Science.gov

Sample records for affecting carbon fluxes

  1. Climatic Versus Biotic Constraints on Carbon and Water Fluxes in Seasonally Drought-affected Ponderosa Pine Ecosystems. Chapter 2

    NASA Technical Reports Server (NTRS)

    Schwarz, P. A.; Law, B. E.; Williams, M.; Irvine, J.; Kurpius, M.; Moore, D.

    2005-01-01

    We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (50%), and intermediate at the YS (<20%). In the young, developing stand, interannual variation in leaf area has larger effects on fluxes than climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE.

  2. Climatic versus biotic constraints on carbon and water fluxes in seasonally drought-affected ponderosa pine ecosystems

    NASA Astrophysics Data System (ADS)

    Schwarz, P. A.; Law, B. E.; Williams, M.; Irvine, J.; Kurpius, M.; Moore, D.

    2004-12-01

    We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (<10%), largest at the MS (>50%), and intermediate at the YS (<20%). In the young, developing stand, interannual variation in leaf area has larger effects on fluxes than climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE.

  3. Carbon Flux Explorers

    ScienceCinema

    Bishop, Jim

    2016-10-12

    Jim Bishop, senior scientist at Berkeley Lab and professor at UC Berkeley, is leading a project to deploy robotic floats that provide data on how microorganisms sequester carbon in the ocean. He recently led a research team on a 10-day voyage, funded by the National Science Foundation, to put the Carbon Flux Explorers to the test.

  4. Carbon Flux Explorers

    SciTech Connect

    Bishop, Jim

    2016-09-09

    Jim Bishop, senior scientist at Berkeley Lab and professor at UC Berkeley, is leading a project to deploy robotic floats that provide data on how microorganisms sequester carbon in the ocean. He recently led a research team on a 10-day voyage, funded by the National Science Foundation, to put the Carbon Flux Explorers to the test.

  5. Processes Affecting Carbon Fluxes of Grassland Ecosystems Under Elevated CO{sub 2}

    SciTech Connect

    Owensby, C.E.; Ham, J.M.; Rice, C.W.; Knapp, A.K.

    1998-03-14

    Final report of a project which exposed native tallgrass prairie to twice-ambient atmospheric CO{sub 2}. Improved water use efficiency increased biomass production and increased soil organic matter. Twice ambient CO{sub 2} decreased canopy evapotranspiration by 22%, but, maintained an increased net carbon sequestration.

  6. How Seasonal Drought Affect Carbon and Water Fluxes of Alternative Energy Crops in the US?

    NASA Astrophysics Data System (ADS)

    Joo, E.; Hussain, M. Z.; Zeri, M.; Masters, M.; Gomez-Casanovas, N.; DeLucia, E. H.; Bernacchi, C.

    2014-12-01

    The cellulosic biomass of Switchgrass (Panicum virgatum L.), Miscanthus (Miscanthus giganteus) and native prairie are considered candidate second-generation biofuels, potentially resulting in partial replacement annual row crops within the Midwestern US. There is an increasing focus to study the environmental impact of agricultural crops, however not much is known on the influence on the energy, carbon and water cycles of energy crops, especially under drought conditions. This study compares the impact of drought episodes (in 2011 and 2012) on evapotranspiration (ET), net ecosystem productivity (NEP) and water use efficiency (WUE; equals to NEP/ET) for Switchgrass (SW), Miscanthus (MXG), Maize (MZ) and native prairie (NP) grown in Central Illinois using the eddy covariance technique. Due to the prolonged drought and the rapid growth development with increasing ET of MXG in 2012, large water deficit (precipitation-ET) was observed for each species up to the highest deficit of -360 mm for this species. The gross primary production (GPP) of MZ was radically decreased by the drought in 2011 and 2012, while SW and NP were not influenced. MXG increased NEP throughout the typically wet and drought years, mainly due to the decrease in respiration and by the largest GPP upon the drought in 2012. Despite having the largest water deficit, MXG showed an enhanced WUE of 12.8 and 11.4 Kg C ha-1mm-1 in 2011 and 2012, respectively, in comparison to years typical to the region with WUE of 3.7-7.3 Kg C ha-1mm-1. Other species did not show a significant enhancement of WUE. Therefore we conclude that out of the studied species, MXG has more access to water, and uses this water the most efficiently to store carbon, under drought conditions.

  7. Generalized Münch coupling between sugar and water fluxes for modelling carbon allocation as affected by water status.

    PubMed

    Daudet, F A; Lacointe, A; Gaudillère, J P; Cruiziat, P

    2002-02-07

    A model of within-plant carbon allocation is proposed which makes a generalized use of the Münch mechanism to integrate carbon and water functions and their involvement in growth limitations. The plant is envisioned as a branched network of resistive pathways (phloem and xylem) with nodal organs acting as sources and sinks for sucrose. Four elementary organs (leaf, stem, fruit, root) are described with their particular sink functions and hydraulic attributes. Given the rates of photosynthesis and transpiration and the hydraulic properties of the network as inputs, the model calculates the internal fluxes of water and sucrose. Xylem water potential (Psi), phloem sucrose concentration (C) and turgor pressure (P) are calculated everywhere in the network accounting for osmotic equilibrium between apoplasm and symplasm and coupled functioning of xylem and phloem. The fluxes of phloem and xylem saps are driven by the gradients of P and Psi, respectively. The fruit growth rate is assumed as turgor pressure dependent. To demonstrate its ability to address within-plant competition, the model is run with a simple-branched structure gathering three leaves, eight stem segments, three competing growing fruits and one root. The model was programmed with P-Spice, a software specifically designed for simulating electrical circuits but easily adaptable to physiology. Simulations of internal water fluxes, sucrose concentrations and fruit growth rates are given for different conditions of soil water availability and hydraulic resistances (sensitivity analysis). The discussion focuses on the potential interest of this approach in functional--structural plant models to address water stress-induced effects.

  8. Changes in soil moisture affect carbon and water fluxes from trees and soils differently in a young semi-arid ponderosa pine stand

    NASA Astrophysics Data System (ADS)

    Ruehr, N. K.; Martin, J.; Pettijohn, J. C.; Law, B. E.

    2010-12-01

    A potential decline in the global trend in land evapotranspiration due to soil moisture limitation may alter the C balance of forest ecosystems, especially in water-limited Mediterranean and semi-arid climate zones. Despite the wide distribution of ponderosa pine forests in semi-arid climate zones of the USA, detailed studies on how these ecosystems may respond to changes in soil water availability are rather rare. To provide better insights on this relevant topic, we conducted a soil moisture manipulation experiment and investigated the response of tree and soil carbon and water fluxes in a young ponderosa pine stand in Oregon (Ameriflux site US-Me6) during summer 2010. Irrigation started with the onset of the dry season at the end of June, maintaining volumetric soil moisture content constantly above 20%. In contrast, in the control treatment soil moisture dried down with regional drought and was below 10% and 15% in 10 cm and 30 cm depth by the end of August. Results show that irrigation increased soil CO2 efflux by 40% at the end of July and reached a maximum of 60% in mid August, with about one-third to two-thirds originating from root-rhizosphere respiration (soil CO2 efflux under tree - soil CO2 efflux in the open). Photosynthesis (Amax), stomatal conductance (gs) and transpiration (T) rates were not affected by irrigation in early summer. However, Amax, gs and T rates in both treatments suddenly decreased, most likely caused by increased VPD and decreased soil water availability (predawn needle water potentials) at the end of July. Irrigation dampened that decrease and caused Amax, gs and T to remain on average about 25% higher, following largely the course of VPD during August. In summary, our preliminary results indicate that higher soil water content affected in particular soil activity and root-rhizosphere respiration rates. Photosynthesis and transpiration appeared to depend to a lesser extent and later in the season on irrigation water, yet both

  9. Suspended particulate matter fluxes along with their associated metals, organic matter and carbonates in a coastal Mediterranean area affected by mining activities.

    PubMed

    Helali, Mohamed Amine; Zaaboub, Noureddine; Oueslati, Walid; Added, Ayed; Aleya, Lotfi

    2016-03-15

    A study of suspended particulate matter (SPM) fluxes along with their associated metals, organic matter and carbonates, was conducted off the Mejerda River outlet in May 2011 and in March and July 2012 at depths of 10, 20 and 40 m using sediment traps. SPM fluxes are more significant near the Mejerda outlet, especially in winter, but dissipate further offshore. Normalization reveals that the Mejerda is a major source of Pb, Zn, Cd, Cu, Ni, and Co, all of which are the result of human activities. In contrast, Fe, Mn and N are of authigenic origin. The enrichment factor shows that Pb, Zn and especially Cd are the most highly polluting metals off the Mejerda outlet. This confirms the trend observed on the shores of the Mejerda prodelta and is consistent with the type of mining activities conducted in the Mejerda catchment.

  10. Carbon Dioxide Flux Measurement Systems (CO2Flux) Handbook

    SciTech Connect

    Fischer, M

    2005-01-01

    The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The fluxes are obtained by the eddy covariance technique, which computes the flux as the mean product of the vertical wind component with CO2 and H2O densities, or estimated virtual temperature. A three-dimensional sonic anemometer is used to obtain the orthogonal wind components and the virtual (sonic) temperature. An infrared gas analyzer is used to obtain the CO2 and H2O densities. A separate sub-system also collects half-hour average measures of meteorological and soil variables from separate 4-m towers.

  11. Foliar uptake, carbon fluxes and water status are affected by the timing of daily fog in saplings from a threatened cloud forest.

    PubMed

    Berry, Z Carter; White, Joseph C; Smith, William K

    2014-05-01

    In cloud forests, foliar uptake (FU) of water has been reported for numerous species, possibly acting to relieve daily water and carbon stress. While the prevalence of FU seems common, how daily variation in fog timing may affect this process has not been studied. We examined the quantity of FU, water potentials, gas exchange and abiotic variation at the beginning and end of a 9-day exposure to fog in a glasshouse setting. Saplings of Abies fraseri (Pursh) Poir. and Picea rubens Sarg. were exposed to morning (MF), afternoon (AF) or evening fog (EF) regimes to assess the ability to utilize fog water at different times of day and after sustained exposure to simulated fog. The greatest amount of FU occurred during MF (up to 50%), followed by AF (up to 23%) and then EF, which surprisingly had no FU. There was also a positive relationship between leaf conductance and FU, suggesting a role of stomata in FU. Moreover, MF and AF lead to the greatest improvements in daily water balance and carbon gain, respectively. Foliar uptake was important for improving plant ecophysiology but was influenced by diurnal variation in fog. With climate change scenarios predicting changes to cloud patterns and frequency that will likely alter diurnal patterns, cloud forests that rely on this water subsidy could be affected.

  12. Gas and aerosol fluxes. [emphasizing sulfur, nitrogen, and carbon

    NASA Technical Reports Server (NTRS)

    Martens, C. S.

    1980-01-01

    The development of remote sensing techniques to address the global need for accurate distribution and flux determinations of both man made and natural materials which affect the chemical composition of the atmosphere, the heat budget of the Earth, and the depletion, of stratospheric ozone is considered. Specifically, trace gas fluxes, sea salt aerosol production, and the effect of sea surface microlayer on gas and aerosol fluxes are examined. Volatile sulfur, carbon, nitrogen, and halocarbon compounds are discussed including a statement of the problem associated with each compound or group of compounds, a brief summary of current understanding, and suggestions for needed research.

  13. Net carbon flux in organic and conventional olive production systems

    NASA Astrophysics Data System (ADS)

    Saeid Mohamad, Ramez; Verrastro, Vincenzo; Bitar, Lina Al; Roma, Rocco; Moretti, Michele; Chami, Ziad Al

    2014-05-01

    Agricultural systems are considered as one of the most relevant sources of atmospheric carbon. However, agriculture has the potentiality to mitigate carbon dioxide mainly through soil carbon sequestration. Some agricultural practices, particularly fertilization and soil management, can play a dual role in the agricultural systems regarding the carbon cycle contributing to the emissions and to the sequestration process in the soil. Good soil and input managements affect positively Soil Organic Carbon (SOC) changes and consequently the carbon cycle. The present study aimed at comparing the carbon footprint of organic and conventional olive systems and to link it to the efficiency of both systems on carbon sequestration by calculating the net carbon flux. Data were collected at farm level through a specific and detailed questionnaire based on one hectare as a functional unit and a system boundary limited to olive production. Using LCA databases particularly ecoinvent one, IPCC GWP 100a impact assessment method was used to calculate carbon emissions from agricultural practices of both systems. Soil organic carbon has been measured, at 0-30 cm depth, based on soil analyses done at the IAMB laboratory and based on reference value of SOC, the annual change of SOC has been calculated. Substracting sequestrated carbon in the soil from the emitted on resulted in net carbon flux calculation. Results showed higher environmental impact of the organic system on Global Warming Potential (1.07 t CO2 eq. yr-1) comparing to 0.76 t CO2 eq. yr-1 in the conventional system due to the higher GHG emissions caused by manure fertilizers compared to the use of synthetic foliar fertilizers in the conventional system. However, manure was the main reason behind the higher SOC content and sequestration in the organic system. As a resultant, the organic system showed higher net carbon flux (-1.7 t C ha-1 yr-1 than -0.52 t C ha-1 yr-1 in the conventional system reflecting higher efficiency as a

  14. Estimates of carbon cycle surface fluxes from the NASA Carbon Monitoring System Flux Pilot Project

    NASA Astrophysics Data System (ADS)

    Bowman, K. W.; Liu, J.; Lee, M.; Gurney, K. R.; Menemenlis, D.; Brix, H.; Hill, C. N.; Denning, S.; Haynes, K.; Baker, I. T.; Henze, D. K.; Bousserez, N.; Marland, G.; Marland, E.; Badurek, C. A.

    2013-12-01

    The goal of NASA Carbon Monitoring Study (CMS) Flux Pilot Project is to incorporate the full suite of NASA observational, modeling, and assimilation capabilities in order to attribute changes in globally distributed CO2 concentrations to spatially resolved surface fluxes across the entire carbon cycle. To that end, CMS has initiated a coordinated effort between land surface, ocean, fossil fuel, and atmospheric scientists to provide global estimates of CO2 constrained by satellite observations and informed by contemporaneous estimates of 'bottom up' fluxes from land surface, ocean, and fossil fuel models. The CMS Flux has evolved to incorporate a spatially explicit fossil fuel data assimilation system (FFDAS), an updated ECCO2 Darwin biogeochemical adjoint ocean state estimation system, and the new Simple Biospheric Model (Sib4) terrestrial ecosystem model. We compare GOSAT xCO2 observations, processed by the JPL ACOS v33, to predicted CMS Flux atmospheric CO2 concentrations for 2010-2011, and attribute the differences to spatially-resolved fluxes. We examine these fluxes in terms of interannual variability, correlative satellite measurements, and uncertainty across the carbon cycle

  15. Carbon Flux Explorer observations of ocean carbon sedimentation

    NASA Astrophysics Data System (ADS)

    Bishop, J. K.; Wood, T.

    2011-12-01

    The strength of natural biotic organic carbon sedimentation from the base of sunlit zone of the ocean is estimated to be 10 Pg C/y globally. This biological sequestration of carbon to deeper waters plays a key role in the atmophere/ocean carbon balance. It is impossible to predict whether the ocean biological carbon pump will strengthen or weaken in the face of climate change and ocean acidification because there are scant observations of the sinking carbon flux and remineralization in the upper 1000 m. We report progress on the development and deployment of the fully robotic and autonomous Ocean Carbon Flux Explorer (CFE) which is designed to follow hourly variations of carbon sedimentation for seasons at depths to 1500 m. The CFE relays observations to shore in real time via Iridium satellite links. The Carbon Flux Explorer is the integration of the Scripps Sounding Oceanographic Lagrangian Observer (SOLO) with the LBNL/UC Berkeley Optical Sedimentation Recorder (OSR). The OSR intercepts sinking particles and images them using dark field, transmitted, and transmitted cross polarized modes of illumination. OSR's modified to collect samples have been deployed to enable translation image data on particle albedo, optical density, and birefringence to carbon units. Our aim is fully autonomous operations in 2012. In this progress update, we report highlights of CFE deployments in the Santa Catalina Basin (October 2010, May 2011) and Santa Cruz Basin (May 2011), and California Current waters (August through September 2011). In many cases CFE data shows order of magnitude variation of particle sedimentation on diurnal time scales, a view of sedimentation here-to-fore not attained.

  16. Soil carbon flux following pulse precipitation events in the shortgrass steppe

    USGS Publications Warehouse

    Munson, S.M.; Benton, T.J.; Lauenroth, W.K.; Burke, I.C.

    2010-01-01

    Pulses of water availability characterize semiarid and arid ecosystems. Most precipitation events in these ecosystems are small (???10 mm), but can stimulate carbon flux. The large proportion of carbon stored belowground and small carbon inputs create the potential for these small precipitation events to have large effects on carbon cycling. Land-use change can modify these effects through alteration of the biota and soil resources. The goal of our research was to determine how small precipitation events (2, 5, and 10 mm) affected the dynamics of soil carbon flux and water loss in previously cultivated Conservation Reserve Program (CRP) fields and undisturbed shortgrass steppe. Total carbon loss and duration of elevated carbon flux increased as event size increased in all field types. Time since cultivation increased in importance for carbon flux as event size increased. A comparison of water loss rates to carbon flux suggests that water is limiting to carbon flux for the smallest events, but is less limiting for events above 5 mm. We also describe how water availability interacts with temperature in controlling carbon flux rate. We conclude that small precipitation events have the potential for large short-term losses of carbon in the shortgrass steppe. ?? 2009 The Ecological Society of Japan.

  17. Expression and knockdown of the PEPC1 gene affect carbon flux in the biosynthesis of triacylglycerols by the green alga Chlamydomonas reinhardtii.

    PubMed

    Deng, Xiaodong; Cai, Jiajia; Li, Yajun; Fei, Xiaowen

    2014-11-01

    The regulation of lipid biosynthesis is important in photosynthetic eukaryotic cells. This regulation is facilitated by the direct synthesis of fatty acids and triacylglycerol (TAG), and by other controls of the main carbon metabolic pathway. In this study, knockdown of the mRNA expression of the Chlamydomonas phosphoenolpyruvate carboxylase isoform 1 (CrPEPC1) gene by RNA interference increased TAG level by 20 % but decreased PEPC activities in the corresponding transgenic algae by 39-50 %. The decrease in CrPEPC1 expression increased the expression of TAG biosynthesis-related genes, such as acyl-CoA:diacylglycerol acyltransferase and phosphatidate phosphatase. Conversely, CrPEPC1 over-expression decreased TAG level by 37 % and increased PEPC activities by 157-184 %. These observations suggest that the lipid content of algal cells can be controlled by regulating the CrPEPC1 gene.

  18. Monitoring Energy and Carbon Fluxes in a Mediterranean City

    NASA Astrophysics Data System (ADS)

    Marras, S.; Sirca, C.; Bellucco, V.; Arca, A.; Ventura, A.; Duce, P.; Spano, D.

    2015-12-01

    Cities and the surrounding areas play an important role in altering and/or contributing to the natural processes of the Earth system. Specifically, cities affect the amount and partitioning of energy fluxes, as well as the carbon budget. It is recognized that increased greenhouse gases (GHG) concentration (mainly carbon dioxide) and air temperature values are typically experienced by cities, due to their structural and morphological characteristics and to human activities in urban areas (such as traffic, domestic heating/cooling, etc.). This will impact the urban climate. Reducing the impact of urbanization on climate requires the knowledge of the interactions and links between human activities and the land-atmosphere system. Each city has different characteristics and conditions, so planning strategies helping in reducing carbon emissions should take into account local features. In this contest, monitoring activities are crucial to study the exchange of energy, water, and carbon over the city, evaluate their impact on human livability, and understand the role of the city on climate. A research activity is carried out in the Mediterranean city of Sassari, in the North of Sardinia island (Italy) to monitor urban fluxes and distinguish the main sources of GHG emissions, which could help the municipality to identify possible actions for reducing them. An Eddy Covariance tower was set up in the city center to directly monitor energy and carbon exchanges at half-hourly time step. Even if the measurement period only consists of few months, the daily trend of urban fluxes clearly shows that traffic is one of the main carbon emission sources, while the contribution of vegetation in sequestering carbon is low due to the reduced amount of green areas in the measurements footprint (< 20%). In addition, differences between working days and holiday periods can be distinguished.

  19. Carbon in, Carbon out: Reevaluating Carbon Fluxes in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Manning, C. E.; Kelemen, P. B.

    2015-12-01

    Subduction zones exert a fundamental control on the deep carbon cycle. We reevaluated carbon inputs and outputs in convergent margins considering new estimates of C concentration in subducting mantle peridotites, carbonate solubility in aqueous fluids along subduction geotherms, melting and diapirism of carbon-bearing metasediments, and diffuse degassing from arcs. Our updated estimate of carbon inputs to the global subduction system, which includes estimates for C in altered peridotite, is 40-66 megatons carbon/year (MtC/y). We find that estimates of C lost from slabs (14-66 MtC/y) must take into account the high CaCO3 solubility in aqueous fluids, which contributes significant C that must be added to that derived from mineral decarbonation reactions. When taken together with hydrous silicate and carbonatite melts and metasediment diapirs, nearly all C can be scavenged from subducting lithosphere. The return of C to the atmosphere via arc-volcano degassing is only 18-43 MtC/y, but consideration deep volatile saturation of arc magmas, magma ponding in the middle and deep arc crust, and CO2 venting in forearcs can account for the remaining C lost from the slab. Thus, whereas previous studies concluded that about half the subducting carbon is returned to the convecting mantle, we find that relatively little carbon may be recycled. If so, substantial quantities of carbon are stored in the mantle lithosphere and crust and the carbon content of the mantle lithosphere + crust + ocean + atmosphere must be increasing, at least over the last 5-10 My. This is consistent with inferences from noble gas data. Recycled carbon in diamonds is a small fraction of the global carbon inventory.

  20. Reduced soil wettability can affect greenhouse gas fluxes

    NASA Astrophysics Data System (ADS)

    Urbanek, Emilia; Qassem, Khalid

    2015-04-01

    Soil moisture is known to be an important factor affecting the carbon (C) dynamics in soils including decomposition of organic matter and exchange of gases like CO2 and CH4 between the soil and the atmosphere. Most studies and process models looking at the soil C dynamics assume, however, that soils are easily wettable and water is relatively uniformly distributed within the soil pores. Most soils, however, do not wet spontaneously when dry or moderately moist, but instead exhibit some degree of soil water repellency (i.e. hydrophobicity), which can restrict infiltration and conductivity of water for weeks or months. This is world-wide occurring phenomenon which affects all soil textural types but is particularly common under permanent vegetation e.g. forest, grass and shrub vegetation. Soil water repellency is most profound during drier seasons, when the soil moisture content is relatively low. Although prolonged contact with water can gradually decrease water repellency, some soils do not recover to being completely wettable even after very wet winter months or substantial rainfall events. It has been recognized that with the predicted climatic changes the phenomenon of soil water repellency will become even more pronounced and severe, additionally it may occur in the areas and climatic zones where the effect have not been currently recognized. One of the main implications of soil water repellency is restricted water infiltration and reduced conductivity, which results in reduced soil water availability for plants and soil biota, even after prolonged periods of rainfall. As the process of C mineralization and consequently CO2 efflux from soil is driven by the accessibility of organic matter to decomposing organisms, which in turn is directly dependent on (i) soil moisture and (ii) soil temperature it is, therefore hypothesised that carbon decomposition and CO2 efflux in water repellent soils will also be affected when soil in the water repellent state. The CO2

  1. Sampling frequency affects estimates of annual nitrous oxide fluxes

    PubMed Central

    Barton, L.; Wolf, B.; Rowlings, D.; Scheer, C.; Kiese, R.; Grace, P.; Stefanova, K.; Butterbach-Bahl, K.

    2015-01-01

    Quantifying nitrous oxide (N2O) fluxes, a potent greenhouse gas, from soils is necessary to improve our knowledge of terrestrial N2O losses. Developing universal sampling frequencies for calculating annual N2O fluxes is difficult, as fluxes are renowned for their high temporal variability. We demonstrate daily sampling was largely required to achieve annual N2O fluxes within 10% of the ‘best’ estimate for 28 annual datasets collected from three continents—Australia, Europe and Asia. Decreasing the regularity of measurements either under- or overestimated annual N2O fluxes, with a maximum overestimation of 935%. Measurement frequency was lowered using a sampling strategy based on environmental factors known to affect temporal variability, but still required sampling more than once a week. Consequently, uncertainty in current global terrestrial N2O budgets associated with the upscaling of field-based datasets can be decreased significantly using adequate sampling frequencies. PMID:26522228

  2. Sampling frequency affects estimates of annual nitrous oxide fluxes

    NASA Astrophysics Data System (ADS)

    Barton, L.; Wolf, B.; Rowlings, D.; Scheer, C.; Kiese, R.; Grace, P.; Stefanova, K.; Butterbach-Bahl, K.

    2015-11-01

    Quantifying nitrous oxide (N2O) fluxes, a potent greenhouse gas, from soils is necessary to improve our knowledge of terrestrial N2O losses. Developing universal sampling frequencies for calculating annual N2O fluxes is difficult, as fluxes are renowned for their high temporal variability. We demonstrate daily sampling was largely required to achieve annual N2O fluxes within 10% of the ‘best’ estimate for 28 annual datasets collected from three continents—Australia, Europe and Asia. Decreasing the regularity of measurements either under- or overestimated annual N2O fluxes, with a maximum overestimation of 935%. Measurement frequency was lowered using a sampling strategy based on environmental factors known to affect temporal variability, but still required sampling more than once a week. Consequently, uncertainty in current global terrestrial N2O budgets associated with the upscaling of field-based datasets can be decreased significantly using adequate sampling frequencies.

  3. Salp contributions to vertical carbon flux in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Stone, Joshua P.; Steinberg, Deborah K.

    2016-07-01

    We developed a one-dimensional model to estimate salp contributions to vertical carbon flux at the Bermuda Atlantic Time-series Study (BATS) site in the North Atlantic subtropical gyre for a 17-yr period (April 1994 to December 2011). We based the model parameters on published rates of salp physiology and experimentally determined sinking and decomposition rates of salp carcasses. Salp grazing was low during non-bloom conditions, but routinely exceeded 100% of chlorophyll standing stock and primary production during blooms. Fecal pellet production was the largest source of salp carbon flux (78% of total), followed by respiration below 200 m (19%), sinking of carcasses (3%), and DOC excretion below 200 m (<0.1%). Thalia democratica, Salpa fusiformis, Salpa aspera, Wheelia cylindrica, and Iasis zonaria were the five highest contributors, accounting for 95% of total salp-mediated carbon flux. Seasonally, salp flux was higher during spring-summer than fall-winter, due to seasonal changes in species composition and abundance. Salp carbon export to 200 m was on average 2.3 mg C m-2 d-1 across the entire time series. This is equivalent to 11% of the mean 200 m POC flux measured by sediment traps in the region. During years with significant salp blooms, however, annually-averaged salp carbon export was the equivalent of up to 60% of trap POC flux at 200 m. Salp carbon flux attenuated slowly, and at 3200 m the average modeled carbon from salps was 109% of the POC flux measured in sediment traps at that depth. Migratory and carcass carbon export pathways should also be considered (alongside fecal pellet flux) as facilitating carbon export to sequestration depths in future studies.

  4. Integration of carbon fluxes and optical remote sensing

    NASA Astrophysics Data System (ADS)

    Castro-Contreras, S.; Nestola, E.; Flanagan, L. B.; Gamon, J. A.

    2013-12-01

    The integration of optical and flux measurements can improve our understanding of flux controls and dynamics. For our study, reflectance and flux measurements at a dry mixed-grass prairie grassland and crop ecosystem were collected. A LUE model was used to estimate productivity and then compared to eddy-covariance derived NEE and GPP. Both narrow band and low cost two-band radiometers were explored as alternative ways to estimate terms of the LUE model. The high temporal resolution in an automated broadband sensors system resulted in estimated carbon fluxes that accurately tracked the seasonal carbon flux dynamics, including the precise tracking of the phenologic cycle through green-up, maturity, and senescence. Furthermore, automated sensors offered a continuous time series that provide a novel approach for partitioning net carbon fluxes into its productivity and respiration components, as well as allowed gap filling missing eddy covariance data. Association between harvested biomass and NDVI derived from ground spectrometry provide a method for assessing variation in standing green biomass. By integrating remote sensing and flux measurement approaches, we can achieve a more comprehensive understanding of the dynamics involving the biospheric carbon budget. Having the optical and flux measurements a comparable location and time scale as the eddy covariance allows for up-scaling flux measurements, and could permit direct comparisons to aircraft and satellite measurements.

  5. Empirically Modeling Carbon Fluxes over the Northern Great Plains Grasslands

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wylie, B. K.; Ji, L.; Gilmanov, T.; Tieszen, L. L.

    2007-12-01

    Grasslands cover nearly one-fifth of the global terrestrial surface and store most of their carbon below ground. The grassland ecosystem in the Great Plains occupies over 1.5 million km2 of land area and is the primary resource for livestock production in North America. However, the contributions of grasslands to local and regional carbon budgets remain uncertain due to the lack of carbon flux data for the expansive grassland ecosystems under various managements, land uses, and climate variability. A quantitative understanding of carbon fluxes across these systems is essential for developing regional, national, and global carbon budgets and providing guidance to policy makers and managers when substantial conversion to biofuels are implemented. Additionally, these estimates will provide insights into how the grassland ecosystem will respond to future climate and what systems are sustainable and offer net carbon sinks. This knowledge base and decisions support tools are needed for developing land management strategies for the region under a variety of environmental conditions and land use options. In the past, we used a remote sensing-based piecewise regression (PWR) model to estimate the grassland carbon fluxes in the northern Great Plains using the 1-km SPOT VEGETATION normalized difference vegetation index (NDVI) data. We estimated the carbon fluxes through integrated spatial databases and remotely sensed extrapolations of flux tower data to regional scales. The PWR model was applied to derive an empirical relationship between environmental variables and tower-based measurements. The PWR equations were then applied through time and space to estimate carbon fluxes across the study area at 1-km resolution. We now improve this modeling approach by 1) using Moderate Resolution Imaging Spectroradiometer (MODIS) data with higher temporal, spatial, and spectral resolutions (8-day, 500-m, and 7-band) as input; 2) incorporating the actual vegetation evapotranspiration

  6. Mapping carbon flux uncertainty and selecting optimal locations for future flux towers in the Great Plains

    USGS Publications Warehouse

    Gu, Y.; Howard, D.M.; Wylie, B.K.; Zhang, L.

    2012-01-01

    Flux tower networks (e. g., AmeriFlux, Agriflux) provide continuous observations of ecosystem exchanges of carbon (e. g., net ecosystem exchange), water vapor (e. g., evapotranspiration), and energy between terrestrial ecosystems and the atmosphere. The long-term time series of flux tower data are essential for studying and understanding terrestrial carbon cycles, ecosystem services, and climate changes. Currently, there are 13 flux towers located within the Great Plains (GP). The towers are sparsely distributed and do not adequately represent the varieties of vegetation cover types, climate conditions, and geophysical and biophysical conditions in the GP. This study assessed how well the available flux towers represent the environmental conditions or "ecological envelopes" across the GP and identified optimal locations for future flux towers in the GP. Regression-based remote sensing and weather-driven net ecosystem production (NEP) models derived from different extrapolation ranges (10 and 50%) were used to identify areas where ecological conditions were poorly represented by the flux tower sites and years previously used for mapping grassland fluxes. The optimal lands suitable for future flux towers within the GP were mapped. Results from this study provide information to optimize the usefulness of future flux towers in the GP and serve as a proxy for the uncertainty of the NEP map.

  7. Inverse modeling of the terrestrial carbon flux in China with flux covariance among inverted regions

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jiang, F.; Chen, J. M.; Ju, W.; Wang, H.

    2011-12-01

    Quantitative understanding of the role of ocean and terrestrial biosphere in the global carbon cycle, their response and feedback to climate change is required for the future projection of the global climate. China has the largest amount of anthropogenic CO2 emission, diverse terrestrial ecosystems and an unprecedented rate of urbanization. Thus information on spatial and temporal distributions of the terrestrial carbon flux in China is of great importance in understanding the global carbon cycle. We developed a nested inversion with focus in China. Based on Transcom 22 regions for the globe, we divide China and its neighboring countries into 17 regions, making 39 regions in total for the globe. A Bayesian synthesis inversion is made to estimate the terrestrial carbon flux based on GlobalView CO2 data. In the inversion, GEOS-Chem is used as the transport model to develop the transport matrix. A terrestrial ecosystem model named BEPS is used to produce the prior surface flux to constrain the inversion. However, the sparseness of available observation stations in Asia poses a challenge to the inversion for the 17 small regions. To obtain additional constraint on the inversion, a prior flux covariance matrix is constructed using the BEPS model through analyzing the correlation in the net carbon flux among regions under variable climate conditions. The use of the covariance among different regions in the inversion effectively extends the information content of CO2 observations to more regions. The carbon flux over the 39 land and ocean regions are inverted for the period from 2004 to 2009. In order to investigate the impact of introducing the covariance matrix with non-zero off-diagonal values to the inversion, the inverted terrestrial carbon flux over China is evaluated against ChinaFlux eddy-covariance observations after applying an upscaling methodology.

  8. Sensitivity analysis of an Ocean Carbon Cycle Model in the North Atlantic: an investigation of parameters affecting the air-sea CO2 flux, primary production and export of detritus

    NASA Astrophysics Data System (ADS)

    Scott, V.; Kettle, H.; Merchant, C. J.

    2010-12-01

    The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model in the calculation of the air-sea CO2 flux, primary production and detrital export is analysed. The NPZD model is the Hadley Centre Ocean Carbon Cycle model (HadOCC) from the UK Met Office, used in the Hadley Centre Coupled Model 3 (HadCM3) and FAst Met Office and Universities Simulator (FAMOUS) GCMs. Here, HadOCC is coupled to the 1-D General Ocean Turbulence Model (GOTM) and forced with European Centre for Medium-Range Weather Forecasting meteorology to undertake a sensitivity analysis of its twenty biological parameters. Analyses are performed at three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60° N 40° W), the Porcupine Abyssal Plain (49° N 16° W) and the European Station for Time series in the Ocean Canary Islands (29° N 15° W) to assess variability in parameter sensitivities at different locations in the North Atlantic Ocean. Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. We perform the analysis using one-at-a-time perturbations and using a statistical emulator, and compare results. The most sensitive parameters are generic to many NPZD ocean ecosystem models. The air-sea CO2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio). Primary production is most sensitive to the parameters that define the shape of the photosythesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.

  9. Coupling soil Carbon Fluxes, Soil Microbes, and High-Resolution Carbon Profiling in Permafrost Transitions

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Stegen, J.; Bond-Lamberty, B. P.; Tfaily, M. M.; Huang, M.; Liu, Y.

    2015-12-01

    Microbial communities play a central role in the functioning of natural ecosystems by heavily influencing biogeochemical cycles. Understanding how shifts in the environment are tied to shifts in biogeochemical rates via changes in microbial communities is particularly relevant in high latitude terrestrial systems underlain by permafrost due to vast carbon stocks currently stored within thawing permafrost. There is limited understanding, however, of the interplay among soil-atmosphere CO2 fluxes, microbial communities, and SOM chemical composition. To address this knowledge gap, we leverage the distinct spatial transitions in permafrost-affected soils at the Caribou Poker Creek Research Watershed, a 104 km2 boreal watershed ~50 km north of Fairbanks, AK. We integrate a variety of data to gain new knowledge of the factors that govern observed patterns in the rates of soil CO2 fluxes associated with permafrost to non-permafrost transition zones. We show that nonlinearities in fluxes are influenced by depth to permafrost, tree stand structure, and soil C composition. Further, using 16S sequencing methods we explore microbial community assembly processes and their connection to CO2 flux across spatial scales, and suggest a path to more mechanistically link microbes to large-scale biogeochemical cycles. Lastly, we use the Community Land Model (CLM) to compare Earth System Model predictions of soil C cycling with empirical measurements. Deviations between CLM predictions and field observations of CO2 flux and soil C stocks will provide insight for how the model may be improved through inclusion of additional biotic (e.g., microbial community composition) and abiotic (e.g., organic carbon composition) features, which will be critical to improve the predictive power of climate models in permafrost-affected regions.

  10. Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets

    USGS Publications Warehouse

    Stets, E.G.; Striegl, R.G.; Aiken, G.R.; Rosenberry, D.O.; Winter, T.C.

    2009-01-01

    Freshwater lakes are an important component of the global carbon cycle through both organic carbon (OC) sequestration and carbon dioxide (CO 2) emission. Most lakes have a net annual loss of CO2 to the atmosphere and substantial current evidence suggests that biologic mineralization of allochthonous OC maintains this flux. Because net CO 2 flux to the atmosphere implies net mineralization of OC within the lake ecosystem, it is also commonly assumed that net annual CO2 emission indicates negative net ecosystem production (NEP). We explored the relationship between atmospheric CO2 emission and NEP in two lakes known to have contrasting hydrologie characteristics and net CO2 emission. We calculated NEP for calendar year 2004 using whole-lake OC and inorganic carbon (IC) budgets, NEPoc and NEPIC, respectively, and compared the resulting values to measured annual CO 2 flux from the lakes. In both lakes, NEPIc and NEP Ic were positive, indicating net autotrophy. Therefore CO2 emission from these lakes was apparently not supported by mineralization of allochthonous organic material. In both lakes, hydrologie CO2 inputs, as well as CO2 evolved from netcalcite precipitation, could account for the net CO2 emission. NEP calculated from diel CO2 measurements was also affected by hydrologie inputs of CO2. These results indicate that CO2 emission and positive NEP may coincide in lakes, especially in carbonate terrain, and that all potential geologic, biogeochemical, and hydrologie sources of CO2 need to be accounted for when using CO2 concentrations to infer lake NEP. Copyright 2009 by the American Geophysical Union.

  11. CARBON FLUXES ON NORTH AMERICAN RANGELANDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seasonal patterns of growth and thus carbon uptake are relevant to both scientists who study ecosystem properties and managers who strive to maintain rangeland productivity. We studied seasonal patterns of net ecosystem exchange of carbon (NEE) on 11 US rangelands over a 6-year period. All sites w...

  12. Aquatic carbon fluxes from the conterminous US and Alaska

    NASA Astrophysics Data System (ADS)

    Butman, D. E.; Stackpoole, S. M.; Stets, E.; McDonald, C.; Clow, D. W.; Striegl, R. G.

    2015-12-01

    In 2007, the First State of the Carbon Cycle Report estimated that rivers exported ~ 35 Tg-C yr-1 to coastal systems and reservoirs in the US served as sink of ~ 25 Tg-C yr-1 through sedimentation, each reported with 95% confidence that the estimate was within 100%. Significant progress has been made to constrain and improve these estimates by carefully considering how inland water ecosystems dynamically process, transport, and sequester carbon with attention given to the gaseous evasion of carbon across the air-water interface, a component that was not included in the 2007 estimates. As part of the U.S. Geological Survey's LandCarbon program, we present the first integrated assessment of freshwater carbon cycling for the conterminous US and Alaska. We estimate that 147 (95% confidence interval of 101- 208) Tg-C yr-1 is exported downstream or emitted to the atmosphere and sedimentation stores 22 (95% confidence interval of 10-68) Tg-C yr-1 in lakes and reservoirs. We show that there is significant regional variation in aquatic carbon flux, but verify that emission across stream and river surfaces represents the dominant removal flux at 85 Tg-C yr-1, or 58% of the total aquatic carbon flux. These new estimates for aquatic carbon fluxes indicate that inland waters must be considered in the context of national scale carbon accounting. For the conterminous US, we compare our results to the output of Terrestrial Biosphere Models. Analysis suggests that within the current modelling framework, calculations of Net Ecosystem Production may be overestimated by as much as 27%. Reconciliation of mass-flux interactions between terrestrial and aquatic carbon sources and sinks will require significant additional field data collection and modelling capacity.

  13. Sensitivity analysis of an ocean carbon cycle model in the North Atlantic: an investigation of parameters affecting the air-sea CO2 flux, primary production and export of detritus

    NASA Astrophysics Data System (ADS)

    Scott, V.; Kettle, H.; Merchant, C. J.

    2011-06-01

    The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD) model in the calculation of the air-sea CO2 flux, primary production and detrital export is analysed. We explore the effect on these outputs of variation in the values of the twenty parameters that control ocean ecosystem growth in a 1-D formulation of the UK Met Office HadOCC NPZD model used in GCMs. We use and compare the results from one-at-a-time and all-at-a-time perturbations performed at three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60° N 40° W), the Porcupine Abyssal Plain (49° N 16° W) and the European Station for Time series in the Ocean Canary Islands (29° N 15° W). Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. The most sensitive parameters are generally found to be those controlling well-established ocean ecosystem parameterisations widely used in many NPZD-type models. The air-sea CO2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio). Primary production is most sensitive to the parameters that define the shape of the photosynthesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.

  14. Fluxes of soot black carbon to South Atlantic sediments

    NASA Astrophysics Data System (ADS)

    Lohmann, Rainer; Bollinger, Kevyn; Cantwell, Mark; Feichter, Johann; Fischer-Bruns, Irene; Zabel, Matthias

    2009-03-01

    Deep sea sediment samples from the South Atlantic Ocean were analyzed for soot black carbon (BC), total organic carbon (TOC), stable carbon isotope ratios (δ13C), and polycyclic aromatic hydrocarbons (PAHs). Soot BC was present at low concentrations (0.04-0.17% dry weight), but accounted for 3-35% of TOC. Fluxes of soot BC were calculated on the basis of known sedimentation rates and ranged from 0.5 to 7.8 μg cm-2 a-1, with higher fluxes near Africa compared to South America. Values of δ13C indicated a marine origin for the organic carbon but terrestrial sources for the soot BC. PAH ratios implied a pyrogenic origin for most samples and possibly a predominance of traffic emissions over wood burning off the African coast. A coupled ocean-atmosphere-aerosol-climate model was used to determine fluxes of BC from 1860 to 2000 to the South Atlantic. Model simulation and measurements both yielded higher soot BC fluxes off the African coast and lower fluxes off the South American coast; however, measured sedimentary soot BC fluxes exceeded simulated values by ˜1 μg cm-2 a-1 on average (within a factor of 2-4). For the sediments off the African coast, soot BC delivery from the Congo River could possibly explain the higher flux rates, but no elevated soot BC fluxes were detected in the Amazon River basin. In total, fluxes of soot BC to the South Atlantic were ˜480-700 Gg a-1 in deep sea sediments. Our results suggest that attempts to construct a global mass balance of BC should include estimates of the atmospheric deposition of BC.

  15. Increased carbon flux with rising mean annual temperature does not alter ecosystem carbon storage in a tropical montane wet forest

    NASA Astrophysics Data System (ADS)

    Selmants, P.; Litton, C. M.; Giardina, C. P.

    2013-12-01

    Ecological theory and existing studies agree that climate warming will increase carbon fluxes between terrestrial ecosystems and the atmosphere in the absence of water and nutrient limitations. However, it remains unclear how increased carbon input to and loss from terrestrial ecosystems will affect overall ecosystem carbon storage, which has important implications for potential feedbacks to climate change. Here we use a well-constrained model ecological gradient to quantify how increased mean annual temperature (MAT) affects carbon fluxes and ecosystem carbon storage in above- and belowground live biomass and detritus across nine permanent plots representing a 5.2ο C MAT gradient in tropical montane wet forests on the Island of Hawaii. Aboveground net primary productivity increased by 1 Mg ha-1 y-1 and the residence time of carbon in the forest floor declined by ~3 months for each 1ο C rise in MAT across the gradient, indicating a substantial increase in both carbon input and output with rising MAT. Despite these large increases in carbon flux, ecosystem carbon storage showed minimal sensitivity to MAT. Live biomass carbon did not vary predictably as a function of temperature. Detrital carbon declined by ~14 Mg ha-1 for each 1ο C rise in temperature, but this decline was driven entirely by coarse woody debris and litter, which together make up < 10% on average of total ecosystem C across the MAT gradient. The largest detrital pool, soil carbon, did not vary with MAT, averaging 48% of total ecosystem carbon across the gradient. Overall, total ecosystem carbon storage did not vary with MAT, averaging ~550 Mg ha-1 across the gradient. In addition, the distribution of ecosystem carbon in live biomass vs. detritus remained relatively constant at ~44% and ~56%, respectively. Because our MAT gradient does not vary with respect to factors other than temperature (i.e., dominant vegetation, substrate type and age, soil water balance, and disturbance history), these

  16. Arogenate dehydratase isoenzymes profoundly and differentially modulate carbon flux into lignins.

    PubMed

    Corea, Oliver R A; Ki, Chanyoung; Cardenas, Claudia L; Kim, Sung-Jin; Brewer, Sarah E; Patten, Ann M; Davin, Laurence B; Lewis, Norman G

    2012-03-30

    How carbon flux differentially occurs in vascular plants following photosynthesis for protein formation, phenylpropanoid metabolism (i.e. lignins), and other metabolic processes is not well understood. Our previous discovery/deduction that a six-membered arogenate dehydratase (ADT1-6) gene family encodes the final step in Phe biosynthesis in Arabidopsis thaliana raised the fascinating question whether individual ADT isoenzymes (or combinations thereof) differentially modulated carbon flux to lignins, proteins, etc. If so, unlike all other lignin pathway manipulations that target cell wall/cytosolic processes, this would be the first example of a plastid (chloroplast)-associated metabolic process influencing cell wall formation. Homozygous T-DNA insertion lines were thus obtained for five of the six ADTs and used to generate double, triple, and quadruple knockouts (KOs) in different combinations. The various mutants so obtained gave phenotypes with profound but distinct reductions in lignin amounts, encompassing a range spanning from near wild type levels to reductions of up to ∼68%. In the various KOs, there were also marked changes in guaiacyl:syringyl ratios ranging from ∼3:1 to 1:1, respectively; these changes were attributed to differential carbon flux into vascular bundles versus that into fiber cells. Laser microscope dissection/pyrolysis GC/MS, histochemical staining/lignin analyses, and pADT::GUS localization indicated that ADT5 preferentially affects carbon flux into the vascular bundles, whereas the adt3456 knock-out additionally greatly reduced carbon flux into fiber cells. This plastid-localized metabolic step can thus profoundly differentially affect carbon flux into lignins in distinct anatomical regions and provides incisive new insight into different factors affecting guaiacyl:syringyl ratios and lignin primary structure.

  17. Global estimates of boreal forest carbon stocks and flux

    NASA Astrophysics Data System (ADS)

    Bradshaw, Corey J. A.; Warkentin, Ian G.

    2015-05-01

    The boreal ecosystem is an important global reservoir of stored carbon and a haven for diverse biological communities. The natural disturbance dynamics there have historically been driven by fire and insects, with human-mediated disturbances increasing faster than in other biomes globally. Previous research on the total boreal carbon stock and predictions of its future flux reveal high uncertainty in regional patterns. We reviewed and standardised this extensive body of quantitative literature to provide the most up-to-date and comprehensive estimates of the global carbon balance in the boreal forest. We also compiled century-scale predictions of the carbon budget flux. Our review and standardisation confirmed high uncertainty in the available data, but there is evidence that the region's total carbon stock has been underestimated. We found a total carbon store of 367.3 to 1715.8 Pg (1015 g), the mid-point of which (1095 Pg) is between 1.3 and 3.8 times larger than any previous mean estimates. Most boreal carbon resides in its soils and peatlands, although estimates are highly uncertain. We found evidence that the region might become a net carbon source following a reduction in carbon uptake rate from at least the 1980s. Given that the boreal potentially constitutes the largest terrestrial carbon source in the world, in one of the most rapidly warming parts of the globe (Walsh, 2014), how we manage these stocks will be influential on future climate dynamics.

  18. Acidification, not carbonation, is the major regulator of carbon fluxes in the coccolithophore Emiliania huxleyi.

    PubMed

    Kottmeier, Dorothee M; Rokitta, Sebastian D; Rost, Björn

    2016-07-01

    A combined increase in seawater [CO2 ] and [H(+) ] was recently shown to induce a shift from photosynthetic HCO3 (-) to CO2 uptake in Emiliania huxleyi. This shift occurred within minutes, whereas acclimation to ocean acidification (OA) did not affect the carbon source. To identify the driver of this shift, we exposed low- and high-light acclimated E. huxleyi to a matrix of two levels of dissolved inorganic carbon (1400, 2800 μmol kg(-1) ) and pH (8.15, 7.85) and directly measured cellular O2 , CO2 and HCO3 (-) fluxes under these conditions. Exposure to increased [CO2 ] had little effect on the photosynthetic fluxes, whereas increased [H(+) ] led to a significant decline in HCO3 (-) uptake. Low-light acclimated cells overcompensated for the inhibition of HCO3 (-) uptake by increasing CO2 uptake. High-light acclimated cells, relying on higher proportions of HCO3 (-) uptake, could not increase CO2 uptake and photosynthetic O2 evolution consequently became carbon-limited. These regulations indicate that OA responses in photosynthesis are caused by [H(+) ] rather than by [CO2 ]. The impaired HCO3 (-) uptake also provides a mechanistic explanation for lowered calcification under OA. Moreover, it explains the OA-dependent decrease in photosynthesis observed in high-light grown phytoplankton.

  19. Climate and Biological Controls of Carbon Fluxes along latitudinal gradients

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Yuan, J.; Niu, S.

    2012-12-01

    It has not been carefully examined whether relative importance of climate and biological controls of carbon fluxes is similar among various ecosystem types along latitudinal gradients from the tropical to polar region. We hypothesize that except tropical regions, there is a consistent pattern of climate and biological controls of carbon fluxes across all the other ecosystems. We tested the hypothesis by analyzing data of net ecosystem exchange (NEE) from nearly 200 eddy-flux towers distributed worldwide and simulated gross primary production (GPP) from the Australian Community Atmosphere Land Exchange (CABLE) model. Specifically, we estimated yearly NEE (i.e., NEP), carbon uptake period (CUP) and seasonal maximum of NEE (NEE¬_max) from eddy-flux data. Similarly, we estimated CUP, GPP_max, seasonal maximum leaf area index (LAI_max), and Vcmax from the model across the globe. Our regression analysis indicates that NEP is very tightly correlated with the product of CUP and NEE_max cross all sites. Similarly, simulated GPP is highly correlated with the product of CUP and GPP_max over the globe in the CABLE model. CUP is related to phenology and represents climate control of carbon fluxes while NEE_max or GPP_max is determined by biological processes and thus represents biological control of carbon processes. We further analyzed relationships of GPP_max with LAI_max and Vcmax individually or in combination. GPP_max is highly correlated with them. This talk will present results of our analysis and explain our hypothesis test regarding relative importance of biological and climate controls of carbon fluxes along the latitudinal gradients.

  20. Microbial Carbon Cycling in Permafrost-Affected Soils

    SciTech Connect

    Vishnivetskaya, T.; Liebner, Susanne; Wilhelm, Ronald; Wagner, Dirk

    2011-01-01

    The Arctic plays a key role in Earth s climate system as global warming is predicted to be most pronounced at high latitudes and because one third of the global carbon pool is stored in ecosystems of the northern latitudes. In order to improve our understanding of the present and future carbon dynamics in climate sensitive permafrost ecosystems, present studies concentrate on investigations of microbial controls of greenhouse gas fluxes, on the activity and structure of the involved microbial communities, and on their response to changing environmental conditions. Permafrost-affected soils can function as both a source and a sink for carbon dioxide and methane. Under anaerobic conditions, caused by flooding of the active layer and the effect of backwater above the permafrost table, the mineralization of organic matter can only be realized stepwise by specialized microorganisms. Important intermediates of the organic matter decomposition are hydrogen, carbon dioxide and acetate, which can be further reduced to methane by methanogenic archaea. Evolution of methane fluxes across the subsurface/atmosphere boundary will thereby strongly depend on the activity of anaerobic methanogenic archaea and obligately aerobic methane oxidizing proteobacteria, which are known to be abundant and to significantly reduce methane emissions in permafrost-affected soils. Therefore current studies on methane-cycling microorganisms are the object of particular attention in permafrost studies, because of their key role in the Arctic methane cycle and consequently of their significance for the global methane budget.

  1. Overview of NASA's Carbon Monitoring System Flux-Pilot Project

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Gunson, Michael R.; Jucks, Kenneth

    2011-01-01

    NASA's space-based observations of physical, chemical and biological parameters in the Earth System along with state-of-the-art modeling capabilities provide unique capabilities for analyses of the carbon cycle. The Carbon Monitoring System is developing an exploratory framework for detecting carbon in the environment and its changes, with a view towards contributing to national and international monitoring activities. The Flux-Pilot Project aims to provide a unified view of land-atmosphere and ocean-atmosphere carbon exchange, using observation-constrained models. Central to the project is the application of NASA's satellite observations (especially MODIS), the ACOS retrievals of the JAXA-GOSAT observations, and the "MERRA" meteorological reanalysis produced with GEOS-S. With a primary objective of estimating uncertainty in computed fluxes, two land- and two ocean-systems are run for 2009-2010 and compared with existing flux estimates. An transport model is used to evaluate simulated CO2 concentrations with in-situ and space-based observations, in order to assess the realism of the fluxes and how uncertainties in fluxes propagate into atmospheric concentrations that can be more readily evaluated. Finally, the atmospheric partial CO2 columns observed from space are inverted to give new estimates of surface fluxes, which are evaluated using the bottom-up estimates and independent datasets. The focus of this presentation will be on the science goals and current achievements of the pilot project, with emphasis on how policy-relevant questions help focus the scientific direction. Examples include the issue of what spatio-temporal resolution of fluxes can be detected from polar-orbiting satellites and whether it is possible to use space-based observations to separate contributions to atmospheric concentrations of (say) fossil-fuel and biological activity

  2. Closing the North American Carbon Budget: Continental Margin Fluxes Matter!

    NASA Astrophysics Data System (ADS)

    Najjar, R.; Benway, H. M.; Siedlecki, S. A.; Boyer, E. W.; Cai, W. J.; Coble, P. G.; Cross, J. N.; Friedrichs, M. A.; Goni, M. A.; Griffith, P. C.; Herrmann, M.; Lohrenz, S. E.; Mathis, J. T.; McKinley, G. A.; Pilskaln, C. H.; Smith, R. A.; Alin, S. R.

    2015-12-01

    Despite their relatively small surface area, continental margins are regions of intense carbon and nutrient processing, export and exchange, and thus have a significant impact on global biogeochemical cycles. In response to recommendations for regional synthesis and carbon budget estimation for North America put forth in the North American Continental Margins workshop report (Hales et al., 2008), the Ocean Carbon and Biogeochemistry (OCB) Program and North American Carbon Program (NACP) began coordinating a series of collaborative, interdisciplinary Coastal CARbon Synthesis (CCARS) research activities in five coastal regions of North America (Atlantic Coast, Pacific Coast, Gulf of Mexico, Arctic, Laurentian Great Lakes) to improve quantitative assessments of the North American carbon budget. CCARS workshops and collaborative research activities have resulted in the development of regional coastal carbon budgets based on recent literature- and model-based estimates of major carbon fluxes with estimated uncertainties. Numerous peer-reviewed papers and presentations by involved researchers have highlighted these findings and provided more in-depth analyses of processes underlying key carbon fluxes in continental margin systems. As a culminating outcome of these synthesis efforts, a comprehensive science plan highlights key knowledge gaps identified during this synthesis and provides explicit guidance on future research and observing priorities in continental margin systems to help inform future agency investments in continental margins research. This presentation will provide an overview of regional and flux-based (terrestrial inputs, biological transformations, sedimentary processes, atmospheric exchanges, lateral carbon transport) synthesis findings and key recommendations in the science plan, as well as a set of overarching priorities and recommendations on observations and modeling approaches for continental margin systems.

  3. Comparison of buried soil sensors, surface chambers and above ground measurements of carbon dioxide fluxes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil carbon dioxide (CO2) flux is an important component of the terrestrial carbon cycle. Accurate measurements of soil CO2 flux aids determinations of carbon budgets. In this study, we investigated soil CO2 fluxes with time and depth and above ground CO2 fluxes in a bare field. CO2 concentrations w...

  4. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, Thomas; Grosse, Guido; Strauss, Jens; Schirrmeister, Lutz; Morgenstern, Anne; Schaphoff, Sibyll; Meinshausen, Malte; Boike, Julia

    2015-04-01

    With rising global temperatures and consequent permafrost degradation a part of old carbon stored in high latitude soils will become available for microbial decay and eventual release to the atmosphere. To estimate the strength and timing of future carbon dioxide and methane fluxes from newly thawed permafrost carbon, we have developed a simplified, two-dimensional multi-pool model. As large amounts of soil organic matter are stored in depths below three meters, we have also simulated carbon release from deep deposits in Yedoma regions. For this purpose we have modelled abrupt thaw under thermokarst lakes which can unlock large amounts of soil carbon buried deep in the ground. The computational efficiency of our 2-D model allowed us to run large, multi-centennial ensembles of differing scenarios of future warming to express uncertainty inherent to simulations of the permafrost-carbon feedback. Our model simulations, which are constrained by multiple lines of recent observations, suggest cumulated CO2 fluxes from newly thawed permafrost until the year 2100 of 20-58 Pg-C under moderate warming (RCP2.6), and of 42-141Pg-C under strong warming (RCP8.5). Under intense thermokarst activity, our simulated methane fluxes proved substantial and caused up to 40 % of total permafrost-affected radiative forcing in the 21st century. By quantifying CH4 contributions from different pools and depth levels, we discuss the role of thermokarst dynamics in affecting future Arctic carbon release. The additional global warming through the release from newly thawed permafrost carbon proved only slightly dependent on the pathway of anthropogenic emission in our simulations and reached about 0.1°C by end of the century. The long-term, permafrost-affected global warming increased further in the 22nd and 23rd century, reaching a maximum of about 0.4°C in the year 2300.

  5. Branchfall dominates annual carbon flux across lowland Amazonian forests

    NASA Astrophysics Data System (ADS)

    Marvin, David C.; Asner, Gregory P.

    2016-09-01

    Tropical forests play an important role in the global carbon cycle, but knowledge of interannual variation in the total tropical carbon flux and constituent carbon pools is highly uncertain. One such pool, branchfall, is an ecologically important dynamic with links to nutrient cycling, forest productivity, and drought. Identifying and quantifying branchfall over large areas would reveal the role of branchfall in carbon and nutrient cycling. Using data from repeat airborne light detection and ranging campaigns across a wide array of lowland Amazonian forest landscapes totaling nearly 100 000 ha, we find that upper canopy gaps—driven by branchfall—are pervasive features of every landscape studied, and are seven times more frequent than full tree mortality. Moreover, branchfall comprises a major carbon source on a landscape basis, exceeding that of tree mortality by 21%. On a per hectare basis, branchfall and tree mortality result in 0.65 and 0.72 Mg C ha-1 yr-1 gross source of carbon to the atmosphere, respectively. Reducing uncertainties in annual gross rates of tropical forest carbon flux, for example by incorporating large-scale branchfall dynamics, is crucial for effective policies that foster conservation and restoration of tropical forests. Additionally, large-scale branchfall mapping offers ecologists a new dimension of disturbance monitoring and potential new insights into ecosystem structure and function.

  6. Rerouting Carbon Flux To Enhance Photosynthetic Productivity

    SciTech Connect

    Ducat, DC; Avelar-Rivas, JA; Way, JC; Silver, PA

    2012-03-23

    The bioindustrial production of fuels, chemicals, and therapeutics typically relies upon carbohydrate inputs derived from agricultural plants, resulting in the entanglement of food and chemical commodity markets. We demonstrate the efficient production of sucrose from a cyanobacterial species, Synechococcus elongatus, heterologously expressing a symporter of protons and sucrose (cscB). cscB-expressing cyanobacteria export sucrose irreversibly to concentrations of >10 mM without culture toxicity. Moreover, sucrose-exporting cyanobacteria exhibit increased biomass production rates relative to wild-type strains, accompanied by enhanced photosystem II activity, carbon fixation, and chlorophyll content. The genetic modification of sucrose biosynthesis pathways to minimize competing glucose-or sucrose-consuming reactions can further improve sucrose production, allowing the export of sucrose at rates of up to 36.1 mg liter(-1) h illumination(-1). This rate of production exceeds that of previous reports of targeted, photobiological production from microbes. Engineered S. elongatus produces sucrose in sufficient quantities (up to similar to 80% of total biomass) such that it may be a viable alternative to sugar synthesis from terrestrial plants, including sugarcane.

  7. Biogenic carbon fluxes from global agricultural production and consumption

    SciTech Connect

    Wolf, Julie; West, Tristram O.; Le Page, Yannick LB; Kyle, G. Page; Zhang, Xuesong; Collatz, George; Imhoff, Marc L.

    2015-10-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange (NCE) and spatially distributed to 0.05 degree resolution using MODIS satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 ± 0.46 Pg C yr-1, of which 2.05 ± 0.05 Pg C yr-1 was harvested and 0.54 Pg C yr-1 was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 ± 0.21 Pg C yr-1, of which 2.31 ± 0.21 Pg C yr-1 was emitted as CO2, 0.07 ± 0.01 Pg C yr-1 was emitted as CH4, and 0.04 Pg C yr-1 was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg C yr-1 in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 ± 0.03 Pg C yr-1 in 2011, the majority of which is respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of ca. 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models.

  8. An Assessment of Global Organic Carbon Flux Along Continental Margins

    NASA Technical Reports Server (NTRS)

    Thunell, Robert

    2004-01-01

    This project was designed to use real-time and historical SeaWiFS and AVHRR data, and real-time MODIS data in order to estimate the global vertical carbon flux along continental margins. This required construction of an empirical model relating surface ocean color and physical variables like temperature and wind to vertical settling flux at sites co-located with sediment trap observations (Santa Barbara Basin, Cariaco Basin, Gulf of California, Hawaii, and Bermuda, etc), and application of the model to imagery in order to obtain spatially-weighted estimates.

  9. Mapping carbon dioxide flux in semiarid grasslands using optical remote sensing

    NASA Astrophysics Data System (ADS)

    Holifield Collins, Chandra Deberta

    Increasing atmospheric levels of carbon dioxide (CO2) and the potential impact on climate change has caused an increased effort to more accurately quantify terrestrial sources and sinks. Semiarid grasslands cover a significant portion of the Earth's land surface and may be an important sink for atmospheric CO2. This study was conducted to examine the role semiarid grasslands play in the carbon cycle. The relation between surface reflectance and temperature obtained from satellite imagery was used to determine a Water Deficit Index (WDI) to estimate distributed plant transpiration rates for a point in time. Due to the relationship between transpiration and plant CO2 uptake, WDI was directly related to CO2 flux. Satellite images were acquired for a five-year period (1996-2000) during which transpiration and net CO2 flux were measured for a semiarid grassland site in southeastern Arizona. Manual and automatic chamber data were also collected in 2005 and 2006 and used to assess the spatial variability of nighttime soil respiration. Spatial analysis showed the most influential factor affecting nighttime respiration was aspect, where flux from North-facing slopes was significantly (P < 0.05) higher than on South-facing slopes. A strong linear relationship (R2 = 0.97) existed between WDI-derived instantaneous net CO2 flux and daytime net CO2 flux estimates, and was used to generate maps of distributed daytime net CO2 flux. A linear relationship (R2 = 0.88) was also found between daytime and nighttime net CO2 flux, and used in combination with maps of daytime net CO2 flux to create maps of daily net CO2 flux. This study indicated that remote sensing offers an operational, physically-based means of obtaining daily net CO2 flux in semiarid grasslands.

  10. On the violet flux of N type carbon stars

    NASA Astrophysics Data System (ADS)

    Faulkner, Danny R.; Honeycutt, R. Kent; Johnson, Hollis R.

    1988-01-01

    New six-color violet photometry of 26 carbon stars is presented. These observations reveal the shape of the spectrum between 3400 and 4500 A and provide a measurement of the violet flux deficiency. The strength of the 11.5-micron SiC emission feature was also measured using ground-based infrared spectrophotometry and the IRAS low-resolution spectral catalog. The lack of correlation between the 11.5-micron emission and the violet flux deficiency leads to the conclusion that SiC is not the predominant violet opacity source in N type carbon stars. The violet photometry presented here does not quantitatively agree with previous spectrophotometry that supported C3 as the opacity source. The observations alone do not rule out the C3 opacity, but when they are combined with IUE data, the C3 opacity appears less plausible.

  11. Urban Evapotranspiration and Carbon Dioxide Flux in Miami - Dade, Florida

    NASA Astrophysics Data System (ADS)

    Bernier, T.; Hopper, W.

    2010-12-01

    Atmospheric Carbon Dioxide (CO2) concentrations are leading indicators of secular climate change. With increasing awareness of the consequences of climate change, methods for monitoring this change are becoming more important daily. Of particular interest is the carbon dioxide exchange between natural and urban landscapes and the correlation of atmospheric CO2 concentrations. Monitoring Evapotranspiration (ET) is important for assessments of water availability for growing populations. ET is surprisingly understudied in the hydrologic cycle considering ET removes as much as 80 to over 100% of precipitation back into the atmosphere as water vapor. Lack of understanding in spatial and temporal ET estimates can limit the credibility of hydrologic water budgets designed to promote sustainable water use and resolve water-use conflicts. Eddy covariance (EC) methods are commonly used to estimate ET and CO2 fluxes. The EC platform consist of a (CSAT) 3-D Sonic Anemometer and a Li-Cor Open Path CO2/ H2O Analyzer. Measurements collected at 10 Hz create a very large data sets. A EC flux tower located in the Snapper Creek Well Field as part of a study to estimate ET for the Miami Dade County Water and Sewer project. Data has been collected from December 17, 2009 to August 30, 2010. QA/QC is performed with the EdiRe data processing software according to Ameri-flux protocols. ET estimates along with other data--latent-heat flux, sensible-heat flux, rainfall, air temperature, wind speed and direction, solar irradiance, net radiation, soil-heat flux and relative humidity--can be used to aid in the development of water management policies and regulations. Currently, many financial institutions have adopted an understanding about baseline environmental monitoring. The “Equator Principle” is an example of a voluntary standard for managing social and environmental risk in project financing and has changed the way in which projects are financed.

  12. Carbon fluxes of Kobresia pygmaea pastures on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Foken, T.; Biermann, T.; Babel, W.; Ma, Y.

    2013-12-01

    With an approximate cover of 450,000 km2 on the Tibetan Plateau (TP), the Cyperaceae Kobresia pygmaea forms he world's largest alpine ecosystem. This species, especially adapted to grazing pressure, grows to a height of only 2-6 cm and can be found in an altitudinal range of 4000 to 5960 m a.s.l. A special characteristic of this ecosystem is the stable turf layer, which is built up from roots and plays a significant role in protecting soil from erosion. This is of great importance since soils on the TP store 2.5 % of the global soil organic carbon stocks. The aim of the investigation was the study of the carbon storage and the impact of human-induced land use change on these Kobresia pygmaea pastures. We therefore applied eddy-covariance measurements and modelling as a long-term control of the fluxes between the atmosphere and the pastures and 13C labelling for the investigation of flux partitioning, and chamber measurements to investigate the degradation of the pastures. Combining CO2 budgets observed in 2010 with eddy-covariance measurements and relative partitioning of Carbon fluxes estimated with 13C labelling enabled us to characterise the C turnover for the vegetation period with absolute fluxes within the plant-soil-atmosphere continuum. These results revealed that this ecosystem indeed stores a great amount of C in below-ground pools, especially in the root turf layer. To further investigate the importance of the root layer, the experiments in 2012 focused on flux measurements over the different surface types which make up the heterogeneity of the Kobresia pygmaea pastures and might result from degradation due to extensive grazing. The three surface types investigated with a LiCOR long-term monitoring chamber system include Kobresia pygmaea with intact turf layer (IRM), a surface type where the turf layer is still present but the vegetation is sparse and mainly consists of Cryptogam crusts (DRM) and finally areas without the turf layer (BS). According to

  13. Methane and carbon dioxide fluxes in a hydrologically changed wetland in Canada

    NASA Astrophysics Data System (ADS)

    Fleischer, Elisa; Berger, Sina; Burger, Magdalena; Forsyth, Jordan; Goebel, Marie; Wagner-Riddle, Claudia; Blodau, Christian; Klemm, Otto

    2015-04-01

    Northern peatlands store about 30 % of the global soil carbon and account for a significant contribution to methane emissions from natural sources. The carbon cycle in peatland ecosystems is very sensitive to hydrological changes so that it is important to quantify and analyze the direction and magnitude of carbon fluxes under such conditions. For example, increased water levels might decrease the carbon dioxide uptake and increase methane emissions. The Luther Bog in Ontario, Canada, has been flooded to create a reservoir in 1952. This changed the hydrological regime of the adjacent areas and the question arises whether the changed ecosystem acts as a sink or source for carbon, and how it affects global warming. In 2014, an eddy covariance measurement station was operated there from May to October to quantify the exchange of water vapor, carbon dioxide and methane between the bog and the atmosphere. The station was located in an area that got wetter through the construction of the dam. The magnitude and direction of the methane fluxes were independent from daily patterns. The constantly high water level excluded the effect of temperature changes on the methane production. A seasonal variation with increased emissions during the summer period was visible despite the slightly decreased water level. However, the difference was small. The study site was found to be a clear methane source. The carbon dioxide fluxes showed typical diurnal courses. Their magnitude was relatively constant during the measurement period apart from a slight decrease in fall. The uptake of carbon clearly overweighed the carbon loss, meaning that the bog is sequestering carbon. However, considering the global warming potential of carbon dioxide and methane the effect on climate change is only slightly negative. This points out that even changed wetland ecosystems can keep their important function of sequestering carbon and thereby counteract global warming. A comparison and combination of this

  14. Regional-Scale Carbon Flux Partitioning Using Atmospheric Carbonyl Sulfide

    NASA Astrophysics Data System (ADS)

    Abu-Naser, M.; Campbell, J. E.; Berry, J. A.

    2011-12-01

    Simultaneous analysis of atmospheric concentrations of carbonyl sulfide (COS) and carbon dioxide (CO2) has been proposed as an approach to partitioning gross primary production and respiration fluxes at regional and global scales. The basis for this approach was that the observation and regional gradients in atmospheric CO2 are dominated by net ecosystem fluxes while regional gradients in atmospheric COS are dominated by GPP-related plant uptake. Here we investigate the spatial and temporal gradients in airborne COS and CO2 measurements in comparison to flux estimates from ecosystem models and eddy covariance methods over North America. The spatial gradients in the ecosystem relative uptake (ERU), the normalized ratio of COS and CO2 vertical gradients, were consistent with the theoretical relationship to flux estimates from ecosystem models and eddy covariance methods. The seasonality of the gross primary productivity flux estimates was consistent with airborne observations in the midwestern region but had mixed results in the southeastern region. Inter-annual changes in the ERU and regional drought index data suggested a potential relationship between drought stress and low ratios of gross primary production to net ecosystem exchange.

  15. Forest carbon stocks and fluxes in physiographic zones of India

    PubMed Central

    2011-01-01

    Background Reducing carbon Emissions from Deforestation and Degradation (REDD+) is of central importance to combat climate change. Foremost among the challenges is quantifying nation's carbon emissions from deforestation and degradation, which requires information on forest carbon storage. Here we estimated carbon storage in India's forest biomass for the years 2003, 2005 and 2007 and the net flux caused by deforestation and degradation, between two assessment periods i.e., Assessment Period first (ASP I), 2003-2005 and Assessment Period second (ASP II), 2005-2007. Results The total estimated carbon stock in India's forest biomass varied from 3325 to 3161 Mt during the years 2003 to 2007 respectively. There was a net flux of 372 Mt of CO2 in ASP I and 288 Mt of CO2 in ASP II, with an annual emission of 186 and 114 Mt of CO2 respectively. The carbon stock in India's forest biomass decreased continuously from 2003 onwards, despite slight increase in forest cover. The rate of carbon loss from the forest biomass in ASP II has dropped by 38.27% compared to ASP I. Conclusion With the Copenhagen Accord, India along with other BASIC countries China, Brazil and South Africa is voluntarily going to cut emissions. India will voluntary reduce the emission intensity of its GDP by 20-25% by 2020 in comparison to 2005 level, activities like REDD+ can provide a relatively cost-effective way of offsetting emissions, either by increasing the removals of greenhouse gases from the atmosphere by afforestation programmes, managing forests, or by reducing emissions through deforestation and degradation. PMID:22196920

  16. Inverse carbon dioxide flux estimates for the Netherlands

    NASA Astrophysics Data System (ADS)

    Meesters, A. G. C. A.; Tolk, L. F.; Peters, W.; Hutjes, R. W. A.; Vellinga, O. S.; Elbers, J. A.; Vermeulen, A. T.; van der Laan, S.; Neubert, R. E. M.; Meijer, H. A. J.; Dolman, A. J.

    2012-10-01

    CO2 fluxes for the Netherlands and surroundings are estimated for the year 2008, from concentration measurements at four towers, using an inverse model. The results are compared to direct CO2flux measurements by aircraft, for 6 flight tracks over the Netherlands, flown multiple times in each season. We applied the Regional Atmospheric Mesoscale Modeling system (RAMS) coupled to a simple carbon flux scheme (including fossil fuel), which was run at 10 km resolution, and inverted with an Ensemble Kalman Filter. The domain had 6 eco-regions, and inversions were performed for the four seasons separately. Inversion methods with pixel-dependent and -independent parameters for each eco-region were compared. The two inversion methods, in general, yield comparable flux averages for each eco-region and season, whereas the difference from the prior flux may be large. Posterior fluxes co-sampled along the aircraft flight tracks are usually much closer to the observations than the priors, with a comparable performance for both inversion methods, and with best performance for summer and autumn. The inversions showed more negative CO2 fluxes than the priors, though the latter are obtained from a biosphere model optimized using the Fluxnet database, containing observations from more than 200 locations worldwide. The two different crop ecotypes showed very different CO2uptakes, which was unknown from the priors. The annual-average uptake is practically zero for the grassland class and for one of the cropland classes, whereas the other cropland class had a large net uptake, possibly because of the abundance of maize there.

  17. Aeolian nutrient fluxes following wildfire in sagebrush steppe: Implications for soil carbon storage

    USGS Publications Warehouse

    Hasselquist, N.J.; Germino, M.J.; Sankey, J.B.; Ingram, L.J.; Glenn, N.F.

    2011-01-01

    Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C) and nitrogen (N) fluxes were as high as 235 g C m????'1 d????'1 and 19 g N m????'1 d????'1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes. ?? 2011 Author(s).

  18. Carbon fluxes of Kobresia pygmaea pastures on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Babel, Wolfgang; Biermann, Tobias; Falge, Eva; Ingrisch, Johannes; Leonbacher, Jürgen; Schleuss, Per; Kuzyakov, Yakov; Ma, Yaoming; Miehe, Georg; Foken, Thomas

    2014-05-01

    With an approximate cover of 450,000 km² on the Tibetan Plateau (TP), the Cyperaceae Kobresia pygmaea forms he world's largest alpine ecosystem. This species, especially adapted to grazing pressure, grows to a height of only 2-6 cm and can be found in an altitudinal range of 4000 to 5960 m a.s.l. A special characteristic of this ecosystem is the stable turf layer, which is built up from roots and plays a significant role in protecting soil from erosion. This is of great importance since soils on the TP store 2.5 % of the global soil organic carbon stocks. The aim of the investigation was the study of the carbon storage and the impact of human-induced land use change on these Kobresia pygmaea pastures. We therefore applied eddy-covariance measurements and modelling as a long-term control of the fluxes between the atmosphere and the pastures and 13C labelling for the investigation of flux partitioning, and chamber measurements to investigate the degradation of the pastures. Combining CO2 budgets observed in 2010 with eddy-covariance measurements and relative partitioning of carbon fluxes estimated with 13C labelling enabled us to characterise the C turnover for the vegetation period with absolute fluxes within the plant-soil-atmosphere continuum. These results revealed that this ecosystem indeed stores a great amount of C in below-ground pools, especially in the root turf layer. To further investigate the importance of the root layer, the experiments in 2012 focused on flux measurements over the different surface types which make up the heterogeneity of the Kobresia pygmaea pastures and might result from degradation due to extensive grazing. The three surface types investigated with a LiCOR long-term monitoring chamber system include Kobresia pygmaea with intact turf layer (IRM), a surface type where the turf layer is still present but the vegetation is sparse and mainly consists of Cryptogam crusts (DRM) and finally areas without the turf layer (BS). According to

  19. [Effects of CO2 storage flux on carbon budget of forest ecosystem].

    PubMed

    Zhang, Mi; Wen, Xue-fa; Yu, Gui-rui; Zhang, Lei-ming; Fu, Yu-ling; Sun, Xiao-min; Han, Shi-jie

    2010-05-01

    Carbon dioxide (CO2) storage flux in the air space below measurement height of eddy covariance is very important to correctly evaluate net ecosystem exchange of CO2 (NEE) between forest ecosystem and atmosphere. This study analyzed the dynamic variation of CO2 storage flux and its effects on the carbon budget of a temperate broad-leaved Korean pine mixed forest at Changbai Mountains, based on the eddy covariance flux data and the vertical profile of CO2 concentration data. The CO2 storage flux in this forest ecosystem had typical diurnal variation, with the maximum variation appeared during the transition from stable atmospheric layer to unstable atmospheric layer. The CO2 storage flux calculated by the change in CO2 concentration throughout a vertical profile was not significantly different from that calculated by the change in CO2 concentration at the measurement height of eddy covariance. The NEE of this forest ecosystem was underestimated by 25% and 19% at night and at daytime, respectively, without calculating the CO2 storage flux at half-hour scale, and was underestimated by 10% and 25% at daily scale and annual scale, respectively. Without calculating the CO2 storage flux in this forest ecosystem, the parameters of Michaelis-Menten equation and Lloyd-Taylor equation were underestimated, and the ecosystem apparent quantum yield (alpha) and the ecosystem respiration rate (Rref) at the reference temperature were mostly affected. The gross primary productivity (GPP) and ecosystem respiration (Re) of this forest ecosystem were underestimated about 20% without calculating the CO2 storage flux at half-hour, daily scale, and annual scale.

  20. Testing the Need for Replication of Eddy Covariance Carbon Dioxide Flux Measurements over Agricultural Fields

    NASA Astrophysics Data System (ADS)

    Taylor, A. M.; Amiro, B. D.; Gervais, M.

    2015-12-01

    The eddy covariance method directly measures carbon dioxide (CO2) fluxes for long periods of time and with footprints up to hundreds of meters in size. Any ecosystem process that alters how gases and energy move between the atmosphere and soil/vegetation can affect these fluxes. Eddy covariance is vulnerable to systematic errors and uncertainy, particular through relying on assumptions about surface characteristics. Additionally, spatial variation within a site can cause more uncertainty in these measurements and lack of replication in many eddy covariance studies makes statistical analysis of carbon fluxes challenging. We tested if there are significant differences between co-located and simultaneous CO2 flux measurements over a uniform crop surface, and if the differences increase if we measure different flux footprint areas over the same field. During the summer of 2014, three matched instrumented 2.5-m high towers were co-located and then periodically separated by moving at 50 m intervals along a north-south transect on an alfalfa/trefoil field and a spring wheat field in Southern Manitoba, Canada to compare CO­2 fluxes. Georeferenced leaf area index measurements were taken in 50 m grid of each field to establish uniformity of the source/sink within a footprint. Diurnal differences of similar magnitude in the CO2 ­fluxes were found in both the co-located experiment and the spatially separated intervals. Despite rigorous calibration during the experiment, some differences were caused by the measurement systems rather than by variation within the field. Interpretation of the spatial variation in leaf area index is being used to determine the contribution caused by difference in source/sink contributions to the flux footprint areas when the towers were spatially separated.

  1. CarbonTracker-Lagrange: A model-data assimilation system for North American carbon flux estimates

    NASA Astrophysics Data System (ADS)

    He, Wei; Chen, Huilin; van der Velde, Ivar; Andrews, Arlyn; Sweeney, Colm; Baker, Ian; Ju, Weimin; van der Laan-Luijkx, Ingrid; Tans, Pieter; Peters, Wouter

    2016-04-01

    Understanding the regional carbon fluxes is of great importance for climate-related studies. To derive these carbon fluxes, atmospheric inverse modeling methods are often used. Different from global inverse modeling, regional studies need to deal with lateral boundary conditions (BCs) at the outer atmospheric domain studied. Also, regional inverse modeling systems typically use a higher spatial resolution and can be more computation-intensive. In this study, we implement a regional inverse modeling system for atmospheric CO₂ based on the CarbonTracker framework. We combine it with a high-resolution Lagrangian transport model, the Stochastic Time-Inverted Lagrangian Transport model driven by the Weather Forecast and Research meteorological fields (WRF-STILT). The new system uses independent information from aircraft CO₂ profiles to optimize lateral BCs, while simultaneously optimizing biosphere fluxes with near-surface CO₂ observations from tall towers. This Lagrangian transport model with precalculated footprints is computational more efficient than using an Eulerian model. We take SiBCASA biosphere model results as prior NEE from the terrestrial biosphere. Three different lateral BCs, derived from CarbonTracker North America mole fraction fields, CarbonTracker Europe mole fraction fields and an empirical BC from NOAA aircraft profiles, are employed to investigate the influence of BCs. To estimate the uncertainties of the optimized fluxes from the system and to determine the impacts of system setup on biosphere flux covariances, BC uncertainties and model-data mismatches, we tested various prior biosphere fluxes and BCs. To estimate the transport uncertainties, we also tested an alternative Lagrangian transport model Hybrid Single Particle Lagrangian Integrated Trajectory Model driven by the North American Mesoscale Forecast System meteorological fields (HYSPLIT-NAM12). Based on the above tests, we achieved an ensemble of inverse estimates from our system

  2. Inversing grided land surface carbon fluxes focusing on Asia region

    NASA Astrophysics Data System (ADS)

    Zhang, Huifang

    2013-04-01

    With the global carbon budget research carrying out, there is a growing scientific and political interest to better understand terrestrial carbon cycle at global and regional scales. Asia, contributed one of the largest uncertainties to global carbon budget, needs further more investigation and study. The contribution of Asia to the global carbon cycle is characterized by its high fossil fuel emissions due to economic booming and demand steep rising in energy, a rapidly increasing land cover change or degradation caused by population explosion and crop land expansion, a fast forest recovering in virtue of forest afforestation in the past 20 years. These unique characteristics force the exchange of terrestrial carbon more heterogeneous in Asian continent, and lead the Asian carbon balance research's implementation more difficult. In view of the Asian net ecosystem exchange (NEE) of carbon characteristics, we used a state-of-the-art CO2 data assimilation system called CarbonTraker to estimate NEE of CO2 in Asia for every week during the years 2000-2009. This approach includes the following three steps: (1) the atmospheric transport model (TM5) used in the data assimilation system was nested to be 1x1 degree grid in Asian area while globally at 2x3 degree resolution; (2) the number of CO2 observation sites was expend with 22 in Asia (including CONTRAIL and NOAA's CO2 measurement); and (3) two different prior flux products were used to estimate uncertainty ranges. We find the Asian terrestrial biosphere absorbed about 1.89 PgC (1 petagram=1015 g) per year averaged over the period studied, partly offsetting the estimated 3.87 PgC/yr release by fossil fuel burning and cement manufacturing. The estimated sink is located mainly in the boreal Asia, while the temperate Asia and the tropical Asia are a week sink and a very small source, respectively. The results also show that the surface fluxes produced by the CarbonTracker system were reasonably consistent with the recent

  3. Accounting for urban biogenic fluxes in regional carbon budgets.

    PubMed

    Hardiman, Brady S; Wang, Jonathan A; Hutyra, Lucy R; Gately, Conor K; Getson, Jackie M; Friedl, Mark A

    2017-03-18

    Many ecosystem models incorrectly treat urban areas as devoid of vegetation and biogenic carbon (C) fluxes. We sought to improve estimates of urban biomass and biogenic C fluxes using existing, nationally available data products. We characterized biogenic influence on urban C cycling throughout Massachusetts, USA using an ecosystem model that integrates improved representation of urban vegetation, growing conditions associated with urban heat island (UHI), and altered urban phenology. Boston's biomass density is 1/4 that of rural forests, however 87% of Massachusetts' urban landscape is vegetated. Model results suggest that, kilogram-for-kilogram, urban vegetation cycles C twice as fast as rural forests. Urban vegetation releases (RE) and absorbs (GEE) the equivalent of 11 and 14%, respectively, of anthropogenic emissions in the most urban portions of the state. While urban vegetation in Massachusetts fully sequesters anthropogenic emissions from smaller cities in the region, Boston's UHI reduces annual C storage by >20% such that vegetation offsets only 2% of anthropogenic emissions. Asynchrony between temporal patterns of biogenic and anthropogenic C fluxes further constrains the emissions mitigation potential of urban vegetation. However, neglecting to account for biogenic C fluxes in cities can impair efforts to accurately monitor, report, verify, and reduce anthropogenic emissions.

  4. Multi-property modeling of ocean basin carbon fluxes

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1988-01-01

    The objectives of this project were to elucidate the causal mechanisms in some of the most important features of the global ocean/atomsphere carbon system. These included the interaction of physical and biological processes in the seasonal cycle of surface water pCo2, and links between productivity, surface chlorophyll, and the carbon cycle that would aid global modeling efforts. In addition, several other areas of critical scientific interest involving links between the marine biosphere and the global carbon cycle were successfully pursued; specifically, a possible relation between phytoplankton emitted DMS and climate, and a relation between the location of calcium carbonate burial in the ocean and metamorphic source fluxes of CO2 to the atmosphere. Six published papers covering the following topics are summarized: (1) Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary; (2) Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial; (3) Controls on CO2 sources and sinks in the earthscale surface ocean; (4) pre-anthropogenic, earthscale patterns of delta pCO2 between ocean and atmosphere; (5) Effect on atmospheric CO2 from seasonal variations in the high latitude ocean; and (6) Limitations or relating ocean surface chlorophyll to productivity.

  5. Seasonal spectral dynamics and carbon fluxes at core EOS sites using EO-1 Hyperion images

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Campbell, P.; Price, R. M.

    2010-12-01

    phenology, as well as distinct spectral shapes for each vegetation type. Preliminary results suggest a high correlation (r=0.77-0.86) between CO2 flux and various biophysical indices that were primarily associated with the red-edge inflection point (i.e., 670-780 nm wavelength), regardless of vegetation type. Soil heat flux measurements also correlated well with the biophysical indices. These findings demonstrate the advantages of high-resolution spectral imaging for Earth observations, as well as for monitoring regional and global water and carbon fluxes to understand their affects on climate change.

  6. Tidal wetland fluxes of dissolved organic carbon and sediment at Browns Island, California: initial evaluation

    USGS Publications Warehouse

    Ganju, N.K.; Bergamaschi, B.; Schoellhamer, D.H.

    2003-01-01

    Carbon and sediment fluxes from tidal wetlands are of increasing concern in the Sacramento-San Joaquin River Delta (Delta), because of drinking water issues and habitat restoration efforts. Certain forms of dissolved organic carbon (DOC) react with disinfecting chemicals used to treat drinking water, to form disinfection byproducts (DBPs), some of which are potential carcinogens. The contribution of DBP precursors by tidal wetlands is unknown. Sediment transport to and from tidal wetlands determines the potential for marsh accretion, thereby affecting habitat formation.Water, carbon, and sediment flux were measured in the main channel of Browns Island, a tidal wetland located at the confluence of Suisun Bay and the Delta. In-situ instrumentation were deployed between May 3 and May 21, 2002. Water flux was measured using acoustic Doppler current profilers and the index-velocity method. DOC concentrations were measured using calibrated ultraviolet absorbance and fluorescence instruments. Suspended-sediment concentrations were measured using a calibrated nephelometric turbidity sensor. Tidally averaged water flux through the channel was dependent on water surface elevations in Suisun Bay. Strong westerly winds resulted in higher water surface elevations in the area east of Browns Island, causing seaward flow, while subsiding winds reversed this effect. Peak ebb flow transported 36% more water than peak flood flow, indicating an ebb-dominant system. DOC concentrations were affected strongly by porewater drainage from the banks of the channel. Peak DOC concentrations were observed during slack after ebb, when the most porewater drained into the channel. Suspended-sediment concentrations were controlled by tidal currents that mobilized sediment from the channel bed, and stronger tides mobilized more sediment than the weaker tides. Sediment was transported mainly to the island during the 2-week monitoring period, though short periods of export occurred during the spring

  7. Effect of non-homogeneity in flux footprint on the interpretation of seasonal, annual, and interannual ecosystem carbon exchange

    NASA Astrophysics Data System (ADS)

    Griebel, A.; Bennett, L. T.; Metzen, D.; Cleverly, J. R.; Burba, G. G.; Arndt, S. K.

    2015-12-01

    Carbon flux measurements using the eddy covariance method rely on several assumptions, including reasonably uniform terrain and homogenous vegetation. These are not always possible in complex terrain, structurally variable native vegetation or in disturbed ecosystems. Consequently, an increasing number of flux sites are located over not fully homogeneous areas. This implies that observed year-to-year variations in CO2 budgets may not always be related only to changes in the key driving factors such as weather, canopy state and physiology, but may also be affected by differences in the flux footprints between years. This may bias budget estimates over many locations, since a large number of flux sites are affected by wind channelling, contrasting climatic conditions with wind direction (e.g. maritime sites) and by variations of continental-scale climate patterns that modify prevailing wind directions. We tested the effects of a non-homogeneous footprint on annual carbon estimates for an evergreen forest, where the combination of terrain, weather and anthropogenic management shaped the local forest structure. Interactions among these factors caused the key drivers regulating carbon fluxes (such as LAI, temperature, VPD and turbulence) to vary significantly with wind direction, and their combinations resulted in pronounced carbon sequestration 'hotspots' that impacted instantaneous fluxes. These were most distinctive during the summer months, and they varied in extent and magnitude depending on prevailing weather. Consequently, interannual variations in footprints affected up to 18.9% of seasonal estimates during the summer months, and up to 23.1% of annual carbon budget estimates. The footprint-related bias was largest at 48.7% under 'ideal' uptake conditions (clear sky, mid-day during summer). We further present a procedure to recognise and quantify the apparent interannual variations in carbon estimates attributable to year-to-year variations in flux footprint.

  8. Carbon flux assessment in cow-calf grazing systems.

    PubMed

    Chiavegato, M B; Rowntree, J E; Powers, W J

    2015-08-01

    Greenhouse gas (GHG) fluxes and soil organic carbon (SOC) accumulation in grassland ecosystems are intimately linked to grazing management. This study assessed the carbon equivalent flux (Ceq) from 1) an irrigated, heavily stocked, low-density grazing system, 2) a nonirrigated, lightly stocked, high-density grazing system, and 3) a grazing-exclusion pasture site on the basis of the GHG emissions from pasture soils and enteric methane emissions from cows grazing different pasture treatments. Soil organic carbon and total soil nitrogen stocks were measured but not included in Ceq determination because of study duration and time needed to observe a change in soil composition. Light- and heavy-stocking systems had 36% and 43% greater Ceq than nongrazed pasture sites, respectively ( < 0.01). The largest contributor to increased Ceq from grazing systems was enteric CH emissions, which represented 15% and 32% of the overall emissions for lightly and heavily stocked grazing systems, respectively. Across years, grazing systems also had increased nitrous oxide (N2O; < 0.01) and CH emissions from pasture soils ( < 0.01) compared with nongrazed pasture sites but, overall, minimally contributed to total emissions. Results indicate no clear difference in Ceqflux between the grazing systems studied when SOC change is not incorporated ( = 0.11). A greater stocking rate potentially increased total SOC stock ( = 0.02), the addition of SOC deeper into the soil horizon ( = 0.01), and soil OM content to 30 cm ( < 0.01). The incorporation of long-term annual carbon sequestration into the determination of Ceq could change results and possibly differentiate the grazing systems studied.

  9. CO2-dependent carbon isotope fractionation in dinoflagellates relates to their inorganic carbon fluxes.

    PubMed

    Hoins, Mirja; Eberlein, Tim; Van de Waal, Dedmer B; Sluijs, Appy; Reichart, Gert-Jan; Rost, Björn

    2016-08-01

    Carbon isotope fractionation (εp) between the inorganic carbon source and organic matter has been proposed to be a function of pCO2. To understand the CO2-dependency of εp and species-specific differences therein, inorganic carbon fluxes in the four dinoflagellate species Alexandrium fundyense, Scrippsiella trochoidea, Gonyaulax spinifera and Protoceratium reticulatum have been measured by means of membrane-inlet mass spectrometry. In-vivo assays were carried out at different CO2 concentrations, representing a range of pCO2 from 180 to 1200 μatm. The relative bicarbonate contribution (i.e. the ratio of bicarbonate uptake to total inorganic carbon uptake) and leakage (i.e. the ratio of CO2 efflux to total inorganic carbon uptake) varied from 0.2 to 0.5 and 0.4 to 0.7, respectively, and differed significantly between species. These ratios were fed into a single-compartment model, and εp values were calculated and compared to carbon isotope fractionation measured under the same conditions. For all investigated species, modeled and measured εp values were comparable (A. fundyense, S. trochoidea, P. reticulatum) and/or showed similar trends with pCO2 (A. fundyense, G. spinifera, P. reticulatum). Offsets are attributed to biases in inorganic flux measurements, an overestimated fractionation factor for the CO2-fixing enzyme RubisCO, or the fact that intracellular inorganic carbon fluxes were not taken into account in the model. This study demonstrates that CO2-dependency in εp can largely be explained by the inorganic carbon fluxes of the individual dinoflagellates.

  10. Global ocean particulate organic carbon flux merged with satellite parameters

    NASA Astrophysics Data System (ADS)

    Mouw, Colleen B.; Barnett, Audrey; McKinley, Galen A.; Gloege, Lucas; Pilcher, Darren

    2016-10-01

    Particulate organic carbon (POC) flux estimated from POC concentration observations from sediment traps and 234Th are compiled across the global ocean. The compilation includes six time series locations: CARIACO, K2, OSP, BATS, OFP, and HOT. Efficiency of the biological pump of carbon to the deep ocean depends largely on biologically mediated export of carbon from the surface ocean and its remineralization with depth; thus biologically related parameters able to be estimated from satellite observations were merged at the POC observation sites. Satellite parameters include net primary production, percent microplankton, sea surface temperature, photosynthetically active radiation, diffuse attenuation coefficient at 490 nm, euphotic zone depth, and climatological mixed layer depth. Of the observations across the globe, 85 % are concentrated in the Northern Hemisphere with 44 % of the data record overlapping the satellite record. Time series sites accounted for 36 % of the data, while 71 % of the data are measured at ≥ 500 m with the most common deployment depths between 1000 and 1500 m. This data set is valuable for investigations of CO2 drawdown, carbon export, remineralization, and sequestration. The compiled data can be freely accessed at doi:10.1594/PANGAEA.855600.

  11. Long Term Pattern in Runoff Doc Fluxes in Two Boreal Upland Forested Catchments: does the Increasing Nee Affect Doc Fluxes?

    NASA Astrophysics Data System (ADS)

    Pumpanen, J. S.; Lindén, A.; Miettinen, H.; Kolari, P.; Ilvesniemi, H.; Hari, P.; Heinonsalo, J.; Vesala, T.; Back, J. K.; Berninger, F.; Ojala, A.

    2013-12-01

    Part of the carbon fixed in terrestrial ecosystems is transferred through streams and rivers to lakes and the carbon is finally released as CO2 to the atmosphere through respiration or buried into lake sediments. Recently it has been shown that lake and stream water dissolved/total organic carbon (DOC/TOC) concentrations throughout the boreal zone are increasing. There are several theories which could explain this trend; land use changes, decrease in atmospheric acid deposition, changes in seasonal patterns in temperature and precipitation and increase in below ground C allocation due to increase in atmospheric CO2 concentration or soil warming. Here, we tested a hypothesis that increase in photosynthesis is reflected in soil water DOC concentrations and finally in DOC fluxes from the catchment. We used a 15-year-long continuous monitoring data on catchment runoff, DOC concentration in the runoff, GPP, TER and NEE of the ecosystem of two small upland boreal catchment areas in Southern Finland to explain the long-term trends in runoff DOC fluxes. We also studied the long term trends in the amount, DOC concentration and pH of through fall over the study period ranging from 1998 to 2012. The average DOC concentration in runoff water was 3.43-4.0 mg L-1 and it increased in both catchments over the study period (P<0.001) along with soil temperature. The annual DOC fluxes (calculated as runoff x DOC concentration) ranged from a dry year minimum of 201 mg m-2 to wet year maximum of 1886 mg m-2. Also the DOC fluxes increased significantly over the course of the study period, but only during wet years. Annual net ecosystem exchange (NEE) (P<0.002) and total ecosystem respiration (TER) (P<0.007) increased significantly during the study period whereas GPP did not show any increasing or decreasing trend (P<0.347). Annual DOC fluxes were not significantly correlated with annual NEE, GPP or TER except for wet years when one of the catchments showed increasing trend in DOC fluxes

  12. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, T.; Grosse, G.; Strauss, J.; Schirrmeister, L.; Morgenstern, A.; Schaphoff, S.; Meinshausen, M.; Boike, J.

    2015-06-01

    High-latitude soils store vast amounts of perennially frozen and therefore inert organic matter. With rising global temperatures and consequent permafrost degradation, a part of this carbon stock will become available for microbial decay and eventual release to the atmosphere. We have developed a simplified, two-dimensional multi-pool model to estimate the strength and timing of future carbon dioxide (CO2) and methane (CH4) fluxes from newly thawed permafrost carbon (i.e. carbon thawed when temperatures rise above pre-industrial levels). We have especially simulated carbon release from deep deposits in Yedoma regions by describing abrupt thaw under newly formed thermokarst lakes. The computational efficiency of our model allowed us to run large, multi-centennial ensembles under various scenarios of future warming to express uncertainty inherent to simulations of the permafrost carbon feedback. Under moderate warming of the representative concentration pathway (RCP) 2.6 scenario, cumulated CO2 fluxes from newly thawed permafrost carbon amount to 20 to 58 petagrams of carbon (Pg-C) (68% range) by the year 2100 and reach 40 to 98 Pg-C in 2300. The much larger permafrost degradation under strong warming (RCP8.5) results in cumulated CO2 release of 42 to 141 Pg-C and 157 to 313 Pg-C (68% ranges) in the years 2100 and 2300, respectively. Our estimates only consider fluxes from newly thawed permafrost, not from soils already part of the seasonally thawed active layer under pre-industrial climate. Our simulated CH4 fluxes contribute a few percent to total permafrost carbon release yet they can cause up to 40% of total permafrost-affected radiative forcing in the 21st century (upper 68% range). We infer largest CH4 emission rates of about 50 Tg-CH4 per year around the middle of the 21st century when simulated thermokarst lake extent is at its maximum and when abrupt thaw under thermokarst lakes is taken into account. CH4 release from newly thawed carbon in wetland-affected

  13. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, T.; Grosse, G.; Strauss, J.; Schirrmeister, L.; Morgenstern, A.; Schaphoff, S.; Meinshausen, M.; Boike, J.

    2014-12-01

    High-latitude soils store vast amounts of perennially frozen and therefore inert organic matter. With rising global temperatures and consequent permafrost degradation, a part of this carbon store will become available for microbial decay and eventual release to the atmosphere. We have developed a simplified, two-dimensional multi-pool model to estimate the strength and timing of future carbon dioxide (CO2) and methane (CH4) fluxes from newly thawed permafrost carbon (i.e. carbon thawed when temperatures rise above pre-industrial levels). We have especially simulated carbon release from deep deposits in Yedoma regions by describing abrupt thaw under thermokarst lakes. The computational efficiency of our model allowed us to run large, multi-centennial ensembles under various scenarios of future warming to express uncertainty inherent to simulations of the permafrost-carbon feedback. Under moderate warming of the representative concentration pathway (RCP) 2.6 scenario, cumulated CO2 fluxes from newly thawed permafrost carbon amount to 20 to 58 petagrammes of carbon (Pg-C) (68% range) by the year 2100 and reach 40 to 98 Pg-C in 2300. The much larger permafrost degradation under strong warming (RCP8.5) results in cumulated CO2 release of 42-141 and 157-313 Pg-C (68% ranges) in the years 2100 and 2300, respectively. Our estimates do only consider fluxes from newly thawed permafrost but not from soils already part of the seasonally thawed active layer under preindustrial climate. Our simulated methane fluxes contribute a few percent to total permafrost carbon release yet they can cause up to 40% of total permafrost-affected radiative forcing in the 21st century (upper 68% range). We infer largest methane emission rates of about 50 Tg-CH4 year-1 around the mid of the 21st century when simulated thermokarst lake extent is at its maximum and when abrupt thaw under thermokarst lakes is accounted for. CH4 release from newly thawed carbon in wetland-affected deposits is only

  14. Phytolith-Occluded Carbon Pools and Fluxes: New Estimates

    NASA Astrophysics Data System (ADS)

    Reyerson, P. E.; Alexandre, A. E.; Santos, G.

    2015-12-01

    Phytoliths are microscopic grains of silica (SiO2•nH2O) formed within plants. The biomineralization process typically encapsulates small quantities of carbon termed phytC. Upon decomposition, phytoliths are released from biomass and into soils. Recent research has suggested that phytC may be a large sink of atmospheric CO2 in soils. Important steps, therefore, are to quantify phytC cycling across ecosystems and to measure it's importance relative to the organic C cycle as a whole. Thus, information regarding phytC pool sizes and flux rates are needed. To an extent this has been performed. PhytC quantities can be easily estimated as long as 1) phytolith quantities and 2) the amount of C present in phytoliths are known. The quantity of C within phytoliths is still a subject of debate, but recent work has found quantities of less than 0.22%. Older studies, which rely on extraction methods which are now known to incompletely remove surface organic residues, have found phytC quantities from 1% to 20%. Hence, studies of phytC cycling using outdated methods may lead to overestimates. In order to re-estimate phytC dynamics, we compiled an extensive list of published works which document phytolith pools in above-ground biomass and soils, as well as flux rates. From these data phytC quantities were calculated using revised estimates of phytolith C percentages. PhytC quantities were also compared to total organic C (TOC) pools and fluxes. These calculations were then extrapolated to biome and global scales. At the biome scale, our results indicate that phytC within living biomass and soil pools as well as fluxes are one to two orders of magnitude smaller than previously estimated. PhytC is generally less than 0.01% of biomass TOC, and less than 1% of soil TOC. Annual phytC fluxes are less than 0.01% of TOC fluxes. At the global scale, annual phytC production is approximately 0.01% to 0.10% of gross C production. The findings of the present study suggest that direct C

  15. [Biogeneous carbon fluxes in the boreal forests of Central Siberia].

    PubMed

    Vedrova, É F

    2011-01-01

    The assessments of the carbon pool and rate of plant biomass production, phytodetritus destruction, new formations of humic matters, and removal of water-soluble decomposition products for the forest ecosystems of the forest tundra and the northern and southern parts of the Central Siberian taiga were given. The rates of the main processes (organic-matter production and degradation) were demonstrated to be balanced in the ecosystems of the forest tundra. The larch forests of the northern taiga serve as a stock for a C atmosphere, which are equivalent to 32-34% of net primary production (NPP). The secondary birch growth where the understory needle-leaved trees have been formed and the primary old-growth fir forests are characterized by the balance of the main carbon fluxes in the southern taiga. The birch forests where the understory trees are just being formed and the fir forests at the age of 50-90 years serve as a stock for an average of 26% of carbon extracted as dioxide to make NPP.

  16. Hydroclimatic Controls over Global Variations in Phenology and Carbon Flux

    NASA Technical Reports Server (NTRS)

    Koster, Randal; Walker, G.; Thornton, Patti; Collatz, G. J.

    2012-01-01

    The connection between phenological and hydroclimatological variations are quantified through joint analyses of global NDVI, LAI, and precipitation datasets. The global distributions of both NDVI and LAI in the warm season are strongly controlled by three quantities: mean annual precipitation, the standard deviation of annual precipitation, and Budyko's index of dryness. Upon demonstrating that these same basic (if biased) relationships are produced by a dynamic vegetation model (the dynamic vegetation and carbon storage components of the NCAR Community Land Model version 4 combined with the water and energy balance framework of the Catchment Land Surface Model of the NASA Global Modeling and Assimilation Office), we use the model to perform a sensitivity study focusing on how phenology and carbon flux might respond to climatic change. The offline (decoupled from the atmosphere) simulations show us, for example, where on the globe a given small increment in precipitation mean or variability would have the greatest impact on carbon uptake. The analysis framework allows us in addition to quantify the degree to which climatic biases in a free-running GCM are manifested as biases in simulated phenology.

  17. Carbon dioxide fluxes associated with synoptic weather events over a southern inland water

    NASA Astrophysics Data System (ADS)

    Liu, H.; Zhang, Q.; Gao, Z.

    2015-12-01

    Evidence indicates that inland waters play an important role in regional and global carbon budget through releasing a substantial carbon into the atmosphere. To better quantify how environmental variables affect CO2 exchange between inland waters and the atmosphere and its temporal variations, we have conducted direct, long-term measurements of CO2 fluxes across the water-atmosphere interface over a large southern open water of Ross Barnett Reservoir in central Mississippi. Our data indicate that large CO2 flux pulses occurred occasionally throughout the course of a year with the duration of a few days for each pulse. Here we analyzed and demonstrated that these CO2 flux pulses were associated with the passages of synoptic weather events. Our preliminary results indicated that these synoptic weather events (e.g., extratropical clones and cold air bursts) led to the enhanced mechanical mixing due to increasing wind speeds and the instability of the atmospheric surface layer due to the decreasing air temperature. As a consequence, in-water processes were also substantially altered accordingly. Due to the dramatic decrease in air temperature caused by the events, the temperature in the water surface layer was largely reduced, generating in-water convection conditions and thus leading to the increased depths of the mixing layer in the water, as reflected by the water temperature profiles. The enhanced mechanical mixing in the atmospheric surface layer may have further contributed to the deepened mixing layer in the water. Our suggestions suggest that high CO2 effluxes during the pulse events were largely attributed to changes in the water-side physical processes that are directly linked to rapid changes in atmospheric processes associated with synoptic weather events. Given its substantial contribution of CO2 flux pulses to carbon emission, such physical processes should be taken into account when carbon emissions from inland waters are quantified.

  18. Influence of Leaf Area Index Prescriptions on Simulations of Heat, Moisture, and Carbon Fluxes

    NASA Technical Reports Server (NTRS)

    Kala, Jatin; Decker, Mark; Exbrayat, Jean-Francois; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Abramowitz, Gab; Mocko, David

    2013-01-01

    Leaf-area index (LAI), the total one-sided surface area of leaf per ground surface area, is a key component of land surface models. We investigate the influence of differing, plausible LAI prescriptions on heat, moisture, and carbon fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLEv1.4b) model over the Australian continent. A 15-member ensemble monthly LAI data-set is generated using the MODIS LAI product and gridded observations of temperature and precipitation. Offline simulations lasting 29 years (1980-2008) are carried out at 25 km resolution with the composite monthly means from the MODIS LAI product (control simulation) and compared with simulations using each of the 15-member ensemble monthly-varying LAI data-sets generated. The imposed changes in LAI did not strongly influence the sensible and latent fluxes but the carbon fluxes were more strongly affected. Croplands showed the largest sensitivity in gross primary production with differences ranging from -90 to 60 %. PFTs with high absolute LAI and low inter-annual variability, such as evergreen broadleaf trees, showed the least response to the different LAI prescriptions, whilst those with lower absolute LAI and higher inter-annual variability, such as croplands, were more sensitive. We show that reliance on a single LAI prescription may not accurately reflect the uncertainty in the simulation of the terrestrial carbon fluxes, especially for PFTs with high inter-annual variability. Our study highlights that the accurate representation of LAI in land surface models is key to the simulation of the terrestrial carbon cycle. Hence this will become critical in quantifying the uncertainty in future changes in primary production.

  19. Carbon flux from bio-optical profiling floats: Calibrating transmissometers for use as optical sediment traps

    NASA Astrophysics Data System (ADS)

    Estapa, Meg; Durkin, Colleen; Buesseler, Ken; Johnson, Rod; Feen, Melanie

    2017-02-01

    Our mechanistic understanding of the processes controlling the ocean's biological pump is limited, in part, by our lack of observational data at appropriate timescales. The "optical sediment trap" (OST) technique utilizes a transmissometer on a quasi-Lagrangian platform to collect sedimenting particles. This method could help fill the observational gap by providing autonomous measurements of particulate carbon (PC) flux in the upper mesopelagic ocean at high spatiotemporal resolution. Here, we used a combination of field measurements and laboratory experiments to test hydrodynamic and zooplankton-swimmer effects on the OST method, and we quantitatively calibrated this method against PC flux measured directly in same-platform, neutrally buoyant sediment traps (NBSTs) during 5 monthly cruises at the Bermuda Atlantic Time-series Study (BATS) site. We found a well-correlated, positive relationship (R2=0.66, n=15) between the OST proxy, and the PC flux measured directly using NBSTs. Laboratory tests showed that scattering of light from multiple particles between the source and detector was unlikely to affect OST proxy results. We found that the carbon-specific attenuance of sinking particles was larger than literature values for smaller, suspended particles in the ocean, and consistent with variable carbon: size relationships reported in the literature for sinking particles. We also found evidence for variability in PC flux at high spatiotemporal resolution. Our results are consistent with the literature on particle carbon content and optical properties in the ocean, and support more widespread use of the OST proxy, with proper site-specific and platform-specific calibration, to better understand variability in the ocean biological pump.

  20. Human footprint affects US carbon balance more than climate change

    USGS Publications Warehouse

    Bachelet, Dominique; Ferschweiler, Ken; Sheehan, Tim; Baker, Barry; Sleeter, Benjamin M.; Zhu, Zhiliang

    2017-01-01

    The MC2 model projects an overall increase in carbon capture in conterminous United States during the 21st century while also simulating a rise in fire causing much carbon loss. Carbon sequestration in soils is critical to prevent carbon losses from future disturbances, and we show that natural ecosystems store more carbon belowground than managed systems do. Natural and human-caused disturbances affect soil processes that shape ecosystem recovery and competitive interactions between native, exotics, and climate refugees. Tomorrow's carbon budgets will depend on how land use, natural disturbances, and climate variability will interact and affect the balance between carbon capture and release.

  1. Aboveground Tree Carbon Stocks and Flux Following Mountain Pine Beetle Outbreaks

    NASA Astrophysics Data System (ADS)

    Pfeifer, E. M.; Hicke, J. A.

    2008-12-01

    Mountain pine beetle outbreaks result in tree mortality across millions of acres in North America, with significant effects on forest ecosystem processes such as carbon cycling. Following outbreak-related mortality, forest stands continue taking up carbon (C) via the growth of 1) surviving trees and/or 2) tree seedlings that establish during and after outbreaks. To date, the degree to which surviving trees can, in the absence of post-outbreak seedling establishment, recover pre-outbreak C stocks and flux is largely unknown. To address this uncertainty we asked: (1) Do aboveground stocks and flux among pure lodgepole pine stands recover to pre-outbreak levels independent of post-outbreak regeneration? 2) What is the long-term effect of the mountain pine beetle outbreaks on modeled aboveground C stocks and flux? We used measurements from several stands affected by a recent mountain pine beetle outbreak as input to the Forest Vegetation Simulator, an individual tree-based growth model, to predict stand-level aboveground C stocks and flux. The simulation time period spanned from just prior to the bark beetle outbreak and for 200 years following outbreak collapse. At five-year intervals, we compared C stocks and fluxes in stands affected by the disturbance to conditions in the same stands immediately preceding the outbreak, as well as identical stands modeled as if the outbreak had not occurred. Crown closure of surviving trees was predicted by the model in all stands following outbreak collapse, but measured outbreak mortality did not significantly reverse increases of growth dominance by relatively large trees. Stand-level growth dominance and increases of stand density following crown closure have been associated with declines in stand-level primary productivity and productivity efficiency. Thus, unlike stand- level C stocks, predicted C flux did not recover relative to pre-outbreak levels, although we observed basic patterns of C flux rise, peak, and long

  2. Carbon dioxide flux within and above a boreal aspen forest

    NASA Astrophysics Data System (ADS)

    Yang, Paul Chenggang

    Carbon dioxide, water vapour, sensible heat and momentum fluxes were continuously measured using the eddy covariance technique above and below the overstory in a 70-year old aspen stand in northern Saskatchewan from October to November 1993 and from February to September 1994, and above the overstory from April to December 1996 as a part of the Boreal Ecosystem-Atmosphere Study (BOREAS). The air within the forest was usually stably stratified at night and unstable during the daytime. The relationships of the variances of the vertical velocity and scalars (air temperature, CO2 concentration and specific humidity) to the stability parameter above the forest followed the Monin-Obukhov similarity (MOS) relationships, while the applicability of MOS theory in the trunk space was poor. The rate of change in CO2 storage in the air column (Δ Sa/Δt) beneath the above-canopy eddy covariance system could be well estimated with concentrations measured at one height above the form and at one height (2.3 m) in the trunk space. Within the hunk space, eddy covariance sensible and latent heat flux measurements at one position were representative of an area extending for at least two tree heights. The same was the case for CO2 flux and during the daytime. At night, however, they exhibited significant horizontal variability but were representative of the above area when averaged over several days. Evidence supporting the hypothesis that the low nighttime CO2 fluxes resulted from the short-term changes in CO2 storage in the air-filled pores of soil/snow was presented. The rate of change of this storage (ΔSa/Δt) was estimated as ΔSs/Δt = (1 - M)Rsha where Rsha (forest respiration) is a function of soil temperature and M is a function of the friction velocity. Photosynthetic rates (P) were modelled as a product of P1, P2 and P3. P1 is a rectangular hyperbolic function of the absorbed photosynthetic photon flux density (PPFD), and P2 and P3 are second order polynomial functions of

  3. A flux-limited sample of Galactic carbon stars

    NASA Technical Reports Server (NTRS)

    Claussen, M. J.; Kleinmann, S. G.; Joyce, R. R.; Jura, M.

    1987-01-01

    Published observational data (including IRAS observations) for a flux-limited sample of 215 Galactic carbon stars (CSs) selected from the 2-micron sky survey of Neugebauer and Leighton (1969) are compiled in extensive tables and graphs and analyzed statistically. The sample is found to penetrate a volume of radius 1.5 kpc, and the local CS space density and surface density are calculated as log rho0 (per cu kpc) = 2.0 + or - 0.4 and log N (per sq kpc) = 1.6 + or - 0.2, respectively. The total Galactic mass-return rate from these CSs is estimated as 0.013 solar mass/yr, implying a time scale of 0.1-1 Myr for the CS evolutionary phase and a mass of 1.2-1.6 solar mass for the (probably F-type) main-seqence progenitors of CSs.

  4. Upper ocean mixing controls the seasonality of planktonic foraminifer fluxes and associated strength of the carbonate pump in the oligotrophic North Atlantic

    NASA Astrophysics Data System (ADS)

    Salmon, K. H.; Anand, P.; Sexton, P. F.; Conte, M.

    2015-01-01

    Oligotrophic regions represent up to 75% of Earth's open-ocean environments. They are thus areas of major importance in understanding the plankton community dynamics and biogeochemical fluxes. Here we present fluxes of total planktonic foraminifera and 11 planktonic foraminifer species measured at the Oceanic Flux Program (OFP) time series site in the oligotrophic Sargasso Sea, subtropical western North Atlantic Ocean. Foraminifera flux was measured at 1500 m water depth, over two ~ 2.5-year intervals: 1998-2000 and 2007-2010. We find that foraminifera flux was closely correlated with total mass flux, carbonate and organic carbon fluxes. We show that the planktonic foraminifera flux increases approximately 5-fold during the winter-spring, contributing up to ~ 40% of the total carbonate flux. This was primarily driven by increased fluxes of deeper-dwelling globorotaliid species, which contributed up to 90% of the foraminiferal-derived carbonate during late winter-early spring. Interannual variability in total foraminifera flux, and in particular fluxes of the deep-dwelling species (Globorotalia truncatulinoides, Globorotalia hirsuta and Globorotalia inflata), was related to differences in seasonal mixed layer dynamics affecting the strength of the spring phytoplankton bloom and export flux, and by the passage of mesoscale eddies. As these heavily calcified, dense carbonate tests of deeper-dwelling species (3 times denser than surface dwellers) have greater sinking rates, this implies a high seasonality of the biological carbonate pump in oligotrophic oceanic regions. Our data suggest that climate cycles, such as the North Atlantic Oscillation, which modulates nutrient supply into the euphotic zone and the strength of the spring bloom, may also in turn modulate the production and flux of these heavily calcified deep-dwelling foraminifera by increasing their food supply, thereby intensifying the biological carbonate pump.

  5. Interannual variation of carbon fluxes from three contrasting evergreen forests: The role of forest dynamics and climate

    USGS Publications Warehouse

    Sierra, C.A.; Loescher, H.W.; Harmon, M.E.; Richardson, A.D.; Hollinger, D.Y.; Perakis, S.S.

    2009-01-01

    Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed ?? 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show

  6. Interannual variation of carbon fluxes from three contrasting evergreen forests: the role of forest dynamics and climate.

    PubMed

    Sierra, Carlos A; Loescher, Henry W; Harmon, Mark E; Richardson, Andrew D; Hollinger, David Y; Perakis, Steven S

    2009-10-01

    Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed approximately 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results

  7. Dynamics of carbon fluxes above a hemiboreal mixed forest

    NASA Astrophysics Data System (ADS)

    Krasnova, Alisa; Noe, Steffen M.; Niinemets, Ülo; Krasnov, Dmitrii

    2015-04-01

    Forest ecosystems are a major part of the biosphere and control land surface-atmosphere interactions. They influence atmospheric composition and climate significantly being sources and sinks of trace gases and energy. Mixed stands of both coniferous and deciduous tree species are characterized by greater seasonal variability of forest microclimate, canopy shape and density, length of growing season and plant activity and higher biota diversity and compared to pure boreal forests. These factors coupled with physical environment (atmospheric and meteorological conditions, soil properties) influence CO2 exchange between forest and the atmosphere. To explore complex interactions within ecosystem-atmosphere continuum of hemiboreal forest SMEAR Estonia station was established in Järvselja, Estonia. A 24 m height scaffolding tower located in a forest stand dominated by Norway spruce (Picea abies (L.) Karst.) with co-domination of Silver birch (Betula pendula Roth.) and Black alder (Alnus glutinosa L.) was used to study eddy-covariance fluxes of CO2. We present the results from the first continuous EC measurements over a hemiboreal mixed forest performed in 2011-2012. The focus of the study is on diurnal and annual dynamics of carbon fluxes and the influence of main environmental drivers.

  8. Links Among Warming, Fungal Communities, and Carbon Fluxes in Boreal Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Czimczik, C. I.; Treseder, K. K.

    2006-12-01

    Microbial responses to climate change could drive positive feedbacks to the carbon cycle, particularly in high latitude ecosystems. We used molecular and enzymatic approaches to determine whether fungal communities changed in response to experimental warming in boreal forest ecosystems. We also measured the flux and 14C signature of soil respiration from warmed and unwarmed soils to link microbial responses with the carbon cycle. In an early-successional site recovering from a 1999 fire, warming significantly increased the activities of cellulose- and chitin-degrading enzymes by 17% and 30%, respectively. In a second site dominated by mature black spruce trees, the activity of the chitin-degrading enzyme declined significantly by 24%. However, warming did not affect soil CO2 fluxes in either site, or the source of soil respiration as measured by 14C isotopic analyses in the mature forest site. Together, these results suggest that warming does alter fungal community composition and potentially carbon substrate utilization. However, the total amount and 14C age of microbially-respired carbon does not change. Despite shifts in fungal community composition, ecosystem processes driven by microbial activity may be resistant to climate warming in these well-drained boreal ecosystems.

  9. Aeolian nutrient fluxes following wildfire in sagebrush steppe: Implications for soil carbon storage

    USGS Publications Warehouse

    Hasselquist, N.J.; Germino, M.J.; Sankey, J.B.; Ingram, L.J.; Glenn, N.F.

    2011-01-01

    Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes occurring in the saltation zone during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C) and nitrogen (N) fluxes were as high as 235 g C m????'1 d????'1 and 19 g N m????'1 d????'1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes. ?? Author(s) 2011. CC Attribution 3.0 License.

  10. Estimation of terrestrial carbon fluxes with 1km by 1km spatial-resolution using satellite- driven model

    NASA Astrophysics Data System (ADS)

    Sasai, T.; Nasahara, K.; Ito, A.; Saigusa, N.; Hirata, R.; Takagi, K.; Oikawa, T.

    2008-12-01

    Terrestrial carbon cycle is strongly affected by some local natural phenomena and human-induced activities, which bring change to the carbon exchanges via vegetation and soil microbe activities. In order to accurately understand a realistic spatial pattern in carbon exchanges including such an effect of local-scale events, we need to calculate carbon fluxes and storages with as detailed spatial resolution as possible. In response to this, we attempt to estimate terrestrial carbon fluxes with 1km by 1km spatial resolution using satellite-driven model. Study area of the model estimation is the Further East Asia region, which lies at 30-50 north latitude and 125-150 east longitude. The model is the Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data (BEAMS) [Sasai et al., 2005, 2007]. Being aim at simulating terrestrial carbon exchanges under more realistic land surface condition, we applied as many as possible of satellite-observation products such as the standard MODIS, TRMM, and SRTM high-level land products as model inputs. In the model validation, we compared between model estimations and eddy covariance measurements at four flux sites. As a result, a correlation coefficient of the terrestrial carbon fluxes between estimations and measurements were high values, leading up that the model estimations are virtually reasonable. In model analysis, BEAMS was operated with 1km by 1km spatial resolution from 2001 to 2006. Spatial distributions in the annual mean NPP and NEP showed that high values were distributed over the hilly and plateau regions, and they were gradually decreasing towards the urban and high mountain areas, meaning that we could reflect an impact of the local-scale events in the carbon flux estimations. In future, we would extend study area to the East Asia region, and the carbon exchange map with 1km by 1km spatial- resolution is distributed on the website.

  11. Quantifying organic carbon fluxes in eroding hillslopes through MIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Lever, R.; Sanderman, J.; Berhe, A.

    2013-12-01

    Erosion is a ubiquitous and important global process that redistributes approximately 75 Gt of soil annually and has been shown to serve as a significant terrestrial carbon (C) sink. The role of soil erosion in redistribution of carbon and other essential elements has not been adequately investigated in much of the current literature. Additionally, fire plays a significant role in controlling the dynamics of bulk C and different organic carbon (OC) fraction dynamics in the soil system. Here we use mid-infrared (MIR) spectroscopy, in combination with partial least squares regression (PLSR) to predict how fire affects distribution of OC into different fractions in different landform positions of an area affected by the Gondola fire in South Lake Tahoe, CA. The Gondola fire is a unique site, with pre- and post-wildfire sampling points on both the hillslope and in the corresponding depositional area. The MIR/PLSR analysis illustrates how fire and erosion can act to change C and OC fractions within an eroding hillslope.

  12. A comparison of different inverse carbon flux estimation approaches for application on a regional domain

    NASA Astrophysics Data System (ADS)

    Tolk, L. F.; Dolman, A. J.; Meesters, A. G. C. A.; Peters, W.

    2011-10-01

    We have implemented six different inverse carbon flux estimation methods in a regional carbon dioxide (CO2) flux modeling system for the Netherlands. The system consists of the Regional Atmospheric Mesoscale Modeling System (RAMS) coupled to a simple carbon flux scheme which is run in a coupled fashion on relatively high resolution (10 km). Using an Ensemble Kalman filter approach we try to estimate spatiotemporal carbon exchange patterns from atmospheric CO2 mole fractions over the Netherlands for a two week period in spring 2008. The focus of this work is the different strategies that can be employed to turn first-guess fluxes into optimal ones, which is known as a fundamental design choice that can affect the outcome of an inversion significantly. Different state-of-the-art approaches with respect to the estimation of net ecosystem exchange (NEE) are compared quantitatively: (1) where NEE is scaled by one linear multiplication factor per land-use type, (2) where the same is done for photosynthesis (GPP) and respiration (R) separately with varying assumptions for the correlation structure, (3) where we solve for those same multiplication factors but now for each grid box, and (4) where we optimize physical parameters of the underlying biosphere model for each land-use type. The pattern to be retrieved in this pseudo-data experiment is different in nearly all aspects from the first-guess fluxes, including the structure of the underlying flux model, reflecting the difference between the modeled fluxes and the fluxes in the real world. This makes our study a stringent test of the performance of these methods, which are currently widely used in carbon cycle inverse studies. Our results show that all methods struggle to retrieve the spatiotemporal NEE distribution, and none of them succeeds in finding accurate domain averaged NEE with correct spatial and temporal behavior. The main cause is the difference between the structures of the first-guess and true CO2 flux

  13. A comparison of different inverse carbon flux estimation approaches for application on a regional domain

    NASA Astrophysics Data System (ADS)

    Tolk, L. F.; Dolman, A. J.; Meesters, A. G. C. A.; Peters, W.

    2011-01-01

    We have implemented six different inverse carbon flux estimation methods in a regional carbon dioxide (CO2) flux modeling system for The Netherlands. The system consists of the Regional Atmospheric Mesoscale Modeling System (RAMS) coupled to a simple carbon flux scheme which is run in a coupled fashion on relatively high resolution (10 km). Using an Ensemble Kalman filter approach we try to estimate spatiotemporal carbon exchange patterns from atmospheric CO2 mole fractions over The Netherlands for a two week period in spring 2008. The focus of this work is the different strategies that can be employed to turn first-guess fluxes into optimal ones, which is known as a fundamental design choice that can affect the outcome of an inversion significantly. Different state-of-the-art approaches with respect to the estimation of net ecosystem exchange (NEE) are compared quantitatively: (1) where NEE is scaled by one linear multiplication factor per land-use type, (2) where the same is done for photosynthesis (GPP) and respiration (R) separately with varying assumptions for the correlation structure, (3) where we solve for those same multiplication factors but now for each grid box, and (4) where we optimize physical parameters of the underlying biosphere model for each land-use type. The pattern to be retrieved in this pseudo-data experiment is different in nearly all aspects from the first-guess fluxes, including the structure of the underlying flux model, reflecting the difference between the modeled fluxes and the fluxes in the real world. This makes our study a stringent test of the performance of these methods, which are currently widely used in carbon cycle inverse studies. Our results show that all methods struggle to retrieve the spatiotemporal NEE distribution, and none of them succeeds in finding accurate domain averaged NEE with correct spatial and temporal behavior. The main cause is the difference between the structures of the first-guess and true CO2 flux

  14. Nitrogen, tillage, and crop rotation effects on carbon dioxide and methane fluxes from irrigated cropping systems.

    PubMed

    Alluvione, Francesco; Halvorson, Ardell D; Del Grosso, Stephen J

    2009-01-01

    Long-term effects of tillage intensity, N fertilization, and crop rotation on carbon dioxide (CO(2)) and methane (CH(4)) flux from semiarid irrigated soils are poorly understood. We evaluated effects of: (i) tillage intensity [no-till (NT) and conventional moldboard plow tillage (CT)] in a continuous corn rotation; (ii) N fertilization levels [0-246 kg N ha(-1) for corn (Zea mays L.); 0 and 56 kg N ha(-1) for dry bean (Phaseolus vulgaris L.); 0 and 112 kg N ha(-1) for barley (Hordeum distichon L.)]; and (iii) crop rotation under NT soil management [corn-barley (NT-CB); continuous corn (NT-CC); corn-dry bean (NT-CDb)] on CO(2) and CH(4) flux from a clay loam soil. Carbon dioxide and CH(4) fluxes were monitored one to three times per week using vented nonsteady state closed chambers. No-till reduced (14%) growing season (154 d) cumulative CO(2) emissions relative to CT (NT: 2.08 Mg CO(2)-C ha(-1); CT: 2.41 Mg CO(2)-C ha(-1)), while N fertilization had no effect. Significantly lower (18%) growing season CO(2) fluxes were found in NT-CDb than NT-CC and NT-CB (11.4, 13.2 and 13.9 kg CO(2)-C ha(-1)d(-1) respectively). Growing season CH(4) emissions were higher in NT (20.2 g CH(4) ha(-1)) than in CT (1.2 g CH(4) ha(-1)). Nitrogen fertilization and cropping rotation did not affect CH(4) flux. Implementation of NT for 7 yr with no N fertilization was not adequate for restoring the CH(4) oxidation capacity of this clay loam soil relative to CT plowed and fertilized soil.

  15. Constraining surface carbon fluxes using in situ measurements of carbonyl sulfide and carbon dioxide

    NASA Astrophysics Data System (ADS)

    Berkelhammer, M.; Asaf, D.; Still, C.; Montzka, S.; Noone, D.; Gupta, M.; Provencal, R.; Chen, H.; Yakir, D.

    2014-02-01

    Understanding the processes that control the terrestrial exchange of carbon is critical for assessing atmospheric CO2 budgets. Carbonyl sulfide (COS) is taken up by vegetation during photosynthesis following a pathway that mirrors CO2 but has a small or nonexistent emission component, providing a possible tracer for gross primary production. Field measurements of COS and CO2 mixing ratios were made in forest, senescent grassland, and riparian ecosystems using a laser absorption spectrometer installed in a mobile trailer. Measurements of leaf fluxes with a branch-bag gas-exchange system were made across species from 10 genera of trees, and soil fluxes were measured with a flow-through chamber. These data show (1) the existence of a narrow normalized daytime uptake ratio of COS to CO2 across vascular plant species of 1.7, providing critical information for the application of COS to estimate photosynthetic CO2 fluxes and (2) a temperature-dependent normalized uptake ratio of COS to CO2 from soils. Significant nighttime uptake of COS was observed in broad-leafed species and revealed active stomatal opening prior to sunrise. Continuous high-resolution joint measurements of COS and CO2 concentrations in the boundary layer are used here alongside the flux measurements to partition the influence that leaf and soil fluxes and entrainment of air from above have on the surface carbon budget. The results provide a number of critical constraints on the processes that control surface COS exchange, which can be used to diagnose the robustness of global models that are beginning to use COS to constrain terrestrial carbon exchange.

  16. Carbon trace gas fluxes along a successional gradient in the Hudson Bay lowland

    NASA Astrophysics Data System (ADS)

    Klinger, Lee F.; Zimmerman, Patrick R.; Greenberg, James P.; Heidt, Leroy E.; Guenther, Alex B.

    1994-01-01

    Patterns and controls of carbon trace gas emissions from wetlands may vary depending upon the spatial and temporal scale being examined. The factors affecting these emissions are thought to be hierarchically related according to their respective scales of importance. A hierarchical model of processes controlling methane emissions from wetlands is presented and examined here. During the 1990 Northern Wetlands Study (NOWES) methane (CH4), carbon dioxide (CO2), and non-methane hydrocarbon (NMHC) fluxes were measured in static chambers along a 100 km transect in the Hudson Bay lowland (HBL). Environmental variables, vegetation abundance, and ecosystem age and structure were also quantified at each sampling site. The findings indicate that CH4 emissions from peatlands (e.g., bogs and fens) and other wetlands (e.g., salt marshes) in the region were low, and were nil or negative (i.e., CH4 uptake) in forests and bog forests dominated by aspen and black spruce. Site to site variations in mean CH4 flux appeared to be most closely related to mean water table and sedge productivity, both of which are intercorrelated. Seasonal changes in CH4 flux tend to follow soil temperature fluctuations. Instantaneous CO2 and CH4 daytime fluxes exhibit a negative correlation, suggesting that photosynthetic assimilation of carbon may be related to CH4 emissions, although the processes of CO2 and CH4 production are occurring at somewhat different temporal scales. No diurnal variations in CH4 flux could be detected. While soil water pH trends are not fully explored, there is some indication that high CH4 fluxes are concentrated around pH 4 and pH 7. Soil temperature closely follows the seasonal progression of CH4 flux. Estimated CH4 seasonal flux (1.5-3.9 g CH4 m-2 season-1) and estimated aboveground net primary productivity (NPP) (90-400 g dry weight m-2 season-1) show systematic changes along a successional sequence which are consistent with patterns predicted from successional theory

  17. Unsaturated zone carbon dioxide flux, mixing, and isotopic composition at the USGS Amargosa Desert Research Site

    NASA Astrophysics Data System (ADS)

    Conaway, C. H.; Thordsen, J. J.; Thomas, B.; Haase, K.; Moreo, M. T.; Walvoord, M. A.; Andraski, B. J.; Stonestrom, D. A.

    2015-12-01

    Elevated concentrations of tritium, radiocarbon, and volatile organic compounds at the USGS Amargosa Desert Research Site, adjacent to a low-level radioactive waste disposal facility, have stimulated research on factors affecting transport of these contaminants. This research includes an examination of unsaturated zone carbon dioxide (CO2) fluxes, mixing, and isotopic composition, which can help in understanding these factors. In late April 2015 we collected 76 soil-gas samples in multi-layer foil bags from existing 1.5-m deep tubes, both inside and outside the low-level waste area, as well as from two 110-m-deep multilevel gas-sampling boreholes and a distant background site. These samples were analyzed for carbon dioxide concentration and isotopic composition by direct injection into a cavity ring-down spectrometer. Graphical analysis of results indicates mixing of CO2 characteristic of the root zone (δ13C -18 ‰ VPDB), deep soil gas of the capillary fringe (-20‰), and CO2 produced by microbial respiration of organic matter disposed in the waste area trenches (-28‰). Land-surface boundary conditions are being constrained by the application of a novel non-dispersive infrared sensor and traditional concentration and flux measurements, including discrete CO2 flux data using a gas chamber method to complement continuous data from surface- and tower-based CO2 sensors. These results shed light on radionuclide and VOC mobilization and transport mechanisms from this and similar waste disposal facilities.

  18. CARBON STORAGE AND FLUXES IN PONDEROSA PINE AT DIFFERENT SUCCESSIONAL STAGES

    EPA Science Inventory

    We compared carbon storage and fluxes in young and old ponderosa pine stands in Oregon, including plant and soil storage, net primary productivity, respiration fluxes, and eddy flux estimates of net ecosystem exchange. The young site (Y site) was previously an old-growth pondero...

  19. Comparing carbon dioxide (CO2) flux between no-till and conventional tillage agriculture in Lesotho

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil management practices can either sequester or emit carbon (C). Feeding seven billion people mandates that soils be used intensively for food production, but how these soils are managed greatly impacts soil fluxes of carbon dioxide (CO2). However, the lack of CO2 flux measurements on African subs...

  20. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China.

    PubMed

    Yu, Gui-Rui; Zhu, Xian-Jin; Fu, Yu-Ling; He, Hong-Lin; Wang, Qiu-Feng; Wen, Xue-Fa; Li, Xuan-Ran; Zhang, Lei-Ming; Zhang, Li; Su, Wen; Li, Sheng-Gong; Sun, Xiao-Min; Zhang, Yi-Ping; Zhang, Jun-Hui; Yan, Jun-Hua; Wang, Hui-Min; Zhou, Guang-Sheng; Jia, Bing-Rui; Xiang, Wen-Hua; Li, Ying-Nian; Zhao, Liang; Wang, Yan-Fen; Shi, Pei-Li; Chen, Shi-Ping; Xin, Xiao-Ping; Zhao, Feng-Hua; Wang, Yu-Ying; Tong, Cheng-Li

    2013-03-01

    Understanding the dynamics and underlying mechanism of carbon exchange between terrestrial ecosystems and the atmosphere is one of the key issues in global change research. In this study, we quantified the carbon fluxes in different terrestrial ecosystems in China, and analyzed their spatial variation and environmental drivers based on the long-term observation data of ChinaFLUX sites and the published data from other flux sites in China. The results indicate that gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem productivity (NEP) of terrestrial ecosystems in China showed a significantly latitudinal pattern, declining linearly with the increase of latitude. However, GEP, ER, and NEP did not present a clear longitudinal pattern. The carbon sink functional areas of terrestrial ecosystems in China were mainly located in the subtropical and temperate forests, coastal wetlands in eastern China, the temperate meadow steppe in the northeast China, and the alpine meadow in eastern edge of Qinghai-Tibetan Plateau. The forest ecosystems had stronger carbon sink than grassland ecosystems. The spatial patterns of GEP and ER in China were mainly determined by mean annual precipitation (MAP) and mean annual temperature (MAT), whereas the spatial variation in NEP was largely explained by MAT. The combined effects of MAT and MAP explained 79%, 62%, and 66% of the spatial variations in GEP, ER, and NEP, respectively. The GEP, ER, and NEP in different ecosystems in China exhibited 'positive coupling correlation' in their spatial patterns. Both ER and NEP were significantly correlated with GEP, with 68% of the per-unit GEP contributed to ER and 29% to NEP. MAT and MAP affected the spatial patterns of ER and NEP mainly by their direct effects on the spatial pattern of GEP.

  1. Defaunation affects carbon storage in tropical forests.

    PubMed

    Bello, Carolina; Galetti, Mauro; Pizo, Marco A; Magnago, Luiz Fernando S; Rocha, Mariana F; Lima, Renato A F; Peres, Carlos A; Ovaskainen, Otso; Jordano, Pedro

    2015-12-01

    Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are threatened by hunting, illegal trade, and habitat loss. We used a large data set on tree species composition and abundance, seed, fruit, and carbon-related traits, and plant-animal interactions to estimate the loss of carbon storage capacity of tropical forests in defaunated scenarios. By simulating the local extinction of trees that depend on large frugivores in 31 Atlantic Forest communities, we found that defaunation has the potential to significantly erode carbon storage even when only a small proportion of large-seeded trees are extirpated. Although intergovernmental policies to reduce carbon emissions and reforestation programs have been mostly focused on deforestation, our results demonstrate that defaunation, and the loss of key ecological interactions, also poses a serious risk for the maintenance of tropical forest carbon storage.

  2. Defaunation affects carbon storage in tropical forests

    PubMed Central

    Bello, Carolina; Galetti, Mauro; Pizo, Marco A.; Magnago, Luiz Fernando S.; Rocha, Mariana F.; Lima, Renato A. F.; Peres, Carlos A.; Ovaskainen, Otso; Jordano, Pedro

    2015-01-01

    Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are threatened by hunting, illegal trade, and habitat loss. We used a large data set on tree species composition and abundance, seed, fruit, and carbon-related traits, and plant-animal interactions to estimate the loss of carbon storage capacity of tropical forests in defaunated scenarios. By simulating the local extinction of trees that depend on large frugivores in 31 Atlantic Forest communities, we found that defaunation has the potential to significantly erode carbon storage even when only a small proportion of large-seeded trees are extirpated. Although intergovernmental policies to reduce carbon emissions and reforestation programs have been mostly focused on deforestation, our results demonstrate that defaunation, and the loss of key ecological interactions, also poses a serious risk for the maintenance of tropical forest carbon storage. PMID:26824067

  3. SIERRA-Flux: Measuring Regional Surface Fluxes of Carbon Dioxide, Methane, and Water Vapor from an Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Fladeland; Yates, Emma Louise; Bui, Thaopaul Van; Dean-Day, Jonathan; Kolyer, Richard

    2011-01-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the most frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft.

  4. Estimating carbon and energy fluxes in arctic tundra

    NASA Astrophysics Data System (ADS)

    Gokkaya, K.; Jiang, Y.; Rastetter, E.; Shaver, G. R.; Rocha, A. V.

    2013-12-01

    Arctic ecosystems are undergoing a very rapid change due to climate change and their response to climate change has important implications for the global energy budget and carbon (C) cycling. Therefore, it is important to understand how (C) and energy fluxes in the Arctic will respond to climate change. However, attribution of these responses to climate is challenging because measured fluxes are the sum of multiple processes that respond differently to environmental factors. For example, net ecosystem exchange of CO2 (NEE) is the net result of gross (C) uptake by plant photosynthesis (GPP) and (C) loss by ecosystem respiration (ER) and similarly, evapotranspiration (i.e. latent energy, LE) is the sum of transpiration and evaporation. Partitioning of NEE into GPP and ER requires nighttime measurements of NEE, when photosynthesis does not take place, to be extrapolated to daytime. This is challenging in the Arctic because of the long photoperiod during the growing season and the errors involved during the extrapolation. Transpiration (energy), photosynthesis (carbon), and vegetation phenology are inherently coupled because leaf stomata are the primary regulators of gas exchange. Our objectives in this study are to i) estimate canopy resistance (Rc) based on a light use efficiency model, ii) utilize the estimated Rc to predict GPP and transpiration using a coupled C and energy model and thus improve the partitioning of NEE and LE, and iii) to test ensemble Kalman filter (EnKF) to estimate model parameters and improve model predictions. Results from one growing season showed that the model predictions can explain 75 and 71% of the variance in GPP and LE in the Arctic tundra ecosystem, respectively. When the model was embedded within the EnKF for estimating Rc, the amount of variance explained for GPP increased to 81% but there was no improvement for the prediction of LE. This suggests that the factors controlling LE are not fully integrated in the model such as the

  5. Drought alters carbon fluxes in alpine snowbed ecosystems through contrasting impacts on graminoids and forbs.

    PubMed

    Johnson, David; Vachon, Jérémie; Britton, Andrea J; Helliwell, Rachel C

    2011-05-01

    • Climate change is predicted to increase the frequency of drought events in alpine ecosystems with the potential to affect carbon turnover. • We removed intact turfs from a Nardus stricta alpine snowbed community and subjected half of them to two drought events of 8 d duration under controlled conditions. Leachate dissolved organic carbon (DOC) was measured throughout the 6 wk study period, and a (13)CO(2) pulse enabled quantification of fluxes of recent assimilate into shoots, roots and leachate and ecosystem CO(2) exchange. • The amount of DOC in leachate from droughted cores was 62% less than in controls. Drought reduced graminoid biomass, increased forb biomass, had no effect on bryophytes, and led to an overall decrease in total above-ground biomass compared with controls. Net CO(2) exchange, gross photosynthesis and the amount of (13)CO(2) fixed were all significantly less in droughted turfs. These turfs also retained proportionally more (13)C in shoots, allocated less (13)C to roots, and the amount of dissolved organic (13)C recovered in leachate was 57% less than in controls. • Our data show that drought events can have significant impacts on ecosystem carbon fluxes, and that the principal mechanism behind this is probably changes in the relative abundance of forbs and grasses.

  6. Global Impacts of atmospheric nitrogen enrichment on carbon fluxes and storage in terrestrial biosphere

    NASA Astrophysics Data System (ADS)

    Lu, C.; Tian, H.; Yang, J.; Tao, B.; Huntzinger, D. N.; Schwalm, C. R.; Wei, Y.; Michalak, A. M.

    2013-12-01

    Atmospheric nitrogen (N) enrichment has been recognized as one of most important global changes and largely affected terrestrial carbon (C) dynamics over the past century. A wide range of scientific studies have focused on estimation of carbon sink resulting from N deposition at global scale, and confirmed that atmospheric N input has substantially stimulated terrestrial CO2 uptake, particularly in part of North America, western Europe, and East and Southeast Asia. However, ecosystem models have distinct strategies in partitioning and describing the pools/fluxes and C-N interactions, as well as in simulating 'N-saturated status'. Whether a model's representation of C-N coupling can truly reflect the C and N cycling in the real world is a hard nut to crack for most models involving C-N interactions. Little is known on how various C-N coupling processes represented by models have led to divergence in the estimated magnitude of N-induced C sink. Here we combine field observations and model ensembles from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) to examine how enhanced N deposition affected global C fluxes and storage during the period 1860-2010, and what explore the major sources of uncertainty responsible for various modeling estimates. Model behavior in simulating key C-N coupling processes has been evaluated through data-model and model-model intercomparison. Future research needs for filling our knowledge gaps and for reducing uncertainties are discussed as well.

  7. Influence of water table on carbon dioxide, carbon monoxide, and methane fluxes from taiga bog microcosms

    SciTech Connect

    Funk, D.W.; Pullmann, E.R.; Peterson, K.M.

    1994-09-01

    Hydrological changes, particularly alterations in water table level, may largely overshadow the more direct effects of global temperature increase upon carbon cycling in arctic and subarctic wetlands. Frozen cores (n=40) of intact soils and vegetation were collected from a bog near Fairbanks, Alaska, and fluxes of CO{sub 2}, CH{sub 4}, and Co in response to water table variation were studied under controlled conditions in the Duke University phytotron. Core microcosms thawed to a 20-cm depth over 30 days under a 20 hour photoperiod with a day/night temperature regime of 20/10{degrees}C. After 30 days the water table in 20 microcosms was decreased from the soil surface to -15 cm and maintained at the soil surface in 20 control cores. Outward fluxes of CO{sub 2} (9-16 g m{sup -2}d{sup -1}) and CO (3-4 mg m{sup -2}d{sup -1}) were greatest during early thaw and decreased to near zero for both gases before the water table treatment started. Lower water table tripled CO{sub 2} flux to the atmosphere when compared with control cores. Carbon monoxide was emitted at low rates from high water table cores and consumed by low water table cores. Methane fluxes were low (<1 mg m{sup -2}d{sup -1}) in all cores during thaw. High water table cores increased CH{sub 4} flux to 8-9 mg m{sup -2}d{sup -1} over 70 days and remained high relative to the low water table cores (<0.74 mg m{sup -2}d{sup -1}). Although drying of wetland taiga soils may decrease CH{sub 4} emissions to the atmosphere, the associated increase in CO{sub 2} due to aerobic respiration will likely increase the global warming potential of gas emissions from these soils. 43 refs., 4 figs.

  8. Carbonyl Sulfide for Tracing Carbon Fluxes Field Campaign Report

    SciTech Connect

    Campbell, J. Elliott; Berry, Joseph A.; Billesbach, Dave; Torn, Margaret S; Zahniser, Mark; Seibt, Ulrike; Maseyk, Kadmiel

    2016-04-01

    The April-June 2012 campaign was located at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site Central Facility and had three purposes. One goal was to demonstrate the ability of current instrumentation to correctly measure fluxes of atmospheric carbonyl sulfide (COS). The approach has been describe previously as a critical approach to advancing carbon cycle science1,2, but requires further investigation at the canopy scale to resolve ecosystem processes. Previous canopy-scale efforts were limited to data rates of 1Hz. While 1 Hz measurements may work in a few ecosystems, it is widely accepted that data rates of 10 to 20 Hz are needed to fully capture the exchange of traces gases between the atmosphere and vegetative canopy. A second goal of this campaign was to determine if canopy observations could provide information to help interpret the seasonal double peak in airborne observations at SGP of CO2 and COS mixing ratios. A third goal was to detect potential sources and sinks of COS that must be resolved before using COS as a tracer of gross primary productivity (GPP).

  9. Carbon Monoxide Affecting Planetary Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    He, Chao; Horst, Sarah

    2016-10-01

    Atmospheric hazes are present in a range of solar system and extrasolar planetary atmospheres, and organic hazes, such as that in Titan's atmosphere, could be a source of prebiotic molecules.1 However, the chemistry occurring in planetary atmospheres and the resulting chemical structures are still not clear. Numerous experimental simulations2 have been carried out in the laboratory to understand the chemistry in N2/CH4 atmospheres, but very few simulations4 have included CO in their initial gas mixtures, which is an important component in many N2/CH4 atmospheres including Titan, Triton, and Pluto.3 Here we have conducted a series of atmosphere simulation experiments using AC glow discharge (cold plasma) as energy source to irradiate reactions in gas mixtures of CO, CH4, and N2 with a range of CO mixing ratios (from 0, 0.05%, 0.2%, 0.5%, 1%, 2.5%, to 5%) at low temperature (~100 K). Gas phase products are monitored during the reaction by quadrupole mass spectrometer (MS), and solid phase products are analyzed by solution-state nuclear magnetic resonance spectroscopy (NMR). MS results show that with the increase of CO in the initial gases, the production of nitrogenous organic molecules increases while the production of hydrogen molecules decreases in the gas phase. NMR measurements of the solid phase products show that with the increase of CO, hydrogen atoms bonded to nitrogen or oxygen in unsaturated structures increase while those bonded to saturated carbon decrease, which means more unsaturated species and less saturated species formed with the addition of CO. MS and NMR results demonstrate that the inclusion of CO affects the compositions of both gas and solid phase products, indicating that CO has an important impact on the chemistry occurring in our experiments and probably in planetary atmospheres.1. Hörst, S. M., et al. 2012, AsBio, 12, 8092. Cable, M. L., et al. 2012, Chem. Rev., 112, 18823. Lutz, B. L., et al. 1983, Sci, 220, 1374; Greaves, J. S., et al

  10. Dissolved Carbon Flux and Mass Balance From a Wetland-Dominated Karstic Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Duval, T. P.; Waddington, J. M.; Branfireun, B. A.

    2009-05-01

    between the wetland types. Significant stream recharge back into the dolomite occurred through the calcareous fen, resulting in the peatland acting as a net 'sink' of DOC and DIC, which was stronger in the drier summer than the wetter autumn. The stream became unconfined through the cedar swamp, with appreciable depression storage that resulted in the wetland becoming a greater net sink of DOC and DIC in the autumn when increased stream discharge into the swamp resulted in greater depression storage. The marsh received significant groundwater inputs from the karstic dolomite, diluting the stream of DOC, but increasing the flux of DIC, resulting in the wetland acting as a sink of DOC but a source of DIC. These data demonstrate that the presence of calcareous bedrock overwhelms the influence of wetland sediments on the dynamics of terrestrial-stream linkages to carbon transport, and that groundwater systems and wetland type can significantly affect the stream-borne flux of carbon from watersheds.

  11. Regional changes in carbon dioxide fluxes of land and oceans since 1980.

    PubMed

    Bousquet, P; Peylin, P; Ciais, P; Le Quéré, C; Friedlingstein, P; Tans, P P

    2000-11-17

    We have applied an inverse model to 20 years of atmospheric carbon dioxide measurements to infer yearly changes in the regional carbon balance of oceans and continents. The model indicates that global terrestrial carbon fluxes were approximately twice as variable as ocean fluxes between 1980 and 1998. Tropical land ecosystems contributed most of the interannual changes in Earth's carbon balance over the 1980s, whereas northern mid- and high-latitude land ecosystems dominated from 1990 to 1995. Strongly enhanced uptake of carbon was found over North America during the 1992-1993 period compared to 1989-1990.

  12. Climatic Extremes Significantly Alter Carbon Fluxes in Time and Space

    NASA Astrophysics Data System (ADS)

    Chen, J.; Ouyan, Z.; John, R.; Chu, H.; Zenone, T.; Deal, M.; Gottgens, J.

    2012-12-01

    It has been increasingly evident that climatic extremes play crucial roles in the magnitudes and directions of carbon fluxes. However, significantly less is known about how these effects may change across multiple time and spatial scales. Here we used several databases collected from eddy-covariance (EC) towers and MODIS to understand these effects for: 1) long-term influences at an oak opening site (i.e. single site); 2) a cluster of EC fluxes from the Maumee watershed (i.e. different ecosystem types under the same climate); 3) several agricultural systems in the Midwest (i.e., same ecosystem among different climates); and 4) long term EVI, ET, GPP and LST (2000-2011) impacts across the Mongolia Plateau. We employed various wavelet analyses (transform, variance, coherency, and cross-wavelet) for the temporal data while an anomaly index was calculated for the spatial data on the plateau. As expected, the occurrences of extreme events and their influences varied greatly by year, but all produced significant and lasting effects on NEE, ER and, particularly on GEP. Three different ecosystems in the Maumee Watershed responded differently in magnitude/direction to the same climate anomaly (e.g. 2012 warmest March on record). Both the beginning time and magnitude of the NEE oscillation of the daily period at Oak Openings and the marshland were influenced by the unusual high March temperature, but the cropland ecosystem was less influenced because crops were not sown until the end of spring. Similarly, crops in different climates responded differently to the similar extremes. Across the broader spatiotemporal scales, we found that the forest biome more resistant to climatic extremes than the grassland and desert biomes on Mongolia Plateau. Frequency distributions of standardized anomalies of EVI during 2000-2010 showed that a number of the positively skewed years were more common in the desert biome compared to grasslands and forests. Positively skewed drought years

  13. Upper ocean mixing controls the seasonality of planktonic foraminifer fluxes and associated strength of the carbonate pump in the oligotrophic North Atlantic

    NASA Astrophysics Data System (ADS)

    Salmon, K. H.; Anand, P.; Sexton, P. F.; Conte, M.

    2014-08-01

    Oligotrophic regions represent up to 75% of Earth's open-ocean environments, and are typically characterized by nutrient-limited upper-ocean mixed layers. They are thus areas of major importance in understanding the plankton community dynamics and biogeochemical fluxes. Here we present fluxes of total planktonic foraminifera and eleven planktonic foraminifer species from a bi-weekly sediment trap time series in the oligotrophic Sargasso Sea, subtropical western North Atlantic Ocean at 1500 m water depth, over two ∼2.5 year intervals, 1998-2000 and 2007-2010. Foraminifera flux was closely correlated with total mass flux and with carbonate and organic carbon fluxes. We show that the planktonic foraminifera flux increases approximately five-fold during the winter-spring, contributing up to ∼40% of the total carbonate flux, driven primarily by increased fluxes of deeper dwelling ("globorotaliid") species. Interannual variability in total foraminifera flux, and in particular fluxes of the deep dwelling Globorotalia truncatulinoides, Globorotalia hirsuta, Globorotalia inflata, were related to differences in seasonal mixed layer dynamics affecting the strength of the spring phytoplankton bloom and export flux, and by the passage of mesoscale eddies. The heavily calcified, dense carbonate tests of deeper dwelling species (3 times denser than surface dwellers) can contribute up to 90% of the foraminiferal-derived carbonate in this region during late winter-early spring, implying a high seasonality of the biological carbonate pump in oligotrophic oceanic regions. Our data suggest that climate cycles, such as the North Atlantic Oscillation, that modulate the depth of the mixed layer, intensity of nutrient upwelling and primary production could also modulate the strength of the biological carbonate pump in the oligotrophic North Atlantic.

  14. Constraining future terrestrial carbon cycle projections using observation-based water and carbon flux estimates.

    PubMed

    Mystakidis, Stefanos; Davin, Edouard L; Gruber, Nicolas; Seneviratne, Sonia I

    2016-06-01

    The terrestrial biosphere is currently acting as a sink for about a third of the total anthropogenic CO2  emissions. However, the future fate of this sink in the coming decades is very uncertain, as current earth system models (ESMs) simulate diverging responses of the terrestrial carbon cycle to upcoming climate change. Here, we use observation-based constraints of water and carbon fluxes to reduce uncertainties in the projected terrestrial carbon cycle response derived from simulations of ESMs conducted as part of the 5th phase of the Coupled Model Intercomparison Project (CMIP5). We find in the ESMs a clear linear relationship between present-day evapotranspiration (ET) and gross primary productivity (GPP), as well as between these present-day fluxes and projected changes in GPP, thus providing an emergent constraint on projected GPP. Constraining the ESMs based on their ability to simulate present-day ET and GPP leads to a substantial decrease in the projected GPP and to a ca. 50% reduction in the associated model spread in GPP by the end of the century. Given the strong correlation between projected changes in GPP and in NBP in the ESMs, applying the constraints on net biome productivity (NBP) reduces the model spread in the projected land sink by more than 30% by 2100. Moreover, the projected decline in the land sink is at least doubled in the constrained ensembles and the probability that the terrestrial biosphere is turned into a net carbon source by the end of the century is strongly increased. This indicates that the decline in the future land carbon uptake might be stronger than previously thought, which would have important implications for the rate of increase in the atmospheric CO2 concentration and for future climate change.

  15. Inventory and burial fluxes of Black Carbon in the Swedish continental shelf sediments

    NASA Astrophysics Data System (ADS)

    Sánchez-García, L.; Cato, I.; Gustafsson, Ö.

    2009-04-01

    Highly condensed black carbon (BC) particles, mainly derived from incomplete combustion of biomass and fossil fuel, are involved in several important processes in the biogeosphere [1], including sedimentary carbon burial, sequestration of organic pollutants in soils and sediments, affecting Earth's radiative heat balance and even human respiratory health. BC is commonly found to constitute several to 20% of total sedimentary carbon, and thus plays an important but poorly constrained role in the global biogeospheric carbon cycle. Sequestration of biogenic carbon as BC is a direct sink of the element from the rapidly cycling atmosphere-biosphere reservoirs, whereas burial of petrogenic/fossil BC is simply a conversion of one form of geological carbon to another [2]. Considerable emphasis has been made on the relevant role this recalcitrant form of organic matter (OM) may play on the global C cycle and yet large uncertainty exists around BC detection and quantification. This work seeks to provide a large-scale estimate of the reservoir and burial sink flux of BC in sediments from the extensive Swedish continental shelf (SCS), as a first approach to global inventories. To this end, a total of 120 sediment samples were collected from the Exclusive Economic Zone (EEZ) along the ?2000 km SCS stretch. The most recalcitrant fraction of the sedimentary OM was isolated and determined by means of a commonly applied method in biogeochemical studies of soils and sediments: chemo-thermal oxidation at 375˚ C in air (CTO-375). The obtained BC concentration was used to estimate the inventory and burial flux of BC in the SCS surface sediments, following [3], which takes into account key geophysical and geochemical properties of the nine distinct sedimentary regimes of the SCS that was separately assessed. Globally representative values of the sediment properties (e.g. density of dried sediments, bioturbated mixing depth, sedimentation rate or porosity over the mixed depth) were

  16. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    SciTech Connect

    Leclerc, Monique Y.

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  17. Modeling the Relative Importance of Nutrient and Carbon Loads, Boundary Fluxes, and Sediment Fluxes on Gulf of Mexico Hypoxia.

    PubMed

    Feist, Timothy J; Pauer, James J; Melendez, Wilson; Lehrter, John C; DePetro, Phillip A; Rygwelski, Kenneth R; Ko, Dong S; Kreis, Russell G

    2016-08-16

    The Louisiana continental shelf in the northern Gulf of Mexico experiences bottom water hypoxia in the summer. In this study, we applied a biogeochemical model that simulates dissolved oxygen concentrations on the shelf in response to varying riverine nutrient and organic carbon loads, boundary fluxes, and sediment fluxes. Five-year model simulations demonstrated that midsummer hypoxic areas were most sensitive to riverine nutrient loads and sediment oxygen demand from settled organic carbon. Hypoxic area predictions were also sensitive to nutrient and organic carbon fluxes from lateral boundaries. The predicted hypoxic area decreased with decreases in nutrient loads, but the extent of change was influenced by the method used to estimate model boundary concentrations. We demonstrated that modeling efforts to predict changes in hypoxic area on the continental shelf in relationship to changes in nutrients should include representative boundary nutrient and organic carbon concentrations and functions for estimating sediment oxygen demand that are linked to settled organic carbon derived from water-column primary production. On the basis of our model analyses using the most representative boundary concentrations, nutrient loads would need to be reduced by 69% to achieve the Gulf of Mexico Nutrient Task Force Action Plan target hypoxic area of 5000 km(2).

  18. Evaluation of Site and Continental Terrestrial Carbon Cycle Simulations with North American Flux Tower Observations

    NASA Astrophysics Data System (ADS)

    Raczka, B. M.; Davis, K. J.; Regional-Interim Synthesis Participants, N.; Site Level Interim Synthesis, N.; Regional/Continental Interim Synthesis Team

    2010-12-01

    Terrestrial carbon models are widely used to diagnose past ecosystem-atmosphere carbon flux responses to climate variability, and are a critical component of coupled climate-carbon model used to predict global climate change. The North American Carbon Program (NACP) Interim Regional and Site Interim Synthesis activities collected a broad sampling of terrestrial carbon model results run at both regional and site level. The Regional Interim Synthesis Activity aims to determine our current knowledge of the carbon balance of North America by comparing the flux estimates provided by the various terrestrial carbon cycle models. Moving beyond model-model comparison is challenging, however, because no continental-scale reference values exist to validate modeled fluxes. This paper presents an effort to evaluate the continental-scale flux estimates of these models using North American flux tower observations brought together by the Site Interim Synthesis Activity. Flux towers present a standard for evaluation of the modeled fluxes, though this evaluation is challenging because of the mismatch in spatial scales between the spatial resolution of continental-scale model runs and the size of a flux tower footprint. We compare model performance with flux tower observations at monthly and annual integrals using the statistical criteria of normalized standard deviation, correlation coefficient, centered root mean square deviation and chi-squared. Models are evaluated individually and according to common model characteristics including spatial resolution, photosynthesis, soil carbon decomposition and phenology. In general all regional models are positively biased for GPP, Re and NEE at both annual and monthly time scales. Further analysis links this result to a positive bias in many solar radiation reanalyses. Positively biased carbon fluxes are also observed for enzyme-kinetic models and models using no nitrogen limitation for soil carbon decomposition. While the former result is

  19. Purification ability and carbon dioxide flux from surface flow constructed wetlands treating sewage treatment plant effluent.

    PubMed

    Wu, Haiming; Lin, Li; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Liu, Hai

    2016-11-01

    In this study, a two-year experiment was carried out to investigate variation of carbon dioxide (CO2) flux from free water surface constructed wetlands (FWS CW) systems treating sewage treatment plant effluent, and treatment performance was also evaluated. The better 74.6-76.6% COD, 92.7-94.4% NH4(+)-N, 60.1-84.7% TN and 49.3-70.7% TP removal efficiencies were achieved in planted CW systems compared with unplanted systems. The planted CW was a net CO2 sink, while the unplanted CW was a net CO2 source in the entire study period. An obvious annual and seasonal variability of CO2 fluxes from different wetland systems was also presented with the average CO2 flux ranging from -592.83mgm(-2)h(-1) to 553.91mgm(-2)h(-1) during 2012-2013. In addition, the net exchange of CO2 between CW systems and the atmosphere was significantly affected by air temperature, and the presence of plants also had the significant effect on total CO2 emissions.

  20. Improve carbon flux predictions in ecosystem models using lidar and imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Antonarakis, Alexander; Guizar Coutino, Alejandro

    2015-04-01

    The composition and structure of vegetation are key attributes of ecosystems, affecting their current and future carbon, water, and energy fluxes. Information on these attributes has traditionally come from ground-based inventories of the plant canopy within small sample plots. In this study, airborne and satellite lidar in conjunction with available hyperspectral imagery, are used to provide estimates of sub-pixel forest canopy composition and structure in New England. Hyperspectral imagery is used to determine forest plant functional types. Waveform lidar is used to determine the vertical structure of foliage, which in turn is used to derive stem density, basal area and biomass. This method of determining structure is compared against widely used lidar-derived regression methods with similar biomass uncertainty (RMSE ~2.5 kgC/m2). Regional-scale applicability is investigated using satellite lidar to derive sub-pixel forest structure. This fine scale information is then integrated into a size-structured terrestrial biosphere model (Ecosystem Demography) to improve the accuracy of carbon flux predictions at the local to regional scales. These improvements are quantified against simulations initialized with ground measurements and from a potential vegetation simulation. These results suggest that terrestrial biosphere model simulations can utilize modern-remote sensing data on vegetation composition and structure to improve their predictions of the current and near-term future functioning of the terrestrial biosphere.

  1. Water and carbon fluxes from savanna ecosystems of the Volta River watershed, West Africa

    NASA Astrophysics Data System (ADS)

    Freitag, Heiko; Ferguson, Paul R.; Dubois, Kristal; Hayford, Ebenezer Kofi; von Vordzogbe, Vincent; Veizer, Ján

    2008-03-01

    The fluxes of water and carbon from terrestrial ecosystems are coupled via the process of photosynthesis. Constraining the annual water cycle therefore allows first order estimates of annual photosynthetic carbon flux, providing that the components of evapotranspiration can be separated. In this study, an isotope mass-balance equation is utilized to constrain annual evaporation flux, which in turn, is used to determine the amount of water transferred to the atmosphere by plant transpiration. The Volta River watershed in West Africa is dominated by woodland and savanna ecosystems with a significant proportion of C 4 vegetation. Annually, the Volta watershed receives ˜ 380 km 3 of rainfall, ˜ 50% of which is returned to the atmosphere via transpiration. An annual photosynthetic carbon flux of ˜ 170 × 10 12 g C yr - 1 or ˜ 428 g C m - 2 was estimated to be associated with this water vapor flux. Independent estimates of heterotrophic soil respiration slightly exceeded the NPP estimate from this study, implying that the exchange of carbon between the Volta River watershed and the atmosphere was close to being in balance or that terrestrial ecosystems were a small annual source of CO 2 to the atmosphere. In addition to terrestrial carbon flux, the balance of photosynthesis and respiration in Volta Lake was also examined. The lake was found to evade carbon dioxide to the atmosphere although the magnitude of the flux was much smaller than that of the terrestrial ecosystems.

  2. Inorganic carbon dominates total dissolved carbon concentrations and fluxes in British rivers: Application of the THINCARB model - Thermodynamic modelling of inorganic carbon in freshwaters.

    PubMed

    Jarvie, Helen P; King, Stephen M; Neal, Colin

    2017-01-01

    River water-quality studies rarely measure dissolved inorganic carbon (DIC) routinely, and there is a gap in our knowledge of the contributions of DIC to aquatic carbon fluxes and cycling processes. Here, we present the THINCARB model (THermodynamic modelling of INorganic CARBon), which uses widely-measured determinands (pH, alkalinity and temperature) to calculate DIC concentrations, speciation (bicarbonate, HCO3(-); carbonate, CO3(2-); and dissolved carbon dioxide, H2CO3(⁎)) and excess partial pressures of carbon dioxide (EpCO2) in freshwaters. If calcium concentration measurements are available, THINCARB also calculates calcite saturation. THINCARB was applied to the 39-year Harmonised Monitoring Scheme (HMS) dataset, encompassing all the major British rivers discharging to the coastal zone. Model outputs were combined with the HMS dissolved organic carbon (DOC) datasets, and with spatial land use, geology, digital elevation and hydrological datasets. We provide a first national-scale evaluation of: the spatial and temporal variability in DIC concentrations and fluxes in British rivers; the contributions of DIC and DOC to total dissolved carbon (TDC); and the contributions to DIC from HCO3(-) and CO3(2-) from weathering sources and H2CO3(⁎) from microbial respiration. DIC accounted for >50% of TDC concentrations in 87% of the HMS samples. In the seven largest British rivers, DIC accounted for an average of 80% of the TDC flux (ranging from 57% in the upland River Tay, to 91% in the lowland River Thames). DIC fluxes exceeded DOC fluxes, even under high-flow conditions, including in the Rivers Tay and Tweed, draining upland peaty catchments. Given that particulate organic carbon fluxes from UK rivers are consistently lower than DOC fluxes, DIC fluxes are therefore also the major source of total carbon fluxes to the coastal zone. These results demonstrate the importance of accounting for DIC concentrations and fluxes for quantifying carbon transfers from land

  3. Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration.

    PubMed

    Jauhiainen, Jyrki; Limin, Suwido; Silvennoinen, Hanna; Vasander, Harri

    2008-12-01

    Present tropical peat deposits are the outcome of net carbon removal from the atmosphere and form one of the largest terrestrial organic carbon stores on the Earth. Reclamation of pristine tropical peatland areas in Southeast Asia increased strikingly during the last half of the 20th century. Drainage due to land-use change is one of the main driving factors accelerating carbon loss from the ecosystem. Dams were built in drainage-affected peatland area canals in Central Kalimantan, Indonesia, in order to evaluate major patterns in gaseous carbon dioxide and methane fluxes and in peat hydrology immediately before and after hydrologic restoration. The sites included peat swamp forest and deforested burned area, both affected by drainage for nearly 10 years. Higher annual minimum soil water table levels prevailed on both sites after restoration; the deforested site water table level prevailed considerably longer near the peat surface, and the forest water table level remained for a longer period in the topmost 30 cm peat profile after restoration. Forest soil gas fluxes were clearly higher in comparison to the deforested area. Cumulative forest floor CO2 emissions (7305-7444 g x m(-2) x yr(-1); 166.0-169.2 mol CO2 x m(-2) x yr(-1)) and the deforested site CO2 emissions (2781-2608 g x m(-2) x yr(-1); 63.2-59.3 mol CO2 x m(-2) x yr(-1)) did not markedly reflect the notably differing hydrological conditions the year before and after restoration. The forest floor was a weak CH4 sink (-0.208 to -0.368 g x m(-2) x yr(-1); -13.0 to -22.9 mmol CH4 x m(-2) x yr(-1)) and the deforested site a comparable CH4 source (0.197-0.275 g x m(-2) x yr(-1); 12.3-17.1 mmol CH4 x m(-2) x yr(-1)) in the study period. In general, higher soil water table levels had a relatively small effect on the annual CH4 emission budgets. In the two site types the gas flux response into hydrological conditions in degraded tropical peat can be attributed to differing CO2 and CH4 dynamics, peat physical

  4. Estimating Carbon Flux Phenology with Satellite-Derived Land Surface Phenology and Climate Drivers for Different Biomes: A Synthesis of AmeriFlux Observations

    DOE PAGES

    Zhu, Wenquan; Chen, Guangsheng; Jiang, Nan; ...

    2013-12-27

    Carbon Flux Phenology (CFP) can affect the interannual variation in Net Ecosystem Exchange (NEE) of carbon between terrestrial ecosystems and the atmosphere. In this paper, we proposed a methodology to estimate CFP metrics with satellite-derived Land Surface Phenology (LSP) metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen needleleaf forest, grasslands and croplands), using 159 site-years of NEE and climate data from 32 AmeriFlux sites and MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in Start of Carbon Uptake (SCU) by more than 70% and End of Carbon Uptakemore » (ECU) by more than 60%. The Root Mean Square Error (RMSE) of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate drivers, the biome types, and the specific CFP metric. In conclusion, this methodology has a potential for allowing extrapolation of CFP metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical satellite data and climate data.« less

  5. Estimating Carbon Flux Phenology with Satellite-Derived Land Surface Phenology and Climate Drivers for Different Biomes: A Synthesis of AmeriFlux Observations

    SciTech Connect

    Zhu, Wenquan; Chen, Guangsheng; Jiang, Nan; Liu, Jianhong; Mou, Minjie

    2013-12-27

    Carbon Flux Phenology (CFP) can affect the interannual variation in Net Ecosystem Exchange (NEE) of carbon between terrestrial ecosystems and the atmosphere. In this paper, we proposed a methodology to estimate CFP metrics with satellite-derived Land Surface Phenology (LSP) metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen needleleaf forest, grasslands and croplands), using 159 site-years of NEE and climate data from 32 AmeriFlux sites and MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in Start of Carbon Uptake (SCU) by more than 70% and End of Carbon Uptake (ECU) by more than 60%. The Root Mean Square Error (RMSE) of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate drivers, the biome types, and the specific CFP metric. In conclusion, this methodology has a potential for allowing extrapolation of CFP metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical satellite data and climate data.

  6. Estimating carbon flux phenology with satellite-derived land surface phenology and climate drivers for different biomes: a synthesis of AmeriFlux observations.

    PubMed

    Zhu, Wenquan; Chen, Guangsheng; Jiang, Nan; Liu, Jianhong; Mou, Minjie

    2013-01-01

    Carbon Flux Phenology (CFP) can affect the interannual variation in Net Ecosystem Exchange (NEE) of carbon between terrestrial ecosystems and the atmosphere. In this study, we proposed a methodology to estimate CFP metrics with satellite-derived Land Surface Phenology (LSP) metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen needleleaf forest, grasslands and croplands), using 159 site-years of NEE and climate data from 32 AmeriFlux sites and MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in Start of Carbon Uptake (SCU) by more than 70% and End of Carbon Uptake (ECU) by more than 60%. The Root Mean Square Error (RMSE) of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate drivers, the biome types, and the specific CFP metric. This methodology has a potential for allowing extrapolation of CFP metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical satellite data and climate data.

  7. 13C-metabolic flux ratio and novel carbon path analyses confirmed that Trichoderma reesei uses primarily the respirative pathway also on the preferred carbon source glucose

    PubMed Central

    Jouhten, Paula; Pitkänen, Esa; Pakula, Tiina; Saloheimo, Markku; Penttilä, Merja; Maaheimo, Hannu

    2009-01-01

    Background The filamentous fungus Trichoderma reesei is an important host organism for industrial enzyme production. It is adapted to nutrient poor environments where it is capable of producing large amounts of hydrolytic enzymes. In its natural environment T. reesei is expected to benefit from high energy yield from utilization of respirative metabolic pathway. However, T. reesei lacks metabolic pathway reconstructions and the utilization of the respirative pathway has not been investigated on the level of in vivo fluxes. Results The biosynthetic pathways of amino acids in T. reesei supported by genome-level evidence were reconstructed with computational carbon path analysis. The pathway reconstructions were a prerequisite for analysis of in vivo fluxes. The distribution of in vivo fluxes in both wild type strain and cre1, a key regulator of carbon catabolite repression, deletion strain were quantitatively studied by performing 13C-labeling on both repressive carbon source glucose and non-repressive carbon source sorbitol. In addition, the 13C-labeling on sorbitol was performed both in the presence and absence of sophorose that induces the expression of cellulase genes. Carbon path analyses and the 13C-labeling patterns of proteinogenic amino acids indicated high similarity between biosynthetic pathways of amino acids in T. reesei and yeast Saccharomyces cerevisiae. In contrast to S. cerevisiae, however, mitochondrial rather than cytosolic biosynthesis of Asp was observed under all studied conditions. The relative anaplerotic flux to the TCA cycle was low and thus characteristic to respiratory metabolism in both strains and independent of the carbon source. Only minor differences were observed in the flux distributions of the wild type and cre1 deletion strain. Furthermore, the induction of the hydrolytic gene expression did not show altered flux distributions and did not affect the relative amino acid requirements or relative anabolic and respirative activities

  8. Organic and inorganic carbon fluxes in a tropical river system (Tana River, Kenya) during contrasting wet seasons

    NASA Astrophysics Data System (ADS)

    Geeraert, Naomi; Omengo, Fred O.; Bouillon, Steven; Borges, Alberto V.; Govers, Gerard

    2015-04-01

    Tropical river systems are often subjected to strong seasonality; in the Tana River (Kenya), for example, ~60% of the annual discharge takes place during a 4-month period. As different carbon pools are transported by the river, seasonal differences in carbon fluxes will also occur. This can furthermore be enhanced or attenuated due to changes in the intensity of carbon transformation processes, such as microbial respiration and primary production, during the wet season. Besides that, seasonal flooding of flood plains or flooded forest is known to be a major driver of the biogeochemical and ecological functioning of tropical rivers ("flood pulse concept") and has been shown to be one of the major drivers of the CO2 emissions from the Amazon River. We monitored the fluxes of different carbon pools at two sites spaced 385 km apart along the lower Tana River (Kenya), which is characterized by a highly seasonal flow regime. Water samples were taken at daily resolution during three wet seasons. During one of those seasons (May-June 2013), considerable flooding took place between both stations, while the other two wet seasons (Oct-Nov 2012 and April-May 2014) were characterised by several distinct discharge peaks, without leading to substantial overbank flooding. The flux of particulate organic carbon (POC) was observed to decrease in the downstream direction by 8 to 33% during all measurement periods. Fluxes of dissolved organic carbon (DOC) also decreased in the downstream direction during the wet seasons without flooding (by 10-38%) but increased drastically (increase of 231%) during the wet season with flooding. The dissolved inorganic carbon (DIC) flux increased downstream (by 6% to 62%) during all measurement periods. The total carbon flux (POC+DOC+DIC) increased by 33% in the wet season with flooding (2013), but decreased by 23% and 3%, respectively, during the 2012 and 2014 wet seasons. Flooding thus affected the relative contribution of different C pools to the

  9. Satellite-driven estimation of terrestrial carbon flux over Far East Asia with 30-second grid resolution

    NASA Astrophysics Data System (ADS)

    Sasai, T.; Saigusa, N.; Nasahara, K. N.; Ito, A.; Hashimoto, H.; Nemani, R. R.; Hirata, R.; Ichii, K.; Takagi, K.; Saitoh, T. M.; Ohta, T.; Murakami, K.; Oikawa, T.; Yamaguchi, Y.

    2010-12-01

    The terrestrial carbon cycle is strongly affected by local natural phenomena and local human-induced activities that alter carbon exchange via vegetation and soil activities. In order to accurately understand terrestrial carbon cycle mechanisms, it is necessary to estimate spatial and temporal variations in carbon flux and storage using process-based models with the highest possible resolution. We estimated terrestrial carbon fluxes using the biosphere model integrating eco-physiological and mechanistic approaches using Satellite data (BEAMS) and satellite observations with 30-second grid resolution. The study area is the central Far East Asia region, which lies between 30 degree and 50 degree north latitude and 125 degree and 150 degree east longitude. Aiming to simulate terrestrial carbon exchanges under realistic land surface conditions, we applied as many satellite-observation means as possible, such as the standard MODIS, TRMM, and SRTM high-level land products. Validated using gross primary productivity (GPP), net ecosystem production (NEP), net radiation and latent heat with ground measurements at six flux sites, the model estimations showed reasonable seasonal and annual patterns. In extensive analysis, total amounts of GPP and NPP were determined to be 2.1 PgC/year and 0.9 PgC/year. The total NEP estimate was +5.6 TgC/year, meaning that the land area played a role as a carbon sink for these six years. In analyses of areas with complicated topography, the 30-second grid estimation could prove to be an effective product to evaluate the effect of landscape on the terrestrial carbon cycle. The method presented here is an appropriate approach to gain a better understanding of terrestrial carbon exchange, both spatially and temporally.

  10. A rheostat mechanism governs the bifurcation of carbon flux in mycobacteria

    PubMed Central

    Murima, Paul; Zimmermann, Michael; Chopra, Tarun; Pojer, Florence; Fonti, Giulia; Dal Peraro, Matteo; Alonso, Sylvie; Sauer, Uwe; Pethe, Kevin; McKinney, John D.

    2016-01-01

    Fatty acid metabolism is an important feature of the pathogenicity of Mycobacterium tuberculosis during infection. Consumption of fatty acids requires regulation of carbon flux bifurcation between the oxidative TCA cycle and the glyoxylate shunt. In Escherichia coli, flux bifurcation is regulated by phosphorylation-mediated inhibition of isocitrate dehydrogenase (ICD), a paradigmatic example of post-translational mechanisms governing metabolic fluxes. Here, we demonstrate that, in contrast to E. coli, carbon flux bifurcation in mycobacteria is regulated not by phosphorylation but through metabolic cross-activation of ICD by glyoxylate, which is produced by the glyoxylate shunt enzyme isocitrate lyase (ICL). This regulatory circuit maintains stable partitioning of fluxes, thus ensuring a balance between anaplerosis, energy production, and precursor biosynthesis. The rheostat-like mechanism of metabolite-mediated control of flux partitioning demonstrates the importance of allosteric regulation during metabolic steady-state. The sensitivity of this regulatory mechanism to perturbations presents a potentially attractive target for chemotherapy. PMID:27555519

  11. Carbon Management In the Post-Cap-and-Trade Carbon Economy: An Economic Model for Limiting Climate Change by Managing Anthropogenic Carbon Flux

    NASA Astrophysics Data System (ADS)

    DeGroff, F. A.

    2013-05-01

    In this paper, we discuss an economic model for comprehensive carbon management that focuses on changes in carbon flux in the biosphere due to anthropogenic activity. The two unique features of the model include: 1. A shift in emphasis from primarily carbon emissions, toward changes in carbon flux, mainly carbon extraction, and 2. A carbon price vector (CPV) to express the value of changes in carbon flux, measured in changes in carbon sequestration, or carbon residence time. The key focus with the economic model is the degree to which carbon flux changes due to anthropogenic activity. The economic model has three steps: 1. The CPV metric is used to value all forms of carbon associated with any anthropogenic activity. In this paper, the CPV used is a logarithmic chronological scale to gauge expected carbon residence (or sequestration) time. In future economic models, the CPV may be expanded to include other factors to value carbon. 2. Whenever carbon changes form (and CPV) due to anthropogenic activity, a carbon toll is assessed as determined by the change in the CPV. The standard monetary unit for carbon tolls are carbon toll units, or CTUs. The CTUs multiplied by the quantity of carbon converted (QCC) provides the total carbon toll, or CT. For example, CT = (CTU /mole carbon) x (QCC moles carbon). 3. Whenever embodied carbon (EC) attributable to a good or service moves via trade to a jurisdiction with a different CPV metric, a carbon toll (CT) is assessed representing the CPV difference between the two jurisdictions. This economic model has three clear advantages. First, the carbon pricing and cost scheme use existing and generally accepted accounting methodologies to ensure the veracity and verifiability of carbon management efforts with minimal effort and expense using standard, existing auditing protocols. Implementing this economic model will not require any new, special, unique, or additional training, tools, or systems for any entity to achieve their minimum

  12. Carbon and Energy Fluxes Over two Mid-Latitude Deciduous Forests: Interannual and Latitudinal Variations

    NASA Astrophysics Data System (ADS)

    Schmid, H.; Grimmond, S.; Oliphant, A.; Su, H.; Vogel, C.; Scott, S.; Curtis, P.

    2001-12-01

    Hourly fluxes of energy, water vapor and CO2 are now available from two AmeriFlux sites in Indiana (MMSF, 39deg 10'N, 86deg 25' W, for the years 1998-2001, up to the end of the growth period) and Michigan (UMBS, 45deg 35' N, 84deg 42' W, for 1999-2001). Both sites are in extensive hardwood forests of a similar age, but the composition and diversity of tree species is quite different between the two locations. The latitudinal separation of more than 6.5 degrees causes also marked differences in the biophysical forcings of the ecosystem exchange, such as variations in growing season legth, summertime length of day, and soil thermal regimes in winter. The Indiana site was affected by a severe drought over much of summer and fall of 1999, whereas the Michigan site was only marginally affected by it. We present the seasonal carbon exchange dynamics and annual increments of net ecosystem exchange in the context of the energy and water availability and compare the results from four years of measurements in the light of these geographical and interannual variations in the ecosystem forcings.

  13. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up.

    PubMed

    Kelemen, Peter B; Manning, Craig E

    2015-07-28

    Carbon fluxes in subduction zones can be better constrained by including new estimates of carbon concentration in subducting mantle peridotites, consideration of carbonate solubility in aqueous fluid along subduction geotherms, and diapirism of carbon-bearing metasediments. Whereas previous studies concluded that about half the subducting carbon is returned to the convecting mantle, we find that relatively little carbon may be recycled. If so, input from subduction zones into the overlying plate is larger than output from arc volcanoes plus diffuse venting, and substantial quantities of carbon are stored in the mantle lithosphere and crust. Also, if the subduction zone carbon cycle is nearly closed on time scales of 5-10 Ma, then the carbon content of the mantle lithosphere + crust + ocean + atmosphere must be increasing. Such an increase is consistent with inferences from noble gas data. Carbon in diamonds, which may have been recycled into the convecting mantle, is a small fraction of the global carbon inventory.

  14. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up

    PubMed Central

    Kelemen, Peter B.; Manning, Craig E.

    2015-01-01

    Carbon fluxes in subduction zones can be better constrained by including new estimates of carbon concentration in subducting mantle peridotites, consideration of carbonate solubility in aqueous fluid along subduction geotherms, and diapirism of carbon-bearing metasediments. Whereas previous studies concluded that about half the subducting carbon is returned to the convecting mantle, we find that relatively little carbon may be recycled. If so, input from subduction zones into the overlying plate is larger than output from arc volcanoes plus diffuse venting, and substantial quantities of carbon are stored in the mantle lithosphere and crust. Also, if the subduction zone carbon cycle is nearly closed on time scales of 5–10 Ma, then the carbon content of the mantle lithosphere + crust + ocean + atmosphere must be increasing. Such an increase is consistent with inferences from noble gas data. Carbon in diamonds, which may have been recycled into the convecting mantle, is a small fraction of the global carbon inventory. PMID:26048906

  15. Measurements of methane and carbon dioxide fluxes on the Bakchar bog in warm season

    NASA Astrophysics Data System (ADS)

    Krasnov, Oleg A.; Maksyutov, Shamil S.; Davydov, Denis K.; Fofonov, Aleksander V.; Glagolev, Mikhail V.

    2015-11-01

    Data terrain-atmosphere fluxes of methane and carbon dioxide overseen for measurement campaign Plotnikovo-2014 on the bog's Flux-NIES automatic complex (N56°51.29' E82° 50.91') in the warn season. Six vegetative groups on the bog's surface were taken in comparison. Improvement precise method used to determinate the sensitivity for the gases analyzers and calculating of the CO2 and CH4 fluxes measured by automated chamber-based technique.

  16. Carbon monoxide fluxes from natural, managed, or cultivated savannah grasslands

    NASA Astrophysics Data System (ADS)

    Sanhueza, Eugenio; Donoso, Loreto; Scharffe, Dieter; Crutzen, Paul J.

    1994-08-01

    As part of a comprehensive study on tropical land use change and its effect on atmospheric trace gas fluxes, we report the CO fluxes recorded at a natural grassland site and the changes produced when this ecosystem was managed or cultivated. The field site is located in the central part of the savannah climatic region of Venezuela. Fluxes were measured in the dark using the enclosed chamber technique. CO was analyzed with a reduction-gas detector in combination with a molecular sieve 5A columm for CO separation. At all sites, CO fluxes exhibited a strong diurnal variation, with net emission during daytime and consumption or no fluxes during nightime. In unplowed soils no differences were observed between dry and rainy season. A large disparity was observed between unplowed and plowed grassland soils. Plowed soil shows a much smaller emission during daytime and a larger consumption at night. The 24-hour integrated fluxes indicate that the nonperturbed grassland switches from being a net source of CO (3.4×1010 molecules cm-2 s-1) to being a net sink (-1.6×1010 molecules cm-2s-1) after plowing. It is likely that burial of surface litter reduces the production of CO in the top soil and that the diffusion of CO to deeper layers (where CO is consumed by microbiological processes) is promoted in decompacted soils. As the rainy season progressed the plowed soil gradually compacted and CO fluxes changed back, and after 3 months the fluxes from plowed soils and the original unplowed soils were equal. Even though the various cultivated fields (corn, sorghum, and pasture) received differing inorganic fertilization treatments, no significant difference in the CO fluxes resulted. Measurements during the dry season suggest that "degrading dry (dead) vegetation" produces CO under dark conditions.

  17. Carbon monoxide fluxes from natural, managed, or cultivated savannah grasslands

    SciTech Connect

    Sanhueza, E.; Donoso, L.; Scharffe, D.; Crutzen, P.J.

    1994-08-20

    As part of a comprehensive study on tropical land use change and its effect on atmospheric trace gas fluxes, we report the CO fluxes recorded at a natural grassland site and the changes produced when this ecosystem was managed or cultivated. The field site is located in the central part of the savannah climatic region of Venezuela. Fluxes were measured in the dark using the enclosed chamber technique. CO was analyzed with a reduction-gas detector in combination with a molecular sieve 5A column for CO separation. At all sites, CO fluxes exhibited a strong diurnal variation, with net emission during daytime and consumption or no fluxes during nighttime. In unplowed soils no differences were observed between dry and rainy season. A large disparity was observed between unplowed and plowed grassland soils. Plowed soil shows a much smaller emission during daytime and a larger consumption at night. The 24-hour integrated fluxes indicate that the nonperturbed grassland switches from being a net source of CO (3.4 x 10{sup 10} molecules cm{sup {minus}2} s{sup {minus}1}) to being a net sink (-1.6 x 10{sup 10} molecules cm{sup {minus}2} s{sup {minus}1}) after plowing. It is likely that burial of surface litter reduces the production of CO in the top soil and that the diffusion of CO to deeper layers (where CO is consumed by microbiological processes) is promoted in decompacted soils. As the rainy season progressed the plowed soil gradually compacted and CO fluxes changed back, and after 3 months the fluxes from plowed soils and the original unplowed soils were equal. Even though the various cultivated fields (corn, sorghum, and pasture) received differing inorganic fertilization treatments, no significant difference in the CO fluxes resulted. Measurements during the dry season suggest that {open_quotes}degrading dry (dead) vegetation{close_quotes} produces CO under dark conditions. 14 refs., 5 figs., 3 tabs.

  18. Faunal Influences on Fracture-Induced Carbon Flux Dynamics in Dryland Soils

    NASA Astrophysics Data System (ADS)

    DeCarlo, K. F.; Caylor, K. K.

    2015-12-01

    Organismal activity, in addition to its role in ecological feedbacks, ha the potential to serve as instigators or enhancers of atmospheric and hydrologic fluxes via alterations in soil structural regimes. We investigated the effect of faunally-induced crack morphology on soil carbon dynamics in three dryland soil systems in central Kenya: bioturbated soils, biocompacted soils, and undisturbed soils. Carbon fluxes were characterized using a closed-system respiration chamber, with CO2 concentration differences measured using an infrared gas analyzer. Results show that faunal influenes play a divergent biomechanical role in bulk soil cracking morphology and topology: macrofauna-induced bioturbation creates shallow, large, well-connected networks relative to those from megaherbivore-induced biocompaction, with the latter showing a "memory" of past drying events through a crack layering effect. These morphologies may further drive differences in soil carbon flux: under dry conditions, bioturbated and control soils show a persistently high and low mean carbon flux, respectively - biocompacted soils suggest a diurnal trend, with daytime lows and nighttime highs comparable to the control and bioturbated soils, respectively. Overall fluxes under wet conditions are considerably higher, but also more variable, though higher mean carbon fluxes are observed in the biocompacted and bioturbated soils. Our results suggest that fracture morphology induced in biocompacted soils may enhance diffusive fluxes that are typical in undisturbed soils to levels that are as high as those from macrofaunal respiration, but that particular physical conditions in fracture morphology and topology may be necessary as a prerequisite.

  19. Fluxes of Soot Carbon to South Atlantic Sediments

    EPA Science Inventory

    Deep sea sediment samples from the South Atlantic Ocean were analyzed for soot black carbon (BC), total organic carbon (TOC), stable carbon isotope ratios (δ 13C), and polycyclic aromatic hydrocarbons (PAHs). Soot BC was present at low concentrations (0.04–0.17% dry weight), but ...

  20. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes.

    PubMed

    Moore, Sam; Evans, Chris D; Page, Susan E; Garnett, Mark H; Jones, Tim G; Freeman, Chris; Hooijer, Aljosja; Wiltshire, Andrew J; Limin, Suwido H; Gauci, Vincent

    2013-01-31

    Tropical peatlands contain one of the largest pools of terrestrial organic carbon, amounting to about 89,000 teragrams (1 Tg is a billion kilograms). Approximately 65 per cent of this carbon store is in Indonesia, where extensive anthropogenic degradation in the form of deforestation, drainage and fire are converting it into a globally significant source of atmospheric carbon dioxide. Here we quantify the annual export of fluvial organic carbon from both intact peat swamp forest and peat swamp forest subject to past anthropogenic disturbance. We find that the total fluvial organic carbon flux from disturbed peat swamp forest is about 50 per cent larger than that from intact peat swamp forest. By carbon-14 dating of dissolved organic carbon (which makes up over 91 per cent of total organic carbon), we find that leaching of dissolved organic carbon from intact peat swamp forest is derived mainly from recent primary production (plant growth). In contrast, dissolved organic carbon from disturbed peat swamp forest consists mostly of much older (centuries to millennia) carbon from deep within the peat column. When we include the fluvial carbon loss term, which is often ignored, in the peatland carbon budget, we find that it increases the estimate of total carbon lost from the disturbed peatlands in our study by 22 per cent. We further estimate that since 1990 peatland disturbance has resulted in a 32 per cent increase in fluvial organic carbon flux from southeast Asia--an increase that is more than half of the entire annual fluvial organic carbon flux from all European peatlands. Our findings emphasize the need to quantify fluvial carbon losses in order to improve estimates of the impact of deforestation and drainage on tropical peatland carbon balances.

  1. Snowpack fluxes of methane and carbon dioxide from high Arctic tundra

    NASA Astrophysics Data System (ADS)

    Pirk, Norbert; Tamstorf, Mikkel P.; Lund, Magnus; Mastepanov, Mikhail; Pedersen, Stine H.; Mylius, Maria R.; Parmentier, Frans-Jan W.; Christiansen, Hanne H.; Christensen, Torben R.

    2016-11-01

    Measurements of the land-atmosphere exchange of the greenhouse gases methane (CH4) and carbon dioxide (CO2) in high Arctic tundra ecosystems are particularly difficult in the cold season, resulting in large uncertainty on flux magnitudes and their controlling factors during this long, frozen period. We conducted snowpack measurements of these gases at permafrost-underlain wetland sites in Zackenberg Valley (NE Greenland, 74°N) and Adventdalen Valley (Svalbard, 78°N), both of which also feature automatic closed chamber flux measurements during the snow-free period. At Zackenberg, cold season emissions were 1 to 2 orders of magnitude lower than growing season fluxes. Perennially, CH4 fluxes resembled the same spatial pattern, which was largely attributed to differences in soil wetness controlling substrate accumulation and microbial activity. We found no significant gas sinks or sources inside the snowpack but detected a pulse in the δ13C-CH4 stable isotopic signature of the soil's CH4 source during snowmelt, which suggests the release of a CH4 reservoir that was strongly affected by methanotrophic microorganisms. In the polygonal tundra of Adventdalen, the snowpack featured several ice layers, which suppressed the expected gas emissions to the atmosphere, and conversely lead to snowpack gas accumulations of up to 86 ppm CH4 and 3800 ppm CO2 by late winter. CH4 to CO2 ratios indicated distinctly different source characteristics in the rampart of ice-wedge polygons compared to elsewhere on the measured transect, possibly due to geomorphological soil cracks. Collectively, these findings suggest important ties between growing season and cold season greenhouse gas emissions from high Arctic tundra.

  2. Soil surface CO2 fluxes and the carbon budget of a grassland

    NASA Technical Reports Server (NTRS)

    Norman, J. M.; Garcia, R.; Verma, S. B.

    1992-01-01

    Measurements of soil surface CO2 fluxes are reported for three sites within the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) area, and simple empirical equations are fit to the data to provide predictions of soil fluxes from environmental observations. A prototype soil chamber, used to make the flux measurements, is described and tested by comparing CO2 flux measurements to a 40-L chamber, a 1-m/cu chamber, and eddy correlation. Results suggest that flux measurements with the prototype chamber are consistent with measurements by other methods to within about 20 percent. A simple empirical equation based on 10-cm soil temperature, 0- to 10-cm soil volumetric water content, and leaf area index predicts the soil surface CO2 flux with a rms error of 1.2 micro-mol sq m/s for all three sites. Further evidence supports using this equation to evaluate soil surface CO2 during the 1987 FIFE experiment. The soil surface CO2 fluxes when averaged over 24 hours are comparable to daily gross canopy photosynthetic rates. For 6 days of data the net daily accumulation of carbon is about 0.6 g CO2 sq m/d; this is only a few percent of the daily gross accumulation of carbon by photosynthesis. As the soil became drier in 1989, the net accumulation of carbon by the prairie increased, suggesting that the soil flux is more sensitive to temperature and drought than the photosynthetic fluxes.

  3. Adaptive data-driven models for estimating carbon fluxes in the Northern Great Plains

    USGS Publications Warehouse

    Wylie, B.K.; Fosnight, E.A.; Gilmanov, T.G.; Frank, A.B.; Morgan, J.A.; Haferkamp, Marshall R.; Meyers, T.P.

    2007-01-01

    Rangeland carbon fluxes are highly variable in both space and time. Given the expansive areas of rangelands, how rangelands respond to climatic variation, management, and soil potential is important to understanding carbon dynamics. Rangeland carbon fluxes associated with Net Ecosystem Exchange (NEE) were measured from multiple year data sets at five flux tower locations in the Northern Great Plains. These flux tower measurements were combined with 1-km2 spatial data sets of Photosynthetically Active Radiation (PAR), Normalized Difference Vegetation Index (NDVI), temperature, precipitation, seasonal NDVI metrics, and soil characteristics. Flux tower measurements were used to train and select variables for a rule-based piece-wise regression model. The accuracy and stability of the model were assessed through random cross-validation and cross-validation by site and year. Estimates of NEE were produced for each 10-day period during each growing season from 1998 to 2001. Growing season carbon flux estimates were combined with winter flux estimates to derive and map annual estimates of NEE. The rule-based piece-wise regression model is a dynamic, adaptive model that captures the relationships of the spatial data to NEE as conditions evolve throughout the growing season. The carbon dynamics in the Northern Great Plains proved to be in near equilibrium, serving as a small carbon sink in 1999 and as a small carbon source in 1998, 2000, and 2001. Patterns of carbon sinks and sources are very complex, with the carbon dynamics tilting toward sources in the drier west and toward sinks in the east and near the mountains in the extreme west. Significant local variability exists, which initial investigations suggest are likely related to local climate variability, soil properties, and management.

  4. Evaluation of the Community Land Model simulated carbon and water fluxes against observations over ChinaFLUX sites

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Mao, J.; Shi, X.; Ricciuto, D. M.; He, H.; Thornton, P. E.; Yu, G.; Han, S.; Li, Y.; Yan, J.; Hao, Y.; Wang, H.

    2014-12-01

    The Community Land Model (CLM) is an advanced process-based land surface model that simulates the complicated carbon, water vapor and energy exchanges between the terrestrial ecosystem and the atmosphere at various spatial-temporal scales. We for the first time use eddy-covariance observations of CO2 and water vapor exchange and soil respiration measurements at five representative Chinese Terrestrial Ecosystem Flux Observational Network (ChinaFLUX) tower sites to systematically evaluate the latest versions of CLM, the CLM4.0 and CLM4.5, and comprehensively examine the similarities and differences between the observational and simulated results. The CLM4.5 underestimates annual carbon sink at three forest sites and one alpine grassland site but overestimates the carbon sink at a semi-arid grassland site. The underestimation in annual carbon sink at a deciduous dominated forest site is resulted from underestimated daytime carbon sequestration in summer and overestimated nighttime carbon emission in spring and autumn. Compared with the CLM4.0, the bias of annual Gross Primary Production (GPP) is reduced by 24% and 28% in CLM4.5 at two subtropical forest sites. However, CLM4.5 still has a large positive bias in annual GPP. The improvement in NEE is limited, although the bias of soil respiration decreases by 16%-43% at three forest sites. The CLM4.5 has lower soil water content in dry season than this simulated by the CLM4.0 at two grassland sites. These lead to the significant drop in leaf area index and GPP, and the increase in respiration for the CLM4.5. The new fire parameterization in CLM4.5 causes incorrect fire estimation at Changbaishan forest site, which results in unexpected underestimation of NEE, vegetation carbon, and soil organic carbon by 46%, 95%, and 87%, respectively. Our study with the ChinaFLUX sites indicates a significant improvement of the CLM4.5 than the CLM4, and suggests further developments on the parameterization of seasonal GPP and

  5. Observed and modeled carbon and energy fluxes for agricultural sites under North American Carbon Program site-level interim synthesis

    NASA Astrophysics Data System (ADS)

    Lokupitiya, E. Y.; Denning, A.

    2010-12-01

    Croplands are unique, man-made ecosystems with dynamics mostly dependent on human decisions. Crops uptake a significant amount of Carbon dioxide (CO2) during their short growing seasons. Reliability of the available models to predict the carbon exchanges by croplands is important in estimating the cropland contribution towards overall land-atmosphere carbon exchange and global carbon cycle. The energy exchanges from croplands include both sensible and latent heat fluxes. This study focuses on analyzing the performance of 19 land surface models across five agricultural sites under the site-level interim synthesis of North American Carbon Program (NACP). Model simulations were performed using a common simulation protocol and input data, including gap-filled meteorological data corresponding to each site. The net carbon fluxes (i.e. net ecosystem exchange; NEE) and energy fluxes (sensible and latent heat) predicted by 12 models with sub-hourly/hourly temporal resolution and 7 models with daily temporal resolution were compared against the site-specific gap-filled observed flux tower data. Comparisons were made by site and crop type (i.e. maize, soybean, and wheat), mainly focusing on the coefficient of determination, correlation, root mean square error, and standard deviation. Analyses also compared the diurnal, seasonal, and inter-annual variability of the modeled fluxes against the observed data and the mean modeled data.

  6. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes

    NASA Astrophysics Data System (ADS)

    Novick, Kimberly A.; Ficklin, Darren L.; Stoy, Paul C.; Williams, Christopher A.; Bohrer, Gil; Oishi, A. Christopher; Papuga, Shirley A.; Blanken, Peter D.; Noormets, Asko; Sulman, Benjamin N.; Scott, Russell L.; Wang, Lixin; Phillips, Richard P.

    2016-11-01

    Soil moisture supply and atmospheric demand for water independently limit--and profoundly affect--vegetation productivity and water use during periods of hydrologic stress. Disentangling the impact of these two drivers on ecosystem carbon and water cycling is difficult because they are often correlated, and experimental tools for manipulating atmospheric demand in the field are lacking. Consequently, the role of atmospheric demand is often not adequately factored into experiments or represented in models. Here we show that atmospheric demand limits surface conductance and evapotranspiration to a greater extent than soil moisture in many biomes, including mesic forests that are of particular importance to the terrestrial carbon sink. Further, using projections from ten general circulation models, we show that climate change will increase the importance of atmospheric constraints to carbon and water fluxes in all ecosystems. Consequently, atmospheric demand will become increasingly important for vegetation function, accounting for >70% of growing season limitation to surface conductance in mesic temperate forests. Our results suggest that failure to consider the limiting role of atmospheric demand in experimental designs, simulation models and land management strategies will lead to incorrect projections of ecosystem responses to future climate conditions.

  7. Soil Carbon Pools and CO2 Fluxes in the GISS Land Model

    NASA Astrophysics Data System (ADS)

    Kharecha, P. A.; Kiang, N. Y.; Aleinov, I.; Moorcroft, P.; Koster, R.; Rind, D.

    2006-12-01

    Determining whether the terrestrial biosphere will act as a sink or source of carbon in the future is crucial for understanding the feedbacks that will affect future global warming. To this end, a growing number of GCMs now include interactive global carbon cycle models (Friedlingstein et al., J. Clim. 19, 2006). To allow for the prediction of net CO2 fluxes from land in the NASA-GISS GCM, we have added a soil biogeochemistry submodel to the Ent dynamic global vegetation model currently under development for the GISS GCM . This submodel is a modified version of the soil submodel in the CASA biosphere model (Potter et al., Glob. Biogeoch. Cyc. 7, 1993). It is driven by vegetation litterfall from the Ent model and litter quality parameters for the Ent vegetation types (in addition to soil temperature, texture, and volumetric moisture) and calculates soil carbon and nitrogen pools and heterotrophic (microbial) respiration. The latter quantity is then used by the Ent model to calculate net CO2 from the global land surface. Here we describe the results of both offline Ent/soil model runs as well as runs in which the model is coupled to the GISS GCM, using prescribed land cover and seasonal variation, and biophysics from Friend and Kiang (J. Clim. 18, 2005). To spin up the soil submodel offline, we conducted 700-1000 year runs using 1986-1995 climatological datasets from the GSWP-2 multi-model analysis (Intl. GEWEX Project Office, 2002, avail. at http://grads.iges.org/gswp/publications.html). The equilibrium soil pools are compared to soil carbon and nitrogen data from the ISRIC-WISE database (Batjes, 2000, avail. at http://www.daac.ornl.gov). This work has been done in the context of incorporation of a dynamic global carbon cycle into the GISS GCM.

  8. Upscaling carbon fluxes over the Great Plains grasslands: Sinks and sources

    USGS Publications Warehouse

    Zhang, Li; Wylie, Bruce K.; Ji, Lei; Gilmanov, Tagir G.; Tieszen, Larry L.; Howar, Daniel M.

    2011-01-01

    Previous studies suggested that the grasslands may be carbon sinks or near equilibrium, and they often shift between carbon sources in drought years and carbon sinks in other years. It is important to understand the responses of net ecosystem production (NEP) to various climatic conditions across the U.S. Great Plains grasslands. Based on 15 grassland flux towers, we developed a piecewise regression model and mapped the grassland NEP at 250 m spatial resolution over the Great Plains from 2000 to 2008. The results showed that the Great Plains was a net sink with an averaged annual NEP of 24 ± 14 g C m−2 yr−1, ranging from a low value of 0.3 g C m−2 yr−1 in 2002 to a high value of 47.7 g C m−2 yr−1 in 2005. The regional averaged NEP for the entire Great Plains grasslands was estimated to be 336 Tg C yr−1 from 2000 to 2008. In the 9 year period including 4 dry years, the annual NEP was very variable in both space and time. It appeared that the carbon gains for the Great Plains were more sensitive to droughts in the west than the east. The droughts in 2000, 2002, 2006, and 2008 resulted in increased carbon losses over drought-affected areas, and the Great Plains grasslands turned into a relatively low sink with NEP values of 15.8, 0.3, 20.1, and 10.2 g C m−2 yr−1 for the 4 years, respectively.

  9. Relevance of methodological choices for accounting of land use change carbon fluxes

    NASA Astrophysics Data System (ADS)

    Pongratz, Julia; Hansis, Eberhard; Davis, Steven

    2015-04-01

    To understand and potentially steer how humans shape land-climate interactions it is important to accurately attribute greenhouse gas fluxes from land use and land cover change (LULCC) in space and time. However, such accounting of carbon fluxes from LULCC generally requires choosing from multiple options of how to attribute the fluxes to regions and to LULCC activities. Applying a newly-developed and spatially-explicit bookkeeping model, BLUE ("bookkeeping of land use emissions"), we quantify LULCC carbon fluxes and attribute them to land-use activities and countries by a range of different accounting methods. We present results with respect to a Kyoto Protocol-like ``commitment'' accounting period, using land use emissions of 2008-12 as example scenario. We assess the effect of accounting methods that vary (1) the temporal evolution of carbon stocks, (2) the state of the carbon stocks at the beginning of the period, (3) the temporal attribution of carbon fluxes during the period, and (4) treatment of LULCC fluxes that occurred prior to the beginning of the period. We show that the methodological choices result in grossly different estimates of carbon fluxes for the different attribution definitions. The global net flux in the accounting period varies between 4.3 Pg(C) uptake and 15.2 Pg(C) emissions, depending on the accounting method. Regional results show different modes of variation. This finding has implications for both political and scientific considerations: Not all methodological choices are currently specified under the UNFCCC treaties on land use, land-use change and forestry. Yet, a consistent accounting scheme is crucial to assure comparability of individual LULCC activities, quantify their relevance for the global annual carbon budget, and assess the effects of LULCC policies.

  10. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    NASA Astrophysics Data System (ADS)

    Brüggemann, N.; Gessler, A.; Kayler, Z.; Keel, S. G.; Badeck, F.; Barthel, M.; Boeckx, P.; Buchmann, N.; Brugnoli, E.; Esperschütz, J.; Gavrichkova, O.; Ghashghaie, J.; Gomez-Casanovas, N.; Keitel, C.; Knohl, A.; Kuptz, D.; Palacio, S.; Salmon, Y.; Uchida, Y.; Bahn, M.

    2011-11-01

    The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as CO2 diffusion and dissolution processes within the

  11. Canopy structure of sagebrush ecosystems leading to differences in carbon and water fluxes

    NASA Astrophysics Data System (ADS)

    Reed, D. E.; Ewers, B. E.; Peckham, S. D.; Pendall, E. G.; Kelly, R. D.

    2013-12-01

    The sagebrush steppe ecosystem covers nearly 15% of Western North America, and its productivity is sensitive to warming and increasingly variable precipitation. Previous work has shown that interannual variability of precipitation is the largest factor in carbon and water cycling in these semi-arid ecosystems and that the relationship of traditional drivers of fluxes (VPD, net radiation, soil temperature) to carbon and water fluxes as well as ecosystem water use efficiency does not change along an elevation gradient. We seek to expand on that work by using multiple site-years from eddy covariance data near the upper (2469m) and lower (2069m) elevation range of sagebrush to answer the question 'How does canopy structure and canopy leaf area index combine to control the ecosystem carbon and water fluxes from rocky mountain sagebrush ecosystems'. We are answering this question by quantifying ecosystem scale carbon and water using eddy covariance measurements and a standard suite of atmospheric, soil and vegetation monitoring instruments. This data will be used with the Terrestrial Regional Ecosystem Exchange Simulator (TREES) Bayesian framework model that utilizes a coupled plant hydraulic and carbon uptake. For this work we use the TREES model to simulate canopy structure and leaf area based on seven years of eddy covariance data from the two different locations. This canopy information will be compared with canopy structure ground measurements within the eddy covariance footprint, and then we will compare the relationship between canopy structure and ecosystem fluxes. During well watered growing season time periods, the high elevation site has average water flux of 1.06 mmol m-2 s-1 and carbon flux of 1.54 μmol m-2 s-1 of uptake. Average water and carbon fluxes at the lower elevation site were 0.84 mmol m-2 s-1 and 1.09 μmol m-2 s-1 of uptake respectively. This is a reduction of 20% for water flux and 30% and carbon flux down the elevation gradient. With the

  12. Calculations of automatic chamber flux measurements of methane and carbon dioxide using short time series of concentrations

    NASA Astrophysics Data System (ADS)

    Pirk, N.; Mastepanov, M.; Parmentier, F.-J. W.; Lund, M.; Crill, P.; Christensen, T. R.

    2015-09-01

    The closed chamber technique is widely used to measure the exchange of methane (CH4) and carbon dioxide (CO2) from terrestrial ecosystems. There is, however, large uncertainty about which model should be used to calculate the gas flux from the measured gas concentrations. Due to experimental uncertainties the robust linear regression model (first order polynomial) is often applied, even though theoretical considerations of the technique suggest the application of other, curvilinear models. High-resolution automatic chamber systems which sample gas concentrations several hundred times per flux measurement make it possible to resolve the curvilinear behavior and study the information imposed by the natural variability of the temporal concentration changes. We used more than 50 000 such flux measurements of CH4 and CO2 from five field sites located in peat forming wetlands to calculate fluxes with different models. The flux differences from independent linear estimates are generally found to be smaller than the local flux variability on the plot scale. The curvilinear behavior of the gas concentrations within the chamber is strongly influenced by wind driven chamber leakage, and less so by changing gas concentration gradients in the soil during chamber closure. Such physical processes affect both gas species equally, which makes it possible to isolate biochemical processes affecting the gases differently, such as photosynthesis limitation by chamber headspace CO2 concentrations under high levels of incoming solar radiation. We assess the possibility to exploit this effect for a partitioning of the net CO2 flux into photosynthesis and ecosystem respiration and argue that high-resolution automatic chamber measurements could be used for purposes beyond the estimation of the net gas flux.

  13. Assessing FPAR Source and Parameter Optimization Scheme in Application of a Diagnostic Carbon Flux Model

    SciTech Connect

    Turner, D P; Ritts, W D; Wharton, S; Thomas, C; Monson, R; Black, T A

    2009-02-26

    The combination of satellite remote sensing and carbon cycle models provides an opportunity for regional to global scale monitoring of terrestrial gross primary production, ecosystem respiration, and net ecosystem production. FPAR (the fraction of photosynthetically active radiation absorbed by the plant canopy) is a critical input to diagnostic models, however little is known about the relative effectiveness of FPAR products from different satellite sensors nor about the sensitivity of flux estimates to different parameterization approaches. In this study, we used multiyear observations of carbon flux at four eddy covariance flux tower sites within the conifer biome to evaluate these factors. FPAR products from the MODIS and SeaWiFS sensors, and the effects of single site vs. cross-site parameter optimization were tested with the CFLUX model. The SeaWiFs FPAR product showed greater dynamic range across sites and resulted in slightly reduced flux estimation errors relative to the MODIS product when using cross-site optimization. With site-specific parameter optimization, the flux model was effective in capturing seasonal and interannual variation in the carbon fluxes at these sites. The cross-site prediction errors were lower when using parameters from a cross-site optimization compared to parameter sets from optimization at single sites. These results support the practice of multisite optimization within a biome for parameterization of diagnostic carbon flux models.

  14. Carbon dioxide fluxes from Tifway bermudagrass: early results

    NASA Astrophysics Data System (ADS)

    Cotten, David L.; Zhang, G.; Leclerc, M. Y.; Raymer, P.; Steketee, C. J.

    2017-01-01

    This paper reports for the first time preliminary data on carbon uptake of warm-season turfgrass at a well-managed sod farm in south central Georgia. It examines the changes in carbon uptake from one of the most widely used warm-season turfgrass cultivars in the world, Tifway Bermudagrass. It elucidates the role of canopy density and light avalaibility on the net carbon uptake using the eddy-covariance technique. Preliminary evidence suggests that turfgrass is effective at sequestering carbon dioxide during the summer months even when the canopy is being reestablished following a grass harvest.

  15. Stable carbon isotope gradients in benthic foraminifera as proxy for organic carbon fluxes in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Theodor, Marc; Schmiedl, Gerhard; Jorissen, Frans; Mackensen, Andreas

    2016-11-01

    We have determined stable carbon isotope ratios of epifaunal and shallow infaunal benthic foraminifera in the Mediterranean Sea to relate the inferred gradient of pore water δ13CDIC to varying trophic conditions. This is a prerequisite for developing this difference into a potential transfer function for organic matter flux rates. The data set is based on samples retrieved from a well-defined bathymetric range (400-1500 m water depth) of sub-basins in the western, central, and eastern Mediterranean Sea. Regional contrasts in organic matter fluxes and associated δ13CDIC of pore water are recorded by the δ13C difference (Δδ13CUmed-Epi) between the shallow infaunal Uvigerina mediterranea and epifaunal species (Planulina ariminensis, Cibicidoides pachydermus, Cibicides lobatulus). Within epifaunal taxa, the highest δ13C values are recorded for P. ariminensis, providing the best indicator for bottom water δ13CDIC. In contrast, C. pachydermus reveals minor pore water effects at the more eutrophic sites. Because of ontogenetic trends in the δ13C signal of U. mediterranea of up to 1.04 ‰, only tests larger than 600 µm were used for the development of the transfer function. The recorded differences in the δ13C values of U. mediterranea and epifaunal taxa (Δδ13CUmed-Epi) range from -0.46 to -2.13 ‰, with generally higher offsets at more eutrophic sites. The measured δ13C differences are related to site-specific differences in microhabitat, depth of the principal sedimentary redox boundary, and TOC content of the ambient sediment. The Δδ13CUmed-Epi values reveal a consistent relation to Corg fluxes estimated from satellite-derived surface water primary production in open-marine settings of the Alboran Sea, Mallorca Channel, Strait of Sicily, and southern Aegean Sea. In contrast, Δδ13CUmed-Epi values in areas affected by intense resuspension and riverine organic matter sources of the northern to central Aegean Sea and the canyon systems of the Gulf of Lion

  16. A Satellite Based Modeling Framework for Estimating Seasonal Carbon Fluxes Over Agricultural Lands

    NASA Astrophysics Data System (ADS)

    Bandaru, V.; Izaurralde, R. C.; Sahajpal, R.; Houborg, R.; Milla, Z.

    2013-12-01

    Croplands are typically characterized by fine-scale heterogeneity, which makes it difficult to accurately estimate cropland carbon fluxes over large regions given the fairly coarse spatial resolution of high-frequency satellite observations. It is, however, important that we improve our ability to estimate spatially and temporally resolved carbon fluxes because croplands constitute a large land area and have a large impact on global carbon cycle. A Satellite based Dynamic Cropland Carbon (SDCC) modeling framework was developed to estimate spatially resolved crop specific daily carbon fluxes over large regions. This modeling framework uses the REGularized canopy reFLECtance (REGFLEC) model to estimate crop specific leaf area index (LAI) using downscaled MODIS reflectance data, and subsequently LAI estimates are integrated into the Environmental Policy Integrated Model (EPIC) model to determine daily net primary productivity (NPP) and net ecosystem productivity (NEP). Firstly, we evaluate the performance of this modeling framework over three eddy covariance flux tower sites (Bondville, IL; Fermi Agricultural Site, IL; and Rosemount site, MN). Daily NPP and NEP of corn and soybean crops are estimated (based on REGFLEC LAI) for year 2007 and 2008 over the flux tower sites and compared against flux tower observations and model estimates based on in-situ LAI. Secondly, we apply the SDCC framework for estimating regional NPP and NEP for corn, soybean and sorghum crops in Nebraska during year 2007 and 2008. The methods and results will be presented.

  17. A Satellite Based Modeling Framework for Estimating Seasonal Carbon Fluxes Over Agricultural Lands

    NASA Astrophysics Data System (ADS)

    Bandaru, V.; Houborg, R.; Izaurralde, R. C.

    2014-12-01

    Croplands are typically characterized by fine-scale heterogeneity, which makes it difficult to accurately estimate cropland carbon fluxes over large regions given the fairly coarse spatial resolution of high-frequency satellite observations. It is, however, important that we improve our ability to estimate spatially and temporally resolved carbon fluxes because croplands constitute a large land area and have a large impact on global carbon cycle. A Satellite based Dynamic Cropland Carbon (SDCC) modeling framework was developed to estimate spatially resolved crop specific daily carbon fluxes over large regions. This modeling framework uses the REGularized canopy reFLECtance (REGFLEC) model to estimate crop specific leaf area index (LAI) using downscaled MODIS reflectance data, and subsequently LAI estimates are integrated into the Environmental Policy Integrated Model (EPIC) model to determine daily net primary productivity (NPP) and net ecosystem productivity (NEP). Firstly, we evaluate the performance of this modeling framework over three eddy covariance flux tower sites (Bondville, IL; Fermi Agricultural Site, IL; and Rosemount site, MN). Daily NPP and NEP of corn and soybean crops are estimated (based on REGFLEC LAI) for year 2007 and 2008 over the flux tower sites and compared against flux tower observations and model estimates based on in-situ LAI. Secondly, we apply the SDCC framework for estimating regional NPP and NEP for corn, soybean and sorghum crops in Nebraska during year 2007 and 2008. The methods and results will be presented.

  18. Relevance of methodological choices for accounting of land use change carbon fluxes

    NASA Astrophysics Data System (ADS)

    Hansis, Eberhard; Davis, Steven J.; Pongratz, Julia

    2015-08-01

    Accounting for carbon fluxes from land use and land cover change (LULCC) generally requires choosing from multiple options of how to attribute the fluxes to regions and to LULCC activities. Applying a newly developed and spatially explicit bookkeeping model BLUE (bookkeeping of land use emissions), we quantify LULCC fluxes and attribute them to land use activities and countries by a range of different accounting methods. We present results with respect to a Kyoto Protocol-like "commitment" accounting period, using land use emissions of 2008-2012 as an example scenario. We assess the effect of accounting methods that vary (1) the temporal evolution of carbon stocks, (2) the state of the carbon stocks at the beginning of the period, (3) the temporal attribution of carbon fluxes during the period, and (4) treatment of LULCC fluxes that occurred prior to the beginning of the period. We show that the methodological choices result in grossly different estimates of carbon fluxes for the different attribution definitions.

  19. Evaluation of carbon isotope flux partitioning theory under simplified and controlled environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Separation of the photosynthetic (Fp) and respiratory (Fr) fluxes of net CO2 exchange (Fn)remains a necessary step toward understanding the biological and physical controls on carbon cycling between the soil, biomass, and atmosphere. Despite recent advancements in stable carbon isotope partitioning ...

  20. Soil carbon dioxide fluxes with time and depth in a bare field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil carbon dioxide (CO2) efflux is an important component of the terrestrial carbon cycle. The amount of CO2 emitted from soil to the atmosphere has significant effects on the soil-atmosphere system. The objectives of this study are 1) to determine bare soil CO2 fluxes continuously with time and de...

  1. Importance of early season conditions and grazing on carbon dioxide fluxes in Colorado shortgrass steppe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the influence of environmental and management drivers on fluxes of carbon dioxide (CO2) is essential for optimizing carbon (C) uptake and storage in livestock production systems. Herein, using 15 treatment-years (two three-year experiments, one with three grazing treatments, the other ...

  2. [Research progress on urban carbon fluxes based on eddy covariance technique].

    PubMed

    Liu, Min; Fu, Yu-Ling; Yang, Fang

    2014-02-01

    Land use change and fossil fuel consumption due to urbanization have made significant effect on global carbon cycle and climate change. Accurate estimating and understanding of the carbon budget and its characteristics are the premises for studying carbon cycle and its driving mechanisms in urban system. Based on the theory of eddy covariance (EC) technique, the characteristics atmospheric boundary layer and carbon cycle in urban area, this study systematically reviewed the principles of CO2 flux monitoring in urban system with EC technique, and then summarized the problems faced in urban CO2 flux monitoring and the method for data processing and further assessment. The main research processes on urban carbon fluxes with EC technique were also illustrated. The results showed that the urban surface was mostly acting as net carbon source. The CO2 exchange between urban surface and atmosphere showed obvious diurnal, weekly and seasonal variation resulted from the vehicle exhaust, domestic heating and vegetation respiration. However, there still exist great uncertainties in urban flux measurement and its explanation due to high spatial heterogeneity and complex distributions of carbon source/sink in urban environments. In the end, we suggested that further researches on EC technique and data assessment in complex urban area should be strengthened. It was also requisite to develop models of urban carbon cycle on the basis of the system principle, to investigate the influencing mechanism and variability of urban cycle at regional scale with spatial analysis technique.

  3. The "Carbon Data Explorer": Web-Based Space-Time Visualization of Modeled Carbon Fluxes

    NASA Astrophysics Data System (ADS)

    Billmire, M.; Endsley, K. A.

    2014-12-01

    The visualization of and scientific "sense-making" from large datasets varying in both space and time is a challenge; one that is still being addressed in a number of different fields. The approaches taken thus far are often specific to a given academic field due to the unique questions that arise in different disciplines, however, basic approaches such as geographic maps and time series plots are still widely useful. The proliferation of model estimates of increasing size and resolution further complicates what ought to be a simple workflow: Model some geophysical phenomen(on), obtain results and measure uncertainty, organize and display the data, make comparisons across trials, and share findings. A new tool is in development that is intended to help scientists with the latter parts of that workflow. The tentatively-titled "Carbon Data Explorer" (http://spatial.mtri.org/flux-client/) enables users to access carbon science and related spatio-temporal science datasets over the web. All that is required to access multiple interactive visualizations of carbon science datasets is a compatible web browser and an internet connection. While the application targets atmospheric and climate science datasets, particularly spatio-temporal model estimates of carbon products, the software architecture takes an agnostic approach to the data to be visualized. Any atmospheric, biophysical, or geophysical quanity that varies in space and time, including one or more measures of uncertainty, can be visualized within the application. Within the web application, users have seamless control over a flexible and consistent symbology for map-based visualizations and plots. Where time series data are represented by one or more data "frames" (e.g. a map), users can animate the data. In the "coordinated view," users can make direct comparisons between different frames and different models or model runs, facilitating intermodal comparisons and assessments of spatio-temporal variability. Map

  4. Subduction fluxes of water, carbon dioxide, chlorine, and potassium

    NASA Astrophysics Data System (ADS)

    Jarrard, Richard D.

    2003-05-01

    The alteration of upper oceanic crust entails growth of hydrous minerals and loss of macroporosity, with associated large-scale fluxes of H2O, CO2, Cl-, and K2O between seawater and crust. This age-dependent alteration can be quantified by combining a conceptual alteration model with observed age-dependent changes in crustal geophysical properties at DSDP/ODP sites, permitting estimation of crustal concentrations of H2O, CO2, Cl-, and K2O, given crustal age. Surprisingly, low-temperature alteration causes no net change in total water; pore water loss is nearly identical to bound water gain. Net change in total crustal K2O is also smaller than expected; the obvious low-temperature enrichment is partly offset by earlier high-temperature depletion, and most crustal K2O is primary rather than secondary. I calculate crustal concentrations of H2O, CO2, Cl-, and K2O for 41 modern subduction zones, thereby determining their modern mass fluxes both for individual subduction zones and globally. This data set is complemented by published flux determinations for subducting sediments at 26 of these subduction zones. Global mass fluxes among oceans, oceanic crust, continental crust, and mantle are calculated for H2O, Cl-, and K2O. Except for the present major imbalance between sedimentation and sediment subduction, most fluxes appear to be at or near steady state. I estimate that half to two thirds of subducted crustal water is later refluxed at the prism toe; most of the remaining water escapes at subarc depths, triggering partial melting. The flux of subducted volatiles, however, does not appear to correlate with either rate of arc magma generation or magnitude of interplate earthquakes.

  5. Subduction Fluxes of Water, Carbon Dioxide, Chlorine, and Potassium

    NASA Astrophysics Data System (ADS)

    Jarrard, R. D.

    2002-12-01

    The alteration of upper oceanic crust entails growth of hydrous minerals and loss of macroporosity, with associated large-scale fluxes of H2O, CO2, Cl-, and K2O between seawater and crust. This age-dependent alteration can be quantified by combining a conceptual alteration model with observed age-dependent changes in crustal geophysical properties at DSDP/ODP sites, permitting estimation of crustal concentrations of H2O, CO2, Cl-, and K2O, given crustal age. Surprisingly, low-temperature alteration causes no net change in total water; pore water loss is nearly identical to H2O+ gain. The overall alteration effect on total crustal content of K2O is also smaller than expected; the obvious low-temperature enrichment is partly offset by earlier high-temperature depletion, and most crustal K2O is primary rather than secondary. We calculate crustal concentrations of H2O, CO2, Cl-, and K2O for 41 modern subduction zones, thereby determining their modern mass fluxes both for individual subduction zones and globally. This dataset is complemented by published flux determinations for subducting sediments at 26 of these subduction zones. Global mass fluxes among oceans, oceanic crust, continental crust, and mantle are calculated for H2O, Cl-, and K2O. Except for the present major imbalance between sedimentation and sediment subduction, most fluxes appear to be at or near steady-state. We estimate that half to two thirds of subducted crustal water is later refluxed at the prism toe; most of the remaining water escapes at subarc depths, triggering partial melting. The flux of subducted volatiles, however, does not appear to correlate with either rate of arc magma generation or magnitude of interplate earthquakes.

  6. Carbon and water vapor fluxes of different ecosystems in Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information on exchange of energy, carbon dioxide (CO2), and water vapor (H2O) for major terrestrial ecosystems is vital to quantify carbon and water balances on a large-scale. It is also necessary to develop, test, and improve crop models and satellite-based production efficiency and evapotranspira...

  7. Land-Use Influences Carbon Fluxes in Northern Kazakhstan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An understanding of carbon cycling is important to maintain sustainable rangeland ecosystems. Rangelands in the western U.S. are similar to those in Central Asia. We used a combination of meteorological and computer modeling techniques to quantitatively assess carbon loss and gain for four major l...

  8. Carbon flux and C/Nb ratios in the mantle in ridge context

    NASA Astrophysics Data System (ADS)

    Pineau, F.; Cartigny, P.; Javoy, M.

    2004-12-01

    The hypothesis that undegassed MORB would display constant CO2/Nb-ratios of \\sim 239 (ppm/ppm) obtained by Saal et al (2002) is not supported by available data. Incorrectely quoted by these authors, the MORB popping rock shows a CO2/Nb-ratio higher by a factor of \\sim 3 (Javoy and Pineau, 1991) than the ratio measured among their carbon under-saturated glass inclusions from the Siquieros transform fault. In order to better constrain the variability of CO2/Nb-ratios among MORB, we have analysed and compiled volatile, trace and major element data from 14 \\degN and 34 \\degN basaltic glasses on the Mid Atlantic Ridge. The sample set includes N-, E-MORB and alkali basalts. Carbon (and water for alkali basalts) have been affected by degassing and initial carbon and water concentrations were reconstructed using methods described previously (e.g. Pineau et al. 2004). The variations in \\delta D-values (-88 to -55 per mil) with water contents (1300 to 7700 ppm) show consistent variations with published data of worldwide mid-ocean ridges. The samples define rather constant regional ratios from 349 to 589 and from 524 to 1065 at 14 \\deg and 34 \\degN respectively. CO2/Nb-ratios roughly correlate positively with enrichment indexes such K/Ti. It is worth noting that the little variable CO2/Nb-ratios over a large range of CO2, up to 44,000 ppm, (i.e. 12,000 ppmC) and Nb-contents, up to 41.3 ppm, confirm the accuracy of degassing corrections. From the broad inverse correlation between CO2/Nb and TiO2/H20 and the mean TiO2/H20-ratio of worldwide MORB with 8 \\pm1weight percent MgO, a MORB CO2/Nb-ratio from 500 to 950 seems more appropriate than the value quoted by Saal et al. (2002). This corresponds to carbon flux from 4.0 to 7.6\\times1012 mol/y. However, in the light of the regional dependency of CO2/Nb-ratios it is unclear yet whether it represents the best tool to constrain mantle carbon flux or should be more likely used to distinguish different mantle domains.

  9. Environmental controls on carbon fluxes over three grassland ecosystems in China

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Zheng, Z.; Yu, G.; Hu, Z.; Sun, X.; Shi, P.; Wang, Y.; Zhao, X.

    2009-08-01

    This study compared the CO2 fluxes over three grassland ecosystems in China, including a temperate steppe (TS) in Inner Mongolia, an alpine shrub-meadow (ASM) in Qinghai and an alpine meadow-steppe (AMS) in Tibet. The measurements were made in 2004 and 2005 using the eddy covariance technique. Objectives were to document the different seasonality of net ecosystem exchange of CO2 (NEE) and its components, gross ecosystem photosynthesis (GEP) and ecosystem respiration (Reco), and to examine how environmental factors affect carbon exchange in the three grassland ecosystems. It was warmer in 2005 than in 2004, especially during the growing season (from May to September), across the three sites. The annual precipitation at TS in 2004 (364.4 mm) was close the annual average (350 mm), whereas the precipitation at TS in 2005 (153.3 mm) was significantly below the average. Both GEP and Reco of the temperate steppe in 2005 were significantly reduced by the extreme drought stress, resulting in net carbon release during almost the whole growing season. The magnitude of CO2 fluxes (daily and annual sums) was largest for the alpine shrub-meadow and smallest for the alpine meadow-steppe. The seasonal trends of GEP, Reco and NEE of the alpine shrub-meadow tracked closely with the variation in air temperature, while the seasonality of GEP, Reco and NEE of the temperate steppe and the alpine meadow-steppe was more related to the variation in soil moisture. The alpine shrub-meadow was a local carbon sink over the two years. The temperate steppe and alpine meadow-steppe were acting as net carbon source, with more carbon loss to the atmosphere in warmer and drier year of 2005. Annual precipitation was the primary climate driver for the difference in annual GEP and NEE among the three sites and between the two years. We also found the annual GEP and NEE depended significantly on the growing season length, which was mainly a result of the timing and amount of precipitation for the

  10. Distribution and air-sea fluxes of carbon dioxide on the Chukchi Sea shelf

    NASA Astrophysics Data System (ADS)

    Pipko, I. I.; Pugach, S. P.; Repina, I. A.; Dudarev, O. V.; Charkin, A. N.; Semiletov, I. P.

    2015-12-01

    This article presents the results of long-term studies of the dynamics of carbonate parameters and air-sea carbon dioxide fluxes on the Chukchi Sea shelf during the summer. As a result of the interaction of physical and biological factors, the surface waters on the west of Chukchi Sea were undersaturated with carbon dioxide when compared with atmospheric air; the partial pressure of CO2 varied in the range from 134 to 359 μatm. The average value of CO2 flux in the Chukchi Sea per unit area varied in the range from-2.4 to-22.0 mmol /(m2 day), which is significantly higher than the average value of CO2 flux in the World Ocean. It has been estimated that the minimal mass of C absorbed by the surface of Chukchi Sea from the atmosphere during ice-free season is 13 × 1012 g; a great part of this carbon is transported to the deeper layers of sea and isolated from the atmosphere for a long period of time. The studies of the carbonate system of the Chukchi Sea, especially of its western part, will provide some new data on the fluxes of carbon dioxide in the Arctic Ocean and their changes. Our analysis can be used for an interpretation of the satellite assessment of CO2 fluxes and dissolved CO2 distribution in the upper layers of the ocean.

  11. Carbon Flux to the Atmosphere from Land-Use Changes: 1850 to 1990

    SciTech Connect

    Houghton, R.A.

    2001-02-22

    The database documented in this numeric data package, a revision to a database originally published by the Carbon Dioxide Information Analysis Center (CDIAC) in 1995, consists of annual estimates, from 1850 through 1990, of the net flux of carbon between terrestrial ecosystems and the atmosphere resulting from deliberate changes in land cover and land use, especially forest clearing for agriculture and the harvest of wood for wood products or energy. The data are provided on a year-by-year basis for nine regions (North America, South and Central America, Europe, North Africa and the Middle East, Tropical Africa, the Former Soviet Union, China, South and Southeast Asia, and the Pacific Developed Region) and the globe. Some data begin earlier than 1850 (e.g., for six regions, areas of different ecosystems are provided for the year 1700) or extend beyond 1990 (e.g., fuelwood harvest in South and Southeast Asia, by forest type, is provided through 1995). The global net flux during the period 1850 to 1990 was 124 Pg of carbon (1 petagram = 10{sup 15} grams). During this period, the greatest regional flux was from South and Southeast Asia (39 Pg of carbon), while the smallest regional flux was from North Africa and the Middle East (3 Pg of carbon). For the year 1990, the global total net flux was estimated to be 2.1 Pg of carbon.

  12. Seep-carbonate lamination controlled by cyclic particle flux

    NASA Astrophysics Data System (ADS)

    Himmler, Tobias; Bayon, Germain; Wangner, David; Enzmann, Frieder; Peckmann, Jörn; Bohrmann, Gerhard

    2016-11-01

    Authigenic carbonate build-ups develop at seafloor methane-seeps, where microbially mediated sulphate-dependent anaerobic oxidation of methane facilitates carbonate precipitation. Despite being valuable recorders of past methane seepage events, their role as archives of atmospheric processes has not been examined. Here we show that cyclic sedimentation pulses related to the Indian monsoon in concert with authigenic precipitation of methane-derived aragonite gave rise to a well-laminated carbonate build-up within the oxygen minimum zone off Pakistan (northern Arabian Sea). U–Th dating indicates that the build-up grew during past ~1,130 years, creating an exceptional high-resolution archive of the Indian monsoon system. Monsoon-controlled formation of seep-carbonates extends the known environmental processes recorded by seep-carbonates, revealing a new relationship between atmospheric and seafloor processes.

  13. Seep-carbonate lamination controlled by cyclic particle flux

    PubMed Central

    Himmler, Tobias; Bayon, Germain; Wangner, David; Enzmann, Frieder; Peckmann, Jörn; Bohrmann, Gerhard

    2016-01-01

    Authigenic carbonate build-ups develop at seafloor methane-seeps, where microbially mediated sulphate-dependent anaerobic oxidation of methane facilitates carbonate precipitation. Despite being valuable recorders of past methane seepage events, their role as archives of atmospheric processes has not been examined. Here we show that cyclic sedimentation pulses related to the Indian monsoon in concert with authigenic precipitation of methane-derived aragonite gave rise to a well-laminated carbonate build-up within the oxygen minimum zone off Pakistan (northern Arabian Sea). U–Th dating indicates that the build-up grew during past ~1,130 years, creating an exceptional high-resolution archive of the Indian monsoon system. Monsoon-controlled formation of seep-carbonates extends the known environmental processes recorded by seep-carbonates, revealing a new relationship between atmospheric and seafloor processes. PMID:27876764

  14. Seep-carbonate lamination controlled by cyclic particle flux.

    PubMed

    Himmler, Tobias; Bayon, Germain; Wangner, David; Enzmann, Frieder; Peckmann, Jörn; Bohrmann, Gerhard

    2016-11-23

    Authigenic carbonate build-ups develop at seafloor methane-seeps, where microbially mediated sulphate-dependent anaerobic oxidation of methane facilitates carbonate precipitation. Despite being valuable recorders of past methane seepage events, their role as archives of atmospheric processes has not been examined. Here we show that cyclic sedimentation pulses related to the Indian monsoon in concert with authigenic precipitation of methane-derived aragonite gave rise to a well-laminated carbonate build-up within the oxygen minimum zone off Pakistan (northern Arabian Sea). U-Th dating indicates that the build-up grew during past ~1,130 years, creating an exceptional high-resolution archive of the Indian monsoon system. Monsoon-controlled formation of seep-carbonates extends the known environmental processes recorded by seep-carbonates, revealing a new relationship between atmospheric and seafloor processes.

  15. Biophysical controls on organic carbon fluxes in fluvial networks

    NASA Astrophysics Data System (ADS)

    Battin, Tom J.; Kaplan, Louis A.; Findlay, Stuart; Hopkinson, Charles S.; Marti, Eugenia; Packman, Aaron I.; Newbold, J. Denis; Sabater, Francesc

    2008-02-01

    Metabolism of terrestrial organic carbon in freshwater ecosystems is responsible for a large amount of carbon dioxide outgassing to the atmosphere, in contradiction to the conventional wisdom that terrestrial organic carbon is recalcitrant and contributes little to the support of aquatic metabolism. Here, we combine recent findings from geophysics, microbial ecology and organic geochemistry to show geophysical opportunity and microbial capacity to enhance the net heterotrophy in streams, rivers and estuaries. We identify hydrological storage and retention zones that extend the residence time of organic carbon during downstream transport as geophysical opportunities for microorganisms to develop as attached biofilms or suspended aggregates, and to metabolize organic carbon for energy and growth. We consider fluvial networks as meta-ecosystems to include the acclimation of microbial communities in downstream ecosystems that enable them to exploit energy that escapes from upstream ecosystems, thereby increasing the overall energy utilization at the network level.

  16. Local to regional emission sources affecting mercury fluxes to New York lakes

    NASA Astrophysics Data System (ADS)

    Bookman, Revital; Driscoll, Charles T.; Engstrom, Daniel R.; Effler, Steven W.

    Lake-sediment records across the Northern Hemisphere show increases in atmospheric deposition of anthropogenic mercury (Hg) over the last 150 years. Most of the previous studies have examined remote lakes affected by the global atmospheric Hg reservoir. In this study, we present Hg flux records from lakes in an urban/suburban setting of central New York affected also by local and regional emissions. Sediment cores were collected from the Otisco and Skaneateles lakes from the Finger Lakes region, Cross Lake, a hypereutrophic lake on the Seneca River, and Glacial Lake, a small seepage lake with a watershed that corresponds with the lake area. Sediment accumulation rates and dates were established by 210Pb. The pre-anthropogenic regional atmospheric Hg flux was estimated to be 3.0 μg m -2 yr -1 from Glacial Lake, which receives exclusively direct atmospheric deposition. Mercury fluxes peaked during 1971-2001, and were 3 to more than 30 times greater than pre-industrial deposition. Land use change and urbanization in the Otisco and Cross watersheds during the last century likely enhanced sediment loads and Hg fluxes to the lakes. Skaneateles and Glacial lakes have low sediment accumulation rates, and thus are excellent indicators for atmospheric Hg deposition. In these lakes, we found strong correlations with emission records for the Great Lakes region that markedly increased in the early 1900s, and peaked during WWII and in the early 1970s. Declines in modern Hg fluxes are generally evident in the core records. However, the decrease in sediment Hg flux at Glacial Lake was interrupted and has increased since the early 1990s probably due to the operation of new local emission sources. Assuming the global Hg reservoir tripled since the pre-industrial period, the contribution of local and regional emission sources to central New York lakes was estimated to about 80% of the total atmospheric Hg deposition.

  17. Interactive Effects of Water level and Temperature on Tundra Carbon Flux Components

    NASA Astrophysics Data System (ADS)

    Olivas, P. C.; Oberbauer, S. F.

    2008-12-01

    Arctic regions store important amounts of soil carbon in an unstable state because of saturated soils and low temperatures. Temperature and soil water may also strongly influence the productivity of tundra ecosystems. As a result, changes in water availability and temperature could have significant effects on the carbon balance. However, as the climate changes, the direction and the magnitude of changes in the carbon balance in response to these potentially interacting physical factors are uncertain. To evaluate the effects of water regime, we have initiated a large hydrological manipulation at Barrow, Alaska where we have maintained flooded, drained, and intermediate water levels in a drained thaw lake basin. To test the interactive effects of temperature and water level, we passively increased the temperature of the surface using open top chambers (OTCs) in each of the three water-level treatments. To quantify the effects of these treatments on the ecosystem carbon balance, we measured net ecosystem exchange (NEE) and its components, ecosystem respiration (ER) and gross primary production (GPP) using static chamber methods. Growing seasons differed strongly between 2007 and 2008, the being former hotter, brighter and drier. Interannual differences in water availability revealed an important reduction in ER for both OTC and non- temperature treated plots as a consequence of increased water table in 2008. The effect of increased water table on GPP was not as strong as the effect on ER. However, in areas where most the leaf area was submerged, GPP was strongly reduced. As a result, net ecosystem exchange (NEE) was greater (stronger sink activity) in 2008 than in 2007 for the non-temperature treated plots. The OTCs enhanced the effects of lower water availability on the flux components. During the dry year (2007) both the ER and GPP were positively affected with the stronger effect on GPP. As result the NEE was higher in the OTCs. In 2008, the combination of higher

  18. Export of dissolved organic carbon from an upland peatland during storm events: Implications for flux estimates

    NASA Astrophysics Data System (ADS)

    Clark, Joanna M.; Lane, Stuart N.; Chapman, Pippa J.; Adamson, John K.

    2007-12-01

    SummaryMost of the dissolved organic carbon (DOC) exported from catchments is transported during storm events. Accurate assessments of DOC fluxes are essential to understand long-term trends in the transport of DOC from terrestrial to aquatic systems, and also the loss of carbon from peatlands to determine changes in the source/sink status of peatland carbon stores. However, many long-term monitoring programmes collect water samples at a frequency (e.g. weekly/monthly) less than the time period of a typical storm event (typically <1-2 days). As widespread observations in catchments dominated by organo-mineral soils have shown that both concentration and flux of DOC increases during storm events, lower frequency monitoring could result in substantial underestimation of DOC flux as the most dynamic periods of transport are missed. However, our intensive monitoring study in a UK upland peatland catchment showed a contrasting response to these previous studies. Our results showed that (i) DOC concentrations decreased during autumn storm events and showed a poor relationship with flow during other seasons; and that (ii) this decrease in concentrations during autumn storms caused DOC flux estimates based on weekly monitoring data to be over-estimated, rather than under-estimated, because of over rather than under estimation of the flow-weighted mean concentration used in flux calculations. However, as DOC flux is ultimately controlled by discharge volume, and therefore rainfall, and the magnitude of change in discharge was greater than the magnitude of decline in concentrations, DOC flux increased during individual storm events. The implications for long-term DOC trends are therefore contradictory, as increased rainfall could increase flux but cause an overall decrease in DOC concentrations from peatland streams. Care needs to be taken when interpreting long-term trends in DOC flux rather than concentration; as flux is calculated from discharge estimates, and discharge

  19. Carbon fluxes resulting from land-use changes in the Tamaulipan thornscrub of northeastern Mexico

    PubMed Central

    Návar-Chaidez, Jose de Jesus

    2008-01-01

    Information on carbon stock and flux resulting from land-use changes in subtropical, semi-arid ecosystems are important to understand global carbon flux, yet little data is available. In the Tamaulipan thornscrub forests of northeastern Mexico, biomass components of standing vegetation were estimated from 56 quadrats (200 m2 each). Regional land-use changes and present forest cover, as well as estimates of soil organic carbon from chronosequences, were used to predict carbon stocks and fluxes in this ecosystem. For the period of 1980–1996, the Tamaulipan thornscrub is presenting an annual deforestation rate of 2.27% indicating that approximately 600 km2 of this plant community are lost every year and that 60% of the original Mexican Tamaulipan thornscrub vegetation has been lost since the 1950's. On the other hand, intensive agriculture, including introduced grasslands increased (4,000 km2) from 32 to 42% of the total studied area, largely at the expense of the Tamaulipan thornscrub forests. Land-use changes from Tamaulipan thornscrub forest to agriculture contribute 2.2 Tg to current annual carbon emissions and standing biomass averages 0.24 ± 0.06 Tg, root biomass averages 0.17 ± 0.03 Tg, and soil organic carbon averages 1.80 ± 0.27 Tg. Land-use changes from 1950 to 2000 accounted for Carbon emissions of the order of 180.1 Tg. Projected land-use changes will likely contribute to an additional carbon flux of 98.0 Tg by the year 2100. Practices to conserve sequester, and transfer carbon stocks in semi-arid ecosystems are discussed as a means to reduce carbon flux from deforestation practices. PMID:18826617

  20. Carbon fluxes resulting from land-use changes in the Tamaulipan thornscrub of northeastern Mexico.

    PubMed

    Návar-Chaidez, Jose de Jesus

    2008-09-30

    Information on carbon stock and flux resulting from land-use changes in subtropical, semi-arid ecosystems are important to understand global carbon flux, yet little data is available. In the Tamaulipan thornscrub forests of northeastern Mexico, biomass components of standing vegetation were estimated from 56 quadrats (200 m2 each). Regional land-use changes and present forest cover, as well as estimates of soil organic carbon from chronosequences, were used to predict carbon stocks and fluxes in this ecosystem.For the period of 1980-1996, the Tamaulipan thornscrub is presenting an annual deforestation rate of 2.27% indicating that approximately 600 km2 of this plant community are lost every year and that 60% of the original Mexican Tamaulipan thornscrub vegetation has been lost since the 1950's. On the other hand, intensive agriculture, including introduced grasslands increased (4,000 km2) from 32 to 42% of the total studied area, largely at the expense of the Tamaulipan thornscrub forests. Land-use changes from Tamaulipan thornscrub forest to agriculture contribute 2.2 Tg to current annual carbon emissions and standing biomass averages 0.24 +/- 0.06 Tg, root biomass averages 0.17 +/- 0.03 Tg, and soil organic carbon averages 1.80 +/- 0.27 Tg. Land-use changes from 1950 to 2000 accounted for Carbon emissions of the order of 180.1 Tg. Projected land-use changes will likely contribute to an additional carbon flux of 98.0 Tg by the year 2100. Practices to conserve sequester, and transfer carbon stocks in semi-arid ecosystems are discussed as a means to reduce carbon flux from deforestation practices.

  1. Impacts of ontogenetically migrating copepods on downward carbon flux in the western subarctic Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Kobari, Toru; Steinberg, Deborah K.; Ueda, Ai; Tsuda, Atsushi; Silver, Mary W.; Kitamura, Minoru

    2008-07-01

    To evaluate the impacts of ontogenetically (seasonally) migrating copepods on carbon transport to the mesopelagic zone, we investigated depth distribution, population structure, and feeding activity of the ontogentic copepod community in the western subarctic Pacific Ocean from day-night pairs of zooplankton samples down to 1000 m during the VERtical Transport In the Global Ocean (VERTIGO) program. Over the 31 July-16 August 2005 study period, the biomass of Neocalanus cristatus and Neocalanus plumchrus predominated in the near surface waters, while Neocalanus flemingeri was already dormant at depth. We observed a strong diel migration for Metridia pacifica, and a seasonal downward migration for Eucalanus bungii. Based on gut pigment analysis, ingestion rate of the copepod community was 214-375 mg C m -2 day -1, which was equal to 26-37% of the concurrent primary production. However, comparison of grazing estimated from gut pigments to calculated carbon demand of the copepod community indicates that phytoplankton comprised 37-59% of the ingested carbon. Thus, the copepod community appears to have also relied on detritus and microzooplankton for their nutrition, likely because primary production during this time was dominated by picophytoplankton too small to be grazed by these large copepods. Fecal pellet flux by the copepod community was estimated to account for 141-223% of the sedimentary particulate organic carbon (POC) flux at 150 m, suggesting considerable fragmentation and consumption of pellets in the upper layers. Fecal pellets alone were adequate to meet copepod carbon demand in the surface 0-150 m layer. Active carbon flux by diel migration of M. pacifica (respiration, egestion, and mortality) was 4-17 mg C m -2 day -1, equal to 6-44% of sedimentary POC flux at 150 m. Active carbon flux by N. flemingeri ontogenetic migration (i.e., respiration and mortality at depth) contributed 246 mg C m -2 year -1, equal to 9% of sedimentary POC flux at 1000 m. The

  2. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    NASA Astrophysics Data System (ADS)

    Brüggemann, N.; Gessler, A.; Kayler, Z.; Keel, S. G.; Badeck, F.; Barthel, M.; Boeckx, P.; Buchmann, N.; Brugnoli, E.; Esperschütz, J.; Gavrichkova, O.; Ghashghaie, J.; Gomez-Casanovas, N.; Keitel, C.; Knohl, A.; Kuptz, D.; Palacio, S.; Salmon, Y.; Uchida, Y.; Bahn, M.

    2011-04-01

    The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. The last part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as CO2 diffusion and dissolution processes within the

  3. The effect of management on forest carbon fluxes

    NASA Astrophysics Data System (ADS)

    Noormets, A.; McNulty, D.; Sun, G.; domec, J.; Gavazi, M.; King, J. S.

    2013-12-01

    Intensification of land use is often considered a primary factor leading to accelerated mineralization of soil carbon. This is particularly evident in agricultural lands, but is also suggested under less intensive management practices, including commercial forestry. If true, such an effect would offset efforts to manage ecosystems for carbon sequestration and climate change mitigation. Yet, recent studies of carbon cycling in managed forests have not found unequivocal evidence of greater respiratory activity compared to unmanaged ones, which is a major process determining carbon balance of ecosystems. In the current study, we evaluated both direct and indirect effects of management on respiratory carbon emissions. The preliminary results indicate minimal systematic effect on respiration rates, whereas the increased frequency of harvest disturbances resulting in more frequent post-disturbance spikes in heterotrophic respiration leads to greater net loss of soil C over time. In contrast, the higher productivity of managed forests results in greater mean net carbon uptake, which partially offsets the respiration losses. The cumulative long-term effect of forest management on ecosystem carbon balance depends on the net balance between productivity and respiration processes, and likely will be more responsive to the fate of harvested biomass than the direct and indirect effects on respiratory dynamics.

  4. Variability of Carbon and Water Fluxes Following Climate Extremes over a Tropical Forest in Southwestern Amazonia

    PubMed Central

    Zeri, Marcelo; Sá, Leonardo D. A.; Manzi, Antônio O.; Araújo, Alessandro C.; Aguiar, Renata G.; von Randow, Celso; Sampaio, Gilvan; Cardoso, Fernando L.; Nobre, Carlos A.

    2014-01-01

    The carbon and water cycles for a southwestern Amazonian forest site were investigated using the longest time series of fluxes of CO2 and water vapor ever reported for this site. The period from 2004 to 2010 included two severe droughts (2005 and 2010) and a flooding year (2009). The effects of such climate extremes were detected in annual sums of fluxes as well as in other components of the carbon and water cycles, such as gross primary production and water use efficiency. Gap-filling and flux-partitioning were applied in order to fill gaps due to missing data, and errors analysis made it possible to infer the uncertainty on the carbon balance. Overall, the site was found to have a net carbon uptake of ≈5 t C ha−1 year−1, but the effects of the drought of 2005 were still noticed in 2006, when the climate disturbance caused the site to become a net source of carbon to the atmosphere. Different regions of the Amazon forest might respond differently to climate extremes due to differences in dry season length, annual precipitation, species compositions, albedo and soil type. Longer time series of fluxes measured over several locations are required to better characterize the effects of climate anomalies on the carbon and water balances for the whole Amazon region. Such valuable datasets can also be used to calibrate biogeochemical models and infer on future scenarios of the Amazon forest carbon balance under the influence of climate change. PMID:24558378

  5. Variability of carbon and water fluxes following climate extremes over a tropical forest in southwestern Amazonia.

    PubMed

    Zeri, Marcelo; Sá, Leonardo D A; Manzi, Antônio O; Araújo, Alessandro C; Aguiar, Renata G; von Randow, Celso; Sampaio, Gilvan; Cardoso, Fernando L; Nobre, Carlos A

    2014-01-01

    The carbon and water cycles for a southwestern Amazonian forest site were investigated using the longest time series of fluxes of CO2 and water vapor ever reported for this site. The period from 2004 to 2010 included two severe droughts (2005 and 2010) and a flooding year (2009). The effects of such climate extremes were detected in annual sums of fluxes as well as in other components of the carbon and water cycles, such as gross primary production and water use efficiency. Gap-filling and flux-partitioning were applied in order to fill gaps due to missing data, and errors analysis made it possible to infer the uncertainty on the carbon balance. Overall, the site was found to have a net carbon uptake of ≈5 t C ha(-1) year(-1), but the effects of the drought of 2005 were still noticed in 2006, when the climate disturbance caused the site to become a net source of carbon to the atmosphere. Different regions of the Amazon forest might respond differently to climate extremes due to differences in dry season length, annual precipitation, species compositions, albedo and soil type. Longer time series of fluxes measured over several locations are required to better characterize the effects of climate anomalies on the carbon and water balances for the whole Amazon region. Such valuable datasets can also be used to calibrate biogeochemical models and infer on future scenarios of the Amazon forest carbon balance under the influence of climate change.

  6. Effects of Environmental Change on Carbon and Nitrogen Fluxes from a Midwestern Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Riha, K. M.; Michalski, G.; Filley, T. R.; Dalzell, B. J.

    2009-12-01

    Climate change is expected to change precipitation patterns, which would alter the runoff of excess carbon and nitrogen into the surrounding waterways. If agricultural areas experience an increase in precipitation, then coastal areas downstream from these areas could expect to develop hypoxic conditions that are more widespread, continual, and severe causing loss of biodiversity in the ocean and economical loss to fishing industries. In the Midwest, these waterways feed into local drinking water reservoirs increasing the nitrate concentration and could easily surpass the EPA maximum nitrate concentration of 10ppm. In order to evaluate the damage to the environment due to excess nitrogen, and the possible gains by its mitigation, requires a thorough assessment of the environmental controls on nitrogen and carbon fluxes. To understand the extent of nitrogen and carbon runoff from agricultural ecosystems we are studying an 850 km2 Midwestern United States agricultural watershed located in west central Indiana. Previous studies by Dalzell et. al. examined organic carbon export from this watershed as a function of stream flow and precipitation events and observed shifts in the amount and type of carbon with season. We are interested in the nitrate concentration and how it couples with the carbon fluxes. Anions (Cl-, NO3-, and SO42-) were analyzed for the samples that were collected in 2002 and 2003. A correlation was seen between storm events, fertilizer application, and the nitrate runoff; with the highest nitrate concentration seen in April 2002 with a storm event. Recent fertilizer application is believed to be the cause. Cations were analyzed (Ca2+, Na+, K+, Fe2+, Mn2+ and Mg2+) to qualitatively determine a relationship between DOC and nitrate and determine possible flowpaths. Relationships were seen with storm events and cation fluxes, with highest concentrations seen in April 2002 during a storm event and a dilution peak seen in May 2002 which is characteristic of

  7. Assessing the influence of historic net and gross land changes on the carbon fluxes of Europe.

    PubMed

    Fuchs, Richard; Schulp, Catharina J E; Hengeveld, Geerten M; Verburg, Peter H; Clevers, Jan G P W; Schelhaas, Mart-Jan; Herold, Martin

    2016-07-01

    Legacy effects of land cover/use on carbon fluxes require considering both present and past land cover/use change dynamics. To assess past land use dynamics, model-based reconstructions of historic land cover/use are needed. Most historic reconstructions consider only the net area difference between two time steps (net changes) instead of accounting for all area gains and losses (gross changes). Studies about the impact of gross and net land change accounting methods on the carbon balance are still lacking. In this study, we assessed historic changes in carbon in soils for five land cover/use types and of carbon in above-ground biomass of forests. The assessment focused on Europe for the period 1950 to 2010 with decadal time steps at 1-km spatial resolution using a bookkeeping approach. To assess the implications of gross land change data, we also used net land changes for comparison. Main contributors to carbon sequestration between 1950 and 2010 were afforestation and cropland abandonment leading to 14.6 PgC sequestered carbon (of which 7.6 PgC was in forest biomass). Sequestration was highest for old-growth forest areas. A sequestration dip was reached during the 1970s due to changes in forest management practices. Main contributors to carbon emissions were deforestation (1.7 PgC) and stable cropland areas on peaty soils (0.8 PgC). In total, net fluxes summed up to 203 TgC yr(-1) (98 TgC yr(-1) in forest biomass and 105 TgC yr(-1) in soils). For areas that were subject to land changes in both reconstructions (35% of total area), the differences in carbon fluxes were about 68%. Overall for Europe the difference between accounting for either gross or net land changes led to 7% difference (up to 11% per decade) in carbon fluxes with systematically higher fluxes for gross land change data.

  8. Estimation of Net Ecosystem Carbon Exchange for the Conterminous United States by Combining MODIS and AmeriFlux Data 1961

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the...

  9. Benthic foraminiferal stable isotope record of organic carbon fluxes during deposition of Mediterranean sapropel S1

    NASA Astrophysics Data System (ADS)

    Theodor, Marc; Schmiedl, Gerhard; Mackensen, Andreas

    2016-04-01

    We integrated Late Glacial to Holocene stable isotope records for different epi- and endobenthic foraminifera from the Mediterranean Sea in order to document the sequence of environmental changes across formation of the most recent sapropel S1. The stable carbon isotope record of epibenthic taxa corroborates results from model experiments indicating a Late Glacial onset of deep-water stagnation with short-term reventilation events during cold intervals of the Heinrich event 1, the Younger Dryas, and the 8.2 event. The stable carbon isotope difference between epi- and shallow endobenthic foraminifera exhibits marked temporal fluctuations linked to microhabitat shifts and changes in organic matter fluxes. We generated a transfer function for organic carbon fluxes based on a correlation between the stable carbon isotope signature of modern benthic foraminifera and observed organic carbon flux rates from different Mediterranean basins. Application of this transfer function to the down-core data reveals generally elevated organic matter fluxes during the Last Glacial Maximum and the Younger Dryas, while values drop significantly during the Bølling-Allerød interstadial and with onset of the Holocene. Our results support a scenario where average organic matter fluxes in the eastern Mediterranean Sea were not significantly enhanced during formation of sapropel S1. Instead, our data corroborate earlier results from benthic foraminiferal faunal successions and model experiments suggesting that sufficient amounts of organic matter are buried under oligotrophic conditions in an intermittently hypoxic water column.

  10. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River.

    PubMed

    Raymond, Peter A; Oh, Neung-Hwan; Turner, R Eugene; Broussard, Whitney

    2008-01-24

    The water and dissolved inorganic carbon exported by rivers are important net fluxes that connect terrestrial and oceanic water and carbon reservoirs. For most rivers, the majority of dissolved inorganic carbon is in the form of bicarbonate. The riverine bicarbonate flux originates mainly from the dissolution of rock minerals by soil water carbon dioxide, a process called chemical weathering, which controls the buffering capacity and mineral content of receiving streams and rivers. Here we introduce an unprecedented high-temporal-resolution, 100-year data set from the Mississippi River and couple it with sub-watershed and precipitation data to reveal that the large increase in bicarbonate flux that has occurred over the past 50 years (ref. 3) is clearly anthropogenically driven. We show that the increase in bicarbonate and water fluxes is caused mainly by an increase in discharge from agricultural watersheds that has not been balanced by a rise in precipitation, which is also relevant to nutrient and pesticide fluxes to the Gulf of Mexico. These findings demonstrate that alterations in chemical weathering are relevant to improving contemporary biogeochemical budgets. Furthermore, land use change and management were arguably more important than changes in climate and plant CO2 fertilization to increases in riverine water and carbon export from this large region over the past 50 years.

  11. Stream restoration and sewers impact sources and fluxes of water,carbon, and nutrients in urban watersheds

    EPA Science Inventory

    An improved understanding of sources and timing of water and nutrient fluxes associated with urban stream restoration is critical for guiding effective watershed management. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P)...

  12. Impact of hydrology on methane flux patterns in a permafrost-affected floodplain in Northeast Siberia

    NASA Astrophysics Data System (ADS)

    Kwon, Min Jung; Beulig, Felix; Kuesel, Kirsten; Wildner, Marcus; Heimann, Martin; Zimov, Nikita; Zimov, Sergei; Goeckede, Mathias

    2015-04-01

    A large fraction of organic carbon stored in Arctic permafrost soil is at risk to be decomposed and released to the atmosphere under climate change. Thawing of ice-rich permafrost will re-structure the surface topography, with potentially significant effects on hydrology: water table depth (WTD) of depressed areas will increase, while that of the surrounding area will decrease. Changes in hydrology will trigger modifications in soil and vegetation, e.g. soil temperature, vegetation and microbial community structure. All of these secondary effects will alter carbon cycle processes, with the magnitude and even sign of the net effect yet unknown. The objective of this study is to investigate effects of drainage on methane fluxes in a floodplain of the Kolyma River near Cherskii, Northeast Siberia. The study site is separated into two areas, one that has been drained since 2004, and a nearby reference site. Methane flux was measured for ~16 weeks during summer and early winter of 2013, and summer of 2014. In addition, to separate different methane emission pathways, plant-mediated methane transport (through aerenchyma) as well as the proportion of ebullition were measured in 2014. Vegetation and microbial community structures were investigated and compared. After a decade of drainage history that lowered WTD by about 20cm in the drained area, Eriophorum (cotton grass) that previously dominated have to a large part been replaced by Carex (tussock-forming sedge) and shrub species. While WTD primarily influenced the methane flux rate, this vegetation change indirectly altered the flux as well in a way that sites with Eriophorum emitted more methane. Concerning the microbial community structure, the relative abundance of methanogen and ratio of methanotrophs to methanogens were well correlated with methane flux rates, implying that the methane flux is highly influenced by microorganisms. As a consequence of these changes, in the drained area less amount of methane was

  13. Assessing and Synthesizing the Last Decade of Research on the Major Pools and Fluxes of the Carbon Cycle in the US and North America: An Interagency Governmental Perspective

    NASA Astrophysics Data System (ADS)

    Cavallaro, N.; Shrestha, G.; Stover, D. B.; Zhu, Z.; Ombres, E. H.; Deangelo, B.

    2015-12-01

    The 2nd State of the Carbon Cycle Report (SOCCR-2) is focused on US and North American carbon stocks and fluxes in managed and unmanaged systems, including relevant carbon management science perspectives and tools for supporting and informing decisions. SOCCR-2 is inspired by the US Carbon Cycle Science Plan (2011) which emphasizes global scale research on long-lived, carbon-based greenhouse gases, carbon dioxide and methane, and the major pools and fluxes of the global carbon cycle. Accordingly, the questions framing the Plan inform this report's topical roadmap, with a focus on US and North America in the global context: 1) How have natural processes and human actions affected the global carbon cycle on land, in the atmosphere, in the oceans and in the ecosystem interfaces (e.g. coastal, wetlands, urban-rural)? 2) How have socio-economic trends affected the levels of the primary carbon-containing gases, carbon dioxide and methane, in the atmosphere? 3) How have species, ecosystems, natural resources and human systems been impacted by increasing greenhouse gas concentrations, the associated changes in climate, and by carbon management decisions and practices? To address these aspects, SOCCR-2 will encompass the following broad assessment framework: 1) Carbon Cycle at Scales (Global Perspective, North American Perspective, US Perspective, Regional Perspective); 2) Role of carbon in systems (Soils; Water, Oceans, Vegetation; Terrestrial-aquatic Interfaces); 3) Interactions/Disturbance/Impacts from/on the carbon cycle. 4) Carbon Management Science Perspective and Decision Support (measurements, observations and monitoring for research and policy relevant decision-support etc.). In this presentation, the Carbon Cycle Interagency Working Group and the U.S. Global Change Research Program's U.S. Carbon Cycle Science Program Office will highlight the scientific context, strategy, structure, team and production process of the report, which is part of the USGCRP's Sustained

  14. Biogenic carbon fluxes from global agricultural production and consumption: Gridded, annual estimates of net ecosystem carbon exchange

    NASA Astrophysics Data System (ADS)

    Wolf, J.; West, T. O.; le Page, Y.; Thomson, A. M.

    2014-12-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate globally consistent bottom-up estimates for carbon monitoring and model input. We quantify agricultural carbon fluxes associated with annual (starting in 1961) crop net primary productivity (NPP), harvested biomass, and human and livestock consumption and emissions, with estimates of uncertainty, by applying region- and species-specific carbon parameters to annual crop, livestock, food and trade inventory data, and generate downscaled, gridded (0.05 degree resolution) representations of these fluxes. In 2011, global crop NPP was 5.25 ± 0.46 Pg carbon (excluding root exudates), of which 2.05 ± 0.051 Pg carbon was harvested as primary crops; an additional 0.54 Pg of crop residue carbon was collected for livestock fodder. In 2011, total livestock feed intake was 2.42 ± 0.21 Pg carbon, of which 2.31 ± 0.21 Pg carbon was emitted as carbon dioxide and 0.072 ± 0.005 Pg carbon was emitted as methane. We estimate that livestock grazed 1.18 Pg carbon from non-crop lands in 2011, representing 48.5 % of global total feed intake. In 2009, the latest available data year, we estimate global human food intake (excluding seafood and orchard fruits and nuts) at 0.52 ± 0.03 Pg carbon, with an additional 0.24 ± 0.01 Pg carbon of food supply chain losses. Trends in production and consumption of agricultural carbon between 1961 and recent years, such as increasing dominance of oilcrops and decreasing percent contribution of pasturage to total livestock feed intake, are discussed, and accounting of all agricultural carbon was done for the years 2005 and 2009. Gridded at 0.05 degree resolution, these quantities represent local uptake and release of agricultural biogenic carbon (e.g. biomass production and removal, residue and manure inputs to soils) and may be used with other gridded data to help estimate current and future changes in soil organic carbon.

  15. Carbon fluxes in an acid rain impacted boreal headwater catchment

    NASA Astrophysics Data System (ADS)

    Marx, Anne; Hintze, Simone; Jankovec, Jakub; Sanda, Martin; Dusek, Jaromir; Vogel, Tomas; van Geldern, Robert; Barth, Johannes A. C.

    2016-04-01

    Terrestrial carbon export via inland aquatic systems is a key process in the budget of the global carbon cycle. This includes loss of carbon to the atmosphere via gas evasion from rivers or reservoirs as well as carbon fixation in freshwater sediments. Headwater streams are the first endmembers of the transition of carbon between soils, groundwater and surface waters and the atmosphere. In order to quantify these processes the experimental catchment Uhlirska (1.78 km2) located in the northern Czech Republic was studied. Dissolved inorganic, dissolved organic and particulate organic carbon (DIC, DOC, POC) concentrations and isotopes were analyzed in ground-, soil -and stream waters between 2014 and 2015. In addition, carbon dioxide degassing was quantified via a stable isotope modelling approach. Results show a discharge-weighted total carbon export of 31.99 g C m-2 yr-1 of which CO2 degassing accounts 79 %. Carbon isotope ratios (δ13C) of DIC, DOC, and POC (in ‰ VPDB) ranged from -26.6 to -12.4 ‰ from -29.4 to -22.7 ‰ and from -30.6 to -26.6 ‰ respectively. The mean values for DIC are -21.8 ±3.8 ‰ -23.6 ±0.9 ‰ and -19.5 ±3.0 ‰ for soil, shallow ground and surface water compartments. For DOC, these compartments have mean values of -27.1 ±0.3 ‰ -27.0 ±0.8 ‰ and -27.4 ±0.7 ‰Ṁean POC value of shallow groundwaters and surface waters are -28.8 ±0.8 ‰ and -29.3 ±0.5 ‰ respectively. These isotope ranges indicate little turnover of organic material and predominant silicate weathering. The degassing of CO2 caused an enrichment of the δ13C-DIC values of up to 6.8 ‰ between a catchment gauge and the catchment outlet over a distance of 866 m. In addition, the Uhlirska catchment has only negligible natural sources of sulphate, yet SO42- accounts for 21 % of major stream water ions. This is most likely a remainder from acid rain impacts in the area.

  16. Sensitivities of marine carbon fluxes to ocean change

    PubMed Central

    Riebesell, Ulf; Körtzinger, Arne; Oschlies, Andreas

    2009-01-01

    Throughout Earth's history, the oceans have played a dominant role in the climate system through the storage and transport of heat and the exchange of water and climate-relevant gases with the atmosphere. The ocean's heat capacity is ≈1,000 times larger than that of the atmosphere, its content of reactive carbon more than 60 times larger. Through a variety of physical, chemical, and biological processes, the ocean acts as a driver of climate variability on time scales ranging from seasonal to interannual to decadal to glacial–interglacial. The same processes will also be involved in future responses of the ocean to global change. Here we assess the responses of the seawater carbonate system and of the ocean's physical and biological carbon pumps to (i) ocean warming and the associated changes in vertical mixing and overturning circulation, and (ii) ocean acidification and carbonation. Our analysis underscores that many of these responses have the potential for significant feedback to the climate system. Because several of the underlying processes are interlinked and nonlinear, the sign and magnitude of the ocean's carbon cycle feedback to climate change is yet unknown. Understanding these processes and their sensitivities to global change will be crucial to our ability to project future climate change. PMID:19995981

  17. Evaluations of carbon fluxes estimated by top-down and bottom-up approaches

    NASA Astrophysics Data System (ADS)

    Murakami, K.; Sasai, T.; Kato, S.; Hiraki, K.; Maksyutov, S. S.; Yokota, T.; Nasahara, K.; Matsunaga, T.

    2013-12-01

    There are two types of estimating carbon fluxes using satellite observation data, and these are referred to as top-down and bottom-up approaches. Many uncertainties are however still remain in these carbon flux estimations, because the true values of carbon flux are still unclear and estimations vary according to the type of the model (e.g. a transport model, a process based model) and input data. The CO2 fluxes in these approaches are estimated by using different satellite data such as the distribution of CO2 concentration in the top-down approach and the land cover information (e.g. leaf area, surface temperature) in the bottom-up approach. The satellite-based CO2 flux estimations with reduced uncertainty can be used efficiently for identifications of large emission area and carbon stocks of forest area. In this study, we evaluated the carbon flux estimates from two approaches by comparing with each other. The Greenhouse gases Observing SATellite (GOSAT) has been observing atmospheric CO2 concentrations since 2009. GOSAT L4A data product is the monthly CO2 flux estimations for 64 sub-continental regions and is estimated by using GOSAT FTS SWIR L2 XCO2 data and atmospheric tracer transport model. We used GOSAT L4A CO2 flux as top-down approach estimations and net ecosystem productions (NEP) estimated by the diagnostic type biosphere model BEAMS as bottom-up approach estimations. BEAMS NEP is only natural land CO2 flux, so we used GOSAT L4A CO2 flux after subtraction of anthropogenic CO2 emissions and oceanic CO2 flux. We compared with two approach in temperate north-east Asia region. This region is covered by grassland and crop land (about 60 %), forest (about 20 %) and bare ground (about 20 %). The temporal variation for one year period was indicated similar trends between two approaches. Furthermore we show the comparison of CO2 flux estimations in other sub-continental regions.

  18. The effect of induced anoxia and reoxygenation on benthic fluxes of organic carbon, phosphate, iron, and manganese.

    PubMed

    Skoog, Annelie C; Arias-Esquivel, Victor A

    2009-11-15

    Eutrophication causes seasonally anoxic bottom waters in coastal environments, but we lack information on effects of onset of anoxia and subsequent reoxygenation on benthic fluxes of redox-sensitive minerals and associated organic carbon (OC). As the first study, we determined the effect of inducing anoxia and subsequently restoring oxic conditions in mesocosms with surface sediment and water from a coastal environment. These concentration changes were compared with those in an oxygenated control. We determined water column concentrations of dissolved organic carbon (DOC), particulate organic carbon (POC), iron, manganese, and phosphate. Benthic fluxes of DOC, POC, and iron increased at the onset of anoxia in oxygen-depleted treatments. DOC and iron concentrations increased concomitantly towards maxima, which may have indicated reductive dissolution of FeOOH and release of associated OC. The subsequent concomitant concentration decreases may have been the result of coprecipitation of OC with iron-containing minerals. In contrast, the phosphate-concentration increase occurred several days after the onset of anoxia and the manganese concentration was not affected by the onset of anoxia. Restoring oxic conditions resulted in a decrease in DOC, POC, and phosphate concentrations, which may indicate coprecipitation of OC with phosphate-containing minerals. The high DOC fluxes at the onset of anoxia indicate that redox oscillations may be important in OC degradation. Further, our results indicate a close coupling between OC cycling and dissolution/precipitation of iron-containing minerals in intermittently anoxic sediments.

  19. Diurnal and seasonal variation of various carbon fluxes from an urban tower platform in Houston, TX

    NASA Astrophysics Data System (ADS)

    Schade, G. W.; Werner, N.; Hale, M. C.

    2013-12-01

    We measured carbon fluxes (CO2, CO, VOCs) from a tall lattice tower in Houston between 2007 and 2009, and 2011-2013. We present results from various analyses of (i) anthropogenic and biogenic CO2 fluxes using a quadrant segregation technique, (ii) seasonal and multi-year changes of CO fluxes as related to car traffic and industrial sources, and (iii) the accuracy of, and usefulness of a bulk flux footprint model to quantify pentane emissions form a distant source in comparison to permitted emission levels. Segregated and net anthropogenic CO2 fluxes were dominated by car traffic but industrial sources were identified as well. Emissions sank to minimal levels after hurricane Ike had passed over Houston, causing a traffic shutdown and lower population density. Segregated biogenic fluxes showed a clear seasonal variation with photosynthetic activity between April and November, and large effects of the 2011 Texas drought due to negligible irrigation in the study area. Carbon monoxide fluxes, measured via a flux gradient technique, are even stronger dominated by car traffic than CO2 fluxes and serve as a traffic tracer. Our data show a continued drop in emissions over time, seasonal changes with higher emissions during winter, and local influences due to industrial emissions. Lastly, we present the results of a tracer release study and a single point source quantification to test a bulk footprint model in this complex urban area. Known releases of volatile acetone and MEK were compered to measured fluxes using a REA-GC-FID system, and permit emissions of pentane from a foam plastics manufacturing facility were compared to measured pentane fluxes. Both comparisons reveal a surprisingly accurate performance of the footprint model within a factor of 2.

  20. Carbon and Nitrogen Provisions Alter the Metabolic Flux in Developing Soybean Embryos1[W][OA

    PubMed Central

    Allen, Doug K.; Young, Jamey D.

    2013-01-01

    Soybean (Glycine max) seeds store significant amounts of their biomass as protein, levels of which reflect the carbon and nitrogen received by the developing embryo. The relationship between carbon and nitrogen supply during filling and seed composition was examined through a series of embryo-culturing experiments. Three distinct ratios of carbon to nitrogen supply were further explored through metabolic flux analysis. Labeling experiments utilizing [U-13C5]glutamine, [U-13C4]asparagine, and [1,2-13C2]glucose were performed to assess embryo metabolism under altered feeding conditions and to create corresponding flux maps. Additionally, [U-14C12]sucrose, [U-14C6]glucose, [U-14C5]glutamine, and [U-14C4]asparagine were used to monitor differences in carbon allocation. The analyses revealed that: (1) protein concentration as a percentage of total soybean embryo biomass coincided with the carbon-to-nitrogen ratio; (2) altered nitrogen supply did not dramatically impact relative amino acid or storage protein subunit profiles; and (3) glutamine supply contributed 10% to 23% of the carbon for biomass production, including 9% to 19% of carbon to fatty acid biosynthesis and 32% to 46% of carbon to amino acids. Seed metabolism accommodated different levels of protein biosynthesis while maintaining a consistent rate of dry weight accumulation. Flux through ATP-citrate lyase, combined with malic enzyme activity, contributed significantly to acetyl-coenzyme A production. These fluxes changed with plastidic pyruvate kinase to maintain a supply of pyruvate for amino and fatty acids. The flux maps were independently validated by nitrogen balancing and highlight the robustness of primary metabolism. PMID:23314943

  1. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Tank, Suzanne E.; Striegl, Robert G.; McClelland, James W.; Kokelj, Steven V.

    2016-05-01

    Riverine exports of organic and inorganic carbon (OC, IC) to oceans are intricately linked to processes occurring on land. Across high latitudes, thawing permafrost, alteration of hydrologic flow paths, and changes in vegetation may all affect this flux, with subsequent implications for regional and global carbon (C) budgets. Using a unique, multi-decadal dataset of continuous discharge coupled with water chemistry measurements for the Mackenzie River, we show major increases in dissolved OC (DOC) and IC (as alkalinity) fluxes since the early 1970s, for a watershed that covers 1.8 M km2 of northwestern Canada, and provides substantial inputs of freshwater and biogeochemical constituents to the Arctic Ocean. Over a 39-year period of record, DOC flux at the Mackenzie mouth increased by 39.3% (44.5 ± 22.6 Gmol), while alkalinity flux increased by 12.5% (61.5 ± 60.1 Gmol). Isotopic analyses and substantial increases in sulfate flux indicate that increases in alkalinity are driven by accelerating sulfide oxidation, a process that liberates IC from rock and soils in the absence of CO2 consumption. Seasonal and sub-catchment trends suggest that permafrost thaw plays an important role in the observed increases in DOC and alkalinity: sub-catchment increases for all constituents are confined to northern, permafrost-affected regions, while observed increases in autumn to winter are consistent with documented landscape-scale changes that have resulted from changing thaw dynamics. This increase in DOC and sulfide-derived alkalinity represents a substantial intensification of land-to-ocean C mobilization, at a level that is significant within the regional C budget. The change we observe, for example, is similar to current and projected future rates of CO2 consumption by weathering in the Mackenzie basin.

  2. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean

    USGS Publications Warehouse

    Tank, Suzanne E.; Striegl, Robert G.; McClelland, James W.; Kokelj, Steven V.

    2016-01-01

    Riverine exports of organic and inorganic carbon (OC, IC) to oceans are intricately linked to processes occurring on land. Across high latitudes, thawing permafrost, alteration of hydrologic flow paths, and changes in vegetation may all affect this flux, with subsequent implications for regional and global carbon (C) budgets. Using a unique, multi-decadal dataset of continuous discharge coupled with water chemistry measurements for the Mackenzie River, we show major increases in dissolved OC (DOC) and IC (as alkalinity) fluxes since the early 1970s, for a watershed that covers 1.8 M km2 of northwestern Canada, and provides substantial inputs of freshwater and biogeochemical constituents to the Arctic Ocean. Over a 39-year period of record, DOC flux at the Mackenzie mouth increased by 39.3% (44.5 ± 22.6 Gmol), while alkalinity flux increased by 12.5% (61.5 ± 60.1 Gmol). Isotopic analyses and substantial increases in sulfate flux indicate that increases in alkalinity are driven by accelerating sulfide oxidation, a process that liberates IC from rock and soils in the absence of CO2 consumption. Seasonal and sub-catchment trends suggest that permafrost thaw plays an important role in the observed increases in DOC and alkalinity: sub-catchment increases for all constituents are confined to northern, permafrost-affected regions, while observed increases in autumn to winter are consistent with documented landscape-scale changes that have resulted from changing thaw dynamics. This increase in DOC and sulfide-derived alkalinity represents a substantial intensification of land-to-ocean C mobilization, at a level that is significant within the regional C budget. The change we observe, for example, is similar to current and projected future rates of CO2 consumption by weathering in the Mackenzie basin.

  3. Estimating carbon fluxes on small rotationally grazed pastures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Satellite-based Normalized Difference Vegetation Index (NDVI) data have been extensively used for estimating gross primary productivity (GPP) and yield of grazing lands throughout the world. Large-scale estimates of GPP are a necessary component of efforts to monitor the soil carbon balance of grazi...

  4. Warmer Boreal Forest Organic Soil Horizons are Associated with Larger Fluxes of Dissolved Organic Carbon than their Cooler Climate Counterparts.

    NASA Astrophysics Data System (ADS)

    Bowering, K.; Edwards, K. A.; Ziegler, S. E.

    2015-12-01

    Boreal forest soils are characterized by large stocks of carbon associated with relatively slow decomposition and deep organic horizons. Dissolved organic carbon (DOC) loss from organic soil horizons occurs through hydrologically-mediated leaching processes, and contributes to downstream carbon both in deeper mineral soils and also in connected aquatic systems. However, the amount of DOC that leaves organic horizons and the environmental controls on this flux are poorly understood and are likely to be affected by climate changes. We sampled zero-tension lysimeters along 3 forested sites of a boreal climate transect to estimate DOC export from organic soil horizons of mesic boreal podzols (spodosols), and to investigate the climatic drivers of this flux. The sites are part of the Newfoundland and Labrador Boreal Ecosystems Latitudinal Transect (NL-BELT) and span approximately 5°C in mean annual temperature. Lysimeters were sampled over 4 years and DOC flux was calculated for each seasonal period (summer, fall, and winter) of each year. DOC flux was greatest in the warmest site (114 mg C day-1 m-2), with the two cooler sites having lower flux rates (40 and 36 mg C day-1 m-2 in the intermediate and coolest sites respectively). Seasonal variation was most pronounced in the warmest site where more DOC exited the organic soil horizons during fall than during summer or winter. DOC flux was correlated with the volume of soil solution collected in the lysimeters (R2 = .46), however the larger sample volumes collected in the warmest climate do not reflect greater overall precipitation. During the 4-year period of this study, similar amounts of precipitation were recorded in all regions, and the number of days with >10mm precipitation did not differ. The greater DOC flux in the warmer climate site may be due to higher rates of both litterfall and decomposition, contributing to increased labile DOC sources in the warmer climate. Analyses of the carbon quality of these samples

  5. Alaska ecosystem carbon fluxes estimated from MODIS satellite data inputs from 2000 to 2010

    PubMed Central

    2013-01-01

    Background Trends in Alaska ecosystem carbon fluxes were predicted from inputs of monthly MODerate resolution Imaging Spectroradiometer (MODIS) vegetation index time-series combined with the NASA-CASA (Carnegie Ames Stanford Approach) carbon cycle simulation model over the past decade. CASA simulates monthly net ecosystem production (NEP) as the difference in carbon fluxes between net primary production (NPP) and soil microbial respiration (Rh). Results Model results showed that NEP on a unit area basis was estimated to be highest (> +10 g C m-2 yr-1) on average over the period 2000 to 2010 within the Major Land Resource Areas (MRLAs) of the Interior Brooks Range Mountains, the Arctic Foothills, and the Western Brooks Range Mountains. The lowest (as negative land C source fluxes) mean NEP fluxes were predicted for the MLRAs of the Cook Inlet Lowlands, the Ahklun Mountains, and Bristol Bay-Northern Alaska Peninsula Lowlands. High levels of interannual variation in NEP were predicted for most MLRAs of Alaska. Conclusions The relatively warm and wet years of 2004 and 2007 resulted in the highest positive NEP flux totals across MLRAs in the northern and western coastal locations in the state (i.e., the Brooks Range Mountains and Arctic Foothills). The relatively cold and dry years of 2001 and 2006 were predicted with the lowest (negative) NEP flux totals for these MLRAs, and likewise across the Ahklun Mountains and the Yukon-Kuskokwim Highlands. PMID:24261829

  6. Benthic Primary Production in a Saltmarsh Pond: Insights from Fluxes of Dissolved Inorganic Carbon and Oxygen

    NASA Astrophysics Data System (ADS)

    Karolewski, J. S.; Stanley, R. H.; Howard, E. M.; Spivak, A. C.

    2014-12-01

    Salt marshes are important carbon sinks that exist at continental margins and act as mediators in the exchange of nutrients and carbon between terrestrial and marine environments. Within salt marshes, 10-20% of total surface area is covered by marshtop ponds. The fractional area of marshtop ponds is predicted to increase as sea level rises. Despite their potential importance, the balance between autotrophic and heterotrophic processes within such ponds remain poorly understood. To quantify the balance of metabolic fluxes within salt marsh ponds, chemical fluxes of dissolved inorganic carbon (DIC) and dissolved oxygen (DO) were measured in July, 2014 in benthic flux chambers inserted into a salt marsh pond in the Plum Island Estuary Long-Term Ecosystem Research (PIE-LTER) site. Light and dark chambers were used to enable separation of rates of photosynthesis and respiration. Separate chambers were used to enclose sediment covered by primarily benthic microalgae and primarily benthic macroalgae. Net ecosystem metabolism in the microalgae was ~10 and in the macroalgae ~15 mmol C/m2/hour. Respiration rates were ~10 mmol C/m2/ hour for both microalgae and macroalgae. The resulting fluxes of net ecosystem production in the ponds will be compared with overall marsh net ecosystem flux as measured by an eddy flux tower that was located 100 meters from the pond. Additionally, concurrent measurements of DIC and DO allow quantification of the C:O ratio during respiration (i.e. respiratory quotient) in this system.

  7. Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms

    NASA Astrophysics Data System (ADS)

    Thaysen, E. M.; Jacques, D.; Jessen, S.; Andersen, C. E.; Laloy, E.; Ambus, P.; Postma, D.; Jakobsen, I.

    2014-03-01

    The efflux of carbon dioxide (CO2) from soils influences atmospheric CO2 concentrations and thereby climate change. The partitioning of inorganic carbon fluxes in the vadose zone between emission to the atmosphere and to the groundwater was investigated. Carbon dioxide partial pressure in the soil gas (pCO2), alkalinity, soil moisture and temperature were measured over depth and time in unplanted and planted (barley) mesocosms. The dissolved inorganic carbon (DIC) percolation flux was calculated from the pCO2, alkalinity and the water flux at the mesocosm bottom. Carbon dioxide exchange between the soil surface and the atmosphere was measured at regular intervals. The soil diffusivity was determined from soil radon-222 (222Rn) emanation rates and soil air Rn concentration profiles, and was used in conjunction with measured pCO2 gradients to calculate the soil CO2 production. Carbon dioxide fluxes were modelled using the HP1 module of the Hydrus 1-D software. The average CO2 effluxes to the atmosphere from unplanted and planted mesocosm ecosystems during 78 days of experiment were 0.1 ± 0.07 and 4.9 ± 0.07 μmol carbon (C) m-2 s-1, respectively, and largely exceeded the corresponding DIC percolation fluxes of 0.01 ± 0.004 and 0.06 ± 0.03 μmol C m-2 s-1. Post-harvest soil respiration (Rs) was only 10% of the Rs during plant growth, while the post-harvest DIC percolation flux was more than one third of the flux during growth. The Rs was controlled by production and diffusivity of CO2 in the soil. The DIC percolation flux was largely controlled by the pCO2 and the drainage flux due to low solution pH. Plant biomass and soil pCO2 were high in the mesocosms as compared to a standard field situation. Our results indicate no change of the cropland C balance under elevated atmospheric CO2 in a warmer future climate, in which plant biomass and soil pCO2 are expected to increase.

  8. Equilibrium analysis of carbon pools and fluxes of forest biomes in the former Soviet Union

    SciTech Connect

    Kolchugina, T.P.; Vinson, T.S.

    1993-01-01

    Forests are an important component of the biosphere and sequestration of carbon in boreal forests may represent one of the few realistic alternatives to ameliorate changes in atmospheric chemistry. The former Soviet Union has the greatest expanse of boreal forests in the world; however, the role of these forests in the terrestrial carbon cycle is not fully understood because the carbon budget of the Soviet forest sector has not been established. In recognition of the need to determine the role of these forests in the global carbon cycle, the carbon budget of forest biomes in the former Soviet Union was assessed based on an equilibrium analysis of carbon cycle pools and fluxes. Net primary productivity was used to identify the rate of carbon turnover in the forest biomes.

  9. A comparison of six methods for measuring soil-surface carbon dioxide fluxes

    USGS Publications Warehouse

    Norman, J.M.; Kucharik, C.J.; Gower, S.T.; Baldocchi, D.D.; Crill, P.M.; Rayment, M.; Savage, K.; Striegl, R.G.

    1997-01-01

    Measurements of soil-surface CO2 fluxes are important for characterizing the carbon budget of boreal forests because these fluxes can be the second largest component of the budget. Several methods for measuring soil-surface CO2 fluxes are available: (1) closed-dynamic-chamber systems, (2) closed-static-chamber systems, (3) open-chamber systems, and (4) eddy covariance systems. This paper presents a field comparison of six individual systems for measuring soil-surface CO2 fluxes with each of the four basic system types represented. A single system is used as a reference and compared to each of the other systems individually in black spruce (Picea mariana), jack pine (Pinus banksiana), or aspen (Populus tremuloides) forests. Fluxes vary from 1 to 10 ??mol CO2 m-2 s-1. Adjustment factors to bring all of the systems into agreement vary from 0.93 to 1.45 with an uncertainty of about 10-15%.

  10. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    USGS Publications Warehouse

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  11. Scale of Carbon Nanomaterials Affects Neural Outgrowth and Adhesion

    PubMed Central

    Franca, Eric; Jao, PitFee; Fang, Sheng-Po; Alagapan, Sankaraleengam; Pan, Liangbin; Yoon, Jung Hae; Yoon, Yong-Kyu ‘YK’

    2016-01-01

    Carbon nanomaterials have become increasingly popular microelectrode materials for neuroscience applications. Here we study how the scale of carbon nanotubes and carbon nanofibers affect neural viability, outgrowth, and adhesion. Carbon nanotubes were deposited on glass coverslips via a layer-by-layer method with polyethylenimine (PEI). Carbonized nanofibers were fabricated by electrospinning SU-8 and pyrolyzing the nanofiber depositions. Additional substrates tested were carbonized and SU-8 thin films and SU-8 nanofibers. Surfaces were O2-plasma treated, coated with varying concentrations of PEI, seeded with E18 rat cortical cells, and examined at 3, 4, and 7 days in vitro (DIV). Neural adhesion was examined at 4 DIV utilizing a parallel plate flow chamber. At 3 DIV, neural viability was lower on the nanofiber and thin film depositions treated with higher PEI concentrations which corresponded with significantly higher zeta potentials (surface charge); this significance was drastically higher on the nanofibers suggesting that the nanostructure may collect more PEI molecules, causing increased toxicity. At 7 DIV, significantly higher neurite outgrowth was observed on SU-8 nanofiber substrates with nanofibers a significant fraction of a neuron’s size. No differences were detected for carbonized nanofibers or carbon nanotubes. Both carbonized and SU-8 nanofibers had significantly higher cellular adhesion post-flow in comparison to controls whereas the carbon nanotubes were statistically similar to control substrates. These data suggest a neural cell preference for larger-scale nanomaterials with specific surface treatments. These characteristics could be taken advantage of in the future design and fabrication of neural microelectrodes. PMID:26829799

  12. Carbon cycling in the upper waters of the Sargasso Sea: I. Numerical simulation of differential carbon and nitrogen fluxes

    NASA Astrophysics Data System (ADS)

    Bissett, W. P.; Walsh, J. J.; Dieterle, D. A.; Carder, K. L.

    1999-02-01

    A complex ecosystem model is developed for the area around Bermuda in the Sargasso Sea. The model is physically driven by seasonal changes in spectral light, temperature, and water column mixing. Autotrophic growth is represented by four functional groups of phytoplankton. The groups have light and nutrient utilization characteristics that reflect those of Prochlorococcus, Synechococcus and Chromophycota species. The model includes differential carbon and nitrogen cycling, nitrification, and nitrogen fixation to effect realistic allochthonous and autochthonous nutrient sources to the euphotic zone. This simulation yields realistic seasonal and vertical (1) succession of phytoplankton functional groups' biomass, productivity, and pigments; (2) profiles of dissolved inorganic carbon, nitrate, and ammonium; and (3) fluxes of carbon dioxide at the air-sea boundary and particulate carbon and nitrogen settling losses, when compared to the JGOFS BATS site. The addition of local nitrification, differential carbon and nitrogen remineralization, and nitrogen fixation removes the need for an unrealistically high upward vertical flux of nitrate to mimic the productivity and chlorophyll a stocks. The explicit numerical description of carbon and nitrogen utilization by heterotrophic bacteria simulated a population that was not nitrogen-limited in these waters. Instead, the heterotrophic bacteria community was limited by energy resources in the form of DOC, and was a nitrogen source for the autotrophic community through the excretion of excess NH 4 from the labile DOM energy source. Numerical descriptions of ecosystems based solely on nitrogen dynamics, or fixed carbon to nitrogen ratios, may yield an inaccurate prediction of carbon and nitrogen fluxes, and fail to properly predict the carbon cycle.

  13. Using Airborne Microwave Remotely Sensed Root-Zone Soil Moisture and Flux Measurements to Improve Regional Predictions of Carbon Fluxes in a Terrestrial Biosphere Model

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Antonarakis, A. S.; Medvigy, D.; Burgin, M. S.; Crow, W. T.; Milak, S.; Jaruwatanadilok, S.; Truong-Loi, M.; Moghaddam, M.; Saatchi, S. S.; Cuenca, R. H.; Moorcroft, P. R.

    2013-12-01

    North American ecosystems are critical components of the global carbon cycle, exchanging large amounts of carbon dioxide and other gases with the atmosphere. Net ecosystem exchange (NEE) of CO2 between atmosphere and ecosystems quantifies these carbon fluxes, but current continental-scale estimates contain high levels of uncertainty. Root-zone soil moisture (RZSM) and its spatial and temporal heterogeneity influences NEE and improved estimates can help reduce uncertainty in NEE estimates. We used the RZSM measurements from the Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission, and the carbon, water and energy fluxes observed by the eddy-covariance flux towers to constrain the Ecosystem Demography Model 2.2 (ED2.2) to improve its predictions of carbon fluxes. The parameters of the ED2.2 model were first optimized at seven flux tower sites in North America, which represent six different biomes, by constraining the model against a suite of flux measurements and forest inventory measurements through a Bayesian Markov-Chain Monte Carlo framework. We further applied the AirMOSS RZSM products to constrain the ED2.2 model to achieve better estimates of regional NEE. Evaluation against flux tower measurements and forest dynamics measurements shows that the constrained ED2.2 model produces improved predictions of monthly to annual carbon fluxes. The remote sensing based RZSM can further help improve the spatial patterns and temporal variations of model NEE. The results demonstrate that model-data fusion can substantially improve model performance and highlight the important role of RZSM in regulating the spatial and temporal heterogeneities of carbon fluxes.

  14. Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms

    NASA Astrophysics Data System (ADS)

    Thaysen, E. M.; Jacques, D.; Jessen, S.; Andersen, C. E.; Laloy, E.; Ambus, P.; Postma, D.; Jakobsen, I.

    2014-12-01

    The efflux of carbon dioxide (CO2) from soils influences atmospheric CO2 concentrations and thereby climate change. The partitioning of inorganic carbon (C) fluxes in the vadose zone between emission to the atmosphere and to the groundwater was investigated to reveal controlling underlying mechanisms. Carbon dioxide partial pressure in the soil gas (pCO2), alkalinity, soil moisture and temperature were measured over depth and time in unplanted and planted (barley) mesocosms. The dissolved inorganic carbon (DIC) percolation flux was calculated from the pCO2, alkalinity and the water flux at the mesocosm bottom. Carbon dioxide exchange between the soil surface and the atmosphere was measured at regular intervals. The soil diffusivity was determined from soil radon-222 (222Rn) emanation rates and soil air Rn concentration profiles and was used in conjunction with measured pCO2 gradients to calculate the soil CO2 production. Carbon dioxide fluxes were modeled using the HP1 module of the Hydrus 1-D software. The average CO2 effluxes to the atmosphere from unplanted and planted mesocosm ecosystems during 78 days of experiment were 0.1 ± 0.07 and 4.9 ± 0.07 μmol C m-2 s-1, respectively, and grossly exceeded the corresponding DIC percolation fluxes of 0.01 ± 0.004 and 0.06 ± 0.03 μmol C m-2 s-1. Plant biomass was high in the mesocosms as compared to a standard field situation. Post-harvest soil respiration (Rs) was only 10% of the Rs during plant growth, while the post-harvest DIC percolation flux was more than one-third of the flux during growth. The Rs was controlled by production and diffusivity of CO2 in the soil. The DIC percolation flux was largely controlled by the pCO2 and the drainage flux due to low solution pH. Modeling suggested that increasing soil alkalinity during plant growth was due to nutrient buffering during root nitrate uptake.

  15. Methane and Carbon Dioxide Fluxes from Stems, Soils, and Coarse Woody Debris in a Temperate Forest

    NASA Astrophysics Data System (ADS)

    Warner, D. L.; Villarreal, S.; McWilliams, K.; Inamdar, S. P.; Vargas, R.

    2015-12-01

    Quantifying the magnitude and variability of greenhouse gas fluxes from different terrestrial carbon pools is necessary for enhancing understanding of terrestrial carbon cycling. While much more is known about variability CO2 fluxes, we have little information on how CH4 fluxes vary across multiple carbon pools within terrestrial ecosystems. We measured fluxes of CH4 and CO2 from living tree stems, soils, and coarse woody debris within a temperate forested watershed during the growing season (May-November). Fluxes of both CH4 and CO2 were significantly different among carbon pools. Living tree stems were weak sources of both CH4 and CO2 with seasonal means (± 1 SD) of 0.08 ± 0.19 nmol CH4 m-2 s-1 and 1.16 ± 1.21 μmol CO2 m-2 s-1. Soils were sinks of CH4 and sources of CO2 with seasonal means (± 1 SD) of -2.00 ± 1.41 nmol CH4 m-2 s-1 and 3.07 ± 2.10 μmol CO2 m-2 s-1. Fluxes of CH4 and CO2 from coarse woody debris were largely variable relative to the other pools with seasonal means (± 1 SD) of -0.21 ± 0.76 nmol CH4 m-2 s-1 and 2.61 ± 2.50 μmol CO2m-2 s-1. Gas fluxes varied significantly (p < 0.05) between sampling sites for both living stems and coarse woody debris, but not for soils. For living stems, this variability was explained by differences in tree species, where N. sylvatica had largest seasonal mean flux of CH4 and L. tulipifera had the largest seasonal mean flux of CO2. For woody debris sites, the variability was explained wood density, with dense, fresh wood acting as CH4 sources, and less dense, decayed wood acting as CH4 sinks. Our results show homogeneity in soil CH4 and CO2 fluxes, but a large heterogeneity in fluxes from tree stems and coarse woody debris. These results provide insights on how forest management strategies could influence greenhouse gas emissions from forested watersheds.

  16. Effects of two abiotic factors and their interaction on Soil Carbon Dioxide flux

    NASA Astrophysics Data System (ADS)

    Novara, Agata; Armstrong, Alona; Gristina, Luciano; Quinton, John

    2010-05-01

    Soils release more carbon per annum than current global anthropogenic emissions (Luo and Zhou, 2006). Soils emit carbon dioxide through mineralization and decomposition of organic matter and respiration of roots and soil organism (Houghton 2007) Evaluation of the effects of abiotic factors on microbial activity is of major importance in the context of mitigation greenhouse gases emissions. One of the key greenhouse gases is carbon dioxide (CO2) and previous studies demonstrate that soil CO2 emission is significantly affected by temperature and soil water content. There are a limited number of studies that examine the impact of bulk density and soil surface characteristics as a result of exposure to rain on CO2 emission, however, none examine their relative importance. Therefore, this study investigated the effects of soil compaction and exposure of the soil surface to rainfall and their interaction on CO2 release. We conducted a factorial soil core experiment with three different bulk densities (1.1 g cm-3, 1.3 g cm-3, 1.5 g cm-3) and three difference exposures to rainfall (no rain, 30 minutes and 90 minutes of rainfall). Water was poured on to the cores not exposed to rain and those exposed for 30 minutes through a gauze to ensure all cores received the same volume of water. Immediately the rainfall treatments the soil cores were incubated and soil CO2 efflux and water content were measured 1, 2, 5, 6, 9, and 10 days after the start of the incubation. The results indicate soil CO2 emissions and rate changes significantly through time and with different bulk densities and rain exposures. The relationship between rain exposure and CO2 is positive: CO2 emission was 53% and 42% greater for the 90 min and 30 min rainfall exposure, respectively, compared to those not exposed to rain. Bulk density exhibited a negative relationship with CO2 emission: soil compacted to a bulk density of 1.1 g cm-3 emitted 32% more CO2 than soil compacted to 1.5 g cm-3. Furthermore we found

  17. Characteristics of medium carbon steel solidification and mold flux crystallization using the multi-mold simulator

    NASA Astrophysics Data System (ADS)

    Park, Jun-Yong; Ko, Eun-yi; Choi, Joo; Sohn, Il

    2014-11-01

    An oscillating multi-mold simulator with embedded thermocouples was used to study the initial solidification of medium carbon steels and crystallization characteristics of the mold flux. Casting speed variations in the simulator from 0.7 m/min to 1.4 m/min at fixed oscillation frequency and stroke resulted in higher copper mold temperatures. Frequency modifications from 2.5 Hz to 5.0 Hz and stroke changes from 8.1 mm to 5.4 mm at fixed casting speeds also resulted in higher copper mold temperatures. Surface profile analysis of as-cast steel strips showed characteristic oscillation marks comparable to the narrow faces of the industrial cast slabs. The apparent effect of casting variables on the temperature and surface profiles during the solidification of the medium carbon steels could be correlated to the variations in the negative strip time and subsequent changes in the extent of mold flux infiltration. Back scattered scanning electron microscope analysis of the full length of the retrieved flux film after casting showed cuspidine crystallization ratio that increased from the upper to lower portion of the flux film. This dynamic crystallization and growth of the cuspidine phase increases as the flux is sustained at high temperatures for longer periods. Additional experiments with industrial fluxes designed for soft cooling of medium carbon steel grades showed comparable infiltration thickness of the flux, but the crystallization characteristics were significantly different, which could have a significant impact on the heat transfer rate and mechanism through the flux film.

  18. Carbon, Water Vapor, and Energy Fluxes of Grazed and Ungrazed Tallgrass Prairie

    NASA Astrophysics Data System (ADS)

    Owensby, C. E.; Ham, J. M.; Auen, L. M.

    2004-12-01

    To determine the impact of seasonal steer grazing on annual CO2 fluxes of annually-burned native tallgrass prairie, we used conditional sampling (relaxed eddy accumulation) on adjacent pastures of grazed (GR) and ungrazed (UG) tallgrass prairie from 1998 to 2001 and eddy correlation from 2002 to 2004. Fluxes of CO2 were measured almost continuously (24 hr) from immediately following burning through the burn date the following year (365 d). Aboveground biomass and leaf area were determined by clipping biweekly during the growing season. Carbon lost due to burning was estimated by clipping immediately prior to burning and collecting residual surface carbon after the burn. Soil CO2 flux was measured biweekly at midday each year using portable chambers from 1998 to 2002 and diurnally by large autochambers from 2002 to 2004. Steers were stocked at twice the normal season-long stocking rate (0.81 ha steer-1) for the first half of the grazing season (~May 1 to July 15) and the area left ungrazed the remainder of the year. That system of grazing is termed "intensive early stocking" and is commonly used throughout the Kansas Flint Hills. During the early growing season, grazing reduced net carbon exchange relative to the reduction in green leaf area, but as the growing season progressed on the grazed area, regrowth produced younger leaves that had an apparent higher photosynthetic efficiency. Despite a substantially greater green leaf area on the ungrazed area, greater positive net carbon flux occurred on the grazed area during the late season. Nighttime carbon losses were greater on the ungrazed area in the early season, but were greater on the grazed area late in the season. During the peak growth period, an amount equivalent to ~80% of the carbon fixed on a clear day was lost each day through soil CO2 flux and plant respiration. Soil CO2 flux followed a definite diurnal pattern during the growing season with daytime fluxes twice that of nighttime. During the dormant

  19. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest

    USGS Publications Warehouse

    Harden, J.W.; O'Neill, K. P.; Trumbore, S.E.; Veldhuis, H.; Stocks, B.J.

    1997-01-01

    We used input and decomposition data from 14C studies of soils to determine rates of vertical accumulation of moss combined with carbon storage inventories on a sequence of burns to model how carbon accumulates in soils and moss after a stand-killing fire. We used soil drainage - moss associations and soil drainage maps of the old black spruce (OBS) site at the BOREAS northern study area (NSA) to areally weight the contributions of each moderately well drained, feathermoss areas; poorly drained sphagnum - feathermoss areas; and very poorly drained brown moss areas to the carbon storage and flux at the OBS NSA site. On this very old (117 years) complex of black spruce, sphagnum bog veneer, and fen systems we conclude that these systems are likely sequestering 0.01-0.03 kg C m-2 yr-' at OBS-NSA today. Soil drainage in boreal forests near Thompson, Manitoba, controls carbon storage and flux by controlling moss input and decomposition rates and by controlling through fire the amount and quality of carbon left after burning. On poorly drained soils rich in sphagnum moss, net accumulation and long-term storage of carbon is higher than on better drained soils colonized by feathermosses. The carbon flux of these contrasting ecosystems is best characterized by soil drainage class and stand age, where stands recently burned are net sources of CO2, and maturing stands become increasingly stronger sinks of atmospheric CO2. This approach to measuring carbon storage and flux presents a method of scaling to larger areas using soil drainage, moss cover, and stand age information.

  20. Carbon flux from plants to soil microbes is highly sensitive to nitrogen addition and biochar amendment

    NASA Astrophysics Data System (ADS)

    Kaiser, C.; Solaiman, Z. M.; Kilburn, M. R.; Clode, P. L.; Fuchslueger, L.; Koranda, M.; Murphy, D. V.

    2012-04-01

    The release of carbon through plant roots to the soil has been recognized as a governing factor for soil microbial community composition and decomposition processes, constituting an important control for ecosystem biogeochemical cycles. Moreover, there is increasing awareness that the flux of recently assimilated carbon from plants to the soil may regulate ecosystem response to environmental change, as the rate of the plant-soil carbon transfer will likely be affected by increased plant C assimilation caused by increasing atmospheric CO2 levels. What has received less attention so far is how sensitive the plant-soil C transfer would be to possible regulations coming from belowground, such as soil N addition or microbial community changes resulting from anthropogenic inputs such as biochar amendments. In this study we investigated the size, rate and sensitivity of the transfer of recently assimilated plant C through the root-soil-mycorrhiza-microbial continuum. Wheat plants associated with arbuscular mycorrhizal fungi were grown in split-boxes which were filled either with soil or a soil-biochar mixture. Each split-box consisted of two compartments separated by a membrane which was penetrable for mycorrhizal hyphae but not for roots. Wheat plants were only grown in one compartment while the other compartment served as an extended soil volume which was only accessible by mycorrhizal hyphae associated with the plant roots. After plants were grown for four weeks we used a double-labeling approach with 13C and 15N in order to investigate interactions between C and N flows in the plant-soil-microorganism system. Plants were subjected to an enriched 13CO2 atmosphere for 8 hours during which 15NH4 was added to a subset of split-boxes to either the root-containing or the root-free compartment. Both, 13C and 15N fluxes through the plant-soil continuum were monitored over 24 hours by stable isotope methods (13C phospho-lipid fatty acids by GC-IRMS, 15N/13C in bulk plant

  1. Drought impact on forest carbon dynamics and fluxes in Amazonia

    NASA Astrophysics Data System (ADS)

    Doughty, C.

    2015-12-01

    In 2005 and 2010 the Amazon basin experienced two strong droughts1, driven by shifts in the tropical hydrological regime2 possibly associated with global climate change3, as predicted by some global models3. Tree mortality increased after the 2005 drought4, and regional atmospheric inversion modelling showed basin-wide decreases in CO2 uptake in 2010 compared with 2011 (ref. 5). But the response of tropical forest carbon cycling to these droughts is not fully understood and there has been no detailed multi-site investigation in situ. Here we use several years of data from a network of thirteen 1-ha forest plots spread throughout South America, where each component of net primary production (NPP), autotrophic respiration and heterotrophic respiration is measured separately, to develop a better mechanistic understanding of the impact of the 2010 drought on the Amazon forest. We find that total NPP remained constant throughout the drought. However, towards the end of the drought, autotrophic respiration, especially in roots and stems, declined significantly compared with measurements in 2009 made in the absence of drought, with extended decreases in autotrophic respiration in the three driest plots. In the year after the drought, total NPP remained constant but the allocation of carbon shifted towards canopy NPP and away from fine-root NPP. Both leaf-level and plot-level measurements indicate that severe drought suppresses photosynthesis. Scaling these measurements to the entire Amazon basin with rainfall data, we estimate that drought suppressed Amazon-wide photosynthesis in 2010 by 0.38 petagrams of carbon (0.23-0.53 petagrams of carbon). Overall, we find that during this drought, instead of reducing total NPP, trees prioritized growth by reducing autotrophic respiration that was unrelated to growth. This suggests that trees decrease investment in tissue maintenance and defence, in line with eco-evolutionary theories that trees are competitively disadvantaged in the

  2. Drought impact on forest carbon dynamics and fluxes in Amazonia

    NASA Astrophysics Data System (ADS)

    Doughty, Christopher E.; Metcalfe, D. B.; Girardin, C. A. J.; Amézquita, F. Farfán; Cabrera, D. Galiano; Huasco, W. Huaraca; Silva-Espejo, J. E.; Araujo-Murakami, A.; da Costa, M. C.; Rocha, W.; Feldpausch, T. R.; Mendoza, A. L. M.; da Costa, A. C. L.; Meir, P.; Phillips, O. L.; Malhi, Y.

    2015-03-01

    In 2005 and 2010 the Amazon basin experienced two strong droughts, driven by shifts in the tropical hydrological regime possibly associated with global climate change, as predicted by some global models. Tree mortality increased after the 2005 drought, and regional atmospheric inversion modelling showed basin-wide decreases in CO2 uptake in 2010 compared with 2011 (ref. 5). But the response of tropical forest carbon cycling to these droughts is not fully understood and there has been no detailed multi-site investigation in situ. Here we use several years of data from a network of thirteen 1-ha forest plots spread throughout South America, where each component of net primary production (NPP), autotrophic respiration and heterotrophic respiration is measured separately, to develop a better mechanistic understanding of the impact of the 2010 drought on the Amazon forest. We find that total NPP remained constant throughout the drought. However, towards the end of the drought, autotrophic respiration, especially in roots and stems, declined significantly compared with measurements in 2009 made in the absence of drought, with extended decreases in autotrophic respiration in the three driest plots. In the year after the drought, total NPP remained constant but the allocation of carbon shifted towards canopy NPP and away from fine-root NPP. Both leaf-level and plot-level measurements indicate that severe drought suppresses photosynthesis. Scaling these measurements to the entire Amazon basin with rainfall data, we estimate that drought suppressed Amazon-wide photosynthesis in 2010 by 0.38 petagrams of carbon (0.23-0.53 petagrams of carbon). Overall, we find that during this drought, instead of reducing total NPP, trees prioritized growth by reducing autotrophic respiration that was unrelated to growth. This suggests that trees decrease investment in tissue maintenance and defence, in line with eco-evolutionary theories that trees are competitively disadvantaged in the

  3. Drought impact on forest carbon dynamics and fluxes in Amazonia.

    PubMed

    Doughty, Christopher E; Metcalfe, D B; Girardin, C A J; Amézquita, F Farfán; Cabrera, D Galiano; Huasco, W Huaraca; Silva-Espejo, J E; Araujo-Murakami, A; da Costa, M C; Rocha, W; Feldpausch, T R; Mendoza, A L M; da Costa, A C L; Meir, P; Phillips, O L; Malhi, Y

    2015-03-05

    In 2005 and 2010 the Amazon basin experienced two strong droughts, driven by shifts in the tropical hydrological regime possibly associated with global climate change, as predicted by some global models. Tree mortality increased after the 2005 drought, and regional atmospheric inversion modelling showed basin-wide decreases in CO2 uptake in 2010 compared with 2011 (ref. 5). But the response of tropical forest carbon cycling to these droughts is not fully understood and there has been no detailed multi-site investigation in situ. Here we use several years of data from a network of thirteen 1-ha forest plots spread throughout South America, where each component of net primary production (NPP), autotrophic respiration and heterotrophic respiration is measured separately, to develop a better mechanistic understanding of the impact of the 2010 drought on the Amazon forest. We find that total NPP remained constant throughout the drought. However, towards the end of the drought, autotrophic respiration, especially in roots and stems, declined significantly compared with measurements in 2009 made in the absence of drought, with extended decreases in autotrophic respiration in the three driest plots. In the year after the drought, total NPP remained constant but the allocation of carbon shifted towards canopy NPP and away from fine-root NPP. Both leaf-level and plot-level measurements indicate that severe drought suppresses photosynthesis. Scaling these measurements to the entire Amazon basin with rainfall data, we estimate that drought suppressed Amazon-wide photosynthesis in 2010 by 0.38 petagrams of carbon (0.23-0.53 petagrams of carbon). Overall, we find that during this drought, instead of reducing total NPP, trees prioritized growth by reducing autotrophic respiration that was unrelated to growth. This suggests that trees decrease investment in tissue maintenance and defence, in line with eco-evolutionary theories that trees are competitively disadvantaged in the

  4. A case study of carbon fluxes from land change in the southwest Brazilian Amazon

    USGS Publications Warehouse

    Barrett, K.; Rogan, J.; Eastman, J.R.

    2009-01-01

    Worldwide, land change is responsible for one-fifth of anthropogenic carbon emissions. In Brazil, three-quarters of carbon emissions originate from land change. This study represents a municipal-scale study of carbon fluxes from vegetation in Rio Branco, Brazil. Land-cover maps of pasture, forest, and secondary growth from 1993, 1996, 1999, and 2003 were produced using an unsupervised classification method (overall accuracy = 89%). Carbon fluxes from land change over the decade of imagery were estimated from transitions between land-cover categories for each time interval. This article presents new methods for estimating emissions reductions from carbon stored in the vegetation that replaces forests (e.g., pasture) and sequestration by new (>10-15 years) forests, which reduced gross emissions by 16, 15, and 22% for the period of 1993-1996, 1996-1999, and 1999-2003, respectively. The methods used in the analysis are broadly applicable and provide a comprehensive characterization of regional-scale carbon fluxes from land change.

  5. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment

    SciTech Connect

    Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.; Molins, Sergi; Bill, Markus; Conrad, Mark E.; Dong, Wenming; Faybishenko, Boris; Tokunaga, Tetsu K.; Wan, Jiamin; Williams, Kenneth H.; Yabusaki, Steven B.

    2016-02-01

    Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Model simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe?2 and S-2 oxidation) to match locally-observed high CO2 concentrations above reduced zones. Observed seasonal variations in CO2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m-2 d-1, while including water table variations resulted in an overall decrease in the simulated fluxes. We conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations.

  6. Calculations of automatic chamber flux measurements of methane and carbon dioxide using short time series of concentrations

    NASA Astrophysics Data System (ADS)

    Pirk, Norbert; Mastepanov, Mikhail; Parmentier, Frans-Jan W.; Lund, Magnus; Crill, Patrick; Christensen, Torben R.

    2016-02-01

    The closed chamber technique is widely used to measure the exchange of methane (CH4) and carbon dioxide (CO2) from terrestrial ecosystems. There is, however, large uncertainty about which model should be used to calculate the gas flux from the measured gas concentrations. Due to experimental uncertainties the simple linear regression model (first-order polynomial) is often applied, even though theoretical considerations of the technique suggest the application of other, curvilinear models. High-resolution automatic chamber systems which sample gas concentrations several hundred times per flux measurement make it possible to resolve the curvilinear behavior and study the information imposed by the natural variability of the temporal concentration changes. We used more than 50 000 such flux measurements of CH4 and CO2 from five field sites located in peat-forming wetlands ranging from 56 to 78° N to quantify the typical differences between flux estimates of different models. In addition, we aimed to assess the curvilinearity of the concentration time series and test the general applicability of curvilinear models. Despite significant episodic differences between the calculated flux estimates, the overall differences are generally found to be smaller than the local flux variability on the plot scale. The curvilinear behavior of the gas concentrations within the chamber is strongly influenced by wind-driven chamber leakage, and less so by changing gas concentration gradients in the soil during chamber closure. Such physical processes affect both gas species equally, which makes it possible to isolate biochemical processes affecting the gases differently, such as photosynthesis limitation by chamber headspace CO2 concentrations under high levels of incoming solar radiation. We assess the possibility to exploit this effect for a partitioning of the net CO2 flux into photosynthesis and ecosystem respiration as an example of how high-resolution automatic chamber

  7. Comparing simulated carbon budget of a Lei bamboo forest with flux tower data

    USGS Publications Warehouse

    Li, Xuehe; Jiang, Hong; Liu, Jinxun; Sun, Cheng; Wang, Ying; Jin, Jiaxin

    2014-01-01

    Bamboo forest ecosystem is the part of the forest ecosystem. The distribution area of bamboo forest is limited, but in somewhere, like south China, it has been cultivate for a long time with human management. As the climate change has been take great effect on forest carbon budget, many researchers pay attention to the carbon budget in bamboo forest. Moreover cultivative management had a significant impact on the bamboo forest carbon budget. In this study, we modified a terrestrial ecosystem model named Integrated Biosphere Simulator (IBIS) according the management of Lei bamboo forest. Some management, like fertilization, shoots harvesting and organic mulching in winter, had been incorporated into model. Then we had compared model results with the observation data from a Lei bamboo flux tower. The simulated and observed results had achieved good consistency. Our simulated Lei bamboo forest yearly net ecosystem productivity (NEP) was 0.41 kgC a-1 of carbon, which is very close to the observation data 0.45 kgC a-1 of carbon. And the monthly simulated results can take the change of carbon budget in each month, similar to the data we got from flux tower. It reflects that the modified IBIS model can characterize the growth of bamboo forest and perform the simulation well. And then two groups of simulations were set to evaluate effects of cultivative managements on Lei bamboo forests carbon budget. And results showed that both fertilization and organic mulching had taken positive effects on Lei bamboo forests carbon sequestration.

  8. Influence of Different Environmental Variables on Energy and Carbon Fluxes in a Mediterranean Maquis Site

    NASA Astrophysics Data System (ADS)

    Bellucco, V.; Marras, S.; Sirca, C.; Duce, P.; Spano, D.

    2015-12-01

    Recent studies show that, in the Mediterranean area, global climate changes are likely causing an increase in frequency and intensity of drought periods as well as in the number of warmer days and nights. Mediterranean maquis (schlerophyll species) is a typical evergreen ecosystem consisting of short shrubs with leathery leaves sparsely distributed. It is adapted to live in a semi-arid climate as that of Mediterranean coasts and can survive to these environmental stress condition, being able to recover after autumn rainfall. However, increased environmental stress condition may determine changes in vegetation behavior in the long period. The aim of this study is to show the seasonal variability of sensible and latent heat, and CO2 exchanges measured, with the Eddy Covariance (EC) technique, over a Mediterranean Maquis site. It is located, about 600 m far from the sea, in the Capo Caccia peninsula (municipal district of Alghero (SS), Italy) within a natural reserve called "Le Prigionette", also known as Arca di Noé, in the North-West Sardinia coast (40.61° N, 8.15° E, 74 m asl). Due to this proximity of the EC tower to the sea, the ecosystem vertical exchanges and their footprint may be differently affected by sea and land breeze during days and nights, respectively. A four-component net radiometer, a quantum sensor, and a meteorological station were also set up for ancillary measurements as well as four heat plates in four different positions to account for under canopy and bare soil conditions in the Maquis ecosystem. Therefore, the influence of different environmental variables, such as soil/air temperature, atmospheric conditions and soil moisture content, on energy and carbon fluxes will be investigated and their effect on the seasonal and inter-annual variability of surface fluxes will be analyzed.

  9. Using rare earth elements to constrain particulate organic carbon flux in the East China Sea.

    PubMed

    Hung, Chin-Chang; Chen, Ya-Feng; Hsu, Shih-Chieh; Wang, Kui; Chen, Jian Feng; Burdige, David J

    2016-09-27

    Fluxes of particulate organic carbon (POC) in the East China Sea (ECS) have been reported to decrease from the inner continental shelf towards the outer continental shelf. Recent research has shown that POC fluxes in the ECS may be overestimated due to active sediment resuspension. To better characterize the effect of sediment resuspension on particle fluxes in the ECS, rare earth elements (REEs) and organic carbon (OC) were used in separate two-member mixing models to evaluate trap-collected POC fluxes. The ratio of resuspended particles from sediments to total trap-collected particles in the ECS ranged from 82-94% using the OC mixing model, and 30-80% using the REEs mixing model, respectively. These results suggest that REEs may be better proxies for sediment resuspension than OC in high turbidity marginal seas because REEs do not appear to undergo degradation during particle sinking as compared to organic carbon. Our results suggest that REEs can be used as tracers to provide quantitative estimates of POC fluxes in marginal seas.

  10. Automatic chamber observations of methane and carbon dioxide fluxes at West Siberian wetland

    NASA Astrophysics Data System (ADS)

    Krasnov, O.; Maksyutov, S.; Shimoyama, K.; Suto, H.; Nadeev, A.; Shelevoi, V.; Glagolev, M.; Kosykh, N.; Machida, T.; Inoue, G.

    2010-12-01

    An automatic sampling and analysis system for measuring methane and carbon dioxide fluxes from soil was developed and applied to the soil flux measurements at boreal wetland near Plotnikovo in the southern part of West Siberia. The observations cover warm season (May-October) from 1998 to 2010. Measurements were performed with two systems on the two types of open wetlands typical for the area: mesotrophic open bog and patterned wetland with forested ridges, flarks and water pools. Solar powered automated system is used to open and close six static chambers equipped with air actuators. Analysis system uses improved semiconductor sensor for methane and NDIR for carbon dioxide. Seasonally averaged methane flux rate was determined to be 13 mg/m2/h at the open bog and 2 mg/m2/h at the patterned wetland. Seasonal variation of the emissions correlates well with soil temperature. On the patterned wetland, the methane fluxes show correlation with the gross CO2 uptake rate estimated from CO2 uptake by plants and nighttime respiration. The vegetation map was created from high resolution aerial photos and ground survey data. The methane and carbon dioxide fluxes appear clearly related to the vegetation and soil conditions.

  11. Using rare earth elements to constrain particulate organic carbon flux in the East China Sea

    PubMed Central

    Hung, Chin-Chang; Chen, Ya-Feng; Hsu, Shih-Chieh; Wang, Kui; Chen, Jian Feng; Burdige, David J.

    2016-01-01

    Fluxes of particulate organic carbon (POC) in the East China Sea (ECS) have been reported to decrease from the inner continental shelf towards the outer continental shelf. Recent research has shown that POC fluxes in the ECS may be overestimated due to active sediment resuspension. To better characterize the effect of sediment resuspension on particle fluxes in the ECS, rare earth elements (REEs) and organic carbon (OC) were used in separate two-member mixing models to evaluate trap-collected POC fluxes. The ratio of resuspended particles from sediments to total trap-collected particles in the ECS ranged from 82–94% using the OC mixing model, and 30–80% using the REEs mixing model, respectively. These results suggest that REEs may be better proxies for sediment resuspension than OC in high turbidity marginal seas because REEs do not appear to undergo degradation during particle sinking as compared to organic carbon. Our results suggest that REEs can be used as tracers to provide quantitative estimates of POC fluxes in marginal seas. PMID:27670426

  12. Carbon Flux to the Deep in three open sites of the Southern European Seas

    NASA Astrophysics Data System (ADS)

    Gogou*, A.; Sanchez-Vidal*, A.; Stavrakakis, S.; Durrieu de Madron, X.; Calafat, A. M.; Stabholz, M.; Psarra, S.; Canals, M.; Heussner, S.; Stavrakaki, I.; Papathanassiou, E.

    2012-04-01

    In this study we investigate the functioning of the biological pump in the Southern European Seas (SES). In order to constrain the rates of carbon production and export to depth, we combine estimations of satellite primary production data, algorithm-generated fluxes out of the euphotic layer and particulate organic carbon (POC) fluxes, as measured by sediment traps at the mesopelagic and bathypelagic layers in three sites located in the Western Mediterranean (WMED), the Eastern Mediterranean (EMED), and the Black Sea (BS). POC fluxes were monitored during one year period (Sept 2007 - Sept 2008) in the frame of SESAME project. Annual primary production by satellite estimations yielded values of 396 mg C m-2d-1 (EMED), 563 mg C m-2d-1 (WMED) and 617 mg C m-2d-1 (BS) (SeaWiFS; http://emis.jrc.ec.europa.eu). At the scale of the whole Mediterranean and the Black Sea basins, spatiotemporal variability of Chl-a concentrations during the time of our experiments revealed significant differences in the seasonal cycles. While the WMED site showed increased biomass centred around spring (March-April 2008), the EMED site showed higher values in mid-winter (January 2008), even thought almost one order of magnitude lower than those recorded in the western site. In contrast, the BS site showed increased Chl-a concentration in autumn (Nov 2007) and a lower increase in early spring (March 2008). Overall, the observed Chl-a seasonal patterns for the WMED and EMED sites match quite well the typical seasonal patterns ascribed to their hosting areas, corresponding to "blooming" and "non-blooming" biogeographic regions, respectively, as proposed by D'Ortenzio and Ribera d'Alcala (D'Ortenzio and Ribera d'Alcala, 2009). Moreover, based on the timing of the bloom (late fall) the seasonal pattern of the BS site is quite similar to that observed in Mediterranean regions having a "coastal" regime. Thus, specific physical and biogeochemical settings in the three contrasting sites affect the

  13. Molar tooth carbonates and benthic methane fluxes in Proterozoic oceans

    PubMed Central

    Shen, Bing; Dong, Lin; Xiao, Shuhai; Lang, Xianguo; Huang, Kangjun; Peng, Yongbo; Zhou, Chuanming; Ke, Shan; Liu, Pengju

    2016-01-01

    Molar tooth structures are ptygmatically folded and microspar-filled structures common in early- and mid-Proterozoic (∼2,500–750 million years ago, Ma) subtidal successions, but extremely rare in rocks <750 Ma. Here, on the basis of Mg and S isotopes, we show that molar tooth structures may have formed within sediments where microbial sulphate reduction and methanogenesis converged. The convergence was driven by the abundant production of methyl sulphides (dimethyl sulphide and methanethiol) in euxinic or H2S-rich seawaters that were widespread in Proterozoic continental margins. In this convergence zone, methyl sulphides served as a non-competitive substrate supporting methane generation and methanethiol inhibited anaerobic oxidation of methane, resulting in the buildup of CH4, formation of degassing cracks in sediments and an increase in the benthic methane flux from sediments. Precipitation of crack-filling microspar was driven by methanogenesis-related alkalinity accumulation. Deep ocean ventilation and oxygenation around 750 Ma brought molar tooth structures to an end. PMID:26739600

  14. Molar tooth carbonates and benthic methane fluxes in Proterozoic oceans.

    PubMed

    Shen, Bing; Dong, Lin; Xiao, Shuhai; Lang, Xianguo; Huang, Kangjun; Peng, Yongbo; Zhou, Chuanming; Ke, Shan; Liu, Pengju

    2016-01-07

    Molar tooth structures are ptygmatically folded and microspar-filled structures common in early- and mid-Proterozoic (∼2,500-750 million years ago, Ma) subtidal successions, but extremely rare in rocks <750 Ma. Here, on the basis of Mg and S isotopes, we show that molar tooth structures may have formed within sediments where microbial sulphate reduction and methanogenesis converged. The convergence was driven by the abundant production of methyl sulphides (dimethyl sulphide and methanethiol) in euxinic or H2S-rich seawaters that were widespread in Proterozoic continental margins. In this convergence zone, methyl sulphides served as a non-competitive substrate supporting methane generation and methanethiol inhibited anaerobic oxidation of methane, resulting in the buildup of CH4, formation of degassing cracks in sediments and an increase in the benthic methane flux from sediments. Precipitation of crack-filling microspar was driven by methanogenesis-related alkalinity accumulation. Deep ocean ventilation and oxygenation around 750 Ma brought molar tooth structures to an end.

  15. Molar tooth carbonates and benthic methane fluxes in Proterozoic oceans

    NASA Astrophysics Data System (ADS)

    Shen, Bing; Dong, Lin; Xiao, Shuhai; Lang, Xianguo; Huang, Kangjun; Peng, Yongbo; Zhou, Chuanming; Ke, Shan; Liu, Pengju

    2016-01-01

    Molar tooth structures are ptygmatically folded and microspar-filled structures common in early- and mid-Proterozoic (~2,500-750 million years ago, Ma) subtidal successions, but extremely rare in rocks <750 Ma. Here, on the basis of Mg and S isotopes, we show that molar tooth structures may have formed within sediments where microbial sulphate reduction and methanogenesis converged. The convergence was driven by the abundant production of methyl sulphides (dimethyl sulphide and methanethiol) in euxinic or H2S-rich seawaters that were widespread in Proterozoic continental margins. In this convergence zone, methyl sulphides served as a non-competitive substrate supporting methane generation and methanethiol inhibited anaerobic oxidation of methane, resulting in the buildup of CH4, formation of degassing cracks in sediments and an increase in the benthic methane flux from sediments. Precipitation of crack-filling microspar was driven by methanogenesis-related alkalinity accumulation. Deep ocean ventilation and oxygenation around 750 Ma brought molar tooth structures to an end.

  16. Evaluate the seasonal cycle and interannual variability of carbon fluxes and the associated uncertainties using modeled and observed data

    NASA Astrophysics Data System (ADS)

    Zeng, F.; Collatz, G. J.; Ivanoff, A.

    2013-12-01

    We assessed the performance of the Carnegie-Ames-Stanford Approach - Global Fire Emissions Database (CASA-GFED3) terrestrial carbon cycle model in simulating seasonal cycle and interannual variability (IAV) of global and regional carbon fluxes and uncertainties associated with model parameterization. Key model parameters were identified from sensitivity analyses and their uncertainties were propagated through model processes using the Monte Carlo approach to estimate the uncertainties in carbon fluxes and pool sizes. Three independent flux data sets, the global gross primary productivity (GPP) upscaled from eddy covariance flux measurements by Jung et al. (2011), the net ecosystem exchange (NEE) estimated by CarbonTracker, and the eddy covariance flux observations, were used to evaluate modeled fluxes and the uncertainties. Modeled fluxes agree well with both Jung's GPP and CarbonTracker NEE in the amplitude and phase of seasonal cycle, except in the case of GPP in tropical regions where Jung et al. (2011) showed larger fluxes and seasonal amplitude. Modeled GPP IAV is positively correlated (p < 0.1) with Jung's GPP IAV except in the tropics and temperate South America. The correlations between modeled NEE IAV and CarbonTracker NEE IAV are weak at regional to continental scales but stronger when fluxes are aggregated to >40°N latitude. At regional to continental scales flux uncertainties were larger than the IAV in the fluxes for both Jung's GPP and CarbonTracker NEE. Comparisons with eddy covariance flux observations are focused on sites within regions and years of recorded large-scale climate anomalies. We also evaluated modeled biomass using other independent continental biomass estimates and found good agreement. From the comparisons we identify the strengths and weaknesses of the model to capture the seasonal cycle and IAV of carbon fluxes and highlight ways to improve model performance.

  17. Mapping land-surface fluxes of carbon, water and energy from field to regional scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A framework for routine mapping of land-surface fluxes of carbon, water, and energy at the field to regional scales has been established for drought monitoring, water resource management, yield forecasting and crop-growth monitoring. The framework uses the ALEXI/DisALEXI suite of land-surface model...

  18. CARBON MONOXIDE FLUXES OF DIFFERENT SOIL LAYERS IN UPLAND CANADIAN BOREAL FORESTS

    EPA Science Inventory

    Dark or low-light carbon monoxide fluxes at upland Canadian boreal forest sites were measured on-site with static chambers and with a laboratory incubation technique using cores from different depths at the same sites. Three different upland black spruce sites, burned in 1987,199...

  19. SEASONAL SOIL FLUXES OF CARBON MONOXIDE IN BURNED AND UNBURNED BRAZILIAN SAVANNAS

    EPA Science Inventory

    Soil-atmosphere fluxes of carbon monoxide (CO) were measured from September 1999 through November 2000 in savanna areas in central Brazil (Cerrado) under different fire regimes using transparent and opaque static chambers. Studies focused on two vegetation types, cerrado stricto...

  20. Landscape and environmental controls over leaf and ecosystem carbon dioxide fluxes under woody plant expansion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many regions of the globe are experiencing a simultaneous change in the dominant plant functional type and regional climatology. We explored how atmospheric temperature and precipitation input control leaf- and ecosystem scale carbon fluxes within a pair of semiarid shrublands that had undergone woo...

  1. Investigating Alaskan methane and carbon dioxide fluxes using measurements from the CARVE tower

    NASA Astrophysics Data System (ADS)

    Karion, Anna; Sweeney, Colm; Miller, John B.; Andrews, Arlyn E.; Commane, Roisin; Dinardo, Steven; Henderson, John M.; Lindaas, Jacob; Lin, John C.; Luus, Kristina A.; Newberger, Tim; Tans, Pieter; Wofsy, Steven C.; Wolter, Sonja; Miller, Charles E.

    2016-04-01

    Northern high-latitude carbon sources and sinks, including those resulting from degrading permafrost, are thought to be sensitive to the rapidly warming climate. Because the near-surface atmosphere integrates surface fluxes over large ( ˜ 500-1000 km) scales, atmospheric monitoring of carbon dioxide (CO2) and methane (CH4) mole fractions in the daytime mixed layer is a promising method for detecting change in the carbon cycle throughout boreal Alaska. Here we use CO2 and CH4 measurements from a NOAA tower 17 km north of Fairbanks, AK, established as part of NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), to investigate regional fluxes of CO2 and CH4 for 2012-2014. CARVE was designed to use aircraft and surface observations to better understand and quantify the sensitivity of Alaskan carbon fluxes to climate variability. We use high-resolution meteorological fields from the Polar Weather Research and Forecasting (WRF) model coupled with the Stochastic Time-Inverted Lagrangian Transport model (hereafter, WRF-STILT), along with the Polar Vegetation Photosynthesis and Respiration Model (PolarVPRM), to investigate fluxes of CO2 in boreal Alaska using the tower observations, which are sensitive to large areas of central Alaska. We show that simulated PolarVPRM-WRF-STILT CO2 mole fractions show remarkably good agreement with tower observations, suggesting that the WRF-STILT model represents the meteorology of the region quite well, and that the PolarVPRM flux magnitudes and spatial distribution are generally consistent with CO2 mole fractions observed at the CARVE tower. One exception to this good agreement is that during the fall of all 3 years, PolarVPRM cannot reproduce the observed CO2 respiration. Using the WRF-STILT model, we find that average CH4 fluxes in boreal Alaska are somewhat lower than flux estimates by Chang et al. (2014) over all of Alaska for May-September 2012; we also find that enhancements appear to persist during some wintertime

  2. Integrating flux, satellite, and proximal optical data for an improved understanding of ecosystem carbon uptake

    NASA Astrophysics Data System (ADS)

    Gamon, J. A.; Huemmrich, K. F.; Garrity, S. R.

    2015-12-01

    The different scales and methods of satellite observations and flux measurements present challenges for data integration that can be partly addressed by the addition of scale-appropriate optical sampling. Proximal optical measurement facilitates experimental approaches that can inform upscaling, satellite validation, and lead to better understanding of controls on carbon fluxes and other ecosystem processes. Using the framework of the light-use efficiency model, this presentation will review efforts to explore the controls on ecosystem-atmosphere carbon fluxes using a variety of novel optical sensors and platforms. Topics of appropriate sampling methodology, scaling and data aggregation will also be considered, with examples of how information content and interpretation of optical data can be scale-dependent. Key challenges include informatics solutions that handle large, multi-dimensional data volumes and contextual information, including information about sampling protocols and scale. Key opportunities include the assessment of vegetation functional diversity with optical sensors.

  3. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    SciTech Connect

    Yang, Qichun; Zhang, Xuesong

    2016-11-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio_E), large leaf to biomass fraction (Bio_LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWAT model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT’s performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests.

  4. Magnitude and Uncertainty of Carbon Pools and Fluxes in the US Forests

    NASA Astrophysics Data System (ADS)

    Harris, N.; Saatchi, S. S.; Fore, A.; Yu, Y.; Woodall, C. W.; Ganguly, S.; Nemani, R. R.; Hagen, S.; Birdsey, R.; Brown, S.; Salas, W.; Johnson, K. D.

    2015-12-01

    Sassan Saatchi1,2, Stephan Hagen3, Christopher Woodall4 , Sangram Ganguly,5 Nancy Harris6, Sandra Brown7, Timothy Pearson7, Alexander Fore1, Yifan Yu1, Rama Nemani5, Gong Zhang5, William Salas4, Roger Cooke81 NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA2 Institute of Environment and Sustainability, University of California, Los Angeles, CA, 90095, USA3 Applied Geosolutions, 55 Main Street Suit 125, Newmarket, NH 03857, USA4 USDA Forest Service, Northern Research Station, Saint Paul, MN 55108, USA5 NASA Ames Research Center, Moffett Field, CA 94035, USA6 Forests Program, World Resources Institute, Washington, DC, 20002, USA7 Winrock International, Ecosystem Services Unit, Arlington, VA 22202, USA8 Risk Analysis Resources for the Future, Washington DC 20036-1400Assessment of the carbon sinks and sources associated with greenhouse gas (GHG) fluxes across the US forestlands is a priority of the national climate mitigation policy. However, estimates of fluxes from the land sector are less precise compared to other sectors because of the large sources of uncertainty in quantifying the carbon pools, emissions, and removals associated with anthropogenic (land use) and natural changes in the US forestlands. As part of the NASA's Carbon Monitoring System, we developed a methodology based on a combination of ground inventory and space observations to develop spatially refined carbon pools and fluxes including the gross emissions and sequestration of carbon at each 1-ha land unit across the forestlands in the continental United States (CONUS) for the period of 2006-2010. Here, we provide the magnitude and uncertainty of multiple pools and fluxes of the US forestlands and outline the observational requirements to reduce the uncertainties for developing national climate mitigation policies based on the carbon sequestration capacity of the US forest lands. Keywords: forests, carbon pools, greenhouse gas, land use, attribution

  5. Evaluating carbon fluxes of global forest ecosystems by using an individual tree-based model FORCCHN.

    PubMed

    Ma, Jianyong; Shugart, Herman H; Yan, Xiaodong; Cao, Cougui; Wu, Shuang; Fang, Jing

    2017-05-15

    The carbon budget of forest ecosystems, an important component of the terrestrial carbon cycle, needs to be accurately quantified and predicted by ecological models. As a preamble to apply the model to estimate global carbon uptake by forest ecosystems, we used the CO2 flux measurements from 37 forest eddy-covariance sites to examine the individual tree-based FORCCHN model's performance globally. In these initial tests, the FORCCHN model simulated gross primary production (GPP), ecosystem respiration (ER) and net ecosystem production (NEP) with correlations of 0.72, 0.70 and 0.53, respectively, across all forest biomes. The model underestimated GPP and slightly overestimated ER across most of the eddy-covariance sites. An underestimation of NEP arose primarily from the lower GPP estimates. Model performance was better in capturing both the temporal changes and magnitude of carbon fluxes in deciduous broadleaf forest than in evergreen broadleaf forest, and it performed less well for sites in Mediterranean climate. We then applied the model to estimate the carbon fluxes of forest ecosystems on global scale over 1982-2011. This application of FORCCHN gave a total GPP of 59.41±5.67 and an ER of 57.21±5.32PgCyr(-1) for global forest ecosystems during 1982-2011. The forest ecosystems over this same period contributed a large carbon storage, with total NEP being 2.20±0.64PgCyr(-1). These values are comparable to and reinforce estimates reported in other studies. This analysis highlights individual tree-based model FORCCHN could be used to evaluate carbon fluxes of forest ecosystems on global scale.

  6. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.

    PubMed

    Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system.

  7. User-Friendly Predictive Modeling of Greenhouse Gas (GHG) Fluxes and Carbon Storage in Tidal Wetlands

    NASA Astrophysics Data System (ADS)

    Ishtiaq, K. S.; Abdul-Aziz, O. I.

    2015-12-01

    We developed user-friendly empirical models to predict instantaneous fluxes of CO2 and CH4 from coastal wetlands based on a small set of dominant hydro-climatic and environmental drivers (e.g., photosynthetically active radiation, soil temperature, water depth, and soil salinity). The dominant predictor variables were systematically identified by applying a robust data-analytics framework on a wide range of possible environmental variables driving wetland greenhouse gas (GHG) fluxes. The method comprised of a multi-layered data-analytics framework, including Pearson correlation analysis, explanatory principal component and factor analyses, and partial least squares regression modeling. The identified dominant predictors were finally utilized to develop power-law based non-linear regression models to predict CO2 and CH4 fluxes under different climatic, land use (nitrogen gradient), tidal hydrology and salinity conditions. Four different tidal wetlands of Waquoit Bay, MA were considered as the case study sites to identify the dominant drivers and evaluate model performance. The study sites were dominated by native Spartina Alterniflora and characterized by frequent flooding and high saline conditions. The model estimated the potential net ecosystem carbon balance (NECB) both in gC/m2 and metric tonC/hectare by up-scaling the instantaneous predicted fluxes to the growing season and accounting for the lateral C flux exchanges between the wetlands and estuary. The entire model was presented in a single Excel spreadsheet as a user-friendly ecological engineering tool. The model can aid the development of appropriate GHG offset protocols for setting monitoring plans for tidal wetland restoration and maintenance projects. The model can also be used to estimate wetland GHG fluxes and potential carbon storage under various IPCC climate change and sea level rise scenarios; facilitating an appropriate management of carbon stocks in tidal wetlands and their incorporation into a

  8. Roles of Climate, Vegetation and Soil in Regulating the Spatial Variations in Ecosystem Carbon Dioxide Fluxes in the Northern Hemisphere

    PubMed Central

    Chen, Zhi; Yu, Guirui; Ge, Jianping; Wang, Qiufeng; Zhu, Xianjin; Xu, Zhiwei

    2015-01-01

    Climate, vegetation, and soil characteristics play important roles in regulating the spatial variation in carbon dioxide fluxes, but their relative influence is still uncertain. In this study, we compiled data from 241 eddy covariance flux sites in the Northern Hemisphere and used Classification and Regression Trees and Redundancy Analysis to assess how climate, vegetation, and soil affect the spatial variations in three carbon dioxide fluxes (annual gross primary production (AGPP), annual ecosystem respiration (ARE), and annual net ecosystem production (ANEP)). Our results showed that the spatial variations in AGPP, ARE, and ANEP were significantly related to the climate and vegetation factors (correlation coefficients, R = 0.22 to 0.69, P < 0.01) while they were not related to the soil factors (R = -0.11 to 0.14, P > 0.05) in the Northern Hemisphere. The climate and vegetation together explained 60 % and 58 % of the spatial variations in AGPP and ARE, respectively. Climate factors (mean annual temperature and precipitation) could account for 45 - 47 % of the spatial variations in AGPP and ARE, but the climate constraint on the vegetation index explained approximately 75 %. Our findings suggest that climate factors affect the spatial variations in AGPP and ARE mainly by regulating vegetation properties, while soil factors exert a minor effect. To more accurately assess global carbon balance and predict ecosystem responses to climate change, these discrepant roles of climate, vegetation, and soil are required to be fully considered in the future land surface models. Moreover, our results showed that climate and vegetation factors failed to capture the spatial variation in ANEP and suggest that to reveal the underlying mechanism for variation in ANEP, taking into account the effects of other factors (such as climate change and disturbances) is necessary. PMID:25928452

  9. Roles of climate, vegetation and soil in regulating the spatial variations in ecosystem carbon dioxide fluxes in the Northern Hemisphere.

    PubMed

    Chen, Zhi; Yu, Guirui; Ge, Jianping; Wang, Qiufeng; Zhu, Xianjin; Xu, Zhiwei

    2015-01-01

    Climate, vegetation, and soil characteristics play important roles in regulating the spatial variation in carbon dioxide fluxes, but their relative influence is still uncertain. In this study, we compiled data from 241 eddy covariance flux sites in the Northern Hemisphere and used Classification and Regression Trees and Redundancy Analysis to assess how climate, vegetation, and soil affect the spatial variations in three carbon dioxide fluxes (annual gross primary production (AGPP), annual ecosystem respiration (ARE), and annual net ecosystem production (ANEP)). Our results showed that the spatial variations in AGPP, ARE, and ANEP were significantly related to the climate and vegetation factors (correlation coefficients, R = 0.22 to 0.69, P < 0.01) while they were not related to the soil factors (R = -0.11 to 0.14, P > 0.05) in the Northern Hemisphere. The climate and vegetation together explained 60% and 58% of the spatial variations in AGPP and ARE, respectively. Climate factors (mean annual temperature and precipitation) could account for 45-47% of the spatial variations in AGPP and ARE, but the climate constraint on the vegetation index explained approximately 75%. Our findings suggest that climate factors affect the spatial variations in AGPP and ARE mainly by regulating vegetation properties, while soil factors exert a minor effect. To more accurately assess global carbon balance and predict ecosystem responses to climate change, these discrepant roles of climate, vegetation, and soil are required to be fully considered in the future land surface models. Moreover, our results showed that climate and vegetation factors failed to capture the spatial variation in ANEP and suggest that to reveal the underlying mechanism for variation in ANEP, taking into account the effects of other factors (such as climate change and disturbances) is necessary.

  10. Regional-scale carbon flux estimation using MODIS imagery

    NASA Astrophysics Data System (ADS)

    Cordova, Vicente D.

    The National Aeronautics and Space Agency NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) platform carried by Terra and Aqua satellites, is providing systematic measurements summarized in high quality, consistent and well-calibrated satellite images and datasets ranging from reflectance in the visible and near infrared bands to estimates of leaf area index, vegetation indices and biome productivity. The objective of this research was to relate the spectral responses and derived MODIS products of ecosystems, to biogeochemical processes and trends in their physiological variables. When different sources of data were compared, discrepancies between the MODIS variables and the corresponding ground measurements were evident. Uncertainties in the input variables of MODIS products algorithms, effects of cloud cover at the studied pixel, estimation algorithm, and local variation in land cover type are considered as the cause. A simple "continuous field" model based on a physiologically-driven spectral index using two ocean-color bands of MODIS satellite sensor showed great potential to track seasonally changing photosynthetic light use efficiency and stress-induced reduction in net primary productivity of terrestrial vegetation. The model explained 88% of the variability in Flux tower-based daily Net Primary Productivity. Also a high correlation between midday gross CO2 exchange with both daily and 8-day mean gross CO2 exchange, consistent across all the studied vegetation types, was found. Although it may not be possible to estimate 8-day mean Light Use Efficiency reliably from satellite data, Light Use Efficiency models may still be useful for estimation of midday values of gross CO2 exchange which could then be related to longer term means of CO2 exchange. In addition, the MODIS enhanced vegetation index shows a high potential for estimation of ecosystem gross primary production, using respiration values from MODIS surface temperature, providing truly per

  11. A coupled carbon and plant hydraulic model to predict ecosystem carbon and water flux responses to disturbance and environmental change

    NASA Astrophysics Data System (ADS)

    Mackay, D. S.; Ewers, B. E.; Roberts, D. E.; McDowell, N. G.; Pendall, E.; Frank, J. M.; Reed, D. E.; Massman, W. J.; Mitra, B.

    2011-12-01

    Changing climate drivers including temperature, humidity, precipitation, and carbon dioxide (CO2) concentrations directly control land surface exchanges of CO2 and water. In a profound way these responses are modulated by disturbances that are driven by or exacerbated by climate change. Predicting these changes is challenging given that the feedbacks between environmental controls, disturbances, and fluxes are complex. Flux data in areas of bark beetle outbreaks in the western U.S.A. show differential declines in carbon and water flux in response to the occlusion of xylem by associated fungi. For example, bark beetle infestation at the GLEES AmeriFlux site manifested in a decline in summer water use efficiency to 60% in the year after peak infestation compared to previous years, and no recovery of carbon uptake following a period of high vapor pressure deficit. This points to complex feedbacks between disturbance and differential ecosystem reaction and relaxation responses. Theory based on plant hydraulics and extending to include links to carbon storage and exhaustion has potential for explaining these dynamics with simple, yet rigorous models. In this spirit we developed a coupled model that combines an existing model of canopy water and carbon flow, TREES [e.g., Loranty et al., 2010], with the Sperry et al., [1998] plant hydraulic model. The new model simultaneously solves carbon uptake and losses along with plant hydraulics, and allows for testing specific hypotheses on feedbacks between xylem dysfunction, stomatal and non-stomatal controls on photosynthesis and carbon allocation, and autotrophic and heterotrophic respiration. These are constrained through gas exchange, root vulnerability to cavitation, sap flux, and eddy covariance data in a novel model complexity-testing framework. Our analysis focuses on an ecosystem gradient spanning sagebrush to subalpine forests. Our modeling results support hypotheses on feedbacks between hydraulic dysfunction and 1) non

  12. Variation of energy and carbon fluxes from a restored temperate freshwater wetland and implications for carbon market verification protocols

    USGS Publications Warehouse

    Anderson, Frank; Bergamaschi, Brian; Sturtevant, Cove; Knox, Sarah; Hastings, Lauren; Windham-Myers, Lisamarie; Detto, Matteo; Hestir, Erin L.; Drexler, Judith; Miller, Robin L.; Matthes, Jaclyn; Verfaillie, Joseph; Baldocchi, Dennis; Snyder, Richard L.; Fujii, Roger

    2016-01-01

    Temperate freshwater wetlands are among the most productive terrestrial ecosystems, stimulating interest in using restored wetlands as biological carbon sequestration projects for greenhouse gas reduction programs. In this study, we used the eddy covariance technique to measure surface energy carbon fluxes from a constructed, impounded freshwater wetland during two annual periods that were 8 years apart: 2002–2003 and 2010–2011. During 2010–2011, we measured methane (CH4) fluxes to quantify the annual atmospheric carbon mass balance and its concomitant influence on global warming potential (GWP). Peak growing season fluxes of latent heat and carbon dioxide (CO2) were greater in 2002–2003 compared to 2010–2011. In 2002, the daily net ecosystem exchange reached as low as −10.6 g C m−2 d−1, which was greater than 3 times the magnitude observed in 2010 (−2.9 g C m−2 d−1). CH4 fluxes during 2010–2011 were positive throughout the year and followed a strong seasonal pattern, ranging from 38.1 mg C m−2 d−1 in the winter to 375.9 mg C m−2 d−1 during the summer. The results of this study suggest that the wetland had reduced gross ecosystem productivity in 2010–2011, likely due to the increase in dead plant biomass (standing litter) that inhibited the generation of new vegetation growth. In 2010–2011, there was a net positive GWP (675.3 g C m−2 yr−1), and when these values are evaluated as a sustained flux, the wetland will not reach radiative balance even after 500 years.

  13. Variation of energy and carbon fluxes from a restored temperate freshwater wetland and implications for carbon market verification protocols

    NASA Astrophysics Data System (ADS)

    Anderson, Frank E.; Bergamaschi, Brian; Sturtevant, Cove; Knox, Sara; Hastings, Lauren; Windham-Myers, Lisamarie; Detto, Matteo; Hestir, Erin L.; Drexler, Judith; Miller, Robin L.; Matthes, Jaclyn Hatala; Verfaillie, Joseph; Baldocchi, Dennis; Snyder, Richard L.; Fujii, Roger

    2016-03-01

    Temperate freshwater wetlands are among the most productive terrestrial ecosystems, stimulating interest in using restored wetlands as biological carbon sequestration projects for greenhouse gas reduction programs. In this study, we used the eddy covariance technique to measure surface energy carbon fluxes from a constructed, impounded freshwater wetland during two annual periods that were 8 years apart: 2002-2003 and 2010-2011. During 2010-2011, we measured methane (CH4) fluxes to quantify the annual atmospheric carbon mass balance and its concomitant influence on global warming potential (GWP). Peak growing season fluxes of latent heat and carbon dioxide (CO2) were greater in 2002-2003 compared to 2010-2011. In 2002, the daily net ecosystem exchange reached as low as -10.6 g C m-2 d-1, which was greater than 3 times the magnitude observed in 2010 (-2.9 g C m-2 d-1). CH4 fluxes during 2010-2011 were positive throughout the year and followed a strong seasonal pattern, ranging from 38.1 mg C m-2 d-1 in the winter to 375.9 mg C m-2 d-1 during the summer. The results of this study suggest that the wetland had reduced gross ecosystem productivity in 2010-2011, likely due to the increase in dead plant biomass (standing litter) that inhibited the generation of new vegetation growth. In 2010-2011, there was a net positive GWP (675.3 g C m-2 yr-1), and when these values are evaluated as a sustained flux, the wetland will not reach radiative balance even after 500 years.

  14. Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils.

    PubMed

    Barrett, M; Khalil, M I; Jahangir, M M R; Lee, C; Cardenas, L M; Collins, G; Richards, K G; O'Flaherty, V

    2016-04-01

    The nitrite reductase (nirS and nirK) and nitrous oxide reductase-encoding (nosZ) genes of denitrifying populations present in an agricultural grassland soil were quantified using real-time polymerase chain reaction (PCR) assays. Samples from three separate pedological depths at the chosen site were investigated: horizon A (0-10 cm), horizon B (45-55 cm), and horizon C (120-130 cm). The effect of carbon addition (treatment 1, control; treatment 2, glucose-C; treatment 3, dissolved organic carbon (DOC)) on denitrifier gene abundance and N2O and N2 fluxes was determined. In general, denitrifier abundance correlated well with flux measurements; nirS was positively correlated with N2O, and nosZ was positively correlated with N2 (P < 0.03). Denitrifier gene copy concentrations per gram of soil (GCC) varied in response to carbon type amendment (P < 0.01). Denitrifier GCCs were high (ca. 10(7)) and the bac:nirK, bac:nirS, bac:nir (T) , and bac:nosZ ratios were low (ca. 10(-1)/10) in horizon A in all three respective treatments. Glucose-C amendment favored partial denitrification, resulting in higher nir abundance and higher N2O fluxes compared to the control. DOC amendment, by contrast, resulted in relatively higher nosZ abundance and N2 emissions, thus favoring complete denitrification. We also noted soil depth directly affected bacterial, archaeal, and denitrifier abundance, possibly due to changes in soil carbon availability with depth.

  15. The influence of drought-heat stress on long term carbon fluxes of bioenergy crops grown in the Midwestern US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial grasses are promising feedstocks for bioenergy production in the Midwestern US. Few experiments have addressed how drought influences their carbon fluxes and storage. This study provides a direct comparison of ecosystem-scale measurements of carbon fluxes associated with miscanthus (Miscan...

  16. Hydrologic Treatments Affect Gaseous Carbon Loss From Organic Soils, Twitchell Island, California, October 1995-December 1997

    USGS Publications Warehouse

    Miller, Robin L.; Hastings, Lauren; Fujii, Roger

    2000-01-01

    Subsidence of organic soils in the Sacramento-San Joaquin Delta, California, has increased the potential for levee failure and flooding in the region. Because oxidation of the peat soils is a primary cause of subsidence, reversion of affected lands to wetlands has been proposed as a mitigation tool. To test this hypothesis, three 10 x 10 meter enclosures were built on Twitchell Island in the Delta and managed as different wetland habitats. Emissions of carbon dioxide and methane were measured in situ from October 1995 through December 1997, from the systems that developed under the different water-management treatments. Treatments included a seasonal control (SC) under current island management conditions; reverse flooding (RF), where the land is intentionally flooded from early dry season until midsummer; permanent shallow flooding (F); and a more deeply flooded, open-water (OW) treatment. Hydrologic treatments affected microbial processes, plant community and temperature dynamics which, in turn, affected carbon cycling. Water-management treatments with a period of flooding significantly decreased gaseous carbon emissions compared to the seasonal control. Permanent flooding treatments showed significantly higher methane fluxes than treatments with some period of aerobic conditions. Shallow flooding treatments created conditions that support cattail [Typha species (spp.)] marshes, while deep flooding precluded emergent vegetation. Carbon inputs to the permanent shallow flooding treatment tended to be greater than the measured losses. This suggests that permanent shallow flooding has the greatest potential for managing subsidence of these soils by generating organic substrate more rapidly than is lost through decomposition. Carbon input estimates of plant biomass compared to measurements of gaseous carbon losses indicate the potential for mitigation of subsidence through hydrologic management of the organic soils in the area.

  17. Decadal and annual changes in biogenic opal and carbonate fluxes to the deep Sargasso Sea

    USGS Publications Warehouse

    Deuser, W.G.; Jickells, T.D.; Commeau, Judith A.

    1995-01-01

    Analyses of samples from a 14-year series of sediment-trap deployments in the deep Sargasso Sea reveal a significant trend in the ratio of the sinking fluxes of biogenic calcium carbonate and silica. Although there are pronounced seasonal cycles for both flux components, the overall opal/CaCO3 ratio changed by 50% from 1978 to 1991 (largely due to a decrease of opal flux), while total flux had no significant trend. These results suggest that plankton communities respond rapidly to subtle climate change, such as is evident in regional variations of wind speed, precipitation, wintertime ventilation and midwater temperatures. If the trends we observe in the makeup of sinking particulate matter occur on a large scale, they may in turn modify climate by modulating ocean-atmosphere CO2 exchange and albedo over the ocean.

  18. Analysis of field measurements of carbon dioxide and water vapor fluxes

    NASA Technical Reports Server (NTRS)

    Verma, Shashi B.

    1991-01-01

    Analysis of the field measurements of carbon dioxide and water vapor fluxes is discussed. These data were examined in conjunction with reflectance obtained from helicopter mounted Modular Multiband Radiometer. These measurements are representative of the canopy scale (10 to 100 m)(exp 2) and provide a good basis for investigating the hypotheses/relationship potentially useful in remote sensing applications. All the micrometeorological data collected during FIFE-89 were processed and fluxes of CO2, water vapor, and sensible heat were calculated. Soil CO2 fluxes were also estimated. Employing these soil CO2 flux values, in conjunction with micrometeorological measurements, canopy photosynthesis is being estimated. A biochemical model of leaf photosynthesis was adapted to the prairie vegetation. The modeled leaf photosynthesis rates were scaled up to the canopy level. This model and a multiplicative stomatal conductance model are also used to calculate canopy conductance.

  19. Ocean Carbon and Biogeochemistry Scoping Workshop on Terrestrial and Coastal Carbon Fluxes in the Gulf of Mexico, St. Petersburg, FL

    NASA Technical Reports Server (NTRS)

    Robbins, L. L.; Coble, P. G.; Clayton, T. D.; Cai, W. J.

    2008-01-01

    Despite their relatively small surface area, ocean margins may have a significant impact on global biogeochemical cycles and, potentially, the global air-sea fluxes of carbon dioxide. Margins are characterized by intense geochemical and biological processing of carbon and other elements and exchange large amounts of matter and energy with the open ocean. The area-specific rates of productivity, biogeochemical cycling, and organic/inorganic matter sequestration are high in coastal margins, with as much as half of the global integrated new production occurring over the continental shelves and slopes (Walsh, 1991; Doney and Hood, 2002; Jahnke, in press). However, the current lack of knowledge and understanding of biogeochemical processes occurring at the ocean margins has left them largely ignored in most of the previous global assessments of the oceanic carbon cycle (Doney and Hood, 2002). A major source of North American and global uncertainty is the Gulf of Mexico, a large semi-enclosed subtropical basin bordered by the United States, Mexico, and Cuba. Like many of the marginal oceans worldwide, the Gulf of Mexico remains largely unsampled and poorly characterized in terms of its air-sea exchange of carbon dioxide and other carbon fluxes. The goal of the workshop was to bring together researchers from multiple disciplines studying terrestrial, aquatic, and marine ecosystems to discuss the state of knowledge in carbon fluxes in the Gulf of Mexico, data gaps, and overarching questions in the Gulf of Mexico system. The discussions at the workshop were intended to stimulate integrated studies of marine and terrestrial biogeochemical cycles and associated ecosystems that will help to establish the role of the Gulf of Mexico in the carbon cycle and how it might evolve in the face of environmental change.

  20. Influence of landscape disturbance patterns on modeled carbon fluxes and associated uncertainty

    NASA Astrophysics Data System (ADS)

    Smithwick, E. A.; Kennedy, R. E.; Naithani, K.; Davis, K. J.; Keller, K.; Parker, L. R.; Bianchetti, R. A.; MacEachren, A. M.

    2013-12-01

    Disturbances influence terrestrial carbon (C) fluxes directly through C emissions (e.g., fires) and indirectly by modifying successional pathways. However, patterns of forest disturbances are complex at landscape scales, resulting in temporally and spatially heterogeneous patterns of C stocks and fluxes. As a result, the contribution of disturbances to observed CO2 fluxes from eddy flux towers is unclear and the resulting uncertainty in estimation of regional C stocks complicates decision-making for landscape-scale, forest C management. We assessed stand-replacing and partial disturbance patterns in the Chequamegon-Nicolet National Forest using Landsat remotely sensed imagery and LandTrendr algorithms. Resulting stand age information was used with eddy covariance data to inform a hierarchical modeling approach (HBLUE) that estimated CO2 fluxes from 2000 - 2010. Results indicated extensive disturbance patterns in the region including tornados, insects, fire, and harvesting activities that modified stand age structure; the complexity of the disturbance patterns required site-level validation that was informed by scientist-manager communication, and regional-level validation with existing databases of forest harvest activity. Our results indicated that uncertainty in CO2 fluxes varied with stand age, with higher uncertainty during mid-succession. In addition to stand age, a careful consideration of uncertainty in CO2 fluxes should consider attribution of type, timing and magnitude of disturbance events as well as accuracy assessment of the remote sensing workflow (e.g., preprocessing, temporal segmentation) and model parameters (e.g., representativeness of flux towers). The resultant complexity of mean CO2 fluxes and their uncertainty should be considered as related both to the inherent ecosystem dynamics as well as their representation by models over space and time. We conclude that interpretation, analysis, and visual representation of mean CO2 fluxes and associated

  1. How life affects the geochemical cycle of carbon

    NASA Technical Reports Server (NTRS)

    Walker, James C. G.

    1992-01-01

    Developing a quantitative understanding of the biogeochemical cycles of carbon as they have worked throughout Earth history on various time scales, how they have been affected by biological evolution, and how changes in the carbon content of ocean and atmosphere may have affected climate and the evolution of life are the goals of the research. Theoretical simulations were developed that can be tuned to reproduce such data as exist and, once tuned, can be used to predict properties that have not yet been observed. This is an ongoing process, in which models and results are refined as new data and interpretations become available and as understanding of the global system improves. Results of the research are described in several papers which were published or submitted for publication. These papers are summarized. Future research plans are presented.

  2. Quantifying the Observability of CO2 Flux Uncertainty in Atmospheric CO2 Records Using Products from Nasa's Carbon Monitoring Flux Pilot Project

    NASA Technical Reports Server (NTRS)

    Ott, Lesley; Pawson, Steven; Collatz, Jim; Watson, Gregg; Menemenlis, Dimitris; Brix, Holger; Rousseaux, Cecile; Bowman, Kevin; Bowman, Kevin; Liu, Junjie; Eldering, Annmarie; Gunson, Michael; Kawa, Stephan R.

    2014-01-01

    NASAs Carbon Monitoring System (CMS) Flux Pilot Project (FPP) was designed to better understand contemporary carbon fluxes by bringing together state-of-the art models with remote sensing datasets. Here we report on simulations using NASAs Goddard Earth Observing System Model, version 5 (GEOS-5) which was used to evaluate the consistency of two different sets of observationally constrained land and ocean fluxes with atmospheric CO2 records. Despite the strong data constraint, the average difference in annual terrestrial biosphere flux between the two land (NASA Ames CASA and CASA-GFED) models is 1.7 Pg C for 2009-2010. Ocean models (NOBM and ECCO2-Darwin) differ by 35 in their global estimates of carbon flux with particularly strong disagreement in high latitudes. Based upon combinations of terrestrial and ocean fluxes, GEOS-5 reasonably simulated the seasonal cycle observed at northern hemisphere surface sites and by the Greenhouse gases Observing SATellite (GOSAT) while the model struggled to simulate the seasonal cycle at southern hemisphere surface locations. Though GEOS-5 was able to reasonably reproduce the patterns of XCO2 observed by GOSAT, it struggled to reproduce these aspects of AIRS observations. Despite large differences between land and ocean flux estimates, resulting differences in atmospheric mixing ratio were small, typically less than 5 ppmv at the surface and 3 ppmv in the XCO2 column. A statistical analysis based on the variability of observations shows that flux differences of these magnitudes are difficult to distinguish from natural variability, regardless of measurement platform.

  3. Estimating forest and other terrestrial carbon fluxes at a national scale: the U.K. experience.

    PubMed

    Milne, Ronnie; Cannell, Melvin G R

    2005-01-01

    For the U.K. the best understood terrestrial carbon flux is that associated with the expansion of forest area over the past 80 years. Modelling methods are described that have been used to estimate this uptake of carbon for the Land-Use Change and Forestry sector in the Greenhouse Gas Inventory of the UNFCCC. Measurements of losses of carbon from afforested organic soils are also presented and the consequent effect on the net national carbon sink for forests is discussed. These calculations show that the expansion of forests is currently causing about 2.8-4.0 Tg (C) per year to be removed from the atmosphere, the uncertainty depending on assessment of the situation for plantations on organic soils. Within these totals about 1.9 Tg (C) per year is being added to living trees, about 0.4 Tg (C) per year to the stock of wood products and the rest to soils. A preliminary estimate for emissions of greenhouse gases resulting from removal of forests for residential development is also presented. Methods to map the variation in the net flux across Great Britain are discussed. The methods used, and the values estimated, for other UK terrestrial carbon fluxes are summarized. A comparison with emissions of CO2 from energy generation, etc. is made.

  4. Integrating water and carbon fluxes at the ecosystem scale across African ecosystems

    NASA Astrophysics Data System (ADS)

    Merbold, Lutz; Brümmer, Christian; Archibald, Sally; Ardö, Jonas; Arneth, Almut; Brüggemann, Nicolas; de Grandcourt, Agnes; Kergoat, Laurent; Moffat, Antje M.; Mougin, Eric; Nouvellon, Yann; Saint-Andre, Laurent; Saunders, Matthew; Scholes, Robert J.; Veenendaal, Elmar; Kutsch, Werner L.

    2013-04-01

    In this study we report on water and carbon dioxide fluxes, measured using the eddy covariance (EC) technology, from different ecosystems in Sub-Saharan Africa. These sites differed in ecosystem type (C3 plant dominated woodlands to C4 plant dominated grass savannas) and covered the very dry regions of the Sahel (250 mm rainfall, Sudan), the tropical areas in Central Africa (1650 mm in Uganda) further south to the subtropical areas in Botswana, Zambia and South Africa (400-900 mm in precipitation). The link between water and carbon dioxide fluxes were evaluated for time periods (see also the corresponding abstract by Bruemmer et al.) without water limitation during the peak growing season. Our results show that plant stomata control ecosystem scale water and carbon dioxide fluxes and mediate between plant growth and plant survival. On continental scale, this switch between maximizing carbon uptake and minimizing water losses, from here on called the "Carbon-Water-Tipping Point" was positively correlated to the mean annual growing season temperature at each site. Even though similar responses of plants were shown at the individual leaf-level scale this has to our knowledge not yet been shown at the ecosystem scale further suggesting a long-term adaptation of the complete ecosystems to certain climatic regions. It remains unclear how this adaption will influence the ecosystem response to ongoing climate change and according temperature increases and changes in precipitation.

  5. Nested Global Inversion for the Carbon Flux Distribution in Canada and USA from 1994 to 2003

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Deng, F.; Ishizawa, M.; Ju, W.; Mo, G.; Chan, D.; Higuchi, K.; Maksyutov, S.

    2007-12-01

    Based on TransCom inverse modeling for 22 global regions, we developed a nested global inversion system for estimating carbon fluxes of 30 regions in North America (2 of the 22 regions are divided into 30). Irregular boundaries of these 30 regions are delineated based on ecosystem types and provincial/state borders. Synthesis Bayesian inversion is conducted in monthly steps using CO2 concentration measurements at 88 coastal and continental stations of the globe for the 1994-2003 period (NOAA GlobalView database). Responses of these stations to carbon fluxes from the 50 regions are simulated using the transport model of National Institute for Environmental Studies of Japan and reanalysis wind fields of the National Centers for Environmental Prediction (NCEP). Terrestrial carbon flux fields modeled using BEPS and Biome-BGC driven by NCEP reanalysis meteorological data are used as two different a priori to constrain the inversion. The inversion (top- down) results are compared with remote sensing-based ecosystem modeling (bottom-up) results in Canada's forests and wetlands. There is a broad consistency in the spatial pattern of the carbon source and sink distributions obtained using these two independent methods. Both sets of results also indicate that Canada's forests and wetlands are carbon sinks in 1994-2003, but the top-down method produces consistently larger sinks than the bottom-up results. Reasons for this discrepancy may lie in both methods, and several issues are identified for further investigation.

  6. Soil organic carbon stocks and fluxes due to land use conversions at the European scale

    NASA Astrophysics Data System (ADS)

    Gobin, A.; Campling, P.

    2012-04-01

    European soils store around 73 to 79 billion tonnes of carbon, which is about 50 times the total CO2-equivalent emissions of the 27 Member States of the European Union in 2009 (4.6 billion tones; EEA, 2010). More than twice as much carbon is held in soils as compared to the storage in vegetation or the atmosphere. Soil organic carbon (SOC) stocks are dynamic and changes in land use, land management and climate may result in instant losses, whereas gains accumulate more slowly over several decades. The soil organic carbon cycle is based on continually supplying carbon in the form of organic matter as a food source for microorganisms, the loss of some carbon as carbon dioxide, and the assimilation of stable carbon in the soil. The organic carbon stocks and fluxes to and from the soil across the EU were quantified for agriculture, forestry and peatlands under different land use change and management scenarios taking into account climate change and using a coupled regional balance and multi-compartment soil organic matter model (Roth-C). Abolishing permanent grassland restrictions would have a negative effect on SOC stocks, which at the EU level can be quantified in a loss 30% higher than in the case of maintaining the current permanent grassland restrictions. Promoting the afforestation of 10% and 25% former set-aside land in the EU-15 would reduce the loss of SOC stock by 2030 by 19% and 65% respectively compared to conversions to arable land. An increase of the current afforestation rates by 2% would result in a 10% increase in carbon stock levels by 2030. The combined effect of the land use conversions to and from agricultural land use demonstrate an EU-27 average -9.7 tonnes/ha SOC stock loss for the worst option and a +5.0 tonnes/ha SOC stock gain for C-Rich option. Larger variations between Member States than between scenario options stem from regional differences in bio-geography, soil types and climatic regimes. The amount of stable or humified organic carbon

  7. The imprint of surface fluxes and transport on variations in total column carbon dioxide

    SciTech Connect

    Keppel-Aleks, G; Wennberg, PO; Washenfelder, RA; Wunch, D; Schneider, T; Toon, GC; Andres, Robert Joseph; Blavier, J-F; Connor, B; Davis, K. J.; Desai, Desai Ankur R.; Messerschmidt, J; Notholt, J; Roehl, CM; Sherlock, V; Stephens, BB; Vay, SA; Wofsy, Steve

    2012-01-01

    New observations of the vertically integrated CO{sub 2} mixing ratio, , from ground-based remote sensing show that variations in are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large-scale and local fluxes. Observations of both and CO{sub 2} concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO{sub 2}, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in from covariations in and potential temperature, {theta}, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that simulations using Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes and the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better fit the observations. Our simulations suggest that climatological mean CASA fluxes underestimate boreal growing season NEE (between 45-65{sup o} N) by {approx}40%. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.

  8. A High-Flux, Flexible Membrane with Parylene-encapsulated Carbon Nanotubes

    SciTech Connect

    Park, H G; In, J; Kim, S; Fornasiero, F; Holt, J K; Grigoropoulos, C P; Noy, A; Bakajin, O

    2008-03-14

    We present fabrication and characterization of a membrane based on carbon nanotubes (CNTs) and parylene. Carbon nanotubes have shown orders of magnitude enhancement in gas and water permeability compared to estimates generated by conventional theories [1, 2]. Large area membranes that exhibit flux enhancement characteristics of carbon nanotubes may provide an economical solution to a variety of technologies including water desalination [3] and gas sequestration [4]. We report a novel method of making carbon nanotube-based, robust membranes with large areas. A vertically aligned dense carbon nanotube array is infiltrated with parylene. Parylene polymer creates a pinhole free transparent film by exhibiting high surface conformity and excellent crevice penetration. Using this moisture-, chemical- and solvent-resistant polymer creates carbon nanotube membranes that promise to exhibit high stability and biocompatibility. CNT membranes are formed by releasing a free-standing film that consists of parylene-infiltrated CNTs, followed by CNT uncapping on both sides of the composite material. Thus fabricated membranes show flexibility and ductility due to the parylene matrix material, as well as high permeability attributed to embedded carbon nanotubes. These membranes have a potential for applications that may require high flux, flexibility and durability.

  9. Site-specific seasonal models of carbon fluxes in terrestrial biomes

    SciTech Connect

    King, A.W.; DeAngelis, D.L.

    1986-01-01

    A set of site-specific computer simulation models of seasonal terrestrial carbon exchange has been assembled from open-literature sources. This collection is designed to facilitate the development of biome-level models for each of the principal terrestrial vegetation biomes on earth, for their integration into a global model of seasonal CO/sub 2/ variation in the atmosphere. The models are described in sufficient detail that their underlying assumptions can be compared. Descriptions include the following aspects of each model: (1) the compartments; (2) the carbon fluxes between compartments; and (3) the climatic variables that drive the carbon fluxes. In particular, the functional forms of the dependencies of respiration and photosynthesis on the driving variables are described. The methods by which these models will be extrapolated to biome-level models are also discussed.

  10. Global, Self-Consistent Carbon Flux and Pool Estimates Utilizing The Simple Biosphere Model (SiB4)

    NASA Astrophysics Data System (ADS)

    Haynes, K.; Baker, I. T.; Denning, A.; Stockli, R.; Schaefer, K. M.; Lokupitiya, E. Y.

    2013-12-01

    Terrestrial carbon fluxes and pools cannot be measured directly on regional and global scales, thus land surface models are a vital tool in improving estimates of carbon sources, sinks, above and below ground biomass, and soil stocks. The Simple Biosphere Model (SiB4) is a self-consistent model that uses minimal input data to simulate carbon fluxes and pools in a fully prognostic system. Land surface models like SiB4 can be evaluated against a variety of data: carbon pools from field campaigns; carbon fluxes from chambers and flux towers; leaf out and senescence timing, as well as length of growing season from in situ observations; crop yields; and remotely sensed leaf area index (LAI), productivity, fluorescence, and biomass. To improve the simulation of the carbon cycle, this study evaluates SiB4 against these metrics. Preliminary results show that SiB4 has skill at predicting carbon pools and fluxes over forests and crops (maize, soybean, and wheat). Biomass, crop yield, LAI, fluorescence, and productivity are reasonable compared to data. Calculating the leaf pool explicitly improves the LAI over satellite-derived estimates, particularly in boreal, temperate, and agricultural ecosystems; and the improved LAI combined with the use of carbon pools to calculate autotrophic and heterotrophic respiration results in an improvement in carbon fluxes. Vegetation-specific comparisons highlight deficiencies in both grasslands and shrubs, which are addressed and will be further developed in the future. The resulting carbon pools and fluxes provide a realistic estimate of the current global terrestrial carbon cycle and are also realistic a priori fluxes for use by the NASA Carbon Monitoring System (CMS) Flux Project to help attribute CO2 climate forcing to spatially resolved emissions.

  11. Chamber and Diffusive Based Carbon Flux Measurements in an Alaskan Arctic Ecosystem

    NASA Astrophysics Data System (ADS)

    Wilkman, E.; Oechel, W. C.; Zona, D.

    2013-12-01

    Eric Wilkman, Walter Oechel, Donatella Zona Comprising an area of more than 7 x 106 km2 and containing over 11% of the world's organic matter pool, Arctic terrestrial ecosystems are vitally important components of the global carbon cycle, yet their structure and functioning are sensitive to subtle changes in climate and many of these functional changes can have large effects on the atmosphere and future climate regimes (Callaghan & Maxwell 1995, Chapin et al. 2002). Historically these northern ecosystems have acted as strong C sinks, sequestering large stores of atmospheric C due to photosynthetic dominance in the short summer season and low rates of decomposition throughout the rest of the year as a consequence of cold, nutrient poor, and generally water-logged conditions. Currently, much of this previously stored carbon is at risk of loss to the atmosphere due to accelerated soil organic matter decomposition in warmer future climates (Grogan & Chapin 2000). Although there have been numerous studies on Arctic carbon dynamics, much of the previous soil flux work has been done at limited time intervals, due to both the harshness of the environment and labor and time constraints. Therefore, in June of 2013 an Ultraportable Greenhouse Gas Analyzer (UGGA - Los Gatos Research Inc.) was deployed in concert with the LI-8100A Automated Soil Flux System (LI-COR Biosciences) in Barrow, AK to gather high temporal frequency soil CO2 and CH4 fluxes from a wet sedge tundra ecosystem. An additional UGGA in combination with diffusive probes, installed in the same location, provides year-round soil and snow CO2 and CH4 concentrations. When used in combination with the recently purchased AlphaGUARD portable radon monitor (Saphymo GmbH), continuous soil and snow diffusivities and fluxes of CO2 and CH4 can be calculated (Lehmann & Lehmann 2000). Of particular note, measuring soil gas concentration over a diffusive gradient in this way allows one to separate both net production and

  12. Sensible heat bias in open-path eddy covariance carbon dioxide flux measurements

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Helbig, M.; Karoline, W.; Humphreys, E.; Quinton, W. L.; Bogoev, I.

    2015-12-01

    The widely observed differences between net carbon dioxide (CO2) flux estimates derived from eddy covariance systems deploying open- and closed-path infrared gas analyzers (IRGAs) pose a major challenge for site intercomparison studies. Our limited knowledge about potential systematic biases in the derivation of CO2 flux estimates by these two types of systems hampers our ability to detect significant differences in CO2 flux measurements made at contrasting ecosystems. Here we explore potential systematic biases in CO2 fluxes measured with two open-path IRGAs. Comparison of fluxes from open- (EC150 & IRGASON, Campbell Scientific Inc.) and (en)closed-path IRGAs (LI7000 & LI7200, LI-COR Biosciences) at a northern peatland and a northern boreal forest site revealed consistent differences in CO2 flux estimates across a wide range of environmental conditions. These differences directly scaled with the magnitude of the sensible heat flux indicating a selectively systematic bias in open-path CO2 flux measurements due to the temperature sensitivity of the CO2 density measurements. We present two empirical correction procedures: the "direct" approach requires data from a limited period of concurrent CO2 flux measurements by open- and closed-path IRGA-based eddy covariance systems, whereas the second approach only requires wintertime CO2 flux data from the open-path IRGA. The "direct" approach effectively removes the bias in the open-path CO2 flux measurements and results in remaining differences with the closed-path CO2 fluxes smaller than 0.5 µmol m-2 s-1. In contrast, the "wintertime" approach seems to overcompensate for the sensible heat effects with differences remaining between 0.9 µmol m-2 s-1 and 1.8 µmol m-2 s-1. When a high-frequency air temperature is used to compensate for the temperature sensitivity of the CO2 density measurements, open- and closed-path CO2 flux agree within ±0.5 µmol m-2 s-1, similar to the "direct" post-processing correction. These

  13. The complexity of carbon flux time series in Europe

    NASA Astrophysics Data System (ADS)

    Lange, Holger; Sippel, Sebastian

    2014-05-01

    Observed geophysical time series usually exhibit pronounced variability, part of which is process-related and deterministic ("signal"), another part is due to random fluctuations ("noise"). To discern these two sources for fluctuations is notoriously difficult using conventional analysis methods, unless sophisticated model assumptions are made. Here, we present an almost parameter-free innovative approach with the potential to draw a distinction between deterministic processes and structured noise, based on ordinal pattern statistics. The method determines one measure for the information content of time series (Shannon entropy) and two complexity measures, one based on global properties of the order pattern distribution (Jensen-Shannon complexity) and one based on local (derivative) properties (Fisher information or complexity). Each time series gets classified via its location in an entropy-complexity plane; using this representation, the method draws a qualitative distinction between different types of natural processes. As a case study, we investigate Gross Primary Productivity (GPP) and respiration which are key variables in terrestrial ecosystems quantifying carbon allocation and biomass growth of vegetation. Changes in GPP and ecosystem respiration can be induced by land use change, environmental disasters or extreme events, and changing climate. Numerous attempts to quantify these variables on larger spatial scales exist. Here, we investigate gridded time series at monthly resolution for the European continent either based on upscaled measurements ("observations") or modelled with two different process-based terrestrial ecosystem models ("simulations"). The complexity analysis is either visualized as maps of Europe showing "hotspots" of complexity for GPP and respiration, or used to provide a detailed observations-simulations and model-model comparison. Values found for information and complexity will be compared to known artificial reference processes

  14. Impacts of a decadal drainage disturbance on surface-atmosphere fluxes of carbon dioxide in a permafrost ecosystem

    NASA Astrophysics Data System (ADS)

    Kittler, Fanny; Burjack, Ina; Corradi, Chiara A. R.; Heimann, Martin; Kolle, Olaf; Merbold, Lutz; Zimov, Nikita; Zimov, Sergey; Göckede, Mathias

    2016-09-01

    Hydrologic conditions are a major controlling factor for carbon exchange processes in high-latitude ecosystems. The presence or absence of water-logged conditions can lead to significant shifts in ecosystem structure and carbon cycle processes. In this study, we compared growing season CO2 fluxes of a wet tussock tundra ecosystem from an area affected by decadal drainage to an undisturbed area on the Kolyma floodplain in northeastern Siberia. For this comparison we found the sink strength for CO2 in recent years (2013-2015) to be systematically reduced within the drained area, with a minor increase in photosynthetic uptake due to a higher abundance of shrubs outweighed by a more pronounced increase in respiration due to warmer near-surface soil layers. Still, in comparison to the strong reduction of fluxes immediately following the drainage disturbance in 2005, recent CO2 exchange with the atmosphere over this disturbed part of the tundra indicate a higher carbon turnover, and a seasonal amplitude that is comparable again to that within the control section. This indicates that the local permafrost ecosystem is capable of adapting to significantly different hydrologic conditions without losing its capacity to act as a net sink for CO2 over the growing season. The comparison of undisturbed CO2 flux rates from 2013-2015 to the period of 2002-2004 indicates that CO2 exchange with the atmosphere was intensified, with increased component fluxes (ecosystem respiration and gross primary production) over the past decade. Net changes in CO2 fluxes are dominated by a major increase in photosynthetic uptake, resulting in a stronger CO2 sink in 2013-2015. Application of a MODIS-based classification scheme to separate the growing season into four sub-seasons improved the interpretation of interannual variability by illustrating the systematic shifts in CO2 uptake patterns that have occurred in this ecosystem over the past 10 years and highlighting the important role of the late

  15. Ditch blocking, water chemistry and organic carbon flux: evidence that blanket bog restoration reduces erosion and fluvial carbon loss.

    PubMed

    Wilson, Lorraine; Wilson, Jared; Holden, Joseph; Johnstone, Ian; Armstrong, Alona; Morris, Michael

    2011-05-01

    The potential for restoration of peatlands to deliver benefits beyond habitat restoration is poorly understood. There may be impacts on discharge water quality, peat erosion, flow rates and flood risk, and nutrient fluxes. This study aimed to assess the impact of drain blocking, as a form of peatland restoration, on an upland blanket bog, by measuring water chemistry and colour, and loss of both dissolved (DOC) and particulate organic carbon (POC). The restoration work was designed to permit the collection of a robust experimental dataset over a landscape scale, with data covering up to 3 years pre-restoration and up to 3 years post-restoration. An information theoretic approach to data analyses provided evidence of a recovery of water chemistry towards more 'natural' conditions, and showed strong declines in the production of water colour. Drain blocking led to increases in the E4:E6 ratio, and declines in specific absorbance, suggesting that DOC released from blocked drains consisted of lighter, less humic and less decomposed carbon. Whilst concentrations of DOC showed slight increases in drains and streams after blocking, instantaneous yields of both DOC and POC declined markedly in streams over the first year post-restoration. Attempts were made to estimate total annual fluvial organic carbon fluxes for the study site, and although errors around these estimates remain considerable, there is strong evidence of a large reduction in aquatic organic carbon flux from the peatland following drain-blocking. Potential mechanisms for the observed changes in water chemistry and organic carbon release are discussed, and we highlight the need for more detailed information, from more sites, to better understand the full impacts of peatland restoration on carbon storage and release.

  16. Impact of the 2012 US drought on ecosystem carbon and water fluxes (Invited)

    NASA Astrophysics Data System (ADS)

    Wolf, S.; Baldocchi, D. D.; Fisher, J. B.; Keenan, T. F.

    2013-12-01

    Drought severely impacts biosphere-atmosphere carbon and water fluxes of terrestrial ecosystems by reducing productivity, carbon uptake and water transport to the atmosphere. The 2012 US drought was among the most intense and widespread drought events in the US since the ';Dust Bowl' period in the 1930s. Drought conditions started developing during an exceptionally warm spring, intensified throughout the summer and were most severe in the Central US (Midwest), with devastating effects on agricultural production. Here we synthesize the impact of the 2012 drought on ecosystem carbon and water fluxes across the Contiguous United States using eddy covariance data from 30 AmeriFlux sites and remote sensing data from MODIS. We found widespread reductions in gross primary production and evapotranspiration of up to 50% in the Midwest during the summer months. Drought intensity and duration are directly linked to changes in ecosystem fluxes. As drought frequencies and intensities are predicted to increase in the future, we discuss the implications of our results regarding drought susceptibilities of different land-use types.

  17. Biospheric and petrogenic organic carbon flux along southeast Alaska

    NASA Astrophysics Data System (ADS)

    Cui, Xingqian; Bianchi, Thomas S.; Jaeger, John M.; Smith, Richard W.

    2016-10-01

    Holocene fjords store ca. 11-12% of the total organic carbon (OC) buried in marine sediments with fjords along southeast (SE) Alaska possibly storing half of this OC (Smith et al., 2015). However, the respective burial of biospheric (OCbio) and petrogenic OC (OCpetro) remains poorly constrained, particularly across glaciated versus non-glaciated systems. Here, we use surface sediment samples to quantify the sources and burial of sedimentary OC along SE Alaska fjord-coastal systems, and conduct a latitudinal comparison across a suite of fjords and river-coastal systems with distinctive OC sources. Our results for SE Alaska show that surface sediments in northern fjords (north of Icy Strait) with headwater glaciers are dominated by OCpetro, in contrast to marine and terrestrially-derived fresh OC in non-glaciated southern fjords. Along the continental shelf of the Gulf of Alaska, terrestrial OC is exported from rivers. Using end-member mixing models, we determine that glaciated fjords have significantly higher burial rates of OCpetro (∼ 1.1 ×103 gOC m-2yr-1) than non-glaciated fjords and other coastal systems, making SE Alaska potentially the largest sink of OCpetro in North America. In contrast, non-glaciated fjords in SE Alaska are effective in burying marine OC (OCbio-mari) (13-82 g OC m-2yr-1). Globally, OC in fjord sediments are comprised of a mixture of OCpetro and fresh OCbio, in contrast to the pre-aged OC from floodplain river-coastal systems. We find that there may be a general latitudinal trend in the role of fjords in processing OC, where high-latitude temperate glacial fjords (e.g., Yakutat Bay, SE Alaska) rebury OCpetro and non-glacial mid-latitude fjords (e.g., Doubtful Sound, Fiordland) sequester CO2 from phytoplankton and/or temperate forests. Overall, we propose that fjords are effective in sequestering OCbio and re-burying OCpetro. Based on our study, we hypothesize that climate change will have a semi-predictable impact on fjords' OC cycling in

  18. Diurnal centroid of ecosystem energy and carbon fluxes at FLUXNET sites

    NASA Astrophysics Data System (ADS)

    Wilson, Kell B.; Baldocchi, Dennis; Falge, Eva; Aubinet, Marc; Berbigier, Paul; Bernhofer, Christian; Dolman, Han; Field, Chris; Goldstein, Allen; Granier, Andre; Hollinger, Dave; Katul, Gabriel; Law, B. E.; Meyers, Tilden; Moncrieff, John; Monson, Russ; Tenhunen, John; Valentini, Riccardo; Verma, Shashi; Wofsy, Steve

    2003-11-01

    Data from a network of eddy covariance stations in Europe and North America (FLUXNET) were analyzed to examine the diurnal patterns of surface energy and carbon fluxes during the summer period across a range of ecosystems and climates. Diurnal trends were quantified by assessing the time of day surface fluxes and meteorological variable reached peak values, using the "diurnal centroid" method; the diurnal centroid enabled us to discern whether the peak activity of the variable of interest is weighted more toward the morning or afternoon. In this paper, diurnal centroid estimates were used to diagnose which atmospheric and physiological processes controlled carbon dioxide, water vapor, and sensible heat fluxes across different ecosystems and climates. Sensitivity tests suggested that the diurnal centroids for latent (LE) and sensible (H) heat flux depend on atmospheric resistance, static stability in the free atmosphere, stomatal response to vapor pressure deficit, and advection. With respect to diurnal trends of surface energy fluxes at FLUXNET sites, maximum LE occurred later in the day relative to H at most tall forests with continental climates. The lag between LE and H was reduced or reversed at sites that were influenced by advection or by afternoon stomatal closure. The time of peak carbon uptake of temperate forests occurred earlier relative to the temporal peak of photosynthetically active radiation, as compared to boreal forests. The timing of this peak occurred earlier during periods with low soil water content, as it did during the summer in Mediterranean climates. In this case, the diurnal centroid for the CO2 flux was influenced by the response of respiration and photosynthesis to increasing afternoon temperature and by afternoon stomatal closure.

  19. Planktic foraminifer and coccolith contribution to carbonate export fluxes over the central Kerguelen Plateau

    NASA Astrophysics Data System (ADS)

    Rembauville, M.; Meilland, J.; Ziveri, P.; Schiebel, R.; Blain, S.; Salter, I.

    2016-05-01

    We report the contribution of planktic foraminifers and coccoliths to the particulate inorganic carbon (PIC) export fluxes collected over an annual cycle (October 2011/September 2012) on the central Kerguelen Plateau in the Antarctic Zone (AAZ) south of the Polar Front (PF). The seasonality of PIC flux was decoupled from surface chlorophyll a concentration and particulate organic carbon (POC) fluxes and was characterized by a late summer (February) maximum. This peak was concomitant with the highest satellite-derived sea surface PIC and corresponded to a Emiliania huxleyi coccoliths export event that accounted for 85% of the annual PIC export. The foraminifer contribution to the annual PIC flux was much lower (15%) and dominated by Turborotalita quinqueloba and Neogloboquadrina pachyderma. Foraminifer export fluxes were closely related to the surface chlorophyll a concentration, suggesting food availability as an important factor regulating the foraminifer's biomass. We compared size-normalized test weight (SNW) of the foraminifers with previously published SNW from the Crozet Islands using the same methodology and found no significant difference in SNW between sites for a given species. However, the SNW was significantly species-specific with a threefold increase from T. quinqueloba to Globigerina bulloides. The annual PIC:POC molar ratio of 0.07 was close to the mean ratio for the global ocean and lead to a low carbonate counter pump effect (~5%) compared to a previous study north of the PF (6-32%). We suggest that lowers counter pump effect south of the PF despite similar productivity levels is due to a dominance of coccoliths in the PIC fluxes and a difference in the foraminifers species assemblage with a predominance of polar species with lower SNW.

  20. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms

    NASA Astrophysics Data System (ADS)

    Tramontana, Gianluca; Jung, Martin; Schwalm, Christopher R.; Ichii, Kazuhito; Camps-Valls, Gustau; Ráduly, Botond; Reichstein, Markus; Altaf Arain, M.; Cescatti, Alessandro; Kiely, Gerard; Merbold, Lutz; Serrano-Ortiz, Penelope; Sickert, Sven; Wolf, Sebastian; Papale, Dario

    2016-07-01

    Spatio-temporal fields of land-atmosphere fluxes derived from data-driven models can complement simulations by process-based land surface models. While a number of strategies for empirical models with eddy-covariance flux data have been applied, a systematic intercomparison of these methods has been missing so far. In this study, we performed a cross-validation experiment for predicting carbon dioxide, latent heat, sensible heat and net radiation fluxes across different ecosystem types with 11 machine learning (ML) methods from four different classes (kernel methods, neural networks, tree methods, and regression splines). We applied two complementary setups: (1) 8-day average fluxes based on remotely sensed data and (2) daily mean fluxes based on meteorological data and a mean seasonal cycle of remotely sensed variables. The patterns of predictions from different ML and experimental setups were highly consistent. There were systematic differences in performance among the fluxes, with the following ascending order: net ecosystem exchange (R2 < 0.5), ecosystem respiration (R2 > 0.6), gross primary production (R2> 0.7), latent heat (R2 > 0.7), sensible heat (R2 > 0.7), and net radiation (R2 > 0.8). The ML methods predicted the across-site variability and the mean seasonal cycle of the observed fluxes very well (R2 > 0.7), while the 8-day deviations from the mean seasonal cycle were not well predicted (R2 < 0.5). Fluxes were better predicted at forested and temperate climate sites than at sites in extreme climates or less represented by training data (e.g., the tropics). The evaluated large ensemble of ML-based models will be the basis of new global flux products.

  1. Regional Carbon Fluxes and Atmospheric Carbon Dynamics in the Southern Great Plains during the 2007 CLASIC intensive

    NASA Astrophysics Data System (ADS)

    Biraud, S. C.; Torn, M. S.; Riley, W. J.; Fischer, M. L.; Billesbach, D. P.; Avissar, R.; Berry, J. A.; Hirsch, A.; Loewenstein, M.; Lopez, J.

    2007-12-01

    In June 2007, a regional campaign took place in the Southern Great Plains (SGP) to estimate land-atmosphere exchanges of CO2, water, and energy at 1 to 100 km scales. The primary goals of this campaign were to evaluate top-down and bottom-up estimates of regional fluxes and to understand the influence of moisture gradients, surface heterogeneity, and atmospheric transport patterns on these fluxes (and their estimation). The work was integrated with the Cloud and Land Surface Interaction Campaign (CLASIC), centered on the US DOE Atmospheric Radiation Measurement (ARM) Program SGP region. CO2 concentration data were collected from tower and airborne platforms. Eddy flux towers were deployed in the four major land cover types, distributed over the region's SE to NW precipitation gradient. In addition, CO2, water, and energy fluxes were observed with the Duke Helicopter Observation Platform (HOP) at various heights in the boundary layer, including in the surface layer (the few meters near the surface). One aircraft carried precise CO2, CO, and CH4 continuous measurement systems, and 14C, radon, and NOAA 12-flask (carbon cycle gases and isotopes) packages. Continuous CO2, CO, and radon concentrations, NOAA 2-flask package, and isotope diel flasks (14C, 13C, and 18O) were also collected from a centrally located 60 m tower. Flights were planned to constrain simple boundary layer budget models and to conduct Lagrangian air mass following experiments. We present these data in the context of characterizing surface carbon exchanges via bottom-up and top-down approaches. We also describe results from forward (using MM5-LSM) and inverse (using STILT) modeling to estimate regional surface carbon and energy fluxes. In addition to characterizing the influence of the land surface on the atmosphere, the aircraft data (in combination with observations of atmospheric dynamics) provides a very well characterized southern boundary condition to the NACP Mid-Continent Intensive.

  2. Understanding the representativeness of FLUXNET for upscaling carbon flux from eddy covariance measurements

    SciTech Connect

    Kumar, Jitendra; Hoffman, Forrest M.; Hargrove, William W.; Collier, Nathan

    2016-08-23

    Eddy covariance data from regional flux networks are direct in situ measurement of carbon, water, and energy fluxes and are of vital importance for understanding the spatio-temporal dynamics of the the global carbon cycle. FLUXNET links regional networks of eddy covariance sites across the globe to quantify the spatial and temporal variability of fluxes at regional to global scales and to detect emergent ecosystem properties. This study presents an assessment of the representativeness of FLUXNET based on the recently released FLUXNET2015 data set. We present a detailed high resolution analysis of the evolving representativeness of FLUXNET through time. Results provide quantitative insights into the extent that various biomes are sampled by the network of networks, the role of the spatial distribution of the sites on the network scale representativeness at any given time, and how that representativeness has changed through time due to changing operational status and data availability at sites in the network. To realize the full potential of FLUXNET observations for understanding emergent ecosystem properties at regional and global scales, we present an approach for upscaling eddy covariance measurements. Informed by the representativeness of observations at the flux sites in the network, the upscaled data reflects the spatio-temporal dynamics of the carbon cycle captured by the in situ measurements. In conclusion, this study presents a method for optimal use of the rich point measurements from FLUXNET to derive an understanding of upscaled carbon fluxes, which can be routinely updated as new data become available, and direct network expansion by identifying regions poorly sampled by the current network.

  3. Understanding the representativeness of FLUXNET for upscaling carbon flux from eddy covariance measurements

    DOE PAGES

    Kumar, Jitendra; Hoffman, Forrest M.; Hargrove, William W.; ...

    2016-08-23

    Eddy covariance data from regional flux networks are direct in situ measurement of carbon, water, and energy fluxes and are of vital importance for understanding the spatio-temporal dynamics of the the global carbon cycle. FLUXNET links regional networks of eddy covariance sites across the globe to quantify the spatial and temporal variability of fluxes at regional to global scales and to detect emergent ecosystem properties. This study presents an assessment of the representativeness of FLUXNET based on the recently released FLUXNET2015 data set. We present a detailed high resolution analysis of the evolving representativeness of FLUXNET through time. Results providemore » quantitative insights into the extent that various biomes are sampled by the network of networks, the role of the spatial distribution of the sites on the network scale representativeness at any given time, and how that representativeness has changed through time due to changing operational status and data availability at sites in the network. To realize the full potential of FLUXNET observations for understanding emergent ecosystem properties at regional and global scales, we present an approach for upscaling eddy covariance measurements. Informed by the representativeness of observations at the flux sites in the network, the upscaled data reflects the spatio-temporal dynamics of the carbon cycle captured by the in situ measurements. In conclusion, this study presents a method for optimal use of the rich point measurements from FLUXNET to derive an understanding of upscaled carbon fluxes, which can be routinely updated as new data become available, and direct network expansion by identifying regions poorly sampled by the current network.« less

  4. Carbon fluxes and export in the northern and middle Atlantic Sea measured with drifting sediment traps

    SciTech Connect

    Miquel, J-C; Fowler, S; Hamilton, T; Heilmann, J P; LaRosa, J; Carroll, M

    2000-07-26

    In July 1993 and June 1995 drifting sediment traps were deployed near the Po outflow, in the coastal zone and in the Jabuka Pit in order to obtain quantitative information on the vertical flux of particulate material and export of organic carbon in the Northern and Middle Adriatic Sea. During these periods and in July 1994, the standing stock of carbon and nitrogen in the water column were also estimated. Carbon and nitrogen concentrations were higher in the north with a mean of 266 {micro}g C l{sup -1} in surface waters as compared to 92 {micro}g C l{sup -1} in Middle Adriatic; maximum concentrations were associated to the less-saline surface-subsurface waters in the north and to the chlorophyll a maximum in the Middle Adriatic. Organic carbon flux was roughly five times higher near the Po than in the more oligotrophic waters of the central region, with overall values (0.8 to 11.5 mg m{sup -2} d{sup -1}) being low compared to the open Northwestern Mediterranean. Comparison with primary production measurements yielded estimates of carbon export (f-ratio) of 4.7 and 3.4% in the Po and Pit stations, respectively, in 1993 and of 1.6 and 3.6% in the central part of the Adriatic in 1995. These consistently low values suggest enhanced carbon recycling in the upper water column, even in regions characterized by different production and organic flux regimes. Zooplankton fecal pellets were important conveyors of organic carbon in this region; particularly those produced by fishes in the North and coastal sites.

  5. BOREAS TGB-12 Soil Carbon and Flux Data of NSA-MSA in Raster Format

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David E. (Editor); Rapalee, Gloria; Davidson, Eric; Harden, Jennifer W.; Trumbore, Susan E.; Veldhuis, Hugo

    2000-01-01

    The BOREAS TGB-12 team made measurements of soil carbon inventories, carbon concentration in soil gases, and rates of soil respiration at several sites. This data set provides: (1) estimates of soil carbon stocks by horizon based on soil survey data and analyses of data from individual soil profiles; (2) estimates of soil carbon fluxes based on stocks, fire history, drain-age, and soil carbon inputs and decomposition constants based on field work using radiocarbon analyses; (3) fire history data estimating age ranges of time since last fire; and (4) a raster image and an associated soils table file from which area-weighted maps of soil carbon and fluxes and fire history may be generated. This data set was created from raster files, soil polygon data files, and detailed lab analysis of soils data that were received from Dr. Hugo Veldhuis, who did the original mapping in the field during 1994. Also used were soils data from Susan Trumbore and Jennifer Harden (BOREAS TGB-12). The binary raster file covers a 733-km 2 area within the NSA-MSA.

  6. Carbon dioxide, water vapor and sensible heat fluxes over a tallgrass prairie

    NASA Astrophysics Data System (ADS)

    Verma, Shashi B.; Kim, Joon; Clement, Robert J.

    1989-01-01

    Fluxes of CO2, water vapor and sensible heat were measured in a grassland ecosystem near Manhattan, Kansas, employing the eddy correlation technique. The vegetation at this site is dominated by big bluestem ( Andropogon gerardii), switchgrass ( Panicum virgatum), and indiangrass ( Sorghastrum nutans). Diurnal patterns of the energy budget components and CO2 fluxes are evaluated on a few selected days. Influence of high atmospheric evaporative demand and low availability of soil water are examined on (a) energy partitioning, and (b) the magnitudes and patterns of atmospheric carbon dioxide exchange.

  7. Fluxnet and Satellite data to optimize carbon and water fluxes simulated by ORCHIDEE biosphere model

    NASA Astrophysics Data System (ADS)

    Santaren, D.; Peylin, P.; Kuppel, S.; Bacour, C.; Granier, A.; Rayner, P. J.; Ciais, P.

    2010-12-01

    Terrestrial ecosystem models are used to predict the response of energy water and carbon balances of Earth's ecosystems to environmental changes. However, the estimated fluxes remain subject to large uncertainties, partly because of unknown or poorly calibrated parameters. Assimilation of in situ data should help constraining these parameter to improve simulations of the carbon balance and climate predictions. Using a state of the art mechanistic vegetation model ORCHIDEE, involved in the next AR5-IPCC report, we investigated the benefit of Fluxnet data (net CO2 flux (NEE) and latent heat flux (LE)) as well as remotely sensed fAPAR (fraction of absorbed photosynthetically active radiation) to improve the model. ORCHIDEE computes the energy, carbon and water balances on a half-hourly basis, depending on the meteorological forcing and the biome composition of the ecosystem. The phenology of the model is also fully prognostic allowing the derivation of leaf area index time course. A four dimensional variational data (4D-var) assimilation system has been developed, using the tangent linear model, to assimilate synergistically different observations (daily means) and optimize critical parameters of the model (on the order of 20). The study makes uses of available data from few sites in Europe and investigates three major points. We first analyze the ability of the model to capture the fluxes during particular extreme climate conditions (i.e. summer 2003 in Europe) using parameters optimized during “normal weather” conditions at a beach forest in France (Hesse site). The model-data fit for NEE and LE is analyzed in terms of annual mean, seasonal cycles and synoptic variations. We then performed an optimization using multiple sites of the same Plant Functional Type (PFT) at the same time. This optimization allows assessing the potential of the model to simulate with a mean set of parameters the carbon and water fluxes of several sites under different climate regimes

  8. Sensitivity of Simulated Global Ocean Carbon Flux Estimates to Forcing by Reanalysis Products

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Casey, Nancy W.; Rousseaux, Cecile S.

    2015-01-01

    Reanalysis products from MERRA, NCEP2, NCEP1, and ECMWF were used to force an established ocean biogeochemical model to estimate air-sea carbon fluxes (FCO2) and partial pressure of carbon dioxide (pCO2) in the global oceans. Global air-sea carbon fluxes and pCO2 were relatively insensitive to the choice of forcing reanalysis. All global FCO2 estimates from the model forced by the four different reanalyses were within 20% of in situ estimates (MERRA and NCEP1 were within 7%), and all models exhibited statistically significant positive correlations with in situ estimates across the 12 major oceanographic basins. Global pCO2 estimates were within 1% of in situ estimates with ECMWF being the outlier at 0.6%. Basin correlations were similar to FCO2. There were, however, substantial departures among basin estimates from the different reanalysis forcings. The high latitudes and tropics had the largest ranges in estimated fluxes among the reanalyses. Regional pCO2 differences among the reanalysis forcings were muted relative to the FCO2 results. No individual reanalysis was uniformly better or worse in the major oceanographic basins. The results provide information on the characterization of uncertainty in ocean carbon models due to choice of reanalysis forcing.

  9. Assessment of metabolic flux distribution in the thermophilic hydrogen producer Caloramator celer as affected by external pH and hydrogen partial pressure

    PubMed Central

    2014-01-01

    Background Caloramator celer is a strict anaerobic, alkalitolerant, thermophilic bacterium capable of converting glucose to hydrogen (H2), carbon dioxide, acetate, ethanol and formate by a mixed acid fermentation. Depending on the growth conditions C. celer can produce H2 at high yields. For a biotechnological exploitation of this bacterium for H2 production it is crucial to understand the factors that regulate carbon and electron fluxes and therefore the final distribution of metabolites to channel the metabolic flux towards the desired product. Results Combining experimental results from batch fermentations with genome analysis, reconstruction of central carbon metabolism and metabolic flux analysis (MFA), this study shed light on glucose catabolism of the thermophilic alkalitolerant bacterium C. celer. Two innate factors pertaining to culture conditions have been identified to significantly affect the metabolic flux distribution: culture pH and partial pressures of H2 (PH2). Overall, at alkaline to neutral pH the rate of biomass synthesis was maximized, whereas at acidic pH the lower growth rate and the less efficient biomass formation are accompanied with more efficient energy recovery from the substrate indicating high cell maintenance possibly to sustain intracellular pH homeostasis. Higher H2 yields were associated with fermentation at acidic pH as a consequence of the lower synthesis of other reduced by-products such as formate and ethanol. In contrast, PH2 did not affect the growth of C. celer on glucose. At high PH2 the cellular redox state was balanced by rerouting the flow of carbon and electrons to ethanol and formate production allowing unaltered glycolytic flux and growth rate, but resulting in a decreased H2 synthesis. Conclusion C. celer possesses a flexible fermentative metabolism that allows redistribution of fluxes at key metabolic nodes to simultaneously control redox state and efficiently harvest energy from substrate even under unfavorable

  10. Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction.

    PubMed

    Wankel, Scott D; Adams, Melissa M; Johnston, David T; Hansel, Colleen M; Joye, Samantha B; Girguis, Peter R

    2012-10-01

    The anaerobic oxidation of methane (AOM) is a globally significant sink that regulates methane flux from sediments into the oceans and atmosphere. Here we examine mesophilic to thermophilic AOM in hydrothermal sediments recovered from the Middle Valley vent field, on the Juan de Fuca Ridge. Using continuous-flow sediment bioreactors and batch incubations, we characterized (i) the degree to which AOM contributes to net dissolved inorganic carbon flux, (ii) AOM and sulfate reduction (SR) rates as a function of temperature and (iii) the distribution and density of known anaerobic methanotrophs (ANMEs). In sediment bioreactors, inorganic carbon stable isotope mass balances results indicated that AOM accounted for between 16% and 86% of the inorganic carbon produced, underscoring the role of AOM in governing inorganic carbon flux from these sediments. At 90°C, AOM occurred in the absence of SR, demonstrating a striking decoupling of AOM from SR. An abundance of Fe(III)-bearing minerals resembling mixed valent Fe oxides, such as green rust, suggests the potential for a coupling of AOM to Fe(III) reduction in these metalliferous sediments. While SR bacteria were only observed in cooler temperature sediments, ANMEs allied to ANME-1 ribotypes, including a putative ANME-1c group, were found across all temperature regimes and represented a substantial proportion of the archaeal community. In concert, these results extend and reshape our understanding of the nature of high temperature methane biogeochemistry, providing insight into the physiology and ecology of thermophilic anaerobic methanotrophy and suggesting that AOM may play a central role in regulating biological dissolved inorganic carbon fluxes to the deep ocean from the organic-poor, metalliferous sediments of the global mid-ocean ridge hydrothermal vent system.

  11. Measuring Water and Carbon Fluxes Over Forested Complex Topography From Plant to Small Watershed Scale

    NASA Astrophysics Data System (ADS)

    Qualls, R. J.; Zhao, W.

    2005-12-01

    The overall goal of this research is to contribute toward a better understanding and methods of quantifying the magnitude, timing, distribution and coupling of carbon and water fluxes in mountainous forestlands. This includes one segment of the continuum of carbon and water flow from the "forest to the sea". The processes addressed include the storage and exchange of carbon and water between the atmosphere and the land surface including in and by vegetation. We have three key objectives: 1) the merging of innovative new measurements with models to improve the biophysics of the models at the tree and canopy scale; 2) the application of models at the landscape scale, which is necessary for evaluating the impacts of human activities on regional carbon balance; and 3) the use of models to predict the impacts of policy decisions, for example land cover change decisions, as well as climate change. The work to be presented here focuses on one aspect of this problem: the measurement of turbulent fluxes of water from and carbon into the forest canopy over complex terrain. Measurement of turbulent fluxes in complex topography with complex vegetation is an area of significant scientific interest, but which at present is not well understood. Some of the work that has been done by others includes slope and air density corrections, analysis of the relationship of friction velocity and spectral frequency on energy budget closure, relative effects of mesoscale topography versus local topography and canopy structure on local flux measurements. In order to address this problem, we have constructed a 130 foot tall tower in a mountainous, forested watershed, among a mix of conifers including Douglas fir, Cedar, Tamarack, and Hemlock. The forest was planted 75 to 80 years ago, and the trees average around 100 feet in height. We are collecting eddy correlation measurements of water, carbon and heat fluxes above the canopy. The issues surrounding measurement of fluxes from complex

  12. Reactive transport modeling of the impact of ocean acidification on global carbon fluxes in coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Krumins, Valdis; van Cappellen, Philippe; Regnier, Pierre

    2010-05-01

    Because of relatively high productivity of both calcifying and non-calcifying phytoplankton in coastal zones, coastal sediments can act as a significant carbon sink. Ocean acidification is likely to impact productivity of these groups differently, raising the question of the overall effect of ocean acidification on carbon burial in coastal sediments. We modeled the effect of varying depositional fluxes of particulate organic carbon (POC) and particulate inorganic carbon (PIC) on carbon cycling in coastal marine sediments using a one-dimensional reactive transport model. Transport processes include sediment burial, advection, diffusion, bioturbation and bioirrigation. The model incorporates the hydrolysis of macromolecular organic matter, the redox pathways of POC oxidation, re-oxidation reactions of the reduced compounds produced during POC decomposition, the acid-base chemical equilibria, and the dissolution of PIC (calcite, aragonite, and Mg-calcite) in the upper 50 cm of sediment. The following processes are also included: precipitation of iron sulfide and iron carbonate, sorption of Fe(II), ammonium and phosphate, sulfidization of organic matter, and pyritization. The global return fluxes of dissolved inorganic carbon (DIC) and alkalinity are estimated by modeling sediments at 25 m, 75 m, and 150 m depths, and multiplying by the global area of seafloor depths 0-50 m, 50-100 m, and 100-200 m, respectively. We determined the sensitivity of carbon and nutrient return fluxes to changes in pH, PIC and POC fluxes, as well as to poorly constrained Fe(III) deposition fluxes. Inorganic carbon return fluxes are influenced most by the particulate organic and inorganic carbon depositional fluxes; the seawater pH has a limited effect. Modeled sediment pH profiles and PIC dissolution are also sensitive to the iron deposition flux. The overreaching goal of the research is to forecast the global response of coastal sediment return fluxes as a result of anthropogenic ocean

  13. Vascular plant controls on carbon cycling and greenhouse gas fluxes in wetlands

    NASA Astrophysics Data System (ADS)

    Ström, L.; Christensen, T.

    2003-04-01

    Several aspects of biodiversity have important implications for ecosystem functioning. Species composition in any ecosystem affects carbon and energy exchange as well as greenhouse gas fluxes. In combination with the effects of vascular plants on CO_2 dynamics through photosynthesis and respiration plants also affect important processes relating to CH_4 dynamics, e.g., production, consumption and transport. Details of the mechanisms behind these relationships, however, are still poorly known. Through a combination of field and laboratory experiments we have studied different wetland sedges and found distinct differences in their functioning. In an arctic wet tundra ecosystem in NE Greenland we studied in particular how species-specific root exudation patterns affect the availability of acetate, a hypothesised precursor of CH_4 formation. We found significantly higher acetate formation rates in the root vicinity of Eriophorum scheuchzeri compared with another dominating sedge in the wetland, i.e., Dupontia psilosantha. Furthermore, a shading treatment, which reduced net photosynthesis, resulted in significantly decreased formation rates of acetate. We also found that the potential CH_4 production of the peat profile was highly positively correlated to concentration of acetate at the respective depths. To further investigate the importance of acetate as a predecessor to CH_4 we brought an intact peat-plant monolith system collected at the field site in NE Greenland to the laboratory, sealed it hermetically and studied the decomposition of 14C-labelled acetate injected at the depth of methanogenic activity. After 4 hours 14CH_4 emission from the monolith could be observed and after an additional 20 hours 14CO_2 was emitted. A subsequent laboratory experiment, regarding an additional three plant species Eriophorum vaginatum, Juncus effucum and Carex rostrata, collected from a wet site in Southern Sweden, further emphasized that the effect of vascular plants on the

  14. Developing an Understanding of Vegetation Change and Fluvial Carbon Fluxes in Semi-Arid Environments

    NASA Astrophysics Data System (ADS)

    Puttock, A.; Brazier, R. E.; Dungait, J. A. J.; Bol, R.; Macleod, C. J. A.

    2012-04-01

    Dryland environments are estimated to cover around 40% of the global land surface (Okin et al, 2009) and are home to approximately 2.5 billion people (Reynolds et al. 2007). Many of these areas have recently experienced extensive land degradation. One such area and the focus of this project is the semi-arid US Southwest, where degradation over the past 150 years has been characterised by the invasion of woody vegetation into grasslands. Transition from grass to woody vegetation results in a change in ecosystem structure and function (Turnbull et al, 2008). Structural change is typically characterised by an increased heterogeneity of soil and vegetation resources, associated with reduced vegetation coverage and an increased vulnerability to soil erosion and the potential loss of key nutrients to adjacent fluvial systems. Such loss of resources may impact heavily upon the amount of carbon that is sequestered by these environments and the amount of carbon that is lost as the land becomes more degraded. Therefore, understanding these vegetation transitions is significant for sustainable land use and global biogeochemical cycling. This project uses an ecohydrological approach, monitoring natural rainfall-runoff events over six bounded plots with different vegetation coverage. The experiment takes advantage of a natural abundance stable 13C isotope shift from C3 piñon-juniper (Pinus edulis-Juniperus monosperma) mixed stand through a C4 pure-grass (Bouteloua eriopoda) to C3 shrub (Larrea tridentata). Data collected quantify fluvial fluxes of sediment and associated soil organic matter and carbon that is lost from across the grass-to-shrub and grass-to-woodland transition (where change in space is taken to indicate a similar change through time). Results collected during the 2010 and 2011 monsoon seasons will be presented, illustrating that soil and carbon losses are greater as the ecosystem becomes more dominated by woody plants. Additionally this project utilises novel

  15. Increased terrestrial to ocean sediment and carbon fluxes in the northern Chesapeake Bay associated with twentieth century land alteration

    USGS Publications Warehouse

    Saenger, C.; Cronin, T. M.; Willard, D.; Halka, J.; Kerhin, R.

    2008-01-01

    We calculated Chesapeake Bay (CB) sediment and carbon fluxes before and after major anthropogenic land clearance using robust monitoring, modeling and sedimentary data. Four distinct fluxes in the estuarine system were considered including (1) the flux of eroded material from the watershed to streams, (2) the flux of suspended sediment at river fall lines, (3) the burial flux in tributary sediments, and (4) the burial flux in main CB sediments. The sedimentary maximum in Ambrosia (ragweed) pollen marked peak land clearance (~1900 a.d.). Rivers feeding CB had a total organic carbon (TOC)/total suspended solids of 0.24??0.12, and we used this observation to calculate TOC fluxes from sediment fluxes. Sediment and carbon fluxes increased by 138-269% across all four regions after land clearance. Our results demonstrate that sediment delivery to CB is subject to significant lags and that excess post-land clearance sediment loads have not reached the ocean. Post-land clearance increases in erosional flux from watersheds, and burial in estuaries are important processes that must be considered to calculate accurate global sediment and carbon budgets. ?? 2008 Coastal and Estuarine Research Federation.

  16. Regional Carbon Fluxes and Atmospheric Carbon Dynamics in the Southern Great Plains during the 2007 Mid Continent Intensive of NACP

    NASA Astrophysics Data System (ADS)

    Torn, M. S.; Fischer, M. L.; Riley, W. J.; Jackson, T. J.; Avissar, R.; Biraud, S. C.; Billesbach, D. P.; Sweeney, C.; Tans, P. P.; Berry, J. A.

    2006-12-01

    In June 2007, an intensive regional campaign will take place in the Southern Great Plains (SGP) to estimate land-atmosphere exchanges of CO2, water, and energy at 1 to 100 km scales. The primary goals of this North American Carbon Program (NACP) campaign are to evaluate top-down and bottom-up estimates of regional fluxes and to understand the influence of moisture gradients, surface heterogeneity, and atmospheric transport patterns on these fluxes (and their estimation). The work will be integrated with the Cloud and Land Surface Interaction Campaign (CLASIC), centered on the US DOE Atmospheric Radiation Measurement Program SGP region. CLASIC will focus on interactions among the land surface, convective boundary layer, and cumulus clouds, and will utilize an array of atmospheric measurements. Carbon and meteorological data streams and logistical resources will be available to other NACP researchers. Carbon flux and concentration data will be collected from tower and airborne platforms. Eddy flux towers will be deployed in the four major land cover types, distributed over the region's SE to NW precipitation gradient. In addition, CO2, water, and energy fluxes will be observed with the Duke Helicopter Observation Platform (HOP) at various heights in the boundary layer, including in the surface layer (the few meters near the surface). Two aircraft will carry precise CO2 measurement systems and NOAA12-flask packages for carbon cycle gases and isotopes. Continuous CO2 and CO concentrations, NOAA flasks, and isotope diel flasks (14C, 13C, and 18O) will also be collected from a centrally located 60 m tower. Flights are planned to constrain simple boundary layer budget models and to conduct Lagrangian air mass following experiments. A distributed model of land surface fluxes will be run off line and coupled to MM5 with tracer capability. In addition to characterizing the influence of the land surface on the atmosphere, the aircraft data (in combination with observations of

  17. Regulation of CO2 and N2O fluxes by coupled carbon and nitrogen availability

    NASA Astrophysics Data System (ADS)

    Liang, L. L.; Eberwein, J. R.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-03-01

    Carbon (C) and nitrogen (N) interactions contribute to uncertainty in current biogeochemical models that aim to estimate greenhouse gas (GHG, including CO2 and N2O) emissions from soil to atmosphere. In this study, we quantified CO2 and N2O flux patterns and their relationship along with increasing C additions only, N additions only, a C gradient combined with excess N, and an N gradient with excess C via laboratory incubations. Conventional trends, where labile C or N addition results in higher CO2 or N2O fluxes, were observed. However, at low levels of C availability, saturating N amendments reduced soil CO2 flux while with high C availability N amendments enhanced it. At saturating C conditions increasing N amendments first reduced and then increased CO2 fluxes. Similarly, N2O fluxes were initially reduced by adding labile C under N limited conditions, but additional C enhanced N2O fluxes by more than two orders of magnitude in the saturating N environment. Changes in C or N use efficiency could explain the altered gas flux patterns and imply a critical level in the interactions between N and C availability that regulate soil trace gas emissions and biogeochemical cycling. Compared to either N or C amendment alone, the interaction of N and C caused ∼60 and ∼5 times the total GHG emission, respectively. Our findings suggested that the response of CO2 and N2O fluxes along stoichiometric gradients in C and N availability should be accounted for interpreting or modeling the biogeochemistry of GHG emissions.

  18. Aircraft- and tower-based fluxes of carbon dioxide, latent, and sensible heat

    NASA Technical Reports Server (NTRS)

    Desjardins, R. L.; Hart, R. L.; Macpherson, J. I.; Schuepp, P. H.; Verma, S. B.

    1992-01-01

    Fluxes of carbon dioxide, water vapor, and sensible heat obtained over a grassland ecosystem, during the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), using an aircraft- and two tower-based systems are compared for several days in 1987 and in 1989. The tower-based cospectral estimates of CO2, sensible heat, water vapor, and momentum, expressed as a function of wavenumber K times sampling height z, are relatively similar to the aircraft-based estimates for K x z greater than 0.1. A measurable contribution to the fluxes is observed by tower-based systems at K x z less than 0.01 but not by the aircraft-based system operating at an altitude of approximately 100 m over a 15 x 15 km area. Using all available simultaneous aircraft and tower data, flux estimates by both systems were shown to be highly correlated. As expected from the spatial variations of the greenness index, surface extrapolation of airborne flux estimates tended to lie between those of the two tower sites. The average fluxes obtained, on July 11, 1987, and August 4, 1989, by flying a grid pattern over the FIFE site agreed with the two tower data sets for CO2, but sensible and latent heat were smaller than those obtained by the tower-based systems. However, in general, except for a small underestimation due to the long wavelength contributions and due to flux divergence with height, the differences between the aircraft- and tower-based surface estimates of fluxes appear to be mainly attributable to differences in footprint, that is, differences in the area contributing to the surface flux estimates.

  19. Simulating crop phenology in the Community Land Model and its impact on energy and carbon fluxes

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Griffis, Tim J.; Baker, John; Wood, Jeffrey D.; Xiao, Ke

    2015-02-01

    A reasonable representation of crop phenology and biophysical processes in land surface models is necessary to accurately simulate energy, water, and carbon budgets at the field, regional, and global scales. However, the evaluation of crop models that can be coupled to Earth system models is relatively rare. Here we evaluated two such models (CLM4-Crop and CLM3.5-CornSoy), both implemented within the Community Land Model (CLM) framework, at two AmeriFlux corn-soybean sites to assess their ability to simulate phenology, energy, and carbon fluxes. Our results indicated that the accuracy of net ecosystem exchange and gross primary production simulations was intimately connected to the phenology simulations. The CLM4-Crop model consistently overestimated early growing season leaf area index, causing an overestimation of gross primary production, to such an extent that the model simulated a carbon sink instead of the measured carbon source for corn. The CLM3.5-CornSoy-simulated leaf area index (LAI), energy, and carbon fluxes showed stronger correlations with observations compared to CLM4-Crop. Net radiation was biased high in both models and was especially pronounced for soybeans. This was primarily caused by the positive LAI bias, which led to a positive net long-wave radiation bias. CLM4-Crop underestimated soil water content during midgrowing season in all soil layers at the two sites, which caused unrealistic water stress, especially for soybean. Future work regarding the mechanisms that drive early growing season phenology and soil water dynamics is needed to better represent crops including their net radiation balance, energy partitioning, and carbon cycle processes.

  20. Regional carbon fluxes from land use and land cover change in Asia, 1980-2009

    NASA Astrophysics Data System (ADS)

    Calle, Leonardo; Canadell, Josep G.; Patra, Prabir; Ciais, Philippe; Ichii, Kazuhito; Tian, Hanqin; Kondo, Masayuki; Piao, Shilong; Arneth, Almut; Harper, Anna B.; Ito, Akihiko; Kato, Etsushi; Koven, Charlie; Sitch, Stephen; Stocker, Benjamin D.; Vivoy, Nicolas; Wiltshire, Andy; Zaehle, Sönke; Poulter, Benjamin

    2016-07-01

    We present a synthesis of the land-atmosphere carbon flux from land use and land cover change (LULCC) in Asia using multiple data sources and paying particular attention to deforestation and forest regrowth fluxes. The data sources are quasi-independent and include the U.N. Food and Agriculture Organization-Forest Resource Assessment (FAO-FRA 2015; country-level inventory estimates), the Emission Database for Global Atmospheric Research (EDGARv4.3), the ‘Houghton’ bookkeeping model that incorporates FAO-FRA data, an ensemble of 8 state-of-the-art Dynamic Global Vegetation Models (DGVM), and 2 recently published independent studies using primarily remote sensing techniques. The estimates are aggregated spatially to Southeast, East, and South Asia and temporally for three decades, 1980-1989, 1990-1999 and 2000-2009. Since 1980, net carbon emissions from LULCC in Asia were responsible for 20%-40% of global LULCC emissions, with emissions from Southeast Asia alone accounting for 15%-25% of global LULCC emissions during the same period. In the 2000s and for all Asia, three estimates (FAO-FRA, DGVM, Houghton) were in agreement of a net source of carbon to the atmosphere, with mean estimates ranging between 0.24 to 0.41 Pg C yr-1, whereas EDGARv4.3 suggested a net carbon sink of -0.17 Pg C yr-1. Three of 4 estimates suggest that LULCC carbon emissions declined by at least 34% in the preceding decade (1990-2000). Spread in the estimates is due to the inclusion of different flux components and their treatments, showing the importance to include emissions from carbon rich peatlands and land management, such as shifting cultivation and wood harvesting, which appear to be consistently underreported.

  1. Hotspots in ground and surface water carbon fluxes through a freshwater to marine (mangrove) transition zone

    NASA Astrophysics Data System (ADS)

    Larsen, J.; Welti, N.; Hayes, M.; Lockington, D. A.

    2014-12-01

    The transfer of carbon and water from coastal freshwater wetlands to intertidal and marine zones is significant for sustaining ecosystem processes, particularly within mangroves environments. Large increases in carbon and nutrient fluxes within spatially confined zones (hotspots) are significant as drivers for broader cycling. How these processes relate to the transfers between surface and groundwater systems, as well as the transition from freshwater to marine environments, remains poorly understood. We investigated the flux of carbon and water from a freshwater wetland, to a saltmarsh and then mangroves, both within the main surface channel and within a comprehensive shallow groundwater bore network. We were able to characterise the main spatial trends in water gradients and mixing (using salinity, hydraulic gradients, stable water isotopes, and temperature) over seasonal cycles. In addition, at the same time we investigated the changes in dissolved organic carbon concentration and quality (fluorescence, UV), as well as nutrients (NO3, NH4). This revealed the river and tidal channel to be a significant export pathway for organic carbon, which was generally highly aromatic and recalcitrant. However, we also found that isolated sections of the brackish groundwater mixing zone between freshwater and marine provided a consistently high DOC 'hotspot' of very high quality carbon. This hotspot has high lateral groundwater gradients and therefore likely transports this carbon to the rest of the mangrove subsurface, where it is rapidly assimilated. These results imply large spatial heterogeneity in the carbon cycling between freshwater and marine environments, and have significant implications for the processing of the organic matter, and therefore also the respiration of greenhouse gases such as CO2 and CH4.

  2. Carbon fluxes in ecosystems of Yellowstone National Park predicted from remote sensing data and simulation modeling

    PubMed Central

    2011-01-01

    Background A simulation model based on remote sensing data for spatial vegetation properties has been used to estimate ecosystem carbon fluxes across Yellowstone National Park (YNP). The CASA (Carnegie Ames Stanford Approach) model was applied at a regional scale to estimate seasonal and annual carbon fluxes as net primary production (NPP) and soil respiration components. Predicted net ecosystem production (NEP) flux of CO2 is estimated from the model for carbon sinks and sources over multi-year periods that varied in climate and (wildfire) disturbance histories. Monthly Enhanced Vegetation Index (EVI) image coverages from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instrument (from 2000 to 2006) were direct inputs to the model. New map products have been added to CASA from airborne remote sensing of coarse woody debris (CWD) in areas burned by wildfires over the past two decades. Results Model results indicated that relatively cooler and wetter summer growing seasons were the most favorable for annual plant production and net ecosystem carbon gains in representative landscapes of YNP. When summed across vegetation class areas, the predominance of evergreen forest and shrubland (sagebrush) cover was evident, with these two classes together accounting for 88% of the total annual NPP flux of 2.5 Tg C yr-1 (1 Tg = 1012 g) for the entire Yellowstone study area from 2000-2006. Most vegetation classes were estimated as net ecosystem sinks of atmospheric CO2 on annual basis, making the entire study area a moderate net sink of about +0.13 Tg C yr-1. This average sink value for forested lands nonetheless masks the contribution of areas burned during the 1988 wildfires, which were estimated as net sources of CO2 to the atmosphere, totaling to a NEP flux of -0.04 Tg C yr-1 for the entire burned area. Several areas burned in the 1988 wildfires were estimated to be among the lowest in overall yearly NPP, namely the Hellroaring Fire, Mink Fire, and Falls Fire

  3. Impact of vegetation cover variability on surface energy and carbon fluxes

    NASA Astrophysics Data System (ADS)

    Boussetta, Souhail; Balsamo, Gianpaolo; Dutra, Emanuel; Beljaars, Anton; Albergel, Clement; De Rosnay, Patricia; Munoz-Sabater, Joaquin

    2015-04-01

    The effects of vegetation coverage distributions on surface energy and carbon fluxes predictions from the land surface model are investigated. The model is applied at global scale and a comparison between two vegetation cover configurations is performed. In the first configuration, the vegetation cover is based on a fixed prescribed map, in the second the vegetation cover varies based on satellite observation of Leaf Area Index according to a modified Beer-Lamber law which includes vegetation clumping. The impact of consideration of vegetation cover variability on surface fluxes derived from offline runs of the ECMWF land surface scheme is studied. The near-surface air temperature and humidity derived from coupled runs using the ECMWF Integrated Forecasting system (IFS) and the carbon dioxide will be shown to respond to vegetation changes.

  4. Measurement of boron and carbon fluxes in cosmic rays with the PAMELA experiment

    SciTech Connect

    Adriani, O.; Bongi, M.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bruno, A.; Boezio, M.; Bonvicini, V.; Carbone, R.; Bogomolov, E. A.; Bottai, S.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; De Donato, C.; De Santis, C.; De Simone, N.; Castellini, G.; Danilchenko, I. A.; and others

    2014-08-20

    The propagation of cosmic rays inside our galaxy plays a fundamental role in shaping their injection spectra into those observed at Earth. One of the best tools to investigate this issue is the ratio of fluxes for secondary and primary species. The boron-to-carbon (B/C) ratio, in particular, is a sensitive probe to investigate propagation mechanisms. This paper presents new measurements of the absolute fluxes of boron and carbon nuclei as well as the B/C ratio from the PAMELA space experiment. The results span the range 0.44-129 GeV/n in kinetic energy for data taken in the period 2006 July to 2008 March.

  5. Estimation of Carbon Flux of Forest Ecosystem over Qilian Mountains by BIOME-BGC Model

    NASA Astrophysics Data System (ADS)

    Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei

    2014-11-01

    The gross primary production (GPP) and net ecosystem exchange (NEE) are important indicators for carbon fluxes. This study aims at evaluating the forest GPP and NEE over the Qilian Mountains using meteorological, remotely sensed and other ancillary data at large scale. To realize this, the widely used ecological-process-based model, Biome-BGC, and remote-sensing-based model, MODIS GPP algorithm, were selected for the simulation of the forest carbon fluxes. The combination of these two models was based on calibrating the Biome-BGC by the optimized MODIS GPP algorithm. The simulated GPP and NEE values were evaluated against the eddy covariance observed GPPs and NEEs, and the well agreements have been reached, with R2=0.76, 0.67 respectively.

  6. Estimation of Carbon Flux of Forest Ecosystem over Qilian Mountains by BIOME-BGC Model

    NASA Astrophysics Data System (ADS)

    Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei

    2014-11-01

    The gross primary production (GPP) and net ecosystem exchange (NEE) are important indicators for carbon fluxes. This study aims at evaluating the forest GPP and NEE over the Qilian Mountains using meteorological, remotely sensed and other ancillary data at large scale. To realize this, the widely used ecological-process- based model, Biome-BGC, and remote-sensing-based model, MODIS GPP algorithm, were selected for the simulation of the forest carbon fluxes. The combination of these two models was based on calibrating the Biome-BGC by the optimized MODIS GPP algorithm. The simulated GPP and NEE values were evaluated against the eddy covariance observed GPPs and NEEs, and the well agreements have been reached, with R2=0.76, 0.67 respectively.

  7. Seasonal Changes in Plankton Food Web Structure and Carbon Dioxide Flux from Southern California Reservoirs

    PubMed Central

    Adamczyk, Emily M.; Shurin, Jonathan B.

    2015-01-01

    Reservoirs around the world contribute to cycling of carbon dioxide (CO2) with the atmosphere, but there is little information on how ecosystem processes determine the absorption or emission of CO2. Reservoirs are the most prevalent freshwater systems in the arid southwest of North America, yet it is unclear whether they sequester or release CO2 and therefore how water impoundment impacts global carbon cycling. We sampled three reservoirs in San Diego, California, weekly for one year. We measured seasonal variation in the abundances of bacteria, phytoplankton, and zooplankton, as well as water chemistry (pH, nutrients, ions, dissolved organic carbon [DOC]), which were used to estimate partial pressure of CO2 (pCO2), and CO2 flux. We found that San Diego reservoirs are most often undersaturated with CO2 with respect to the atmosphere and are estimated to absorb on average 3.22 mmol C m-2 day-1. pCO2 was highest in the winter and lower in the summer, indicating seasonal shifts in the magnitudes of photosynthesis and respiration associated with day length, temperature and water inputs. Abundances of microbes (bacteria) peaked in the winter along with pCO2, while phytoplankton, nutrients, zooplankton and DOC were all unrelated to pCO2. Our data indicate that reservoirs of semi-arid environments may primarily function as carbon sinks, and that carbon flux varies seasonally but is unrelated to nutrient or DOC availability, or the abundances of phytoplankton or zooplankton. PMID:26473601

  8. Seasonal Changes in Plankton Food Web Structure and Carbon Dioxide Flux from Southern California Reservoirs.

    PubMed

    Adamczyk, Emily M; Shurin, Jonathan B

    2015-01-01

    Reservoirs around the world contribute to cycling of carbon dioxide (CO2) with the atmosphere, but there is little information on how ecosystem processes determine the absorption or emission of CO2. Reservoirs are the most prevalent freshwater systems in the arid southwest of North America, yet it is unclear whether they sequester or release CO2 and therefore how water impoundment impacts global carbon cycling. We sampled three reservoirs in San Diego, California, weekly for one year. We measured seasonal variation in the abundances of bacteria, phytoplankton, and zooplankton, as well as water chemistry (pH, nutrients, ions, dissolved organic carbon [DOC]), which were used to estimate partial pressure of CO2 (pCO2), and CO2 flux. We found that San Diego reservoirs are most often undersaturated with CO2 with respect to the atmosphere and are estimated to absorb on average 3.22 mmol C m(-2) day(-1). pCO2 was highest in the winter and lower in the summer, indicating seasonal shifts in the magnitudes of photosynthesis and respiration associated with day length, temperature and water inputs. Abundances of microbes (bacteria) peaked in the winter along with pCO2, while phytoplankton, nutrients, zooplankton and DOC were all unrelated to pCO2. Our data indicate that reservoirs of semi-arid environments may primarily function as carbon sinks, and that carbon flux varies seasonally but is unrelated to nutrient or DOC availability, or the abundances of phytoplankton or zooplankton.

  9. Technical note: mesocosm approach to quantification of carbon dioxide fluxes across the vadose zone

    NASA Astrophysics Data System (ADS)

    Thaysen, E. M.; Jessen, S.; Ambus, P.; Beier, C.; Postma, D.; Jakobsen, I.

    2013-06-01

    Carbon dioxide (CO2) fluxes in the vadose zone are influenced by a complex interplay of biological, chemical and physical factors. A soil mesocosm system was designed to assess the effect of agricultural practices on carbon fluxes within and out of the vadose zone at controlled environmental conditions. Carbon dioxide partial pressure (pCO2), alkalinity, soil moisture and temperature were measured with depth and time, and DIC in the percolate was quantified using a sodium hydroxide trap. Results showed good reproducibility between two replicate mesocosms. The pCO2 varied between 0.2-1.1% and alkalinity was 0.1-0.6 meq L-1. The measured effluent DIC flux was 185-196 mg L-1 m-2 and in the same range as estimates derived from pCO2 and alkalinity in samples extracted from the side of the mesocosm column, and the water flux. The relatively small variation provides confidence that the mesocosm system is a promising tool for studying a~range of processes in unsaturated environments. Meanwhile, high suction at the mesocosm bottom applied to reduce water ponding during intensive irrigation caused degassing of dissolved CO2 from the water phase just below the outlet, leading to diffusion of dissolved CO2 across the lower boundary. Though not influencing DIC flux measurements to the groundwater, this lead to a lowering of the pCO2 in the stagnant water at the mesocosm bottom. A free-drainage boundary is suggested in order to avoid this effect.

  10. Unsteady flow of carbon nanotubes with chemical reaction and Cattaneo-Christov heat flux model

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Kiran, Asmara; Imtiaz, Maria; Alsaedi, Ahmed

    Present analysis examines boundary layer flow of carbon nanotubes over a curved stretching surface. Instead of classical Fourier law we employed Cattaneo-Christov heat flux theory. The heterogeneous reaction taking place on the wall surface are given by isothermal cubic autocatalytic kinetics. The homogeneous reaction occurring in the ambient fluid are governed by first order kinetics. Appropriate transformations are employed to obtain system of nonlinear ordinary differential equations. Convergent series solution are obtained. Single and multi wall carbon nanotubes are used. Water is taken as a base fluid. Fluid flow, temperature, concentration, skin friction coefficient and Nusselt number are examined and analyzed for different involved parameters.

  11. Impact of mountain pine beetle induced mortality on forest carbon and water fluxes

    NASA Astrophysics Data System (ADS)

    Reed, David E.; Ewers, Brent E.; Pendall, Elise

    2014-10-01

    Quantifying impacts of ecological disturbance on ecosystem carbon and water fluxes will improve predictive understanding of biosphere—atmosphere feedbacks. Tree mortality caused by mountain pine bark beetles (Dendroctonus ponderosae) is hypothesized to decrease photosynthesis and water flux to the atmosphere while increasing respiration at a rate proportional to mortality. This work uses data from an eddy-covariance flux tower in a bark beetle infested lodgepole pine (Pinus contorta) forest to test ecosystem responses during the outbreak. Analyses were conducted on components of carbon (C) and water fluxes in response to disturbance and environmental factors (solar radiation, soil water content and vapor pressure deficit). Maximum CO2 uptake did not change as tree basal area mortality increased from 30 to 78% over three years of beetle disturbance. Growing season evapotranspiration varied among years while ecosystem water use efficiency (the ratio of net CO2 uptake to water vapor loss) did not change. Between 2009 and 2011, canopy water conductance increased from 98.6 to 151.7 mmol H2O m-2 s-1. Ecosystem light use efficiency of photosynthesis increased, with quantum yield increasing by 16% during the outbreak as light increased below the mature tree canopy and illuminated remaining vegetation more. Overall net ecosystem productivity was correlated with water flux and hence water availability. Average weekly ecosystem respiration, derived from light response curves and standard Ameriflux protocols for CO2 flux partitioning into respiration and gross ecosystem productivity, did not change as mortality increased. Separate effects of increased respiration and photosynthesis efficiency largely canceled one another out, presumably due to increased diffuse light in the canopy and soil organic matter decomposition resulting in no change in net CO2 exchange. These results agree with an emerging consensus in the literature demonstrating CO2 and H2O dynamics following large

  12. Landscape-level controls on dissolved carbon flux from diverse catchments of the circumboreal

    USGS Publications Warehouse

    Tank, Suzanne; Frey, Karen E.; Striegl, Robert G.; Raymond, Peter A.; Holmes, R. Max; McClelland, James W.; Peterson, Bruce J.

    2012-01-01

    While much of the dissolved organic carbon (DOC) within rivers is destined for mineralization to CO2, a substantial fraction of riverine bicarbonate (HCO3-) flux represents a CO2 sink, as a result of weathering processes that sequester CO2 as HCO3-. We explored landscape-level controls on DOC and HCO3- flux in subcatchments of the boreal, with a specific focus on the effect of permafrost on riverine dissolved C flux. To do this, we undertook a multivariate analysis that partitioned the variance attributable to known, key regulators of dissolved C flux (runoff, lithology, and vegetation) prior to examining the effect of permafrost, using riverine biogeochemistry data from a suite of subcatchments drawn from the Mackenzie, Yukon, East, and West Siberian regions of the circumboreal. Across the diverse catchments that we study, controls on HCO3- flux were near-universal: runoff and an increased carbonate rock contribution to weathering (assessed as riverwater Ca:Na) increased HCO3- yields, while increasing permafrost extent was associated with decreases in HCO3-. In contrast, permafrost had contrasting and region-specific effects on DOC yield, even after the variation caused by other key drivers of its flux had been accounted for. We used ionic ratios and SO4 yields to calculate the potential range of CO2 sequestered via weathering across these boreal subcatchments, and show that decreasing permafrost extent is associated with increases in weathering-mediated CO2 fixation across broad spatial scales, an effect that could counterbalance some of the organic C mineralization that is predicted with declining permafrost.

  13. Implications of elevated CO2 on pelagic carbon fluxes in an Arctic mesocosm study - an elemental mass balance approach

    NASA Astrophysics Data System (ADS)

    Czerny, J.; Schulz, K. G.; Boxhammer, T.; Bellerby, R. G. J.; Büdenbender, J.; Engel, A.; Krug, S. A.; Ludwig, A.; Nachtigall, K.; Nondal, G.; Niehoff, B.; Silyakova, A.; Riebesell, U.

    2013-05-01

    Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air-sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification applying KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation), all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down the mentioned uncertainties. Water-column concentrations of particulate and dissolved organic and inorganic matter were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution as well as estimates of wall growth were developed to close the gaps in element budgets. However, losses elements from the budgets into a sum of insufficiently determined pools were detected, and are principally unavoidable in mesocosm investigation. The comparison of variability patterns of all single measured datasets revealed analytic precision to be the main issue in determination of budgets. Uncertainties in dissolved organic carbon (DOC), nitrogen (DON) and particulate organic phosphorus (POP) were much higher than the summed error in determination of the same elements in all other pools. With estimates provided for all other major elemental pools, mass balance calculations could be used to infer the temporal development of DOC, DON and POP pools. Future elevated pCO2 was found to enhance net autotrophic community carbon uptake in two of

  14. [Simulation of water and carbon fluxes in harvard forest area based on data assimilation method].

    PubMed

    Zhang, Ting-Long; Sun, Rui; Zhang, Rong-Hua; Zhang, Lei

    2013-10-01

    Model simulation and in situ observation are the two most important means in studying the water and carbon cycles of terrestrial ecosystems, but have their own advantages and shortcomings. To combine these two means would help to reflect the dynamic changes of ecosystem water and carbon fluxes more accurately. Data assimilation provides an effective way to integrate the model simulation and in situ observation. Based on the observation data from the Harvard Forest Environmental Monitoring Site (EMS), and by using ensemble Kalman Filter algorithm, this paper assimilated the field measured LAI and remote sensing LAI into the Biome-BGC model to simulate the water and carbon fluxes in Harvard forest area. As compared with the original model simulated without data assimilation, the improved Biome-BGC model with the assimilation of the field measured LAI in 1998, 1999, and 2006 increased the coefficient of determination R2 between model simulation and flux observation for the net ecosystem exchange (NEE) and evapotranspiration by 8.4% and 10.6%, decreased the sum of absolute error (SAE) and root mean square error (RMSE) of NEE by 17.7% and 21.2%, and decreased the SAE and RMSE of the evapotranspiration by 26. 8% and 28.3%, respectively. After assimilated the MODIS LAI products of 2000-2004 into the improved Biome-BGC model, the R2 between simulated and observed results of NEE and evapotranspiration was increased by 7.8% and 4.7%, the SAE and RMSE of NEE were decreased by 21.9% and 26.3%, and the SAE and RMSE of evapotranspiration were decreased by 24.5% and 25.5%, respectively. It was suggested that the simulation accuracy of ecosystem water and carbon fluxes could be effectively improved if the field measured LAI or remote sensing LAI was integrated into the model.

  15. Changing fluxes of carbon and other solutes from the Mekong River

    PubMed Central

    Li, Siyue; Bush, Richard T.

    2015-01-01

    Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world’s largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923–2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO42−, Cl− and Na+. The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3− (23.4) > Ca2+ (6.4) > SO42− (3.8) > Cl− (1.74)~Na+ (1.7) ~ Si (1.67) > Mg2+ (1.2) > K+ (0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3− and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3− flux (Himalayan Rivers included) is 34014 × 109 mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3−, and 13553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling. PMID:26522820

  16. Changing fluxes of carbon and other solutes from the Mekong River.

    PubMed

    Li, Siyue; Bush, Richard T

    2015-11-02

    Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world's largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923-2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO4(2-), Cl(-) and Na(+). The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3(-) (23.4) > Ca(2+) (6.4) > SO4(2-) (3.8) > Cl(-) (1.74)~Na(+) (1.7) ~ Si (1.67) > Mg(2+) (1.2) > K(+ 0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3(-) and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3(-) flux (Himalayan Rivers included) is 34,014 × 10(9) mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3(-), and 13,553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling.

  17. Determination of the carbon budget of a pasture: effect of system boundaries and flux uncertainties

    NASA Astrophysics Data System (ADS)

    Felber, Raphael; Bretscher, Daniel; Münger, Andreas; Neftel, Albrecht; Ammann, Christof

    2016-05-01

    Carbon (C) sequestration in the soil is considered as a potential important mechanism to mitigate greenhouse gas (GHG) emissions of the agricultural sector. It can be quantified by the net ecosystem carbon budget (NECB) describing the change of soil C as the sum of all relevant import and export fluxes. NECB was investigated here in detail for an intensively grazed dairy pasture in Switzerland. Two budget approaches with different system boundaries were applied: NECBtot for system boundaries including the grazing cows and NECBpast for system boundaries excluding the cows. CO2 and CH4 exchange induced by soil/vegetation processes as well as direct emissions by the animals were derived from eddy covariance measurements. Other C fluxes were either measured (milk yield, concentrate feeding) or derived based on animal performance data (intake, excreta). For the investigated year, both approaches resulted in a small near-neutral C budget: NECBtot -27 ± 62 and NECBpast 23 ± 76 g C m-2 yr-1. The considerable uncertainties, depending on the approach, were mainly due to errors in the CO2 exchange or in the animal-related fluxes. The comparison of the NECB results with the annual exchange of other GHG revealed CH4 emissions from the cows to be the major contributor in terms of CO2 equivalents, but with much lower uncertainty compared to NECB. Although only 1 year of data limit the representativeness of the carbon budget results, they demonstrate the important contribution of the non-CO2 fluxes depending on the chosen system boundaries and the effect of their propagated uncertainty in an exemplary way. The simultaneous application and comparison of both NECB approaches provides a useful consistency check for the carbon budget determination and can help to identify and eliminate systematic errors.

  18. Determination of the carbon budget of a pasture: effect of system boundaries and flux uncertainties

    NASA Astrophysics Data System (ADS)

    Felber, R.; Bretscher, D.; Münger, A.; Neftel, A.; Ammann, C.

    2015-12-01

    Carbon (C) sequestration in the soil is considered as a potential important mechanism to mitigate greenhouse gas (GHG) emissions of the agricultural sector. It can be quantified by the net ecosystem carbon budget (NECB) describing the change of soil C as the sum of all relevant import and export fluxes. NECB was investigated here in detail for an intensively grazed dairy pasture in Switzerland. Two budget approaches with different system boundaries were applied: NECBtot for system boundaries including the grazing cows and NECBpast for system boundaries excluding the cows. CO2 and CH4 exchange induced by soil/vegetation processes as well as direct emissions by the animals were derived from eddy covariance measurements. Other C fluxes were either measured (milk yield, concentrate feeding) or derived based on animal performance data (intake, excreta). For the investigated year, both approaches resulted in a small non-significant C loss: NECBtot - 13 ± 61 g C m-2 yr-1 and NECBpast - 17 ± 81 g C m-2 yr-1. The considerable uncertainties, depending on the approach, were mainly due to errors in the CO2 exchange or in the animal related fluxes. The associated GHG budget revealed CH4 emissions from the cows to be the major contributor, but with much lower uncertainty compared to NECB. Although only one year of data limit the representativeness of the carbon budget results, they demonstrated the important contribution of the non-CO2 fluxes depending on the chosen system boundaries and the effect of their propagated uncertainty in an exemplary way. The simultaneous application and comparison of both NECB approaches provides a useful consistency check for the carbon budget determination and can help to identify and eliminate systematic errors.

  19. African tropical rainforest net carbon dioxide fluxes in the twentieth century.

    PubMed

    Fisher, Joshua B; Sikka, Munish; Sitch, Stephen; Ciais, Philippe; Poulter, Benjamin; Galbraith, David; Lee, Jung-Eun; Huntingford, Chris; Viovy, Nicolas; Zeng, Ning; Ahlström, Anders; Lomas, Mark R; Levy, Peter E; Frankenberg, Christian; Saatchi, Sassan; Malhi, Yadvinder

    2013-01-01

    The African humid tropical biome constitutes the second largest rainforest region, significantly impacts global carbon cycling and climate, and has undergone major changes in functioning owing to climate and land-use change over the past century. We assess changes and trends in CO₂ fluxes from 1901 to 2010 using nine land surface models forced with common driving data, and depict the inter-model variability as the uncertainty in fluxes. The biome is estimated to be a natural (no disturbance) net carbon sink (-0.02 kg C m⁻² yr⁻¹ or -0.04 Pg C yr⁻¹, p < 0.05) with increasing strength fourfold in the second half of the century. The models were in close agreement on net CO₂ flux at the beginning of the century (σ1901 = 0.02 kg C m⁻² yr⁻¹), but diverged exponentially throughout the century (σ2010 = 0.03 kg C m⁻² yr⁻¹). The increasing uncertainty is due to differences in sensitivity to increasing atmospheric CO₂, but not increasing water stress, despite a decrease in precipitation and increase in air temperature. However, the largest uncertainties were associated with the most extreme drought events of the century. These results highlight the need to constrain modelled CO₂ fluxes with increasing atmospheric CO₂ concentrations and extreme climatic events, as the uncertainties will only amplify in the next century.

  20. Estimating carbon fluxes in a Posidonia oceanica system: Paradox of the bacterial carbon demand

    NASA Astrophysics Data System (ADS)

    Velimirov, B.; Lejeune, P.; Kirschner, A.; Jousseaume, M.; Abadie, A.; Pête, D.; Dauby, P.; Richir, J.; Gobert, S.

    2016-03-01

    A mass balance ecosystemic approach, based on bacterial carbon demands and primary production data, was used to investigate if the bacterial community (freewater bacterioplankton and benthic bacteria of the oxygenated sediment layer) could be sustained by the main primary producers (Posidonia oceanica and its epiphytes, adjacent macroalgae and phytoplankton communities; hereafter called the P. oceanica system) of a non-eutrophic Mediterranean bay. Unexpectedly, the findings of this study differed from previous works that used benthic incubation chamber and O2 optode methods. In this study, data were grouped in two categories, corresponding to two time periods, according to the seawater temperature regime (<18 °C or >18 °C): from May to October and from November to April. Between May and October, the produced benthic macrophyte tissues could not provide the carbon required by the bacteria of the oxygenated sediment layer, showing that the balance production of the investigated bay was clearly heterotrophic (i.e. negative) during this time period. In contrast, between November and April, benthic bacteria respiration nearly equated to carbon production. When integrating the open water carbon dynamics above the meadow in the model, a negative carbon balance was still observed between May and October, while a slight carbon excess was noticed between November and April. In the light of these findings, the carbon balance being negative on an annual basis, alternative carbon sources are required for the maintenance of the bacterial carbon production.

  1. On the nature of the excess 100 micron flux associated with carbon stars

    NASA Technical Reports Server (NTRS)

    Egan, Michael P.; Leung, Chun M.

    1991-01-01

    The emission from carbon stars with circumstellar dust shells of different structure, composition, opacity, and age was modeled with the purpose of determining the origin of the excess flux in the FIR and testing the detached shell hypotheses of Willems (1987) and Olofsson et al. (1990). Three possible sources for the excess flux were identified: (1) cool dust in a single extended shell; (2) emission from dust in the intervening interstellar medium; or (3) emission from a two-shell system in which the additional shell is a remnant from an earlier mass-loss episode. It was found that only the two-shell model with a remnant shell which is at least 1 pc thick could explain the 60- and 100-micron flux excesses seen in carbon stars with dust shells of a given opacity. Calculations of time scales for the production of the detached shells and of the carbon star lifetime were found to be consistent with the evolutionary scenario proposed by Willems.

  2. The Glyoxylate Cycle in an Arbuscular Mycorrhizal Fungus. Carbon Flux and Gene Expression

    PubMed Central

    Lammers, Peter J.; Jun, Jeongwon; Abubaker, Jehad; Arreola, Raul; Gopalan, Anjali; Bago, Berta; Hernandez-Sebastia, Cinta; Allen, James W.; Douds, David D.; Pfeffer, Philip E.; Shachar-Hill, Yair

    2001-01-01

    The arbuscular mycorrhizal (AM) symbiosis is responsible for huge fluxes of photosynthetically fixed carbon from plants to the soil. Lipid, which is the dominant form of stored carbon in the fungal partner and which fuels spore germination, is made by the fungus within the root and is exported to the extraradical mycelium. We tested the hypothesis that the glyoxylate cycle is central to the flow of carbon in the AM symbiosis. The results of 13C labeling of germinating spores and extraradical mycelium with 13C2-acetate and 13C2-glycerol and analysis by nuclear magnetic resonance spectroscopy indicate that there are very substantial fluxes through the glyoxylate cycle in the fungal partner. Full-length sequences obtained by polymerase chain reaction from a cDNA library from germinating spores of the AM fungus Glomus intraradices showed strong homology to gene sequences for isocitrate lyase and malate synthase from plants and other fungal species. Quantitative real-time polymerase chain reaction measurements show that these genes are expressed at significant levels during the symbiosis. Glyoxysome-like bodies were observed by electron microscopy in fungal structures where the glyoxylate cycle is expected to be active, which is consistent with the presence in both enzyme sequences of motifs associated with glyoxysomal targeting. We also identified among several hundred expressed sequence tags several enzymes of primary metabolism whose expression during spore germination is consistent with previous labeling studies and with fluxes into and out of the glyoxylate cycle. PMID:11706207

  3. Modeling Regional Carbon Fluxes in Agriculture with New Remote Sensing Observations

    NASA Astrophysics Data System (ADS)

    Lobell, D. B.; Asner, G. P.

    2001-12-01

    The uptake of carbon dioxide (CO2) in crop growth and the subsequent removal of carbon (C) through harvesting and soil decomposition determine the annual C balance of agroecosystems. While many small-scale experiments have studied C dynamics within fields, the most relevant scales for large-scale biogeochemical processes, as well as for land-use policies related to the Kyoto Protocol, are at the field to regional level. At these scales, models represent a useful alternative to direct measurements for quantifying C fluxes, yet they require information on climate, soil properties, and management that can vary greatly in space and time. In this study, we have developed a simple C model for agricultural systems that utilizes satellite remote sensing inputs to constrain both input and output fluxes of carbon. A sensitivity analysis was first performed to identify the most important parameters to constrain from satellite, and methodologies were then developed and/or adapted to fulfill these needs. A sample application of the model is given for an intensive wheat system in Northwest Mexico, where five Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images were collected in 2001. Future development and testing of this integrated modeling-remote sensing approach should greatly improve efforts to quantify local and regional C fluxes that are critical to climate change and land-use policy.

  4. Carbon fluxes acclimate more strongly to elevated growth temperatures than to elevated CO2 concentrations in a northern conifer.

    PubMed

    Kroner, Yulia; Way, Danielle A

    2016-08-01

    Increasing temperatures and atmospheric CO2 concentrations will affect tree carbon fluxes, generating potential feedbacks between forests and the global climate system. We studied how elevated temperatures and CO2 impacted leaf carbon dynamics in Norway spruce (Picea abies), a dominant northern forest species, to improve predictions of future photosynthetic and respiratory fluxes from high-latitude conifers. Seedlings were grown under ambient (AC, c. 435 μmol mol(-1) ) or elevated (EC, 750 μmol mol(-1) ) CO2 concentrations at ambient, +4 °C, or +8 °C growing temperatures. Photosynthetic rates (Asat ) were high in +4 °C/EC seedlings and lowest in +8 °C spruce, implying that moderate, but not extreme, climate change may stimulate carbon uptake. Asat , dark respiration (Rdark ), and light respiration (Rlight ) rates acclimated to temperature, but not CO2 : the thermal optimum of Asat increased, and Rdark and Rlight were suppressed under warming. In all treatments, the Q10 of Rlight (the relative increase in respiration for a 10 °C increase in leaf temperature) was 35% higher than the Q10 of Rdark , so the ratio of Rlight to Rdark increased with rising leaf temperature. However, across all treatments and a range of 10-40 °C leaf temperatures, a consistent relationship between Rlight and Rdark was found, which could be used to model Rlight in future climates. Acclimation reduced daily modeled respiratory losses from warm-grown seedlings by 22-56%. When Rlight was modeled as a constant fraction of Rdark , modeled daily respiratory losses were 11-65% greater than when using measured values of Rlight . Our findings highlight the impact of acclimation to future climates on predictions of carbon uptake and losses in northern trees, in particular the need to model daytime respiratory losses from direct measurements of Rlight or appropriate relationships with Rdark .

  5. Metabolic Flux Analysis of Shewanella spp. Reveals Evolutionary Robustness in Central Carbon Metabolism

    SciTech Connect

    Tang, Yinjie J.; Martin, Hector Garcia; Dehal, Paramvir S.; Deutschbauer, Adam; Llora, Xavier; Meadows, Adam; Arkin, Adam; Keasling, Jay D.

    2009-08-19

    Shewanella spp. are a group of facultative anaerobic bacteria widely distributed in marine and fresh-water environments. In this study, we profiled the central metabolic fluxes of eight recently sequenced Shewanella species grown under the same condition in minimal med-ium with [3-13C] lactate. Although the tested Shewanella species had slightly different growth rates (0.23-0.29 h31) and produced different amounts of acetate and pyruvate during early exponential growth (pseudo-steady state), the relative intracellular metabolic flux distributions were remarkably similar. This result indicates that Shewanella species share similar regulation in regard to central carbon metabolic fluxes under steady growth conditions: the maintenance of metabolic robustness is not only evident in a single species under genetic perturbations (Fischer and Sauer, 2005; Nat Genet 37(6):636-640), but also observed through evolutionary related microbial species. This remarkable conservation of relative flux profiles through phylogenetic differences prompts us to introduce the concept of metabotype as an alternative scheme to classify microbial fluxomics. On the other hand, Shewanella spp. display flexibility in the relative flux profiles when switching their metabolism from consuming lactate to consuming pyruvate and acetate.

  6. Increased water flux induced by an aquaporin-1/carbonic anhydrase II interaction

    PubMed Central

    Vilas, Gonzalo; Krishnan, Devishree; Loganathan, Sampath Kumar; Malhotra, Darpan; Liu, Lei; Beggs, Megan Rachele; Gena, Patrizia; Calamita, Giuseppe; Jung, Martin; Zimmermann, Richard; Tamma, Grazia; Casey, Joseph Roman; Alexander, Robert Todd

    2015-01-01

    Aquaporin-1 (AQP1) enables greatly enhanced water flux across plasma membranes. The cytosolic carboxy terminus of AQP1 has two acidic motifs homologous to known carbonic anhydrase II (CAII) binding sequences. CAII colocalizes with AQP1 in the renal proximal tubule. Expression of AQP1 with CAII in Xenopus oocytes or mammalian cells increased water flux relative to AQP1 expression alone. This required the amino-terminal sequence of CAII, a region that binds other transport proteins. Expression of catalytically inactive CAII failed to increase water flux through AQP1. Proximity ligation assays revealed close association of CAII and AQP1, an effect requiring the second acidic cluster of AQP1. This motif was also necessary for CAII to increase AQP1-mediated water flux. Red blood cell ghosts resealed with CAII demonstrated increased osmotic water permeability compared with ghosts resealed with albumin. Water flux across renal cortical membrane vesicles, measured by stopped-flow light scattering, was reduced in CAII-deficient mice compared with wild-type mice. These data are consistent with CAII increasing water conductance through AQP1 by a physical interaction between the two proteins. PMID:25609088

  7. Bacterial mediation of carbon fluxes during a diatom bloom in a mesocosm

    NASA Astrophysics Data System (ADS)

    Smith, David C.; Steward, Grieg F.; Long, Richard A.; Azam, Farooq

    Bacteria-diatom interactions were studied during a diatom bloom produced in a mesocosm, in the absence of metazoan grazers, in order to examine the significance of bacterial hydrolytic ectoenzymes in mediating carbon fluxes and influencing diatom aggregation. The abundances of bacteria and protozoa, the production rates and hydrolytic ectoenzyme activities (protease, α and β glucosidase and chitobiase) of attached and free bacteria, were followed as well as the dynamics of the dissolved organic carbon (DOC) pool. An intense diatom bloom occurred with chlorophyll a (chl a) concentrations reaching 132 μg liter 1 prior to aggregation. The diatoms were colonized by bacteria early on in the bloom and remained colonized throughout the bloom, yet they grew rapidly (>1 day -1). Attached bacteria were numerically a small fraction of the total, but they also grew very rapidly (μ = 4-16 day -1) and were generally responsible for the majority of bacterial carbon demand, BCD, (46-92%) and hydrolytic enzyme activities (41-99%). BCD accounted for an estimated 40-60% of the total carbon fixed during the bloom; thus, roughly onehalf of the primary production was channeled, via the DOC pool, into bacteria. The high ectohydrolase activities of bacteria attached to the surface of diatoms suggests that the hydrolysis of diatom surface mucus could be responsible for a major flux into the DOC pool making it a significant, but previously unrecognized, mechanism of DOM production. Enzymatic hydrolysis of surface mucus may also have inhibited diatom aggregation. Addition of purified glucosidase and protease to samples from the mesocosm inhibited diatom aggregation in experiments designed to induce aggregation. It is hypothesized that the action of bacterial ectoenzyme on diatom surfaces inhibited diatom aggregation by reducing stickiness, thus prolonging the bloom and allowing the accumulation of extremely high chl a levels prior to aggregation. Future studies should consider bacterial

  8. Acidification of the HUMEX lake; effects on epilimnetic pools and fluxes of carbon

    SciTech Connect

    Hessen, D.O. )

    1992-01-01

    The paper presents data on carbon budgets during the first year of acidification of one half of humic lake Skjervatjern. Dissolved organic carbon (DOC), mainly allochthonous humus, ranged from 2 to 12 mg C L[sup [minus]1], with an average of 6 to 7 mg C for both the acidified and the reference basin. The minimum values occurred during winter when ground temperature fell below zero. Average dissolved inorganic carbon (DIC) was near 500 [mu]g C L[sup [minus]1] in the surface layers, but increased to more than 2 mg close to the bottom. Epilimnetic particulate organic carbon (POC) was also close to 500 [mu]g C L[sup [minus]1], of which more than 3/4 was detritus, while bacteria, phyto-, and macrozooplankton made up approximately 100, 50, and 20-40 [mu]g C L[sup [minus]1], respectively. Major flows were sedimentation, respiration, and discharge. Acidification gave no clearcut effects on the major pools and fluxes of carbon, which were mainly governed by climatic and hydrological events. There were, however, pronounced differences in biotic pools and biologically mediated carbon fluxes, with more unstable conditions in the acidified basin. Primary production and phytoplankton biomass increased in the acidified basin relative to the control. Zooplankton biomass had a strong midsummer peak, followed by a sudden collapse of the dominant species, Holopedium gibberum, in the acidified part. As a consequence, zooplankton community grazing also dropped. Grazing did, however, not exert an efficient control with phytoplankton biomass. Preliminary data indicated decreased respiration and increased sedimentation in the acidified part. A closer follow-up of these processes will be performed during the two upcoming years in order to separate transitional and more permanent changes in carbon metabolism. 19 refs., 6 figs., 1 tab.

  9. Spatial and temporal variability of urban fluxes of methane, carbon monoxide and carbon dioxide above London, UK

    NASA Astrophysics Data System (ADS)

    Helfter, Carole; Tremper, Anja H.; Halios, Christoforos H.; Kotthaus, Simone; Bjorkegren, Alex; Grimmond, C. Sue B.; Barlow, Janet F.; Nemitz, Eiko

    2016-08-01

    We report on more than 3 years of measurements of fluxes of methane (CH4), carbon monoxide (CO) and carbon dioxide (CO2) taken by eddy-covariance in central London, UK. Mean annual emissions of CO2 in the period 2012-2014 (39.1 ± 2.4 ktons km-2 yr-1) and CO (89 ± 16 tons km-2 yr-1) were consistent (within 1 and 5 % respectively) with values from the London Atmospheric Emissions Inventory, but measured CH4 emissions (72 ± 3 tons km-2 yr-1) were over two-fold larger than the inventory value. Seasonal variability was large for CO with a winter to summer reduction of 69 %, and monthly fluxes were strongly anti-correlated with mean air temperature. The winter increment in CO emissions was attributed mainly to vehicle cold starts and reduced fuel combustion efficiency. CO2 fluxes were 33 % higher in winter than in summer and anti-correlated with mean air temperature, albeit to a lesser extent than for CO. This was attributed to an increased demand for natural gas for heating during the winter. CH4 fluxes exhibited moderate seasonality (21 % larger in winter), and a spatially variable linear anti-correlation with air temperature. Differences in resident population within the flux footprint explained up to 90 % of the spatial variability of the annual CO2 fluxes and up to 99 % for CH4. Furthermore, we suggest that biogenic sources of CH4, such as wastewater, which is unaccounted for by the atmospheric emissions inventories, make a substantial contribution to the overall budget and that commuting dynamics in and out of central business districts could explain some of the spatial and temporal variability of CO2 and CH4 emissions. To our knowledge, this study is unique given the length of the data sets presented, especially for CO and CH4 fluxes. This study offers an independent assessment of "bottom-up" emissions inventories and demonstrates that the urban sources of CO and CO2 are well characterized in London. This is however not the case for CH4 emissions which are

  10. [Factors affecting benzene diffusion from contaminated soils to the atmosphere and flux characteristics].

    PubMed

    Du, Ping; Wang, Shi-Jie; Zhao, Huan-Huan; Wu, Bin; Han, Chun-Mei; Fang, Ji-Dun; Li, Hui-Ying; Hosomi, Masaaki; Li, Fa-Sheng

    2013-12-01

    The influencing factors of benzene diffusion fluxes from sand and black soil to atmosphere were investigated using a flux chamber (30.0 cm x 17.5 cm x 29.0 cm). In this study, the benzene diffusion fluxes were estimated by measuring the benzene concentrations both in the headspace of the chamber and in the soils of different layers. The results indicated that the soil water content played an important role in benzene diffusion fluxes. The diffusion flux showed positive correlation with the initial benzene concentration and the benzene dissolution concentration for both soil types. The changes of air flow rate from 300 to 900 mL x min(-1) and temperature from 20 degrees C to 40 degrees C resulted in increases of the benzene diffusion flux. Our study of benzene diffusion fluxes from contaminated soils will be beneficial for the predicting model, and emergency management and precautions.

  11. Carbon fluxes forced by anticyclonic mesoscale eddies generated by islands at the subtropical NE Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Lasternas, S.; Piedeleu, M.; Sangrà, P.; Duarte, C. M.; Agustí, S.

    2012-08-01

    The carbon fluxes mediated by planktonic communities in two cyclonic eddies (CEs) and two anticyclonic eddies (AEs) at the Canary Eddy Corridor were studied and compared with the dynamics in two far-field (FF) stations located outside the eddies. We observed favorable conditions and signs for upwelling at the center of CEs and for downwelling and mixing at the centers of AEs. CEs were characterized by higher nutrients concentration and highest chlorophyll a concentration, associated with highest microphytoplankton and diatoms abundance. AEs displayed similar chlorophyll a values and nutrients concentration (except highest ammonium concentration) to those of the FF stations and were characterized by increasing abundance of picophytoplankton and heterotrophic bacteria. While primary production was similar between the systems, the production of dissolved organic carbon (PDOC) was significantly higher at AEs. Phytoplankton cell mortality was lowest in CEs and we found higher cell mortality in AE than FF, despite similar chl a concentration. Environmental changes at the AEs presented significant prejudicial effects on the phytoplankton health as indicated by higher phytoplankton mortality (e.g. 60% of dead diatoms cells) and higher cell lysis rates observed at AEs than at two other systems. The adverse conditions associated to the early-stage anticyclonic systems, mainly triggered by active downwelling, resulted in higher consequent PDOC production, corresponding to forcing of the carbon flux to the dissolved pool and a weakness of the carbon pump.

  12. Impacts of Prognostic Phenology and Agriculture on the Seasonal Cycle of Carbon Fluxes

    NASA Astrophysics Data System (ADS)

    Haynes, K. D.; Baker, I. T.; Denning, A.; Stockli, R.; Lokupitiya, E. Y.

    2011-12-01

    Since terrestrial carbon fluxes cannot be measured directly on regional and global scales, land surface models are an important tool in improving estimates of carbon sources and sinks. One common limitation in biosphere models is requiring the use of remotely sensed data to represent vegetation phenology; however, prognostic phenology models are being developed to predict the phonological timing and leaf state of both natural vegetation and crops (Stockli et al., 2008; Lokupitiya et al., 2009; Stockli et al., 2011). Simulating phenology rather than relying on data products removes the uncertainty due to satellite retrievals, allows the short yet highly productive growing season of crops to be more accurately simulated, and enables predictive capabilities. The Simple Biosphere Model (SiB) has been modified to include prognostic phenology for twenty different plant functional types, including maize, soybean and wheat. Predicting the phenology will alter carbon fluxes regionally and globally on diurnal to seasonal timescales, and this study will discuss the impact of prognostic phenology on the resulting simulated net ecosystem exchange of carbon dioxide.

  13. Cold ecosystems in a warmer climate: carbon fluxes at the alpine treeline under experimental soil warming

    NASA Astrophysics Data System (ADS)

    Wipf, Sonja; Hagedorn, Frank; Martin, Melissa

    2010-05-01

    The impact of climatic warming on the C balance of terrestrial ecosystems is uncertain because rising temperature increases both C gains through net primary production, but also respiratory C losses. 'Cold' ecosystems such as treeline ecotones will respond particularly sensitive to climatic changes because many processes are limited by temperature and soils store particular large amounts of labile soil organic matter. In our study, we investigate ecosystem responses to 9 years of elevated atmospheric CO2 and to 3 years of experimental soil warming by 4° C. The added CO2 contains another δ13C signature than normal air, which allows the tracing of new carbon through the plant and soil system. This provides new insight into carbon cycling at the treeline and it shows which C flux respond most sensitive to climatic changes. Results showed that soil warming increased soil CO2 effluxes instantaneously and persisted for at least three vegetation periods (+35-45%; +80 to 120 g C m y-1). In contrast, DOC leaching showed a negligible response of less than 5% increase. Annual C uptake of new shoots was not significantly affected by elevated soil temperatures, with a 10 to 20% increase for larch, pine, and dwarf shrubs, respectively, resulting in an overall increase in net C uptake by plants of 20 to 40 g C m-2y-1. The Q10 of 3.0 measured for soil respiration did not change compared to a three-year period before the warming treatment started, suggesting little impact of warming-induced lower soil moisture (-15% relative decrease) or a depletion in labile soil C. The fraction of recent plant-derived C in soil respired CO2 from warmed soils was smaller than that from control soils (25 vs. 40% of total C respired), which implies that the warming-induced increase in soil CO2 efflux resulted mainly from mineralization of older SOM rather than from stimulated root respiration. In summary, the 4 ° C soil warming led to C losses from the studied alpine treeline ecosystem by

  14. Impacts of revised PFTs on JULES simulated carbon and moisture fluxes

    NASA Astrophysics Data System (ADS)

    Harper, Anna; Cox, Peter; Sitch, Stephen; Mercado, Lina; Luke, Catherine; Jupp, Tim; Wiltshire, Andy; Jones, Chris; Friedlingstein, Pierre

    2013-04-01

    JULES is the land surface model in the Hadley Centre GCM, which is used for investigations of climate and climate change. We analyze the impacts on the simulated carbon and moisture fluxes of extending the PFTs in a manner consistent with observed leaf traits. The model currently represents global vegetation with five PFTs (needleleaf and broadleaf trees, C3 and C4 grasses, and shrubs). We add three new PFTs to delineate between deciduous and evergreen trees and shrubs. Since the inception of JULES in the late 90's, a tremendous amount of new data linking leaf traits and potential photosynthesis is available. We use data from the TRY plant trait data base to revise the relationships between leaf area, leaf lifespan, leaf nitrogen content, and Vcmax. In addition, JULES now includes a canopy radiation scheme based on fractions of sunlit and shaded leaves at 10 levels in the canopy. This results in a vertical distribution of nitrogren and Vcmax through the canopy and enables multilayer scaling from leaf to canopy level photosynthesis. The scheme is more physically realistic than previous canopy radiation schemes, but remains to be evaluated outside of the Tropics. Within the constraints of observed values, we optimize new parameter values related to the canopy radiation and photosynthesis, using optimization software developed at the University of Exeter. Impacts on simulated GPP, respiration, and latent heat flux are examined. In particular, we are interested in a better understanding of carbon cycle dynamics in tropical forests. Using data from TRY, carbon fluxes are improved across all PFTs compared to observations from Fluxnet tower sites. We adopt a regional analysis to compare JULES fluxes in certain regions (e.g. tropical forests, and boreal and tropical shrub-dominated landscapes).

  15. Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos.

    PubMed

    Alonso, Ana P; Goffman, Fernando D; Ohlrogge, John B; Shachar-Hill, Yair

    2007-10-01

    The efficiency with which developing sunflower embryos convert substrates into seed storage reserves was determined by labeling embryos with [U-(14)C6]glucose or [U-(14)C5]glutamine and measuring their conversion to CO2, oil, protein and other biomass compounds. The average carbon conversion efficiency was 50%, which contrasts with a value of over 80% previously observed in Brassica napus embryos (Goffman et al., 2005), in which light and the RuBisCO bypass pathway allow more efficient conversion of hexose to oil. Labeling levels after incubating sunflower embryos with [U-(14)C4]malate indicated that some carbon from malate enters the plastidic compartment and contributes to oil synthesis. To test this and to map the underlying pattern of metabolic fluxes, separate experiments were carried out in which embryos were labeled to isotopic steady state using [1-(13)C1]glucose, [2-(13)C1]glucose, or [U-(13)C5]glutamine. The resultant labeling in sugars, starch, fatty acids and amino acids was analyzed by NMR and GC-MS. The fluxes through intermediary metabolism were then quantified by computer-aided modeling. The resulting flux map accounted well for the labeling data, was in good agreement with the observed carbon efficiency, and was further validated by testing for agreement with gas exchange measurements. The map shows that the influx of malate into oil is low and that flux through futile cycles (wasting ATP) is low, which contrasts with the high rates previously determined for growing root tips and heterotrophic cell cultures.

  16. Carbon dioxide and energy fluxes over a small boreal lake in Southern Finland

    NASA Astrophysics Data System (ADS)

    Mammarella, Ivan; Nordbo, Annika; Rannik, Üllar; Haapanala, Sami; Levula, Janne; Laakso, Heikki; Ojala, Anne; Peltola, Olli; Heiskanen, Jouni; Pumpanen, Jukka; Vesala, Timo

    2015-07-01

    Dynamics of carbon dioxide and energy exchange over a small boreal lake were investigated. Flux measurements have been carried out by the eddy covariance technique during two open-water periods (June-October) at Lake Kuivajärvi in Finland. Sensible heat (H) flux peaked in the early morning, and upward sensible heat flux at night results in unstable stratification over the lake. Minimum H was measured in the late afternoon, often resulting in adiabatic conditions or slightly stable stratification over the lake. The latent heat flux (LE) showed a different pattern, peaking in the afternoon and having a minimum at night. High correlation (r2 = 0.75) between H and water-air temperature difference multiplied by wind speed (U) was found, while LE strongly correlated with the water vapor pressure deficit multiplied by U (r2 = 0.78). Monthly average values of energy balance closure ranged between 70 and 99%. The lake acted as net source of carbon dioxide, and the measured flux (FCO2) averaged over the two open-water periods (0.7 µmol m-2 s-1) was up to 3 times higher than those reported in other studies. Furthermore, it was found that during period of high wind speed (>3 m s-1) shear-induced water turbulence controls the water-air gas transfer efficiency. However, under calm nighttime conditions, FCO2 was poorly correlated with the difference between the water and the equilibrium CO2 concentrations multiplied by U. Nighttime cooling of surface water enhances the gas transfer efficiency through buoyancy-driven turbulent mixing, and simple wind speed-based transfer velocity models strongly underestimate FCO2.

  17. The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.

    PubMed

    Ewald, Jennifer C; Kuehne, Andreas; Zamboni, Nicola; Skotheim, Jan M

    2016-05-19

    Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation.

  18. Regional scale estimation of carbon fluxes from long-term monitoring of intertidal exposed rocky shore communities

    NASA Astrophysics Data System (ADS)

    Tagliarolo, Morgana; Grall, Jacques; Chauvaud, Laurent; Clavier, Jacques

    2015-09-01

    The observed increase in the atmospheric concentration of carbon dioxide due to anthropogenic emissions is predicted to lead to significant changes in climate. Recent studies highlight the importance of identifying the role of marine coastal communities in carbon exchanges. Our objective was to couple macrozoobenthos abundance data from long-term monitoring with species metabolism rates to contribute to the estimation of CO2 fluxes from an intertidal exposed rocky shore community at a regional scale. The carbon fluxes due to respiration and calcification were calculated both during emersion and immersion, and the effect of temperature variation on carbon emissions was then predicted. Spatial and temporal natural variations of carbon fluxes were investigated and the contribution of exposed intertidal rocky shore communities to regional carbon emissions was calculated. The method was used to calculate the carbon budget allowed to account for the natural spatial variability of the community composition and carbon emissions. Mean annual calculated CO2 emission was 14.3 mol C m- 2 yr- 2, and the annual regional CO2 flux was estimated at 2978 t C yr- 1. Simulations showed that the potential feedback of a rise in temperature of 1 °C would lead to an increase of 4-7% in carbon emissions for this type of community. The results give a first quantification of intertidal exposed rocky shore carbon emissions that could be considered in evaluating further the global CO2 budget.

  19. Trends in long-term carbon and water fluxes - a case study from a temperate Norway spruce site

    NASA Astrophysics Data System (ADS)

    Babel, Wolfgang; Lüers, Johannes; Hübner, Jörg; Serafimovich, Andrei; Thomas, Christoph; Foken, Thomas

    2016-04-01

    In this study we analyse eddy-covariance flux measurements of carbon dioxide and water vapour from 18 years at Waldstein-Weidenbrunnen (DE-Bay), a Norway spruce forest site in the Fichtelgebirge, Germany. Standard flux partitioning algorithms have been applied for separation of net ecosystem exchange NEE into gross ecosystem uptake GEE and ecosystem respiration Reco, and gap-filling. The annual NEE shows a positive trend, which is related to a strong increase in GEE, while Reco enhances slightly. Annual evapotranspiration increases as well, while atmospheric demand, i.e. potential evapotranspiration, shows inter-annual variability, but no trend. Comparisons with studies from other warm temperate needle-leaved forests show, that NEE is at the upper range of the distribution, and evapotranspiration in Budyko space is in a similar range, but with a large inter-annual variability. While this trends are generally in agreement with findings from other locations and expectations to climate change, the specific history at this site clearly has a large impact on the results: The forest was in the first years very much affected due to forest decline and convalesced after a liming. In the last ten years the site was much affected by beetles and windthrow. Thus the more recent positive trends may be related to increased heterogeneity at the site. As FLUXNET stations, built 10-20 years ago, often started with "ideal forest sites", increasing heterogeneity might be a more general problem for trend analysis of long-term data sets.

  20. Fluxes of carbon dioxide and methane from diverse aquatic environments in an agricultural landscape

    NASA Astrophysics Data System (ADS)

    Stanley, E. H.; Crawford, J. T.; Loken, L. C.; Casson, N. J.; Gubbins, N. J.; Oliver, S. K.

    2014-12-01

    The contribution of aquatic environments to landscape carbon cycling is particularly apparent in carbon- and water-rich regions. Such areas arguably represent an end member in terms of the relative significance of aquatic carbon cycling, while dry, carbon-poor zones are the likely opposing end member. Not surprisingly, most limnological attention has focused on these former regions, leaving open questions as to how aquatic systems in other locales influence larger-scale carbon dynamics. This includes human-dominated landscapes where agricultural and urban land uses can fundamentally alter carbon dynamics. Surveys of streams, ponds, and lakes in a southern Wisconsin landscape highlight three findings relevant to understanding the role of these aquatic systems in larger-scale carbon dynamics. First, streams and ponds had unexpectedly high summertime concentrations in and fluxes of CO2 and CH4. These values were approximately an order of magnitude greater than for less disturbed, forest and wetland-dominated landscapes in northern Wisconsin. Second, while mean C gas concentrations in lakes were lower than in streams and ponds, detailed spatial measurements demonstrate variability in surface water CO2 (43-1090 ppm pCO2) and CH4 (6-839 ppm pCH4) within a lake on a single day is similar to that observed among 25 streams included in our survey (260-6000 ppm pCO2; 50-600 ppm pCH4). This small-scale heterogeneity highlights a basic challenge for upscaling site-specific data collected at one or a few points to the whole lake and across lakes. Third, while agricultural and urban ecosystems are not necessarily carbon-rich environments, area-specific carbon storage in streams and ponds is substantial (up to 3000-5000 g C per m2). Further, carbon storage was strongly related to CH4 concentrations in streams, as C-rich sediments provided both an environment and substrate to fuel methanogenesis. The picture that emerges of C processing in aquatic environments throughout this human

  1. Large carbon dioxide fluxes from headwater boreal and sub-boreal streams.

    PubMed

    Venkiteswaran, Jason J; Schiff, Sherry L; Wallin, Marcus B

    2014-01-01

    Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape.

  2. Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning.

    PubMed

    Dore, S; Kolb, T E; Montes-Helu, M; Eckert, S E; Sullivan, B W; Hungate, B A; Kaye, J P; Hart, S C; Koch, G W; Finkral, A

    2010-04-01

    Disturbances alter ecosystem carbon dynamics, often by reducing carbon uptake and stocks. We compared the impact of two types of disturbances that represent the most likely future conditions of currently dense ponderosa pine forests of the southwestern United States: (1) high-intensity fire and (2) thinning, designed to reduce fire intensity. High-severity fire had a larger impact on ecosystem carbon uptake and storage than thinning. Total ecosystem carbon was 42% lower at the intensely burned site, 10 years after burning, than at the undisturbed site. Eddy covariance measurements over two years showed that the burned site was a net annual source of carbon to the atmosphere whereas the undisturbed site was a sink. Net primary production (NPP), evapotranspiration (ET), and water use efficiency were lower at the burned site than at the undisturbed site. In contrast, thinning decreased total ecosystem carbon by 18%, and changed the site from a carbon sink to a source in the first posttreatment year. Thinning also decreased ET, reduced the limitation of drought on carbon uptake during summer, and did not change water use efficiency. Both disturbances reduced ecosystem carbon uptake by decreasing gross primary production (55% by burning, 30% by thinning) more than total ecosystem respiration (TER; 33-47% by burning, 18% by thinning), and increased the contribution of soil carbon dioxide efflux to TER. The relationship between TER and temperature was not affected by either disturbance. Efforts to accurately estimate regional carbon budgets should consider impacts on carbon dynamics of both large disturbances, such as high-intensity fire, and the partial disturbance of thinning that is often used to prevent intense burning. Our results show that thinned forests of ponderosa pine in the southwestern United States are a desirable alternative to intensively burned forests to maintain carbon stocks and primary production.

  3. Impact of vegetation cover and stand age on scaling carbon fluxes in the upper Midwest: a multiple eddy flux site study

    NASA Astrophysics Data System (ADS)

    Desai, A. R.; Normeets, A.; Bolstad, P. V.; Chen, J.; Cook, B. D.; Curtis, P. S.; Davis, K. J.; Euskirchen, E.; Gough, C.; Martin, J.; Ricciuto, D. M.; Schmid, H. P.; Tang, J.; Su, H.; Vogel, C.; Wang, W.

    2004-12-01

    Eight permanent and three roving eddy flux towers were used to observe the exchange of carbon dioxide between the ecosystem and atmosphere at fourteen different sites in northern Wisconsin and Michigan (USA) during the growing seasons (May-Sept) of 2002 and 2003. These towers were part of the Chequamegon Ecosystem-Atmosphere Study (ChEAS), the University of Michigan Biological Station (UMBS), and the Michigan Technical University. The sites spanned a range of vegetation types typical of the region (northern hardwood, hemlock-hardwood, mixed forest, red pine, jack pine, pine barrens and shrub wetland). The hardwood and red pine sites also spanned a range of forest stand age (young, intermediate, mature and old). All sites experienced roughly similar climate; thus, comparisons among the sites allow for an examination of the impact of heterogeneous vegetation cover and stand age across a regional landscape. Carbon fluxes at different sites generally reacted similarly in response to variability in climate. Results suggest that both cover type and stand age are important variables for modeling and predicting fluxes in this region. These results have implications for developing methods of scaling carbon dioxide fluxes from sites to regions. These results will be contrasted to a flux decomposition at the WLEF tall tower.

  4. Plant phenology and composition controls of carbon fluxes in a boreal peatland

    NASA Astrophysics Data System (ADS)

    Peichl, Matthias; Gažovič, Michal; Vermeij, Ilse; De Goede, Eefje; Sonnentag, Oliver; Limpens, Juul; Nilsson, Mats B.

    2016-04-01

    Vegetation drives the peatland carbon (C) cycle via the processes of photosynthesis, plant respiration and decomposition as well as by providing substrate for methane (CH4) and dissolved organic carbon production. However, due to the lack of comprehensive vegetation data, variations in the peatland C fluxes are commonly related to temperature and other more easily measured abiotic (i.e. weather and soil) variables. Due to the temporal co-linearity between plant development and abiotic variables, these relationships may describe the variations in C fluxes reasonably well, however, without representing the true mechanistic processes driving the peatland C cycle. As a consequence, current process-based models are poorly parameterized and unable to adequately predict the responses of the peatland C cycle to climate change, extreme events and anthropogenic impacts. To fill this knowledge gap, we explored vegetation phenology and composition effects on the peatland C cycle at the Degerö peatland located in northern Sweden. We used a greenness index derived from digital repeat photography to quantitatively describe plant canopy development with high temporal (i.e. daily) and spatial (plot to ecosystem) resolution. In addition, eddy covariance and static chamber measurements of carbon dioxide (CO2) and CH4 fluxes over an array of vegetation manipulation plots were conducted over multiple years. Our results suggest that vascular plant phenology controls the onset and pattern of eddy covariance-derived gross primary production (GPP) during the spring period, while abiotic conditions modify GPP during the summer period when plant canopy cover is fully developed. Inter-annual variations in the spring onset and patterns of plant canopy development were best explained by differences in the preceding growing degree day sum. We also observed strong correlations of canopy greenness with the net ecosystem CO2 exchange and ecosystem respiration. On average, vascular plant and moss

  5. A paired flux approach to study the carbon balance of a corn/soybean rotation

    NASA Astrophysics Data System (ADS)

    Baker, J.; Griffis, T.

    2003-04-01

    There is intense interest in finding ways to damp projected increases in atmospheric CO_2 by adopting strategies that alter local rates of surface/atmosphere carbon exchange in ways that favor increased surface storage. It is generally accepted that row crop agriculture has historically been a contributor to the debit side of the terrestrial carbon ledger. However, changes in farming practice, primarily reduction of tillage, appear to have arrested this decline. The very fact that so much soil carbon was lost is now viewed positively, in the sense that it may represent a reservoir that can be refilled through the adoption of appropriate farming practices, but verification of carbon gain is a difficult problem. Soil sampling is the accepted standard, but it has a low signal to noise ratio and poor temporal resolution so it offers little insight into causes and effects or underlying processes. Micrometeorological methods address these shortcomings, replacing them with a new set of problems. Temporal resolution is superb, but determination of net carbon gain or loss requires integration of short-term (e.g. half-hourly) flux measurements over at least one full cycle of the system under test -- typically a year or more. Unfortunately, data are missed due to instrument failures and power outages, and other data must be discarded because theoretical assumptions of turbulent transport are not met. As a consequence, the end sum of net carbon exchange from these sites depends substantially on the gap-filling strategies that are used. Nonetheless, valuable information can be obtained by measuring differentially, i.e. making simultaneous flux measurements in two adjacent fields that are subjected to the same weather conditions, but with specific differences in farming practice. Insights into the differences in carbon balance between the systems, even in the face of the inevitable data gaps, can be obtained by considering only those time periods in which both fields are

  6. Fluxes of Dissolved Organic Carbon within Soils across a Boreal Forest Ecosystem Latitudinal Transect

    NASA Astrophysics Data System (ADS)

    Bowering, K.; Edwards, K.; Billings, S. A.; Skinner, A.; Warren, J.; Ziegler, S. E.

    2013-12-01

    The movement of dissolved organic carbon (DOC) can represent a significant flux of C within soils, and may be a critical flux of C from the terrestrial into the aquatic environment. Further, these fluxes can represent an important source of C to deeper mineral horizons where stabilization mechanisms may exist. However the quantity and quality of this C flux is largely unknown, and regulating factors that are influenced by climate and land-use change are poorly understood. This movement of C is of particular interest in the boreal forest, where large soil C stocks are vulnerable to the impacts of climate change. Laboratory experiments have demonstrated that warming, in the absence of moisture limitation, can increase the rate of production of DOC in soils directly through increased decomposition rates; however, this has been difficult to test under field conditions where seasonality, intact soil, and hydrological systems influence DOC production and movement. To assess the impact of climate warming on DOC fluxes occurring through the organic soil layer of the eastern North American boreal forest, we sampled passive lysimeters installed at 3 sites along a latitudinal transect in Newfoundland and Labrador, Canada. Separated by just over 5° latitude, mean annual temperature at these sites were 4°C, 2.1°C, and -0.5°C from lowest to highest latitude. Six lysimeters were sampled from each site and collections were made at least three times annually for two consecutive years (2011-2013). Soils tend to freeze over-winter in the high-latitude site whereas they rarely freeze in the low-latitude site. The low-latitude site also experiences more variable precipitation, with a longer snow-free season and more precipitation falling during single events. Rates of DOC flux increased with decreasing latitude, indicating greater DOC transport through soils in forests experiencing a warmer climate. DOC fluxes calculated over different seasonal time periods ranged from 4.6 to 20

  7. Simulating Energy, Water and Carbon Fluxes at the Shortgrass Steppe Long Term Ecological Research (LTER) Site

    NASA Astrophysics Data System (ADS)

    Beltran-Przekurat, A. B.; Pielke, R. A.; Morgan, J. A.; Burke, I. C.

    2005-12-01

    Coupled atmospheric-biospheric models are a particularly valuable tool for studying the potential effects of land-use and land-cover changes on the near-surface atmosphere since the atmosphere and biosphere are allowed to dynamically interact through the surface and canopy energy balance. GEMRAMS is a coupled atmospheric-biospheric model comprised of an atmospheric model, RAMS, and an ecophysiological process-based model, GEMTM. In the first part of this study, the soil-vegetation-atmosphere-transfer (SVAT) scheme, LEAF2, from RAMS, coupled with GEMTM, are used to simulate energy, water and carbon fluxes over different cropping systems (winter wheat and irrigated corn) and over a mixed C3/C4 shortgrass prairie located at the USDA-ARS Central Plains Experimental Range near Nunn, Colorado, the LTER Shortgrass Steppe site. The new SVAT scheme, GEMLEAF, is forced with air temperature and humidity, wind speed and photosynthetic active radiation (PAR). Calculated canopy temperature and relative humidity, soil moisture and temperature and PAR are used to compute sunlit/shaded leaf photosynthesis (for C3 and C4 plant types) and respiration. Photosynthate is allocated to leaves, shoots, roots and reproductive organs with variable partition coefficients, which are functions of soil water conditions. As water stress increases, the fraction of photosynthate allocated to root growth increases. Leaf area index (LAI) is estimated from daily leaf biomass growth, using the vegetation-prescribed specific leaf area. Canopy conductance, computed and based on photosynthesis and relative humidity, is used to calculate latent heat flux. Simulated energy and CO2 fluxes are compared to observations collected using Bowen ratio flux towers during two growing seasons. Seasonality of the fluxes reflecting different plant phenologies agrees well with the observed patterns. In the second part of this study, simulations for two clear days are performed with GEMRAMS over a model domain centered at

  8. Wildfires in a warmer climate: Emission fluxes, emission heights, and black carbon concentrations in 2090-2099

    NASA Astrophysics Data System (ADS)

    Veira, A.; Lasslop, G.; Kloster, S.

    2016-04-01

    Global warming is expected to considerably impact wildfire activity and aerosol emission release in the future. Due to their complexity, the future interactions between climate change, wildfire activity, emission release, and atmospheric aerosol processes are still uncertain. Here we use the process-based fire model SPITFIRE within the global vegetation model JSBACH to simulate wildfire activity for present-day climate conditions and future Representative Concentration Pathways (RCPs). The modeled fire emission fluxes and fire radiative power serve as input for the aerosol-climate model ECHAM6-HAM2, which has been extended by a semiempirical plume height parametrization. Our results indicate a general increase in extratropical and a decrease in tropical wildfire activity at the end of the 21st century. Changes in emission fluxes are most pronounced for the strongest warming scenario RCP8.5 (+49% in the extratropics, -37% in the tropics). Tropospheric black carbon (BC) concentrations are similarly affected by changes in emission fluxes and changes in climate conditions with regional variations of up to -50% to +100%. In the Northern Hemispheric extratropics, we attribute a mean increase in aerosol optical thickness of +0.031±0.002 to changes in wildfire emissions. Due to the compensating effects of fire intensification and more stable atmospheric conditions, global mean emission heights change by at most 0.3 km with only minor influence on BC long-range transport. The changes in wildfire emission fluxes for the RCP8.5 scenario, however, may largely compensate the projected reduction in anthropogenic BC emissions by the end of the 21st century.

  9. Simple additive simulation overestimates real influence: altered nitrogen and rainfall modulate the effect of warming on soil carbon fluxes.

    PubMed

    Ni, Xiangyin; Yang, Wanqin; Qi, Zemin; Liao, Shu; Xu, Zhenfeng; Tan, Bo; Wang, Bin; Wu, Qinggui; Fu, Changkun; You, Chengming; Wu, Fuzhong

    2016-12-09

    Experiments and models have led to a consensus that there is positive feedback between carbon (C) fluxes and climate warming. However, the effect of warming may be altered by regional and global changes in nitrogen (N) and rainfall levels, but the current understanding is limited. Through synthesizing global data on soil C pool, input and loss from experiments simulating N deposition, drought and increased precipitation, we quantified the responses of soil C fluxes and equilibrium to the three single factors and their interactions with warming. We found that warming slightly increased the soil C input and loss by 5% and 9%, respectively, but had no significant effect on the soil C pool. Nitrogen deposition alone increased the soil C input (+20%), but the interaction of warming and N deposition greatly increased the soil C input by 49%. Drought alone decreased the soil C input by 17%, while the interaction of warming and drought decreased the soil C input to a greater extent (-22%). Increased precipitation stimulated the soil C input by 15%, but the interaction of warming and increased precipitation had no significant effect on the soil C input. However, the soil C loss was not significantly affected by any of the interactions, although it was constrained by drought (-18%). These results implied that the positive C fluxes-climate warming feedback was modulated by the changing N and rainfall regimes. Further, we found that the additive effects of [warming × N deposition] and [warming × drought] on the soil C input and of [warming × increased precipitation] on the soil C loss were greater than their interactions, suggesting that simple additive simulation using single-factor manipulations may overestimate the effects on soil C fluxes in the real world. Therefore, we propose that more multifactorial experiments should be considered in studying Earth systems.

  10. CARBON DIOXIDE FLUXES IN A CENTRAL HARDWOODS OAK-HICKORY FOREST ECOSYSTEM

    SciTech Connect

    Pallardy, Stephen G.; Gu, Lianhong; Hanson, Paul J; Meyers, T. P.; Wullschleger, Stan D; Yang, Bai; Hosman, K. P.

    2007-01-01

    A long-term experiment to measure carbon and water fluxes was initiated in 2004 as part of the Ameriflux network in a second-growth oak-hickory forest in central Missouri. Ecosystem-scale (~ 1 km2) canopy gas exchange (measured by eddy-covariance methods), vertical CO2 profile sampling and soil respiration along with meteorological parameters were monitored continuously. Early results from this forest located on the western margin of the Eastern Deciduous Forest indicated high peak rates of canopy CO2 uptake (35-40 ?mol m-2 s-1) during the growing season. Canopy CO2 profile measurements indicated substantial accumulation of CO2 (~500 ppm) near the surface in still air at night, venting of this buildup in the morning hours under radiation-induced turbulent air flow, and small vertical gradients of CO2 during most of the subsequent light period with minimum CO2 concentrations in the canopy. Flux of CO2 from the soil ranged from 2 to 8 ?mol m-2 s-1 and increased with temperature. Data from this site and others in the network will also allow characterization of regional spatial variation in carbon fluxes as well as inter-annual differences attributable to climatic events such as droughts.

  11. Effects of Complexity in Floor Reflectance on Carbon and Water Fluxes in an Urban Park

    NASA Astrophysics Data System (ADS)

    Kimm, H.; Ryu, Y.; Kobayashi, H.; Lee, K.; Hong, J. W.

    2014-12-01

    Urban parks account for great portion of urban vegetation that could partially contribute to carbon uptake. However, the complex land surface reflectance have limited our understanding on canopy photosynthesis in urban parks. In this study, a 3-D canopy radiative transfer model, Forest Light Environment Simulator (FLiES), is coupled with a 1-D biophysical model, CANOAK, to investigate effect of floor reflectance on canopy-scale photosynthesis and evapotranspiration in an urban park, Seoul Forest Park (Seoul, the Republic of Korea). Through a series of intensive field works, we prepared model input data such as tree positions, crown shapes, leaf area index, photosynthetic parameters such as Vcmax and Jmax. Meteorological data were derived from flux tower observations. We first evaluate the modelled net ecosystem exchange and latent heat flux against flux measurements from the eddy covariance system in the park. Then, we test the effects of floor reflectance on canopy photosynthesis and evapotranspiration using the model with different scenarios. Finally, we propose several design guidelines for urban park to increase carbon uptake by plants. The model simulation uncertainties are also discussed. We expect the usage of 3-D RTM would give better understanding of ecological processes in a complex space.

  12. Understanding ecosystems' sub-daily water and carbon flux changes during dry-down events

    NASA Astrophysics Data System (ADS)

    Nelson, Jacob; Jung, Martin; Carvalhais, Nuno; Migliavacca, Mirco; Reichstein, Markus

    2016-04-01

    Sub-daily water and carbon flux patterns give important and sometimes overlooked information about ecosystem processes and land-atmosphere feedbacks. While models often perform well down to daily timescales, they can be uncertain with respect to the diurnal courses, especially during dry-down events where the fraction of T to ET is shifting. We analyzed events from multiple locations for unique pattern changes that were robust across sites. Of particular interest were the divergence of water and carbon fluxes during high radiation periods, which indicates changes in water use efficiency as drought conditions intensified. The validity of attributing the signatures to ecosystem transitions such as changes in phenology, switches in soil evaporation vs transpiration dominance, and physiological stress were evaluated by comparing to site specific sap flow, soil moisture, and remote sensing data. Going forward, these findings can be used to further understand ecosystem physiology under drought conditions, and can also be used to partition of water fluxes and better constrain future models.

  13. Crustal solute fluxes and transient carbon dioxide drawdown in the Scottbreen Basin, Svalbard in 2002

    NASA Astrophysics Data System (ADS)

    Krawczyk, Wiesława Ewa; Bartoszewski, Stefan A.

    2008-12-01

    SummarySolute fluxes and transient carbon dioxide drawdown in a small glacierized basin investigated on Svalbard in 2002 are presented. It was a sample year within a period of significant climate warming in the Arctic. Discharge was recorded in the Scottbreen Basin (10.1 km 2), Bellsund Fjord, between July 8 and September 10, 2002. Specific runoff for this period was 0.784 m, 22% more than the mean for 1986-2001. The runoff for all of 2002 (i.e. the hydrologic year) was estimated by comparison with Bayelva, the only glacial river with longer records on Svalbard. The specific runoff for 2002 was ˜1.228 m, yielding crustal solute fluxes of 69.4 t km -2 yr -1 (25.8 m 3 km -2 yr -1). This rate is the highest chemical denudation rate reported from glacierized basins on Svalbard, and it may be underestimated because higher solute fluxes at the beginning of the melt season were not taken into account. Crustal fluxes in the fall may also have been higher because it is probable that crustal ion concentrations were increasing after recording stopped in September. The cation denudation rate was 1213 ∑ meq + m -2 yr -1 and the mean annual crustal ion concentration derived from it amounted to 981 μeq L -1. Transient CO 2 drawdown in 2002 was 5242 kg C km -2 yr -1. Most of the carbon dioxide was removed in the summer ablation waters, estimated CO 2 drawdown in the fall being only 13% of the total. Comparison with crustal solute fluxes (CSF) computed from specific conductivity in the 1980s and 1990s suggests that earlier fluxes may have been overestimated by around 19%. Comparing earlier data with the 2002 rates may confirm the influence of climate warming on increasing chemical denudation rates. It was also found that a globally derived equation relating specific conductivity to concentrations of dissolved limestone in water gave estimates of the crustal solute fluxes that were only 1.1% less than those obtained via comprehensive chemical analyses of waters and ion

  14. Sap flux in pure aspen and mixed aspen-birch forests exposed to elevated concentrations of carbon dioxide and ozone.

    PubMed

    Uddling, Johan; Teclaw, Ronald M; Kubiske, Mark E; Pregitzer, Kurt S; Ellsworth, David S

    2008-08-01

    Elevated concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]) have the potential to affect tree physiology and structure and hence forest water use, which has implications for climate feedbacks. We investigated how a 40% increase above ambient values in [CO2] and [O3], alone and in combination, affect tree water use of pure aspen and mixed aspen-birch forests in the free air CO2-O3 enrichment experiment near Rhinelander, Wisconsin (Aspen FACE). Measurements of sap flux and canopy leaf area index (L) were made during two growing seasons, when steady-state L had been reached after more than 6 years of exposure to elevated [CO2] and [O3]. Maximum stand-level sap flux was not significantly affected by elevated [O3], but was increased by 18% by elevated [CO2] averaged across years, communities and O(3) regimes. Treatment effects were similar in pure aspen and mixed aspen-birch communities. Increased tree water use in response to elevated [CO2] was related to positive CO2 treatment effects on tree size and L (+40%). Tree water use was not reduced by elevated [O3] despite strong negative O3 treatment effects on tree size and L (-22%). Elevated [O3] predisposed pure aspen stands to drought-induced sap flux reductions, whereas increased tree water use in response to elevated [CO2] did not result in lower soil water content in the upper soil or decreasing sap flux relative to control values during dry periods. Maintenance of soil water content in the upper soil in the elevated [CO2] treatment was at least partly a function of enhanced soil water-holding capacity, probably a result of increased organic matter content from increased litter inputs. Our findings that larger trees growing in elevated [CO2] used more water and that tree size, but not maximal water use, was negatively affected by elevated [O3] suggest that the long-term cumulative effects on stand structure may be more important than the expected primary stomatal closure responses to

  15. Utilizing Field Campaign, Flux Tower, and Satellite Data To Improve Simulated Carbon Fluxes and Pools in The Simple Biosphere Model (SiB4)

    NASA Astrophysics Data System (ADS)

    Haynes, K. D.; Baker, I. T.; Denning, S.; Stockli, R.; Schaefer, K. M.; Lokupitiya, E.

    2012-12-01

    Since terrestrial carbon fluxes and pools cannot be measured directly on regional and global scales, land surface models are an important tool in improving estimates of carbon sources and sinks. A variety of data sets now exist to evaluate land surface models against, which can help isolate shortcomings in the model and identify processes not being properly simulated. A variety of ecological properties are measured and hence can be investigated: above and below ground biomass and carbon pools from field campaigns; carbon fluxes from chambers and flux towers; and remotely sensed tree height, wood pools and leaf area index (LAI). In order to compare against these metrics, the Simple Biosphere Model (SiB4) has been restructured to include land cover heterogeneity, prognostic phenology, and carbon pools. This study presents results from SiB4, focusing on boreal North America and tropical South America. By utilizing data collected from field campaigns (the Boreal Ecosystem-Atmosphere Study, BOREAS, and the Large Scale Biosphere-Atmosphere Experiment in Amazonia, LBA), satellite data (remotely sensed LAI and IceSAT LIDAR measurements), and flux tower measurements, we analyze SiB4 results to help identify and resolve shortcomings and missing processes in the model. Land cover heterogeneity, prognostic phenology, and carbon pools have recently been combined in SiB4; and this study will investigate not only the impacts of these features, but also the overall performance of SiB4 in an effort to help improve terrestrial biogeochemical models and to advance our knowledge of the carbon cycle.

  16. Thermophilic treatment of acidified and partially acidified wastewater using an anaerobic submerged MBR: Factors affecting long-term operational flux.

    PubMed

    Jeison, D; van Lier, J B

    2007-09-01

    The long-term operation of two thermophilic anaerobic submerged membrane bioreactors (AnSMBRs) was studied using acidified and partially acidified synthetic wastewaters. In both reactors, cake formation was identified as the key factor governing critical flux. Even though cake formation was observed to be mostly reversible, particle deposition proceeds fast once the critical flux is exceeded. Very little irreversible fouling was observed during long-term operation, irrespective of the substrate. Critical flux values at the end of the reactors operation were 7 and 3L/m(2)h for the AnSMBRs fed with acidified and partially acidified wastewaters, respectively, at a gas superficial velocity of 70m/h. Small particle size was identified as the responsible parameter for the low observed critical flux values. The degree of wastewater acidification significantly affected the physical properties of the sludge, determining the attainable flux. Based on the fluxes observed in this research, the membrane costs would be in the range of 0.5euro/m(3) of treated wastewater. Gas sparging was ineffective in increasing the critical flux values. However, preliminary tests showed that cross-flow operation may be a feasible alternative to reduce particle deposition.

  17. High Resolution Simulation of LAI, Carbon and Water Fluxes over France

    NASA Astrophysics Data System (ADS)

    Lafont, Sebastien; Zhao, Yang; Barbu, Alina; Dominique, Carrer; Calvet, Jean Christophe; Peylin, Philippe; Weiss, Marie

    2011-01-01

    The vegetation/land component of GMES is called “Land Monitoring Core service” (LMCS). The geoland2 European project (FP7, 2008-2012) is a demonstrator of the evolution of the LMCS, including the consolidation of prototype services and the test of their operational capacity. The main mission of the land carbon core information service (LC-CIS) of geoland2 is to assess the impact of weather and climate variability on terrestrial biospheric carbon fluxes, in the context of international conventions. The LC-CIS aims at monitoring the global terrestrial carbon fluxes (e.g. to support reporting obligations in the course of the Kyoto Protocol) and setting-up pre-operational infrastructures for providing global products, both in near real time and off-line mode. A multi-model carbon accounting system is developed, coupled with EO data assimilation schemes. Emphasis is put on validation (in-situ data), with downscaling on reference European countries (F, NL, HU). The C-TESSEL and SURFEX modelling platforms (of ECMWF and Météo-France, respectively) are used for production. The ORCHIDEE modelling platform (LSCE) is used for benchmarking and validation purposes. We will present first test of the Geoland2 SURFEX model without data assimilation (Open-loop) over the French domain. We will focus on the simulation of the Leaf Area Index (LAI) and of carbon and water fluxes. The LAI is an important characteristics of the vegetation. It is a good measure of the amount of active vegetation and is linked to the canopy resistance, the water and carbon fluxes between the atmosphere and the vegetation. In this study, we compare 4 different estimations of LAI over France area : two LAI products derived from visible remote sensing and simulated LAI from 2 land surface models. The simulated LAI originates from two land surface models, The ISBA-A-gs model (developed by CNRM) and the ORCHIDEE model (developed by IPSL). The atmospheric forcing for the models is the SAFRAN dataset, a high

  18. Stream restoration and sewers impact sources and fluxes of water, carbon, and nutrients in urban watersheds

    NASA Astrophysics Data System (ADS)

    Pennino, Michael J.; Kaushal, Sujay S.; Mayer, Paul M.; Utz, Ryan M.; Cooper, Curtis A.

    2016-08-01

    An improved understanding of sources and timing of water, carbon, and nutrient fluxes associated with urban infrastructure and stream restoration is critical for guiding effective watershed management globally. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in urban stream restoration and sewer infrastructure. We compared an urban restored stream with two urban degraded streams draining varying levels of urban development and one stream with upland stormwater management systems over a 3-year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower (p < 0.05) monthly peak runoff (9.4 ± 1.0 mm day-1) compared with two urban degraded streams (ranging from 44.9 ± 4.5 to 55.4 ± 5.8 mm day-1) draining higher impervious surface cover, and the stream-draining stormwater management systems and less impervious surface cover in its watershed (13.2 ± 1.9 mm day-1). The restored stream exported most carbon, nitrogen, and phosphorus at relatively lower streamflow than the two more urban catchments, which exported most carbon and nutrients at higher streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha-1 yr-1), total nitrogen (4.5 ± 0.3 kg ha-1 yr-1), and total phosphorus (161 ± 15 kg ha-1 yr-1) were significantly lower in the restored stream compared to both urban degraded streams (p < 0.05), but statistically similar to the stream draining stormwater management systems, for N exports. However, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the urban restored stream was derived from leaky sanitary sewers (during baseflow), statistically similar to the urban degraded streams. These isotopic results as well as additional tracers, including fluoride (added to drinking water) and iodide (contained in dietary salt

  19. Benthic fluxes of dissolved organic carbon from gas hydrate sediments in the northern South China Sea

    PubMed Central

    Hung, Chia-Wei; Huang, Kuo-Hao; Shih, Yung-Yen; Lin, Yu-Shih; Chen, Hsin-Hung; Wang, Chau-Chang; Ho, Chuang-Yi; Hung, Chin-Chang; Burdige, David J.

    2016-01-01

    Hydrocarbon vents have recently been reported to contribute considerable amounts of dissolved organic carbon (DOC) to the oceans. Many such hydrocarbon vents widely exist in the northern South China Sea (NSCS). To investigate if these hydrocarbon vent sites release DOC, we used a real-time video multiple-corer to collect bottom seawater and surface sediments at vent sites. We analyzed concentrations of DOC in these samples and estimated DOC fluxes. Elevated DOC concentrations in the porewaters were found at some sites suggesting that DOC may come from these hydrocarbon vents. Benthic fluxes of DOC from these sediments were 28 to 1264 μmol m−2 d−1 (on average ~321 μmol m−2 d−1) which are several times higher than most DOC fluxes in coastal and continental margin sediments. The results demonstrate that the real-time video multiple-corer can precisely collect samples at vent sites. The estimated benthic DOC flux from the methane venting sites (8.6 × 106 mol y−1), is 24% of the DOC discharge from the Pearl River to the South China Sea, indicating that these sediments make an important contribution to the DOC in deep waters. PMID:27432631

  20. Utilizing a Tower Based System for Optical Sensing of Ecosystem Carbon Fluxes

    NASA Astrophysics Data System (ADS)

    Huemmrich, K. F.; Corp, L. A.; Middleton, E.; Campbell, P. K. E.; Landis, D.; Kustas, W. P.

    2015-12-01

    Optical sampling of spectral reflectance and solar induced fluorescence provide information on the physiological status of vegetation that can be used to infer stress responses and estimates of production. Multiple repeated observations are required to observe the effects of changing environmental conditions on vegetation. This study examines the use of optical signals to determine inputs to a light use efficiency (LUE) model describing productivity of a cornfield where repeated observations of carbon flux, spectral reflectance and fluorescence were collected. Data were collected at the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) fields (39.03°N, 76.85°W) at USDA Beltsville Agricultural Research Center. Agricultural Research Service researchers measured CO2 fluxes using eddy covariance methods throughout the growing season. Optical measurements were made from the nearby tower supporting the NASA FUSION sensors. The sensor system consists of two dual channel, upward and downward looking, spectrometers used to simultaneously collect high spectral resolution measurements of reflected and fluoresced light from vegetation canopies at multiple view angles. Estimates of chlorophyll fluorescence, combined with measures of vegetation pigment content and the Photosynthetic Reflectance Index (PRI) derived from the spectral reflectance are compared with CO2 fluxes over diurnal periods for multiple days. The relationships among the different optical measurements indicate that they are providing different types of information on the vegetation and that combinations of these measurements provide improved retrievals of CO2 fluxes than any index alone

  1. Benthic fluxes of dissolved organic carbon from gas hydrate sediments in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Hung, Chia-Wei; Huang, Kuo-Hao; Shih, Yung-Yen; Lin, Yu-Shih; Chen, Hsin-Hung; Wang, Chau-Chang; Ho, Chuang-Yi; Hung, Chin-Chang; Burdige, David J.

    2016-07-01

    Hydrocarbon vents have recently been reported to contribute considerable amounts of dissolved organic carbon (DOC) to the oceans. Many such hydrocarbon vents widely exist in the northern South China Sea (NSCS). To investigate if these hydrocarbon vent sites release DOC, we used a real-time video multiple-corer to collect bottom seawater and surface sediments at vent sites. We analyzed concentrations of DOC in these samples and estimated DOC fluxes. Elevated DOC concentrations in the porewaters were found at some sites suggesting that DOC may come from these hydrocarbon vents. Benthic fluxes of DOC from these sediments were 28 to 1264 μmol m-2 d-1 (on average ~321 μmol m-2 d-1) which are several times higher than most DOC fluxes in coastal and continental margin sediments. The results demonstrate that the real-time video multiple-corer can precisely collect samples at vent sites. The estimated benthic DOC flux from the methane venting sites (8.6 × 106 mol y-1), is 24% of the DOC discharge from the Pearl River to the South China Sea, indicating that these sediments make an important contribution to the DOC in deep waters.

  2. Impact of uncertainty in attributing modeled North American terrestrial carbon fluxes to anthropogenic forcings

    NASA Astrophysics Data System (ADS)

    Ricciuto, D. M.

    2015-12-01

    Although much progress has been made in the past decade in constraining the net North American terrestrial carbon flux, considerable uncertainty remains in the sink magnitude and trend. Terrestrial carbon cycle models are increasing in spatial resolution, complexity and predictive skill, allowing for increased process-level understanding and attribution of net carbon fluxes to specific causes. Here we examine the various sources of uncertainty, including driver uncertainty, model parameter uncertainty, and structural uncertainty, and the contribution of each type uncertainty to the net sink, and the attribution of this sink to anthropogenic causes: Increasing CO2 concentrations, nitrogen deposition, land use change, and changing climate. To examine driver and parameter uncertainty, model simulations are performed using the Community Land Model version 4.5 (CLM4.5) with literature-based parameter ranges and three different reanalysis meteorological forcing datasets. We also examine structural uncertainty thorough analysis of the Multiscale Terrestrial Model Intercomparison (MsTMIP). Identififying major sources of uncertainty can help to guide future observations, experiments, and model development activities.

  3. Quantification of Lateral Carbon Flux in a Chaparral Ecosystem in Southern California Alessandra Rossi, Walter Oechel, Patrick Murphy

    NASA Astrophysics Data System (ADS)

    Rossi, A.; Oechel, W. C.; Murphy, P.

    2013-12-01

    The lateral transport of carbon is a horizontal transfer of carbon away from the area it was withdrawn from the atmosphere (Ciais et al. 2006). Research regarding horizontal C transport has received much less attention in arid and semi-arid regions compared to other types of ecosystems. Drylands represent around 47.2% (Lal 2004) of the global terrestrial area and despite characterized by relatively low carbon flux, drylands comprise approximately 15.5% of the world's total soil organic carbon (SOC) (Eswaran et al. 2000, Schlesinger, 1991). Moreover, these dry areas contain at least as much soil inorganic carbon (SIC) as SOC (Eswaran et al. 2000). Therefore, these areas potentially have a large contribution to the global carbon budget and they deserve attention. A long-term observation of CO2 flux with the eddy covariance technique has been conducted since 1997 at Sky Oaks Field Station in Southern California, an area of Mediterranean climate at the climatic transition between semiarid area and desert. The long term record of CO2 flux showed the area has been a sink of CO2 of over -0.2 kgCm-2yr-1. In addition to evaluating vertical carbon fluxes, we initiated a project to evaluate lateral carbon transports using litter traps, sediment fences and two small weirs adjacent to the eddy covariance site. Preliminary results indicate that the lateral transfer of C in the area may offset the vertical influx to this shrub ecosystem. However, it is still necessary to develop the methodology to compare vertical carbon flux and the lateral carbon fluxes more accurately.

  4. Ecosystem carbon dioxide fluxes after disturbance in forests of North America

    NASA Astrophysics Data System (ADS)

    Amiro, B. D.; Barr, A. G.; Barr, J. G.; Black, T. A.; Bracho, R.; Brown, M.; Chen, J.; Clark, K. L.; Davis, K. J.; Desai, A. R.; Dore, S.; Engel, V.; Fuentes, J. D.; Goldstein, A. H.; Goulden, M. L.; Kolb, T. E.; Lavigne, M. B.; Law, B. E.; Margolis, H. A.; Martin, T.; McCaughey, J. H.; Misson, L.; Montes-Helu, M.; Noormets, A.; Randerson, J. T.; Starr, G.; Xiao, J.

    2010-12-01

    Disturbances are important for renewal of North American forests. Here we summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America. The disturbances included stand-replacing fire (Alaska, Arizona, Manitoba, and Saskatchewan) and harvest (British Columbia, Florida, New Brunswick, Oregon, Quebec, Saskatchewan, and Wisconsin) events, insect infestations (gypsy moth, forest tent caterpillar, and mountain pine beetle), Hurricane Wilma, and silvicultural thinning (Arizona, California, and New Brunswick). Net ecosystem production (NEP) showed a carbon loss from all ecosystems following a stand-replacing disturbance, becoming a carbon sink by 20 years for all ecosystems and by 10 years for most. Maximum carbon losses following disturbance (g C m-2y-1) ranged from 1270 in Florida to 200 in boreal ecosystems. Similarly, for forests less than 100 years old, maximum uptake (g C m-2y-1) was 1180 in Florida mangroves and 210 in boreal ecosystems. More temperate forests had intermediate fluxes. Boreal ecosystems were relatively time invariant after 20 years, whereas western ecosystems tended to increase in carbon gain over time. This was driven mostly by gross photosynthetic production (GPP) because total ecosystem respiration (ER) and heterotrophic respiration were relatively invariant with age. GPP/ER was as low as 0.2 immediately following stand-replacing disturbance reaching a constant value of 1.2 after 20 years. NEP following insect defoliations and silvicultural thinning showed lesser changes than stand-replacing events, with decreases in the year of disturbance followed by rapid recovery. NEP decreased in a mangrove ecosystem following Hurricane Wilma because of a decrease in GPP and an increase in ER.

  5. Ecosystem carbon dioxide fluxes after disturbance in forests of North America

    NASA Astrophysics Data System (ADS)

    Amiro, B. D.; Barr, A. G.; Barr, J. G.; Black, T. A.; Bracho, R.; Brown, M.; Chen, J.; Clark, K. L.; Davis, K. J.; Desai, A. R.; Dore, S.; Engel, V.; Fuentes, J. D.; Goldstein, A. H.; Goulden, M. L.; Kolb, T. E.; Lavigne, M. B.; Law, B. E.; Margolis, H. A.; Martin, T.; McCaughey, J. H.; Misson, L.; Montes-Helu, M.; Noormets, A.; Randerson, J. T.; Starr, G.; Xiao, J.

    2010-10-01

    Disturbances are important for renewal of North American forests. Here we summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America. The disturbances included stand-replacing fire (Alaska, Arizona, Manitoba, and Saskatchewan) and harvest (British Columbia, Florida, New Brunswick, Oregon, Quebec, Saskatchewan, and Wisconsin) events, insect infestations (gypsy moth, forest tent caterpillar, and mountain pine beetle), Hurricane Wilma, and silvicultural thinning (Arizona, California, and New Brunswick). Net ecosystem production (NEP) showed a carbon loss from all ecosystems following a stand-replacing disturbance, becoming a carbon sink by 20 years for all ecosystems and by 10 years for most. Maximum carbon losses following disturbance (g C m-2y-1) ranged from 1270 in Florida to 200 in boreal ecosystems. Similarly, for forests less than 100 years old, maximum uptake (g C m-2y-1) was 1180 in Florida mangroves and 210 in boreal ecosystems. More temperate forests had intermediate fluxes. Boreal ecosystems were relatively time invariant after 20 years, whereas western ecosystems tended to increase in carbon gain over time. This was driven mostly by gross photosynthetic production (GPP) because total ecosystem respiration (ER) and heterotrophic respiration were relatively invariant with age. GPP/ER was as low as 0.2 immediately following stand-replacing disturbance reaching a constant value of 1.2 after 20 years. NEP following insect defoliations and silvicultural thinning showed lesser changes than stand-replacing events, with decreases in the year of disturbance followed by rapid recovery. NEP decreased in a mangrove ecosystem following Hurricane Wilma because of a decrease in GPP and an increase in ER.

  6. Improve carbon metabolic flux in Saccharomyces cerevisiae at high temperature by overexpressed TSL1 gene.

    PubMed

    Ge, Xiang-Yang; Xu, Yan; Chen, Xiang

    2013-04-01

    This study describes a novel strategy to improve the glycolysis flux of Saccharomyces cerevisiae at high temperature. The TSL1 gene-encoding regulatory subunit of the trehalose synthase complex was overexpressed in S. cerevisiae Z-06, which increased levels of trehalose synthase activity in extracts, enhanced stress tolerance and glucose consuming rate of the yeast cells. As a consequence, the final ethanol concentration of 185.5 g/L was obtained at 38 °C for 36 h (with productivity up to 5.2 g/L/h) in 7-L fermentor, and the ethanol productivity was 92.7 % higher than that of the parent strain. The results presented here provide a novel way to enhance the carbon metabolic flux at high temperature, which will be available for the purposes of producing other primary metabolites of commercial interest using S. cerevisiae as a host.

  7. A steady state model of particulate organic carbon flux below the mixed layer and application to the Joint Global Ocean Flux Study

    NASA Astrophysics Data System (ADS)

    Boehm, Alexandria B.; Grant, Stanley B.

    2001-12-01

    The downward flux of particulate organic carbon (POC) through the ocean is controlled by a complex coupling of physical and biological processes. Here we analyze the equation that describes steady state coagulation, fragmentation, sedimentation, and grazing of POC below the mixed layer. The analysis yields a set of conditions under which vertical flux of POC is uncoupled from coagulation and fragmentation. When these conditions are satisfied, the model predicts that the flux of POC decays exponentially with depth down to 200-500 m, below which the flux is constant. From the magnitude of the terminal flux an estimate for the in situ clearance rate (volume swept clear of prey per grazer per unit time) for the grazer community can be obtained. This in situ clearance rate is estimated for five oceanic field sites using data collected during the Joint Global Ocean Flux Study, and the resulting values compare favorably to previously published laboratory estimates. These results suggest that, in some cases, bacterial mineralization may not be needed to explain the decline in POC flux in the mesopelagic zone of the ocean.

  8. Spatially Explicit Simulation of Mesotopographic Controls on Peatland Hydrology and Carbon Fluxes

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Chen, J. M.; Roulet, N. T.

    2006-12-01

    A number of field carbon flux measurements, paleoecological records, and model simulations have acknowledged the importance of northern peatlands in terrestrial carbon cycling and methane emissions. An important parameter in peatlands that influences both net primary productivity, the net gain of carbon through photosynthesis, and decomposition under aerobic and anaerobic conditions, is the position of the water table. Biological and physical processes involved in peatland carbon dynamics and their hydrological controls operate at different spatial scales. The highly variable hydraulic characteristics of the peat profile and the overall shape of the peat body as defined by its surface topography at the mesoscale (104 m2) are of major importance for peatland water table dynamics. Common types of peatlands include bogs with a slightly domed centre. As a result of the convex profile, their water supply is restricted to atmospheric inputs, and water is mainly shed by shallow subsurface flow. From a modelling perspective the influence of mesotopographic controls on peatland hydrology and thus carbon balance requires that process-oriented models that examine the links between peatland hydrology, ecosystem functioning, and climate must incorporate some form of lateral subsurface flow consideration. Most hydrological and ecological modelling studies in complex terrain explicitly account for the topographic controls on lateral subsurface flow through digital elevation models. However, modelling studies in peatlands often employ simple empirical parameterizations of lateral subsurface flow, neglecting the influence of peatlands low relief mesoscale topography. Our objective is to explicitly simulate the mesotopographic controls on peatland hydrology and carbon fluxes using the Boreal Ecosystem Productivity Simulator (BEPS) adapted to northern peatlands. BEPS is a process-oriented ecosystem model in a remote sensing framework that takes into account peatlands multi

  9. Cropland Carbon Fluxes in the United States: Increasing Geospatial Resolution of Inventory-based Carbon Accounting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Net annual soil carbon change, fossil fuel emissions from cropland production, and cropland net primary productivity were estimated and spatially distributed using land cover defined by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by the Cropland Data Layer (CDL). Spatially resolved...

  10. Spatial and temporal variability in carbon flux and its correlation with canopy level vegetation indices

    NASA Astrophysics Data System (ADS)

    Hastings, S. J.; Oechel, W. C.; Gamon, J. A.; Salinas, C.

    2003-12-01

    The temporal variability of carbon and water flux of a sarcocaulescent desert shrub ecosystem from July 2001 to September 2003 as measured using the eddy covariance technique in La Paz, Baja California Sur, Mex are described. Our objective was to link site specific measurements of net ecosystem flux with both canopy and satellite remote sensing measurements. Initially, using daily mid day web cam photos, patterns of phenological development and the rate of carbon uptake or loss were found to be linked with the timing and amount of rainfall. When seasonal rains began earlier than normal (2001), loss of carbon via soil respiration was observed with no development of the photosynthetic canopy. Upon the onset of the historical rainy season for the area, seasonal maximum values of net ecosystem flux (-1.5 vs -0.7 gC m-2 day-1 in 2001 and 2002 respectively) was strongly correlated with the amount of rainfall in 2001 and 2002 with precipitation in 2001 approximately twice as large as in 2002 (338 mm vs 124 mm). Spatially explicit measurements of soil respiration and canopy level normalized difference vegetation index were initiated in April of 2003. Mid August rains in 2003 resulted in the anticipated response of the vegetation with respect to development of the canopy. Using the spatial patterns of soil respiration and canopy level NDVI coupled with soil moisture and root biomass sampling, root development was shown to make up a large portion of ecosystem respiration upon the onset of the seasonal rains in 2003. These results are compared with 21 years of regional AVHRR and precipitation for the area as well as MODIS remote sensing outputs.

  11. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands.

    PubMed

    Dalcin Martins, Paula; Hoyt, David W; Bansal, Sheel; Mills, Christopher T; Tfaily, Malak; Tangen, Brian A; Finocchiaro, Raymond G; Johnston, Michael D; McAdams, Brandon C; Solensky, Matthew J; Smith, Garrett J; Chin, Yu-Ping; Wilkins, Michael J

    2017-01-24

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions.

  12. Eddy covariance measurement of carbon, latent and sensible heat fluxes from western Lake Erie

    NASA Astrophysics Data System (ADS)

    Shao, C.; Chen, J.; Stepien, C.; Bridgeman, T.; Czajkowski, K. P.; Becker, R.; Chu, H.; yang, Z.

    2013-12-01

    Long-term measurements of sensible and latent heat and carbon dioxide fluxes were performed over a boreal lake in northern American using the direct micrometeorological eddy covariance (EC) technique. Two permanent EC flux stations in western Lake Erie - Crib (41.7167N, 83.2667W, nearest distance from shore is 4.5 km) and Light (41.8314N, 83.2006W, nearest distance from shore > 12 km) sites have been operating since September, 2011. In 2012, in both sites, the sensible heat flux had its minimum in the afternoon (15:00-17:00) and peaked in the early morning (7:00-9:00) in August-November, varied from -4 W m-2 to +30 W m-2. The diurnal amplitude of H was largest in spring and in early fall (30 W m-2 in September) whereas it was smaller in July and August (20 W m-2). The latent heat flux had obvious seasonal pattern in both sites with higher values in the summer, while it did not show obvious daily courses, even did not have the day and night variation in both sites, only one trend from June to October was higher at night than during the daytime in Light site. The maximum latent heat of ~180 W m-2 in summer whereas the minimum -10 W m-2 in winter were observed. The latent heat flux dominated clearly over the sensible heat in spring and summer; that is, the Bowen ratio was less than 1 and most of the energy absorbed by the water was consumed in terms of evapotranspiration. A lookup table method was performed data gap-filling in our aquatic ecosystems in order to obtain the continuously daily, monthly and yearly carbon and water budgets. In 2012, for the annual cumulative total, the evapotranspiration was 820 and 700 mm (about 2000 and 1700 MJ m-2) in Crib and Light sites, respectively, comparing with the annual rainfall of 700 mm. The annual sensible heat was 480 and 300 MJ m-2 in Crib and Light sites, respectively. And there were four and five CO2 uptake months in Crib and Light sites, respectively. The maximum CO2 uptake month was in July in both sites, with -28 and

  13. Developing an Understanding of Vegetation Change and Fluvial Carbon Fluxes in Semi-Arid Environments

    NASA Astrophysics Data System (ADS)

    Puttock, A. K.; Dungait, J.; Bol, R.; MacLeod, C. J.; Brazier, R.

    2011-12-01

    Dryland environments are estimated to cover around 40% of the global land surface (Okin et al, 2009) and are home to approximately 2.5 billion people (Reynolds et al. 2007). Many of these areas have recently experienced extensive land degradation. One such area and the focus of this project is the semi-arid US Southwest, where degradation over the past 150 years has been characterized by the invasion of woody vegetation into grasslands. Transition from grass to woody vegetation results in a change in ecosystem structure and function (Turnbull et al, 2008). Structural change is typically characterised by an increased heterogeneity of soil and vegetation resources, associated with reduced vegetation coverage and an increased vulnerability to soil erosion and the potential loss of key nutrients to adjacent fluvial systems. Such loss of resources may impact heavily upon the amount of carbon that is sequestered by these environments and the amount of carbon that is lost as the land becomes more degraded. Therefore, understanding these vegetation transitions is significant for sustainable land use and global biogeochemical cycling. This project uses an ecohydrological approach, monitoring natural rainfall-runoff events over six bounded plots with different vegetation coverage. The experiment takes advantage of a natural abundance stable 13C isotope shift from C3 piñon-juniper (Pinus edulis-Juniperus monosperma) mixed stand through a C4 pure-grass (Bouteloua eriopoda) to C3 shrub (Larrea tridentate). Data collected quantify fluvial fluxes of sediment and associated soil organic matter and carbon that is lost from across the grass-to-shrub and grass-to-woodland transition (where change in space is taken to indicate a similar change through time). Results collected during the 2010 and 2011 monsoon seasons will be presented, illustrating that soil and carbon losses are greater as the ecosystem becomes more dominated by woody plants. Additionally this project utilises novel

  14. Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Spilling, Kristian; Schulz, Kai G.; Paul, Allanah J.; Boxhammer, Tim; Achterberg, Eric P.; Hornick, Thomas; Lischka, Silke; Stuhr, Annegret; Bermúdez, Rafael; Czerny, Jan; Crawfurd, Kate; Brussaard, Corina P. D.; Grossart, Hans-Peter; Riebesell, Ulf

    2016-11-01

    About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging from ambient ( ˜ 370 µatm) to high ( ˜ 1200 µatm), were set up in mesocosm bags ( ˜ 55 m3). We determined standing stocks and temporal changes of total particulate carbon (TPC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and particulate organic carbon (POC) of specific plankton groups. We also measured carbon flux via CO2 exchange with the atmosphere and sedimentation (export), and biological rate measurements of primary production, bacterial production, and total respiration. The experiment lasted for 44 days and was divided into three different phases (I: t0-t16; II: t17-t30; III: t31-t43). Pools of TPC, DOC, and DIC were approximately 420, 7200, and 25 200 mmol C m-2 at the start of the experiment, and the initial CO2 additions increased the DIC pool by ˜ 7 % in the highest CO2 treatment. Overall, there was a decrease in TPC and increase of DOC over the course of the experiment. The decrease in TPC was lower, and increase in DOC higher, in treatments with added CO2. During phase I the estimated gross primary production (GPP) was ˜ 100 mmol C m-2 day-1, from which 75-95 % was respired, ˜ 1 % ended up in the TPC (including export), and 5-25 % was added to the DOC pool. During phase II, the respiration loss increased to ˜ 100 % of GPP at the ambient CO2 concentration, whereas respiration was lower (85-95 % of GPP) in the highest CO2 treatment. Bacterial production was ˜ 30 % lower, on average, at the highest CO2 concentration than in the controls during phases II and III. This resulted in a higher accumulation of DOC and lower reduction in the TPC pool in the elevated CO2 treatments at the end of phase II extending throughout phase III

  15. Coral reef calcification: carbonate, bicarbonate and proton flux under conditions of increasing ocean acidification.

    PubMed

    Jokiel, P L

    2013-08-07

    Data on calcification rate of coral and crustose coralline algae were used to test the proton flux model of calcification. There was a significant correlation between calcification (G) and the ratio of dissolved inorganic carbon (DIC) to proton concentration ([DIC] : [H(+)] ratio). The ratio is tightly correlated with [CO3(2-)] and with aragonite saturation state (Ωa). An argument is presented that correlation does not prove cause and effect, and that Ωa and [CO3(2-)] have no basic physiological meaning on coral reefs other than a correlation with [DIC] : [H(+)] ratio, which is the driver of G.

  16. Carbon Fluxes And Yield Of Bioenergy Sorghum In An Extreme Desert Production Environment

    NASA Astrophysics Data System (ADS)

    Grantz, D. A.; Oikawa, P. Y.; Jenerette, D.

    2012-12-01

    Carbon accumulation and agronomic yield of tropical C4 grasses are high under irrigated conditions in low desert, western U.S. production areas. These are candidate production systems for purpose-grown biofuel feedstocks. Here we report fluxes of carbon at leaf and canopy scales, along with above-ground biomass yield, in an irrigated, fertilized field (5.26 ha) in the low desert (Imperial Valley) of California. This is an uncommonly productive but environmentally extreme growth environment with typical Tsoil > 55 C and Tair > 42 C during the growing season. We monitored a single field under fallow conditions, followed by planting, growth, harvest, and re-growth from stubble of Sorghum bicolor. Carbon accumulation is one aspect of our developing sustainability metric that characterizes land use conversion to biofuel production. Following 96 days of growth from seed, the canopy was harvested by cutting at 15 cm above the soil surface, yielding 33.8 ± 2.4 dry ton/ha. Over the growth period this represents 35 g m-2 day-1 of average dry matter accumulation, including the cool early season. A second and third cutting are anticipated during the production year suggesting annualized yields more typical of tropical than temperate environments. Tower fluxes of C obtained by eddy covariance suggest maximal rates of C accumulation increased with temperature and canopy development from -17 μmol m-2 s-1 in March to -57 μmol m-2 s-1 in July. Leaf level C assimilation in July exceeded 40 μmol m-2 s-1 in sunlit leaves. Neither EC nor leaf level photosynthetic measurements indicated inhibition of carbon assimilation by the prevailing high temperatures, although it is anticipated that low temperatures will terminate the season. As with unmanaged systems in this environment, fluxes are highly sensitive to pulsed water availability, in this case through irrigation. These data will be used to constrain process models of canopy response to these unusual environmental conditions, in

  17. To estimation of the fluxes of carbon dioxide in the Lake Baikal water-atmosphere system

    NASA Astrophysics Data System (ADS)

    Pestunov, D. A.; Panchenko, Mikhail V.; Domysheva, V. M.; Belan, Boris D.

    2004-12-01

    Separate many-day series of measurements of the carbon dioxide concentration were carried out at the stationary site of the Limnological Institute SB RAS near village Bol"shie Koty in July, August and October 2003. The CO2 fluxes from the water surface are estimated. Maximum amplitude of the diurnal variations of the CO2 concentration in the chamber in August was 100 ppmV, and minimum was 45 ppmV. Comparison with the results of measurements in the atmosphere and the data on the CO2 content in the near-surface water of Lake Baikal is performed.

  18. Biophysical controls on carbon and water vapor fluxes across a grassland climatic gradient in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding of the underlying causes of spatial variation in exchange of carbon and water vapor fluxes between grasslands and the atmosphere is crucial for accurate estimates of regional and global carbon and water budgets, and for predicting the impact of climate change on biosphere–atmosphere fe...

  19. Differential responses of carbon and water vapor fluxes to climate among evergreen needleleaf forests in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding of differences in carbon and water vapor fluxes of spatially distributed evergreen needle leaf forests (ENFs) is crucial to accurately estimating regional carbon and water budgets and when predicting the responses of ENFs to future climate. We investigated cross-site variability in car...

  20. Impact of drought on the CO2 atmospheric growth rate 2010-2012 from the NASA Carbon Monitoring System Flux (CMS-Flux) Project

    NASA Astrophysics Data System (ADS)

    Bowman, K. W.; Liu, J.; Parazoo, N.; Jiang, Z.; Bloom, A. A.; Lee, M.; Menemenlis, D.; Gierach, M.; Collatz, G. J.; Gurney, K. R.

    2015-12-01

    The La Nina between 2011-2012 led to significant droughts in the US and Northeastern Brazil while the historic drought in Amazon in 2010 was caused in part by the historic central Pacific El Nino. In order to investigate the role of drought on the atmospheric CO2 growth rate, we use satellite observations of CO2 and CO to infer spatially resolved carbon fluxes and attribute those fluxes to combustion sources correlated with drought conditions. Solar induced fluorescence in turn is used to estimate the impact of drought on productivity and its relationship to total flux. Preliminary results indicate that carbon losses in Mexico are comparable to the total fossil fuel production for that region. These in turn played an important role in the acceleration of the atmospheric growth rate from 2011-2012. These results were enabled using the NASA Carbon Monitoring System Project (CMS-Flux), which is based upon a 4D-variational assimilation system that incorporates observationally-constrained "bottom-up" estimates from the Fossil Fuel Data Assimilation System (FFDAS), the ECCO2-­Darwin physical and biogeochemical adjoint ocean state estimation system, and CASA-GFED3 land-surface biogeochemical model.

  1. Methane Flux Measurements from a Low Flying Aircraft: What they tell us about Regional Heterogeneity in Carbon Flux over the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Sayres, D. S.; Healy, C. E.; Munster, J. B.; Dobosy, R.; Dumas, E. J.; Kochendorfer, J.; Wilkerson, J.; Baker, B.; Langford, J.; Anderson, J. G.

    2015-12-01

    The Arctic contains a large reservoir of organic matter stored in permafrost and clathrates. Varying geology and hydrology across the Arctic, even on small scales, can cause large variability in surface carbon fluxes and partitioning between methane and carbon dioxide. In situ measurements are further complicated by the presence of gas and oil extraction, natural gas seeps, and biomass burning. Ground based measurements can yield high temporal resolution and detailed information about a specific location, but due to the inaccessibility of most of the Arctic to date in situ measurements have been made at very few sites. In August 2013, a small aircraft, flying low over the surface (5-30 m), and carrying an air turbulence probe and spectroscopic instruments to measure methane, carbon dioxide, and their isotopologues, flew over the North Slope of Alaska. During the ten flights multiple comparisons were made with a ground based Eddy Covariance tower as well as three region surveys of fluxes over three areas each approximately 2500 km2. We present analysis using the Flux Fragment Method and surface landscape classification maps to relate the fluxes to different surface land types.

  2. Baseline and projected future carbon storage and greenhouse-gas fluxes in ecosystems of Alaska

    USGS Publications Warehouse

    Zhu, Zhiliang; McGuire, A. David

    2016-06-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act of 2007 and to contribute to knowledge of the storage, fluxes, and balance of carbon and methane gas in ecosystems of Alaska. The carbon and methane variables were examined for major terrestrial ecosystems (uplands and wetlands) and inland aquatic ecosystems in Alaska in two time periods: baseline (from 1950 through 2009) and future (projections from 2010 through 2099). The assessment used measured and observed data and remote sensing, statistical methods, and simulation models. The national assessment, conducted using the methodology described in SIR 2010-5233, has been completed for the conterminous United States, with results provided in three separate regional reports (PP 1804, PP 1797, and PP 1897).

  3. Temporal trends and sources of variation in carbon flux from coarse woody debris in experimental forest canopy openings.

    PubMed

    Forrester, J A; Mladenoff, D J; D'Amato, A W; Fraver, S; Lindner, D L; Brazee, N J; Clayton, M K; Gower, S T

    2015-11-01

    Pulses of respiration from coarse woody debris (CWD) have been observed immediately following canopy disturbances, but it is unclear how long these pulses are sustained. Several factors are known to influence carbon flux rates from CWD, but few studies have evaluated more than temperature and moisture. We experimentally manipulated forest structure in a second-growth northern hardwood forest and measured CO2 flux periodically for seven growing seasons following gap creation. We present an analysis of which factors, including the composition of the wood-decay fungal community influence CO2 flux. CO2 flux from CWD was strongly and positively related to wood temperature and varied significantly between substrate types (logs vs. stumps). For five growing seasons after treatment, the CO2 flux of stumps reached rates up to seven times higher than that of logs. CO2 flux of logs did not differ significantly between canopy-gap and closed-canopy conditions in the fourth through seventh post-treatment growing seasons. By the seventh season, the seasonal carbon flux of both logs and stumps had decreased significantly from prior years. Linear mixed models indicated the variation in the wood inhabiting fungal community composition explained a significant portion of variability in the CO2 flux along with measures of substrate conditions. CO2 flux rates were inversely related to fungal diversity, with logs hosting more species but emitting less CO2 than stumps. Overall, our results suggest that the current treatment of CWD in dynamic forest carbon models may be oversimplified, thereby hampering our ability to predict realistic carbon fluxes associated with wood decomposition.

  4. A Mechanistically Informed User-Friendly Model to Predict Greenhouse Gas (GHG) Fluxes and Carbon Storage from Coastal Wetlands

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, O. I.; Ishtiaq, K. S.

    2015-12-01

    We present a user-friendly modeling tool on MS Excel to predict the greenhouse gas (GHG) fluxes and estimate potential carbon sequestration from the coastal wetlands. The dominant controls of wetland GHG fluxes and their relative mechanistic linkages with various hydro-climatic, sea level, biogeochemical and ecological drivers were first determined by employing a systematic data-analytics method, including Pearson correlation matrix, principal component and factor analyses, and exploratory partial least squares regressions. The mechanistic knowledge and understanding was then utilized to develop parsimonious non-linear (power-law) models to predict wetland carbon dioxide (CO2) and methane (CH4) fluxes based on a sub-set of climatic, hydrologic and environmental drivers such as the photosynthetically active radiation, soil temperature, water depth, and soil salinity. The models were tested with field data for multiple sites and seasons (2012-13) collected from the Waquoit Bay, MA. The model estimated the annual wetland carbon storage by up-scaling the instantaneous predicted fluxes to an extended growing season (e.g., May-October) and by accounting for the net annual lateral carbon fluxes between the wetlands and estuary. The Excel Spreadsheet model is a simple ecological engineering tool for coastal carbon management and their incorporation into a potential carbon market under a changing climate, sea level and environment. Specifically, the model can help to determine appropriate GHG offset protocols and monitoring plans for projects that focus on tidal wetland restoration and maintenance.

  5. Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes

    NASA Astrophysics Data System (ADS)

    Vihermaa, Leena E.; Waldron, Susan; Domingues, Tomas; Grace, John; Cosio, Eric G.; Limonchi, Fabian; Hopkinson, Chris; Rocha, Humberto Ribeiro; Gloor, Emanuel

    2016-12-01

    We constructed a whole carbon budget for a catchment in the Western Amazon Basin, combining drainage water analyses with eddy covariance (EC) measured terrestrial CO2 fluxes. As fluvial C export can represent permanent C export it must be included in assessments of whole site C balance, but it is rarely done. The footprint area of the flux tower is drained by two small streams ( 5-7 km2) from which we measured the dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), particulate organic carbon (POC) export, and CO2 efflux. The EC measurements showed the site C balance to be +0.7 ± 9.7 Mg C ha-1 yr-1 (a source to the atmosphere) and fluvial export was 0.3 ± 0.04 Mg C ha-1 yr-1. Of the total fluvial loss 34% was DIC, 37% DOC, and 29% POC. The wet season was most important for fluvial C export. There was a large uncertainty associated with the EC results and with previous biomass plot studies (-0.5 ± 4.1 Mg C ha-1 yr-1); hence, it cannot be concluded with certainty whether the site is C sink or source. The fluvial export corresponds to only 3-7% of the uncertainty related to the site C balance; thus, other factors need to be considered to reduce the uncertainty and refine the estimated C balance. However, stream C export is significant, especially for almost neutral sites where fluvial loss may determine the direction of the site C balance. The fate of C downstream then dictates the overall climate impact of fluvial export.

  6. Marine ecosystem modeling beyond the box: using GIS to study carbon fluxes in a coastal ecosystem.

    PubMed

    Wijnbladh, Erik; Jönsson, Bror Fredrik; Kumblad, Linda

    2006-12-01

    Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phytobenthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem.

  7. Soil respiration contributes substantially to urban carbon fluxes in the greater Boston area.

    PubMed

    Decina, Stephen M; Hutyra, Lucy R; Gately, Conor K; Getson, Jackie M; Reinmann, Andrew B; Short Gianotti, Anne G; Templer, Pamela H

    2016-05-01

    Urban areas are the dominant source of U.S. fossil fuel carbon dioxide (FFCO2) emissions. In the absence of binding international treaties or decisive U.S. federal policy for greenhouse gas regulation, cities have also become leaders in greenhouse gas reduction efforts through climate action plans. These plans focus on anthropogenic carbon flows only, however, ignoring a potentially substantial contribution to atmospheric carbon dioxide (CO2) concentrations from biological respiration. Our aim was to measure the contribution of CO2 efflux from soil respiration to atmospheric CO2 fluxes using an automated CO2 efflux system and to use these measurements to model urban soil CO2 efflux across an urban area. We find that growing season soil respiration is dramatically enhanced in urban areas and represents levels of CO2 efflux of up to 72% of FFCO2 within greater Boston's residential areas, and that soils in urban forests, lawns, and landscaped cover types emit 2.62 ± 0.15, 4.49 ± 0.14, and 6.73 ± 0.26 μmolCO2 m(-2) s(-1), respectively, during the growing season. These rates represent up to 2.2 times greater soil respiration than rates found in nearby rural ecosystems in central Massachusetts (MA), a potential consequence of imported carbon amendments, such as mulch, within a general regime of landowner management. As the scientific community moves rapidly towards monitoring, reporting, and verification of CO2 emissions using ground based approaches and remotely-sensed observations to measure CO2 concentrations, our results show that measurement and modeling of biogenic urban CO2 fluxes will be a critical component for verification of urban climate action plans.

  8. Carbon and Water Vapor Fluxes of Dedicated Bioenergy Feedstocks: Switchgrass and High Biomass Sorghum

    NASA Astrophysics Data System (ADS)

    Wagle, P.; Kakani, V. G.; Huhnke, R.

    2015-12-01

    We compared eddy covariance measurements of carbon and water vapor fluxes from co-located two major dedicated lignocellulosic feedstocks, Switchgrass (Panicum virgatum L.) and high biomass sorghum (Sorghum bicolor L. Moench), in Oklahoma during the 2012 and 2013 growing seasons. Monthly ensemble averaged net ecosystem CO2 exchange (NEE) reached seasonal peak values of 36-37 μmol m-2 s-1 in both ecosystems. Similar magnitudes (weekly average of daily integrated values) of NEE (10-11 g C m-2 d-1), gross primary production (GPP, 19-20 g C m-2 d-1), ecosystem respiration (ER, 10-12 g C m-2 d-1), and evapotranspiration (ET, 6.2-6.7 mm d-1) were observed in both ecosystems. Carbon and water vapor fluxes of both ecosystems had similar response to air temperature (Ta) and vapor pressure deficit (VPD). An optimum Ta was slightly over 30 °C for NEE and approximately 35 °C for ET, and an optimum VPD was approximately 3 kPa for NEE and ET in both ecosystems. The switchgrass field was a larger carbon sink, with a cumulative seasonal carbon uptake of 406-490 g C m-2 compared to 261-330 g C m-2 by the sorghum field. Despite similar water use patterns during the active growing period, seasonal cumulative ET was higher in switchgrass than in sorghum. The ratio of seasonal sums of GPP to ET yielded ecosystem water use efficiency (EWUE) of 9.41-11.32 and 8.98-9.17 g CO2 mm-1 ET in switchgrass and sorghum, respectively. The ratio of seasonal sums of net ecosystem production (NEP) to ET was 2.75-2.81 and 2.06-2.18 g CO2 mm-1 ET in switchgrass and sorghum, respectively. The switchgrass stand was a net carbon sink for four to five months (April/May-August), while sorghum was a net carbon sink only for three months (June-August). Our results imply that the difference in carbon sink strength and water use between two ecosystems was driven mainly by the length of the growing season.

  9. A 400-year record of black carbon flux in the Xisha archipelago, South China Sea and its implication.

    PubMed

    Liu, Xiaodong; Xu, Liqiang; Sun, Liguang; Liu, Fei; Wang, Yuhong; Yan, Hong; Liu, Yi; Luo, Yuhan; Huang, Jing

    2011-10-01

    We reconstructed the first long-term (∼ 400 years) records of black carbon (BC) deposition flux from three ornithogenic sediment profiles, which were collected from three remote, isolated islets of the Xisha archipelago, South China Sea. The significant correlations between black carbon, organic matter and excess (210)Pb suggested that black carbon was mainly derived from atmospheric deposition, and further enriched by plant-derived organic matter in sediments. During the past 400 years, the BC flux remained relatively low before the onset of 20th century; it started to increase from approximately 1900 AD, and peaked around the 1970s. In the recent 30 years, the BC flux seemed to display decreasing trend, very likely due to the change of energy structure and development of pollution control techniques. In comparison with marginal sea regions that are greatly impacted by anthropogenic activities, these pristine Xisha islands were not significantly influenced by black carbon of anthropogenic origin.

  10. The Carbon Assimilation Network in Escherichia coli Is Densely Connected and Largely Sign-Determined by Directions of Metabolic Fluxes

    PubMed Central

    Baldazzi, Valentina; Ropers, Delphine; Markowicz, Yves; Kahn, Daniel; Geiselmann, Johannes; de Jong, Hidde

    2010-01-01

    Gene regulatory networks consist of direct interactions but also include indirect interactions mediated by metabolites and signaling molecules. We describe how these indirect interactions can be derived from a model of the underlying biochemical reaction network, using weak time-scale assumptions in combination with sensitivity criteria from metabolic control analysis. We apply this approach to a model of the carbon assimilation network in Escherichia coli. Our results show that the derived gene regulatory network is densely connected, contrary to what is usually assumed. Moreover, the network is largely sign-determined, meaning that the signs of the indirect interactions are fixed by the flux directions of biochemical reactions, independently of specific parameter values and rate laws. An inversion of the fluxes following a change in growth conditions may affect the signs of the indirect interactions though. This leads to a feedback structure that is at the same time robust to changes in the kinetic properties of enzymes and that has the flexibility to accommodate radical changes in the environment. PMID:20548959

  11. Influence of management and precipitation on carbon fluxes in greatplains grasslands

    USGS Publications Warehouse

    Rigge, Matthew B.; Wylie, Bruce K.; Zhang, Li; Boyte, Stephen P.

    2013-01-01

    Suitable management and sufficient precipitation on grasslands can provide carbon sinks. The net carbon accumulation of a site from the atmosphere, modeled as the Net Ecosystem Productivity (NEP), is a useful means to gauge carbon balance. Previous research has developed methods to integrate flux tower data with satellite biophysical datasets to estimate NEP across large regions. A related method uses the Ecosystem Performance Anomaly (EPA) as a satellite-derived indicator of disturbance intensity (e.g., livestock stocking rate, fire, and insect damage). To better understand the interactions among management, climate, and carbon dynamics, we evaluated the relationship between EPA and NEP data at the 250 m scale for grasslands in the Central Great Plains, USA (ranging from semi-arid to mesic). We also used weekly estimates of NEP to evaluate the phenology of carbon dynamics, classified by EPA (i.e., by level of disturbance impact). Results show that the cumulative carbon balance over these grasslands from 2000 to 2008 was a weak net sink of 13.7 g C m−2 yr−1. Overall, NEP increased with precipitation (R2 = 0.39, P < 0.05) from west to east. Disturbance influenced NEP phenology; however, climate and biophysical conditions were usually more important. The NEP response to disturbance varies by ecoregion, and more generally by grassland type, where the shortgrass prairie NEP is most sensitive to disturbance, the mixed-grass prairie displays a moderate response, and tallgrass prairie is the least impacted by disturbance (as measured by EPA). Sustainable management practices in the tallgrass and mixed-grass prairie may potentially induce a period of average net carbon sink until a new equilibrium soil organic carbon is achieved. In the shortgrass prairie, management should be considered sustainable if carbon stocks are simply maintained. The consideration of site carbon balance adds to the already difficult task of managing grasslands appropriately to site conditions

  12. Getting a Helping Hand From 'Dead Man's Fingers': The Role of Pneumatophore Photosynthesis in Black Mangrove Ecosystem Carbon Fluxes

    NASA Astrophysics Data System (ADS)

    Bovard, B. D.; Hartley, J. G.; Cartwright, F. B.

    2011-12-01

    Getting a Helping Hand From "Dead Man's Fingers": The Role of Pneumatophore Photosynthesis in Black Mangrove Ecosystem Carbon Fluxes B. D Bovard, J.G Hartley and F. B. Cartwright. Mangrove wetlands are thought to be an important carbon sink in the context of global carbon budgets, but many components of their carbon cycle have been unmeasured or understudied. Little is known regarding the role of pneumatophores in ecosystem carbon fluxes, but some species of Avicennia have been shown to possess photosynthetic activity. In this study, the carbon dioxide gas exchange of Avicennia germinans (Black Mangroves) pneumatophores was measured in situ to assess the impact of their photosynthetic activity on ecosystem carbon dynamics in southwest Florida's mangrove ecosystems. Our study site was a stand of Avicennia germinans located on Sanibel Island within the Ding Darling National Wildlife Refuge and was part of a larger study on mangrove ecosystem carbon storage. The density of pneumatophores at this site was 368.4 pneumatophores m-2- with an aboveground pneumatophore biomass of 788.4 g m-2. Pneumatophore dark respiration rates averaged 0.20 ± 0.02 μmol CO2 g-1 s-1, while their fluxes under ambient light conditions were 0.19 ± 0.03 μmol CO2 g-1 s-1, but these fluxes were not statistically different from one another (p<0.21). Although not statistically significant, pneumatophores exposed to light consistently respired less as hypothesized, suggesting their photosynthetic activity is small but not negligible. Combined with pneumatophore density and biomass data, ecosystem carbon fluxes from Avicennia germinans pneumatophores were estimated to be 157.4 μmol CO2 m-2 s-1 in the dark, and 150.3 μmol CO2 m-2 s-1 under ambient light levels, an approximate 5% reduction in pneumatophore carbon losses as a result of pneumatophore photosynthetic activity.

  13. NASA's Carbon Monitoring System Flux-Pilot Project: A Multi-Component Analysis System for Carbon-Cycle Research and Monitoring

    NASA Technical Reports Server (NTRS)

    Pawson, S.; Gunson, M.; Potter, C.; Jucks, K.

    2012-01-01

    The importance of greenhouse gas increases for climate motivates NASA s observing strategy for CO2 from space, including the forthcoming Orbiting Carbon Observatory (OCO-2) mission. Carbon cycle monitoring, including attribution of atmospheric concentrations to regional emissions and uptake, requires a robust modeling and analysis infrastructure to optimally extract information from the observations. NASA's Carbon-Monitoring System Flux-Pilot Project (FPP) is a prototype for such analysis, combining a set of unique tools to facilitate analysis of atmospheric CO2 along with fluxes between the atmosphere and the terrestrial biosphere or ocean. NASA's analysis system is unique, in that it combines information and expertise from the land, oceanic, and atmospheric branches of the carbon cycle and includes some estimates of uncertainty. Numerous existing space-based missions provide information of relevance to the carbon cycle. This study describes the components of the FPP framework, assessing the realism of computed fluxes, thus providing the basis for research and monitoring applications. Fluxes are computed using data-constrained terrestrial biosphere models and physical ocean models, driven by atmospheric observations and assimilating ocean-color information. Use of two estimates provides a measure of uncertainty in the fluxes. Along with inventories of other emissions, these data-derived fluxes are used in transport models to assess their consistency with atmospheric CO2 observations. Closure is achieved by using a four-dimensional data assimilation (inverse) approach that adjusts the terrestrial biosphere fluxes to make them consistent with the atmospheric CO2 observations. Results will be shown, illustrating the year-to-year variations in land biospheric and oceanic fluxes computed in the FPP. The signals of these surface-flux variations on atmospheric CO2 will be isolated using forward modeling tools, which also incorporate estimates of transport error. The

  14. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation.

    PubMed

    Yang, Qian; Dixon, Timothy H; Myers, Paul G; Bonin, Jennifer; Chambers, Don; van den Broeke, M R

    2016-01-22

    The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland's ice sheet is freshening the North Atlantic; however, whether the augmented freshwater flux is disrupting the AMOC is unclear. Dense Labrador Sea Water (LSW), formed by winter cooling of saline North Atlantic water and subsequent convection, is a key component of the deep southward return flow of the AMOC. Although LSW formation recently decreased, it also reached historically high values in the mid-1990s, making the connection to the freshwater flux unclear. Here we derive a new estimate of the recent freshwater flux from Greenland using updated GRACE satellite data, present new flux estimates for heat and salt from the North Atlantic into the Labrador Sea and explain recent variations in LSW formation. We suggest that changes in LSW can be directly linked to recent freshening, and suggest a possible link to AMOC weakening.

  15. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation

    NASA Astrophysics Data System (ADS)

    Yang, Qian; Dixon, Timothy H.; Myers, Paul G.; Bonin, Jennifer; Chambers, Don; van den Broeke, M. R.

    2016-01-01

    The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland's ice sheet is freshening the North Atlantic; however, whether the augmented freshwater flux is disrupting the AMOC is unclear. Dense Labrador Sea Water (LSW), formed by winter cooling of saline North Atlantic water and subsequent convection, is a key component of the deep southward return flow of the AMOC. Although LSW formation recently decreased, it also reached historically high values in the mid-1990s, making the connection to the freshwater flux unclear. Here we derive a new estimate of the recent freshwater flux from Greenland using updated GRACE satellite data, present new flux estimates for heat and salt from the North Atlantic into the Labrador Sea and explain recent variations in LSW formation. We suggest that changes in LSW can be directly linked to recent freshening, and suggest a possible link to AMOC weakening.

  16. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation

    PubMed Central

    Yang, Qian; Dixon, Timothy H.; Myers, Paul G.; Bonin, Jennifer; Chambers, Don; van den Broeke, M. R.; Ribergaard, Mads H.; Mortensen, John

    2016-01-01

    The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland's ice sheet is freshening the North Atlantic; however, whether the augmented freshwater flux is disrupting the AMOC is unclear. Dense Labrador Sea Water (LSW), formed by winter cooling of saline North Atlantic water and subsequent convection, is a key component of the deep southward return flow of the AMOC. Although LSW formation recently decreased, it also reached historically high values in the mid-1990s, making the connection to the freshwater flux unclear. Here we derive a new estimate of the recent freshwater flux from Greenland using updated GRACE satellite data, present new flux estimates for heat and salt from the North Atlantic into the Labrador Sea and explain recent variations in LSW formation. We suggest that changes in LSW can be directly linked to recent freshening, and suggest a possible link to AMOC weakening. PMID:26796579

  17. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon.

    PubMed

    Houghton, R A; Skole, D L; Nobre, C A; Hackler, J L; Lawrence, K T; Chomentowski, W H

    2000-01-20

    The distribution of sources and sinks of carbon among the world's ecosystems is uncertain. Some analyses show northern mid-latitude lands to be a large sink, whereas the tropics are a net source; other analyses show the tropics to be nearly neutral, whereas northern mid-latitudes are a small sink. Here we show that the annual flux of carbon from deforestation and abandonment of agricultural lands in the Brazilian Amazon was a source of about 0.2 Pg Cyr(-1) over the period 1989-1998 (1 Pg is 10(15) g). This estimate is based on annual rates of deforestation and spatially detailed estimates of deforestation, regrowing forests and biomass. Logging may add another 5-10% to this estimate, and fires may double the magnitude of the source in years following a drought. The annual source of carbon from land-use change and fire approximately offsets the sink calculated for natural ecosystems in the region. Thus this large area of tropical forest is nearly balanced with respect to carbon, but has an interannual variability of +/- 0.2 PgC yr(-1).

  18. Lateral carbon fluxes and CO2 outgassing from a tropical peat-draining river

    NASA Astrophysics Data System (ADS)

    Müller, D.; Warneke, T.; Rixen, T.; Müller, M.; Jamahari, S.; Denis, N.; Mujahid, A.; Notholt, J.

    2015-10-01

    Tropical peatlands play an important role in the global carbon cycle due to their immense carbon storage capacity. However, pristine peat swamp forests are vanishing due to deforestation and peatland degradation, especially in Southeast Asia. CO2 emissions associated with this land use change might not only come from the peat soil directly but also from peat-draining rivers. So far, though, this has been mere speculation, since there has been no data from undisturbed reference sites. We present the first combined assessment of lateral organic carbon fluxes and CO2 outgassing from an undisturbed tropical peat-draining river. Two sampling campaigns were undertaken on the Maludam River in Sarawak, Malaysia. The river catchment is covered by protected peat swamp forest, offering a unique opportunity to study a peat-draining river in its natural state, without any influence from tributaries with different characteristics. The two campaigns yielded consistent results. Dissolved organic carbon (DOC) concentrations ranged between 3222 and 6218 μmol L-1 and accounted for more than 99 % of the total organic carbon (TOC). Radiocarbon dating revealed that the riverine DOC was of recent origin, suggesting that it derives from the top soil layers and surface runoff. We observed strong oxygen depletion, implying high rates of organic matter decomposition and consequently CO2 production. The measured median pCO2 was 7795 and 8400 μatm during the first and second campaign, respectively. Overall, we found that only 32 ± 19 % of the carbon was exported by CO2 evasion, while the rest was exported by discharge. CO2 outgassing seemed to be moderated by the short water residence time. Since most Southeast Asian peatlands are located at the coast, this is probably an important limiting factor for CO2 outgassing from most of its peat-draining rivers.

  19. Lateral carbon fluxes and CO2 outgassing from a tropical peat-draining river

    NASA Astrophysics Data System (ADS)

    Müller, D.; Warneke, T.; Rixen, T.; Müller, M.; Jamahari, S.; Denis, N.; Mujahid, A.; Notholt, J.

    2015-07-01

    Tropical peatlands play an important role in the global carbon cycle due to their immense carbon storage capacity. However, pristine peat swamp forests are vanishing due to deforestation and peatland degradation, especially in Southeast Asia. CO2 emissions associated with this land use change might not only come from the peat soil directly, but also from peat-draining rivers. So far, though, this has been mere speculation, since there was no data from undisturbed reference sites. We present the first combined assessment of lateral organic carbon fluxes and CO2 outgassing from an undisturbed tropical peat-draining river. Two sampling campaigns were undertaken on the Maludam river in Sarawak, Malaysia. The river catchment is covered by protected peat swamp forest, offering a unique opportunity to study a peat-draining river in its natural state, without any influence from tributaries with different characteristics. The two campaigns yielded consistent results. Dissolved organic carbon (DOC) concentrations ranged between 3222 and 6218 μmol L-1 and accounted for more than 99 % of the total organic carbon (TOC). Radiocarbon dating revealed that the riverine DOC was of recent origin, suggesting that it derives from the top soil layers and surface runoff. We observed strong oxygen depletion, implying high rates of organic matter decomposition and consequently CO2 production. The measured median pCO2 was 7795 and 8400 μatm during the two campaigns, respectively. Overall, we found that only 26 ± 15 % of the carbon was exported by CO2 evasion, while the rest was exported by discharge. CO2 outgassing seemed to be moderated by the short water residence time. Since most Southeast Asian peatlands are located at the coast, this is probably an important limiting factor for CO2 outgassing from most of its peat-draining rivers.

  20. Black Carbon Flux Across the Himalaya through the Kali Gandaki Valley in Nepal

    NASA Astrophysics Data System (ADS)

    Dhungel, S.; Panday, A. K.; Mahata, K. S.

    2013-12-01

    Significant increases in black carbon concentration have been observed in the recent years over the Indo-Gangetic plain, the foothills of the Himalaya, as well as the high Himalaya and the Tibetan Plateau. The concentration of increased black carbon can be significantly correlated to the albedo effect and the warming of atmosphere at high altitudes due to the deposition of black carbon in the snow clad mountains. It is hypothesized that this deposition contributes to increased melting of Himalayan glaciers and snowfields. Satellite images show increasing amounts of aerosol haze over the Indo-Gangetic plains which penetrate into the Himalayan valleys. But how does it reach the high altitude of the Himalayan cryosphere? To date, mechanisms of transport upwind of the valley from the Indo-Gangetic plains up to the Himalaya have not been thoroughly investigated. We hypothesize that wind systems in the deep river valleys that cut across the Himalaya, such as the Arun valley and Kali Gandaki valley, serve as important pathways for pollutant transport. In 2010 the University of Virginia, in collaboration with ICIMOD and Nepal Wireless, established an atmospheric research station in Jomsom, Nepal (28.78N, 83.42E, 2900 m.a.s.l.). The station is equipped to measure black carbon (BC), carbon monoxide (CO), and ozone concentrations. It also has an automated weather station, a filter sampler, and a NASA Aeronet Sunphotometer. Here we use our observations in Jomsom to present an estimate of the annual flux of black carbon from the Indo-Gangetic plains to the Tibetan Plateau through the Kali Gandaki valley. In this way, we gain insight into the significance of deep valleys and their role as pathways for pollutant transport.

  1. Seasonal Dynamics of Water, Carbon, and Energy Flux in Mesquite Forest: Project Overview and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Williams, D. G.; Scott, R.; Lin, G.; Martens, D.; Watts, C.; Goodrich, D.; Garatuza, J.; Rodriguez, J.; Edwards, E.; Hultine, K.; Yepez, E.; Ellsworth, P.; Cable, W.; vanHaren, J.; Pierce, D.

    2001-12-01

    Mesquite is the dominant woody plant in floodplain environments of warm deserts in the southwestern US and thus plays a central role in biogeochemical cycling and energy exchange at landscape and potentially regional scales. Our project investigates the biotic and abiotic controls over seasonal dynamics of energy exchange, CO2 uptake and release, and evapotranspiration within a mature mesquite forest on the San Pedro River floodplain in southeastern Arizona. The growing season in the upper San Pedro River basin is punctuated by a very hot, dry period in early summer followed by monsoon rains that stimulate prolific growth of under story C4 grasses. Our general objectives are to determine the impact of summer rains on net ecosystem CO2 exchange (NEE), evapotranspiration (ET), energy fluxes and soil nutrient cycling, and to understand and model component fluxes in these two-layered canopies. We are continuously monitoring NEE and ET using an eddy covariance system mounted on a 14-m tall tower at the site. Three intensive field campaigns (pre-, mid-, and post-monsoon) included measurements of eddy fluxes beneath the mesquite canopy, mesquite sap flow, mesquite leaf area index, mesquite and grass water sources and stomatal conductance, soil moisture distribution, soil respiration, soil carbon and nitrogen pools, and isotopic composition of CO2 and water vapor within and above the canopy boundary layer. This talk will highlight some of the important findings from the first year of this project. >http://www.tucson.ars.ag.gov/~russell/mesquitehome.htm

  2. The Impact of Fine-Scale Disturbances on the Predictability of Vegetation Dynamics and Carbon Flux

    PubMed Central

    Hurtt, G. C.; Thomas, R. Q.; Fisk, J. P.; Dubayah, R. O.; Sheldon, S. L.

    2016-01-01

    Predictions from forest ecosystem models are limited in part by large uncertainties in the current state of the land surface, as previous disturbances have important and lasting influences on ecosystem structure and fluxes that can be difficult to detect. Likewise, future disturbances also present a challenge to prediction as their dynamics are episodic and complex and occur across a range of spatial and temporal scales. While large extreme events such as tropical cyclones, fires, or pest outbreaks can produce dramatic consequences, small fine-scale disturbance events are typically much more common and may be as or even more important. This study focuses on the impacts of these smaller disturbance events on the predictability of vegetation dynamics and carbon flux. Using data on vegetation structure collected for the same domain at two different times, i.e. “repeat lidar data”, we test high-resolution model predictions of vegetation dynamics and carbon flux across a range of spatial scales at an important tropical forest site at La Selva Biological Station, Costa Rica. We found that predicted height change from a height-structured ecosystem model compared well to lidar measured height change at the domain scale (~150 ha), but that the model-data mismatch increased exponentially as the spatial scale of evaluation decreased below 20 ha. We demonstrate that such scale-dependent errors can be attributed to errors predicting the pattern of fine-scale forest disturbances. The results of this study illustrate the strong impact fine-scale forest disturbances have on forest dynamics, ultimately limiting the spatial resolution of accurate model predictions. PMID:27093157

  3. Carbon flux estimation for Siberia by inverse modeling constrained by aircraft and tower CO2 measurements

    NASA Astrophysics Data System (ADS)

    Saeki, T.; Maksyutov, S.; Sasakawa, M.; Machida, T.; Arshinov, M.; Tans, P. P.; Conway, T. J.; Saito, M.; Valsala, V.; Oda, T.; Andres, R. J.

    2012-12-01

    Despite Siberian ecosystems being one of the largest carbon reservoirs in the world, the Siberian carbon sink remains poorly understood due to the limited numbers of observations. We present the first results of atmospheric CO2 inversions utilizing measurements from a Siberian tower network (Japan-Russia Siberian Tall Tower Inland Observation Network; JR-STATION) and four aircraft sites, in addition to surface background flask measurements by the National Oceanic and Atmospheric Administration (NOAA). The inverse model estimates monthly fluxes for 68 regions globally. Our inversion with only the NOAA data yielded a boreal Eurasian CO2 flux of -0.56 ± 0.79 GtC yr-1, whereas we obtained a weaker uptake of -0.35 ± 0.61 GtC yr-1 when the Siberian data were also included. This difference is mainly explained by a weakened summer uptake, especially in East Siberia. We also found the inclusion of the Siberian data had significant impacts on inversion results over northeastern Europe as well as boreal Eurasia. The inversion with the Siberian data reduced the regional uncertainty by 22 % on average in boreal Eurasia, and further uncertainty reductions up to 80 % were found in eastern and western Siberia. Larger interannual variability was clearly seen in the inversion including the Siberia data than the inversion without the Siberia data. In the inversion with NOAA plus Siberia data, East Siberia showed larger interannual variability than that in West and Central Siberia. Finally, we conducted forward simulations using estimated fluxes and confirmed that the fit to independent measurements over Central Siberia, which were not included in the inversions, was visibly improved.

  4. Carbon and energy fluxes in cropland ecosystems: a model-data comparison

    SciTech Connect

    Lokupitiya, E.; Denning, A. S.; Schaefer, K.; Ricciuto, D.; Anderson, R.; Arain, M. A.; Baker, I.; Barr, A. G.; Chen, G.; Chen, J. M.; Ciais, P.; Cook, D. R.; Dietze, M.; El Maayar, M.; Fischer, M.; Grant, R.; Hollinger, D.; Izaurralde, C.; Jain, A.; Kucharik, C.; Li, Z.; Liu, S.; Li, L.; Matamala, R.; Peylin, P.; Price, D.; Running, S. W.; Sahoo, A.; Sprintsin, M.; Suyker, A. E.; Tian, H.; Tonitto, C.; Torn, M.; Verbeeck, Hans; Verma, S. B.; Xue, Y.

    2016-06-03

    Croplands are highly productive ecosystems that contribute to land–atmosphere exchange of carbon, energy, and water during their short growing seasons. We evaluated and compared net ecosystem exchange (NEE), latent heat flux (LE), and sensible heat flux (H) simulated by a suite of ecosystem models at five agricultural eddy covariance flux tower sites in the central United States as part of the North American Carbon Program Site Synthesis project. Most of the models overestimated H and underestimated LE during the growing season, leading to overall higher Bowen ratios compared to the observations. Most models systematically under predicted NEE, especially at rain-fed sites. Certain crop-specific models that were developed considering the high productivity and associated physiological changes in specific crops better predicted the NEE and LE at both rain-fed and irrigated sites. Models with specific parameterization for different crops better simulated the inter-annual variability of NEE for maize-soybean rotation compared to those models with a single generic crop type. Stratification according to basic model formulation and phenological methodology did not explain significant variation in model performance across these sites and crops. The under prediction of NEE and LE and over prediction of H by most of the models suggests that models developed and parameterized for natural ecosystems cannot accurately predict the more robust physiology of highly bred and intensively managed crop ecosystems. When coupled in Earth System Models, it is likely that the excessive physiological stress simulated in many land surface component models leads to overestimation of temperature and atmospheric boundary layer depth, and underestimation of humidity and CO2 seasonal uptake over agricultural regions.

  5. The Impact of Fine-Scale Disturbances on the Predictability of Vegetation Dynamics and Carbon Flux.

    PubMed

    Hurtt, G C; Thomas, R Q; Fisk, J P; Dubayah, R O; Sheldon, S L

    2016-01-01

    Predictions from forest ecosystem models are limited in part by large uncertainties in the current state of the land surface, as previous disturbances have important and lasting influences on ecosystem structure and fluxes that can be difficult to detect. Likewise, future disturbances also present a challenge to prediction as their dynamics are episodic and complex and occur across a range of spatial and temporal scales. While large extreme events such as tropical cyclones, fires, or pest outbreaks can produce dramatic consequences, small fine-scale disturbance events are typically much more common and may be as or even more important. This study focuses on the impacts of these smaller disturbance events on the predictability of vegetation dynamics and carbon flux. Using data on vegetation structure collected for the same domain at two different times, i.e. "repeat lidar data", we test high-resolution model predictions of vegetation dynamics and carbon flux across a range of spatial scales at an important tropical forest site at La Selva Biological Station, Costa Rica. We found that predicted height change from a height-structured ecosystem model compared well to lidar measured height change at the domain scale (~150 ha), but that the model-data mismatch increased exponentially as the spatial scale of evaluation decreased below 20 ha. We demonstrate that such scale-dependent errors can be attributed to errors predicting the pattern of fine-scale forest disturbances. The results of this study illustrate the strong impact fine-scale forest disturbances have on forest dynamics, ultimately limiting the spatial resolution of accurate model predictions.

  6. Estimating Large-Scale Carbon Fluxes from Remotely-Sensed Biomass and Vegetation Indices

    NASA Astrophysics Data System (ADS)

    Bloom, A. A.; Williams, M. D.

    2012-12-01

    Large uncertainties are associated with net ecosystem exchange (NEE) estimates across continental scales. The assimilation of satellite-derived biometric data into carbon cycle (C) models can lead to an improved understanding of ecosystem C fluxes and ultimately to a reduction of estimated NEE uncertainty. We implement a Monte Carlo model-data fusion approach to assimilate MODIS LAI and GLAS-derived canopy height into the Data Assimilation Linked Ecosystem Carbon (DALEC) model, in order to estimate ecosystem C allocation and the magnitude of C fluxes. In particular, we test a broad reality check in the assimilation cost-function: we discard ``unrealistic'' combinations of randomly sampled allocation parameters and C pool dynamics in DALEC, without discarding non-equilibrium states. We first test our approach on two forested eddy-covariance flux tower sites with well characterised C pools (Hesse, France and Loobos, Netherlands). When assimilating satellite-derived products without reality constraints we are unable to adequately describe NEE and C pool magnitudes. However, when we also implement the reality check we find (a) a >99% reduction in viable parameter combinations (b) significant reductions in NEE and parameter uncertainties (c) a convergence in NEE estimates (r2 = 0.59 -- 0.79, |NEEbias | ≤ 0.44 gC m2 day-1) and (d) strong inter-relationships between C allocation parameters and C pools. We apply this approach on larger spatial scales, and we discuss the sensitivity of our results to uncertainties associated with the assimilated data-streams. We conclude that our approach is an important step in bridging the gap between remotely-sensed biometric data and the full ecosystem C cycle.

  7. What are the mechanisms controlling carbon flux from peat soils across slopes?

    NASA Astrophysics Data System (ADS)