigmatization and sexual functioning. CAH-associated electrolyte crises in infancy and later may result in severe cognitive impairment. Psychiatric disorders are somewhat increased, especially in patients with severe degrees of CAH.

  9. APOE Polymorphism Affects Brain Default Mode Network in Healthy Young Adults

    PubMed Central

    Su, Yun Yan; Liang, Xue; Schoepf, U. Joseph; Varga-Szemes, Akos; West, Henry C.; Qi, Rongfeng; Kong, Xiang; Chen, Hui Juan; Lu, Guang Ming; Zhang, Long Jiang

    2015-01-01

    Abstract To investigate the effect of apolipoprotein E (APOE) gene polymorphism on the resting-state brain function, structure, and blood flow in healthy adults younger than 35 years, using multimodality magnetic resonance (MR) imaging. Seventy-six healthy adults (34 men, 23.7 ± 2.8 y; 31 APOE ε4/ε3 carriers, 31 ε3/ε3 carriers, and 14 ε2/ε3 carriers) were included. For resting-state functional MRI data, default mode network (DMN) and amplitude of low-frequency fluctuation maps were extracted and analyzed. Voxel-based morphometry, diffusion tensor imaging from structural imaging, and cerebral blood flow based on arterial spin labeling MR imaging were also analyzed. Correlation analysis was performed between the above mentioned brain parameters and neuropsychological tests. There were no differences in neuropsychological performances, amplitude of low-frequency fluctuation, gray/white matter volumes, fractional anisotropy, mean diffusivity, or whole brain cerebral blood flow among the 3 groups. As for DMN, the ε4/ε3 group showed increased functional connectivities (FCs) in the left medial prefrontal cortex and bilateral posterior cingulate cortices/precuneus compared with the ε3/ε3 group, and increased FCs in the left medial prefrontal cortex and right temporal lobe compared with the ε2/ε3 group (P < 0.05, Alphasim corrected). No differences of DMN FCs were found between the ε2/ε3 and ε3/ε3 groups. FCs in the right temporal lobe positively correlated with the performances of vocabulary learning, delayed recall, and graph recall in all participants (P < 0.05). APOE ε4 carriers exhibited significantly increased DMN FCs when compared with ε3 and ε2 carriers. The ε4 affects DMN FCs before brain structure and blood flow in cognitively intact young patients, suggesting DMN FC may serve as a potential biomarker for the detection of early manifestations of genetic effect. PMID:26717353

  10. Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy.

    PubMed

    de Campos, Brunno Machado; Coan, Ana Carolina; Lin Yasuda, Clarissa; Casseb, Raphael Fernandes; Cendes, Fernando

    2016-09-01

    Mesial temporal lobe epilepsy (MTLE) with hippocampus sclerosis (HS) is associated with functional and structural alterations extending beyond the temporal regions and abnormal pattern of brain resting state networks (RSNs) connectivity. We hypothesized that the interaction of large-scale RSNs is differently affected in patients with right- and left-MTLE with HS compared to controls. We aimed to determine and characterize these alterations through the analysis of 12 RSNs, functionally parceled in 70 regions of interest (ROIs), from resting-state functional-MRIs of 99 subjects (52 controls, 26 right- and 21 left-MTLE patients with HS). Image preprocessing and statistical analysis were performed using UF(2) C-toolbox, which provided ROI-wise results for intranetwork and internetwork connectivity. Intranetwork abnormalities were observed in the dorsal default mode network (DMN) in both groups of patients and in the posterior salience network in right-MTLE. Both groups showed abnormal correlation between the dorsal-DMN and the posterior salience, as well as between the dorsal-DMN and the executive-control network. Patients with left-MTLE also showed reduced correlation between the dorsal-DMN and visuospatial network and increased correlation between bilateral thalamus and the posterior salience network. The ipsilateral hippocampus stood out as a central area of abnormalities. Alterations on left-MTLE expressed a low cluster coefficient, whereas the altered connections on right-MTLE showed low cluster coefficient in the DMN but high in the posterior salience regions. Both right- and left-MTLE patients with HS have widespread abnormal interactions of large-scale brain networks; however, all parameters evaluated indicate that left-MTLE has a more intricate bihemispheric dysfunction compared to right-MTLE. Hum Brain Mapp 37:3137-3152, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  11. Long-term influence of normal variation in neonatal characteristics on human brain development

    PubMed Central

    Walhovd, Kristine B.; Fjell, Anders M.; Brown, Timothy T.; Kuperman, Joshua M.; Chung, Yoonho; Hagler, Donald J.; Roddey, J. Cooper; Erhart, Matthew; McCabe, Connor; Akshoomoff, Natacha; Amaral, David G.; Bloss, Cinnamon S.; Libiger, Ondrej; Schork, Nicholas J.; Darst, Burcu F.; Casey, B. J.; Chang, Linda; Ernst, Thomas M.; Frazier, Jean; Gruen, Jeffrey R.; Kaufmann, Walter E.; Murray, Sarah S.; van Zijl, Peter; Mostofsky, Stewart; Dale, Anders M.; Jernigan, Terry L.; McCabe, Connor; Chang, Linda; Akshoomoff, Natacha; Newman, Erik; Dale, Anders M.; Ernst, Thomas; Dale, Anders M.; Van Zijl, Peter; Kuperman, Joshua; Murray, Sarah; Bloss, Cinnamon; Schork, Nicholas J.; Appelbaum, Mark; Gamst, Anthony; Thompson, Wesley; Bartsch, Hauke; Jernigan, Terry L.; Dale, Anders M.; Akshoomoff, Natacha; Chang, Linda; Ernst, Thomas; Keating, Brian; Amaral, David; Sowell, Elizabeth; Kaufmann, Walter; Van Zijl, Peter; Mostofsky, Stewart; Casey, B.J.; Ruberry, Erika J.; Powers, Alisa; Rosen, Bruce; Kenet, Tal; Frazier, Jean; Kennedy, David; Gruen, Jeffrey

    2012-01-01

    It is now recognized that a number of cognitive, behavioral, and mental health outcomes across the lifespan can be traced to fetal development. Although the direct mediation is unknown, the substantial variance in fetal growth, most commonly indexed by birth weight, may affect lifespan brain development. We investigated effects of normal variance in birth weight on MRI-derived measures of brain development in 628 healthy children, adolescents, and young adults in the large-scale multicenter Pediatric Imaging, Neurocognition, and Genetics study. This heterogeneous sample was recruited through geographically dispersed sites in the United States. The influence of birth weight on cortical thickness, surface area, and striatal and total brain volumes was investigated, controlling for variance in age, sex, household income, and genetic ancestry factors. Birth weight was found to exert robust positive effects on regional cortical surface area in multiple regions as well as total brain and caudate volumes. These effects were continuous across birth weight ranges and ages and were not confined to subsets of the sample. The findings show that (i) aspects of later child and adolescent brain development are influenced at birth and (ii) relatively small differences in birth weight across groups and conditions typically compared in neuropsychiatric research (e.g., Attention Deficit Hyperactivity Disorder, schizophrenia, and personality disorders) may influence group differences observed in brain parameters of interest at a later stage in life. These findings should serve to increase our attention to early influences. PMID:23169628

  12. AMPA-silent synapses in brain development and pathology.

    PubMed

    Hanse, Eric; Seth, Henrik; Riebe, Ilse

    2013-12-01

    Synapses are constantly generated at a high rate in the developing, prepubescent brain. Newly generated glutamatergic synapses lack functional AMPA receptor-mediated transmission. Most of these 'AMPA-silent' synapses are eliminated during the developmental period, but some are specifically selected for AMPA unsilencing by correlated pre-and postsynaptic activity as the first step in a process that leads to stabilization of the synapse. Premature, or delayed, unsilencing of AMPA-silent synapses has been implicated in neurodevelopmental disorders, and abnormal generation of AMPA-silent synapses is associated with brain trauma, addiction and neurodegenerative disorders, further highlighting the importance of AMPA-silent synapses in brain pathology.

  13. The development of brain sex differences: a multisignaling process.

    PubMed

    Segovia, S; Guillamón, A; del Cerro, M C; Ortega, E; Pérez-Laso, C; Rodriguez-Zafra, M; Beyer, C

    1999-11-01

    In order to account for the development of sex differences in the brain, we took, as an integrative model, the vomeronasal pathway, which is involved in the control of reproductive physiology and behavior. The fact that brain sex differences take place in complex neural networks will help to develop a motivational theory of sex differences in reproductive behaviors. We also address the classic genomic actions in which three agents (the hormone, the intracellular receptor, and the transcription function) play an important role in brain differentiation, but we also point out refinements that such a theory requires if we want to account of the existence of two morphological patterns of sex differences in the brain, one in which males show greater morphological measures (neuron numbers and/or volume) than females and the opposite. Moreover, we also consider very important processes closely related to neuronal afferent input and membrane excitability for the developing of sex differences. Neurotransmission associated to metabotropic and ionotropic receptors, neurotrophic factors, neuroactive steroids that alter membrane excitability, cross-talk (and/or by-pass) phenomena, and second messenger pathways appear to be involved in the development of brain sex differences. The sexual differentiation of the brain and reproductive behavior is regarded as a cellular multisignaling process.

  14. Methods in brain development of molluscs.

    PubMed

    Wanninger, Andreas; Wollesen, Tim

    2014-01-01

    Representatives of the phylum Mollusca have long been important models in neurobiological research. Recently, the routine application of immunocytochemistry in combination with confocal laser scanning microscopy has allowed fast generation of highly detailed reconstructions of neural structures of even the smallest multicellular animals, including early developmental stages. As a consequence, large-scale comparative analyses of neurogenesis-an important prerequisite for inferences concerning the evolution of animal nervous systems-are now possible in a reasonable amount of time. Herein, we describe immunocytochemical staining protocols for both whole-mount preparations of developmental stages-usually 70-300 μm in size-as well as for vibratome sections of complex brains. Although our procedures have been optimized for marine molluscs, they may easily be adapted for other (marine) organisms by the creative neurobiologist.

  15. Ongoing neural development of affective theory of mind in adolescence.

    PubMed

    Vetter, Nora C; Weigelt, Sarah; Döhnel, Katrin; Smolka, Michael N; Kliegel, Matthias

    2014-07-01

    Affective Theory of Mind (ToM), an important aspect of ToM, involves the understanding of affective mental states. This ability is critical in the developmental phase of adolescence, which is often related with socio-emotional problems. Using a developmentally sensitive behavioral task in combination with functional magnetic resonance imaging, the present study investigated the neural development of affective ToM throughout adolescence. Eighteen adolescent (ages 12-14 years) and 18 young adult women (aged 19-25 years) were scanned while evaluating complex affective mental states depicted by actors in video clips. The ventromedial prefrontal cortex (vmPFC) showed significantly stronger activation in adolescents in comparison to adults in the affective ToM condition. Current results indicate that the vmPFC might be involved in the development of affective ToM processing in adolescence.

  16. Alcohol Affects Brain Functional Connectivity and its Coupling with Behavior: Greater Effects in Male Heavy Drinkers

    PubMed Central

    Shokri-Kojori, Ehsan; Tomasi, Dardo; Wiers, Corinde E.; Wang, Gene-Jack; Volkow, Nora D.

    2016-01-01

    Acute and chronic alcohol exposure significantly affect behavior but the underlying neurobiological mechanisms are still poorly understood. Here we used functional connectivity density (FCD) mapping to study alcohol-related changes in resting brain activity and their association with behavior. Heavy drinkers (HD; N=16; 16 males) and normal controls (NM; N=24; 14 males) were tested after placebo and after acute alcohol administration. Group comparisons showed that NM had higher FCD in visual and prefrontal cortices, default-mode network regions, and thalamus, while HD had higher FCD in cerebellum. Acute alcohol significantly increased FCD within the thalamus, impaired cognitive and motor functions, and affected self-reports of mood/drug effects in both groups. Partial least squares regression showed alcohol-induced changes in mood/drug effects were associated with changes in thalamic FCD in both groups. Disruptions in motor function were associated with increases in cerebellar FCD in NM and thalamus FCD in HD. Alcohol-induced declines in cognitive performance were associated with connectivity increases in visual cortex and thalamus in NM, but in HD, increases in precuneus FCD were associated with improved cognitive performance. Acute alcohol reduced “neurocognitive coupling”, the association between behavioral performance and FCD (indexing brain activity), an effect that was accentuated in HD compared to NM. Findings suggest that reduced cortical connectivity in HD contribute to decline in cognitive abilities associated with heavy alcohol consumption, whereas increased cerebellar connectivity in HD may have compensatory effects on behavioral performance. The results reveal how drinking history alters the association between brain functional connectivity density and individual differences in behavioral performance. PMID:27021821

  17. Alcohol affects brain functional connectivity and its coupling with behavior: greater effects in male heavy drinkers.

    PubMed

    Shokri-Kojori, E; Tomasi, D; Wiers, C E; Wang, G-J; Volkow, N D

    2016-03-29

    Acute and chronic alcohol exposure significantly affect behavior but the underlying neurobiological mechanisms are still poorly understood. Here, we used functional connectivity density (FCD) mapping to study alcohol-related changes in resting brain activity and their association with behavior. Heavy drinkers (HD, N=16, 16 males) and normal controls (NM, N=24, 14 males) were tested after placebo and after acute alcohol administration. Group comparisons showed that NM had higher FCD in visual and prefrontal cortices, default mode network regions and thalamus, while HD had higher FCD in cerebellum. Acute alcohol significantly increased FCD within the thalamus, impaired cognitive and motor functions, and affected self-reports of mood/drug effects in both groups. Partial least squares regression showed that alcohol-induced changes in mood/drug effects were associated with changes in thalamic FCD in both groups. Disruptions in motor function were associated with increases in cerebellar FCD in NM and thalamus FCD in HD. Alcohol-induced declines in cognitive performance were associated with connectivity increases in visual cortex and thalamus in NM, but in HD, increases in precuneus FCD were associated with improved cognitive performance. Acute alcohol reduced 'neurocognitive coupling', the association between behavioral performance and FCD (indexing brain activity), an effect that was accentuated in HD compared with NM. Findings suggest that reduced cortical connectivity in HD contribute to decline in cognitive abilities associated with heavy alcohol consumption, whereas increased cerebellar connectivity in HD may have compensatory effects on behavioral performance. The results reveal how drinking history alters the association between brain FCD and individual differences in behavioral performance.Molecular Psychiatry advance online publication, 29 March 2016; doi:10.1038/mp.2016.25.

  18. Affective responses after different intensities of exercise in patients with traumatic brain injury

    PubMed Central

    Rzezak, Patricia; Caxa, Luciana; Santolia, Patricia; Antunes, Hanna K. M.; Suriano, Italo; Tufik, Sérgio; de Mello, Marco T.

    2015-01-01

    Background: Patients with traumatic brain injury (TBI) usually have mood and anxiety symptoms secondary to their brain injury. Exercise may be a cost-effective intervention for the regulation of the affective responses of this population. However, there are no studies evaluating the effects of exercise or the optimal intensity of exercise for this clinical group. Methods: Twelve male patients with moderate or severe TBI [mean age of 31.83 and SD of 9.53] and 12 age- and gender-matched healthy volunteers [mean age of 30.58 and SD of 9.53] participated in two sessions of exercise of high and moderate-intensity. Anxiety and mood was evaluated, and subjective assessment of experience pre- and post-exercise was assessed. A mixed between and within-subjects general linear model (GLM) analysis was conducted to compare groups [TBI, control] over condition [baseline, session 1, session 2] allowing for group by condition interaction to be determined. Planned comparisons were also conducted to test study hypotheses. Results: Although no group by condition interaction was observed, planned comparisons indicated that baseline differences between patients and controls in anxiety (Cohens’ d = 1.80), tension (d = 1.31), depression (d = 1.18), anger (d = 1.08), confusion (d = 1.70), psychological distress (d = 1.28), and physical symptoms (d = 1.42) disappear after one session of exercise, independently of the intensity of exercise. Conclusion: A single-section of exercise, regardless of exercise intensity, had a positive effect on the affective responses of patients with TBI both by increasing positive valence feelings and decreasing negative ones. Exercise can be an easily accessible intervention that may alleviate depressive symptoms related to brain injury. PMID:26161074

  19. Provocative motion causes fall in brain temperature and affects sleep in rats.

    PubMed

    Del Vecchio, Flavia; Nalivaiko, Eugene; Cerri, Matteo; Luppi, Marco; Amici, Roberto

    2014-08-01

    Neural substrate of nausea is poorly understood, contrasting the wealth of knowledge about the emetic reflex. One of the reasons for this knowledge deficit is limited number and face validity of animal models of nausea. Our aim was to search for new physiological correlates of nausea in rats. Specifically, we addressed the question whether provocative motion (40-min rotation at 0.5 Hz) affects sleep architecture, brain temperature, heart rate (HR) and arterial pressure. Six adult male Sprague–Dawley rats were instrumented for recordings of EEG, nuchal electromyographic, hypothalamic temperature and arterial pressure. Provocative motion had the following effects: (1) total abolition of REM sleep during rotation and its substantial reduction during the first hour post-rotation (from 20 ± 3 to 5 ± 1.5%); (2) reduction in NREM sleep, both during rotation (from 57 ± 6 to 19 ± 5%) and during the first hour post-rotation (from 56 ± 3 to 41 ± 9%); (3) fall in the brain temperature (from 37.1 ± 0.1 to 36.0 ± 0.1 °C); and (4) reduction in HR (from 375 ± 6 to 327 ± 7 bpm); arterial pressure was not affected. Ondansetron, a 5-HT3 antagonist, had no major effect on all observed parameters during both baseline and provocative motion. We conclude that in rats, provocative motion causes prolonged arousing effects, however without evidence of sympathetic activation that usually accompanies heightened arousal. Motion induced fall in the brain temperature complements and extends our previous observations in rats and suggests that similar to humans, provocative motion triggers coordinated thermoregulatory response, leading to hypothermia in this species.

  20. The BRAIN Initiative: developing technology to catalyse neuroscience discovery

    PubMed Central

    Jorgenson, Lyric A.; Newsome, William T.; Anderson, David J.; Bargmann, Cornelia I.; Brown, Emery N.; Deisseroth, Karl; Donoghue, John P.; Hudson, Kathy L.; Ling, Geoffrey S. F.; MacLeish, Peter R.; Marder, Eve; Normann, Richard A.; Sanes, Joshua R.; Schnitzer, Mark J.; Sejnowski, Terrence J.; Tank, David W.; Tsien, Roger Y.; Ugurbil, Kamil; Wingfield, John C.

    2015-01-01

    The evolution of the field of neuroscience has been propelled by the advent of novel technological capabilities, and the pace at which these capabilities are being developed has accelerated dramatically in the past decade. Capitalizing on this momentum, the United States launched the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to develop and apply new tools and technologies for revolutionizing our understanding of the brain. In this article, we review the scientific vision for this initiative set forth by the National Institutes of Health and discuss its implications for the future of neuroscience research. Particular emphasis is given to its potential impact on the mapping and study of neural circuits, and how this knowledge will transform our understanding of the complexity of the human brain and its diverse array of behaviours, perceptions, thoughts and emotions. PMID:25823863

  1. The impact of poverty on the development of brain networks

    PubMed Central

    Lipina, Sebastián J.; Posner, Michael I.

    2012-01-01

    Although the study of brain development in non-human animals is an old one, recent imaging methods have allowed non-invasive studies of the gray and white matter of the human brain over the lifespan. Classic animal studies show clearly that impoverished environments reduce cortical gray matter in relation to complex environments and cognitive and imaging studies in humans suggest which networks may be most influenced by poverty. Studies have been clear in showing the plasticity of many brain systems, but whether sensitivity to learning differs over the lifespan and for which networks is still unclear. A major task for current research is a successful integration of these methods to understand how development and learning shape the neural networks underlying achievements in literacy, numeracy, and attention. This paper seeks to foster further integration by reviewing the current state of knowledge relating brain changes to behavior and indicating possible future directions. PMID:22912613

  2. The BRAIN Initiative: developing technology to catalyse neuroscience discovery.

    PubMed

    Jorgenson, Lyric A; Newsome, William T; Anderson, David J; Bargmann, Cornelia I; Brown, Emery N; Deisseroth, Karl; Donoghue, John P; Hudson, Kathy L; Ling, Geoffrey S F; MacLeish, Peter R; Marder, Eve; Normann, Richard A; Sanes, Joshua R; Schnitzer, Mark J; Sejnowski, Terrence J; Tank, David W; Tsien, Roger Y; Ugurbil, Kamil; Wingfield, John C

    2015-05-19

    The evolution of the field of neuroscience has been propelled by the advent of novel technological capabilities, and the pace at which these capabilities are being developed has accelerated dramatically in the past decade. Capitalizing on this momentum, the United States launched the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to develop and apply new tools and technologies for revolutionizing our understanding of the brain. In this article, we review the scientific vision for this initiative set forth by the National Institutes of Health and discuss its implications for the future of neuroscience research. Particular emphasis is given to its potential impact on the mapping and study of neural circuits, and how this knowledge will transform our understanding of the complexity of the human brain and its diverse array of behaviours, perceptions, thoughts and emotions.

  3. Imaging patterns of brain development and their relationship to cognition.

    PubMed

    Erus, Guray; Battapady, Harsha; Satterthwaite, Theodore D; Hakonarson, Hakon; Gur, Raquel E; Davatzikos, Christos; Gur, Ruben C

    2015-06-01

    We present a brain development index (BDI) that concisely summarizes complex imaging patterns of structural brain maturation along a single dimension using a machine learning methodology. The brain was found to follow a remarkably consistent developmental trajectory in a sample of 621 subjects of ages 8-22 participating in the Philadelphia Neurodevelopmental Cohort, reflected by a cross-validated correlation coefficient between chronologic age and the BDI of r = 0.89. Critically, deviations from this trajectory related to cognitive performance. Specifically, subjects whose BDI was higher than their chronological age displayed significantly superior cognitive processing speed compared with subjects whose BDI was lower than their actual age. These results indicate that the multiparametric imaging patterns summarized by the BDI can accurately delineate trajectories of brain development and identify individuals with cognitive precocity or delay.

  4. Cannabis and the maturing brain: Role in psychosis development.

    PubMed

    Crocker, C E; Tibbo, P G

    2015-06-01

    A common viewpoint has proliferated that cannabis use is mostly harmless. Some argue that by not supporting its use, we are missing a great therapeutic opportunity. The general public view on cannabis may partially be a result of poor knowledge translation. In fact, the "war on drugs" approach has not allowed for basic education on the varied effects of cannabis on the brain, especially at highly critical phases of brain development such as adolescence.

  5. Development and experimentation of an eye/brain/task testbed

    NASA Technical Reports Server (NTRS)

    Harrington, Nora; Villarreal, James

    1987-01-01

    The principal objective is to develop a laboratory testbed that will provide a unique capability to elicit, control, record, and analyze the relationship of operator task loading, operator eye movement, and operator brain wave data in a computer system environment. The ramifications of an integrated eye/brain monitor to the man machine interface are staggering. The success of such a system would benefit users of space and defense, paraplegics, and the monitoring of boring screens (nuclear power plants, air defense, etc.)

  6. Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos

    NASA Astrophysics Data System (ADS)

    Fini, Jean-Baptiste; Mughal, Bilal B.; Le Mével, Sébastien; Leemans, Michelle; Lettmann, Mélodie; Spirhanzlova, Petra; Affaticati, Pierre; Jenett, Arnim; Demeneix, Barbara A.

    2017-03-01

    Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development.

  7. [The impact of malnutrition on brain development, intelligence and school work performance].

    PubMed

    Leiva Plaza, B; Inzunza Brito, N; Pérez Torrejón, H; Castro Gloor, V; Jansana Medina, J M; Toro Díaz, T; Almagiá Flores, A; Navarro Díaz, A; Urrutia Cáceres, M S; Cervilla Oltremari, J; Ivanovic Marincovich, D

    2001-03-01

    The findings from several authors confirm that undernutrition at an early age affects brain growth and intellectual quotient. Most part of students with the lowest scholastic achievement scores present suboptimal head circumference (anthropometric indicator of past nutrition and brain development) and brain size. On the other hand, intellectual quotient measured through intelligence tests (Weschler-R, or the Raven Progressives Matrices Test) has been described positively and significantly correlated with brain size measured by magnetic resonance imaging (MRI); in this respect, intellectual ability has been recognized as one of the best predictors of scholastic achievement. Considering that education is the change lever for the improvement of the quality of life and that the absolute numbers of undernourished children have been increasing in the world, is of major relevance to analyse the long-term effects of undernutrition at an early age. The investigations related to the interrelationships between nutritional status, brain development, intelligence and scholastic achievement are of greatest importance, since nutritional problems affect the lowest socioeconomic stratum with negative consequences manifested in school-age, in higher levels of school dropout, learning problems and a low percentage of students enrolling into higher education. This limits the development of people by which a clear economic benefit to increase adult productivity for government policies might be successful preventing childhood malnutrition.

  8. Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos.

    PubMed

    Fini, Jean-Baptiste; Mughal, Bilal B; Le Mével, Sébastien; Leemans, Michelle; Lettmann, Mélodie; Spirhanzlova, Petra; Affaticati, Pierre; Jenett, Arnim; Demeneix, Barbara A

    2017-03-07

    Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development.

  9. Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos

    PubMed Central

    Fini, Jean-Baptiste; Mughal, Bilal B.; Le Mével, Sébastien; Leemans, Michelle; Lettmann, Mélodie; Spirhanzlova, Petra; Affaticati, Pierre; Jenett, Arnim; Demeneix, Barbara A.

    2017-01-01

    Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development. PMID:28266608

  10. Developing Brain Vital Signs: Initial Framework for Monitoring Brain Function Changes Over Time.

    PubMed

    Ghosh Hajra, Sujoy; Liu, Careesa C; Song, Xiaowei; Fickling, Shaun; Liu, Luke E; Pawlowski, Gabriela; Jorgensen, Janelle K; Smith, Aynsley M; Schnaider-Beeri, Michal; Van Den Broek, Rudi; Rizzotti, Rowena; Fisher, Kirk; D'Arcy, Ryan C N

    2016-01-01

    Clinical assessment of brain function relies heavily on indirect behavior-based tests. Unfortunately, behavior-based assessments are subjective and therefore susceptible to several confounding factors. Event-related brain potentials (ERPs), derived from electroencephalography (EEG), are often used to provide objective, physiological measures of brain function. Historically, ERPs have been characterized extensively within research settings, with limited but growing clinical applications. Over the past 20 years, we have developed clinical ERP applications for the evaluation of functional status following serious injury and/or disease. This work has identified an important gap: the need for a clinically accessible framework to evaluate ERP measures. Crucially, this enables baseline measures before brain dysfunction occurs, and might enable the routine collection of brain function metrics in the future much like blood pressure measures today. Here, we propose such a framework for extracting specific ERPs as potential "brain vital signs." This framework enabled the translation/transformation of complex ERP data into accessible metrics of brain function for wider clinical utilization. To formalize the framework, three essential ERPs were selected as initial indicators: (1) the auditory N100 (Auditory sensation); (2) the auditory oddball P300 (Basic attention); and (3) the auditory speech processing N400 (Cognitive processing). First step validation was conducted on healthy younger and older adults (age range: 22-82 years). Results confirmed specific ERPs at the individual level (86.81-98.96%), verified predictable age-related differences (P300 latency delays in older adults, p < 0.05), and demonstrated successful linear transformation into the proposed brain vital sign (BVS) framework (basic attention latency sub-component of BVS framework reflects delays in older adults, p < 0.05). The findings represent an initial critical step in developing, extracting, and

  11. The affective and cognitive processing of touch, oral texture, and temperature in the brain.

    PubMed

    Rolls, Edmund T

    2010-02-01

    Some of the principles of the representation of affective touch in the brain are described. Positively affective touch and temperature are represented in parts of the orbitofrontal and pregenual cingulate cortex. The orbitofrontal cortex is implicated in some of the affective aspects of touch that may be mediated through C fibre touch afferents, in that it is activated more by light touch to the forearm (a source of C-tactile (CT) afferents) than by light touch to the glabrous skin of the hand. Oral somatosensory afferents implicated in sensing the texture of food including fat in the mouth also activate the orbitofrontal and pregenual cingulate cortex, as well as the insular taste cortex. Top-down cognitive modulation of the representation of affective touch produced by word labels is found in parietal cortex area 7, the insula and ventral striatum. The cognitive labels also influence activations to the sight of touch and also the correlations with pleasantness in the pregenual cingulate/orbitofrontal cortex and ventral striatum.

  12. Strategies for Developing Effective Teaching Skills in the Affective Domain

    ERIC Educational Resources Information Center

    Hansen, Ken

    2009-01-01

    Perhaps more than any other academic discipline, physical education holds the highest potential for teaching affective skills. By its very nature, the typical physical education setting offers countless teachable moments and opportunities to capitalize on the development of affective skills. The seeming lack of attention given to affective…

  13. The Development of the Meta-Affective Trait Scale

    ERIC Educational Resources Information Center

    Uzuntiryaki-Kondakci, Esen; Kirbulut, Zubeyde Demet

    2016-01-01

    The purpose of this study was to develop a Meta-Affective Trait Scale (MATS) to measure the meta-affective inclinations related to emotions that students have while they are studying for their classes. First, a pilot study was performed with 380 10th-grade students. Results of the exploratory factor analysis supported a two-factor structure of the…

  14. Development of human brain structural networks through infancy and childhood.

    PubMed

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-05-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers.

  15. Radial glia cells in the developing human brain.

    PubMed

    Howard, Brian M; Zhicheng Mo; Filipovic, Radmila; Moore, Anna R; Antic, Srdjan D; Zecevic, Nada

    2008-10-01

    Human radial glia (RG) share many of the features described in rodents, but also have a number of characteristics unique to the human brain. Results obtained from different mammalian species including human and non-human primates reveal differences in the involvement of RG in neurogenesis and oligodendrogenesis and in the timing of the initial expression of typical RG immunomarkers. A common problem in studying the human brain is that experimental procedures using modern molecular and genetic methods, such as in vivo transduction with retroviruses or creation of knockout or transgenic mutants, are not possible. Nevertheless, abundant and valuable information about the development of the human brain has been revealed using postmortem human material. Additionally, a combination and spectrum of in vitro techniques are used to gain knowledge about normal developmental processes in the human brain, including better understanding of RG as progenitor cells. Molecular and functional characterization of multipotent progenitors, such as RG, is important for future cell replacement therapies in neurological and psychiatric disorders, which are often resistant to conventional treatments. The protracted time of development and larger size of the human brain could provide insight into processes that may go unnoticed in the much smaller rodent cortex, which develops over a much shorter period. With that in mind, we summarize results on the role of RG in the human fetal brain.

  16. Cannabis and alcohol use, and the developing brain.

    PubMed

    Meruelo, A D; Castro, N; Cota, C I; Tapert, S F

    2017-02-20

    Sex hormones and white (and grey) matter in the limbic system, cortex and other brain regions undergo changes during adolescence. Some of these changes include ongoing white matter myelination and sexually dimorphic features in grey and white matter. Adolescence is also a period of vulnerability when many are first exposed to alcohol and cannabis, which appear to influence the developing brain. Neuropsychological studies have provided considerable understanding of the effects of alcohol and cannabis on the brain. Advances in neuroimaging have allowed examination of neuroanatomic changes, metabolic and neurotransmitter activity, and neuronal activation during adolescent brain development and substance use. In this review, we examine major differences in brain development between users and non-users, and recent findings on the influence of cannabis and alcohol on the adolescent brain. We also discuss associations that appear to resolve following short-term abstinence, and attentional deficits that appear to persist. These findings can be useful in guiding earlier educational interventions for adolescents, and clarifying the neural sequelae of early alcohol and cannabis use to the general public.

  17. Structural network analysis of brain development in young preterm neonates.

    PubMed

    Brown, Colin J; Miller, Steven P; Booth, Brian G; Andrews, Shawn; Chau, Vann; Poskitt, Kenneth J; Hamarneh, Ghassan

    2014-11-01

    Preterm infants develop differently than those born at term and are at higher risk of brain pathology. Thus, an understanding of their development is of particular importance. Diffusion tensor imaging (DTI) of preterm infants offers a window into brain development at a very early age, an age at which that development is not yet fully understood. Recent works have used DTI to analyze structural connectome of the brain scans using network analysis. These studies have shown that, even from infancy, the brain exhibits small-world properties. Here we examine a cohort of 47 normal preterm neonates (i.e., without brain injury and with normal neurodevelopment at 18 months of age) scanned between 27 and 45 weeks post-menstrual age to further the understanding of how the structural connectome develops. We use full-brain tractography to find white matter tracts between the 90 cortical and sub-cortical regions defined in the University of North Carolina Chapel Hill neonatal atlas. We then analyze the resulting connectomes and explore the differences between weighting edges by tract count versus fractional anisotropy. We observe that the brain networks in preterm infants, much like infants born at term, show high efficiency and clustering measures across a range of network scales. Further, the development of many individual region-pair connections, particularly in the frontal and occipital lobes, is significantly correlated with age. Finally, we observe that the preterm infant connectome remains highly efficient yet becomes more clustered across this age range, leading to a significant increase in its small-world structure.

  18. Development of risperidone liposomes for brain targeting through intranasal route.

    PubMed

    Narayan, Reema; Singh, Mohan; Ranjan, OmPrakash; Nayak, Yogendra; Garg, Sanjay; Shavi, Gopal V; Nayak, Usha Y

    2016-10-15

    The present paper is aimed at development of functionalized risperidone liposomes for brain targeting through nasal route for effective therapeutic management of schizophrenia. The risperidone liposomes were prepared by thin film hydration method. Various parameters such as lipid ratio and lipid to drug ratio were optimized by using Design-Expert(®) Software to obtain high entrapment with minimum vesicle size. The surface of the optimized liposomes was modified by coating stearylamine and MPEG-DSPE for enhanced penetration to the brain. The formulations were evaluated for vesicle size, zeta potential, and entrapment efficiency. The morphology was studied by Transmission Electron Microscopy (TEM). In vivo efficacy was assessed by performing pharmacokinetic study in Wistar albino rats following intranasal administration of the formulations in comparison to intravenous bolus administration of pure drug. The mean vesicle size of optimized liposomes ranged from 90 to 100nm with low polydispersity index (<0.5). The entrapment efficiency of optimized liposomes was between 50 and 60%, functionalized liposomes showed maximum entrapment. The TEM images showed predominantly spherical vesicles with smooth bilayered surface. All formulations showed prolonged diffusion controlled drug release. The in vivo results showed that liposomal formulations provided enhanced brain exposure. Among the formulations studied, PEGylated liposomes (LP-16) had shown greater uptake of risperidone into the brain than plasma. High brain targeting efficiency index for LP-16 indicating preferential transport of the drug to brain. The study demonstrated successful formulation of surface modified risperidone liposomes for nasal delivery with brain targeting potential.

  19. Suppression of the endoplasmic reticulum calcium pump during zebrafish gastrulation affects left-right asymmetry of the heart and brain.

    PubMed

    Kreiling, Jill A; Balantac, Zaneta L; Crawford, Andrew R; Ren, Yuexin; Toure, Jamal; Zchut, Sigalit; Kochilas, Lazaros; Creton, Robbert

    2008-01-01

    Vertebrate embryos generate striking Ca(2+) patterns, which are unique regulators of dynamic developmental events. In the present study, we used zebrafish embryos as a model system to examine the developmental roles of Ca(2+) during gastrulation. We found that gastrula stage embryos maintain a distinct pattern of cytosolic Ca(2+) along the dorsal-ventral axis, with higher Ca(2+) concentrations in the ventral margin and lower Ca(2+) concentrations in the dorsal margin and dorsal forerunner cells. Suppression of the endoplasmic reticulum Ca(2+) pump with 0.5 microM thapsigargin elevates cytosolic Ca(2+) in all embryonic regions and induces a randomization of laterality in the heart and brain. Affected hearts, visualized in living embryos by a subtractive imaging technique, displayed either a reversal or loss of left-right asymmetry. Brain defects include a left-right reversal of pitx2 expression in the dorsal diencephalon and a left-right reversal of the prominent habenular nucleus in the brain. Embryos are sensitive to inhibition of the endoplasmic reticulum Ca(2+) pump during early and mid gastrulation and lose their sensitivity during late gastrulation and early segmentation. Suppression of the endoplasmic reticulum Ca(2+) pump during gastrulation inhibits expression of no tail (ntl) and left-right dynein related (lrdr) in the dorsal forerunner cells and affects development of Kupffer's vesicle, a ciliated organ that generates a counter-clockwise flow of fluid. Previous studies have shown that Ca(2+) plays a role in Kupffer's vesicle function, influencing ciliary motility and translating the vesicle's counter-clockwise flow into asymmetric patterns of gene expression. The present results suggest that Ca(2+) plays an additional role in the formation of Kupffer's vesicle.

  20. Diverse Functions of Retinoic Acid in Brain Vascular Development

    PubMed Central

    Bonney, Stephanie; Harrison-Uy, Susan; Mishra, Swati; MacPherson, Amber M.; Choe, Youngshik; Li, Dan; Jaminet, Shou-Ching; Fruttiger, Marcus; Pleasure, Samuel J.

    2016-01-01

    As neural structures grow in size and increase metabolic demand, the CNS vasculature undergoes extensive growth, remodeling, and maturation. Signals from neural tissue act on endothelial cells to stimulate blood vessel ingression, vessel patterning, and acquisition of mature brain vascular traits, most notably the blood–brain barrier. Using mouse genetic and in vitro approaches, we identified retinoic acid (RA) as an important regulator of brain vascular development via non-cell-autonomous and cell-autonomous regulation of endothelial WNT signaling. Our analysis of globally RA-deficient embryos (Rdh10 mutants) points to an important, non-cell-autonomous function for RA in the development of the vasculature in the neocortex. We demonstrate that Rdh10 mutants have severe defects in cerebrovascular development and that this phenotype correlates with near absence of endothelial WNT signaling, specifically in the cerebrovasculature, and substantially elevated expression of WNT inhibitors in the neocortex. We show that RA can suppress the expression of WNT inhibitors in neocortical progenitors. Analysis of vasculature in non-neocortical brain regions suggested that RA may have a separate, cell-autonomous function in brain endothelial cells to inhibit WNT signaling. Using both gain and loss of RA signaling approaches, we show that RA signaling in brain endothelial cells can inhibit WNT-β-catenin transcriptional activity and that this is required to moderate the expression of WNT target Sox17. From this, a model emerges in which RA acts upstream of the WNT pathway via non-cell-autonomous and cell-autonomous mechanisms to ensure the formation of an adequate and stable brain vascular plexus. SIGNIFICANCE STATEMENT Work presented here provides novel insight into important yet little understood aspects of brain vascular development, implicating for the first time a factor upstream of endothelial WNT signaling. We show that RA is permissive for cerebrovascular growth via

  1. A role for GnRH in early brain regionalization and eye development in zebrafish.

    PubMed

    Wu, Sheng; Page, Louise; Sherwood, Nancy M

    2006-09-26

    Gonadotropin-releasing hormone (GnRH) is a highly conserved peptide that is expressed early in brain development in vertebrates. In zebrafish, we detected GnRH mRNA within 2h post fertilization by RT-PCR. To determine if GnRH is involved in development, we used gene knockdown techniques to block translation of gnrh2 or gnrh3 mRNA after which the expression patterns for gene markers were examined at 24h post fertilization with in situ hybridization. First, loss of either GnRH2 or GnRH3 affected regionalization of the brain as shown by a change in expression of fgf8 or pax2.1 genes in the midbrain-hindbrain boundary or diencephalon-midbrain boundary. Second, lack of GnRH2 and/or GnRH3 altered gene markers expressed in the formation of the eye cup (pax2.1, pax6.1, mab21l2 and meis1.1) or eye stalk (fgf8 and pax2.1). Third, knockdown of GnRH2 affected the size and shape of the midbrain and expression of gene markers therein. Results from assays with the TUNEL method and caspase-3 and -9 activity showed the brain and eye changes were unlikely to result from secondary apoptotic cell death before 24h post fertilization. These experiments suggest that GnRH loss-of-function affects early brain and eye formation during development.

  2. Genes that affect brain structure and function identified by rare variant analyses of Mendelian neurologic disease

    PubMed Central

    Karaca, Ender; Harel, Tamar; Pehlivan, Davut; Jhangiani, Shalini N.; Gambin, Tomasz; Akdemir, Zeynep Coban; Gonzaga-Jauregui, Claudia; Erdin, Serkan; Bayram, Yavuz; Campbell, Ian M.; Hunter, Jill V.; Atik, Mehmed M.; Van Esch, Hilde; Yuan, Bo; Wiszniewski, Wojciech; Isikay, Sedat; Yesil, Gozde; Yuregir, Ozge O.; Bozdogan, Sevcan Tug; Aslan, Huseyin; Aydin, Hatip; Tos, Tulay; Aksoy, Ayse; De Vivo, Darryl C.; Jain, Preti; Geckinli, B. Bilge; Sezer, Ozlem; Gul, Davut; Durmaz, Burak; Cogulu, Ozgur; Ozkinay, Ferda; Topcu, Vehap; Candan, Sukru; Cebi, Alper Han; Ikbal, Mevlit; Gulec, Elif Yilmaz; Gezdirici, Alper; Koparir, Erkan; Ekici, Fatma; Coskun, Salih; Cicek, Salih; Karaer, Kadri; Koparir, Asuman; Duz, Mehmet Bugrahan; Kirat, Emre; Fenercioglu, Elif; Ulucan, Hakan; Seven, Mehmet; Guran, Tulay; Elcioglu, Nursel; Yildirim, Mahmut Selman; Aktas, Dilek; Alikaşifoğlu, Mehmet; Ture, Mehmet; Yakut, Tahsin; Overton, John D.; Yuksel, Adnan; Ozen, Mustafa; Muzny, Donna M.; Adams, David R.; Boerwinkle, Eric; Chung, Wendy K.; Gibbs, Richard A.; Lupski, James R

    2015-01-01

    Development of the human nervous system involves complex interactions between fundamental cellular processes and requires a multitude of genes, many of which remain to be associated with human disease. We applied whole exome sequencing to 128 mostly consanguineous families with neurogenetic disorders that often included brain malformations. Rare variant analyses for both single nucleotide variant (SNV) and copy number variant (CNV) alleles allowed for identification of 45 novel variants in 43 known disease genes, 41 candidate genes, and CNVs in 10 families, with an overall potential molecular cause identified in >85% of families studied. Among the candidate genes identified, we found PRUNE, VARS, and DHX37 in multiple families, and homozygous loss of function variants in AGBL2, SLC18A2, SMARCA1, UBQLN1, and CPLX1. Neuroimaging and in silico analysis of functional and expression proximity between candidate and known disease genes allowed for further understanding of genetic networks underlying specific types of brain malformations. PMID:26539891

  3. The influence of puberty on subcortical brain development.

    PubMed

    Goddings, Anne-Lise; Mills, Kathryn L; Clasen, Liv S; Giedd, Jay N; Viner, Russell M; Blakemore, Sarah-Jayne

    2014-03-01

    Puberty is characterized by hormonal, physical and psychological transformation. The human brain undergoes significant changes between childhood and adulthood, but little is known about how puberty influences its structural development. Using a longitudinal sample of 711 magnetic resonance imaging scans from 275 individuals aged 7-20years, we examined how subcortical brain regions change in relation to puberty. Our regions of interest included the amygdala, hippocampus and corpus striatum including the nucleus accumbens (NA), caudate, putamen and globus pallidus (GP). Pubertal development was significantly related to structural volume in all six regions in both sexes. Pubertal development and age had both independent and interactive influences on volume for the amygdala, hippocampus and putamen in both sexes, and the caudate in females. There was an interactive puberty-by-age effect on volume for the NA and GP in both sexes, and the caudate in males. These findings suggest a significant role for puberty in structural brain development.

  4. Imaging biomarkers of outcome in the developing preterm brain.

    PubMed

    Ment, Laura R; Hirtz, Deborah; Hüppi, Petra S

    2009-11-01

    The neurodevelopmental disabilities of those who were born prematurely have been well described, yet the underlying alterations in brain development that lead to these changes remain poorly understood. Processes that are vulnerable to injury in the developing brain include maturation of oligodendrocyte precursors and genetically programmed changes in cortical connectivity; recent data have indicated that diffuse injury of the white matter accompanied by neuronal and axonal disruption is common in prematurely born infants. Recent advances in MRI include diffusion tensor imaging and sophisticated image analysis tools, such as functional connectivity, voxel-based morphometry, and mathematical morphology-based cortical folding strategies. These advanced techniques have shown that white matter structure is dependent on gestational age and have started to provide important information about the dynamic interactions between development, injury, and functional recovery in the preterm brain. Identification of early biomarkers for outcome could enable physicians and scientists to develop targeted pharmacological and behavioural therapies to restore functional connectivity.

  5. The development of social brain functions in infancy.

    PubMed

    Grossmann, Tobias

    2015-11-01

    One fundamental question in psychology is what makes humans such intensely social beings. Probing the developmental and neural origins of our social capacities is a way of addressing this question. In the last 10 years the field of social-cognitive development has witnessed a surge in studies using neuroscience methods to elucidate the development of social information processing during infancy. While the use of electroencephalography (EEG)/event-related brain potentials (ERPs) and functional near-infrared spectroscopy (fNIRS) has revealed a great deal about the timing and localization of the cortical processes involved in early social cognition, the principles underpinning the early development of social brain functioning remain largely unexplored. Here I provide a framework that delineates the essential processes implicated in the early development of the social brain. In particular, I argue that the development of social brain functions in infancy is characterized by the following key principles: (a) self-relevance, (b) joint engagement, (c) predictability, (d) categorization, (e) discrimination, and (f) integration. For all of the proposed principles, I provide empirical examples to illustrate when in infancy they emerge. Moreover, I discuss to what extent they are in fact specifically social in nature or share properties with more domain-general developmental principles. Taken together, this article provides a conceptual integration of the existing EEG/ERPs and fNIRS work on infant social brain function and thereby offers the basis for a principle-based approach to studying the neural correlates of early social cognition.

  6. Telomerase Activity is Downregulated Early During Human Brain Development

    PubMed Central

    Ishaq, Abbas; Hanson, Peter S.; Morris, Christopher M.; Saretzki, Gabriele

    2016-01-01

    Changes in hTERT splice variant expression have been proposed to facilitate the decrease of telomerase activity during fetal development in various human tissues. Here, we analyzed the expression of telomerase RNA (hTR), wild type and α-spliced hTERT in developing human fetal brain (post conception weeks, pcw, 6–19) and in young and old cortices using qPCR and correlated it to telomerase activity measured by TRAP assay. Decrease of telomerase activity occurred early during brain development and correlated strongest to decreased hTR expression. The expression of α-spliced hTERT increased between pcw 10 and 19, while that of wild type hTERT remained unchanged. Lack of expression differences between young and old cortices suggests that most changes seem to occur early during human brain development. Using in vitro differentiation of neural precursor stem cells (NPSCs) derived at pcw 6 we found a decrease in telomerase activity but no major expression changes in telomerase associated genes. Thus, they do not seem to model the mechanisms for the decrease in telomerase activity in fetal brains. Our results suggest that decreased hTR levels, as well as transient increase in α-spliced hTERT, might both contribute to downregulation of telomerase activity during early human brain development between 6 and 17 pcw. PMID:27322326

  7. Outer brain barriers in rat and human development

    PubMed Central

    Brøchner, Christian B.; Holst, Camilla B.; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer. PMID:25852456

  8. Regional development of glutamate dehydrogenase in the rat brain.

    PubMed

    Leong, S F; Clark, J B

    1984-07-01

    The development of glutamate dehydrogenase enzyme activity in rat brain regions has been followed from the late foetal stage to the adult and through to the aged (greater than 2 years) adult. In the adult brain the enzyme activity was greatest in the medulla oblongata and pons greater than midbrain = hypothalamus greater than cerebellum = striatum = cortex. In the aged adult brain, glutamate dehydrogenase activity was significantly lower in the medulla oblongata and pons when compared to the 90-day-old adult value, but not in other regions. The enzyme-specific activity of nonsynaptic (free) mitochondria purified from the medulla oblongata and pons of 90-day-old animals was about twice that of mitochondria purified from the striatum and the cortex. The specific activity of the enzyme in synaptic mitochondria purified from the above three brain regions, however, remained almost constant.

  9. State of the Art Review: Poverty and the Developing Brain.

    PubMed

    Johnson, Sara B; Riis, Jenna L; Noble, Kimberly G

    2016-04-01

    In the United States, >40% of children are either poor or near-poor. As a group, children in poverty are more likely to experience worse health and more developmental delay, lower achievement, and more behavioral and emotional problems than their more advantaged peers; however, there is broad variability in outcomes among children exposed to similar conditions. Building on a robust literature from animal models showing that environmental deprivation or enrichment shapes the brain, there has been increasing interest in understanding how the experience of poverty may shape the brain in humans. In this review, we summarize research on the relationship between socioeconomic status and brain development, focusing on studies published in the last 5 years. Drawing on a conceptual framework informed by animal models, we highlight neural plasticity, epigenetics, material deprivation (eg, cognitive stimulation, nutrient deficiencies), stress (eg, negative parenting behaviors), and environmental toxins as factors that may shape the developing brain. We then summarize the existing evidence for the relationship between child poverty and brain structure and function, focusing on brain areas that support memory, emotion regulation, and higher-order cognitive functioning (ie, hippocampus, amygdala, prefrontal cortex) and regions that support language and literacy (ie, cortical areas of the left hemisphere). We then consider some limitations of the current literature and discuss the implications of neuroscience concepts and methods for interventions in the pediatric medical home.

  10. State of the Art Review: Poverty and the Developing Brain

    PubMed Central

    Riis, Jenna L.; Noble, Kimberly G.

    2016-01-01

    In the United States, >40% of children are either poor or near-poor. As a group, children in poverty are more likely to experience worse health and more developmental delay, lower achievement, and more behavioral and emotional problems than their more advantaged peers; however, there is broad variability in outcomes among children exposed to similar conditions. Building on a robust literature from animal models showing that environmental deprivation or enrichment shapes the brain, there has been increasing interest in understanding how the experience of poverty may shape the brain in humans. In this review, we summarize research on the relationship between socioeconomic status and brain development, focusing on studies published in the last 5 years. Drawing on a conceptual framework informed by animal models, we highlight neural plasticity, epigenetics, material deprivation (eg, cognitive stimulation, nutrient deficiencies), stress (eg, negative parenting behaviors), and environmental toxins as factors that may shape the developing brain. We then summarize the existing evidence for the relationship between child poverty and brain structure and function, focusing on brain areas that support memory, emotion regulation, and higher-order cognitive functioning (ie, hippocampus, amygdala, prefrontal cortex) and regions that support language and literacy (ie, cortical areas of the left hemisphere). We then consider some limitations of the current literature and discuss the implications of neuroscience concepts and methods for interventions in the pediatric medical home. PMID:26952506

  11. Neurotoxicity of endocrine disruptors: possible involvement in brain development and neurodegeneration.

    PubMed

    Masuo, Yoshinori; Ishido, Masami

    2011-01-01

    Environmental chemicals that act as endocrine disruptors do not appear to pose a risk to human reproduction; however, their effects on the central nervous systems are less well understood. Animal studies suggested that maternal exposure to endocrine-disrupting chemicals (EDC) produced changes in rearing behavior, locomotion, anxiety, and learning/memory in offspring, as well as neuronal abnormalities. Some investigations suggested that EDC exert effects on central monoaminergic neurons, especially dopaminergic neurons. Our data demonstrated that EDC attenuate the development of dopaminergic neurons, which might be involved in developmental disorders. Perinatal exposure to EDC might affect neuronal plasticity in the hippocampus, thereby potentially modulating neuronal development, leading to impaired cognitive and memory functions. Endocrine disruptors also attenuate gender differences in brain development. For example, the locus ceruleus is larger in female rats than in males, but treatments with bisphenol-A (BPA) enlarge this region in males. Some reports indicated that EDC induce hypothyroidism, which might be evidenced as abnormal brain development. Endocrine disruptors might also affect mature neurons, resulting in neurodegenerative disorders such as Parkinson's disease. The current review focused on alterations in the brain induced by EDC, specifically on the possible involvement of EDC in brain development and neurodegeneration.

  12. Steroid hormones and brain development: some guidelines for understanding actions of pseudohormones and other toxic agents

    SciTech Connect

    McEwen, B.S.

    1987-10-01

    Gonadal, adrenal, and thyroid hormones affect the brain directly, and the sensitivity to hormones begins in embryonic life with the appearance of hormone receptor sites in discrete populations of neurons. Because the secretion of hormones is also under control by its neural and pituitary targets, the brain-endocrine axis during development is in a delicately balanced state that can be upset in various ways, and any agent that disrupts normal hormone secretion can upset normal brain development. Moreover, exogenous substances that mimic the actions of natural hormones can also play havoc with CNS development and differentiation. This paper addresses these issues in the following order: First, actions of glucocorticoids on the developing nervous system related to cell division dendritic growth and neurotransmitter phenotype will be presented followed by a discussion of the developmental effects of synthetic steroids. Second, actions of estrogens related to brain sexual differentiation will be described, followed by a discussion of the actions of the nonsteroidal estrogen, diethylstilbestrol, as an example of exogenous estrogenic substances. The most important aspect of the potency of exogenous estrogens appears to be the degree to which they either bypass protective mechanisms or are subject to transformations to more active metabolites. Third, agents that influence hormone levels or otherwise modify the neuroendocrine system, such as nicotine, barbiturates, alcohol, opiates, and tetrahydrocannabinol, will be noted briefly to demonstrate the diversity of toxic agents that can influence neural development and affect personality, cognitive ability, and other aspects of behavior. 53 references.

  13. Changing facial affect recognition in schizophrenia: effects of training on brain dynamics.

    PubMed

    Popova, Petia; Popov, Tzvetan G; Wienbruch, Christian; Carolus, Almut M; Miller, Gregory A; Rockstroh, Brigitte S

    2014-01-01

    Deficits in social cognition including facial affect recognition and their detrimental effects on functional outcome are well established in schizophrenia. Structured training can have substantial effects on social cognitive measures including facial affect recognition. Elucidating training effects on cortical mechanisms involved in facial affect recognition may identify causes of dysfunctional facial affect recognition in schizophrenia and foster remediation strategies. In the present study, 57 schizophrenia patients were randomly assigned to (a) computer-based facial affect training that focused on affect discrimination and working memory in 20 daily 1-hour sessions, (b) similarly intense, targeted cognitive training on auditory-verbal discrimination and working memory, or (c) treatment as usual. Neuromagnetic activity was measured before and after training during a dynamic facial affect recognition task (5 s videos showing human faces gradually changing from neutral to fear or to happy expressions). Effects on 10-13 Hz (alpha) power during the transition from neutral to emotional expressions were assessed via MEG based on previous findings that alpha power increase is related to facial affect recognition and is smaller in schizophrenia than in healthy subjects. Targeted affect training improved overt performance on the training tasks. Moreover, alpha power increase during the dynamic facial affect recognition task was larger after affect training than after treatment-as-usual, though similar to that after targeted perceptual-cognitive training, indicating somewhat nonspecific benefits. Alpha power modulation was unrelated to general neuropsychological test performance, which improved in all groups. Results suggest that specific neural processes supporting facial affect recognition, evident in oscillatory phenomena, are modifiable. This should be considered when developing remediation strategies targeting social cognition in schizophrenia.

  14. DARPA challenge: developing new technologies for brain and spinal injuries

    NASA Astrophysics Data System (ADS)

    Macedonia, Christian; Zamisch, Monica; Judy, Jack; Ling, Geoffrey

    2012-06-01

    The repair of traumatic injuries to the central nervous system remains among the most challenging and exciting frontiers in medicine. In both traumatic brain injury and spinal cord injuries, the ultimate goals are to minimize damage and foster recovery. Numerous DARPA initiatives are in progress to meet these goals. The PREventing Violent Explosive Neurologic Trauma program focuses on the characterization of non-penetrating brain injuries resulting from explosive blast, devising predictive models and test platforms, and creating strategies for mitigation and treatment. To this end, animal models of blast induced brain injury are being established, including swine and non-human primates. Assessment of brain injury in blast injured humans will provide invaluable information on brain injury associated motor and cognitive dysfunctions. The Blast Gauge effort provided a device to measure warfighter's blast exposures which will contribute to diagnosing the level of brain injury. The program Cavitation as a Damage Mechanism for Traumatic Brain Injury from Explosive Blast developed mathematical models that predict stresses, strains, and cavitation induced from blast exposures, and is devising mitigation technologies to eliminate injuries resulting from cavitation. The Revolutionizing Prosthetics program is developing an avant-garde prosthetic arm that responds to direct neural control and provides sensory feedback through electrical stimulation. The Reliable Neural-Interface Technology effort will devise technologies to optimally extract information from the nervous system to control next generation prosthetic devices with high fidelity. The emerging knowledge and technologies arising from these DARPA programs will significantly improve the treatment of brain and spinal cord injured patients.

  15. Neural Correlates of Socioeconomic Status in the Developing Human Brain

    ERIC Educational Resources Information Center

    Noble, Kimberly G.; Houston, Suzanne M.; Kan, Eric; Sowell, Elizabeth R.

    2012-01-01

    Socioeconomic disparities in childhood are associated with remarkable differences in cognitive and socio-emotional development during a time when dramatic changes are occurring in the brain. Yet, the neurobiological pathways through which socioeconomic status (SES) shapes development remain poorly understood. Behavioral evidence suggests that…

  16. Maternal adiposity negatively influences infant brain white matter development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To study potential effects of maternal body composition on central nervous system (CNS) development of newborn infants. Methods: Diffusion tensor imaging was used to evaluate brain white matter development in 2-week-old, full-term, appropriate for gestational age infants from uncomplicat...

  17. Locomotion, physical development, and brain myelination in rats treated with ionizing radiation in utero

    SciTech Connect

    Zaman, M.S.

    1989-01-01

    Effects of ionizing radiation on the emergence of locomotion skill and some physical development parameters were studied in laboratory rats (Fisher F-344 inbred strain). Rats were treated with 3 different doses of radiation (150 R, 15 R, and 6.8 R) delivered on the 20th day of the prenatal life. Results indicated that relatively moderate (15 R) to high (150 R) doses of radiation have effects on certain locomotion and physical development parameters. Exposure to 150 R affected pivoting, cliff-avoidance, upper jaw tooth eruption, body weight, and organs, such as brain, cerebral cortex, ovary, kidney, heart and spleen weights. Other parameters, such as negative geotaxis, eye opening, and lower jaw tooth eruption appeared to be affected in the 150 R treated animals. Exposure to 15 R affected pivoting and cliff-avoidance parameters. The cerebral cortex weight of the 15 R treated animals was found to be reduced at the age of day 30. Exposure to 6.8 R had no adverse effects on these parameters. Prenatal exposure to 150 R of radiation reduced the cerebral cortex weight by 22.07% at 30 days of age, and 20.15% at 52 days of age which caused a reduction in cerebral cortex myelin content by 20.16, and 22.89% at the ages of day 30 and day 52 respectively. Exposure to 150 R did not affect the myelin content of the cerebellum or the brain stem; or the myelin concentration (mg myelin/g brain tissue weight) of the cerebral cortex, cerebellum, and the brain stem. Exposure to 15 R, and 6.8 R did not affect either the myelin content or the myelin concentration of these brain areas.

  18. How the Arts Develop the Young Brain

    ERIC Educational Resources Information Center

    Sousa, David A.

    2006-01-01

    The arts play an important role in human development, enhancing the growth of cognitive, emotional, and psychomotor pathways. Neuroscience research reveals the impressive impact of arts instruction, such as, music, drawing and physical activity, on students' cognitive, social and emotional development. Much of what young children do as…

  19. Multiple Psychopharmacological Effects of the Traditional Japanese Kampo Medicine Yokukansan, and the Brain Regions it Affects

    PubMed Central

    Mizoguchi, Kazushige; Ikarashi, Yasushi

    2017-01-01

    Yokukansan (YKS), a traditional Japanese Kampo medicine, has indications for use in night crying and irritability in children, as well as neurosis and insomnia. It is currently also used for the remedy of the behavioral and psychological symptoms of dementia (BPSD), such as aggressiveness, agitation, and hallucinations. In parallel with clinical evidence, a significant amount of fundamental researches have been undertaken to clarify the neuropsychopharmacological efficacies of YKS, with approximately 70 articles, including our own, being published to date. Recently, we reviewed the neuropharmacological mechanisms of YKS, including its effects on glutamatergic, serotonergic, and dopaminergic neurotransmission, and pharmacokinetics of the ingredients responsible for the effects. This review is aimed to integrate the information regarding the psychopharmacological effects of YKS with the brain regions known to be affected, to facilitate our understanding of the clinical efficacy of YKS. In this review, we first show that YKS has several effects that act to improve symptoms that are similar to BPSDs, like aggressiveness, hallucinations, anxiety, and sleep disturbance, as well as symptoms like tardive dyskinesia and cognitive deficits. We next provide the evidence showing that YKS can interact with various brain regions, including the cerebral cortex, hippocampus, striatum, and spinal cord, dysfunctions of which are related to psychiatric symptoms, cognitive deficits, abnormal behaviors, and dysesthesia. In addition, the major active ingredients of YKS, geissoschizine methyl ether and 18β-glycyrrhetinic acid, are shown to predominantly bind to the frontal cortex and hippocampus, respectively. Our findings suggest that YKS has multiple psychopharmacological effects, and that these are probably mediated by interactions among several brain regions. In this review, we summarize the available information about the valuable effects of a multicomponent medicine YKS on complex

  20. Diazepam affects the nuclear thyroid hormone receptor density and their expression levels in adult rat brain.

    PubMed

    Constantinou, Caterina; Bolaris, Stamatis; Valcana, Theony; Margarity, Marigoula

    2005-07-01

    Thyroid hormones (THs) are involved in the occurrence of anxiety and affective disorders; however, the effects following an anxiolytic benzodiazepine treatment, such as diazepam administration, on the mechanism of action of thyroid hormones has not yet been investigated. The effect of diazepam on the in vitro nuclear T3 binding, on the relative expression of the TH receptors (TRs) and on the synaptosomal TH availability were examined in adult rat cerebral hemispheres 24 h after a single intraperitoneal dose (5 mg/kg BW) of this tranquillizer. Although, diazepam did not affect the availability of TH either in blood circulation or in the synaptosomal fraction, it decreased (33%) the nuclear T3 maximal binding density (B(max)). No differences were observed in the equilibrium dissociation constant (K(d)). The TRalpha2 variant (non-T3-binding) mRNA levels were increased by 33%, whereas no changes in the relative expression of the T3-binding isoforms of TRs (TRalpha1, TRbeta1) were observed. This study shows that a single intraperitoneal injection of diazepam affects within 24 h, the density of the nuclear TRs and their expression pattern. The latest effect occurs in an isoform-specific manner involving specifically the TRalpha2 mRNA levels in adult rat brain.

  1. Sleep variability in adolescence is associated with altered brain development.

    PubMed

    Telzer, Eva H; Goldenberg, Diane; Fuligni, Andrew J; Lieberman, Matthew D; Gálvan, Adriana

    2015-08-01

    Despite the known importance of sleep for brain development, and the sharp increase in poor sleep during adolescence, we know relatively little about how sleep impacts the developing brain. We present the first longitudinal study to examine how sleep during adolescence is associated with white matter integrity. We find that greater variability in sleep duration one year prior to a DTI scan is associated with lower white matter integrity above and beyond the effects of sleep duration, and variability in bedtime, whereas sleep variability a few months prior to the scan is not associated with white matter integrity. Thus, variability in sleep duration during adolescence may have long-term impairments on the developing brain. White matter integrity should be increasing during adolescence, and so sleep variability is directly at odds with normative developmental trends.

  2. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation.

    PubMed

    Ji, Rui; Tian, Shifu; Lu, Helen J; Lu, Qingjun; Zheng, Yan; Wang, Xiaomin; Ding, Jixiang; Li, Qiutang; Lu, Qingxian

    2013-12-15

    TAM tyrosine kinases play multiple functional roles, including regulation of the target genes important in homeostatic regulation of cytokine receptors or TLR-mediated signal transduction pathways. In this study, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impairs hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAPK and NF-κB activation and elevated production of proinflammatory cytokines that are detrimental to neuron stem cell proliferation and neuronal differentiation. Injection of LPS causes even more severe inhibition of BrdU incorporation in the Tyro3(-/-)Axl(-/-)Mertk(-/-) triple-knockout (TKO) brains, consistent with the LPS-elicited enhanced expression of proinflammatory mediators, for example, IL-1β, IL-6, TNF-α, and inducible NO synthase, and this effect is antagonized by coinjection of the anti-inflammatory drug indomethacin in wild-type but not TKO brains. Conditioned medium from TKO microglia cultures inhibits neuron stem cell proliferation and neuronal differentiation. IL-6 knockout in Axl(-/-)Mertk(-/-) double-knockout mice overcomes the inflammatory inhibition of neurogenesis, suggesting that IL-6 is a major downstream neurotoxic mediator under homeostatic regulation by TAM receptors in microglia. Additionally, autonomous trophic function of the TAM receptors on the proliferating neuronal progenitors may also promote progenitor differentiation into immature neurons.

  3. Prenatal ethanol exposure differentially affects hippocampal neurogenesis in the adolescent and aged brain.

    PubMed

    Gil-Mohapel, J; Titterness, A K; Patten, A R; Taylor, S; Ratzlaff, A; Ratzlaff, T; Helfer, J; Christie, B R

    2014-07-25

    Exposure to ethanol in utero is associated with a myriad of sequelae for the offspring. Some of these effects are morphological in nature and noticeable from birth, while others involve more subtle changes to the brain that only become apparent later in life when the individuals are challenged cognitively. One brain structure that shows both functional and structural deficits following prenatal ethanol exposure is the hippocampus. The hippocampus is composed of two interlocking gyri, the cornu ammonis (CA) and the dentate gyrus (DG), and they are differentially affected by prenatal ethanol exposure. The CA shows a more consistent loss in neuronal numbers, with different ethanol exposure paradigms, than the DG, which in contrast shows more pronounced and consistent deficits in synaptic plasticity. In this study we show that significant deficits in adult hippocampal neurogenesis are apparent in aged animals following prenatal ethanol exposure. Deficits in hippocampal neurogenesis were not apparent in younger animals. Surprisingly, even when ethanol exposure occurred in conjunction with maternal stress, deficits in neurogenesis did not occur at this young age, suggesting that the capacity for neurogenesis is highly conserved early in life. These findings are unique in that they demonstrate for the first time that deficits in neurogenesis associated with prenatal ethanol consumption appear later in life.

  4. Important Roles of Ring Finger Protein 112 in Embryonic Vascular Development and Brain Functions.

    PubMed

    Tsou, Jen-Hui; Yang, Ying-Chen; Pao, Ping-Chieh; Lin, Hui-Ching; Huang, Nai-Kuei; Lin, Shih-Ting; Hsu, Kuei-Sen; Yeh, Che-Ming; Lee, Kuen-Haur; Kuo, Chu-Jen; Yang, De-Ming; Lin, Jiann-Her; Chang, Wen-Chang; Lee, Yi-Chao

    2017-04-01

    Rnf112 is a member of the RING finger protein family. The expression of Rnf112 is abundant in the brain and is regulated during brain development. Our previous study has revealed that Rnf112 can promote neuronal differentiation by inhibiting the progression of the cell cycle in cell models. In this study, we further revealed the important functions of Rnf112 in embryo development and in adult brain. Our data showed that most of the Rnf112 (-/-) embryos exhibited blood vascular defects and died in utero. Upon further investigation, we found that the survival rate of homozygous Rnf112 knockout mice in 129/sv and C57BL/6 mixed genetic background was increased. The survived newborns of Rnf112 (-/-) mice manifested growth retardation as indicated by smaller size and a reduced weight. Although the overall organization of the brain did not appear to be severely affected in Rnf112 (-/-) mice, using in vivo 3D MRI imaging, we found that when compared to wild-type littermates, brains of Rnf112 (-/-) mice were smaller. In addition, Rnf112 (-/-) mice displayed impairment of brain functions including motor balance, and spatial learning and memory. Our results provide important aspects for the study of Rnf112 gene functions.

  5. Feeding the brain and nurturing the mind: Linking nutrition and the gut microbiota to brain development.

    PubMed

    Goyal, Manu S; Venkatesh, Siddarth; Milbrandt, Jeffrey; Gordon, Jeffrey I; Raichle, Marcus E

    2015-11-17

    The human gut contains a microbial community composed of tens of trillions of organisms that normally assemble during the first 2-3 y of postnatal life. We propose that brain development needs to be viewed in the context of the developmental biology of this "microbial organ" and its capacity to metabolize the various diets we consume. We hypothesize that the persistent cognitive abnormalities seen in children with undernutrition are related in part to their persistent gut microbiota immaturity and that specific regions of the brain that normally exhibit persistent juvenile (neotenous) patterns of gene expression, including those critically involved in various higher cognitive functions such as the brain's default mode network, may be particularly vulnerable to the effects of microbiota immaturity in undernourished children. Furthermore, we postulate that understanding the interrelationships between microbiota and brain metabolism in childhood undernutrition could provide insights about responses to injury seen in adults. We discuss approaches that can be used to test these hypotheses, their ramifications for optimizing nutritional recommendations that promote healthy brain development and function, and the potential societal implications of this area of investigation.

  6. Social re-orientation and brain development: An expanded and updated view.

    PubMed

    Nelson, Eric E; Jarcho, Johanna M; Guyer, Amanda E

    2016-02-01

    Social development has been the focus of a great deal of neuroscience based research over the past decade. In this review, we focus on providing a framework for understanding how changes in facets of social development may correspond with changes in brain function. We argue that (1) distinct phases of social behavior emerge based on whether the organizing social force is the mother, peer play, peer integration, or romantic intimacy; (2) each phase is marked by a high degree of affect-driven motivation that elicits a distinct response in subcortical structures; (3) activity generated by these structures interacts with circuits in prefrontal cortex that guide executive functions, and occipital and temporal lobe circuits, which generate specific sensory and perceptual social representations. We propose that the direction, magnitude and duration of interaction among these affective, executive, and perceptual systems may relate to distinct sensitive periods across development that contribute to establishing long-term patterns of brain function and behavior.

  7. CFH Variants Affect Structural and Functional Brain Changes and Genetic Risk of Alzheimer's Disease.

    PubMed

    Zhang, Deng-Feng; Li, Jin; Wu, Huan; Cui, Yue; Bi, Rui; Zhou, He-Jiang; Wang, Hui-Zhen; Zhang, Chen; Wang, Dong; Kong, Qing-Peng; Li, Tao; Fang, Yiru; Jiang, Tianzi; Yao, Yong-Gang

    2016-03-01

    The immune response is highly active in Alzheimer's disease (AD). Identification of genetic risk contributed by immune genes to AD may provide essential insight for the prognosis, diagnosis, and treatment of this neurodegenerative disease. In this study, we performed a genetic screening for AD-related top immune genes identified in Europeans in a Chinese cohort, followed by a multiple-stage study focusing on Complement Factor H (CFH) gene. Effects of the risk SNPs on AD-related neuroimaging endophenotypes were evaluated through magnetic resonance imaging scan, and the effects on AD cerebrospinal fluid biomarkers (CSF) and CFH expression changes were measured in aged and AD brain tissues and AD cellular models. Our results showed that the AD-associated top immune genes reported in Europeans (CR1, CD33, CLU, and TREML2) have weak effects in Chinese, whereas CFH showed strong effects. In particular, rs1061170 (P(meta)=5.0 × 10(-4)) and rs800292 (P(meta)=1.3 × 10(-5)) showed robust associations with AD, which were confirmed in multiple world-wide sample sets (4317 cases and 16 795 controls). Rs1061170 (P=2.5 × 10(-3)) and rs800292 (P=4.7 × 10(-4)) risk-allele carriers have an increased entorhinal thickness in their young age and a higher atrophy rate as the disease progresses. Rs800292 risk-allele carriers have higher CSF tau and Aβ levels and severe cognitive decline. CFH expression level, which was affected by the risk-alleles, was increased in AD brains and cellular models. These comprehensive analyses suggested that CFH is an important immune factor in AD and affects multiple pathological changes in early life and during disease progress.

  8. Sex differences in the brain response to affective scenes with or without humans.

    PubMed

    Proverbio, Alice Mado; Adorni, Roberta; Zani, Alberto; Trestianu, Laura

    2009-10-01

    Recent findings have demonstrated that women might be more reactive than men to viewing painful stimuli (vicarious response to pain), and therefore more empathic [Han, S., Fan, Y., & Mao, L. (2008). Gender difference in empathy for pain: An electrophysiological investigation. Brain Research, 1196, 85-93]. We investigated whether the two sexes differed in their cerebral responses to affective pictures portraying humans in different positive or negative contexts compared to natural or urban scenarios. 440 IAPS slides were presented to 24 Italian students (12 women and 12 men). Half the pictures displayed humans while the remaining scenes lacked visible persons. ERPs were recorded from 128 electrodes and swLORETA (standardized weighted Low-Resolution Electromagnetic Tomography) source reconstruction was performed. Occipital P115 was greater in response to persons than to scenes and was affected by the emotional valence of the human pictures. This suggests that processing of biologically relevant stimuli is prioritized. Orbitofrontal N2 was greater in response to positive than negative human pictures in women but not in men, and not to scenes. A late positivity (LP) to suffering humans far exceeded the response to negative scenes in women but not in men. In both sexes, the contrast suffering-minus-happy humans revealed a difference in the activation of the occipito/temporal, right occipital (BA19), bilateral parahippocampal, left dorsal prefrontal cortex (DPFC) and left amygdala. However, increased right amygdala and right frontal area activities were observed only in women. The humans-minus-scenes contrast revealed a difference in the activation of the middle occipital gyrus (MOG) in men, and of the left inferior parietal (BA40), left superior temporal gyrus (STG, BA38) and right cingulate (BA31) in women (270-290 ms). These data indicate a sex-related difference in the brain response to humans, possibly supporting human empathy.

  9. Maturation of widely distributed brain function subserves cognitive development.

    PubMed

    Luna, B; Thulborn, K R; Munoz, D P; Merriam, E P; Garver, K E; Minshew, N J; Keshavan, M S; Genovese, C R; Eddy, W F; Sweeney, J A

    2001-05-01

    Cognitive and brain maturational changes continue throughout late childhood and adolescence. During this time, increasing cognitive control over behavior enhances the voluntary suppression of reflexive/impulsive response tendencies. Recently, with the advent of functional MRI, it has become possible to characterize changes in brain activity during cognitive development. In order to investigate the cognitive and brain maturation subserving the ability to voluntarily suppress context-inappropriate behavior, we tested 8-30 year olds in an oculomotor response-suppression task. Behavioral results indicated that adult-like ability to inhibit prepotent responses matured gradually through childhood and adolescence. Functional MRI results indicated that brain activation in frontal, parietal, striatal, and thalamic regions increased progressively from childhood to adulthood. Prefrontal cortex was more active in adolescents than in children or adults; adults demonstrated greater activation in the lateral cerebellum than younger subjects. These results suggest that efficient top-down modulation of reflexive acts may not be fully developed until adulthood and provide evidence that maturation of function across widely distributed brain regions lays the groundwork for enhanced voluntary control of behavior during cognitive development.

  10. Future developments in brain-machine interface research

    PubMed Central

    Lebedev, Mikhail A; Tate, Andrew J; Hanson, Timothy L; Li, Zheng; O'Doherty, Joseph E; Winans, Jesse A; Ifft, Peter J; Zhuang, Katie Z; Fitzsimmons, Nathan A; Schwarz, David A; Fuller, Andrew M; An, Je Hi; Nicolelis, Miguel A L

    2011-01-01

    Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL) Center for Neuroprosthetics, to bring this new technology to clinical fruition. PMID:21779720

  11. Extraction of features from sleep EEG for Bayesian assessment of brain development

    PubMed Central

    2017-01-01

    Brain development can be evaluated by experts analysing age-related patterns in sleep electroencephalograms (EEG). Natural variations in the patterns, noise, and artefacts affect the evaluation accuracy as well as experts’ agreement. The knowledge of predictive posterior distribution allows experts to estimate confidence intervals within which decisions are distributed. Bayesian approach to probabilistic inference has provided accurate estimates of intervals of interest. In this paper we propose a new feature extraction technique for Bayesian assessment and estimation of predictive distribution in a case of newborn brain development assessment. The new EEG features are verified within the Bayesian framework on a large EEG data set including 1,100 recordings made from newborns in 10 age groups. The proposed features are highly correlated with brain maturation and their use increases the assessment accuracy. PMID:28323852

  12. Genetic Brain Disorders

    MedlinePlus

    A genetic brain disorder is caused by a variation or a mutation in a gene. A variation is a different form ... mutation is a change in a gene. Genetic brain disorders affect the development and function of the ...

  13. The Brain in the Jar: A Critique of Discourses of Adolescent Brain Development

    ERIC Educational Resources Information Center

    Kelly, Peter

    2012-01-01

    This article suggests that ideas about adolescent brains and their development increasingly function as powerful truths in making sense of young people. In this context, the knowledge practices of the neurosciences and evolutionary and developmental psychology are deemed capable of producing what we have come to understand as the evidence on which…

  14. Nurturing Brain Development from Birth to 3

    ERIC Educational Resources Information Center

    Gopnik, Alison

    2012-01-01

    Alison Gopnik, PhD, a researcher and professor at the University of California, Berkeley, responds to questions about the ways researchers are discovering the complex processes of early cognitive development. Dr. Gopnik shares some of the creative research methods that are demonstrating how infants are figuring out what is going on in the mind of…

  15. Alzheimer S Disease and Brain Development: Common Molecular Pathways

    PubMed Central

    Jordan-Sciutto, Kelly; Bowser, Robert

    2013-01-01

    Research on the causes and treatments of Alzheimer's disease (AD) has led investigators down numerous avenues. Although many models have been proposed, no single model of AD satisfactorily accounts for all neuropathologic findings as well as the requirement of aging for disease onset. The mechanisms of disease progression are equally unclear. We hypothesize that alternative gene expression during AD plays a critical role in disease progression. Numerous developmentally regulated genes and cell cycle proteins have been shown to be re-expressed or activated during AD. These proteins include transcription factors, members of the cell cycle regulatory machinery, and programmed cell death genes. Such proteins play an important role during brain development and would likely exert powerful effects if re-expressed in the adult brain. We propose that the re-expression or activation of developmentally regulated genes define molecular mechanisms active both during brain development and in AD PMID:9422711

  16. MR connectomics: a conceptual framework for studying the developing brain.

    PubMed

    Hagmann, Patric; Grant, Patricia E; Fair, Damien A

    2012-01-01

    THE COMBINATION OF ADVANCED NEUROIMAGING TECHNIQUES AND MAJOR DEVELOPMENTS IN COMPLEX NETWORK SCIENCE, HAVE GIVEN BIRTH TO A NEW FRAMEWORK FOR STUDYING THE BRAIN: "connectomics." This framework provides the ability to describe and study the brain as a dynamic network and to explore how the coordination and integration of information processing may occur. In recent years this framework has been used to investigate the developing brain and has shed light on many dynamic changes occurring from infancy through adulthood. The aim of this article is to review this work and to discuss what we have learned from it. We will also use this body of work to highlight key technical aspects that are necessary in general for successful connectome analysis using today's advanced neuroimaging techniques. We look to identify current limitations of such approaches, what can be improved, and how these points generalize to other topics in connectome research.

  17. Adolescent brain development and the mature minor doctrine.

    PubMed

    Silber, Tomas J

    2011-08-01

    The medical rights of minors have been questioned, especially due to information on adolescent brain development and studies on adolescent decision-making. This chapter briefly introduces the mature minor doctrine (MMD) and its history, justification, and practice and then presents some of the objections to the MMD. The article then highlights new knowledge about adolescent brain development (ABD) and what this may contribute to this debate and describes "hot cognition" and "cold cognition". It concludes by alerting the reader to the danger of making inappropriate use of the discoveries of brain science and proposing a prudent approach to adolescent consent and confidentiality, one that incorporates the new knowledge on ABD without "turning back the clock" on the medical rights of minors.

  18. Progressive Structural Brain Changes During Development of Psychosis

    PubMed Central

    Ziermans, Tim B.; Schothorst, Patricia F.; Schnack, Hugo G.; Koolschijn, P. Cédric M. P.; Kahn, René S.; van Engeland, Herman; Durston, Sarah

    2012-01-01

    Background: Ultra-high risk (UHR) for psychosis has been associated with widespread structural brain changes in young adults. The onset of these changes and their subsequent progression over time are not well understood. Methods: Rate of brain change over time was investigated in 43 adolescents at UHR for psychosis compared with 30 healthy controls. Brain volumes (total brain, gray matter, white matter [WM], cerebellum, and ventricles), cortical thickness, and voxel-based morphometry were measured at baseline and at follow-up (2 y after baseline) and compared between UHR individuals and controls. Post hoc analyses were done for UHR individuals who became psychotic (N = 8) and those who did not (N = 35). Results: UHR individuals showed a smaller increase in cerebral WM over time than controls and more cortical thinning in the left middle temporal gyrus. Post hoc, a more pronounced decrease over time in total brain and WM volume was found for UHR individuals who became psychotic relative to controls and a greater decrease in total brain volume than individuals who were not psychotic. Furthermore, UHR individuals with subsequent psychosis displayed more thinning than controls in widespread areas in the left anterior cingulate, precuneus, and temporo-parieto-occipital area. Volume loss in the individuals who developed psychosis could not be attributed to medication use. Conclusion: The development of psychosis during adolescence is associated with progressive structural brain changes around the time of onset. These changes cannot be attributed to (antipsychotic) medication use and are therefore likely to reflect a pathophysiological process related to clinical manifestation of psychosis. PMID:20929968

  19. Leptin and the brain: influences on brain development, cognitive functioning and psychiatric disorders.

    PubMed

    Farr, Olivia M; Tsoukas, Michael A; Mantzoros, Christos S

    2015-01-01

    Receptors of leptin, the prototypical adipokine, are expressed throughout the cortex and several other areas of the brain. Although typically studied for its role in energy intake and expenditure, leptin plays a critical role in many other neurocognitive processes and interacts with various other hormones and neurotransmitters to perform these functions. Here, we review the literature on how leptin influences brain development, neural degradation, Alzheimer's disease, psychiatric disorders, and more complicated cognitive functioning and feeding behaviors. We also discuss modulators of leptin and the leptin receptor as they relate to normal cognitive functioning and may mediate some of the actions of leptin in the brain. Although we are beginning to better understand the critical role leptin plays in normal cognitive functioning, there is much to be discovered.

  20. Limitations on the Developing Preterm Brain: Impact of Periventricular White Matter Lesions on Brain Connectivity and Cognition

    ERIC Educational Resources Information Center

    Pavlova, Marina A.; Krageloh-Mann, Ingeborg

    2013-01-01

    Brain lesions to the white matter in peritrigonal regions, periventricular leukomalacia, in children who were born prematurely represent an important model for studying limitations on brain development. The lesional pattern is of early origin and bilateral, that constrains the compensatory potential of the brain. We suggest that (i) topography and…

  1. MCPH1: a window into brain development and evolution

    PubMed Central

    Pulvers, Jeremy N.; Journiac, Nathalie; Arai, Yoko; Nardelli, Jeannette

    2015-01-01

    The development of the mammalian cerebral cortex involves a series of mechanisms: from patterning, progenitor cell proliferation and differentiation, to neuronal migration. Many factors influence the development of the cerebral cortex to its normal size and neuronal composition. Of these, the mechanisms that influence the proliferation and differentiation of neural progenitor cells are of particular interest, as they may have the greatest consequence on brain size, not only during development but also in evolution. In this context, causative genes of human autosomal recessive primary microcephaly, such as ASPM and MCPH1, are attractive candidates, as many of them show positive selection during primate evolution. MCPH1 causes microcephaly in mice and humans and is involved in a diverse array of molecular functions beyond brain development, including DNA repair and chromosome condensation. Positive selection of MCPH1 in the primate lineage has led to much insight and discussion of its role in brain size evolution. In this review, we will present an overview of MCPH1 from these multiple angles, and whilst its specific role in brain size regulation during development and evolution remain elusive, the pieces of the puzzle will be discussed with the aim of putting together the full picture of this fascinating gene. PMID:25870538

  2. Effect of alcohol exposure on fetal brain development

    NASA Astrophysics Data System (ADS)

    Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.

    2013-02-01

    Alcohol consumption during pregnancy can be severely damage to the brain development in fetuses. This study investigates the effects of maternal ethanol consumption on brain development in mice embryos. Pregnant mice at gestational day 12.5 were intragastrically gavaged with ethanol (3g/Kg bwt) twice daily for three consecutive days. On gestational day 14.5, fetuses were collected and fixed in 4% paraformaldehyde and imaged using a swept-source optical coherence tomography (SSOCT) system. 3D images of the mice embryo brain were obtained and the volumes of the left and right ventricles of the brain were measured. The average volumes of the left and the right volumes of 5 embryos each alcohol-exposed and control embryos were measured to be 0.35 and 0.15 mm3, respectively. The results suggest that the left and right ventricle volumes of brain are much larger in the alcohol-exposed embryos as compared to control embryos indicating alcohol-induced developmental delay.

  3. Dopamine Transporter Gene Variant Affecting Expression in Human Brain is Associated with Bipolar Disorder

    PubMed Central

    Pinsonneault, Julia K; Han, Dawn D; Burdick, Katherine E; Kataki, Maria; Bertolino, Alessandro; Malhotra, Anil K; Gu, Howard H; Sadee, Wolfgang

    2011-01-01

    The gene encoding the dopamine transporter (DAT) has been implicated in CNS disorders, but the responsible polymorphisms remain uncertain. To search for regulatory polymorphisms, we measured allelic DAT mRNA expression in substantia nigra of human autopsy brain tissues, using two marker SNPs (rs6347 in exon 9 and rs27072 in the 3′-UTR). Allelic mRNA expression imbalance (AEI), an indicator of cis-acting regulatory polymorphisms, was observed in all tissues heterozygous for either of the two marker SNPs. SNP scanning of the DAT locus with AEI ratios as the phenotype, followed by in vitro molecular genetics studies, demonstrated that rs27072 C>T affects mRNA expression and translation. Expression of the minor T allele was dynamically regulated in transfected cell cultures, possibly involving microRNA interactions. Both rs6347 and rs3836790 (intron8 5/6 VNTR) also seemed to affect DAT expression, but not the commonly tested 9/10 VNTR in the 3′UTR (rs28363170). All four polymorphisms (rs6347, intron8 5/6 VNTR, rs27072 and 3′UTR 9/10 VNTR) were genotyped in clinical cohorts, representing schizophrenia, bipolar disorder, depression, and controls. Only rs27072 was significantly associated with bipolar disorder (OR=2.1, p=0.03). This result was replicated in a second bipolar/control population (OR=1.65, p=0.01), supporting a critical role for DAT regulation in bipolar disorder. PMID:21525861

  4. Affective three-dimensional brain-computer interface created using a prism array-based display

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Park, Min-Chul

    2014-12-01

    To avoid the vergence-accommodation mismatch and provide a strong sense of presence to users, we applied a prism array-based display when presenting three-dimensional (3-D) objects. Emotional pictures were used as visual stimuli to increase the signal-to-noise ratios of steady-state visually evoked potentials (SSVEPs) because involuntarily motivated selective attention by affective mechanisms can enhance SSVEP amplitudes, thus producing increased interaction efficiency. Ten male and nine female participants voluntarily participated in our experiments. Participants were asked to control objects under three viewing conditions: two-dimension (2-D), stereoscopic 3-D, and prism. The participants performed each condition in a counter-balanced order. One-way repeated measures analysis of variance showed significant increases in the positive predictive values in the prism condition compared to the 2-D and 3-D conditions. Participants' subjective ratings of realness and engagement were also significantly greater in the prism condition than in the 2-D and 3-D conditions, while the ratings for visual fatigue were significantly reduced in the prism condition than in the 3-D condition. The proposed methods are expected to enhance the sense of reality in 3-D space without causing critical visual fatigue. In addition, people who are especially susceptible to stereoscopic 3-D may be able to use the affective brain-computer interface.

  5. Sleep deprivation does not affect neuronal susceptibility to mild traumatic brain injury in the rat

    PubMed Central

    Caron, Aimee M; Stephenson, Richard

    2015-01-01

    Mild and moderate traumatic brain injuries (TBIs) (and concussion) occur frequently as a result of falls, automobile accidents, and sporting activities, and are a major cause of acute and chronic disability. Fatigue and excessive sleepiness are associated with increased risk of accidents, but it is unknown whether prior sleep debt also affects the pathophysiological outcome of concussive injury. Using the “dark neuron” (DN) as a marker of reversible neuronal damage, we tested the hypothesis that acute (48 hours) total sleep deprivation (TSD) and chronic sleep restriction (CSR; 10 days, 6-hour sleep/day) affect DN formation following mild TBI in the rat. TSD and CSR were administered using a walking wheel apparatus. Mild TBI was administered under anesthesia using a weight-drop impact model, and the acute neuronal response was observed without recovery. DNs were detected using standard bright-field microscopy with toluidine blue stain following appropriate tissue fixation. DN density was low under home cage and sleep deprivation control conditions (respective median DN densities, 0.14% and 0.22% of neurons), and this was unaffected by TSD alone (0.1%). Mild TBI caused significantly higher DN densities (0.76%), and this was unchanged by preexisting acute or chronic sleep debt (TSD, 0.23%; CSR, 0.7%). Thus, although sleep debt may be predicted to increase the incidence of concussive injury, the present data suggest that sleep debt does not exacerbate the resulting neuronal damage. PMID:26124685

  6. Ionizing radiation and the developing brain

    SciTech Connect

    Schull, W.J.; Norton, S.; Jensh, R.P. )

    1990-05-01

    The unique susceptibility of the central nervous system to radiation exposure is attributable to its extensive period of development, the vulnerability of its neuronal cells, the migratory activity of many of its cells, its inability to replace mature neurons, and the complexity of the system itself. Radiation effects may be due to glial or neuronal cell death, interruption of migratory activity, impaired capacity to establish correct connections among cells, and/or alterations in dendritic development. These structural changes are often manifested as behavioral alterations later in life. Sensitivity to radiation (dose-response) is markedly similar among all mammalian species when developmental periods are compared. This review compares and contrasts human and animal behavioral data. Neonatal and postnatal adult behavioral tests have been shown to be sensitive, noninvasive measures of prenatal radiation exposure, although currently their predictive validity for humans is uncertain. Additional research is needed to determine the presence and significance of postnatal morphologic and functional alterations due to prenatal exposure to low levels of ionizing radiation.75 references.

  7. The Brain Basis of Positive and Negative Affect: Evidence from a Meta-Analysis of the Human Neuroimaging Literature.

    PubMed

    Lindquist, Kristen A; Satpute, Ajay B; Wager, Tor D; Weber, Jochen; Barrett, Lisa Feldman

    2016-05-01

    The ability to experience pleasant or unpleasant feelings or to represent objects as "positive" or "negative" is known as representing hedonic "valence." Although scientists overwhelmingly agree that valence is a basic psychological phenomenon, debate continues about how to best conceptualize it scientifically. We used a meta-analysis of 397 functional magnetic resonance imaging (fMRI) and positron emission tomography studies (containing 914 experimental contrasts and 6827 participants) to test 3 competing hypotheses about the brain basis of valence: the bipolarity hypothesis that positive and negative affect are supported by a brain system that monotonically increases and/or decreases along the valence dimension, the bivalent hypothesis that positive and negative affect are supported by independent brain systems, and the affective workspace hypothesis that positive and negative affect are supported by a flexible set of valence-general regions. We found little evidence for the bipolar or bivalent hypotheses. Findings instead supported the hypothesis that, at the level of brain activity measurable by fMRI, valence is flexibly implemented across instances by a set of valence-general limbic and paralimbic brain regions.

  8. Brain Development & Early Childhood: An Arkansas Kids Count Special Report.

    ERIC Educational Resources Information Center

    Rule, J. Chris

    Using recent economic data on state spending and information about childhood brain development, this Kids Count mini-report offers a snapshot of where Arkansas stands on early education and spending on such programs. The report examines the next steps, challenging conventional wisdom in order to explore the best path for improving child outcomes…

  9. Observed Measures of Negative Parenting Predict Brain Development during Adolescence.

    PubMed

    Whittle, Sarah; Vijayakumar, Nandita; Dennison, Meg; Schwartz, Orli; Simmons, Julian G; Sheeber, Lisa; Allen, Nicholas B

    2016-01-01

    Limited attention has been directed toward the influence of non-abusive parenting behaviour on brain structure in adolescents. It has been suggested that environmental influences during this period are likely to impact the way that the brain develops over time. The aim of this study was to investigate the association between aggressive and positive parenting behaviors on brain development from early to late adolescence, and in turn, psychological and academic functioning during late adolescence, using a multi-wave longitudinal design. Three hundred and sixty seven magnetic resonance imaging (MRI) scans were obtained over three time points from 166 adolescents (11-20 years). At the first time point, observed measures of maternal aggressive and positive behaviors were obtained. At the final time point, measures of psychological and academic functioning were obtained. Results indicated that a higher frequency of maternal aggressive behavior was associated with alterations in the development of right superior frontal and lateral parietal cortical thickness, and of nucleus accumbens volume, in males. Development of the superior frontal cortex in males mediated the relationship between maternal aggressive behaviour and measures of late adolescent functioning. We suggest that our results support an association between negative parenting and adolescent functioning, which may be mediated by immature or delayed brain maturation.

  10. The Relationship of Nutrition to Brain Development and Behavior.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Committee on International Nutrition Programs.

    The physical, chemical, and physiological development of the brain and consequent behavior in all species of higher animals evolves from the continuous interaction of genetic and numerous environmental factors. Among the latter are nutritional, disease, psychological, learning, and cultural variables. Of these, nutrition is concerned directly with…

  11. Development of a Model for Whole Brain Learning of Physiology

    ERIC Educational Resources Information Center

    Eagleton, Saramarie; Muller, Anton

    2011-01-01

    In this report, a model was developed for whole brain learning based on Curry's onion model. Curry described the effect of personality traits as the inner layer of learning, information-processing styles as the middle layer of learning, and environmental and instructional preferences as the outer layer of learning. The model that was developed…

  12. Observed Measures of Negative Parenting Predict Brain Development during Adolescence

    PubMed Central

    Whittle, Sarah; Vijayakumar, Nandita; Dennison, Meg; Schwartz, Orli; Simmons, Julian G.; Sheeber, Lisa; Allen, Nicholas B.

    2016-01-01

    Limited attention has been directed toward the influence of non-abusive parenting behaviour on brain structure in adolescents. It has been suggested that environmental influences during this period are likely to impact the way that the brain develops over time. The aim of this study was to investigate the association between aggressive and positive parenting behaviors on brain development from early to late adolescence, and in turn, psychological and academic functioning during late adolescence, using a multi-wave longitudinal design. Three hundred and sixty seven magnetic resonance imaging (MRI) scans were obtained over three time points from 166 adolescents (11–20 years). At the first time point, observed measures of maternal aggressive and positive behaviors were obtained. At the final time point, measures of psychological and academic functioning were obtained. Results indicated that a higher frequency of maternal aggressive behavior was associated with alterations in the development of right superior frontal and lateral parietal cortical thickness, and of nucleus accumbens volume, in males. Development of the superior frontal cortex in males mediated the relationship between maternal aggressive behaviour and measures of late adolescent functioning. We suggest that our results support an association between negative parenting and adolescent functioning, which may be mediated by immature or delayed brain maturation. PMID:26824348

  13. Music and the Brain in Childhood Development. Review of Research.

    ERIC Educational Resources Information Center

    Strickland, Susan J.

    2002-01-01

    Reviews literature on effects of music on the brain in childhood development. Areas include: (1) early synaptic growth; (2) nature versus nurture; (3) background music; (4) musical practice; (5) music learning and cognitive skills; (6) transfer of music learning; (7) musical instrument practice; (8) children and music; and (9) transfer effects.…

  14. Thyroid insufficiency in developing rat brain: A genomic analysis.

    EPA Science Inventory

    Thyroid Insufficiency in the Developing Rat Brain: A Genomic Analysis. JE Royland and ME Gilbert, Neurotox. Div., U.S. EPA, RTP, NC, USA. Endocrine disruption (ED) is an area of major concern in environmental neurotoxicity. Severe deficits in thyroid hormone (TH) levels have bee...

  15. Early Childhood Traumatic Brain Injuries: Effects on Development and Interventions.

    ERIC Educational Resources Information Center

    Lowenthal, Barbara

    1998-01-01

    Describes the variety of possible effects of traumatic brain injuries (TBI) on early childhood development in the cognitive, language, social-emotional, motor, and adaptive domains. Suggests interventions which can assist young survivors and their families. Suggests that more long-term, intensive studies be conducted on the short- and long-term…

  16. A model of the development of the brain as a construct of the thyroid system.

    PubMed Central

    Howdeshell, Kembra L

    2002-01-01

    Thyroid hormone is essential for normal brain development. However, little is known about the molecular and cellular mechanisms that mediate thyroid hormone action on the developing brain or the developmental events selectively affected. Consequently, although a large number of environmental chemicals interfere with the thyroid system, there are few neurodevelopmental end points to recruit for toxicological studies. Therefore, my goal here is to review what is known about the relative timing of normal brain construction and thyroid system development, with special focus on the period of in utero development in humans and the comparable developmental period in laboratory rats. These data are presented as a timeline to aid in the identification of thyroid-sensitive end points in brain development and to highlight important data gaps. I discuss the known influence of certain synthetic chemicals on the thyroid system and include a brief review of the effects of developmental exposure to chemicals on thyroid system function. The relationship between the thyroid hormone and retinoic acid systems, as well as the thyroid hormone sensitivity of the developing cochlea, is also discussed. PMID:12060827

  17. Emotional Granularity Effects on Event-Related Brain Potentials during Affective Picture Processing

    PubMed Central

    Lee, Ja Y.; Lindquist, Kristen A.; Nam, Chang S.

    2017-01-01

    There is debate about whether emotional granularity, the tendency to label emotions in a nuanced and specific manner, is merely a product of labeling abilities, or a systematic difference in the experience of emotion during emotionally evocative events. According to the Conceptual Act Theory of Emotion (CAT) (Barrett, 2006), emotional granularity is due to the latter and is a product of on-going temporal differences in how individuals categorize and thus make meaning of their affective states. To address this question, the present study investigated the effects of individual differences in emotional granularity on electroencephalography-based brain activity during the experience of emotion in response to affective images. Event-related potentials (ERP) and event-related desynchronization and synchronization (ERD/ERS) analysis techniques were used. We found that ERP responses during the very early (60–90 ms), middle (270–300 ms), and later (540–570 ms) moments of stimulus presentation were associated with individuals’ level of granularity. We also observed that highly granular individuals, compared to lowly granular individuals, exhibited relatively stable desynchronization of alpha power (8–12 Hz) and synchronization of gamma power (30–50 Hz) during the 3 s of stimulus presentation. Overall, our results suggest that emotional granularity is related to differences in neural processing throughout emotional experiences and that high granularity could be associated with access to executive control resources and a more habitual processing of affective stimuli, or a kind of “emotional complexity.” Implications for models of emotion are also discussed. PMID:28392761

  18. Feeding the brain and nurturing the mind: Linking nutrition and the gut microbiota to brain development

    PubMed Central

    Goyal, Manu S.; Venkatesh, Siddarth; Milbrandt, Jeffrey; Gordon, Jeffrey I.; Raichle, Marcus E.

    2015-01-01

    The human gut contains a microbial community composed of tens of trillions of organisms that normally assemble during the first 2–3 y of postnatal life. We propose that brain development needs to be viewed in the context of the developmental biology of this “microbial organ” and its capacity to metabolize the various diets we consume. We hypothesize that the persistent cognitive abnormalities seen in children with undernutrition are related in part to their persistent gut microbiota immaturity and that specific regions of the brain that normally exhibit persistent juvenile (neotenous) patterns of gene expression, including those critically involved in various higher cognitive functions such as the brain’s default mode network, may be particularly vulnerable to the effects of microbiota immaturity in undernourished children. Furthermore, we postulate that understanding the interrelationships between microbiota and brain metabolism in childhood undernutrition could provide insights about responses to injury seen in adults. We discuss approaches that can be used to test these hypotheses, their ramifications for optimizing nutritional recommendations that promote healthy brain development and function, and the potential societal implications of this area of investigation. PMID:26578751

  19. Valence of physical stimuli, not housing conditions, affects behaviour and frontal cortical brain activity in sheep.

    PubMed

    Vögeli, Sabine; Lutz, Janika; Wolf, Martin; Wechsler, Beat; Gygax, Lorenz

    2014-07-01

    Modulation of short-term emotions by long-term mood is little understood but relevant to understand the affective system and of importance in respect to animal welfare: a negative mood might taint experiences, whilst a positive mood might alleviate single negative events. To induce different mood states in sheep housing conditions were varied. Fourteen ewes were group-housed in an unpredictable, stimulus-poor and 15 ewes in a predictable, stimulus-rich environment. Sheep were tested individually for mood in a behavioural cognitive bias paradigm. Also, their reactions to three physical stimuli thought to differ in their perceived valence were observed (negative: pricking, intermediate: slight pressure, positive: kneading). General behaviour, activity, ear movements and positions, and haemodynamic changes in the cortical brain were recorded during stimulations. Generalised mixed-effects models and model probabilities based on the BIC (Bayesian information criterion) were used. Only weak evidence for mood difference was found. Sheep from the unpredictable, stimulus-poor housing condition had a somewhat more negative cognitive bias, showed slightly more aversive behaviour, were slightly more active and moved their ears somewhat more. Sheep most clearly differentiated the negative from the intermediate and positive stimulus in that they exhibited more aversive behaviour, less nibbling, were more active, showed more ear movements, more forward ear postures, fewer backward ear postures, and a stronger decrease in deoxyhaemoglobin when subjected to the negative stimulus. In conclusion, sheep reacted towards stimuli according to their presumed valence but their mood was not strongly influenced by housing conditions. Therefore, behavioural reactions and cortical brain activity towards the stimuli were hardly modulated by housing conditions.

  20. Growth hormone (GH), brain development and neural stem cells.

    PubMed

    Waters, M J; Blackmore, D G

    2011-12-01

    A range of observations support a role for GH in development and function of the brain. These include altered brain structure in GH receptor null mice, and impaired cognition in GH deficient rodents and in a subgroup of GH receptor defective patients (Laron dwarfs). GH has been shown to alter neurogenesis, myelin synthesis and dendritic branching, and both the GH receptor and GH itself are expressed widely in the brain. We have found a population of neural stem cells which are activated by GH infusion, and which give rise to neurons in mice. These stem cells are activated by voluntary exercise in a GH-dependent manner. Given the findings that local synthesis of GH occurs in the hippocampus in response to a memory task, and that GH replacement improves memory and cognition in rodents and humans, these new observations warrant a reappraisal of the clinical importance of GH replacement in GH deficient states.

  1. Friends with social benefits: host-microbe interactions as a driver of brain evolution and development?

    PubMed Central

    Stilling, Roman M.; Bordenstein, Seth R.; Dinan, Timothy G.; Cryan, John F.

    2014-01-01

    The tight association of the human body with trillions of colonizing microbes that we observe today is the result of a long evolutionary history. Only very recently have we started to understand how this symbiosis also affects brain function and behavior. In this hypothesis and theory article, we propose how host-microbe associations potentially influenced mammalian brain evolution and development. In particular, we explore the integration of human brain development with evolution, symbiosis, and RNA biology, which together represent a “social triangle” that drives human social behavior and cognition. We argue that, in order to understand how inter-kingdom communication can affect brain adaptation and plasticity, it is inevitable to consider epigenetic mechanisms as important mediators of genome-microbiome interactions on an individual as well as a transgenerational time scale. Finally, we unite these interpretations with the hologenome theory of evolution. Taken together, we propose a tighter integration of neuroscience fields with host-associated microbiology by taking an evolutionary perspective. PMID:25401092

  2. Affective Pacman: A Frustrating Game for Brain-Computer Interface Experiments

    NASA Astrophysics Data System (ADS)

    Reuderink, Boris; Nijholt, Anton; Poel, Mannes

    We present the design and development of Affective Pacman, a game that induces frustration to study the effect of user state changes on the EEG signal. Affective Pacman is designed to induce frustration for short periods, and allows the synchronous recording of a wide range of sensors, such as physiological sensors and EEG in addition to the game state. A self-assessment is integrated in the game to track changes in user state. Preliminary results indicate a significant effect of the frustration induction on the EEG.

  3. Development of multifunctional nanoparticles for brain tumor diagnosis and therapy

    NASA Astrophysics Data System (ADS)

    Veiseh, Omid

    Magnetic nanoparticles (MNPs) represent a class of non-invasive imaging agents developed for magnetic resonance (MR) imaging and drug delivery. MNPs have traditionally been developed for disease imaging via passive targeting, but recent advances in nanotechnology have enabled cellular-specific targeting, drug delivery and multi-modal imaging using these nanoparticles. Opportunities now exist to engineer MNP with designated features (e.g., size, coatings, and molecular functionalizations) for specific biomedical applications. The goal of this interdisciplinary research project is to develop targeting multifunctional nanoparticles, serving as both contrast agents and drug carriers that can effectively pass biological barriers, for diagnosis, staging and treatment of brain tumors. The developed nanoparticle system consists of a superparamagnetic iron oxide nanoparticle core (NP) and a shell comprised of biodegradable polymers such as polyethylene glycol (PEG) and chitosan. Additionally, near-infrared fluorescing (NIRF) molecules were integrated onto the NP shell to enable optical detection. Tumor targeting was achieved by the addition of chlorotoxin, a peptide with that has high affinity to 74 out of the 79 classifications of primary brain tumors and ability to illicit a therapeutic effect. This novel NP system was tested both in vitro and in vivo and was shown to specifically target gliomas in tissue culture and medulloblastomas in transgenic mice with an intact blood brain barriers (BBB), and delineate tumor boundaries in both MR and optical imaging. Additionally, the therapeutic potential of this NP system was explored in vitro, which revealed a unique nanoparticle-enabled pathway that enhances the therapeutic potential of bound peptides by promoting the internalization of membrane bound cell surface receptors. This NP system was further modified with siRNA and evaluated as a carrier for brain tumor targeted gene therapy. Most significantly, the evaluation of

  4. Congenital amusia persists in the developing brain after daily music listening.

    PubMed

    Mignault Goulet, Geneviève; Moreau, Patricia; Robitaille, Nicolas; Peretz, Isabelle

    2012-01-01

    Congenital amusia is a neurodevelopmental disorder that affects about 3% of the adult population. Adults experiencing this musical disorder in the absence of macroscopically visible brain injury are described as cases of congenital amusia under the assumption that the musical deficits have been present from birth. Here, we show that this disorder can be expressed in the developing brain. We found that (10-13 year-old) children exhibit a marked deficit in the detection of fine-grained pitch differences in both musical and acoustical context in comparison to their normally developing peers comparable in age and general intelligence. This behavioral deficit could be traced down to their abnormal P300 brain responses to the detection of subtle pitch changes. The altered pattern of electrical activity does not seem to arise from an anomalous functioning of the auditory cortex, because all early components of the brain potentials, the N100, the MMN, and the P200 appear normal. Rather, the brain and behavioral measures point to disrupted information propagation from the auditory cortex to other cortical regions. Furthermore, the behavioral and neural manifestations of the disorder remained unchanged after 4 weeks of daily musical listening. These results show that congenital amusia can be detected in childhood despite regular musical exposure and normal intellectual functioning.

  5. Developing Worksheet Based on Science Process Skills: Factors Affecting Solubility

    ERIC Educational Resources Information Center

    Karsli, Fethiye; Sahin, Cigdem

    2009-01-01

    The purpose of this study is to develop a worksheet about the factors affecting solubility, which could be useful for the prospective science teachers (PST) to remind and regain their science process skills (SPS). The pilot study of the WS was carried out with 32 first grade PST during the 2007-2008 academic year in the education department at…

  6. Morphological and behavioral markers of environmentally induced retardation of brain development: an animal model.

    PubMed Central

    Altman, J

    1987-01-01

    In most neurotoxicological studies morphological assessment focuses on pathological effects, like degenerative changes in neuronal perikarya, axonopathy, demyelination, and glial and endothelial cell reactions. Similarly, the assessment of physiological and behavioral effects center on evident neurological symptoms, like EEG and EMG abnormalities, resting and intention tremor, abnormal gait, and abnormal reflexes. This paper reviews briefly another central nervous system target of harmful environmental agents, which results in behavioral abnormalities without any qualitatively evident neuropathology. This is called microneuronal hypoplasia, a retardation of brain development characterized by a quantitative reduction in the normal population of late-generated, short-axoned neurons in specific brain regions. Correlated descriptive and experimental neurogenetic studies in the rat have established that all the cerebellar granule cells and a very high proportion of hippocampal granule cells are produced postnatally, and that focal, low-dose X-irradiation either of the cerebellum or of the hippocampus after birth selectively interferes with the acquisition of the full complement of granule cells (microneuronal hypoplasia). Subsequent behavioral investigations showed that cerebellar microneuronal hypoplasia results in profound hyperactivity without motor abnormalities, while hippocampal microneuronal hypoplasia results in hyperactivity, as well as attentional and learning deficits. There is much indirect clinical evidence that various harmful environmental agents affecting the pregnant mother and/or the infant lead to such childhood disorders as hyperactivity and attentional and learning disorders. As the developing human brain is more mature at birth than the rat brain, the risk for microneuronal hypoplasia and consequent behavioral disorders may be highest at late stages of fetal development, in prematurely born and small-for-weight infants, and during the early stages

  7. Development of brain injury criteria (BrIC).

    PubMed

    Takhounts, Erik G; Craig, Matthew J; Moorhouse, Kevin; McFadden, Joe; Hasija, Vikas

    2013-11-01

    between CSDM - BrIC and MPS - BrIC respectively. AIS 3+, 4+ and 5+ field risk of anatomic brain injuries was also estimated using the National Automotive Sampling System - Crashworthiness Data System (NASS-CDS) database for crash conditions similar to the frontal NCAP and side impact conditions that the ATDs were tested in. This was done to assess the risk curve ratios derived from HIC risk curves. The results of the study indicated that: (1) the two available human head models - SIMon and GHBMC - were found to be highly correlated when CSDMs and max principal strains were compared; (2) BrIC correlates best to both - CSDM and MPS, and rotational velocity (not rotational acceleration) is the mechanism for brain injuries; and (3) the critical values for angular velocity are directionally dependent, and are independent of the ATD used for measuring them. The newly developed brain injury criterion is a complement to the existing HIC, which is based on translational accelerations. Together, the two criteria may be able to capture most brain injuries and skull fractures occurring in automotive or any other impact environment. One of the main limitations for any brain injury criterion, including BrIC, is the lack of human injury data to validate the criteria against, although some approximation for AIS 2+ injury is given based on the angular velocities calculated at 50% probability of concussion in college football players instrumented with 5 DOF helmet system. Despite the limitations, a new kinematic rotational brain injury criterion - BrIC - may offer a way to capture brain injuries in situations when using translational accelerations based HIC alone may not be sufficient.

  8. Trim69 regulates zebrafish brain development by ap-1 pathway

    PubMed Central

    Han, Ruiqin; Wang, Renxian; Zhao, Qing; Han, Yongqing; Zong, Shudong; Miao, Shiying; Song, Wei; Wang, Linfang

    2016-01-01

    Proteins belonging to the TRIM family have been implicated in a variety of cellular processes such as apoptosis, differentiation, neurogenesis, muscular physiology and innate immune responses. Trim69, previously identified as a novel gene cloned from a human testis cDNA library, has a homologous gene in zebrafish and this study focused on investigating the function of trim69 in zebrafish neurogenesis. Trim69 was found to be expressed in zebrafish embryo brain at the early stages. Knockdown of trim69 led to deformed brain development, obvious signs of apoptosis present in the head, and decreased expression of neuronal differentiation and stem cell markers. This phenotype was rescued upon co-injection of human mRNA together along with the trim69 knockdown. Results of this study also showed an interaction between TRIM69 and c-Jun in human cells, and upon TRIM69 knock down c-Jun expression subsequently increased, whereas the over-expression of TRIM69 led to the down-regulation of c-Jun. Additionally, knockdown both c-Jun and trim69 can rescue the deformed brain, evident cellular apoptosis in the head and decreased expression of neuronal differentiation and stem cell markers. Overall, our results support a role for trim69 in the development of the zebrafish brain through ap-1 pathway. PMID:27050765

  9. A Double Blind Trial of Divalproex Sodium for Affective Liability and Alcohol Use Following Traumatic Brain Injury

    DTIC Science & Technology

    2014-10-01

    TITLE: A Double Blind Trial of Divalproex Sodium for Affective L ability and Alcohol Use Following Traumatic Brain Injury PRINCIPAL...Final 3. DATES COVERED 15 Sep 2013 to 14 Sep 2014 4. TITLE AND SUBTITLE A Double Blind Trial of Divalproex Sodium for Affective 5a. CONTRACT...subjects treated with divalproex sodium , a mood stabilizing medication, as compared to placebo. To test the primary hypothesis, we propose an 8 week

  10. Unilateral deafness in children affects development of multi-modal modulation and default mode networks

    PubMed Central

    Schmithorst, Vincent J.; Plante, Elena; Holland, Scott

    2014-01-01

    Monaural auditory input due to congenital or acquired unilateral hearing loss (UHL) may have neurobiological effects on the developing brain. Using functional magnetic resonance imaging (fMRI), we investigated the effect of UHL on the development of functional brain networks used for cross-modal processing. Children ages 7–12 with moderate or greater unilateral hearing loss of sensorineural origin (UHL-SN; N = 21) and normal-hearing controls (N = 23) performed an fMRI-compatible adaptation of the Token Test involving listening to a sentence such as “touched the small green circle and the large blue square” and simultaneously viewing an arrow touching colored shapes on a video. Children with right or severe-to-profound UHL-SN displayed smaller activation in a region encompassing the right inferior temporal, middle temporal, and middle occipital gyrus (BA 19/37/39), evidencing differences due to monaural hearing in cross-modal modulation of the visual processing pathway. Children with UHL-SN displayed increased activation in the left posterior superior temporal gyrus, likely the result either of more effortful low-level processing of auditory stimuli or differences in cross-modal modulation of the auditory processing pathway. Additionally, children with UHL-SN displayed reduced deactivation of anterior and posterior regions of the default mode network. Results suggest that monaural hearing affects the development of brain networks related to cross-modal sensory processing and the regulation of the default network during processing of spoken language. PMID:24723873

  11. [Mentalisation and affect regulation--how the infantile self develops].

    PubMed

    Kalisch, Konrad

    2012-01-01

    The text comprises the different elements of the psychoanalytic mentalization theory of Peter Fonagy et al. and tries to explain them. Part of this theory are above all the affect mirroring as well as the affect reciprocity theory and the two modes of the "as if" character and the psychic equivalence (playing with reality). You can find clear examples for each of these theoretical components. Moreover there are many correlations to other authors and their respective development theories: that is to Wilfred Bion, Donald Winnicott and John Bowlby. The text is based above all on Martin Dornes' approaches on this topic (2004, 2006).

  12. Bisphenol A Interaction With Brain Development and Functions

    PubMed Central

    2015-01-01

    Brain development is an organized, but constantly adaptive, process in which genetic and epigenetic signals allow neurons to differentiate, to migrate, and to develop correct connections. Gender specific prenatal sex hormone milieu participates in the dimorphic development of many neuronal networks. Environmental cues may interfere with these developmental programs, producing adverse outcomes. Bisphenol A (BPA), an estrogenic/antiandrogenic endocrine disruptor widely diffused in the environment, produces adverse effects at levels below the acceptable daily intake. This review analyzes the recent literature on the consequences of perinatal exposure to BPA environmental doses on the development of a dimorphic brain. The BPA interference with the development and function of the neuroendocrine hypothalamus and of the nuclei controlling energy balance, and with the hippocampal memory processing is also discussed. The detrimental action of BPA appears complex, involving different hormonal and epigenetic pathways activated, often in a dimorphic way, within clearcut susceptibility windows. To date, discrepancies in experimental approaches and in related outcomes make unfeasible to translate the available information into clear dose–response models for human risk assessment. Evaluation of BPA brain levels in relation to the appearance of adverse effects in future basic studies will certainly give better definition of the warning threshold for human health. PMID:26672480

  13. Minimal changes of thyroid axis activity influence brain functions in young females affected by subclinical hypothyroidism.

    PubMed

    Menicucci, D; Sebastiani, L; Comparini, A; Pingitore, A; Ghelarducci, B; L'Abbate, A; Iervasi, G; Gemignani, A

    2013-03-01

    There is evidence of an association between thyroid hormones (TH) alterations and mental dysfunctions related to procedural and working memory functions, but the physiological link between these domains is still under debate, also for the presence of age as a confounding factor. Thus, we investigated the TH tuning of cerebral functions in young females affected by the borderline condition of subclinical hypothyroidism (SH) and in euthyroid females of the same age. The experiment consisted in the characterization of the affective state and cognitive abilities of the subjects by means of specific neuropsychological questionnaires, and of brain activity (EEG) in resting state and during the passive viewing of emotional video-clips. We found that SH had i) increased anxiety for Physical Danger; ii) better scores for both Mental Control and no-working-memory-related functions; iii) association between anxiety for Physical Danger and fT4 levels. Thus, in young adults, SH increases inward attention and paradoxically improves some cognitive functions. In addition, self-assessed questionnaires showed that SH had a greater susceptibility to unpleasant emotional stimulation. As for EEG data, SH compared to controls showed: i) reduction of alpha activity and of gamma left lateralization in resting state; ii) increased, and lateralized to the right, beta2 activity during stimulations. Both results indicated that SH have higher levels of arousal and greater susceptibility to negative emotion than controls. In conclusion, our study indicates that minimal changes in TH levels produce subtle but well-defined mental changes, thus encouraging further studies for the prediction of pathology evolution.

  14. UNC-Emory Infant Atlases for Macaque Brain Image Analysis: Postnatal Brain Development through 12 Months

    PubMed Central

    Shi, Yundi; Budin, Francois; Yapuncich, Eva; Rumple, Ashley; Young, Jeffrey T.; Payne, Christa; Zhang, Xiaodong; Hu, Xiaoping; Godfrey, Jodi; Howell, Brittany; Sanchez, Mar M.; Styner, Martin A.

    2017-01-01

    Computational anatomical atlases have shown to be of immense value in neuroimaging as they provide age appropriate reference spaces alongside ancillary anatomical information for automated analysis such as subcortical structural definitions, cortical parcellations or white fiber tract regions. Standard workflows in neuroimaging necessitate such atlases to be appropriately selected for the subject population of interest. This is especially of importance in early postnatal brain development, where rapid changes in brain shape and appearance render neuroimaging workflows sensitive to the appropriate atlas choice. We present here a set of novel computation atlases for structural MRI and Diffusion Tensor Imaging as crucial resource for the analysis of MRI data from non-human primate rhesus monkey (Macaca mulatta) data in early postnatal brain development. Forty socially-housed infant macaques were scanned longitudinally at ages 2 weeks, 3, 6, and 12 months in order to create cross-sectional structural and DTI atlases via unbiased atlas building at each of these ages. Probabilistic spatial prior definitions for the major tissue classes were trained on each atlas with expert manual segmentations. In this article we present the development and use of these atlases with publicly available tools, as well as the atlases themselves, which are publicly disseminated to the scientific community. PMID:28119564

  15. How the amygdala affects emotional memory by altering brain network properties.

    PubMed

    Hermans, Erno J; Battaglia, Francesco P; Atsak, Piray; de Voogd, Lycia D; Fernández, Guillén; Roozendaal, Benno

    2014-07-01

    The amygdala has long been known to play a key role in supporting memory for emotionally arousing experiences. For example, classical fear conditioning depends on neural plasticity within this anterior medial temporal lobe region. Beneficial effects of emotional arousal on memory, however, are not restricted to simple associative learning. Our recollection of emotional experiences often includes rich representations of, e.g., spatiotemporal context, visceral states, and stimulus-response associations. Critically, such memory features are known to bear heavily on regions elsewhere in the brain. These observations led to the modulation account of amygdala function, which postulates that amygdala activation enhances memory consolidation by facilitating neural plasticity and information storage processes in its target regions. Rodent work in past decades has identified the most important brain regions and neurochemical processes involved in these modulatory actions, and neuropsychological and neuroimaging work in humans has produced a large body of convergent data. Importantly, recent methodological developments make it increasingly realistic to monitor neural interactions underlying such modulatory effects as they unfold. For instance, functional connectivity network modeling in humans has demonstrated how information exchanges between the amygdala and specific target regions occur within the context of large-scale neural network interactions. Furthermore, electrophysiological and optogenetic techniques in rodents are beginning to make it possible to quantify and even manipulate such interactions with millisecond precision. In this paper we will discuss that these developments will likely lead to an updated view of the amygdala as a critical nexus within large-scale networks supporting different aspects of memory processing for emotionally arousing experiences.

  16. Sex differences in perceived pain are affected by an anxious brain.

    PubMed

    Goffaux, Philippe; Michaud, Karine; Gaudreau, Janou; Chalaye, Philippe; Rainville, Pierre; Marchand, Serge

    2011-09-01

    Decades of research confirm that women have greater pain sensitivity than men. Women also show greater overall anxiety sensitivity than men. Given these differences, we hypothesized that sex differences in anxiety would explain sex differences in experienced pain and physiological responses to pain (at both spinal and cortical levels). By measuring subjective pain, state/trait anxiety, nociceptive flexion reflexes, and somatosensory evoked potentials (SEPs), it was possible to test the effects of anxiety on the processing of painful drives at different levels of the neuraxis while also documenting the role played by anxiety on sex differences in experienced pain. Results confirm that women are indeed more sensitive to pain than men. Importantly, this difference was accompanied by a significant sex difference in cortical activity (SEP amplitude) but not spinal nociceptive activity, suggesting that much of the sex difference in experienced pain is attributable to variations in thalamocortical processing and to ensuing changes in the appraisal of and/or emotional response to noxious insult. In support of this claim, we found that sex differences in cortical activity and subjective pain disappeared when trait anxiety was controlled for. This means that stable predispositions to respond with heightened apprehension contribute to baseline pain sensitivity differences between the sexes. These results indicate that the modulatory effect of affect on pain-related brain processes may explain why men and women experience painful shocks so differently. In our study, the mediating role of anxiety on sex differences in pain was tested and confirmed using path analysis.

  17. Quantitative Cortical Mapping of Fractional Anisotropy in Developing Rat Brains

    PubMed Central

    Huang, Hao; Yamamoto, Akria; Hossain, Mir Ahamed; Younes, Laurent; Mori, Susumu

    2010-01-01

    Cortical development is associated with a series of events that involve axon and dendrite growth and synaptic formation. Although these developmental processes have been investigated in detail with histology, three-dimensional and quantitative imaging methods for rodent brains may be useful for genetic and pharmacological studies in which cortical developmental abnormalities are suspected. It has been shown that diffusion tensor imaging (DTI) can delineate the columnar organization of the fetal and early neonatal cortex based on a high degree of diffusion anisotropy along the columnar structures. This anisotropy is known to decrease during brain development. In this study, we applied DTI to developing rat brains at five developmental stages, postnatal days 0, 3, 7, 11 and 19, and used diffusion anisotropy as an index to characterize the structural change. Statistical analysis reveals four distinctive cortical areas that demonstrate a characteristic time course of anisotropy loss. This method may provide a means to delineate specific cortical areas and a quantitative method to detect abnormalities in cortical development in rodent pathological models. PMID:18256263

  18. MRI Evaluation and Safety in the Developing Brain

    PubMed Central

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J.; Panigrahy, Ashok

    2015-01-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5T and 3T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, sedation considerations and a discussion of current technologies such as MRI-conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. PMID:25743582

  19. Effects of exogenous agents on brain development: stress, abuse and therapeutic compounds.

    PubMed

    Archer, Trevor

    2011-10-01

    The range of exogenous agents likely to affect, generally detrimentally, the normal development of the brain and central nervous system defies estimation although the amount of accumulated evidence is enormous. The present review is limited to certain types of chemotherapeutic and "use-and-abuse" compounds and environmental agents, exemplified by anesthetic, antiepileptic, sleep-inducing and anxiolytic compounds, nicotine and alcohol, and stress as well as agents of infection; each of these agents have been investigated quite extensively and have been shown to contribute to the etiopathogenesis of serious neuropsychiatric disorders. To greater or lesser extent, all of the exogenous agents discussed in the present treatise have been investigated for their influence upon neurodevelopmental processes during the period of the brain growth spurt and during other phases uptill adulthood, thereby maintaining the notion of critical phases for the outcome of treatment whether prenatal, postnatal, or adolescent. Several of these agents have contributed to the developmental disruptions underlying structural and functional brain abnormalities that are observed in the symptom and biomarker profiles of the schizophrenia spectrum disorders and the fetal alcohol spectrum disorders. In each case, the effects of the exogenous agents upon the status of the affected brain, within defined parameters and conditions, is generally permanent and irreversible.

  20. Immunostaining of the developing embryonic and larval Drosophila brain.

    PubMed

    Diaper, Danielle C; Hirth, Frank

    2014-01-01

    Immunostaining is used to visualize the spatiotemporal expression pattern of developmental control genes that regulate the genesis and specification of the embryonic and larval brain of Drosophila. Immunostaining uses specific antibodies to mark expressed proteins and allows their localization to be traced throughout development. This method reveals insights into gene regulation, cell-type specification, neuron and glial differentiation, and posttranslational protein modifications underlying the patterning and specification of the maturing brain. Depending on the targeted protein, it is possible to visualize a multitude of regions of the Drosophila brain, such as small groups of neurons or glia, defined subcomponents of the brain's axon scaffold, or pre- and postsynaptic structures of neurons. Thus, antibody probes that recognize defined tissues, cells, or subcellular structures like axons or synaptic terminals can be used as markers to identify and analyze phenotypes in mutant embryos and larvae. Several antibodies, combined with different labels, can be used concurrently to examine protein co-localization. This protocol spans over 3-4 days.

  1. Brain mast cell relationship to neurovasculature during development.

    PubMed

    Khalil, Mona; Ronda, Jocelyn; Weintraub, Michael; Jain, Kim; Silver, Rae; Silverman, Ann-Judith

    2007-09-26

    Mast cells, derived from the hematopoietic stem cell, are present in the brain from birth. During development, mast cells occur in two locations, namely the pia and the brain parenchyma. The current hypothesis regarding their origin states that brain mast cells (or their precursors) enter the pia and access the thalamus by traveling along the abluminal wall of penetrating blood vessels. The population in the pia reaches a maximum at postnatal (PN) day 11, and declines rapidly thereafter. Chromatin fragmentation suggests that this cell loss is due to apoptosis. In contrast, the thalamic population expands from PN8 to reach adult levels at PN30. Stereological analysis demonstrates that mast cells home to blood vessels. More than 96% of mast cells are inside the blood-brain barrier, with ~90% contacting the blood vessel wall or its extracellular matrix. Mast cells express alpha4 integrins -- a potential mechanism for adhesion to the vascular wall. Despite the steady increase in the volume of microvasculature, at all ages studied, mast cells are preferentially located on large diameter vessels (>16 microm; possibly arteries), and contact only those maturing blood vessels that are ensheathed by astroglial processes. Mast cells not only home to large vessels but also maintain a preferential position at branch points, sites of vessel growth. This observation presents the possibility that mast cells participate in and/or regulate vasculature growth or differentiation. The biochemical and molecular signals that induce mast cell homing in the CNS is an area of active investigation.

  2. Microstructural and functional connectivity in the developing preterm brain.

    PubMed

    Lubsen, Julia; Vohr, Betty; Myers, Eliza; Hampson, Michelle; Lacadie, Cheryl; Schneider, Karen C; Katz, Karol H; Constable, R Todd; Ment, Laura R

    2011-02-01

    Prematurely born children are at increased risk for cognitive deficits, but the neurobiological basis of these findings remains poorly understood. Because variations in neural circuitry may influence performance on cognitive tasks, recent investigations have explored the impact of preterm birth on connectivity in the developing brain. Diffusion tensor imaging studies demonstrate widespread alterations in fractional anisotropy, a measure of axonal integrity and microstructural connectivity, throughout the developing preterm brain. Functional connectivity studies report that preterm neonates, children and adolescents exhibit alterations in both resting state and task-based connectivity when compared with term control subjects. Taken together, these data suggest that neurodevelopmental impairment following preterm birth may represent a disease of neural connectivity.

  3. Molecular contributions to neurovascular unit dysfunctions after brain injuries: lessons for target-specific drug development

    PubMed Central

    Jullienne, Amandine; Badaut, Jérôme

    2014-01-01

    The revised ‘expanded’ neurovascular unit (eNVU) is a physiological and functional unit encompassing endothelial cells, pericytes, smooth muscle cells, astrocytes and neurons. Ischemic stroke and traumatic brain injury are acute brain injuries directly affecting the eNVU with secondary damage, such as blood–brain barrier (BBB) disruption, edema formation and hypoperfusion. BBB dysfunctions are observed at an early postinjury time point, and are associated with eNVU activation of proteases, such as tissue plasminogen activator and matrix metalloproteinases. BBB opening is accompanied by edema formation using astrocytic AQP4 as a key protein regulating water movement. Finally, nitric oxide dysfunction plays a dual role in association with BBB injury and dysregulation of cerebral blood flow. These mechanisms are discussed including all targets of eNVU encompassing endothelium, glial cells and neurons, as well as larger blood vessels with smooth muscle. In fact, the feeding blood vessels should also be considered to treat stroke and traumatic brain injury. This review underlines the importance of the eNVU in drug development aimed at improving clinical outcome after stroke and traumatic brain injury. PMID:24489483

  4. Protein v. carbohydrate intake differentially affects liking- and wanting-related brain signalling.

    PubMed

    Born, Jurriaan M; Martens, Mieke J I; Lemmens, Sofie G T; Goebel, Rainer; Westerterp-Plantenga, Margriet S

    2013-01-28

    Extreme macronutrient intakes possibly lead to different brain signalling. The aim of the present study was to determine the effects of ingesting high-protein v. high-carbohydrate food on liking and wanting task-related brain signalling (TRS) and subsequent macronutrient intake. A total of thirty female subjects (21.6 (SD 2.2) years, BMI 25.0 (SD 3.7) kg/m²) completed four functional MRI scans: two fasted and two satiated on two different days. During the scans, subjects rated all food items for liking and wanting, thereby choosing the subsequent meal. The results show that high-protein (PROT) v. high-carbohydrate (CARB) conditions were generated using protein or carbohydrate drinks at the first meal. Energy intake and hunger were recorded. PROT (protein: 53.7 (SD 2.1) percentage of energy (En%); carbohydrate: 6.4 (SD 1.3) En%) and CARB conditions (protein: 11.8 (SD 0.6) En%; carbohydrate: 70.0 (SD 2.4) En%) were achieved during the first meal, while the second meals were not different between the conditions. Hunger, energy intake, and behavioural liking and wanting ratings were decreased after the first meal (P< 0.001). Comparing the first with the second meal, the macronutrient content changed: carbohydrate -26.9 En% in the CARB condition, protein -37.8 En% in the PROT condition. After the first meal in the CARB condition, wanting TRS was increased in the hypothalamus. After the first meal in the PROT condition, liking TRS was decreased in the putamen (P< 0.05). The change in energy intake from the first to the second meal was inversely related to the change in liking TRS in the striatum and hypothalamus in the CARB condition and positively related in the PROT condition (P< 0.05). In conclusion, wanting and liking TRS were affected differentially with a change in carbohydrate or protein intake, underscoring subsequent energy intake and shift in macronutrient composition.

  5. Early Social Experience Affects the Development of Eye Gaze Processing

    PubMed Central

    Senju, Atsushi; Vernetti, Angélina; Ganea, Natasa; Hudry, Kristelle; Tucker, Leslie; Charman, Tony; Johnson, Mark H.

    2015-01-01

    Summary Eye gaze is a key channel of non-verbal communication in humans [1, 2, 3]. Eye contact with others is present from birth [4], and eye gaze processing is crucial for social learning and adult-infant communication [5, 6, 7]. However, little is known about the effect of selectively different experience of eye contact and gaze communication on early social and communicative development. To directly address this question, we assessed 14 sighted infants of blind parents (SIBPs) longitudinally at 6–10 and 12–16 months. Face scanning [8] and gaze following [7, 9] were assessed using eye tracking. In addition, naturalistic observations were made when the infants were interacting with their blind parent and with an unfamiliar sighted adult. Established measures of emergent autistic-like behaviors [10] and standardized tests of cognitive, motor, and linguistic development [11] were also collected. These data were then compared with those obtained from a group of infants of sighted parents. Despite showing typical social skills development overall, infants of blind parents allocated less attention to adult eye movements and gaze direction, an effect that increased between 6–10 and 12–16 months of age. The results suggest that infants adjust their use of adults’ eye gaze depending on gaze communication experience from early in life. The results highlight that human functional brain development shows selective experience-dependent plasticity adaptive to the individual’s specific social environment. PMID:26752077

  6. Peripheral vagus nerve stimulation significantly affects lipid composition and protein secondary structure within dopamine-related brain regions in rats.

    PubMed

    Surowka, Artur Dawid; Krygowska-Wajs, Anna; Ziomber, Agata; Thor, Piotr; Chrobak, Adrian Andrzej; Szczerbowska-Boruchowska, Magdalena

    2015-06-01

    Recent immunohistochemical studies point to the dorsal motor nucleus of the vagus nerve as the point of departure of initial changes which are related to the gradual pathological developments in the dopaminergic system. In the light of current investigations, it is likely that biochemical changes within the peripheral nervous system may influence the physiology of the dopaminergic system, suggesting a putative role for it in the development of neurodegenerative disorders. By using Fourier transform infrared microspectroscopy, coupled with statistical analysis, we examined the effect of chronic, unilateral electrical vagus nerve stimulation on changes in lipid composition and in protein secondary structure within dopamine-related brain structures in rats. It was found that the chronic vagal nerve stimulation strongly affects the chain length of fatty acids within the ventral tegmental area, nucleus accumbens, substantia nigra, striatum, dorsal motor nucleus of vagus and the motor cortex. In particular, the level of lipid unsaturation was found significantly increasing in the ventral tegmental area, substantia nigra and motor cortex as a result of vagal nerve stimulation. When it comes to changes in protein secondary structure, we could see that the mesolimbic, mesocortical and nigrostriatal dopaminergic pathways are particularly affected by vagus nerve stimulation. This is due to the co-occurrence of statistically significant changes in the content of non-ordered structure components, alpha helices, beta sheets, and the total area of Amide I. Macromolecular changes caused by peripheral vagus nerve stimulation may highlight a potential connection between the gastrointestinal system and the central nervous system in rat during the development of neurodegenerative disorders.

  7. Knockdown of monocarboxylate transporter 8 (mct8) disturbs brain development and locomotion in zebrafish.

    PubMed

    de Vrieze, Erik; van de Wiel, Sandra M W; Zethof, Jan; Flik, Gert; Klaren, Peter H M; Arjona, Francisco J

    2014-06-01

    Allan-Herndon-Dudley syndrome (AHDS) is an inherited disorder of brain development characterized by severe psychomotor retardation. This X-linked disease is caused by mutations in the monocarboxylate transporter 8 (MCT8), an important thyroid hormone transporter in brain neurons. MCT8-knockout mice lack the 2 major neurological symptoms of AHDS, namely locomotor problems and cognitive impairment. The pathological mechanism explaining the symptoms is still obscure, and no cure for this condition is known. The development of an animal model that carries MCT8-related neurological symptoms is warranted. We have employed morpholino-based gene knockdown to create zebrafish deficient for mct8. Knockdown of mct8 results in specific symptoms in the thyroid axis and brain. The mct8-morphants showed impaired locomotor behavior and brain development. More specifically, we observed maldevelopment of the cerebellum and mid-hindbrain boundary and apoptotic clusters in the zebrafish brain. The mRNA expression of zebrafish orthologs of mammalian TSH, thyroid hormone transporters, and deiodinases was altered in mct8 morphants. In particular, deiodinase type 3 gene expression was consistently up-regulated in zebrafish mct8 morphants. The thyroid hormone metabolite tetrac, but not T3, partly ameliorated the affected phenotype and locomotion disability of morphant larvae. Our results show that mct8 knockdown in zebrafish larvae results in disturbances in the thyroid axis, brain, and locomotion behavior, which is congruent with the clinical aspect of impaired locomotion and cognition in patients with AHDS. Taken together, the zebrafish is a suitable animal model for the study of the pathophysiology of AHDS.

  8. Physiological fluctuations in brain temperature as a factor affecting electrochemical evaluations of extracellular glutamate and glucose in behavioral experiments.

    PubMed

    Kiyatkin, Eugene A; Wakabayashi, Ken T; Lenoir, Magalie

    2013-05-15

    The rate of any chemical reaction or process occurring in the brain depends on temperature. While it is commonly believed that brain temperature is a stable, tightly regulated homeostatic parameter, it fluctuates within 1-4 °C following exposure to salient arousing stimuli and neuroactive drugs, and during different behaviors. These temperature fluctuations should affect neural activity and neural functions, but the extent of this influence on neurochemical measurements in brain tissue of freely moving animals remains unclear. In this Review, we present the results of amperometric evaluations of extracellular glutamate and glucose in awake, behaving rats and discuss how naturally occurring fluctuations in brain temperature affect these measurements. While this temperature contribution appears to be insignificant for glucose because its extracellular concentrations are large, it is a serious factor for electrochemical evaluations of glutamate, which is present in brain tissue at much lower levels, showing smaller phasic fluctuations. We further discuss experimental strategies for controlling the nonspecific chemical and physical contributions to electrochemical currents detected by enzyme-based biosensors to provide greater selectivity and reliability of neurochemical measurements in behaving animals.

  9. Head size and intelligence, learning, nutritional status and brain development. Head, IQ, learning, nutrition and brain.

    PubMed

    Ivanovic, Daniza M; Leiva, Boris P; Pérez, Hernán T; Olivares, Manuel G; Díaz, Nora S; Urrutia, María Soledad C; Almagià, Atilio F; Toro, Triana D; Miller, Patricio T; Bosch, Enrique O; Larraín, Cristián G

    2004-01-01

    This multifactorial study investigates the interrelationships between head circumference (HC) and intellectual quotient (IQ), learning, nutritional status and brain development in Chilean school-age children graduating from high school, of both sexes and with high and low IQ and socio-economic strata (SES). The sample consisted of 96 right-handed healthy students (mean age 18.0 +/- 0.9 years) born at term. HC was measured both in the children and their parents and was expressed as Z-score (Z-HC). In children, IQ was determined by means of the Wechsler Intelligence Scale for Adults-Revised (WAIS-R), scholastic achievement (SA) through the standard Spanish language and mathematics tests and the academic aptitude test (AAT) score, nutritional status was assessed through anthropometric indicators, brain development was determined by magnetic resonance imaging (MRI) and SES applying the Graffar modified method. Results showed that microcephalic children (Z-HC < or = 2 S.D.) had significantly lower values mainly for brain volume (BV), parental Z-HC, IQ, SA, AAT, birth length (BL) and a significantly higher incidence of undernutrition in the first year of life compared with their macrocephalic peers (Z-HC > 2S.D.). Multiple regression analysis revealed that BV, parental Z-HC and BL were the independent variables with the greatest explanatory power for child's Z-HC variance (r(2) = 0.727). These findings confirm the hypothesis formulated in this study: (1) independently of age, sex and SES, brain parameters, parental HC and prenatal nutritional indicators are the most important independent variables that determine HC and (2) microcephalic children present multiple disorders not only related to BV but also to IQ, SA and nutritional background.

  10. Sex-dependent effects of nicotine on the developing brain.

    PubMed

    Cross, Sarah J; Linker, Kay E; Leslie, Frances M

    2017-01-02

    The use of tobacco products represents a major public health concern, especially among women. Epidemiological data have consistently demonstrated that women have less success quitting tobacco use and a higher risk for developing tobacco-related diseases. The deleterious effects of nicotine are not restricted to adulthood, as nicotinic acetylcholine receptors regulate critical aspects of neural development. However, the exact mechanisms underlying the particular sensitivity of women to develop tobacco dependence have not been well elucidated. In this mini-review, we show that gonadal hormone-mediated sexual differentiation of the brain may be an important determinant of sex differences in the effects of nicotine. We highlight direct interactions between sex steroid hormones and ligand-gated ion channels critical for brain maturation, and discuss the extended and profound sexual differentiation of the brain. We emphasize that nicotine exposure during the perinatal and adolescent periods interferes with normal sexual differentiation and can induce long-lasting, sex-dependent alterations in neuronal structure, cognitive and executive function, learning and memory, and reward processing. We stress important age and sex differences in nicotine's effects and emphasize the importance of including these factors in preclinical research that models tobacco dependence. © 2016 Wiley Periodicals, Inc.

  11. Gene therapy for brain tumors: basic developments and clinical implementation.

    PubMed

    Assi, Hikmat; Candolfi, Marianela; Baker, Gregory; Mineharu, Yohei; Lowenstein, Pedro R; Castro, Maria G

    2012-10-11

    Glioblastoma multiforme (GBM) is the most common and deadliest of adult primary brain tumors. Due to its invasive nature and sensitive location, complete resection remains virtually impossible. The resistance of GBM against chemotherapy and radiotherapy necessitate the development of novel therapies. Gene therapy is proposed for the treatment of brain tumors and has demonstrated pre-clinical efficacy in animal models. Here we review the various experimental therapies that have been developed for GBM including both cytotoxic and immune stimulatory approaches. We also review the combined conditional cytotoxic immune stimulatory therapy that our lab has developed which is dependent on the adenovirus mediated expression of the conditional cytotoxic gene, Herpes Simplex Type 1 Thymidine Kinase (TK) and the powerful DC growth factor Fms-like tyrosine kinase 3 ligand (Flt3L). Combined delivery of these vectors elicits tumor cell death and an anti-tumor adaptive immune response that requires TLR2 activation. The implications of our studies indicate that the combined cytotoxic and immunotherapeutic strategies are effective strategies to combat deadly brain tumors and warrant their implementation in human Phase I clinical trials for GBM.

  12. Gene Therapy for Brain Tumors: Basic Developments and Clinical Implementation

    PubMed Central

    Assi, Hikmat; Candolfi, Marianela; Baker, Gregory; Mineharu, Yohei; Lowenstein, Pedro R; Castro, Maria G

    2012-01-01

    Glioblastoma multiforme (GBM) is the most common and deadliest of adult primary brain tumors. Due to its invasive nature and sensitive location, complete resection remains virtually impossible. The resistance of GBM against chemotherapy and radiotherapy necessitate the development of novel therapies. Gene therapy is proposed for the treatment of brain tumors and has demonstrated pre-clinical efficacy in animal models. Here we review the various experimental therapies that have been developed for GBM including both cytotoxic and immune stimulatory approaches. We also review the combined conditional cytotoxic immune stimulatory therapy that our lab has developed which is dependent on the adenovirus mediated expression of the conditional cytotoxic gene, Herpes Simplex Type 1 Thymidine Kinase (TK) and the powerful DC growth factor Fms-like tyrosine kinase 3 ligand (Flt3L). Combined delivery of these vectors elicits tumor cell death and an anti-tumor adaptive immune response that requires TLR2 activation. The implications of our studies indicate that the combined cytotoxic and immunotherapeutic strategies are effective strategies to combat deadly brain tumors and warrant their implementation in human Phase I clinical trials for GBM. PMID:22906921

  13. Survey of state water laws affecting coal slurry pipeline development

    SciTech Connect

    Rogozen, M.B.

    1980-11-01

    This report summarizes state water laws likely to affect the development of coal slurry pipelines. It was prepared as part of a project to analyze environmental issues related to energy transportation systems. Coal slurry pipelines have been proposed as a means to expand the existing transportation system to handle the increasing coal shipments that will be required in the future. The availability of water for use in coal slurry systems in the coal-producing states is an issue of major concern.

  14. How a Decade of Conflict Affected Junior Logistics Officer Development

    DTIC Science & Technology

    2011-03-22

    OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 22-03-2011 2. REPORT TYPE Strategy Research...Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 USAWC STRATEGY RESEARCH PROJECT HOW A DECADE OF CONFLICT AFFECTED JUNIOR...FORMAT: Strategy Research Project DATE: 22 March 2011 WORD COUNT: 5,662 PAGES: 28 KEY TERMS: Modularity, ARFORGEN, Leader Development

  15. Performance enhancement at the cost of potential brain plasticity: neural ramifications of nootropic drugs in the healthy developing brain

    PubMed Central

    Urban, Kimberly R.; Gao, Wen-Jun

    2014-01-01

    Cognitive enhancement is perhaps one of the most intriguing and controversial topics in neuroscience today. Currently, the main classes of drugs used as potential cognitive enhancers include psychostimulants (methylphenidate (MPH), amphetamine), but wakefulness-promoting agents (modafinil) and glutamate activators (ampakine) are also frequently used. Pharmacologically, substances that enhance the components of the memory/learning circuits—dopamine, glutamate (neuronal excitation), and/or norepinephrine—stand to improve brain function in healthy individuals beyond their baseline functioning. In particular, non-medical use of prescription stimulants such as MPH and illicit use of psychostimulants for cognitive enhancement have seen a recent rise among teens and young adults in schools and college campuses. However, this enhancement likely comes with a neuronal, as well as ethical, cost. Altering glutamate function via the use of psychostimulants may impair behavioral flexibility, leading to the development and/or potentiation of addictive behaviors. Furthermore, dopamine and norepinephrine do not display linear effects; instead, their modulation of cognitive and neuronal function maps on an inverted-U curve. Healthy individuals run the risk of pushing themselves beyond optimal levels into hyperdopaminergic and hypernoradrenergic states, thus vitiating the very behaviors they are striving to improve. Finally, recent studies have begun to highlight potential damaging effects of stimulant exposure in healthy juveniles. This review explains how the main classes of cognitive enhancing drugs affect the learning and memory circuits, and highlights the potential risks and concerns in healthy individuals, particularly juveniles and adolescents. We emphasize the performance enhancement at the potential cost of brain plasticity that is associated with the neural ramifications of nootropic drugs in the healthy developing brain. PMID:24860437

  16. Development of specificity and stereoselectivity of rat brain dopamine receptors.

    PubMed

    Miller, J C; Friedhoff, A J

    1986-01-01

    Prenatal exposure to the neuroleptic haloperidol has been reported to produce an enduring decrement in the number of dopamine D2 receptors in rat striatum and a persistent diminution of a dopamine dependent behavior, stereotypy. The ontogeny of rat brain dopamine binding sites has been studied in terms of the kinetic properties and phenotypic specificity in rat fetal brain through early postnatal development. Sites showing some properties of the D2 binding site can be found prior to gestational day (GD) 18, can be labeled with [3H]dopamine or [3H]spiroperidol and can be displaced with dopaminergic agonists and antagonists. Saturation kinetics for specific [3H]spiroperidol has previously been found to occur on or about GD 18. It is of interest that the critical period for the prenatal effect of haloperidol to reduce striatal D2 binding sites, GD's 15-18, coincides with the period during which dopamine binding sites lack true specificity, but can be labeled with dopaminergic ligands. In these experiments the development of stereoselectivity of brain dopamine binding sites has been examined. When rat mothers were given either the neuroleptic (+)-butaclamol or its therapeutically inactive isomer (-)-butaclamol during the critical period GD's 15-18, the number of [3H]spiroperidol binding sites in striata of offspring was significantly reduced by both stereoisomers. This is in marked contrast to the postnatal treatment effect by a neuroleptic in which upregulation of striatal D2 binding sites occurs only by treatment with the therapeutically active isomer (+)-butaclamol. In vitro studies of the direct effect of the stereoisomers of butaclamol indicate that the recognition sites detected during fetal brain development with [3H]spiroperidol do not distinguish between the isomers of butaclamol.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Role of miRNA-9 in Brain Development

    PubMed Central

    Radhakrishnan, Balachandar; Alwin Prem Anand, A.

    2016-01-01

    MicroRNAs (miRNAs) are a class of small regulatory RNAs involved in gene regulation. The regulation is effected by either translational inhibition or transcriptional silencing. In vertebrates, the importance of miRNA in development was discovered from mice and zebrafish dicer knockouts. The miRNA-9 (miR-9) is one of the most highly expressed miRNAs in the early and adult vertebrate brain. It has diverse functions within the developing vertebrate brain. In this article, the role of miR-9 in the developing forebrain (telencephalon and diencephalon), midbrain, hindbrain, and spinal cord of vertebrate species is highlighted. In the forebrain, miR-9 is necessary for the proper development of dorsoventral telencephalon by targeting marker genes expressed in the telencephalon. It regulates proliferation in telencephalon by regulating Foxg1, Pax6, Gsh2, and Meis2 genes. The feedback loop regulation between miR-9 and Nr2e1/Tlx helps in neuronal migration and differentiation. Targeting Foxp1 and Foxp2, and Map1b by miR-9 regulates the radial migration of neurons and axonal development. In the organizers, miR-9 is inversely regulated by hairy1 and Fgf8 to maintain zona limitans interthalamica and midbrain–hindbrain boundary (MHB). It maintains the MHB by inhibiting Fgf signaling genes and is involved in the neurogenesis of the midbrain–hindbrain by regulating Her genes. In the hindbrain, miR-9 modulates progenitor proliferation and differentiation by regulating Her genes and Elav3. In the spinal cord, miR-9 modulates the regulation of Foxp1 and Onecut1 for motor neuron development. In the forebrain, midbrain, and hindbrain, miR-9 is necessary for proper neuronal progenitor maintenance, neurogenesis, and differentiation. In vertebrate brain development, miR-9 is involved in regulating several region-specific genes in a spatiotemporal pattern. PMID:27721656

  18. Brain development and aging: Overlapping and unique patterns of change

    PubMed Central

    Tamnes, Christian K.; Walhovd, Kristine B.; Dale, Anders M.; Østby, Ylva; Grydeland, Håkon; Richardson, George; Westlye, Lars T.; Roddey, J. Cooper; Hagler, Donald J.; Due-Tønnessen, Paulina; Holland, Dominic; Fjell, Anders M.

    2017-01-01

    Early-life development is characterized by dramatic changes, impacting lifespan function more than changes inany other period. Developmental origins of neurocognitive late-life functions are acknowledged, but detailed longitudinal magnetic resonance imaging studies of brain maturation and direct comparisons with aging are lacking. To these aims, a novel method was used to measure longitudinal volume changes in development (n = 85, 8–22 years) and aging (n = 142, 60–91 years). Developmental reductions exceeded 1% annually in much of cortex, more than double that seen in aging, with a posterior-to-anterior gradient. Cortical reductions were greater than subcortical during development, while the opposite held in aging. The pattern of lateral cortical changes was similar across development and aging, but the pronounced medial temporal reduction in aging was not precast in development. Converging patterns of change in adolescents and elderly, particularly in medial prefrontal areas, suggest that late developed cortices are especially vulnerable to atrophy in aging. A key question in future research will be to disentangle the neurobiological underpinnings for the differences and the similarities between brain changes in development and aging. PMID:23246860

  19. The Factors that Affect Science Teachers' Participation in Professional Development

    NASA Astrophysics Data System (ADS)

    Roux, Judi Ann

    Scientific literacy for our students and the possibilities for careers available in Science, Technology, Engineering, and Mathematics (STEM) areas are important topics for economic growth as well as global competitiveness. The achievement of students in science learning is dependent upon the science teachers' effectiveness and experienced science teachers depend upon relevant professional development experiences to support their learning. In order to understand how to improve student learning in science, the learning of science teachers must also be understood. Previous research studies on teacher professional development have been conducted in other states, but Minnesota science teachers comprised a new and different population from those previously studied. The purpose of this two-phase mixed methods study was to identify the current types of professional development in which experienced, Minnesota secondary science teachers participated and the factors that affect their participation in professional development activities. The mixed-methods approach s utilized an initial online survey followed by qualitative interviews with five survey respondents. The results of the quantitative survey and the qualitative interviews indicated the quality of professional development experiences and the factors which affected the science teachers' participation in professional development activities. The supporting and inhibiting factors involved the availability of resources such as time and money, external relationships with school administrators, teacher colleagues, and family members, and personal intrinsic attributes such as desires to learn and help students. This study also describes implications for science teachers, school administrators, policymakers, and professional development providers. Recommendations for future research include the following areas: relationships between and among intrinsic and extrinsic factors, science-related professional development activities

  20. Anthropogenic changes in sodium affect neural and muscle development in butterflies.

    PubMed

    Snell-Rood, Emilie C; Espeset, Anne; Boser, Christopher J; White, William A; Smykalski, Rhea

    2014-07-15

    The development of organisms is changing drastically because of anthropogenic changes in once-limited nutrients. Although the importance of changing macronutrients, such as nitrogen and phosphorus, is well-established, it is less clear how anthropogenic changes in micronutrients will affect organismal development, potentially changing dynamics of selection. We use butterflies as a study system to test whether changes in sodium availability due to road salt runoff have significant effects on the development of sodium-limited traits, such as neural and muscle tissue. We first document how road salt runoff can elevate sodium concentrations in the tissue of some plant groups by 1.5-30 times. Using monarch butterflies reared on roadside- and prairie-collected milkweed, we then show that road salt runoff can result in increased muscle mass (in males) and neural investment (in females). Finally, we use an artificial diet manipulation in cabbage white butterflies to show that variation in sodium chloride per se positively affects male flight muscle and female brain size. Variation in sodium not only has different effects depending on sex, but also can have opposing effects on the same tissue: across both species, males increase investment in flight muscle with increasing sodium, whereas females show the opposite pattern. Taken together, our results show that anthropogenic changes in sodium availability can affect the development of traits in roadside-feeding herbivores. This research suggests that changing micronutrient availability could alter selection on foraging behavior for some roadside-developing invertebrates.

  1. Anthropogenic changes in sodium affect neural and muscle development in butterflies

    PubMed Central

    Snell-Rood, Emilie C.; Espeset, Anne; Boser, Christopher J.; White, William A.; Smykalski, Rhea

    2014-01-01

    The development of organisms is changing drastically because of anthropogenic changes in once-limited nutrients. Although the importance of changing macronutrients, such as nitrogen and phosphorus, is well-established, it is less clear how anthropogenic changes in micronutrients will affect organismal development, potentially changing dynamics of selection. We use butterflies as a study system to test whether changes in sodium availability due to road salt runoff have significant effects on the development of sodium-limited traits, such as neural and muscle tissue. We first document how road salt runoff can elevate sodium concentrations in the tissue of some plant groups by 1.5–30 times. Using monarch butterflies reared on roadside- and prairie-collected milkweed, we then show that road salt runoff can result in increased muscle mass (in males) and neural investment (in females). Finally, we use an artificial diet manipulation in cabbage white butterflies to show that variation in sodium chloride per se positively affects male flight muscle and female brain size. Variation in sodium not only has different effects depending on sex, but also can have opposing effects on the same tissue: across both species, males increase investment in flight muscle with increasing sodium, whereas females show the opposite pattern. Taken together, our results show that anthropogenic changes in sodium availability can affect the development of traits in roadside-feeding herbivores. This research suggests that changing micronutrient availability could alter selection on foraging behavior for some roadside-developing invertebrates. PMID:24927579

  2. Cranial index of children with normal and abnormal brain development in Sokoto, Nigeria: A comparative study

    PubMed Central

    Musa, Muhammad Awwal; Zagga, Abdullahi Daudu; Danfulani, Mohammed; Tadros, Aziz Abdo; Ahmed, Hamid

    2014-01-01

    Background: Abnormal brain development due to neurodevelopmental disorders in children has always been an important concern, but yet has to be considered as a significant public health problem, especially in the low- and middle-income countries including Nigeria. Aims: The aim of this study is to determine whether abnormal brain development in the form of neurodevelopmental disorders causes any deviation in the cranial index of affected children. Materials and Methods: This is a comparative study on the head length, head width, and cranial index of 112 children (72 males and 40 females) diagnosed with at least one abnormal problem in brain development, in the form of a neurodevelopmental disorder (NDD), in comparison with that of 218 normal growing children without any form of NDD (121 males and 97 females), aged 0-18 years old seen at the Usmanu Danfodiyo University Teaching Hospital, Sokoto, over a period of six months, June to December, 2012. The head length and head width of the children was measured using standard anatomical landmarks and cranial index calculated. The data obtained was entered into the Microsoft excel worksheet and analyzed using SPSS version 17. Results: The mean Cephalic Index for normal growing children with normal brain development was 79.82 ± 3.35 and that of the children with abnormal brain development was 77.78 ± 2.95 and the difference between the two groups was not statistically significant (P > 0.05). Conclusion: It can be deduced from this present study that the cranial index does not change in children with neurodevelopmental disorders. PMID:24966551

  3. Brain activation, affect, and aerobic exercise: an examination of both state-independent and state-dependent relationships.

    PubMed

    Petruzzello, S J; Tate, A K

    1997-09-01

    Resting electroencephalograph (EEG) asymmetry is a biological marker of the propensity to respond affectively to, and a measure of change in affect associated with, acute aerobic exercise. This study examined the EEG-affect-exercise relationship. Twenty participants performed each of three randomly assigned 30-min conditions: (a) a nonexercise control, (b) a cycling exercise at 55% VO2max, and (c) a cycling exercise at 70% VO2max. EEG and affect were assessed pre- and 0, 5, 10, 20, and 30 min postcondition. No significant results were seen in the control or 55% conditions. In the 70% exercise condition, greater relative left frontal activation preexercise predicted increased positive affect and reduced state anxiety postexercise. Participants (n = 7) with extreme relative left frontal activation postexercise reported concomitant decreases in anxiety, whereas participants (n = 7) with extreme relative right frontal activation postexercise reported increases in anxiety. These findings (a) replicate prior work, (b) suggest a dose-response intensity effect, and (c) support the idea that exercise is an emotion-eliciting event. Affective responses seem to be mediated in part by differential resting levels of activation in the anterior brain regions. Ongoing anterior brain activation reflected concurrent postexercise affect.

  4. Socioeconomic status and functional brain development - associations in early infancy.

    PubMed

    Tomalski, Przemyslaw; Moore, Derek G; Ribeiro, Helena; Axelsson, Emma L; Murphy, Elizabeth; Karmiloff-Smith, Annette; Johnson, Mark H; Kushnerenko, Elena

    2013-09-01

    Socioeconomic status (SES) impacts on both structural and functional brain development in childhood, but how early its effects can be demonstrated is unknown. In this study we measured resting baseline EEG activity in the gamma frequency range in awake 6-9-month-olds from areas of East London with high socioeconomic deprivation. Between-subject comparisons of infants from low- and high-income families revealed significantly lower frontal gamma power in infants from low-income homes. Similar power differences were found when comparing infants according to maternal occupation, with lower occupational status groups yielding lower power. Infant sleep, maternal education, length of gestation, and birth weight, as well as smoke exposure and bilingualism, did not explain these differences. Our results show that the effects of socioeconomic disparities on brain activity can already be detected in early infancy, potentially pointing to very early risk for language and attention difficulties. This is the first study to reveal region-selective differences in functional brain development associated with early infancy in low-income families.

  5. The early development and evolution of the human brain.

    PubMed

    Crawford, M A

    1990-01-01

    THE CHEMISTRY OF THE BRAIN: The brain and nervous system is characterised by a heavy investment in lipid chemistry which accounts for up to 60% of its structural material. In the different mammalian species so far studied, only the 20 and 22 carbon chain length polyenoic fatty acids were present and the balance of the n-3 to n-6 fatty acids was consistently 1:1. The difference observed between species, was not in the chemistry but in the extent to which the brain is developed. This paper discusses the possibility that essential fatty acids may have played a part in it evolution. THE ORIGIN OF AIR BREATHING ANIMALS: The first phase of the planet's existence indulged in high temperature reactions in which oxygen combined with everything feasible: from silicon to make rocks to hydrogen to make water. Once the planet's temperature dropped to a point at which water could condense on the surface allowing chemical reactions to take place in it. The atmosphere was at that time devoid of oxygen so life evolved in a reducing atmosphere. Oxygen was liberated by photolysis of water and as a by-product of the blue-green algae through photosynthesis. When the point was reached at which oxidative metabolism became thermodynamically possible, animal life evolved with all the principle phyla establishing themselves within a relatively short space of geological time. (Bernal 1973). DHA and nerve cell membranes DHA AND NERVE CELL MEMBRANES: From the chemistry of contemporary algae it is likely that animal life evolved in an n-3 rich environment although not exclusively so as smaller amounts of n-6 fatty acids would have been present. A key feature of the first animals was the evolution of the photoreceptor: in examples of marine, amphibian and modern mammalian species, it has been found to use docosahexaenoic acid (DHA) as the principle membrane fatty acid in the phosphoglycerides. It is likely that the first animals did so as well. Coincidentally, the synaptic membranes involved in

  6. Development, maintenance and disruption of the blood-brain barrier

    PubMed Central

    Obermeier, Birgit; Daneman, Richard; Ransohoff, Richard M.

    2014-01-01

    The interface between the blood circulation and the neural tissue features unique characteristics which are embraced by the term ‘blood-brain barrier’ (BBB). The main functions of this barrier, namely maintenance of brain homeostasis, regulation of influx and efflux transport, and protection from harm, are determined by its specialized multicellular structure. Every constituent cell type makes an indispensible contribution to the BBB’s integrity. But, if one member of the BBB fails and as a result, the barrier breaks down, there can be dramatic consequences, and neuroinflammation and neurodegeneration can occur. In this Review we highlight recently gained mechanistic insights into the development and maintenance of the BBB. We then discuss how BBB disruption can cause or contribute to neurological disease. Finally, we examine how this knowledge can be used to explore new possibilities for BBB repair. PMID:24309662

  7. Early diet affects the development of 3-6 Hz EEG activity in infants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This longitudinal study investigated whether diet affects brain physiological functions during infancy. Power spectra (3-6 Hz) of electroencephalographic signals (high density recordings) in the bilateral prefrontal, frontal, central, parietal, occipital, anterior temporal, mid-temporal, and posteri...

  8. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain.

    PubMed

    Saito, Mariko; Chakraborty, Goutam; Hui, Maria; Masiello, Kurt; Saito, Mitsuo

    2016-08-16

    Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD). While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy). Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7) mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.

  9. Early development of structural networks and the impact of prematurity on brain connectivity.

    PubMed

    Batalle, Dafnis; Hughes, Emer J; Zhang, Hui; Tournier, J-Donald; Tusor, Nora; Aljabar, Paul; Wali, Luqman; Alexander, Daniel C; Hajnal, Joseph V; Nosarti, Chiara; Edwards, A David; Counsell, Serena J

    2017-04-01

    Preterm infants are at high risk of neurodevelopmental impairment, which may be due to altered development of brain connectivity. We aimed to (i) assess structural brain development from 25 to 45 weeks gestational age (GA) using graph theoretical approaches and (ii) test the hypothesis that preterm birth results in altered white matter network topology. Sixty-five infants underwent MRI between 25(+3) and 45(+6) weeks GA. Structural networks were constructed using constrained spherical deconvolution tractography and were weighted by measures of white matter microstructure (fractional anisotropy, neurite density and orientation dispersion index). We observed regional differences in brain maturation, with connections to and from deep grey matter showing most rapid developmental changes during this period. Intra-frontal, frontal to cingulate, frontal to caudate and inter-hemispheric connections matured more slowly. We demonstrated a core of key connections that was not affected by GA at birth. However, local connectivity involving thalamus, cerebellum, superior frontal lobe, cingulate gyrus and short range cortico-cortical connections was related to the degree of prematurity and contributed to altered global topology of the structural brain network. The relative preservation of core connections at the expense of local connections may support more effective use of impaired white matter reserve following preterm birth.

  10. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain

    PubMed Central

    Saito, Mariko; Chakraborty, Goutam; Hui, Maria; Masiello, Kurt; Saito, Mitsuo

    2016-01-01

    Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD). While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy). Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7) mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain. PMID:27537918

  11. Evidence for adverse effect of perinatal glucocorticoid use on the developing brain

    PubMed Central

    2014-01-01

    The use of glucocorticoids (GCs) in the perinatal period is suspected of being associated with adverse effects on long-term neurodevelopmental outcomes for preterm infants. Repeated administration of antenatal GCs to mothers at risk of preterm birth may adversely affect fetal growth and head circumference. Fetal exposure to excess GCs during critical periods of brain development may profoundly modify the limbic system (primarily the hippocampus), resulting in long-term effects on cognition, behavior, memory, co-ordination of the autonomic nervous system, and regulation of the endocrine system later in adult life. Postnatal GC treatment for chronic lung disease in premature infants, particularly involving the use of dexamethasone, has been shown to induce neurodevelopmental impairment and increases the risk of cerebral palsy. In contrast to studies involving postnatal dexamethasone, long-term follow-up studies for hydrocortisone therapy have not revealed adverse effects on neurodevelopmental outcomes. In experimental studies on animals, GCs has been shown to impair neurogenesis, and induce neuronal apoptosis in the immature brains of newborn animals. A recent study has demonstrated that dexamethasone-induced hypomyelination may result from the apoptotic degeneration of oligodendrocyte progenitors in the immature brain. Thus, based on clinical and experimental studies, there is enough evidence to advice caution regarding the use of GCs in the perinatal period; and moreover, the potential long-term effects of GCs on brain development need to be determined. PMID:24778691

  12. Effects of long-term treatment with methyl mercury on the developing rat brain

    SciTech Connect

    Lindstroem, H.; Luthman, J.; Olson, L. ); Oskarsson, A.; Sundberg, J. )

    1991-12-01

    Sprague-Dawley rats were exposed to low doses of methyl mercury (3.9 mg mercury/kg diet), via their dams during gestation and lactation and directly via their diet until sacrifice at 50 days postpartum, in order to study possible detrimental effects on CNS development. The methyl mercury exposure of the rats resulted in a brain concentration of 1.45 {plus minus} 0.06 mg mercury/kg wet weight (mean {plus minus} SEM). No general toxic effects were observed; body weight was not affected, brain weight was only slightly increased. No discernible general morphological alterations were seen in the brain as evaluated using cresyl violet histology. Furthermore, no effects on GFA-positive astrocytes in brain sections were observed and computerized morphometry of smeared astrocytes from frontal cortex, hippocampus, and cerebellum did not reveal any effects of the methyl mercury treatment. The noradrenaline (NA) and dopamine (DA) systems were also studied. In cerebellum the NA levels were increased whereas in other regions analyzed NA and DA levels were unchanged. Thus, long-term low-dosage exposure of methyl mercury in rats during development does not appear to exert any major effects on the morphological maturation of neurons and astrocytes. However, the results indicate the effects may occur in specific transmitter-identified systems, such as the NA input to cerebellum.

  13. PET study of 11C-acetoacetate kinetics in rat brain during dietary treatments affecting ketosis.

    PubMed

    Bentourkia, M'hamed; Tremblay, Sébastien; Pifferi, Fabien; Rousseau, Jacques; Lecomte, Roger; Cunnane, Stephen

    2009-04-01

    Normally, the brain's fuel is glucose, but during fasting it increasingly relies on ketones (beta-hydroxybutyrate, acetoacetate, and acetone) produced in liver mitochondria from fatty acid beta-oxidation. Although moderately raised blood ketones produced on a very high fat ketogenic diet have important clinical effects on the brain, including reducing seizures, ketone metabolism by the brain is still poorly understood. The aim of the present work was to assess brain uptake of carbon-11-labeled acetoacetate (11C-acetoacetate) by positron emission tomography (PET) imaging in the intact, living rat. To vary plasma ketones, we used three dietary conditions: high carbohydrate control diet (low plasma ketones), fat-rich ketogenic diet (raised plasma ketones), and 48-h fasting (raised plasma ketones). 11C-acetoacetate metabolism was measured in the brain, heart, and tissue in the mouth area. Using 11C-acetoacetate and small animal PET imaging, we have noninvasively quantified an approximately seven- to eightfold enhanced brain uptake of ketones on a ketogenic diet or during fasting. This opens up an opportunity to study brain ketone metabolism in humans.

  14. Toward a 3D model of human brain development for studying gene/environment interactions.

    PubMed

    Hogberg, Helena T; Bressler, Joseph; Christian, Kimberly M; Harris, Georgina; Makri, Georgia; O'Driscoll, Cliona; Pamies, David; Smirnova, Lena; Wen, Zhexing; Hartung, Thomas

    2013-01-01

    This project aims to establish and characterize an in vitro model of the developing human brain for the purpose of testing drugs and chemicals. To accurately assess risk, a model needs to recapitulate the complex interactions between different types of glial cells and neurons in a three-dimensional platform. Moreover, human cells are preferred over cells from rodents to eliminate cross-species differences in sensitivity to chemicals. Previously, we established conditions to culture rat primary cells as three-dimensional aggregates, which will be humanized and evaluated here with induced pluripotent stem cells (iPSCs). The use of iPSCs allows us to address gene/environment interactions as well as the potential of chemicals to interfere with epigenetic mechanisms. Additionally, iPSCs afford us the opportunity to study the effect of chemicals during very early stages of brain development. It is well recognized that assays for testing toxicity in the developing brain must consider differences in sensitivity and susceptibility that arise depending on the time of exposure. This model will reflect critical developmental processes such as proliferation, differentiation, lineage specification, migration, axonal growth, dendritic arborization and synaptogenesis, which will probably display differences in sensitivity to different types of chemicals. Functional endpoints will evaluate the complex cell-to-cell interactions that are affected in neurodevelopment through chemical perturbation, and the efficacy of drug intervention to prevent or reverse phenotypes. The model described is designed to assess developmental neurotoxicity effects on unique processes occurring during human brain development by leveraging human iPSCs from diverse genetic backgrounds, which can be differentiated into different cell types of the central nervous system. Our goal is to demonstrate the feasibility of the personalized model using iPSCs derived from individuals with neurodevelopmental disorders

  15. Media representations of early human development: protecting, feeding and loving the developing brain.

    PubMed

    O'Connor, Cliodhna; Joffe, Helene

    2013-11-01

    The public profile of neurodevelopmental research has expanded in recent years. This paper applies social representations theory to explore how early brain development was represented in the UK print media in the first decade of the 21st century. A thematic analysis was performed on 505 newspaper articles published between 2000 and 2010 that discussed early brain development. Media coverage centred around concern with 'protecting' the prenatal brain (identifying threats to foetal neurodevelopment), 'feeding' the infant brain (indicating the patterns of nutrition that enhance brain development) and 'loving' the young child's brain (elucidating the developmental significance of emotionally nurturing family environments). The media focused almost exclusively on the role of parental action in promoting optimal neurodevelopment, rarely acknowledging wider structural, cultural or political means of supporting child development. The significance of parental care was intensified by deterministic interpretations of critical periods, which implied that inappropriate parental input would produce profound and enduring neurobiological impairments. Neurodevelopmental research was also used to promulgate normative judgements concerning the acceptability of certain gender roles and family contexts. The paper argues that media representations of neurodevelopment stress parental responsibility for shaping a child's future while relegating the contributions of genetic or wider societal factors, and examines the consequences of these representations for society and family life.

  16. The Nature of Compensatory Response to Low Thyroid Hormone in Developing Brain.

    EPA Science Inventory

    Abstract Thyroid hormone is essential for normal brain development, but the degree to which the developing brain is sensitive to small perturbations in serum thyroxin is not clear. An important concept related to this is that the developing brain possesses potent mechanisms to co...

  17. Brain-drain and health care delivery in developing countries

    PubMed Central

    Misau, Yusuf Abdu; Al-Sadat, Nabilla; Gerei, Adamu Bakari

    2010-01-01

    Migration of health workers ‘Brain drain’ is defined as the movement of health personnel in search of a better standard of living and life quality, higher salaries, access to advanced technology and more stable political conditions in different places worldwide. The debate about migration of health workers from the developing to the developed world has remained pertinent for decades now. Regardless of the push and pull factors, migration of health care workers from developing countries to developed ones, have done more harm than good on the health care deliveries in the developing countries. This article reviews the literature on the effects of cross-border migration of health care professionals. PMID:28299040

  18. Hypo- and hyperthyroidism affect NEI concentration in discrete brain areas of adult male rats.

    PubMed

    Ayala, Carolina; Valdez, Susana Ruth; Morero, María Luján Navarra; Soaje, Marta; Carreño, Norma Beatriz; Sanchez, Mónica Silvina; Bittencourt, Jakson Cioni; Jahn, Graciela Alma; Celis, María Ester

    2011-06-01

    To date, there has been only one in vitro study of the relationship between neuropeptide EI (NEI) and the hypothalamic-pituitary-thyroid (HPT) axis. To investigate the possible relationship between NEI and the HPT axis, we developed a rat model of hypothyroidism and hyperthyroidism that allows us to determine whether NEI content is altered in selected brain areas after treatment, as well as whether such alterations are related to the time of day. Hypothyroidism and hyperthyroidism, induced in male rats, with 6-propyl-1-thiouracil and l-thyroxine, respectively, were confirmed by determination of triiodothyronine, total thyroxine, and thyrotropin levels. All groups were studied at the morning and the afternoon. In rats with hypothyroidism, NEI concentration, evaluated on postinduction days 7 and 24, was unchanged or slightly elevated on day 7 but was decreased on day 24. In rats with hyperthyroidism, NEI content, which was evaluated after 4 days of l-thyroxine administration, was slightly elevated, principally in the preoptic area in the morning and in the median eminence-arcuate nucleus and pineal gland in the afternoon, the morning and afternoon NEI contents being similar in the controls. These results provide the bases to pursue the study of the interaction between NEI and the HPT axis.

  19. Detection and monitoring of microRNA expression in developing mouse brain and fixed brain cryosections.

    PubMed

    De Pietri Tonelli, Davide; Clovis, Yoanne M; Huttner, Wieland B

    2014-01-01

    MicroRNAs (miRNAs) are 20-25 nucleotide long, noncoding, and single-strand RNAs that have been found in almost all organisms and shown to exert essential roles by regulating the stability and translation of target mRNAs. In mammals most miRNAs show tissue specific and developmentally regulated expression. Approximately 70 % of all miRNAs are expressed in the brain and a growing number of studies have shown that miRNAs can modulate both brain development function and dysfunction. Moreover, miRNAs have been involved in a variety of human pathologies, including cancer and diabetes and are rapidly emerging as new potential drug targets. In order to further characterize miRNA functions, it is therefore crucial to develop techniques enabling their detection in tissues (both fixed and in vivo) with single-cell resolution. Here, we describe methods for the detection/monitoring of miRNA expression, that can be applied in both developing embryos and fixed samples, which we and others have applied to the investigation of both embryonal and postnatal neurogenesis in mice, but also in zebrafish, and cell cultures.

  20. How musical training affects cognitive development: rhythm, reward and other modulating variables.

    PubMed

    Miendlarzewska, Ewa A; Trost, Wiebke J

    2013-01-01

    Musical training has recently gained additional interest in education as increasing neuroscientific research demonstrates its positive effects on brain development. Neuroimaging revealed plastic changes in the brains of adult musicians but it is still unclear to what extent they are the product of intensive music training rather than of other factors, such as preexisting biological markers of musicality. In this review, we synthesize a large body of studies demonstrating that benefits of musical training extend beyond the skills it directly aims to train and last well into adulthood. For example, children who undergo musical training have better verbal memory, second language pronunciation accuracy, reading ability and executive functions. Learning to play an instrument as a child may even predict academic performance and IQ in young adulthood. The degree of observed structural and functional adaptation in the brain correlates with intensity and duration of practice. Importantly, the effects on cognitive development depend on the timing of musical initiation due to sensitive periods during development, as well as on several other modulating variables. Notably, we point to motivation, reward and social context of musical education, which are important yet neglected factors affecting the long-term benefits of musical training. Further, we introduce the notion of rhythmic entrainment and suggest that it may represent a mechanism supporting learning and development of executive functions. It also hones temporal processing and orienting of attention in time that may underlie enhancements observed in reading and verbal memory. We conclude that musical training uniquely engenders near and far transfer effects, preparing a foundation for a range of skills, and thus fostering cognitive development.

  1. How musical training affects cognitive development: rhythm, reward and other modulating variables

    PubMed Central

    Miendlarzewska, Ewa A.; Trost, Wiebke J.

    2014-01-01

    Musical training has recently gained additional interest in education as increasing neuroscientific research demonstrates its positive effects on brain development. Neuroimaging revealed plastic changes in the brains of adult musicians but it is still unclear to what extent they are the product of intensive music training rather than of other factors, such as preexisting biological markers of musicality. In this review, we synthesize a large body of studies demonstrating that benefits of musical training extend beyond the skills it directly aims to train and last well into adulthood. For example, children who undergo musical training have better verbal memory, second language pronunciation accuracy, reading ability and executive functions. Learning to play an instrument as a child may even predict academic performance and IQ in young adulthood. The degree of observed structural and functional adaptation in the brain correlates with intensity and duration of practice. Importantly, the effects on cognitive development depend on the timing of musical initiation due to sensitive periods during development, as well as on several other modulating variables. Notably, we point to motivation, reward and social context of musical education, which are important yet neglected factors affecting the long-term benefits of musical training. Further, we introduce the notion of rhythmic entrainment and suggest that it may represent a mechanism supporting learning and development of executive functions. It also hones temporal processing and orienting of attention in time that may underlie enhancements observed in reading and verbal memory. We conclude that musical training uniquely engenders near and far transfer effects, preparing a foundation for a range of skills, and thus fostering cognitive development. PMID:24672420

  2. Brain Drain: A Child's Brain on Poverty. Poverty Fact Sheet

    ERIC Educational Resources Information Center

    Damron, Neil

    2015-01-01

    "Brain Drain: A Child's Brain on Poverty," released in March 2015 and prepared by intern Neil Damron, explores the brain's basic anatomy and recent research findings suggesting that poverty affects the brain development of infants and young children and the potential lifelong effects of the changes. The sheet draws from a variety of…

  3. A Right Brain/Left Brain Model of Acting.

    ERIC Educational Resources Information Center

    Bowlen, Clark

    Using current right brain/left brain research, this paper develops a model that explains acting's underlying quality--the actor is both himself and the character. Part 1 presents (1) the background of the right brain/left brain theory, (2) studies showing that propositional communication is a left hemisphere function while affective communication…

  4. How do parcellation size and short-range connectivity affect dynamics in large-scale brain network models?

    PubMed

    Proix, Timothée; Spiegler, Andreas; Schirner, Michael; Rothmeier, Simon; Ritter, Petra; Jirsa, Viktor K

    2016-11-15

    Recent efforts to model human brain activity on the scale of the whole brain rest on connectivity estimates of large-scale networks derived from diffusion magnetic resonance imaging (dMRI). This type of connectivity describes white matter fiber tracts. The number of short-range cortico-cortical white-matter connections is, however, underrepresented in such large-scale brain models. It is still unclear on the one hand, which scale of representation of white matter fibers is optimal to describe brain activity on a large-scale such as recorded with magneto- or electroencephalography (M/EEG) or functional magnetic resonance imaging (fMRI), and on the other hand, to which extent short-range connections that are typically local should be taken into account. In this article we quantified the effect of connectivity upon large-scale brain network dynamics by (i) systematically varying the number of brain regions before computing the connectivity matrix, and by (ii) adding generic short-range connections. We used dMRI data from the Human Connectome Project. We developed a suite of preprocessing modules called SCRIPTS to prepare these imaging data for The Virtual Brain, a neuroinformatics platform for large-scale brain modeling and simulations. We performed simulations under different connectivity conditions and quantified the spatiotemporal dynamics in terms of Shannon Entropy, dwell time and Principal Component Analysis. For the reconstructed connectivity, our results show that the major white matter fiber bundles play an important role in shaping slow dynamics in large-scale brain networks (e.g. in fMRI). Faster dynamics such as gamma oscillations (around 40 Hz) are sensitive to the short-range connectivity if transmission delays are considered.

  5. Nicotine alters bovine oocyte meiosis and affects subsequent embryonic development.

    PubMed

    Liu, Ying; Li, Guang-Peng; White, Kenneth L; Rickords, Lee F; Sessions, Benjamin R; Aston, Kenneth I; Bunch, Thomas D

    2007-11-01

    The effects of nicotine on nuclear maturation and meiotic spindle dynamics of bovine oocytes and subsequent embryonic development were investigated. Maturation rates (85%-94%) derived from nicotine treatments at 0.01 to 1.0 mM were similar to the control (86%), but significantly decreased at 2.0 to 6.0 mM. Haploid complements of metaphase II oocytes in 0.01 to 1.0 mM nicotine (approximately 90%) were similar to the control, while lower (ranged from 63% to 76%, P < 0.05 or P < 0.01) haploid oocytes were observed in the 2.0 to 6.0 mM nicotine groups. The majority of the PB1-free oocytes derived from 3.0 to 6.0 mM nicotine treatments were diploidy (2n = 60). Spindle microtubules changed from characteristically being asymmetrical in the controls to being equally distributed into two separate chromosome groups in the nicotine treatments. Nicotine disorganized the microfilament organization and inhibited the movement of anaphase or telophase chromosomes to the cortical area. The inhibited two chromosome groups became two spindles that either moved close in proximity or merged entirely together resulting in diploidy within the affected oocyte. Nicotine treatment significantly reduced the rate of cleavage and blastocyst development after parthenogenetic activation. Diploidy and cell number were drastically reduced in the resultant blastocysts. In conclusion, nicotine can alter the normal process of bovine oocyte meiosis and affects subsequent embryonic development.

  6. Training affects the development of postural adjustments in sitting infants.

    PubMed Central

    Hadders-Algra, M; Brogren, E; Forssberg, H

    1996-01-01

    1. The present study addressed the question of whether daily balance training can affect the development of postural adjustments in sitting infants. 2. Postural responses during sitting on a moveable platform were assessed in twenty healthy infants at 5-6, 7-8 and 9-10 months of age. Multiple surface EMGs and kinematics were recorded while the infants were exposed to slow and fast horizontal forward (Fw) and backward (Bw) displacements of the platform. After the first session the parents of nine infants trained their child's sitting balance daily. 3. At the youngest age, when none of the infants could sit independently, the muscle activation patterns were direction specific and showed a large variation. This variation decreased with increasing age, resulting in selection of the most complete responses. Training facilitated response selection both during Fw and Bw translations. This suggests a training effect on the first level of the central pattern generator (CPG) model of postural control. 4. Training also affected the development of response modulation during Fw translations. It accelerated the development of: (1) the ability to modulate EMG amplitude with respect to platform velocity and initial sitting position, (2) antagonist activity and (3) a distal onset of the response. These findings point to a training effect on the second level of the CPG model of postural adjustments. Images Figure 1 Figure 4 PMID:8735713

  7. Stress sensitivity and the development of affective disorders.

    PubMed

    Bale, Tracy L

    2006-11-01

    Depressive disorders are the most common form of mental illness in America, affecting females twice as often as males. The great variability of symptoms and responses to therapeutic treatment emphasize the complex underlying neurobiology of disease onset and progression. Evidence from human and animal studies reveals a vital link between individual stress sensitivity and the predisposition toward mood disorders. While the stress response is essential for maintenance of homeostasis and survival, chronic stress and maladaptive responses to stress insults can lead to depression or other affective disorders. A key factor in the mediation of stress responsivity is the neuropeptide corticotropin-releasing factor (CRF). Studies in animal models of heightened stress sensitivity have illustrated the involvement of CRF downstream neurotransmitter targets, including serotonin and norepinephrine, in the profound neurocircuitry failure that may underlie maladaptive coping strategies. Stress sensitivity may also be a risk factor in affective disorder development susceptibility. As females show an increased stress response and recovery time compared to males, they may be at an increased vulnerability for disease. Therefore, examination of sex differences in CRF and downstream targets may aid in the elucidation of the underlying causes of the increased disease presentation in females. While we continue to make progress in our understanding of mood disorder etiology, we still have miles to go before we sleep. As an encouraging number of new animal models of altered stress sensitivity and negative stress coping strategies have been developed, the future looks extremely promising for the possibility of a new generation of drug targets to be developed.

  8. Roles of microglia in brain development, tissue maintenance and repair.

    PubMed

    Michell-Robinson, Mackenzie A; Touil, Hanane; Healy, Luke M; Owen, David R; Durafourt, Bryce A; Bar-Or, Amit; Antel, Jack P; Moore, Craig S

    2015-05-01

    The emerging roles of microglia are currently being investigated in the healthy and diseased brain with a growing interest in their diverse functions. In recent years, it has been demonstrated that microglia are not only immunocentric, but also neurobiological and can impact neural development and the maintenance of neuronal cell function in both healthy and pathological contexts. In the disease context, there is widespread consensus that microglia are dynamic cells with a potential to contribute to both central nervous system damage and repair. Indeed, a number of studies have found that microenvironmental conditions can selectively modify unique microglia phenotypes and functions. One novel mechanism that has garnered interest involves the regulation of microglial function by microRNAs, which has therapeutic implications such as enhancing microglia-mediated suppression of brain injury and promoting repair following inflammatory injury. Furthermore, recently published articles have identified molecular signatures of myeloid cells, suggesting that microglia are a distinct cell population compared to other cells of myeloid lineage that access the central nervous system under pathological conditions. Thus, new opportunities exist to help distinguish microglia in the brain and permit the study of their unique functions in health and disease.

  9. Protracted brain development in a rodent model of extreme longevity

    PubMed Central

    Penz, Orsolya K.; Fuzik, Janos; Kurek, Aleksandra B.; Romanov, Roman; Larson, John; Park, Thomas J.; Harkany, Tibor; Keimpema, Erik

    2015-01-01

    Extreme longevity requires the continuous and large-scale adaptation of organ systems to delay senescence. Naked mole rats are the longest-living rodents, whose nervous system likely undergoes life-long adaptive reorganization. Nevertheless, neither the cellular organization of their cerebral cortex nor indices of structural neuronal plasticity along extreme time-scales have been established. We find that adult neurogenesis and neuronal migration are not unusual in naked mole rat brains. Instead, we show the prolonged expression of structural plasticity markers, many recognized as being developmentally controlled, and multi-year-long postnatal neuromorphogenesis and spatial synapse refinement in hippocampal and olfactory structures of the naked mole rat brain. Neurophysiological studies on identified hippocampal neurons demonstrated that morphological differentiation is disconnected from the control of excitability in all neuronal contingents regardless of their ability to self-renew. Overall, we conclude that naked mole rats show an extremely protracted period of brain maturation that may permit plasticity and resilience to neurodegenerative processes over their decades-long life span. This conclusion is consistent with the hypothesis that naked mole rats are neotenous, with retention of juvenile characteristics to permit survival in a hypoxic environment, with extreme longevity a consequence of greatly retarded development. PMID:26118676

  10. Protracted brain development in a rodent model of extreme longevity.

    PubMed

    Penz, Orsolya K; Fuzik, Janos; Kurek, Aleksandra B; Romanov, Roman; Larson, John; Park, Thomas J; Harkany, Tibor; Keimpema, Erik

    2015-06-29

    Extreme longevity requires the continuous and large-scale adaptation of organ systems to delay senescence. Naked mole rats are the longest-living rodents, whose nervous system likely undergoes life-long adaptive reorganization. Nevertheless, neither the cellular organization of their cerebral cortex nor indices of structural neuronal plasticity along extreme time-scales have been established. We find that adult neurogenesis and neuronal migration are not unusual in naked mole rat brains. Instead, we show the prolonged expression of structural plasticity markers, many recognized as being developmentally controlled, and multi-year-long postnatal neuromorphogenesis and spatial synapse refinement in hippocampal and olfactory structures of the naked mole rat brain. Neurophysiological studies on identified hippocampal neurons demonstrated that morphological differentiation is disconnected from the control of excitability in all neuronal contingents regardless of their ability to self-renew. Overall, we conclude that naked mole rats show an extremely protracted period of brain maturation that may permit plasticity and resilience to neurodegenerative processes over their decades-long life span. This conclusion is consistent with the hypothesis that naked mole rats are neotenous, with retention of juvenile characteristics to permit survival in a hypoxic environment, with extreme longevity a consequence of greatly retarded development.

  11. Mapping brain development during childhood, adolescence and young adulthood

    NASA Astrophysics Data System (ADS)

    Guo, Xiaojuan; Jin, Zhen; Chen, Kewei; Peng, Danling; Li, Yao

    2009-02-01

    Using optimized voxel-based morphometry (VBM), this study systematically investigated the differences and similarities of brain structural changes during the early three developmental periods of human lives: childhood, adolescence and young adulthood. These brain changes were discussed in relationship to the corresponding cognitive function development during these three periods. Magnetic Resonance Imaging (MRI) data from 158 Chinese healthy children, adolescents and young adults, aged 7.26 to 22.80 years old, were included in this study. Using the customized brain template together with the gray matter/white matter/cerebrospinal fluid prior probability maps, we found that there were more age-related positive changes in the frontal lobe, less in hippocampus and amygdala during childhood, but more in bilateral hippocampus and amygdala and left fusiform gyrus during adolescence and young adulthood. There were more age-related negative changes near to central sulcus during childhood, but these changes extended to the frontal and parietal lobes, mainly in the parietal lobe, during adolescence and young adulthood, and more in the prefrontal lobe during young adulthood. So gray matter volume in the parietal lobe significantly decreased from childhood and continued to decrease till young adulthood. These findings may aid in understanding the age-related differences in cognitive function.

  12. Liver irradiation causes distal bystander effects in the rat brain and affects animal behaviour.

    PubMed

    Kovalchuk, Anna; Mychasiuk, Richelle; Muhammad, Arif; Hossain, Shakhawat; Ilnytskyy, Slava; Ghose, Abhijit; Kirkby, Charles; Ghasroddashti, Esmaeel; Kovalchuk, Olga; Kolb, Bryan

    2016-01-26

    Radiation therapy can not only produce effects on targeted organs, but can also influence shielded bystander organs, such as the brain in targeted liver irradiation. The brain is sensitive to radiation exposure, and irradiation causes significant neuro-cognitive deficits, including deficits in attention, concentration, memory, and executive and visuospatial functions. The mechanisms of their occurrence are not understood, although they may be related to the bystander effects.We analyzed the induction, mechanisms, and behavioural repercussions of bystander effects in the brain upon liver irradiation in a well-established rat model.Here, we show for the first time that bystander effects occur in the prefrontal cortex and hippocampus regions upon liver irradiation, where they manifest as altered gene expression and somewhat increased levels of γH2AX. We also report that bystander effects in the brain are associated with neuroanatomical and behavioural changes, and are more pronounced in females than in males.

  13. Evaluation of an automatic brain segmentation method developed for neonates on adult MR brain images

    NASA Astrophysics Data System (ADS)

    Moeskops, Pim; Viergever, Max A.; Benders, Manon J. N. L.; Išgum, Ivana

    2015-03-01

    Automatic brain tissue segmentation is of clinical relevance in images acquired at all ages. The literature presents a clear distinction between methods developed for MR images of infants, and methods developed for images of adults. The aim of this work is to evaluate a method developed for neonatal images in the segmentation of adult images. The evaluated method employs supervised voxel classification in subsequent stages, exploiting spatial and intensity information. Evaluation was performed using images available within the MRBrainS13 challenge. The obtained average Dice coefficients were 85.77% for grey matter, 88.66% for white matter, 81.08% for cerebrospinal fluid, 95.65% for cerebrum, and 96.92% for intracranial cavity, currently resulting in the best overall ranking. The possibility of applying the same method to neonatal as well as adult images can be of great value in cross-sectional studies that include a wide age range.

  14. Beneficial microbes affect endogenous mechanisms controlling root development

    PubMed Central

    Verbon, Eline H.; Liberman, Louisa M.

    2016-01-01

    Plants have incredible developmental plasticity, enabling them to respond to a wide range of environmental conditions. Among these conditions is the presence of plant growth-promoting rhizobacteria (PGPR) in the soil. Recent studies show that PGPR affect root growth and development within Arabidopsis thaliana root. These effects lead to dramatic changes in root system architecture, that significantly impact aboveground plant growth. Thus, PGPR may promote shoot growth via their effect on root developmental programs. This review focuses on contextualizing root developmental changes elicited by PGPR in light of our understanding of plant-microbe interactions and root developmental biology. PMID:26875056

  15. Accurately assessing the risk of schizophrenia conferred by rare copy-number variation affecting genes with brain function.

    PubMed

    Raychaudhuri, Soumya; Korn, Joshua M; McCarroll, Steven A; Altshuler, David; Sklar, Pamela; Purcell, Shaun; Daly, Mark J

    2010-09-09

    Investigators have linked rare copy number variation (CNVs) to neuropsychiatric diseases, such as schizophrenia. One hypothesis is that CNV events cause disease by affecting genes with specific brain functions. Under these circumstances, we expect that CNV events in cases should impact brain-function genes more frequently than those events in controls. Previous publications have applied "pathway" analyses to genes within neuropsychiatric case CNVs to show enrichment for brain-functions. While such analyses have been suggestive, they often have not rigorously compared the rates of CNVs impacting genes with brain function in cases to controls, and therefore do not address important confounders such as the large size of brain genes and overall differences in rates and sizes of CNVs. To demonstrate the potential impact of confounders, we genotyped rare CNV events in 2,415 unaffected controls with Affymetrix 6.0; we then applied standard pathway analyses using four sets of brain-function genes and observed an apparently highly significant enrichment for each set. The enrichment is simply driven by the large size of brain-function genes. Instead, we propose a case-control statistical test, cnv-enrichment-test, to compare the rate of CNVs impacting specific gene sets in cases versus controls. With simulations, we demonstrate that cnv-enrichment-test is robust to case-control differences in CNV size, CNV rate, and systematic differences in gene size. Finally, we apply cnv-enrichment-test to rare CNV events published by the International Schizophrenia Consortium (ISC). This approach reveals nominal evidence of case-association in neuronal-activity and the learning gene sets, but not the other two examined gene sets. The neuronal-activity genes have been associated in a separate set of schizophrenia cases and controls; however, testing in independent samples is necessary to definitively confirm this association. Our method is implemented in the PLINK software package.

  16. A comprehensive transcriptional map of primate brain development.

    PubMed

    Bakken, Trygve E; Miller, Jeremy A; Ding, Song-Lin; Sunkin, Susan M; Smith, Kimberly A; Ng, Lydia; Szafer, Aaron; Dalley, Rachel A; Royall, Joshua J; Lemon, Tracy; Shapouri, Sheila; Aiona, Kaylynn; Arnold, James; Bennett, Jeffrey L; Bertagnolli, Darren; Bickley, Kristopher; Boe, Andrew; Brouner, Krissy; Butler, Stephanie; Byrnes, Emi; Caldejon, Shiella; Carey, Anita; Cate, Shelby; Chapin, Mike; Chen, Jefferey; Dee, Nick; Desta, Tsega; Dolbeare, Tim A; Dotson, Nadia; Ebbert, Amanda; Fulfs, Erich; Gee, Garrett; Gilbert, Terri L; Goldy, Jeff; Gourley, Lindsey; Gregor, Ben; Gu, Guangyu; Hall, Jon; Haradon, Zeb; Haynor, David R; Hejazinia, Nika; Hoerder-Suabedissen, Anna; Howard, Robert; Jochim, Jay; Kinnunen, Marty; Kriedberg, Ali; Kuan, Chihchau L; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Luong, Lon; Mastan, Naveed; May, Ryan; Melchor, Jose; Mosqueda, Nerick; Mott, Erika; Ngo, Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D; Parry, Sheana; Pendergraft, Julie; Potekhina, Lydia; Reding, Melissa; Riley, Zackery L; Roberts, Tyson; Rogers, Brandon; Roll, Kate; Rosen, David; Sandman, David; Sarreal, Melaine; Shapovalova, Nadiya; Shi, Shu; Sjoquist, Nathan; Sodt, Andy J; Townsend, Robbie; Velasquez, Lissette; Wagley, Udi; Wakeman, Wayne B; White, Cassandra; Bennett, Crissa; Wu, Jennifer; Young, Rob; Youngstrom, Brian L; Wohnoutka, Paul; Gibbs, Richard A; Rogers, Jeffrey; Hohmann, John G; Hawrylycz, Michael J; Hevner, Robert F; Molnár, Zoltán; Phillips, John W; Dang, Chinh; Jones, Allan R; Amaral, David G; Bernard, Amy; Lein, Ed S

    2016-07-21

    The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high-resolution transcriptional atlas of rhesus monkey (Macaca mulatta) brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical division of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons. Cortical layers and areas acquire adult-like molecular profiles surprisingly late in postnatal development. Disparate cell populations exhibit distinct developmental timing of gene expression, but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, although approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny compared to monkey.

  17. Essential role for survivin in early brain development.

    PubMed

    Jiang, Yuying; de Bruin, Alain; Caldas, Hugo; Fangusaro, Jason; Hayes, John; Conway, Edward M; Robinson, Michael L; Altura, Rachel A

    2005-07-27

    Apoptosis is an essential process during normal neuronal development. Approximately one-half of the neurons produced during neurogenesis die before completion of CNS maturation. To characterize the role of the inhibitor of apoptosis gene, survivin, during neurogenesis, we used the Cre-loxP-system to generate mice lacking survivin in neuronal precursor cells. Conditional deletion of survivin starting at embryonic day 10.5 leads to massive apoptosis of neuronal precursor cells in the CNS. Conditional mutants were born at the expected Mendelian ratios; however, these died shortly after birth from respiratory insufficiency, without primary cardiopulmonary pathology. Newborn conditional mutants showed a marked reduction in the size of the brain associated with severe, mutifocal apoptosis in the cerebrum, cerebellum, brainstem, spinal cord, and retina. Caspase-3 and caspase-9 activities in the mutant brains were significantly elevated, whereas bax expression was unchanged from controls. These results show that survivin is critically required for the survival of developing CNS neurons, and may impact on our understanding of neural repair, neural development, and neurodegenerative diseases. Our study is the first to solidify a role for survivin as an antiapoptotic protein during normal neuronal development in vivo.

  18. Tunes stuck in your brain: The frequency and affective evaluation of involuntary musical imagery correlate with cortical structure.

    PubMed

    Farrugia, Nicolas; Jakubowski, Kelly; Cusack, Rhodri; Stewart, Lauren

    2015-09-01

    Recent years have seen a growing interest in the neuroscience of spontaneous cognition. One form of such cognition is involuntary musical imagery (INMI), the non-pathological and everyday experience of having music in one's head, in the absence of an external stimulus. In this study, aspects of INMI, including frequency and affective evaluation, were measured by self-report in 44 subjects and related to variation in brain structure in these individuals. Frequency of INMI was related to cortical thickness in regions of right frontal and temporal cortices as well as the anterior cingulate and left angular gyrus. Affective aspects of INMI, namely the extent to which subjects wished to suppress INMI or considered them helpful, were related to gray matter volume in right temporopolar and parahippocampal cortices respectively. These results provide the first evidence that INMI is a common internal experience recruiting brain networks involved in perception, emotions, memory and spontaneous thoughts.

  19. MeCP2 is critical for maintaining mature neuronal networks and global brain anatomy during late stages of postnatal brain development and in the mature adult brain.

    PubMed

    Nguyen, Minh Vu Chuong; Du, Fang; Felice, Christy A; Shan, Xiwei; Nigam, Aparna; Mandel, Gail; Robinson, John K; Ballas, Nurit

    2012-07-18

    Mutations in the X-linked gene, methyl-CpG binding protein 2 (Mecp2), underlie a wide range of neuropsychiatric disorders, most commonly, Rett Syndrome (RTT), a severe autism spectrum disorder that affects approximately one in 10,000 female live births. Because mutations in the Mecp2 gene occur in the germ cells with onset of neurological symptoms occurring in early childhood, the role of MeCP2 has been ascribed to brain maturation at a specific developmental window. Here, we show similar kinetics of onset and progression of RTT-like symptoms in mice, including lethality, if MeCP2 is removed postnatally during the developmental stage that coincides with RTT onset, or adult stage. For the first time, we show that brains that lose MeCP2 at these two different stages are actively shrinking, resulting in higher than normal neuronal cell density. Furthermore, we show that mature dendritic arbors of pyramidal neurons are severely retracted and dendritic spine density is dramatically reduced. In addition, hippocampal astrocytes have significantly less complex ramified processes. These changes accompany a striking reduction in the levels of several synaptic proteins, including CaMKII α/β, AMPA, and NMDA receptors, and the synaptic vesicle proteins Vglut and Synapsin, which represent critical modifiers of synaptic function and dendritic arbor structure. Importantly, the mRNA levels of these synaptic proteins remains unchanged, suggesting that MeCP2 likely regulates these synaptic proteins post-transcriptionally, directly or indirectly. Our data suggest a crucial role for MeCP2 in post-transcriptional regulation of critical synaptic proteins involved in maintaining mature neuronal networks during late stages of postnatal brain development.

  20. Rearing environment affects development of the immune system in neonates.

    PubMed

    Inman, C F; Haverson, K; Konstantinov, S R; Jones, P H; Harris, C; Smidt, H; Miller, B; Bailey, M; Stokes, C

    2010-06-01

    Early-life exposure to appropriate microbial flora drives expansion and development of an efficient immune system. Aberrant development results in increased likelihood of allergic disease or increased susceptibility to infection. Thus, factors affecting microbial colonization may also affect the direction of immune responses in later life. There is a need for a manipulable animal model of environmental influences on the development of microbiota and the immune system during early life. We assessed the effects of rearing under low- (farm, sow