Sample records for affecting carbon fluxes

  1. Water-carbon Links in a Tropical Forest: How Interbasin Groundwater Flow Affects Carbon Fluxes and Ecosystem Carbon Budgets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genereux, David; Osburn, Christopher; Oberbauer, Steven

    This report covers the outcomes from a quantitative, interdisciplinary field investigation of how carbon fluxes and budgets in a lowland tropical rainforest are affected by the discharge of old regional groundwater into streams, springs, and wetlands in the forest. The work was carried out in a lowland rainforest of Costa Rica, at La Selva Biological Station. The research shows that discharge of regional groundwater high in dissolved carbon dioxide represents a significant input of carbon to the rainforest "from below", an input that is on average larger than the carbon input "from above" from the atmosphere. A stream receiving dischargemore » of regional groundwater had greatly elevated emissions of carbon dioxide (but not methane) to the overlying air, and elevated downstream export of carbon from its watershed with stream flow. The emission of deep geological carbon dioxide from stream water elevates the carbon dioxide concentrations in air above the streams. Carbon-14 tracing revealed the presence of geological carbon in the leaves and stems of some riparian plants near streams that receive inputs of regional groundwater. Also, discharge of regional groundwater is responsible for input of dissolved organic matter with distinctive chemistry to rainforest streams and wetlands. The discharge of regional groundwater in lowland surface waters has a major impact on the carbon cycle in this and likely other tropical and non-tropical forests.« less

  2. Wet Deposition Flux of Reactive Organic Carbon

    NASA Astrophysics Data System (ADS)

    Safieddine, S.; Heald, C. L.

    2016-12-01

    Reactive organic carbon (ROC) is the sum of non-methane volatile organic compounds (NMVOCs) and primary and secondary organic aerosols (OA). ROC plays a key role in driving the chemistry of the atmosphere, affecting the hydroxyl radical concentrations, methane lifetime, ozone formation, heterogeneous chemical reactions, and cloud formation, thereby impacting human health and climate. Uncertainties on the lifecycle of ROC in the atmosphere remain large. In part this can be attributed to the large uncertainties associated with the wet deposition fluxes. Little is known about the global magnitude of wet deposition as a sink of both gas and particle phase organic carbon, making this an important area for research and sensitivity testing in order to better understand the global ROC budget. In this study, we simulate the wet deposition fluxes of the reactive organic carbon of the troposphere using a global chemistry transport model, GEOS-Chem. We start by showing the current modeled global distribution of ROC wet deposition fluxes and investigate the sensitivity of these fluxes to variability in Henry's law solubility constants and spatial resolution. The average carbon oxidation state (OSc) is a useful metric that depicts the degree of oxidation of atmospheric reactive carbon. Here, we present for the first time the simulated gas and particle phase OSc of the global troposphere. We compare the OSc in the wet deposited reactive carbon flux and the dry deposited reactive carbon flux to the OSc of atmospheric ROC to gain insight into the degree of oxidation in deposited material and, more generally, the aging of organic material in the troposphere.

  3. Genotypic variation in traits controlling carbon flux responses to precipitation in switchgrass

    USDA-ARS?s Scientific Manuscript database

    Background/Questions/Methods Fluxes of carbon in terrestrial ecosystems are key indicators of their productivity and carbon storage potential. Ecosystem fluxes will be impacted by climate change, especially changes in rainfall amount. Fluxes may also be affected by plant traits, including abovegr...

  4. Proposed Gulf of Mexico Intensive Study on Carbon Fluxes

    NASA Astrophysics Data System (ADS)

    Coble, P. G.; Robbins, L.; Lohrenz, S.; Cai, W.

    2009-05-01

    The Gulf of Mexico is an ideal site for the study of land-ocean carbon cycle coupling processes. A recent synthesis suggests that Gulf of Mexico air-sea CO2 flux may dominate the net flux of the entire North American margin because of the Gulf's large size and strong carbon signals. Northern Gulf waters appear to be a strong local CO2 sink due to high primary productivity stimulated by river input of anthropogenic nutrients from the North American continent. Nutrient discharge from the Mississippi River has been implicated in widespread hypoxia on the shelf. The surface drainage system of the Gulf covers more than 60% of the U.S. and more than 40% of Mexico; thus, large-scale changes in land-use and water-management practices in both countries, as well as changes in temperature and rainfall due to climate change, will profoundly affect Gulf carbon fluxes. Nevertheless, major sources of uncertainty in the North American carbon budget remain because of largely unsampled areas, undocumented key fluxes, such as air-sea exchange of carbon dioxide, associated carbon fluxes, and poorly characterized control mechanisms. An intensive study in which the Gulf is considered as a whole system, including watersheds, margins, open Gulf of Mexico, overlying atmosphere, and underlying sediments, will be discussed. The study is best addressed using a three-pronged approach that incorporates remote sensing observations, field observations and experiments, and physical and biogeochemical modeling. Societal issues related to carbon management and land-use/land-change must be an integral part of such a study. International cooperation with Mexico, Canada, and Cuba will be essential for the success of this study.

  5. Periplatform carbonate flux in the northern Bahamas

    NASA Astrophysics Data System (ADS)

    Pilskaln, Cynthia H.; Neumann, A. Conrad; Bane, John M.

    1989-09-01

    In a preliminary effort to quantify the off-bank transport and vertical flux of shallow-water carbonates, a sediment trap was moored at 500 m in Northwest Providence Channel, northern, Bahamas. Two months of particulate flux data collected during a fair-weather, storm-free period revealed that the flux components differed significantly from that of the underlying sediments. Planktonic foraminifera tests, pteropod shells, fragments and coccoliths contributed 61% to the total flux of carbonate material, whereas bank-derived carbonates constituted 39%. Coccolith calcite represented half of the carbonate mass flux in the fine size fraction (< 63 μm) of the trap material. In contrast, the underlying periplatform ooze sediments consist of 80% bank-derived and 20% planktonic carbonate components. The results suggest that the flux and deposition of bank-derived carbonates in the periplatform environment are variable on a temporal scale, where a relatively minor proportion of bank-derived components is deposited during calm, storm-free periods, with the balance delivered during the passage of frequent, low-amplitude seasonal storms and occasional hurricanes.

  6. Carbon Flux Explorers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Jim

    Jim Bishop, senior scientist at Berkeley Lab and professor at UC Berkeley, is leading a project to deploy robotic floats that provide data on how microorganisms sequester carbon in the ocean. He recently led a research team on a 10-day voyage, funded by the National Science Foundation, to put the Carbon Flux Explorers to the test.

  7. Carbon Flux Explorers

    ScienceCinema

    Bishop, Jim

    2018-06-12

    Jim Bishop, senior scientist at Berkeley Lab and professor at UC Berkeley, is leading a project to deploy robotic floats that provide data on how microorganisms sequester carbon in the ocean. He recently led a research team on a 10-day voyage, funded by the National Science Foundation, to put the Carbon Flux Explorers to the test.

  8. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, T.; Grosse, G.; Strauss, J.; Schirrmeister, L.; Morgenstern, A.; Schaphoff, S.; Meinshausen, M.; Boike, J.

    2015-06-01

    High-latitude soils store vast amounts of perennially frozen and therefore inert organic matter. With rising global temperatures and consequent permafrost degradation, a part of this carbon stock will become available for microbial decay and eventual release to the atmosphere. We have developed a simplified, two-dimensional multi-pool model to estimate the strength and timing of future carbon dioxide (CO2) and methane (CH4) fluxes from newly thawed permafrost carbon (i.e. carbon thawed when temperatures rise above pre-industrial levels). We have especially simulated carbon release from deep deposits in Yedoma regions by describing abrupt thaw under newly formed thermokarst lakes. The computational efficiency of our model allowed us to run large, multi-centennial ensembles under various scenarios of future warming to express uncertainty inherent to simulations of the permafrost carbon feedback. Under moderate warming of the representative concentration pathway (RCP) 2.6 scenario, cumulated CO2 fluxes from newly thawed permafrost carbon amount to 20 to 58 petagrams of carbon (Pg-C) (68% range) by the year 2100 and reach 40 to 98 Pg-C in 2300. The much larger permafrost degradation under strong warming (RCP8.5) results in cumulated CO2 release of 42 to 141 Pg-C and 157 to 313 Pg-C (68% ranges) in the years 2100 and 2300, respectively. Our estimates only consider fluxes from newly thawed permafrost, not from soils already part of the seasonally thawed active layer under pre-industrial climate. Our simulated CH4 fluxes contribute a few percent to total permafrost carbon release yet they can cause up to 40% of total permafrost-affected radiative forcing in the 21st century (upper 68% range). We infer largest CH4 emission rates of about 50 Tg-CH4 per year around the middle of the 21st century when simulated thermokarst lake extent is at its maximum and when abrupt thaw under thermokarst lakes is taken into account. CH4 release from newly thawed carbon in wetland-affected

  9. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, T.; Grosse, G.; Strauss, J.; Schirrmeister, L.; Morgenstern, A.; Schaphoff, S.; Meinshausen, M.; Boike, J.

    2014-12-01

    High-latitude soils store vast amounts of perennially frozen and therefore inert organic matter. With rising global temperatures and consequent permafrost degradation, a part of this carbon store will become available for microbial decay and eventual release to the atmosphere. We have developed a simplified, two-dimensional multi-pool model to estimate the strength and timing of future carbon dioxide (CO2) and methane (CH4) fluxes from newly thawed permafrost carbon (i.e. carbon thawed when temperatures rise above pre-industrial levels). We have especially simulated carbon release from deep deposits in Yedoma regions by describing abrupt thaw under thermokarst lakes. The computational efficiency of our model allowed us to run large, multi-centennial ensembles under various scenarios of future warming to express uncertainty inherent to simulations of the permafrost-carbon feedback. Under moderate warming of the representative concentration pathway (RCP) 2.6 scenario, cumulated CO2 fluxes from newly thawed permafrost carbon amount to 20 to 58 petagrammes of carbon (Pg-C) (68% range) by the year 2100 and reach 40 to 98 Pg-C in 2300. The much larger permafrost degradation under strong warming (RCP8.5) results in cumulated CO2 release of 42-141 and 157-313 Pg-C (68% ranges) in the years 2100 and 2300, respectively. Our estimates do only consider fluxes from newly thawed permafrost but not from soils already part of the seasonally thawed active layer under preindustrial climate. Our simulated methane fluxes contribute a few percent to total permafrost carbon release yet they can cause up to 40% of total permafrost-affected radiative forcing in the 21st century (upper 68% range). We infer largest methane emission rates of about 50 Tg-CH4 year-1 around the mid of the 21st century when simulated thermokarst lake extent is at its maximum and when abrupt thaw under thermokarst lakes is accounted for. CH4 release from newly thawed carbon in wetland-affected deposits is only

  10. Gas and aerosol fluxes. [emphasizing sulfur, nitrogen, and carbon

    NASA Technical Reports Server (NTRS)

    Martens, C. S.

    1980-01-01

    The development of remote sensing techniques to address the global need for accurate distribution and flux determinations of both man made and natural materials which affect the chemical composition of the atmosphere, the heat budget of the Earth, and the depletion, of stratospheric ozone is considered. Specifically, trace gas fluxes, sea salt aerosol production, and the effect of sea surface microlayer on gas and aerosol fluxes are examined. Volatile sulfur, carbon, nitrogen, and halocarbon compounds are discussed including a statement of the problem associated with each compound or group of compounds, a brief summary of current understanding, and suggestions for needed research.

  11. Effect of carbon and nitrogen addition on nitrous oxide and carbon dioxide fluxes from thawing forest soils

    NASA Astrophysics Data System (ADS)

    Haohao, Wu; Xingkai, Xu; Cuntao, Duan; TuanSheng, Li; Weiguo, Cheng

    2017-07-01

    Packed soil-core incubation experiments were done to study the effects of carbon (glucose, 6.4 g C m-2) and nitrogen (NH4Cl and KNO3, 4.5 g N m-2) addition on nitrous oxide (N2O) and carbon dioxide (CO2) fluxes during thawing of frozen soils under two forest stands (broadleaf and Korean pine mixed forest and white birch forest) with two moisture levels (55 and 80% water-filled pore space). With increasing soil moisture, the magnitude and longevity of the flush N2O flux from forest soils was enhanced during the early period of thawing, which was accompanied by great NO3--N consumption. Without N addition, the glucose-induced cumulative CO2 fluxes ranged from 9.61 to 13.49 g CO2-C m-2, which was larger than the dose of carbon added as glucose. The single addition of glucose increased microbial biomass carbon but slightly affected soil dissolved organic carbon pool. Thus, the extra carbon released upon addition of glucose can result from the decomposition of soil native organic carbon. The glucose-induced N2O and CO2 fluxes were both significantly correlated to the glucose-induced total N and dissolved organic carbon pools and influenced singly and interactively by soil moisture and KNO3 addition. The interactive effects of glucose and nitrogen inputs on N2O and CO2 fluxes from forest soils after frost depended on N sources, soil moisture, and vegetation types.

  12. Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets

    USGS Publications Warehouse

    Stets, E.G.; Striegl, Robert G.; Aiken, G.R.; Rosenberry, D.O.; Winter, T.C.

    2009-01-01

    Freshwater lakes are an important component of the global carbon cycle through both organic carbon (OC) sequestration and carbon dioxide (CO 2) emission. Most lakes have a net annual loss of CO2 to the atmosphere and substantial current evidence suggests that biologic mineralization of allochthonous OC maintains this flux. Because net CO 2 flux to the atmosphere implies net mineralization of OC within the lake ecosystem, it is also commonly assumed that net annual CO2 emission indicates negative net ecosystem production (NEP). We explored the relationship between atmospheric CO2 emission and NEP in two lakes known to have contrasting hydrologie characteristics and net CO2 emission. We calculated NEP for calendar year 2004 using whole-lake OC and inorganic carbon (IC) budgets, NEPoc and NEPIC, respectively, and compared the resulting values to measured annual CO 2 flux from the lakes. In both lakes, NEPIc and NEP Ic were positive, indicating net autotrophy. Therefore CO2 emission from these lakes was apparently not supported by mineralization of allochthonous organic material. In both lakes, hydrologie CO2 inputs, as well as CO2 evolved from netcalcite precipitation, could account for the net CO2 emission. NEP calculated from diel CO2 measurements was also affected by hydrologie inputs of CO2. These results indicate that CO2 emission and positive NEP may coincide in lakes, especially in carbonate terrain, and that all potential geologic, biogeochemical, and hydrologie sources of CO2 need to be accounted for when using CO2 concentrations to infer lake NEP. Copyright 2009 by the American Geophysical Union.

  13. Soil carbon pools and fluxes in urban ecosystems

    Treesearch

    R. Pouyat; P. Groffman; I Yesilonis; L. Hernandez

    2002-01-01

    The transformation of landscapes from non-urban to urban land use has the potential to greatly modify soil carbon (C) pools and fluxes. For urban ecosystems, very little data exists to assess whether urbanization leads to an increase or decrease in soil C pools. We analyzed three data sets to assess the potential for urbanization to affect soil organic C. These...

  14. Mantle Volatiles and Global Carbon Flux and Budget

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2014-12-01

    The global volcanic carbon flux to the surface of Earth is a fundamental parameter in understanding the global carbon cycle that includes deep carbon as well as the degassing history of the mantle. The flux has been estimated before (e.g., Marty and Tolstikhin, 1998). Recent progress has significantly revised some of the parameters used in the estimation, e.g., the oceanic 3He flux has been re-evaluated (Bianchi et al., 2010) to be only about half of the earlier widely-used estimate, and numerous subaerial volcanic degassing data are now available. In this report, a new attempt is made to assess the global carbon flux and budget. Rather than dividing the carbon flux by categories of MORB, Plumes and Arcs, we estimate the global carbon flux by considering oceanic and subaerial volcanism. The oceanic 3He flux is 527±102 mol/yr (Bianchi et al., 2010). Most of the flux is from spreading ridges with only minor contributions from submarine oceanic hotspots or arc volcanism. Hence, the mean CO2/3He ratio in MORB is applied to estimate oceanic flux of CO2. The subaerial CO2 flux is based on evaluation of different arc segments and is messier to compute. Literature estimates use estimated SO2 flux in the last tens of years combined with estimated CO2/SO2 degassing ratios (Hilton et al., 2002; Fischer, 2008). Assuming that the last tens of years are representative of recent geological times in terms of volcanic degassing, the estimated global CO2 flux still depends critically on a couple of arcs that are main contributors of the subaerial volcanic CO2 flux, and those seem to have been rather loosely constrained before. Using recently available data (although there are still holes), we derive a new global subaerial volcanic CO2 flux. By combining with oceanic volcanic CO2 flux, we obtain at a new global flux. The significance of the new estimate to the global volatile budget will be discussed.

  15. Net carbon flux in organic and conventional olive production systems

    NASA Astrophysics Data System (ADS)

    Saeid Mohamad, Ramez; Verrastro, Vincenzo; Bitar, Lina Al; Roma, Rocco; Moretti, Michele; Chami, Ziad Al

    2014-05-01

    Agricultural systems are considered as one of the most relevant sources of atmospheric carbon. However, agriculture has the potentiality to mitigate carbon dioxide mainly through soil carbon sequestration. Some agricultural practices, particularly fertilization and soil management, can play a dual role in the agricultural systems regarding the carbon cycle contributing to the emissions and to the sequestration process in the soil. Good soil and input managements affect positively Soil Organic Carbon (SOC) changes and consequently the carbon cycle. The present study aimed at comparing the carbon footprint of organic and conventional olive systems and to link it to the efficiency of both systems on carbon sequestration by calculating the net carbon flux. Data were collected at farm level through a specific and detailed questionnaire based on one hectare as a functional unit and a system boundary limited to olive production. Using LCA databases particularly ecoinvent one, IPCC GWP 100a impact assessment method was used to calculate carbon emissions from agricultural practices of both systems. Soil organic carbon has been measured, at 0-30 cm depth, based on soil analyses done at the IAMB laboratory and based on reference value of SOC, the annual change of SOC has been calculated. Substracting sequestrated carbon in the soil from the emitted on resulted in net carbon flux calculation. Results showed higher environmental impact of the organic system on Global Warming Potential (1.07 t CO2 eq. yr-1) comparing to 0.76 t CO2 eq. yr-1 in the conventional system due to the higher GHG emissions caused by manure fertilizers compared to the use of synthetic foliar fertilizers in the conventional system. However, manure was the main reason behind the higher SOC content and sequestration in the organic system. As a resultant, the organic system showed higher net carbon flux (-1.7 t C ha-1 yr-1 than -0.52 t C ha-1 yr-1 in the conventional system reflecting higher efficiency as a

  16. Climatic Versus Biotic Constraints on Carbon and Water Fluxes in Seasonally Drought-affected Ponderosa Pine Ecosystems. Chapter 2

    NASA Technical Reports Server (NTRS)

    Schwarz, P. A.; Law, B. E.; Williams, M.; Irvine, J.; Kurpius, M.; Moore, D.

    2005-01-01

    We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (50%), and intermediate at the YS (<20%). In the young, developing stand, interannual variation in leaf area has larger effects on fluxes than climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE.

  17. Carbon storage and greenhouse gas fluxes in the San Juan ...

    EPA Pesticide Factsheets

    Mangrove systems are known carbon (C) and greenhouse gas (GHG) sinks, but this function may be affected by global change drivers that include (but are not limited to) eutrophication, climate change, species composition shifts, and hydrological changes. In Puerto Rico’s San Juan Bay Estuary, mangrove wetlands are characterized by anthropogenic impacts, particularly tidal restriction due to infilling of the Martin Pena Canal and eutrophication. The objective of our research is to measure carbon sequestration and carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes in the San Juan Bay Estuary to understand the sustainability and role in global climate of this urban mangrove ecosystem. Cores for C sequestration measurements were collected and GHG fluxes were measured during rainy and dry seasons at 5 sites along a gradient of development and nitrogen loading in the San Juan Bay Estuary. At each site, paired GHG flux measurements were performed for mangrove wetland soil and estuarine water using static and floating chambers. Our results suggest a positive relationship between urban development and CH4 and N2O emissions, and demonstrate that in this system, estuarine waters are a major methane source. In addition to providing characterization of GHG fluxes in an urban subtropical estuary, these data provide a baseline against which future states of the estuary (after planned hydrological restoration has been implemented) may be compared. Thi

  18. Inorganic carbon speciation and fluxes in the Congo River

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohui Aleck; Bienvenu, Dinga Jean; Mann, Paul J.; Hoering, Katherine A.; Poulsen, John R.; Spencer, Robert G. M.; Holmes, Robert M.

    2013-02-01

    Seasonal variations in inorganic carbon chemistry and associated fluxes from the Congo River were investigated at Brazzaville-Kinshasa. Small seasonal variation in dissolved inorganic carbon (DIC) was found in contrast with discharge-correlated changes in pH, total alkalinity (TA), carbonate species, and dissolved organic carbon (DOC). DIC was almost always greater than TA due to the importance of CO2*, the sum of dissolved CO2 and carbonic acid, as a result of low pH. Organic acids in DOC contributed 11-61% of TA and had a strong titration effect on water pH and carbonate speciation. The CO2* and bicarbonate fluxes accounted for ~57% and 43% of the DIC flux, respectively. Congo River surface water released CO2 at a rate of ~109 mol m-2 yr-1. The basin-wide DIC yield was ~8.84 × 104 mol km-2 yr-1. The discharge normalized DIC flux to the ocean amounted to 3.11 × 1011 mol yr-1. The DOC titration effect on the inorganic carbon system may also be important on a global scale for regulating carbon fluxes in rivers.

  19. Linking Carbon Flux Dynamics and Soil Structure in Dryland Soils

    NASA Astrophysics Data System (ADS)

    DeCarlo, K. F.; Caylor, K. K.

    2016-12-01

    Biological sources in the form of microbes and plants play a fundamental role in determining the magnitude of carbon flux. However, the geophysical structure of the soil (which the carbon must pass through before entering the atmosphere) often serves as a constraining entity, which has the potential to serve as instigators or mitigators of those carbon and hydrologic flux processes. We characterized soil carbon dynamics in three dryland soil systems: bioturbated soils, biocompacted soils, and undisturbed soils. Carbon fluxes were characterized using a closed-system respiration chamber, with CO2 concentration differences measured using an infrared gas analyzer (IRGA). Structure of the soil systems, with a focus on the macro-crack structure, were characterized using a combined resin-casting/X-ray imaging technique. Results show fundamental differences in carbon dynamics between the different soil systems/structures: control soils have gaussian distributions of carbon flux that decrease with progressive drying of the soil, while biocompacted soils exhibit exponentially distributed fluxes that do not regularly decrease with increased drying of the soil. Bioturbated soils also exhibit an exponential distribution of carbon flux, though at a much higher magnitude. These differences are evaluated in the context of the underlying soil structure: while the control soils exhibit a shallow and narrow crack structure, the biocompacted soils exhibit a "systematic" crack network with moderate cracking intensity and large depth. The deep crack networks of the biocompacted soils may serve to physically enhance an otherwise weak source of carbon via advection and/or convection, inducing fluxes that are equal or greater than an otherwise carbon-rich soil. The bioturbated soils exhibit a "surficial" crack network that is shallow but extensive, but additionally have deep holes known to convectively vent carbon, which may explain their periodically large carbon fluxes. Our results

  20. Diurnal Change of Soil Carbon Flux of Binhai New District

    NASA Astrophysics Data System (ADS)

    Wang, T. F.; Mao, T. Y.; Ye, W.

    2018-05-01

    In order to investigate the factors influencing diurnal change of soil carbon flux of Binhai New District. Field observation experiments were carried out by using LC pro-SD photosynthetic apparatus. The diurnal changes of soil carbon flux and its environmental factors such as atmosphere temperature and soil temperature were analysed. The results indicated that soil carbon flux appeared single diurnal pattern. The diurnal average of soil carbon flux ranked from 0.2761 to 2.3367μmo1/m2/s. Soil carbon flux varied significantly among different land use regimes(P<0.001). Significant relationships were found between soil respiration rate and atmosphere temperature, which could he best described by exponential equations (P<0.05). The Q10 value was based on the exponential correlations. Its value of Tian Keyuan, ECO-city, Dagu-Outlet and Yongding-River was 8.331, 6.049, 2.651 and 1.391, respectively. There were quadratic correlations between soil carbon flux and soil temperature (10cm). And soil temperature could account for more than 32.27% of the soil carbon flux changes (P<0.05, R2=0.3227-0.7465).

  1. Interannual variation of carbon fluxes from three contrasting evergreen forests: the role of forest dynamics and climate.

    PubMed

    Sierra, Carlos A; Loescher, Henry W; Harmon, Mark E; Richardson, Andrew D; Hollinger, David Y; Perakis, Steven S

    2009-10-01

    Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed approximately 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results

  2. Interannual variation of carbon fluxes from three contrasting evergreen forests: The role of forest dynamics and climate

    USGS Publications Warehouse

    Sierra, C.A.; Loescher, H.W.; Harmon, M.E.; Richardson, A.D.; Hollinger, D.Y.; Perakis, S.S.

    2009-01-01

    Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed ?? 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show

  3. Inverse modeling of the terrestrial carbon flux in China with flux covariance among inverted regions

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jiang, F.; Chen, J. M.; Ju, W.; Wang, H.

    2011-12-01

    Quantitative understanding of the role of ocean and terrestrial biosphere in the global carbon cycle, their response and feedback to climate change is required for the future projection of the global climate. China has the largest amount of anthropogenic CO2 emission, diverse terrestrial ecosystems and an unprecedented rate of urbanization. Thus information on spatial and temporal distributions of the terrestrial carbon flux in China is of great importance in understanding the global carbon cycle. We developed a nested inversion with focus in China. Based on Transcom 22 regions for the globe, we divide China and its neighboring countries into 17 regions, making 39 regions in total for the globe. A Bayesian synthesis inversion is made to estimate the terrestrial carbon flux based on GlobalView CO2 data. In the inversion, GEOS-Chem is used as the transport model to develop the transport matrix. A terrestrial ecosystem model named BEPS is used to produce the prior surface flux to constrain the inversion. However, the sparseness of available observation stations in Asia poses a challenge to the inversion for the 17 small regions. To obtain additional constraint on the inversion, a prior flux covariance matrix is constructed using the BEPS model through analyzing the correlation in the net carbon flux among regions under variable climate conditions. The use of the covariance among different regions in the inversion effectively extends the information content of CO2 observations to more regions. The carbon flux over the 39 land and ocean regions are inverted for the period from 2004 to 2009. In order to investigate the impact of introducing the covariance matrix with non-zero off-diagonal values to the inversion, the inverted terrestrial carbon flux over China is evaluated against ChinaFlux eddy-covariance observations after applying an upscaling methodology.

  4. Salp contributions to vertical carbon flux in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Stone, Joshua P.; Steinberg, Deborah K.

    2016-07-01

    We developed a one-dimensional model to estimate salp contributions to vertical carbon flux at the Bermuda Atlantic Time-series Study (BATS) site in the North Atlantic subtropical gyre for a 17-yr period (April 1994 to December 2011). We based the model parameters on published rates of salp physiology and experimentally determined sinking and decomposition rates of salp carcasses. Salp grazing was low during non-bloom conditions, but routinely exceeded 100% of chlorophyll standing stock and primary production during blooms. Fecal pellet production was the largest source of salp carbon flux (78% of total), followed by respiration below 200 m (19%), sinking of carcasses (3%), and DOC excretion below 200 m (<0.1%). Thalia democratica, Salpa fusiformis, Salpa aspera, Wheelia cylindrica, and Iasis zonaria were the five highest contributors, accounting for 95% of total salp-mediated carbon flux. Seasonally, salp flux was higher during spring-summer than fall-winter, due to seasonal changes in species composition and abundance. Salp carbon export to 200 m was on average 2.3 mg C m-2 d-1 across the entire time series. This is equivalent to 11% of the mean 200 m POC flux measured by sediment traps in the region. During years with significant salp blooms, however, annually-averaged salp carbon export was the equivalent of up to 60% of trap POC flux at 200 m. Salp carbon flux attenuated slowly, and at 3200 m the average modeled carbon from salps was 109% of the POC flux measured in sediment traps at that depth. Migratory and carcass carbon export pathways should also be considered (alongside fecal pellet flux) as facilitating carbon export to sequestration depths in future studies.

  5. A Brazilian network of carbon flux stations

    NASA Astrophysics Data System (ADS)

    Roberti, Débora R.; Acevedo, Otávio C.; Moraes, Osvaldo L. L.

    2012-05-01

    First Brasflux Workshop; Santa Maria, Rio Grande do Sul, Brazil, 14-15 November 2011 Last November, 33 researchers participated in a workshop to establish Brasflux, the Brazilian network of carbon flux stations, with the objective of integrating previous efforts and planning for the future. Among the participants were those leading ongoing flux observation projects and others planning to establish flux stations in the near future. International scientists also participated to share the experiences gained with other networks. The need to properly characterize terrestrial ecosystems for their roles in the global carbon, water, and energy budgets has motivated the implementation of hundreds of micrometeorological research sites throughout the world in recent years. The eddy covariance (EC) technique for turbulent flux determination is the preferred method to provide integral information on ecosystematmosphere exchanges. Integrating the observations regionally and globally has proven to be an effective approach to maximizing the usefulness of this technique for carbon cycle studies at multiple scales.

  6. Carbon storage and greenhouse gas fluxes in the San Juan ...

    EPA Pesticide Factsheets

    Mangrove systems are known carbon (C) and greenhouse gas (GHG) sinks, but this function may be affected by global change drivers that include (but are not limited to) eutrophication, climate change, species composition shifts, and hydrological changes. In Puerto Rico’s San Juan Bay Estuary, mangrove wetlands are characterized by anthropogenic impacts, particularly tidal restriction due to infilling of the Martin Pena Canal and eutrophication. The objective of our research is to measure carbon sequestration and carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes in the San Juan Bay Estuary to understand the sustainability and role in global climate of this urban mangrove ecosystem. Cores for C sequestration measurements were collected and GHG fluxes were measured during rainy and dry seasons at 5 sites along a gradient of development and nitrogen loading in the San Juan Bay Estuary. At each site, paired GHG flux measurements were performed for mangrove wetland soil and estuarine water using static and floating chambers. Our results suggest a positive relationship between urban development and CH4 and N2O emissions, and demonstrate that in this system, estuarine waters are a major methane source. In addition to providing characterization of GHG fluxes in an urban subtropical estuary, these data provide a baseline against which future states of the estuary (after planned hydrological restoration has been implemented) may be compared. In Puer

  7. Ecosystem carbon storage and flux in upland/peatland watersheds in northern Minnesota. Chapter 9.

    Treesearch

    David F. Grigal; Peter C. Bates; Randall K. Kolka

    2011-01-01

    Carbon (C) storage and fluxes (inputs and outputs of C per unit time) are central issues in global change. Spatial patterns of C storage on the landscape, both that in soil and in biomass, are important from an inventory perspective and for understanding the biophysical processes that affect C fluxes. Regional and national estimates of C storage are uncertain because...

  8. Quantifying and predicting historical and future patterns of carbon fluxes from the North American Continent to Ocean

    NASA Astrophysics Data System (ADS)

    Tian, H.; Zhang, B.; Xu, R.; Yang, J.; Yao, Y.; Pan, S.; Lohrenz, S. E.; Cai, W. J.; He, R.; Najjar, R. G.; Friedrichs, M. A. M.; Hofmann, E. E.

    2017-12-01

    Carbon export through river channels to coastal waters is a fundamental component of the global carbon cycle. Changes in the terrestrial environment, both natural (e.g., climatic change, enriched CO2 concentration, and elevated ozone concentration) and anthropogenic (e.g, deforestation, cropland expansion, and urbanization) have greatly altered carbon production, stocks, decomposition, movement and export from land to river and ocean systems. However, the magnitude and spatiotemporal patterns of lateral carbon fluxes from land to oceans and the underlying mechanisms responsible for these fluxes remain far from certain. Here we applied a process-based land model with explicit representation of carbon processes in stream and rivers (Dynamic Land Ecosystem Model: DLEM 2.0) to examine how changes in climate, land use, atmospheric CO2, and nitrogen deposition have affected the carbon fluxes from North American continent to Ocean during 1980-2015. Our simulated results indicated that terrestrial carbon export shows substantially spatial and temporal variability. Of the five sub-regions (Arctic coast, Pacific coast, Gulf of Mexico, Atlantic coast, and Great lakes), the Arctic sub-region provides the highest DOC flux, whereas the Gulf of Mexico sub-region provided the highest DIC flux. However, terrestrial carbon export to the arctic oceans showed increasing trends for both DOC and DIC, whereas DOC and DIC export to the Gulf of Mexico decreased in the recent decades. Future pattern of riverine carbon fluxes would be largely dependent on the climate change and land use scenarios.

  9. Carbon and energy fluxes from China's largest freshwater lake

    NASA Astrophysics Data System (ADS)

    Gan, G.; LIU, Y.

    2017-12-01

    Carbon and energy fluxes between lakes and the atmosphere are important aspects of hydrology, limnology, and ecology studies. China's largest freshwater lake, the Poyang lake experiences tremendous water-land transitions periodically throughout the year, which provides natural experimental settings for the study of carbon and energy fluxes. In this study, we use the eddy covariance technique to explore the seasonal and diurnal variation patterns of sensible and latent heat fluxes of Poyang lake during its high-water and low-water periods, when the lake is covered by water and mudflat, respectively. We also determine the annual NEE of Poyang lake and the variations of NEE's components: Gross Primary Productivity (GPP) and Ecosystem Respiration (Re). Controlling factors of seasonal and diurnal variations of carbon and energy fluxes are analyzed, and land cover impacts on the variation patterns are also studied. Finally, the coupling between the carbon and energy fluxes are analyzed under different atmospheric, boundary stability and land cover conditions.

  10. Potential for using remote sensing to estimate carbon fluxes across northern peatlands - A review.

    PubMed

    Lees, K J; Quaife, T; Artz, R R E; Khomik, M; Clark, J M

    2018-02-15

    Peatlands store large amounts of terrestrial carbon and any changes to their carbon balance could cause large changes in the greenhouse gas (GHG) balance of the Earth's atmosphere. There is still much uncertainty about how the GHG dynamics of peatlands are affected by climate and land use change. Current field-based methods of estimating annual carbon exchange between peatlands and the atmosphere include flux chambers and eddy covariance towers. However, remote sensing has several advantages over these traditional approaches in terms of cost, spatial coverage and accessibility to remote locations. In this paper, we outline the basic principles of using remote sensing to estimate ecosystem carbon fluxes and explain the range of satellite data available for such estimations, considering the indices and models developed to make use of the data. Past studies, which have used remote sensing data in comparison with ground-based calculations of carbon fluxes over Northern peatland landscapes, are discussed, as well as the challenges of working with remote sensing on peatlands. Finally, we suggest areas in need of future work on this topic. We conclude that the application of remote sensing to models of carbon fluxes is a viable research method over Northern peatlands but further work is needed to develop more comprehensive carbon cycle models and to improve the long-term reliability of models, particularly on peatland sites undergoing restoration. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Thermodynamic Cconstraints on Coupled Carbonate-Pyrite Weathering Dynamics and Carbon Fluxes

    NASA Astrophysics Data System (ADS)

    Winnick, M.; Maher, K.

    2017-12-01

    Chemical weathering within the critical zone regulates global biogeochemical cycles, atmospheric composition, and the supply of key nutrients to terrestrial and aquatic ecosystems. Recent studies suggest that thermodynamic limits on solute production act as a first-order control on global chemical weathering rates; however, few studies have addressed the factors that set these thermodynamic limits in natural systems. In this presentation, we investigate the effects of soil CO2 concentrations and pyrite oxidation rates on carbonate dissolution and associated carbon fluxes in the East River watershed in Colorado, using concentration-discharge relationships and thermodynamic constraints. Within the shallow subsurface, soil respiration rates and moisture content determine the extent of carbonic acid-promoted carbonate dissolution through their modulation of soil pCO2 and the balance of open- v. closed-system weathering processes. At greater depths, pyrite oxidation generates sulfuric acid, which alters the approach to equilibrium of infiltrating waters. Through comparisons of concentration-discharge data and reactive transport model simulations, we explore the conditions that determine whether sulfuric acid reacts to dissolve additional carbonate mineral or instead reacts with alkalinity already in solution - the balance of which determines watershed carbon flux budgets. Our study highlights the importance of interactions between the chemical structure of the critical zone and the hydrologic regulation of flowpaths in determining concentration-discharge relationships and overall carbon fluxes.

  12. Observation and difference analysis of carbon fluxes in different types of soil in Tianjin coastal zone

    NASA Astrophysics Data System (ADS)

    Li, Ya-Juan; Wang, Ting-Feng; Mao, Tian-Yu

    2018-02-01

    Tianjin Coastal Zone is located in the coastal area of the Bohai Sea, belonging to the typical coastal wetland, with high carbon value. Over the past decade the development of great intensity, there are obvious characteristics of artificial influence. This study focuses on observing the carbon fluxes of different soil types in the coastal area under strong artificial disturbance, summarizing the carbon sink calculation formula according to the soil type, and analyzing the main influencing factors affecting the carbon flux. The results show that there are representative intertidal zones in Tianjin, and the respiration of soil and secondary soil are different. The main influencing factors are soil surface temperature or air temperature. Coastal zones with different ecosystems can basically establish the relationship between temperature and soil carbon flux. (R2 = 0.5990), the relationship between artificial backfill is Q = 0.2061 - 0.2129T - 0.0391T2 (R2 = 0.7469), and the artificial soil is restored by artificial soil and the herbaceous greening is carried out., The relationship is Q = -0.1019 + 0.0327T‧ (R2 = 0.6621), T-soil temperature, T’-air temperature. At the same temperature, soil carbon fluxes in shoal wetlands are generally stronger than artificial backfill, showing more carbon source emissions.

  13. Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes

    DOE PAGES

    Paschalis, Athanasios; Fatichi, Simone; Katul, Gabriel G.; ...

    2015-08-07

    While the importance of ecosystem functioning is undisputed in the context of climate change and Earth system modeling, the role of short-scale temporal variability of hydrometeorological forcing (~1 h) on the related ecosystem processes remains to be fully understood. Additionally, various impacts of meteorological forcing variability on water and carbon fluxes across a range of scales are explored here using numerical simulations. Synthetic meteorological drivers that highlight dynamic features of the short temporal scale in series of precipitation, temperature, and radiation are constructed. These drivers force a mechanistic ecohydrological model that propagates information content into the dynamics of water andmore » carbon fluxes for an ensemble of representative ecosystems. The focus of the analysis is on a cross-scale effect of the short-scale forcing variability on the modeled evapotranspiration and ecosystem carbon assimilation. Interannual variability of water and carbon fluxes is emphasized in the analysis. The main study inferences are summarized as follows: (a) short-scale variability of meteorological input does affect water and carbon fluxes across a wide range of time scales, spanning from the hourly to the annual and longer scales; (b) different ecosystems respond to the various characteristics of the short-scale variability of the climate forcing in various ways, depending on dominant factors limiting system productivity; (c) whenever short-scale variability of meteorological forcing influences primarily fast processes such as photosynthesis, its impact on the slow-scale variability of water and carbon fluxes is small; and (d) whenever short-scale variability of the meteorological forcing impacts slow processes such as movement and storage of water in the soil, the effects of the variability can propagate to annual and longer time scales.« less

  14. Cross-scale impact of climate temporal variability on ecosystem water and carbon fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paschalis, Athanasios; Fatichi, Simone; Katul, Gabriel G.

    While the importance of ecosystem functioning is undisputed in the context of climate change and Earth system modeling, the role of short-scale temporal variability of hydrometeorological forcing (~1 h) on the related ecosystem processes remains to be fully understood. Additionally, various impacts of meteorological forcing variability on water and carbon fluxes across a range of scales are explored here using numerical simulations. Synthetic meteorological drivers that highlight dynamic features of the short temporal scale in series of precipitation, temperature, and radiation are constructed. These drivers force a mechanistic ecohydrological model that propagates information content into the dynamics of water andmore » carbon fluxes for an ensemble of representative ecosystems. The focus of the analysis is on a cross-scale effect of the short-scale forcing variability on the modeled evapotranspiration and ecosystem carbon assimilation. Interannual variability of water and carbon fluxes is emphasized in the analysis. The main study inferences are summarized as follows: (a) short-scale variability of meteorological input does affect water and carbon fluxes across a wide range of time scales, spanning from the hourly to the annual and longer scales; (b) different ecosystems respond to the various characteristics of the short-scale variability of the climate forcing in various ways, depending on dominant factors limiting system productivity; (c) whenever short-scale variability of meteorological forcing influences primarily fast processes such as photosynthesis, its impact on the slow-scale variability of water and carbon fluxes is small; and (d) whenever short-scale variability of the meteorological forcing impacts slow processes such as movement and storage of water in the soil, the effects of the variability can propagate to annual and longer time scales.« less

  15. 1km Global Terrestrial Carbon Flux: Estimations and Evaluations

    NASA Astrophysics Data System (ADS)

    Murakami, K.; Sasai, T.; Kato, S.; Saito, M.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.

    2017-12-01

    Estimating global scale of the terrestrial carbon flux change with high accuracy and high resolution is important to understand global environmental changes. Furthermore the estimations of the global spatiotemporal distribution may contribute to the political and social activities such as REDD+. In order to reveal the current state of terrestrial carbon fluxes covering all over the world and a decadal scale. The satellite-based diagnostic biosphere model is suitable for achieving this purpose owing to observing on the present global land surface condition uniformly at some time interval. In this study, we estimated the global terrestrial carbon fluxes with 1km grids by using the terrestrial biosphere model (BEAMS). And we evaluated our new carbon flux estimations on various spatial scales and showed the transition of forest carbon stocks in some regions. Because BEAMS required high resolution meteorological data and satellite data as input data, we made 1km interpolated data using a kriging method. The data used in this study were JRA-55, GPCP, GOSAT L4B atmospheric CO2 data as meteorological data, and MODIS land product as land surface satellite data. Interpolating process was performed on the meteorological data because of insufficient resolution, but not on MODIS data. We evaluated our new carbon flux estimations using the flux tower measurement (FLUXNET2015 Datasets) in a point scale. We used 166 sites data for evaluating our model results. These flux sites are classified following vegetation type (DBF, EBF, ENF, mixed forests, grass lands, croplands, shrub lands, Savannas, wetlands). In global scale, the BEAMS estimations was underestimated compared to the flux measurements in the case of carbon uptake and release. The monthly variations of NEP showed relatively high correlations in DBF and mixed forests, but the correlation coefficients of EBF, ENF, and grass lands were less than 0.5. In the meteorological factors, air temperature and solar radiation showed

  16. Impact of a Regional Drought on Terrestrial Carbon Fluxes and Atmospheric Carbon: Results from a Coupled Carbon Cycle Model

    NASA Technical Reports Server (NTRS)

    Lee, Eunjee; Koster, Randal D.; Ott, Lesley E.; Weir, Brad; Mahanama, Sarith; Chang, Yehui; Zeng, Fan-Wei

    2017-01-01

    Understanding the underlying processes that control the carbon cycle is key to predicting future global change. Much of the uncertainty in the magnitude and variability of the atmospheric carbon dioxide (CO2) stems from uncertainty in terrestrial carbon fluxes, and the relative impacts of temperature and moisture variations on regional and global scales are poorly understood. Here we investigate the impact of a regional drought on terrestrial carbon fluxes and CO2 mixing ratios over North America using the NASA Goddard Earth Observing System (GEOS) Model. Results show a sequence of changes in carbon fluxes and atmospheric CO2, induced by the drought. The relative contributions of meteorological changes to the neighboring carbon dynamics are also presented. The coupled modeling approach allows a direct quantification of the impact of the regional drought on local and proximate carbon exchange at the land surface via the carbon-water feedback processes.

  17. Baseline and Projected Future Carbon Stocks and Fluxes in the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Selmants, P. C.; Sleeter, B. M.; Giardina, C. P.; Zhu, Z.; Asner, G. P.

    2016-12-01

    Hawaii is characterized by steep climatic gradients and heterogeneous land cover within a small geographic area, presenting a model tropical system to capture ecosystem carbon dynamics across a wide range of climate, soil, and land use conditions. However, ecosystem carbon balance is poorly understood on a statewide level, and the potential for climate and land use change to affect carbon dynamics in Hawaii has not been formally assessed. We estimated current baseline and projected future ecosystem carbon stocks and fluxes on the seven main Hawaiian Islands using a combination of remote sensing, published plot-level data, and simulation modeling. Total ecosystem carbon storage during the baseline period was estimated at 258 TgC, with 70% stored as soil organic carbon, 25% as live biomass and 5% as surface detritus, and gross primary production was estimated at 20 TgC y-1. Net ecosystem carbon balance, which incorporated carbon losses from freshwater aquatic fluxes to nearshore waters and wildland fire emissions, was estimated as 0.34 TgC y-1 during the baseline period, offsetting 7% of anthropogenic emissions. We used a state and transition simulation model to estimate the response of ecosystem carbon stocks and fluxes to potential changes in climate, land use, and wildfire over a 50-year projection period (2012-2061). Total ecosystem carbon storage was projected to increase by 5% by the year 2061, but net ecosystem carbon balance was projected to decline by 35% due to climate change induced reductions in statewide net primary production and increased carbon losses from land use and land cover change. Our analysis indicates that the State of Hawaii would remain a net carbon sink overall, primarily because of ecosystem carbon sequestration on Hawaii Island, but predicted changes in climate and land use on Kauai and Oahu would convert these islands to net carbon sources. The Hawaii carbon assessment is part of a larger effort by the U.S. Geological Survey to assess

  18. Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China

    Treesearch

    Jingfeng Xiao; Ge Sun; Jiquan Chen; Hui Chen; Shiping Chen; Gang Dong

    2013-01-01

    The magnitude, spatial patterns, and controlling factors of the carbon and water fluxes of terrestrial ecosystems in China are not well understood due to the lack of ecosystem-level flux observations. We synthesized flux and micrometeorological observations from 22 eddy covariance flux sites across China,and examined the carbon fluxes, evapotranspiration (ET), and...

  19. Anthropogenic and climatic influences on carbon fluxes from eastern North America to the Atlantic Ocean: A process-based modeling study

    NASA Astrophysics Data System (ADS)

    Tian, Hanqin; Yang, Qichun; Najjar, Raymond G.; Ren, Wei; Friedrichs, Marjorie A. M.; Hopkinson, Charles S.; Pan, Shufen

    2015-04-01

    The magnitude, spatiotemporal patterns, and controls of carbon flux from land to the ocean remain uncertain. Here we applied a process-based land model with explicit representation of carbon processes in streams and rivers to examine how changes in climate, land conversion, management practices, atmospheric CO2, and nitrogen deposition affected carbon fluxes from eastern North America to the Atlantic Ocean, specifically the Gulf of Maine (GOM), Middle Atlantic Bight (MAB), and South Atlantic Bight (SAB). Our simulation results indicate that the mean annual fluxes (±1 standard deviation) of dissolved organic carbon (DOC), particulate organic carbon (POC), and dissolved inorganic carbon (DIC) in the past three decades (1980-2008) were 2.37 ± 0.60, 1.06 ± 0.20, and 3.57 ± 0.72 Tg C yr-1, respectively. Carbon export demonstrated substantial spatial and temporal variability. For the region as a whole, the model simulates a significant decrease in riverine DIC fluxes from 1901 to 2008, whereas there were no significant trends in DOC or POC fluxes. In the SAB, however, there were significant declines in the fluxes of all three forms of carbon, and in the MAB subregion, DIC and POC fluxes declined significantly. The only significant trend in the GOM subregion was an increase in DIC flux. Climate variability was the primary cause of interannual variability in carbon export. Land conversion from cropland to forest was the primary factor contributing to decreases in all forms of C export, while nitrogen deposition and fertilizer use, as well as atmospheric CO2 increases, tended to increase DOC, POC, and DIC fluxes.

  20. Vertical flux of respiratory carbon by oceanic diel migrant biota

    NASA Astrophysics Data System (ADS)

    Longhurst, A. R.; Bedo, A. W.; Harrison, W. G.; Head, E. J. H.; Sameoto, D. D.

    1990-04-01

    Interzonal diel migrant plankton and nekton obtain organic carbon by feeding at night above the main pycnoline of subtropical and tropical oceans, and respire part of it by day in the interior of the ocean below the pycnocline. Using data from seven oceanic stations, and conservative models to compute respiration at depth, we show that this flux of respiratory carbon ranged from 20 to 430 mg C m -2 d -1 or 13-58% of computed particulate sinking flux across the pycnocline. If this flux occurs consistently between 50°N and 50°S, it will add about 5-20% (depending on method of calculation) to current estimates of global sinking flux of organic carbon across the pycnocline.

  1. Carbon dioxide flux, transpiration and light response of millet in the Sahel

    NASA Astrophysics Data System (ADS)

    Friborg, T.; Boegh, E.; Soegaard, H.

    1997-02-01

    Within the framework of the HAPEX-Sahel experiment carried out in Niger during the rainy season of 1992, measurements of fluxes defining the vegetation-atmosphere interaction were conducted over a millet field, for a period of nearly 2 months. These measurements comprised continuous recording of solar radiation, atmospheric carbon dioxide fluxes using the eddy correlation technique, and sap flow through millet plants. Based on biometric measurements of the millet plants comprising height, spacing and leaf area index, the solar radiation is converted to absorbed photosynthetically active radiation (aPAR). The coupling between the three parameters is examined in pairs. The diurnal and seasonal variations are analysed in relation to plant development. A strong linear relationship between aPAR and carbon dioxide assimilation can be established from the measurements, giving a quantum yield of 0.03 mol CO 2 mol -1 quanta. A comparison between CO 2 flux and transpiration shows that this relationship is affected by the water vapour pressure deficit of the atmosphere, but corresponds to the results found for other drought-tolerant C 4 crops.

  2. The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil.

    PubMed

    Wijesekara, Hasintha; Bolan, Nanthi S; Thangavel, Ramesh; Seshadri, Balaji; Surapaneni, Aravind; Saint, Christopher; Hetherington, Chris; Matthews, Peter; Vithanage, Meththika

    2017-12-01

    A field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha -1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ 13 C and δ 15 N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO 2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0-15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ 13 C, and enriched δ 15 N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO 2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO 2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Detecting Recent Changes in the Arctic-Boreal Carbon Sink Using Satellite Remote Sensing, Flux Tower Data and Biophysical Models

    NASA Astrophysics Data System (ADS)

    Watts, J. D.; Kimball, J. S.; Du, J.; Zona, D.; Euskirchen, E. S.; Helbig, M.; Sonnentag, O.; Bruhwiler, L.; Kochendorfer, J.; Parmentier, F. J. W.; Humphreys, E.; Nadeau, D.; Miller, C. E.; Sachs, T.; Rinne, J.; Lund, M.; Tagesson, T.; Jackowicz-Korczynski, M.; Ueyama, M.; Aurela, M.; Commane, R.; Natali, S.; Oechel, W. C.

    2017-12-01

    High latitude warming and changes in hydrology are expected to substantially impact the terrestrial net ecosystem carbon balance, particularly in permafrost affected landscapes. Changing environmental conditions can yield divergent regional responses observed in gross primary productivity (GPP), ecosystem respiration (Reco) of carbon dioxide (CO2), net ecosystem CO2 exchange (NEE) and net methane fluxes (CH4). Wetland CH4 emissions are sensitive to climate and permafrost related changes in landscape wetness, which could alter regional carbon sink or source activity. Here we examine a 13-year record (2003-2015) of net carbon budgets and flux components for the Arctic-boreal region (>45°N). We applied an enhanced Terrestrial Carbon Flux (TCF) model developed for satellite remote sensing applications, with input optical-infrared (MODIS) and microwave (AMSR) sensor observations, and reanalysis data. Eddy covariance records from over 34 tower sites were used for model assessments and to identify high latitude landscape differences in CO2 and CH4 response. The TCF model results indicate a respective annual NEE sink of -38 +/- 18 TgC and -722 +/- 60 TgC for tundra (defined by the Circumpolar Arctic Vegetation Map) and boreal ecosystems, without accounting for carbon loss from fire. Annual CH4 emissions are estimated at 7 +/- 0.3 TgC/yr for tundra and 52 +/- 1.7 TgC/yr for boreal wetlands. The carbon flux record indicates a significant (a = 0.05) increase in carbon uptake for the Arctic-boreal region. A net change in annual CH4 emissions was not detected, although local landscapes including some permafrost affected northern boreal wetlands show signs of significant increase. This analysis indicates that continued monitoring of the carbon budget through integration of tower flux measurements, ecosystem models, satellite remote sensing and atmospheric inverse modeling is necessary to identify shifts in landscape carbon exchange and the vulnerability of northern ecosystems

  4. How interactions between top-down and bottom-up controls on carbon cycling affect fluxes within and from lakes

    NASA Astrophysics Data System (ADS)

    Sadro, S.; Piovia-Scott, J.; Nelson, C.; Sickman, J. O.; Knapp, R.

    2017-12-01

    While the role of inland waters in global carbon cycling has grown clearer in recent decades, the extent to which top-down and bottom-up mechanisms interact to regulate dynamics at the catchment scale is not well understood. The degree to which lakes process, export, or store terrestrial carbon is influenced by hydrological variability, variation in the magnitude of terrestrial organic matter (t-OM) entering a system, the efficiency with which such material is metabolized by bacterioplankton, the extent to which it is incorporated into secondary consumer biomass, and by the effects of food-web structure, such as the presence or absence of top predators. However, how these processes interact to mediate carbon fluxes between terrestrial, aquatic, and atmospheric reservoirs remains unclear. We develop a conceptual model that explores how interactions among these factors ultimately affects carbon dynamics using data from lakes located in the Sierra Nevada mountains of California. The Sierra are an excellent system for studies of carbon cycling because elevation-induced landscape gradients in soil development and vegetation cover provide large natural variation in terrestrial inputs to lakes, while variation in confounding factors such as lake morphometry or trophic state is comparatively small. Dissolved organic carbon concentrations increase 100 fold in lakes spanning the alpine to montane elevation gradient found in the Sierra, and fluorescence characteristics reflect an increasingly terrestrial signature with decreasing elevation. Bacterioplankton make up a large proportion of total ecosystem metabolism in these systems, and their metabolic efficiency is tightly coupled to the composition of dissolved organic matter. Stable isotope food web data (δ13C, Δ14C, and δ2H) and measurements of pCO2 from lakes indicate the magnitude of allochthony, rates if carbon cycling, and ecosystem heterotrophy all increase with the increasingly terrestrial signature of dissolved

  5. Carbon dioxide fluxes from an urban area in Beijing

    NASA Astrophysics Data System (ADS)

    Song, Tao; Wang, Yuesi

    2012-03-01

    A better understanding of urban carbon dioxide (CO 2) emissions is important for quantifying urban contributions to the global carbon budget. From January to December 2008, CO 2 fluxes were measured, by eddy covariance at 47 m above ground on a meteorological tower in a high-density residential area in Beijing. The results showed that the urban surface was a net source of CO 2 in the atmosphere. Diurnal flux patterns were similar to those previously observed in other cities and were largely influenced by traffic volume. Carbon uptake by both urban vegetation during the growing season and the reduction of fuel consumption for domestic heating resulted in less-positive daily fluxes in the summer. The average daily flux measured in the summer was 0.48 mg m - 2 s - 1 , which was 82%, 35% and 36% lower than those in the winter, spring and autumn, respectively. The reduction of vehicles on the road during the 29th Olympic and Paralympic Games had a significant impact on CO 2 flux. The flux of 0.40 mg m - 2 s - 1 for September 2008 was approximately 0.17 mg m - 2 s - 1 lower than the flux for September 2007. Annual CO 2 emissions from the study site were estimated at 20.6 kg CO 2 m - 2 y - 1 , considerably higher than yearly emissions obtained from other urban and suburban landscapes.

  6. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leclerc, Monique Y.

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impactmore » on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.« less

  7. Impact of a regional drought on terrestrial carbon fluxes and atmospheric carbon: results from a coupled carbon cycle model

    NASA Astrophysics Data System (ADS)

    Lee, E.; Koster, R. D.; Ott, L. E.; Weir, B.; Mahanama, S. P. P.; Chang, Y.; Zeng, F.

    2017-12-01

    Understanding the underlying processes that control the carbon cycle is key to predicting future global change. Much of the uncertainty in the magnitude and variability of the atmospheric carbon dioxide (CO2) stems from uncertainty in terrestrial carbon fluxes. Budget-based analyses show that such fluxes exhibit substantial interannual variability, but the relative impacts of temperature and moisture variations on regional and global scales are poorly understood. Here we investigate the impact of a regional drought on terrestrial carbon fluxes and CO2 mixing ratios over North America using the NASA Goddard Earth Observing System (GEOS) Model. Two 48-member ensembles of NASA GEOS-5 simulations with fully coupled land and atmosphere carbon components are performed - a control ensemble and an ensemble with an artificially imposed dry land surface anomaly for three months (April-June) over the lower Mississippi River Valley. Comparison of the results using the ensemble approach allows a direct quantification of the impact of the regional drought on local and proximate carbon exchange at the land surface via the carbon-water feedback processes.

  8. Genotypic variation in traits controlling carbon flux responses to precipitation in switchgrass

    USDA-ARS?s Scientific Manuscript database

    Fluxes of carbon in terrestrial ecosystems are key indicators of their productivity and carbon storage potential. Ecosystem fluxes will be impacted by climate change, especially changes in rainfall amount. Fluxes are also related to plant traits, including leaf photosynthesis (ACO2), leaf area ind...

  9. Upscaling Our Approach to Peatland Carbon Sequestration: Remote Sensing as a Tool for Carbon Flux Estimation.

    NASA Astrophysics Data System (ADS)

    Lees, K.; Khomik, M.; Clark, J. M.; Quaife, T. L.; Artz, R.

    2017-12-01

    Peatlands are an important part of the Earth's carbon cycle, comprising approximately a third of the global terrestrial carbon store. However, peatlands are sensitive to climatic change and human mismanagement, and many are now degraded and acting as carbon sources. Restoration work is being undertaken at many sites around the world, but monitoring the success of these schemes can be difficult and costly using traditional methods. A landscape-scale alternative is to use satellite data in order to assess the condition of peatlands and estimate carbon fluxes. This work focuses on study sites in Northern Scotland, where parts of the largest blanket bog in Europe are being restored from forest plantations. A combination of laboratory and fieldwork has been used to assess the Net Ecosystem Exchange (NEE), Gross Primary Productivity (GPP) and respiration of peatland sites in different conditions, and the climatic vulnerability of key peat-forming Sphagnum species. The results from these studies have been compared with spectral data in order to evaluate the extent to which remote sensing can function as a source of information for peatland health and carbon flux models. This work considers particularly the effects of scale in calculating peatland carbon flux. Flux data includes chamber and eddy covariance measurements of carbon dioxide, and radiometric observations include both handheld spectroradiometer results and satellite images. Results suggest that despite the small-scale heterogeneity and unique ecosystem factors in blanket bogs, remote sensing can be a useful tool in monitoring peatland health and carbon sequestration. In particular, this study gives unique insights into the relationships between peatland vegetation, carbon flux and spectral reflectance.

  10. Tidal wetland fluxes of dissolved organic carbon and sediment at Browns Island, California: initial evaluation

    USGS Publications Warehouse

    Ganju, N.K.; Bergamaschi, B.; Schoellhamer, D.H.

    2003-01-01

    Carbon and sediment fluxes from tidal wetlands are of increasing concern in the Sacramento-San Joaquin River Delta (Delta), because of drinking water issues and habitat restoration efforts. Certain forms of dissolved organic carbon (DOC) react with disinfecting chemicals used to treat drinking water, to form disinfection byproducts (DBPs), some of which are potential carcinogens. The contribution of DBP precursors by tidal wetlands is unknown. Sediment transport to and from tidal wetlands determines the potential for marsh accretion, thereby affecting habitat formation.Water, carbon, and sediment flux were measured in the main channel of Browns Island, a tidal wetland located at the confluence of Suisun Bay and the Delta. In-situ instrumentation were deployed between May 3 and May 21, 2002. Water flux was measured using acoustic Doppler current profilers and the index-velocity method. DOC concentrations were measured using calibrated ultraviolet absorbance and fluorescence instruments. Suspended-sediment concentrations were measured using a calibrated nephelometric turbidity sensor. Tidally averaged water flux through the channel was dependent on water surface elevations in Suisun Bay. Strong westerly winds resulted in higher water surface elevations in the area east of Browns Island, causing seaward flow, while subsiding winds reversed this effect. Peak ebb flow transported 36% more water than peak flood flow, indicating an ebb-dominant system. DOC concentrations were affected strongly by porewater drainage from the banks of the channel. Peak DOC concentrations were observed during slack after ebb, when the most porewater drained into the channel. Suspended-sediment concentrations were controlled by tidal currents that mobilized sediment from the channel bed, and stronger tides mobilized more sediment than the weaker tides. Sediment was transported mainly to the island during the 2-week monitoring period, though short periods of export occurred during the spring

  11. Overview of NASA's Carbon Monitoring System Flux-Pilot Project

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Gunson, Michael R.; Jucks, Kenneth

    2011-01-01

    NASA's space-based observations of physical, chemical and biological parameters in the Earth System along with state-of-the-art modeling capabilities provide unique capabilities for analyses of the carbon cycle. The Carbon Monitoring System is developing an exploratory framework for detecting carbon in the environment and its changes, with a view towards contributing to national and international monitoring activities. The Flux-Pilot Project aims to provide a unified view of land-atmosphere and ocean-atmosphere carbon exchange, using observation-constrained models. Central to the project is the application of NASA's satellite observations (especially MODIS), the ACOS retrievals of the JAXA-GOSAT observations, and the "MERRA" meteorological reanalysis produced with GEOS-S. With a primary objective of estimating uncertainty in computed fluxes, two land- and two ocean-systems are run for 2009-2010 and compared with existing flux estimates. An transport model is used to evaluate simulated CO2 concentrations with in-situ and space-based observations, in order to assess the realism of the fluxes and how uncertainties in fluxes propagate into atmospheric concentrations that can be more readily evaluated. Finally, the atmospheric partial CO2 columns observed from space are inverted to give new estimates of surface fluxes, which are evaluated using the bottom-up estimates and independent datasets. The focus of this presentation will be on the science goals and current achievements of the pilot project, with emphasis on how policy-relevant questions help focus the scientific direction. Examples include the issue of what spatio-temporal resolution of fluxes can be detected from polar-orbiting satellites and whether it is possible to use space-based observations to separate contributions to atmospheric concentrations of (say) fossil-fuel and biological activity

  12. Acidification, not carbonation, is the major regulator of carbon fluxes in the coccolithophore Emiliania huxleyi.

    PubMed

    Kottmeier, Dorothee M; Rokitta, Sebastian D; Rost, Björn

    2016-07-01

    A combined increase in seawater [CO2 ] and [H(+) ] was recently shown to induce a shift from photosynthetic HCO3 (-) to CO2 uptake in Emiliania huxleyi. This shift occurred within minutes, whereas acclimation to ocean acidification (OA) did not affect the carbon source. To identify the driver of this shift, we exposed low- and high-light acclimated E. huxleyi to a matrix of two levels of dissolved inorganic carbon (1400, 2800 μmol kg(-1) ) and pH (8.15, 7.85) and directly measured cellular O2 , CO2 and HCO3 (-) fluxes under these conditions. Exposure to increased [CO2 ] had little effect on the photosynthetic fluxes, whereas increased [H(+) ] led to a significant decline in HCO3 (-) uptake. Low-light acclimated cells overcompensated for the inhibition of HCO3 (-) uptake by increasing CO2 uptake. High-light acclimated cells, relying on higher proportions of HCO3 (-) uptake, could not increase CO2 uptake and photosynthetic O2 evolution consequently became carbon-limited. These regulations indicate that OA responses in photosynthesis are caused by [H(+) ] rather than by [CO2 ]. The impaired HCO3 (-) uptake also provides a mechanistic explanation for lowered calcification under OA. Moreover, it explains the OA-dependent decrease in photosynthesis observed in high-light grown phytoplankton. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  13. Estimates of Gelatinous Zooplankton Carbon Flux in the Global Oceans

    NASA Astrophysics Data System (ADS)

    Luo, J. Y.; Condon, R.; Cowen, R. K.

    2016-02-01

    Gelatinous zooplankton (GZ), which include the cnidarians, ctenophores, and pelagic tunicates, are a common feature of marine ecosystems worldwide, but their contribution to global biogeochemical fluxes has never been assessed. We constructed a carbon-cycle model with a single, annual time-step and resolved to a 5° spatial grid for the three major GZ groups in order to evaluate the GZ-mediated carbon fluxes and export to depth. Biomass inputs (totaling 0.149 Pg C) were based off of Lucas et al. (2014) and updated using the JeDI database (Condon et al. 2015). From the upper ocean, biomass export flux from cnidarians, ctenophores, and tunicates totaled 2.96 ± 2.82 Pg C y-1, though only 0.199 ± 0.023 Pg C y-1 of GZ carbon were transferred to upper trophic levels, roughly amounting to one-quarter of all mesozooplankton production flux. In contrast, GZ fluxes to DOC only comprised ca. 2% of labile DOC flux. Egestion flux from the upper ocean totaled 2.56 ± 3.35 Pg C y-1, with over 80% being fast-sinking tunicate fecal pellets. Due to fast sinking rates of carcasses and fecal pellets, 26% of all C export from the upper ocean reached the seafloor, such that GZ fecal matter is estimated to comprise between 20-30% of global POC surface export and 11-30% of POC seafloor deposition. Finally, results from sensitivity analyses showed no increase in cnidarian and ctenophore export fluxes with increased temperature and jelly biomass, though tunicate export fluxes showed some increase with both temperature and biomass. These results suggest that current estimates of global POC flux from the surface oceans, which range between 8.6 - 12.9 Pg C y-1, may be underestimated by as much as 20 - 25%, implying a definite need to incorporate GZ mediated flux in estimating the biological pump transfer efficiency. Our study represents the first effort to quantify the role of gelatinous zooplankton in the global marine carbon cycle.

  14. Monitoring carbon dioxide from space: Retrieval algorithm and flux inversion based on GOSAT data and using CarbonTracker-China

    NASA Astrophysics Data System (ADS)

    Yang, Dongxu; Zhang, Huifang; Liu, Yi; Chen, Baozhang; Cai, Zhaonan; Lü, Daren

    2017-08-01

    Monitoring atmospheric carbon dioxide (CO2) from space-borne state-of-the-art hyperspectral instruments can provide a high precision global dataset to improve carbon flux estimation and reduce the uncertainty of climate projection. Here, we introduce a carbon flux inversion system for estimating carbon flux with satellite measurements under the support of "The Strategic Priority Research Program of the Chinese Academy of Sciences—Climate Change: Carbon Budget and Relevant Issues". The carbon flux inversion system is composed of two separate parts: the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing (IAPCAS), and CarbonTracker-China (CT-China), developed at the Chinese Academy of Sciences. The Greenhouse gases Observing SATellite (GOSAT) measurements are used in the carbon flux inversion experiment. To improve the quality of the IAPCAS-GOSAT retrieval, we have developed a post-screening and bias correction method, resulting in 25%-30% of the data remaining after quality control. Based on these data, the seasonal variation of XCO2 (column-averaged CO2 dry-air mole fraction) is studied, and a strong relation with vegetation cover and population is identified. Then, the IAPCAS-GOSAT XCO2 product is used in carbon flux estimation by CT-China. The net ecosystem CO2 exchange is -0.34 Pg C yr-1 (±0.08 Pg C yr-1), with a large error reduction of 84%, which is a significant improvement on the error reduction when compared with in situ-only inversion.

  15. Mapping carbon flux uncertainty and selecting optimal locations for future flux towers in the Great Plains

    USGS Publications Warehouse

    Gu, Yingxin; Howard, Daniel M.; Wylie, Bruce K.; Zhang, Li

    2012-01-01

    Flux tower networks (e. g., AmeriFlux, Agriflux) provide continuous observations of ecosystem exchanges of carbon (e. g., net ecosystem exchange), water vapor (e. g., evapotranspiration), and energy between terrestrial ecosystems and the atmosphere. The long-term time series of flux tower data are essential for studying and understanding terrestrial carbon cycles, ecosystem services, and climate changes. Currently, there are 13 flux towers located within the Great Plains (GP). The towers are sparsely distributed and do not adequately represent the varieties of vegetation cover types, climate conditions, and geophysical and biophysical conditions in the GP. This study assessed how well the available flux towers represent the environmental conditions or "ecological envelopes" across the GP and identified optimal locations for future flux towers in the GP. Regression-based remote sensing and weather-driven net ecosystem production (NEP) models derived from different extrapolation ranges (10 and 50%) were used to identify areas where ecological conditions were poorly represented by the flux tower sites and years previously used for mapping grassland fluxes. The optimal lands suitable for future flux towers within the GP were mapped. Results from this study provide information to optimize the usefulness of future flux towers in the GP and serve as a proxy for the uncertainty of the NEP map.

  16. Estimating Carbon Flux Phenology with Satellite-Derived Land Surface Phenology and Climate Drivers for Different Biomes: A Synthesis of AmeriFlux Observations

    PubMed Central

    Zhu, Wenquan; Chen, Guangsheng; Jiang, Nan; Liu, Jianhong; Mou, Minjie

    2013-01-01

    Carbon Flux Phenology (CFP) can affect the interannual variation in Net Ecosystem Exchange (NEE) of carbon between terrestrial ecosystems and the atmosphere. In this study, we proposed a methodology to estimate CFP metrics with satellite-derived Land Surface Phenology (LSP) metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen needleleaf forest, grasslands and croplands), using 159 site-years of NEE and climate data from 32 AmeriFlux sites and MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in Start of Carbon Uptake (SCU) by more than 70% and End of Carbon Uptake (ECU) by more than 60%. The Root Mean Square Error (RMSE) of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate drivers, the biome types, and the specific CFP metric. This methodology has a potential for allowing extrapolation of CFP metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical satellite data and climate data. PMID:24386441

  17. Relevance of methodological choices for accounting of land use change carbon fluxes

    NASA Astrophysics Data System (ADS)

    Pongratz, Julia; Hansis, Eberhard; Davis, Steven

    2015-04-01

    To understand and potentially steer how humans shape land-climate interactions it is important to accurately attribute greenhouse gas fluxes from land use and land cover change (LULCC) in space and time. However, such accounting of carbon fluxes from LULCC generally requires choosing from multiple options of how to attribute the fluxes to regions and to LULCC activities. Applying a newly-developed and spatially-explicit bookkeeping model, BLUE ("bookkeeping of land use emissions"), we quantify LULCC carbon fluxes and attribute them to land-use activities and countries by a range of different accounting methods. We present results with respect to a Kyoto Protocol-like ``commitment'' accounting period, using land use emissions of 2008-12 as example scenario. We assess the effect of accounting methods that vary (1) the temporal evolution of carbon stocks, (2) the state of the carbon stocks at the beginning of the period, (3) the temporal attribution of carbon fluxes during the period, and (4) treatment of LULCC fluxes that occurred prior to the beginning of the period. We show that the methodological choices result in grossly different estimates of carbon fluxes for the different attribution definitions. The global net flux in the accounting period varies between 4.3 Pg(C) uptake and 15.2 Pg(C) emissions, depending on the accounting method. Regional results show different modes of variation. This finding has implications for both political and scientific considerations: Not all methodological choices are currently specified under the UNFCCC treaties on land use, land-use change and forestry. Yet, a consistent accounting scheme is crucial to assure comparability of individual LULCC activities, quantify their relevance for the global annual carbon budget, and assess the effects of LULCC policies.

  18. Partitioning Carbon Dioxide and Water Vapor Fluxes Using Correlation Analysis

    USDA-ARS?s Scientific Manuscript database

    Partitioning of eddy covariance flux measurements is routinely done to quantify the contributions of separate processes to the overall fluxes. Measurements of carbon dioxide fluxes represent the difference between gross ecosystem photosynthesis and total respiration, while measurements of water vapo...

  19. Carbon Fluxes in a sub-arctic tundra undergoing permafrost degradation

    NASA Astrophysics Data System (ADS)

    Bracho, R. G.; Webb, E.; Mauritz, M.; Schuur, E. A. G.

    2014-12-01

    As an effect of climate change, temperatures in high latitude regions are increasing faster than in the rest of the world and future projections indicate it will increase between 7°C and 8°C by the end of the 21st century. Permafrost soils store around 1700 Pg of Carbon (C), which is approximately the amount of C stored in terrestrial vegetation and in the atmosphere combined. Sustained warming induces permafrost thaw, leads to a thicker seasonal active layer, and creates subsided patches in the landscape. Carbon that was previously inaccessible to decomposition is thus exposed, increasing the likelihood of positive feedback of CO2 to the atmosphere. We measured C fluxes (Net ecosystem carbon flux, NEE, and Ecosystem respiration, Re) using the eddy covariance approach in a tundra landscape (Eight Mile Lake Watershed, Alaska) undergoing permafrost degradation from the beginning of the growing season in 2008 and throughout most winters until May 2014. This interval encompassed a range of climatic variability that included a deviation of ± 50% from the long term average in growing season precipitation. Active layer depth (thaw depth at the end of the growing season) and subsidence in the footprint were used as indicators of permafrost degradation. Results indicate that annual NEE ranged from a sink of 0.76 MgC ha-1 yr-1 to a source of 0.55 MgC ha-1 yr-1. NEE during the growing seasons fluctuated from 1.1 to 1.8 MgC ha-1 season-1 in net C uptake. Annual NEE was strongly affected by winter Re, which represented between 33% and 45% of the annual value regardless of of the large drop in both air and soil temperature. Parameters from the light response curve (optimum NEE, NEEopt and quantum yield, α) showed a seasonal and interannual variability and were different between the most and least degraded sites in the footprint, which affected the magnitude of the carbon cycle and may have implications for landscape C balance in sub-arctic tundra.

  20. Carbon Flux Signal Detection for the ASCENDS mission

    NASA Astrophysics Data System (ADS)

    Hammerling, D.; Michalak, A. M.; Kawa, S. R.; Doney, S. C.; Schaefer, K. M.

    2012-12-01

    Emerging satellite observations of carbon dioxide (CO2) offer novel and distinctive opportunities for quantifying the carbon cycle, which is an important scientific and societal challenge with anthropogenic CO2 emissions and accumulation rates in the atmosphere still on the rise. One mission in the planning stage is the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission, which is a laser CO2 sensing mission with an anticipated launch date around 2022. Notable features of this mission include the ability to sample at night and at high latitudes, which passive missions cannot do because of their reliance on reflected sunlight. In this work we present findings from signal detection studies, i.e. experiments that investigate if perturbations in carbon fluxes can be detected in the ASCENDS observations of atmospheric CO2 concentrations. The experiments employ a realistic synthetic-data setup using the PCTM/GEOS-5/CASA GFED CO2 flux and transport model in combination with CALIPSO and MODIS measurements. The signal detection approach applied uses a geostatistical mapping methodology that can leverage the information content of nearby observations, thereby potentially facilitating enhanced signal detection. The specific perturbation scenarios investigated are: carbon release from the melting of permafrost in the high Northern latitudes, the shifting of fossil fuel emissions from Europe to P.R. China, and natural variability in the CO2 fluxes in the Southern Ocean. Results indicate that the permafrost carbon release is comparatively easy to detect, while the Southern Ocean change is more challenging. The ability to detect a shift in fossil fuel emissions strongly depends on its magnitude: a 50% decrease in Europe is easily detectible, while a 20% decrease is only marginally so. A key conclusion is that the optimal signal detection strategy is intrinsically linked to how the carbon flux perturbations translate into atmospheric CO2 concentrations

  1. Effect of restoration on carbon fluxes in urban temperate wetlands

    NASA Astrophysics Data System (ADS)

    Schafer, K. V.; Tripathee, R.; Bohrer, G.

    2012-12-01

    Carbon sequestration as an ecosystem service, has received attraction as a climate change mitigating strategy. The restoration of wetlands has also been an integral part of US management policy, since the clean water act came into effect. How restoration impacts carbon fluxes, however, has seldom been reported. A record of over three years of net carbon exchange from a restored urban temperate wetland, shows that fluxes decreased by 50% concomitant with the management of Phragmites australis, an invasive plant species that has been eliminated by 2011, thus all aboveground biomass has been removed. Likewise, aboveground biomass decreased for Spartina alterniflora, the restored, native species over the same time period as well. The majority of the biomass resides belowground. Comparison between the managed urban wetland and an unmanaged recently restored site nearby shows that the fluxes in the unmanaged wetland in 2011 were significantly higher than those of the managed wetland. Thus, managing wetlands by removing Phragmites may cause diminishing carbon sequestration potential by these wetlands

  2. Modelling carbon and water fluxes at global scale

    NASA Astrophysics Data System (ADS)

    Balzarolo, M.; Balsamo, G.; Barbu, A.; Boussetta, S.; Calvet, J.-C.; Chevallier, F.; de Vries, J.; Kullmann, L.; Lafont, S.; Maignan, F.; Papale, D.; Poulter, B.

    2012-04-01

    Modelling and predicting seasonal and inter-annual variability of terrestrial carbon and water fluxes play an important role in understanding processes and interactions between plant-atmosphere and climate. Testing the model's capability to simulate fluxes across and within the ecosystems against eddy covariance data is essential. Thanks to the existing eddy covariance (EC) networks (e.g FLUXNET), where CO2 and water exchanges are continuously measured, it is now possible to verify the model's goodness at global scale. This paper reports the outcomes of the verification activities of the Land Carbon Core Information Service (LC-CIS) of the Geoland2 European project. The three used land surface models are C-TESSEL from ECMWF, SURFEX from CNRM and ORCHIDEE from IPSL. These models differ in their hypotheses used to describe processes and the interactions between ecological compartments (plant, soil and atmosphere) and climate and environmental conditions. Results of the verification and model benchmarking are here presented. Surface fluxes of the models are verified against FLUXNET sites representing main worldwide Plant Functional Types (PFTs: forest, grassland and cropland). The quality and accuracy of the EC data is verified using the CarboEurope database methodology. Modelled carbon and water fluxes magnitude, daily and annual cycles, inter-annual anomalies are verified against eddy covariance data using robust statistical analysis (r, RMSE, E, BE). We also verify the performance of the models in predicting the functional responses of Gross Primary Production (GPP) and RE (Ecosystem Respiration) to the environmental driving variables (i.e. temperature, soil water content and radiation) by comparing the functional relationships obtained from the outputs and observed data. Obtained results suggest some ways of improving such models for global carbon modelling.

  3. Carbon Fluxes and Transport Along the Terrestrial Aquatic Continuum

    NASA Astrophysics Data System (ADS)

    Butman, D. E.; Kolka, R.; Fennel, K.; Stackpoole, S. M.; Trettin, C.; Windham-Myers, L.

    2017-12-01

    Terrestrial wetlands, inland surface waters, tidal wetlands and estuaries, and the coastal ocean are distinct aquatic ecosystems that integrate carbon (C) fluxes and processing among the major earth system components: the continents, oceans, and atmosphere. The development of the 2nd State of the Carbon Cycle Report (SOCCR2) noted that incorporating the C cycle dynamics for these ecosystems was necessary to reconcile some of the gaps associated with the North American C budget. We present major C stocks and fluxes for Canada, Mexico and the United States. North America contains nearly 42% of the global terrestrial wetland area. Terrestrial wetlands, defined as soils that are seasonally or permanently inundated or saturated, contain significant C stocks equivalent to 174,000 Tg C in the top 40 cm of soil. While terrestrial wetlands are a C sink of approximately 64 Tg C yr-1, they also emit 21 Tg of CH4 yr-1. Inland waters are defined as lakes, reservoirs, rivers, and streams. Carbon fluxes, which include lateral C export to the coast, riverine and lacustrine CO2 emissions, and C burial in lakes and reservoirs are estimated at 507 Tg yr-1. Estuaries and tidal wetlands assimilate C and nutrients from uplands and rivers, and their total C stock is 1,323 Tg C in the top 1 m of soils and sediment. Accounting for soil accretion, lateral C flux, and CO2 assimilation and emission, tidal wetlands and estuaries are net sinks with a total flux equal to 6 Tg C yr-1. The coastal ocean and sea shelfs, defined as non-estuarine waters within 200 nautical miles (370 km) of the coast, function as net sinks, with the air-sea exchange of CO2 estimated at 150 Tg C yr-1. In total, fluxes from these four aquatic ecosystems are equal to a loss of 302 Tg C yr-1. Including these four discrete fluxes in this assessment demonstrates the importance of linking hydrology and biogeochemical cycling to evaluate the impacts of climate change and human activities on carbon fluxes across the

  4. Estimation of carbon flux to dovekies ( Alle alle) in the North Water

    NASA Astrophysics Data System (ADS)

    Karnovsky, Nina J.; Hunt, George L.

    We modeled the energy demand of seabirds in the North Water, focusing on the planktivorous dovekie ( Alle alle), the dominant species in the polynya. For the dovekie we provided an estimate of carbon flux that included aspects of spatial and temporal variability. We estimated the density, diet, and carbon consumption of dovekies throughout the polynya, from the time of their arrival in mid-May until they began to migrate south in September. Our model showed that this species is responsible for 92-96% of the energy demand and therefore carbon flux to seabirds. Dovekies consumed 73.7-147×10 3 mt C yr -1 in the North Water. Average flux rates to dovekies in the polynya were 0.74 g C m -2 yr -1, with a maximum estimated rate of 24 mg C m -2 d -1 in the eastern portion of the study area in May. However, when averaged over the entire polynya and period of occupancy, the proportion of pelagic primary production that went to dovekies was negligible (0.3-0.6%). Our observations of dovekie distribution, indicate that the major flux of carbon to seabirds occurred close inshore along the Greenland coast. There in May, carbon flux to dovekies was estimated to be 5-14% of the potential particulate export of phytoplankton. Our estimates of the spatial distribution of carbon flux to birds suggest the extraordinary importance of production along the west coast of Greenland.

  5. Comparison of buried soil sensors, surface chambers and above ground measurements of carbon dioxide fluxes

    USDA-ARS?s Scientific Manuscript database

    Soil carbon dioxide (CO2) flux is an important component of the terrestrial carbon cycle. Accurate measurements of soil CO2 flux aids determinations of carbon budgets. In this study, we investigated soil CO2 fluxes with time and depth and above ground CO2 fluxes in a bare field. CO2 concentrations w...

  6. Evaluations of carbon fluxes estimated by top-down and bottom-up approaches

    NASA Astrophysics Data System (ADS)

    Murakami, K.; Sasai, T.; Kato, S.; Hiraki, K.; Maksyutov, S. S.; Yokota, T.; Nasahara, K.; Matsunaga, T.

    2013-12-01

    There are two types of estimating carbon fluxes using satellite observation data, and these are referred to as top-down and bottom-up approaches. Many uncertainties are however still remain in these carbon flux estimations, because the true values of carbon flux are still unclear and estimations vary according to the type of the model (e.g. a transport model, a process based model) and input data. The CO2 fluxes in these approaches are estimated by using different satellite data such as the distribution of CO2 concentration in the top-down approach and the land cover information (e.g. leaf area, surface temperature) in the bottom-up approach. The satellite-based CO2 flux estimations with reduced uncertainty can be used efficiently for identifications of large emission area and carbon stocks of forest area. In this study, we evaluated the carbon flux estimates from two approaches by comparing with each other. The Greenhouse gases Observing SATellite (GOSAT) has been observing atmospheric CO2 concentrations since 2009. GOSAT L4A data product is the monthly CO2 flux estimations for 64 sub-continental regions and is estimated by using GOSAT FTS SWIR L2 XCO2 data and atmospheric tracer transport model. We used GOSAT L4A CO2 flux as top-down approach estimations and net ecosystem productions (NEP) estimated by the diagnostic type biosphere model BEAMS as bottom-up approach estimations. BEAMS NEP is only natural land CO2 flux, so we used GOSAT L4A CO2 flux after subtraction of anthropogenic CO2 emissions and oceanic CO2 flux. We compared with two approach in temperate north-east Asia region. This region is covered by grassland and crop land (about 60 %), forest (about 20 %) and bare ground (about 20 %). The temporal variation for one year period was indicated similar trends between two approaches. Furthermore we show the comparison of CO2 flux estimations in other sub-continental regions.

  7. Influence of Leaf Area Index Prescriptions on Simulations of Heat, Moisture, and Carbon Fluxes

    NASA Technical Reports Server (NTRS)

    Kala, Jatin; Decker, Mark; Exbrayat, Jean-Francois; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Abramowitz, Gab; Mocko, David

    2013-01-01

    Leaf-area index (LAI), the total one-sided surface area of leaf per ground surface area, is a key component of land surface models. We investigate the influence of differing, plausible LAI prescriptions on heat, moisture, and carbon fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLEv1.4b) model over the Australian continent. A 15-member ensemble monthly LAI data-set is generated using the MODIS LAI product and gridded observations of temperature and precipitation. Offline simulations lasting 29 years (1980-2008) are carried out at 25 km resolution with the composite monthly means from the MODIS LAI product (control simulation) and compared with simulations using each of the 15-member ensemble monthly-varying LAI data-sets generated. The imposed changes in LAI did not strongly influence the sensible and latent fluxes but the carbon fluxes were more strongly affected. Croplands showed the largest sensitivity in gross primary production with differences ranging from -90 to 60 %. PFTs with high absolute LAI and low inter-annual variability, such as evergreen broadleaf trees, showed the least response to the different LAI prescriptions, whilst those with lower absolute LAI and higher inter-annual variability, such as croplands, were more sensitive. We show that reliance on a single LAI prescription may not accurately reflect the uncertainty in the simulation of the terrestrial carbon fluxes, especially for PFTs with high inter-annual variability. Our study highlights that the accurate representation of LAI in land surface models is key to the simulation of the terrestrial carbon cycle. Hence this will become critical in quantifying the uncertainty in future changes in primary production.

  8. Partitioning of net carbon dioxide flux measured by automatic transparent chamber

    NASA Astrophysics Data System (ADS)

    Dyukarev, EA

    2018-03-01

    Mathematical model was developed for describing carbon dioxide fluxes at open sedge-sphagnum fen during growing season. The model was calibrated using the results of observations from automatic transparent chamber and it allows us to estimate autotrophic, heterotrophic and ecosystem respiration fluxes, gross and net primary vegetation production, and the net carbon balance.

  9. Aeolian nutrient fluxes following wildfire in sagebrush steppe: Implications for soil carbon storage

    USGS Publications Warehouse

    Hasselquist, N.J.; Germino, M.J.; Sankey, J.B.; Ingram, L.J.; Glenn, N.F.

    2011-01-01

    Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes occurring in the saltation zone during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C) and nitrogen (N) fluxes were as high as 235 g C m????'1 d????'1 and 19 g N m????'1 d????'1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes. ?? Author(s) 2011. CC Attribution 3.0 License.

  10. Aeolian nutrient fluxes following wildfire in sagebrush steppe: Implications for soil carbon storage

    USGS Publications Warehouse

    Hasselquist, N.J.; Germino, M.J.; Sankey, J.B.; Ingram, L.J.; Glenn, N.F.

    2011-01-01

    Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C) and nitrogen (N) fluxes were as high as 235 g C m????'1 d????'1 and 19 g N m????'1 d????'1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes. ?? 2011 Author(s).

  11. Methane and Carbon Dioxide Concentrations and Fluxes in Amazon Floodplains

    NASA Astrophysics Data System (ADS)

    Melack, J. M.; MacIntyre, S.; Forsberg, B.; Barbosa, P.; Amaral, J. H.

    2016-12-01

    Field studies on the central Amazon floodplain in representative aquatic habitats (open water, flooded forests, floating macrophytes) combine measurements of methane and carbon dioxide concentrations and fluxes to the atmosphere over diel and seasonal times with deployment of meteorological sensors and high-resolution thermistors and dissolved oxygen sondes. A cavity ringdown spectrometer is used to determine gas concentrations, and floating chambers and bubble collectors are used to measure fluxes. To further understand fluxes, we measured turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. These results allow calculations of vertical mixing within the water column and of air-water exchanges using surface renewal models. Methane and carbon dioxide fluxes varied as a function of season, habitat and water depth. High CO2 fluxes at high water are related to high pCO2; low pCO2 levels at low water result from increased phytoplankton uptake. CO2 fluxes are highest at turbulent open water sites, and pCO2 is highest in macrophyte beds. Fluxes and pCH4 are high in macrophyte beds.

  12. Constraining Marsh Carbon Budgets Using Long-Term C Burial and Contemporary Atmospheric CO2 Fluxes

    NASA Astrophysics Data System (ADS)

    Forbrich, I.; Giblin, A. E.; Hopkinson, C. S.

    2018-03-01

    Salt marshes are sinks for atmospheric carbon dioxide that respond to environmental changes related to sea level rise and climate. Here we assess how climatic variations affect marsh-atmosphere exchange of carbon dioxide in the short term and compare it to long-term burial rates based on radiometric dating. The 5 years of atmospheric measurements show a strong interannual variation in atmospheric carbon exchange, varying from -104 to -233 g C m-2 a-1 with a mean of -179 ± 32 g C m-2 a-1. Variation in these annual sums was best explained by differences in rainfall early in the growing season. In the two years with below average rainfall in June, both net uptake and Normalized Difference Vegetation Index were less than in the other three years. Measurements in 2016 and 2017 suggest that the mechanism behind this variability may be rainfall decreasing soil salinity which has been shown to strongly control productivity. The net ecosystem carbon balance was determined as burial rate from four sediment cores using radiometric dating and was lower than the net uptake measured by eddy covariance (mean: 110 ± 13 g C m-2 a-1). The difference between these estimates was significant and may be because the atmospheric measurements do not capture lateral carbon fluxes due to tidal exchange. Overall, it was smaller than values reported in the literature for lateral fluxes and highlights the importance of investigating lateral C fluxes in future studies.

  13. Adaptive data-driven models for estimating carbon fluxes in the Northern Great Plains

    USGS Publications Warehouse

    Wylie, B.K.; Fosnight, E.A.; Gilmanov, T.G.; Frank, A.B.; Morgan, J.A.; Haferkamp, Marshall R.; Meyers, T.P.

    2007-01-01

    Rangeland carbon fluxes are highly variable in both space and time. Given the expansive areas of rangelands, how rangelands respond to climatic variation, management, and soil potential is important to understanding carbon dynamics. Rangeland carbon fluxes associated with Net Ecosystem Exchange (NEE) were measured from multiple year data sets at five flux tower locations in the Northern Great Plains. These flux tower measurements were combined with 1-km2 spatial data sets of Photosynthetically Active Radiation (PAR), Normalized Difference Vegetation Index (NDVI), temperature, precipitation, seasonal NDVI metrics, and soil characteristics. Flux tower measurements were used to train and select variables for a rule-based piece-wise regression model. The accuracy and stability of the model were assessed through random cross-validation and cross-validation by site and year. Estimates of NEE were produced for each 10-day period during each growing season from 1998 to 2001. Growing season carbon flux estimates were combined with winter flux estimates to derive and map annual estimates of NEE. The rule-based piece-wise regression model is a dynamic, adaptive model that captures the relationships of the spatial data to NEE as conditions evolve throughout the growing season. The carbon dynamics in the Northern Great Plains proved to be in near equilibrium, serving as a small carbon sink in 1999 and as a small carbon source in 1998, 2000, and 2001. Patterns of carbon sinks and sources are very complex, with the carbon dynamics tilting toward sources in the drier west and toward sinks in the east and near the mountains in the extreme west. Significant local variability exists, which initial investigations suggest are likely related to local climate variability, soil properties, and management.

  14. Abundances and test weights of living planktic foraminifers across the Southwest Indian Ocean: Implications for carbon fluxes

    NASA Astrophysics Data System (ADS)

    Meilland, J.; Schiebel, R.; Lo Monaco, C.; Sanchez, S.; Howa, H.

    2018-01-01

    Calcifying marine organisms include planktic foraminifers that contribute to the marine carbon turnover by generating inorganic carbon production (CaCO3, shell) and flux. In this study, we have analyzed assemblages at the morphospecies level and abundances of living planktic foraminifers (LPF) from ten stations located in the Southwest Indian Ocean, and sampled in austral summer 2012. LPF density ranges from zero in the Subtropical Zone (STZ) to 944 individuals m-3 in the Polar Frontal Zone (PFZ), and is composed by up to 80% by the four species Neogloboquadrina pachyderma, Neogloboquadrina incompta, Globigerina bulloides, and Globigerinita uvula. For the entire region, we measured the individual morphometry and test mass (CaCO3) of 454 tests of living planktic foraminifers in order to calculate inorganic carbon standing stocks, as well as carbon flux. In the STZ, the average daily planktic foraminifer CaCO3 flux at 100 m water depth is low (< 0.22 mg m-2 d-1), whereas south of the Sub-Antarctic Zone (SAZ), in the PFZ and Antarctic Zone (AAZ), it reaches up to 49.41 mg m-2 d-1, and 2.20 mg m-2 d-1, respectively. The large regional variability in CaCO3 production and flux of LPF assemblages affects the marine carbonate system to varying degrees, depending on hydrological conditions. We conclude that recent changes in the position of hydrological fronts could induce a decrease in the LPF-related carbonate counter pump, which increases the oceanic uptake of CO2, and counteracts climate warming.

  15. Temporal Variability of North Atlantic Carbon Fluxes and their Sensitivity to the Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Brown, P.; McDonagh, E.; Sanders, R.; King, B.; Watson, A. J.; Schuster, U.; Henson, S.

    2016-02-01

    The North Atlantic plays a critical role in the global carbon cycle both as a region of substantial air-sea carbon dioxide uptake and as a location for the transfer of CO2 to depth on climatically-important timescales. While the magnitude of surface fluxes is relatively well constrained, our understanding of the processes that drive variability in ocean-atmosphere exchange and subsequent subsurface carbon accumulation is not as well defined. Here we present observation-derived high-resolution estimates of short-term 10-day meridional ocean carbon transport variability across the subtropical North Atlantic for 2004-2012. Substantial seasonal, sub-annual and interannual transport variability is observed that is highly sensitive to the strength of the Atlantic Meridional Overturning Circulation. While the recently identified multi-year decrease in AMOC strength similarly impacts carbon transports, its full effect is masked by the northwards transport of increasing surface CO2 levels. A 30% slowdown in the meridional circulation in 2009-2010 and the anomalous effects it had on the transport, storage and divergence of heat and freshwater in the subtropical and subpolar gyres and local wind regimes are investigated for their impact on local air-sea CO2 fluxes. Temperature and salt content anomalies identified in each gyre are found to drive (subtropics) or hinder (subpolar) additional carbon uptake from the atmosphere by affecting the physical solubility pump for CO2. Additionally their simultaneous effect on mixed layer depth and the vertical supply of nutrients to the surface is shown to magnify the CO2 flux observed by driving anomalous primary production rates.

  16. Carbon flux from bio-optical profiling floats: Calibrating transmissometers for use as optical sediment traps

    NASA Astrophysics Data System (ADS)

    Estapa, Meg; Durkin, Colleen; Buesseler, Ken; Johnson, Rod; Feen, Melanie

    2017-02-01

    Our mechanistic understanding of the processes controlling the ocean's biological pump is limited, in part, by our lack of observational data at appropriate timescales. The "optical sediment trap" (OST) technique utilizes a transmissometer on a quasi-Lagrangian platform to collect sedimenting particles. This method could help fill the observational gap by providing autonomous measurements of particulate carbon (PC) flux in the upper mesopelagic ocean at high spatiotemporal resolution. Here, we used a combination of field measurements and laboratory experiments to test hydrodynamic and zooplankton-swimmer effects on the OST method, and we quantitatively calibrated this method against PC flux measured directly in same-platform, neutrally buoyant sediment traps (NBSTs) during 5 monthly cruises at the Bermuda Atlantic Time-series Study (BATS) site. We found a well-correlated, positive relationship (R2=0.66, n=15) between the OST proxy, and the PC flux measured directly using NBSTs. Laboratory tests showed that scattering of light from multiple particles between the source and detector was unlikely to affect OST proxy results. We found that the carbon-specific attenuance of sinking particles was larger than literature values for smaller, suspended particles in the ocean, and consistent with variable carbon: size relationships reported in the literature for sinking particles. We also found evidence for variability in PC flux at high spatiotemporal resolution. Our results are consistent with the literature on particle carbon content and optical properties in the ocean, and support more widespread use of the OST proxy, with proper site-specific and platform-specific calibration, to better understand variability in the ocean biological pump.

  17. Dissolved Organic Carbon: Nitrate Ratios as a Driver of Methane Fluxes in Stream Ecosystems

    NASA Astrophysics Data System (ADS)

    Sullivan, B. W.; Wymore, A.; Schade, J. D.; McDowell, W. H.

    2016-12-01

    Fluvial ecosystems are poorly understood components of the global methane (CH4) budget because the ecology of CH4 fluxes in streams has yet to be sufficiently elucidated. Both CH4 production and uptake via oxidation are microbially mediated processes, but it is unclear where in the fluvial environment are the sources and sinks of CH4 and what role terrestrial inputs of carbon (C) and nutrients have on the magnitude and direction of CH4 flux. To address these uncertainties, we measured CH4 fluxes in a laboratory incubation from two temperate headwater streams that differed in ambient dissolved organic carbon (DOC) and nitrate (NO3-) concentrations. We amended stream water and sediment microcosms from each site with labile DOC from senesced leaf litter to assess how DOC concentration and the DOC:NO3- ratio affect proximate controls on CH4 flux. Lastly, we manipulated sediment and water column ratios (0-100%) to estimate sources and fates of CH4 flux within the ecosystem. We measured CH4 fluxes for the first 120 minutes of the incubation to simulate short-term, in stream processes. Initially, streams were a source of methane, but switched to a sink within 120 minutes. Methane fluxes were statistically similar in both stream sediment and water, suggesting that microbial processing of CH4 has similar directionality and magnitude in each environment. Both CH4 oxidation and production were significantly correlated with the DOC: NO3- ratio over the course of the incubation. Early in the incubation, increasing DOC: NO3- increased CH4 flux, but late in the incubation, increasing DOC: NO3- increased CH4 oxidation. Together, our results challenge existing paradigms of CH4 flux in the fluvial environment and identify the DOC:NO3- ratio as a possible mechanism that can explain spatial and temporal CH4 flux patterns in streams.

  18. The NASA Carbon Airborne Flux Experiment (CARAFE): instrumentation and methodology

    NASA Astrophysics Data System (ADS)

    Wolfe, Glenn M.; Kawa, S. Randy; Hanisco, Thomas F.; Hannun, Reem A.; Newman, Paul A.; Swanson, Andrew; Bailey, Steve; Barrick, John; Thornhill, K. Lee; Diskin, Glenn; DiGangi, Josh; Nowak, John B.; Sorenson, Carl; Bland, Geoffrey; Yungel, James K.; Swenson, Craig A.

    2018-03-01

    The exchange of trace gases between the Earth's surface and atmosphere strongly influences atmospheric composition. Airborne eddy covariance can quantify surface fluxes at local to regional scales (1-1000 km), potentially helping to bridge gaps between top-down and bottom-up flux estimates and offering novel insights into biophysical and biogeochemical processes. The NASA Carbon Airborne Flux Experiment (CARAFE) utilizes the NASA C-23 Sherpa aircraft with a suite of commercial and custom instrumentation to acquire fluxes of carbon dioxide, methane, sensible heat, and latent heat at high spatial resolution. Key components of the CARAFE payload are described, including the meteorological, greenhouse gas, water vapor, and surface imaging systems. Continuous wavelet transforms deliver spatially resolved fluxes along aircraft flight tracks. Flux analysis methodology is discussed in depth, with special emphasis on quantification of uncertainties. Typical uncertainties in derived surface fluxes are 40-90 % for a nominal resolution of 2 km or 16-35 % when averaged over a full leg (typically 30-40 km). CARAFE has successfully flown two missions in the eastern US in 2016 and 2017, quantifying fluxes over forest, cropland, wetlands, and water. Preliminary results from these campaigns are presented to highlight the performance of this system.

  19. Aspect as a Driver of Soil Carbon and Water Fluxes in Desert Environments

    NASA Astrophysics Data System (ADS)

    Sutter, L., Jr.; Barron-Gafford, G.; Sanchez-Canete, E. P.

    2016-12-01

    Within dryland environments, precipitation and incoming energy are the primary determinants of carbon and water cycling. We know aspect can influence how much sun energy reaches the ground surface, but how does this spatial feature of the landscape propagate into temporal moisture and carbon flux dynamics? We made parallel measurements across north and south-facing slopes to examine the effects of aspect on soil temperature and moisture and the resulting soil carbon and water flux rates within a low elevation, desert site in the Santa Catalina-Jemez Critical Zone Observatory. We coupled spatially distributed measurements at a single point in time with diel patterns of soil fluxes at singular point and in response to punctuated rain events. Reponses concerning aspect after spring El Niño rainfall events were complex, with higher cumulative carbon flux on the south-facing slope two weeks post rain, despite higher daily flux values starting on the north-facing slope ten days after the rain. Additional summer monsoon rain events and dry season measurements will give further insights into patterns under hotter conditions of periodic inter-storm drought. We will complete a year-round carbon and water flux budget of this site by measuring throughout the winter rainfall months. Ultimately, our work will illustrate the interactive effects of a range of physical factors on soil fluxes. Critical zone soil dynamics, especially within dryland environments, are very complex, but capturing the uncertainty around these flux is necessary to understand concerning vertical carbon and water exchange and storage.

  20. Estimating Carbon Flux Phenology with Satellite-Derived Land Surface Phenology and Climate Drivers for Different Biomes: A Synthesis of AmeriFlux Observations

    DOE PAGES

    Zhu, Wenquan; Chen, Guangsheng; Jiang, Nan; ...

    2013-12-27

    Carbon Flux Phenology (CFP) can affect the interannual variation in Net Ecosystem Exchange (NEE) of carbon between terrestrial ecosystems and the atmosphere. In this paper, we proposed a methodology to estimate CFP metrics with satellite-derived Land Surface Phenology (LSP) metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen needleleaf forest, grasslands and croplands), using 159 site-years of NEE and climate data from 32 AmeriFlux sites and MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in Start of Carbon Uptake (SCU) by more than 70% and End of Carbon Uptakemore » (ECU) by more than 60%. The Root Mean Square Error (RMSE) of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate drivers, the biome types, and the specific CFP metric. In conclusion, this methodology has a potential for allowing extrapolation of CFP metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical satellite data and climate data.« less

  1. NASA's Carbon Monitoring System Flux-Pilot Project: A Multi-Component Analysis System for Carbon-Cycle Research and Monitoring

    NASA Technical Reports Server (NTRS)

    Pawson, S.; Gunson, M.; Potter, C.; Jucks, K.

    2012-01-01

    The importance of greenhouse gas increases for climate motivates NASA s observing strategy for CO2 from space, including the forthcoming Orbiting Carbon Observatory (OCO-2) mission. Carbon cycle monitoring, including attribution of atmospheric concentrations to regional emissions and uptake, requires a robust modeling and analysis infrastructure to optimally extract information from the observations. NASA's Carbon-Monitoring System Flux-Pilot Project (FPP) is a prototype for such analysis, combining a set of unique tools to facilitate analysis of atmospheric CO2 along with fluxes between the atmosphere and the terrestrial biosphere or ocean. NASA's analysis system is unique, in that it combines information and expertise from the land, oceanic, and atmospheric branches of the carbon cycle and includes some estimates of uncertainty. Numerous existing space-based missions provide information of relevance to the carbon cycle. This study describes the components of the FPP framework, assessing the realism of computed fluxes, thus providing the basis for research and monitoring applications. Fluxes are computed using data-constrained terrestrial biosphere models and physical ocean models, driven by atmospheric observations and assimilating ocean-color information. Use of two estimates provides a measure of uncertainty in the fluxes. Along with inventories of other emissions, these data-derived fluxes are used in transport models to assess their consistency with atmospheric CO2 observations. Closure is achieved by using a four-dimensional data assimilation (inverse) approach that adjusts the terrestrial biosphere fluxes to make them consistent with the atmospheric CO2 observations. Results will be shown, illustrating the year-to-year variations in land biospheric and oceanic fluxes computed in the FPP. The signals of these surface-flux variations on atmospheric CO2 will be isolated using forward modeling tools, which also incorporate estimates of transport error. The

  2. Time series measurements of carbon fluxes from a mangrove-dominated estuary

    NASA Astrophysics Data System (ADS)

    Volta, C.; Ho, D. T.; Friederich, G.; Del Castillo, C. E.; Engel, V. C.; Bhat, M.

    2017-12-01

    Mangrove ecosystems are among the most important and productive coastal ecosystems globally, and due to their high productivity and rapid carbon cycling, these ecosystems are important modulators of carbon fluxes from the land to the ocean and between the water and the atmosphere. Therefore, they may play a crucial role in the global carbon cycle and climate. Nonetheless, to date, estimates of carbon fluxes in mangrove-dominated estuaries are associated with large uncertainties, because studies have typically focused on limited spatial and temporal scales. For the first time, continuous time series measurements of temperature, salinity, CDOM, pH and pCO2 covering both the dry and the wet seasons were made in Shark River, a tidal estuary in the largest contiguous mangrove forest in North America. The measurements were made at two permanent stations along the estuarine domain, and allowed estimates of net dissolved carbon export from the Shark River to the Gulf of Mexico, as well as the CO2 emissions to the atmosphere to be made at seasonal and annual timescales. Results reveal that, compared to the dry season, the wet season was characterized by higher dissolved carbon export and CO2 emissions, due to meteorological, hydrological, and biogeochemical processes. Additionally, an analysis of relationships between hydrodynamic control factors (i.e. water discharge and water level) in the upstream freshwater marsh and carbon fluxes in the Shark River highlighted the importance of developing good water management strategies in the future. Finally, the study estimated the social cost of carbon fluxes in the Shark River estuary as a contribution to carbon accounting in mangrove ecosystems.

  3. Evaluation of the Community Land Model simulated carbon and water fluxes against observations over ChinaFLUX sites

    DOE PAGES

    Zhang, Li; Mao, Jiafu; Shi, Xiaoying; ...

    2016-07-15

    The Community Land Model (CLM) is an advanced process-based land surface model that simulates carbon, nitrogen, water vapor and energy exchanges between terrestrial ecosystems and the atmosphere at various spatial and temporal scales. We use observed carbon and water fluxes from five representative Chinese Terrestrial Ecosystem Flux Research Network (ChinaFLUX) eddy covariance tower sites to systematically evaluate the new version CLM4.5 and old version CLM4.0, and to generate insights that may inform future model developments. CLM4.5 underestimates the annual carbon sink at three forest sites and one alpine grassland site but overestimates the carbon sink of a semi-arid grassland site.more » The annual carbon sink underestimation for the deciduous-dominated forest site results from underestimated daytime carbon sequestration during summer and overestimated nighttime carbon emission during spring and autumn. Compared to CLM4.0, the bias of annual gross primary production (GPP) is reduced by 24% and 28% in CLM4.5 at two subtropical forest sites. However, CLM4.5 still presents a large positive bias in annual GPP. The improvement in net ecosystem exchange (NEE) is limited, although soil respiration bias decreases by 16%–43% at three forest sites. CLM4.5 simulates lower soil water content in the dry season than CLM4.0 at two grassland sites. Drier soils produce a significant drop in the leaf area index and in GPP and an increase in respiration for CLM4.5. The new fire parameterization approach in CLM4.5 causes excessive burning at the Changbaishan forest site, resulting in an unexpected underestimation of NEE, vegetation carbon, and soil organic carbon by 46%, 95%, and 87%, respectively. Altogether, our study reveals significant improvements achieved by CLM4.5 compared to CLM4.0, and suggests further developments on the parameterization of seasonal GPP and respiration, which will require a more effective representation of seasonal water conditions and the

  4. Carbon fluxes in North American coastal and shelf seas: Current status and trends

    NASA Astrophysics Data System (ADS)

    Fennel, K.; Alin, S. R.; Barbero, L.; Evans, W.; Martin Hernandez-Ayon, J. M.; Hu, X.; Lohrenz, S. E.; Muller-Karger, F. E.; Najjar, R.; Robbins, L. L.; Shadwick, E. H.; Siedlecki, S. A.; Steiner, N.; Turk, D.; Vlahos, P.; Wang, A. Z.

    2016-12-01

    Coastal and shelf seas represent an interface between all major components of the global carbon cycle: land, atmosphere, marine sediments and the ocean. Fluxes and transformations of carbon in coastal systems are complex and highly variable in space and time. The First State of the Carbon Cycle Report (http://cdiac.ornl.gov/SOCCR/final.html, Chapter 15, Chavez et al. 2007) concluded that carbon budgets of North American ocean margins were not well quantified because of insufficient observations and the complexity and highly localized spatial variability of coastal carbon dynamics. Since then significant progress has been made through the expansion of carbon observing networks, the implementation of modeling capabilities, and national and international coordination and synthesis activities. We will review the current understanding of coastal carbon fluxes around the North American continent including along the Atlantic and Pacific coasts, the northern Gulf of Mexico, and the North American Arctic region and provide a compilation of regional estimates of air-sea fluxes of CO2. We will discuss generalizable patterns in coastal air-sea CO2 exchange and other carbon fluxes as well as reasons underlying spatial heterogeneity. After providing an overview of the principal modes of carbon export from coastal systems, we will apply these mechanisms to the North American continent, and discuss observed and projected trends of key properties and fluxes. The presentation will illustrate that despite significant advances in capabilities and understanding, large uncertainties remain.

  5. Biogenic carbon fluxes from global agricultural production and consumption

    NASA Astrophysics Data System (ADS)

    Wolf, Julie; West, Tristram O.; Le Page, Yannick; Kyle, G. Page; Zhang, Xuesong; Collatz, G. James; Imhoff, Marc L.

    2015-10-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange and spatially distributed to 0.05° resolution using Moderate Resolution Imaging Spectroradiometer satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 ± 0.46 Pg C yr-1, of which 2.05 ± 0.05 Pg C yr-1 was harvested and 0.54 Pg C yr-1 was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 ± 0.21 Pg C yr-1, of which 2.31 ± 0.21 Pg C yr-1 was emitted as CO2, 0.07 ± 0.01 Pg C yr-1 was emitted as CH4, and 0.04 Pg C yr-1 was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg C yr-1 in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 ± 0.03 Pg C yr-1 in 2011, the majority of which was respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of approximately 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models.

  6. Decoding the Secrets of Carbon Preservation and GHG Flux in Lower-Latitude Peatlands

    NASA Astrophysics Data System (ADS)

    Richardson, C. J.; Flanagan, N. E.; Wang, H.; Ho, M.; Hodgkins, S. B.; Cooper, W. T.; Chanton, J.; Winton, S.

    2017-12-01

    The mechanisms regulating peat decomposition and C carbon storage in peatlands are poorly understood, particularly with regard to the importance of the biochemical compounds produced by different plant species and in turn peat quality controls on C storage and GHG flux. To examine the role of carbon quality in C accretion in northern compared to tropical peatlands we completed field and lab studies on bog peats collected in Minnesota, North Carolina, Florida and Peru to answer three fundamental questions; 1) is tropical peat more recalcitrant than northern peat 2) does the addition of aromatic and phenolic C compounds increase towards the tropics 3) do differences in the chemical structure of organic matter explain variances in carbon storage and GHG flux in tropical versus northern peatlands? Our main hypothesize is that high concentrations of phenolics and aromatic C compounds produced in shrub and tree plant communities in peatlands coupled with the fire production of biochar aromatics in peatlands may provide a dual biogeochemical latch mechanism controlling microbial decomposition of peat even under higher temperatures and seasonal drought. By comparing the peat bog soil cores collected from the MN peat bogs, NC Pocosins, FL Everglades and Peru palm swamps we find that the soils in the shrub-dominant Pocosin contain the highest phenolics, which microbial studies indicate have the strongest resistance to microbial decomposition. A chemical comparison of plant driven peat carbon quality along a north to south latitudinal gradient indicates that tropical peatlands have higher aromatic compounds, and enhanced phenolics, especially after light fires, which enhances C storage and affect GHG flux across the latitudinal gradient.

  7. Metabolite Depletion Affects Flux Profiling of Cell Lines.

    PubMed

    Nilsson, A; Haanstra, J R; Teusink, B; Nielsen, J

    2018-06-01

    Quantifying the rate of consumption and release of metabolites (i.e., flux profiling) has become integral to the study of cancer. The fluxes as well as the growth of the cells may be affected by metabolite depletion during cultivation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Quantifying Carbon Flux Estimation Errors

    NASA Astrophysics Data System (ADS)

    Wesloh, D.

    2017-12-01

    Atmospheric Bayesian inversions have been used to estimate surface carbon dioxide (CO2) fluxes from global to sub-continental scales using atmospheric mixing ratio measurements. These inversions use an atmospheric transport model, coupled to a set of fluxes, in order to simulate mixing ratios that can then be compared to the observations. The comparison is then used to update the fluxes to better match the observations in a manner consistent with the uncertainties prescribed for each. However, inversion studies disagree with each other at continental scales, prompting further investigations to examine the causes of these differences. Inter-comparison studies have shown that the errors resulting from atmospheric transport inaccuracies are comparable to those from the errors in the prior fluxes. However, not as much effort has gone into studying the origins of the errors induced by errors in the transport as by errors in the prior distribution. This study uses a mesoscale transport model to evaluate the effects of representation errors in the observations and of incorrect descriptions of the transport. To obtain realizations of these errors, we performed an Observing System Simulation Experiments (OSSEs), with the transport model used for the inversion operating at two resolutions, one typical of a global inversion and the other of a mesoscale, and with various prior flux distributions to. Transport error covariances are inferred from an ensemble of perturbed mesoscale simulations while flux error covariances are computed using prescribed distributions and magnitudes. We examine how these errors can be diagnosed in the inversion process using aircraft, ground-based, and satellite observations of meteorological variables and CO2.

  9. CARBON STORAGE AND FLUXES IN PONDEROSA PINE AT DIFFERENT SUCCESSIONAL STAGES

    EPA Science Inventory

    We compared carbon storage and fluxes in young and old ponderosa pine stands in Oregon, including plant and soil storage, net primary productivity, respiration fluxes, and eddy flux estimates of net ecosystem exchange. The young site (Y site) was previously an old-growth pondero...

  10. Process-oriented modelling to identify main drivers of erosion-induced carbon fluxes

    NASA Astrophysics Data System (ADS)

    Wilken, Florian; Sommer, Michael; Van Oost, Kristof; Bens, Oliver; Fiener, Peter

    2017-05-01

    Coupled modelling of soil erosion, carbon redistribution, and turnover has received great attention over the last decades due to large uncertainties regarding erosion-induced carbon fluxes. For a process-oriented representation of event dynamics, coupled soil-carbon erosion models have been developed. However, there are currently few models that represent tillage erosion, preferential water erosion, and transport of different carbon fractions (e.g. mineral bound carbon, carbon encapsulated by soil aggregates). We couple a process-oriented multi-class sediment transport model with a carbon turnover model (MCST-C) to identify relevant redistribution processes for carbon dynamics. The model is applied for two arable catchments (3.7 and 7.8 ha) located in the Tertiary Hills about 40 km north of Munich, Germany. Our findings indicate the following: (i) redistribution by tillage has a large effect on erosion-induced vertical carbon fluxes and has a large carbon sequestration potential; (ii) water erosion has a minor effect on vertical fluxes, but episodic soil organic carbon (SOC) delivery controls the long-term erosion-induced carbon balance; (iii) delivered sediments are highly enriched in SOC compared to the parent soil, and sediment delivery is driven by event size and catchment connectivity; and (iv) soil aggregation enhances SOC deposition due to the transformation of highly mobile carbon-rich fine primary particles into rather immobile soil aggregates.

  11. Elucidating Carbon Exchange at the Regional Scale Via Airborne Eddy Covariance Flux Measurements

    NASA Astrophysics Data System (ADS)

    Hannun, R. A.; Wolfe, G. M.; Kawa, S. R.; Newman, P. A.; Hanisco, T. F.; Diskin, G. S.; DiGangi, J. P.; Nowak, J. B.; Barrick, J. D. W.; Thornhill, K. L., II; Noormets, A.; Vargas, R.; Clark, K. L.; Kustas, W. P.

    2017-12-01

    Direct flux observations from aircraft provide a unique tool for probing greenhouse gas (GHG) sources and sinks on a regional scale. Airborne eddy covariance, which relies on high-frequency, simultaneous measurements of fluctuations in concentration and vertical wind speed, is a robust method for quantifying surface-atmosphere exchange. We have assembled and flown an instrument payload onboard the NASA C-23 Sherpa aircraft capable of measuring CO2, CH4, H2O, and heat fluxes. Flights for the Carbon Airborne Flux Experiment (CARAFE) took place during September 2016 and May 2017 based out of Wallops Flight Facility, VA. Flight tracks covered a variety of ecosystems and land-use types in the Mid-Atlantic, including forests, croplands, and wetlands. Carbon fluxes are derived using eddy covariance and wavelet analysis. Our results show a strong drawdown of CO2 and near-zero CH4 emissions from crops and dry-land forest, but seasonally strong CH4 flux from wetland forest. CARAFE flux data will also be compared with observations from several flux towers along the flight path to complement the airborne measurements. We will further assess the effects of land surface type and seasonal variability in carbon exchange. Regional-scale flux observations from CARAFE supply a useful constraint for improving top-down and bottom up estimates of carbon sources and sinks.

  12. Observed and modeled carbon and energy fluxes for agricultural sites under North American Carbon Program site-level interim synthesis

    NASA Astrophysics Data System (ADS)

    Lokupitiya, E. Y.; Denning, A.

    2010-12-01

    Croplands are unique, man-made ecosystems with dynamics mostly dependent on human decisions. Crops uptake a significant amount of Carbon dioxide (CO2) during their short growing seasons. Reliability of the available models to predict the carbon exchanges by croplands is important in estimating the cropland contribution towards overall land-atmosphere carbon exchange and global carbon cycle. The energy exchanges from croplands include both sensible and latent heat fluxes. This study focuses on analyzing the performance of 19 land surface models across five agricultural sites under the site-level interim synthesis of North American Carbon Program (NACP). Model simulations were performed using a common simulation protocol and input data, including gap-filled meteorological data corresponding to each site. The net carbon fluxes (i.e. net ecosystem exchange; NEE) and energy fluxes (sensible and latent heat) predicted by 12 models with sub-hourly/hourly temporal resolution and 7 models with daily temporal resolution were compared against the site-specific gap-filled observed flux tower data. Comparisons were made by site and crop type (i.e. maize, soybean, and wheat), mainly focusing on the coefficient of determination, correlation, root mean square error, and standard deviation. Analyses also compared the diurnal, seasonal, and inter-annual variability of the modeled fluxes against the observed data and the mean modeled data.

  13. Global estimates of boreal forest carbon stocks and flux

    NASA Astrophysics Data System (ADS)

    Bradshaw, Corey J. A.; Warkentin, Ian G.

    2015-05-01

    The boreal ecosystem is an important global reservoir of stored carbon and a haven for diverse biological communities. The natural disturbance dynamics there have historically been driven by fire and insects, with human-mediated disturbances increasing faster than in other biomes globally. Previous research on the total boreal carbon stock and predictions of its future flux reveal high uncertainty in regional patterns. We reviewed and standardised this extensive body of quantitative literature to provide the most up-to-date and comprehensive estimates of the global carbon balance in the boreal forest. We also compiled century-scale predictions of the carbon budget flux. Our review and standardisation confirmed high uncertainty in the available data, but there is evidence that the region's total carbon stock has been underestimated. We found a total carbon store of 367.3 to 1715.8 Pg (1015 g), the mid-point of which (1095 Pg) is between 1.3 and 3.8 times larger than any previous mean estimates. Most boreal carbon resides in its soils and peatlands, although estimates are highly uncertain. We found evidence that the region might become a net carbon source following a reduction in carbon uptake rate from at least the 1980s. Given that the boreal potentially constitutes the largest terrestrial carbon source in the world, in one of the most rapidly warming parts of the globe (Walsh, 2014), how we manage these stocks will be influential on future climate dynamics.

  14. Constraining surface carbon fluxes using in situ measurements of carbonyl sulfide and carbon dioxide

    NASA Astrophysics Data System (ADS)

    Berkelhammer, M.; Asaf, D.; Still, C.; Montzka, S.; Noone, D.; Gupta, M.; Provencal, R.; Chen, H.; Yakir, D.

    2014-02-01

    Understanding the processes that control the terrestrial exchange of carbon is critical for assessing atmospheric CO2 budgets. Carbonyl sulfide (COS) is taken up by vegetation during photosynthesis following a pathway that mirrors CO2 but has a small or nonexistent emission component, providing a possible tracer for gross primary production. Field measurements of COS and CO2 mixing ratios were made in forest, senescent grassland, and riparian ecosystems using a laser absorption spectrometer installed in a mobile trailer. Measurements of leaf fluxes with a branch-bag gas-exchange system were made across species from 10 genera of trees, and soil fluxes were measured with a flow-through chamber. These data show (1) the existence of a narrow normalized daytime uptake ratio of COS to CO2 across vascular plant species of 1.7, providing critical information for the application of COS to estimate photosynthetic CO2 fluxes and (2) a temperature-dependent normalized uptake ratio of COS to CO2 from soils. Significant nighttime uptake of COS was observed in broad-leafed species and revealed active stomatal opening prior to sunrise. Continuous high-resolution joint measurements of COS and CO2 concentrations in the boundary layer are used here alongside the flux measurements to partition the influence that leaf and soil fluxes and entrainment of air from above have on the surface carbon budget. The results provide a number of critical constraints on the processes that control surface COS exchange, which can be used to diagnose the robustness of global models that are beginning to use COS to constrain terrestrial carbon exchange.

  15. Carbon Flux to the Atmosphere from Land-Use Changes 1850-2005 (NDP-050)

    DOE Data Explorer

    Houghton, Robert [Woods Hole Research Center, Falmouth, MA (United States)

    2008-01-01

    The methods and data sources used to derive this time series of flux estimates are described in Houghton (1999, 2003), Houghton and Hackler (1995), and Houghton et al. (1983). In summary, this database provides estimates of regional and global net carbon fluxes, on a year-by-year basis from 1850 through 2005, resulting from changes in land use (such as harvesting of forest products and clearing for agriculture), taking into account not only the initial removal and oxidation of the carbon in the vegetation, but also subsequent regrowth and changes in soil carbon. The net flux of carbon to the atmosphere from changes in land use from 1850 to 2005 was modeled as a function of documented land-use change and changes in aboveground and belowground carbon following changes in land use.

  16. Oxygen and Carbon Dioxide Fluxes from Barley Shoots Depend on Nitrate Assimilation 1

    PubMed Central

    Bloom, Arnold J.; Caldwell, Richard M.; Finazzo, John; Warner, Robert L.; Weissbart, Joseph

    1989-01-01

    A custom oxygen analyzer in conjunction with an infrared carbon dioxide analyzer and humidity sensors permitted simultaneous measurements of oxygen, carbon dioxide, and water vapor fluxes from the shoots of intact barley plants (Hordeum vulgare L. cv Steptoe). The oxygen analyzer is based on a calciazirconium sensor and can resolve concentration differences to within 2 microliters per liter against the normal background of 210,000 microliters per liter. In wild-type plants receiving ammonium as their sole nitrogen source or in nitrate reductase-deficient mutants, photosynthetic and respiratory fluxes of oxygen equaled those of carbon dioxide. By contrast, wild-type plants exposed to nitrate had unequal oxygen and carbon dioxide fluxes: oxygen evolution at high light exceeded carbon dioxide consumption by 26% and carbon dioxide evolution in the dark exceeded oxygen consumption by 25%. These results indicate that a substantial portion of photosynthetic electron transport or respiration generates reductant for nitrate assimilation rather than for carbon fixation or mitochondrial electron transport. PMID:16667024

  17. Scaling-up of CO2 fluxes to assess carbon sequestration in rangelands of Central Asia

    Treesearch

    Bruce K. Wylie; Tagir G. Gilmanov; Douglas A. Johnson; Nicanor Z. Saliendra; Larry L. Tieszen; Ruth Anne F. Doyle; Emilio A. Laca

    2006-01-01

    Flux towers provide temporal quantification of local carbon dynamics at specific sites. The number and distribution of flux towers, however, are generally inadequate to quantify carbon fluxes across a landscape or ecoregion. Thus, scaling up of flux tower measurements through use of algorithms developed from remote sensing and GIS data is needed for spatial...

  18. Annual net community production and the biological carbon flux in the ocean

    NASA Astrophysics Data System (ADS)

    Emerson, Steven

    2014-01-01

    The flux of biologically produced organic matter from the surface ocean (the biological pump), over an annual cycle, is equal to the annual net community production (ANCP). Experimental determinations of ANCP at ocean time series sites using a variety of different metabolite mass balances have made it possible to evaluate the accuracy of sediment trap fluxes and satellite-determined ocean carbon export. ANCP values at the Hawaii Ocean Time-series (HOT), the Bermuda Atlantic Time-series Study (BATS), Ocean Station Papa (OSP) are 3 ± 1 mol C m-2 yr-1—much less variable than presently suggested by satellite remote sensing measurements and global circulation models. ANCP determined from mass balances at these locations are 3-4 times particulate organic carbon fluxes measured in sediment traps. When the roles of dissolved organic carbon (DOC) flux, zooplankton migration, and depth-dependent respiration are considered these differences are reconciled at HOT and OSP but not at BATS, where measured particulate fluxes are about 3 times lower than expected. Even in the cases where sediment trap fluxes are accurate, it is not possible to "scale up" these measurements to determine ANCP without independent determinations of geographically variable DOC flux and zooplankton migration. Estimates of ANCP from satellite remote sensing using net primary production determined by the carbon-based productivity model suggests less geographic variability than its predecessor (the vertically generalized productivity model) and brings predictions at HOT and OSP closer to measurements; however, satellite-predicted ANCP at BATS is still 3 times too low.

  19. Water- and Plant-Mediated Responses of Ecosystem Carbon Fluxes to Warming and Nitrogen Addition on the Songnen Grassland in Northeast China

    PubMed Central

    Jiang, Li; Guo, Rui; Zhu, Tingcheng; Niu, Xuedun; Guo, Jixun; Sun, Wei

    2012-01-01

    Background Understanding how grasslands are affected by a long-term increase in temperature is crucial to predict the future impact of global climate change on terrestrial ecosystems. Additionally, it is not clear how the effects of global warming on grassland productivity are going to be altered by increased N deposition and N addition. Methodology/Principal Findings In-situ canopy CO2 exchange rates were measured in a meadow steppe subjected to 4-year warming and nitrogen addition treatments. Warming treatment reduced net ecosystem CO2 exchange (NEE) and increased ecosystem respiration (ER); but had no significant impacts on gross ecosystem productivity (GEP). N addition increased NEE, ER and GEP. However, there were no significant interactions between N addition and warming. The variation of NEE during the four experimental years was correlated with soil water content, particularly during early spring, suggesting that water availability is a primary driver of carbon fluxes in the studied semi-arid grassland. Conclusion/Significance Ecosystem carbon fluxes in grassland ecosystems are sensitive to warming and N addition. In the studied water-limited grassland, both warming and N addition influence ecosystem carbon fluxes by affecting water availability, which is the primary driver in many arid and semiarid ecosystems. It remains unknown to what extent the long-term N addition would affect the turn-over of soil organic matter and the C sink size of this grassland. PMID:23028848

  20. Grasland Stable Isotope Flux Measurements: Three Isotopomers of Carbon Dioxide Measured by QCL Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zeeman, M. J.; Tuzson, B.; Eugster, W.; Werner, R. A.; Buchmann, N.; Emmenegger, L.

    2007-12-01

    To improve our understanding of greenhouse gas dynamics of managed ecosystems such as grasslands, we not only need to investigate the effects of management (e.g., grass cuts) and weather events (e.g., rainy days) on carbon dioxide fluxes, but also need to increase the time resolution of our measurements. Thus, for the first time, we assessed respiration and assimilation fluxes with high time resolution (5Hz) stable isotope measurements at an intensively managed farmland in Switzerland (Chamau, 400m ASL). Two different methods were used to quantify fluxes of carbon dioxide and associated fluxes of stable carbon isotopes: (1) the flux gradient method, and (2) the eddy covariance method. During a week long intensive measurement campaign, we (1) measured mixing ratios of carbon dioxide isotopomers (12C16O2, 12C16O18O, 13C16O2) with a Quantum Cascade Laser (QCL, Aerodyne Inc.) spectroscope and (2) collected air samples for isotope analyses (13C/12C) and (18O/16O) of carbon dioxide by Isotope Ratio Mass Spectrometry (IRMS, Finnigan) every two hours, concurrently along a height profile (z = 0.05; 0.10; 0.31; 2.15m). In the following week, the QCL setup was used for closed-path eddy covariance flux measurement of the carbon dioxide isotopomers, with the air inlet located next to an open-path Infra Red Gas Analyzers (IRGA, LiCor 7500) used simultaneously for carbon dioxide measurements. During this second week, an area of grass inside the footprint was cut and harvested after several days. The first results of in-field continuous QCL measurements of carbon dioxide mixing ratios and their stable isotopic ratios show good agreement with IRGA measurements and isotope analysis of flask samples by IRMS. Thus, QCL spectroscopy is a very promising tool for stable isotope flux investigations.

  1. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China.

    PubMed

    Yu, Gui-Rui; Zhu, Xian-Jin; Fu, Yu-Ling; He, Hong-Lin; Wang, Qiu-Feng; Wen, Xue-Fa; Li, Xuan-Ran; Zhang, Lei-Ming; Zhang, Li; Su, Wen; Li, Sheng-Gong; Sun, Xiao-Min; Zhang, Yi-Ping; Zhang, Jun-Hui; Yan, Jun-Hua; Wang, Hui-Min; Zhou, Guang-Sheng; Jia, Bing-Rui; Xiang, Wen-Hua; Li, Ying-Nian; Zhao, Liang; Wang, Yan-Fen; Shi, Pei-Li; Chen, Shi-Ping; Xin, Xiao-Ping; Zhao, Feng-Hua; Wang, Yu-Ying; Tong, Cheng-Li

    2013-03-01

    Understanding the dynamics and underlying mechanism of carbon exchange between terrestrial ecosystems and the atmosphere is one of the key issues in global change research. In this study, we quantified the carbon fluxes in different terrestrial ecosystems in China, and analyzed their spatial variation and environmental drivers based on the long-term observation data of ChinaFLUX sites and the published data from other flux sites in China. The results indicate that gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem productivity (NEP) of terrestrial ecosystems in China showed a significantly latitudinal pattern, declining linearly with the increase of latitude. However, GEP, ER, and NEP did not present a clear longitudinal pattern. The carbon sink functional areas of terrestrial ecosystems in China were mainly located in the subtropical and temperate forests, coastal wetlands in eastern China, the temperate meadow steppe in the northeast China, and the alpine meadow in eastern edge of Qinghai-Tibetan Plateau. The forest ecosystems had stronger carbon sink than grassland ecosystems. The spatial patterns of GEP and ER in China were mainly determined by mean annual precipitation (MAP) and mean annual temperature (MAT), whereas the spatial variation in NEP was largely explained by MAT. The combined effects of MAT and MAP explained 79%, 62%, and 66% of the spatial variations in GEP, ER, and NEP, respectively. The GEP, ER, and NEP in different ecosystems in China exhibited 'positive coupling correlation' in their spatial patterns. Both ER and NEP were significantly correlated with GEP, with 68% of the per-unit GEP contributed to ER and 29% to NEP. MAT and MAP affected the spatial patterns of ER and NEP mainly by their direct effects on the spatial pattern of GEP. © 2012 Blackwell Publishing Ltd.

  2. A heat flux modulator from carbon nanotubes.

    PubMed

    Jiang, Shaohui; Zhang, Guang; Xia, Dan; Liu, Changhong; Fan, Shoushan

    2015-08-28

    For a heat flux modulator, the most difficult problem is that the main carriers named 'phonons' have little response to external fields. Of the existing studies on heat flux modulators, most were theoretical work and the materials systems for the theoretical calculations were artificial lattices. In this paper, we made a heat modulator with ultrathin buckypaper which was made of multi-layer carbon nanotube sheets overlapped together, and achieved an on/off ratio whose value was 1.41 using an pendent block in experiments without special optimizations. When the temperatures of the two sides were of appropriate values, we could even see a negative heat flux. Intuitively, the heat flux was tuned by the gap between the buckypaper and the pendent gate, and we observed that there was heat transferred to the pendent block. The structure of the modulator is similar to a CNT transistor with a contactless gate, hence this type of micromodulator will be easy to manufacture in the future.

  3. Carbon Management In the Post-Cap-and-Trade Carbon Economy: An Economic Model for Limiting Climate Change by Managing Anthropogenic Carbon Flux

    NASA Astrophysics Data System (ADS)

    DeGroff, F. A.

    2013-05-01

    In this paper, we discuss an economic model for comprehensive carbon management that focuses on changes in carbon flux in the biosphere due to anthropogenic activity. The two unique features of the model include: 1. A shift in emphasis from primarily carbon emissions, toward changes in carbon flux, mainly carbon extraction, and 2. A carbon price vector (CPV) to express the value of changes in carbon flux, measured in changes in carbon sequestration, or carbon residence time. The key focus with the economic model is the degree to which carbon flux changes due to anthropogenic activity. The economic model has three steps: 1. The CPV metric is used to value all forms of carbon associated with any anthropogenic activity. In this paper, the CPV used is a logarithmic chronological scale to gauge expected carbon residence (or sequestration) time. In future economic models, the CPV may be expanded to include other factors to value carbon. 2. Whenever carbon changes form (and CPV) due to anthropogenic activity, a carbon toll is assessed as determined by the change in the CPV. The standard monetary unit for carbon tolls are carbon toll units, or CTUs. The CTUs multiplied by the quantity of carbon converted (QCC) provides the total carbon toll, or CT. For example, CT = (CTU /mole carbon) x (QCC moles carbon). 3. Whenever embodied carbon (EC) attributable to a good or service moves via trade to a jurisdiction with a different CPV metric, a carbon toll (CT) is assessed representing the CPV difference between the two jurisdictions. This economic model has three clear advantages. First, the carbon pricing and cost scheme use existing and generally accepted accounting methodologies to ensure the veracity and verifiability of carbon management efforts with minimal effort and expense using standard, existing auditing protocols. Implementing this economic model will not require any new, special, unique, or additional training, tools, or systems for any entity to achieve their minimum

  4. Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite-based estimates

    NASA Astrophysics Data System (ADS)

    Schlitzer, Reiner

    The use of dissolved nutrients and carbon for photosynthesis in the euphotic zone and the subsequent downward transport of particulate and dissolved organic material strongly affect carbon concentrations in surface water and thus the air-sea exchange of CO 2. Efforts to quantify the downward carbon flux for the whole ocean or on basin-scales are hampered by the sparseness of direct productivity or flux measurements. Here, a global ocean circulation, biogeochemical model is used to determine rates of export production and vertical carbon fluxes in the Southern Ocean. The model exploits the existing large sets of hydrographic, oxygen, nutrient and carbon data that contain information on the underlying biogeochemical processes. The model is fitted to the data by systematically varying circulation, air-sea fluxes, production, and remineralization rates simultaneously. Use of the adjoint method yields model property simulations that are in very good agreement with measurements. In the model, the total integrated export flux of particulate organic matter necessary for the realistic reproduction of nutrient data is significantly larger than export estimates derived from primary productivity maps. Of the 10,000 TgC yr -1(10 GtC yr -1) required globally, the Southern Ocean south of 30°S contributes about 3000 TgC yr -1 (33%), most of it occurring in a zonal belt along the Antarctic Circumpolar Current and in the Peru, Chile and Namibia coastal upwelling regions. The export flux of POC for the area south of 50°S amounts to 1000±210 TgC yr -1, and the particle flux in 1000 m for the same area is 115±20 TgC yr -1. Unlike for the global ocean, the contribution of the downward flux of dissolved organic carbon is significant in the Southern Ocean in the top 500 m of the water column. Comparison with satellite-based productivity estimates (CZCS and SeaWiFS) shows a relatively good agreement over most of the ocean except for the Southern Ocean south of 50°S, where the model

  5. Carbon fluxes of Kobresia pygmaea pastures on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Foken, T.; Biermann, T.; Babel, W.; Ma, Y.

    2013-12-01

    With an approximate cover of 450,000 km2 on the Tibetan Plateau (TP), the Cyperaceae Kobresia pygmaea forms he world's largest alpine ecosystem. This species, especially adapted to grazing pressure, grows to a height of only 2-6 cm and can be found in an altitudinal range of 4000 to 5960 m a.s.l. A special characteristic of this ecosystem is the stable turf layer, which is built up from roots and plays a significant role in protecting soil from erosion. This is of great importance since soils on the TP store 2.5 % of the global soil organic carbon stocks. The aim of the investigation was the study of the carbon storage and the impact of human-induced land use change on these Kobresia pygmaea pastures. We therefore applied eddy-covariance measurements and modelling as a long-term control of the fluxes between the atmosphere and the pastures and 13C labelling for the investigation of flux partitioning, and chamber measurements to investigate the degradation of the pastures. Combining CO2 budgets observed in 2010 with eddy-covariance measurements and relative partitioning of Carbon fluxes estimated with 13C labelling enabled us to characterise the C turnover for the vegetation period with absolute fluxes within the plant-soil-atmosphere continuum. These results revealed that this ecosystem indeed stores a great amount of C in below-ground pools, especially in the root turf layer. To further investigate the importance of the root layer, the experiments in 2012 focused on flux measurements over the different surface types which make up the heterogeneity of the Kobresia pygmaea pastures and might result from degradation due to extensive grazing. The three surface types investigated with a LiCOR long-term monitoring chamber system include Kobresia pygmaea with intact turf layer (IRM), a surface type where the turf layer is still present but the vegetation is sparse and mainly consists of Cryptogam crusts (DRM) and finally areas without the turf layer (BS). According to

  6. Simulating the effects of fire disturbance and vegetation recovery on boreal ecosystem carbon fluxes

    NASA Astrophysics Data System (ADS)

    Yi, Y.; Kimball, J. S.; Jones, L. A.; Zhao, M.

    2011-12-01

    Fire related disturbance and subsequent vegetation recovery has a major influence on carbon storage and land-atmosphere CO2 fluxes in boreal ecosystems. We applied a synthetic approach combining tower eddy covariance flux measurements, satellite remote sensing and model reanalysis surface meteorology within a terrestrial carbon model framework to estimate fire disturbance and recovery effects on boreal ecosystem carbon fluxes including gross primary production (GPP), ecosystem respiration and net CO2 exchange (NEE). A disturbance index based on MODIS land surface temperature and NDVI was found to coincide with vegetation recovery status inferred from tower chronosequence sites. An empirical algorithm was developed to track ecosystem recovery status based on the disturbance index and used to nudge modeled net primary production (NPP) and surface soil organic carbon stocks from baseline steady-state conditions. The simulations were conducted using a satellite based terrestrial carbon flux model driven by MODIS NDVI and MERRA reanalysis daily surface meteorology inputs. The MODIS (MCD45) burned area product was then applied for mapping recent (post 2000) regional disturbance history, and used with the disturbance index to define vegetation disturbance and recovery status. The model was then applied to estimate regional patterns and temporal changes in terrestrial carbon fluxes across the entire northern boreal forest and tundra domain. A sensitivity analysis was conducted to assess the relative importance of fire disturbance and recovery on regional carbon fluxes relative to assumed steady-state conditions. The explicit representation of disturbance and recovery effects produces more accurate NEE predictions than the baseline steady-state simulations and reduces uncertainty regarding the purported missing carbon sink in the high latitudes.

  7. Dissolved organic carbon fluxes from soils in the Alaskan coastal temperate rainforest

    NASA Astrophysics Data System (ADS)

    D'Amore, D. V.; Edwards, R.; Hood, E. W.; Herendeen, P. A.; Valentine, D.

    2011-12-01

    Soil saturation and temperature are the primary factors that influence soil carbon cycling. Interactions between these factors vary by soil type, climate, and landscape position, causing uncertainty in predicting soil carbon flux from. The soils of the North American perhumid coastal temperate rainforest (NCTR) store massive amounts of carbon, yet there is no estimate of dissolved organic carbon (DOC) export from different soil types in the region. There are also no working models that describe the influence of soil saturation and temperature on the export of DOC from soils. To address this key information gap, we measured soil water table elevation, soil temperature, and soil and stream DOC concentrations to calculate DOC flux across a soil hydrologic gradient that included upland soils, forested wetland soils, and sloping bog soils in the NCTR of southeast Alaska. We found that increased soil temperature and frequent fluctuations of soil water tables promoted the export of large quantities of DOC from wetland soils and relatively high amounts of DOC from mineral soils. Average area-weighted DOC flux ranged from 7.7 to 33.0 g C m-2 y-1 across a gradient of hydropedologic soil types. The total area specific export of carbon as DOC for upland, forested wetland and sloping bog catchments was 77, 306, and 329 Kg C ha-1 y-1 respectively. The annual rate of carbon export from wetland soils in this region is among the highest reported in the literature. These findings highlight the importance of terrestrial-aquatic fluxes of DOC as a pathway for carbon loss in the NCTR.

  8. Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests

    Treesearch

    J.B. Bradford; R.A. Birdsey; L.A. Joyce; M.G. Ryan

    2008-01-01

    Forest carbon stocks and fluxes vary with forest age, and relationships with forest age are often used to estimate fluxes for regional or national carbon inventories. Two methods are commonly used to estimate forest age: observed tree age or time since a known disturbance. To clarify the relationships between tree age, time since disturbance and forest carbon storage...

  9. Bioturbation and dissolved organic matter enhance contaminant fluxes from sediment treated with powdered and granular activated carbon.

    PubMed

    Kupryianchyk, D; Noori, A; Rakowska, M I; Grotenhuis, J T C; Koelmans, A A

    2013-05-21

    Sediment amendment with activated carbon (AC) is a promising technique for in situ sediment remediation. To date it is not clear whether this technique sufficiently reduces sediment-to-water fluxes of sediment-bound hydrophobic organic chemicals (HOCs) in the presence of bioturbators. Here, we report polychlorobiphenyl (PCB) pore water concentrations, fluxes, mass transfer coefficients, and survival data of two benthic species, for four treatments: no AC addition (control), powdered AC addition, granular AC addition and addition and subsequent removal of GAC (sediment stripping). AC addition decreased mass fluxes but increased apparent mass transfer coefficients because of dissolved organic carbon (DOC) facilitated transport across the benthic boundary layer (BBL). In turn, DOC concentrations depended on bioturbator activity which was high for the PAC tolerant species Asellus aquaticus and low for AC sensitive species Lumbriculus variegatus. A dual BBL resistance model combining AC effects on gradients, DOC facilitated transport and biodiffusion was evaluated against the data and showed how the type of resistance differs with treatment and chemical hydrophobicity. Data and simulations illustrate the complex interplay between AC and contaminant toxicity to benthic organisms and how differences in species tolerance affect mass fluxes from sediment to the water column.

  10. Carbon fluxes resulting from land-use changes in the Tamaulipan thornscrub of northeastern Mexico

    PubMed Central

    Návar-Chaidez, Jose de Jesus

    2008-01-01

    Information on carbon stock and flux resulting from land-use changes in subtropical, semi-arid ecosystems are important to understand global carbon flux, yet little data is available. In the Tamaulipan thornscrub forests of northeastern Mexico, biomass components of standing vegetation were estimated from 56 quadrats (200 m2 each). Regional land-use changes and present forest cover, as well as estimates of soil organic carbon from chronosequences, were used to predict carbon stocks and fluxes in this ecosystem. For the period of 1980–1996, the Tamaulipan thornscrub is presenting an annual deforestation rate of 2.27% indicating that approximately 600 km2 of this plant community are lost every year and that 60% of the original Mexican Tamaulipan thornscrub vegetation has been lost since the 1950's. On the other hand, intensive agriculture, including introduced grasslands increased (4,000 km2) from 32 to 42% of the total studied area, largely at the expense of the Tamaulipan thornscrub forests. Land-use changes from Tamaulipan thornscrub forest to agriculture contribute 2.2 Tg to current annual carbon emissions and standing biomass averages 0.24 ± 0.06 Tg, root biomass averages 0.17 ± 0.03 Tg, and soil organic carbon averages 1.80 ± 0.27 Tg. Land-use changes from 1950 to 2000 accounted for Carbon emissions of the order of 180.1 Tg. Projected land-use changes will likely contribute to an additional carbon flux of 98.0 Tg by the year 2100. Practices to conserve sequester, and transfer carbon stocks in semi-arid ecosystems are discussed as a means to reduce carbon flux from deforestation practices. PMID:18826617

  11. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes.

    PubMed

    Moore, Sam; Evans, Chris D; Page, Susan E; Garnett, Mark H; Jones, Tim G; Freeman, Chris; Hooijer, Aljosja; Wiltshire, Andrew J; Limin, Suwido H; Gauci, Vincent

    2013-01-31

    Tropical peatlands contain one of the largest pools of terrestrial organic carbon, amounting to about 89,000 teragrams (1 Tg is a billion kilograms). Approximately 65 per cent of this carbon store is in Indonesia, where extensive anthropogenic degradation in the form of deforestation, drainage and fire are converting it into a globally significant source of atmospheric carbon dioxide. Here we quantify the annual export of fluvial organic carbon from both intact peat swamp forest and peat swamp forest subject to past anthropogenic disturbance. We find that the total fluvial organic carbon flux from disturbed peat swamp forest is about 50 per cent larger than that from intact peat swamp forest. By carbon-14 dating of dissolved organic carbon (which makes up over 91 per cent of total organic carbon), we find that leaching of dissolved organic carbon from intact peat swamp forest is derived mainly from recent primary production (plant growth). In contrast, dissolved organic carbon from disturbed peat swamp forest consists mostly of much older (centuries to millennia) carbon from deep within the peat column. When we include the fluvial carbon loss term, which is often ignored, in the peatland carbon budget, we find that it increases the estimate of total carbon lost from the disturbed peatlands in our study by 22 per cent. We further estimate that since 1990 peatland disturbance has resulted in a 32 per cent increase in fluvial organic carbon flux from southeast Asia--an increase that is more than half of the entire annual fluvial organic carbon flux from all European peatlands. Our findings emphasize the need to quantify fluvial carbon losses in order to improve estimates of the impact of deforestation and drainage on tropical peatland carbon balances.

  12. Numerical cell model investigating cellular carbon fluxes in Emiliania huxleyi.

    PubMed

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2015-01-07

    Coccolithophores play a crucial role in the marine carbon cycle and thus it is interesting to know how they will respond to climate change. After several decades of research the interplay between intracellular processes and the marine carbonate system is still not well understood. On the basis of experimental findings given in literature, a numerical cell model is developed that describes inorganic carbon fluxes between seawater and the intracellular sites of calcite precipitation and photosynthetic carbon fixation. The implemented cell model consists of four compartments, for each of which the carbonate system is resolved individually. The four compartments are connected to each other via H(+), CO2, and HCO3(-) fluxes across the compartment-confining membranes. For CO2 accumulation around RubisCO, an energy-efficient carbon concentrating mechanism is proposed that relies on diffusive CO2 uptake. At low external CO2 concentrations and high light intensities, CO2 diffusion does not suffice to cover the carbon demand of photosynthesis and an additional uptake of external HCO3(-) becomes essential. The model is constrained by data of Emiliania huxleyi, the numerically most abundant coccolithophore species in the present-day ocean. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Understanding and Projecting Climate and Human Impacts on Terrestrial-Coastal Carbon and Nutrient Fluxes

    NASA Astrophysics Data System (ADS)

    Lohrenz, S. E.; Cai, W. J.; Tian, H.; He, R.; Fennel, K.

    2017-12-01

    Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. Here, we describe a NASA Carbon Monitoring System project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The nature of our approach, coupling models of terrestrial and ocean ecosystem dynamics and associated carbon processes, allows for assessment of how societal and human-related land use, land use change and forestry and climate-related change affect terrestrial carbon transport as well as export of materials through watersheds to the coastal margins. Our objectives include the following: 1) Provide representation of carbon processes in the terrestrial ecosystem to understand how changes in land use and climatic conditions influence the export of materials to the coastal ocean, 2) Couple the terrestrial exports of carbon, nutrients and freshwater to a coastal biogeochemical model and examine how different climate and land use scenarios influence fluxes across the land-ocean interface, and 3) Project future changes under different scenarios of climate and human impact, and support user needs related to carbon management and other activities (e.g., water quality, hypoxia, ocean acidification). This research is providing information that will contribute to determining an overall carbon balance in North America as well as describing and predicting how human- and climate-related changes impact coastal water quality including possible effects of coastal

  14. Modeling the Relative Importance of Nutrient and Carbon Loads, Boundary Fluxes, and Sediment Fluxes on Gulf of Mexico Hypoxia.

    PubMed

    Feist, Timothy J; Pauer, James J; Melendez, Wilson; Lehrter, John C; DePetro, Phillip A; Rygwelski, Kenneth R; Ko, Dong S; Kreis, Russell G

    2016-08-16

    The Louisiana continental shelf in the northern Gulf of Mexico experiences bottom water hypoxia in the summer. In this study, we applied a biogeochemical model that simulates dissolved oxygen concentrations on the shelf in response to varying riverine nutrient and organic carbon loads, boundary fluxes, and sediment fluxes. Five-year model simulations demonstrated that midsummer hypoxic areas were most sensitive to riverine nutrient loads and sediment oxygen demand from settled organic carbon. Hypoxic area predictions were also sensitive to nutrient and organic carbon fluxes from lateral boundaries. The predicted hypoxic area decreased with decreases in nutrient loads, but the extent of change was influenced by the method used to estimate model boundary concentrations. We demonstrated that modeling efforts to predict changes in hypoxic area on the continental shelf in relationship to changes in nutrients should include representative boundary nutrient and organic carbon concentrations and functions for estimating sediment oxygen demand that are linked to settled organic carbon derived from water-column primary production. On the basis of our model analyses using the most representative boundary concentrations, nutrient loads would need to be reduced by 69% to achieve the Gulf of Mexico Nutrient Task Force Action Plan target hypoxic area of 5000 km(2).

  15. Impacts of ontogenetically migrating copepods on downward carbon flux in the western subarctic Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Kobari, Toru; Steinberg, Deborah K.; Ueda, Ai; Tsuda, Atsushi; Silver, Mary W.; Kitamura, Minoru

    2008-07-01

    To evaluate the impacts of ontogenetically (seasonally) migrating copepods on carbon transport to the mesopelagic zone, we investigated depth distribution, population structure, and feeding activity of the ontogentic copepod community in the western subarctic Pacific Ocean from day-night pairs of zooplankton samples down to 1000 m during the VERtical Transport In the Global Ocean (VERTIGO) program. Over the 31 July-16 August 2005 study period, the biomass of Neocalanus cristatus and Neocalanus plumchrus predominated in the near surface waters, while Neocalanus flemingeri was already dormant at depth. We observed a strong diel migration for Metridia pacifica, and a seasonal downward migration for Eucalanus bungii. Based on gut pigment analysis, ingestion rate of the copepod community was 214-375 mg C m -2 day -1, which was equal to 26-37% of the concurrent primary production. However, comparison of grazing estimated from gut pigments to calculated carbon demand of the copepod community indicates that phytoplankton comprised 37-59% of the ingested carbon. Thus, the copepod community appears to have also relied on detritus and microzooplankton for their nutrition, likely because primary production during this time was dominated by picophytoplankton too small to be grazed by these large copepods. Fecal pellet flux by the copepod community was estimated to account for 141-223% of the sedimentary particulate organic carbon (POC) flux at 150 m, suggesting considerable fragmentation and consumption of pellets in the upper layers. Fecal pellets alone were adequate to meet copepod carbon demand in the surface 0-150 m layer. Active carbon flux by diel migration of M. pacifica (respiration, egestion, and mortality) was 4-17 mg C m -2 day -1, equal to 6-44% of sedimentary POC flux at 150 m. Active carbon flux by N. flemingeri ontogenetic migration (i.e., respiration and mortality at depth) contributed 246 mg C m -2 year -1, equal to 9% of sedimentary POC flux at 1000 m. The

  16. Monitoring Carbon Fluxes from Shallow Surface Soils in the Critical Zone

    NASA Astrophysics Data System (ADS)

    Stielstra, C. M.; Brooks, P. D.; Chorover, J.

    2011-12-01

    The critical zone (CZ) is the earth's porous near-surface layer, characterized by the integrated processes that occur between the bedrock and the atmospheric boundary layer. Within this area water, atmosphere, ecosystems, and soils interact on a geomorphic and geologic template. We hypothesize that CZ systems organize and evolve in response to open system fluxes of energy and mass, including meteoric inputs of radiation, water, and carbon, which can be quantified at point to watershed scales. The goal of this study is to link above-ground and below-ground carbon processes by quantifying carbon pools and fluxes from near surface soils. Soil CO2 efflux and dissolved organic carbon (DOC) are monitored over a two year period across bedrock type and vegetation type at two seasonally snow covered subalpine catchments in Arizona and New Mexico. We measure the amount of DOC present in surface soils, and install ion exchange resins at the A/B soil horizon interface to capture DOC leachate mobilized during snowmelt and summer rainfall. Throughout the summer rain and spring snowmelt seasons we monitor soil respiration of CO2. Preliminary results show that rates of gaseous carbon flux are significantly higher (p<0.05) from soils with schist bedrock (2.5 ± 0.2 gC/m2/d )than from granite bedrock (1.3 ± 0.1 gC/m2/d), and higher from healthy mixed conifer forests (1.9 ± 0.3 gC/m2/d) than from mixed conifer forests impacted by spruce budworm (1.4 ± 0.1 gC/m2/d). DOC leached from soil samples does not vary significantly with bedrock type; however, spruce budworm impacted forests have significantly higher levels of leachable DOC in surface soils (22.8 ± 4.5 gC/m2) than are found in the soils of healthy forests (10.0 ± 1.5 gC/m2) or subalpine meadows (9.1 ± 0.5 gC/m2). The results of this study will allow us to evaluate the variability of carbon fluxes with vegetation and soil type within a shallow soil carbon pool and help constrain the contributions of soil organic carbon to

  17. How and to what extent does precipitation on multi-temporal scales and soil moisture at different depths determine carbon flux responses in a water-limited grassland ecosystem?

    PubMed

    Fang, Qingqing; Wang, Guoqiang; Xue, Baolin; Liu, Tingxi; Kiem, Anthony

    2018-04-23

    In water-limited ecosystems, hydrological processes significantly affect the carbon flux. The semi-arid grassland ecosystem is particularly sensitive to variations in precipitation (PRE) and soil moisture content (SMC), but to what extent is not fully understood. In this study, we estimated and analyzed how hydrological variables, especially PRE at multi-temporal scales (diurnal, monthly, phenological-related, and seasonal) and SMC at different soil depths (0-20 cm, 20-40 cm, 40-60 cm, 60-80 cm) affect the carbon flux. For these aims, eddy covariance data were combined with a Vegetation Photosynthesis and Respiration Model (VPRM) to simulate the regional gross primary productivity (GPP), ecosystem respiration (R eco ), and net ecosystem exchange of CO 2 (NEE). Interestingly, carbon flux showed no relationship with diurnal PRE or phenological-related PRE (precipitation in the growing season and non-growing season). However, carbon flux was significantly related to monthly PRE and to seasonal PRE (spring + summer, autumn). The GPP, R eco , and NEE increased in spring and summer but decreased in autumn with increasing precipitation due to the combined effect of salinization in autumn. The GPP, R eco , and NEE were more responsive to SMC at 0-20 cm depth than at deeper depths due to the shorter roots of herbaceous vegetation. The NEE increased with increasing monthly PRE because soil microbes responded more quickly than plants. The NEE significantly decreased with increasing SMC in shallow surface due to a hysteresis effect on water transport. The results of our study highlight the complex processes that determine how and to what extent PRE at multi-temporal scale and SMC at different depths affect the carbon flux response in a water-limited grassland. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. High-Flux Carbon Molecular Sieve Membranes for Gas Separation.

    PubMed

    Richter, Hannes; Voss, Hartwig; Kaltenborn, Nadine; Kämnitz, Susanne; Wollbrink, Alexander; Feldhoff, Armin; Caro, Jürgen; Roitsch, Stefan; Voigt, Ingolf

    2017-06-26

    Carbon membranes have great potential for highly selective and cost-efficient gas separation. Carbon is chemically stable and it is relative cheap. The controlled carbonization of a polymer coating on a porous ceramic support provides a 3D carbon material with molecular sieving permeation performance. The carbonization of the polymer blend gives turbostratic carbon domains of randomly stacked together sp 2 hybridized carbon sheets as well as sp 3 hybridized amorphous carbon. In the evaluation of the carbon molecular sieve membrane, hydrogen could be separated from propane with a selectivity of 10 000 with a hydrogen permeance of 5 m 3 (STP)/(m 2 hbar). Furthermore, by a post-synthesis oxidative treatment, the permeation fluxes are increased by widening the pores, and the molecular sieve carbon membrane is transformed from a molecular sieve carbon into a selective surface flow carbon membrane with adsorption controlled performance and becomes selective for carbon dioxide. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effects of Succession on Carbon and Water Fluxes from Sagebrush Steppe

    NASA Astrophysics Data System (ADS)

    Kwon, H.; Pendall, E.; Ewers, B. E.; Bayless, M. K.; Naithani, K.

    2005-12-01

    Prescribed burning is a management tool applied to sagebrush rangelands in the western United States to reduce shrub cover, increase forage quality and improve wildlife habitat. The resulting mosaics of vegetation in different stages of recovery (succession) following fire, with patches ranging in size from ~10 to >1000 m2, have unknown impacts on the carbon and water cycles. We quantified the impact of changing contributions of mountain big sagebrush and perennial grass fluxes in south-central Wyoming to ecosystem fluxes in response to environmental dynamics through two growing seasons. We used eddy covariance to evaluate the influence of different vegetation cover on the magnitude and variability of carbon dioxide and water vapor fluxes during growing seasons of 2004 and 2005. Carbon was taken up at rates of 1 to 3 g C m-2 d-1 in June, and the ecosystem became a C source by mid- to late-July. Net C uptake occurred again in September and October following late summer rains in 2004. Peak growing season rates of C uptake (6-8 μmol m-2 s-1) and evapotranspiration (5-7 μmol m-2 s-1) compare well with fluxes measured from pure sagebrush stands in a large (4 m diameter) ecosystem gas exchange chamber. The results of this research contribute to a larger project quantifying the effects of vegetation succession on carbon sequestration and water loss in sagebrush steppe.

  20. A case study of carbon fluxes from land change in the southwest Brazilian Amazon

    USGS Publications Warehouse

    Barrett, K.; Rogan, J.; Eastman, J.R.

    2009-01-01

    Worldwide, land change is responsible for one-fifth of anthropogenic carbon emissions. In Brazil, three-quarters of carbon emissions originate from land change. This study represents a municipal-scale study of carbon fluxes from vegetation in Rio Branco, Brazil. Land-cover maps of pasture, forest, and secondary growth from 1993, 1996, 1999, and 2003 were produced using an unsupervised classification method (overall accuracy = 89%). Carbon fluxes from land change over the decade of imagery were estimated from transitions between land-cover categories for each time interval. This article presents new methods for estimating emissions reductions from carbon stored in the vegetation that replaces forests (e.g., pasture) and sequestration by new (>10-15 years) forests, which reduced gross emissions by 16, 15, and 22% for the period of 1993-1996, 1996-1999, and 1999-2003, respectively. The methods used in the analysis are broadly applicable and provide a comprehensive characterization of regional-scale carbon fluxes from land change.

  1. Carbon dioxide fluxes from contrasting ecosystems in the Sudanian Savanna in West Africa.

    PubMed

    Quansah, Emmanuel; Mauder, Matthias; Balogun, Ahmed A; Amekudzi, Leonard K; Hingerl, Luitpold; Bliefernicht, Jan; Kunstmann, Harald

    2015-12-01

    The terrestrial land surface in West Africa is made up of several types of savanna ecosystems differing in land use changes which modulate gas exchanges between their vegetation and the overlying atmosphere. This study compares diurnal and seasonal estimates of CO 2 fluxes from three contrasting ecosystems, a grassland, a mixture of fallow and cropland, and nature reserve in the Sudanian Savanna and relate them to water availability and land use characteristics. Over the study period, and for the three study sites, low soil moisture availability, high vapour pressure deficit and low ecosystem respiration were prevalent during the dry season (November to March), but the contrary occurred during the rainy season (May to October). Carbon uptake predominantly took place in the rainy season, while net carbon efflux occurred in the dry season as well as the dry to wet and wet to dry transition periods (AM and ND) respectively. Carbon uptake decreased in the order of the nature reserve, a mixture of fallow and cropland, and grassland. Only the nature reserve ecosystem at the Nazinga Park served as a net sink of CO 2 , mostly by virtue of a several times larger carbon uptake and ecosystem water use efficiency during the rainy season than at the other sites. These differences were influenced by albedo, LAI, EWUE, PPFD and climatology during the period of study. These results suggest that land use characteristics affect plant physiological processes that lead to flux exchanges over the Sudanian Savanna ecosystems. It affects the diurnal, seasonal and annual changes in NEE and its composite signals, GPP and RE. GPP and NEE were generally related as NEE scaled with photosynthesis with higher CO 2 assimilation leading to higher GPP. However, CO 2 effluxes over the study period suggest that besides biomass regrowth, other processes, most likely from the soil might have also contributed to the enhancement of ecosystem respiration.

  2. Seasonal analyses of carbon dioxide and energy fluxes above an oil palm plantation using the eddy covariance method

    NASA Astrophysics Data System (ADS)

    Ibrahim, Anis; Haniff Harun, Mohd; Yusup, Yusri

    2017-04-01

    A study presents the measurements of carbon dioxide and latent and sensible heat fluxes above a mature oil palm plantation on mineral soil in Keratong, Pahang, Peninsular Malaysia. The sampling campaign was conducted over an 25-month period, from September 2013 to February 2015 and May 2016 to November 2016, using the eddy covariance method. The main aim of this work is to assess carbon dioxide and energy fluxes over this plantation at different time scales, seasonal and diurnal, and determine the effects of season and relevant meteorological parameters on the latter fluxes. Energy balance closure analyses gave a slope between latent and sensible heat fluxes and total incoming energy to be 0.69 with an R2 value of 0.86 and energy balance ratio of 0.80. The averaged net radiation was 108 W m-2. The results show that at the diurnal scale, carbon dioxide, latent and sensible heat fluxes exhibited a clear diurnal trend where carbon dioxide flux was at its minimum - 3.59 μmol m-2 s-1 in the mid-afternoon and maximum in the morning while latent and sensible behaved conversely to the carbon dioxide flux. The average carbon dioxide flux was - 0.37 μmol m-2 s-1. At the seasonal timescale, carbon dioxide fluxes did not show any apparent trend except during the Northeast Monsoon where the highest variability of the monthly means of carbon dioxide occurred.

  3. Magnitude and Uncertainty of Carbon Pools and Fluxes in the US Forests

    NASA Astrophysics Data System (ADS)

    Harris, N.; Saatchi, S. S.; Fore, A.; Yu, Y.; Woodall, C. W.; Ganguly, S.; Nemani, R. R.; Hagen, S.; Birdsey, R.; Brown, S.; Salas, W.; Johnson, K. D.

    2015-12-01

    Sassan Saatchi1,2, Stephan Hagen3, Christopher Woodall4 , Sangram Ganguly,5 Nancy Harris6, Sandra Brown7, Timothy Pearson7, Alexander Fore1, Yifan Yu1, Rama Nemani5, Gong Zhang5, William Salas4, Roger Cooke81 NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA2 Institute of Environment and Sustainability, University of California, Los Angeles, CA, 90095, USA3 Applied Geosolutions, 55 Main Street Suit 125, Newmarket, NH 03857, USA4 USDA Forest Service, Northern Research Station, Saint Paul, MN 55108, USA5 NASA Ames Research Center, Moffett Field, CA 94035, USA6 Forests Program, World Resources Institute, Washington, DC, 20002, USA7 Winrock International, Ecosystem Services Unit, Arlington, VA 22202, USA8 Risk Analysis Resources for the Future, Washington DC 20036-1400Assessment of the carbon sinks and sources associated with greenhouse gas (GHG) fluxes across the US forestlands is a priority of the national climate mitigation policy. However, estimates of fluxes from the land sector are less precise compared to other sectors because of the large sources of uncertainty in quantifying the carbon pools, emissions, and removals associated with anthropogenic (land use) and natural changes in the US forestlands. As part of the NASA's Carbon Monitoring System, we developed a methodology based on a combination of ground inventory and space observations to develop spatially refined carbon pools and fluxes including the gross emissions and sequestration of carbon at each 1-ha land unit across the forestlands in the continental United States (CONUS) for the period of 2006-2010. Here, we provide the magnitude and uncertainty of multiple pools and fluxes of the US forestlands and outline the observational requirements to reduce the uncertainties for developing national climate mitigation policies based on the carbon sequestration capacity of the US forest lands. Keywords: forests, carbon pools, greenhouse gas, land use, attribution

  4. Evaluation of NASA's Carbon Monitoring System (CMS) Flux Pilot: Terrestrial CO2 Fluxes

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Polhamus, A.; Bowman, K. W.; Collatz, G. J.; Potter, C. S.; Lee, M.; Liu, J.; Jung, M.; Reichstein, M.

    2011-12-01

    NASA's Carbon Monitoring System (CMS) flux pilot project combines NASA's Earth System models in land, ocean and atmosphere to track surface CO2 fluxes. The system is constrained by atmospheric measurements of XCO2 from the Japanese GOSAT satellite, giving a "big picture" view of total CO2 in Earth's atmosphere. Combining two land models (CASA-Ames and CASA-GFED), two ocean models (ECCO2 and NOBM) and two atmospheric chemistry and inversion models (GEOS-5 and GEOS-Chem), the system brings together the stand-alone component models of the Earth System, all of which are run diagnostically constrained by a multitude of other remotely sensed data. Here, we evaluate the biospheric land surface CO2 fluxes (i.e., net ecosystem exchange, NEE) as estimated from the atmospheric flux inversion. We compare against the prior bottom-up estimates (e.g., the CASA models) as well. Our evaluation dataset is the independently derived global wall-to-wall MPI-BGC product, which uses a machine learning algorithm and model tree ensemble to "scale-up" a network of in situ CO2 flux measurements from 253 globally-distributed sites in the FLUXNET network. The measurements are based on the eddy covariance method, which uses observations of co-varying fluxes of CO2 (and water and energy) from instruments on towers extending above ecosystem canopies; the towers integrate fluxes over large spatial areas (~1 km2). We present global maps of CO2 fluxes and differences between products, summaries of fluxes by TRANSCOM region, country, latitude, and biome type, and assess the time series, including timing of minimum and maximum fluxes. This evaluation shows both where the CMS is performing well, and where improvements should be directed in further work.

  5. Using Carbon flux network data to investigate the impact of new European greening rules on carbon budgets - a case study.

    NASA Astrophysics Data System (ADS)

    Schmidt, Marius; Graf, Alexander; Carsten, Montzka; Vereecken, Harry

    2017-04-01

    In 2015 the European Commission introduced new greening payments as part of their common agricultural practices to address environmental and sustainability issues. The payment is worth about 30% of the total subsidies for European farmers. Sowing nitrogen fixing catch/cover crops in the off season (generally in fall and winter) is one way to achieve the prerequisite for the greening payments. Therefore it is expected that the proportion of catch/cover crops will increase from 2015 onwards at the expense of bare soil fields. In particular, with regard to more frequently occurring mild weather conditions during fall and winter, we assume that the extensive shift to catch/cover crops will have a significant impact on the carbon cycle of agricultural areas. In this study we aim to evaluate this change in agricultural practice on local and regional CO2 fluxes and carbon budgets of the intensively used northern Rur catchment in Germany. In a preliminary study, we observed the daily courses of net CO2 flux and soil respiration of three different catch/cover crops: greening mix, oil radish, and white mustard (Sinapis alba), by means of a net flux chamber and a soil respiration chamber and compared them against Eddy covariance flux data from fields cultivated with (i) winter barley (Hordeum vulgare), and (ii) without vegetation. In the main study, we compare multi-year measurements of carbon fluxes from a regional network of Eddy Covariance sites, partly included in larger networks like Fluxnet, European Fluxes Database Cluster or ICOS. We especially used site data where comparisons of catch crop seasons and conventional seasons between different sites or years were possible. To allow an assessment of the change in carbon fluxes and budgets on regional scale, a land use comparison based on satellite images for the years 2014 to 2016 was applied. With these results, a first regional evaluation of the impact of the new greening policies on carbon fluxes and budgets for the

  6. Bioavailable dissolved and particulate organic carbon flux from coastal temperate rainforest watersheds

    NASA Astrophysics Data System (ADS)

    Fellman, J.; Hood, E. W.; D'Amore, D. V.; Moll, A.

    2017-12-01

    Coastal temperate rainforest (CTR) watersheds of southeast Alaska have dense soil carbon stocks ( 300 Mg C ha-1) and high specific discharge (1.5-7 m yr-1) driven by frontal storms from the Gulf of Alaska. As a result, dissolved organic carbon (DOC) fluxes from Alaskan CTR watersheds are estimated to exceed 2 Tg yr-1; however, little is known about the export of particulate organic carbon (POC). The magnitude and bioavailability of this land-to-ocean flux of terrigenous organic matter ultimately determines how much metabolic energy is translocated to downstream and coastal marine ecosystems in this region. We sampled streamwater weekly from May through October from four watersheds of varying landcover (gradient of wetland to glacial coverage) to investigate changes in the concentration and flux of DOC and POC exported to the coastal ocean. We also used headspace analysis of CO2 following 14 day laboratory incubations to determine the flux of bioavailable DOC and POC exported from CTR watersheds. Across all sites, bioavailable DOC concentrations ranged from 0.2 to 1.9 mg L-1 but were on average 0.6 mg L-1. For POC, bioavailable concentrations ranged from below detection to 0.3 mg L-1 but were on average 0.1 mg L-1. The concentration, flux and bioavailability of DOC was higher than for POC highlighting the potential importance of DOC as a metabolic subsidy to downstream and coastal environments. Ratios of DOC to POC decreased during high flow events because the increase in POC concentrations with discharge exceeds that for DOC. Overall, our findings suggest that projected increases in precipitation and storm intensity will drive changes in the speciation, magnitude and bioavailability of the organic carbon flux from CTR watersheds.

  7. The interaction of the flux errors and transport errors in modeled atmospheric carbon dioxide concentrations

    NASA Astrophysics Data System (ADS)

    Feng, S.; Lauvaux, T.; Butler, M. P.; Keller, K.; Davis, K. J.; Jacobson, A. R.; Schuh, A. E.; Basu, S.; Liu, J.; Baker, D.; Crowell, S.; Zhou, Y.; Williams, C. A.

    2017-12-01

    Regional estimates of biogenic carbon fluxes over North America from top-down atmospheric inversions and terrestrial biogeochemical (or bottom-up) models remain inconsistent at annual and sub-annual time scales. While top-down estimates are impacted by limited atmospheric data, uncertain prior flux estimates and errors in the atmospheric transport models, bottom-up fluxes are affected by uncertain driver data, uncertain model parameters and missing mechanisms across ecosystems. This study quantifies both flux errors and transport errors, and their interaction in the CO2 atmospheric simulation. These errors are assessed by an ensemble approach. The WRF-Chem model is set up with 17 biospheric fluxes from the Multiscale Synthesis and Terrestrial Model Intercomparison Project, CarbonTracker-Near Real Time, and the Simple Biosphere model. The spread of the flux ensemble members represents the flux uncertainty in the modeled CO2 concentrations. For the transport errors, WRF-Chem is run using three physical model configurations with three stochastic perturbations to sample the errors from both the physical parameterizations of the model and the initial conditions. Additionally, the uncertainties from boundary conditions are assessed using four CO2 global inversion models which have assimilated tower and satellite CO2 observations. The error structures are assessed in time and space. The flux ensemble members overall overestimate CO2 concentrations. They also show larger temporal variability than the observations. These results suggest that the flux ensemble is overdispersive. In contrast, the transport ensemble is underdispersive. The averaged spatial distribution of modeled CO2 shows strong positive biogenic signal in the southern US and strong negative signals along the eastern coast of Canada. We hypothesize that the former is caused by the 3-hourly downscaling algorithm from which the nighttime respiration dominates the daytime modeled CO2 signals and that the latter

  8. Changing fluxes of carbon and other solutes from the Mekong River

    PubMed Central

    Li, Siyue; Bush, Richard T.

    2015-01-01

    Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world’s largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923–2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO42−, Cl− and Na+. The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3− (23.4) > Ca2+ (6.4) > SO42− (3.8) > Cl− (1.74)~Na+ (1.7) ~ Si (1.67) > Mg2+ (1.2) > K+ (0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3− and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3− flux (Himalayan Rivers included) is 34014 × 109 mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3−, and 13553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling. PMID:26522820

  9. Changing fluxes of carbon and other solutes from the Mekong River.

    PubMed

    Li, Siyue; Bush, Richard T

    2015-11-02

    Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world's largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923-2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO4(2-), Cl(-) and Na(+). The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3(-) (23.4) > Ca(2+) (6.4) > SO4(2-) (3.8) > Cl(-) (1.74)~Na(+) (1.7) ~ Si (1.67) > Mg(2+) (1.2) > K(+ 0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3(-) and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3(-) flux (Himalayan Rivers included) is 34,014 × 10(9) mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3(-), and 13,553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling.

  10. How can mountaintop CO 2 observations be used to constrain regional carbon fluxes?

    DOE PAGES

    Lin, John C.; Mallia, Derek V.; Wu, Dien; ...

    2017-05-03

    Despite the need for researchers to understand terrestrial biospheric carbon fluxes to account for carbon cycle feedbacks and predict future CO 2 concentrations, knowledge of these fluxes at the regional scale remains poor. This is particularly true in mountainous areas, where complex meteorology and lack of observations lead to large uncertainties in carbon fluxes. Yet mountainous regions are often where significant forest cover and biomass are found – i.e., areas that have the potential to serve as carbon sinks. As CO 2 observations are carried out in mountainous areas, it is imperative that they are properly interpreted to yield informationmore » about carbon fluxes. In this paper, we present CO 2 observations at three sites in the mountains of the western US, along with atmospheric simulations that attempt to extract information about biospheric carbon fluxes from the CO 2 observations, with emphasis on the observed and simulated diurnal cycles of CO 2. We show that atmospheric models can systematically simulate the wrong diurnal cycle and significantly misinterpret the CO 2 observations, due to erroneous atmospheric flows as a result of terrain that is misrepresented in the model. This problem depends on the selected vertical level in the model and is exacerbated as the spatial resolution is degraded, and our results indicate that a fine grid spacing of ~4 km or less may be needed to simulate a realistic diurnal cycle of CO 2 for sites on top of the steep mountains examined here in the American Rockies. In conclusion, in the absence of higher resolution models, we recommend coarse-scale models to focus on assimilating afternoon CO 2 observations on mountaintop sites over the continent to avoid misrepresentations of nocturnal transport and influence.« less

  11. How can mountaintop CO2 observations be used to constrain regional carbon fluxes?

    NASA Astrophysics Data System (ADS)

    Lin, John C.; Mallia, Derek V.; Wu, Dien; Stephens, Britton B.

    2017-05-01

    Despite the need for researchers to understand terrestrial biospheric carbon fluxes to account for carbon cycle feedbacks and predict future CO2 concentrations, knowledge of these fluxes at the regional scale remains poor. This is particularly true in mountainous areas, where complex meteorology and lack of observations lead to large uncertainties in carbon fluxes. Yet mountainous regions are often where significant forest cover and biomass are found - i.e., areas that have the potential to serve as carbon sinks. As CO2 observations are carried out in mountainous areas, it is imperative that they are properly interpreted to yield information about carbon fluxes. In this paper, we present CO2 observations at three sites in the mountains of the western US, along with atmospheric simulations that attempt to extract information about biospheric carbon fluxes from the CO2 observations, with emphasis on the observed and simulated diurnal cycles of CO2. We show that atmospheric models can systematically simulate the wrong diurnal cycle and significantly misinterpret the CO2 observations, due to erroneous atmospheric flows as a result of terrain that is misrepresented in the model. This problem depends on the selected vertical level in the model and is exacerbated as the spatial resolution is degraded, and our results indicate that a fine grid spacing of ˜ 4 km or less may be needed to simulate a realistic diurnal cycle of CO2 for sites on top of the steep mountains examined here in the American Rockies. In the absence of higher resolution models, we recommend coarse-scale models to focus on assimilating afternoon CO2 observations on mountaintop sites over the continent to avoid misrepresentations of nocturnal transport and influence.

  12. SIERRA-Flux: Measuring Regional Surface Fluxes of Carbon Dioxide, Methane, and Water Vapor from an Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Fladeland; Yates, Emma Louise; Bui, Thaopaul Van; Dean-Day, Jonathan; Kolyer, Richard

    2011-01-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the most frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft.

  13. Evaluate the seasonal cycle and interannual variability of carbon fluxes and the associated uncertainties using modeled and observed data

    NASA Astrophysics Data System (ADS)

    Zeng, F.; Collatz, G. J.; Ivanoff, A.

    2013-12-01

    We assessed the performance of the Carnegie-Ames-Stanford Approach - Global Fire Emissions Database (CASA-GFED3) terrestrial carbon cycle model in simulating seasonal cycle and interannual variability (IAV) of global and regional carbon fluxes and uncertainties associated with model parameterization. Key model parameters were identified from sensitivity analyses and their uncertainties were propagated through model processes using the Monte Carlo approach to estimate the uncertainties in carbon fluxes and pool sizes. Three independent flux data sets, the global gross primary productivity (GPP) upscaled from eddy covariance flux measurements by Jung et al. (2011), the net ecosystem exchange (NEE) estimated by CarbonTracker, and the eddy covariance flux observations, were used to evaluate modeled fluxes and the uncertainties. Modeled fluxes agree well with both Jung's GPP and CarbonTracker NEE in the amplitude and phase of seasonal cycle, except in the case of GPP in tropical regions where Jung et al. (2011) showed larger fluxes and seasonal amplitude. Modeled GPP IAV is positively correlated (p < 0.1) with Jung's GPP IAV except in the tropics and temperate South America. The correlations between modeled NEE IAV and CarbonTracker NEE IAV are weak at regional to continental scales but stronger when fluxes are aggregated to >40°N latitude. At regional to continental scales flux uncertainties were larger than the IAV in the fluxes for both Jung's GPP and CarbonTracker NEE. Comparisons with eddy covariance flux observations are focused on sites within regions and years of recorded large-scale climate anomalies. We also evaluated modeled biomass using other independent continental biomass estimates and found good agreement. From the comparisons we identify the strengths and weaknesses of the model to capture the seasonal cycle and IAV of carbon fluxes and highlight ways to improve model performance.

  14. High-resolution (30 m), annual (1986 - 2010) carbon stocks and fluxes for southeastern US forests derived from remote sensing, inventory data, and a carbon cycle model

    NASA Astrophysics Data System (ADS)

    Gu, H.; Zhou, Y.; Williams, C. A.

    2016-12-01

    Disturbance events are highly heterogeneous in space and time, impacting forest carbon dynamics and challenging the quantification and reporting of carbon stocks and flux. This study documents annual carbon stocks and fluxes from 1986 and 2010 mapped at 30-m resolution across southeastern US forests, characterizing how they respond to disturbances and ensuing regrowth. Forest inventory data (FIA) are used to parameterize a carbon cycle model (CASA) to represent post-disturbance carbon trajectories of carbon pools and fluxes for harvest, fire and bark beetle disturbances of varying severity and across forest types and site productivity settings. Time since disturbance at 30 meters is inferred from two remote-sensing data sources: disturbance year (NAFD, MTBS and ADS) and biomass (NBCD 2000) intersected with inventory-derived curves of biomass accumulation with stand age. All of these elements are combined to map carbon stocks and fluxes at a 30-m resolution for the year 2010, and to march backward in time for continuous, annual reporting. Results include maps of annual carbon stocks and fluxes for forests of the southeastern US, and analysis of spatio-temporal patterns of carbon sources/sinks at local and regional scales.

  15. Assessing FPAR Source and Parameter Optimization Scheme in Application of a Diagnostic Carbon Flux Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, D P; Ritts, W D; Wharton, S

    2009-02-26

    The combination of satellite remote sensing and carbon cycle models provides an opportunity for regional to global scale monitoring of terrestrial gross primary production, ecosystem respiration, and net ecosystem production. FPAR (the fraction of photosynthetically active radiation absorbed by the plant canopy) is a critical input to diagnostic models, however little is known about the relative effectiveness of FPAR products from different satellite sensors nor about the sensitivity of flux estimates to different parameterization approaches. In this study, we used multiyear observations of carbon flux at four eddy covariance flux tower sites within the conifer biome to evaluate these factors.more » FPAR products from the MODIS and SeaWiFS sensors, and the effects of single site vs. cross-site parameter optimization were tested with the CFLUX model. The SeaWiFs FPAR product showed greater dynamic range across sites and resulted in slightly reduced flux estimation errors relative to the MODIS product when using cross-site optimization. With site-specific parameter optimization, the flux model was effective in capturing seasonal and interannual variation in the carbon fluxes at these sites. The cross-site prediction errors were lower when using parameters from a cross-site optimization compared to parameter sets from optimization at single sites. These results support the practice of multisite optimization within a biome for parameterization of diagnostic carbon flux models.« less

  16. Assessing carbon stocks, carbon sequestration, and greenhouse-gas fluxes in ecosystems of the United States under present conditions and future scenarios

    USGS Publications Warehouse

    Zhu, Zhi-Liang; Stackpoole, Sarah

    2011-01-01

    The Energy Independence and Security Act of 2007 (EISA) requires the U.S. Department of the Interior (DOI) to develop a methodology and conduct an assessment of carbon storage, carbon sequestration, and greenhouse-gas (GHG) fluxes in the Nation's ecosystems. The U.S. Geological Survey (USGS) has developed and published the methodology (U.S. Geological Survey Scientific Investigations Report 2010-5233) and has assembled an interdisciplinary team of scientists to conduct the assessment over the next three to four years, commencing in October 2010. The assessment will fulfill specific requirements of the EISA by (1) quantifying, measuring, and monitoring carbon sequestration and GHG fluxes using national datasets and science tools such as remote sensing, and biogeochemical and hydrological models, (2) evaluating a range of management and restoration activities for their effects on carbon-sequestration capacity and the reduction of GHG fluxes, and (3) assessing effects of climate change and other controlling processes (including wildland fires) on carbon uptake and GHG emissions from ecosystems.

  17. Redistribution of carbon flux in Torulopsis glabrata by altering vitamin and calcium level.

    PubMed

    Liu, Liming; Li, Yin; Zhu, Yang; Du, Guocheng; Chen, Jian

    2007-01-01

    Manipulation of cofactor (thiamine, biotin and Ca(2+)) levels as a potential tool to redistribute carbon flux was studied in Torulopsis glabrata. With sub-optimization of vitamin in fermentation medium, the carbon flux was blocked at the key node of pyruvate, and 69 g/L pyruvate was accumulated. Increasing the concentrations of thiamine and biotin could selectively open the valve of carbon flux from pyruvate to pyruvate dehydrogenase complex, the pyruvate carboxylase (PC) pathway and the channel into the TCA cycle, leading to the over-production of alpha-ketoglutarate. In addition, the activity of PC was enhanced with Ca(2+) present in fermentation medium. By combining high concentration's vitamins and CaCO(3) as the pH buffer, a batch culture was conducted in a 7-L fermentor, with the pyruvate concentration decreased to 21.8 g/L while alpha-ketoglutarate concentration increased to 43.7 g/L. Our study indicated that the metabolic flux could be redistributed to overproduce desired metabolites with manipulating the cofactor levels. Furthermore, the manipulation of vitamin level provided an alternative tool to realize metabolic engineering goals.

  18. Carbon and Nitrogen Provisions Alter the Metabolic Flux in Developing Soybean Embryos1[W][OA

    PubMed Central

    Allen, Doug K.; Young, Jamey D.

    2013-01-01

    Soybean (Glycine max) seeds store significant amounts of their biomass as protein, levels of which reflect the carbon and nitrogen received by the developing embryo. The relationship between carbon and nitrogen supply during filling and seed composition was examined through a series of embryo-culturing experiments. Three distinct ratios of carbon to nitrogen supply were further explored through metabolic flux analysis. Labeling experiments utilizing [U-13C5]glutamine, [U-13C4]asparagine, and [1,2-13C2]glucose were performed to assess embryo metabolism under altered feeding conditions and to create corresponding flux maps. Additionally, [U-14C12]sucrose, [U-14C6]glucose, [U-14C5]glutamine, and [U-14C4]asparagine were used to monitor differences in carbon allocation. The analyses revealed that: (1) protein concentration as a percentage of total soybean embryo biomass coincided with the carbon-to-nitrogen ratio; (2) altered nitrogen supply did not dramatically impact relative amino acid or storage protein subunit profiles; and (3) glutamine supply contributed 10% to 23% of the carbon for biomass production, including 9% to 19% of carbon to fatty acid biosynthesis and 32% to 46% of carbon to amino acids. Seed metabolism accommodated different levels of protein biosynthesis while maintaining a consistent rate of dry weight accumulation. Flux through ATP-citrate lyase, combined with malic enzyme activity, contributed significantly to acetyl-coenzyme A production. These fluxes changed with plastidic pyruvate kinase to maintain a supply of pyruvate for amino and fatty acids. The flux maps were independently validated by nitrogen balancing and highlight the robustness of primary metabolism. PMID:23314943

  19. Quantifying the Observability of CO2 Flux Uncertainty in Atmospheric CO2 Records Using Products from Nasa's Carbon Monitoring Flux Pilot Project

    NASA Technical Reports Server (NTRS)

    Ott, Lesley; Pawson, Steven; Collatz, Jim; Watson, Gregg; Menemenlis, Dimitris; Brix, Holger; Rousseaux, Cecile; Bowman, Kevin; Bowman, Kevin; Liu, Junjie; hide

    2014-01-01

    NASAs Carbon Monitoring System (CMS) Flux Pilot Project (FPP) was designed to better understand contemporary carbon fluxes by bringing together state-of-the art models with remote sensing datasets. Here we report on simulations using NASAs Goddard Earth Observing System Model, version 5 (GEOS-5) which was used to evaluate the consistency of two different sets of observationally constrained land and ocean fluxes with atmospheric CO2 records. Despite the strong data constraint, the average difference in annual terrestrial biosphere flux between the two land (NASA Ames CASA and CASA-GFED) models is 1.7 Pg C for 2009-2010. Ocean models (NOBM and ECCO2-Darwin) differ by 35 in their global estimates of carbon flux with particularly strong disagreement in high latitudes. Based upon combinations of terrestrial and ocean fluxes, GEOS-5 reasonably simulated the seasonal cycle observed at northern hemisphere surface sites and by the Greenhouse gases Observing SATellite (GOSAT) while the model struggled to simulate the seasonal cycle at southern hemisphere surface locations. Though GEOS-5 was able to reasonably reproduce the patterns of XCO2 observed by GOSAT, it struggled to reproduce these aspects of AIRS observations. Despite large differences between land and ocean flux estimates, resulting differences in atmospheric mixing ratio were small, typically less than 5 ppmv at the surface and 3 ppmv in the XCO2 column. A statistical analysis based on the variability of observations shows that flux differences of these magnitudes are difficult to distinguish from natural variability, regardless of measurement platform.

  20. A regional high-resolution carbon flux inversion of North America for 2004

    NASA Astrophysics Data System (ADS)

    Schuh, A. E.; Denning, A. S.; Corbin, K. D.; Baker, I. T.; Uliasz, M.; Parazoo, N.; Andrews, A. E.; Worthy, D. E. J.

    2010-05-01

    Resolving the discrepancies between NEE estimates based upon (1) ground studies and (2) atmospheric inversion results, demands increasingly sophisticated techniques. In this paper we present a high-resolution inversion based upon a regional meteorology model (RAMS) and an underlying biosphere (SiB3) model, both running on an identical 40 km grid over most of North America. Current operational systems like CarbonTracker as well as many previous global inversions including the Transcom suite of inversions have utilized inversion regions formed by collapsing biome-similar grid cells into larger aggregated regions. An extreme example of this might be where corrections to NEE imposed on forested regions on the east coast of the United States might be the same as that imposed on forests on the west coast of the United States while, in reality, there likely exist subtle differences in the two areas, both natural and anthropogenic. Our current inversion framework utilizes a combination of previously employed inversion techniques while allowing carbon flux corrections to be biome independent. Temporally and spatially high-resolution results utilizing biome-independent corrections provide insight into carbon dynamics in North America. In particular, we analyze hourly CO2 mixing ratio data from a sparse network of eight towers in North America for 2004. A prior estimate of carbon fluxes due to Gross Primary Productivity (GPP) and Ecosystem Respiration (ER) is constructed from the SiB3 biosphere model on a 40 km grid. A combination of transport from the RAMS and the Parameterized Chemical Transport Model (PCTM) models is used to forge a connection between upwind biosphere fluxes and downwind observed CO2 mixing ratio data. A Kalman filter procedure is used to estimate weekly corrections to biosphere fluxes based upon observed CO2. RMSE-weighted annual NEE estimates, over an ensemble of potential inversion parameter sets, show a mean estimate 0.57 Pg/yr sink in North America

  1. Diurnal centroid of ecosystem energy and carbon fluxes at FLUXNET sites

    Treesearch

    Kell B. Wilson; Dennis Baldocchi; Eva Falge; Marc Aubinet; Paul Berbigier; Christian Bernhofer; Han Dolman; Chris Field; Allen Goldstein; Andre Granier; Dave Hollinger; Gabriel Katul; B.E. Law; Tilden Meyers; John Moncrieff; Russ Monson; John Tenhunen; Riccardo Valentini; Shashi Verma; Steve Wofsy

    2003-01-01

    Data from a network of eddy covariance stations in Europe and North America (FLUXNET) were analyzed to examine the diurnal patterns of surface energy and carbon fluxes during the summer period across a range of ecosystems and climates. Diurnal trends were quantified by assessing the time of day surface fluxes and meteorological variable reached peak values, using the...

  2. Carbon Dioxide Transfer Through Sea Ice: Modelling Flux in Brine Channels

    NASA Astrophysics Data System (ADS)

    Edwards, L.; Mitchelson-Jacob, G.; Hardman-Mountford, N.

    2010-12-01

    For many years sea ice was thought to act as a barrier to the flux of CO2 between the ocean and atmosphere. However, laboratory-based and in-situ observations suggest that while sea ice may in some circumstances reduce or prevent transfer (e.g. in regions of thick, superimposed multi-year ice), it may also be highly permeable (e.g. thin, first year ice) with some studies observing significant fluxes of CO2. Sea ice covered regions have been observed to act both as a sink and a source of atmospheric CO2 with the permeability of sea ice and direction of flux related to sea ice temperature and the presence of brine channels in the ice, as well as seasonal processes such as whether the ice is freezing or thawing. Brine channels concentrate dissolved inorganic carbon (DIC) as well as salinity and as these dense waters descend through both the sea ice and the surface ocean waters, they create a sink for CO2. Calcium carbonate (ikaite) precipitation in the sea ice is thought to enhance this process. Micro-organisms present within the sea ice will also contribute to the CO2 flux dynamics. Recent evidence of decreasing sea ice extent and the associated change from a multi-year ice to first-year ice dominated system suggest the potential for increased CO2 flux through regions of thinner, more porous sea ice. A full understanding of the processes and feedbacks controlling the flux in these regions is needed to determine their possible contribution to global CO2 levels in a future warming climate scenario. Despite the significance of these regions, the air-sea CO2 flux in sea ice covered regions is not currently included in global climate models. Incorporating this carbon flux system into Earth System models requires the development of a well-parameterised sea ice-air flux model. In our work we use the Los Alamos sea ice model, CICE, with a modification to incorporate the movement of CO2 through brine channels including the addition of DIC processes and ice algae production to

  3. Chamber and Diffusive Based Carbon Flux Measurements in an Alaskan Arctic Ecosystem

    NASA Astrophysics Data System (ADS)

    Wilkman, E.; Oechel, W. C.; Zona, D.

    2013-12-01

    Eric Wilkman, Walter Oechel, Donatella Zona Comprising an area of more than 7 x 106 km2 and containing over 11% of the world's organic matter pool, Arctic terrestrial ecosystems are vitally important components of the global carbon cycle, yet their structure and functioning are sensitive to subtle changes in climate and many of these functional changes can have large effects on the atmosphere and future climate regimes (Callaghan & Maxwell 1995, Chapin et al. 2002). Historically these northern ecosystems have acted as strong C sinks, sequestering large stores of atmospheric C due to photosynthetic dominance in the short summer season and low rates of decomposition throughout the rest of the year as a consequence of cold, nutrient poor, and generally water-logged conditions. Currently, much of this previously stored carbon is at risk of loss to the atmosphere due to accelerated soil organic matter decomposition in warmer future climates (Grogan & Chapin 2000). Although there have been numerous studies on Arctic carbon dynamics, much of the previous soil flux work has been done at limited time intervals, due to both the harshness of the environment and labor and time constraints. Therefore, in June of 2013 an Ultraportable Greenhouse Gas Analyzer (UGGA - Los Gatos Research Inc.) was deployed in concert with the LI-8100A Automated Soil Flux System (LI-COR Biosciences) in Barrow, AK to gather high temporal frequency soil CO2 and CH4 fluxes from a wet sedge tundra ecosystem. An additional UGGA in combination with diffusive probes, installed in the same location, provides year-round soil and snow CO2 and CH4 concentrations. When used in combination with the recently purchased AlphaGUARD portable radon monitor (Saphymo GmbH), continuous soil and snow diffusivities and fluxes of CO2 and CH4 can be calculated (Lehmann & Lehmann 2000). Of particular note, measuring soil gas concentration over a diffusive gradient in this way allows one to separate both net production and

  4. Forest inventory-based estimation of carbon stocks and flux in California forests in 1990.

    Treesearch

    Jeremy S. Fried; Xiaoping Zhou

    2008-01-01

    Estimates of forest carbon stores and flux for California circa 1990 were modeled from forest inventory data in support of California’s legislatively mandated greenhouse gas inventory. Reliable estimates of live-tree carbon stores and flux on timberlands outside of national forest could be calculated from periodic inventory data collected in the 1980s and 1990s;...

  5. Spatial and Temporal Dynamics of Carbon Fluxes in Glacial Meltwater Streams, Antarctica

    NASA Astrophysics Data System (ADS)

    Torrens, C.; Lyons, W. B.; McKnight, D. M.; Welch, K. A.; Gooseff, M. N.

    2017-12-01

    In the McMurdo Dry Valleys [MDV], Antarctica, glacial meltwater streams are the primary biogeochemical connectors linking glaciers, soils and lakes. These streams control the supply of nutrients and carbon to their terminal lakes, yet little is known about the magnitude, timing or distribution of these fluxes. The McMurdo Long Term Ecological Research project [MCM LTER] has collected over 20 years of sample data on dissolved organic and inorganic carbon in Taylor Valley streamwater; this is the first spatial and temporal analysis of this data. MDV streams are characterized by strong diel pulses in streamflow, specific electrical conductance, and temperature. Unlike temperate stream systems, there is no terrestrial vegetation, lateral overland flow or deep groundwater connection in MDV streams. As a result, the organic carbon is autochthonous, originating from stream microbial mats. Inorganic carbon is primarily bicarbonate; its source is hyporheic zone weathering. The carbonate system is in atmospheric equilibrium, reflecting the wide and shallow stream channels. Preliminary data show that the DOC flux varies with streamflow and is greater on the rising limb of the diel flow pulse. This pattern is more distinct in longer streams. DIC data does not show the same pattern, although the response may be blurred by a lag in hyporheic response to flood pulses and the lack of time-series data for alkalinity. Stream flood pulse dynamics control carbon loading to MDV lakes. As the climate changes, so will the timing and magnitude of diel flood pulses. This is likely to increase carbon loading to the Dry Valley lakes, altering the ecosystem carbon balance. This study increases our understanding of past and current patterns of carbon fluxes from streams to lakes; understanding past patterns will improve predictions of future changes.

  6. Constraining terrestrial ecosystem CO2 fluxes by integrating models of biogeochemistry and atmospheric transport and data of surface carbon fluxes and atmospheric CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Zhuang, Q.; Henze, D.; Bowman, K.; Chen, M.; Liu, Y.; He, Y.; Matsueda, H.; Machida, T.; Sawa, Y.; Oechel, W.

    2014-09-01

    Regional net carbon fluxes of terrestrial ecosystems could be estimated with either biogeochemistry models by assimilating surface carbon flux measurements or atmospheric CO2 inversions by assimilating observations of atmospheric CO2 concentrations. Here we combine the ecosystem biogeochemistry modeling and atmospheric CO2 inverse modeling to investigate the magnitude and spatial distribution of the terrestrial ecosystem CO2 sources and sinks. First, we constrain a terrestrial ecosystem model (TEM) at site level by assimilating the observed net ecosystem production (NEP) for various plant functional types. We find that the uncertainties of model parameters are reduced up to 90% and model predictability is greatly improved for all the plant functional types (coefficients of determination are enhanced up to 0.73). We then extrapolate the model to a global scale at a 0.5° × 0.5° resolution to estimate the large-scale terrestrial ecosystem CO2 fluxes, which serve as prior for atmospheric CO2 inversion. Second, we constrain the large-scale terrestrial CO2 fluxes by assimilating the GLOBALVIEW-CO2 and mid-tropospheric CO2 retrievals from the Atmospheric Infrared Sounder (AIRS) into an atmospheric transport model (GEOS-Chem). The transport inversion estimates that: (1) the annual terrestrial ecosystem carbon sink in 2003 is -2.47 Pg C yr-1, which agrees reasonably well with the most recent inter-comparison studies of CO2 inversions (-2.82 Pg C yr-1); (2) North America temperate, Europe and Eurasia temperate regions act as major terrestrial carbon sinks; and (3) The posterior transport model is able to reasonably reproduce the atmospheric CO2 concentrations, which are validated against Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) CO2 concentration data. This study indicates that biogeochemistry modeling or atmospheric transport and inverse modeling alone might not be able to well quantify regional terrestrial carbon fluxes. However, combining

  7. Short-term favorable weather conditions are an important control of interannual variability in carbon and water fluxes

    Treesearch

    Jakob Zscheischler; Simone Fatichi; Sebastian Wolf; Peter D. Blanken; Gil Bohrer; Ken Clark; Ankur R. Desai; David Hollinger; Trevor Keenan; Kimberly A. Novick; Sonia I. Seneviratne

    2016-01-01

    Ecosystem models often perform poorly in reproducing interannual variability in carbon and water fluxes, resulting in considerable uncertainty when estimating the land-carbon sink. While many aggregated variables (growing season length, seasonal precipitation, or temperature) have been suggested as predictors for interannual variability in carbon fluxes, their...

  8. Carbon stocks and carbon fluxes from a 10 year prescribed burning chronosequence on a UK blanket peat.

    NASA Astrophysics Data System (ADS)

    Clay, G. D.; Worrall, F.

    2012-04-01

    Prescribed burning is a common land management technique in many areas of the UK uplands. However, concern has been expressed at the impact of this management practice on carbon stocks and fluxes found in the carbon rich peat soils that underlie many of these areas. Existing data shows a range of results at differing spatial and temporal scales for a range of carbon pathways e.g. dissolved organic carbon (DOC), yet there are limited studies that monitor a suite of parameters under burning management. This study measured both carbon stocks and carbon fluxes from a chronosequence of prescribed burn sites in northern England. A range of carbon parameters were measured including: above-ground biomass and carbon stocks; net ecosystem exchange (NEE); ecosystem respiration (Reco); photosynthesis (Pg); and particulate organic carbon (POC). CO2 data was analysed using ANOVA to investigate any significant differences between burn years. Carbon budgets were also calculated using measured and modelled data. Analysis of the CO2 data showed that burning was a significant factor in measured CO2 readings but that other factors such as month of sampling explained a greater proportion of the variation in the data. Carbon budget results show that whilst all the sites were net sources of carbon, the most recent burns were smaller sources of carbon compared to the older burns (Burn year 2009: 85 ± 29 gC/m2/yr; Burn year 1999: 152 ± 12 gC/m2/yr). Additionally, the most recent burns were net sinks of gaseous CO2.

  9. Improving Estimates and Forecasts of Lake Carbon Pools and Fluxes Using Data Assimilation

    NASA Astrophysics Data System (ADS)

    Zwart, J. A.; Hararuk, O.; Prairie, Y.; Solomon, C.; Jones, S.

    2017-12-01

    Lakes are biogeochemical hotspots on the landscape, contributing significantly to the global carbon cycle despite their small areal coverage. Observations and models of lake carbon pools and fluxes are rarely explicitly combined through data assimilation despite significant use of this technique in other fields with great success. Data assimilation adds value to both observations and models by constraining models with observations of the system and by leveraging knowledge of the system formalized by the model to objectively fill information gaps. In this analysis, we highlight the utility of data assimilation in lake carbon cycling research by using the Ensemble Kalman Filter to combine simple lake carbon models with observations of lake carbon pools. We demonstrate the use of data assimilation to improve a model's representation of lake carbon dynamics, to reduce uncertainty in estimates of lake carbon pools and fluxes, and to improve the accuracy of carbon pool size estimates relative to estimates derived from observations alone. Data assimilation techniques should be embraced as valuable tools for lake biogeochemists interested in learning about ecosystem dynamics and forecasting ecosystem states and processes.

  10. Climate Warming Can Increase Soil Carbon Fluxes Without Decreasing Soil Carbon Stocks in Boreal Forests

    NASA Astrophysics Data System (ADS)

    Ziegler, S. E.; Benner, R. H.; Billings, S. A.; Edwards, K. A.; Philben, M. J.; Zhu, X.; Laganiere, J.

    2016-12-01

    Ecosystem C fluxes respond positively to climate warming, however, the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal scales remains unclear. Manipulative studies and global-scale observations have informed much of the existing knowledge of SOC responses to climate, providing insights on relatively short (e.g. days to years) and long (centuries to millennia) time scales, respectively. Natural climate gradient studies capture integrated ecosystem responses to climate on decadal time scales. Here we report the soil C reservoirs, fluxes into and out of those reservoirs, and the chemical composition of inputs and soil organic matter pools along a mesic boreal forest climate transect. The sites studied consist of similar forest composition, successional stage, and soil moisture but differ by 5.2°C mean annual temperature. Carbon fluxes through these boreal forest soils were greatest in the lowest latitude regions and indicate that enhanced C inputs can offset soil C losses with warming in these forests. Respiration rates increased by 55% and the flux of dissolved organic carbon from the organic to mineral soil horizons tripled across this climate gradient. The 2-fold increase in litterfall inputs to these soils coincided with a significant increase in the organic horizon C stock with warming, however, no significant difference in the surface mineral soil C stocks was observed. The younger mean age of the mineral soil C ( 70 versus 330 YBP) provided further evidence for the greater turnover of SOC in the warmer climate soils. In spite of these differences in mean radiocarbon age, mineral SOC exhibited chemical characteristics of highly decomposed material across all regions. In contrast with depth trends in soil OM diagenetic indices, diagenetic shifts with latitude were limited to increases in C:N and alkyl to O-alkyl ratios in the overlying organic horizons in the warmer relative to the colder regions. These data indicate that the

  11. Forest carbon stocks and fluxes in physiographic zones of India.

    PubMed

    Sheikh, Mehraj A; Kumar, Munesh; Bussman, Rainer W; Todaria, Np

    2011-12-25

    Reducing carbon Emissions from Deforestation and Degradation (REDD+) is of central importance to combat climate change. Foremost among the challenges is quantifying nation's carbon emissions from deforestation and degradation, which requires information on forest carbon storage. Here we estimated carbon storage in India's forest biomass for the years 2003, 2005 and 2007 and the net flux caused by deforestation and degradation, between two assessment periods i.e., Assessment Period first (ASP I), 2003-2005 and Assessment Period second (ASP II), 2005-2007. The total estimated carbon stock in India's forest biomass varied from 3325 to 3161 Mt during the years 2003 to 2007 respectively. There was a net flux of 372 Mt of CO2 in ASP I and 288 Mt of CO2 in ASP II, with an annual emission of 186 and 114 Mt of CO2 respectively. The carbon stock in India's forest biomass decreased continuously from 2003 onwards, despite slight increase in forest cover. The rate of carbon loss from the forest biomass in ASP II has dropped by 38.27% compared to ASP I. With the Copenhagen Accord, India along with other BASIC countries China, Brazil and South Africa is voluntarily going to cut emissions. India will voluntary reduce the emission intensity of its GDP by 20-25% by 2020 in comparison to 2005 level, activities like REDD+ can provide a relatively cost-effective way of offsetting emissions, either by increasing the removals of greenhouse gases from the atmosphere by afforestation programmes, managing forests, or by reducing emissions through deforestation and degradation.

  12. Forest carbon stocks and fluxes in physiographic zones of India

    PubMed Central

    2011-01-01

    Background Reducing carbon Emissions from Deforestation and Degradation (REDD+) is of central importance to combat climate change. Foremost among the challenges is quantifying nation's carbon emissions from deforestation and degradation, which requires information on forest carbon storage. Here we estimated carbon storage in India's forest biomass for the years 2003, 2005 and 2007 and the net flux caused by deforestation and degradation, between two assessment periods i.e., Assessment Period first (ASP I), 2003-2005 and Assessment Period second (ASP II), 2005-2007. Results The total estimated carbon stock in India's forest biomass varied from 3325 to 3161 Mt during the years 2003 to 2007 respectively. There was a net flux of 372 Mt of CO2 in ASP I and 288 Mt of CO2 in ASP II, with an annual emission of 186 and 114 Mt of CO2 respectively. The carbon stock in India's forest biomass decreased continuously from 2003 onwards, despite slight increase in forest cover. The rate of carbon loss from the forest biomass in ASP II has dropped by 38.27% compared to ASP I. Conclusion With the Copenhagen Accord, India along with other BASIC countries China, Brazil and South Africa is voluntarily going to cut emissions. India will voluntary reduce the emission intensity of its GDP by 20-25% by 2020 in comparison to 2005 level, activities like REDD+ can provide a relatively cost-effective way of offsetting emissions, either by increasing the removals of greenhouse gases from the atmosphere by afforestation programmes, managing forests, or by reducing emissions through deforestation and degradation. PMID:22196920

  13. Carbon Flux to the Atmosphere From Land-use Changes: 1850 to 1990 (NDP-050/R1)

    DOE Data Explorer

    Houghton, Richard A. [Woods Hole Research Center, Woods Hole, Massachusetts (USA); Hackler, Joseph R. [Woods Hole Research Center, Woods Hole, Massachusetts (USA); Cushman, Robert L [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA)

    2001-01-01

    The database documented in this numeric data package, a revision to a database originally published by the Carbon Dioxide Information Analysis Center (CDIAC) in 1995, consists of annual estimates, from 1850 through 1990, of the net flux of carbon between terrestrial ecosystems and the atmosphere resulting from deliberate changes in land cover and land use, especially forest clearing for agriculture and the harvest of wood for wood products or energy. The data are provided on a year-by-year basis for nine regions (North America, South and Central America, Europe, North Africa and the Middle East, Tropical Africa, the Former Soviet Union, China, South and Southeast Asia, and the Pacific Developed Region) and the globe. Some data begin earlier than 1850 (e.g., for six regions, areas of different ecosystems are provided for the year 1700) or extend beyond 1990 (e.g., fuelwood harvest in South and Southeast Asia, by forest type, is provided through 1995). The global net flux during the period 1850 to 1990 was 124 Pg of carbon (1 petagram = 1015 grams). During this period, the greatest regional flux was from South and Southeast Asia (39 Pg of carbon), while the smallest regional flux was from North Africa and the Middle East (3 Pg of carbon). For the year 1990, the global total net flux was estimated to be 2.1 Pg of carbon.

  14. Rerouting of carbon flux in a glycogen mutant of cyanobacteria assessed via isotopically non-stationary 13 C metabolic flux analysis.

    PubMed

    Hendry, John I; Prasannan, Charulata; Ma, Fangfang; Möllers, K Benedikt; Jaiswal, Damini; Digmurti, Madhuri; Allen, Doug K; Frigaard, Niels-Ulrik; Dasgupta, Santanu; Wangikar, Pramod P

    2017-10-01

    Cyanobacteria, which constitute a quantitatively dominant phylum, have attracted attention in biofuel applications due to favorable physiological characteristics, high photosynthetic efficiency and amenability to genetic manipulations. However, quantitative aspects of cyanobacterial metabolism have received limited attention. In the present study, we have performed isotopically non-stationary 13 C metabolic flux analysis (INST- 13 C-MFA) to analyze rerouting of carbon in a glycogen synthase deficient mutant strain (glgA-I glgA-II) of the model cyanobacterium Synechococcus sp. PCC 7002. During balanced photoautotrophic growth, 10-20% of the fixed carbon is stored in the form of glycogen via a pathway that is conserved across the cyanobacterial phylum. Our results show that deletion of glycogen synthase gene orchestrates cascading effects on carbon distribution in various parts of the metabolic network. Carbon that was originally destined to be incorporated into glycogen gets partially diverted toward alternate storage molecules such as glucosylglycerol and sucrose. The rest is partitioned within the metabolic network, primarily via glycolysis and tricarboxylic acid cycle. A lowered flux toward carbohydrate synthesis and an altered distribution at the glucose-1-phosphate node indicate flexibility in the network. Further, reversibility of glycogen biosynthesis reactions points toward the presence of futile cycles. Similar redistribution of carbon was also predicted by Flux Balance Analysis. The results are significant to metabolic engineering efforts with cyanobacteria where fixed carbon needs to be re-routed to products of interest. Biotechnol. Bioeng. 2017;114: 2298-2308. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Modelling the genesis of equatorial podzols: age and implications for carbon fluxes

    NASA Astrophysics Data System (ADS)

    Doupoux, Cédric; Merdy, Patricia; Régina Montes, Célia; Nunan, Naoise; José Melfi, Adolpho; José Ribeiro Pereira, Osvaldo; Lucas, Yves

    2017-05-01

    Amazonian podzols store huge amounts of carbon and play a key role in transferring organic matter to the Amazon River. In order to better understand their C dynamics, we modelled the formation of representative Amazonian podzol profiles by constraining both total carbon and radiocarbon. We determined the relationships between total carbon and radiocarbon in organic C pools numerically by setting constant C and 14C inputs over time. The model was an effective tool for determining the order of magnitude of the carbon fluxes and the time of genesis of the main carbon-containing horizons, i.e. the topsoil and deep Bh. We performed retrocalculations to take into account the bomb carbon in the young topsoil horizons (calculated apparent 14C age from 62 to 109 years). We modelled four profiles representative of Amazonian podzols, two profiles with an old Bh (calculated apparent 14C age 6.8 × 103 and 8.4 × 103 years) and two profiles with a very old Bh (calculated apparent 14C age 23.2 × 103 and 25.1 × 103 years). The calculated fluxes from the topsoil to the perched water table indicate that the most waterlogged zones of the podzolized areas are the main source of dissolved organic matter found in the river network. It was necessary to consider two Bh carbon pools to accurately represent the carbon fluxes leaving the Bh as observed in previous studies. We found that the genesis time of the studied soils was necessarily longer than 15 × 103 and 130 × 103 years for the two younger and two older Bhs, respectively, and that the genesis time calculated considering the more likely settings runs to around 15 × 103-25 × 103 and 150 × 103-250 × 103 years, respectively.

  16. North American CO2 fluxes for 2007-2015 from NOAA's CarbonTracker-Lagrange Regional Inverse Modeling Framework

    NASA Astrophysics Data System (ADS)

    Andrews, A. E.; Hu, L.; Thoning, K. W.; Nehrkorn, T.; Mountain, M. E.; Jacobson, A. R.; Michalak, A.; Dlugokencky, E. J.; Sweeney, C.; Worthy, D. E. J.; Miller, J. B.; Fischer, M. L.; Biraud, S.; van der Velde, I. R.; Basu, S.; Tans, P. P.

    2017-12-01

    CarbonTracker-Lagrange (CT-L) is a new high-resolution regional inverse modeling system for improved estimation of North American CO2 fluxes. CT-L uses footprints from the Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by high-resolution (10 to 30 km) meteorological fields from the Weather Research and Forecasting (WRF) model. We performed a suite of synthetic-data experiments to evaluate a variety of inversion configurations, including (1) solving for scaling factors to an a priori flux versus additive corrections, (2) solving for fluxes at 3-hrly resolution versus at coarser temporal resolution, (3) solving for fluxes at 1o × 1o resolution versus at large eco-regional scales. Our framework explicitly and objectively solves for the optimal solution with a full error covariance matrix with maximum likelihood estimation, thereby enabling rigorous uncertainty estimates for the derived fluxes. In the synthetic-data inversions, we find that solving for weekly scaling factors of a priori Net Ecosystem Exchange (NEE) at 1o × 1o resolution with optimization of diurnal cycles of CO2 fluxes yields faithful retrieval of the specified "true" fluxes as those solved at 3-hrly resolution. In contrast, a scheme that does not allow for optimization of diurnal cycles of CO2 fluxes suffered from larger aggregation errors. We then applied the optimal inversion setup to estimate North American fluxes for 2007-2015 using real atmospheric CO2 observations, multiple prior estimates of NEE, and multiple boundary values estimated from the NOAA's global Eulerian CarbonTracker (CarbonTracker) and from an empirical approach. Our derived North American land CO2 fluxes show larger seasonal amplitude than those estimated from the CarbonTracker, removing seasonal biases in the CarbonTracker's simulated CO2 mole fractions. Independent evaluations using in-situ CO2 eddy covariance flux measurements and independent aircraft profiles also suggest an improved estimation on North

  17. Changes to the Carbon and Energy fluxes in a Northern Peatland with Thawing Permafrost

    NASA Astrophysics Data System (ADS)

    Harder, S. R.; Roulet, N. T.; Crill, P. M.; Strachan, I. B.

    2017-12-01

    The maintenance of thaw of high carbon density landscapes in the permafrost region ultimately depends of how the energy balance is partitioned as temperatures and precipitation change, yet there are comparatively few energy balance studies, especially in peatlands that contain permafrost. While permafrost peatlands are currently net sinks of carbon, as Arctic temperatures rise and permafrost thaws, the future of these ecosystems and their capacity for carbon uptake is in question. Since 2012 we have been measuring the spatially integrated CO2, energy and water vapour fluxes from the Stordalen peatland (68°22'N, 19°03'E) using eddy covariance (EC). The Stordalen peatland is a heterogeneous peatland in the discontinuous permafrost zone where permafrost thaw is actively occurring, resulting in large changes to the landscape from year to year. Areas where permafrost is present are elevated by up to 1.5 m compared to the areas where permafrost has thawed causing differences in water table depth, peat temperatures, snow distribution, vegetation community and therefore in the carbon and energy fluxes. Our EC tower is located on the edge of a permafrost peat plateau (or palsa) where one fetch measures fluxes from an area underlain by permafrost and the other fetch sees the portion of the peatland where the permafrost has thawed. Within each sector, we have an array of soil temperature and water content sensors to determine the physical characteristics of each fetch. Extensive vegetation surveys (based on plant functional types or PFTs) have also been conducted to run a footprint analysis on the flux data to complete a comparative analysis of the magnitude and variability of the carbon and energy exchanges from PFT. The footprint analysis allows us to explain the difference in energy and carbon fluxes by examining the ecological, biogeochemical and physical characteristics within each footprint. We see distinctly different energy partitioning between the fetches

  18. Forest disturbances trigger erosion controlled fluxes of nitrogen, phosphorus and dissolved carbon

    Treesearch

    Marek Matyjasik; Gretchen Moisen; Todd A. Schroeder; Tracy Frescino; Michael Hernandez

    2015-01-01

    The initial phase of the research that addressed correlation between annual forest disturbance maps produced from LANDSAT images and water quality and flow data indicate that forest disturbances in conjunction with intense atmospheric precipitation commonly trigger fluxes of several chemical constituents, such as nitrogen, phosphorus carbon. These fluxes appear to be...

  19. Evaluation of statistical protocols for quality control of ecosystem carbon dioxide fluxes

    Treesearch

    Jorge F. Perez-Quezada; Nicanor Z. Saliendra; William E. Emmerich; Emilio A. Laca

    2007-01-01

    The process of quality control of micrometeorological and carbon dioxide (CO2) flux data can be subjective and may lack repeatability, which would undermine the results of many studies. Multivariate statistical methods and time series analysis were used together and independently to detect and replace outliers in CO2 flux...

  20. Baseline and projected future carbon storage and carbon fluxes in ecosystems of Hawai‘i

    USGS Publications Warehouse

    Selmants, Paul C.; Giardina, Christian P.; Jacobi, James D.; Zhu, Zhiliang

    2017-05-04

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act of 2007 and to improve understanding of factors influencing carbon balance in ecosystems of Hawai‘i. Ecosystem carbon storage, carbon fluxes, and carbon balance were examined for major terrestrial ecosystems on the seven main Hawaiian islands in two time periods: baseline (from 2007 through 2012) and future (projections from 2012 through 2061). The assessment incorporated observed data, remote sensing, statistical methods, and simulation models. The national assessment has been completed for the conterminous United States, using methodology described in SIR 2010-5233, with results provided in three regional reports (PP 1804, PP 1797, and PP 1897), and for Alaska, with results provided in PP 1826.

  1. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qichun; Zhang, Xuesong

    2016-11-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio_E), large leaf to biomass fraction (Bio_LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWATmore » model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT’s performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests.« less

  2. Regional comparison of tundra carbon budget response over the Alaska North Slope to varying environmental conditions as informed by in situ and flux tower measurements, remote sensing and biophysical modeling

    NASA Astrophysics Data System (ADS)

    Shirley, S.; Watts, J. D.; Kimball, J. S.; Zhang, Z.; Poulter, B.; Klene, A. E.; Jones, L. A.; Kim, Y.; Oechel, W. C.; Zona, D.; Euskirchen, E. S.

    2017-12-01

    A warming Arctic climate is contributing to shifts in landscape moisture and temperature regimes, a shortening of the non-frozen season, and increases in the depth of annual active layer. The changing environmental conditions make it difficult to determine whether tundra ecosystems are a carbon sink or source. At present, eddy covariance flux towers and biophysical measurements within the tower footprint provide the most direct assessment of change to the tundra carbon balance. However, these measurements have a limited spatial footprint and exist over relatively short timescales. Thus, terrestrial ecosystem models are needed to provide an improved understanding of how changes in landscape environmental conditions impact regional carbon fluxes. This study examines the primary drivers thought to affect the magnitude and variability of tundra-atmosphere CO2 and CH4 fluxes over the Alaska North Slope. Also investigated is the ability of biophysical models to capture seasonal flux characteristics over the 9 tundra tower sites examined. First, we apply a regression tree approach to ascertain which remotely sensed environmental variables best explain observed variability in the tower fluxes. Next, we compare flux estimates obtained from multiple process models including Terrestrial Carbon Flux (TCF) and the Lund-Potsdam-Jena Wald Schnee und Landschaft (LPJ-wsl), and Soil Moisture Active Passive Level 4 Carbon (SMAP L4_C) products. Our results indicate that out of 7 variables examined vegetation greenness, temperature, and moisture are more significant predictors of carbon flux magnitude over the tundra tower sites. This study found that satellite data-driven models, due to the ability of remote sensing instruments to capture the physical principles and processes driving tundra carbon flux, are more effective at estimating the magnitude and spatiotemporal variability of CO2 and CH4 fluxes in northern high latitude ecosystems.

  3. Spatio-temporal visualization of air-sea CO2 flux and carbon budget using volume rendering

    NASA Astrophysics Data System (ADS)

    Du, Zhenhong; Fang, Lei; Bai, Yan; Zhang, Feng; Liu, Renyi

    2015-04-01

    This paper presents a novel visualization method to show the spatio-temporal dynamics of carbon sinks and sources, and carbon fluxes in the ocean carbon cycle. The air-sea carbon budget and its process of accumulation are demonstrated in the spatial dimension, while the distribution pattern and variation of CO2 flux are expressed by color changes. In this way, we unite spatial and temporal characteristics of satellite data through visualization. A GPU-based direct volume rendering technique using half-angle slicing is adopted to dynamically visualize the released or absorbed CO2 gas with shadow effects. A data model is designed to generate four-dimensional (4D) data from satellite-derived air-sea CO2 flux products, and an out-of-core scheduling strategy is also proposed for on-the-fly rendering of time series of satellite data. The presented 4D visualization method is implemented on graphics cards with vertex, geometry and fragment shaders. It provides a visually realistic simulation and user interaction for real-time rendering. This approach has been integrated into the Information System of Ocean Satellite Monitoring for Air-sea CO2 Flux (IssCO2) for the research and assessment of air-sea CO2 flux in the China Seas.

  4. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean

    USGS Publications Warehouse

    Tank, Suzanne E.; Striegl, Robert G.; McClelland, James W.; Kokelj, Steven V.

    2016-01-01

    Riverine exports of organic and inorganic carbon (OC, IC) to oceans are intricately linked to processes occurring on land. Across high latitudes, thawing permafrost, alteration of hydrologic flow paths, and changes in vegetation may all affect this flux, with subsequent implications for regional and global carbon (C) budgets. Using a unique, multi-decadal dataset of continuous discharge coupled with water chemistry measurements for the Mackenzie River, we show major increases in dissolved OC (DOC) and IC (as alkalinity) fluxes since the early 1970s, for a watershed that covers 1.8 M km2 of northwestern Canada, and provides substantial inputs of freshwater and biogeochemical constituents to the Arctic Ocean. Over a 39-year period of record, DOC flux at the Mackenzie mouth increased by 39.3% (44.5 ± 22.6 Gmol), while alkalinity flux increased by 12.5% (61.5 ± 60.1 Gmol). Isotopic analyses and substantial increases in sulfate flux indicate that increases in alkalinity are driven by accelerating sulfide oxidation, a process that liberates IC from rock and soils in the absence of CO2 consumption. Seasonal and sub-catchment trends suggest that permafrost thaw plays an important role in the observed increases in DOC and alkalinity: sub-catchment increases for all constituents are confined to northern, permafrost-affected regions, while observed increases in autumn to winter are consistent with documented landscape-scale changes that have resulted from changing thaw dynamics. This increase in DOC and sulfide-derived alkalinity represents a substantial intensification of land-to-ocean C mobilization, at a level that is significant within the regional C budget. The change we observe, for example, is similar to current and projected future rates of CO2 consumption by weathering in the Mackenzie basin.

  5. Upscaling carbon fluxes over the Great Plains grasslands: Sinks and sources

    USGS Publications Warehouse

    Zhang, Li; Wylie, Bruce K.; Ji, Lei; Gilmanov, Tagir G.; Tieszen, Larry L.; Howar, Daniel M.

    2011-01-01

    Previous studies suggested that the grasslands may be carbon sinks or near equilibrium, and they often shift between carbon sources in drought years and carbon sinks in other years. It is important to understand the responses of net ecosystem production (NEP) to various climatic conditions across the U.S. Great Plains grasslands. Based on 15 grassland flux towers, we developed a piecewise regression model and mapped the grassland NEP at 250 m spatial resolution over the Great Plains from 2000 to 2008. The results showed that the Great Plains was a net sink with an averaged annual NEP of 24 ± 14 g C m−2 yr−1, ranging from a low value of 0.3 g C m−2 yr−1 in 2002 to a high value of 47.7 g C m−2 yr−1 in 2005. The regional averaged NEP for the entire Great Plains grasslands was estimated to be 336 Tg C yr−1 from 2000 to 2008. In the 9 year period including 4 dry years, the annual NEP was very variable in both space and time. It appeared that the carbon gains for the Great Plains were more sensitive to droughts in the west than the east. The droughts in 2000, 2002, 2006, and 2008 resulted in increased carbon losses over drought-affected areas, and the Great Plains grasslands turned into a relatively low sink with NEP values of 15.8, 0.3, 20.1, and 10.2 g C m−2 yr−1 for the 4 years, respectively.

  6. Integrating water and carbon fluxes at the ecosystem scale across African ecosystems

    NASA Astrophysics Data System (ADS)

    Merbold, Lutz; Brümmer, Christian; Archibald, Sally; Ardö, Jonas; Arneth, Almut; Brüggemann, Nicolas; de Grandcourt, Agnes; Kergoat, Laurent; Moffat, Antje M.; Mougin, Eric; Nouvellon, Yann; Saint-Andre, Laurent; Saunders, Matthew; Scholes, Robert J.; Veenendaal, Elmar; Kutsch, Werner L.

    2013-04-01

    In this study we report on water and carbon dioxide fluxes, measured using the eddy covariance (EC) technology, from different ecosystems in Sub-Saharan Africa. These sites differed in ecosystem type (C3 plant dominated woodlands to C4 plant dominated grass savannas) and covered the very dry regions of the Sahel (250 mm rainfall, Sudan), the tropical areas in Central Africa (1650 mm in Uganda) further south to the subtropical areas in Botswana, Zambia and South Africa (400-900 mm in precipitation). The link between water and carbon dioxide fluxes were evaluated for time periods (see also the corresponding abstract by Bruemmer et al.) without water limitation during the peak growing season. Our results show that plant stomata control ecosystem scale water and carbon dioxide fluxes and mediate between plant growth and plant survival. On continental scale, this switch between maximizing carbon uptake and minimizing water losses, from here on called the "Carbon-Water-Tipping Point" was positively correlated to the mean annual growing season temperature at each site. Even though similar responses of plants were shown at the individual leaf-level scale this has to our knowledge not yet been shown at the ecosystem scale further suggesting a long-term adaptation of the complete ecosystems to certain climatic regions. It remains unclear how this adaption will influence the ecosystem response to ongoing climate change and according temperature increases and changes in precipitation.

  7. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest

    USGS Publications Warehouse

    Harden, J.W.; O'Neill, K. P.; Trumbore, S.E.; Veldhuis, H.; Stocks, B.J.

    1997-01-01

    We used input and decomposition data from 14C studies of soils to determine rates of vertical accumulation of moss combined with carbon storage inventories on a sequence of burns to model how carbon accumulates in soils and moss after a stand-killing fire. We used soil drainage - moss associations and soil drainage maps of the old black spruce (OBS) site at the BOREAS northern study area (NSA) to areally weight the contributions of each moderately well drained, feathermoss areas; poorly drained sphagnum - feathermoss areas; and very poorly drained brown moss areas to the carbon storage and flux at the OBS NSA site. On this very old (117 years) complex of black spruce, sphagnum bog veneer, and fen systems we conclude that these systems are likely sequestering 0.01-0.03 kg C m-2 yr-' at OBS-NSA today. Soil drainage in boreal forests near Thompson, Manitoba, controls carbon storage and flux by controlling moss input and decomposition rates and by controlling through fire the amount and quality of carbon left after burning. On poorly drained soils rich in sphagnum moss, net accumulation and long-term storage of carbon is higher than on better drained soils colonized by feathermosses. The carbon flux of these contrasting ecosystems is best characterized by soil drainage class and stand age, where stands recently burned are net sources of CO2, and maturing stands become increasingly stronger sinks of atmospheric CO2. This approach to measuring carbon storage and flux presents a method of scaling to larger areas using soil drainage, moss cover, and stand age information.

  8. Using rare earth elements to constrain particulate organic carbon flux in the East China Sea.

    PubMed

    Hung, Chin-Chang; Chen, Ya-Feng; Hsu, Shih-Chieh; Wang, Kui; Chen, Jianfang; Burdige, David J

    2016-09-27

    Fluxes of particulate organic carbon (POC) in the East China Sea (ECS) have been reported to decrease from the inner continental shelf towards the outer continental shelf. Recent research has shown that POC fluxes in the ECS may be overestimated due to active sediment resuspension. To better characterize the effect of sediment resuspension on particle fluxes in the ECS, rare earth elements (REEs) and organic carbon (OC) were used in separate two-member mixing models to evaluate trap-collected POC fluxes. The ratio of resuspended particles from sediments to total trap-collected particles in the ECS ranged from 82-94% using the OC mixing model, and 30-80% using the REEs mixing model, respectively. These results suggest that REEs may be better proxies for sediment resuspension than OC in high turbidity marginal seas because REEs do not appear to undergo degradation during particle sinking as compared to organic carbon. Our results suggest that REEs can be used as tracers to provide quantitative estimates of POC fluxes in marginal seas.

  9. Using rare earth elements to constrain particulate organic carbon flux in the East China Sea

    PubMed Central

    Hung, Chin-Chang; Chen, Ya-Feng; Hsu, Shih-Chieh; Wang, Kui; Chen, Jian Feng; Burdige, David J.

    2016-01-01

    Fluxes of particulate organic carbon (POC) in the East China Sea (ECS) have been reported to decrease from the inner continental shelf towards the outer continental shelf. Recent research has shown that POC fluxes in the ECS may be overestimated due to active sediment resuspension. To better characterize the effect of sediment resuspension on particle fluxes in the ECS, rare earth elements (REEs) and organic carbon (OC) were used in separate two-member mixing models to evaluate trap-collected POC fluxes. The ratio of resuspended particles from sediments to total trap-collected particles in the ECS ranged from 82–94% using the OC mixing model, and 30–80% using the REEs mixing model, respectively. These results suggest that REEs may be better proxies for sediment resuspension than OC in high turbidity marginal seas because REEs do not appear to undergo degradation during particle sinking as compared to organic carbon. Our results suggest that REEs can be used as tracers to provide quantitative estimates of POC fluxes in marginal seas. PMID:27670426

  10. Evaluation of simulated biospheric carbon dioxide fluxes and atmospheric concentrations using global in situ observations

    NASA Astrophysics Data System (ADS)

    Philip, S.; Johnson, M. S.; Potter, C. S.; Genovese, V. B.

    2016-12-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emission sources and biospheric sources/sinks. Global biospheric fluxes of CO2 are controlled by complex processes facilitating the exchange of carbon between terrestrial ecosystems and the atmosphere. These processes which play a key role in these terrestrial ecosystem-atmosphere carbon exchanges are currently not fully understood, resulting in large uncertainties in the quantification of biospheric CO2 fluxes. Current models with these inherent deficiencies have difficulties simulating the global carbon cycle with high accuracy. We are developing a new modeling platform, GEOS-Chem-CASA by integrating the year-specific NASA-CASA (National Aeronautics and Space Administration - Carnegie Ames Stanford Approach) biosphere model with the GEOS-Chem (Goddard Earth Observation System-Chemistry) chemical transport model to improve the simulation of atmosphere-terrestrial ecosystem carbon exchange. We use NASA-CASA to explicitly represent the exchange of CO2 between terrestrial ecosystem and atmosphere by replacing the baseline GEOS-Chem land net CO2 flux and forest biomass burning CO2 emissions. We will present the estimation and evaluation of these "bottom-up" land CO2 fluxes, simulated atmospheric mixing ratios, and forest disturbance changes over the last decade. In addition, we will present our initial comparison of atmospheric column-mean dry air mole fraction of CO2 predicted by the model and those retrieved from NASA's OCO-2 (Orbiting Carbon Observatory-2) satellite instrument and model-predicted surface CO2 mixing ratios with global in situ observations. This evaluation is the first step necessary for our future work planned to constrain the estimates of biospheric carbon fluxes through "top-down" inverse modeling, which will improve our understanding of the processes controlling atmosphere-terrestrial ecosystem greenhouse gas exchanges, especially over regions which lack in

  11. Increased terrestrial to ocean sediment and carbon fluxes in the northern Chesapeake Bay associated with twentieth century land alteration

    USGS Publications Warehouse

    Saenger, C.; Cronin, T. M.; Willard, D.; Halka, J.; Kerhin, R.

    2008-01-01

    We calculated Chesapeake Bay (CB) sediment and carbon fluxes before and after major anthropogenic land clearance using robust monitoring, modeling and sedimentary data. Four distinct fluxes in the estuarine system were considered including (1) the flux of eroded material from the watershed to streams, (2) the flux of suspended sediment at river fall lines, (3) the burial flux in tributary sediments, and (4) the burial flux in main CB sediments. The sedimentary maximum in Ambrosia (ragweed) pollen marked peak land clearance (~1900 a.d.). Rivers feeding CB had a total organic carbon (TOC)/total suspended solids of 0.24??0.12, and we used this observation to calculate TOC fluxes from sediment fluxes. Sediment and carbon fluxes increased by 138-269% across all four regions after land clearance. Our results demonstrate that sediment delivery to CB is subject to significant lags and that excess post-land clearance sediment loads have not reached the ocean. Post-land clearance increases in erosional flux from watersheds, and burial in estuaries are important processes that must be considered to calculate accurate global sediment and carbon budgets. ?? 2008 Coastal and Estuarine Research Federation.

  12. Short-term favorable weather conditions are an important control of interannual variability in carbon and water fluxes

    DOE PAGES

    Zscheischler, Jakob; Fatichi, Simone; Wolf, Sebastian; ...

    2016-08-08

    Ecosystem models often perform poorly in reproducing interannual variability in carbon and water fluxes, resulting in considerable uncertainty when estimating the land-carbon sink. While many aggregated variables (growing season length, seasonal precipitation, or temperature) have been suggested as predictors for interannual variability in carbon fluxes, their explanatory power is limited and uncertainties remain as to their relative contributions. Recent results show that the annual count of hours where evapotranspiration (ET) is larger than its 95th percentile is strongly correlated with the annual variability of ET and gross primary production (GPP) in an ecosystem model. This suggests that the occurrence ofmore » favorable conditions has a strong influence on the annual carbon budget. Here we analyzed data from eight forest sites of the AmeriFlux network with at least 7 years of continuous measurements. We show that for ET and the carbon fluxes GPP, ecosystem respiration (RE), and net ecosystem production, counting the “most active hours/days” (i.e., hours/days when the flux exceeds a high percentile) correlates well with the respective annual sums, with correlation coefficients generally larger than 0.8. Phenological transitions have much weaker explanatory power. By exploiting the relationship between most active hours and interannual variability, we classify hours as most active or less active and largely explain interannual variability in ecosystem fluxes, particularly for GPP and RE. Our results suggest that a better understanding and modeling of the occurrence of large values in high-frequency ecosystem fluxes will result in a better understanding of interannual variability of these fluxes.« less

  13. Understanding the representativeness of FLUXNET for upscaling carbon flux from eddy covariance measurements

    DOE PAGES

    Kumar, Jitendra; Hoffman, Forrest M.; Hargrove, William W.; ...

    2016-08-23

    Eddy covariance data from regional flux networks are direct in situ measurement of carbon, water, and energy fluxes and are of vital importance for understanding the spatio-temporal dynamics of the the global carbon cycle. FLUXNET links regional networks of eddy covariance sites across the globe to quantify the spatial and temporal variability of fluxes at regional to global scales and to detect emergent ecosystem properties. This study presents an assessment of the representativeness of FLUXNET based on the recently released FLUXNET2015 data set. We present a detailed high resolution analysis of the evolving representativeness of FLUXNET through time. Results providemore » quantitative insights into the extent that various biomes are sampled by the network of networks, the role of the spatial distribution of the sites on the network scale representativeness at any given time, and how that representativeness has changed through time due to changing operational status and data availability at sites in the network. To realize the full potential of FLUXNET observations for understanding emergent ecosystem properties at regional and global scales, we present an approach for upscaling eddy covariance measurements. Informed by the representativeness of observations at the flux sites in the network, the upscaled data reflects the spatio-temporal dynamics of the carbon cycle captured by the in situ measurements. In conclusion, this study presents a method for optimal use of the rich point measurements from FLUXNET to derive an understanding of upscaled carbon fluxes, which can be routinely updated as new data become available, and direct network expansion by identifying regions poorly sampled by the current network.« less

  14. [Transported fluxes of the riverine carbon and seasonal variation in Pearl River basin].

    PubMed

    Zhang, Lian-Kai; Qin, Xiao-Qun; Yang, Hui; Huang, Qi-Bo; Liu, Peng-Yu

    2013-08-01

    The riverine carbon flux is a critical component of global carbon cycle. Riverine water samples were collected from eleven hydrometric stations in the main stream of Pearl River and its tributaries during April and July, 2012. The samples were analyzed for the space and seasonal distribution characteristics of the riverine suspended substance and carbon compositions. Carbon fluxes and erosion modulus of Pearl River basin were also estimated in Boluo, Shijiao, Gaoyao, namely Dongjiang, Beijiang, Xijiang, in these two hydrological seasons. The results showed that the total suspended substance (TSS) and organic carbon, including total particulate organic carbon (POC) and dissolved organic carbon (DOC) have higher concentration in the high-water season than that in the normal-water season. Dissolved inorganic carbon (DIC) has an overwhelming concentration compared to other carbon compositions in Pearl River basin. The DIC concentration shows an order of Xijiang, Beijiang and Dongjiang from high to low. The percentage of allogenic POC in Xijiang, Beijiang and Dongjiang are 78%, 72%, 26%, respectively, and C3 plants are the main sources of allogenic POC in those three tributaries. The transported fluxes of TSS, total carbon (TC), POC, particulate inorganic carbon (PIC), DOC, DIC, total particulate carbon (TPC) and total organic carbon (TOC) are 134 x 10(12),12.69 x 10(12), 2.50 x 10(12), 1.01 x 10(12), 1.13 x 10(12), 8.05 x 10(12), 3.51 x 10(12) and 3.65 x 10(12) g x a(-1), respectively, and the erosion modulus of those compositions are 309 x 10(6), 28.98 x 10(6), 5.75 x 10(6), 2.27 x 10(6), 2.56 x 10(6), 18.4 x 10(6), 8.02 x 10(6) and 8.31 x 10(6) g x (km2 x a)(-1), respectively. Compared with average values of global large rivers, the erosion modulus of DOC, POC, and TOC in Pearl River basin are higher than the corresponding values.

  15. Urban Evapotranspiration and Carbon Dioxide Flux in Miami - Dade, Florida

    NASA Astrophysics Data System (ADS)

    Bernier, T.; Hopper, W.

    2010-12-01

    Atmospheric Carbon Dioxide (CO2) concentrations are leading indicators of secular climate change. With increasing awareness of the consequences of climate change, methods for monitoring this change are becoming more important daily. Of particular interest is the carbon dioxide exchange between natural and urban landscapes and the correlation of atmospheric CO2 concentrations. Monitoring Evapotranspiration (ET) is important for assessments of water availability for growing populations. ET is surprisingly understudied in the hydrologic cycle considering ET removes as much as 80 to over 100% of precipitation back into the atmosphere as water vapor. Lack of understanding in spatial and temporal ET estimates can limit the credibility of hydrologic water budgets designed to promote sustainable water use and resolve water-use conflicts. Eddy covariance (EC) methods are commonly used to estimate ET and CO2 fluxes. The EC platform consist of a (CSAT) 3-D Sonic Anemometer and a Li-Cor Open Path CO2/ H2O Analyzer. Measurements collected at 10 Hz create a very large data sets. A EC flux tower located in the Snapper Creek Well Field as part of a study to estimate ET for the Miami Dade County Water and Sewer project. Data has been collected from December 17, 2009 to August 30, 2010. QA/QC is performed with the EdiRe data processing software according to Ameri-flux protocols. ET estimates along with other data--latent-heat flux, sensible-heat flux, rainfall, air temperature, wind speed and direction, solar irradiance, net radiation, soil-heat flux and relative humidity--can be used to aid in the development of water management policies and regulations. Currently, many financial institutions have adopted an understanding about baseline environmental monitoring. The “Equator Principle” is an example of a voluntary standard for managing social and environmental risk in project financing and has changed the way in which projects are financed.

  16. Regional Mapping of Coupled Fluxes of Carbon and Water Using Multi-Sensor Fusion Techniques

    NASA Astrophysics Data System (ADS)

    Schull, M. A.; Anderson, M. C.; Semmens, K. A.; Yang, Y.; Gao, F.; Hain, C.; Houborg, R.

    2014-12-01

    In an ever-changing climate there is an increasing need to measure the fluxes of water, energy and carbon for decision makers to implement policies that will help mitigate the effects of climate change. In an effort to improve drought monitoring, water resource management and agriculture assessment capabilities, a multi-scale and multi-sensor framework for routine mapping of land-surface fluxes of water and energy at field to regional scales has been established. The framework uses the ALEXI (Atmosphere Land Exchange Inverse)/DisALEXI (Disaggregated ALEXI) suite of land-surface models forced by remotely sensed data from Landsat, MODIS (MODerate resolution Imaging Spectroradiometer), and GOES (Geostationary Operational Environmental Satellite). Land-surface temperature (LST) can be an effective substitute for in-situ surface moisture observations and a valuable metric for constraining land-surface fluxes at sub-field scales. The adopted multi-scale thermal-based land surface modeling framework facilitates regional to local downscaling of water and energy fluxes by using a combination of shortwave reflective and thermal infrared (TIR) imagery from GOES (4-10 km; hourly), MODIS (1 km; daily), and Landsat (30-100 m; bi-weekly). In this research the ALEXI/DisALEXI modeling suite is modified to incorporate carbon fluxes using a stomatal resistance module, which replaces the Priestley-Taylor latent heat approximation. In the module, canopy level nominal light-use-efficiency (βn) is the parameter that modulates the flux of water and carbon in and out of the canopy. Leaf chlorophyll (Chl) is a key parameter for quantifying variability in photosynthetic efficiency to facilitate the spatial distribution of coupled carbon and water retrievals. Spatial distribution of Chl are retrieved from Landsat (30 m) using a surface reflectance dataset as input to the REGularized canopy reFLECtance (REGFLEC) tool. The modified ALEXI/DisALEXI suite is applied to regions of rain fed and

  17. Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: Production, benthic flux, and environmental implications.

    PubMed

    Chen, Meilian; Kim, Sung-Han; Jung, Heon-Jae; Hyun, Jung-Ho; Choi, Jung Hyun; Lee, Hyo-Jin; Huh, In-Ae; Hur, Jin

    2017-09-15

    In order to understand the characteristics and dynamics of dissolved organic matter (DOM) in the sediment of rivers affected by impoundments, we examined the vertical profiles and the benthic fluxes of DOM in four different core sediments located at upstream sites of weirs in major rivers of South Korea. In three out of four sites, exponential accumulation of dissolved organic carbon (DOC) with depth was observed with the signature of seasonal variability. Except for the site displaying a below-detection limit of Fe(II), the general accumulation trends of DOC with depth was concurrent with the increases of Fe(II) and NH 4 + and the decrease of PO 4 3- , signifying a close linkage of the DOM dynamics with anaerobic respiration via iron reduction, an important early diagenesis pathway. The estimated benthic fluxes from the cores revealed that the sediments likely serve as DOC, chromophoric DOM (CDOM), and fluorescent DOM (FDOM) sources to the overlying water. The benthic effluxes based on DOC were comparable to the ranges previously reported in lake and coastal areas, and those of CDOM and FDOM showed even higher levels. These findings imply that impoundment-affected river systems would change the DOM composition of the overlying water, ultimately influencing the subsequent water treatment processes such as disinfection byproducts production and membrane fouling. A simple mass balance model indicated that the impoundment-affected river sediments may operate as a net carbon sink in the environments due to a greater extent of sedimentation compared to the estimated benthic efflux and sediment biological respiration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Southern Ocean Carbon Dioxide and Oxygen Fluxes Detected by SOCCOM Biogeochemical Profiling Floats

    NASA Astrophysics Data System (ADS)

    Sarmiento, J. L.; Bushinksy, S.; Gray, A. R.

    2016-12-01

    The Southern Ocean is known to play an important role in the global carbon cycle, yet historically our measurements of this remote region have been sparse and heavily biased towards summer. Here we present new estimates of air-sea fluxes of carbon dioxide and oxygen calculated with measurements from autonomous biogeochemical profiling floats. At high latitudes in and southward of the Antarctic Circumpolar Current, we find a significant flux of CO2 from the ocean to the atmosphere during 2014-2016, which is particularly enhanced during winter months. These results suggest that previous estimates may be biased towards stronger Southern Ocean CO2 uptake due to undersampling in winter. We examine various implications of having a source of CO2 that is higher than previous estimates. We also find that CO2:O2 flux ratios north of the Subtropical Front are positive, consistent with the fluxes being driven by changes in solubility, while south of the Polar Front biological processes and upwelling of deep water combine to produce a negative CO2:O2 flux ratio.

  19. Ecosystem biogeochemistry model parameterization: Do more flux data result in a better model in predicting carbon flux?

    DOE PAGES

    Zhu, Qing; Zhuang, Qianlai

    2015-12-21

    Reliability of terrestrial ecosystem models highly depends on the quantity and quality of thedata that have been used to calibrate the models. Nowadays, in situ observations of carbon fluxes areabundant. However, the knowledge of how much data (data length) and which subset of the time seriesdata (data period) should be used to effectively calibrate the model is still lacking. This study uses theAmeriFlux carbon flux data to parameterize the Terrestrial Ecosystem Model (TEM) with an adjoint-baseddata assimilation technique for various ecosystem types. Parameterization experiments are thus conductedto explore the impact of both data length and data period on the uncertaintymore » reduction of the posteriormodel parameters and the quantification of site and regional carbon dynamics. We find that: the modelis better constrained when it uses two-year data comparing to using one-year data. Further, two-year datais sufficient in calibrating TEM’s carbon dynamics, since using three-year data could only marginallyimprove the model performance at our study sites; the model is better constrained with the data thathave a higher‘‘climate variability’’than that having a lower one. The climate variability is used to measurethe overall possibility of the ecosystem to experience all climatic conditions including drought and extremeair temperatures and radiation; the U.S. regional simulations indicate that the effect of calibration datalength on carbon dynamics is amplified at regional and temporal scales, leading to large discrepanciesamong different parameterization experiments, especially in July and August. Our findings areconditioned on the specific model we used and the calibration sites we selected. The optimal calibrationdata length may not be suitable for other models. However, this study demonstrates that there may exist athreshold for calibration data length and simply using more data would not guarantee a better modelparameterization and prediction. More

  20. Ecosystem biogeochemistry model parameterization: Do more flux data result in a better model in predicting carbon flux?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Qing; Zhuang, Qianlai

    Reliability of terrestrial ecosystem models highly depends on the quantity and quality of thedata that have been used to calibrate the models. Nowadays, in situ observations of carbon fluxes areabundant. However, the knowledge of how much data (data length) and which subset of the time seriesdata (data period) should be used to effectively calibrate the model is still lacking. This study uses theAmeriFlux carbon flux data to parameterize the Terrestrial Ecosystem Model (TEM) with an adjoint-baseddata assimilation technique for various ecosystem types. Parameterization experiments are thus conductedto explore the impact of both data length and data period on the uncertaintymore » reduction of the posteriormodel parameters and the quantification of site and regional carbon dynamics. We find that: the modelis better constrained when it uses two-year data comparing to using one-year data. Further, two-year datais sufficient in calibrating TEM’s carbon dynamics, since using three-year data could only marginallyimprove the model performance at our study sites; the model is better constrained with the data thathave a higher‘‘climate variability’’than that having a lower one. The climate variability is used to measurethe overall possibility of the ecosystem to experience all climatic conditions including drought and extremeair temperatures and radiation; the U.S. regional simulations indicate that the effect of calibration datalength on carbon dynamics is amplified at regional and temporal scales, leading to large discrepanciesamong different parameterization experiments, especially in July and August. Our findings areconditioned on the specific model we used and the calibration sites we selected. The optimal calibrationdata length may not be suitable for other models. However, this study demonstrates that there may exist athreshold for calibration data length and simply using more data would not guarantee a better modelparameterization and prediction. More

  1. Organic carbon export from the Greenland Ice Sheet: sources, sinks and downstream fluxes

    NASA Astrophysics Data System (ADS)

    Wadham, J. L.; Lawson, E.; Tranter, M.; Stibal, M.; Telling, J.; Lis, G. P.; Nienow, P. W.; Anesio, A. M.; Butler, C. E.

    2012-12-01

    Runoff from small glacier systems has been shown to contain dissolved organic carbon (DOC) rich in low molecular weight (LMW), and hence more labile forms, designating glaciers as an important source of carbon for downstream heterotrophic activity. Here we assess glacier surfaces as potential sources of labile DOC to downstream ecosystems, presenting data from a wide range of glacier systems to determine sources and sinks of DOC in glacial and proglacial systems. We subsequently focus upon the Greenland Ice Sheet (GrIS) which is the largest source of glacial runoff at present (400 km3 yr-1), with predicted increases in future decades. We report high fluxes of particulate organic carbon (POC), DOC and LMW labile fractions from a large GrIS catchment during two contrasting melt seasons. POC dominates OC export, is sourced from the ice sheet bed and contains a significant bioreactive component (~10% carbohydrates). The LMW-DOC "labile" fraction derives almost entirely from microbial activity on the ice sheet surface, which is supported by data from glacier systems also presented here. Annual fluxes of DOC, POC and labile components were lower in 2010 than 2009, despite a ~2 fold increase in runoff fluxes in 2010, suggesting production-limited DOC/POC sources. Scaled to the entire ice sheet, combined DOC and POC fluxes are of a similar order of magnitude to other large Arctic river systems and may represent an important source of organic carbon to the North Atlantic, Greenland and Labrador Seas.

  2. Influence of top-down control in the plankton food web on vertical carbon flux: a mesocosm study in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Stone, J.; Steinberg, D. K.

    2016-02-01

    The effects of predation on carbon export in planktonic food webs are poorly known, but likely play a key role in the biological pump. Gelatinous zooplankton (GZ) dominate the zooplankton community in the Chesapeake Bay during summer months, exerting considerable top-down control on the planktonic food web. The medusa Chrysaora quinquecirrha preys upon the ctenophore Mnemiopsis leidyi, which in turn is a major predator of the omnivorous copepod Acartia tonsa. This trophic cascade is known to significantly affect copepod abundance in Chesapeake Bay, but the resulting changes to particulate organic carbon (POC) flux are unknown. We hypothesized that additions or exclusions of GZ predators would result in changes in both total POC flux and the composition of exported particles (e.g., phytoplankton aggregates, fecal pellets). We conducted mesocosm experiments in the York River tributary of Chesapeake Bay during summer and fall, 2015 to quantify the cascading effects of GZ blooms on POC flux. The mesocosms contained a natural assemblage of phytoplankton and microzooplankton, and A. tonsa copepods, and received one of four treatments of GZ: 1) a control with no GZ added, 2) addition of ctenophores, 3) addition of medusae, and 4) addition of both ctenophores and medusae. POC flux from each mesocosm was measured over multiple 2-day experimental runs and grazing rates of GZ on each other and on copepods were calculated. There were no significant differences in total POC flux between treatments, but the composition of both the final zooplankton assemblage and exported organic matter differed between treatments. As a result of grazing on copepods by ctenophores, treatments which included GZ had lower final copepod abundances and a corresponding decrease in flux of copepod fecal pellets. We discuss how this change in composition of exported material as a result of cascading trophic interactions may affect the efficiency of the biological pump and benthic processes.

  3. Impacts of disturbance history on annual carbon stocks and fluxes in southeastern US forests during 1986-2010 using remote sensing, forest inventory data, and a carbon cycle model

    NASA Astrophysics Data System (ADS)

    Gu, H.; Zhou, Y.; Williams, C. A.

    2017-12-01

    Accurate assessment of forest carbon storage and uptake is central to policymaking aimed at mitigating climate change and understanding the role forests play in the global carbon cycle. Disturbance events are highly heterogeneous in space and time, impacting forest carbon dynamics and challenging the quantification and reporting of carbon stocks and fluxes. This study documents annual carbon stocks and fluxes from 1986 and 2010 mapped at 30-m resolution across southeastern US forests, characterizing how they respond to disturbances and ensuing regrowth. Forest inventory data (FIA) are used to parameterize a carbon cycle model (CASA) to represent post-disturbance carbon trajectories of carbon pools and fluxes with time following harvest, fire and bark beetle disturbances of varying severity and across forest types and site productivity settings. Time since disturbance at 30 meters is inferred from two remote-sensing data sources: disturbance year (NAFD, MTBS and ADS) and biomass (NBCD 2000) intersected with FIA-derived curves of biomass accumulation with stand age. All of these elements are combined to map carbon stocks and fluxes at a 30-m resolution for the year 2010, and to march backward in time for continuous, annual reporting. Results include maps of annual carbon stocks and fluxes for forests of the southeastern US, and analysis of spatio-temporal patterns of carbon sources/sinks at local and regional scales.

  4. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.

    PubMed

    Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system. Copyright © 2014. Published by Elsevier B.V.

  5. Variation of energy and carbon fluxes from a restored temperate freshwater wetland and implications for carbon market verification protocols

    USGS Publications Warehouse

    Anderson, Frank; Bergamaschi, Brian; Sturtevant, Cove; Knox, Sarah; Hastings, Lauren; Windham-Myers, Lisamarie; Detto, Matteo; Hestir, Erin L.; Drexler, Judith; Miller, Robin L.; Matthes, Jaclyn; Verfaillie, Joseph; Baldocchi, Dennis; Snyder, Richard L.; Fujii, Roger

    2016-01-01

    Temperate freshwater wetlands are among the most productive terrestrial ecosystems, stimulating interest in using restored wetlands as biological carbon sequestration projects for greenhouse gas reduction programs. In this study, we used the eddy covariance technique to measure surface energy carbon fluxes from a constructed, impounded freshwater wetland during two annual periods that were 8 years apart: 2002–2003 and 2010–2011. During 2010–2011, we measured methane (CH4) fluxes to quantify the annual atmospheric carbon mass balance and its concomitant influence on global warming potential (GWP). Peak growing season fluxes of latent heat and carbon dioxide (CO2) were greater in 2002–2003 compared to 2010–2011. In 2002, the daily net ecosystem exchange reached as low as −10.6 g C m−2 d−1, which was greater than 3 times the magnitude observed in 2010 (−2.9 g C m−2 d−1). CH4 fluxes during 2010–2011 were positive throughout the year and followed a strong seasonal pattern, ranging from 38.1 mg C m−2 d−1 in the winter to 375.9 mg C m−2 d−1 during the summer. The results of this study suggest that the wetland had reduced gross ecosystem productivity in 2010–2011, likely due to the increase in dead plant biomass (standing litter) that inhibited the generation of new vegetation growth. In 2010–2011, there was a net positive GWP (675.3 g C m−2 yr−1), and when these values are evaluated as a sustained flux, the wetland will not reach radiative balance even after 500 years.

  6. A Contemporary Assessment of Lateral Fluxes of Organic Carbon in Inland Waters of the USA and Delivery to Coastal Waters

    NASA Astrophysics Data System (ADS)

    Boyer, E. W.; Alexander, R. B.; Smith, R. A.; Shih, J.; Schwarz, G. E.

    2010-12-01

    Organic carbon (OC) is a critical water quality characteristic in surface waters, as it is an important component of the energy balance and food chains in freshwater and estuarine aquatic ecosystems, is significant in the mobilization and transport of contaminants along flow paths, and is associated with the formation of known carcinogens in drinking water supplies. The importance of OC dynamics on water quality has been recognized, but challenges remain in quantitatively addressing processes controlling OC fluxes over broad spatial scales in a hydrological context. Here, we: 1) quantified lateral OC fluxes in rivers, streams, and reservoirs across the nation; 2) partitioned how much organic carbon that is stored in lakes, rivers and streams comes from allochthonous sources (produced in the terrestrial landscape) versus autochthonous sources (produced in-stream by primary production); and 3) estimated the delivery of dissolved and total forms of organic carbon to coastal estuaries and embayments. To accomplish this, we developed national-scale models of organic carbon in U.S. surface waters using the spatially referenced regression on watersheds (SPARROW) technique. This approach uses mechanistic formulations, imposes mass balance constraints, and provides a formal parameter estimation structure to statistically estimate sources and fate of OC in terrestrial and aquatic ecosystems. We make use of a GIS based framework to describe sources of organic matter and characteristics of the landscape that affect its fate and transport, from spatial databases providing characterizations of climate, land cover, primary productivity, topography, soils, geology, and water routing. We calibrated and evaluated the model with statistical estimates of organic carbon loads that were observed at 1,125 monitoring stations across the nation. Our results illustrate spatial patterns and magnitudes OC loadings in rivers and reservoirs, highlighting hot spots and suggesting origins of the

  7. Changes in deep-sea carbonate-hosted microbial communities associated with high and low methane flux

    NASA Astrophysics Data System (ADS)

    Case, D. H.; Steele, J. A.; Chadwick, G.; Mendoza, G. F.; Levin, L. A.; Orphan, V. J.

    2012-12-01

    Methane seeps on continental shelves are rich in authigenic carbonates built of methane-derived carbon. These authigenic carbonates are home to micro- and macroscopic communities whose compositions are thus far poorly constrained but are known to broadly depend on local methane flux. The formation of authigenic carbonates is itself a result of microbial metabolic activity, as associations of anaerobic methane oxidizing archaea (ANME) and sulfate reducing bacteria (SRB) in the sediment subsurface increase both dissolved inorganic carbon (DIC) and alkalinity in pore waters. This 1:1 increase in DIC and alkalinity promotes the precipitation of authigenic carbonates. In this study, we performed in situ manipulations to test the response of micro- and macrofaunal communities to a change in methane flux. Methane-derived authigenic carbonates from two locations at Hydrate Ridge, OR, USA (depth range 595-604 mbsl), were transplanted from "active" cold seep sites (high methane flux) to "inactive" background sites (low methane flux), and vise versa, for one year. Community diversity surveys using T-RFLP and 16S rRNA clone libraries revealed how both bacterial and archaeal assemblages respond to this change in local environment, specifically demonstrating reproducible shifts in different ANME groups (ANME-1 vs. ANME-2). Animal assemblage composition also shifted during transplantation; gastropod representation increased (relative to control rocks) when substrates were moved from inactive to active sites and polychaete, crustacean and echinoderm representation increased when substrates were moved from active to inactive sites. Combined with organic and inorganic carbon δ13C measurements and mineralogy, this unique in situ experiment demonstrates that authigenic carbonates are viable habitats, hosting microbial and macrofaunal communities capable of responding to changes in external environment over relatively short time periods.

  8. Downward particle flux and carbon export in the Beaufort Sea, Arctic Ocean; the Malina experiment

    NASA Astrophysics Data System (ADS)

    Miquel, J.-C.; Gasser, B.; Martín, J.; Marec, C.; Babin, M.; Fortier, L.; Forest, A.

    2015-01-01

    As part of the international, multidisciplinary project Malina, downward particle fluxes were investigated by means of a drifting multi-sediment trap mooring deployed at three sites in the Canadian Beaufort Sea in late summer 2009. Mooring deployments lasted for 28-50 h and targeted the shelf-break and the slope along the Beaufort-Mackenzie continental margin, as well as the edge between the Mackenzie Shelf and the Amundsen Gulf. Besides analyses of C and N, the collected material was investigated for pigments, phyto- and microzooplankton, faecal pellets and swimmers. The measured fluxes were relatively low, in the range of 11-54 mg m-2 d-1 for the total mass, 1-15 mg C m-2 d-1 for organic carbon and 0.2-2.5 mg N m-2 d-1 for nitrogen. Comparison with a long-term trap dataset from the same sampling area showed that the short-term measurements were at the lower end of the high variability characterizing a rather high flux regime during the study period. The sinking material consisted of aggregates and particles that were characterized by the presence of hetero- and autotrophic microzooplankters and diatoms and by the corresponding pigment signatures. Faecal pellets contribution to sinking carbon flux was important, especially at depth where they represented up to 25% of the total carbon flux. The vertical distribution of different morphotypes of pellets showed a marked pattern with cylindrical faeces (produced by calanoid copepods) present mainly within the euphotic zone, whereas elliptical pellets (produced mainly by smaller copepods) were more abundant at mesopelagic depths. These features, together with the density of matter within the pellets, highlighted the role of the zooplankton community in the transformation of carbon issued from the primary production and the transition of that carbon from the productive surface zone to the Arctic Ocean's interior. Our data indicate that sinking carbon flux in this late summer period is primarily the result of a

  9. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean

    PubMed Central

    Marsay, Chris M.; Sanders, Richard J.; Henson, Stephanie A.; Pabortsava, Katsiaryna; Achterberg, Eric P.; Lampitt, Richard S.

    2015-01-01

    The biological carbon pump, which transports particulate organic carbon (POC) from the surface to the deep ocean, plays an important role in regulating atmospheric carbon dioxide (CO2) concentrations. We know very little about geographical variability in the remineralization depth of this sinking material and less about what controls such variability. Here we present previously unpublished profiles of mesopelagic POC flux derived from neutrally buoyant sediment traps deployed in the North Atlantic, from which we calculate the remineralization length scale for each site. Combining these results with corresponding data from the North Pacific, we show that the observed variability in attenuation of vertical POC flux can largely be explained by temperature, with shallower remineralization occurring in warmer waters. This is seemingly inconsistent with conclusions drawn from earlier analyses of deep-sea sediment trap and export flux data, which suggest lowest transfer efficiency at high latitudes. However, the two patterns can be reconciled by considering relatively intense remineralization of a labile fraction of material in warm waters, followed by efficient downward transfer of the remaining refractory fraction, while in cold environments, a larger labile fraction undergoes slower remineralization that continues over a longer length scale. Based on the observed relationship, future increases in ocean temperature will likely lead to shallower remineralization of POC and hence reduced storage of CO2 by the ocean. PMID:25561526

  10. Quantification of net carbon flux from plastic greenhouse vegetable cultivation: a full carbon cycle analysis.

    PubMed

    Wang, Yan; Xu, Hao; Wu, Xu; Zhu, Yimei; Gu, Baojing; Niu, Xiaoyin; Liu, Anqin; Peng, Changhui; Ge, Ying; Chang, Jie

    2011-05-01

    Plastic greenhouse vegetable cultivation (PGVC) has played a vital role in increasing incomes of farmers and expanded dramatically in last several decades. However, carbon budget after conversion from conventional vegetable cultivation (CVC) to PGVC has been poorly quantified. A full carbon cycle analysis was used to estimate the net carbon flux from PGVC systems based on the combination of data from both field observations and literatures. Carbon fixation was evaluated at two pre-selected locations in China. Results suggest that: (1) the carbon sink of PGVC is 1.21 and 1.23 Mg C ha(-1) yr(-1) for temperate and subtropical area, respectively; (2) the conversion from CVC to PGVC could substantially enhance carbon sink potential by 8.6 times in the temperate area and by 1.3 times in the subtropical area; (3) the expansion of PGVC usage could enhance the potential carbon sink of arable land in China overall. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Using Imaging Spectrometry measurements of Ecosystem Composition to constrain Regional Predictions of Carbon, Water and Energy Fluxes

    NASA Astrophysics Data System (ADS)

    Antonarakis, A. S.; Bogan, S.; Moorcroft, P. R.

    2017-12-01

    Ecosystem composition is a key attribute of terrestrial ecosystems, influencing the fluxes of carbon, water, and energy between the land surface and the atmosphere. The description of current ecosystem composition has traditionally come from relatively few ground-based inventories of the plant canopy, but are spatially limited and do not provide a comprehensive picture of ecosystem composition at regional or global scales. In this analysis, imaging spectrometry measurements, collected as part of the HyspIRI Preparatory Mission, are used to provide spatially-resolved estimates of plant functional type composition providing an important constraint on terrestrial biosphere model predictions of carbon, water and energy fluxes across the heterogeneous landscapes of the Californian Sierras. These landscapes include oak savannas, mid-elevation mixed pines, fir-cedar forests, and high elevation pines. Our results show that imaging spectrometry measurements can be successfully used to estimate regional-scale variation in ecosystem composition and resulting spatial heterogeneity in patterns of carbon, water and energy fluxes and ecosystem dynamics. Simulations at four flux tower sites within the study region yield patterns of seasonal and inter-annual variation in carbon and water fluxes that have comparable accuracy to simulations initialized from ground-based inventory measurements. Finally, results indicate that during the 2012-2015 Californian drought, regional net carbon fluxes fell by 84%, evaporation and transpiration fluxes fell by 53% and 33% respectively, and sensible heat increase by 51%. This study provides a framework for assimilating near-future global satellite imagery estimates of ecosystem composition with terrestrial biosphere models, constraining and improving their predictions of large-scale ecosystem dynamics and functioning.

  12. Using Imaging Spectrometry measurements of Ecosystem Composition to constrain Regional Predictions of Carbon, Water and Energy Fluxes

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Bond-Lamberty, B. P.; Huang, M.; Xu, Y.; Stegen, J.

    2016-12-01

    Ecosystem composition is a key attribute of terrestrial ecosystems, influencing the fluxes of carbon, water, and energy between the land surface and the atmosphere. The description of current ecosystem composition has traditionally come from relatively few ground-based inventories of the plant canopy, but are spatially limited and do not provide a comprehensive picture of ecosystem composition at regional or global scales. In this analysis, imaging spectrometry measurements, collected as part of the HyspIRI Preparatory Mission, are used to provide spatially-resolved estimates of plant functional type composition providing an important constraint on terrestrial biosphere model predictions of carbon, water and energy fluxes across the heterogeneous landscapes of the Californian Sierras. These landscapes include oak savannas, mid-elevation mixed pines, fir-cedar forests, and high elevation pines. Our results show that imaging spectrometry measurements can be successfully used to estimate regional-scale variation in ecosystem composition and resulting spatial heterogeneity in patterns of carbon, water and energy fluxes and ecosystem dynamics. Simulations at four flux tower sites within the study region yield patterns of seasonal and inter-annual variation in carbon and water fluxes that have comparable accuracy to simulations initialized from ground-based inventory measurements. Finally, results indicate that during the 2012-2015 Californian drought, regional net carbon fluxes fell by 84%, evaporation and transpiration fluxes fell by 53% and 33% respectively, and sensible heat increase by 51%. This study provides a framework for assimilating near-future global satellite imagery estimates of ecosystem composition with terrestrial biosphere models, constraining and improving their predictions of large-scale ecosystem dynamics and functioning.

  13. Evaluation of carbon isotope flux partitioning theory under simplified and controlled environmental conditions

    USDA-ARS?s Scientific Manuscript database

    Separation of the photosynthetic (Fp) and respiratory (Fr) fluxes of net CO2 exchange (Fn)remains a necessary step toward understanding the biological and physical controls on carbon cycling between the soil, biomass, and atmosphere. Despite recent advancements in stable carbon isotope partitioning ...

  14. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands.

    PubMed

    Cobb, Alexander R; Hoyt, Alison M; Gandois, Laure; Eri, Jangarun; Dommain, René; Abu Salim, Kamariah; Kai, Fuu Ming; Haji Su'ut, Nur Salihah; Harvey, Charles F

    2017-06-27

    Tropical peatlands now emit hundreds of megatons of carbon dioxide per year because of human disruption of the feedbacks that link peat accumulation and groundwater hydrology. However, no quantitative theory has existed for how patterns of carbon storage and release accompanying growth and subsidence of tropical peatlands are affected by climate and disturbance. Using comprehensive data from a pristine peatland in Brunei Darussalam, we show how rainfall and groundwater flow determine a shape parameter (the Laplacian of the peat surface elevation) that specifies, under a given rainfall regime, the ultimate, stable morphology, and hence carbon storage, of a tropical peatland within a network of rivers or canals. We find that peatlands reach their ultimate shape first at the edges of peat domes where they are bounded by rivers, so that the rate of carbon uptake accompanying their growth is proportional to the area of the still-growing dome interior. We use this model to study how tropical peatland carbon storage and fluxes are controlled by changes in climate, sea level, and drainage networks. We find that fluctuations in net precipitation on timescales from hours to years can reduce long-term peat accumulation. Our mathematical and numerical models can be used to predict long-term effects of changes in temporal rainfall patterns and drainage networks on tropical peatland geomorphology and carbon storage.

  15. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands

    PubMed Central

    Hoyt, Alison M.; Gandois, Laure; Eri, Jangarun; Dommain, René; Abu Salim, Kamariah; Kai, Fuu Ming; Haji Su’ut, Nur Salihah; Harvey, Charles F.

    2017-01-01

    Tropical peatlands now emit hundreds of megatons of carbon dioxide per year because of human disruption of the feedbacks that link peat accumulation and groundwater hydrology. However, no quantitative theory has existed for how patterns of carbon storage and release accompanying growth and subsidence of tropical peatlands are affected by climate and disturbance. Using comprehensive data from a pristine peatland in Brunei Darussalam, we show how rainfall and groundwater flow determine a shape parameter (the Laplacian of the peat surface elevation) that specifies, under a given rainfall regime, the ultimate, stable morphology, and hence carbon storage, of a tropical peatland within a network of rivers or canals. We find that peatlands reach their ultimate shape first at the edges of peat domes where they are bounded by rivers, so that the rate of carbon uptake accompanying their growth is proportional to the area of the still-growing dome interior. We use this model to study how tropical peatland carbon storage and fluxes are controlled by changes in climate, sea level, and drainage networks. We find that fluctuations in net precipitation on timescales from hours to years can reduce long-term peat accumulation. Our mathematical and numerical models can be used to predict long-term effects of changes in temporal rainfall patterns and drainage networks on tropical peatland geomorphology and carbon storage. PMID:28607068

  16. Below-ground carbon flux and partitioning: global patterns and response to temperature

    Treesearch

    C.M. Litton; C.P. Giardina

    2008-01-01

    1. The fraction of gross primary production (GPP) that is total below-ground carbon flux (TBCF) and the fraction of TBCF that is below-ground net primary production (BNPP) represent globally significant C fluxes that are fundamental in regulating ecosystem C balance. However, global estimates of the partitioning of GPP to TBCF and of TBCF to BNPP, as well as the...

  17. Sensitivity of Simulated Global Ocean Carbon Flux Estimates to Forcing by Reanalysis Products

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Casey, Nancy W.; Rousseaux, Cecile S.

    2015-01-01

    Reanalysis products from MERRA, NCEP2, NCEP1, and ECMWF were used to force an established ocean biogeochemical model to estimate air-sea carbon fluxes (FCO2) and partial pressure of carbon dioxide (pCO2) in the global oceans. Global air-sea carbon fluxes and pCO2 were relatively insensitive to the choice of forcing reanalysis. All global FCO2 estimates from the model forced by the four different reanalyses were within 20% of in situ estimates (MERRA and NCEP1 were within 7%), and all models exhibited statistically significant positive correlations with in situ estimates across the 12 major oceanographic basins. Global pCO2 estimates were within 1% of in situ estimates with ECMWF being the outlier at 0.6%. Basin correlations were similar to FCO2. There were, however, substantial departures among basin estimates from the different reanalysis forcings. The high latitudes and tropics had the largest ranges in estimated fluxes among the reanalyses. Regional pCO2 differences among the reanalysis forcings were muted relative to the FCO2 results. No individual reanalysis was uniformly better or worse in the major oceanographic basins. The results provide information on the characterization of uncertainty in ocean carbon models due to choice of reanalysis forcing.

  18. An Assessment of Global Organic Carbon Flux Along Continental Margins

    NASA Technical Reports Server (NTRS)

    Thunell, Robert

    2004-01-01

    This project was designed to use real-time and historical SeaWiFS and AVHRR data, and real-time MODIS data in order to estimate the global vertical carbon flux along continental margins. This required construction of an empirical model relating surface ocean color and physical variables like temperature and wind to vertical settling flux at sites co-located with sediment trap observations (Santa Barbara Basin, Cariaco Basin, Gulf of California, Hawaii, and Bermuda, etc), and application of the model to imagery in order to obtain spatially-weighted estimates.

  19. Partitioning carbon fluxes from a Midwestern corn and soybean rotation system using footprint analysis

    USDA-ARS?s Scientific Manuscript database

    Midwestern US agriculture is dominated by corn and soybean production. Corn has typically higher Net Ecosystem Exchange (NEE, that is the annual sum of CO2 fluxes, the total carbon uptake minus total carbon respired by the plants-soil-ecosystem) than soybean due to increased carbon uptake efficiency...

  20. Assessing the influence of historic net and gross land changes on the carbon fluxes of Europe.

    PubMed

    Fuchs, Richard; Schulp, Catharina J E; Hengeveld, Geerten M; Verburg, Peter H; Clevers, Jan G P W; Schelhaas, Mart-Jan; Herold, Martin

    2016-07-01

    Legacy effects of land cover/use on carbon fluxes require considering both present and past land cover/use change dynamics. To assess past land use dynamics, model-based reconstructions of historic land cover/use are needed. Most historic reconstructions consider only the net area difference between two time steps (net changes) instead of accounting for all area gains and losses (gross changes). Studies about the impact of gross and net land change accounting methods on the carbon balance are still lacking. In this study, we assessed historic changes in carbon in soils for five land cover/use types and of carbon in above-ground biomass of forests. The assessment focused on Europe for the period 1950 to 2010 with decadal time steps at 1-km spatial resolution using a bookkeeping approach. To assess the implications of gross land change data, we also used net land changes for comparison. Main contributors to carbon sequestration between 1950 and 2010 were afforestation and cropland abandonment leading to 14.6 PgC sequestered carbon (of which 7.6 PgC was in forest biomass). Sequestration was highest for old-growth forest areas. A sequestration dip was reached during the 1970s due to changes in forest management practices. Main contributors to carbon emissions were deforestation (1.7 PgC) and stable cropland areas on peaty soils (0.8 PgC). In total, net fluxes summed up to 203 TgC yr(-1) (98 TgC yr(-1) in forest biomass and 105 TgC yr(-1) in soils). For areas that were subject to land changes in both reconstructions (35% of total area), the differences in carbon fluxes were about 68%. Overall for Europe the difference between accounting for either gross or net land changes led to 7% difference (up to 11% per decade) in carbon fluxes with systematically higher fluxes for gross land change data. © 2015 John Wiley & Sons Ltd.

  1. Evaluating carbon fluxes of global forest ecosystems by using an individual tree-based model FORCCHN.

    PubMed

    Ma, Jianyong; Shugart, Herman H; Yan, Xiaodong; Cao, Cougui; Wu, Shuang; Fang, Jing

    2017-05-15

    The carbon budget of forest ecosystems, an important component of the terrestrial carbon cycle, needs to be accurately quantified and predicted by ecological models. As a preamble to apply the model to estimate global carbon uptake by forest ecosystems, we used the CO 2 flux measurements from 37 forest eddy-covariance sites to examine the individual tree-based FORCCHN model's performance globally. In these initial tests, the FORCCHN model simulated gross primary production (GPP), ecosystem respiration (ER) and net ecosystem production (NEP) with correlations of 0.72, 0.70 and 0.53, respectively, across all forest biomes. The model underestimated GPP and slightly overestimated ER across most of the eddy-covariance sites. An underestimation of NEP arose primarily from the lower GPP estimates. Model performance was better in capturing both the temporal changes and magnitude of carbon fluxes in deciduous broadleaf forest than in evergreen broadleaf forest, and it performed less well for sites in Mediterranean climate. We then applied the model to estimate the carbon fluxes of forest ecosystems on global scale over 1982-2011. This application of FORCCHN gave a total GPP of 59.41±5.67 and an ER of 57.21±5.32PgCyr -1 for global forest ecosystems during 1982-2011. The forest ecosystems over this same period contributed a large carbon storage, with total NEP being 2.20±0.64PgCyr -1 . These values are comparable to and reinforce estimates reported in other studies. This analysis highlights individual tree-based model FORCCHN could be used to evaluate carbon fluxes of forest ecosystems on global scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    Treesearch

    Jingfeng Xiao; Qianlai Zhuang; Dennis D. Baldocchi; Beverly E. Law; Andrew D. Richardson; Jiquan Chen; Ram Oren; Gegory Starr; Asko Noormets; Siyan Ma; Sashi B. Verma; Sonia Wharton; Steven C. Wofsy; Paul V. Bolstad; Sean P. Burns; David R. Cook; Peter S. Curtis; Bert G. Drake; Matthias Falk; MArc L. Fischer; David R. Foster; Lianhong Gu; Julian L. Hadley; David Y. Hollinger; Gabriel G. Katul; Marcy Litvak; Timothy Martin; Roser Matamala; Steve McNulty; Tilden P. Meyers; Russell K. Monson; J. William Munger; Walter C. Oechel; Kyaw Tha Paw U; Hans Peter Schmid; Russell L. Scott; Ge Sun; Andrew E. Suyker; Margaret S. Torn

    2008-01-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents,...

  3. Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys

    Treesearch

    Andrew T. Hudak; Eva K. Strand; Lee A. Vierling; John C. Byrne; Jan U. H. Eitel; Sebastian Martinuzzi; Michael J. Falkowski

    2012-01-01

    Sound forest policy and management decisions to mitigate rising atmospheric CO2 depend upon accurate methodologies to quantify forest carbon pools and fluxes over large tracts of land. LiDAR remote sensing is a rapidly evolving technology for quantifying aboveground biomass and thereby carbon pools; however, little work has evaluated the efficacy of repeat LiDAR...

  4. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.

    2016-02-01

    Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Modelmore » simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe?2 and S-2 oxidation) to match locally-observed high CO2 concentrations above reduced zones. Observed seasonal variations in CO2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m-2 d-1, while including water table variations resulted in an overall decrease in the simulated fluxes. We conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations.« less

  5. Carbon dioxide, methane and nitrous oxide fluxes from a fire chronosequence in subarctic boreal forests of Canada.

    PubMed

    Köster, Egle; Köster, Kajar; Berninger, Frank; Aaltonen, Heidi; Zhou, Xuan; Pumpanen, Jukka

    2017-12-01

    Forest fires are one of the most important natural disturbances in boreal forests, and their occurrence and severity are expected to increase as a result of climate warming. A combination of factors induced by fire leads to a thawing of the near-surface permafrost layer in subarctic boreal forest. Earlier studies reported that an increase in the active layer thickness results in higher carbon dioxide (CO 2 ) and methane (CH 4 ) emissions. We studied changes in CO 2 , CH 4 and nitrous oxide (N 2 O) fluxes in this study, and the significance of several environmental factors that influence the greenhouse gas (GHG) fluxes at three forest sites that last had fires in 2012, 1990 and 1969, and we compared these to a control area that had no fire for at least 100years. The soils in our study acted as sources of CO 2 and N 2 O and sinks for CH 4 . The elapsed time since the last forest fire was the only factor that significantly influenced all studied GHG fluxes. Soil temperature affected the uptake of CH 4 , and the N 2 O fluxes were significantly influenced by nitrogen and carbon content of the soil, and by the active layer depth. Results of our study confirm that the impacts of a forest fire on GHGs last for a rather long period of time in boreal forests, and are influenced by the fire induced changes in the ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A connection to deep groundwater alters ecosystem carbon fluxes and budgets: Example from a Costa Rican rainforest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genereux, David P.; Nagy, Laura A.; Osburn, Christopher L.

    Field studies of watershed carbon fluxes and budgets are critical for understanding the carbon cycle, but the role of deep regional groundwater is poorly known and field examples are lacking. Here we show that discharge of regional groundwater into a lowland Costa Rican rainforest has a major influence on ecosystem carbon fluxes. Furthermore, this influence is observable through chemical, isotopic, and flux signals in groundwater, surface water, and air. Not addressing the influence of regional groundwater in the field measurement program and data analysis would give a misleading impression of the overall carbon source or sink status of the rainforest.more » In quantifying a carbon budget with the traditional "small watershed" mass-balance approach, it would be critical at this site and likely many others to consider watershed inputs or losses associated with exchange between the ecosystem and the deeper hydrogeological system on which it sits.« less

  7. A connection to deep groundwater alters ecosystem carbon fluxes and budgets: Example from a Costa Rican rainforest

    DOE PAGES

    Genereux, David P.; Nagy, Laura A.; Osburn, Christopher L.; ...

    2013-05-28

    Field studies of watershed carbon fluxes and budgets are critical for understanding the carbon cycle, but the role of deep regional groundwater is poorly known and field examples are lacking. Here we show that discharge of regional groundwater into a lowland Costa Rican rainforest has a major influence on ecosystem carbon fluxes. Furthermore, this influence is observable through chemical, isotopic, and flux signals in groundwater, surface water, and air. Not addressing the influence of regional groundwater in the field measurement program and data analysis would give a misleading impression of the overall carbon source or sink status of the rainforest.more » In quantifying a carbon budget with the traditional "small watershed" mass-balance approach, it would be critical at this site and likely many others to consider watershed inputs or losses associated with exchange between the ecosystem and the deeper hydrogeological system on which it sits.« less

  8. The Role of Alpine Wetlands as Hot Spots of Dissolved Organic Carbon Fluxes in the East River, Colorado

    NASA Astrophysics Data System (ADS)

    Winnick, M.; Rainaldi, G. R.; Lawrence, C. R.; McCormick, M. E.; Hsu, H. T.; Druhan, J. L.; Williams, K. H.; Maher, K.

    2016-12-01

    Dissolved organic carbon (DOC) is a critical chemical attribute of freshwater systems, affecting nutrient availability, toxicity and solubility of metals, and biological activity via the absorption of light and microbial consumption of O2 during DOC mineralization. Although DOC contributions to streams are distributed across the landscape in the shallow subsurface, many studies have demonstrated area-outsized contributions from riparian zones with high biological productivity and low subsurface O2 concentrations. In the East River, CO, a high-elevation watershed located in the central Rocky Mountains, initial observations show that DOC concentrations of two tributaries, Rock Creek and Gothic Creek, are elevated by 3-10 times compared to concentrations in the main East River and its other tributaries. These elevated concentrations are qualitatively linked to the unique presence of large wetlands in the headwaters of Rock and Gothic creeks, which due to potential anoxic conditions, experience reduced rates of organic matter decomposition and serve as an elevated source of DOC. In this study we quantify the cycling of organic matter in these alpine wetlands and their area-outsized contributions to East River DOC fluxes. We present concentration profiles of DOC along stream reaches and along subsurface flowpaths that span the transition from hillslope to wetland coupled with high-resolution mapping of chronically-saturated zones and calculate area-weighted fluxes of DOC from wetlands to Rock and Gothic creeks at multiple times through the 2016 growing season. Additionally, soil and groundwater DOC fluxes are compared with depth-resolved organic carbon content from soil cores, substrate quality (C:N), and soil surface CO2 fluxes to evaluate organic carbon budgets in the hillslope and wetland areas feeding Rock Creek. The characterization of these hotspots of DOC generation and transport in the East River is vital to the ability to predict nutrient cycling changes into

  9. The response of ecosystem carbon fluxes to LAI and environmental drivers in a maize crop grown in two contrasting seasons.

    PubMed

    Vitale, Luca; Di Tommasi, Paul; D'Urso, Guido; Magliulo, Vincenzo

    2016-03-01

    The eddy correlation technique was used to investigate the influence of biophysical variables and crop phenological phases on the behaviour of ecosystem carbon fluxes of a maize crop, in two contrasting growing seasons. In 2009, the reduced water supply during the early growing stage limited leaf area expansion, thus negatively affecting canopy photosynthesis. The variability of gross primary production (GPP) and ecosystem respiration (R eco) was mainly explained by seasonal variation of leaf area index (LAI). The seasonal variation of R eco was positively influenced by soil temperatures (T soil) in 2008 but not in 2009. In 2008, a contribution of both autotrophic and heterotrophic components to total R eco could be hypothesized, while during 2009, autotrophic respiration is supposed to be the most important component. Crop phenological phases affected the response of ecosystem fluxes to biophysical drivers.

  10. Variability of carbon and water fluxes following climate extremes over a tropical forest in southwestern Amazonia.

    PubMed

    Zeri, Marcelo; Sá, Leonardo D A; Manzi, Antônio O; Araújo, Alessandro C; Aguiar, Renata G; von Randow, Celso; Sampaio, Gilvan; Cardoso, Fernando L; Nobre, Carlos A

    2014-01-01

    The carbon and water cycles for a southwestern Amazonian forest site were investigated using the longest time series of fluxes of CO2 and water vapor ever reported for this site. The period from 2004 to 2010 included two severe droughts (2005 and 2010) and a flooding year (2009). The effects of such climate extremes were detected in annual sums of fluxes as well as in other components of the carbon and water cycles, such as gross primary production and water use efficiency. Gap-filling and flux-partitioning were applied in order to fill gaps due to missing data, and errors analysis made it possible to infer the uncertainty on the carbon balance. Overall, the site was found to have a net carbon uptake of ≈5 t C ha(-1) year(-1), but the effects of the drought of 2005 were still noticed in 2006, when the climate disturbance caused the site to become a net source of carbon to the atmosphere. Different regions of the Amazon forest might respond differently to climate extremes due to differences in dry season length, annual precipitation, species compositions, albedo and soil type. Longer time series of fluxes measured over several locations are required to better characterize the effects of climate anomalies on the carbon and water balances for the whole Amazon region. Such valuable datasets can also be used to calibrate biogeochemical models and infer on future scenarios of the Amazon forest carbon balance under the influence of climate change.

  11. Variability of Carbon and Water Fluxes Following Climate Extremes over a Tropical Forest in Southwestern Amazonia

    PubMed Central

    Zeri, Marcelo; Sá, Leonardo D. A.; Manzi, Antônio O.; Araújo, Alessandro C.; Aguiar, Renata G.; von Randow, Celso; Sampaio, Gilvan; Cardoso, Fernando L.; Nobre, Carlos A.

    2014-01-01

    The carbon and water cycles for a southwestern Amazonian forest site were investigated using the longest time series of fluxes of CO2 and water vapor ever reported for this site. The period from 2004 to 2010 included two severe droughts (2005 and 2010) and a flooding year (2009). The effects of such climate extremes were detected in annual sums of fluxes as well as in other components of the carbon and water cycles, such as gross primary production and water use efficiency. Gap-filling and flux-partitioning were applied in order to fill gaps due to missing data, and errors analysis made it possible to infer the uncertainty on the carbon balance. Overall, the site was found to have a net carbon uptake of ≈5 t C ha−1 year−1, but the effects of the drought of 2005 were still noticed in 2006, when the climate disturbance caused the site to become a net source of carbon to the atmosphere. Different regions of the Amazon forest might respond differently to climate extremes due to differences in dry season length, annual precipitation, species compositions, albedo and soil type. Longer time series of fluxes measured over several locations are required to better characterize the effects of climate anomalies on the carbon and water balances for the whole Amazon region. Such valuable datasets can also be used to calibrate biogeochemical models and infer on future scenarios of the Amazon forest carbon balance under the influence of climate change. PMID:24558378

  12. Carbon fluxes in a heterogeneous estuarine wetland in Northern Ohio. Comparing eddy covariance and chamber measurements

    NASA Astrophysics Data System (ADS)

    Rey Sanchez, C.; Morin, T. H.; Stefanik, K. C.; Wrighton, K. C.; Bohrer, G.

    2016-12-01

    Wetlands are important carbon dioxide (CO2) sinks but also the largest source of methane (CH4), a powerful greenhouse gas. Wetlands are often heterogeneous landscapes with highly diverse land covers and different paths of CH4 release and CO2 uptake. Understanding the ecosystem level greenhouse gas budget of a wetland involves understanding several carbon fluxes associated with each of the different land cover patches. We studied CO2 and CH4 fluxes from different land cover types at the Old Woman Creek (OWC) National Estuarine Research Reserve, at the Lake Erie shore in Northern Ohio. OWC is composed of four main types of land cover: open water, emergent cattail vegetation (Typha spp), floating vegetation (Nelimbo spp), and mud flats. CH4 and CO2 gas exchange was measured in each patch type using enclosed chambers monthly during the growing seasons of 2015 and 2016. During the same period of time, an eddy covariance tower was deployed in a representative section of the wetland to measure continuous site-level CO2 and CH4 fluxes. A footprint model was used to account for the relative contributions of each patch type to the flux measured by the tower. The chamber measurements were used to constrain the contributions of each patch within the flux tower footprint, and to correct the flux measurements to the whole-wetland total flux. We analyzed the spatial and temporal variability of methane and carbon dioxide and related this variation to some of the most important environmental drivers at the site. We used these data to analyze the implications of different arrangements of land cover types on the carbon balance and greenhouse-gas budget in wetlands.

  13. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Chen, Shuyu; Liang, Tengfei; Zhang, Qiang; Fan, Zhongli; Yin, Hang; Huang, Kuo-Wei; Zhang, Xixiang; Lai, Zhiping; Sheng, Ping

    2018-04-01

    Freshwater flux and energy consumption are two important benchmarks for the membrane desalination process. Here, we show that nanoporous carbon composite membranes, which comprise a layer of porous carbon fibre structures grown on a porous ceramic substrate, can exhibit 100% desalination and a freshwater flux that is 3-20 times higher than existing polymeric membranes. Thermal accounting experiments demonstrated that the carbon composite membrane saved over 80% of the latent heat consumption. Theoretical calculations combined with molecular dynamics simulations revealed the unique microscopic process occurring in the membrane. When the salt solution is stopped at the openings to the nanoscale porous channels and forms a meniscus, the vapour can rapidly transport across the nanoscale gap to condense on the permeate side. This process is driven by the chemical potential gradient and aided by the unique smoothness of the carbon surface. The high thermal conductivity of the carbon composite membrane ensures that most of the latent heat is recovered.

  14. Multi-property modeling of ocean basin carbon fluxes

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1988-01-01

    The objectives of this project were to elucidate the causal mechanisms in some of the most important features of the global ocean/atomsphere carbon system. These included the interaction of physical and biological processes in the seasonal cycle of surface water pCo2, and links between productivity, surface chlorophyll, and the carbon cycle that would aid global modeling efforts. In addition, several other areas of critical scientific interest involving links between the marine biosphere and the global carbon cycle were successfully pursued; specifically, a possible relation between phytoplankton emitted DMS and climate, and a relation between the location of calcium carbonate burial in the ocean and metamorphic source fluxes of CO2 to the atmosphere. Six published papers covering the following topics are summarized: (1) Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary; (2) Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial; (3) Controls on CO2 sources and sinks in the earthscale surface ocean; (4) pre-anthropogenic, earthscale patterns of delta pCO2 between ocean and atmosphere; (5) Effect on atmospheric CO2 from seasonal variations in the high latitude ocean; and (6) Limitations or relating ocean surface chlorophyll to productivity.

  15. Biophysical controls on carbon and water vapor fluxes across a grassland climatic gradient in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagle, Pradeep; Xiao, Xiangming; Scott, Russell L.

    Understanding of the underlying causes of spatial variation in exchange of carbon and water vapor fluxes between grasslands and the atmosphere is crucial for accurate estimates of regional and global carbon and water budgets, and for predicting the impact of climate change on biosphere–atmosphere feedbacks of grasslands. We used ground-based eddy flux and meteorological data, and the Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) from 12 grasslands across the United States to examine the spatial variability in carbon and water vapor fluxes and to evaluate the biophysical controls on the spatial patterns of fluxes. Precipitation was strongly associatedmore » with spatial and temporal variability in carbon and water vapor fluxes and vegetation productivity. Grasslands with annual average precipitation <600 mm generally had neutral annual carbon balance or emitted small amount of carbon to the atmosphere. Despite strong coupling between gross primary production (GPP)and evapotranspiration (ET) across study sites, GPP showed larger spatial variation than ET, and EVI had a greater effect on GPP than on ET. Consequently, large spatial variation in ecosystem water use efficiency (EWUE = annual GPP/ET; varying from 0.67 ± 0.55 to 2.52 ± 0.52 g C mm⁻¹ET) was observed. Greater reduction in GPP than ET at high air temperature and vapor pressure deficit caused a reduction in EWUE in dry years, indicating a response which is opposite than what has been reported for forests. Our results show that spatial and temporal variations in ecosystem carbon uptake, ET, and water use efficiency of grasslands were strongly associated with canopy greenness and coverage, as indicated by EVI.« less

  16. A cross-site comparison of factors controlling streamwater carbon flux in western North American catchments (Invited)

    NASA Astrophysics Data System (ADS)

    Brooks, P. D.; Biederman, J. A.; Condon, K.; Chorover, J.; McIntosh, J. C.; Meixner, T.; Perdrial, J. N.

    2013-12-01

    Increasing variability in climate is expected to alter the amount and form of terrestrial carbon in stream water both directly, through changes in the magnitude and timing of discharge, and indirectly through changes in land cover following disturbance (e.g. drought, fire, or insect driven mortality). Predicting how these changes will impact individual stream-catchment ecosystems however, is hampered by a lack of concurrent observations on both dissolved and particulate carbon flux across a range of spatial, temporal, and discharge scales. Because carbon is strongly coupled to most biogeochemical reactions within both aquatic and terrestrial ecosystems, this represents a critical unknown in predicting the response of catchment-ecosystems to concurrent changes in climate and land cover. This presentation will address this issue using a meta-analysis of dissolved organic, dissolved inorganic, and particulate organic carbon fluxes from multiple locations, including undisturbed sites along a climate gradient from desert rivers to seasonally snow-covered, forested mountain catchments, and sites disturbed by both fire and extensive, insect driven mortality. Initial analyses suggest that dissolved (organic and inorganic) and particulate fluxes respond differently to various types of disturbance and depend on interactions between changes in size of mobile carbon pools and changes in hydrologic routing of carbon to streamwater. Anomalously large fluxes of both dissolved and particulate organic matter are associated with episodic changes in hydrologic routing (e.g. storm floods; snowmelt) that connect normally hydrologically isolated carbon pools (e.g. surficial hillslope soils) with surface water. These events are often of short duration as the supply of mobile carbon is exhausted in short term flushing response. In contrast, disturbances that increase the size of the mobile carbon pool (e.g. widespread vegetation mortality) result smaller proportional increases in

  17. A Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid Flux

    PubMed Central

    2017-01-01

    Lipid accumulation within the lumen of endolysosomal vesicles is observed in various pathologies including atherosclerosis, liver disease, neurological disorders, lysosomal storage disorders, and cancer. Current methods cannot measure lipid flux specifically within the lysosomal lumen of live cells. We developed an optical reporter, composed of a photoluminescent carbon nanotube of a single chirality, that responds to lipid accumulation via modulation of the nanotube’s optical band gap. The engineered nanomaterial, composed of short, single-stranded DNA and a single nanotube chirality, localizes exclusively to the lumen of endolysosomal organelles without adversely affecting cell viability or proliferation or organelle morphology, integrity, or function. The emission wavelength of the reporter can be spatially resolved from within the endolysosomal lumen to generate quantitative maps of lipid content in live cells. Endolysosomal lipid accumulation in cell lines, an example of drug-induced phospholipidosis, was observed for multiple drugs in macrophages, and measurements of patient-derived Niemann–Pick type C fibroblasts identified lipid accumulation and phenotypic reversal of this lysosomal storage disease. Single-cell measurements using the reporter discerned subcellular differences in equilibrium lipid content, illuminating significant intracellular heterogeneity among endolysosomal organelles of differentiating bone-marrow-derived monocytes. Single-cell kinetics of lipoprotein-derived cholesterol accumulation within macrophages revealed rates that differed among cells by an order of magnitude. This carbon nanotube optical reporter of endolysosomal lipid content in live cells confers additional capabilities for drug development processes and the investigation of lipid-linked diseases. PMID:28898055

  18. Roles of climate, vegetation and soil in regulating the spatial variations in ecosystem carbon dioxide fluxes in the Northern Hemisphere.

    PubMed

    Chen, Zhi; Yu, Guirui; Ge, Jianping; Wang, Qiufeng; Zhu, Xianjin; Xu, Zhiwei

    2015-01-01

    Climate, vegetation, and soil characteristics play important roles in regulating the spatial variation in carbon dioxide fluxes, but their relative influence is still uncertain. In this study, we compiled data from 241 eddy covariance flux sites in the Northern Hemisphere and used Classification and Regression Trees and Redundancy Analysis to assess how climate, vegetation, and soil affect the spatial variations in three carbon dioxide fluxes (annual gross primary production (AGPP), annual ecosystem respiration (ARE), and annual net ecosystem production (ANEP)). Our results showed that the spatial variations in AGPP, ARE, and ANEP were significantly related to the climate and vegetation factors (correlation coefficients, R = 0.22 to 0.69, P < 0.01) while they were not related to the soil factors (R = -0.11 to 0.14, P > 0.05) in the Northern Hemisphere. The climate and vegetation together explained 60% and 58% of the spatial variations in AGPP and ARE, respectively. Climate factors (mean annual temperature and precipitation) could account for 45-47% of the spatial variations in AGPP and ARE, but the climate constraint on the vegetation index explained approximately 75%. Our findings suggest that climate factors affect the spatial variations in AGPP and ARE mainly by regulating vegetation properties, while soil factors exert a minor effect. To more accurately assess global carbon balance and predict ecosystem responses to climate change, these discrepant roles of climate, vegetation, and soil are required to be fully considered in the future land surface models. Moreover, our results showed that climate and vegetation factors failed to capture the spatial variation in ANEP and suggest that to reveal the underlying mechanism for variation in ANEP, taking into account the effects of other factors (such as climate change and disturbances) is necessary.

  19. Roles of Climate, Vegetation and Soil in Regulating the Spatial Variations in Ecosystem Carbon Dioxide Fluxes in the Northern Hemisphere

    PubMed Central

    Chen, Zhi; Yu, Guirui; Ge, Jianping; Wang, Qiufeng; Zhu, Xianjin; Xu, Zhiwei

    2015-01-01

    Climate, vegetation, and soil characteristics play important roles in regulating the spatial variation in carbon dioxide fluxes, but their relative influence is still uncertain. In this study, we compiled data from 241 eddy covariance flux sites in the Northern Hemisphere and used Classification and Regression Trees and Redundancy Analysis to assess how climate, vegetation, and soil affect the spatial variations in three carbon dioxide fluxes (annual gross primary production (AGPP), annual ecosystem respiration (ARE), and annual net ecosystem production (ANEP)). Our results showed that the spatial variations in AGPP, ARE, and ANEP were significantly related to the climate and vegetation factors (correlation coefficients, R = 0.22 to 0.69, P < 0.01) while they were not related to the soil factors (R = -0.11 to 0.14, P > 0.05) in the Northern Hemisphere. The climate and vegetation together explained 60 % and 58 % of the spatial variations in AGPP and ARE, respectively. Climate factors (mean annual temperature and precipitation) could account for 45 - 47 % of the spatial variations in AGPP and ARE, but the climate constraint on the vegetation index explained approximately 75 %. Our findings suggest that climate factors affect the spatial variations in AGPP and ARE mainly by regulating vegetation properties, while soil factors exert a minor effect. To more accurately assess global carbon balance and predict ecosystem responses to climate change, these discrepant roles of climate, vegetation, and soil are required to be fully considered in the future land surface models. Moreover, our results showed that climate and vegetation factors failed to capture the spatial variation in ANEP and suggest that to reveal the underlying mechanism for variation in ANEP, taking into account the effects of other factors (such as climate change and disturbances) is necessary. PMID:25928452

  20. Soil organic carbon stocks and fluxes due to land use conversions at the European scale

    NASA Astrophysics Data System (ADS)

    Gobin, A.; Campling, P.

    2012-04-01

    European soils store around 73 to 79 billion tonnes of carbon, which is about 50 times the total CO2-equivalent emissions of the 27 Member States of the European Union in 2009 (4.6 billion tones; EEA, 2010). More than twice as much carbon is held in soils as compared to the storage in vegetation or the atmosphere. Soil organic carbon (SOC) stocks are dynamic and changes in land use, land management and climate may result in instant losses, whereas gains accumulate more slowly over several decades. The soil organic carbon cycle is based on continually supplying carbon in the form of organic matter as a food source for microorganisms, the loss of some carbon as carbon dioxide, and the assimilation of stable carbon in the soil. The organic carbon stocks and fluxes to and from the soil across the EU were quantified for agriculture, forestry and peatlands under different land use change and management scenarios taking into account climate change and using a coupled regional balance and multi-compartment soil organic matter model (Roth-C). Abolishing permanent grassland restrictions would have a negative effect on SOC stocks, which at the EU level can be quantified in a loss 30% higher than in the case of maintaining the current permanent grassland restrictions. Promoting the afforestation of 10% and 25% former set-aside land in the EU-15 would reduce the loss of SOC stock by 2030 by 19% and 65% respectively compared to conversions to arable land. An increase of the current afforestation rates by 2% would result in a 10% increase in carbon stock levels by 2030. The combined effect of the land use conversions to and from agricultural land use demonstrate an EU-27 average -9.7 tonnes/ha SOC stock loss for the worst option and a +5.0 tonnes/ha SOC stock gain for C-Rich option. Larger variations between Member States than between scenario options stem from regional differences in bio-geography, soil types and climatic regimes. The amount of stable or humified organic carbon

  1. BOREAS TGB-12 Soil Carbon and Flux Data of NSA-MSA in Raster Format

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David E. (Editor); Rapalee, Gloria; Davidson, Eric; Harden, Jennifer W.; Trumbore, Susan E.; Veldhuis, Hugo

    2000-01-01

    The BOREAS TGB-12 team made measurements of soil carbon inventories, carbon concentration in soil gases, and rates of soil respiration at several sites. This data set provides: (1) estimates of soil carbon stocks by horizon based on soil survey data and analyses of data from individual soil profiles; (2) estimates of soil carbon fluxes based on stocks, fire history, drain-age, and soil carbon inputs and decomposition constants based on field work using radiocarbon analyses; (3) fire history data estimating age ranges of time since last fire; and (4) a raster image and an associated soils table file from which area-weighted maps of soil carbon and fluxes and fire history may be generated. This data set was created from raster files, soil polygon data files, and detailed lab analysis of soils data that were received from Dr. Hugo Veldhuis, who did the original mapping in the field during 1994. Also used were soils data from Susan Trumbore and Jennifer Harden (BOREAS TGB-12). The binary raster file covers a 733-km 2 area within the NSA-MSA.

  2. Benchmarking carbon fluxes of the ISIMIP2a biome models

    DOE PAGES

    Chang, Jinfeng; Ciais, Philippe; Wang, Xuhui; ...

    2017-03-28

    The purpose of this study is to evaluate the eight ISIMIP2a biome models against independent estimates of long-term net carbon fluxes (i.e. Net Biome Productivity, NBP) over terrestrial ecosystems for the recent four decades (1971–2010). Here, we evaluate modeled global NBP against 1) the updated global residual land sink (RLS) plus land use emissions (E LUC) from the Global Carbon Project (GCP), presented as R + L in this study by Le Quéré et al (2015), and 2) the land CO 2 fluxes from two atmospheric inversion systems: Jena CarboScope s81_v3.8 and CAMS v15r2, referred to as F Jena andmore » F CAMS respectively. The model ensemble-mean NBP (that includes seven models with land-use change) is higher than but within the uncertainty of R + L, while the simulated positive NBP trend over the last 30 yr is lower than that from R + L and from the two inversion systems. ISIMIP2a biome models well capture the interannual variation of global net terrestrial ecosystem carbon fluxes. Tropical NBP represents 31 ± 17% of global total NBP during the past decades, and the year-to-year variation of tropical NBP contributes most of the interannual variation of global NBP. According to the models, increasing Net Primary Productivity (NPP) was the main cause for the generally increasing NBP. Significant global NBP anomalies from the long-term mean between the two phases of El Niño Southern Oscillation (ENSO) events are simulated by all models (p < 0.05), which is consistent with the R + L estimate (p = 0.06), also mainly attributed to NPP anomalies, rather than to changes in heterotrophic respiration (Rh). The global NPP and NBP anomalies during ENSO events are dominated by their anomalies in tropical regions impacted by tropical climate variability. Multiple regressions between R + L, F Jena and F CAMS interannual variations and tropical climate variations reveal a significant negative response of global net terrestrial ecosystem carbon fluxes to tropical mean annual

  3. Benchmarking carbon fluxes of the ISIMIP2a biome models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Jinfeng; Ciais, Philippe; Wang, Xuhui

    The purpose of this study is to evaluate the eight ISIMIP2a biome models against independent estimates of long-term net carbon fluxes (i.e. Net Biome Productivity, NBP) over terrestrial ecosystems for the recent four decades (1971–2010). Here, we evaluate modeled global NBP against 1) the updated global residual land sink (RLS) plus land use emissions (E LUC) from the Global Carbon Project (GCP), presented as R + L in this study by Le Quéré et al (2015), and 2) the land CO 2 fluxes from two atmospheric inversion systems: Jena CarboScope s81_v3.8 and CAMS v15r2, referred to as F Jena andmore » F CAMS respectively. The model ensemble-mean NBP (that includes seven models with land-use change) is higher than but within the uncertainty of R + L, while the simulated positive NBP trend over the last 30 yr is lower than that from R + L and from the two inversion systems. ISIMIP2a biome models well capture the interannual variation of global net terrestrial ecosystem carbon fluxes. Tropical NBP represents 31 ± 17% of global total NBP during the past decades, and the year-to-year variation of tropical NBP contributes most of the interannual variation of global NBP. According to the models, increasing Net Primary Productivity (NPP) was the main cause for the generally increasing NBP. Significant global NBP anomalies from the long-term mean between the two phases of El Niño Southern Oscillation (ENSO) events are simulated by all models (p < 0.05), which is consistent with the R + L estimate (p = 0.06), also mainly attributed to NPP anomalies, rather than to changes in heterotrophic respiration (Rh). The global NPP and NBP anomalies during ENSO events are dominated by their anomalies in tropical regions impacted by tropical climate variability. Multiple regressions between R + L, F Jena and F CAMS interannual variations and tropical climate variations reveal a significant negative response of global net terrestrial ecosystem carbon fluxes to tropical mean annual

  4. Carbon Fluxes at the AmazonFACE Research Site

    NASA Astrophysics Data System (ADS)

    Norby, R.; De Araujo, A. C.; Cordeiro, A. L.; Fleischer, K.; Fuchslueger, L.; Garcia, S.; Hofhansl, F.; Garcia, M. N.; Grandis, A.; Oblitas, E.; Pereira, I.; Pieres, N. M.; Schaap, K.; Valverde-Barrantes, O.

    2017-12-01

    The free-air CO2 enrichment (FACE) experiment to be implemented in the Amazon rain forest requires strong pretreatment characterization so that eventual responses to elevated CO2 can be detected against a background of substantial species diversity and spatial heterogeneity. Two 30-m diameter plots have been laid out for initial characterization in a 30-m tall, old-growth, terra firme forest. Intensive measurements have been made of aboveground tree growth, leaf area, litter production, and fine-root production; these data sets together support initial estimates of plot-scale net primary productivity (NPP). Leaf-level measurements of photosynthesis throughout the canopy and over a daily time course in both the wet and dry season, coupled with meterological monitoring, support an initial estimate of gross primary productivity (GPP) and carbon-use efficiency (CUE = NPP/GPP). Monthly monitoring of CO2 efflux from the soil, partitioned into autotrophic and heterotrophic components, supports an estimate of net ecosystem production (NEP). Our estimate of NPP in the two plots (1.2 and 1.4 kg C m-2 yr-1) is 16-38% greater than previously reported for the site, primarily due to our more complete documentation of fine-root production, including root production deeper than 30 cm. The estimate of CUE of the ecosystem (0.52) is greater than most others in Amazonia; this discrepancy reflects large uncertainty in GPP, which derived from just two days of measurement, or to underestimates of the fine-root component of NPP in previous studies. Estimates of NEP (0 and 0.14 kg C m-2 yr-1) are generally consistent with a landscape-level estimate from flux tower data. Our C flux estimates, albeit very preliminary, provide initial benchmarks for a 12-model a priori evaluation of this forest. The model means of GPP, NPP, and NEP are mostly consistent with our field measurements. Predictions of C flux responses to elevated CO2 from the models become hypotheses to be tested in the FACE

  5. Downward particle flux and carbon export in the Beaufort Sea, Arctic Ocean; the role of zooplankton

    NASA Astrophysics Data System (ADS)

    Miquel, J.-C.; Gasser, B.; Martín, J.; Marec, C.; Babin, M.; Fortier, L.; Forest, A.

    2015-08-01

    As part of the international, multidisciplinary project Malina, downward particle fluxes were investigated by means of a drifting multi-sediment trap mooring deployed at three sites in the Canadian Beaufort Sea in late summer 2009. Mooring deployments lasted between 28 and 50 h and targeted the shelf-break and the slope along the Beaufort-Mackenzie continental margin, as well as the edge between the Mackenzie Shelf and the Amundsen Gulf. Besides analyses of C and N, the collected material was investigated for pigments, phyto- and microzooplankton, faecal pellets and swimmers. The measured fluxes were relatively low, in the range of 11-54 mg m-2 d-1 for the total mass, 1-15 mg C m-2 d-1 for organic carbon and 0.2-2.5 mg N m-2 d-1 for nitrogen. Comparison with a long-term trap data set from the same sampling area showed that the short-term measurements were at the lower end of the high variability characterizing a rather high flux regime during the study period. The sinking material consisted of aggregates and particles that were characterized by the presence of hetero- and autotrophic microzooplankters and diatoms and by the corresponding pigment signatures. Faecal pellets contribution to sinking carbon flux was important, especially at depths below 100 m, where they represented up to 25 % of the total carbon flux. The vertical distribution of different morphotypes of pellets showed a marked pattern with cylindrical faeces (produced by calanoid copepods) present mainly within the euphotic zone, whereas elliptical pellets (produced mainly by smaller copepods) were more abundant at mesopelagic depths. These features, together with the density of matter within the pellets, highlighted the role of the zooplankton community in the transformation of carbon issued from the primary production and the transition of that carbon from the productive surface zone to the Arctic Ocean's interior. Our data indicate that sinking carbon flux in this late summer period is primarily

  6. Simulating carbon, water and energy fluxes of a rainforest and an oil palm plantation using the Community Land Model (CLM4.5)

    NASA Astrophysics Data System (ADS)

    Fan, Yuanchao; Bernoux, Martial; Roupsard, Olivier; Panferov, Oleg; Le Maire, Guerric; Tölle, Merja; Knohl, Alexander

    2014-05-01

    Deforestation and forest degradation driven by the expansion of oil palm (Elaeis guineensis) plantations has become the major source of GHG emission in Indonesia. Changes of land surface properties (e.g. vegetation composition, soil property, surface albedo) associated with rainforest to oil palm conversion might alter the patterns of land-atmosphere energy, water and carbon cycles and therefore affect local or regional climate. Land surface modeling has been widely used to characterize the two-way interactions between climate and human disturbances on land surface. The Community Land Model (CLM) is a third-generation land model that simulates a wide range of biogeophysical and biogeochemical processes. This project utilizes the land-cover/land-use change (LCLUC) capability of the latest CLM versions 4/4.5 to characterize quantitatively how anthropogenic land surface dynamics in Indonesia affect land-atmosphere carbon, water and energy fluxes. Before simulating land use changes, the first objective is to parameterize and validate the CLM model at local rainforest and oil palm plantation sites through separate point simulations. This entails creation and parameterization of a new plant functional type (PFT) for oil palm, as well as sensitivity analysis and adaptation of model parameters for the rainforest PFTs. CLM modelled fluxes for the selected sites are to be compared with field observations from eddy covariance (EC) flux towers (e.g. a rainforest site in Bariri, Sulawesi; an oil palm site in Jambi, Sumatra). After validation, the project will proceed to parameterize land-use transformation system using remote sensing data and to simulate the impacts of historical LUCs on carbon, water and energy fluxes. Last but not least, the effects of future LUCs in Indonesia on the fluxes and carbon sequestration capacity will be investigated through scenario study. Historical land cover changes, especially oil palm coverage, are retrieved from Landsat or MODIS archival

  7. Differential responses of carbon and water vapor fluxes to climate among evergreen needleleaf forests in the USA

    DOE PAGES

    Wagle, Pradeep; Xiao, Xiangming; Kolb, Thomas E.; ...

    2016-05-31

    Here, understanding the differences in carbon and water vapor fluxes of spatially distributed evergreen needleleaf forests (ENFs) is crucial for accurately estimating regional or global carbon and water budgets and when predicting the responses of ENFs to current and future climate. We compared the fluxes of ten AmeriFlux ENF sites to investigate cross-site variability in net ecosystem exchange of carbon (NEE), gross primary production (GPP), and evapotranspiration (ET). We used wavelet cross-correlation analysis to examine responses of NEE and ET to common climatic drivers over multiple timescales and also determined optimum values of air temperature (T a) and vapor pressuremore » deficit (VPD) for NEE and ET.« less

  8. Differential responses of carbon and water vapor fluxes to climate among evergreen needleleaf forests in the USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagle, Pradeep; Xiao, Xiangming; Kolb, Thomas E.

    Here, understanding the differences in carbon and water vapor fluxes of spatially distributed evergreen needleleaf forests (ENFs) is crucial for accurately estimating regional or global carbon and water budgets and when predicting the responses of ENFs to current and future climate. We compared the fluxes of ten AmeriFlux ENF sites to investigate cross-site variability in net ecosystem exchange of carbon (NEE), gross primary production (GPP), and evapotranspiration (ET). We used wavelet cross-correlation analysis to examine responses of NEE and ET to common climatic drivers over multiple timescales and also determined optimum values of air temperature (T a) and vapor pressuremore » deficit (VPD) for NEE and ET.« less

  9. Carbon stocks and fluxes in fire disturbed landscapes of Colorado, U.S.A.

    NASA Astrophysics Data System (ADS)

    Barnes, R. T.; Wolf, K.; Whittinghill, K. A.; Gilbertson, A.; Buma, B.

    2016-12-01

    In terrestrial ecosystems, ecological disturbances can strongly regulate material and energy flows. This often results from the reduction in biomass and associated ecological relationships and physiological processes. Researchers have noted an increase in the size and severity of disturbances, such as wildfire, in recent decades. While there is significant research examining post-disturbance carbon stocks and recovery, there is less known about the fate and quality of post-disturbance carbon pools. In an effort to understand the recovery and resilience of forest carbon stocks to severe wildfire we examined the carbon and black carbon (pyrogenic) stocks (e.g. above ground biomass, coarse woody debris, charcoal, soils) and export fluxes (stream export, soil leachate, soil respiration) within the burn scars and nearby reference sites of five 2002 Colorado fires. The fires encompass large precipitation and ecosystem gradients (relatively dry montane Ponderosa forests to relatively wet subalpine Lodgepole forests), allowing us to control for various state factors in our analyses. With the exception of the Hinman fire (subalpine, Lodgepole dominated), there is little forest regrowth more than a decade later, with only a few saplings found in burned plots; instead forbes and grasses dominate. Fire also reduces soil C stocks (by 16 to 68%) across all sites. In addition, with the shifts in vegetation we hypothesize that there will be corresponding changes in soil organic matter (SOM), altering the residence time of C in soil. Soil incubation experiments reveal that organic matter bioavailability is significantly greater in three of the burned sites, suggesting that the new sources of SOM are more bioavailable. Stable isotopic analyses of SOM and the evolved CO2 from the incubation studies will allow us to test this hypothesis. Fire also affects the amount and nature of dissolved and particulate organic matter (DOM and POM, respectively) leaving the watershed. For example

  10. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment

    DOE PAGES

    Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.; ...

    2016-02-12

    Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Modelmore » simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO 2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe +2 and S -2 oxidation) to match locally-observed high CO 2 concentrations above reduced zones. Observed seasonal variations in CO 2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m -2 d -1, while including water table variations resulted in an overall decrease in the simulated fluxes. We thus conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations.« less

  11. Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Marinov, I.; Gnanadesikan, A.

    2011-02-01

    The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation result in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.

  12. Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Marinov, I.; Gnanadesikan, A.

    2010-11-01

    The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation results in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.

  13. User-Friendly Predictive Modeling of Greenhouse Gas (GHG) Fluxes and Carbon Storage in Tidal Wetlands

    NASA Astrophysics Data System (ADS)

    Ishtiaq, K. S.; Abdul-Aziz, O. I.

    2015-12-01

    We developed user-friendly empirical models to predict instantaneous fluxes of CO2 and CH4 from coastal wetlands based on a small set of dominant hydro-climatic and environmental drivers (e.g., photosynthetically active radiation, soil temperature, water depth, and soil salinity). The dominant predictor variables were systematically identified by applying a robust data-analytics framework on a wide range of possible environmental variables driving wetland greenhouse gas (GHG) fluxes. The method comprised of a multi-layered data-analytics framework, including Pearson correlation analysis, explanatory principal component and factor analyses, and partial least squares regression modeling. The identified dominant predictors were finally utilized to develop power-law based non-linear regression models to predict CO2 and CH4 fluxes under different climatic, land use (nitrogen gradient), tidal hydrology and salinity conditions. Four different tidal wetlands of Waquoit Bay, MA were considered as the case study sites to identify the dominant drivers and evaluate model performance. The study sites were dominated by native Spartina Alterniflora and characterized by frequent flooding and high saline conditions. The model estimated the potential net ecosystem carbon balance (NECB) both in gC/m2 and metric tonC/hectare by up-scaling the instantaneous predicted fluxes to the growing season and accounting for the lateral C flux exchanges between the wetlands and estuary. The entire model was presented in a single Excel spreadsheet as a user-friendly ecological engineering tool. The model can aid the development of appropriate GHG offset protocols for setting monitoring plans for tidal wetland restoration and maintenance projects. The model can also be used to estimate wetland GHG fluxes and potential carbon storage under various IPCC climate change and sea level rise scenarios; facilitating an appropriate management of carbon stocks in tidal wetlands and their incorporation into a

  14. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models

    NASA Astrophysics Data System (ADS)

    Chadburn, Sarah E.; Krinner, Gerhard; Porada, Philipp; Bartsch, Annett; Beer, Christian; Belelli Marchesini, Luca; Boike, Julia; Ekici, Altug; Elberling, Bo; Friborg, Thomas; Hugelius, Gustaf; Johansson, Margareta; Kuhry, Peter; Kutzbach, Lars; Langer, Moritz; Lund, Magnus; Parmentier, Frans-Jan W.; Peng, Shushi; Van Huissteden, Ko; Wang, Tao; Westermann, Sebastian; Zhu, Dan; Burke, Eleanor J.

    2017-11-01

    It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that

  15. Planktic foraminifer and coccolith contribution to carbonate export fluxes over the central Kerguelen Plateau

    NASA Astrophysics Data System (ADS)

    Rembauville, M.; Meilland, J.; Ziveri, P.; Schiebel, R.; Blain, S.; Salter, I.

    2016-05-01

    We report the contribution of planktic foraminifers and coccoliths to the particulate inorganic carbon (PIC) export fluxes collected over an annual cycle (October 2011/September 2012) on the central Kerguelen Plateau in the Antarctic Zone (AAZ) south of the Polar Front (PF). The seasonality of PIC flux was decoupled from surface chlorophyll a concentration and particulate organic carbon (POC) fluxes and was characterized by a late summer (February) maximum. This peak was concomitant with the highest satellite-derived sea surface PIC and corresponded to a Emiliania huxleyi coccoliths export event that accounted for 85% of the annual PIC export. The foraminifer contribution to the annual PIC flux was much lower (15%) and dominated by Turborotalita quinqueloba and Neogloboquadrina pachyderma. Foraminifer export fluxes were closely related to the surface chlorophyll a concentration, suggesting food availability as an important factor regulating the foraminifer's biomass. We compared size-normalized test weight (SNW) of the foraminifers with previously published SNW from the Crozet Islands using the same methodology and found no significant difference in SNW between sites for a given species. However, the SNW was significantly species-specific with a threefold increase from T. quinqueloba to Globigerina bulloides. The annual PIC:POC molar ratio of 0.07 was close to the mean ratio for the global ocean and lead to a low carbonate counter pump effect (~5%) compared to a previous study north of the PF (6-32%). We suggest that lowers counter pump effect south of the PF despite similar productivity levels is due to a dominance of coccoliths in the PIC fluxes and a difference in the foraminifers species assemblage with a predominance of polar species with lower SNW.

  16. Flux Of Carbon from an Airborne Laboratory (FOCAL): Synergy of airborne and surface measures of carbon emission and isotopologue content from tundra landscape in Alaska

    NASA Astrophysics Data System (ADS)

    Dobosy, R.; Dumas, E.; Sayres, D. S.; Kochendorfer, J.

    2013-12-01

    Arctic tundra, recognized as a potential major source of new atmospheric carbon, is characterized by low topographic relief and small-scale heterogeneity consisting of small lakes and intervening tundra vegetation. This fits well the flux-fragment method (FFM) of analysis of data from low-flying aircraft. The FFM draws on 1)airborne eddy-covariance flux measurements, 2)a classified surface-characteristics map (e.g. open water vs tundra), 3)a footprint model, and 4)companion surface-based eddy-covariance flux measurements. The FOCAL, a collaboration among Harvard University's Anderson Group, NOAA's Atmospheric Turbulence and Diffusion Division (ATDD), and Aurora Flight Sciences, Inc., made coordinated flights in 2013 August with a collaborating surface site. The FOCAL gathers not only flux data for CH4 and CO2 but also the corresponding carbon-isotopologue content of these gases. The surface site provides a continuous sample of carbon flux from interstitial tundra over time throughout the period of the campaign. The FFM draws samples from the aircraft data over many instances of tundra and also open water. From this we will determine how representative the surface site is of the larger area (100 km linear scale), and how much the open water differs from the tundra as a source of carbon.

  17. Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the subtropical northeast Atlantic Ocean (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Ariza, A.; Garijo, J. C.; Landeira, J. M.; Bordes, F.; Hernández-León, S.

    2015-05-01

    Diel Vertical Migration (DVM) in marine ecosystems is performed by zooplankton and micronekton, promoting a poorly accounted export of carbon to the deep ocean. Major efforts have been made to estimate carbon export due to gravitational flux and to a lesser extent, to migrant zooplankton. However, migratory flux by micronekton has been largely neglected in this context, due to its time-consuming and difficult sampling. In this paper, we evaluated gravitational and migratory flux due to the respiration of zooplankton and micronekton in the northeast subtropical Atlantic Ocean (Canary Islands). Migratory flux was addressed by calculating the biomass of migrating components and measuring the electron transfer system (ETS) activity in zooplankton and dominant species representing micronekton (Euphausia gibboides, Sergia splendens and Lobianchia dofleini). Our results showed similar biomass in both components. The main taxa contributing to DVM within zooplankton were juvenile euphausiids, whereas micronekton were mainly dominated by fish, followed by adult euphausiids and decapods. The contribution to respiratory flux of zooplankton (3.4 ± 1.9 mg C m-2 d-1) was similar to that of micronekton (2.9 ± 1.0 mg C m-2 d-1). In summary, respiratory flux accounted for 53% (range 23-71) of the gravitational flux measured at 150 m depth (11.9 ± 5.8 mg C m-2 d-1). However, based on larger migratory ranges and gut clearance rates, micronekton are expected to be the dominant component that contributes to carbon export in deeper waters. Micronekton estimates in this paper as well as those in existing literature, although variable due to regional differences and difficulties in calculating their biomass, suggest that carbon fluxes driven by this community are important for future models of the biological carbon pump.

  18. Eddy covariance flux measurements of net ecosystem carbon dioxide exchange from a lowland peatland flux tower network in England and Wales

    NASA Astrophysics Data System (ADS)

    Morrison, Ross; Balzter, Heiko; Burden, Annette; Callaghan, Nathan; Cumming, Alenander; Dixon, Simon; Evans, Jonathan; Kaduk, Joerg; Page, Susan; Pan, Gong; Rayment, Mark; Ridley, Luke; Rylett, Daniel; Worrall, Fred; Evans, Christopher

    2016-04-01

    Peatlands store disproportionately large amounts of soil carbon relative to other terrestrial ecosystems. Over recent decades, the large amount of carbon stored as peat has proved vulnerable to a range of land use pressures as well as the increasing impacts of climate change. In temperate Europe and elsewhere, large tracts of lowland peatland have been drained and converted to agricultural land use. Such changes have resulted in widespread losses of lowland peatland habitat, land subsidence across extensive areas and the transfer of historically accumulated soil carbon to the atmosphere as carbon dioxide (CO2). More recently, there has been growth in activities aiming to reduce these impacts through improved land management and peatland restoration. Despite a long history of productive land use and management, the magnitude and controls on greenhouse gas emissions from lowland peatland environments remain poorly quantified. Here, results of surface-atmosphere measurements of net ecosystem CO2 exchange (NEE) from a network of seven eddy covariance (EC) flux towers located at a range of lowland peatland ecosystems across the United Kingdom (UK) are presented. This spatially-dense peatland flux tower network forms part of a wider observation programme aiming to quantify carbon, water and greenhouse gas balances for lowland peatlands across the UK. EC measurements totalling over seventeen site years were obtained at sites exhibiting large differences in vegetation cover, hydrological functioning and land management. The sites in the network show remarkable spatial and temporal variability in NEE. Across sites, annual NEE ranged from a net sink of -194 ±38 g CO2-C m-2 yr-1 to a net source of 784±70 g CO2-C m-2 yr-1. The results suggest that semi-natural sites remain net sinks for atmospheric CO2. Sites that are drained for intensive agricultural production range from a small net sink to the largest observed source for atmospheric CO2 within the flux tower network

  19. Ocean Carbon and Biogeochemistry Scoping Workshop on Terrestrial and Coastal Carbon Fluxes in the Gulf of Mexico, St. Petersburg, FL

    NASA Technical Reports Server (NTRS)

    Robbins, L. L.; Coble, P. G.; Clayton, T. D.; Cai, W. J.

    2008-01-01

    Despite their relatively small surface area, ocean margins may have a significant impact on global biogeochemical cycles and, potentially, the global air-sea fluxes of carbon dioxide. Margins are characterized by intense geochemical and biological processing of carbon and other elements and exchange large amounts of matter and energy with the open ocean. The area-specific rates of productivity, biogeochemical cycling, and organic/inorganic matter sequestration are high in coastal margins, with as much as half of the global integrated new production occurring over the continental shelves and slopes (Walsh, 1991; Doney and Hood, 2002; Jahnke, in press). However, the current lack of knowledge and understanding of biogeochemical processes occurring at the ocean margins has left them largely ignored in most of the previous global assessments of the oceanic carbon cycle (Doney and Hood, 2002). A major source of North American and global uncertainty is the Gulf of Mexico, a large semi-enclosed subtropical basin bordered by the United States, Mexico, and Cuba. Like many of the marginal oceans worldwide, the Gulf of Mexico remains largely unsampled and poorly characterized in terms of its air-sea exchange of carbon dioxide and other carbon fluxes. The goal of the workshop was to bring together researchers from multiple disciplines studying terrestrial, aquatic, and marine ecosystems to discuss the state of knowledge in carbon fluxes in the Gulf of Mexico, data gaps, and overarching questions in the Gulf of Mexico system. The discussions at the workshop were intended to stimulate integrated studies of marine and terrestrial biogeochemical cycles and associated ecosystems that will help to establish the role of the Gulf of Mexico in the carbon cycle and how it might evolve in the face of environmental change.

  20. A Mechanistically Informed User-Friendly Model to Predict Greenhouse Gas (GHG) Fluxes and Carbon Storage from Coastal Wetlands

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, O. I.; Ishtiaq, K. S.

    2015-12-01

    We present a user-friendly modeling tool on MS Excel to predict the greenhouse gas (GHG) fluxes and estimate potential carbon sequestration from the coastal wetlands. The dominant controls of wetland GHG fluxes and their relative mechanistic linkages with various hydro-climatic, sea level, biogeochemical and ecological drivers were first determined by employing a systematic data-analytics method, including Pearson correlation matrix, principal component and factor analyses, and exploratory partial least squares regressions. The mechanistic knowledge and understanding was then utilized to develop parsimonious non-linear (power-law) models to predict wetland carbon dioxide (CO2) and methane (CH4) fluxes based on a sub-set of climatic, hydrologic and environmental drivers such as the photosynthetically active radiation, soil temperature, water depth, and soil salinity. The models were tested with field data for multiple sites and seasons (2012-13) collected from the Waquoit Bay, MA. The model estimated the annual wetland carbon storage by up-scaling the instantaneous predicted fluxes to an extended growing season (e.g., May-October) and by accounting for the net annual lateral carbon fluxes between the wetlands and estuary. The Excel Spreadsheet model is a simple ecological engineering tool for coastal carbon management and their incorporation into a potential carbon market under a changing climate, sea level and environment. Specifically, the model can help to determine appropriate GHG offset protocols and monitoring plans for projects that focus on tidal wetland restoration and maintenance.

  1. Assessing the Impact of Organic Carbon on Nitrous Oxide Fluxes in Soils

    NASA Astrophysics Data System (ADS)

    Akrami, N.; Horwath, W. R.

    2016-12-01

    Fertilized agriculture is a significant source of the most potent green house gas (GHG), Nitrous Oxide (N2O), emissions. N2O's contribution to climate change through radioactive forcing is 265 times higher than that of Carbon dioxide (CO2). While literature has been mainly focused on N2O production, it is critical to point out that N2O emissions are the result of both production and consumption processes. There is not sufficient research in the literature focusing on the N2O consumption pathways and mechanisms as well as quantification of the rate of N2O consumption in soils. This work is an effort to address one of the most important environmental controlling factors for the soil to be assumed as a possible N2O sink and presumably account for N2O budget imbalances. In this study we introduce soil organic carbon (SOC) as a key criterion controlling N2O consumption processes mainly through affecting soil redox potential. We also quantify N2O consumption rates in both aerobic and anaerobic conditions under different carbon content scenarios. A batch incubation study is conducted on soils (0-15) cm collected from rice agricultural lands in Sacramento-San Joaquin delta consisting of 1%, 5%, 11% and 23% carbon. N2O consumption and production rates for all incubations (including 4 replicates) are measured under different treatments and the impact of Oxygen and Carbon content on N2O fluxes is evaluated. Results show higher N2O production and consumption rates in the soils with higher SOC content and lower Oxygen content. This study reveals that peat lands with high organic carbon content can be managed to be hotspots for Nitrous Oxide (N2O) consumption and might have the capacity to act as N2O sinks.

  2. Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data

    NASA Astrophysics Data System (ADS)

    Ueyama, M.; Ichii, K.; Hirata, R.; Takagi, K.; Asanuma, J.; Machimura, T.; Nakai, Y.; Ohta, T.; Saigusa, N.; Takahashi, Y.; Hirano, T.

    2010-03-01

    Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales. The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), and evapotranspiration (ET). Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, substantially improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values. The observed and simulated GPP and RE across the six sites were positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget was partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicated that spring warming enhanced the carbon sink, whereas summer warming decreased it across the larch forests. The summer radiation was the most important factor that controlled the carbon fluxes in the temperate site, but the VPD and water conditions were the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between belowground and aboveground, was site-specific, and it was negatively correlated with the annual climate of annual mean air temperature and total precipitation. Although this study substantially

  3. Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data

    NASA Astrophysics Data System (ADS)

    Ueyama, M.; Ichii, K.; Hirata, R.; Takagi, K.; Asanuma, J.; Machimura, T.; Nakai, Y.; Ohta, T.; Saigusa, N.; Takahashi, Y.; Hirano, T.

    2009-08-01

    Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales. The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), and evapotranspiration (ET). Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, significantly improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values. The observed and simulated GPP and RE across the six sites are positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget is partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicates that spring warming enhances the carbon sink, whereas summer warming decreases it across the larch forests. The summer radiation is the most important factor that controls the carbon fluxes in the temperate site, but the VPD and water conditions are the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between aboveground and belowground, is site-specific, and it is negatively correlated with the annual climate of annual mean air temperature and total precipitation. Although this study significantly improves

  4. African tropical rainforest net carbon dioxide fluxes in the twentieth century

    PubMed Central

    Fisher, Joshua B.; Sikka, Munish; Sitch, Stephen; Ciais, Philippe; Poulter, Benjamin; Galbraith, David; Lee, Jung-Eun; Huntingford, Chris; Viovy, Nicolas; Zeng, Ning; Ahlström, Anders; Lomas, Mark R.; Levy, Peter E.; Frankenberg, Christian; Saatchi, Sassan; Malhi, Yadvinder

    2013-01-01

    The African humid tropical biome constitutes the second largest rainforest region, significantly impacts global carbon cycling and climate, and has undergone major changes in functioning owing to climate and land-use change over the past century. We assess changes and trends in CO2 fluxes from 1901 to 2010 using nine land surface models forced with common driving data, and depict the inter-model variability as the uncertainty in fluxes. The biome is estimated to be a natural (no disturbance) net carbon sink (−0.02 kg C m−2 yr−1 or −0.04 Pg C yr−1, p < 0.05) with increasing strength fourfold in the second half of the century. The models were in close agreement on net CO2 flux at the beginning of the century (σ1901 = 0.02 kg C m−2 yr−1), but diverged exponentially throughout the century (σ2010 = 0.03 kg C m−2 yr−1). The increasing uncertainty is due to differences in sensitivity to increasing atmospheric CO2, but not increasing water stress, despite a decrease in precipitation and increase in air temperature. However, the largest uncertainties were associated with the most extreme drought events of the century. These results highlight the need to constrain modelled CO2 fluxes with increasing atmospheric CO2 concentrations and extreme climatic events, as the uncertainties will only amplify in the next century. PMID:23878340

  5. The influence of drought-heat stress on long term carbon fluxes of bioenergy crops grown in the Midwestern US

    USDA-ARS?s Scientific Manuscript database

    Perennial grasses are promising feedstocks for bioenergy production in the Midwestern US. Few experiments have addressed how drought influences their carbon fluxes and storage. This study provides a direct comparison of ecosystem-scale measurements of carbon fluxes associated with miscanthus (Miscan...

  6. Organic carbon fluxes in the Atlantic and the Southern Ocean: relationship to primary production compiled from satellite radiometer data

    NASA Astrophysics Data System (ADS)

    Fischer, G.; Ratmeyer, V.; Wefer, G.

    Fluxes of organic carbon normalised to a depth of 1000 m from 18 sites in the Atlantic and the Southern Ocean are presented, comprising nine biogeochemical provinces as defined by Longhurst et al. (1995. Journal of Plankton Research 17, 1245-1271). For comparison with primary production, we used a recent compilation of primary production values derived from CZCS data (Antoine et al., 1996. Global Biogeochemical Cycles 10, 57-69). In most cases, the seasonal patterns stood reasonably well in accordance with the carbon fluxes. Particularly, organic carbon flux records from two coastal sites off northwest and southwest Africa displayed a more distinct correlation to the primary production in sectors (1×1°) which are situated closer to the coastal environments. This was primarily caused by large upwelling filaments streaming far offshore, resulting in a cross-shelf carbon transport. With respect to primary production, organic carbon export to a water depth of 1000 m, and the fraction of primary production exported to a depth of 1000 m (export fraction=EF 1000), we were able to distinguish between: (1) the coastal environments with highest values (EF 1000=1.75-2.0%), (2) the eastern equatorial upwelling area with moderately high values (EF 1000=0.8-1.1%), (3) and the subtropical oligotrophic gyres that yielded lowest values (EF 1000=0.6%). Carbon export in the Southern Ocean was low to moderate, and the EF 1000 value seems to be quite low in general. Annual organic carbon fluxes were proportional to primary production, and the export fraction EF 1000 increased with primary production up to 350 gC m -2 yr-1. Latitudinal variations in primary production were reflected in the carbon flux pattern. A high temporal variability of primary production rates and a pronounced seasonality of carbon export were observed in the polar environments, in particular in coastal domains, although primary production (according to Antoine et al., 1996. Global Biogeochemical Cycles 10, 57

  7. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    USGS Publications Warehouse

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  8. Impacts of rewetting on hydrological functioning and dissolved organic carbon flux in a degraded peatland (La Guette, France)

    NASA Astrophysics Data System (ADS)

    Bernard-Jannin, Léonard; Binet, Stéphane; Gogo, Sébastien; Lemoing, Franck; Zocatelli, Renata; Jozja, Nevila; Défarge, Christian; Laggoun-Défarge, Fatima

    2016-04-01

    In Sphagnum-dominated peatlands, dissolved organic carbon (DOC) fluxes are mainly controlled by peat water saturation state corresponding to the equilibrium between recharge/drainage fluxes and to the peat storage capacity. Rewetting is a wide spread method that has been used for restoring the global hydrological behavior of degraded peatland ecosystems. Therefore, there is a need to assess the impact of rewetting on peatland hydrology but also on the modification of dynamics and DOC fluxes that significantly impact on carbon sink function of these ecosystems. To investigate this question, meteorology, hydrological data, DOC concentrations and dissolved organic matter (DOM) quality (aromaticity and fluorescence) were monthly monitored at the watershed scales and in two piezometer transects since 2010 in a hydrologically disturbed peatland, La Guette, which experienced a rewetting action on February 2014. One piezometer transect (called downstream plots) was supposedly influenced by the hydrological restoration while the other (called upstream plots) was considered as a control. Collected data allowed studying the impact of the restoration on hydrology and dynamics and DOC fluxes in the peatland. Preliminary results indicate that water table level became more stable after the rewetting in the area affected by the restoration. This seems to have an impact on DOC quantity and quality since concentrations became higher in the same area with also a higher aromaticity degree and a larger proportion of low-weight molecules compared to upstream area. This could indicate that in the downstream area, more anaerobic conditions inhibit microorganism activity responsible for the mineralization of peat organic matter.

  9. Analysis of field measurements of carbon dioxide and water vapor fluxes

    NASA Technical Reports Server (NTRS)

    Verma, Shashi B.

    1991-01-01

    Analysis of the field measurements of carbon dioxide and water vapor fluxes is discussed. These data were examined in conjunction with reflectance obtained from helicopter mounted Modular Multiband Radiometer. These measurements are representative of the canopy scale (10 to 100 m)(exp 2) and provide a good basis for investigating the hypotheses/relationship potentially useful in remote sensing applications. All the micrometeorological data collected during FIFE-89 were processed and fluxes of CO2, water vapor, and sensible heat were calculated. Soil CO2 fluxes were also estimated. Employing these soil CO2 flux values, in conjunction with micrometeorological measurements, canopy photosynthesis is being estimated. A biochemical model of leaf photosynthesis was adapted to the prairie vegetation. The modeled leaf photosynthesis rates were scaled up to the canopy level. This model and a multiplicative stomatal conductance model are also used to calculate canopy conductance.

  10. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up

    PubMed Central

    Kelemen, Peter B.; Manning, Craig E.

    2015-01-01

    Carbon fluxes in subduction zones can be better constrained by including new estimates of carbon concentration in subducting mantle peridotites, consideration of carbonate solubility in aqueous fluid along subduction geotherms, and diapirism of carbon-bearing metasediments. Whereas previous studies concluded that about half the subducting carbon is returned to the convecting mantle, we find that relatively little carbon may be recycled. If so, input from subduction zones into the overlying plate is larger than output from arc volcanoes plus diffuse venting, and substantial quantities of carbon are stored in the mantle lithosphere and crust. Also, if the subduction zone carbon cycle is nearly closed on time scales of 5–10 Ma, then the carbon content of the mantle lithosphere + crust + ocean + atmosphere must be increasing. Such an increase is consistent with inferences from noble gas data. Carbon in diamonds, which may have been recycled into the convecting mantle, is a small fraction of the global carbon inventory. PMID:26048906

  11. Seasonal dynamics and Organic Carbon Flux in the Congo River

    NASA Astrophysics Data System (ADS)

    Seyler, P.; Coynel, A.; Etcheber, H.; Meybeck, M.

    2006-12-01

    The Congo (Zaire) River, the second world river in terms of discharges and drainage area (Q=40600 m3/s; A=3.5 106 km2) after the Amazon River, is -up to now- in near-pristine state. For up to two years , the mainstream near river mouth (Kinshasa/Brazzaville station) and some major and minor tributaries (Oubangui, Mpoko and Ngoko-Sangha) were surveyed every month, for total suspended sediment (TSS), particulate organic carbon (POC) and dissolved organic carbon (DOC). In this very flat basin, TSS levels were very low and organic carbon was essentially exported as DOC: 74% of TOC for the tributaries flowing in savannah regions to 86% for those flowing in the rainforest). The seasonal patterns of TSS, POC and DOC showed clockwise hysteresis with river discharges, with maximum levels two to four months before peak flows. At the Kinshasa/Brazzaville station, the DOC distribution is largely influenced by the input of the tributaries draining the marshy forest area (Central depression). In term of fluxes, a marked difference is pointed out between specific fluxes, threefold higher in the forested basin than in savannahs basins. Computation of inputs to Atlantic Ocean showed that the Congo was responsible for 14.4 106 t/yr of TOC of which 12.4 106 t/yr is DOC and 2 106 t/yr is POC. The three biggest tropical rivers (Amazon, Congo and Orinoco) with only 10 percent of the exoreic world area drained to ocean world contribute to 4 percent of its TSS inputs but 29-33 percent of its organic carbon inputs.

  12. Quantifying legacies of clearcut on carbon fluxes and biomass carbon stock in northern temperate forests

    Treesearch

    W. Wang; J. Xiao; S. V. Ollinger; J. Chen; A. Noormets

    2014-01-01

    Stand-replacing disturbances including harvests have substantial impacts on forest carbon (C) fluxes and stocks. The quantification and simulation of these effects is essential for better understanding forest C dynamics and informing forest management 5 in the context of global change. We evaluated the process-based forest ecosystem model, PnET-CN, for how well and by...

  13. Disturbance and climate effects on carbon stocks and fluxes across western Oregon USA.

    Treesearch

    B.E. Law; D. Turner; J. Campbell; O.J. Sun; S. Van Tuyl; W.D. Ritts; W.B. Cohen

    2004-01-01

    We used a spatially nested hierarchy of field and remote-sensing observations and a process model, Biome-BGC, to produce a carbon budget for the forested region of Oregon, and to determine the relative influence of differences in climate and disturbance among the ecoregions on carbon stocks and fluxes. The simulations suggest that annual net uptake (net ecosystem...

  14. The importance of landscape diversity for carbon fluxes at the landscape level: small-scale heterogeneity matters

    Treesearch

    Katrin Premke; Katrin Attermeyer; Jurgen Augustin; Alvaro Cabezas; Peter Casper; Detlef Deumlich; Jorg Gelbrecht; Horst H. Gerke; Arthur Gessler; Hans-Peter Grossart; Sabine Hilt; Michael Hupfer; Thomas Kalettka; Zachary Kayler; Gunnar Lischeid; Michael Sommer; Dominik Zak

    2016-01-01

    Landscapes can be viewed as spatially heterogeneous areas encompassing terrestrial and aquatic domains. To date, most landscape carbon (C) fluxes have been estimated by accounting for terrestrial ecosystems, while aquatic ecosystems have been largely neglected. However, a robust assessment of C fluxes on the landscape scale requires the estimation of fluxes within and...

  15. The Joint UK Land Environment Simulator (JULES), model description - Part 2: Carbon fluxes and vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Clark, D. B.; Mercado, L. M.; Sitch, S.; Jones, C. D.; Gedney, N.; Best, M. J.; Pryor, M.; Rooney, G. G.; Essery, R. L. H.; Blyth, E.; Boucher, O.; Harding, R. J.; Huntingford, C.; Cox, P. M.

    2011-09-01

    The Joint UK Land Environment Simulator (JULES) is a process-based model that simulates the fluxes of carbon, water, energy and momentum between the land surface and the atmosphere. Many studies have demonstrated the important role of the land surface in the functioning of the Earth System. Different versions of JULES have been employed to quantify the effects on the land carbon sink of climate change, increasing atmospheric carbon dioxide concentrations, changing atmospheric aerosols and tropospheric ozone, and the response of methane emissions from wetlands to climate change. This paper describes the consolidation of these advances in the modelling of carbon fluxes and stores, in both the vegetation and soil, in version 2.2 of JULES. Features include a multi-layer canopy scheme for light interception, including a sunfleck penetration scheme, a coupled scheme of leaf photosynthesis and stomatal conductance, representation of the effects of ozone on leaf physiology, and a description of methane emissions from wetlands. JULES represents the carbon allocation, growth and population dynamics of five plant functional types. The turnover of carbon from living plant tissues is fed into a 4-pool soil carbon model. The process-based descriptions of key ecological processes and trace gas fluxes in JULES mean that this community model is well-suited for use in carbon cycle, climate change and impacts studies, either in standalone mode or as the land component of a coupled Earth system model.

  16. Moving across scales: Challenges and opportunities in upscaling carbon fluxes

    NASA Astrophysics Data System (ADS)

    Naithani, K. J.

    2016-12-01

    Light use efficiency (LUE) type models are commonly used to upscale terrestrial C fluxes and estimate regional and global C budgets. Model parameters are often estimated for each land cover type (LCT) using flux observations from one or more eddy covariance towers, and then spatially extrapolated by integrating land cover, meteorological, and remotely sensed data. Decisions regarding the type of input data (spatial resolution of land cover data, spatial and temporal length of flux data), representation of landscape structure (land use vs. disturbance regime), and the type of modeling framework (common risk vs. hierarchical) all influence the estimates CO2 fluxes and the associated uncertainties, but are rarely considered together. This work presents a synthesis of past and present efforts for upscaling CO2 fluxes and associated uncertainties in the ChEAS (Chequamegon Ecosystem Atmosphere Study) region in northern Wisconsin and the Upper Peninsula of Michigan. This work highlights two key future research needs. First, the characterization of uncertainties due to all of the abovementioned factors reflects only a (hopefully relevant) subset the overall uncertainties. Second, interactions among these factors are likely critical, but are poorly represented by the tower network at landscape scales. Yet, results indicate significant spatial and temporal heterogeneity of uncertainty in CO2 fluxes which can inform carbon management efforts and prioritize data needs.

  17. 4.0 Measuring and monitoring forest carbon stocks and fluxes

    Treesearch

    Jennifer C. Jenkins; Peter S. Murdoch; Richard A. Birdsey; John L. Hom

    2008-01-01

    Measuring and monitoring forest productivity and carbon (C) is of growing concern for natural resource managers and policymakers. With the Delaware River Basin (DRB) as a pilot region, this subproject of the CEMRI sought to: improve the ability of the ground-based Forest Inventory and Analysis (FIA) networks to more completely assess forest C stocks and fluxes,...

  18. Accounting for urban biogenic fluxes in regional carbon budgets.

    PubMed

    Hardiman, Brady S; Wang, Jonathan A; Hutyra, Lucy R; Gately, Conor K; Getson, Jackie M; Friedl, Mark A

    2017-08-15

    Many ecosystem models incorrectly treat urban areas as devoid of vegetation and biogenic carbon (C) fluxes. We sought to improve estimates of urban biomass and biogenic C fluxes using existing, nationally available data products. We characterized biogenic influence on urban C cycling throughout Massachusetts, USA using an ecosystem model that integrates improved representation of urban vegetation, growing conditions associated with urban heat island (UHI), and altered urban phenology. Boston's biomass density is 1/4 that of rural forests, however 87% of Massachusetts' urban landscape is vegetated. Model results suggest that, kilogram-for-kilogram, urban vegetation cycles C twice as fast as rural forests. Urban vegetation releases (R E ) and absorbs (GEE) the equivalent of 11 and 14%, respectively, of anthropogenic emissions in the most urban portions of the state. While urban vegetation in Massachusetts fully sequesters anthropogenic emissions from smaller cities in the region, Boston's UHI reduces annual C storage by >20% such that vegetation offsets only 2% of anthropogenic emissions. Asynchrony between temporal patterns of biogenic and anthropogenic C fluxes further constrains the emissions mitigation potential of urban vegetation. However, neglecting to account for biogenic C fluxes in cities can impair efforts to accurately monitor, report, verify, and reduce anthropogenic emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The Joint UK Land Environment Simulator (JULES), Model description - Part 2: Carbon fluxes and vegetation

    NASA Astrophysics Data System (ADS)

    Clark, D. B.; Mercado, L. M.; Sitch, S.; Jones, C. D.; Gedney, N.; Best, M. J.; Pryor, M.; Rooney, G. G.; Essery, R. L. H.; Blyth, E.; Boucher, O.; Harding, R. J.; Cox, P. M.

    2011-03-01

    The Joint UK Land Environment Simulator (JULES) is a process-based model that simulates the fluxes of carbon, water, energy and momentum between the land surface and the atmosphere. Past studies with JULES have demonstrated the important role of the land surface in the Earth System. Different versions of JULES have been employed to quantify the effects on the land carbon sink of separately changing atmospheric aerosols and tropospheric ozone, and the response of methane emissions from wetlands to climate change. There was a need to consolidate these and other advances into a single model code so as to be able to study interactions in a consistent manner. This paper describes the consolidation of these advances into the modelling of carbon fluxes and stores, in the vegetation and soil, in version 2.2 of JULES. Features include a multi-layer canopy scheme for light interception, including a sunfleck penetration scheme, a coupled scheme of leaf photosynthesis and stomatal conductance, representation of the effects of ozone on leaf physiology, and a description of methane emissions from wetlands. JULES represents the carbon allocation, growth and population dynamics of five plant functional types. The turnover of carbon from living plant tissues is fed into a 4-pool soil carbon model. The process-based descriptions of key ecological processes and trace gas fluxes in JULES mean that this community model is well-suited for use in carbon cycle, climate change and impacts studies, either in standalone mode or as the land component of a coupled Earth system model.

  20. Seawater Respiration, Carbon Flux, Nutrient Retention Efficiency and Heterotrophic Energy Production in the Peruvian Upwelling

    NASA Astrophysics Data System (ADS)

    Packard, T. T.; Osma, N.; Fernández-Urruzola, I.; Codispoti, L. A.; Christensen, J. P.; Gómez, M.

    2016-02-01

    Oceanic depth profiles of seawater respiration (R) and vertical carbon flux are described by similar power functions and because they are conceptually and mathematically related, they can be calculated from one another. The maximum curvature of the respiration depth profile controls carbon flux. When the curvature is sharp, the carbon flux (FC) from the epipelagic ocean is low and the nutrient retention efficiency (NRE) is high allowing these waters to maintain high productivity. When the curvature is weak, NRE is low, seawater becomes nutrient impoverished, and productivity is reduced. This means that the attenuation of respiration in ocean water columns is critical in understanding and predicting vertical FC, the capacity of epipelagic ecosystems to retain their nutrients, and primary productivity. The new metric, NRE, is the ratio of nutrient regeneration in a seawater layer to the nutrients introduced into it. In other words, NRE = R/FC. A depth profile of FC is the integral of water column R. This relationship facilitates calculating ocean sections of FC. In a FC section across the Peru upwelling system we found a carbon flux maximum extending down to 400 m, 50 km off the Peru coast. Along this same section, by coupling respiratory electron transport system activity to heterotrophic oxidative phosphorylation, we calculated an ocean section of heterotrophic energy production (HEP). In the euphotic zone, HEP ranged from 250 to 500 J d-1 m-3. Below 200m, HEP dropped to less than 5 J d-1 m-3.

  1. Gas flux and carbonate occurrence at a shallow seep of thermogenic natural gas

    NASA Astrophysics Data System (ADS)

    Kinnaman, Franklin S.; Kimball, Justine B.; Busso, Luis; Birgel, Daniel; Ding, Haibing; Hinrichs, Kai-Uwe; Valentine, David L.

    2010-06-01

    The Coal Oil Point seep field located offshore Santa Barbara, CA, consists of dozens of named seeps, including a peripheral ˜200 m2 area known as Brian Seep, located in 10 m water depth. A single comprehensive survey of gas flux at Brian Seep yielded a methane release rate of ˜450 moles of CH4 per day, originating from 68 persistent gas vents and 23 intermittent vents, with gas flux among persistent vents displaying a log normal frequency distribution. A subsequent series of 33 repeat surveys conducted over a period of 6 months tracked eight persistent vents, and revealed substantial temporal variability in gas venting, with flux from each individual vent varying by more than a factor of 4. During wintertime surveys sediment was largely absent from the site, and carbonate concretions were exposed at the seafloor. The presence of the carbonates was unexpected, as the thermogenic seep gas contains 6.7% CO2, which should act to dissolve carbonates. The average δ13C of the carbonates was -29.2 ± 2.8‰ VPDB, compared to a range of -1.0 to +7.8‰ for CO2 in the seep gas, indicating that CO2 from the seep gas is quantitatively not as important as 13C-depleted bicarbonate derived from methane oxidation. Methane, with a δ13C of approximately -43‰, is oxidized and the resulting inorganic carbon precipitates as high-magnesium calcite and other carbonate minerals. This finding is supported by 13C-depleted biomarkers typically associated with anaerobic methanotrophic archaea and their bacterial syntrophic partners in the carbonates (lipid biomarker δ13C ranged from -84 to -25‰). The inconsistency in δ13C between the carbonates and the seeping CO2 was resolved by discovering pockets of gas trapped near the base of the sediment column with δ13C-CO2 values ranging from -26.9 to -11.6‰. A mechanism of carbonate formation is proposed in which carbonates form near the sediment-bedrock interface during times of sufficient sediment coverage, in which anaerobic oxidation

  2. The imprint of surface fluxes and transport on variations in total column carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keppel-Aleks, G; Wennberg, PO; Washenfelder, RA

    2012-01-01

    New observations of the vertically integrated CO{sub 2} mixing ratio, , from ground-based remote sensing show that variations in are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large-scale and local fluxes. Observations of both and CO{sub 2} concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO{sub 2}, these synoptic-scale variationsmore » provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in from covariations in and potential temperature, {theta}, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that simulations using Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes and the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better fit the observations. Our simulations suggest that climatological mean CASA fluxes underestimate boreal growing season NEE (between 45-65{sup o} N) by {approx}40%. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.« less

  3. The imprint of surface fluxes and transport on variations in total column carbon dioxide

    NASA Astrophysics Data System (ADS)

    Keppel-Aleks, G.; Wennberg, P. O.; Washenfelder, R. A.; Wunch, D.; Schneider, T.; Toon, G. C.; Andres, R. J.; Blavier, J.-F.; Connor, B.; Davis, K. J.; Desai, A. R.; Messerschmidt, J.; Notholt, J.; Roehl, C. M.; Sherlock, V.; Stephens, B. B.; Vay, S. A.; Wofsy, S. C.

    2012-03-01

    New observations of the vertically integrated CO2 mixing ratio, ⟨CO2⟩, from ground-based remote sensing show that variations in CO2⟩ are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large-scale and local fluxes. Observations of both ⟨CO2⟩ and CO2 concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in ⟨CO2⟩ in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO2, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in ⟨CO2⟩ from covariations in ⟨CO2⟩ and potential temperature, θ, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that simulations using Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the ⟨CO2⟩ seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes and the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better fit the observations. Our simulations suggest that climatological mean CASA fluxes underestimate boreal growing season NEE (between 45-65° N) by ~40%. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.

  4. Assessing and Synthesizing the Last Decade of Research on the Major Pools and Fluxes of the Carbon Cycle in the US and North America: An Interagency Governmental Perspective

    NASA Astrophysics Data System (ADS)

    Cavallaro, N.; Shrestha, G.; Stover, D. B.; Zhu, Z.; Ombres, E. H.; Deangelo, B.

    2015-12-01

    The 2nd State of the Carbon Cycle Report (SOCCR-2) is focused on US and North American carbon stocks and fluxes in managed and unmanaged systems, including relevant carbon management science perspectives and tools for supporting and informing decisions. SOCCR-2 is inspired by the US Carbon Cycle Science Plan (2011) which emphasizes global scale research on long-lived, carbon-based greenhouse gases, carbon dioxide and methane, and the major pools and fluxes of the global carbon cycle. Accordingly, the questions framing the Plan inform this report's topical roadmap, with a focus on US and North America in the global context: 1) How have natural processes and human actions affected the global carbon cycle on land, in the atmosphere, in the oceans and in the ecosystem interfaces (e.g. coastal, wetlands, urban-rural)? 2) How have socio-economic trends affected the levels of the primary carbon-containing gases, carbon dioxide and methane, in the atmosphere? 3) How have species, ecosystems, natural resources and human systems been impacted by increasing greenhouse gas concentrations, the associated changes in climate, and by carbon management decisions and practices? To address these aspects, SOCCR-2 will encompass the following broad assessment framework: 1) Carbon Cycle at Scales (Global Perspective, North American Perspective, US Perspective, Regional Perspective); 2) Role of carbon in systems (Soils; Water, Oceans, Vegetation; Terrestrial-aquatic Interfaces); 3) Interactions/Disturbance/Impacts from/on the carbon cycle. 4) Carbon Management Science Perspective and Decision Support (measurements, observations and monitoring for research and policy relevant decision-support etc.). In this presentation, the Carbon Cycle Interagency Working Group and the U.S. Global Change Research Program's U.S. Carbon Cycle Science Program Office will highlight the scientific context, strategy, structure, team and production process of the report, which is part of the USGCRP's Sustained

  5. Dissolved Carbon Fluxes During the 2017 Mississippi River Flood

    NASA Astrophysics Data System (ADS)

    Reiman, J. H.; Xu, Y. J.

    2017-12-01

    The Mississippi River drains approximately 3.2 million square kilometres of land and discharges about 680 cubic kilometres of water into the Northern Gulf of Mexico annually, acting as a significant medium for carbon transport from land to the ocean. A few studies have documented annual carbon fluxes in the river, however it is unclear whether floods can create riverine carbon pulses. Such information is critical in understanding the effects that extreme precipitation events may have on carbon transport under the changing climate. We hypothesize that carbon concentration and mass loading will increase in response to an increase in river discharge, creating a carbon pulse, and that the source of carbon varies from river rising to falling due to terrestrial runoff processes. This study investigated dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) loadings during the 2017 Mississippi River early-summer flood. Water samples were taken from the Mississippi River at Baton Rouge on the rising limb, crest, and falling limb of the flood. All samples were analysed for concentrations of DOC, DIC, and their respective isotopic signature (δ13C). Partial pressure of carbon dioxide (pCO2) was also recorded in the field at each sampling trip. Additionally, the water samples were analysed for nutrients, dissolved metals, and suspended solids, and in-situ measurements were made on water temperature, pH, dissolved oxygen, and specific conductance. The preliminary findings suggest that carbon species responded differently to the flood event and that δ13C values were dependent on river flood stage. This single flood event transported a large quantity of carbon, indicating that frequent large pulses of riverine carbon should be expected in the future as climate change progresses.

  6. Baseline and projected future carbon storage and greenhouse-gas fluxes in ecosystems of the Western United States

    USGS Publications Warehouse

    Zhu, Zhi-Liang; Reed, Bradley C.

    2012-01-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act (EISA) of 2007 and to improve understanding of carbon and greenhouse gas (GHG) fluxes in ecosystems of the Western United States. The assessment examined carbon storage, carbon fluxes, and other GHG fluxes (methane and nitrous oxide) in all major terrestrial ecosystems (forests, grasslands/shrublands, agricultural lands, and wetlands) and aquatic ecosystems (rivers, streams, lakes, reservoirs, and coastal waters) in two time periods: baseline (generally in the first half of the 2010s) and future (projections from baseline to 2050). The assessment was based on measured and observed data collected by the U.S. Geological Survey (USGS) and many other agencies and organizations and used remote sensing, statistical methods, and simulation models.

  7. Landscape-level controls on dissolved carbon flux from diverse catchments of the circumboreal

    USGS Publications Warehouse

    Tank, Suzanne; Frey, Karen E.; Striegl, Robert G.; Raymond, Peter A.; Holmes, R. Max; McClelland, James W.; Peterson, Bruce J.

    2012-01-01

    While much of the dissolved organic carbon (DOC) within rivers is destined for mineralization to CO2, a substantial fraction of riverine bicarbonate (HCO3-) flux represents a CO2 sink, as a result of weathering processes that sequester CO2 as HCO3-. We explored landscape-level controls on DOC and HCO3- flux in subcatchments of the boreal, with a specific focus on the effect of permafrost on riverine dissolved C flux. To do this, we undertook a multivariate analysis that partitioned the variance attributable to known, key regulators of dissolved C flux (runoff, lithology, and vegetation) prior to examining the effect of permafrost, using riverine biogeochemistry data from a suite of subcatchments drawn from the Mackenzie, Yukon, East, and West Siberian regions of the circumboreal. Across the diverse catchments that we study, controls on HCO3- flux were near-universal: runoff and an increased carbonate rock contribution to weathering (assessed as riverwater Ca:Na) increased HCO3- yields, while increasing permafrost extent was associated with decreases in HCO3-. In contrast, permafrost had contrasting and region-specific effects on DOC yield, even after the variation caused by other key drivers of its flux had been accounted for. We used ionic ratios and SO4 yields to calculate the potential range of CO2 sequestered via weathering across these boreal subcatchments, and show that decreasing permafrost extent is associated with increases in weathering-mediated CO2 fixation across broad spatial scales, an effect that could counterbalance some of the organic C mineralization that is predicted with declining permafrost.

  8. Comparing simulated carbon budget of a Lei bamboo forest with flux tower data

    USGS Publications Warehouse

    Li, Xuehe; Jiang, Hong; Liu, Jinxun; Sun, Cheng; Wang, Ying; Jin, Jiaxin

    2014-01-01

    Bamboo forest ecosystem is the part of the forest ecosystem. The distribution area of bamboo forest is limited, but in somewhere, like south China, it has been cultivate for a long time with human management. As the climate change has been take great effect on forest carbon budget, many researchers pay attention to the carbon budget in bamboo forest. Moreover cultivative management had a significant impact on the bamboo forest carbon budget. In this study, we modified a terrestrial ecosystem model named Integrated Biosphere Simulator (IBIS) according the management of Lei bamboo forest. Some management, like fertilization, shoots harvesting and organic mulching in winter, had been incorporated into model. Then we had compared model results with the observation data from a Lei bamboo flux tower. The simulated and observed results had achieved good consistency. Our simulated Lei bamboo forest yearly net ecosystem productivity (NEP) was 0.41 kgC a-1 of carbon, which is very close to the observation data 0.45 kgC a-1 of carbon. And the monthly simulated results can take the change of carbon budget in each month, similar to the data we got from flux tower. It reflects that the modified IBIS model can characterize the growth of bamboo forest and perform the simulation well. And then two groups of simulations were set to evaluate effects of cultivative managements on Lei bamboo forests carbon budget. And results showed that both fertilization and organic mulching had taken positive effects on Lei bamboo forests carbon sequestration.

  9. Variability in carbon dioxide fluxes for dense urban, suburban and woodland environments in southern England

    NASA Astrophysics Data System (ADS)

    Ward, Helen; Kotthaus, Simone; Grimmond, C. Sue; Bjorkegren, Alex; Wilkinson, Matt; Morrison, Will; Evans, Jon; Morison, James; Christen, Andreas

    2014-05-01

    The net exchange of carbon dioxide between the surface and atmosphere can be measured using the eddy covariance technique. Fluxes from a dense urban environment (central London), a suburban landscape (Swindon) and a woodland ecosystem (Alice Holt) are compared. All sites are located in southern England and experience similar climatic and meteorological conditions, yet have very different land cover. The signatures of anthropogenic and biogenic processes are explored at various (daily, seasonal and annual) timescales. Particular emphasis is placed on identifying the mixture of controls that determine the flux. In summer, there are clear similarities between the suburban and woodland sites, as the diurnal behaviour is dominated by photosynthetic uptake. In winter, however, vegetation is largely dormant and human activity determines the pattern of fluxes at the urban and suburban sites. Emissions from building heating augment the net release of carbon dioxide in cold months. Road use is a major contributor to the total emissions, and the diurnal cycle in the observed fluxes reflects this: in central London roads are busy throughout the day, whereas in Swindon a double-peaked rush-hour signal is evident. The net exchange of carbon dioxide is estimated for each site and set in context with other studies around the world. Central London has the smallest proportion of vegetation and largest emissions amongst study sites in the literature to date. Although Swindon's appreciable vegetation fraction helps to offset the anthropogenic emissions, even in summertime the 24h total flux is usually positive, indicating carbon release. Comparison of these three sites in a similar region demonstrates the effects of increasing urban density and changing land use on the atmosphere. Findings are relevant in terms of characterising the behaviour of urban surfaces and for quantifying the impact of anthropogenic activities.

  10. Recovery strategies for fluxes affected by the Gill-Solent WindMaster-Pro "w-boost" firmware bug

    NASA Astrophysics Data System (ADS)

    Billesbach, D. P.; Chan, S. W.; Biraud, S.; David, C. R.

    2017-12-01

    In late 2015 and early 2016, work done by the AmeriFlux Tech Team helped to uncover a bug in the Gill WindMaster Pro sonic anemometers used by many researchers for eddy covariance flux measurements. Gill has addressed this issue and has since sent out a notice that the vertical wind speed component (a critical piece of all eddy covariance fluxes) was being erroneously computed and reported. The problem (known as the w-boost bug) resulted in positive (upward) wind speeds being under-reported by 16.6% and negative (downward) wind speeds being under-reported by 28.9%. This has the potential to cause similar underestimates in fluxes obtained from these instruments. While the manufacturer has offered a firmware upgrade to fix this bug, there exist many data sets that have already been affected by it. Researchers who use the affected units have contributed to numerous data archives (AmeriFlux, FluxNet, ICOS, etc.), and third-party scientists have, in turn used these data in many types of research projects. The volume of affected data over such a long period of time makes a complete reprocessing of the raw data sets impractical. To address this, the AmeriFlux Tech Team has endeavored to develop a method of correcting affected fluxes using only the downloadable data sets that are available from these archives. In a previous poster, we reported preliminary results from a pair of Arctic tundra flux towers, and showed that fluxes could be underestimated by 15% to 20%. In this poster, we present results that extend our study to include a forested site in Equatorial Africa. We also have evaluated methods to estimate flux errors without accessing the raw data sets.

  11. Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Spilling, Kristian; Schulz, Kai G.; Paul, Allanah J.; Boxhammer, Tim; Achterberg, Eric P.; Hornick, Thomas; Lischka, Silke; Stuhr, Annegret; Bermúdez, Rafael; Czerny, Jan; Crawfurd, Kate; Brussaard, Corina P. D.; Grossart, Hans-Peter; Riebesell, Ulf

    2016-11-01

    About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging from ambient ( ˜ 370 µatm) to high ( ˜ 1200 µatm), were set up in mesocosm bags ( ˜ 55 m3). We determined standing stocks and temporal changes of total particulate carbon (TPC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and particulate organic carbon (POC) of specific plankton groups. We also measured carbon flux via CO2 exchange with the atmosphere and sedimentation (export), and biological rate measurements of primary production, bacterial production, and total respiration. The experiment lasted for 44 days and was divided into three different phases (I: t0-t16; II: t17-t30; III: t31-t43). Pools of TPC, DOC, and DIC were approximately 420, 7200, and 25 200 mmol C m-2 at the start of the experiment, and the initial CO2 additions increased the DIC pool by ˜ 7 % in the highest CO2 treatment. Overall, there was a decrease in TPC and increase of DOC over the course of the experiment. The decrease in TPC was lower, and increase in DOC higher, in treatments with added CO2. During phase I the estimated gross primary production (GPP) was ˜ 100 mmol C m-2 day-1, from which 75-95 % was respired, ˜ 1 % ended up in the TPC (including export), and 5-25 % was added to the DOC pool. During phase II, the respiration loss increased to ˜ 100 % of GPP at the ambient CO2 concentration, whereas respiration was lower (85-95 % of GPP) in the highest CO2 treatment. Bacterial production was ˜ 30 % lower, on average, at the highest CO2 concentration than in the controls during phases II and III. This resulted in a higher accumulation of DOC and lower reduction in the TPC pool in the elevated CO2 treatments at the end of phase II extending throughout phase III

  12. SEASONAL SOIL FLUXES OF CARBON MONOXIDE IN BURNED AND UNBURNED BRAZILIAN SAVANNAS

    EPA Science Inventory

    Soil-atmosphere fluxes of carbon monoxide (CO) were measured from September 1999 through November 2000 in savanna areas in central Brazil (Cerrado) under different fire regimes using transparent and opaque static chambers. Studies focused on two vegetation types, cerrado stricto...

  13. Ecosystem carbon dioxide fluxes after disturbance in forests of North America

    Treesearch

    B. D. Amiro; A. G. Barr; J. G. Barr; T. A. Black; R. Bracho; al. et.

    2010-01-01

    [1] Disturbances are important for renewal of North American forests. Here we summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America. The disturbances included standreplacing fire (Alaska, Arizona, Manitoba, and Saskatchewan) and harvest (British Columbia, Florida, New Brunswick, Oregon...

  14. Stream restoration and sewers impact sources and fluxes of water,carbon, and nutrients in urban watersheds

    EPA Science Inventory

    An improved understanding of sources and timing of water and nutrient fluxes associated with urban stream restoration is critical for guiding effective watershed management. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P)...

  15. Seasonal carbon fluxes for an old-growth temperate forest inferred from carbonyl sulphide

    NASA Astrophysics Data System (ADS)

    Rastogi, Bharat; Jiang, Yueyang; Berkelhammer, Maxwell; Wharton, Sonia; Noone, David; Still, Christopher

    2017-04-01

    Characterizing and quantifying the processes that control terrestrial ecosystem exchanges of carbon and water are critical for understanding how forested ecosystems respond to a changing climate. A small but increasing number of studies has identified carbonyl sulfide (OCS) as a potential tracer of canopy photosynthesis and stomatal function. Here we present seasonal fluxes of OCS from a 60m tall old-growth temperate forest. An off-axis integrated cavity output spectroscopy analyzer (Los Gatos Research Inc.) was deployed at the Wind River Experimental Forest in Washington (45.8205°N, 121.9519°W) in 2014 and 2015. GPP (Gross Primary Production) is inferred from OCS fluxes and compared with estimates derived from measurements of NEE (Net Ecosystem Exchange) from eddy flux data as well as GPP predictions using a process based model. Our findings seek to resolve scientific questions regarding ecosystem carbon exchange from tall old growth forests, which have a complicated vertical leaf area structure, high above ground biomass and amount and aerial cover of epiphytic vegetation. Estimates of canopy conductance calculated using tower flux data are also combined with measurements of stable isotopologues of CO2 to infer emergent ecosystem properties such as canopy ci/ca and water use efficiency.

  16. Carbon Dioxide and Methane Flux Related to Forest Type and Managed and Unmanaged Conditions in the Great Dismal Swamp, USA

    NASA Astrophysics Data System (ADS)

    Gutenberg, L. W.; Krauss, K.; Qu, J. J.; Hogan, D. M.; Zhu, Z.; Xu, C.

    2017-12-01

    The Great Dismal Swamp in Virginia and North Carolina, USA, has been greatly impacted by human use and management for the last few hundred years through logging, ditching, and draining. Today, the once dominant cedar, cypress and pocosin forest types are fragmented due to logging and environmental change. Maple-gum forest has taken over more than half the remaining area of the swamp ecosystem, which is now a National Wildlife Refuge and State Park. The peat soils and biomass store a vast quantity of carbon compared with the size of the refuge, but this store is threatened by fire and drying. This study looks at three of the main forest types in the GDS— maple-sweet gum, tall pine pocosin, and Atlantic white cedar— in terms of their carbon dioxide and methane soil flux. Using static chambers to sample soil gas flux in locally representative sites, we found that cedar sites showed a higher carbon dioxide flux rate as the soil temperature increased than maple sites, and the rate of carbon dioxide flux decreased as soil moisture increased faster in cedar sites than in maple sites. Methane flux increased as temperature increased for pocosin, but decreased with temperature for cedar and maple. All of the methane fluxes increased as soil moisture increased. Cedar average carbon dioxide flux was statistically significantly different from both maple and pocosin. These results show that soil carbon gas flux depends on soil moisture and temperature, which are factors that are changing due to human actions, as well as on forest type, which is also the result of human activity. Some of these variables may be adjustable by the managers of the land. Variables other than forest type, temperature and soil moisture/inundation may also play a role in influencing soil flux, such as stand age, tree height, composition of the peat and nutrient availability, and source of moisture as some sites are more influenced by groundwater from ditches and some more by rainfall depending on the

  17. Spatially Explicit Simulation of Mesotopographic Controls on Peatland Hydrology and Carbon Fluxes

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Chen, J. M.; Roulet, N. T.

    2006-12-01

    A number of field carbon flux measurements, paleoecological records, and model simulations have acknowledged the importance of northern peatlands in terrestrial carbon cycling and methane emissions. An important parameter in peatlands that influences both net primary productivity, the net gain of carbon through photosynthesis, and decomposition under aerobic and anaerobic conditions, is the position of the water table. Biological and physical processes involved in peatland carbon dynamics and their hydrological controls operate at different spatial scales. The highly variable hydraulic characteristics of the peat profile and the overall shape of the peat body as defined by its surface topography at the mesoscale (104 m2) are of major importance for peatland water table dynamics. Common types of peatlands include bogs with a slightly domed centre. As a result of the convex profile, their water supply is restricted to atmospheric inputs, and water is mainly shed by shallow subsurface flow. From a modelling perspective the influence of mesotopographic controls on peatland hydrology and thus carbon balance requires that process-oriented models that examine the links between peatland hydrology, ecosystem functioning, and climate must incorporate some form of lateral subsurface flow consideration. Most hydrological and ecological modelling studies in complex terrain explicitly account for the topographic controls on lateral subsurface flow through digital elevation models. However, modelling studies in peatlands often employ simple empirical parameterizations of lateral subsurface flow, neglecting the influence of peatlands low relief mesoscale topography. Our objective is to explicitly simulate the mesotopographic controls on peatland hydrology and carbon fluxes using the Boreal Ecosystem Productivity Simulator (BEPS) adapted to northern peatlands. BEPS is a process-oriented ecosystem model in a remote sensing framework that takes into account peatlands multi

  18. Stable carbon isotope gradients in benthic foraminifera as proxy for organic carbon fluxes in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Theodor, Marc; Schmiedl, Gerhard; Jorissen, Frans; Mackensen, Andreas

    2016-11-01

    We have determined stable carbon isotope ratios of epifaunal and shallow infaunal benthic foraminifera in the Mediterranean Sea to relate the inferred gradient of pore water δ13CDIC to varying trophic conditions. This is a prerequisite for developing this difference into a potential transfer function for organic matter flux rates. The data set is based on samples retrieved from a well-defined bathymetric range (400-1500 m water depth) of sub-basins in the western, central, and eastern Mediterranean Sea. Regional contrasts in organic matter fluxes and associated δ13CDIC of pore water are recorded by the δ13C difference (Δδ13CUmed-Epi) between the shallow infaunal Uvigerina mediterranea and epifaunal species (Planulina ariminensis, Cibicidoides pachydermus, Cibicides lobatulus). Within epifaunal taxa, the highest δ13C values are recorded for P. ariminensis, providing the best indicator for bottom water δ13CDIC. In contrast, C. pachydermus reveals minor pore water effects at the more eutrophic sites. Because of ontogenetic trends in the δ13C signal of U. mediterranea of up to 1.04 ‰, only tests larger than 600 µm were used for the development of the transfer function. The recorded differences in the δ13C values of U. mediterranea and epifaunal taxa (Δδ13CUmed-Epi) range from -0.46 to -2.13 ‰, with generally higher offsets at more eutrophic sites. The measured δ13C differences are related to site-specific differences in microhabitat, depth of the principal sedimentary redox boundary, and TOC content of the ambient sediment. The Δδ13CUmed-Epi values reveal a consistent relation to Corg fluxes estimated from satellite-derived surface water primary production in open-marine settings of the Alboran Sea, Mallorca Channel, Strait of Sicily, and southern Aegean Sea. In contrast, Δδ13CUmed-Epi values in areas affected by intense resuspension and riverine organic matter sources of the northern to central Aegean Sea and the canyon systems of the Gulf of Lion

  19. The imprint of surface fluxes and transport on variations in total column carbon dioxide

    NASA Astrophysics Data System (ADS)

    Keppel-Aleks, G.; Wennberg, P. O.; Washenfelder, R. A.; Wunch, D.; Schneider, T.; Toon, G. C.; Andres, R. J.; Blavier, J.-F.; Connor, B.; Davis, K. J.; Desai, A. R.; Messerschmidt, J.; Notholt, J.; Roehl, C. M.; Sherlock, V.; Stephens, B. B.; Vay, S. A.; Wofsy, S. C.

    2011-07-01

    New observations of the vertically integrated CO2 mixing ratio, ⟨CO2⟩, from ground-based remote sensing show that variations in ⟨CO2⟩ are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large scale and local fluxes. Observations of both ⟨CO2⟩ and CO2 concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in ⟨CO2⟩ in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO2, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in ⟨CO2⟩ from covariations in ⟨CO2⟩ and potential temperature, θ, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the ⟨CO2⟩ seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes as well as the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better reflect the observations. Our simulations suggest that boreal growing season NEE (between 45-65° N) is underestimated by ~40 % in CASA. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.

  20. Hydrologic Treatments Affect Gaseous Carbon Loss From Organic Soils, Twitchell Island, California, October 1995-December 1997

    USGS Publications Warehouse

    Miller, Robin L.; Hastings, Lauren; Fujii, Roger

    2000-01-01

    Subsidence of organic soils in the Sacramento-San Joaquin Delta, California, has increased the potential for levee failure and flooding in the region. Because oxidation of the peat soils is a primary cause of subsidence, reversion of affected lands to wetlands has been proposed as a mitigation tool. To test this hypothesis, three 10 x 10 meter enclosures were built on Twitchell Island in the Delta and managed as different wetland habitats. Emissions of carbon dioxide and methane were measured in situ from October 1995 through December 1997, from the systems that developed under the different water-management treatments. Treatments included a seasonal control (SC) under current island management conditions; reverse flooding (RF), where the land is intentionally flooded from early dry season until midsummer; permanent shallow flooding (F); and a more deeply flooded, open-water (OW) treatment. Hydrologic treatments affected microbial processes, plant community and temperature dynamics which, in turn, affected carbon cycling. Water-management treatments with a period of flooding significantly decreased gaseous carbon emissions compared to the seasonal control. Permanent flooding treatments showed significantly higher methane fluxes than treatments with some period of aerobic conditions. Shallow flooding treatments created conditions that support cattail [Typha species (spp.)] marshes, while deep flooding precluded emergent vegetation. Carbon inputs to the permanent shallow flooding treatment tended to be greater than the measured losses. This suggests that permanent shallow flooding has the greatest potential for managing subsidence of these soils by generating organic substrate more rapidly than is lost through decomposition. Carbon input estimates of plant biomass compared to measurements of gaseous carbon losses indicate the potential for mitigation of subsidence through hydrologic management of the organic soils in the area.

  1. Importance of early season conditions and grazing on carbon dioxide fluxes in Colorado shortgrass steppe

    USDA-ARS?s Scientific Manuscript database

    Understanding the influence of environmental and management drivers on fluxes of carbon dioxide (CO2) is essential for optimizing carbon (C) uptake and storage in livestock production systems. Herein, using 15 treatment-years (two three-year experiments, one with three grazing treatments, the other ...

  2. Oxyanion flux characterization using passive flux meters: Development and field testing of surfactant-modified granular activated carbon

    NASA Astrophysics Data System (ADS)

    Lee, Jimi; Rao, P. S. C.; Poyer, Irene C.; Toole, Robyn M.; Annable, M. D.; Hatfield, K.

    2007-07-01

    We report here on the extension of Passive Flux Meter (PFM) applications for measuring fluxes of oxyanions in groundwater, and present results for laboratory and field studies. Granular activated carbon, with and without impregnated silver (GAC and SI-GAC, respectively), was modified with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the anion exchange capacity (AEC). Langmuir isotherm sorption maxima for oxyanions measured in batch experiments were in the following order: perchlorate >> chromate > selenate, consistent with their selectivity. Linear sorption isotherms for several alcohols suggest that surfactant modification of GAC and SI-GAC reduced (˜ 30-45%) sorption of alcohols by GAC. Water and oxyanion fluxes (perchlorate and chromate) measured by deploying PFMs packed with surfactant-modified GAC (SM-GAC) or surfactant-modified, silver-impregnated GAC (SM-SI-GAC) in laboratory flow chambers were in close agreement with the imposed fluxes. The use of SM-SI-GAC as a PFM sorbent was evaluated at a field site with perchlorate contamination of a shallow unconfined aquifer. PFMs packed with SM-SI-GAC were deployed in three existing monitoring wells with a perchlorate concentration range of ˜ 2.5 to 190 mg/L. PFM-measured, depth-averaged, groundwater fluxes ranged from 1.8 to 7.6 cm/day, while depth-averaged perchlorate fluxes varied from 0.22 to 1.7 g/m 2/day. Groundwater and perchlorate flux distributions measured in two PFM deployments closely matched each other. Depth-averaged Darcy fluxes measured with PFMs were in line with an estimate from a borehole dilution test, but much smaller than those based on hydraulic conductivity and head gradients; this is likely due to flow divergence caused by well-screen clogging. Flux-averaged perchlorate concentrations measured with PFM deployments matched concentrations in groundwater samples taken from one well, but not in two other wells, pointing to the need for additional field testing. Use of

  3. Oxyanion flux characterization using passive flux meters: development and field testing of surfactant-modified granular activated carbon.

    PubMed

    Lee, Jimi; Rao, P S C; Poyer, Irene C; Toole, Robyn M; Annable, M D; Hatfield, K

    2007-07-17

    We report here on the extension of Passive Flux Meter (PFM) applications for measuring fluxes of oxyanions in groundwater, and present results for laboratory and field studies. Granular activated carbon, with and without impregnated silver (GAC and SI-GAC, respectively), was modified with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the anion exchange capacity (AEC). Langmuir isotherm sorption maxima for oxyanions measured in batch experiments were in the following order: perchlorate>chromate>selenate, consistent with their selectivity. Linear sorption isotherms for several alcohols suggest that surfactant modification of GAC and SI-GAC reduced (approximately 30-45%) sorption of alcohols by GAC. Water and oxyanion fluxes (perchlorate and chromate) measured by deploying PFMs packed with surfactant-modified GAC (SM-GAC) or surfactant-modified, silver-impregnated GAC (SM-SI-GAC) in laboratory flow chambers were in close agreement with the imposed fluxes. The use of SM-SI-GAC as a PFM sorbent was evaluated at a field site with perchlorate contamination of a shallow unconfined aquifer. PFMs packed with SM-SI-GAC were deployed in three existing monitoring wells with a perchlorate concentration range of approximately 2.5 to 190 mg/L. PFM-measured, depth-averaged, groundwater fluxes ranged from 1.8 to 7.6 cm/day, while depth-averaged perchlorate fluxes varied from 0.22 to 1.7 g/m2/day. Groundwater and perchlorate flux distributions measured in two PFM deployments closely matched each other. Depth-averaged Darcy fluxes measured with PFMs were in line with an estimate from a borehole dilution test, but much smaller than those based on hydraulic conductivity and head gradients; this is likely due to flow divergence caused by well-screen clogging. Flux-averaged perchlorate concentrations measured with PFM deployments matched concentrations in groundwater samples taken from one well, but not in two other wells, pointing to the need for additional field

  4. Weathering and carbon fluxes of the Irrawaddy-Salween-Mekong river system

    NASA Astrophysics Data System (ADS)

    Baronas, J. J.; Tipper, E.; Hilton, R. G.; Bickle, M.; Relph, K.; Parsons, D. R.

    2017-12-01

    The Irrawaddy-Salween-Mekong (ISM) rivers with their source regions draining the eastern Tibetan Plateau account for a significant portion of the global solute and sediment flux to the ocean, and appear to exhibit some of the highest chemical weathering rates in the world. However they are greatly understudied, despite their significance. We will present data from the first part of a recently started multi-year study of these monsoon-controlled river systems. Our aim is to fully deconvolve and quantify the multiple processes and fluxes which play a role in the long-term feedback loop between tectonics, climate, and the critical zone. The long-term goals of the project are to accurately partition the silicate and carbonate weathering rates, acidity sources, and various organic and inorganic carbon fluxes, using a large range of geochemical and isotopic analyses. In addition, we have begun to collect extensive suspended sediment depth profiles to assess changes in sediment chemistry from the Himalayan headwaters to the river mouths, in an attempt to quantify whole-catchment silicate weathering rates over millennial timescales. Finally, bi-weekly multi-annual time-series data are being used to assess the catchment biogeochemical response to the strong hydrological seasonality imposed by the monsoonal climate. Here, we will present some of our preliminary findings of our dissolved dissolved and sediment data from the main-stems and major tributaries of the ISM rivers.

  5. Carbon dioxide fluxes in a central hardwoods oak-hickory forest ecosystem

    Treesearch

    Stephen G. Pallardy; Lianhong Gu; Paul J. Hanson; Tilden Myers; Stan D. Wullschleger; Bai Yang; Jeffery S. Riggs; Kevin P. Hosman; Mark Heuer

    2007-01-01

    A long-term experiment to measure carbon and water fluxes was initiated in 2004 as part of the Ameriflux network in a second-growth oak-hickory forest in central Missouri. Ecosystem-scale (~ 1 km2) canopy gas exchange (measured by eddy-covariance methods), vertical CO2 profile sampling and soil respiration along with...

  6. The changing phenology of the land carbon fluxes as derived from atmospheric CO2 data

    NASA Astrophysics Data System (ADS)

    Cescatti, A.; Alkama, R.; Forzieri, G.; Rödenbeck, C.; Zaehle, S.; Sitch, S.; Friedlingstein, P.; Nabel, J.; Viovy, N.; Kato, E.; Koven, C.; Zeng, N.; Ciais, P.

    2017-12-01

    Dynamic vegetation models and atmospheric observations of CO2 concentration point to a large increase of the global terrestrial carbon uptake over the recent decades. However, they disagree on the key regions, on the seasonality and on the processes underlying such a persistent increase. In particular, the role of the changing plant phenology on the global carbon budget is still unknown. To investigate these issues we explored the temporal dynamic of the land carbon fluxes over 1981-2014 using the Jena CarboScope atmospheric CO2 inversion and an ensemble of land surface models (TRENDY). Using these datasets the temporal extent and timing of the land carbon uptake and carbon release period have been investigated in four different latitudinal bands (75N-45N; 45N-15N; 15N-15S; 15S-45S) to explore the recent changes in the phenology of the vegetation CO2 exchange across different climates and biomes. The impact of phenological changes on the land carbon flux has been investigated by factoring out the signal due to the length of the growing season from the other signals. Estimates retrieved from the atmospheric inversion have been compared with the prediction of the ensemble of vegetation models. Results shows that the changes in the global carbon fluxes occurred in the last three decades are dominated by the duration and intensification of the uptake during the growing season. Interestingly, the seasonality of the trends shows a consistent pattern at all latitudinal bands, with a systematic advancement of the onset and minor changes of the end dates of the growing season. According to the atmospheric inversion the increasing trend in the land sink is driven about equally by the changes in phenology (due to the earlier onset and later offset) and by the intensification of the daily uptake. The increased annual carbon uptake revealed by the atmospheric inversion is about 60% larger than the model predictions, possibly due to the model underestimation of land use flues

  7. Global sampling of the seasonal changes in vegetation biophysical properties and associated carbon flux dynamics: using the synergy of information captured by spectral time series

    NASA Astrophysics Data System (ADS)

    Campbell, P. K. E.; Huemmrich, K. F.; Middleton, E.; Voorhis, S.; Landis, D.

    2016-12-01

    Spatial heterogeneity and seasonal dynamics in vegetation function contribute significantly to the uncertainties in regional and global CO2 budgets. High spectral resolution imaging spectroscopy ( 10 nm, 400-2500 nm) provides an efficient tool for synoptic evaluation of the factors significantly affecting the ability of the vegetation to sequester carbon and to reflect radiation, due to changes in vegetation chemical and structural composition. EO-1 Hyperion has collected more than 15 years of repeated observations for vegetation studies, and currently Hyperion time series are available for study of vegetation carbon dynamics at a number of FLUX sites. This study presents results from the analysis of EO-1 Hyperion and FLUX seasonal composites for a range of ecosystems across the globe. Spectral differences and seasonal trends were evaluated for each vegetation type and specific phenology. Evaluating the relationships between CO2 flux parameters (e.g., Net ecosystem production - NEP; Gross Ecosystem Exchange - GEE, CO2 flux, μmol m-2 s-1) and spectral parameters for these very different ecosystems, high correlations were established to parameters associated with canopy water and chlorophyll content for deciduous, and photosynthetic function for conifers. Imaging spectrometry provided high spatial resolution maps of CO2 fluxes absorbed by vegetation, and was efficient in tracing seasonal flux dynamics. This study will present examples for key ecosystem tipes to demonstrate the ability of imaging spectrometry and EO-1 Hyperion to map and compare CO2 flux dynamics across the globe.

  8. Modelling biogeochemical processes in sediments from the north-western Adriatic Sea: response to enhanced particulate organic carbon fluxes

    NASA Astrophysics Data System (ADS)

    Brigolin, Daniele; Rabouille, Christophe; Bombled, Bruno; Colla, Silvia; Vizzini, Salvatrice; Pastres, Roberto; Pranovi, Fabio

    2018-03-01

    This work presents the result of a study carried out in the north-western Adriatic Sea, by combining two different types of biogeochemical models with field sampling efforts. A longline mussel farm was taken as a local source of perturbation to the natural particulate organic carbon (POC) downward flux. This flux was first quantified by means of a pelagic model of POC deposition coupled to sediment trap data, and its effects on sediment bioirrigation capacity and organic matter (OM) degradation pathways were investigated constraining an early diagenesis model by using original data collected in sediment porewater. The measurements were performed at stations located inside and outside the area affected by mussel farm deposition. Model-predicted POC fluxes showed marked spatial and temporal variability, which was mostly associated with the dynamics of the farming cycle. Sediment trap data at the two sampled stations (inside and outside of the mussel farm) showed average POC background flux of 20.0-24.2 mmol C m-2 d-1. The difference of organic carbon (OC) fluxes between the two stations was in agreement with model results, ranging between 3.3 and 14.2 mmol C m-2 d-1, and was primarily associated with mussel physiological conditions. Although restricted, these changes in POC fluxes induced visible effects on sediment biogeochemistry. Observed oxygen microprofiles presented a 50 % decrease in oxygen penetration depth (from 2.3 to 1.4 mm), accompanied by an increase in the O2 influx at the station below the mussel farm (19-31 versus 10-12 mmol O2 m-2 d-1) characterised by higher POC flux. Dissolved inorganic carbon (DIC) and NH4+ concentrations showed similar behaviour, with a more evident effect of bioirrigation underneath the farm. This was confirmed through constraining the early diagenesis model, of which calibration leads to an estimation of enhanced and shallower bioirrigation underneath the farm: bioirrigation rates of 40 yr-1 and irrigation depth of 15 cm were

  9. Influence of water table on carbon dioxide, carbon monoxide, and methane fluxes from taiga bog microcosms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funk, D.W.; Pullmann, E.R.; Peterson, K.M.

    1994-09-01

    Hydrological changes, particularly alterations in water table level, may largely overshadow the more direct effects of global temperature increase upon carbon cycling in arctic and subarctic wetlands. Frozen cores (n=40) of intact soils and vegetation were collected from a bog near Fairbanks, Alaska, and fluxes of CO{sub 2}, CH{sub 4}, and Co in response to water table variation were studied under controlled conditions in the Duke University phytotron. Core microcosms thawed to a 20-cm depth over 30 days under a 20 hour photoperiod with a day/night temperature regime of 20/10{degrees}C. After 30 days the water table in 20 microcosms wasmore » decreased from the soil surface to -15 cm and maintained at the soil surface in 20 control cores. Outward fluxes of CO{sub 2} (9-16 g m{sup -2}d{sup -1}) and CO (3-4 mg m{sup -2}d{sup -1}) were greatest during early thaw and decreased to near zero for both gases before the water table treatment started. Lower water table tripled CO{sub 2} flux to the atmosphere when compared with control cores. Carbon monoxide was emitted at low rates from high water table cores and consumed by low water table cores. Methane fluxes were low (<1 mg m{sup -2}d{sup -1}) in all cores during thaw. High water table cores increased CH{sub 4} flux to 8-9 mg m{sup -2}d{sup -1} over 70 days and remained high relative to the low water table cores (<0.74 mg m{sup -2}d{sup -1}). Although drying of wetland taiga soils may decrease CH{sub 4} emissions to the atmosphere, the associated increase in CO{sub 2} due to aerobic respiration will likely increase the global warming potential of gas emissions from these soils. 43 refs., 4 figs.« less

  10. MODELING SEDIMENT-NUTRIENT FLUX AND SEDIMENT OXYGEN DEMAND

    EPA Science Inventory

    Depositional flux of particulate organic matter in bottom sediments affects nutrients cycling at the sediment-water interface and consumes oxygen from the overlying water in streams, lakes, and estuaries. This project deals with analytical modeling of nitrogen and carbon producti...

  11. CARBON MONOXIDE FLUXES OF DIFFERENT SOIL LAYERS IN UPLAND CANADIAN BOREAL FORESTS

    EPA Science Inventory

    Dark or low-light carbon monoxide fluxes at upland Canadian boreal forest sites were measured on-site with static chambers and with a laboratory incubation technique using cores from different depths at the same sites. Three different upland black spruce sites, burned in 1987,199...

  12. Evaluation of the DayCent model to predict carbon fluxes in French crop sites

    NASA Astrophysics Data System (ADS)

    Fujisaki, Kenji; Martin, Manuel P.; Zhang, Yao; Bernoux, Martial; Chapuis-Lardy, Lydie

    2017-04-01

    Croplands in temperate regions are an important component of the carbon balance and can act as a sink or a source of carbon, depending on pedoclimatic conditions and management practices. Therefore the evaluation of carbon fluxes in croplands by modelling approach is relevant in the context of global change. This study was part of the Comete-Global project funded by the multi-Partner call FACCE JPI. Carbon fluxes, net ecosystem exchange (NEE), leaf area index (LAI), biomass, and grain production were simulated at the site level in three French crop experiments from the CarboEurope project. Several crops were studied, like winter wheat, rapeseed, barley, maize, and sunflower. Daily NEE was measured with eddy covariance and could be partitioned between gross primary production (GPP) and total ecosystem respiration (TER). Measurements were compared to DayCent simulations, a process-based model predicting plant production and soil organic matter turnover at daily time step. We compared two versions of the model: the original one with a simplified plant module and a newer version that simulates LAI. Input data for modelling were soil properties, climate, and management practices. Simulations of grain yields and biomass production were acceptable when using optimized crop parameters. Simulation of NEE was also acceptable. GPP predictions were improved with the newer version of the model, eliminating temporal shifts that could be observed with the original model. TER was underestimated by the model. Predicted NEE was more sensitive to soil tillage and nitrogen applications than measured NEE. DayCent was therefore a relevant tool to predict carbon fluxes in French crops at the site level. The introduction of LAI in the model improved its performance.

  13. Large Carbon Dioxide Fluxes from Headwater Boreal and Sub-Boreal Streams

    PubMed Central

    Venkiteswaran, Jason J.; Schiff, Sherry L.; Wallin, Marcus B.

    2014-01-01

    Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape. PMID:25058488

  14. Large carbon dioxide fluxes from headwater boreal and sub-boreal streams.

    PubMed

    Venkiteswaran, Jason J; Schiff, Sherry L; Wallin, Marcus B

    2014-01-01

    Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape.

  15. The Use of a Mesoscale Climate Model to Validate the Nocturnal Carbon Flux over a Forested Site

    NASA Astrophysics Data System (ADS)

    Werth, D.; Parker, M.; Kurzeja, R.; Leclerc, M.; Watson, T.

    2007-12-01

    The Savannah River National Laboratory is initiating a comprehensive carbon dioxide monitoring and modeling program in collaboration with the University of Georgia and the Brookhaven National Laboratory. One of the primary goals is to study the dynamics of carbon dioxide in the stable nocturnal boundary layer (NBL) over a forested area of the Savannah River Site in southwest South Carolina. In the nocturnal boundary layer (NBL), eddy flux correlation is less effective in determining the release of CO2 due to respiration. Theoretically, however, the flux can be inferred by measuring the build up of CO2 in the stable layer throughout the night. This method of monitoring the flux will be validated and studied in more detail with both observations and the results of a high-resolution regional climate model. The experiment will involve two phases. First, an artificial tracer will be released into the forest boundary layer and observed through an array of sensors and at a flux tower. The event will be simulated with the RAMS climate model run at very high resolution. Ideally, the tracer will remain trapped within the stable layer and accumulate at rates which will allow us to infer the release rate, and this should compare well to the actual release rate. If an unknown mechanism allows the tracer to escape, the model simulation would be used to reveal it. In the second phase, carbon fluxes will be measured overnight through accumulation in the overlying layer. The RAMS model will be coupled with the SiB carbon model to simulate the nocturnal cycle of carbon dynamics, and this will be compared to the data collected during the night. As with the tracer study, the NBL method of flux measurement will be validated against the model. The RAMS-SiB coupled model has been run over the SRS at high-resolution to simulate the NBL, and results from simulations of both phases of the project will be presented.

  16. Effects of land-use change on the carbon balance of terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Houghton, R. A.; Goodale, C. L.

    Most changes in land use affect the amount of carbon held in vegetation and soil, thereby, either releasing carbon dioxide (a greenhouse gas) to, or removing it from, the atmosphere. The greatest fluxes of carbon result from conversion of forests to open lands (and vice versa). Model-based estimates of the flux of carbon attributable to land-use change are highly variable, however, largely as a result of uncertainties in the areas annually affected by different types of land-use change. Uncertain rates of tropical deforestation, for example, account for more than half of the range in estimates of the global carbon flux. Three other factors account for much of the rest of the uncertainty: (1) the initial stocks of carbon in ecosystems affected by land-use change (i.e., spatial heterogeneity), (2) per hectare changes in carbon stocks in response to different types of land-use change, and (3) legacy effects; that is, the time it takes for carbon stocks to equilibrate following a change in land use. For the tropics, recent satellite-based estimates of deforestation are lower than previous estimates and yield calculated carbon emissions from land-use change that are similar to independently-derived estimates of the total net flux for the region. The similarity suggests that changes in land use account for the net flux of carbon from the tropics. For the northern mid-latitudes, the carbon sink attributed to land-use change is less than the sink obtained by other methods, suggesting either an incomplete accounting of land-use change or the importance of other factors in explaining the current carbon sink in that region.

  17. Rhizodeposition flux of competitive versus conservative graminoid: contribution of exudates and root lysates as affected by N loading

    NASA Astrophysics Data System (ADS)

    Kastovska, Eva; Edwards, Keith; Santruckova, Hana

    2017-04-01

    Carbon allocation pattern represents the plant strategy for growth and nutrient capture. Plants exhibit high plasticity in their allocation pattern and belowground C partitioning in response to changes in the availability of nutrients limiting their production, namely nitrogen (N). Any shift in the belowground C fluxes and partitioning between root production, exudation and other rhizodeposits could affect the soil microbial activity and soil organic matter turnover. We studied the influence of N availability on plant allocation patterns with emphasis on belowground C fluxes of two wetland graminoids, the competitive Glyceria maxima and the conservative Carex acuta. Plants were grown in pots under two levels of N availability. We combined pulse-labeling of plants with 13CO2 to track recent assimilates with estimation of the root death rate calculated from the difference between gross and net root growth rates for assessing the rhizodeposition flux to soil, and the contribution of root exudates and lysates from root turnover. We found that higher N supply enhanced root biomass and, subsequently, the total rhizodeposition. Both species shifted partitioning of belowground C towards higher mass-specific root production and turnover, with lower investments into root exudation. Therefore, the rhizodeposition flux was enriched in root-derived lysates over soluble exudates. Root exudates accounted for 50-70% of the rhizodeposition flux in conditions of low N availability, while it was only 20-40% under high N availability. The N fertilization induced changes in belowground C fluxes were species-specific, with more pronounced changes in the conservative Carex than the competitive Glyceria. In summary, soil N loading enhanced total C rhizodeposition and, simultaneously, the proportion of predominantly more complex root lysates over soluble root exudates, with potential implications for soil organic matter dynamics. Our results further stress the importance of species

  18. Flux balance analysis of different carbon source fermentation with hydrogen producing Clostridium butyricum using Cell Net Analyzer.

    PubMed

    Rafieenia, Razieh; Chaganti, Subba Rao

    2015-01-01

    A metabolic network model for Clostridium butyricum was developed using six different carbon sources (sucrose, fructose, galactose, mannose, trehalose and ribose) to study the fermentative H2 production. The model was used for investigation of H2 production and the ability of growth on different substrates to predict the maximum abilities for fermentative H2 production that each substrate can support. NADH fluxes were calculated by the model as an important cofactor affecting on H2 production. Butyrate and acetate production were used as model assumptions and biomass formation was chosen as the objective function for flux analysis calculations. Among the substrates selected, sucrose and trehalose supported the maximum growth and H2 yields. The Cell Net Analyzer metabolic network model developed for H2 estimation revealed good correlation with experimental data and could be further used to study the effect of environmental conditions and substrates concentration on H2 yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The LandCarbon Web Application: Advanced Geospatial Data Delivery and Visualization Tools for Communication about Ecosystem Carbon Sequestration and Greenhouse Gas Fluxes

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Galey, B.; Zhu, Z.; Sleeter, B. M.; Lehmer, E.

    2015-12-01

    The LandCarbon web application (http://landcarbon.org) is a collaboration between the U.S. Geological Survey and U.C. Berkeley's Geospatial Innovation Facility (GIF). The LandCarbon project is a national assessment focused on improved understanding of carbon sequestration and greenhouse gas fluxes in and out of ecosystems related to land use, using scientific capabilities from USGS and other organizations. The national assessment is conducted at a regional scale, covers all 50 states, and incorporates data from remote sensing, land change studies, aquatic and wetland data, hydrological and biogeochemical modeling, and wildfire mapping to estimate baseline and future potential carbon storage and greenhouse gas fluxes. The LandCarbon web application is a geospatial portal that allows for a sophisticated data delivery system as well as a suite of engaging tools that showcase the LandCarbon data using interactive web based maps and charts. The web application was designed to be flexible and accessible to meet the needs of a variety of users. Casual users can explore the input data and results of the assessment for a particular area of interest in an intuitive and interactive map, without the need for specialized software. Users can view and interact with maps, charts, and statistics that summarize the baseline and future potential carbon storage and fluxes for U.S. Level 2 Ecoregions for 3 IPCC emissions scenarios. The application allows users to access the primary data sources and assessment results for viewing and download, and also to learn more about the assessment's objectives, methods, and uncertainties through published reports and documentation. The LandCarbon web application is built on free and open source libraries including Django and D3. The GIF has developed the Django-Spillway package, which facilitates interactive visualization and serialization of complex geospatial raster data. The underlying LandCarbon data is available through an open application

  20. B33C-0612: Evaluation of Simulated Biospheric Carbon Dioxide Fluxes and Atmospheric Concentrations Using Global in Situ Observations

    NASA Technical Reports Server (NTRS)

    Philip, Sajeev; Johnson, Matthew S.; Potter, Christopher S.; Genovese, Vanessa

    2016-01-01

    Atmospheric mixing ratios of carbon dioxide (CO2) are largely controlled by anthropogenic emission sources and biospheric sources/sinks. Global biospheric fluxes of CO2 are controlled by complex processes facilitating the exchange of carbon between terrestrial ecosystems and the atmosphere. These processes which play a key role in these terrestrial ecosystem-atmosphere carbon exchanges are currently not fully understood, resulting in large uncertainties in the quantification of biospheric CO2 fluxes. Current models with these inherent deficiencies have difficulties simulating the global carbon cycle with high accuracy. We are developing a new modeling platform, GEOS-Chem-CASA by integrating the year-specific NASA-CASA (National Aeronautics and Space Administration - Carnegie Ames Stanford Approach) biosphere model with the GEOS-Chem (Goddard Earth Observation System-Chemistry) chemical transport model to improve the simulation of atmosphere-terrestrial ecosystem carbon exchange. We use NASA-CASA to explicitly represent the exchange of CO2 between terrestrial ecosystem and atmosphere by replacing the baseline GEOS-Chem land net CO2 flux and forest biomass burning CO2 emissions. We will present the estimation and evaluation of these "bottom-up" land CO2 fluxes, simulated atmospheric mixing ratios, and forest disturbance changes over the last decade. In addition, we will present our initial comparison of atmospheric column-mean dry air mole fraction of CO2 predicted by the model and those retrieved from NASA's OCO-2 (Orbiting Carbon Observatory-2) satellite instrument and model-predicted surface CO2 mixing ratios with global in situ observations. This evaluation is the first step necessary for our future work planned to constrain the estimates of biospheric carbon fluxes through "top-down" inverse modeling, which will improve our understanding of the processes controlling atmosphere-terrestrial ecosystem greenhouse gas exchanges, especially over regions which lack in

  1. The Net Carbon Flux due to Deforestation and Forest Re-Growth in the Brazilian Amazon: Analysis using a Process-Based Model

    NASA Technical Reports Server (NTRS)

    Hirsch, A. I.; Little, W. S.; Houghton, R. A.; Scott, N. A.; White, J. D.

    2004-01-01

    We developed a process-based model of forest growth, carbon cycling, and land cover dynamics named CARLUC (for CARbon and Land Use Change) to estimate the size of terrestrial carbon pools in terra firme (non-flooded) forests across the Brazilian Legal Amazon and the net flux of carbon resulting from forest disturbance and forest recovery from disturbance. Our goal in building the model was to construct a relatively simple ecosystem model that would respond to soil and climatic heterogeneity that allows us to study of the impact of Amazonian deforestation, selective logging, and accidental fire on the global carbon cycle. This paper focuses on the net flux caused by deforestation and forest re-growth over the period from 1970-1998. We calculate that the net flux to the atmosphere during this period reached a maximum of approx. 0.35 PgC/yr (1PgC = 1 x 10(exp I5) gC) in 1990, with a cumulative release of approx. 7 PgC from 1970- 1998. The net flux is higher than predicted by an earlier study by a total of 1 PgC over the period 1989-1 998 mainly because CARLUC predicts relatively high mature forest carbon storage compared to the datasets used in the earlier study. Incorporating the dynamics of litter and soil carbon pools into the model increases the cumulative net flux by approx. 1 PgC from 1970-1998, while different assumptions about land cover dynamics only caused small changes. The uncertainty of the net flux, calculated with a Monte-Carlo approach, is roughly 35% of the mean value (1 SD).

  2. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board the National Aeronautics and Space Administration's (NASA) Terra satellite to scale up AmeriFlux NEE measurements to themore » continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a modified regression tree approach. The predictive model was trained and validated using eddy flux NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE well (r = 0.73, p < 0.001). We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day interval in 2005 using spatially explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE as determined from measurements and the literature. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets over large areas.« less

  3. Management effects on carbon fluxes in boreal forests (Invited)

    NASA Astrophysics Data System (ADS)

    Lindroth, A.; Mölder, M.; Lagergren, F.; Vestin, P.; Hellström, M.; Sundqvist, E.; Norunda Bgs Team

    2010-12-01

    Disturbance by management or natural causes such as wind throw or fire are believed to be one of the main factors that are controlling the carbon balance of vegetation. In Northern Europe a large fraction of the forest area is managed with clear cutting and thinning as the main silvicultural methods. The effect of clear-cutting on carbon dioxide exchanges were studied in different chrono-sequences located in Sweden, Finland, UK and France, respectively. The combined results from these studies showed that a simple model could be developed describing relative net ecosystem exchange as a function of relative rotation length (age). A stand with a rotation length of 100 years, typical for Swedish conditions, looses substantial amounts of carbon during the first 12-15 years and the time it takes to reach cumulative balance after clear-cut, is 25-30 years. The mean net ecosystem exchange over the whole rotation length equals 50% of the maximum uptake. An interesting question is if it is possible to harvest without the substantial carbon losses that take place after clear-cutting. Selective harvest by thinning could potentially be such a method. We therefore studied the effect of thinning on soil and ecosystem carbon fluxes in a mixed pine and spruce forest in Central Sweden, the Norunda forest, located in the semi-boreal zone at 60.08°N, 17.48 °E. The CO2 fluxes from the forest were measured by eddy covariance method and soil effluxes were measured by automatic chambers. Maximum canopy height of the ca. 100 years-old forest was 28 m. The stand was composed of ca 72% pine, 28% before the thinning while the composition after the thinning became 82% pine and 18% spruce. The thinning was made in November/December 2008 in a half- circle from the tower with a radius of 200 m. The LAI decreased from 4.5 to 2.8 after the thinning operation. Immediately after the thinning, we found significantly higher soil effluxes, probably due to increased decomposition of dead roots. The

  4. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    NASA Astrophysics Data System (ADS)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  5. The Glyoxylate Cycle in an Arbuscular Mycorrhizal Fungus. Carbon Flux and Gene Expression

    PubMed Central

    Lammers, Peter J.; Jun, Jeongwon; Abubaker, Jehad; Arreola, Raul; Gopalan, Anjali; Bago, Berta; Hernandez-Sebastia, Cinta; Allen, James W.; Douds, David D.; Pfeffer, Philip E.; Shachar-Hill, Yair

    2001-01-01

    The arbuscular mycorrhizal (AM) symbiosis is responsible for huge fluxes of photosynthetically fixed carbon from plants to the soil. Lipid, which is the dominant form of stored carbon in the fungal partner and which fuels spore germination, is made by the fungus within the root and is exported to the extraradical mycelium. We tested the hypothesis that the glyoxylate cycle is central to the flow of carbon in the AM symbiosis. The results of 13C labeling of germinating spores and extraradical mycelium with 13C2-acetate and 13C2-glycerol and analysis by nuclear magnetic resonance spectroscopy indicate that there are very substantial fluxes through the glyoxylate cycle in the fungal partner. Full-length sequences obtained by polymerase chain reaction from a cDNA library from germinating spores of the AM fungus Glomus intraradices showed strong homology to gene sequences for isocitrate lyase and malate synthase from plants and other fungal species. Quantitative real-time polymerase chain reaction measurements show that these genes are expressed at significant levels during the symbiosis. Glyoxysome-like bodies were observed by electron microscopy in fungal structures where the glyoxylate cycle is expected to be active, which is consistent with the presence in both enzyme sequences of motifs associated with glyoxysomal targeting. We also identified among several hundred expressed sequence tags several enzymes of primary metabolism whose expression during spore germination is consistent with previous labeling studies and with fluxes into and out of the glyoxylate cycle. PMID:11706207

  6. Estimation of Carbon Flux of Forest Ecosystem over Qilian Mountains by BIOME-BGC Model

    NASA Astrophysics Data System (ADS)

    Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei

    2014-11-01

    The gross primary production (GPP) and net ecosystem exchange (NEE) are important indicators for carbon fluxes. This study aims at evaluating the forest GPP and NEE over the Qilian Mountains using meteorological, remotely sensed and other ancillary data at large scale. To realize this, the widely used ecological-process-based model, Biome-BGC, and remote-sensing-based model, MODIS GPP algorithm, were selected for the simulation of the forest carbon fluxes. The combination of these two models was based on calibrating the Biome-BGC by the optimized MODIS GPP algorithm. The simulated GPP and NEE values were evaluated against the eddy covariance observed GPPs and NEEs, and the well agreements have been reached, with R2=0.76, 0.67 respectively.

  7. Estimation of Carbon Flux of Forest Ecosystem over Qilian Mountains by BIOME-BGC Model

    NASA Astrophysics Data System (ADS)

    Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei

    2014-11-01

    The gross primary production (GPP) and net ecosystem exchange (NEE) are important indicators for carbon fluxes. This study aims at evaluating the forest GPP and NEE over the Qilian Mountains using meteorological, remotely sensed and other ancillary data at large scale. To realize this, the widely used ecological-process- based model, Biome-BGC, and remote-sensing-based model, MODIS GPP algorithm, were selected for the simulation of the forest carbon fluxes. The combination of these two models was based on calibrating the Biome-BGC by the optimized MODIS GPP algorithm. The simulated GPP and NEE values were evaluated against the eddy covariance observed GPPs and NEEs, and the well agreements have been reached, with R2=0.76, 0.67 respectively.

  8. Spatiotemporal dynamics of carbon dioxide and methane fluxes from agricultural and restored wetlands in the California Delta

    NASA Astrophysics Data System (ADS)

    Hatala, Jaclyn Anne

    The Sacramento-San Joaquin Delta in California was drained for agriculture and human settlement over a century ago, resulting in extreme rates of soil subsidence and release of CO2 to the atmosphere from peat oxidation. Because of this century-long ecosystem carbon imbalance where heterotrophic respiration exceeded net primary productivity, most of the land surface in the Delta is now up to 8 meters below sea level. To potentially reverse this trend of chronic carbon loss from Delta ecosystems, land managers have begun converting drained lands back to flooded ecosystems, but at the cost of increased production of CH4, a much more potent greenhouse gas than CO2. To evaluate the impacts of inundation on the biosphere-atmophere exchange of CO2 and CH4 in the Delta, I first measured and analyzed net fluxes of CO2 and CH4 for two continuous years with the eddy covariance technique in a drained peatland pasture and a recently re-flooded rice paddy. This analysis demonstrated that the drained pasture was a consistent large source of CO2 and small source of CH 4, whereas the rice paddy was a mild sink for CO2 and a mild source of CH4. However more importantly, this first analysis revealed nuanced complexities for measuring and interpreting patterns in CO2 and CH4 fluxes through time and space. CO2 and CH4 fluxes are inextricably linked in flooded ecosystems, as plant carbon serves as the primary substrate for the production of CH4 and wetland plants also provide the primary transport pathway of CH4 flux to the atmosphere. At the spatially homogeneous rice paddy during the summer growing season, I investigated rapid temporal coupling between CO2 and CH4 fluxes. Through wavelet Granger-causality analysis, I demonstrated that daily fluctuations in growing season gross ecosystem productivity (photosynthesis) exert a stronger control than temperature on the diurnal pattern in CH4 flux from rice. At a spatially heterogeneous restored wetland site, I analyzed the spatial coupling

  9. Estimation of Net Ecosystem Carbon Exchange for the Conterminous UnitedStates by Combining MODIS and AmeriFlux Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board NASA's Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS andmore » AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a regression tree approach. The predictive model was trained and validated using NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE reasonably well at the site level. We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day period in 2005 using spatially-explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets for large areas.« less

  10. Carbon dioxide fluxes from a degraded woodland in West Africa and their responses to main environmental factors.

    PubMed

    Ago, Expedit Evariste; Serça, Dominique; Agbossou, Euloge Kossi; Galle, Sylvie; Aubinet, Marc

    2015-12-01

    In West Africa, natural ecosystems such as woodlands are the main source for energy, building poles and livestock fodder. They probably behave like net carbon sinks, but there are only few studies focusing on their carbon exchange with the atmosphere. Here, we have analyzed CO 2 fluxes measured for 17 months by an eddy-covariance system over a degraded woodland in northern Benin. Specially, temporal evolution of the fluxes and their relationships with the main environmental factors were investigated between the seasons. This study shows a clear response of CO 2 absorption to photosynthetic photon flux density (Q p ), but it varies according to the seasons. After a significant and long dry period, the ecosystem respiration (R) has increased immediately to the first significant rains. No clear dependency of ecosystem respiration on temperature has been observed. The degraded woodlands are probably the "carbon neutral" at the annual scale. The net ecosystem exchange (NEE) was negative during wet season and positive during dry season, and its annual accumulation was equal to +29 ± 16 g C m -2 . The ecosystem appears to be more efficient in the morning and during the wet season than in the afternoon and during the dry season. This study shows diurnal and seasonal contrasted variations in the CO 2 fluxes in relation to the alternation between dry and wet seasons. The Nangatchori site is close to the equilibrium state according to its carbon exchanges with the atmosphere. The length of the observation period was too short to justify the hypothesis about the "carbon neutrality" of the degraded woodlands at the annual scale in West Africa. Besides, the annual net ecosystem exchange depends on the intensity of disturbances due to the site management system. Further research works are needed to define a woodland management policy that might keep these ecosystems as carbon sinks.

  11. Plant phenology and composition controls of carbon fluxes in a boreal peatland

    NASA Astrophysics Data System (ADS)

    Peichl, Matthias; Gažovič, Michal; Vermeij, Ilse; De Goede, Eefje; Sonnentag, Oliver; Limpens, Juul; Nilsson, Mats B.

    2016-04-01

    Vegetation drives the peatland carbon (C) cycle via the processes of photosynthesis, plant respiration and decomposition as well as by providing substrate for methane (CH4) and dissolved organic carbon production. However, due to the lack of comprehensive vegetation data, variations in the peatland C fluxes are commonly related to temperature and other more easily measured abiotic (i.e. weather and soil) variables. Due to the temporal co-linearity between plant development and abiotic variables, these relationships may describe the variations in C fluxes reasonably well, however, without representing the true mechanistic processes driving the peatland C cycle. As a consequence, current process-based models are poorly parameterized and unable to adequately predict the responses of the peatland C cycle to climate change, extreme events and anthropogenic impacts. To fill this knowledge gap, we explored vegetation phenology and composition effects on the peatland C cycle at the Degerö peatland located in northern Sweden. We used a greenness index derived from digital repeat photography to quantitatively describe plant canopy development with high temporal (i.e. daily) and spatial (plot to ecosystem) resolution. In addition, eddy covariance and static chamber measurements of carbon dioxide (CO2) and CH4 fluxes over an array of vegetation manipulation plots were conducted over multiple years. Our results suggest that vascular plant phenology controls the onset and pattern of eddy covariance-derived gross primary production (GPP) during the spring period, while abiotic conditions modify GPP during the summer period when plant canopy cover is fully developed. Inter-annual variations in the spring onset and patterns of plant canopy development were best explained by differences in the preceding growing degree day sum. We also observed strong correlations of canopy greenness with the net ecosystem CO2 exchange and ecosystem respiration. On average, vascular plant and moss

  12. Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan.

    PubMed

    Ardö, Jonas; Mölder, Meelis; El-Tahir, Bashir Awad; Elkhidir, Hatim Abdalla Mohammed

    2008-12-01

    Large spatial, seasonal and annual variability of major drivers of the carbon cycle (precipitation, temperature, fire regime and nutrient availability) are common in the Sahel region. This causes large variability in net ecosystem exchange and in vegetation productivity, the subsistence basis for a major part of the rural population in Sahel. This study compares the 2005 dry and wet season fluxes of CO2 for a grass land/sparse savanna site in semi arid Sudan and relates these fluxes to water availability and incoming photosynthetic photon flux density (PPFD). Data from this site could complement the current sparse observation network in Africa, a continent where climatic change could significantly impact the future and which constitute a weak link in our understanding of the global carbon cycle. The dry season (represented by Julian day 35-46, February 2005) was characterized by low soil moisture availability, low evapotranspiration and a high vapor pressure deficit. The mean daily NEE (net ecosystem exchange, Eq. 1) was -14.7 mmol d-1 for the 12 day period (negative numbers denote sinks, i.e. flux from the atmosphere to the biosphere). The water use efficiency (WUE) was 1.6 mmol CO2 mol H2O-1 and the light use efficiency (LUE) was 0.95 mmol CO2 mol PPFD-1. Photosynthesis is a weak, but linear function of PPFD. The wet season (represented by Julian day 266-273, September 2005) was, compared to the dry season, characterized by slightly higher soil moisture availability, higher evapotranspiration and a slightly lower vapor pressure deficit. The mean daily NEE was -152 mmol d-1 for the 8 day period. The WUE was lower, 0.97 mmol CO2 mol H2O-1 and the LUE was higher, 7.2 mumol CO2 mmol PPFD-1 during the wet season compared to the dry season. During the wet season photosynthesis increases with PPFD to about 1600 mumol m-2s-1 and then levels off. Based on data collected during two short periods, the studied ecosystem was a sink of carbon both during the dry and wet season

  13. Spatial and temporal variability of urban fluxes of methane, carbon monoxide and carbon dioxide above London, UK

    NASA Astrophysics Data System (ADS)

    Helfter, Carole; Tremper, Anja H.; Halios, Christoforos H.; Kotthaus, Simone; Bjorkegren, Alex; Grimmond, C. Sue B.; Barlow, Janet F.; Nemitz, Eiko

    2016-08-01

    We report on more than 3 years of measurements of fluxes of methane (CH4), carbon monoxide (CO) and carbon dioxide (CO2) taken by eddy-covariance in central London, UK. Mean annual emissions of CO2 in the period 2012-2014 (39.1 ± 2.4 ktons km-2 yr-1) and CO (89 ± 16 tons km-2 yr-1) were consistent (within 1 and 5 % respectively) with values from the London Atmospheric Emissions Inventory, but measured CH4 emissions (72 ± 3 tons km-2 yr-1) were over two-fold larger than the inventory value. Seasonal variability was large for CO with a winter to summer reduction of 69 %, and monthly fluxes were strongly anti-correlated with mean air temperature. The winter increment in CO emissions was attributed mainly to vehicle cold starts and reduced fuel combustion efficiency. CO2 fluxes were 33 % higher in winter than in summer and anti-correlated with mean air temperature, albeit to a lesser extent than for CO. This was attributed to an increased demand for natural gas for heating during the winter. CH4 fluxes exhibited moderate seasonality (21 % larger in winter), and a spatially variable linear anti-correlation with air temperature. Differences in resident population within the flux footprint explained up to 90 % of the spatial variability of the annual CO2 fluxes and up to 99 % for CH4. Furthermore, we suggest that biogenic sources of CH4, such as wastewater, which is unaccounted for by the atmospheric emissions inventories, make a substantial contribution to the overall budget and that commuting dynamics in and out of central business districts could explain some of the spatial and temporal variability of CO2 and CH4 emissions. To our knowledge, this study is unique given the length of the data sets presented, especially for CO and CH4 fluxes. This study offers an independent assessment of "bottom-up" emissions inventories and demonstrates that the urban sources of CO and CO2 are well characterized in London. This is however not the case for CH4 emissions which are

  14. ForC: a global database of forest carbon stocks and fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson-Teixeira, Kristina J.; Wang, Maria M. H.; McGarvey, Jennifer C.

    Forests play an influential role in the global carbon (C) cycle, storing roughly half of terrestrial C and annually exchanging with the atmosphere more than ten times the carbon dioxide (CO 2) emitted by anthropogenic activities. Yet, scaling up from ground-based measurements of forest C stocks and fluxes to understand global scale C cycling and its climate sensitivity remains an important challenge. Tens of thousands of forest C measurements have been made, but these data have yet to be integrated into a single database that makes them accessible for integrated analyses. Here we present an open-access global Forest Carbon databasemore » (ForC) containing records of ground-based measurements of ecosystem-level C stocks and annual fluxes, along with disturbance history and methodological information. ForC expands upon the previously published tropical portion of this database, TropForC (DOI: 10.5061/dryad.t516f), now including 17,538 records (previously 3568) representing 2,731 plots (previously 845) in 826 geographically distinct areas (previously 178). The database covers all forested biogeographic and climate zones, represents forest stands of all ages, and includes 89 C cycle variables collected between 1934 and 2015. We expect that ForC will prove useful for macroecological analyses of forest C cycling, for evaluation of model predictions or remote sensing products, for quantifying the contribution of forests to the global C cycle, and for supporting international efforts to inventory forest carbon and greenhouse gas exchange. A dynamic version of ForC-db is maintained at https://github.com/forc-db, and we encourage the research community to collaborate in updating, correcting, expanding, and utilizing this database.« less

  15. Regional carbon fluxes from land use and land cover change in Asia, 1980–2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calle, Leonardo; Canadell, Josep G.; Patra, Prabir

    We present a synthesis of the land-atmosphere carbon flux from land use and land cover change (LULCC) in Asia using multiple data sources and paying particular attention to deforestation and forest regrowth fluxes. The data sources are quasi-independent and include the U.N. Food and Agriculture Organization-Forest Resource Assessment (FAO-FRA 2015; country-level inventory estimates), the Emission Database for Global Atmospheric Research (EDGARv4.3), the 'Houghton' bookkeeping model that incorporates FAO-FRA data, an ensemble of 8 state-of-the-art Dynamic Global Vegetation Models (DGVM), and 2 recently published independent studies using primarily remote sensing techniques. The estimates are aggregated spatially to Southeast, East, and Southmore » Asia and temporally for three decades, 1980–1989, 1990–1999 and 2000–2009. Since 1980, net carbon emissions from LULCC in Asia were responsible for 20%–40% of global LULCC emissions, with emissions from Southeast Asia alone accounting for 15%–25% of global LULCC emissions during the same period. In the 2000s and for all Asia, three estimates (FAO-FRA, DGVM, Houghton) were in agreement of a net source of carbon to the atmosphere, with mean estimates ranging between 0.24 to 0.41 Pg C yr -1, whereas EDGARv4.3 suggested a net carbon sink of -0.17 Pg C yr -1. Three of 4 estimates suggest that LULCC carbon emissions declined by at least 34% in the preceding decade (1990–2000). Spread in the estimates is due to the inclusion of different flux components and their treatments, showing the importance to include emissions from carbon rich peatlands and land management, such as shifting cultivation and wood harvesting, which appear to be consistently underreported.« less

  16. Regional carbon fluxes from land use and land cover change in Asia, 1980–2009

    DOE PAGES

    Calle, Leonardo; Canadell, Josep G.; Patra, Prabir; ...

    2016-07-08

    We present a synthesis of the land-atmosphere carbon flux from land use and land cover change (LULCC) in Asia using multiple data sources and paying particular attention to deforestation and forest regrowth fluxes. The data sources are quasi-independent and include the U.N. Food and Agriculture Organization-Forest Resource Assessment (FAO-FRA 2015; country-level inventory estimates), the Emission Database for Global Atmospheric Research (EDGARv4.3), the 'Houghton' bookkeeping model that incorporates FAO-FRA data, an ensemble of 8 state-of-the-art Dynamic Global Vegetation Models (DGVM), and 2 recently published independent studies using primarily remote sensing techniques. The estimates are aggregated spatially to Southeast, East, and Southmore » Asia and temporally for three decades, 1980–1989, 1990–1999 and 2000–2009. Since 1980, net carbon emissions from LULCC in Asia were responsible for 20%–40% of global LULCC emissions, with emissions from Southeast Asia alone accounting for 15%–25% of global LULCC emissions during the same period. In the 2000s and for all Asia, three estimates (FAO-FRA, DGVM, Houghton) were in agreement of a net source of carbon to the atmosphere, with mean estimates ranging between 0.24 to 0.41 Pg C yr -1, whereas EDGARv4.3 suggested a net carbon sink of -0.17 Pg C yr -1. Three of 4 estimates suggest that LULCC carbon emissions declined by at least 34% in the preceding decade (1990–2000). Spread in the estimates is due to the inclusion of different flux components and their treatments, showing the importance to include emissions from carbon rich peatlands and land management, such as shifting cultivation and wood harvesting, which appear to be consistently underreported.« less

  17. Nested Global Inversion for the Carbon Flux Distribution in Canada and USA from 1994 to 2003

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Deng, F.; Ishizawa, M.; Ju, W.; Mo, G.; Chan, D.; Higuchi, K.; Maksyutov, S.

    2007-12-01

    Based on TransCom inverse modeling for 22 global regions, we developed a nested global inversion system for estimating carbon fluxes of 30 regions in North America (2 of the 22 regions are divided into 30). Irregular boundaries of these 30 regions are delineated based on ecosystem types and provincial/state borders. Synthesis Bayesian inversion is conducted in monthly steps using CO2 concentration measurements at 88 coastal and continental stations of the globe for the 1994-2003 period (NOAA GlobalView database). Responses of these stations to carbon fluxes from the 50 regions are simulated using the transport model of National Institute for Environmental Studies of Japan and reanalysis wind fields of the National Centers for Environmental Prediction (NCEP). Terrestrial carbon flux fields modeled using BEPS and Biome-BGC driven by NCEP reanalysis meteorological data are used as two different a priori to constrain the inversion. The inversion (top- down) results are compared with remote sensing-based ecosystem modeling (bottom-up) results in Canada's forests and wetlands. There is a broad consistency in the spatial pattern of the carbon source and sink distributions obtained using these two independent methods. Both sets of results also indicate that Canada's forests and wetlands are carbon sinks in 1994-2003, but the top-down method produces consistently larger sinks than the bottom-up results. Reasons for this discrepancy may lie in both methods, and several issues are identified for further investigation.

  18. Inorganic carbon fluxes on the Mackenzie Shelf of the Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Mol, Jacoba; Thomas, Helmuth; Myers, Paul G.; Hu, Xianmin; Mucci, Alfonso

    2018-02-01

    The Mackenzie Shelf in the southeastern Beaufort Sea is a region that has experienced large changes in the past several decades as warming, sea-ice loss, and increased river discharge have altered carbon cycling. Upwelling and downwelling events are common on the shelf, caused by strong, fluctuating along-shore winds, resulting in cross-shelf Ekman transport, and an alternating estuarine and anti-estuarine circulation. Downwelling carries dissolved inorganic carbon (DIC) and other remineralization products off the shelf and into the deep basin for possible long-term storage in the world's oceans. Upwelling carries DIC and nutrient-rich waters from the Pacific-origin upper halocline layer (UHL) onto the shelf. Profiles of DIC and total alkalinity (TA) taken in August and September of 2014 are used to investigate the cycling of carbon on the Mackenzie Shelf. The along-shore transport of water and the cross-shelf transport of DIC are quantified using velocity field output from a simulation of the Arctic and Northern Hemisphere Atlantic (ANHA4) configuration of the Nucleus of European Modelling of the Ocean (NEMO) framework. A strong upwelling event prior to sampling on the Mackenzie Shelf took place, bringing CO2-rich (elevated pCO2) water from the UHL onto the shelf bottom. The maximum on-shelf DIC flux was estimated at 16.9×103 mol C d-1 m-2 during the event. The maximum on-shelf transport of DIC through the upwelling event was found to be 65±15×10-3 Tg C d-1. TA and the oxygen isotope ratio of water (δ18O-H2O) are used to examine water-mass distributions in the study area and to investigate the influence of Pacific Water, Mackenzie River freshwater, and sea-ice melt on carbon dynamics and air-sea fluxes of carbon dioxide (CO2) in the surface mixed layer. Understanding carbon transfer in this seasonally dynamic environment is key to quantify the importance of Arctic shelf regions to the global carbon cycle and provide a basis for understanding how it will

  19. Warming effects on permafrost ecosystem carbon fluxes associated with plant nutrients.

    PubMed

    Li, Fei; Peng, Yunfeng; Natali, Susan M; Chen, Kelong; Han, Tianfeng; Yang, Guibiao; Ding, Jinzhi; Zhang, Dianye; Wang, Guanqin; Wang, Jun; Yu, Jianchun; Liu, Futing; Yang, Yuanhe

    2017-11-01

    Large uncertainties exist in carbon (C)-climate feedback in permafrost regions, partly due to an insufficient understanding of warming effects on nutrient availabilities and their subsequent impacts on vegetation C sequestration. Although a warming climate may promote a substantial release of soil C to the atmosphere, a warming-induced increase in soil nutrient availability may enhance plant productivity, thus offsetting C loss from microbial respiration. Here, we present evidence that the positive temperature effect on carbon dioxide (CO 2 ) fluxes may be weakened by reduced plant nitrogen (N) and phosphorous (P) concentrations in a Tibetan permafrost ecosystem. Although experimental warming initially enhanced ecosystem CO 2 uptake, the increased rate disappeared after the period of peak plant growth during the early growing season, even though soil moisture was not a limiting factor in this swamp meadow ecosystem. We observed that warming did not significantly affect soil extractable N or P during the period of peak growth, but decreased both N and P concentrations in the leaves of dominant plant species, likely caused by accelerated plant senescence in the warmed plots. The attenuated warming effect on CO 2 assimilation during the late growing season was associated with lowered leaf N and P concentrations. These findings suggest that warming-mediated nutrient changes may not always benefit ecosystem C uptake in permafrost regions, making our ability to predict the C balance in these warming-sensitive ecosystems more challenging than previously thought. © 2017 by the Ecological Society of America.

  20. [Simulation of water and carbon fluxes in harvard forest area based on data assimilation method].

    PubMed

    Zhang, Ting-Long; Sun, Rui; Zhang, Rong-Hua; Zhang, Lei

    2013-10-01

    Model simulation and in situ observation are the two most important means in studying the water and carbon cycles of terrestrial ecosystems, but have their own advantages and shortcomings. To combine these two means would help to reflect the dynamic changes of ecosystem water and carbon fluxes more accurately. Data assimilation provides an effective way to integrate the model simulation and in situ observation. Based on the observation data from the Harvard Forest Environmental Monitoring Site (EMS), and by using ensemble Kalman Filter algorithm, this paper assimilated the field measured LAI and remote sensing LAI into the Biome-BGC model to simulate the water and carbon fluxes in Harvard forest area. As compared with the original model simulated without data assimilation, the improved Biome-BGC model with the assimilation of the field measured LAI in 1998, 1999, and 2006 increased the coefficient of determination R2 between model simulation and flux observation for the net ecosystem exchange (NEE) and evapotranspiration by 8.4% and 10.6%, decreased the sum of absolute error (SAE) and root mean square error (RMSE) of NEE by 17.7% and 21.2%, and decreased the SAE and RMSE of the evapotranspiration by 26. 8% and 28.3%, respectively. After assimilated the MODIS LAI products of 2000-2004 into the improved Biome-BGC model, the R2 between simulated and observed results of NEE and evapotranspiration was increased by 7.8% and 4.7%, the SAE and RMSE of NEE were decreased by 21.9% and 26.3%, and the SAE and RMSE of evapotranspiration were decreased by 24.5% and 25.5%, respectively. It was suggested that the simulation accuracy of ecosystem water and carbon fluxes could be effectively improved if the field measured LAI or remote sensing LAI was integrated into the model.

  1. Determination of the carbon budget of a pasture: effect of system boundaries and flux uncertainties

    NASA Astrophysics Data System (ADS)

    Felber, R.; Bretscher, D.; Münger, A.; Neftel, A.; Ammann, C.

    2015-12-01

    Carbon (C) sequestration in the soil is considered as a potential important mechanism to mitigate greenhouse gas (GHG) emissions of the agricultural sector. It can be quantified by the net ecosystem carbon budget (NECB) describing the change of soil C as the sum of all relevant import and export fluxes. NECB was investigated here in detail for an intensively grazed dairy pasture in Switzerland. Two budget approaches with different system boundaries were applied: NECBtot for system boundaries including the grazing cows and NECBpast for system boundaries excluding the cows. CO2 and CH4 exchange induced by soil/vegetation processes as well as direct emissions by the animals were derived from eddy covariance measurements. Other C fluxes were either measured (milk yield, concentrate feeding) or derived based on animal performance data (intake, excreta). For the investigated year, both approaches resulted in a small non-significant C loss: NECBtot - 13 ± 61 g C m-2 yr-1 and NECBpast - 17 ± 81 g C m-2 yr-1. The considerable uncertainties, depending on the approach, were mainly due to errors in the CO2 exchange or in the animal related fluxes. The associated GHG budget revealed CH4 emissions from the cows to be the major contributor, but with much lower uncertainty compared to NECB. Although only one year of data limit the representativeness of the carbon budget results, they demonstrated the important contribution of the non-CO2 fluxes depending on the chosen system boundaries and the effect of their propagated uncertainty in an exemplary way. The simultaneous application and comparison of both NECB approaches provides a useful consistency check for the carbon budget determination and can help to identify and eliminate systematic errors.

  2. Determination of the carbon budget of a pasture: effect of system boundaries and flux uncertainties

    NASA Astrophysics Data System (ADS)

    Felber, Raphael; Bretscher, Daniel; Münger, Andreas; Neftel, Albrecht; Ammann, Christof

    2016-05-01

    Carbon (C) sequestration in the soil is considered as a potential important mechanism to mitigate greenhouse gas (GHG) emissions of the agricultural sector. It can be quantified by the net ecosystem carbon budget (NECB) describing the change of soil C as the sum of all relevant import and export fluxes. NECB was investigated here in detail for an intensively grazed dairy pasture in Switzerland. Two budget approaches with different system boundaries were applied: NECBtot for system boundaries including the grazing cows and NECBpast for system boundaries excluding the cows. CO2 and CH4 exchange induced by soil/vegetation processes as well as direct emissions by the animals were derived from eddy covariance measurements. Other C fluxes were either measured (milk yield, concentrate feeding) or derived based on animal performance data (intake, excreta). For the investigated year, both approaches resulted in a small near-neutral C budget: NECBtot -27 ± 62 and NECBpast 23 ± 76 g C m-2 yr-1. The considerable uncertainties, depending on the approach, were mainly due to errors in the CO2 exchange or in the animal-related fluxes. The comparison of the NECB results with the annual exchange of other GHG revealed CH4 emissions from the cows to be the major contributor in terms of CO2 equivalents, but with much lower uncertainty compared to NECB. Although only 1 year of data limit the representativeness of the carbon budget results, they demonstrate the important contribution of the non-CO2 fluxes depending on the chosen system boundaries and the effect of their propagated uncertainty in an exemplary way. The simultaneous application and comparison of both NECB approaches provides a useful consistency check for the carbon budget determination and can help to identify and eliminate systematic errors.

  3. Diurnal and seasonal variation of various carbon fluxes from an urban tower platform in Houston, TX

    NASA Astrophysics Data System (ADS)

    Schade, G. W.; Werner, N.; Hale, M. C.

    2013-12-01

    We measured carbon fluxes (CO2, CO, VOCs) from a tall lattice tower in Houston between 2007 and 2009, and 2011-2013. We present results from various analyses of (i) anthropogenic and biogenic CO2 fluxes using a quadrant segregation technique, (ii) seasonal and multi-year changes of CO fluxes as related to car traffic and industrial sources, and (iii) the accuracy of, and usefulness of a bulk flux footprint model to quantify pentane emissions form a distant source in comparison to permitted emission levels. Segregated and net anthropogenic CO2 fluxes were dominated by car traffic but industrial sources were identified as well. Emissions sank to minimal levels after hurricane Ike had passed over Houston, causing a traffic shutdown and lower population density. Segregated biogenic fluxes showed a clear seasonal variation with photosynthetic activity between April and November, and large effects of the 2011 Texas drought due to negligible irrigation in the study area. Carbon monoxide fluxes, measured via a flux gradient technique, are even stronger dominated by car traffic than CO2 fluxes and serve as a traffic tracer. Our data show a continued drop in emissions over time, seasonal changes with higher emissions during winter, and local influences due to industrial emissions. Lastly, we present the results of a tracer release study and a single point source quantification to test a bulk footprint model in this complex urban area. Known releases of volatile acetone and MEK were compered to measured fluxes using a REA-GC-FID system, and permit emissions of pentane from a foam plastics manufacturing facility were compared to measured pentane fluxes. Both comparisons reveal a surprisingly accurate performance of the footprint model within a factor of 2.

  4. Baseline and projected future carbon storage and greenhouse-gas fluxes in the Great Plains region of the United States

    USGS Publications Warehouse

    Bouchard, Michelle; Butman, David; Hawbaker, Todd; Li, Zhengpeng; Liu, Jinxun; Liu, Shu-Guang; McDonald, Cory; Reker, Ryan R.; Sayler, Kristi; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Wein, Anne; Zhu, Zhi-Liang; Zhu, Zhi-Liang

    2011-01-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act (EISA) of 2007 and to improve understanding of carbon and greenhouse gas (GHG) fluxes in the Great Plains region in the central part of the United States. The assessment examined carbon storage, carbon fluxes, and other GHG fluxes (methane and nitrous oxide) in all major terrestrial ecosystems (forests, grasslands/shrublands, agricultural lands, and wetlands) and freshwater aquatic systems (rivers, streams, lakes, and impoundments) in two time periods: baseline (generally in the first half of the 2010s) and future (projections from baseline to 2050). The assessment was based on measured and observed data collected by the U.S. Geological Survey (USGS) and many other agencies and organizations and used remote sensing, statistical methods, and simulation models.

  5. Carbon fluxes in ecosystems of Yellowstone National Park predicted from remote sensing data and simulation modeling

    PubMed Central

    2011-01-01

    Background A simulation model based on remote sensing data for spatial vegetation properties has been used to estimate ecosystem carbon fluxes across Yellowstone National Park (YNP). The CASA (Carnegie Ames Stanford Approach) model was applied at a regional scale to estimate seasonal and annual carbon fluxes as net primary production (NPP) and soil respiration components. Predicted net ecosystem production (NEP) flux of CO2 is estimated from the model for carbon sinks and sources over multi-year periods that varied in climate and (wildfire) disturbance histories. Monthly Enhanced Vegetation Index (EVI) image coverages from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instrument (from 2000 to 2006) were direct inputs to the model. New map products have been added to CASA from airborne remote sensing of coarse woody debris (CWD) in areas burned by wildfires over the past two decades. Results Model results indicated that relatively cooler and wetter summer growing seasons were the most favorable for annual plant production and net ecosystem carbon gains in representative landscapes of YNP. When summed across vegetation class areas, the predominance of evergreen forest and shrubland (sagebrush) cover was evident, with these two classes together accounting for 88% of the total annual NPP flux of 2.5 Tg C yr-1 (1 Tg = 1012 g) for the entire Yellowstone study area from 2000-2006. Most vegetation classes were estimated as net ecosystem sinks of atmospheric CO2 on annual basis, making the entire study area a moderate net sink of about +0.13 Tg C yr-1. This average sink value for forested lands nonetheless masks the contribution of areas burned during the 1988 wildfires, which were estimated as net sources of CO2 to the atmosphere, totaling to a NEP flux of -0.04 Tg C yr-1 for the entire burned area. Several areas burned in the 1988 wildfires were estimated to be among the lowest in overall yearly NPP, namely the Hellroaring Fire, Mink Fire, and Falls Fire

  6. Carbon fluxes in ecosystems of Yellowstone National Park predicted from remote sensing data and simulation modeling.

    PubMed

    Potter, Christopher; Klooster, Steven; Crabtree, Robert; Huang, Shengli; Gross, Peggy; Genovese, Vanessa

    2011-08-11

    A simulation model based on remote sensing data for spatial vegetation properties has been used to estimate ecosystem carbon fluxes across Yellowstone National Park (YNP). The CASA (Carnegie Ames Stanford Approach) model was applied at a regional scale to estimate seasonal and annual carbon fluxes as net primary production (NPP) and soil respiration components. Predicted net ecosystem production (NEP) flux of CO2 is estimated from the model for carbon sinks and sources over multi-year periods that varied in climate and (wildfire) disturbance histories. Monthly Enhanced Vegetation Index (EVI) image coverages from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instrument (from 2000 to 2006) were direct inputs to the model. New map products have been added to CASA from airborne remote sensing of coarse woody debris (CWD) in areas burned by wildfires over the past two decades. Model results indicated that relatively cooler and wetter summer growing seasons were the most favorable for annual plant production and net ecosystem carbon gains in representative landscapes of YNP. When summed across vegetation class areas, the predominance of evergreen forest and shrubland (sagebrush) cover was evident, with these two classes together accounting for 88% of the total annual NPP flux of 2.5 Tg C yr-1 (1 Tg = 1012 g) for the entire Yellowstone study area from 2000-2006. Most vegetation classes were estimated as net ecosystem sinks of atmospheric CO2 on annual basis, making the entire study area a moderate net sink of about +0.13 Tg C yr-1. This average sink value for forested lands nonetheless masks the contribution of areas burned during the 1988 wildfires, which were estimated as net sources of CO2 to the atmosphere, totaling to a NEP flux of -0.04 Tg C yr-1 for the entire burned area. Several areas burned in the 1988 wildfires were estimated to be among the lowest in overall yearly NPP, namely the Hellroaring Fire, Mink Fire, and Falls Fire areas. Rates of

  7. Satellite Based Cropland Carbon Monitoring System

    NASA Astrophysics Data System (ADS)

    Bandaru, V.; Jones, C. D.; Sedano, F.; Sahajpal, R.; Jin, H.; Skakun, S.; Pnvr, K.; Kommareddy, A.; Reddy, A.; Hurtt, G. C.; Izaurralde, R. C.

    2017-12-01

    Agricultural croplands act as both sources and sinks of atmospheric carbon dioxide (CO2); absorbing CO2 through photosynthesis, releasing CO2 through autotrophic and heterotrophic respiration, and sequestering CO2 in vegetation and soils. Part of the carbon captured in vegetation can be transported and utilized elsewhere through the activities of food, fiber, and energy production. As well, a portion of carbon in soils can be exported somewhere else by wind, water, and tillage erosion. Thus, it is important to quantify how land use and land management practices affect the net carbon balance of croplands. To monitor the impacts of various agricultural activities on carbon balance and to develop management strategies to make croplands to behave as net carbon sinks, it is of paramount importance to develop consistent and high resolution cropland carbon flux estimates. Croplands are typically characterized by fine scale heterogeneity; therefore, for accurate carbon flux estimates, it is necessary to account for the contribution of each crop type and their spatial distribution. As part of NASA CMS funded project, a satellite based Cropland Carbon Monitoring System (CCMS) was developed to estimate spatially resolved crop specific carbon fluxes over large regions. This modeling framework uses remote sensing version of Environmental Policy Integrated Climate Model and satellite derived crop parameters (e.g. leaf area index (LAI)) to determine vertical and lateral carbon fluxes. The crop type LAI product was developed based on the inversion of PRO-SAIL radiative transfer model and downscaled MODIS reflectance. The crop emergence and harvesting dates were estimated based on MODIS NDVI and crop growing degree days. To evaluate the performance of CCMS framework, it was implemented over croplands of Nebraska, and estimated carbon fluxes for major crops (i.e. corn, soybean, winter wheat, grain sorghum, alfalfa) grown in 2015. Key findings of the CCMS framework will be presented

  8. Modeling Biogeochemical-Physical Interactions and Carbon Flux in the Sargasso Sea (Bermuda Atlantic Time-series Study site)

    NASA Technical Reports Server (NTRS)

    Signorini, Sergio R.; McClain, Charles R.; Christian, James R.

    2001-01-01

    An ecosystem-carbon cycle model is used to analyze the biogeochemical-physical interactions and carbon fluxes in the Bermuda Atlantic Time-series Study (BATS) site for the period of 1992-1998. The model results compare well with observations (most variables are within 8% of observed values). The sea-air flux ranges from -0.32 to -0.50 mol C/sq m/yr, depending upon the gas transfer algorithm used. This estimate is within the range (-0.22 to -0.83 mol C/sq m/yr) of previously reported values which indicates that the BATS region is a weak sink of atmospheric CO2. The overall carbon balance consists of atmospheric CO2 uptake of 0.3 Mol C/sq m/yr, upward dissolved inorganic carbon (DIC) bottom flux of 1.1 Mol C/sq m/yr, and carbon export of 1.4 mol C/sq m/yr via sedimentation. Upper ocean DIC levels increased between 1992 and 1996 at a rate of approximately 1.2 (micro)mol/kg/yr, consistent with observations. However, this trend was reversed during 1997-1998 to -2.7 (micro)mol/kg/yr in response to hydrographic changes imposed by the El Nino-La Nina transition, which were manifested in the Sargasso Sea by the warmest SST and lowest surface salinity of the period (1992-1998).

  9. Advancing approaches for multi-year high-frequency monitoring of temporal and spatial variability in carbon cycle fluxes and drivers in freshwater lakes

    NASA Astrophysics Data System (ADS)

    Desai, A. R.; Reed, D. E.; Dugan, H. A.; Loken, L. C.; Schramm, P.; Golub, M.; Huerd, H.; Baldocchi, A. K.; Roberts, R.; Taebel, Z.; Hart, J.; Hanson, P. C.; Stanley, E. H.; Cartwright, E.

    2017-12-01

    Freshwater ecosystems are hotspots of regional to global carbon cycling. However, significant sample biases limit our ability to quantify and predict these fluxes. For lakes, scaled flux estimates suffer biased sampling toward 1) low-nutrient pristine lakes, 2) infrequent temporal sampling, 3) field campaigns limited to the growing season, and 4) replicates limited to near the center of the lake. While these biases partly reflect the realities of ecological sampling, there is a need to extend observations towards the large fraction of freshwater systems worldwide that are impaired by human activities and those facing significant interannual variability owing to climatic change. Also, for seasonally ice-covered lakes, much of the annual budget of carbon fluxes is thought to be explained by variation in the shoulder seasons of spring ice melt and fall turnover. Recent advances in automated, continuous multi-year temporal sampling coupled with rapid methods for spatial mapping of CO2 fluxes has strong potential to rectify these sampling biases. Here, we demonstrate these advances in an eutrophic seasonally-ice covered lake with an urban shoreline and agricultural watershed. Multiple years of half-hourly eddy covariance flux tower observations from two locations are coupled with frequent spatial samples of these fluxes and drivers by speedboat, floating chamber fluxes, automated buoy-based monitoring of lake nutrient and physical profiles, and ensemble of physical-ecosystem models. High primary productivity in the water column leads to an average net carbon sink during the growing season in much of the lake, but annual net carbon fluxes show the lake can act as an annual source or a sink of carbon depending the timing of spring and fall turnover. Trophic interactions and internal waves drive shorter-term variation while nutrients and biology drive seasonal variation. However, discrepancies remain among methods to quantify fluxes, requiring further investigation.

  10. Spatial variability of litter gaseous flux within a commercial broiler house: ammonia, nitrous oxide, carbon dioxide, and methane.

    PubMed

    Miles, D M; Owens, P R; Rowe, D E

    2006-02-01

    Twenty-eight flocks were grown on litter in a tunnel-ventilated, curtain-sided commercial broiler house prior to this summer flock. Grid measurements were made using a photo-acoustic multigas analyzer to assess the spatial variability of litter gases (NH3, N2O, CO2, and CH4) on d 1 and 21. The pooled results for the brood and non-brood areas of the house were 1) NH3 flux was greatest in the brood area at d 1, averaging 497 mg/(m2 x h), and had a mean of 370 mg/(m2 x h) in the vacant end of the house; 2) at d 21, the non-brood area had the greater average NH3 flux, 310 mg/(m2 x h), and flux in the brood area was 136 mg/(m2 x h); 3) N2O and CH4 fluxes were <60 mg/(m2 x h); and 4) on d 1, brood CO2 flux was 6,190 mg/(m2 x h) compared with 5,490 mg/ (m2 x h) at the opposite end of the house. On d 21, these values increased to 6,540 and 9,684 mg/(m2 x h) for the brood and non-brood areas. Ammonia flux seemed most affected by litter temperature. Carbon dioxide and CH4 increased from placement to mid growout, corresponding to increased moisture, especially near the fans. Contour plots were developed using geostatistical software to visually assess the spatial disparity among the measurements. This research provides a unique view of gas flux variation within the house. Collinear factors such as house management, bird size and age, and amount of deposition are significant factors for litter gas flux and should be considered in comprehensive models for emission estimates.

  11. Improvements in metabolic flux analysis using carbon bond labeling experiments: bondomer balancing and Boolean function mapping.

    PubMed

    Sriram, Ganesh; Shanks, Jacqueline V

    2004-04-01

    The biosynthetically directed fractional (13)C labeling method for metabolic flux evaluation relies on performing a 2-D [(13)C, (1)H] NMR experiment on extracts from organisms cultured on a uniformly labeled carbon substrate. This article focuses on improvements in the interpretation of data obtained from such an experiment by employing the concept of bondomers. Bondomers take into account the natural abundance of (13)C; therefore many bondomers in a real network are zero, and can be precluded a priori--thus resulting in fewer balances. Using this method, we obtained a set of linear equations which can be solved to obtain analytical formulas for NMR-measurable quantities in terms of fluxes in glycolysis and the pentose phosphate pathways. For a specific case of this network with four degrees of freedom, a priori identifiability of the fluxes was shown possible for any set of fluxes. For a more general case with five degrees of freedom, the fluxes were shown identifiable for a representative set of fluxes. Minimal sets of measurements which best identify the fluxes are listed. Furthermore, we have delineated Boolean function mapping, a new method to iteratively simulate bondomer abundances or efficiently convert carbon skeleton rearrangement information to mapping matrices. The efficiency of this method is expected to be valuable while analyzing metabolic networks which are not completely known (such as in plant metabolism) or while implementing iterative bondomer balancing methods.

  12. Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3

    Treesearch

    J. S. King; K. S. Pregitzer; D. R. Zak; J. Sober; J. G. Isebrands; R. E. Dickson; G. R. Hendrey; D. F. Karnosky

    2001-01-01

    Rising atmospheric CO2 may stimulate future forest productivity, possibly increasing carbon storage in terrestrial ecosystems, but how tropospheric ozone will modify this response is unknown. Because of the importance of fine roots to the belowground C cycle, we monitored fine-root biomass and associated C fluxes in regenerating stands of...

  13. An In situ Study of Seasonal Dissolved Organic Carbon and Nutrient Fluxes from a Spartina alterniflora Salt Marsh in North Carolina

    NASA Astrophysics Data System (ADS)

    Detweiler, D. J.; Loh, A. N.

    2016-02-01

    Spartina alterniflora salt marshes are among the most productive and biogeochemically active ecosystems on Earth. While they have been shown to be sources of dissolved organic carbon (DOC) and nutrient export to the coastal ocean via tidal processes, it has not been well quantified experimentally. The purpose of this study was to quantify DOC and nutrient fluxes from a fringing S. alterniflora salt marsh in North Carolina. The experiment was conducted using in situ benthic microcosm chambers filled with seawater during a flooding tide; the chambers were then plugged, and samples were collected during an ebbing tide over the course of 270 minutes while simulating light and dark conditions. Water samples were filtered and analyzed for DOC and nutrient concentrations over time and used to calculate fluxes from vegetated (S. alterniflora) and non-vegetated marsh sediments. Preliminary daily flux calculations show that fluxes from vegetated sediments have a higher magnitude when compared to fluxes from non-vegetated sediments. Daily flux calculations also suggest that vegetated sediments act as a DOC source while non-vegetated sediments act as a DOC sink. Additional flux data for dissolved inorganic and organic nitrogen (DIN, DON) and dissolved inorganic and organic phosphorus (DIP, DOP) as well as marsh sediment characterization will also be presented. Ultimately, these data will provide seasonal daily flux calculations for S. alterniflora salt marshes and insight as to how changing environmental conditions such as wetland modification, wetland destruction, nutrient input, and climate change are affecting coastal biogeochemical cycles.

  14. Combined chamber-tower approach: Using eddy covariance measurements to cross-validate carbon fluxes modeled from manual chamber campaigns

    NASA Astrophysics Data System (ADS)

    Brümmer, C.; Moffat, A. M.; Huth, V.; Augustin, J.; Herbst, M.; Kutsch, W. L.

    2016-12-01

    Manual carbon dioxide flux measurements with closed chambers at scheduled campaigns are a versatile method to study management effects at small scales in multiple-plot experiments. The eddy covariance technique has the advantage of quasi-continuous measurements but requires large homogeneous areas of a few hectares. To evaluate the uncertainties associated with interpolating from individual campaigns to the whole vegetation period, we installed both techniques at an agricultural site in Northern Germany. The presented comparison covers two cropping seasons, winter oilseed rape in 2012/13 and winter wheat in 2013/14. Modeling half-hourly carbon fluxes from campaigns is commonly performed based on non-linear regressions for the light response and respiration. The daily averages of net CO2 modeled from chamber data deviated from eddy covariance measurements in the range of ± 5 g C m-2 day-1. To understand the observed differences and to disentangle the effects, we performed four additional setups (expert versus default settings of the non-linear regressions based algorithm, purely empirical modeling with artificial neural networks versus non-linear regressions, cross-validating using eddy covariance measurements as campaign fluxes, weekly versus monthly scheduling of campaigns) to model the half-hourly carbon fluxes for the whole vegetation period. The good agreement of the seasonal course of net CO2 at plot and field scale for our agricultural site demonstrates that both techniques are robust and yield consistent results at seasonal time scale even for a managed ecosystem with high temporal dynamics in the fluxes. This allows combining the respective advantages of factorial experiments at plot scale with dense time series data at field scale. Furthermore, the information from the quasi-continuous eddy covariance measurements can be used to derive vegetation proxies to support the interpolation of carbon fluxes in-between the manual chamber campaigns.

  15. Carbon Fluxes in Dissolved and Gaseous Forms for a Restored Peatland in British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    D'Acunha, B.; Johnson, M. S.; Lee, S. C.; Christen, A.

    2016-12-01

    Peatlands are wetlands where gross primary production exceeds organic matter decomposition causing an accumulation of partially decomposed matter, also called peat. These ecosystems can accumulate more carbon than tropical rainforests. However, dissolved and gaseous fluxes of carbon (as dissolved organic carbon (DOC), CO2 and methane (CH4)) must also be considered to determine if these ecosystems are net sinks or sources of greenhouse gases (GHGs) to the atmosphere, which depends in part on the environmental conditions and the state of the ecosystem. We conducted research in Burns Bog, Delta, BC, Canada, a raised domed peat bog located in the Fraser River Delta and one of the largest raised peat bogs on the west coast of the Americas, but which has been heavily impacted by a range of human activities. Currently, ecological restoration efforts are underway by a large-scale ditch blocking program, with the aim to re-establish a high water table. This is approached in partnership with research on the ecosystem services that the bog provides, including its role in a regional GHG inventory. Here we present data on ecosystem-scale fluxes of CO2 and CH4 determined by eddy covariance (EC) on a floating tower platform, and complementary data on (i) evasion fluxes of CO2, CH4 and nitrous oxide (N2O) from the water surface to the atmosphere, and (ii) the flux and composition of dissolved organic carbon in water draining Burns Bog. Concentrations of dissolved CO2, CH4 and N2O were determined by headspace equilibration, and evasion rates from the water surface were quantified and are used to estimate the role of the hydrosphere in the ecosystem-scale measurements. Water samples collected from five saturated areas in the flux tower footprint were analyzed for DOC concentrations and composition. Results indicated that, even though the whole system is a net C sink, the water surface behaved as a source of CO2 and CH4, and a sink for N2O throughout the study period. Drainage waters

  16. Simulating crop phenology in the Community Land Model and its impact on energy and carbon fluxes

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Griffis, Tim J.; Baker, John; Wood, Jeffrey D.; Xiao, Ke

    2015-02-01

    A reasonable representation of crop phenology and biophysical processes in land surface models is necessary to accurately simulate energy, water, and carbon budgets at the field, regional, and global scales. However, the evaluation of crop models that can be coupled to Earth system models is relatively rare. Here we evaluated two such models (CLM4-Crop and CLM3.5-CornSoy), both implemented within the Community Land Model (CLM) framework, at two AmeriFlux corn-soybean sites to assess their ability to simulate phenology, energy, and carbon fluxes. Our results indicated that the accuracy of net ecosystem exchange and gross primary production simulations was intimately connected to the phenology simulations. The CLM4-Crop model consistently overestimated early growing season leaf area index, causing an overestimation of gross primary production, to such an extent that the model simulated a carbon sink instead of the measured carbon source for corn. The CLM3.5-CornSoy-simulated leaf area index (LAI), energy, and carbon fluxes showed stronger correlations with observations compared to CLM4-Crop. Net radiation was biased high in both models and was especially pronounced for soybeans. This was primarily caused by the positive LAI bias, which led to a positive net long-wave radiation bias. CLM4-Crop underestimated soil water content during midgrowing season in all soil layers at the two sites, which caused unrealistic water stress, especially for soybean. Future work regarding the mechanisms that drive early growing season phenology and soil water dynamics is needed to better represent crops including their net radiation balance, energy partitioning, and carbon cycle processes.

  17. CarbonTracker-Lagrange: A Framework for Greenhouse Gas Flux Estimation at Regional to Continental Scales

    NASA Astrophysics Data System (ADS)

    Andrews, A. E.

    2016-12-01

    CarbonTracker-Lagrange (CT-L) is a flexible modeling framework developed to take advantage of newly available atmospheric data for CO2 and other long-lived gases such as CH4 and N2O. The North American atmospheric CO2 measurement network has grown from three sites in 2004 to >100 sites in 2015. The US network includes tall tower, mountaintop, surface, and aircraft sites in the NOAA Global Greenhouse Gas Reference Network along with sites maintained by university, government and private sector researchers. The Canadian network is operated by Environment and Climate Change Canada. This unprecedented dataset can provide spatially and temporally resolved CO2 emissions and uptake flux estimates and quantitative information about drivers of variability, such as drought and temperature. CT-L is a platform for systematic comparison of data assimilation techniques and evaluation of assumed prior, model and observation errors. A novel feature of CT-L is the optimization of boundary values along with surface fluxes, leveraging vertically resolved data available from NOAA's aircraft sampling program. CT-L uses observation footprints (influence functions) from the Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) modeling system to relate atmospheric measurements to upwind fluxes and boundary values. Footprints are pre-computed and the optimization algorithms are efficient, so many variants of the calculation can be performed. Fluxes are adjusted using Bayesian or Geostatistical methods to provide optimal agreement with observations. Satellite measurements of CO2 and CH4 from GOSAT are available starting in July 2009 and from OCO-2 since September 2014. With support from the NASA Carbon Monitoring System, we are developing flux estimation strategies that use remote sensing and in situ data together, including geostatistical inversions using satellite retrievals of solar-induced chlorophyll fluorescence. CT-L enables quantitative

  18. Ocean Carbon and Biogeochemistry Scoping Workshop on Terrestrial and Coastal Carbon Fluxes in the Gulf of Mexico, St. Petersburg, FL, May 6-8, 2008

    USGS Publications Warehouse

    Robbins, L.L.; Coble, P.G.; Clayton, T.D.; Cai, W.J.

    2009-01-01

    Despite their relatively small surface area, ocean margins may have a significant impact on global biogeochemical cycles and, potentially, the global air-sea fluxes of carbon dioxide. Margins are characterized by intense geochemical and biological processing of carbon and other elements and exchange large amounts of matter and energy with the open ocean. The area-specific rates of productivity, biogeochemical cycling, and organic/inorganic matter sequestration are high in coastal margins, with as much as half of the global integrated new production occurring over the continental shelves and slopes (Walsh, 1991; Doney and Hood, 2002; Jahnke, in press). However, the current lack of knowledge and understanding of biogeochemical processes occurring at the ocean margins has left them largely ignored in most of the previous global assessments of the oceanic carbon cycle (Doney and Hood, 2002). A major source of North American and global uncertainty is the Gulf of Mexico, a large semi-enclosed subtropical basin bordered by the United States, Mexico, and Cuba. Like many of the marginal oceans worldwide, the Gulf of Mexico remains largely unsampled and poorly characterized in terms of its air-sea exchange of carbon dioxide and other carbon fluxes. In May 2008, the Ocean Carbon and Biogeochemistry Scoping Workshop on Terrestrial and Coastal Carbon Fluxes in the Gulf of Mexico was held in St. Petersburg, FL, to address the information gaps of carbon fluxes associated with the Gulf of Mexico and to offer recommendations to guide future research. The meeting was attended by over 90 participants from over 50 U.S. and Mexican institutions and agencies. The Ocean Carbon and Biogeochemistry program (OCB; http://www.us-ocb.org/) sponsored this workshop with support from the National Science Foundation, the National Oceanic and Atmospheric Administration, the National Aeronautics and Space Administration, the U.S. Geological Survey, and the University of South Florida. The goal of

  19. Metabolic flux analysis of carbon balance in Lactobacillus strains.

    PubMed

    Zhang, Yixing; Zeng, Fan; Hohn, Keith; Vadlani, Praveen V

    2016-11-01

    Metabolic flux analyses were performed based on the carbon balance of six different Lactobacillus strains used in this study. Results confirmed that L. delbrueckii, L. plantarum ATCC 21028, L. plantarum NCIMB 8826 ΔldhL1, L. plantarum NCIMB 8826 ΔldhL1-pCU-PxylAB, and L. plantarum NCIMB 8826 ΔldhL1-pLEM415-xylAB metabolized glucose via EMP: whereas, L. brevis metabolized glucose via PK pathway. Xylose was metabolized through the PK pathway in L. brevis, L. plantarum NCIMB 8826 ΔldhL1-pCU-PxylAB and L. plantarum NCIMB 8826 ΔldhL1-pLEM415-xylAB. Operation of both EMP and PK pathways was found in L. brevis, L. plantarum NCIMB 8826 ΔldhL1-pCU-PxylAB, and L. plantarum NCIMB 8826 ΔldhL1-pLEM415-xylAB when glucose plus xylose were used as carbon source. The information of detailed carbon flow may help the strain and biomass selection in a designed process of lactic acid biosynthesis. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1397-1403, 2016. © 2016 American Institute of Chemical Engineers.

  20. The European forest sector: past and future carbon budget and fluxes under different management scenarios

    NASA Astrophysics Data System (ADS)

    Pilli, Roberto; Grassi, Giacomo; Kurz, Werner A.; Fiorese, Giulia; Cescatti, Alessandro

    2017-05-01

    The comprehensive analysis of carbon stocks and fluxes of managed European forests is a prerequisite to quantify their role in biomass production and climate change mitigation. We applied the Carbon Budget Model (CBM) to 26 European countries, parameterized with country information on the historical forest age structure, management practices, harvest regimes and the main natural disturbances. We modeled the C stocks for the five forest pools plus harvested wood products (HWPs) and the fluxes among these pools from 2000 to 2030. The aim is to quantify, using a consistent modeling framework for all 26 countries, the main C fluxes as affected by land-use changes, natural disturbances and forest management and to assess the impact of specific harvest and afforestation scenarios after 2012 on the mitigation potential of the EU forest sector. Substitution effects and the possible impacts of climate are not included in this analysis. Results show that for the historical period from 2000 to 2012 the net primary productivity (NPP) of the forest pools at the EU level is on average equal to 639 Tg C yr-1. The losses are dominated by heterotrophic respiration (409 Tg C yr-1) and removals (110 Tg C yr-1), with direct fire emissions being only 1 Tg C yr-1, leading to a net carbon stock change (i.e., sink) of 110 Tg C yr-1. Fellings also transferred 28 Tg C yr-1 of harvest residues from biomass to dead organic matter pools. The average annual net sector exchange (NSE) of the forest system, i.e., the carbon stock changes in the forest pools including HWP, equals a sink of 122 Tg C yr-1 (i.e., about 19 % of the NPP) for the historical period, and in 2030 it reaches 126, 101 and 151 Tg C yr-1, assuming constant, increasing (+20 %) and decreasing (-20 %) scenarios, respectively, of both harvest and afforestation rates compared to the historical period. Under the constant harvest rate scenario, our findings show an incipient aging process of the forests existing in 1990: although NPP

  1. Release of Black Carbon From Thawing Permafrost Estimated by Sequestration Fluxes in the East Siberian Arctic Shelf Recipient

    NASA Astrophysics Data System (ADS)

    Salvadó, Joan A.; Bröder, Lisa; Andersson, August; Semiletov, Igor P.; Gustafsson, Örjan

    2017-10-01

    Black carbon (BC) plays an important role in carbon burial in marine sediments globally. Yet the sequestration of BC in the Arctic Ocean is poorly understood. Here we assess the concentrations, fluxes, and sources of soot BC (SBC)—the most refractory component of BC—in sediments from the East Siberian Arctic Shelf (ESAS), the World's largest shelf sea system. SBC concentrations in the contemporary shelf sediments range from 0.1 to 2.1 mg g-1 dw, corresponding to 2-12% of total organic carbon. The 210Pb-derived fluxes of SBC (0.42-11 g m-2 yr-1) are higher or in the same range as fluxes reported for marine surface sediments closer to anthropogenic emissions. The total burial flux of SBC in the ESAS ( 4,000 Gg yr-1) illustrates the great importance of this Arctic shelf in marine sequestration of SBC. The radiocarbon signal of the SBC shows more depleted yet also more uniform signatures (-721 to -896‰; average of -774 ± 62‰) than of the non-SBC pool (-304 to -728‰; average of -491 ± 163‰), suggesting that SBC is coming from an, on average, 5,900 ± 300 years older and more specific source than the non-SBC pool. We estimate that the atmospheric BC input to the ESAS is negligible ( 0.6% of the SBC burial flux). Statistical source apportionment modeling suggests that the ESAS sedimentary SBC is remobilized by thawing of two permafrost carbon (PF/C) systems: surface soil permafrost (topsoil/PF; 25 ± 8%) and Pleistocene ice complex deposits (ICD/PF; 75 ± 8%). The SBC contribution to the total mobilized permafrost carbon (PF/C) increases with increasing distance from the coast (from 5 to 14%), indicating that the SBC is more recalcitrant than other forms of translocated PF/C. These results elucidate for the first time the key role of permafrost thaw in the transport of SBC to the Arctic Ocean. With ongoing global warming, these findings have implications for the biogeochemical carbon cycle, increasing the size of this refractory carbon pool in the Arctic

  2. Comparing methods for partitioning a decade of carbon dioxide and water vapor fluxes in a temperate forest

    Treesearch

    Benjamin N. Sulman; Daniel Tyler Roman; Todd M. Scanlon; Lixin Wang; Kimberly A. Novick

    2016-01-01

    The eddy covariance (EC) method is routinely used to measure net ecosystem fluxes of carbon dioxide (CO2) and evapotranspiration (ET) in terrestrial ecosystems. It is often desirable to partition CO2 flux into gross primary production (GPP) and ecosystem respiration (RE), and to partition ET into evaporation and...

  3. The History of Exosphere Carbon Storage and Consequences for Mantle-Exosphere Volatile Fluxes

    NASA Astrophysics Data System (ADS)

    Hirschmann, M. M.

    2009-05-01

    The storage of volatiles in the mantle and their fluxes between the mantle and the near surface environment (exosphere) are constrained in part from the history of volatile storage in the exosphere. Evidence for the early formation of the oceans indicates extensive initial degassing of the mantle, but raises the question as to the fate of the carbon that must have been degassed with the H2O. Long-term storage of carbon in the exosphere is thought to require large continental areas, as carbon in the oceanic domain is rapidly returned to the mantle. Consequently, early degassing of the mantle may have been followed by rapid massive return of carbon to the mantle via subduction, leading to very high H/C ratios in the early exosphere. Alternatively, the C may have been lost to space by impact ablation of a Venus-like CO2-rich atmosphere. Less plausibly, the C could have remained in the exosphere stored in the oceanic domain but somehow escaping recyling to the mantle. Assuming that exosphere carbon storage was in fact limited by continental area, gradual regrowth of the carbon exosphere budget would then parallel that of growth of the continents. Interestingly, this suggests that the relatively high H/C ratio of the modern exosphere compared to the mantle (Hirschmann and Dasgupta, 2009), is a remnant of very early Earth processes which have not been erased by subsequent volatile fluxes. A key problem with this scenario, however, is that the gradual regrowth of the exosphere carbon budget cannot have occurred with parallel growth of the exosphere H2O budget. Otherwise, there would have been substantial growth of the oceans coinciding with continental growth, which violates constraints from continental freeboard. This requires either that outgassing of carbon exceeded that of H2O, or that H2O subduction has been more efficient than CO2 subduction. The former is unlikely unless typical degrees of melting are very small. On the other hand, petrologic constraints generally

  4. Human footprint affects US carbon balance more than climate change

    USGS Publications Warehouse

    Bachelet, Dominique; Ferschweiler, Ken; Sheehan, Tim; Baker, Barry; Sleeter, Benjamin M.; Zhu, Zhiliang

    2017-01-01

    The MC2 model projects an overall increase in carbon capture in conterminous United States during the 21st century while also simulating a rise in fire causing much carbon loss. Carbon sequestration in soils is critical to prevent carbon losses from future disturbances, and we show that natural ecosystems store more carbon belowground than managed systems do. Natural and human-caused disturbances affect soil processes that shape ecosystem recovery and competitive interactions between native, exotics, and climate refugees. Tomorrow's carbon budgets will depend on how land use, natural disturbances, and climate variability will interact and affect the balance between carbon capture and release.

  5. Net Flux of Sedimentary Carbon to the Mantle During the Cenozoic

    NASA Astrophysics Data System (ADS)

    Clift, P. D.

    2017-12-01

    Quantification of the long-term cycling of carbon from the mantle to the surface remains contentious despite its importance in governing the climate and biosphere of Earth. Sedimentary carbon represents a significant part of the budget and can be recycled to the mantle if it reaches subduction zones and is not preserved in an accretionary prism. By estimating rates of sediment supply and accretion and taking into account carbonate and carbon contents it appears that 60 Mt/yr is presently being subducted below forearcs. 80% is in the form of carbonate, significantly more than previously estimated. Sedimentary carbon represents around two thirds of the total carbon input at the trenches, the rest being in the igneous crust. An additional 7 Mt/yr is averaged over the Cenozoic as a result of passive margin subduction during continental collision. My revised budget puts the input and output budgets within the range of uncertainties, compared to the previous deficit. Degassing from arc volcanoes and in forearcs totals 55 Mt/yr. A net flux to the mantle is probable. The efficiency of carbon subduction is largely controlled by the carbonate contents of the sediment column, and is partly linked to the latitude of the trench. Accretionary margins are the biggest suppliers of carbon to the mantle wedge, especially Java, Sumatra, Andaman-Burma and Makran because the offscraping is inefficient and the thickness of the trench sediment and trench length are both large. The Western Pacific trenches are negligible sinks of sedimentary carbon.

  6. Carbon Flux Trapping: Highly Efficient Production of Polymer-Grade d-Lactic Acid with a Thermophilic d-Lactate Dehydrogenase.

    PubMed

    Li, Chao; Tao, Fei; Xu, Ping

    2016-08-17

    High production of polymer-grade d-lactic acid is urgently required, particularly for the synthesis of polylactic acid. High-temperature fermentation has multiple advantages, such as lower equipment requirement and energy consumption, which are essential for lowering operating costs. We identified and introduced a unique d-lactate dehydrogenase into a thermotolerant butane-2,3-diol-producing strain. Carbon flux "trapping" was achieved by a "trapping point" created by combination of the introduced enzyme and the host efflux pump, which afforded irreversible transport of d-lactic acid. The overall carbon flux of the engineered strain was significantly enhanced and was redistributed predominantly to d-lactic acid. Under optimized conditions at 50 °C, d-lactic acid reached the highest titer (226.6 g L(-1) ) reported to date. This discovery allows us to extend the carbon flux trapping strategy to engineering complex metabolic networks. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Carbon dioxide and energy fluxes over a large shallow lake in China

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaosong

    2017-04-01

    The turbulent exchange of carbon dioxide and energy between water and atmosphere over lakes differ from those over vegetated surfaces due to high heat capacity of water and different water ecological environment. For a shallow lake, the underlying surface generally changes between water covered and land covered with water level fluctuation, which significantly influences carbon dioxide and energy fluxes. Continuous measurement of the carbon dioxide (CO2), latent (LE) and sensible (H) heat fluxes was made using the eddy covariance method over the Poyang Lake, the largest fresh lake in China, from August 2013 to December 2015. Results indicated that the surface energy budget has a strong seasonal pattern, with peaks in LE and H observed in early August and September. There was 10 days delay between the net radiation and the latent heat flux. More net radiation (Rn) was allocated to the LE rather than H through the year, with monthly mean LE/Rn of 0.65 and H/Rn of 0.11, which caused Bowen ratio was 0.15 in water-covered period, lower than that in land-covered period. The water heat storage experienced shifting from heat storage to heat release, with maximum heat storage in July and maximum heat release in September. The water heat advection was account for 4% to 10% of Rn and peaked in June. The annual evaporation is 875 mm, 893 mm and 1019 mm in 2013 (from August 2013 to July 2014), 2014 and 2015, which was account for approximately 57% of precipitation in the three years. The large lake acted as a CO2 source in inundating period and a CO2 sink in exposure period. The energy fluxes were controlled by environmental factors with timescale dependence. On daily scale, the LE and H were highly correlated with product of wind speed and vapor pressure deficit (UVPD) or wind speed (U) in the water-covered period, and with Rn in the land-covered period. Monthly LE, H and annual H were controlled by Rn, while annual LE was primarily dependent on water depth. Annual CO2 budget

  8. Modelling carbon fluxes of forest and grassland ecosystems in Western Europe using the CARAIB dynamic vegetation model: evaluation against eddy covariance data.

    NASA Astrophysics Data System (ADS)

    Henrot, Alexandra-Jane; François, Louis; Dury, Marie; Hambuckers, Alain; Jacquemin, Ingrid; Minet, Julien; Tychon, Bernard; Heinesch, Bernard; Horemans, Joanna; Deckmyn, Gaby

    2015-04-01

    Eddy covariance measurements are an essential resource to understand how ecosystem carbon fluxes react in response to climate change, and to help to evaluate and validate the performance of land surface and vegetation models at regional and global scale. In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), vegetation dynamics and carbon fluxes of forest and grassland ecosystems simulated by the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) are evaluated and validated by comparison of the model predictions with eddy covariance data. Here carbon fluxes (e.g. net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RECO)) and evapotranspiration (ET) simulated with the CARAIB model are compared with the fluxes measured at several eddy covariance flux tower sites in Belgium and Western Europe, chosen from the FLUXNET global network (http://fluxnet.ornl.gov/). CARAIB is forced either with surface atmospheric variables derived from the global CRU climatology, or with in situ meteorological data. Several tree (e.g. Pinus sylvestris, Fagus sylvatica, Picea abies) and grass species (e.g. Poaceae, Asteraceae) are simulated, depending on the species encountered on the studied sites. The aim of our work is to assess the model ability to reproduce the daily, seasonal and interannual variablility of carbon fluxes and the carbon dynamics of forest and grassland ecosystems in Belgium and Western Europe.

  9. After the Burn: Forest Carbon Stocks and Fluxes across fire disturbed landscapes in Colorado, U.S.A.

    NASA Astrophysics Data System (ADS)

    Barnes, R. T.; Buma, B.; Wolf, K.; Elwood, K. K.; Fehsenfeld, T.; Kehlenbeck, M.

    2015-12-01

    In terrestrial ecosystems, ecological disturbances can strongly regulate material and energy flows. This often results from the reduction in biomass and associated ecological relationships and physiological processes. Researchers have noted an increase in the size and severity of disturbances, such as wildfire, in recent decades. While there is significant research examining post-disturbance carbon stocks and recovery, there is less known about the fate and quality of post-disturbance carbon pools. In an effort to understand the recovery and resilience of forest carbon stocks to severe wildfire we examined the carbon and black carbon (pyrogenic) stocks (e.g. above ground biomass, coarse woody debris, charcoal, soils) and export fluxes (stream export, soil respiration) within the burn scars of three Colorado fires (Hayman in 2002, Hinman in 2002, and Waldo Canyon in 2012) and compared them to nearby unburned forested ecosystems. The Hayman and Hinman fire comparison allows us to quantify differences between fire impacts in Ponderosa-Douglas Fir (montane) and Spruce-Fir (subalpine) ecosystems, while the Hayman and Waldo Canyon comparison gives us insights into how recovery time influences carbon biogeochemistry in these systems. We will present preliminary data comparing and relating terrestrial carbon and black carbon stocks, soil respiration rates, and watershed export fluxes.

  10. Atmospheric inversion of surface carbon flux with consideration of the spatial distribution of US crop production and consumption

    DOE PAGES

    Chen, J. M.; Fung, J. W.; Mo, G.; ...

    2015-01-19

    In order to improve quantification of the spatial distribution of carbon sinks and sources in the conterminous US, we conduct a nested global atmospheric inversion with detailed spatial information on crop production and consumption. County-level cropland net primary productivity, harvested biomass, soil carbon change, and human and livestock consumption data over the conterminous US are used for this purpose. Time-dependent Bayesian synthesis inversions are conducted based on CO₂ observations at 210 stations to infer CO₂ fluxes globally at monthly time steps with a nested focus on 30 regions in North America. Prior land surface carbon fluxes are first generated usingmore » a biospheric model, and the inversions are constrained using prior fluxes with and without adjustments for crop production and consumption over the 2002–2007 period. After these adjustments, the inverted regional carbon sink in the US Midwest increases from 0.25 ± 0.03 to 0.42 ± 0.13 Pg C yr⁻¹, whereas the large sink in the US southeast forest region is weakened from 0.41 ± 0.12 to 0.29 ± 0.12 Pg C yr⁻¹. These adjustments also reduce the inverted sink in the west region from 0.066 ± 0.04 to 0.040 ± 0.02 Pg C yr⁻¹ because of high crop consumption and respiration by humans and livestock. The general pattern of sink increases in crop production areas and sink decreases (or source increases) in crop consumption areas highlights the importance of considering the lateral carbon transfer in crop products in atmospheric inverse modeling, which provides a reliable atmospheric perspective of the overall carbon balance at the continental scale but is unreliable for separating fluxes from different ecosystems.« less

  11. Variability in carbon dioxide fluxes among six winter wheat paddocks managed under different tillage and grazing practices

    USDA-ARS?s Scientific Manuscript database

    Carbon dioxide (CO2) fluxes from six winter wheat (Triticum aestivum L.) paddocks (grain only, graze-grain, and graze-out) managed under conventional till (CT) and no-till (NT) systems were synthesized for the 2016-2017 growing season to compare the magnitudes and seasonal dynamics of CO2 fluxes and...

  12. Global carbon export from the terrestrial biosphere controlled by erosion.

    PubMed

    Galy, Valier; Peucker-Ehrenbrink, Bernhard; Eglinton, Timothy

    2015-05-14

    Riverine export of particulate organic carbon (POC) to the ocean affects the atmospheric carbon inventory over a broad range of timescales. On geological timescales, the balance between sequestration of POC from the terrestrial biosphere and oxidation of rock-derived (petrogenic) organic carbon sets the magnitude of the atmospheric carbon and oxygen reservoirs. Over shorter timescales, variations in the rate of exchange between carbon reservoirs, such as soils and marine sediments, also modulate atmospheric carbon dioxide levels. The respective fluxes of biospheric and petrogenic organic carbon are poorly constrained, however, and mechanisms controlling POC export have remained elusive, limiting our ability to predict POC fluxes quantitatively as a result of climatic or tectonic changes. Here we estimate biospheric and petrogenic POC fluxes for a suite of river systems representative of the natural variability in catchment properties. We show that export yields of both biospheric and petrogenic POC are positively related to the yield of suspended sediment, revealing that POC export is mostly controlled by physical erosion. Using a global compilation of gauged suspended sediment flux, we derive separate estimates of global biospheric and petrogenic POC fluxes of 157(+74)(-50) and 43(+61)(-25) megatonnes of carbon per year, respectively. We find that biospheric POC export is primarily controlled by the capacity of rivers to mobilize and transport POC, and is largely insensitive to the magnitude of terrestrial primary production. Globally, physical erosion rates affect the rate of biospheric POC burial in marine sediments more strongly than carbon sequestration through silicate weathering. We conclude that burial of biospheric POC in marine sediments becomes the dominant long-term atmospheric carbon dioxide sink under enhanced physical erosion.

  13. Understanding Climate Policy Data Needs. NASA Carbon Monitoring System Briefing: Characterizing Flux Uncertainty, Washington D.C., 11 January 2012

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Macauley, Molly

    2012-01-01

    Climate policy in the United States is currently guided by public-private partnerships and actions at the local and state levels. This mitigation strategy is made up of programs that focus on energy efficiency, renewable energy, agricultural practices and implementation of technologies to reduce greenhouse gases. How will policy makers know if these strategies are working, particularly at the scales at which they are being implemented? The NASA Carbon Monitoring System (CMS) will provide information on carbon dioxide fluxes derived from observations of earth's land, ocean and atmosphere used in state of the art models describing their interactions. This new modeling system could be used to assess the impact of specific policy interventions on CO2 reductions, enabling an iterative, results-oriented policy process. In January of 2012, the CMS team held a meeting with carbon policy and decision makers in Washington DC to describe the developing modeling system to policy makers. The NASA CMS will develop pilot studies to provide information across a range of spatial scales, consider carbon storage in biomass, and improve measures of the atmospheric distribution of carbon dioxide. The pilot involves multiple institutions (four NASA centers as well as several universities) and over 20 scientists in its work. This pilot study will generate CO2 flux maps for two years using observational constraints in NASA's state-of -the-art models. Bottom-up surface flux estimates will be computed using data-constrained land and ocean models; comparison of the different techniques will provide some knowledge of uncertainty in these estimates. Ensembles of atmospheric carbon distributions will be computed using an atmospheric general circulation model (GEOS-5), with perturbations to the surface fluxes and to transport. Top-down flux estimates will be computed from observed atmospheric CO2 distributions (ACOS/GOSAT retrievals) alongside the forward-model fields, in conjunction with an

  14. Differential responses of carbon and water vapor fluxes to climate among evergreen needleleaf forests in the USA

    USDA-ARS?s Scientific Manuscript database

    Understanding of differences in carbon and water vapor fluxes of spatially distributed evergreen needle leaf forests (ENFs) is crucial to accurately estimating regional carbon and water budgets and when predicting the responses of ENFs to future climate. We investigated cross-site variability in car...

  15. Combining Observations in the Reflective Solar and Thermal Domains for Improved Mapping of Carbon, Water and Energy FLuxes

    NASA Technical Reports Server (NTRS)

    Houborg, Rasmus; Anderson, Martha; Kustas, Bill; Rodell, Matthew

    2011-01-01

    This study investigates the utility of integrating remotely sensed estimates of leaf chlorophyll (C(sub ab)) into a thermal-based Two-Source Energy Balance (TSEB) model that estimates land-surface CO2 and energy fluxes using an analytical, light-use-efficiency (LUE) based model of canopy resistance. Day to day variations in nominal LUE (LUE(sub n)) were assessed for a corn crop field in Maryland U.S.A. through model calibration with CO2 flux tower observations. The optimized daily LUE(sub n) values were then compared to estimates of C(sub ab) integrated from gridded maps of chlorophyll content weighted over the tower flux source area. Changes in Cab exhibited a curvilinear relationship with corresponding changes in daily calibrated LUE(sub n) values derived from the tower flux data, and hourly water, energy and carbon flux estimation accuracies from TSEB were significantly improved when using C(sub ab) for delineating spatio-temporal variations in LUE(sub n). The results demonstrate the synergy between thermal infrared and shortwave reflective wavebands in producing valuable remote sensing data for monitoring of carbon and water fluxes.

  16. Integrative measurements focusing on carbon, energy and water fluxes at the forest site 'Hohes Holz' and the grassland 'Grosses Bruch'

    NASA Astrophysics Data System (ADS)

    Rebmann, Corinna; Claudia, Schütze; Sara, Marañón-Jiménez; Sebastian, Gimper; Matthias, Zink; Luis, Samaniego; Matthias, Cuntz

    2017-04-01

    The reduction of greenhouse gas (GHG) emissions and the optimization of Carbon sequestration by ecosystems have become priority objectives for current climate change policies. In this context, the long term research project TERENO and the research infrastructure ICOS have been established. The eddy covariance technique allows obtaining an integrative estimate of the ecosystem carbon, water and energy balances at the ecosystem level. The relative contributions of evaporation and transpiration as well as carbon sources and sinks need, however, to be determined separately for thorough process understanding. Two different ecosystem observatories have recently been established in the Magdeburger Börde: a deciduous forest (Hohes Holz) and a meadow (Grosses Bruch). A comprehensive system of instrumentation provides continuous data for the evaluation of energy, water and carbon fluxes at the 1500 ha large forest site, including a 50 m high eddy covariance (EC) tower for micrometeorological investigations in different heights above and below canopy, throughfall and stem flow sensors, a soil moisture and temperature sensor network, soil respiration chambers, sap flow sensors, and ancillary analysis of trees such a dendrometer and leaf area index measurements. Eddy covariance measurements allow the assessment of the carbon (Net Ecosystem Exchange, NEE) and water balance at the ecosystem scale. To better understand the contributing processes we partition water und carbon fluxes of the forest ecosystem by different methods. Tower-based data of NEE are therefore complemented and validated by continuous automatic and manual campaign measurements of soil effluxes and their drivers. Water fluxes into the ecosystem are partitioned by stem flow and throughfall measurements and a distributed soil moisture network. Gap fraction in the forest has a strong influence on the distribution on the water fluxes and is therefore determined on a regular basis. Since the establishment of the

  17. Making Carbon Emissions Remotely Sensible: Flux Observations of Carbon from an Airborne Laboratory (FOCAL), its Near-Surface Survey of Carbon Gases and Isotopologues on Alaska's North Slope

    NASA Astrophysics Data System (ADS)

    Dobosy, R.; Dumas, E. J.; Sayres, D. S.; Healy, C. E.; Munster, J. B.; Baker, B.; Anderson, J. G.

    2014-12-01

    Detailed process-oriented study of the mechanisms of conversion in the Arctic of fossil carbon to atmospheric gas is progressing, but necessarily limited to a few point locations and requiring detailed subsurface measurements inaccessible to remote sensing. Airborne measurements of concentration, transport and flux of these carbon gases at sufficiently low altitude to reflect surface variations can tie such local measurements to remotely observable features of the landscape. Carbon dioxide and water vapor have been observable for over 20 years from low-altitude small aircraft in the Arctic and elsewhere. Methane has been more difficult, requiring large powerful aircraft or limited flask samples. Recent developments in spectroscopy, however, have reduced the power and weight required to measure methane at rates suitable for eddy-covariance flux estimates. The Flux Observations of Carbon from an Airborne Laboratory (FOCAL) takes advantage of Integrated Cavity-Output Spectroscopy (ICOS) to measure CH4, CO2, and water vapor in a new airborne system. The system, moreover, measures these gases' stable isotopologues every two seconds or faster helping to separate thermogenic from biogenic emissions. Paired with the Best Airborne Turbulence (BAT) probe developed for small aircraft by NOAA's Air Resources Laboratory and a light twin-engine aircraft adapted by Aurora Flight Sciences Inc., the FOCAL measures at 6 m spacing, covering 100 km in less than 30 minutes. It flies between 10 m and 50 m above ground interspersed with profiles to the top of the boundary layer and beyond. This presentation gives an overview of the magnitude and variation in fluxes and concentrations of CH4, CO2, and H2O with space, time, and time of day in a spatially extensive survey, more than 7500 km total in 15 flights over roughly a 100 km square during the month of August 2013. An extensive data set such as this at low altitude with high-rate sampling addresses features that repeat on 1 km scale

  18. Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi mangrove swamps in Indonesia.

    PubMed

    Chen, Guang C; Ulumuddin, Yaya I; Pramudji, Sastro; Chen, Shun Y; Chen, Bin; Ye, Yong; Ou, Dan Y; Ma, Zhi Y; Huang, Hao; Wang, Jing K

    2014-07-15

    The soil to atmosphere fluxes of greenhouse gases N2O, CH4 and CO2 and their relationships with soil characteristics were investigated in three tropical oceanic mangrove swamps (Teremaal, Likupang and Kema) in North Sulawesi, Indonesia. Mangrove soils in North Sulawesi were rich in organic carbon and nitrogen, but the greenhouse gas fluxes were low in these mangroves. The fluxes ranged -6.05-13.14 μmol m(-2)h(-1), -0.35-0.61 μmol m(-2)h(-1) and -1.34-3.88 mmol m(-2)h(-1) for N2O, CH4 and CO2, respectively. The differences in both N2O and CH4 fluxes among different mangrove swamps and among tidal positions in each mangrove swamp were insignificant. CO2 flux was influenced only by mangrove swamps and the value was higher in Kema mangrove. None of the measured soil parameters could explain the variation of CH4 fluxes among the sampling plots. N2O flux was negatively related to porewater salinity, while CO2 flux was negatively correlated with water content and organic carbon. This study suggested that the low gas emissions due to slow metabolisms would lead to the accumulations of organic matters in North Sulawesi mangrove swamps. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Scaling up of Carbon Exchange Dynamics from AmeriFlux Sites to a Super-Region in the Eastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hans Peter Schmid; Craig Wayson

    The primary objective of this project was to evaluate carbon exchange dynamics across a region of North America between the Great Plains and the East Coast. This region contains about 40 active carbon cycle research (AmeriFlux) sites in a variety of climatic and landuse settings, from upland forest to urban development. The core research involved a scaling strategy that uses measured fluxes of CO{sub 2}, energy, water, and other biophysical and biometric parameters to train and calibrate surface-vegetation-atmosphere models, in conjunction with satellite (MODIS) derived drivers. To achieve matching of measured and modeled fluxes, the ecosystem parameters of the modelsmore » will be adjusted to the dynamically variable flux-tower footprints following Schmid (1997). High-resolution vegetation index variations around the flux sites have been derived from Landsat data for this purpose. The calibrated models are being used in conjunction with MODIS data, atmospheric re-analysis data, and digital land-cover databases to derive ecosystem exchange fluxes over the study domain.« less

  20. Lateral carbon export in the Mississippi River Basin, integrating fluxes from the headwaters to the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Stackpoole, S. M.; Crawford, J.; Santi, L. M.; Stets, E.; Sebestyen, S. D.; Wilson, S.; Striegl, R. G.

    2017-12-01

    Large-scale river studies have documented that lateral fluxes are an important component of the global carbon cycle. This study focuses on river lateral C fluxes for the Mississippi River Basin (MRB), the largest river in North America. Our lateral river C fluxes are based on data from 23 nested watersheds within the Upper MRB, for water years 2015 and 2016. The study area covers 170,000 km2 and is comprised of both catchment <10 km2 and intermediate-scale watersheds (20,000 to 40,000 km2) in Wisconsin and Minnesota, USA. Total alkalinity yields (flux derived by drainage area) ranged from 0 to 16 g C m2 yr-1 and dissolved organic C (DOC) yields ranged from 1 to 13 g C m2 yr-1. In comparison, published estimates for Mississippi River export to the Gulf of Mexico, estimated at St. Francisville, LA, were 16 g C m-2 yr-1 for alkalinity and 0.6 g m2 yr-1 for DOC. In the Upper MRB, alkalinity yields had a significant negative relationship with DOC yields (R2 = 0.53, p-value<0.0001), and alkalinity yields were significantly higher in basins where the lithology was dominated by carbonates and the land-use was >50% agriculture. There was significant inter-annual variability in the total C fluxes, and the increase in discharge in 2016 relative to 2015 increased the proportion of DOC:alkalinity for watersheds with higher forest and wetland coverage. The integration of these recent C flux estimates for the Upper MRB integrated with the fluxes estimated from the USGS long-term monitoring program dataset provide a comprehensive analysis of alkalinity and DOC fluxes for the entire basin. These results, which represent C fluxes across a gradient of lithology, soil type, and land use, will be used to address questions related to our understanding of carbon sources, transport, and loss that can be applied to other river systems.

  1. Biophysical controls on carbon and water vapor fluxes across a grassland climatic gradient in the United States

    USDA-ARS?s Scientific Manuscript database

    Understanding of the underlying causes of spatial variation in exchange of carbon and water vapor fluxes between grasslands and the atmosphere is crucial for accurate estimates of regional and global carbon and water budgets, and for predicting the impact of climate change on biosphere–atmosphere fe...

  2. Aircraft- and tower-based fluxes of carbon dioxide, latent, and sensible heat

    NASA Technical Reports Server (NTRS)

    Desjardins, R. L.; Hart, R. L.; Macpherson, J. I.; Schuepp, P. H.; Verma, S. B.

    1992-01-01

    Fluxes of carbon dioxide, water vapor, and sensible heat obtained over a grassland ecosystem, during the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), using an aircraft- and two tower-based systems are compared for several days in 1987 and in 1989. The tower-based cospectral estimates of CO2, sensible heat, water vapor, and momentum, expressed as a function of wavenumber K times sampling height z, are relatively similar to the aircraft-based estimates for K x z greater than 0.1. A measurable contribution to the fluxes is observed by tower-based systems at K x z less than 0.01 but not by the aircraft-based system operating at an altitude of approximately 100 m over a 15 x 15 km area. Using all available simultaneous aircraft and tower data, flux estimates by both systems were shown to be highly correlated. As expected from the spatial variations of the greenness index, surface extrapolation of airborne flux estimates tended to lie between those of the two tower sites. The average fluxes obtained, on July 11, 1987, and August 4, 1989, by flying a grid pattern over the FIFE site agreed with the two tower data sets for CO2, but sensible and latent heat were smaller than those obtained by the tower-based systems. However, in general, except for a small underestimation due to the long wavelength contributions and due to flux divergence with height, the differences between the aircraft- and tower-based surface estimates of fluxes appear to be mainly attributable to differences in footprint, that is, differences in the area contributing to the surface flux estimates.

  3. Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations

    NASA Astrophysics Data System (ADS)

    Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; Takagi, K.

    2010-07-01

    Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine - based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID), we conducted two simulations: (1) point simulations at four eddy flux sites in Japan and (2) spatial simulations for Japan with a default model (based on original settings) and a modified model (based on model parameter tuning using eddy flux data). Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP), most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.

  4. Carbon and energy fluxes in cropland ecosystems: a model-data comparison

    USGS Publications Warehouse

    Lokupitiya, E.; Denning, A. Scott; Schaefer, K.; Ricciuto, D.; Anderson, R.; Arain, M. A.; Baker, I.; Barr, A. G.; Chen, G.; Chen, J.M.; Ciais, P.; Cook, D.R.; Dietze, M.C.; El Maayar, M.; Fischer, M.; Grant, R.; Hollinger, D.; Izaurralde, C.; Jain, A.; Kucharik, C.J.; Li, Z.; Liu, S.; Li, L.; Matamala, R.; Peylin, P.; Price, D.; Running, S. W.; Sahoo, A.; Sprintsin, M.; Suyker, A.E.; Tian, H.; Tonitto, Christina; Torn, M.S.; Verbeeck, Hans; Verma, S.B.; Xue, Y.

    2016-01-01

    Croplands are highly productive ecosystems that contribute to land–atmosphere exchange of carbon, energy, and water during their short growing seasons. We evaluated and compared net ecosystem exchange (NEE), latent heat flux (LE), and sensible heat flux (H) simulated by a suite of ecosystem models at five agricultural eddy covariance flux tower sites in the central United States as part of the North American Carbon Program Site Synthesis project. Most of the models overestimated H and underestimated LE during the growing season, leading to overall higher Bowen ratios compared to the observations. Most models systematically under predicted NEE, especially at rain-fed sites. Certain crop-specific models that were developed considering the high productivity and associated physiological changes in specific crops better predicted the NEE and LE at both rain-fed and irrigated sites. Models with specific parameterization for different crops better simulated the inter-annual variability of NEE for maize-soybean rotation compared to those models with a single generic crop type. Stratification according to basic model formulation and phenological methodology did not explain significant variation in model performance across these sites and crops. The under prediction of NEE and LE and over prediction of H by most of the models suggests that models developed and parameterized for natural ecosystems cannot accurately predict the more robust physiology of highly bred and intensively managed crop ecosystems. When coupled in Earth System Models, it is likely that the excessive physiological stress simulated in many land surface component models leads to overestimation of temperature and atmospheric boundary layer depth, and underestimation of humidity and CO2 seasonal uptake over agricultural regions.

  5. Carbon and energy fluxes in cropland ecosystems: a model-data comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lokupitiya, E.; Denning, A. S.; Schaefer, K.

    2016-06-03

    Croplands are highly productive ecosystems that contribute to land–atmosphere exchange of carbon, energy, and water during their short growing seasons. We evaluated and compared net ecosystem exchange (NEE), latent heat flux (LE), and sensible heat flux (H) simulated by a suite of ecosystem models at five agricultural eddy covariance flux tower sites in the central United States as part of the North American Carbon Program Site Synthesis project. Most of the models overestimated H and underestimated LE during the growing season, leading to overall higher Bowen ratios compared to the observations. Most models systematically under predicted NEE, especially at rain-fedmore » sites. Certain crop-specific models that were developed considering the high productivity and associated physiological changes in specific crops better predicted the NEE and LE at both rain-fed and irrigated sites. Models with specific parameterization for different crops better simulated the inter-annual variability of NEE for maize-soybean rotation compared to those models with a single generic crop type. Stratification according to basic model formulation and phenological methodology did not explain significant variation in model performance across these sites and crops. The under prediction of NEE and LE and over prediction of H by most of the models suggests that models developed and parameterized for natural ecosystems cannot accurately predict the more robust physiology of highly bred and intensively managed crop ecosystems. When coupled in Earth System Models, it is likely that the excessive physiological stress simulated in many land surface component models leads to overestimation of temperature and atmospheric boundary layer depth, and underestimation of humidity and CO 2 seasonal uptake over agricultural regions.« less

  6. Reconciling Eddy Flux and Tree Ring Estimates of Forest Water-Use Efficiency

    NASA Astrophysics Data System (ADS)

    Wehr, R. A.; Belmecheri, S.; Commane, R.; Munger, J. W.; Wofsy, S. C.; Saleska, S. R.

    2016-12-01

    Eddy flux measurements of ecosystem-atmosphere CO2 and water vapor exchange suggest that rising atmospheric CO2 levels have caused plant endogenous water-use efficiency (WUE) to increase strongly over the last 20 years at sites including the Harvard Forest.1 On the other hand, tree ring 13C isotope measurements at the Harvard Forest seem to suggest that endogenous WUE has not increased.2 Several potential reasons for this discrepancy have been proposed,2,3 including: (1) the definitional difference between the "inherent WUE" calculated from eddy fluxes and the "intrinsic WUE" calculated from tree rings, (2) neglect of factors that affect the isotopic composition of tree ring carbon (e.g. mesophyll conductance, photorespiration, post-photosynthetic fractionation), and (3) temporal mismatch between the instantaneous CO2 flux and seasonally-integrated tree ring carbon. Here we test those proposed explanations by combining tree-ring 13C measurements, 13CO2 eddy flux measurements, and recently developed estimates of transpiration, photosynthesis, and canopy stomatal conductance. We first compute both inherent and intrinsic WUE from eddy flux data and show that their definitional difference does not explain the discrepancy between eddy flux and tree ring estimates of WUE. We further investigate the impact of mesophyll conductance, photorespiration, and mitochondrial respiration on the seasonal isotopic composition of assimilated carbon to elucidate the mismatch between eddy flux- and tree ring-derived water use efficiencies. 1. Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324-327 (2013). 2. Belmecheri, S. et al. Tree-ring δ13C tracks flux tower ecosystem productivity estimates in a NE temperate forest. Environ. Res. Lett. 9, 074011 (2014). 3. Seibt, U. et al. Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia 155, 441-454 (2008).

  7. Soil fluxes of carbonyl sulfide (COS), carbon monoxide, and carbon dioxide in a boreal forest in southern Finland

    NASA Astrophysics Data System (ADS)

    Sun, Wu; Kooijmans, Linda M. J.; Maseyk, Kadmiel; Chen, Huilin; Mammarella, Ivan; Vesala, Timo; Levula, Janne; Keskinen, Helmi; Seibt, Ulli

    2018-02-01

    Soil is a major contributor to the biosphere-atmosphere exchange of carbonyl sulfide (COS) and carbon monoxide (CO). COS is a tracer with which to quantify terrestrial photosynthesis based on the coupled leaf uptake of COS and CO2, but such use requires separating soil COS flux, which is unrelated to photosynthesis, from ecosystem COS uptake. For CO, soil is a significant natural sink that influences the tropospheric CO budget. In the boreal forest, magnitudes and variabilities of soil COS and CO fluxes remain poorly understood. We measured hourly soil fluxes of COS, CO, and CO2 over the 2015 late growing season (July to November) in a Scots pine forest in Hyytiälä, Finland. The soil acted as a net sink of COS and CO, with average uptake rates around 3 pmol m-2 s-1 for COS and 1 nmol m-2 s-1 for CO. Soil respiration showed seasonal dynamics controlled by soil temperature, peaking at around 4 µmol m-2 s-1 in late August and September and dropping to 1-2 µmol m-2 s-1 in October. In contrast, seasonal variations of COS and CO fluxes were weak and mainly driven by soil moisture changes through diffusion limitation. COS and CO fluxes did not appear to respond to temperature variation, although they both correlated well with soil respiration in specific temperature bins. However, COS : CO2 and CO : CO2 flux ratios increased with temperature, suggesting possible shifts in active COS- and CO-consuming microbial groups. Our results show that soil COS and CO fluxes do not have strong variations over the late growing season in this boreal forest and can be represented with the fluxes during the photosynthetically most active period. Well-characterized and relatively invariant soil COS fluxes strengthen the case for using COS as a photosynthetic tracer in boreal forests.

  8. Linking water and carbon fluxes in a Mediterranean oak woodland using a combined flux and ?18O partitioning approach

    NASA Astrophysics Data System (ADS)

    Dubbert, M.; Piayda, A.; Costa e Silva, F.; Correia, A.; Pereira, J. S.; Cuntz, M.; Werner, C.

    2013-12-01

    Water is one of the key factors driving ecosystem productivity, especially in water-limited ecosystems, where global climate change is expected to intensify drought and alter precipitation patterns. One such ecosystem is the ';Montado', where two vegetation layers respond differently to drought: oak trees avoid drought due to their access to deeper soil layers and ground water while herbaceous plants, surviving the summer in the form of seeds. We aimed at 1) quantifying the impact of the understory herbaceous vegetation on ecosystem carbon and water fluxes throughout the year, 2) determining the driving environmental factors for evapotranspiration (ET) and net ecosystem exchange (NEE) and 3) disentangling how ET components of the ecosystem relate to carbon dioxide exchange. We present one year data set comparing modeled and measured stable oxygen isotope signatures (δ18O) of soil evaporation, confirming that the Craig and Gordon equation leads to good agreement with measured δ18O of evaporation (Dubbert et al. 2013). Partitioning ecosystem ET and NEE into its three sources revealed a strong contribution of soil evaporation (E) and herbaceous transpiration (T) to ecosystem ET during spring and fall. In contrast, soil respiration (R) and herbaceous net carbon gain contributed to a lesser amount to ecosystem NEE during spring and fall, leading to consistently smaller water use efficiencies (WUE) of the herbaceous understory compared to the cork-oaks. Here, we demonstrate that the ability to assess ET, NEE and WUE independent of soil evaporation dynamics enables the understanding of the mechanisms of the coupling between water and carbon fluxes and their responses to drought. Dubbert, M., Cuntz, M., Piayda, A., Maguas, C., Werner, C., 2013: Partitioning evapotranspiration - Testing the Craig and Gordon model with field measurements of oxygen isotope ratios of evaporative fluxes. J Hydrol. a) Oxygen isotope signatures of soil evaporation on bare soil plots calculated

  9. A land-use and land-cover modeling strategy to support a national assessment of carbon stocks and fluxes

    USGS Publications Warehouse

    Sohl, Terry L.; Sleeter, Benjamin M.; Zhu, Zhiliang; Sayler, Kristi L.; Bennett, Stacie; Bouchard, Michelle; Reker, Ryan R.; Hawbaker, Todd J.; Wein, Anne M.; Liu, Shuguang; Kanengieter, Ronald L.; Acevedo, William

    2012-01-01

    Changes in land use, land cover, disturbance regimes, and land management have considerable influence on carbon and greenhouse gas (GHG) fluxes within ecosystems. Through targeted land-use and land-management activities, ecosystems can be managed to enhance carbon sequestration and mitigate fluxes of other GHGs. National-scale, comprehensive analyses of carbon sequestration potential by ecosystem are needed, with a consistent, nationally applicable land-use and land-cover (LULC) modeling framework a key component of such analyses. The U.S. Geological Survey has initiated a project to analyze current and projected future GHG fluxes by ecosystem and quantify potential mitigation strategies. We have developed a unique LULC modeling framework to support this work. Downscaled scenarios consistent with IPCC Special Report on Emissions Scenarios (SRES) were constructed for U.S. ecoregions, and the FORE-SCE model was used to spatially map the scenarios. Results for a prototype demonstrate our ability to model LULC change and inform a biogeochemical modeling framework for analysis of subsequent GHG fluxes. The methodology was then successfully used to model LULC change for four IPCC SRES scenarios for an ecoregion in the Great Plains. The scenario-based LULC projections are now being used to analyze potential GHG impacts of LULC change across the U.S.

  10. A land-use and land-cover modeling strategy to support a national assessment of carbon stocks and fluxes

    USGS Publications Warehouse

    Sohl, Terry L.; Sleeter, Benjamin M.; Zhu, Zhi-Liang; Sayler, Kristi L.; Bennett, Stacie; Bouchard, Michelle; Reker, Ryan R.; Hawbaker, Todd; Wein, Anne; Liu, Shu-Guang; Kanengleter, Ronald; Acevedo, William

    2012-01-01

    Changes in land use, land cover, disturbance regimes, and land management have considerable influence on carbon and greenhouse gas (GHG) fluxes within ecosystems. Through targeted land-use and landmanagement activities, ecosystems can be managed to enhance carbon sequestration and mitigate fluxes of other GHGs. National-scale, comprehensive analyses of carbon sequestration potential by ecosystem are needed, with a consistent, nationally applicable land-use and land-cover (LULC) modeling framework a key component of such analyses. The U.S. Geological Survey has initiated a project to analyze current and projected future GHG fluxes by ecosystem and quantify potential mitigation strategies. We have developed a unique LULC modeling framework to support this work. Downscaled scenarios consistent with IPCC Special Report on Emissions Scenarios (SRES) were constructed for U.S. ecoregions, and the FORE-SCE model was used to spatially map the scenarios. Results for a prototype demonstrate our ability to model LULC change and inform a biogeochemical modeling framework for analysis of subsequent GHG fluxes. The methodology was then successfully used to model LULC change for four IPCC SRES scenarios for an ecoregion in the Great Plains. The scenario-based LULC projections are now being used to analyze potential GHG impacts of LULC change across the U.S.

  11. Response of carbon fluxes and climate to orbital forcing changes in the Community Climate System Model

    NASA Astrophysics Data System (ADS)

    Jochum, M.; Peacock, S.; Moore, J. K.; Lindsay, K. T.

    2009-12-01

    A global general circulation model coupled to an ocean ecosystem model is used to quantify the response of carbon fluxes and climate to changes in orbital forcing. Compared to the present-day simulation, the simulation with the Earth's orbital parameters from 115,000 years ago features significantly cooler northern high latitudes, but only moderately cooler southern high latitudes. This asymmetry is explained by a 30% reduction of the strength of the Atlantic Meridional Overturning Circulation that is caused by an increased Arctic sea-ice export and a resulting freshening of the North Atlantic. The strong northern high-latitude cooling and the direct insolation induced tropical warming lead to global shifts in precipitation and winds to the order of 10-20%. These climate shifts lead to regional differences in air-sea carbon fluxes of the same order. However, the differences in global net carbon fluxes are insignificant. This surprising result is due to several effects, two of which stand out: Firstly, colder sea surface temperature leads to a more effective solubility pump but also to increased sea-ice concentration which blocks air-sea exchange; and secondly, the weakening of Southern Ocean winds, which is predicted by some idealized studies, is small compared to its interannual variability.

  12. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    NASA Astrophysics Data System (ADS)

    Brüggemann, N.; Gessler, A.; Kayler, Z.; Keel, S. G.; Badeck, F.; Barthel, M.; Boeckx, P.; Buchmann, N.; Brugnoli, E.; Esperschütz, J.; Gavrichkova, O.; Ghashghaie, J.; Gomez-Casanovas, N.; Keitel, C.; Knohl, A.; Kuptz, D.; Palacio, S.; Salmon, Y.; Uchida, Y.; Bahn, M.

    2011-11-01

    The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as CO2 diffusion and dissolution processes within the

  13. How Choice of Depth Horizon Influences the Estimated Spatial Patterns and Global Magnitude of Ocean Carbon Export Flux

    NASA Astrophysics Data System (ADS)

    Palevsky, Hilary I.; Doney, Scott C.

    2018-05-01

    Estimated rates and efficiency of ocean carbon export flux are sensitive to differences in the depth horizons used to define export, which often vary across methodological approaches. We evaluate sinking particulate organic carbon (POC) flux rates and efficiency (e-ratios) in a global earth system model, using a range of commonly used depth horizons: the seasonal mixed layer depth, the particle compensation depth, the base of the euphotic zone, a fixed depth horizon of 100 m, and the maximum annual mixed layer depth. Within this single dynamically consistent model framework, global POC flux rates vary by 30% and global e-ratios by 21% across different depth horizon choices. Zonal variability in POC flux and e-ratio also depends on the export depth horizon due to pronounced influence of deep winter mixing in subpolar regions. Efforts to reconcile conflicting estimates of export need to account for these systematic discrepancies created by differing depth horizon choices.

  14. Contribution of trees and grasses to ecosystem fluxes of water, carbon, and energy throughout the seasons under different nutrient availability

    NASA Astrophysics Data System (ADS)

    El-Madany, T. S.; Migliavacca, M.; Perez-Priego, O.; Luo, Y.; Moreno, G.; Carrara, A.; Kolle, O.; Reichstein, M.

    2017-12-01

    In semi-arid savanna type ecosystems, the carbon and water cycle are closely related to each other. Water availability is the main driver for the development and phenology of the vegetation, especially for annual plants. Depending on tree density, nutrient availability and species the contribution of the tree- and the herbaceous layer to ecosystem fluxes can vary substantially. We present data from an ecosystem scale nutrient manipulation experiment within a Mediterranean savanna type ecosystem which is used for cattle. The footprint areas of two out of three ecosystem eddy co-variance (EC) towers were fertilized with nitrogen (NT) and nitrogen plus phosphorous (NPT) while the third one served as the control tower (CT). At each ecosystem EC-tower an additional herbaceous layer tower was installed that only sampled fluxes from the herbaceous layer. Under certain assumptions flux differences between the ecosystem EC and the herbaceous layer EC systems can be considered as the contribution of the trees to the ecosystem fluxes. Based on phenology of the herbaceous layer estimated through green-chromatic-coordinates from digital imagery the year was separated into spring, senescence, regreening, and winter. The focus of the analysis is (i) the evaluation of the method and how it works throughout the different seasons and (ii) the quantification of the contribution of trees and grasses to ecosystem fluxes of water, carbon, and energy under different environmental conditions and nutrient stoichiometry. The contribution of the trees to total ecosystem fluxes is variable in time. Especially, during the beginning of the senescence period high evapotranspiration rates and largest carbon uptake are measured while the contribution to sensible heat fluxes is largest during the end of the summer. During the regreening and winter the contribution of ET is relatively constant around 0.25 mm d-1. During the peak of the greenness ET and carbon flux of the herbaceous EC tower are

  15. The contribution of various types of settling particles to the flux of organic carbon in the Gulf of St. Lawrence

    NASA Astrophysics Data System (ADS)

    Romero-Ibarra, Nancy; Silverberg, Norman

    2011-10-01

    The contents of 31 samples from free-drifting sediment traps deployed in the Gulf of St. Lawrence (GSL) were analyzed for the individual contribution of the different types of particles encountered to the total particulate organic carbon (POC) flux. Two trap models were used in 1993-1994: small traps at 50 m depth and large traps at 50 and 150 m. Total POC fluxes averaged 42 mg C m -2 d -1 for the more reliable large trap and 149 mg C m -2 d -1 for the small trap. The POC fluxes were attributed to different classes of particles based upon microscopically determined particle dimensions and carbon/volume algorithms available in the literature. Fecal pellets, followed by phytoplankton, were the major attributable components, with important contributions by microzooplankton, particularly during the summer of 1994. The mean fluxes for pellets (6 and 60 mg C m -2 d -1, for the large and small traps, respectively) and phytoplankton (3.2 and 42.9 mg C m -2 d -1) were in the range of those encountered in other areas of moderate primary productivity. Mean zooplankton carbon fluxes (1.8 and 8.5 mg C m -2 d -1, respectively), however, reflect higher than average zooplankton abundances in the GSL. The C fluxes of specific algal groups confirmed the existence of three trophic regimes previously identified from water column studies and numeric cell fluxes: (1) a period when diatoms were dominant during the spring, (2) a longer interval, which was dominated by dinoflagellates at most others times of the year, and (3) a period of transition during summer. Carbon of animal origin dominated the attributable flux, including an important fraction associated with heterotrophic dinoflagellates. The contribution of marine snow to the total flux (estimated as the difference between the total POC flux and the sum of the attributed components) frequently amounted to more than 60%. The true importance of marine snow remains uncertain, however, because the errors associated with each of the

  16. Effects of warming and clipping on ecosystem carbon fluxes across two hydrologically contrasting years in an alpine meadow of the Qinghai-Tibet Plateau.

    PubMed

    Peng, Fei; You, Quangang; Xu, Manhou; Guo, Jian; Wang, Tao; Xue, Xian

    2014-01-01

    Responses of ecosystem carbon (C) fluxes to human disturbance and climatic warming will affect terrestrial ecosystem C storage and feedback to climate change. We conducted a manipulative experiment to investigate the effects of warming and clipping on soil respiration (Rs), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross ecosystem production (GEP) in an alpine meadow in a permafrost region during two hydrologically contrasting years (2012, with 29.9% higher precipitation than the long-term mean, and 2013, with 18.9% lower precipitation than the long-tem mean). Our results showed that GEP was higher than ER, leading to a net C sink (measured by NEE) over the two growing seasons. Warming significantly stimulated ecosystem C fluxes in 2012 but did not significantly affect these fluxes in 2013. On average, the warming-induced increase in GEP (1.49 µ mol m(-2) s(-1)) was higher than in ER (0.80 µ mol m(-2) s(-1)), resulting in an increase in NEE (0.70 µ mol m(-2) s(-1)). Clipping and its interaction with warming had no significant effects on C fluxes, whereas clipping significantly reduced aboveground biomass (AGB) by 51.5 g m(-2) in 2013. These results suggest the response of C fluxes to warming and clipping depends on hydrological variations. In the wet year, the warming treatment caused a reduction in water, but increases in soil temperature and AGB contributed to the positive response of ecosystem C fluxes to warming. In the dry year, the reduction in soil moisture, caused by warming, and the reduction in AGB, caused by clipping, were compensated by higher soil temperatures in warmed plots. Our findings highlight the importance of changes in soil moisture in mediating the responses of ecosystem C fluxes to climate warming in an alpine meadow ecosystem.

  17. Effects of Warming and Clipping on Ecosystem Carbon Fluxes across Two Hydrologically Contrasting Years in an Alpine Meadow of the Qinghai-Tibet Plateau

    PubMed Central

    Peng, Fei; You, Quangang; Xu, Manhou; Guo, Jian; Wang, Tao; Xue, Xian

    2014-01-01

    Responses of ecosystem carbon (C) fluxes to human disturbance and climatic warming will affect terrestrial ecosystem C storage and feedback to climate change. We conducted a manipulative experiment to investigate the effects of warming and clipping on soil respiration (Rs), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross ecosystem production (GEP) in an alpine meadow in a permafrost region during two hydrologically contrasting years (2012, with 29.9% higher precipitation than the long-term mean, and 2013, with 18.9% lower precipitation than the long-tem mean). Our results showed that GEP was higher than ER, leading to a net C sink (measured by NEE) over the two growing seasons. Warming significantly stimulated ecosystem C fluxes in 2012 but did not significantly affect these fluxes in 2013. On average, the warming-induced increase in GEP (1.49 µ mol m−2s−1) was higher than in ER (0.80 µ mol m−2s−1), resulting in an increase in NEE (0.70 µ mol m−2s−1). Clipping and its interaction with warming had no significant effects on C fluxes, whereas clipping significantly reduced aboveground biomass (AGB) by 51.5 g m−2 in 2013. These results suggest the response of C fluxes to warming and clipping depends on hydrological variations. In the wet year, the warming treatment caused a reduction in water, but increases in soil temperature and AGB contributed to the positive response of ecosystem C fluxes to warming. In the dry year, the reduction in soil moisture, caused by warming, and the reduction in AGB, caused by clipping, were compensated by higher soil temperatures in warmed plots. Our findings highlight the importance of changes in soil moisture in mediating the responses of ecosystem C fluxes to climate warming in an alpine meadow ecosystem. PMID:25291187

  18. Seasonal patterns of water column particulate organic carbon and fluxes in the Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Gardner, Wilford D.; Richardson, Mary Jo; Smith, Walker O.

    The standing stock of particulate organic carbon (POC) was determined during five cruises in the Ross Sea in 1996 and 1997 and compared with primary production of carbon measured in short-term 14C-incubations and the flux of organic carbon collected in moored sediment traps. POC concentrations were estimated from transmissometer profiles that were calibrated with discrete POC bottle samples from each cruise. The mean standing stock of POC integrated to a depth of 100 m and averaged along a 330 km transect at 76.5°S in mid-October (early spring) was only 240 mmol C m -2, but more than doubled to 560 mmol C m -2 10 days later. By mid-January (summer) the standing stock had increased by an order of magnitude to ˜5300 mmol C m -2, but dropped to 3500 mmol C m -2 one week later. By late April (autumn), the standing stock was only 200 mmol C m -2. The following spring the standing stock increased from 700 mmol C m -2 in late November to 2200 mmol C m -2 in early December. Despite the high standing stock in the photic zone in summer, 1997, little POC was collected in the moored sediment traps until late summer (February-March) when the traps showed an increase in POC and silica flux. A three-fold increase in POC flux occurred in autumn (March-April) dominated by pteropods, but the standing stock of POC in the photic zone at that time was very low. Light-scattering sensor data suggest that, although present in all seasons, aggregates were most abundant in autumn and were distributed throughout the water column. These aggregates may have temporarily stored POC and provided food support for a pteropod population that died and settled into the traps in March-April. Still, the trap POC flux was only 5% of the peak standing stock. Resuspension and lateral advection of recently settled organic matter from a nearby topographic high may explain the larger flux measured in the deep sediment traps, a flux that continued into winter.

  19. Optimal recovery of regional carbon dioxide surface fluxes by data assimilation of anthropogenic and biogenic tracers

    NASA Astrophysics Data System (ADS)

    Campbell, Elliott

    Measurements of atmospheric carbon dioxide (CO2) have led to an understanding of the past and present CO2 trends at global scales. However, many of the processes that underlie the CO 2 fluxes are highly uncertain, especially at smaller spatial scales in the terrestrial biosphere. Our abilities to forecast climate change and manage the carbon cycle are reliant on an understanding of these underlying processes. In this dissertation, new steps were taken to understand the biogenic and anthropogenic processes based on analysis with an atmospheric transport model and simultaneous measurements of CO2 and other trace gases. The biogenic processes were addressed by developing an approach for quantifying photosynthesis and respiration surface fluxes using observations of CO 2 and carbonyl sulfide (COS). There is currently no reliable method for separating the influence of these gross biosphere fluxes on atmospheric CO2 concentrations. First, the plant sink for COS was quantified as a function of the CO2 photosynthesis uptake using the STEM transport model and measurements of COS and CO2 from the INTEX-NA campaign. Next, the STEM inversion model was modified for the simultaneous optimization of fluxes using COS and CO2 measurements and using only CO 2 measurements. The CO2-only inversion was found to be process blind, while the simultaneous COS/CO2 inversion was found to provide a unique estimate of the respiration and photosynthesis component fluxes. Further validation should be pursued with independent observations. The approach presented here is the first application of COS measurements for inferring information about the carbon cycle. Anthropogenic emissions were addressed by improving the estimate of the fossil fuel component of observed CO2 by using observed carbon monoxide (CO). Recent applications of the CO approach were based on simple approximations of non-fossil fuel influences on the measured CO such as sources from oxidation of volatile organic carbon species

  20. AmeriFlux US-Fwf Flagstaff - Wildfire

    DOE Data Explorer

    Dor, Sabina [Northern Arizona Univ., Flagstaff, AZ (United States); Kolb, Thomas [Northern Arizona Univ., Flagstaff, AZ (United States)

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Fwf Flagstaff - Wildfire. Site Description - Ponderosa pine forest subject to high severity stand replacing wild fire in 1996. Project webpage http://nau.edu/CEFNS/Forestry/Research/Carbon-Flux/Sites/.

  1. Current forest and woodland carbon storage and flux in California: An estimate for the 2010 statewide assessment

    Treesearch

    Timothy A. Robards

    2012-01-01

    This study used USDA Forest Service Forest Inventory and Analysis (FIA) plot data, forest growth models, wildland fire emission estimates and timber harvest data to estimate the live tree carbon storage and flux of California's forests and woodlands. Approximately 30 Tg C02e per year was estimated as the annual flux for all California forests. The forest inventory...

  2. Carbon Explorer Assessment of Carbon Biomass Variability and Carbon Flux Systematics in the Upper Ocean During SOFEX

    NASA Astrophysics Data System (ADS)

    Bishop, J. K.; Wood, T. J.; Sherman, J. T.

    2002-12-01

    Three autonomous Carbon Explorers built on SIO's Orbcomm/GPS enhanced Sounding Oceanographic Lagrangian Observer were launched near 55S 172W in the "North" SOFEX experiment area in early January 2002. All Explorers at 55S were programmed to perform profiles from 1000, 300, and 300 m with surfacings, GPS position, and telemetry of profile data initiating at local 0600, 1200, and 1800 hours. The floats were programmed to 'sleep' at 100 m depth between profiles to maximize tracking of the surface layer. Each Explorer carried SeaBird T and S sensors and was additionally fitted with a WETLabs transmissometer based "POC" sensor and a Seapoint scattering meter to assess particulate matter variability. A carbon flux "index" obtained during the 100 m sleep periods was also derived from the POC sensor readings. Explorer 1177 was deployed as a control outside of Fe treated waters on Jan 11 2002 (UTC) and drifted initially to the North East at 10 cm/sec. Explorer 2104, deployed on Jan 19 2002 after the 3rd Fe infusion, advected with the patch to the NE on a course that closely paralleled that of the "control". By Feb 8 2002, the two floats had drifted with the circumpolar current nearly 200 km; Explorer 2104 had recorded a 4-fold build-up of of particles in the upper 60 m whereas records from the nearby control Explorer 1177 showed little change. Ship survey data (Revelle) indicated that Explorer 2104 was near but "in" the trailing edge of the patch. Beginning Feb 14 (several days after the 4th infusion of Fe) and ending on Feb 24 2002, Explorer 2104 data showed isolines of POC concentration beginning to deepen in waters below 60 m and a coincident loss of POC from above; the POC flux index also began to show clearly different and enhanced 'spikes' compared to that recorded by the control. The spikes either reflected temporal variability of particle export from the patch or the intermingled sampling of the "in patch" settling plume of particles and "out-of-patch" background

  3. Global and regional fluxes of carbon from land use and land cover change 1850-2015

    NASA Astrophysics Data System (ADS)

    Houghton, R. A.; Nassikas, Alexander A.

    2017-03-01

    The net flux of carbon from land use and land cover change (LULCC) is an important term in the global carbon balance. Here we report a new estimate of annual fluxes from 1850 to 2015, updating earlier analyses with new estimates of both historical and current rates of LULCC and including emissions from draining and burning of peatlands in Southeast Asia. For most of the 186 countries included we relied on data from Food and Agriculture Organization to document changes in the areas of croplands and pastures since 1960 and changes in the areas of forests and "other land" since 1990. For earlier years we used other sources of information. We used a bookkeeping model that prescribed changes in carbon density of vegetation and soils for 20 types of ecosystems and five land uses. The total net flux attributable to LULCC over the period 1850-2015 is calculated to have been 145 ± 16 Pg C (1 standard deviation). Most of the emissions were from the tropics (102 ± 5.8 Pg C), generally increasing over time to a maximum of 2.10 Pg C yr-1 in 1997. Outside the tropics emissions were roughly constant at 0.5 Pg C yr-1 until 1940, declined to zero around 1970, and then became negative. For the most recent decade (2006-2015) global net emissions from LULCC averaged 1.11 (±0.35) Pg C yr-1, consisting of a net source from the tropics (1.41 ± 0.17 Pg C yr-1), a net sink in northern midlatitudes (-0.28 ± 0.21 Pg C yr-1), and carbon neutrality in southern midlatitudes.

  4. A method for assessing carbon stocks, carbon sequestration, and greenhouse-gas fluxes in ecosystems of the United States under present conditions and future scenarios

    Treesearch

    Zhiliang Zhu; Brian Bergamaschi; Richard Bernknopf; David Clow; Dennis Dye; Stephen Faulkner; William Forney; Robert Gleason; Todd Hawbaker; Jinxun Liu; Shuguang Liu; Stephen Prisley; Bradley Reed; Matthew Reeves; Matthew Rollins; Benjamin Sleeter; Terry Sohl; Sarah Stackpoole; Stephen Stehman; Robert Striegl; Anne Wein

    2010-01-01

    This methodology was developed to fulfill a requirement by the Energy Independence and Security Act of 2007 (EISA). The EISA legislation mandates the U.S. Department of the Interior (DOI) to develop a methodology and conduct an assessment of carbon storage, carbon sequestration, and fluxes of three principal greenhouse gases (GHG) for the Nation's ecosystems. The...

  5. Soil carbon content and CO2 flux along a hydrologic gradient in a High-Arctic tundra lake basin, Northwest Greenland

    NASA Astrophysics Data System (ADS)

    McKnight, J.; Klein, E. S.; Welker, J. M.; Schaeffer, S. M.; Franklin, M.

    2015-12-01

    High Arctic landscapes are composed of watershed basins that vary in size and ecohydrology, but typically have a plant community complex that ranges from dry tundra to moist tundra to wet sedge systems along water body shorelines. The spatial extent of these plant communities reflects mean annual soil moisture and temperature, and is vulnerable to changes in climate conditions. Soil moisture and temperature significantly influence organic matter microbial activity and decomposition, and can affect the fate of soil carbon in tundra soils. Consequently, due to the unique soil carbon differences between tundra plant communities, shifts in their spatial extent may drive future High Arctic biosphere-atmosphere interactions. Understanding this terrestrial-atmosphere trace gas feedback, however, requires quantification of the rates and patterns of CO2 exchange along soil moisture gradients and the associated soil properties. In summer of 2015, soil CO2 flux rate, soil moisture and temperature were measured along a soil moisture gradient spanning three vegetation zones (dry tundra, wet tundra, and wet grassland) in a snow melt-fed lake basin near Thule Greenland. Mean soil temperature during the 2015 growing season was greater in dry tundra than in wet tundra and wet grassland (13.0 ± 1.2, 7.8 ± 0.8, and 5.5 ± 0.9°C, respectively). Mean volumetric soil moisture differed among all three vegetation zones where the soil moisture gradient ranged from 9 % (dry tundra) to 34 % (wet tundra) to 51 % (wet grassland). Mean soil CO2 flux was significantly greater in the wet grassland (1.7 ± 0.1 μmol m-2 s-1) compared to wet tundra (0.9 ± 0.2 μmol m-2 s-1) and dry tundra (1.2 ± 0.2 μmol m-2 s-1). Soil CO2 flux increased and decreased with seasonal warming and cooling of soil temperature. Although soil temperature was an important seasonal driver of soil CO2 flux rates, differences in mean seasonal soil CO2 flux rates among vegetation zones appeared to be a function of the

  6. Ozone and carbon dioxide fluxes in a subalpine spruce-fir forest ecosystem

    Treesearch

    Karl Zeller

    1995-01-01

    RMFRES RWU 4452 has made several ozone (O3) and carbon dioxide (CO2) trace gas flux measurements in the Snowy Range, WY GLEES research area over the past few years. These measurements were made using the micrometeorological eddy correlation technique at two sites: one 6 m above tree canopy height on the Brooklyn tower (ozone only); and the other below canopy height, 1-...

  7. Spatiotemporal variations in CO2 flux in a fringing reef simulated using a novel carbonate system dynamics model

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Yamamoto, T.; Nadaoka, K.; Maeda, Y.; Miyajima, T.; Tanaka, Y.; Blanco, A. C.

    2013-03-01

    A carbonate system dynamics (CSD) model was developed in a fringing reef on the east coast of Ishigaki Island, southwest Japan, by incorporating organic and inorganic carbon fluxes (photosynthesis and calcification), air-sea gas exchanges, and benthic cover of coral and seagrass into a three-dimensional hydrodynamic model. The CSD model could reproduce temporal variations in dissolved inorganic carbon (DIC) and total alkalinity in coral zones, but not in seagrass meadows. The poor reproduction in seagrass meadows can be attributed to significant contributions of submarine groundwater discharge as well as misclassification of remotely sensed megabenthos in this area. In comparison with offshore areas, the reef acted as a CO2 sink during the observation period when it was averaged over 24 h. The CSD model also indicated large spatiotemporal differences in the carbon dioxide (CO2) sink/source, possibly related to hydrodynamic features such as effective offshore seawater exchange and neap/spring tidal variation. This suggests that the data obtained from a single point observation may lead to misinterpretation of the overall trend and thus should be carefully considered. The model analysis also showed that the advective flux of DIC from neighboring grids is several times greater than local biological flux of DIC and is three orders of magnitude greater than the air-sea gas flux at the coral zone. Sensitivity tests in which coral or seagrass covers were altered revealed that the CO2 sink potential was much more sensitive to changes in coral cover than seagrass cover.

  8. Humin to Human: Organic carbon, sediment, and water fluxes along river corridors in a changing world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutfin, Nicholas Alan

    This is a presentation with slides on What does it mean to be human? ...humin?; River flow and Hydrographs; Snake River altered hydrograph (Marston et al., 2005); Carbon dynamics are important in rivers; Rivers and streams as carbon sink; Reservoirs for organic carbon; Study sites in Colorado; River morphology; Soil sample collection; Surveys at RMNP; Soil organic carbon content at RMNP; Abandoned channels and Cutoffs; East River channel migration and erosion; Linking hydrology to floodplain sediment flux; Impact of Extreme Floods on Floodplain Sediment; Channel Geometry: RMNP; Beavers dams and multithread channels; Geomorphology and carbon in N. St. Vrain Creek;more » Geomorphology and carbon along the East River; Geomorphology and carbon in N. St. Vrain Creek; San Marcos River, etc.« less

  9. Crystal growth of carbonate apatite using a CaCO3 flux.

    PubMed

    Suetsugu, Y; Tanaka, J

    1999-09-01

    Single crystals of carbonate apatite were grown using a CaCO3 flux under an Ar gas pressure of 55 MPa. The crystals obtained were observed by scanning electron microscopy, optical microscopy and X-ray diffraction. Electron probe microanalyses and thermal analyses were performed. CO3 ions in planar triangle form replaced both OH sites and PO4 tetrahedral sites in the apatite structure: in particular, the OH sites were perfectly substituted by CO3 ions using this method.

  10. Flux-limited sample of Galactic carbon stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claussen, M.J.; Kleinmann, S.G.; Joyce, R.R.

    Published observational data (including IRAS observations) for a flux-limited sample of 215 Galactic carbon stars (CSs) selected from the 2-micron sky survey of Neugebauer and Leighton (1969) are compiled in extensive tables and graphs and analyzed statistically. The sample is found to penetrate a volume of radius 1.5 kpc, and the local CS space density and surface density are calculated as log rho0 (per cu kpc) = 2.0 + or - 0.4 and log N (per sq kpc) = 1.6 + or - 0.2, respectively. The total Galactic mass-return rate from these CSs is estimated as 0.013 solar mass/yr, implyingmore » a time scale of 0.1-1 Myr for the CS evolutionary phase and a mass of 1.2-1.6 solar mass for the (probably F-type) main-seqence progenitors of CSs. 81 references.« less

  11. High-resolution mapping of biogenic carbon fluxes to improve urban CO2 monitoring, reporting, and verification

    NASA Astrophysics Data System (ADS)

    Hardiman, B. S.; Hutyra, L.; Gately, C.; Raciti, S. M.

    2014-12-01

    Urban areas are home to 80% of the US population and 70% of energy related fossil fuel emissions originate from urban areas. Efforts to accurately monitor, report, and verify anthropogenic CO2 missions using atmospheric measurements require reliable partitioning of anthropogenic and biogenic sources. Anthropogenic emissions peak during the daytime, coincident with biogenic drawdown of CO2. In contrast, biogenic respiration emissions peak at night when anthropogenic emissions are lower. This temporal aliasing of fluxes requires careful modeling of both biogenic and anthropogenic fluxes for accurate source attribution through inverse modeling. Biogenic fluxes in urban regions can be a significant component of the urban carbon cycle. However, vegetation in urban areas is subject to longer growing seasons, reduced competition, higher rates of nitrogen deposition, and altered patterns of biomass inputs, all interacting to elevate C turnover rates relative to analogous non-urban ecosystems. These conditions suggest that models that ignore urban vegetation or base biogenic flux estimates on non-urban forests are likely to produce inaccurate estimates of anthropogenic CO2 emissions. Biosphere models often omit biogenic fluxes in urban areas despite potentially extensive vegetation coverage. For example, in Massachusetts, models mask out as much as 40% of land area, effectively assuming they have no biological flux. This results in a ~32% underestimate of aboveground biomass (AGB) across the state as compared to higher resolution vegetation maps. Our analysis suggests that some common biomass maps may underestimate forest biomass by ~520 Tg C within the state of Massachusetts. Moreover, omitted portions of the state have the highest population density, indicating that we know least about regions where most people live. We combine remote sensing imagery of urban vegetation cover with ground surveys of tree growth and mortality to improve estimates of aboveground biomass and

  12. Fluxes of dissolved organic carbon and nutrients via submarine groundwater discharge into subtropical Sansha Bay, China

    NASA Astrophysics Data System (ADS)

    Wang, Guizhi; Han, Aiqin; Chen, Liwen; Tan, Ehui; Lin, Hui

    2018-07-01

    To evaluate the role that submarine groundwater discharge (SGD) plays in the carbon and nutrient budgets in subtropical Sansha Bay, southeastern China, radium isotopes were used as SGD tracers and investigated in the bay and surrounding groundwater. In general, the activity of radium isotopes (223,224,226,228Ra) decreased from the bay head to the outlet that connects with the East China Sea. Based on the ratio of 224Ra and 228Ra, the water age was estimated to be 5.49 ± 3.64 and 1.50 ± 0.83 days in winter and summer, respectively. A three end-member mixing model and a box model were set up based on the mass balance of 226Ra and salinity to quantify SGD. The flux of SGD was calculated to be 9.33 ± 8.17 × 105 m3 d-1 (3.8 ± 3.4 × 10-3 m3 m-2 d-1) in winter and 4.89 ± 3.35 × 106 m3 d-1 (2.0 ± 1.4 × 10-2 m3 m-2 d-1) in summer, which were at least a few times less than the concomitant river discharge into the bay. In groundwater, an enrichment of dissolved inorganic nitrogen, phosphorus, and organic carbon was associated with relatively high activities of 226Ra. The SGD-associated nutrient flux was 1.99 ± 1.74-95.0 ± 83.2 μmol m-2 d-1 in winter and 0-0.89 ± 0.55 mmol m-2 d-1 in summer of phosphate, 6.76 ± 5.92-7.21 ± 6.32 mmol m-2 d-1 in winter and 66.2 ± 40.8-93.6 ± 57.7 mmol m-2 d-1 in summer of dissolved inorganic nitrogen, and 1.20 ± 1.05-1.74 ± 1.52 mmol m-2 d-1 in winter and 5.93 ± 4.06-8.22 ± 5.63 mmol m-2 d-1 in summer of silicate. The flux of dissolved organic carbon via SGD was 0.17 ± 0.15-0.33 ± 0.29 mmol m-2 d-1 in winter and 1.31 ± 0.81-2.94 ± 1.81 mmol m-2 d-1 in summer. The flux of N carried by SGD into Sansha Bay was comparable to the estuarine flux in winter, while was an order of magnitude greater than the estuarine flux in summer. The minimum flux of silicate via SGD was about half as much as the estuarine flux in summer, while was an order of magnitude smaller than the estuarine flux in winter. The minimum SGD-associated P

  13. Response of carbon fluxes to drought in a coastal plain loblolly pine forest

    Treesearch

    Asko Noormets; Michael J. Gavazzi; Steve G. McNulty; Jean-Christophe Domec; Ge Sun; John S. King; Jiquan Chen

    2010-01-01

    Full accounting of ecosystem carbon (C) pools and fluxes in coastal plain ecosystems remains less studied compared with upland systems, even though the C stocks in these systems may be up to an order of magnitude higher, making them a potentially important component in regional C cycle. Here, we report C pools and CO2 exchange rates...

  14. Hydroclimatic Controls over Global Variations in Phenology and Carbon Flux

    NASA Technical Reports Server (NTRS)

    Koster, Randal; Walker, G.; Thornton, Patti; Collatz, G. J.

    2012-01-01

    The connection between phenological and hydroclimatological variations are quantified through joint analyses of global NDVI, LAI, and precipitation datasets. The global distributions of both NDVI and LAI in the warm season are strongly controlled by three quantities: mean annual precipitation, the standard deviation of annual precipitation, and Budyko's index of dryness. Upon demonstrating that these same basic (if biased) relationships are produced by a dynamic vegetation model (the dynamic vegetation and carbon storage components of the NCAR Community Land Model version 4 combined with the water and energy balance framework of the Catchment Land Surface Model of the NASA Global Modeling and Assimilation Office), we use the model to perform a sensitivity study focusing on how phenology and carbon flux might respond to climatic change. The offline (decoupled from the atmosphere) simulations show us, for example, where on the globe a given small increment in precipitation mean or variability would have the greatest impact on carbon uptake. The analysis framework allows us in addition to quantify the degree to which climatic biases in a free-running GCM are manifested as biases in simulated phenology.

  15. Hydroclimatic Controls over Global Variations in Phenology and Carbon Flux

    NASA Astrophysics Data System (ADS)

    Koster, R. D.; Walker, G.; Thornton, P. E.; Collatz, G. J.

    2012-12-01

    The connection between phenological and hydroclimatological variations are quantified through joint analyses of global NDVI, LAI, and precipitation datasets. The global distributions of both NDVI and LAI in the warm season are strongly controlled by three quantities: mean annual precipitation, the standard deviation of annual precipitation, and Budyko's index of dryness. Upon demonstrating that these same basic (if somewhat biased) relationships are produced by a dynamic vegetation model (the dynamic vegetation and carbon storage components of the NCAR Community Land Model version 4 combined with the water and energy balance framework of the Catchment Land Surface Model of the NASA Global Modeling and Assimilation Office), we use the model to perform a sensitivity study focusing on how phenology and carbon flux might respond to climatic change. The offline (decoupled from the atmosphere) simulations show us, for example, where on the globe a given small increment in precipitation mean or variability would have the greatest impact on carbon uptake. The analysis framework allows us in addition to quantify the degree to which climatic biases in a free-running GCM are manifested as biases in simulated phenology.

  16. Aspects of spatial and temporal aggregation in estimating regional carbon dioxide fluxes from temperate forest soils

    NASA Technical Reports Server (NTRS)

    Kicklighter, David W.; Melillo, Jerry M.; Peterjohn, William T.; Rastetter, Edward B.; Mcguire, A. David; Steudler, Paul A.; Aber, John D.

    1994-01-01

    We examine the influence of aggregation errors on developing estimates of regional soil-CO2 flux from temperate forests. We find daily soil-CO2 fluxes to be more sensitive to changes in soil temperatures (Q(sub 10) = 3.08) than air temperatures (Q(sub 10) = 1.99). The direct use of mean monthly air temperatures with a daily flux model underestimates regional fluxes by approximately 4%. Temporal aggregation error varies with spatial resolution. Overall, our calibrated modeling approach reduces spatial aggregation error by 9.3% and temporal aggregation error by 15.5%. After minimizing spatial and temporal aggregation errors, mature temperate forest soils are estimated to contribute 12.9 Pg C/yr to the atmosphere as carbon dioxide. Georeferenced model estimates agree well with annual soil-CO2 fluxes measured during chamber studies in mature temperate forest stands around the globe.

  17. Integrating Carbon Flux Measurements with Hydrologic and Thermal Responses in a Low Centered Ice-Wedge Polygon near Prudhoe Bay, AK

    NASA Astrophysics Data System (ADS)

    Larson, T.; Young, M.; Caldwell, T. G.; Abolt, C.

    2014-12-01

    Substantial attention is being devoted to soil organic carbon (SOC) dynamics in Polar Regions, given the potential impacts of CO2 and methane (CH4) release into the atmosphere. In this study, which is part of a broader effort to quantify carbon loss pathways in patterned Arctic permafrost soils, CH4 and CO2 flux measurements were recorded from a site approximately 30 km south of Deadhorse, Alaska and 1 km west of the Dalton Highway. Samples were collected in late July, 2014 using six static flux chambers that were located within a single low-centered ice-wedge polygon. Three flux chambers were co-located (within a 1 m triangle of each other) near the center of the polygon and three were co-located (along a 1.5 m line) on the ridge adjacent to a trough. Soil in the center of the polygon was 100% water saturated, whereas water saturation measured on the ridge ranged between 25-50%. Depth to ice table was approximately 50 cm near the center of the polygon and 40 cm at the ridge. Temperature depth probes were installed within the center and ridge of the polygon. Nine gas measurements were collected from each chamber over a 24 h period, stored in helium-purged Exetainer vials, shipped to a laboratory, and analyzed using gas chromatography. Measured cumulative methane fluxes were linear over the 24 h period demonstrating constant methane production, but considerable spatial variability in flux was observed (0.1 to 4.7 mg hr-1 m-2 in polygon center, and 0.003 to 0.36 mg hr-1m-2 on polygon ridge). Shallow soil temperatures varied between 1.3 and 9.8oC in the center and 0.6 to 7.5oC in the rim of the polygon. Air temperatures varied between 1.3 and 4.6oC. CO2 fluxes were greater than methane fluxes and more consistent at each co-location; ranging from 21.7 to 36.6 mg hr-1 m-2 near the polygon centers and 3.5 to 29.1 mg hr-1 m-2 in the drier polygon ridge. Results are consistent with previous observations that methanogenesis is favored in a water saturated active layer. The

  18. NACP Synthesis: Evaluating modeled carbon state and flux variables against multiple observational constraints (Invited)

    NASA Astrophysics Data System (ADS)

    Thornton, P. E.; Nacp Site Synthesis Participants

    2010-12-01

    The North American Carbon Program (NACP) synthesis effort includes an extensive intercomparison of modeled and observed ecosystem states and fluxes preformed with multiple models across multiple sites. The participating models span a range of complexity and intended application, while the participating sites cover a broad range of natural and managed ecosystems in North America, from the subtropics to arctic tundra, and coastal to interior climates. A unique characteristic of this collaborative effort is that multiple independent observations are available at all sites: fluxes are measured with the eddy covariance technique, and standard biometric and field sampling methods provide estimates of standing stock and annual production in multiple categories. In addition, multiple modeling approaches are employed to make predictions at each site, varying, for example, in the use of diagnostic vs. prognostic leaf area index. Given multiple independent observational constraints and multiple classes of model, we evaluate the internal consistency of observations at each site, and use this information to extend previously derived estimates of uncertainty in the flux observations. Model results are then compared with all available observations and models are ranked according to their consistency with each type of observation (high frequency flux measurement, carbon stock, annual production). We demonstrate a range of internal consistency across the sites, and show that some models which perform well against one observational metric perform poorly against others. We use this analysis to construct a hypothesis for combining eddy covariance, biometrics, and other standard physiological and ecological measurements which, as data collection proceeded over several years, would present an increasingly challenging target for next generation models.

  19. Herbivore-mediated material fluxes in a northern deciduous forest under elevated carbon dioxide and ozone concentrations.

    PubMed

    Meehan, Timothy D; Couture, John J; Bennett, Alison E; Lindroth, Richard L

    2014-10-01

    Anthropogenic changes in atmospheric carbon dioxide (CO2 ) and ozone (O3 ) are known to alter tree physiology and growth, but the cascading effects on herbivore communities and herbivore-mediated nutrient cycling are poorly understood. We sampled herbivore frass, herbivore-mediated greenfall, and leaf-litter deposition in temperate forest stands under elevated CO2 (c. 560 ppm) and O3 (c. 1.5× ambient), analyzed substrate chemical composition, and compared the quality and quantity of fluxes under multiple atmospheric treatments. Leaf-chewing herbivores fluxed 6.2 g m(-2)  yr(-1) of frass and greenfall from the canopy to the forest floor, with a carbon : nitrogen (C : N) ratio 32% lower than that of leaf litter. Herbivore fluxes of dry matter, C, condensed tannins, and N increased under elevated CO2 (35, 32, 63 and 39%, respectively), while fluxes of N decreased (18%) under elevated O3 . Herbivore-mediated dry matter inputs scaled across atmospheric treatments as a constant proportion of leaf-litter inputs. Increased fluxes under elevated CO2 were consistent with increased herbivore consumption and abundance, and with increased plant growth and soil respiration, previously reported for this experimental site. Results suggest that insect herbivory will reinforce other factors, such as photosynthetic rate and fine-root production, impacting C sequestration by forests in future environments. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

  20. Decadal and annual changes in biogenic opal and carbonate fluxes to the deep Sargasso Sea

    USGS Publications Warehouse

    Deuser, W.G.; Jickells, T.D.; Commeau, Judith A.

    1995-01-01

    Analyses of samples from a 14-year series of sediment-trap deployments in the deep Sargasso Sea reveal a significant trend in the ratio of the sinking fluxes of biogenic calcium carbonate and silica. Although there are pronounced seasonal cycles for both flux components, the overall opal/CaCO3 ratio changed by 50% from 1978 to 1991 (largely due to a decrease of opal flux), while total flux had no significant trend. These results suggest that plankton communities respond rapidly to subtle climate change, such as is evident in regional variations of wind speed, precipitation, wintertime ventilation and midwater temperatures. If the trends we observe in the makeup of sinking particulate matter occur on a large scale, they may in turn modify climate by modulating ocean-atmosphere CO2 exchange and albedo over the ocean.

  1. Fluxes of carbon dioxide and methane from diverse aquatic environments in an agricultural landscape

    NASA Astrophysics Data System (ADS)

    Stanley, E. H.; Crawford, J. T.; Loken, L. C.; Casson, N. J.; Gubbins, N. J.; Oliver, S. K.

    2014-12-01

    The contribution of aquatic environments to landscape carbon cycling is particularly apparent in carbon- and water-rich regions. Such areas arguably represent an end member in terms of the relative significance of aquatic carbon cycling, while dry, carbon-poor zones are the likely opposing end member. Not surprisingly, most limnological attention has focused on these former regions, leaving open questions as to how aquatic systems in other locales influence larger-scale carbon dynamics. This includes human-dominated landscapes where agricultural and urban land uses can fundamentally alter carbon dynamics. Surveys of streams, ponds, and lakes in a southern Wisconsin landscape highlight three findings relevant to understanding the role of these aquatic systems in larger-scale carbon dynamics. First, streams and ponds had unexpectedly high summertime concentrations in and fluxes of CO2 and CH4. These values were approximately an order of magnitude greater than for less disturbed, forest and wetland-dominated landscapes in northern Wisconsin. Second, while mean C gas concentrations in lakes were lower than in streams and ponds, detailed spatial measurements demonstrate variability in surface water CO2 (43-1090 ppm pCO2) and CH4 (6-839 ppm pCH4) within a lake on a single day is similar to that observed among 25 streams included in our survey (260-6000 ppm pCO2; 50-600 ppm pCH4). This small-scale heterogeneity highlights a basic challenge for upscaling site-specific data collected at one or a few points to the whole lake and across lakes. Third, while agricultural and urban ecosystems are not necessarily carbon-rich environments, area-specific carbon storage in streams and ponds is substantial (up to 3000-5000 g C per m2). Further, carbon storage was strongly related to CH4 concentrations in streams, as C-rich sediments provided both an environment and substrate to fuel methanogenesis. The picture that emerges of C processing in aquatic environments throughout this human

  2. Assessing the effects of land use/cover change on carbon dioxide fluxes in a semiarid shrubland

    NASA Astrophysics Data System (ADS)

    Gong, Tingting; Lei, Huimin; Yang, Dawen; Jiao, Yang; Yang, Hanbo

    2017-04-01

    Land use/cover change has been generally considered a local environmental issue. Our study focuses on the effects of land use/cover change on the carbon cycle using long-term continuous field observation data, which is measured by the eddy covariance (EC) technique. The study site is at Yulin (38.45N, 109.47E), which is a desert shrubland ecosystem in Mu Us sandland, China. Before June 2012, the vegetation in this site was covered with mixed vegetation: typical desert shrubs (e.g., Salix psammophila and Artemisia ordosica) and grass. After July 2012, a part of the land use/cover condition within the footprint was changed by the local farmers, which converted the land use/cover condition changed first from mixed vegetation to bare soil and then from bare soil to grassland resulting from the re-growing grass. Four-year carbon fluxes are selected and separated into three periods: Period I is from July 1 2011 to June 30 2012 when land use/cover condition did not change; Period II is from July 1 2012 to June 30 2014 when land use/cover condition changed from mixed vegetation (shrubs and grass) to the mix of bare soil and desert shrubs; Period III is from July 1 2014 to June 30 2015 when land use/cover condition changed from the mix of desert shrubs and bare soil to the mix of desert shrubs and re-growing grass. A linear statistical model will be used to evaluate and quantify the effects of land use/cover change on the uptake or release of carbon fluxes (net ecosystem exchange (NEE), ecosystem respiration (Reco) and gross primary production (GPP)). Moreover, this study is expected to get insights into how agricultural cultivation influences on the local carbon balance (e.g., how NEE, Reco and GPP respond to the land use/cover change; Is the annual carbon balance changed during the land use/cover change process; and the contribution of land use/cover change on these changes of carbon fluxes).

  3. Improved Mapping of Carbon, Water and Energy Land-Surface Fluxes Using Remotely Sensed Indicators of Canopy Light Use Efficiency

    NASA Astrophysics Data System (ADS)

    Schull, M. A.; Anderson, M. C.; Kustas, W.; Cammalleri, C.; Houborg, R.

    2012-12-01

    A light-use-efficiency (LUE) based model of canopy resistance has been embedded into a thermal-based Two-Source Energy Balance (TSEB) model to facilitate coupled simulations of transpiration and carbon assimilation. The model assumes that deviations of the observed canopy LUE from a nominal stand-level value (LUEn - typically indexed by vegetation class) are due to varying conditions of light, humidity, CO2 concentration and leaf temperature. The deviations are accommodated by adjusting an effective LUE that responds to the varying conditions. The challenge to monitoring fluxes on a larger scale is to capture the physiological responses due to changing conditions. This challenge can be met using remotely sensed leaf chlorophyll (Cab). Since Cab is a vital pigment for absorbing light for use in photosynthesis, it has been recognized as a key parameter for quantifying photosynthetic functioning that are sensitive to these conditions. Recent studies have shown that it is sensitive to changes in LUE, which defines how efficiently a plant can assimilate carbon dioxide (CO2) given the absorbed Photosynthetically Active Radiation (PAR) and is therefore useful for monitoring carbon fluxes. We investigate the feasibility of leaf chlorophyll to capture these variations in LUEn using remotely sensed data. To retrieve Cab from remotely sensed data we use REGFLEC, a physically based tool that translates at-sensor radiances in the green, red and NIR spectral regions from multiple satellite sensors into realistic maps of LAI and Cab. Initial results show that Cab is exponentially correlated to light use efficiency. Incorporating nominal light use efficiency estimated from Cab is shown to improve fluxes of carbon, water and energy most notably in times of stressed vegetation. The result illustrates that Cab is sensitive to changes in plant physiology and can capture plant stress needed for improved estimation of fluxes. The observed relationship and initial results demonstrate the

  4. AmeriFlux: Measuring carbon, water and energy flux across the Americas.

    Science.gov Websites

    Sign In × Welcome Close POSTCARDS Register for the 2018 AmeriFlux Synthesis Workshop! US-UMB AmeriFlux tower, located at the University of Michigan Biological Station (UMBS) Decadal Synthesis Survey POSTCARDS Register for the 2018 AmeriFlux Synthesis Workshop! Apr 2 2018 Decadal Synthesis Survey: Insights

  5. Quantifying Sources and Fluxes of Aquatic Carbon in U.S. Streams and Reservoirs Using Spatially Referenced Regression Models

    NASA Astrophysics Data System (ADS)

    Boyer, E. W.; Smith, R. A.; Alexander, R. B.; Schwarz, G. E.

    2004-12-01

    Organic carbon (OC) is a critical water quality characteristic in riverine systems that is an important component of the aquatic carbon cycle and energy balance. Examples of processes controlled by OC interactions are complexation of trace metals; enhancement of the solubility of hydrophobic organic contaminants; formation of trihalomethanes in drinking water; and absorption of visible and UV radiation. Organic carbon also can have indirect effects on water quality by influencing internal processes of aquatic ecosystems (e.g. photosynthesis and autotrophic and heterotrophic activity). The importance of organic matter dynamics on water quality has been recognized, but challenges remain in quantitatively addressing OC processes over broad spatial scales in a hydrological context. In this study, we apply spatially referenced watershed models (SPARROW) to statistically estimate long-term mean-annual rates of dissolved- and total- organic carbon export in streams and reservoirs across the conterminous United States. We make use of a GIS framework for the analysis, describing sources, transport, and transformations of organic matter from spatial databases providing characterizations of climate, land use, primary productivity, topography, soils, and geology. This approach is useful because it illustrates spatial patterns of organic carbon fluxes in streamflow, highlighting hot spots (e.g., organic-rich environments in the southeastern coastal plain). Further, our simulations provide estimates of the relative contributions to streams from allochthonous and autochthonous sources. We quantify surface water fluxes of OC with estimates of uncertainty in relation to the overall US carbon budget; our simulations highlight that aquatic sources and sinks of OC may be a more significant component of regional carbon cycling than was previously thought. Further, we are using our simulations to explore the potential role of climate and other changes in the terrestrial environment on

  6. Effects of management of ecosystem carbon pools and fluxes in grassland ecosystems

    NASA Astrophysics Data System (ADS)

    Ryals, R.; Silver, W. L.

    2010-12-01

    Grasslands represent a large land-use footprint and have considerable potential to sequester carbon (C) in soil. Climate policies and C markets may provide incentives for land managers to pursue strategies that optimize soil C storage, yet we lack robust understanding of C sequestration in grasslands. Previous research has shown that management approaches such as organic amendments or vertical subsoiling can lead to larger soil C pools. These management approaches can both directly and indirectly affect soil C pools. We used well-replicated field experiments to explore the effects of these management strategies on ecosystem C pools and fluxes in two bioclimatic regions of California (Sierra Foothills Research and Extension Center (SFREC) and Nicasio Ranch). Our treatments included an untreated control, compost amendments, plowed (vertical subsoil), and compost + plow. The experiment was conducted over two years allowing us to compare dry (360 mm) and average (632 mm) rainfall conditions. Carbon dioxide (CO2) fluxes were measured weekly using a LI-8100 infrared gas analyzer. Methane (CH4) and nitrous oxide (N2O) fluxes were measured monthly using static flux chambers. Aboveground and belowground biomass were measured at the end of the growing season as an index of net primary productivity (NPP) in the annual plant dominated system. Soil moisture and temperature were measured continuously and averaged on hourly and daily timescales. Soil organic C and N concentrations were measured prior to the application of management treatments and at the ends of each growing season. Soils were collected to a 10 cm depth in year one and at four depth increments (0-10, 10-30, 30-50, and 50-100 cm) in year two. Soil C and N concentrations were converted to content using bulk density values for each plot. During both growing seasons, soil respiration rates were higher in the composted plots and lower in the plowed plots relative to controls at both sites. The effects on C loss via

  7. Diagnosis and Quantification of Climatic Sensitivity of Carbon Fluxes in Ensemble Global Ecosystem Models

    NASA Astrophysics Data System (ADS)

    Wang, W.; Hashimoto, H.; Milesi, C.; Nemani, R. R.; Myneni, R.

    2011-12-01

    Terrestrial ecosystem models are primary scientific tools to extrapolate our understanding of ecosystem functioning from point observations to global scales as well as from the past climatic conditions into the future. However, no model is nearly perfect and there are often considerable structural uncertainties existing between different models. Ensemble model experiments thus become a mainstream approach in evaluating the current status of global carbon cycle and predicting its future changes. A key task in such applications is to quantify the sensitivity of the simulated carbon fluxes to climate variations and changes. Here we develop a systematic framework to address this question solely by analyzing the inputs and the outputs from the models. The principle of our approach is to assume the long-term (~30 years) average of the inputs/outputs as a quasi-equlibrium of the climate-vegetation system while treat the anomalies of carbon fluxes as responses to climatic disturbances. In this way, the corresponding relationships can be largely linearized and analyzed using conventional time-series techniques. This method is used to characterize three major aspects of the vegetation models that are mostly important to global carbon cycle, namely the primary production, the biomass dynamics, and the ecosystem respiration. We apply this analytical framework to quantify the climatic sensitivity of an ensemble of models including CASA, Biome-BGC, LPJ as well as several other DGVMs from previous studies, all driven by the CRU-NCEP climate dataset. The detailed analysis results are reported in this study.

  8. AmeriFlux US-Fmf Flagstaff - Managed Forest

    DOE Data Explorer

    Dor, Sabina [Northern Arizona Univ., Flagstaff, AZ (United States); Kolb, Thomas [Northern Arizona Univ., Flagstaff, AZ (United States)

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Fmf Flagstaff - Managed Forest. Site Description - Ponderosa pine forest subject to thinning in September 2006. Project webpage http://nau.edu/CEFNS/Forestry/Research/Carbon-Flux/Sites/

  9. AmeriFlux US-Fuf Flagstaff - Unmanaged Forest

    DOE Data Explorer

    Dor, Sabina [Northern Arizona Univ., Flagstaff, AZ (United States); Kolb, Thomas [Northern Arizona Univ., Flagstaff, AZ (United States)

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Fuf Flagstaff - Unmanaged Forest. Site Description - Ponderosa pine forest not subject to disturbance in the last decades. Project webpage http://nau.edu/CEFNS/Forestry/Research/Carbon-Flux/Sites/.

  10. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms

    DOE PAGES

    Tramontana, Gianluca; Jung, Martin; Schwalm, Christopher R.; ...

    2016-07-29

    Spatio-temporal fields of land–atmosphere fluxes derived from data-driven models can complement simulations by process-based land surface models. While a number of strategies for empirical models with eddy-covariance flux data have been applied, a systematic intercomparison of these methods has been missing so far. In this study, we performed a cross-validation experiment for predicting carbon dioxide, latent heat, sensible heat and net radiation fluxes across different ecosystem types with 11 machine learning (ML) methods from four different classes (kernel methods, neural networks, tree methods, and regression splines). We applied two complementary setups: (1) 8-day average fluxes based on remotely sensed data andmore » (2) daily mean fluxes based on meteorological data and a mean seasonal cycle of remotely sensed variables. The patterns of predictions from different ML and experimental setups were highly consistent. There were systematic differences in performance among the fluxes, with the following ascending order: net ecosystem exchange ( R 2 < 0.5), ecosystem respiration ( R 2 > 0.6), gross primary production ( R 2> 0.7), latent heat ( R 2 > 0.7), sensible heat ( R 2 > 0.7), and net radiation ( R 2 > 0.8). The ML methods predicted the across-site variability and the mean seasonal cycle of the observed fluxes very well ( R 2 > 0.7), while the 8-day deviations from the mean seasonal cycle were not well predicted ( R 2 < 0.5). Fluxes were better predicted at forested and temperate climate sites than at sites in extreme climates or less represented by training data (e.g., the tropics). Finally, the evaluated large ensemble of ML-based models will be the basis of new global flux products.« less

  11. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tramontana, Gianluca; Jung, Martin; Schwalm, Christopher R.

    Spatio-temporal fields of land–atmosphere fluxes derived from data-driven models can complement simulations by process-based land surface models. While a number of strategies for empirical models with eddy-covariance flux data have been applied, a systematic intercomparison of these methods has been missing so far. In this study, we performed a cross-validation experiment for predicting carbon dioxide, latent heat, sensible heat and net radiation fluxes across different ecosystem types with 11 machine learning (ML) methods from four different classes (kernel methods, neural networks, tree methods, and regression splines). We applied two complementary setups: (1) 8-day average fluxes based on remotely sensed data andmore » (2) daily mean fluxes based on meteorological data and a mean seasonal cycle of remotely sensed variables. The patterns of predictions from different ML and experimental setups were highly consistent. There were systematic differences in performance among the fluxes, with the following ascending order: net ecosystem exchange ( R 2 < 0.5), ecosystem respiration ( R 2 > 0.6), gross primary production ( R 2> 0.7), latent heat ( R 2 > 0.7), sensible heat ( R 2 > 0.7), and net radiation ( R 2 > 0.8). The ML methods predicted the across-site variability and the mean seasonal cycle of the observed fluxes very well ( R 2 > 0.7), while the 8-day deviations from the mean seasonal cycle were not well predicted ( R 2 < 0.5). Fluxes were better predicted at forested and temperate climate sites than at sites in extreme climates or less represented by training data (e.g., the tropics). Finally, the evaluated large ensemble of ML-based models will be the basis of new global flux products.« less

  12. Sediment carbon and nutrient fluxes from cleared and intact temperate mangrove ecosystems and adjacent sandflats.

    PubMed

    Bulmer, Richard H; Schwendenmann, Luitgard; Lohrer, Andrew M; Lundquist, Carolyn J

    2017-12-01

    The loss of mangrove ecosystems is associated with numerous impacts on coastal and estuarine function, including sediment carbon and nutrient cycling. In this study we compared in situ fluxes of carbon dioxide (CO 2 ) from the sediment to the atmosphere, and fluxes of dissolved inorganic nutrients and oxygen across the sediment-water interface, in intact and cleared mangrove and sandflat ecosystems in a temperate estuary. Measurements were made 20 and 25months after mangrove clearance, in summer and winter, respectively. Sediment CO 2 efflux was over two-fold higher from cleared than intact mangrove ecosystems at 20 and 25months after mangrove clearance. The higher CO 2 efflux from the cleared site was explained by an increase in respiration of dead root material along with sediment disturbance following mangrove clearance. In contrast, sediment CO 2 efflux from the sandflat site was negligible (≤9.13±1.18mmolm -2 d -1 ), associated with lower sediment organic matter content. The fluxes of inorganic nutrients (NH 4 + , NO x and PO 4 3- ) from intact and cleared mangrove sediments were low (≤20.37±18.66μmolm -2 h - 1 ). The highest NH 4 + fluxes were measured at the sandflat site (69.21±13.49μmolm -2 h - 1 ). Lower inorganic nutrient fluxes within the cleared and intact mangrove sites compared to the sandflat site were associated with lower abundance of larger burrowing macrofauna. Further, a higher fraction of organic matter, silt and clay content in mangrove sediments may have limited nutrient exchange. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Comparing carbon to carbon: Organic and inorganic carbon balances across nitrogen fertilization gradients in rainfed vs. irrigated Midwest US cropland

    NASA Astrophysics Data System (ADS)

    Hamilton, S. K.; McGill, B.

    2017-12-01

    The top meter of the earth's soil contains about twice the amount of carbon than the atmosphere. Agricultural management practices influence whether a cropland soil is a net carbon source or sink. These practices affect both organic and inorganic carbon cycling although the vast majority of studies examine the former. We will present results from several rarely-compared carbon fluxes: carbon dioxide emissions and sequestration from lime (calcium carbonate) weathering, dissolved gases emitted from groundwater-fed irrigation, dissolved organic carbon (DOC) leaching to groundwater, and soil organic matter storage. These were compared in a corn-soybean-wheat rotation under no-till management across a nitrogen fertilizer gradient where half of the replicated blocks are irrigated with groundwater. DOC and liming fluxes are also estimated from a complementary study in neighboring plots comparing a gradient of management practices from conventional to biologically-based annuals and perennials. These studies were conducted at the Kellogg Biological Station Long Term Ecological Research site in Michigan where previous work estimated that carbon dioxide emissions from liming accounted for about one quarter of the total global warming impact (GWI) from no-till systems—our work refines that figure. We will present a first time look at the GWI of gases dissolved in groundwater that are emitted when the water equilibrates with the atmosphere. We will explore whether nitrogen fertilizer and irrigation increase soil organic carbon sequestration by producing greater crop biomass and residues or if they enhance microbial activity, increasing decomposition of organic matter. These results are critical for more accurately estimating how intensive agricultural practices affect the carbon balance of cropping systems.

  14. Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes

    NASA Astrophysics Data System (ADS)

    Vihermaa, Leena E.; Waldron, Susan; Domingues, Tomas; Grace, John; Cosio, Eric G.; Limonchi, Fabian; Hopkinson, Chris; da Rocha, Humberto Ribeiro; Gloor, Emanuel

    2016-12-01

    We constructed a whole carbon budget for a catchment in the Western Amazon Basin, combining drainage water analyses with eddy covariance (EC) measured terrestrial CO2 fluxes. As fluvial C export can represent permanent C export it must be included in assessments of whole site C balance, but it is rarely done. The footprint area of the flux tower is drained by two small streams ( 5-7 km2) from which we measured the dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), particulate organic carbon (POC) export, and CO2 efflux. The EC measurements showed the site C balance to be +0.7 ± 9.7 Mg C ha-1 yr-1 (a source to the atmosphere) and fluvial export was 0.3 ± 0.04 Mg C ha-1 yr-1. Of the total fluvial loss 34% was DIC, 37% DOC, and 29% POC. The wet season was most important for fluvial C export. There was a large uncertainty associated with the EC results and with previous biomass plot studies (-0.5 ± 4.1 Mg C ha-1 yr-1); hence, it cannot be concluded with certainty whether the site is C sink or source. The fluvial export corresponds to only 3-7% of the uncertainty related to the site C balance; thus, other factors need to be considered to reduce the uncertainty and refine the estimated C balance. However, stream C export is significant, especially for almost neutral sites where fluvial loss may determine the direction of the site C balance. The fate of C downstream then dictates the overall climate impact of fluvial export.

  15. Gluconeogenesis from labeled carbon: estimating isotope dilution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelleher, J.K.

    1986-03-01

    To estimate the rate of gluconeogenesis from steady-state incorporation of labeled 3-carbon precursors into glucose, isotope dilution must be considered so that the rate of labeling of glucose can be quantitatively converted to the rate of gluconeogenesis. An expression for the value of this isotope dilution can be derived using mathematical techniques and a model of the tricarboxylic acid (TCA) cycle. The present investigation employs a more complex model than that used in previous studies. This model includes the following pathways that may affect the correction for isotope dilution: 1) flux of 3-carbon precursor to the oxaloacetate pool via acetyl-CoAmore » and the TCA cycle; 2) flux of 4- or 5-carbon compounds into the TCA cycle; 3) reversible flux between oxaloacetate (OAA) and pyruvate and between OAA and fumarate; 4) incomplete equilibrium between OAA pools; and 5) isotope dilution of 3-carbon tracers between the experimentally measured pool and the precursor for the TCA-cycle OAA pool. Experimental tests are outlined which investigators can use to determine whether these pathways are significant in a specific steady-state system. The study indicated that flux through these five pathways can significantly affect the correction for isotope dilution. To correct for the effects of these pathways an alternative method for calculating isotope dilution is proposed using citrate to relate the specific activities of acetyl-CoA and OAA.« less

  16. Contrasting Response of Carbon Fluxes to Winter Warming across Land Cover Types in Southern NH, USA

    NASA Astrophysics Data System (ADS)

    Sanders-DeMott, R.; Ouimette, A.; Lepine, L. C.; Fogarty, S.; Burakowski, E. A.; Contosta, A.; Ollinger, S. V.; Conte, T.

    2017-12-01

    Natural and managed ecosystems play a key role in climate through regulation of carbon dioxide, as well as their effects on other greenhouse gases, surface heat fluxes, and albedo. In the northeastern United States, winter air temperatures are rising more rapidly than mean annual temperatures and the depth and duration of seasonal snowpack is decreasing. Although winter fluxes of carbon are small relative to the growing season, there is mounting evidence that biological processes in winter contribute significantly to annual ecosystem carbon budgets and that changes in winter conditions could lead to shifting patterns and magnitudes of seasonal carbon uptake. To determine the response of differing land cover types to variation in winter conditions we used eddy covariance to monitor carbon exchange from a co-located mixed temperate forest and a managed grassland in Durham, NH from 2014-2017, which included an anomalous warm winter (air temperatures 3°C warmer than 14-year mean) with low snowpack in 2016. We examined cumulative winter and spring net ecosystem exchange, as well as the sensitivity of ecosystem respiration to air and soil temperatures in the presence and absence of a deep (>15 cm) snowpack. We found that warm winter temperatures and low snow conditions led to relatively large cumulative losses of carbon from the forest in February/March 2016, while the grassland was a moderate net sink for carbon during the same period. When temperatures were above 0°C, mid-day carbon uptake in the grassland was controlled by the presence or absence of snow cover. Our results suggest that forest carbon losses to the atmosphere in deciduous forests may increase during warm, snow-free winter conditions when vegetation is restricted in winter carbon uptake capacity by phenology. However, non-forested vegetation such as perennial grasses have a greater potential to activate photosynthesis in winter and to take up carbon in the "dormant season," perhaps moderating

  17. Thermodynamic Parameterization of Subduction-Zone Devolatilization and Application to Quantify Carbon Fluxes from Slab

    NASA Astrophysics Data System (ADS)

    Tian, M.; Katz, R. F.; Rees Jones, D. W.; May, D.

    2017-12-01

    Compared with other plate-tectonic boundaries, subduction zones (SZ) host the most drastic mechanical, thermal, and chemical changes. The transport of carbon through this complex environment is crucial to mantle carbon budget but remains the subject of active debate. Synthesis of field studies suggests that carbon subducted with the incoming slab is almost completely returned to the surface environment [Kelemen and Manning, 2015], whereas thermodynamic modelling indicates that a significant portion of carbon is retained in the slab and descends into the deep mantle [Gorman et al., 2006]. To address this controversy and quantify the carbon fluxes within SZs, it is necessary to treat the chemistry of fluid/volatile-rock interaction and the mechanics of porous fluid/volatile migration in a consistent modelling framework. This requirement is met by coupling a thermodynamic parameterization of de/re-volatilization with a two-phase flow model of subduction zones. The two-phase system is assumed to comprise three chemical components: rock containing only non-volatile oxides, H2O and CO2; the fluid phase includes only the latter two. Perple_X is used to map out the binary subsystems rock+H2O and rock+CO2; the results are parameterised in terms of volatile partition coefficients as a function of pressure and temperature. In synthesising the binary subsystems to describe phase equilibria that incorporate all three components, a Margules coefficient is introduced to account for non-ideal mixing of CO2/H2O in the fluid, such that the partition coefficients depend further on bulk composition. This procedure is applied to representative compositions of sediment, MORB, and gabbro for the slab, and peridotite for the mantle. The derived parameterization of each rock type serves as a lightweight thermodynamic module interfaceable with two-phase flow models of SZs. We demonstrate the application of this thermodynamic module through a simple model of carbon flux with a prescribed

  18. Intercomparison of terrestrial carbon fluxes and carbon use efficiency simulated by CMIP5 Earth System Models

    NASA Astrophysics Data System (ADS)

    Kim, Dongmin; Lee, Myong-In; Jeong, Su-Jong; Im, Jungho; Cha, Dong Hyun; Lee, Sanggyun

    2017-12-01

    This study compares historical simulations of the terrestrial carbon cycle produced by 10 Earth System Models (ESMs) that participated in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Using MODIS satellite estimates, this study validates the simulation of gross primary production (GPP), net primary production (NPP), and carbon use efficiency (CUE), which depend on plant function types (PFTs). The models show noticeable deficiencies compared to the MODIS data in the simulation of the spatial patterns of GPP and NPP and large differences among the simulations, although the multi-model ensemble (MME) mean provides a realistic global mean value and spatial distributions. The larger model spreads in GPP and NPP compared to those of surface temperature and precipitation suggest that the differences among simulations in terms of the terrestrial carbon cycle are largely due to uncertainties in the parameterization of terrestrial carbon fluxes by vegetation. The models also exhibit large spatial differences in their simulated CUE values and at locations where the dominant PFT changes, primarily due to differences in the parameterizations. While the MME-simulated CUE values show a strong dependence on surface temperatures, the observed CUE values from MODIS show greater complexity, as well as non-linear sensitivity. This leads to the overall underestimation of CUE using most of the PFTs incorporated into current ESMs. The results of this comparison suggest that more careful and extensive validation is needed to improve the terrestrial carbon cycle in terms of ecosystem-level processes.

  19. Methane and carbon dioxide fluxes over a lake: comparison between eddy covariance, floating chambers and boundary layer method

    NASA Astrophysics Data System (ADS)

    Erkkilä, Kukka-Maaria; Ojala, Anne; Bastviken, David; Biermann, Tobias; Heiskanen, Jouni J.; Lindroth, Anders; Peltola, Olli; Rantakari, Miitta; Vesala, Timo; Mammarella, Ivan

    2018-01-01

    Freshwaters bring a notable contribution to the global carbon budget by emitting both carbon dioxide (CO2) and methane (CH4) to the atmosphere. Global estimates of freshwater emissions traditionally use a wind-speed-based gas transfer velocity, kCC (introduced by Cole and Caraco, 1998), for calculating diffusive flux with the boundary layer method (BLM). We compared CH4 and CO2 fluxes from BLM with kCC and two other gas transfer velocities (kTE and kHE), which include the effects of water-side cooling to the gas transfer besides shear-induced turbulence, with simultaneous eddy covariance (EC) and floating chamber (FC) fluxes during a 16-day measurement campaign in September 2014 at Lake Kuivajärvi in Finland. The measurements included both lake stratification and water column mixing periods. Results show that BLM fluxes were mainly lower than EC, with the more recent model kTE giving the best fit with EC fluxes, whereas FC measurements resulted in higher fluxes than simultaneous EC measurements. We highly recommend using up-to-date gas transfer models, instead of kCC, for better flux estimates. BLM CO2 flux measurements had clear differences between daytime and night-time fluxes with all gas transfer models during both stratified and mixing periods, whereas EC measurements did not show a diurnal behaviour in CO2 flux. CH4 flux had higher values in daytime than night-time during lake mixing period according to EC measurements, with highest fluxes detected just before sunset. In addition, we found clear differences in daytime and night-time concentration difference between the air and surface water for both CH4 and CO2. This might lead to biased flux estimates, if only daytime values are used in BLM upscaling and flux measurements in general. FC measurements did not detect spatial variation in either CH4 or CO2 flux over Lake Kuivajärvi. EC measurements, on the other hand, did not show any spatial variation in CH4 fluxes but did show a clear difference between CO2

  20. Environmental controls of daytime leaf carbon exchange: Implications for estimates of ecosystem fluxes in a deciduous forest

    NASA Astrophysics Data System (ADS)

    Heskel, M.; Tang, J.

    2017-12-01

    Leaf-level photosynthesis and respiration are sensitive to short- and long-term changed in temperature, and how these processes respond to phenological and seasonal transitions and daily temperature variation dictate how carbon is first assimilated and released in terrestrial ecosystems. We examined the short-term temperature response of daytime leaf carbon exchange at Harvard Forest across growing season, with the specific objective to quantify the light inhibition of dark respiration and photorespiration in leaves and use this to better inform daytime carbon assimilation and efflux estimates at the canopy scale. Dark and light respiration increased with measurement temperature and varied seasonally in a proportional manner, with the level of inhibition remaining relatively constant through the growing season. Higher rates of mitochondrial respiration and photorespiration at warmer temperatures drove a lower carbon use efficiency. Using temperature, light, and canopy leaf area index values to drive models, we estimate partitioned ecosystem fluxes and re-calculate gross primary production under multiple scenarios that include and exclude the impact of light inhibition, thermal acclimation, and seasonal variation in physiology. Quantifying the contribution of these `small fluxes' to ecosystem carbon exchange in forests provides a nuanced approach for integrating physiology into regional model estimates derived from eddy covariance and remote-sensing methods.

  1. Landscape and environmental controls over leaf and ecosystem carbon dioxide fluxes under woody plant expansion

    USDA-ARS?s Scientific Manuscript database

    Many regions of the globe are experiencing a simultaneous change in the dominant plant functional type and regional climatology. We explored how atmospheric temperature and precipitation input control leaf- and ecosystem scale carbon fluxes within a pair of semiarid shrublands that had undergone woo...

  2. [Characteristics of CO2 flux before and in the heating period at urban complex underlying surface area].

    PubMed

    Jia, Qing-yu; Zhou, Guang-sheng; Wang, Yu; Liu, Xiao-mei

    2010-04-01

    Urban areas were significant contributors to global carbon dioxide emissions. The eddy covariance (EC) was used to measure carbon dioxide (CO2) concentration and flux data at urban area in Shenyang. This research analyzed the characteristics of atmospheric CO2 concentration and flux in October 2008 to November 2008 period before and in the heating period. The results showed that the daily variation of CO2 concentration was two-peak curve. The first peak time appeared as same as sunrise time, while the second peak time impacted by vehicles and heating. The result of CO2 flux showed that urban atmospheric CO2 was net emissions, vegetation photosynthesis absorbed CO2 of traffic, the CO2 flux peak appeared at 17:15-18:15 in the heating period, CO2 emission increased 29.37 g x (m2 x d)(-1) in the heating period than that before the heating period; there was corresponding relationship between CO2 flux and the time when temperature peak and sensible heating flux (Hc) turn positive. The results also indicated that atmospheric CO2 concentration and its flux were affected seriously by both wind direction and carbon sources.

  3. Using a spatially-distributed hydrologic biogeochemistry model with nitrogen transport to study the spatial variation of carbon stocks and fluxes in a Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Eissenstat, D. M.; He, Y.; Davis, K. J.

    2017-12-01

    Most current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve topographically driven land surface heterogeneity (e.g., lateral water flow, soil moisture, soil temperature, solar radiation) or the spatial pattern of nutrient availability. A spatially distributed forest biogeochemical model with nitrogen transport, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM, and adding an advection dominated nitrogen transport module. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model, and is augmented by adding a topographic solar radiation module. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while nitrogen is transported among model grids via surface and subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation, while BBGC provides Flux-PIHM with spatially-distributed leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills Critical Zone Observatory. The model-predicted aboveground vegetation carbon and soil carbon distributions generally agree with the macro patterns observed within the watershed. The importance of abiotic variables (including soil moisture, soil temperature, solar radiation, and soil mineral nitrogen) in predicting aboveground carbon distribution is calculated using a random forest. The result suggests that the spatial pattern of aboveground carbon is controlled by the distribution of soil mineral nitrogen. A Flux-PIHM-BGC simulation

  4. Pyroclastic Eruption Boosts Organic Carbon Fluxes Into Patagonian Fjords

    NASA Astrophysics Data System (ADS)

    Mohr, Christian H.; Korup, Oliver; Ulloa, Héctor; Iroumé, Andrés.

    2017-11-01

    Fjords and old-growth forests store large amounts of organic carbon. Yet the role of episodic disturbances, particularly volcanic eruptions, in mobilizing organic carbon in fjord landscapes covered by temperate rainforests remains poorly quantified. To this end, we estimated how much wood and soils were flushed to nearby fjords following the 2008 eruption of Chaitén volcano in south-central Chile, where pyroclastic sediments covered >12 km2 of pristine temperate rainforest. Field-based surveys of forest biomass, soil organic content, and dead wood transport reveal that the reworking of pyroclastic sediments delivered 66,500 + 14,600/-14,500 tC of large wood to two rivers entering the nearby Patagonian fjords in less than a decade. A similar volume of wood remains in dead tree stands and buried beneath pyroclastic deposits ( 79,900 + 21,100/-16,900 tC) or stored in active river channels (5,900-10,600 tC). We estimate that bank erosion mobilized 132,300+21,700/-30,600 tC of floodplain forest soil. Eroded and reworked forest soils have been accreting on coastal river deltas at >5 mm yr-1 since the eruption. While much of the large wood is transported out of the fjord by long-shore drift, the finer fraction from eroded forest soils is likely to be buried in the fjords. We conclude that the organic carbon fluxes boosted by rivers adjusting to high pyroclastic sediment loads may remain elevated for up to a decade and that Patagonian temperate rainforests disturbed by excessive loads of pyroclastic debris can be episodic short-lived carbon sources.

  5. Overstory vegetation influence nitrogen and dissolved organic carbon flux from the atmosphere to the forest floor: Boreal Plain, Canada

    Treesearch

    David E. Pelster; Randall K. Kolka; Ellie E. Prepas

    2009-01-01

    Nitrate, ammonium, total dissolved nitrogen (TDN), dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) concentrations and flux were measured for one year in bulk deposition and throughfall from three stand types (upland deciduous, upland conifer and wetland conifer) on the Boreal Plain, Canada. Annual (November 2006 to October 2007 water year) flux...

  6. Seasonal Changes in Plankton Food Web Structure and Carbon Dioxide Flux from Southern California Reservoirs

    PubMed Central

    Adamczyk, Emily M.; Shurin, Jonathan B.

    2015-01-01

    Reservoirs around the world contribute to cycling of carbon dioxide (CO2) with the atmosphere, but there is little information on how ecosystem processes determine the absorption or emission of CO2. Reservoirs are the most prevalent freshwater systems in the arid southwest of North America, yet it is unclear whether they sequester or release CO2 and therefore how water impoundment impacts global carbon cycling. We sampled three reservoirs in San Diego, California, weekly for one year. We measured seasonal variation in the abundances of bacteria, phytoplankton, and zooplankton, as well as water chemistry (pH, nutrients, ions, dissolved organic carbon [DOC]), which were used to estimate partial pressure of CO2 (pCO2), and CO2 flux. We found that San Diego reservoirs are most often undersaturated with CO2 with respect to the atmosphere and are estimated to absorb on average 3.22 mmol C m-2 day-1. pCO2 was highest in the winter and lower in the summer, indicating seasonal shifts in the magnitudes of photosynthesis and respiration associated with day length, temperature and water inputs. Abundances of microbes (bacteria) peaked in the winter along with pCO2, while phytoplankton, nutrients, zooplankton and DOC were all unrelated to pCO2. Our data indicate that reservoirs of semi-arid environments may primarily function as carbon sinks, and that carbon flux varies seasonally but is unrelated to nutrient or DOC availability, or the abundances of phytoplankton or zooplankton. PMID:26473601

  7. Eddy covariance measurements of carbon dioxide and water fluxes in Mid-South US cotton

    USDA-ARS?s Scientific Manuscript database

    An eddy covariance (EC) system was used to quantify carbon dioxide (CO2) and water (H2O) fluxes as net ecosystem exchange (NEE) and crop evapotranspiration (ET), respectively, in a production-sized cotton field in Northeastern Arkansas in 2016 and 2017 growing seasons. Average ET was 0.13±0.01 in d-...

  8. Simulation and sensitivity analysis of carbon storage and fluxes in the New Jersey Pinelands

    Treesearch

    Zewei Miao; Richard G. Lathrop; Ming Xu; Inga P. La Puma; Kenneth L. Clark; John Hom; Nicholas Skowronski; Steve Van Tuyl

    2011-01-01

    A major challenge in modeling the carbon dynamics of vegetation communities is the proper parameterization and calibration of eco-physiological variables that are critical determinants of the ecosystem process-based model behavior. In this study, we improved and calibrated a biochemical process-based WxBGC model by using in situ AmeriFlux eddy covariance tower...

  9. A method for assessing carbon stocks, carbon sequestration, and greenhouse-gas fluxes in ecosystems of the United States under present conditions and future scenarios

    USGS Publications Warehouse

    Bergamaschi, Brian A.; Bernknopf, Richard; Clow, David; Dye, Dennis; Faulkner, Stephen; Forney, William; Gleason, Robert; Hawbaker, Todd; Liu, Jinxun; Liu, Shu-Guang; Prisley, Stephen; Reed, Bradley; Reeves, Matthew; Rollins, Matthew; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Stehman, Stephen; Striegl, Robert G.; Wein, Anne; Zhu, Zhi-Liang; Zhu, Zhi-Liang

    2010-01-01

    he Energy Independence and Security Act of 2007 (EISA), Section 712, mandates the U.S. Department of the Interior to develop a methodology and conduct an assessment of the Nation’s ecosystems, focusing on carbon stocks, carbon sequestration, and emissions of three greenhouse gases (GHGs): carbon dioxide, methane, and nitrous oxide. The major requirements include (1) an assessment of all ecosystems (terrestrial systems, such as forests, croplands, wetlands, grasslands/shrublands; and aquatic ecosystems, such as rivers, lakes, and estuaries); (2) an estimate of the annual potential capacities of ecosystems to increase carbon sequestration and reduce net GHG emissions in the context of mitigation strategies (including management and restoration activities); and (3) an evaluation of the effects of controlling processes, such as climate change, land-use and land-cover change, and disturbances such as wildfires.The concepts of ecosystems, carbon pools, and GHG fluxes follow conventional definitions in use by major national and international assessment or inventory efforts. In order to estimate current ecosystem carbon stocks and GHG fluxes and to understand the potential capacity and effects of mitigation strategies, the method will use two time periods for the assessment: 2001 through 2010, which establishes a current ecosystem carbon and GHG baseline and will be used to validate the models; and 2011 through 2050, which will be used to assess potential capacities based on a set of scenarios. The scenario framework will be constructed using storylines of the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES), along with both reference and enhanced land-use and land-cover (LULC) and land-management parameters. Additional LULC and land-management mitigation scenarios will be constructed for each storyline to increase carbon sequestration and reduce GHG fluxes in ecosystems. Input from regional experts and stakeholders will be

  10. Simulating carbon and water fluxes at Arctic and boreal ecosystems in Alaska by optimizing the modified BIOME-BGC with eddy covariance data

    NASA Astrophysics Data System (ADS)

    Ueyama, M.; Kondo, M.; Ichii, K.; Iwata, H.; Euskirchen, E. S.; Zona, D.; Rocha, A. V.; Harazono, Y.; Nakai, T.; Oechel, W. C.

    2013-12-01

    To better predict carbon and water cycles in Arctic ecosystems, we modified a process-based ecosystem model, BIOME-BGC, by introducing new processes: change in active layer depth on permafrost and phenology of tundra vegetation. The modified BIOME-BGC was optimized using an optimization method. The model was constrained using gross primary productivity (GPP) and net ecosystem exchange (NEE) at 23 eddy covariance sites in Alaska, and vegetation/soil carbon from a literature survey. The model was used to simulate regional carbon and water fluxes of Alaska from 1900 to 2011. Simulated regional fluxes were validated with upscaled GPP, ecosystem respiration (RE), and NEE based on two methods: (1) a machine learning technique and (2) a top-down model. Our initial simulation suggests that the original BIOME-BGC with default ecophysiological parameters substantially underestimated GPP and RE for tundra and overestimated those fluxes for boreal forests. We will discuss how optimization using the eddy covariance data impacts the historical simulation by comparing the new version of the model with simulated results from the original BIOME-BGC with default ecophysiological parameters. This suggests that the incorporation of the active layer depth and plant phenology processes is important to include when simulating carbon and water fluxes in Arctic ecosystems.

  11. Long-term measurement of terpenoid flux above a Larix kaempferi forest using a relaxed eddy accumulation method

    NASA Astrophysics Data System (ADS)

    Mochizuki, Tomoki; Tani, Akira; Takahashi, Yoshiyuki; Saigusa, Nobuko; Ueyama, Masahito

    2014-02-01

    Terpenoids emitted from forests contribute to the formation of secondary organic aerosols and affect the carbon budgets of forest ecosystems. To investigate seasonal variation in terpenoid flux involved in the aerosol formation and carbon budget, we measured the terpenoid flux of a Larix kaempferi forest between May 2011 and May 2012 by using a relaxed eddy accumulation method. Isoprene was emitted from a fern plant species Dryopteris crassirhizoma on the forest floor and monoterpenes from the L. kaempferi. α-Pinene was the dominant compound, but seasonal variation of the monoterpene composition was observed. High isoprene and monoterpene fluxes were observed in July and August. The total monoterpene flux was dependent on temperature, but several unusual high positive fluxes were observed after rain fall events. We found a good correlation between total monoterpene flux and volumetric soil water content (r = 0.88), and used this correlation to estimate monoterpene flux after rain events and calculate annual terpenoid emissions. Annual carbon emission in the form of total monoterpenes plus isoprene was determined to be 0.93% of the net ecosystem exchange. If we do not consider the effect of rain fall, carbon emissions may be underestimated by about 50%. Our results suggest that moisture conditions in the forest soil is a key factor controlling the monoterpene emissions from the forest ecosystem.

  12. Influence of management and precipitation on carbon fluxes in greatplains grasslands

    USGS Publications Warehouse

    Rigge, Matthew B.; Wylie, Bruce K.; Zhang, Li; Boyte, Stephen P.

    2013-01-01

    Suitable management and sufficient precipitation on grasslands can provide carbon sinks. The net carbon accumulation of a site from the atmosphere, modeled as the Net Ecosystem Productivity (NEP), is a useful means to gauge carbon balance. Previous research has developed methods to integrate flux tower data with satellite biophysical datasets to estimate NEP across large regions. A related method uses the Ecosystem Performance Anomaly (EPA) as a satellite-derived indicator of disturbance intensity (e.g., livestock stocking rate, fire, and insect damage). To better understand the interactions among management, climate, and carbon dynamics, we evaluated the relationship between EPA and NEP data at the 250 m scale for grasslands in the Central Great Plains, USA (ranging from semi-arid to mesic). We also used weekly estimates of NEP to evaluate the phenology of carbon dynamics, classified by EPA (i.e., by level of disturbance impact). Results show that the cumulative carbon balance over these grasslands from 2000 to 2008 was a weak net sink of 13.7 g C m−2 yr−1. Overall, NEP increased with precipitation (R2 = 0.39, P < 0.05) from west to east. Disturbance influenced NEP phenology; however, climate and biophysical conditions were usually more important. The NEP response to disturbance varies by ecoregion, and more generally by grassland type, where the shortgrass prairie NEP is most sensitive to disturbance, the mixed-grass prairie displays a moderate response, and tallgrass prairie is the least impacted by disturbance (as measured by EPA). Sustainable management practices in the tallgrass and mixed-grass prairie may potentially induce a period of average net carbon sink until a new equilibrium soil organic carbon is achieved. In the shortgrass prairie, management should be considered sustainable if carbon stocks are simply maintained. The consideration of site carbon balance adds to the already difficult task of managing grasslands appropriately to site conditions

  13. What drives the interannual variations in carbon fluxes and balance in a tropical rainforest of French Guiana?

    NASA Astrophysics Data System (ADS)

    Aguilos, M. M.; Burban, B.; Wagner, F. H.; Hérault, B.; Bonal, D.

    2016-12-01

    Amazon rainforest - a major contributor to the global carbon sink, is not on steady state and this affects terrestrial carbon pools. Yet, information on the effect of climatic extremes to long-term carbon fluxes is lacking. Thus, using an 11-year eddy covariance data, we examined the carbon fluxes and net carbon uptake in French Guiana's tropical rainforest to determine the interannual and seasonal variations in gross primary production (GPP), ecosystem respiration (RE) and net ecosystem exchange (NEE), so with climatic drivers influencing such changes from 2004 - 2014. GPP varies from 3394.9 g C m‒2 yr‒1 to 4054.5 g C m‒2 yr‒1. RE is more varied than GPP (3057.4 g C m‒2 yr‒1 - 3425.9 g C m‒2 yr‒1. NEE has large interannual variability from ‒68.2 g C m‒2 yr‒1 to ‒596.2 g C m‒2 yr‒1. NEE during wet seasons had higher sink strength than in dry periods. The sudden drop of RE during wet period in 2007 - 2009 may help explain this as it almost doubled the net uptake while GPP had slighter declines. The pattern of NEE appears to be driven by higher rate of increase in RE during dry season with less comparable rise in GPP. This suggests that over 11 years, the ecosystem did not suffer any extreme dry condition strong enough to induce severe decrease in RE. Annually, global radiation (Rg) explains 49% (P<0.0001) for GPP, 42% (P<0.0001) for RE, and 21% (P<0.0001) for NEE. During the wet season, Rg still controls GPP (r2 = 0.45; P <0.0001), RE (r2 = 0.30; P<0.0001;) and NEE (r2 = 0.31; P<0.0001). However, relative extractable water (REW) manifested more strongly during the dry period explaining mainly the variations of GPP (r2 = 0.20; P < 0.0001), RE (r2 = 0.33; P < 0.0001) and NEE (r2 = 0.25; P < 0.0001). Deep rooting system of trees may have caused GPP unsuppressed despite low soil moisture. Therefore, modeling studies must consider incorporating soil water measurements in deeper soils as most tropical trees are dependent on deep soil moisture

  14. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    NASA Astrophysics Data System (ADS)

    Brüggemann, N.; Gessler, A.; Kayler, Z.; Keel, S. G.; Badeck, F.; Barthel, M.; Boeckx, P.; Buchmann, N.; Brugnoli, E.; Esperschütz, J.; Gavrichkova, O.; Ghashghaie, J.; Gomez-Casanovas, N.; Keitel, C.; Knohl, A.; Kuptz, D.; Palacio, S.; Salmon, Y.; Uchida, Y.; Bahn, M.

    2011-04-01

    The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. The last part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as CO2 diffusion and dissolution processes within the

  15. Carbon fluxes in the Arabian Sea: Export versus recycling

    NASA Astrophysics Data System (ADS)

    Rixen, Tim; Gaye, Birgit; Ramaswamy, Venkitasubramani

    2016-04-01

    The organic carbon pump strongly influences the exchange of carbon between the ocean and the atmosphere. It is known that it responds to global change but the magnitude and the direction of change are still unpredictable. Sediment trap experiments carried out at various sites in the Arabian Sea between 1986 and 1998 have shown differences in the functioning of the organic carbon pump (OCP). An OCP driven by eukaryotic phytoplankton operated in the upwelling region off Oman and during the spring bloom in the northern Arabian Sea. Cyanobacteria capable of fixing nitrogen seem to dominate the phytoplankton community during all other seasons. The export driven by cyanobacteria was much lower than the export driven by eukaryotic phytoplankton. Productivity and nutrient availability seems to be a main factor controlling fluxes during blooms of eukaryotic phytoplankton. The ballast effect caused by inputs of dust into the ocean and its incorporation into sinking particles seems to be the main factor controlling the export during times when cyanobacteria dominate the phytoplankton community. C/N ratios of organic matter exported from blooms dominated by nitrogen fixing cyanobacteria are enhanced and, furthermore, indicate a more efficient recycling of nutrients at shallower water depth. This implies that the bacterial-driven OCP operates more in a recycling mode that keeps nutrients closer to the euphotic zone whereas the OCP driven by eukaryotic phytoplankton reduces the recycling of nutrients by exporting them into greater water-depth.

  16. ForC: a global database of forest carbon stocks and fluxes.

    PubMed

    Anderson-Teixeira, Kristina J; Wang, Maria M H; McGarvey, Jennifer C; Herrmann, Valentine; Tepley, Alan J; Bond-Lamberty, Ben; LeBauer, David S

    2018-06-01

    Forests play an influential role in the global carbon (C) cycle, storing roughly half of terrestrial C and annually exchanging with the atmosphere more than five times the carbon dioxide (CO 2 ) emitted by anthropogenic activities. Yet, scaling up from field-based measurements of forest C stocks and fluxes to understand global scale C cycling and its climate sensitivity remains an important challenge. Tens of thousands of forest C measurements have been made, but these data have yet to be integrated into a single database that makes them accessible for integrated analyses. Here we present an open-access global Forest Carbon database (ForC) containing previously published records of field-based measurements of ecosystem-level C stocks and annual fluxes, along with disturbance history and methodological information. ForC expands upon the previously published tropical portion of this database, TropForC (https://doi.org/10.5061/dryad.t516f), now including 17,367 records (previously 3,568) representing 2,731 plots (previously 845) in 826 geographically distinct areas. The database covers all forested biogeographic and climate zones, represents forest stands of all ages, and currently includes data collected between 1934 and 2015. We expect that ForC will prove useful for macroecological analyses of forest C cycling, for evaluation of model predictions or remote sensing products, for quantifying the contribution of forests to the global C cycle, and for supporting international efforts to inventory forest carbon and greenhouse gas exchange. A dynamic version of ForC is maintained at on GitHub (https://GitHub.com/forc-db), and we encourage the research community to collaborate in updating, correcting, expanding, and utilizing this database. ForC is an open access database, and we encourage use of the data for scientific research and education purposes. Data may not be used for commercial purposes without written permission of the database PI. Any publications using For

  17. Storage and flux of carbon in live trees, snags, and logs in the Chugach and Tongass national forests

    Treesearch

    Tara Barrett

    2014-01-01

    Carbon storage and flux estimates for the two national forests in Alaska are provided using inventory data from permanent plots established in 1995–2003 and remeasured in 2004–2010. Estimates of change are reported separately for growth, sapling recruitment, harvest, mortality, snag recruitment, salvage, snag falldown, and decay. Although overall aboveground carbon...

  18. Carbon fluxes and the carbon budget in agroecosystems on agro-gray soils of the forest-steppe in the Baikal region

    NASA Astrophysics Data System (ADS)

    Pomazkina, L. V.; Sokolova, L. G.; Zvyagintseva, E. N.

    2013-06-01

    Field studies devoted to the transformation of the carbon cycle in agroecosystems on agro-gray soils (including soils contaminated with fluorides from aluminum smelters) in dependence on the changes in the hydrothermic conditions were performed for the first time within the framework of the long-term (1996-2010) soil monitoring in the forest-steppe zone of the Baikal region. The major attention was paid to the impact of the environmental factors on the synthesis and microbial destruction of organic carbon compounds. Certain differences in the fluxes and budget of carbon were found for the plots with cereal and row crops and for the permanent and annual fallow plots. The adverse effect of fluorides manifested itself in the enhanced C-CO2 emission under unfavorable water and temperature conditions. The long-term average C-CO2 emission from the soils contaminated with fluorides in agroecosystems with wheat after fallow was higher than that from the uncontaminated soil (179 and 198 g of C/m2, respectively) and higher than that in the agroecosystems with a potato monoculture (129 and 141 g of C/m2, respectively). At the same time, no significant variations in the content of the carbon of the microbial biomass (Cmicr) in dependence on the environmental factors were found. The utilization of carbon for respiration and for growth of the soil microorganisms on the contaminated soil were unbalanced in particular years and for the entire period of the observations. The ratio between the fluxes of the net mineralized and re-immobilized carbon was used for the integral assessment of the functioning regime of the agroecosystems and the loads on them. Independently from the soil contamination with fluorides, the loads on the agroecosystems with wheat were close to the maximum permissible value, and the loads on the agroecosystems with potatoes were permissible. It was shown that the carbon deficit in the uncontaminated soils was similar under the wheat and potatoes (-30 and -28 g

  19. Carbon dioxide fluxes dynamics comparison in Moscow urban forest and adjacent urban areas

    NASA Astrophysics Data System (ADS)

    Yaroslavtsev, Alexis; Meshalkina, Joulia; Mazirov, Ilya; Vasenev, Ivan

    2017-04-01

    In the beginning of the 2014 in northern district of Moscow was installed eddy covariance tower on the edge of Timiryazevskiy urban forest and Timiryazevskiy district of Moscow. Tower 34m high was constructed inside the territory of LOD (Lesnaya Opytnaya Dacha) experimental station in the south-eastern part of the forest. Main tree species of urban forest and neighboring urban areas are Acer Plantanoides, Tilia cordata, Betula pendula, Quercus robur, Pinus sylvestris. Forest itself is mixed with some small plots dominated only by deciduous or coniferous species, whether trees in urban areas was mainly deciduous. Mean canopy height is about 30m. in both forest and urban areas. The soil cover of the studied sections is represented by sod-podzolic soils with different degree of development of the humus horizon. All soils have well-developed profile of sod-podzolic soil with low power litter (only in forest area) and developed humus-accumulative horizon with high humus content (3,24%) Carbon dioxide daily fluxes from investigated area was calculated for six months of 2014 (from April till October) utilizing eddy covariance method. Most (90%) of fluxes footprints was no longer than 500m for all wind directions during the time of monitoring. Forest in 500m radius around tower is a zone of active recreation with several roads and wide path network. On the other hand closest to tower urban area characterized by a low-rise buildings (in most cases no more than 5 floors) which are mainly administration ones and have wide green areas around them very few roads and low traffic. As a result difference in calculated fluxes was not so dramatic, as it was expected. Diurnal carbon dioxide fluxes dynamics was pretty the same for all months except August, due to long period without precipitation and higher soil moisture under the forest canopy. Estimated daily fluxes values was higher in forest areas for the whole period of investigation, except August, and ranged from -2 to 8 g C CO

  20. Fluxes of dissolved organic carbon and nitrogen to the northern Indian Ocean from the Indian monsoonal rivers

    NASA Astrophysics Data System (ADS)

    Krishna, M. S.; Prasad, V. R.; Sarma, V. V. S. S.; Reddy, N. P. C.; Hemalatha, K. P. J.; Rao, Y. V.

    2015-10-01

    Dissolved organic carbon (DOC) and nitrogen (DON) were measured in 27 major and medium monsoonal estuaries along the Indian coast during southwest monsoon in order to understand the spatial variability in their concentrations and fluxes to the northern Indian Ocean. A strong spatial variability (~20-fold) in DOC and DON was observed in the Indian monsoonal estuaries due to variable characteristics of the catchment area and volume of discharge. It is estimated that the Indian monsoonal estuaries transport ~2.37 ± 0.47 Tg (1 Tg = 1012 g) of DOC and ~0.41 ± 0.08 Tg of DON during wet period to the northern Indian Ocean. The Bay of Bengal receives 3 times higher DOC and DON (1.82 and 0.30 Tg, respectively) than the Arabian Sea (0.55 and 0.11 Tg). Catchment area normalized fluxes of DOC and DON were found to be higher in the estuaries located in the southwestern than the estuaries from other regions of India. It was attributed to relatively higher soil organic carbon, biomass carbon, and heavy rainfall in catchment areas of the rivers from the former region. It has been noticed that neither catchment area nor discharge volume of the river controls the fluxes of DOC and DON to the northern Indian Ocean. Since the total load of DOC and DON is strongly linked to the volume of discharge, alterations in the freshwater discharge due to natural or anthropogenic activities may have significant influence on organic matter fluxes to the Indian coastal waters and its impact on microbial food web dynamics needs further evaluation.

  1. Soil respiration contributes substantially to urban carbon fluxes in the greater Boston area.

    PubMed

    Decina, Stephen M; Hutyra, Lucy R; Gately, Conor K; Getson, Jackie M; Reinmann, Andrew B; Short Gianotti, Anne G; Templer, Pamela H

    2016-05-01

    Urban areas are the dominant source of U.S. fossil fuel carbon dioxide (FFCO2) emissions. In the absence of binding international treaties or decisive U.S. federal policy for greenhouse gas regulation, cities have also become leaders in greenhouse gas reduction efforts through climate action plans. These plans focus on anthropogenic carbon flows only, however, ignoring a potentially substantial contribution to atmospheric carbon dioxide (CO2) concentrations from biological respiration. Our aim was to measure the contribution of CO2 efflux from soil respiration to atmospheric CO2 fluxes using an automated CO2 efflux system and to use these measurements to model urban soil CO2 efflux across an urban area. We find that growing season soil respiration is dramatically enhanced in urban areas and represents levels of CO2 efflux of up to 72% of FFCO2 within greater Boston's residential areas, and that soils in urban forests, lawns, and landscaped cover types emit 2.62 ± 0.15, 4.49 ± 0.14, and 6.73 ± 0.26 μmolCO2 m(-2) s(-1), respectively, during the growing season. These rates represent up to 2.2 times greater soil respiration than rates found in nearby rural ecosystems in central Massachusetts (MA), a potential consequence of imported carbon amendments, such as mulch, within a general regime of landowner management. As the scientific community moves rapidly towards monitoring, reporting, and verification of CO2 emissions using ground based approaches and remotely-sensed observations to measure CO2 concentrations, our results show that measurement and modeling of biogenic urban CO2 fluxes will be a critical component for verification of urban climate action plans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Response of air-sea carbon fluxes and climate to orbital forcing changes in the Community Climate System Model

    NASA Astrophysics Data System (ADS)

    Jochum, M.; Peacock, S.; Moore, K.; Lindsay, K.

    2010-07-01

    A global general circulation model coupled to an ocean ecosystem model is used to quantify the response of carbon fluxes and climate to changes in orbital forcing. Compared to the present-day simulation, the simulation with the Earth's orbital parameters from 115,000 years ago features significantly cooler northern high latitudes but only moderately cooler southern high latitudes. This asymmetry is explained by a 30% reduction of the strength of the Atlantic Meridional Overturning Circulation that is caused by an increased Arctic sea ice export and a resulting freshening of the North Atlantic. The strong northern high-latitude cooling and the direct insolation induced tropical warming lead to global shifts in precipitation and winds to the order of 10%-20%. These climate shifts lead to regional differences in air-sea carbon fluxes of the same order. However, the differences in global net air-sea carbon fluxes are small, which is due to several effects, two of which stand out: first, colder sea surface temperature leads to a more effective solubility pump but also to increased sea ice concentration which blocks air-sea exchange, and second, the weakening of Southern Ocean winds that is predicted by some idealized studies occurs only in part of the basin, and is compensated by stronger winds in other parts.

  3. How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants

    NASA Astrophysics Data System (ADS)

    Kuranz, C. C.; Park, H.-S.; Huntington, C. M.; Miles, A. R.; Remington, B. A.; Drake, R. P.; Tranthan, M. A.; Handy, T. A.; Shvarts, D.; Malamud, G.; Shimony, A.; Shvarts, D.; Kline, J.; Flippo, K. A.; Doss, F. W.; Plewa, T.

    2017-10-01

    Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Simulations predict that RT produces structures at this interface, having a range of spatial scales. When the CSM is dense enough, as in the case of SN 1993J, the hot shocked matter can produce significant radiative fluxes that affect the emission from the SNR. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae such as SN 1993J, might affect this structure. We present data and simulations from Rayleigh-Taylor instability experiments in high- and low- energy flux experiments performed at the National Ignition Facility. We also will discuss the apparent, larger role of heat conduction when we closely examined the comparison between the experimental results, and the SNR observations and models. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.

  4. Global evaluation of particulate organic carbon flux parameterizations and implications for atmospheric pCO2

    NASA Astrophysics Data System (ADS)

    Gloege, Lucas; McKinley, Galen A.; Mouw, Colleen B.; Ciochetto, Audrey B.

    2017-07-01

    The shunt of photosynthetically derived particulate organic carbon (POC) from the euphotic zone and deep remineralization comprises the basic mechanism of the "biological carbon pump." POC raining through the "twilight zone" (euphotic depth to 1 km) and "midnight zone" (1 km to 4 km) is remineralized back to inorganic form through respiration. Accurately modeling POC flux is critical for understanding the "biological pump" and its impacts on air-sea CO2 exchange and, ultimately, long-term ocean carbon sequestration. Yet commonly used parameterizations have not been tested quantitatively against global data sets using identical modeling frameworks. Here we use a single one-dimensional physical-biogeochemical modeling framework to assess three common POC flux parameterizations in capturing POC flux observations from moored sediment traps and thorium-234 depletion. The exponential decay, Martin curve, and ballast model are compared to data from 11 biogeochemical provinces distributed across the globe. In each province, the model captures satellite-based estimates of surface primary production within uncertainties. Goodness of fit is measured by how well the simulation captures the observations, quantified by bias and the root-mean-square error and displayed using "target diagrams." Comparisons are presented separately for the twilight zone and midnight zone. We find that the ballast hypothesis shows no improvement over a globally or regionally parameterized Martin curve. For all provinces taken together, Martin's b that best fits the data is [0.70, 0.98]; this finding reduces by at least a factor of 3 previous estimates of potential impacts on atmospheric pCO2 of uncertainty in POC export to a more modest range [-16 ppm, +12 ppm].

  5. Crustal solute fluxes and transient carbon dioxide drawdown in the Scottbreen Basin, Svalbard in 2002

    NASA Astrophysics Data System (ADS)

    Krawczyk, Wiesława Ewa; Bartoszewski, Stefan A.

    2008-12-01

    SummarySolute fluxes and transient carbon dioxide drawdown in a small glacierized basin investigated on Svalbard in 2002 are presented. It was a sample year within a period of significant climate warming in the Arctic. Discharge was recorded in the Scottbreen Basin (10.1 km 2), Bellsund Fjord, between July 8 and September 10, 2002. Specific runoff for this period was 0.784 m, 22% more than the mean for 1986-2001. The runoff for all of 2002 (i.e. the hydrologic year) was estimated by comparison with Bayelva, the only glacial river with longer records on Svalbard. The specific runoff for 2002 was ˜1.228 m, yielding crustal solute fluxes of 69.4 t km -2 yr -1 (25.8 m 3 km -2 yr -1). This rate is the highest chemical denudation rate reported from glacierized basins on Svalbard, and it may be underestimated because higher solute fluxes at the beginning of the melt season were not taken into account. Crustal fluxes in the fall may also have been higher because it is probable that crustal ion concentrations were increasing after recording stopped in September. The cation denudation rate was 1213 ∑ meq + m -2 yr -1 and the mean annual crustal ion concentration derived from it amounted to 981 μeq L -1. Transient CO 2 drawdown in 2002 was 5242 kg C km -2 yr -1. Most of the carbon dioxide was removed in the summer ablation waters, estimated CO 2 drawdown in the fall being only 13% of the total. Comparison with crustal solute fluxes (CSF) computed from specific conductivity in the 1980s and 1990s suggests that earlier fluxes may have been overestimated by around 19%. Comparing earlier data with the 2002 rates may confirm the influence of climate warming on increasing chemical denudation rates. It was also found that a globally derived equation relating specific conductivity to concentrations of dissolved limestone in water gave estimates of the crustal solute fluxes that were only 1.1% less than those obtained via comprehensive chemical analyses of waters and ion

  6. The interaction between land use change, sediment fluxes and carbon dynamics: evaluating an integrated soil-landscape model at the millennial time-scale.

    NASA Astrophysics Data System (ADS)

    Bouchoms, Samuel; Van Oost, Kristof; Vanacker, Veerle

    2015-04-01

    Soil-landscape modelling has received growing attention as it allows us to evaluate the interaction between earth surface and soil bio-physical processes. At the landscape scale, human-induced land use change has altered the balance between soil erosion and production, and largely modified sediment fluxes. Intensification in soil redistribution rates affects the interaction between soil chemical, physical and biological processes at the landscape scale. Here, we evaluate the SPEROS-LT model, a spatially explicit 3D model combining a dynamic representation of land use, soil erosion and deposition and the soil carbon cycle. We assess the impact of millennial-scale human-induced land use change on sediment fluxes and carbon dynamics in the Dijle catchement (central Belgium). The watershed has undergone a 3000 years continuous human-induced alteration of the vegetation covers for agricultural characterized by Our study is based on land use reconstructions for the last 3000 years, including massive deforestation for agriculture in Roman Times and the Middle Ages followed by urbanization in the last 150 years. Land use reconstructions rely on simple land use allocation rules based on slope gradients. SPEROS-LT is parametrized for erosion rates against available figures in the literature by changing the transport capacity and the transfer coefficient which defines the amount of flux transferred between different land uses. Carbon content profiles at steady state (i.e. without influence of erosion or deposition) are calibrated for each land use and for the first upper meter of soil by comparing modeled profiles to an averaged observed profiles in stable areas of the pedologic region. We present a model sensitivity analysis and a full validation of the predicted soil carbon storage (horizontally, i.e. in space, and vertically, i.e. with depth) using a large database of observational data. The results indicate (i) a good agreement of the erosion rates. Speros LT modeled

  7. Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes.

    PubMed

    Hofmann, Matthias; Schellnhuber, Hans-Joachim

    2009-03-03

    Rising atmospheric CO(2) levels will not only drive future global mean temperatures toward values unprecedented during the whole Quaternary but will also lead to massive acidification of sea water. This constitutes by itself an anthropogenic planetary-scale perturbation that could significantly modify oceanic biogeochemical fluxes and severely damage marine biota. As a step toward the quantification of such potential impacts, we present here a simulation-model-based assessment of the respective consequences of a business-as-usual fossil-fuel-burning scenario where a total of 4,075 Petagrams of carbon is released into the atmosphere during the current millennium. In our scenario, the atmospheric pCO(2) level peaks at approximately 1,750 microatm in the year 2200 while the sea-surface pH value drops by >0.7 units on global average, inhibiting the growth of marine calcifying organisms. The study focuses on quantifying 3 major concomitant effects. The first one is a significant (climate-stabilizing) negative feedback on rising pCO(2) levels as caused by the attenuation of biogenic calcification. The second one is related to the biological carbon pump. Because mineral ballast, notably CaCO(3), is found to play a dominant role in carrying organic matter through the water column, a reduction of its export fluxes weakens the strength of the biological carbon pump. There is, however, a third effect with severe consequences: Because organic matter is oxidized in shallow waters when mineral-ballast fluxes weaken, oxygen holes (hypoxic zones) start to expand considerably in the oceans in our model world--with potentially harmful impacts on a variety of marine ecosystems.

  8. Impact of hydrology on methane flux patterns in a permafrost-affected floodplain in Northeast Siberia

    NASA Astrophysics Data System (ADS)

    Kwon, Min Jung; Beulig, Felix; Kuesel, Kirsten; Wildner, Marcus; Heimann, Martin; Zimov, Nikita; Zimov, Sergei; Goeckede, Mathias

    2015-04-01

    A large fraction of organic carbon stored in Arctic permafrost soil is at risk to be decomposed and released to the atmosphere under climate change. Thawing of ice-rich permafrost will re-structure the surface topography, with potentially significant effects on hydrology: water table depth (WTD) of depressed areas will increase, while that of the surrounding area will decrease. Changes in hydrology will trigger modifications in soil and vegetation, e.g. soil temperature, vegetation and microbial community structure. All of these secondary effects will alter carbon cycle processes, with the magnitude and even sign of the net effect yet unknown. The objective of this study is to investigate effects of drainage on methane fluxes in a floodplain of the Kolyma River near Cherskii, Northeast Siberia. The study site is separated into two areas, one that has been drained since 2004, and a nearby reference site. Methane flux was measured for ~16 weeks during summer and early winter of 2013, and summer of 2014. In addition, to separate different methane emission pathways, plant-mediated methane transport (through aerenchyma) as well as the proportion of ebullition were measured in 2014. Vegetation and microbial community structures were investigated and compared. After a decade of drainage history that lowered WTD by about 20cm in the drained area, Eriophorum (cotton grass) that previously dominated have to a large part been replaced by Carex (tussock-forming sedge) and shrub species. While WTD primarily influenced the methane flux rate, this vegetation change indirectly altered the flux as well in a way that sites with Eriophorum emitted more methane. Concerning the microbial community structure, the relative abundance of methanogen and ratio of methanotrophs to methanogens were well correlated with methane flux rates, implying that the methane flux is highly influenced by microorganisms. As a consequence of these changes, in the drained area less amount of methane was

  9. Superfine powdered activated carbon (S-PAC) coatings on microfiltration membranes: Effects of milling time on contaminant removal and flux.

    PubMed

    Amaral, Pauline; Partlan, Erin; Li, Mengfei; Lapolli, Flavio; Mefford, O Thompson; Karanfil, Tanju; Ladner, David A

    2016-09-01

    In microfiltration processes for drinking water treatment, one method of removing trace contaminants is to add powdered activated carbon (PAC). Recently, a version of PAC called superfine PAC (S-PAC) has been under development. S-PAC has a smaller particle size and thus faster adsorption kinetics than conventionally sized PAC. Membrane coating performance of various S-PAC samples was evaluated by measuring adsorption of atrazine, a model micropollutant. S-PACs were created in-house from PACs of three different materials: coal, wood, and coconut shell. Milling time was varied to produce S-PACs pulverized with different amounts of energy. These had different particles sizes, but other properties (e.g. oxygen content), also differed. In pure water the coal based S-PACs showed superior atrazine adsorption; all milled carbons had over 90% removal while the PAC had only 45% removal. With addition of calcium and/or NOM, removal rates decreased, but milled carbons still removed more atrazine than PAC. Oxygen content and specific external surface area (both of which increased with longer milling times) were the most significant predictors of atrazine removal. S-PAC coatings resulted in loss of filtration flux compared to an uncoated membrane and smaller particles caused more flux decline than larger particles; however, the data suggest that NOM fouling is still more of a concern than S-PAC fouling. The addition of calcium improved the flux, especially for the longer-milled carbons. Overall the data show that when milling S-PAC with different levels of energy there is a tradeoff: smaller particles adsorb contaminants better, but cause greater flux decline. Fortunately, an acceptable balance may be possible; for example, in these experiments the coal-based S-PAC after 30 min of milling achieved a fairly high atrazine removal (overall 80%) with a fairly low flux reduction (under 30%) even in the presence of NOM. This suggests that relatively short duration (low energy

  10. Integrating tracer-based metabolomics data and metabolic fluxes in a linear fashion via Elementary Carbon Modes.

    PubMed

    Pey, Jon; Rubio, Angel; Theodoropoulos, Constantinos; Cascante, Marta; Planes, Francisco J

    2012-07-01

    Constraints-based modeling is an emergent area in Systems Biology that includes an increasing set of methods for the analysis of metabolic networks. In order to refine its predictions, the development of novel methods integrating high-throughput experimental data is currently a key challenge in the field. In this paper, we present a novel set of constraints that integrate tracer-based metabolomics data from Isotope Labeling Experiments and metabolic fluxes in a linear fashion. These constraints are based on Elementary Carbon Modes (ECMs), a recently developed concept that generalizes Elementary Flux Modes at the carbon level. To illustrate the effect of our ECMs-based constraints, a Flux Variability Analysis approach was applied to a previously published metabolic network involving the main pathways in the metabolism of glucose. The addition of our ECMs-based constraints substantially reduced the under-determination resulting from a standard application of Flux Variability Analysis, which shows a clear progress over the state of the art. In addition, our approach is adjusted to deal with combinatorial explosion of ECMs in genome-scale metabolic networks. This extension was applied to infer the maximum biosynthetic capacity of non-essential amino acids in human metabolism. Finally, as linearity is the hallmark of our approach, its importance is discussed at a methodological, computational and theoretical level and illustrated with a practical application in the field of Isotope Labeling Experiments. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Wetland Resiliency: How does multi-year water table level decline and recovery influence carbon dioxide and methane fluxes?

    NASA Astrophysics Data System (ADS)

    Pugh, C.; Reed, D. E.; Desai, A. R.; Sulman, B. N.

    2016-12-01

    Wetlands play a disproportionately large role in the global carbon budget, and individual wetlands can fluctuate between carbon sinks and sources depending on factors such as hydrology, biogeochemistry, and land use. Although much research has been done on wetland biogeochemical cycles, there is a lack of experimental evidence concerning how changes in wetland hydrology influence these cycles over interannual timescales. Over a seven-year period, Sulman et al. (2009) found that a drought-induced declining water table at a shrub wetland in northern Wisconsin coincided with increased ecosystem respiration (ER) and gross ecosystem productivity (GEP) (Sulman et al. 2009). Since then, however, the average water table level at this site has begun to increase, thus allowing a unique opportunity to explore how wetland carbon storage is impacted by water table recovery. With the addition of three more years of eddy covariance observations post recovery and new methane flux observations, we found that water table level no longer had a significant correlation with GEP, ER, or methane flux. Air temperature, however, had a strong correlation with all three. Average methane flux stayed relatively constant under 14 °C, before increasing an order of magnitude from 3.7 nmol m-2 s-1 in April to 36 nmol m-2 s-1 in July. These results suggest that, over decadal timescales, temperature, rather than water level, is a stronger limiting factor for both aerobic and anaerobic respiration in shrub fen wetlands. Wetlands play a disproportionately large role in the global carbon budget, and individual wetlands can fluctuate between carbon sinks and sources depending on factors such as hydrology, biogeochemistry, and land use. Although much research has been done on wetland biogeochemical cycles, there is a lack of experimental evidence concerning how changes in wetland hydrology influence these cycles over interannual timescales. Over a seven-year period, Sulman et al. (2009) found that a

  12. Impacts of milkfish (Chanos chanos) aquaculture on carbon and nutrient fluxes in the Bolinao area, Philippines.

    PubMed

    Holmer, Marianne; Marbá, Núria; Terrados, Jorge; Duarte, Carlos M; Fortes, Mike D

    2002-07-01

    Sediment oxygen consumption, TCO2 production and nutrient fluxes across the sediment-water interface were measured in sediments within and along a transect from four fish pens with production of milkfish (Chanos chanos) in the Bolinao area, The Philippines. The four fish pens were each representing a specific period in the production cycling. There was a positive linear relationship between the rates of sedimentation inside the fish pens and the sediment oxygen consumption indicating that the benthic processes were controlled by the input of organic matter from fish production. The nutrient fluxes were generally higher inside the fish pens, and nitrate was taken up (1.7-5.8 mmol m(-2) d(-1)) whereas ammonium (1-22 mmol m(-2) d(-1)) and phosphate (0.2-4.7 mmol m(-2) d(-1)) were released from the sediments. The sediments were enriched in organic matter with up to a factor 4 compared to outside. A mass balance for one crop of milkfish was constructed based on production data and on measured fluxes of nutrients in the fish pens to assess the loss of carbon and nutrients to the environment. There was a loss to the surroundings of carbon and nitrogen of 51-68% of the total input, whereas phosphorus was buried in the sediments inside the fish pens which acted as net sinks of phosphorus. The results obtained suggest that fish pen culture as practiced in the Bolinao area, leads to even greater impacts on benthic carbon and nutrient cycling than those found in suspended cage cultures.

  13. Implications of elevated CO2 on pelagic carbon fluxes in an Arctic mesocosm study - an elemental mass balance approach

    NASA Astrophysics Data System (ADS)

    Czerny, J.; Schulz, K. G.; Boxhammer, T.; Bellerby, R. G. J.; Büdenbender, J.; Engel, A.; Krug, S. A.; Ludwig, A.; Nachtigall, K.; Nondal, G.; Niehoff, B.; Silyakova, A.; Riebesell, U.

    2013-05-01

    Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air-sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification applying KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation), all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down the mentioned uncertainties. Water-column concentrations of particulate and dissolved organic and inorganic matter were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution as well as estimates of wall growth were developed to close the gaps in element budgets. However, losses elements from the budgets into a sum of insufficiently determined pools were detected, and are principally unavoidable in mesocosm investigation. The comparison of variability patterns of all single measured datasets revealed analytic precision to be the main issue in determination of budgets. Uncertainties in dissolved organic carbon (DOC), nitrogen (DON) and particulate organic phosphorus (POP) were much higher than the summed error in determination of the same elements in all other pools. With estimates provided for all other major elemental pools, mass balance calculations could be used to infer the temporal development of DOC, DON and POP pools. Future elevated pCO2 was found to enhance net autotrophic community carbon uptake in two of

  14. Age-dependent changes in ecosystem carbon fluxes in managed forests in Northern Wisconsin, USA

    Treesearch

    Asko Noormets; Jiquan Chen; Thomas R. Crow

    2007-01-01

    The age-dependent variability of ecosystem carbon (C) fluxes was assessed by measuring the net ecosystem exchange of C (NEE) in five managed forest stands in northern Wisconsin, USA. The study sites ranged in age from 3-year-old clearcut to mature stands (65 years). All stands, except the clearcut, accumulated C over the study period from May to October 2002. Seasonal...

  15. [Simulating of carbon fluxes in bamboo forest ecosystem using BEPS model based on the LAI assimilated with Dual Ensemble Kalman Filter].

    PubMed

    Li, Xue Jian; Mao, Fang Jie; Du, Hua Qiang; Zhou, Guo Mo; Xu, Xiao Jun; Li, Ping Heng; Liu, Yu Li; Cui, Lu

    2016-12-01

    LAI is one of the most important observation data in the research of carbon cycle of forest ecosystem, and it is also an important parameter to drive process-based ecosystem model. The Moso bamboo forest (MBF) and Lei bamboo forest (LBF) were selected as the study targets. Firstly, the MODIS LAI time series data during 2014-2015 was assimilated with Dual Ensemble Kalman Filter method. Secondly, the high quality assimilated MBF LAI and LBF LAI were used as input dataset to drive BEPS model for simulating the gross primary productivity (GPP), net ecosystem exchange (NEE) and total ecosystem respiration (TER) of the two types of bamboo forest ecosystem, respectively. The modeled carbon fluxes were evaluated by the observed carbon fluxes data, and the effects of different quality LAI inputs on carbon cycle simulation were also studied. The LAI assimilated using Dual Ensemble Kalman Filter of MBF and LBF were significantly correlated with the observed LAI, with high R 2 of 0.81 and 0.91 respectively, and lower RMSE and absolute bias, which represented the great improvement of the accuracy of MODIS LAI products. With the driving of assimilated LAI, the modeled GPP, NEE, and TER were also highly correlated with the flux observation data, with the R 2 of 0.66, 0.47, and 0.64 for MBF, respectively, and 0.66, 0.45, and 0.73 for LBF, respectively. The accuracy of carbon fluxes modeled with assimilated LAI was higher than that acquired by the locally adjusted cubic-spline capping method, in which, the accuracy of mo-deled NEE for MBF and LBF increased by 11.2% and 11.8% at the most degrees, respectively.

  16. Quantifying the drivers of ocean-atmosphere CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Lauderdale, Jonathan M.; Dutkiewicz, Stephanie; Williams, Richard G.; Follows, Michael J.

    2016-07-01

    A mechanistic framework for quantitatively mapping the regional drivers of air-sea CO2 fluxes at a global scale is developed. The framework evaluates the interplay between (1) surface heat and freshwater fluxes that influence the potential saturated carbon concentration, which depends on changes in sea surface temperature, salinity and alkalinity, (2) a residual, disequilibrium flux influenced by upwelling and entrainment of remineralized carbon- and nutrient-rich waters from the ocean interior, as well as rapid subduction of surface waters, (3) carbon uptake and export by biological activity as both soft tissue and carbonate, and (4) the effect on surface carbon concentrations due to freshwater precipitation or evaporation. In a steady state simulation of a coarse-resolution ocean circulation and biogeochemistry model, the sum of the individually determined components is close to the known total flux of the simulation. The leading order balance, identified in different dynamical regimes, is between the CO2 fluxes driven by surface heat fluxes and a combination of biologically driven carbon uptake and disequilibrium-driven carbon outgassing. The framework is still able to reconstruct simulated fluxes when evaluated using monthly averaged data and takes a form that can be applied consistently in models of different complexity and observations of the ocean. In this way, the framework may reveal differences in the balance of drivers acting across an ensemble of climate model simulations or be applied to an analysis and interpretation of the observed, real-world air-sea flux of CO2.

  17. Multiyear high-resolution carbon exchange over European croplands from the integration of observed crop yields into CarbonTracker Europe

    NASA Astrophysics Data System (ADS)

    Combe, Marie; Vilà-Guerau de Arellano, Jordi; de Wit, Allard; Peters, Wouter

    2016-04-01

    Carbon exchange over croplands plays an important role in the European carbon cycle over daily-to-seasonal time scales. Not only do crops occupy one fourth of the European land area, but their photosynthesis and respiration are large and affect CO2 mole fractions at nearly every atmospheric CO2 monitoring site. A better description of this crop carbon exchange in our CarbonTracker Europe data assimilation system - which currently treats crops as unmanaged grasslands - could strongly improve its ability to constrain terrestrial carbon fluxes. Available long-term observations of crop yield, harvest, and cultivated area allow such improvements, when combined with the new crop-modeling framework we present. This framework can model the carbon fluxes of 10 major European crops at high spatial and temporal resolution, on a 12x12 km grid and 3-hourly time-step. The development of this framework is threefold: firstly, we optimize crop growth using the process-based WOrld FOod STudies (WOFOST) agricultural crop growth model. Simulated yields are downscaled to match regional crop yield observations from the Statistical Office of the European Union (EUROSTAT) by estimating a yearly regional parameter for each crop species: the yield gap factor. This step allows us to better represent crop phenology, to reproduce the observed multiannual European crop yields, and to construct realistic time series of the crop carbon fluxes (gross primary production, GPP, and autotrophic respiration, Raut) on a fine spatial and temporal resolution. Secondly, we combine these GPP and Raut fluxes with a simple soil respiration model to obtain the total ecosystem respiration (TER) and net ecosystem exchange (NEE). And thirdly, we represent the horizontal transport of carbon that follows crop harvest and its back-respiration into the atmosphere during harvest consumption. We distribute this carbon using observations of the density of human and ruminant populations from EUROSTAT. We assess the model

  18. Quantifying simultaneous fluxes of ozone, carbon dioxide and water vapor above a subalpine forest ecosystem

    Treesearch

    K. F. Zeller; N. T. Nikolov

    2000-01-01

    Assessing the long-term exchange of trace gases and energy between terrestrial ecosystems and the atmosphere is an important priority of the current climate change research. In this regard, it is particularly significant to provide valid data on simultaneous fluxes of carbon, water vapor and pollutants over representative ecosystems. Eddy covariance measurements and...

  19. Carbon and water fluxes above a cacao plantation in Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Falk, U.; Ibrom, A.

    2003-04-01

    and June 2002 until now eddy-covariance measurements have been performed above a Cacao plantation in Nopu measuring time series of water vapour, CO2, air temperature, three-dimensional wind vector, photosyntetic active radiation and the surface temperature of the Cacao canopy at 10 Hz. Additionally, net radiation balance and soil heat fluxes have been measured. In order to assess the carbon input caused by the humans living in the ecosystem, a mapping of the site area has been carried out, including investigations of consumption of fire wood and use of machines, like generators for example. In order to obtain the energy balance equation of the canopy surface, also the radiation balance and the heat flux into the canopy have to be evaluated.

  20. Utilizing a Tower Based System for Optical Sensing of Ecosystem Carbon Fluxes

    NASA Astrophysics Data System (ADS)

    Huemmrich, K. F.; Corp, L. A.; Middleton, E.; Campbell, P. K. E.; Landis, D.; Kustas, W. P.

    2015-12-01

    Optical sampling of spectral reflectance and solar induced fluorescence provide information on the physiological status of vegetation that can be used to infer stress responses and estimates of production. Multiple repeated observations are required to observe the effects of changing environmental conditions on vegetation. This study examines the use of optical signals to determine inputs to a light use efficiency (LUE) model describing productivity of a cornfield where repeated observations of carbon flux, spectral reflectance and fluorescence were collected. Data were collected at the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) fields (39.03°N, 76.85°W) at USDA Beltsville Agricultural Research Center. Agricultural Research Service researchers measured CO2 fluxes using eddy covariance methods throughout the growing season. Optical measurements were made from the nearby tower supporting the NASA FUSION sensors. The sensor system consists of two dual channel, upward and downward looking, spectrometers used to simultaneously collect high spectral resolution measurements of reflected and fluoresced light from vegetation canopies at multiple view angles. Estimates of chlorophyll fluorescence, combined with measures of vegetation pigment content and the Photosynthetic Reflectance Index (PRI) derived from the spectral reflectance are compared with CO2 fluxes over diurnal periods for multiple days. The relationships among the different optical measurements indicate that they are providing different types of information on the vegetation and that combinations of these measurements provide improved retrievals of CO2 fluxes than any index alone

  1. Carbon Cycle in South China Sea: Flux, Controls and Global Implications

    NASA Astrophysics Data System (ADS)

    Dai, M.; Cao, Z.; Yang, W.; Guo, X.; Yin, Z.; Gan, J.

    2016-12-01

    The contemporary coastal ocean is generally seen as a significant CO2 sink of 0.2-0.4 Pg C/yr at the global scale. However, mechanistic understanding of the coastal ocean carbon cycle remains limited, leading to the unanswered question of why some coastal systems are sources while others are sinks of atmospheric CO2. As the largest marginal sea of Northern Pacific, the South China Sea (SCS) is a mini-ocean with wide shelves in both its southern and northern parts. Its northern shelf, which receives significant land inputs from the Pearl River, a world major river, can be categorized as a River-Dominated Margin (RioMar) during peak discharges, and is characterized as a CO2 sink to the atmosphere. The SCS basin is identified as an Ocean-Dominated Margin (OceMar) and a CO2 source. OceMar is characterized by exchange with the open ocean via a two-dimensional (at least) process, i.e., the horizontal intrusion of open ocean water and subsequent vertical mixing and upwelling. Depending on the different ratios of dissolved inorganic carbon (DIC) and nutrients from the source waters into the continental margins, the relative consumption or removal bwtween DIC and nutrients, when being transported into the euphotic zones where biogeochemical processes take over, determines the CO2 fluxes. Thus, excess DIC relative to nutrients existing in the upper layer will lead to CO2 degassing. The CO2 fluxes in both RioMars and OceMars can be quantified using a semi-analytical diagnostic approach by coupling the physical dynamics and biogeochemical processes. We extended our mechanistic studies in the SCS to other OceMars including the Caribbean Sea, the Arabian Sea, and the upwelling system off the Oregon-California coast, and RioMars including the East China Sea and Amazon River plume to demonstrate the global implications of our SCS carbon studies.

  2. Role of wildfire in controlling the source and flux of particulate organic carbon from a small, mountainous, semi-arid watershed

    NASA Astrophysics Data System (ADS)

    Hatten, J. A.; Goni, M. A.; Gray, A. B.; Pasternack, G. B.; Warrick, J. A.; Watson, E.; Wheatcroft, R. A.

    2016-12-01

    The delivery of particulate organic carbon (POC) from rivers to marine sediments is the major long-term sink of CO2 on Earth and a net source of oxygen over millennial time scales. Small mountainous river systems (SMRS) may be responsible for half of the POC delivery to global oceans. The flux of POC in semi-arid SMRS has been thought to be regulated by hydro-geomorphic factors, such as runoff, tectonic uplift rates, and bedrock geology. Fire has been shown to be very important for the flux of suspended sediment from chaparral dominated watersheds, therefore the same should be true for carbon associated with sediment. To date, the role of landscape disturbances such as fire has not been investigated. A large wildfire (2008) in the chaparral-dominated Arroyo Seco watershed, a smaller watershed within the Salinas River basin, provided a unique opportunity to examine the effects of fire on POC source and flux at the watershed-scale. Suspended sediments were collected from the Arroyo Seco for 2 years post fire, and 1 year pre- and 3 years post-fire in the Salinas River. We analyzed these sediments for C, N, 13C, 15N, ad CuO oxidation products (e.g. lignin, char). We found there was an increase in POC flux that is largely a function of elevated sediment flux, but elemental, stable isotope, and biomarker analyses show that both burned and unburned organic matter has contributed to the elevated carbon flux as a result of enhanced surface erosion processes. While these fire-flood events may be rare, sediment associated constituent yield will be greatly underestimated if these events are not considered. Fire-flood events may be especially important to consider in light of shifting fire regimes and more frequent extreme precipitation events predicted as a result of climate change.

  3. Impact of climate, CO2 and land use on terrestrial carbon and water fluxes in China based on a multi-model analysis

    NASA Astrophysics Data System (ADS)

    Jia, B.; Xie, Z.

    2017-12-01

    Climate change and anthropogenic activities have been exerting profound influences on ecosystem function and processes, including tightly coupled terrestrial carbon and water cycles. However, their relative contributions of the key controlling factors, e.g., climate, CO2 fertilization, land use and land cover change (LULCC), on spatial-temporal patterns of terrestrial carbon and water fluxes in China are still not well understood due to the lack of ecosystem-level flux observations and uncertainties in single terrestrial biosphere model (TBM). In the present study, we quantified the effect of climate, CO2, and LULCC on terrestrial carbon and water fluxes in China using multi-model simulations for their inter-annual variability (IAV), seasonal cycle amplitude (SCA) and long-term trend during the past five decades (1961-2010). In addition, their relative contributions to the temporal variations of gross primary productivity (GPP), net ecosystem productivity (NEP) and evapotranspiration (ET) were investigated through factorial experiments. Finally, the discussions about the inter-model differences and model uncertainties were presented.

  4. Distinguishing the drivers of trends in land carbon fluxes and plant volatile emissions over the past 3 decades

    NASA Astrophysics Data System (ADS)

    Yue, X.; Unger, N.; Zheng, Y.

    2015-10-01

    The terrestrial biosphere has experienced dramatic changes in recent decades. Estimates of historical trends in land carbon fluxes remain uncertain because long-term observations are limited on the global scale. Here, we use the Yale Interactive terrestrial Biosphere (YIBs) model to estimate decadal trends in land carbon fluxes and emissions of biogenic volatile organic compounds (BVOCs) and to identify the key drivers for these changes during 1982-2011. Driven by hourly meteorology from WFDEI (WATCH forcing data methodology applied to ERA-Interim data), the model simulates an increasing trend of 297 Tg C a-2 in gross primary productivity (GPP) and 185 Tg C a-2 in the net primary productivity (NPP). CO2 fertilization is the main driver for the flux changes in forest ecosystems, while meteorology dominates the changes in grasslands and shrublands. Warming boosts summer GPP and NPP at high latitudes, while drought dampens carbon uptake in tropical regions. North of 30° N, increasing temperatures induce a substantial extension of 0.22 day a-1 for the growing season; however, this phenological change alone does not promote regional carbon uptake and BVOC emissions. Nevertheless, increases of leaf area index at peak season accounts for ~ 25 % of the trends in GPP and isoprene emissions at the northern lands. The net land sink shows statistically insignificant increases of only 3 Tg C a-2 globally because of simultaneous increases in soil respiration. Global BVOC emissions are calculated using two schemes. With the photosynthesis-dependent scheme, the model predicts increases of 0.4 Tg C a-2 in isoprene emissions, which are mainly attributed to warming trends because CO2 fertilization and inhibition effects offset each other. Using the MEGAN (Model of Emissions of Gases and Aerosols from Nature) scheme, the YIBs model simulates global reductions of 1.1 Tg C a-2 in isoprene and 0.04 Tg C a-2 in monoterpene emissions in response to the CO2 inhibition effects. Land use

  5. Carbon Monitoring System Flux Estimation and Attribution: Impact of ACOS-GOSAT X(CO2) Sampling on the Inference of Terrestrial Biospheric Sources and Sinks

    NASA Technical Reports Server (NTRS)

    Liu, Junjie; Bowman, Kevin W.; Lee, Memong; Henze, David K.; Bousserez, Nicolas; Brix, Holger; Collatz, G. James; Menemenlis, Dimitris; Ott, Lesley; Pawson, Steven; hide

    2014-01-01

    Using an Observing System Simulation Experiment (OSSE), we investigate the impact of JAXA Greenhouse gases Observing SATellite 'IBUKI' (GOSAT) sampling on the estimation of terrestrial biospheric flux with the NASA Carbon Monitoring System Flux (CMS-Flux) estimation and attribution strategy. The simulated observations in the OSSE use the actual column carbon dioxide (X(CO2)) b2.9 retrieval sensitivity and quality control for the year 2010 processed through the Atmospheric CO2 Observations from Space algorithm. CMS-Flux is a variational inversion system that uses the GEOS-Chem forward and adjoint model forced by a suite of observationally constrained fluxes from ocean, land and anthropogenic models. We investigate the impact of GOSAT sampling on flux estimation in two aspects: 1) random error uncertainty reduction and 2) the global and regional bias in posterior flux resulted from the spatiotemporally biased GOSAT sampling. Based on Monte Carlo calculations, we find that global average flux uncertainty reduction ranges from 25% in September to 60% in July. When aggregated to the 11 land regions designated by the phase 3 of the Atmospheric Tracer Transport Model Intercomparison Project, the annual mean uncertainty reduction ranges from 10% over North American boreal to 38% over South American temperate, which is driven by observational coverage and the magnitude of prior flux uncertainty. The uncertainty reduction over the South American tropical region is 30%, even with sparse observation coverage. We show that this reduction results from the large prior flux uncertainty and the impact of non-local observations. Given the assumed prior error statistics, the degree of freedom for signal is approx.1132 for 1-yr of the 74 055 GOSAT X(CO2) observations, which indicates that GOSAT provides approx.1132 independent pieces of information about surface fluxes. We quantify the impact of GOSAT's spatiotemporally sampling on the posterior flux, and find that a 0.7 gigatons of

  6. Peruvian upwelling plankton respiration: calculations of carbon flux, nutrient retention efficiency, and heterotrophic energy production

    NASA Astrophysics Data System (ADS)

    Packard, T. T.; Osma, N.; Fernández-Urruzola, I.; Codispoti, L. A.; Christensen, J. P.; Gómez, M.

    2015-05-01

    Oceanic depth profiles of plankton respiration are described by a power function, RCO2 = (RCO2)0 (z/z0)b, similar to the vertical carbon flux profile. Furthermore, because both ocean processes are closely related, conceptually and mathematically, each can be calculated from the other. The exponent b, always negative, defines the maximum curvature of the respiration-depth profile and controls the carbon flux. When |b| is large, the carbon flux (FC) from the epipelagic ocean is low and the nutrient retention efficiency (NRE) is high, allowing these waters to maintain high productivity. The opposite occurs when |b| is small. This means that the attenuation of respiration in ocean water columns is critical in understanding and predicting both vertical FC as well as the capacity of epipelagic ecosystems to retain their nutrients. The ratio of seawater RCO2 to incoming FC is the NRE, a new metric that represents nutrient regeneration in a seawater layer in reference to the nutrients introduced into that layer via FC. A depth profile of FC is the integral of water column respiration. This relationship facilitates calculating ocean sections of FC from water column respiration. In an FC section and in a NRE section across the Peruvian upwelling system we found an FC maximum and a NRE minimum extending down to 400 m, 50 km off the Peruvian coast over the upper part of the continental slope. Finally, considering the coupling between respiratory electron transport system activity and heterotrophic oxidative phosphorylation promoted the calculation of an ocean section of heterotrophic energy production (HEP). It ranged from 250 to 500 J d-1 m-3 in the euphotic zone to less than 5 J d-1 m-3 below 200 m on this ocean section.

  7. The Labrador Sea during the Last Glacial Maximum: Calcite dissolution or low biogenic carbonate fluxes?

    NASA Astrophysics Data System (ADS)

    Marshall, Nicole; de Vernal, Anne; Mucci, Alfonso; Filippova, Alexandra; Kienast, Markus

    2017-04-01

    Low concentrations of biogenic carbonate characterize the sediments deposited in the Labrador Sea during the last glaciation. This may reflect poor calcite preservation and/or low biogenic carbonate productivity and fluxes. Regional bottom water ventilation was reduced during the Last Glacial Maximum (LGM), so the calcite lysocline might have been shallower than at present in the deep Labrador Sea making dissolution of calcite shells in the deep Labrador Sea possible. To address the issue, a multi-proxy approach based on micropaleontological counts (coccoliths, foraminifers, palynomorphs) and biogeochemical analyses (alkenones) was applied in the investigation of core HU2008-029-004-PC recovered in the northwestern Labrador Sea. Calcite dissolution indices based on the relative abundance benthic foraminifera shells to their organic linings as well as on fragmentation of planktonic foraminifera shells were used to evaluate changes in calcite dissolution/ preservation since the LGM. In addition, the ratio of the concentrations of coccoliths, specifically of the alkenone-producer Emiliania huxleyi, and alkenones (Emiliania huxleyi: alkenones) was explored as a potential new proxy of calcite dissolution. A sharp increase in coccoliths, foraminifers and organic linings from nearly none to substantial concentrations at 12 ka, reflect a jump to significantly greater biogenic fluxes at the glacial-interglacial transition. Furthermore, conventional dissolution indices (shells/linings of benthic foraminifera and fragmentation of planktic foraminifers) reveal that dissolution is not likely responsible for the lower glacial abundances of coccoliths and foraminifers. Only the low Emiliania huxleyi: alkenones ratios in glacial sediments could be interpreted as evidence of increased dissolution during the LGM. Given the evidence of allochthonous alkenone input into the glacial Labrador Sea, the latter observations must be treated with caution. Overall, the records indicate that

  8. Changes of soil carbon dioxide, methane, and nitrous oxide fluxes in relation to land use/cover management.

    PubMed

    Kooch, Yahya; Moghimian, Negar; Bayranvand, Mohammad; Alberti, Giorgio

    2016-06-01

    Conversions of land use/cover are associated with changes in soil properties and biogeochemical cycling, with implications for carbon (C), nitrogen (N), and trace gas fluxes. In an attempt to provide a comprehensive evaluation of the significance of different land uses (Alnus subcordata plantation, Taxodium distichum plantation, agriculture, and deforested areas) on soil features and on the dynamics of greenhouse gas (GHG) fluxes at local scale, this study was carried out in Mazandaran province, northern Iran. Sixteen samples per land use, from the top 10 cm of soil, were taken, from which bulk density, texture, water content, pH, organic C, total N, microbial biomass of C and N, and earthworm density/biomass were determined. In addition, the seasonal changes in the fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were monitored over a year. Our results indicated that the different land uses were different in terms of soil properties and GHG fluxes. Even though the amount of the GHG varied widely during the year, the highest CO2 and CH4 fluxes (0.32 mg CO2 m(-2) day(-1) and 0.11 mg CH4 m(-2) day(-1), respectively) were recorded in the deforested areas. N2O flux was higher in Alnus plantation (0.18 mg N2O m(-2) day(-1)) and deforested areas (0.17 mg N2O m(-2) day(-1)) than at agriculture site (0.05 mg N2O m(-2) day(-1)) and Taxodium plantation (0.03 mg N2O m(-2) day(-1)). This study demonstrated strong impacts of land use change on soil-atmosphere trace gas exchanges and provides useful observational constraints for top-down and bottom-up biogeochemistry models.

  9. The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.

    PubMed

    Ewald, Jennifer C; Kuehne, Andreas; Zamboni, Nicola; Skotheim, Jan M

    2016-05-19

    Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Erosion and Modifications of Tungsten-Coated Carbon and Copper Under High Heat Flux

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; S, Tamura; K, Tokunaga; N, Yoshida; Zhang, Fu; Xu, Zeng-yu; Ge, Chang-chun; N, Noda

    2003-08-01

    Tungsten-coated carbon and copper was prepared by vacuum plasma spraying (VPS) and inert gas plasma spraying (IPS), respectively. W/CFC (Tungsten/Carbon Fiber-Enhanced material) coating has a diffusion barrier that consists of W and Re multi-layers pre-deposited by physical vapor deposition on carbon fiber-enhanced materials, while W/Cu coating has a graded transition interface. Different grain growth processes of tungsten coatings under stable and transient heat loads were observed, their experimental results indicated that the recrystallizing temperature of VPS-W coating was about 1400 °C and a recrystallized columnar layer of about 30 μm thickness was formed by cyclic heat loads of 4 ms pulse duration. Erosion and modifications of W/CFC and W/Cu coatings under high heat load, such as microstructure changes of interface, surface plastic deformations and cracks, were investigated, and the erosion mechanism (erosion products) of these two kinds of tungsten coatings under high heat flux was also studied.

  11. Factors affecting the behavior of unburned carbon upon steam activation

    NASA Astrophysics Data System (ADS)

    Lu, Zhe

    The main objective of this study is to investigate the factors that could affect the behavior of unburned carbon samples upon steam activation. Through this work, the relationships among the factors that could influence the carbon-steam reaction with the surface area of the produced activated carbon were explored. Statistical analysis was used to relate the chemical and physical properties of the unburned carbon to the surface area of the activated carbon. Six unburned carbons were selected as feedstocks for activated carbon, and marked as UCA through UCF. The unburned carbons were activated using steam at 850°C for 90 minutes, and the surface areas of their activated counterparts were measured using N2 adsorption isotherms at 77K. The activated carbons produced from different unburned carbon precursors presented different surface areas at similar carbon burn-off levels. Moreover, in different carbon burn-off regions, the sequences for surface area of activated carbons from different unburned carbon samples were different. The factors that may affect the carbon-steam gasification reactions, including the concentration of carbon active sites, the crystallite size of the carbon, the intrinsic porous structure of carbon, and the inorganic impurities, were investigated. All unburned carbons investigated in this study were similar in that they showed the very broad (002) and (10 ) carbon peaks, which are characteristic of highly disordered carbonaceous materials. In this study, the unburned carbon samples contained about 17--48% of inorganic impurities. Compared to coals, the unburned carbon samples contain a larger amount of inorganic impurities as a result of the burn-off, or at lease part, of the carbon during the combustion process. These inorganic particles were divided into two groups in terms of the way they are associated with carbon particles: free single particles, and particles combined with carbon particles. As indicated from the present work, unburned

  12. A low-frequency wave motion mechanism enables efficient energy transport in carbon nanotubes at high heat fluxes.

    PubMed

    Zhang, Xiaoliang; Hu, Ming; Poulikakos, Dimos

    2012-07-11

    The great majority of investigations of thermal transport in carbon nanotubes (CNTs) in the open literature focus on low heat fluxes, that is, in the regime of validity of the Fourier heat conduction law. In this paper, by performing nonequilibrium molecular dynamics simulations we investigated thermal transport in a single-walled CNT bridging two Si slabs under constant high heat flux. An anomalous wave-like kinetic energy profile was observed, and a previously unexplored, wave-dominated energy transport mechanism is identified for high heat fluxes in CNTs, originated from excited low frequency transverse acoustic waves. The transported energy, in terms of a one-dimensional low frequency mechanical wave, is quantified as a function of the total heat flux applied and is compared to the energy transported by traditional Fourier heat conduction. The results show that the low frequency wave actually overtakes traditional Fourier heat conduction and efficiently transports the energy at high heat flux. Our findings reveal an important new mechanism for high heat flux energy transport in low-dimensional nanostructures, such as one-dimensional (1-D) nanotubes and nanowires, which could be very relevant to high heat flux dissipation such as in micro/nanoelectronics applications.

  13. Stream restoration and sewers impact sources and fluxes of water, carbon, and nutrients in urban watersheds

    NASA Astrophysics Data System (ADS)

    Pennino, Michael J.; Kaushal, Sujay S.; Mayer, Paul M.; Utz, Ryan M.; Cooper, Curtis A.

    2016-08-01

    An improved understanding of sources and timing of water, carbon, and nutrient fluxes associated with urban infrastructure and stream restoration is critical for guiding effective watershed management globally. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in urban stream restoration and sewer infrastructure. We compared an urban restored stream with two urban degraded streams draining varying levels of urban development and one stream with upland stormwater management systems over a 3-year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower (p < 0.05) monthly peak runoff (9.4 ± 1.0 mm day-1) compared with two urban degraded streams (ranging from 44.9 ± 4.5 to 55.4 ± 5.8 mm day-1) draining higher impervious surface cover, and the stream-draining stormwater management systems and less impervious surface cover in its watershed (13.2 ± 1.9 mm day-1). The restored stream exported most carbon, nitrogen, and phosphorus at relatively lower streamflow than the two more urban catchments, which exported most carbon and nutrients at higher streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha-1 yr-1), total nitrogen (4.5 ± 0.3 kg ha-1 yr-1), and total phosphorus (161 ± 15 kg ha-1 yr-1) were significantly lower in the restored stream compared to both urban degraded streams (p < 0.05), but statistically similar to the stream draining stormwater management systems, for N exports. However, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the urban restored stream was derived from leaky sanitary sewers (during baseflow), statistically similar to the urban degraded streams. These isotopic results as well as additional tracers, including fluoride (added to drinking water) and iodide (contained in dietary salt

  14. Comparison of the impacts of acid and nitrogen additions on carbon fluxes in European conifer and broadleaf forests.

    PubMed

    Oulehle, Filip; Tahovská, Karolina; Chuman, Tomáš; Evans, Chris D; Hruška, Jakub; Růžek, Michal; Bárta, Jiří

    2018-07-01

    Increased reactive nitrogen (N) loadings to terrestrial ecosystems are believed to have positive effects on ecosystem carbon (C) sequestration. Global "hot spots" of N deposition are often associated with currently or formerly high deposition of sulphur (S); C fluxes in these regions might therefore not be responding solely to N loading, and could be undergoing transient change as S inputs change. In a four-year, two-forest stand (mature Norway spruce and European beech) replicated field experiment involving acidity manipulation (sulphuric acid addition), N addition (NH 4 NO 3 ) and combined treatments, we tested the extent to which altered soil solution acidity or/and soil N availability affected the concentration of soil dissolved organic carbon (DOC), soil respiration (Rs), microbial community characteristics (respiration, biomass, fungi and bacteria abundances) and enzyme activity. We demonstrated a large and consistent suppression of soil water DOC concentration driven by chemical changes associated with increased hydrogen ion concentrations under acid treatments, independent of forest type. Soil respiration was suppressed by sulphuric acid addition in the spruce forest, accompanied by reduced microbial biomass, increased fungal:bacterial ratios and increased C to N enzyme ratios. We did not observe equivalent effects of sulphuric acid treatments on Rs in the beech forest, where microbial activity appeared to be more tightly linked to N acquisition. The only changes in C cycling following N addition were increased C to N enzyme ratios, with no impact on C fluxes (either Rs or DOC). We conclude that C accumulation previously attributed solely to N deposition could be partly attributable to their simultaneous acidification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Multi-annual fluxes of carbon dioxide from an intensively cultivated temperate peatland

    NASA Astrophysics Data System (ADS)

    Cumming, Alex; Balzter, Heiko; Evans, Chris; Kaduk, Joerg; Morrison, Ross; Page, Susan

    2016-04-01

    East Anglia contains the largest continuous area of lowland fen peatlands in the United Kingdom (UK) which store vast quantities of terrestrial carbon (C) that have accrued over millennia. These long term C stores have largely been drained and converted for agricultural land use over the last 400 years due to their high agricultural production potential. Initial drainage of these peatlands leads to surface lowering and peat wastage. Prolonged exposure of carbon dense peat soils to oxygen through continued agricultural management results in sustained losses of carbon dioxide (CO₂) to the atmosphere. An increasing population in the UK has the potential to put further stress on these productive but rapidly diminishing Grade 1 agricultural land. Improving our understanding of land management impacts on CO₂ emissions from these soils is crucial to improving their longevity as an important store of C and as an economic resource. Our measurements at an intensively cultivated lowland peatland in Norfolk, UK, are the first multi-annual record using the micrometeorological eddy covariance (EC) technique to measure CO₂ fluxes associated with the production of horticultural salad crops. Three full years of flux measurements over leek (2013), lettuce (2014) and celery (2015) cropping systems found that the site was a net annual source of CO₂ with a net ecosystem exchange (NEE) of 6.59, 7.84 and 7.71 t C-CO₂ ha-1 a-1 respectively. The leek crop, with its longer growing period, had a lower annual NEE due to its long growth period from early spring through to late autumn, whereas the shorter growing periods of lettuce and celery meant their peak growth (CO₂ uptake, Gross Primary Productivity, GPP) took place during early/mid-summer with post-harvest weeds exploiting the later growing season but exhibited lower CO₂ assimilation than the leek crop. Periods of high CO₂ emissions from the soil to the atmosphere were measured during mechanical disruptions to the soils

  16. The seasonal behaviour of carbon fluxes in the Amazon: fusion of FLUXNET data and the ORCHIDEE model

    NASA Astrophysics Data System (ADS)

    Verbeeck, H.; Peylin, P.; Bacour, C.; Ciais, P.

    2009-04-01

    Eddy covariance measurements at the Santarém (km 67) site revealed an unexpected seasonal pattern in carbon fluxes which could not be simulated by existing state-of-the-art global ecosystem models (Saleska et al., Sciece 2003). An unexpected high carbon uptake was measured during dry season. In contrast, carbon release was observed in the wet season. There are several possible (combined) underlying mechanisms of this phenomenon: (1) an increased soil respiration due to soil moisture in the wet season, (2) increased photosynthesis during the dry season due to deep rooting, hydraulic lift, increased radiation and/or a leaf flush. The objective of this study is to optimise the ORCHIDEE model using eddy covariance data in order to be able to mimic the seasonal response of carbon fluxes to dry/wet conditions in tropical forest ecosystems. By doing this, we try to identify the underlying mechanisms of this seasonal response. The ORCHIDEE model is a state of the art mechanistic global vegetation model that can be run at local or global scale. It calculates the carbon and water cycle in the different soil and vegetation pools and resolves the diurnal cycle of fluxes. ORCHIDEE is built on the concept of plant functional types (PFT) to describe vegetation. To bring the different carbon pool sizes to realistic values, spin-up runs are used. ORCHIDEE uses climate variables as drivers together with a number of ecosystem parameters that have been assessed from laboratory and in situ experiments. These parameters are still associated with a large uncertainty and may vary between and within PFTs in a way that is currently not informed or captured by the model. Recently, the development of assimilation techniques allows the objective use of eddy covariance data to improve our knowledge of these parameters in a statistically coherent approach. We use a Bayesian optimisation approach. This approach is based on the minimization of a cost function containing the mismatch between

  17. Rapid forest recovery of carbon and water fluxes after a tropical firestorm

    NASA Astrophysics Data System (ADS)

    Brando, P. M.; Silverio, D. V.; Migliavacca, M.; Santos, C.; Kolle, O.; Balch, J.; Maracahipes, L.; Bustamante, M.; Coe, M. T.; Trumbore, S.

    2017-12-01

    Forest disturbances interact synergistically and drive potentially large and persistent degradation of ecosystem services in the tropics. Here we analyze multi-year measurements of carbon (C) and water (evapotranspiration; ET) fluxes in forests recovering from 7 years of prescribed fires. Located in southeast Amazonia, the experimental forest consisted of three 50-ha plots burned annually, triennially, or not at all between 2004-2010. During the subsequent seven-year recovery period from 2011 to present, tree survivorship and biomass sharply declined, with aboveground C stocks decreasing by 70-94% along forest edges. While vegetation regrowth in the forest understory triggered partial canopy closure, light-demanding grasses covered roughly the same area in 2015 that they did in 2012. However, the spatial distribution of grasses drastically changed, while C4 grass species replaced C3 ones. Surprisingly, the observed alterations in forest structure and dynamics rendered minor or no changes in total C fluxes and ET, probably because plants in the burned forest increased light- and reduced ecosystem water-use efficiency. Hence, delayed post-fire mortality of large trees can reduce forest C stocks and create opportunities for the establishment of invasive grasses, Yet, post-fire vegetation growth can rapidly restore C uptake and ET by optimizing resources use. These results show that tropical forests can rapidly recover the capacity to cycle water and carbon following disturbances, but also that a full recovery of biomass and vegetation dominance may take many years or decades.

  18. Seasonal variation of carbon dioxide fluxes over irrigated soybean ( Glycine max L.)

    NASA Astrophysics Data System (ADS)

    Şaylan, Levent; Kimura, Reiji; Munkhtsetseg, Erdenebayar; Kamichika, Makio

    2011-08-01

    In this study, variations in carbon dioxide (CO2) fluxes resulting from gross primary production (GPP), net ecosystem exchange (NEE), and respiration ( R e) of soybean ( Glycine max L.) were investigated by the Eddy Covariance method during the growing period from June to November 2005 on an irrigated sand field at the Arid Land Research Center, Tottori University in Tottori, Japan. Although climatic conditions were humid and temperate, the soybeans required frequent irrigation because of the low water holding capacity of the sandy soil at the field site. Finally, it has been found that the accumulated NEE, GPP, and R e fluxes of soybean over 126 days amount to -93, 319, and 226 gC m-2, respectively. Furthermore, the average ratio of GPP to R e was 1.4 and the average ratio of NEE to GPP was about -0.29 for the growth period of soybean. Daily maximum NEE of -3.8 gC m-2 occurred when LAI was 1.1.

  19. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands.

    PubMed

    Dalcin Martins, Paula; Hoyt, David W; Bansal, Sheel; Mills, Christopher T; Tfaily, Malak; Tangen, Brian A; Finocchiaro, Raymond G; Johnston, Michael D; McAdams, Brandon C; Solensky, Matthew J; Smith, Garrett J; Chin, Yu-Ping; Wilkins, Michael J

    2017-08-01

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions. © 2017 John Wiley & Sons Ltd.

  20. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands

    USGS Publications Warehouse

    Martins, Paula; Hoyt, David W.; Bansal, Sheel; Mills, Christopher T.; Tfaily, Malak; Tangen, Brian; Finocchiaro, Raymond; Johnston, Michael D.; McAdams, Brandon C.; Solensky, Matthew J.; Smith, Garrett J.; Chin, Yu-Ping; Wilkins, Michael J.

    2017-01-01

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co-occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate-reducing bacteria may be lessened by the presence of large labile DOC pools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions.

  1. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    DOE PAGES

    Chen, M.; Zhuang, Q.; Cook, D. R.; ...

    2011-09-21

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI) and carbon flux data of AmeriFlux to conduct such a study. First we modify the gross primary production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenologymore » and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000–2005 at a 0.05° × 0.05° spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 PgC yr -1 and net primary production (NPP) ranges from 3.81 to 4.38 Pg Cyr -1 and net ecosystem production (NEP) varies within 0.08– 0.73 PgC yr -1 over the period 2000–2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 PgC yr -1 for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Lastly, our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.« less

  2. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Min; Zhuang, Qianlai; Cook, D.

    2011-08-31

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenologymore » and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000-2005 at a 0.05-0.05 spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 PgC yr{sup -1} and net primary production (NPP) ranges from 3.81 to 4.38 Pg Cyr{sup -1} and net ecosystem production (NEP) varies within 0.08- 0.73 PgC yr{sup -1} over the period 2000-2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 PgC yr{sup -1} for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.« less

  3. Quantification of Terrestrial Ecosystem Carbon Dynamics in the Conterminous United States Combining a Process-Based Biogeochemical Model and MODIS and AmeriFlux data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Min; Zhuang, Qianlai; Cook, David R.

    2011-09-21

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial 24 ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical 25 models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate 26 quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution 27 Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index 28 (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary 29 production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of themore » 30 changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and 31 verify the new version of TEM with eddy flux data. We then apply the model to the conterminous 32 United States over the period 2000-2005 at a 0.05o ×0.05o spatial resolution. We find that the new 33 version of TEM generally captured the expected temporal and spatial patterns of regional carbon 34 dynamics. We estimate that regional GPP is between 7.02 and 7.78 Pg C yr-1 and net primary 35 production (NPP) ranges from 3.81 to 4.38 Pg C yr-1 and net ecosystem production (NEP) varies 36 within 0.08-0.73 Pg C yr-1 over the period 2000-2005 for the conterminous United States. The 37 uncertainty due to parameterization is 0.34, 0.65 and 0.18 Pg C yr-1 for the regional estimates of GPP, 38 NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 39 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a 40 new independent and more adequate measure of carbon fluxes for the conterminous United States, 41 which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon 42 management and climate.« less

  4. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, M.; Zhuang, Q.; Cook, D. R.

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI) and carbon flux data of AmeriFlux to conduct such a study. First we modify the gross primary production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenologymore » and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000–2005 at a 0.05° × 0.05° spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 PgC yr -1 and net primary production (NPP) ranges from 3.81 to 4.38 Pg Cyr -1 and net ecosystem production (NEP) varies within 0.08– 0.73 PgC yr -1 over the period 2000–2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 PgC yr -1 for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Lastly, our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.« less

  5. Soil surface CO2 flux in a boreal black spruce fire chronosequence

    NASA Astrophysics Data System (ADS)

    Wang, Chuankuan; Bond-Lamberty, Ben; Gower, Stith T.

    2003-02-01

    Understanding the effects of wildfire on the carbon (C) cycle of boreal forests is essential to quantifying the role of boreal forests in the global carbon cycle. Soil surface CO2 flux (Rs), the second largest C flux in boreal forests, is directly and indirectly affected by fire and is hypothesized to change during forest succession following fire. The overall objective of this study was to measure and model Rs for a black spruce (Picea mariana [Mill.] BSP) postfire chronosequence in northern Manitoba, Canada. The experiment design was a nested factorial that included two soil drainage classes (well and poorly drained) × seven postfire aged stands. Specific objectives were (1) to quantify the relationship between Rs and soil temperature for different aged boreal black spruce forests in well-drained and poorly drained soil conditions, (2) to examine Rs dynamics along postfire successional stands, and (3) to estimate annual soil surface CO2 flux for these ecosystems. Soil surface CO2 flux was significantly affected by soil drainage class (p = 0.014) and stand age (p = 0.006). Soil surface CO2 flux was positively correlated to soil temperature (R2 = 0.78, p < 0.001), but different models were required for each drainage class × aged stand combination. Soil surface CO2 flux was significantly greater at the well-drained than the poorly drained stands (p = 0.007) during growing season. Annual soil surface CO2 flux for the 1998, 1995, 1989, 1981, 1964, 1930, and 1870 burned stands averaged 226, 412, 357, 413, 350, 274, and 244 g C m-2 yr-1 in the well-drained stands and 146, 380, 300, 303, 256, 233, and 264 g C m-2 yr-1 in the poorly drained stands. Soil surface CO2 flux during the winter (from 1 November to 30 April) comprised from 5 to 19% of the total annual Rs. We speculate that the smaller soil surface CO2 flux in the recently burned than the older stands is mainly caused by decreased root respiration.

  6. Soil surface CO2 flux in a boreal black spruce fire chronosequence

    NASA Astrophysics Data System (ADS)

    Wang, Chuankuan; Bond-Lamberty, Ben; Gower, Stith T.

    2002-02-01

    Understanding the effects of wildfire on the carbon (C) cycle of boreal forests is essential to quantifying the role of boreal forests in the global carbon cycle. Soil surface CO2 flux (Rs), the second largest C flux in boreal forests, is directly and indirectly affected by fire and is hypothesized to change during forest succession following fire. The overall objective of this study was to measure and model Rs for a black spruce (Picea mariana [Mill.] BSP) postfire chronosequence in northern Manitoba, Canada. The experiment design was a nested factorial that included two soil drainage classes (well and poorly drained) × seven postfire aged stands. Specific objectives were (1) to quantify the relationship between Rs and soil temperature for different aged boreal black spruce forests in well-drained and poorly drained soil conditions, (2) to examine Rs dynamics along postfire successional stands, and (3) to estimate annual soil surface CO2 flux for these ecosystems. Soil surface CO2 flux was significantly affected by soil drainage class (p = 0.014) and stand age (p = 0.006). Soil surface CO2 flux was positively correlated to soil temperature (R2 = 0.78, p < 0.001), but different models were required for each drainage class × aged stand combination. Soil surface CO2 flux was significantly greater at the well-drained than the poorly drained stands (p = 0.007) during growing season. Annual soil surface CO2 flux for the 1998, 1995, 1989, 1981, 1964, 1930, and 1870 burned stands averaged 226, 412, 357, 413, 350, 274, and 244 g C m-2 yr-1 in the well-drained stands and 146, 380, 300, 303, 256, 233, and 264 g C m-2 yr-1 in the poorly drained stands. Soil surface CO2 flux during the winter (from 1 November to 30 April) comprised from 5 to 19% of the total annual Rs. We speculate that the smaller soil surface CO2 flux in the recently burned than the older stands is mainly caused by decreased root respiration.

  7. Sedimentary record of water column trophic conditions and sediment carbon fluxes in a tropical water reservoir (Valle de Bravo, Mexico).

    PubMed

    Carnero-Bravo, Vladislav; Merino-Ibarra, Martín; Ruiz-Fernández, Ana Carolina; Sanchez-Cabeza, Joan Albert; Ghaleb, Bassam

    2015-03-01

    Valle de Bravo (VB) is the main water reservoir of the Cutzamala hydraulic system, which provides 40% of the drinking water consumed in the Mexico City Metropolitan Area and exhibits symptoms of eutrophication. Nutrient (C, N and P) concentrations were determined in two sediment cores to reconstruct the water column trophic evolution of the reservoir and C fluxes since its creation in 1947. Radiometric methods ((210)Pb and (137)Cs) were used to obtain sediment chronologies, using the presence of pre-reservoir soil layers in one of the cores as an independent chronological marker. Mass accumulation rates ranged from 0.12 to 0.56 g cm(-2) year(-1) and total organic carbon (TOC) fluxes from 122 to 380 g m(-2) year(-1). Total N ranged 4.9-48 g m(-2) year(-1), and total P 0.6-4.2 g m(-2) year(-1). The sedimentary record shows that all three (C, N and P) fluxes increased significantly after 1991, in good agreement with the assessed trophic evolution of VB and with historic and recent real-time measurements. In the recent years (1992-2006), the TOC flux to the bottom of VB (average 250 g m(-2) year(-1), peaks 323 g m(-2) year(-1)) is similar to that found in highly eutrophic reservoirs and impoundments. Over 1/3 of the total C burial since dam construction, circa 70,000 t, has occurred in this recent period. These results highlight the usefulness of the reconstruction of carbon and nutrient fluxes from the sedimentary record to assess carbon burial and its temporal evolution in freshwater ecosystems.

  8. DayCent model simulations for estimating soil carbon dynamics and greenhouse gas fluxes from agricultural production systems

    USDA-ARS?s Scientific Manuscript database

    DayCent is a biogeochemical model of intermediate complexity used to simulate carbon, nutrient, and greenhouse gas fluxes for crop, grassland, forest, and savanna ecosystems. Model inputs include: soil texture and hydraulic properties, current and historical land use, vegetation cover, daily maximum...

  9. Warming trumps CO2: future climate conditions suppress carbon fluxes in two dominant boreal tree species

    NASA Astrophysics Data System (ADS)

    Way, D.; Dusenge, M. E.; Madhavji, S.

    2017-12-01

    Increases in CO2 are expected to raise air temperatures in northern latitudes by up to 8 °C by the end of the century. Boreal forests in these regions play a large role in the global carbon cycle, and the responses of boreal tree species to climate drivers will thus have considerable impacts on the trajectory of future CO2 increases. We grew two dominant North American boreal tree species at a range of future climate conditions to assess how carbon fluxes were altered by high CO2 and warming. Black spruce (Picea mariana) and tamarack (Larix laricina) were grown from seed under either ambient (400 ppm) or elevated CO2 concentrations (750 ppm) and either ambient temperatures, moderate warming (ambient +4 °C), or extreme warming (ambient +8 °C) for six months. We measured temperature responses of net photosynthesis, maximum rates of Rubisco carboxylation (Vcmax) and electron transport (Jmax) and dark respiration to determine acclimation to the climate treatments. Overall, growth temperature had a strong effect on carbon fluxes, while there were no significant effects of growth CO2. In both species, the photosynthetic thermal optimum increased and maximum photosynthetic rates were reduced in warm-grown seedlings, but the strength of these changes varied between species. Vcmax and Jmax were also reduced in warm-grown seedlings, and this correlated with reductions in leaf N concentrations. Warming increased the activation energy for Vcmax and the thermal optimum for Jmax in both species. Respiration acclimated to elevated growth temperatures, but there were no treatment effects on the Q10 of respiration (the increase in respiration for a 10 °C increase in leaf temperature). Our results show that climate warming is likely to reduce carbon fluxes in these boreal conifers, and that photosynthetic parameters used to model photosynthesis in dynamic global vegetation models acclimate to increased temperatures, but show little response to elevated CO2.

  10. Baseline and projected future carbon storage and greenhouse-gas fluxes in ecosystems of the eastern United States

    USGS Publications Warehouse

    Zhu, Zhi-Liang; Reed, Bradley C.; Zhu, Zhi-Liang; Reed, Bradley C.

    2014-01-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act of 2007 and to conduct a comprehensive national assessment of storage and flux (flow) of carbon and the fluxes of other greenhouse gases in ecosystems of the Eastern United States. These carbon and greenhouse gas variables were examined for major terrestrial ecosystems (forests, grasslands/shrublands, agricultural lands, and wetlands) and aquatic ecosystems (rivers, streams, lakes, estuaries, and coastal waters) in the Eastern United States in two time periods: baseline (from 2001 through 2005) and future (projections from the end of the baseline through 2050). The Great Lakes were not included in this assessment due to a lack of input data. The assessment was based on measured and observed data collected by the U.S. Geological Survey and many other agencies and organizations and used remote sensing, statistical methods, and simulation models.

  11. One-Dimensional Coupled Ecosystem-Carbon Flux Model for the Simulation of Biogeochemical Parameters at Ocean Weather Station P

    NASA Technical Reports Server (NTRS)

    Signorini, S.; McClain, C.; Christian, J.; Wong, C. S.

    2000-01-01

    In this Technical Publication, we describe the model functionality and analyze its application to the seasonal and interannual variations of phytoplankton, nutrients, pCO2 and CO2 concentrations in the eastern subarctic Pacific at Ocean Weather Station P (OWSP, 50 deg. N 145 deg. W). We use a verified one-dimensional ecosystem model, coupled with newly incorporated carbon flux and carbon chemistry components, to simulate 22 years (1958-1980) of pCO2 and CO2 variability at Ocean Weather Station P (OWS P). This relatively long period of simulation verifies and extends the findings of previous studies using an explicit approach for the biological component and realistic coupling with the carbon flux dynamics. The slow currents and the horizontally homogeneous ocean in the subarctic Pacific make OWS P one of the best available candidates for modeling the chemistry of the upper ocean in one dimension. The chlorophyll and ocean currents composite for 1998 illustrates this premise. The chlorophyll concentration map was derived from SeaWiFS data and the currents are from an OGCM simulation (from R. Murtugudde).

  12. Recovery of Ecosystem Carbon and Energy Fluxes From the 2003 Drought in Europe and the 2012 Drought in the United States

    NASA Astrophysics Data System (ADS)

    He, Bin; Liu, Junjie; Guo, Lanlan; Wu, Xiuchen; Xie, Xaoming; Zhang, Yafeng; Chen, Chen; Zhong, Ziqian; Chen, Ziyue

    2018-05-01

    Recovery of an ecosystem from drought is an important indicator of ecosystem resilience. However, few investigations have heretofore focused on the recovery of ecosystem carbon and energy fluxes but have mainly focused on the drought recovery of plant growth and ecosystem productions. Therefore, the present study uses in situ observations from FLUXNET 2015 to examine the recovery of carbon flux and energy flux of ecosystems from the 2003 European drought and the 2012 U.S. drought on the daily scale. The results reveal the strong impact of these two extreme droughts on ecosystem gross primary production, total ecosystem respiration, net ecosystem exchange, and latent heat flux. In addition, the recovery time of these indicators differ significantly. At the regional scale, the recovery of gross primary production, total ecosystem respiration, net ecosystem exchange, and latent heat flux took 44, 23, 63, and 27 days after the 2003 European drought, and the recovery for corresponding indicators for the 2012 U.S. drought took 42, 63, 15, and 33 days, respectively. Further investigations suggest that indicator background conditions and drought-damage magnitudes played an important role in regulating drought recovery in the 2003 European drought, with lower background value and greater damage leading to a longer recovery time. The ecosystem recovery from the 2012 U.S. drought, however, was dominated by the precipitation condition during the recovery period, with more precipitation associated with a shorter recovery time. These results provide crucial insight into the divergent recovery trajectories for different carbon-water processes among diverse bioclimatic regions.

  13. Post-fire fluxes and sources of carbon in previously burnt tropical swamp peatlands, Brunei

    NASA Astrophysics Data System (ADS)

    Lupascu, M.; Akhtar, H.; Smith, T. E. L.; Sukmaria binti Hj Sukri, R.

    2017-12-01

    Tropical peatlands hold about 15-19% of the global organic carbon (C) pool of which 77% in Southeast Asia. Nonetheless Southeast Asian peatlands have been exploited for timber and land for agriculture leading to rapid deforestation, extensive drainage and frequent fires. Direct C-emissions through peat combustion must be quantified to examine the impact of peat fires on global and regional C-budgets, however it is also essential to evaluate oxidative decomposition of peat after fires for a complete understanding of ecosystem-scale fire impact. This kind of investigation is necessary also to understand the effect of peat burning on peat decomposition, because burning effects on the belowground environment are variable, depending on burnt frequency and fire severity. After a fire, ecosystems act as a C-source for months-to-years as ecosystem-respiration (Reco) exceeds photosynthesis. Furthermore during fires, the surface peat with a higher proportion of the more modern rapidly-cycled C burns preferentially. The loss of the surface peat possibly can reduce oxidative soil CO2 emissions, as the deeper, older peat, has more recalcitrant compounds. However, CO2emissions from this old C pool are a net flux to the atmosphere compared to the modern C. Within this context, we are quantifying the magnitudes and patterns of ecosystem-atmosphere fluxes of carbon dioxide (CO2) and methane (CH4) through cavity-ring spectroscopy in different transects of an intact tropical peat swamp forest and in two degraded forest areas affected by two and six fires over the last 40 years in Brunei, on the island of Borneo. We are using natural tracers such as δ13C and 14C to investigate the age and sources (auto- and heterotrophic) of C contributing to Reco and we are continuously monitoring soil temperature and water table level. Preliminary data show a similar magnitude of CO2 efflux between the intact (5.3 µmol CO2 m-2 s-1) and burnt areas (6.4 µmol CO2 m-2 s-1), with higher soil

  14. Sediment and Particular Organic Carbon (POC) fluxes changes over the past decades in the Yellow River system

    NASA Astrophysics Data System (ADS)

    Lu, Xixi; Ran, Lishan

    2015-04-01

    The Yellow River system used to have very high sediment export to ocean (around 1.5 Gt/yr in the 1950s) because of severe soil erosion on the Loess Plateau. However, its sediment export has declined to <0.25 Gt/yr in recent years (in the 2000s), mainly due to human activities like construction of reservoirs and check dams and other soil and water conservations such as construction of terraces and vegetation restoration. Such drastic reduction in soil erosion and sediment flux and subsequently in associated Particular Organic Carbon (POC) transport can potentially play a significant role in carbon cycling. Through the sediment flux budget we examined POC budget and carbon sequestration through vegetation restoration and various soil and water conservations including reservoirs construction over the past decades in the Yellow River system. Landsat imageries were used to delineate the reservoirs and check dams for estimating the sediment trapping. The reservoirs and check dams trapped a total amount of sediment 0.94 Gt/yr, equivalent to 6.5 Mt C. Soil erosion controls through vegetation restoration and terrace construction reduced soil erosion 1.82 Gt/yr, equivalent to 12 Mt C. The annual NPP increased from 0.150 Gt C in 2000 to 0.1889 Gt C in 2010 with an average increment rate of 3.4 Mt C per year over the recent decade (from 2000 to 2010) through vegetation restoration. The total carbon stabilized on slope systems through soil erosion controls (12 Mt C per year) was much higher than the direct carbon sequestration via vegetation restoration (3.4 Mt C per year), indicating the importance of horizontal carbon mobilization in carbon cycling, albeit a high estimate uncertainty.

  15. E-Flux2 and SPOT: Validated Methods for Inferring Intracellular Metabolic Flux Distributions from Transcriptomic Data.

    PubMed

    Kim, Min Kyung; Lane, Anatoliy; Kelley, James J; Lun, Desmond S

    2016-01-01

    Several methods have been developed to predict system-wide and condition-specific intracellular metabolic fluxes by integrating transcriptomic data with genome-scale metabolic models. While powerful in many settings, existing methods have several shortcomings, and it is unclear which method has the best accuracy in general because of limited validation against experimentally measured intracellular fluxes. We present a general optimization strategy for inferring intracellular metabolic flux distributions from transcriptomic data coupled with genome-scale metabolic reconstructions. It consists of two different template models called DC (determined carbon source model) and AC (all possible carbon sources model) and two different new methods called E-Flux2 (E-Flux method combined with minimization of l2 norm) and SPOT (Simplified Pearson cOrrelation with Transcriptomic data), which can be chosen and combined depending on the availability of knowledge on carbon source or objective function. This enables us to simulate a broad range of experimental conditions. We examined E. coli and S. cerevisiae as representative prokaryotic and eukaryotic microorganisms respectively. The predictive accuracy of our algorithm was validated by calculating the uncentered Pearson correlation between predicted fluxes and measured fluxes. To this end, we compiled 20 experimental conditions (11 in E. coli and 9 in S. cerevisiae), of transcriptome measurements coupled with corresponding central carbon metabolism intracellular flux measurements determined by 13C metabolic flux analysis (13C-MFA), which is the largest dataset assembled to date for the purpose of validating inference methods for predicting intracellular fluxes. In both organisms, our method achieves an average correlation coefficient ranging from 0.59 to 0.87, outperforming a representative sample of competing methods. Easy-to-use implementations of E-Flux2 and SPOT are available as part of the open-source package MOST (http

  16. The long-term carbon cycle, fossil fuels and atmospheric composition.

    PubMed

    Berner, Robert A

    2003-11-20

    The long-term carbon cycle operates over millions of years and involves the exchange of carbon between rocks and the Earth's surface. There are many complex feedback pathways between carbon burial, nutrient cycling, atmospheric carbon dioxide and oxygen, and climate. New calculations of carbon fluxes during the Phanerozoic eon (the past 550 million years) illustrate how the long-term carbon cycle has affected the burial of organic matter and fossil-fuel formation, as well as the evolution of atmospheric composition.

  17. Carbon flux from plants to soil microbes is highly sensitive to nitrogen addition and biochar amendment

    NASA Astrophysics Data System (ADS)

    Kaiser, C.; Solaiman, Z. M.; Kilburn, M. R.; Clode, P. L.; Fuchslueger, L.; Koranda, M.; Murphy, D. V.

    2012-04-01

    The release of carbon through plant roots to the soil has been recognized as a governing factor for soil microbial community composition and decomposition processes, constituting an important control for ecosystem biogeochemical cycles. Moreover, there is increasing awareness that the flux of recently assimilated carbon from plants to the soil may regulate ecosystem response to environmental change, as the rate of the plant-soil carbon transfer will likely be affected by increased plant C assimilation caused by increasing atmospheric CO2 levels. What has received less attention so far is how sensitive the plant-soil C transfer would be to possible regulations coming from belowground, such as soil N addition or microbial community changes resulting from anthropogenic inputs such as biochar amendments. In this study we investigated the size, rate and sensitivity of the transfer of recently assimilated plant C through the root-soil-mycorrhiza-microbial continuum. Wheat plants associated with arbuscular mycorrhizal fungi were grown in split-boxes which were filled either with soil or a soil-biochar mixture. Each split-box consisted of two compartments separated by a membrane which was penetrable for mycorrhizal hyphae but not for roots. Wheat plants were only grown in one compartment while the other compartment served as an extended soil volume which was only accessible by mycorrhizal hyphae associated with the plant roots. After plants were grown for four weeks we used a double-labeling approach with 13C and 15N in order to investigate interactions between C and N flows in the plant-soil-microorganism system. Plants were subjected to an enriched 13CO2 atmosphere for 8 hours during which 15NH4 was added to a subset of split-boxes to either the root-containing or the root-free compartment. Both, 13C and 15N fluxes through the plant-soil continuum were monitored over 24 hours by stable isotope methods (13C phospho-lipid fatty acids by GC-IRMS, 15N/13C in bulk plant

  18. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    NASA Astrophysics Data System (ADS)

    Moreira, Demerval S.; Longo, Karla M.; Freitas, Saulo R.; Yamasoe, Marcia A.; Mercado, Lina M.; Rosário, Nilton E.; Gloor, Emauel; Viana, Rosane S. M.; Miller, John B.; Gatti, Luciana V.; Wiedemann, Kenia T.; Domingues, Lucas K. G.; Correia, Caio C. S.

    2017-12-01

    Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to -104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50-50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado), as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry season, in the presence of high

  19. Temporal and Spatial Changes in Black Carbon Sedimentary Processes in Wetlands of Songnen Plain, Northeast of China

    PubMed Central

    He, Jiabao; Gao, Chuanyu; Lin, Qianxin; Zhang, Shaoqing; Zhao, Winston; Lu, Xianguo; Wang, Guoping

    2015-01-01

    Black carbon (BC), an important component of organic carbon (OC) produced from incomplete combustion of carbon compounds, is widespread and affects the global carbon storage. The objectives of this study were to analyze the BC contents and fluxes in the last 150 years to determine the causes of differences in the three profiles of the Songnen Plain of Northeast China and to estimate the BC storage in the wetlands of the Songnen Plain. In the three sampling sites, BC fluxes in the period between 1950 and the present time increased by the ratios of 1.3, 31.1 and 1.4, respectively, compared to their own baseline between 1850 and 1900. Furthermore, the BC fluxes varying from 0.76 to 5.63 g m-2 y-1 in the three profiles had an opposite trend with the sand percentages with mean values changing from 78.9% to 19.6%, suggesting that sand desertification might additionally affect the BC processes in the region. PMID:26469981

  20. Estimation of Surface Temperature and Heat Flux by Inverse Heat Transfer Methods Using Internal Temperatures Measured While Radiantly Heating a Carbon/Carbon Specimen up to 1920 F

    NASA Technical Reports Server (NTRS)

    Pizzo, Michelle; Daryabeigi, Kamran; Glass, David

    2015-01-01

    The ability to solve the heat conduction equation is needed when designing materials to be used on vehicles exposed to extremely high temperatures; e.g. vehicles used for atmospheric entry or hypersonic flight. When using test and flight data, computational methods such as finite difference schemes may be used to solve for both the direct heat conduction problem, i.e., solving between internal temperature measurements, and the inverse heat conduction problem, i.e., using the direct solution to march forward in space to the surface of the material to estimate both surface temperature and heat flux. The completed research first discusses the methods used in developing a computational code to solve both the direct and inverse heat transfer problems using one dimensional, centered, implicit finite volume schemes and one dimensional, centered, explicit space marching techniques. The developed code assumed the boundary conditions to be specified time varying temperatures and also considered temperature dependent thermal properties. The completed research then discusses the results of analyzing temperature data measured while radiantly heating a carbon/carbon specimen up to 1920 F. The temperature was measured using thermocouple (TC) plugs (small carbon/carbon material specimens) with four embedded TC plugs inserted into the larger carbon/carbon specimen. The purpose of analyzing the test data was to estimate the surface heat flux and temperature values from the internal temperature measurements using direct and inverse heat transfer methods, thus aiding in the thermal and structural design and analysis of high temperature vehicles.