Science.gov

Sample records for affecting cell growth

  1. Transcriptional modulator ZBED6 affects cell cycle and growth of human colorectal cancer cells.

    PubMed

    Akhtar Ali, Muhammad; Younis, Shady; Wallerman, Ola; Gupta, Rajesh; Andersson, Leif; Sjöblom, Tobias

    2015-06-23

    The transcription factor ZBED6 (zinc finger, BED-type containing 6) is a repressor of IGF2 whose action impacts development, cell proliferation, and growth in placental mammals. In human colorectal cancers, IGF2 overexpression is mutually exclusive with somatic mutations in PI3K signaling components, providing genetic evidence for a role in the PI3K pathway. To understand the role of ZBED6 in tumorigenesis, we engineered and validated somatic cell ZBED6 knock-outs in the human colorectal cancer cell lines RKO and HCT116. Ablation of ZBED6 affected the cell cycle and led to increased growth rate in RKO cells but reduced growth in HCT116 cells. This striking difference was reflected in the transcriptome analyses, which revealed enrichment of cell-cycle-related processes among differentially expressed genes in both cell lines, but the direction of change often differed between the cell lines. ChIP sequencing analyses displayed enrichment of ZBED6 binding at genes up-regulated in ZBED6-knockout clones, consistent with the view that ZBED6 modulates gene expression primarily by repressing transcription. Ten differentially expressed genes were identified as putative direct gene targets, and their down-regulation by ZBED6 was validated experimentally. Eight of these genes were linked to the Wnt, Hippo, TGF-β, EGF receptor, or PI3K pathways, all involved in colorectal cancer development. The results of this study show that the effect of ZBED6 on tumor development depends on the genetic background and the transcriptional state of its target genes.

  2. ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells

    PubMed Central

    Moreb, Jan S; Baker, Henry V; Chang, Lung-Ji; Amaya, Maria; Lopez, M Cecilia; Ostmark, Blanca; Chou, Wayne

    2008-01-01

    Background Aldehyde dehydrogenase isozymes ALDH1A1 and ALDH3A1 are highly expressed in non small cell lung cancer. Neither the mechanisms nor the biologic significance for such over expression have been studied. Methods We have employed oligonucleotide microarrays to analyze changes in gene profiles in A549 lung cancer cell line in which ALDH activity was reduced by up to 95% using lentiviral mediated expression of siRNA against both isozymes (Lenti 1+3). Stringent analysis methods were used to identify gene expression patterns that are specific to the knock down of ALDH activity and significantly different in comparison to wild type A549 cells (WT) or cells similarly transduced with green fluorescent protein (GFP) siRNA. Results We confirmed significant and specific down regulation of ALDH1A1 and ALDH3A1 in Lenti 1+3 cells and in comparison to 12 other ALDH genes detected. The results of the microarray analysis were validated by real time RT-PCR on RNA obtained from Lenti 1+3 or WT cells treated with ALDH activity inhibitors. Detailed functional analysis was performed on 101 genes that were significantly different (P < 0.001) and their expression changed by ≥ 2 folds in the Lenti 1+3 group versus the control groups. There were 75 down regulated and 26 up regulated genes. Protein binding, organ development, signal transduction, transcription, lipid metabolism, and cell migration and adhesion were among the most affected pathways. Conclusion These molecular effects of the ALDH knock-down are associated with in vitro functional changes in the proliferation and motility of these cells and demonstrate the significance of ALDH enzymes in cell homeostasis with a potentially significant impact on the treatment of lung cancer. PMID:19025616

  3. Cyclic Stretch Affects Pulmonary Endothelial Cell Control of Pulmonary Smooth Muscle Cell Growth

    PubMed Central

    Ochoa, Cristhiaan D.; Baker, Haven; Hasak, Stephen; Matyal, Robina; Salam, Aleya; Hales, Charles A.; Hancock, William; Quinn, Deborah A.

    2008-01-01

    Endothelial cells are subjected to mechanical forces in the form of cyclic stretch resulting from blood pulsatility. Pulmonary artery endothelial cells (PAECs) produce factors that stimulate and inhibit pulmonary artery smooth muscle cell (PASMC) growth. We hypothesized that PAECs exposed to cyclic stretch secrete proteins that inhibit PASMC growth. Media from PAECs exposed to cyclic stretch significantly inhibited PASMC growth in a time-dependent manner. Lyophilized material isolated from stretched PAEC-conditioned media significantly inhibited PASMC growth in a dose-dependent manner. This inhibition was reversed by trypsin inactivation, which is consistent with the relevant factor being a protein(s). To identify proteins that inhibited cell growth in conditioned media from stretched PAECs, we used proteomic techniques and found that thrombospondin (TSP)-1, a natural antiangiogenic factor, was up-regulated by stretch. In vitro, exogenous TSP-1 inhibited PASMC growth. TSP-1–blocking antibodies reversed conditioned media–induced inhibition of PASMC growth. Cyclic stretched PAECs secrete protein(s) that inhibit PASMC proliferation. TSP-1 may be, at least in part, responsible for this inhibition. The complete identification and understanding of the secreted proteome of stretched PAECs may lead to new insights into the pathophysiology of pulmonary vascular remodeling. PMID:18314539

  4. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    SciTech Connect

    Maneckjee, R.; Minna, J.D. Uniformed Services Univ. of the Health Sciences, Bethesda, MD )

    1990-05-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for {mu}, {delta}, and {kappa} opioid agonists and for nicotine and {alpha}-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas {mu}, {delta}, and {kappa} opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides ({beta}-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer.

  5. The ability of Salmonella to enter mammalian cells is affected by bacterial growth state.

    PubMed Central

    Lee, C A; Falkow, S

    1990-01-01

    We have examined the effect of different growth conditions on the ability of Salmonella to interact with Madin-Darby canine kidney cells. Two growth conditions that affect the expression of Salmonella adherence and invasiveness have been identified. First, bacteria lose their invasiveness in the stationary phase of growth. Second, bacteria growing in oxygen-limited growth conditions are induced for adherence and invasiveness, whereas those growing aerobically are relatively nonadherent and noninvasive. Salmonella from cultures aerated with gas mixtures containing 0% or 1% oxygen were 6- to 70-fold more adherent and invasive than those from cultures aerated with a gas mixture containing 20% oxygen. The Salmonella typhimurium oxrA gene that is required for the anaerobic induction of many proteins is not involved in the regulation of Salmonella invasiveness. We speculate that oxygen limitation might be an environmental cue that triggers the expression of Salmonella invasiveness within the intestinal lumen and other tissues. Images PMID:2349239

  6. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.

    PubMed

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5-10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles.

  7. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.

    PubMed

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5-10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles. PMID:26039692

  8. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation

    PubMed Central

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5–10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles. PMID:26039692

  9. Mir-373 affects human lung cancer cells' growth and its E-cadherin expression.

    PubMed

    Wu, Weihua; He, Xiaoyan; Kong, Jing; Ye, Bin

    2012-01-01

    The aims of this study was to elucidate whether the expression of E-cadherin can be affected by the recombinant has-mir-373 eukaryotic expression plasmid vector through tests in vitro, and to analyze the relationship between the expression of E-cadherin and tumor growth. According to the has-mir-373 sequence in miRBase database, two template DNA sequences were designed. The has-mir-373 sequence and a control sequence were synthesized and cloned into pGenesil-1 eukaryotic expression plasmid vector. The recombinant plasmids were transfected into human lung cancer A549 cells by liposome-mediated method. The mir-373 expression in A549 cells was detected by using real-time quantitative polymerase chain reaction (real-time PCR). MTT (methyl thiazolyl tetrazolium) was used to analyze the growth of cancer cell cycle. RT-PCR and Western blotting were used to evaluate the levels of E-cadherin mRNA and protein expression, respectively. The expression of E-cadherin in cells was determined by immunocytochemistry. The mobility capability of transfected cells were evaluated by using wound healing assay in vitro. The fluorescent light was observed under fluorescent microscope. RT-PCR indicated that the mRNA of E-cadherin increased, and the Western blotting results also displayed that mir-373 promoted the expression of the E-cadherin protein. Compared with the control groups, MTT method and wound healing assay demonstrated that both the growth rate and migration of A549 cells transfected with the recombinant has-mir-373 eukaryotic expression plasmid was also decreased significantly (p < 0.001). The differences between the other two control groups were not significant (p > 0.05). The immunocytochemistry demonstrated a significant increase of E-cadherin protein levels in the cells transfected with mir-373, but not in the cells of the control group. Mir-373 could increase the expression levels of the E-cadherin and decrease the migration ability of human lung cancer A549 cells in

  10. The thiamine content of phytoplankton cells is affected by abiotic stress and growth rate.

    PubMed

    Sylvander, Peter; Häubner, Norbert; Snoeijs, Pauline

    2013-04-01

    Thiamine (vitamin B1) is produced by many plants, algae and bacteria, but by higher trophic levels, it must be acquired through the diet. We experimentally investigated how the thiamine content of six phytoplankton species belonging to five different phyla is affected by abiotic stress caused by changes in temperature, salinity and photon flux density. Correlations between growth rate and thiamine content per cell were negative for the five eukaryotic species, but not for the cyanobacterium Nodularia spumigena. We demonstrate a high variability in thiamine content among phytoplankton species, with the highest content in N. spumigena. Salinity was the factor with the strongest effect, followed by temperature and photon flux density, although the responses varied between the investigated phytoplankton species. Our results suggest that regime shifts in phytoplankton community composition through large-scale environmental changes has the potential to alter the thiamine availability for higher trophic levels. A decreased access to this essential vitamin may have serious consequences for aquatic food webs. PMID:23263236

  11. Growth factors and hormones which affect survival, growth, and differentiation of the MCF-7 stem cells and their descendants

    SciTech Connect

    Resnicoff, M.; Medrano, E.E. )

    1989-03-01

    The human breast tumor cell line was separated by Percoll density gradient centrifugation into six different subpopulations, A to F, of which (E) appears to contain the stem cells on the basis of several criteria. The authors analyzed the response of the isolated subpopulations to insulin, thrombin, PGF{sub 2{alpha}}, estradiol, and 13-cis-retinal. They demonstrate that the first two growth factors stimulate ({sup 3}H)thymidine incorporation in the more differentiated subpopulations (D and F), while PGF{sub 2{alpha}} has mitogenic activity in subpopulations C and D. In the absence of any added growth factor, estradiol has the extreme and transient capacity of allowing the stem cell to detach from the tissue culture dish and to grow in suspension as multicellular aggregates (MCF-7/SE cells). 13-cis-Retinal acts as a negative modulator of differentiation and protects the cells from the inhibitory and differentiation activity in Na-butyrate.

  12. Luciferase expression and bioluminescence does not affect tumor cell growth in vitro or in vivo.

    PubMed

    Tiffen, Jessamy C; Bailey, Charles G; Ng, Cynthia; Rasko, John E J; Holst, Jeff

    2010-01-01

    Live animal imaging is becoming an increasingly common technique for accurate and quantitative assessment of tumor burden over time. Bioluminescence imaging systems rely on a bioluminescent signal from tumor cells, typically generated from expression of the firefly luciferase gene. However, previous reports have suggested that either a high level of luciferase or the resultant light reaction produced upon addition of D-luciferin substrate can have a negative influence on tumor cell growth. To address this issue, we designed an expression vector that allows simultaneous fluorescence and luminescence imaging. Using fluorescence activated cell sorting (FACS), we generated clonal cell populations from a human breast cancer (MCF-7) and a mouse melanoma (B16-F10) cell line that stably expressed different levels of luciferase. We then compared the growth capabilities of these clones in vitro by MTT proliferation assay and in vivo by bioluminescence imaging of tumor growth in live mice. Surprisingly, we found that neither the amount of luciferase nor biophotonic activity was sufficient to inhibit tumor cell growth, in vitro or in vivo. These results suggest that luciferase toxicity is not a necessary consideration when designing bioluminescence experiments, and therefore our approach can be used to rapidly generate high levels of luciferase expression for sensitive imaging experiments. PMID:21092230

  13. Cell phone radiations affect early growth of Vigna radiata (mung bean) through biochemical alterations.

    PubMed

    Sharma, Ved Parkash; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2010-01-01

    The indiscriminate use of wireless technologies, particularly of cell phones, has increased the health risks among living organisms including plants. We investigated the impact of cell phone electromagentic field (EMF) radiations (power density, 8.55 microW cm(-2)) on germination, early growth, proteins and carbohydrate contents, and activities of some enzymes in Vigna radiata. Cell phone EMF radiations significantly reduced the seedling length and dry weight of V radiata after exposure for 0.5, 1, 2, and 4 h. Furthermore, the contents of proteins and carbohydrates were reduced in EMF-exposed plants. However, the activities of proteases, alpha-amylases, beta-amylases, polyphenol oxidases, and peroxidases were enhanced in EMF-exposed radicles indicating their role in providing protection against EMF-induced stress. The study concludes that cell phone EMFs impair early growth of V radiata seedlings by inducing biochemical changes.

  14. An ethanolamine kinase Eki1 affects radial growth and cell wall integrity in Trichoderma reesei.

    PubMed

    He, Ronglin; Guo, Wei; Zhang, Dongyuan

    2015-09-01

    Ethanolamine kinase (ATP:ethanolamine O-phosphotransferase, EC 2.7.1.82) catalyzes the committed step of phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. The functions of eki genes that encode ethanolamine kinase have been intensively studied in mammalian cells, fruit flies and yeast. However, the role of the eki gene has not yet been characterized in filamentous fungi. In this study, Treki1, an ortholog of Saccharomyces cerevisiae EKI1, was identified and functionally characterized using a target gene deletion strategy in Trichoderma reesei. A Treki deletion mutant was less sensitive to cell wall stressors calcofluor white and Congo red and released fewer protoplasts during cell wall digestion than the parent strain QM9414. Further transcription analysis showed that the expression levels of five genes that encode chitin synthases were drastically increased in the ΔTreki1 mutant. The chitin content was also increased in the null mutant of Treki1 comparing to the parent strain. In addition, the ΔTreki1 mutant exhibited defects in radial growth, conidiation and the accumulation of ethanolamine. The results indicate that Treki1 plays a key role in growth and development and in the maintenance of cell wall integrity in T. reesei.

  15. An ethanolamine kinase Eki1 affects radial growth and cell wall integrity in Trichoderma reesei.

    PubMed

    He, Ronglin; Guo, Wei; Zhang, Dongyuan

    2015-09-01

    Ethanolamine kinase (ATP:ethanolamine O-phosphotransferase, EC 2.7.1.82) catalyzes the committed step of phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. The functions of eki genes that encode ethanolamine kinase have been intensively studied in mammalian cells, fruit flies and yeast. However, the role of the eki gene has not yet been characterized in filamentous fungi. In this study, Treki1, an ortholog of Saccharomyces cerevisiae EKI1, was identified and functionally characterized using a target gene deletion strategy in Trichoderma reesei. A Treki deletion mutant was less sensitive to cell wall stressors calcofluor white and Congo red and released fewer protoplasts during cell wall digestion than the parent strain QM9414. Further transcription analysis showed that the expression levels of five genes that encode chitin synthases were drastically increased in the ΔTreki1 mutant. The chitin content was also increased in the null mutant of Treki1 comparing to the parent strain. In addition, the ΔTreki1 mutant exhibited defects in radial growth, conidiation and the accumulation of ethanolamine. The results indicate that Treki1 plays a key role in growth and development and in the maintenance of cell wall integrity in T. reesei. PMID:26293912

  16. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle.

    PubMed

    Zore, Gajanan B; Thakre, Archana D; Jadhav, Sitaram; Karuppayil, S Mohan

    2011-10-15

    Anti-Candida potential of six terpenoids were evaluated in this study against various isolates of Candida albicans (n=39) and non-C. albicans (n=9) that are differentially susceptible to fluconazole. All the six terpenoids tested, showed excellent activity and were equally effective against isolates of Candida sps., tested in this study. Linalool and citral were the most effective ones, inhibiting all the isolates at ≤0.064% (v/v). Five among the six terpenoids tested were fungicidal. Time dependent kill curve assay showed that MFCs of linalool and eugenol were highly toxic to C. albicans, killing 99.9% inoculum within seven min of exposure, while that of citronellal, linalyl acetate and citral required 15min, 1h and 2h, respectively. FIC index values (Linalool - 0.140, benzyl benzoate - 0.156, eugenol - 0.265, citral - 0.281 and 0.312 for linalyl acetate and citronellal) and isobologram obtained by checker board assay showed that all the six terpenoids tested exhibit excellent synergistic activity with fluconazole against a fluconazole resistant strain of C. albicans. Terpenoids tested arrested C. albicans cells at different phases of the cell cycle i.e. linalool and LA at G1, citral and citronellal at S phase and benzyl benzoate at G2-M phase and induced apoptosis. Linalool, citral, citronellal and benzyl benzoate caused more than 50% inhibition of germ tube induction at 0.008%, while eugenol and LA required 0.032 and 0.016% (v/v) concentrations, respectively. MICs of all the terpenoids for the C. albicans growth were non toxic to HeLa cells. Terpenoids tested exhibited excellent activity against C. albicans yeast and hyphal form growth at the concentrations that are non toxic to HeLa cells. Terpenoids tested in this study may find use in antifungal chemotherapy, not only as antifungal agents but also as synergistic agents along with conventional drugs like fluconazole.

  17. The Garlic Allelochemical Diallyl Disulfide Affects Tomato Root Growth by Influencing Cell Division, Phytohormone Balance and Expansin Gene Expression.

    PubMed

    Cheng, Fang; Cheng, Zhihui; Meng, Huanwen; Tang, Xiangwei

    2016-01-01

    Diallyl disulfide (DADS) is a volatile organosulfur compound derived from garlic (Allium sativum L.), and it is known as an allelochemical responsible for the strong allelopathic potential of garlic. The anticancer properties of DADS have been studied in experimental animals and various types of cancer cells, but to date, little is known about its mode of action as an allelochemical at the cytological level. The current research presents further studies on the effects of DADS on tomato (Solanum lycopersicum L.) seed germination, root growth, mitotic index, and cell size in root meristem, as well as the phytohormone levels and expression profile of auxin biosynthesis genes (FZYs), auxin transport genes (SlPINs), and expansin genes (EXPs) in tomato root. The results showed a biphasic, dose-dependent effect on tomato seed germination and root growth under different DADS concentrations. Lower concentrations (0.01-0.62 mM) of DADS significantly promoted root growth, whereas higher levels (6.20-20.67 mM) showed inhibitory effects. Cytological observations showed that the cell length of root meristem was increased and that the mitotic activity of meristematic cells in seedling root tips was enhanced at lower concentrations of DADS. In contrast, DADS at higher concentrations inhibited root growth by affecting both the length and division activity of meristematic cells. However, the cell width of the root meristem was not affected. Additionally, DADS increased the IAA and ZR contents of seedling roots in a dose-dependent manner. The influence on IAA content may be mediated by the up-regulation of FZYs and PINs. Further investigation into the underlying mechanism revealed that the expression levels of tomato EXPs were significantly affected by DADS. The expression levels of EXPB2 and beta-expansin precursor were increased after 3 d, and those of EXP1, EXPB3 and EXLB1 were increased after 5 d of DADS treatment (0.41 mM). This result suggests that tomato root growth may be

  18. The Garlic Allelochemical Diallyl Disulfide Affects Tomato Root Growth by Influencing Cell Division, Phytohormone Balance and Expansin Gene Expression

    PubMed Central

    Cheng, Fang; Cheng, Zhihui; Meng, Huanwen; Tang, Xiangwei

    2016-01-01

    Diallyl disulfide (DADS) is a volatile organosulfur compound derived from garlic (Allium sativum L.), and it is known as an allelochemical responsible for the strong allelopathic potential of garlic. The anticancer properties of DADS have been studied in experimental animals and various types of cancer cells, but to date, little is known about its mode of action as an allelochemical at the cytological level. The current research presents further studies on the effects of DADS on tomato (Solanum lycopersicum L.) seed germination, root growth, mitotic index, and cell size in root meristem, as well as the phytohormone levels and expression profile of auxin biosynthesis genes (FZYs), auxin transport genes (SlPINs), and expansin genes (EXPs) in tomato root. The results showed a biphasic, dose-dependent effect on tomato seed germination and root growth under different DADS concentrations. Lower concentrations (0.01–0.62 mM) of DADS significantly promoted root growth, whereas higher levels (6.20–20.67 mM) showed inhibitory effects. Cytological observations showed that the cell length of root meristem was increased and that the mitotic activity of meristematic cells in seedling root tips was enhanced at lower concentrations of DADS. In contrast, DADS at higher concentrations inhibited root growth by affecting both the length and division activity of meristematic cells. However, the cell width of the root meristem was not affected. Additionally, DADS increased the IAA and ZR contents of seedling roots in a dose-dependent manner. The influence on IAA content may be mediated by the up-regulation of FZYs and PINs. Further investigation into the underlying mechanism revealed that the expression levels of tomato EXPs were significantly affected by DADS. The expression levels of EXPB2 and beta-expansin precursor were increased after 3 d, and those of EXP1, EXPB3 and EXLB1 were increased after 5 d of DADS treatment (0.41 mM). This result suggests that tomato root growth may be

  19. The Garlic Allelochemical Diallyl Disulfide Affects Tomato Root Growth by Influencing Cell Division, Phytohormone Balance and Expansin Gene Expression.

    PubMed

    Cheng, Fang; Cheng, Zhihui; Meng, Huanwen; Tang, Xiangwei

    2016-01-01

    Diallyl disulfide (DADS) is a volatile organosulfur compound derived from garlic (Allium sativum L.), and it is known as an allelochemical responsible for the strong allelopathic potential of garlic. The anticancer properties of DADS have been studied in experimental animals and various types of cancer cells, but to date, little is known about its mode of action as an allelochemical at the cytological level. The current research presents further studies on the effects of DADS on tomato (Solanum lycopersicum L.) seed germination, root growth, mitotic index, and cell size in root meristem, as well as the phytohormone levels and expression profile of auxin biosynthesis genes (FZYs), auxin transport genes (SlPINs), and expansin genes (EXPs) in tomato root. The results showed a biphasic, dose-dependent effect on tomato seed germination and root growth under different DADS concentrations. Lower concentrations (0.01-0.62 mM) of DADS significantly promoted root growth, whereas higher levels (6.20-20.67 mM) showed inhibitory effects. Cytological observations showed that the cell length of root meristem was increased and that the mitotic activity of meristematic cells in seedling root tips was enhanced at lower concentrations of DADS. In contrast, DADS at higher concentrations inhibited root growth by affecting both the length and division activity of meristematic cells. However, the cell width of the root meristem was not affected. Additionally, DADS increased the IAA and ZR contents of seedling roots in a dose-dependent manner. The influence on IAA content may be mediated by the up-regulation of FZYs and PINs. Further investigation into the underlying mechanism revealed that the expression levels of tomato EXPs were significantly affected by DADS. The expression levels of EXPB2 and beta-expansin precursor were increased after 3 d, and those of EXP1, EXPB3 and EXLB1 were increased after 5 d of DADS treatment (0.41 mM). This result suggests that tomato root growth may be

  20. microRNA 21-mediated suppression of Sprouty1 by Pokemon affects liver cancer cell growth and proliferation.

    PubMed

    Jin, Xiu-Li; Sun, Qin-Sheng; Liu, Feng; Yang, Hong-Wei; Liu, Min; Liu, Hong-Xia; Xu, Wei; Jiang, Yu-Yang

    2013-07-01

    Transcriptional repressor Pokemon is a critical factor in embryogenesis, development, cell proliferation, differentiation, and oncogenesis, thus behaving as an oncogene. Oncomine database suggests a potential correlation between the expressions of Pokemon and Sprouty1. This study investigated the regulatory role of Pokemon in Sprouty1 expression and the effect on liver cancer cell growth and proliferation, revealing a novel miR-21-mediated regulatory circuit. In normal (HL-7702) and cancer (QGY-7703) liver cell lines, Sprouty1 expression is inversely correlated with Pokemon levels. Targeted expression or siRNA-mediated silencing showed that Pokemon is a repressor of Sprouty1 expression at both mRNA and protein levels, but Pokemon cannot affect the promoter activity of Sprouty1. Sprouty1 is a target of miR-21 and interestingly, we found that miR-21 is up-regulated by Pokemon in liver cancer cells. Luciferase reporter assays showed that Pokemon up-regulated miR-21 transcription in a dose-dependent manner, and ChIP assay exhibited a direct binding of Pokemon to the miR-21 promoter at -747 to -399 bp. Site-directed mutagenesis of the GC boxes at -684 to -679 bp and -652 to -647 bp of miR-21 promoter abolished the regulatory activity by Pokemon. Furthermore, we found that the modulation of Pokemon and miR-21 expression affected the growth and proliferation of liver cancer cells QGY-7703. In summary, our findings demonstrate that Pokemon suppresses Sprouty1 expression through a miR-21-mediated mechanism, affecting the growth and proliferation of liver cancer cells. This study recognized miR-21 and Sprouty1 as novel targets of the Pokemon regulatory network. PMID:23355454

  1. microRNA 21-mediated suppression of Sprouty1 by Pokemon affects liver cancer cell growth and proliferation.

    PubMed

    Jin, Xiu-Li; Sun, Qin-Sheng; Liu, Feng; Yang, Hong-Wei; Liu, Min; Liu, Hong-Xia; Xu, Wei; Jiang, Yu-Yang

    2013-07-01

    Transcriptional repressor Pokemon is a critical factor in embryogenesis, development, cell proliferation, differentiation, and oncogenesis, thus behaving as an oncogene. Oncomine database suggests a potential correlation between the expressions of Pokemon and Sprouty1. This study investigated the regulatory role of Pokemon in Sprouty1 expression and the effect on liver cancer cell growth and proliferation, revealing a novel miR-21-mediated regulatory circuit. In normal (HL-7702) and cancer (QGY-7703) liver cell lines, Sprouty1 expression is inversely correlated with Pokemon levels. Targeted expression or siRNA-mediated silencing showed that Pokemon is a repressor of Sprouty1 expression at both mRNA and protein levels, but Pokemon cannot affect the promoter activity of Sprouty1. Sprouty1 is a target of miR-21 and interestingly, we found that miR-21 is up-regulated by Pokemon in liver cancer cells. Luciferase reporter assays showed that Pokemon up-regulated miR-21 transcription in a dose-dependent manner, and ChIP assay exhibited a direct binding of Pokemon to the miR-21 promoter at -747 to -399 bp. Site-directed mutagenesis of the GC boxes at -684 to -679 bp and -652 to -647 bp of miR-21 promoter abolished the regulatory activity by Pokemon. Furthermore, we found that the modulation of Pokemon and miR-21 expression affected the growth and proliferation of liver cancer cells QGY-7703. In summary, our findings demonstrate that Pokemon suppresses Sprouty1 expression through a miR-21-mediated mechanism, affecting the growth and proliferation of liver cancer cells. This study recognized miR-21 and Sprouty1 as novel targets of the Pokemon regulatory network.

  2. Overexpression of Arabidopsis Ceramide Synthases Differentially Affects Growth, Sphingolipid Metabolism, Programmed Cell Death, and Mycotoxin Resistance.

    PubMed

    Luttgeharm, Kyle D; Chen, Ming; Mehra, Amit; Cahoon, Rebecca E; Markham, Jonathan E; Cahoon, Edgar B

    2015-10-01

    Ceramide synthases catalyze an N-acyltransferase reaction using fatty acyl-coenzyme A (CoA) and long-chain base (LCB) substrates to form the sphingolipid ceramide backbone and are targets for inhibition by the mycotoxin fumonisin B1 (FB1). Arabidopsis (Arabidopsis thaliana) contains three genes encoding ceramide synthases with distinct substrate specificities: LONGEVITY ASSURANCE GENE ONE HOMOLOG1 (LOH1; At3g25540)- and LOH3 (At1g19260)-encoded ceramide synthases use very-long-chain fatty acyl-CoA and trihydroxy LCB substrates, and LOH2 (At3g19260)-encoded ceramide synthase uses palmitoyl-CoA and dihydroxy LCB substrates. In this study, complementary DNAs for each gene were overexpressed to determine the role of individual isoforms in physiology and sphingolipid metabolism. Differences were observed in growth resulting from LOH1 and LOH3 overexpression compared with LOH2 overexpression. LOH1- and LOH3-overexpressing plants had enhanced biomass relative to wild-type plants, due in part to increased cell division, suggesting that enhanced synthesis of very-long-chain fatty acid/trihydroxy LCB ceramides promotes cell division and growth. Conversely, LOH2 overexpression resulted in dwarfing. LOH2 overexpression also resulted in the accumulation of sphingolipids with C16 fatty acid/dihydroxy LCB ceramides, constitutive induction of programmed cell death, and accumulation of salicylic acid, closely mimicking phenotypes observed previously in LCB C-4 hydroxylase mutants defective in trihydroxy LCB synthesis. In addition, LOH2- and LOH3-overexpressing plants acquired increased resistance to FB1, whereas LOH1-overexpressing plants showed no increase in FB1 resistance, compared with wild-type plants, indicating that LOH1 ceramide synthase is most strongly inhibited by FB1. Overall, the findings described here demonstrate that overexpression of Arabidopsis ceramide synthases results in strongly divergent physiological and metabolic phenotypes, some of which have significance

  3. MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms.

    PubMed

    Conti, Valentina; Gandaglia, Anna; Galli, Francesco; Tirone, Mario; Bellini, Elisa; Campana, Lara; Kilstrup-Nielsen, Charlotte; Rovere-Querini, Patrizia; Brunelli, Silvia; Landsberger, Nicoletta

    2015-01-01

    Rett syndrome (RTT) is an autism spectrum disorder mainly caused by mutations in the X-linked MECP2 gene and affecting roughly 1 out of 10.000 born girls. Symptoms range in severity and include stereotypical movement, lack of spoken language, seizures, ataxia and severe intellectual disability. Notably, muscle tone is generally abnormal in RTT girls and women and the Mecp2-null mouse model constitutively reflects this disease feature. We hypothesized that MeCP2 in muscle might physiologically contribute to its development and/or homeostasis, and conversely its defects in RTT might alter the tissue integrity or function. We show here that a disorganized architecture, with hypotrophic fibres and tissue fibrosis, characterizes skeletal muscles retrieved from Mecp2-null mice. Alterations of the IGF-1/Akt/mTOR pathway accompany the muscle phenotype. A conditional mouse model selectively depleted of Mecp2 in skeletal muscles is characterized by healthy muscles that are morphologically and molecularly indistinguishable from those of wild-type mice raising the possibility that hypotonia in RTT is mainly, if not exclusively, mediated by non-cell autonomous effects. Our results suggest that defects in paracrine/endocrine signaling and, in particular, in the GH/IGF axis appear as the major cause of the observed muscular defects. Remarkably, this is the first study describing the selective deletion of Mecp2 outside the brain. Similar future studies will permit to unambiguously define the direct impact of MeCP2 on tissue dysfunctions.

  4. MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms

    PubMed Central

    Galli, Francesco; Tirone, Mario; Bellini, Elisa; Campana, Lara; Kilstrup-Nielsen, Charlotte; Rovere-Querini, Patrizia; Brunelli, Silvia; Landsberger, Nicoletta

    2015-01-01

    Rett syndrome (RTT) is an autism spectrum disorder mainly caused by mutations in the X-linked MECP2 gene and affecting roughly 1 out of 10.000 born girls. Symptoms range in severity and include stereotypical movement, lack of spoken language, seizures, ataxia and severe intellectual disability. Notably, muscle tone is generally abnormal in RTT girls and women and the Mecp2-null mouse model constitutively reflects this disease feature. We hypothesized that MeCP2 in muscle might physiologically contribute to its development and/or homeostasis, and conversely its defects in RTT might alter the tissue integrity or function. We show here that a disorganized architecture, with hypotrophic fibres and tissue fibrosis, characterizes skeletal muscles retrieved from Mecp2-null mice. Alterations of the IGF-1/Akt/mTOR pathway accompany the muscle phenotype. A conditional mouse model selectively depleted of Mecp2 in skeletal muscles is characterized by healthy muscles that are morphologically and molecularly indistinguishable from those of wild-type mice raising the possibility that hypotonia in RTT is mainly, if not exclusively, mediated by non-cell autonomous effects. Our results suggest that defects in paracrine/endocrine signaling and, in particular, in the GH/IGF axis appear as the major cause of the observed muscular defects. Remarkably, this is the first study describing the selective deletion of Mecp2 outside the brain. Similar future studies will permit to unambiguously define the direct impact of MeCP2 on tissue dysfunctions. PMID:26098633

  5. SOX11 and HIG-2 are cross-regulated and affect growth in mantle cell lymphoma.

    PubMed

    Kuci, Venera; Nordström, Lena; Conrotto, Paolo; Ek, Sara

    2016-08-01

    The transcriptional factor SOX11 is a disease-defining antigen in mantle cell lymphoma (MCL) and absent in most non-malignant tissues. To explore the role of SOX11-related cell signaling, and potentially take benefit from these for targeted therapy, associated networks and proteins need to be defined. In this study, we used an inducible SOX11 knock-down system followed by gene expression analysis to identify co-regulated genes and associated signaling pathways. A limited number (n = 27) of significantly co-regulated genes were identified, including SETMAR, HIG-2, and CD24. Further analysis confirmed co-regulation of SOX11 with HIG-2 and CD24 at the protein level. Of major interest, knock-down of HIG-2 reduced SOX11 levels and increased proliferation, the proteins are thus cross-regulated. HIG-2 was localized at the plasma cell membrane in both cell lines and primary MCL cells, and could potentially be of interest for targeted therapy.

  6. Rv3351c, a Mycobacterium tuberculosis gene that affects bacterial growth and alveolar epithelial cell viability.

    PubMed

    Pavlicek, Rebecca L; Fine-Coulson, Kari; Gupta, Tuhina; Quinn, Frederick D; Posey, James E; Willby, Melisa; Castro-Garza, Jorge; Karls, Russell K

    2015-12-01

    Despite the interactions known to occur between various lower respiratory tract pathogens and alveolar epithelial cells (AECs), few reports examine factors influencing the interplay between Mycobacterium tuberculosis bacilli and AECs during infection. Importantly, in vitro studies have demonstrated that the M. tuberculosis hbha and esxA gene products HBHA and ESAT6 directly or indirectly influence AEC survival. In this report, we identify Rv3351c as another M. tuberculosis gene that impacts the fate of both the pathogen and AEC host. Intracellular replication of an Rv3351c mutant in the human AEC type II pneumocyte cell line A549 was markedly reduced relative to the complemented mutant and parent strain. Deletion of Rv3351c diminished the release of lactate dehydrogenase and decreased uptake of trypan blue vital stain by host cells infected with M. tuberculosis bacilli, suggesting attenuated cytotoxic effects. Interestingly, an isogenic hbha mutant displayed reductions in AEC killing similar to those observed for the Rv3351c mutant. This opens the possibility that multiple M. tuberculosis gene products interact with AECs. We also observed that Rv3351c aids intracellular replication and survival of M. tuberculosis in macrophages. This places Rv3351c in the same standing as HBHA and ESAT6, which are important factors in AECs and macrophages. Defining the mechanism(s) by which Rv3351c functions to aid pathogen survival within the host may lead to new drug or vaccine targets.

  7. Interleukin-6 is a cofactor for the growth of myeloid cells from human bone marrow aspirates but does not affect the clonogenicity of myeloma cells in vitro.

    PubMed

    Borinaga, A M; Millar, B C; Bell, J B; Joffe, J K; Millar, J L; Gooding, R; Riches, P; McElwain, T J

    1990-12-01

    a cofactor for the growth of myeloid precursors but does not affect the proliferation of human myeloma cells in vitro.

  8. BRCA1 protein level is not affected by peptide growth factors in MCF10A cell line.

    PubMed

    Aprelikova, O; Kuthiala, A; Bessho, M; Ethier, S; Liu, E T

    1996-12-01

    The breast cancer susceptibility gene (BRCA1) has been identified as a putative tumor suppressor on chromosome 17. We raised antibody against Ring-finger domain of BRCA1. The antibody recognizes a specific BRCA1 protein doublet of about 220 kD. The majority of BRCA1 protein is localized to the nuclear fraction of untreated MCF10A cells. Though BRCA1 is thought to be a growth suppressor gene, no change in BRCA1 protein level was found when MCF10A cells were arrested by growth factor deprivation or stimulation of cell proliferation by re-addition of growth factors. Furthermore the subcellular localization of the BRCA1 protein does not change throughout the cell cycle. These results suggest that BRCA1 may not be directly involved in the regulation of the cell cycle of breast cancer cell line.

  9. Polyamine metabolism and transforming growth factor-beta signaling are affected in Caco-2 cells by differentially cooked broccoli extracts.

    PubMed

    Furniss, Caroline S M; Bennett, Richard N; Bacon, James R; LeGall, Gwen; Mithen, Richard F

    2008-10-01

    The health benefits of consuming cruciferous vegetables are widely considered to be due to the biological activity of glucosinolate degradation products. However, it is conceivable that other phytochemicals within crucifers may also have biological activity that may contribute to health benefits. In this study, we analyzed global gene expression in Caco-2 cells exposed to extracts derived from broccoli that had been heat treated to different extents to result in contrasting profiles of glucosinolates and their degradation products. Extracts microwaved for 0, 1, and 4 min contained 9.5, 25.5, and 0 micromol/L sulforaphane and induced changes in expression of 381, 1017, and 101 genes, respectively (>2 fold; P < 0.01). Seventy-two genes showed similar changes in expression after treatment with all 3 extracts. These included genes involved in polyamine catabolism and transforming growth factor (TGF)-beta signaling. Consistent with these changes in gene expression, subsequent studies demonstrated that exposing cells to these extracts, including the 4-min extract that contained no glucosinolate degradation products, increased putrescine and N-acetyl-spermine concentration, and suppressed the TGFbeta1-mediated induction of phosphorylated Smad 2. This is the first report, to our knowledge, of phytochemicals from a cruciferous vegetable affecting both a signaling pathway and a catabolic process.

  10. Prolactin and growth hormone affect metaphase-II chromosomes in aging oocytes via cumulus cells using similar signaling pathways

    PubMed Central

    Lebedeva, Irina Y.; Singina, Galina N.; Lopukhov, Alexander V.; Shedova, Ekaterina N.; Zinovieva, Natalia A.

    2015-01-01

    General senescence of the adult organism is closely connected with reproductive one. Meanwhile, the age-related reduction in the female fertility is primarily associated with a decline in the gamete quality. Molecular and cellular changes in oocytes of old mammalian females are very similar to those occurring during aging of matured ova of their young counterparts, suggesting similarities in underlying mechanisms. The aim of the present work was to study actions of two related pituitary hormones, prolactin (PRL) and growth hormone (GH), on age-associated modifications of metaphase-II (M-II) chromosomes in bovine oocytes using a model of the prolonged culture. We analyzed: (1) effects of PRL and GH on abnormal changes in the chromosome morphology in aging matured oocytes and the role of cumulus cells in these effects and (2) signaling pathways involved in the hormone actions. During the prolonged culture of oocytes, a gradual rise in the frequency of destructive modifications of M-II chromosomes was revealed. In the case of cumulus-enclosed oocytes (CEOs), PRL and GH exerted dose-dependent biphasic effects on the frequency of these modifications. Both PRL (50 ng/ml) and GH (10 ng/ml) decelerated the abnormal chromosome changes in CEOs, but did not affect the chromosome configuration in denuded oocytes. Concurrently, the presence of PRL and GH receptors in cumulus cells surrounding matured oocytes was demonstrated. Attenuating effects of both hormones on the chromosome modifications in aging CEOs were abolished by PP2 (an inhibitor of Src-family tyrosine kinases), triciribine (an inhibitor of Akt kinase), and calphostin C (a protein kinase C inhibitor). Our findings indicate that PRL and GH can exert the similar decelerating action on age-associated alterations in the M-II chromosome morphology in bovine ova, which is mediated by cumulus cells and may be related to activation of Src-family tyrosine kinases as well as Akt- and protein kinase C-dependent signal

  11. Altering adsorbed proteins or cellular gene expression in bone-metastatic cancer cells affects PTHrP and Gli2 without altering cell growth.

    PubMed

    Page, Jonathan M; Merkel, Alyssa R; Ruppender, Nazanin S; Guo, Ruijing; Dadwal, Ushashi C; Cannonier, Shellese; Basu, Sandip; Guelcher, Scott A; Sterling, Julie A

    2015-09-01

    The contents of this data in brief are related to the article titled "Matrix Rigidity Regulates the Transition of Tumor Cells to a Bone-Destructive Phenotype through Integrin β3 and TGF-β Receptor Type II". In this DIB we will present our supplemental data investigating Integrin expression, attachment of cells to various adhesion molecules, and changes in gene expression in multiple cancer cell lines. Since the interactions of Integrins with adsorbed matrix proteins are thought to affect the ability of cancer cells to interact with their underlying substrates, we examined the expression of Integrin β1, β3, and β5 in response to matrix rigidity. We found that only Iβ3 increased with increasing substrate modulus. While it was shown that fibronectin greatly affects the expression of tumor-produced factors associated with bone destruction (parathyroid hormone-related protein, PTHrP, and Gli2), poly-l-lysine, vitronectin and type I collagen were also analyzed as potential matrix proteins. Each of the proteins was independently adsorbed on both rigid and compliant polyurethane films which were subsequently used to culture cancer cells. Poly-l-lysine, vitronectin and type I collagen all had negligible effects on PTHrP or Gli2 expression, but fibronectin was shown to have a dose dependent effect. Finally, altering the expression of Iβ3 demonstrated that it is required for tumor cells to respond to the rigidity of the matrix, but does not affect other cell growth or viability. Together these data support the data presented in our manuscript to show that the rigidity of bone drives Integrinβ3/TGF-β crosstalk, leading to increased expression of Gli2 and PTHrP.

  12. The Populus Class III HD ZIP transcription factor POPCORONA affects cell differentiation during secondary growth of woody stems.

    PubMed

    Du, Juan; Miura, Eriko; Robischon, Marcel; Martinez, Ciera; Groover, Andrew

    2011-02-28

    The developmental mechanisms regulating cell differentiation and patterning during the secondary growth of woody tissues are poorly understood. Class III HD ZIP transcription factors are evolutionarily ancient and play fundamental roles in various aspects of plant development. Here we investigate the role of a Class III HD ZIP transcription factor, POPCORONA, during secondary growth of woody stems. Transgenic Populus (poplar) trees expressing either a miRNA-resistant POPCORONA or a synthetic miRNA targeting POPCORONA were used to infer function of POPCORONA during secondary growth. Whole plant, histological, and gene expression changes were compared for transgenic and wild-type control plants. Synthetic miRNA knock down of POPCORONA results in abnormal lignification in cells of the pith, while overexpression of a miRNA-resistant POPCORONA results in delayed lignification of xylem and phloem fibers during secondary growth. POPCORONA misexpression also results in coordinated changes in expression of genes within a previously described transcriptional network regulating cell differentiation and cell wall biosynthesis, and hormone-related genes associated with fiber differentiation. POPCORONA illustrates another function of Class III HD ZIPs: regulating cell differentiation during secondary growth.

  13. Effect of DcR3-specific siRNA on cell growth suppression and apoptosis induction in glioma cells via affecting ERK and AKT

    PubMed Central

    Zhang, Yu; Huang, Suning; Leng, Yuhua; Chen, Xin; Liu, Tiantian; Wang, Hanlin; Wei, Fanglin; Luo, Dianzhong; Chen, Gang; Wei, Zhuxin

    2016-01-01

    Background Previously, we found that the expression of decoy receptor 3 (DcR3) in gliomas was significantly upregulated compared to normal brain tissues. However, the effect of DcR3-specific small interfering RNA (siRNA) on cell biological function of glioma cells remains incompletely understood. Objective The aim of this study was to explore the effect of DcR3 siRNA on cell growth and apoptosis of glioma cells and to investigate the potential downstream pathways affected by DcR3. Methods DcR3-specific siRNA was transfected into three glioma cell lines (U251MG, LN-308, and U87MG) using combiMAGnetofection method. MTS tetrazolium assay and fluorimetric resorufin viability assay were used to assess the growth of glioma cells. Then, apoptosis was examined using the Hoechst 33342/propidium iodide double-staining assay and fluorescent caspase-3/7 assay. Meanwhile, Western blot was performed to explore the probable pathway by which DcR3-specific siRNA acts in glioma cells. Also, microarray dataset analysis was applied to analyze the potential function of DcR3 in glioma. Results The DcR3-specific siRNA had a potent effect on cell growth and apoptosis of all three glioma cells tested, and the effects were time dependent. Among these three glioma cell lines, U251MG had the most significant effect with regard to growth inhibition and apoptosis induction. MTS assay showed that the proliferation rate at 72 and 96 hours after the transfection was 76.333%±5.131% (t=7.611, P=0.002) and 64.333%±5.859% (t=10.983, P<0.001), respectively. The viability rate of U251MG cells was 80.667%±2.309% (t=12.302, P<0.001) and 62.333%±2.082% (t=21.213, P<0.001) at 72 and 96 hours posttreatment, respectively. The caspase-3/7 activity of U251MG cells was 2.76 (t=−6.601, P=0.003) and 4.75 (t=−9.189, P=0.001) folds that of the mock control at 72 and 96 hours, respectively. The apoptosis rate was increased to 1.85 (t=−2.496, P=0.067) and 3.93 (t=−12.587, P<0.001) folds at 72 and 96 hours

  14. Effect of DcR3-specific siRNA on cell growth suppression and apoptosis induction in glioma cells via affecting ERK and AKT

    PubMed Central

    Zhang, Yu; Huang, Suning; Leng, Yuhua; Chen, Xin; Liu, Tiantian; Wang, Hanlin; Wei, Fanglin; Luo, Dianzhong; Chen, Gang; Wei, Zhuxin

    2016-01-01

    Background Previously, we found that the expression of decoy receptor 3 (DcR3) in gliomas was significantly upregulated compared to normal brain tissues. However, the effect of DcR3-specific small interfering RNA (siRNA) on cell biological function of glioma cells remains incompletely understood. Objective The aim of this study was to explore the effect of DcR3 siRNA on cell growth and apoptosis of glioma cells and to investigate the potential downstream pathways affected by DcR3. Methods DcR3-specific siRNA was transfected into three glioma cell lines (U251MG, LN-308, and U87MG) using combiMAGnetofection method. MTS tetrazolium assay and fluorimetric resorufin viability assay were used to assess the growth of glioma cells. Then, apoptosis was examined using the Hoechst 33342/propidium iodide double-staining assay and fluorescent caspase-3/7 assay. Meanwhile, Western blot was performed to explore the probable pathway by which DcR3-specific siRNA acts in glioma cells. Also, microarray dataset analysis was applied to analyze the potential function of DcR3 in glioma. Results The DcR3-specific siRNA had a potent effect on cell growth and apoptosis of all three glioma cells tested, and the effects were time dependent. Among these three glioma cell lines, U251MG had the most significant effect with regard to growth inhibition and apoptosis induction. MTS assay showed that the proliferation rate at 72 and 96 hours after the transfection was 76.333%±5.131% (t=7.611, P=0.002) and 64.333%±5.859% (t=10.983, P<0.001), respectively. The viability rate of U251MG cells was 80.667%±2.309% (t=12.302, P<0.001) and 62.333%±2.082% (t=21.213, P<0.001) at 72 and 96 hours posttreatment, respectively. The caspase-3/7 activity of U251MG cells was 2.76 (t=−6.601, P=0.003) and 4.75 (t=−9.189, P=0.001) folds that of the mock control at 72 and 96 hours, respectively. The apoptosis rate was increased to 1.85 (t=−2.496, P=0.067) and 3.93 (t=−12.587, P<0.001) folds at 72 and 96 hours

  15. MicroRNA-944 Affects Cell Growth by Targeting EPHA7 in Non-Small Cell Lung Cancer

    PubMed Central

    Liu, Minxia; Zhou, Kecheng; Cao, Yi

    2016-01-01

    MicroRNAs (miRNAs) have critical roles in lung tumorigenesis and development. To determine aberrantly expressed miRNAs involved in non-small cell lung cancer (NSCLC) and investigate pathophysiological functions and mechanisms, we firstly carried out small RNA deep sequencing in NSCLC cell lines (EPLC-32M1, A549 and 801D) and a human immortalized cell line 16HBE, we then studied miRNA function by cell proliferation and apoptosis. cDNA microarray, luciferase reporter assay and miRNA transfection were used to investigate interaction between the miRNA and target gene. miR-944 was significantly down-regulated in NSCLC and had many putative targets. Moreover, the forced expression of miR-944 significantly inhibited the proliferation of NSCLC cells in vitro. By integrating mRNA expression data and miR-944-target prediction, we disclosed that EPHA7 was a potential target of miR-944, which was further verified by luciferase reporter assay and microRNA transfection. Our data indicated that miR-944 targets EPHA7 in NSCLC and regulates NSCLC cell proliferation, which may offer a new mechanism underlying the development and progression of NSCLC. PMID:27681722

  16. Overexpression of a Brassica rapa NGATHA gene in Arabidopsis thaliana negatively affects cell proliferation during lateral organ and root growth.

    PubMed

    Kwon, So Hyun; Lee, Byung Ha; Kim, Eun Yu; Seo, Young Sam; Lee, Sangman; Kim, Woo Taek; Song, Jong Tae; Kim, Jeong Hoe

    2009-12-01

    In an effort to elucidate biological functions of transcription factors of Brassica rapa L. (ssp. pekinensis), an NGATHA homolog, BrNGA1, that belongs to the B3-type transcription factor superfamily was identified and expressed in Arabidopsis thaliana under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Arabidopsis plants overexpressing BrNGA1, named BrNGA1ox, displayed markedly reduced organ growth compared with the wild type: lateral organs, such as leaves, flowers and cotyledons, were small and distinctively narrow, and their root growth was also severely retarded. Reduced sizes of BrNGA1ox organs were mainly due to reduction in cell numbers. Kinematic analysis of leaf growth revealed that both the rate and duration of cell proliferation declined during organogenesis, which was consistent with the reduced expression of cyclin genes. Reduction in organ growth was strongly correlated with the small size of meristematic cell pools in the shoot and root meristems. Taken together, these data indicate that BrNGA1 acts as a negative regulator of cell proliferation and may do so, in part, by regulating the size of the meristematic cell pool.

  17. Positional isomerism markedly affects the growth inhibition of colon cancer cells by NOSH-aspirin: COX inhibition and modeling☆

    PubMed Central

    Vannini, Federica; Chattopadhyay, Mitali; Kodela, Ravinder; Rao, Praveen P.N.; Kashfi, Khosrow

    2015-01-01

    We recently reported the synthesis of NOSH-aspirin, a novel hybrid that releases both nitric oxide (NO) and hydrogen sulfide (H2S). In NOSH-aspirin, the two moieties that release NO and H2S are covalently linked at the 1, 2 positions of acetyl salicylic acid, i.e. ortho-NOSH-aspirin (o-NOSH-aspirin). In the present study, we compared the effects of the positional isomers of NOSH-ASA (o-NOSH-aspirin, m-NOSH-aspirin and p-NOSH-aspirin) to that of aspirin on growth of HT-29 and HCT 15 colon cancer cells, belonging to the same histological subtype, but with different expression of cyclooxygenase (COX) enzymes; HT-29 express both COX-1 and COX-2, whereas HCT 15 is COX-null. We also analyzed the effect of these compounds on proliferation and apoptosis in HT-29 cells. Since the parent compound aspirin, inhibits both COX-1 and COX-2, we also evaluated the effects of these compounds on COX-1 and COX-2 enzyme activities and also performed modeling of the interactions between the positional isomers of NOSH-aspirin and COX-1 and COX-2 enzymes. We observed that the three positional isomers of NOSH aspirin inhibited the growth of both colon cancer cell lines with IC50s in the nano-molar range. In particular in HT-29 cells the IC50s for growth inhibition were: o-NOSH-ASA, 0.04±0.011 µM; m-NOSH-ASA, 0.24±0.11 µM; p-NOSH-ASA, 0.46±0.17 µM; and in HCT 15 cells the IC50s for o-NOSH-ASA, m-NOSH-ASA, and p-NOSH-ASA were 0.062 ±0.006 µM, 0.092±0.004 µM, and 0.37±0.04 µM, respectively. The IC50 for aspirin in both cell lines was >5 mM at 24 h. The reduction of cell growth appeared to be mediated through inhibition of proliferation, and induction of apoptosis. All 3 positional isomers of NOSH-aspirin preferentially inhibited COX-1 over COX-2. These results suggest that the three positional isomers of NOSH-aspirin have the same biological actions, but that o-NOSH-ASA displayed the strongest anti-neoplastic potential. PMID:26319435

  18. Positional isomerism markedly affects the growth inhibition of colon cancer cells by NOSH-aspirin: COX inhibition and modeling.

    PubMed

    Vannini, Federica; Chattopadhyay, Mitali; Kodela, Ravinder; Rao, Praveen P N; Kashfi, Khosrow

    2015-12-01

    We recently reported the synthesis of NOSH-aspirin, a novel hybrid that releases both nitric oxide (NO) and hydrogen sulfide (H2S). In NOSH-aspirin, the two moieties that release NO and H2S are covalently linked at the 1, 2 positions of acetyl salicylic acid, i.e. ortho-NOSH-aspirin (o-NOSH-aspirin). In the present study, we compared the effects of the positional isomers of NOSH-ASA (o-NOSH-aspirin, m-NOSH-aspirin and p-NOSH-aspirin) to that of aspirin on growth of HT-29 and HCT 15 colon cancer cells, belonging to the same histological subtype, but with different expression of cyclooxygenase (COX) enzymes; HT-29 express both COX-1 and COX-2, whereas HCT 15 is COX-null. We also analyzed the effect of these compounds on proliferation and apoptosis in HT-29 cells. Since the parent compound aspirin, inhibits both COX-1 and COX-2, we also evaluated the effects of these compounds on COX-1 and COX-2 enzyme activities and also performed modeling of the interactions between the positional isomers of NOSH-aspirin and COX-1 and COX-2 enzymes. We observed that the three positional isomers of NOSH aspirin inhibited the growth of both colon cancer cell lines with IC50s in the nano-molar range. In particular in HT-29 cells the IC50s for growth inhibition were: o-NOSH-ASA, 0.04±0.011 µM; m-NOSH-ASA, 0.24±0.11 µM; p-NOSH-ASA, 0.46±0.17 µM; and in HCT 15 cells the IC50s for o-NOSH-ASA, m-NOSH-ASA, and p-NOSH-ASA were 0.062 ±0.006 µM, 0.092±0.004 µM, and 0.37±0.04 µM, respectively. The IC50 for aspirin in both cell lines was >5mM at 24h. The reduction of cell growth appeared to be mediated through inhibition of proliferation, and induction of apoptosis. All 3 positional isomers of NOSH-aspirin preferentially inhibited COX-1 over COX-2. These results suggest that the three positional isomers of NOSH-aspirin have the same biological actions, but that o-NOSH-ASA displayed the strongest anti-neoplastic potential.

  19. American cranberry (Vaccinium macrocarpon) extract affects human prostate cancer cell growth via cell cycle arrest by modulating expression of cell cycle regulators.

    PubMed

    Déziel, Bob; MacPhee, James; Patel, Kunal; Catalli, Adriana; Kulka, Marianna; Neto, Catherine; Gottschall-Pass, Katherine; Hurta, Robert

    2012-05-01

    Prostate cancer is one of the most common cancers in the world, and its prevalence is expected to increase appreciably in the coming decades. As such, more research is necessary to understand the etiology, progression and possible preventative measures to delay or to stop the development of this disease. Recently, there has been interest in examining the effects of whole extracts from commonly harvested crops on the behaviour and progression of cancer. Here, we describe the effects of whole cranberry extract (WCE) on the behaviour of DU145 human prostate cancer cells in vitro. Following treatment of DU145 human prostate cancer cells with 10, 25 and 50 μg ml⁻¹ of WCE, respectively for 6 h, WCE significantly decreased the cellular viability of DU145 cells. WCE also decreased the proportion of cells in the G2-M phase of the cell cycle and increased the proportion of cells in the G1 phase of the cell cycle following treatment of cells with 25 and 50 μg ml⁻¹ treatment of WCE for 6 h. These alterations in cell cycle were associated with changes in cell cycle regulatory proteins and other cell cycle associated proteins. WCE decreased the expression of CDK4, cyclin A, cyclin B1, cyclin D1 and cyclin E, and increased the expression of p27. Changes in p16(INK4a) and pRBp107 protein expression levels also were evident, however, the changes noted in p16(INK4a) and pRBp107 protein expression levels were not statistically significant. These findings demonstrate that phytochemical extracts from the American cranberry (Vaccinium macrocarpon) can affect the behaviour of human prostate cancer cells in vitro and further support the potential health benefits associated with cranberries.

  20. Growth Factor Content in Human Sera Affects the Isolation of Mesangiogenic Progenitor Cells (MPCs) from Human Bone Marrow

    PubMed Central

    Montali, Marina; Barachini, Serena; Panvini, Francesca M.; Carnicelli, Vittoria; Fulceri, Franca; Petrini, Iacopo; Pacini, Simone

    2016-01-01

    Mesangiogenic Progenitor Cells (MPCs) are human bone marrow-derived multipotent cells, isolated in vitro under selective culture conditions and shown to retain both mesengenic and angiogenic potential. MPCs also co-isolated with multipotent stromal cells (MSCs) when bone marrow primary cultures were set up for clinical applications, using human serum (HS) in place of fetal bovine serum (FBS). MPC culture purity (over 95%) is strictly dependent on HS supplementation with significant batch-to-batch variability. In the present paper we screened different sources of commercially available pooled human AB type serum (PhABS) for their ability to promote MPC production under selective culture conditions. As the majority of “contaminating” cells in MPC cultures were represented by MSC-like cells, we hypothesized a role by differentiating agents present in the sera. Therefore, we tested a number of growth factors (hGF) and found that higher concentrations of FGF-2, EGF, PDGF-AB, and VEGF-A as well as lower concentration of IGF-1 give sub-optimal MPC recovery. Gene expression analysis of hGF receptors was also carried out both in MSCs and MPCs, suggesting that FGF-2, EGF, and PDGF-AB could act promoting MSC proliferation, while VEGF-A contribute to MSC-like cell contamination, triggering MPC differentiation. Here we demonstrated that managing hGF contents, together with applying specific receptors inhibitors (Erlotinib-HCl and Nintedanib), could significantly mitigate the batch-to-batch variability related to serum supplementation. These data represent a fundamental milestone in view of manufacturing MPC-based medicinal products. PMID:27800477

  1. Overexpression of Arabidopsis Ceramide Synthases Differentially Affects Growth, Sphingolipid Metabolism, Programmed Cell Death, and Mycotoxin Resistance1[OPEN

    PubMed Central

    Luttgeharm, Kyle D.; Chen, Ming; Mehra, Amit; Cahoon, Rebecca E.; Markham, Jonathan E.; Cahoon, Edgar B.

    2015-01-01

    Ceramide synthases catalyze an N-acyltransferase reaction using fatty acyl-coenzyme A (CoA) and long-chain base (LCB) substrates to form the sphingolipid ceramide backbone and are targets for inhibition by the mycotoxin fumonisin B1 (FB1). Arabidopsis (Arabidopsis thaliana) contains three genes encoding ceramide synthases with distinct substrate specificities: LONGEVITY ASSURANCE GENE ONE HOMOLOG1 (LOH1; At3g25540)- and LOH3 (At1g19260)-encoded ceramide synthases use very-long-chain fatty acyl-CoA and trihydroxy LCB substrates, and LOH2 (At3g19260)-encoded ceramide synthase uses palmitoyl-CoA and dihydroxy LCB substrates. In this study, complementary DNAs for each gene were overexpressed to determine the role of individual isoforms in physiology and sphingolipid metabolism. Differences were observed in growth resulting from LOH1 and LOH3 overexpression compared with LOH2 overexpression. LOH1- and LOH3-overexpressing plants had enhanced biomass relative to wild-type plants, due in part to increased cell division, suggesting that enhanced synthesis of very-long-chain fatty acid/trihydroxy LCB ceramides promotes cell division and growth. Conversely, LOH2 overexpression resulted in dwarfing. LOH2 overexpression also resulted in the accumulation of sphingolipids with C16 fatty acid/dihydroxy LCB ceramides, constitutive induction of programmed cell death, and accumulation of salicylic acid, closely mimicking phenotypes observed previously in LCB C-4 hydroxylase mutants defective in trihydroxy LCB synthesis. In addition, LOH2- and LOH3-overexpressing plants acquired increased resistance to FB1, whereas LOH1-overexpressing plants showed no increase in FB1 resistance, compared with wild-type plants, indicating that LOH1 ceramide synthase is most strongly inhibited by FB1. Overall, the findings described here demonstrate that overexpression of Arabidopsis ceramide synthases results in strongly divergent physiological and metabolic phenotypes, some of which have significance

  2. A truncated intracellular HER2/neu receptor produced by alternative RNA processing affects growth of human carcinoma cells.

    PubMed Central

    Scott, G K; Robles, R; Park, J W; Montgomery, P A; Daniel, J; Holmes, W E; Lee, J; Keller, G A; Li, W L; Fendly, B M

    1993-01-01

    Cloned sequences encoding a truncated form of the HER2 receptor were obtained from cDNA libraries derived from two HER2-overexpressing human breast cancer cell lines, BT-474 and SK-BR-3. The 5' 2.1 kb of the encoded transcript is identical to that of full-length 4.6-kb HER2 transcript and would be expected to produce a secreted form of HER2 receptor containing only the extracellular ligand binding domain (ECD). The 3' end of the truncated transcript diverges 61 nucleotides before the receptor's transmembrane region, reads through a consensus splice donor site containing an in-frame stop codon, and contains a poly(A) addition site, suggesting that the truncated transcript arises by alternative RNA processing. S1 nuclease protection assays show a 40-fold variation in the abundance of the truncated 2.3-kb transcript relative to full-length 4.6-kb transcript in a panel of eight HER2-expressing tumor cell lines of gastric, ovarian, and breast cancer origin. Expression of this truncated transcript in COS-1 cells produces both secreted and intracellular forms of HER2 ECD; however, immunofluorescent labeling of HER2 ECD protein in MKN7 tumor cells that natively overexpress the 2.3-kb transcript suggests that transcriptionally generated HER2 ECD is concentrated within the perinuclear cytoplasm. Metabolic labeling and endoglycosidase studies suggest that this HER2 ECD (100 kDa) undergoes differential trafficking between the endoplasmic reticulum and Golgi compartments compared with full-length (185-kDa) HER2 receptor. Transfection studies indicate that excess production of HER2 ECD in human tumor cells overexpressing full-length HER2 receptor can result in resistance to the growth-inhibiting effects of anti-HER2 monoclonal antibodies such as muMAb4D5. These findings demonstrate alternative processing of the HER2 transcript and implicate a potentially important growth regulatory role for intracellularly sequestered HER2 ECD in HER2-amplified human tumors. Images PMID:8096058

  3. Mutant WDR36 directly affects axon growth of retinal ganglion cells leading to progressive retinal degeneration in mice

    PubMed Central

    Chi, Zai-Long; Yasumoto, Fumie; Sergeev, Yuri; Minami, Masayoshi; Obazawa, Minoru; Kimura, Itaru; Takada, Yuichiro; Iwata, Takeshi

    2010-01-01

    Primary open-angle glaucoma (POAG) is one of the three principal subtypes of glaucoma and among the leading cause of blindness worldwide. POAG is defined by cell death of the retinal ganglion cells (RGCs) and surrounding neuronal cells at higher or normal intraocular pressure (IOP). Coded by one of the three genes responsible for POAG, WD repeat-containing protein 36 (WDR36) has two domains with a similar folding. To address whether WDR36 is functionally important in the retina, we developed four transgenic mice strains overexpressing a wild-type (Wt) and three mutant variants of D606G, deletion of amino acids at positions 605–607 (Del605–607) and at 601–640 (Del601–640) equivalent to the location of the D658G mutation observed in POAG patients. A triple amino acid deletion of mouse Wdr36 at positions 605–607 corresponding to the deletion at positions 657–659 in humans developed progressive retinal degeneration at the peripheral retina with normal IOP. RGCs and connecting amacrine cell synapses were affected at the peripheral retina. Axon outgrowth rate of cultured RGC directly isolated from transgenic animal was significantly reduced by the Wdr36 mutation compared with Wt. Molecular modeling of wild and mutant mouse Wdr36 revealed that deletion at positions 605–607 removed three residues and a hydrogen bond, required to stabilize anti-parallel β-sheet of the 6th β-propeller in the second domain. We concluded that WDR36 plays an important functional role in the retina homeostasis and mutation to this gene can cause devastating retinal damage. These data will improve understanding of the functional property of WDR36 in the retina and provide a new animal model for glaucoma therapeutics. PMID:20631153

  4. Elevated growth temperature can enhance photosystem I trimer formation and affects xanthophyll biosynthesis in Cyanobacterium Synechocystis sp. PCC6803 cells.

    PubMed

    Kłodawska, Kinga; Kovács, László; Várkonyi, Zsuzsanna; Kis, Mihály; Sozer, Özge; Laczkó-Dobos, Hajnalka; Kóbori, Ottilia; Domonkos, Ildikó; Strzałka, Kazimierz; Gombos, Zoltán; Malec, Przemysław

    2015-03-01

    In the thylakoid membranes of the mesophilic cyanobacterium Synechocystis PCC6803, PSI reaction centers (RCs) are organized as monomers and trimers. PsaL, a 16 kDa hydrophobic protein, a subunit of the PSI RC, was previously identified as crucial for the formation of PSI trimers. In this work, the physiological effects accompanied by PSI oligomerization were studied using a PsaL-deficient mutant (ΔpsaL), not able to form PSI trimers, grown at various temperatures. We demonstrate that in wild-type Synechocystis, the monomer to trimer ratio depends on the growth temperature. The inactivation of the psaL gene in Synechocystis grown phototropically at 30°C induces profound morphological changes, including the accumulation of glycogen granules localized in the cytoplasm, resulting in the separation of particular thylakoid layers. The carotenoid composition in ΔpsaL shows that PSI monomerization leads to an increased accumulation of myxoxantophyll, zeaxanthin and echinenone irrespective of the temperature conditions. These xanthophylls are formed at the expense of β-carotene. The measured H2O→CO2 oxygen evolution rates in the ΔpsaL mutant are higher than those observed in the wild type, irrespective of the growth temperature. Moreover, circular dichroism spectroscopy in the visible range reveals that a peak attributable to long-wavelength-absorbing carotenoids is apparently enhanced in the trimer-accumulating wild-type cells. These results suggest that specific carotenoids are accompanied by the accumulation of PSI oligomers and play a role in the formation of PSI oligomer structure. PMID:25520404

  5. Overexpression of caspase 7 is ERα dependent to affect proliferation and cell growth in breast cancer cells by targeting p21Cip

    PubMed Central

    Chaudhary, S; Madhukrishna, B; Adhya, A K; Keshari, S; Mishra, S K

    2016-01-01

    Caspase 7 (CASP7) expression has important function during cell cycle progression and cell growth in certain cancer cells and is also involved in the development and differentiation of dental tissues. However, the function of CASP7 in breast cancer cells is unclear. The aim of this study was to analyze the expression of CASP7 in breast carcinoma patients and determine the role of CASP7 in regulating tumorigenicity in breast cancer cells. In this study, we show that the CASP7 expression is high in breast carcinoma tissues compared with normal counterpart. The ectopic expression of CASP7 is significantly associated with ERα expression status and persistently elevated in different stages of the breast tumor grades. High level of CASP7 expression showed better prognosis in breast cancer patients with systemic endocrine therapy as observed from Kaplan–Meier analysis. S3 and S4, estrogen responsive element (ERE) in the CASP7 promoter, is important for estrogen-ERα-mediated CASP7 overexpression. Increased recruitment of p300, acetylated H3 and pol II in the ERE region of CASP7 promoter is observed after hormone stimulation. Ectopic expression of CASP7 in breast cancer cells results in cell growth and proliferation inhibition via p21Cip reduction, whereas small interfering RNA (siRNA) mediated reduction of CASP7 rescued p21Cip levels. We also show that pro- and active forms of CASP7 is located in the nucleus apart from cytoplasmic region of breast cancer cells. The proliferation and growth of breast cancer cells is significantly reduced by broad-spectrum peptide inhibitors and siRNA of CASP7. Taken together, our findings show that CASP7 is aberrantly expressed in breast cancer and contributes to cell growth and proliferation by downregulating p21Cip protein, suggesting that targeting CASP7-positive breast cancer could be one of the potential therapeutic strategies. PMID:27089142

  6. Overexpression of caspase 7 is ERα dependent to affect proliferation and cell growth in breast cancer cells by targeting p21(Cip).

    PubMed

    Chaudhary, S; Madhukrishna, B; Adhya, A K; Keshari, S; Mishra, S K

    2016-04-18

    Caspase 7 (CASP7) expression has important function during cell cycle progression and cell growth in certain cancer cells and is also involved in the development and differentiation of dental tissues. However, the function of CASP7 in breast cancer cells is unclear. The aim of this study was to analyze the expression of CASP7 in breast carcinoma patients and determine the role of CASP7 in regulating tumorigenicity in breast cancer cells. In this study, we show that the CASP7 expression is high in breast carcinoma tissues compared with normal counterpart. The ectopic expression of CASP7 is significantly associated with ERα expression status and persistently elevated in different stages of the breast tumor grades. High level of CASP7 expression showed better prognosis in breast cancer patients with systemic endocrine therapy as observed from Kaplan-Meier analysis. S3 and S4, estrogen responsive element (ERE) in the CASP7 promoter, is important for estrogen-ERα-mediated CASP7 overexpression. Increased recruitment of p300, acetylated H3 and pol II in the ERE region of CASP7 promoter is observed after hormone stimulation. Ectopic expression of CASP7 in breast cancer cells results in cell growth and proliferation inhibition via p21(Cip) reduction, whereas small interfering RNA (siRNA) mediated reduction of CASP7 rescued p21(Cip) levels. We also show that pro- and active forms of CASP7 is located in the nucleus apart from cytoplasmic region of breast cancer cells. The proliferation and growth of breast cancer cells is significantly reduced by broad-spectrum peptide inhibitors and siRNA of CASP7. Taken together, our findings show that CASP7 is aberrantly expressed in breast cancer and contributes to cell growth and proliferation by downregulating p21(Cip) protein, suggesting that targeting CASP7-positive breast cancer could be one of the potential therapeutic strategies.

  7. The PpCMT chromomethylase affects cell growth and interacts with the homolog of LIKE HETEROCHROMATIN PROTEIN 1 in the moss Physcomitrella patens.

    PubMed

    Dangwal, Meenakshi; Kapoor, Sanjay; Kapoor, Meenu

    2014-02-01

    Chromomethylases (CMTs) are plant-specific cytosine DNA methyltransferases that are involved in maintenance of CpNpG methylation. In seed plants, histone methylation and interaction of CMT with LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) is essential for recruitment of CMT to target sites. LHP1 has been characterized as a putative component of the POLYCOMB REPRESSIVE COMPLEX1 (PRC1) in plants, and functions downstream of PRC2 to maintain genes in repressed state for orchestrated development. In the present study, we show that targeted disruption of PpCMT results in an approximately 50% reduction in global cytosine methylation levels. This affects growth of apical cells, predominantly growth of side branch initials emerging from chloronema cells. In some places, these cells develop thick walls with plasmolyzed cellular contents. Transcript accumulation patterns of genes involved in apical cell extension and metabolism of hemicelluloses, such as xyloglucans, in the primary cell walls decreased many fold in ppcmt mutant lines, as determined by real-time PCR. Using yeast two-hybrid method and bimolecular fluorescence complementation assay, we show that PpCMT and PpLHP1 interact through their chromo domains, while PpLHP1 homodimerizes through its chromo shadow domain. The results presented in this study provide insight into the role of the single chromomethylase, PpCMT, in proliferation of protonema filaments, and shed light on the evolutionary conservation of proteins interacting with these methylases in the early land plant, Physcomitrella patens.

  8. Partially Purified Extracts of Sea Anemone Anemonia viridis Affect the Growth and Viability of Selected Tumour Cell Lines

    PubMed Central

    Bulati, Matteo; Longo, Alessandra; Vlah, Sara; Bennici, Carmelo; Bonura, Angela; Tagliavia, Marcello; Mazzola, Salvatore

    2016-01-01

    In the last few years, marine species have been investigated for the presence of natural products with anticancer activity. Using reversed phase chromatography, low molecular weight proteins were fractionated from the sea anemone Anemonia viridis. Four different fractions were evaluated for their cytotoxic activity by means of erythrocyte haemolysis test, MTS, and LDH assays. Finally, the antiproliferative activities of three of these fractions were studied on PC3, PLC/PRF/5, and A375 human cancer cell lines. Our analysis revealed that the four fractions showed different protein contents and diverse patterns of activity towards human PBMC and cancer cell lines. Interestingly, fractions III and IV exerted cytotoxic effects on human cells. Conversely, fractions I and II displayed very low toxic effects associated with antiproliferative activities on cancer cell lines. PMID:27725939

  9. Epigallocatechin-3-gallate affects the growth of LNCaP cells via membrane fluidity and distribution of cellular zinc*

    PubMed Central

    Yang, Jun-guo; Yu, Hai-ning; Sun, Shi-li; Zhang, Lan-cui; He, Guo-qing; Das, Undurti N.; Ruan, Hui; Shen, Sheng-rong

    2009-01-01

    Objective: To evaluate effects of epigallocatechin-3-gallate (EGCG) on the viability, membrane properties, and zinc distribution, with and without the presence of Zn2+, in human prostate carcinoma LNCaP cells. Methods: We examined changes in cellular morphology and membrane fluidity of LNCaP cells, distribution of cellular zinc, and the incorporated portion of EGCG after treatments with EGCG, Zn2+, and EGCG+Zn2+. Results: We observed an alteration in cellular morphology and a decrease in membrane fluidity of LNCaP cells after treatment with EGCG or Zn2+. The proportion of EGCG incorporated into liposomes treated with the mixture of EGCG and Zn2+ at the ratio of 1:1 was 90.57%, which was significantly higher than that treated with EGCG alone (30.33%). Electron spin resonance (ESR) studies and determination of fatty acids showed that the effects of EGCG on the membrane fluidity of LNCaP were decreased by Zn2+. EGCG accelerated the accumulation of zinc in the mitochondria and cytosol as observed by atomic absorption spectrometer. Conclusion: These results show that EGCG interacted with cell membrane, decreased the membrane fluidity of LNCaP cells, and accelerated zinc accumulation in the mitochondria and cytosol, which could be the mechanism by which EGCG inhibits proliferation of LNCaP cells. In addition, high concentrations of Zn2+ could attenuate the actions elicited by EGCG. PMID:19489106

  10. Dichamanetin Inhibits Cancer Cell Growth by Affecting ROS-related Signaling Components through Mitochondrial-mediated Apoptosis

    PubMed Central

    Yong, Yeonjoong; Matthew, Susan; Wittwer, Jennifer; Pan, Li; Shen, Qi; Kinghorn, A. Douglas; Swanson, Steven M.; Carcache De Blanco, Esperanza J.

    2014-01-01

    Background/Aim Dichamanetin is a C-benzylated flavanone isolated as a major secondary metabolite from Piper sarmentosum, a plant used as a spice in Southeast Asia. This studied aimed to understand the path through which dichamanetin exerts it antiproliferative effect. Materials and Methods The study of several signaling cellular components, namely, reactive oxygen species (ROS) levels, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factor, mitochondrial membrane potential, DNA binding, poly ADP-ribose polymerase (PARP1) inhibition and proteasome inhibition was performed using enzyme-linked immunosorbent (ELISA) assay, cell sorting, and western blot. Results Dichamanetin significantly reduced the cell viability of various types of human cancer cells (HT-29 colon, DU145 prostate, and MDA-MB-231 breast cancer) in a dose- and time-dependent manner and induced G1 arrest of the cell cycle. It was also demonstrated that the selective cytotoxic effect of dichamanetin in cancer cells is mediated by the induction of oxidative stress. Conclusion Our findings suggest that dichamanetin from an edible herb has cancer chemotherapeutic potential. PMID:24324069

  11. PAN-811 Blocks Chemotherapy Drug-Induced In Vitro Neurotoxicity, While Not Affecting Suppression of Cancer Cell Growth.

    PubMed

    Jiang, Zhi-Gang; Fuller, Steven A; Ghanbari, Hossein A

    2016-01-01

    Chemotherapy often results in cognitive impairment, and no neuroprotective drug is now available. This study aimed to understand underlying neurotoxicological mechanisms of anticancer drugs and to evaluate neuroprotective effects of PAN-811. Primary neurons in different concentrations of antioxidants (AOs) were insulted for 3 days with methotrexate (MTX), 5-fluorouracil (5-FU), or cisplatin (CDDP) in the absence or presence of PAN-811·Cl·H2O. The effect of PAN-811 on the anticancer activity of tested drugs was also examined using mouse and human cancer cells (BNLT3 and H460) to assess any negative interference. Cell membrane integrity, survival, and death and intramitochondrial reactive oxygen species (ROS) were measured. All tested anticancer drugs elicited neurotoxicity only under low levels of AO and elicited a ROS increase. These results suggested that ROS mediates neurotoxicity of tested anticancer drugs. PAN-811 dose-dependently suppressed increased ROS and blocked the neurotoxicity when neurons were insulted with a tested anticancer drug. PAN-811 did not interfere with anticancer activity of anticancer drugs against BNLT3 cells. PAN-811 did not inhibit MTX-induced death of H460 cells but, interestingly, demonstrated a synergistic effect with 5-FU or CDDP in reducing cancer cell viability. Thus, PAN-811 can be a potent drug candidate for chemotherapy-induced cognitive impairment.

  12. PAN-811 Blocks Chemotherapy Drug-Induced In Vitro Neurotoxicity, While Not Affecting Suppression of Cancer Cell Growth.

    PubMed

    Jiang, Zhi-Gang; Fuller, Steven A; Ghanbari, Hossein A

    2016-01-01

    Chemotherapy often results in cognitive impairment, and no neuroprotective drug is now available. This study aimed to understand underlying neurotoxicological mechanisms of anticancer drugs and to evaluate neuroprotective effects of PAN-811. Primary neurons in different concentrations of antioxidants (AOs) were insulted for 3 days with methotrexate (MTX), 5-fluorouracil (5-FU), or cisplatin (CDDP) in the absence or presence of PAN-811·Cl·H2O. The effect of PAN-811 on the anticancer activity of tested drugs was also examined using mouse and human cancer cells (BNLT3 and H460) to assess any negative interference. Cell membrane integrity, survival, and death and intramitochondrial reactive oxygen species (ROS) were measured. All tested anticancer drugs elicited neurotoxicity only under low levels of AO and elicited a ROS increase. These results suggested that ROS mediates neurotoxicity of tested anticancer drugs. PAN-811 dose-dependently suppressed increased ROS and blocked the neurotoxicity when neurons were insulted with a tested anticancer drug. PAN-811 did not interfere with anticancer activity of anticancer drugs against BNLT3 cells. PAN-811 did not inhibit MTX-induced death of H460 cells but, interestingly, demonstrated a synergistic effect with 5-FU or CDDP in reducing cancer cell viability. Thus, PAN-811 can be a potent drug candidate for chemotherapy-induced cognitive impairment. PMID:26640619

  13. PAN-811 Blocks Chemotherapy Drug-Induced In Vitro Neurotoxicity, While Not Affecting Suppression of Cancer Cell Growth

    PubMed Central

    Jiang, Zhi-Gang; Fuller, Steven A.; Ghanbari, Hossein A.

    2016-01-01

    Chemotherapy often results in cognitive impairment, and no neuroprotective drug is now available. This study aimed to understand underlying neurotoxicological mechanisms of anticancer drugs and to evaluate neuroprotective effects of PAN-811. Primary neurons in different concentrations of antioxidants (AOs) were insulted for 3 days with methotrexate (MTX), 5-fluorouracil (5-FU), or cisplatin (CDDP) in the absence or presence of PAN-811·Cl·H2O. The effect of PAN-811 on the anticancer activity of tested drugs was also examined using mouse and human cancer cells (BNLT3 and H460) to assess any negative interference. Cell membrane integrity, survival, and death and intramitochondrial reactive oxygen species (ROS) were measured. All tested anticancer drugs elicited neurotoxicity only under low levels of AO and elicited a ROS increase. These results suggested that ROS mediates neurotoxicity of tested anticancer drugs. PAN-811 dose-dependently suppressed increased ROS and blocked the neurotoxicity when neurons were insulted with a tested anticancer drug. PAN-811 did not interfere with anticancer activity of anticancer drugs against BNLT3 cells. PAN-811 did not inhibit MTX-induced death of H460 cells but, interestingly, demonstrated a synergistic effect with 5-FU or CDDP in reducing cancer cell viability. Thus, PAN-811 can be a potent drug candidate for chemotherapy-induced cognitive impairment. PMID:26640619

  14. The LKB1 tumor suppressor differentially affects anchorage independent growth of HPV positive cervical cancer cell lines

    SciTech Connect

    Mack, Hildegard I.D.; Munger, Karl

    2013-11-15

    Infection with high-risk human papillomaviruses is causally linked to cervical carcinogenesis. However, most lesions caused by high-risk HPV infections do not progress to cancer. Host cell mutations contribute to malignant progression but the molecular nature of such mutations is unknown. Based on a previous study that reported an association between liver kinase B1 (LKB1) tumor suppressor loss and poor outcome in cervical cancer, we sought to determine the molecular basis for this observation. LKB1-negative cervical and lung cancer cells were reconstituted with wild type or kinase defective LKB1 mutants and we examined the importance of LKB1 catalytic activity in known LKB1-regulated processes including inhibition of cell proliferation and elevated resistance to energy stress. Our studies revealed marked differences in the biological activities of two kinase defective LKB1 mutants in the various cell lines. Thus, our results suggest that LKB1 may be a cell-type specific tumor suppressor. - Highlights: • LKB1 is a tumor suppressor that is linked to Peutz-Jeghers syndrome. • Peutz-Jeghers syndrome patients have a high incidence of cervical cancer. • Cervical cancer is caused by HPV infections. • This study investigates LKB1 tumor suppressor activity in cervical cancer.

  15. Cell Growth and Division

    PubMed Central

    Bell, George I.

    1968-01-01

    In a previous paper, we proposed a model in which the volume growth rate and probability of division of a cell were assumed to be determined by the cell's age and volume. Some further mathematical implications of the model are here explored. In particular we seek properties of the growth and division functions which are required for the balanced exponential growth of a cell population. Integral equations are derived which relate the distribution of birth volumes in successive generations and in which the existence of balanced exponential growth can be treated as an eigenvalue problem. The special case in which all cells divide at the same age is treated in some detail and conditions are derived for the existence of a balanced exponential solution and for its stability or instability. The special case of growth rate proportional to cell volume is seen to have neutral stability. More generally when the division probability depends on age only and growth rate is proportional to cell volume, there is no possibility of balanced exponential growth. Some comparisons are made with experimental results. It is noted that the model permits the appearance of differentiated cells. A generalization of the model is formulated in which cells may be described by many state variables instead of just age and volume. PMID:5643273

  16. MicroRNA-135b regulates ERα, AR and HIF1AN and affects breast and prostate cancer cell growth.

    PubMed

    Aakula, Anna; Leivonen, Suvi-Katri; Hintsanen, Petteri; Aittokallio, Tero; Ceder, Yvonne; Børresen-Dale, Anne-Lise; Perälä, Merja; Östling, Päivi; Kallioniemi, Olli

    2015-08-01

    MicroRNAs (miRNAs) regulate a wide range of cellular signaling pathways and biological processes in both physiological and pathological states such as cancer. We have previously identified miR-135b as a direct regulator of androgen receptor (AR) protein level in prostate cancer (PCa). We wanted to further explore the relationship of miR-135b to hormonal receptors, particularly estrogen receptor α (ERα). Here we show that miR-135b expression is lower in ERα-positive breast tumors as compared to ERα-negative samples in two independent breast cancer (BCa) patient cohorts (101 and 1302 samples). Additionally, the miR-135b expression is higher in AR-low PCa patient samples (47 samples). We identify ERα as a novel miR-135b target by demonstrating miR-135b binding to the 3'UTR of the ERα and decreased ERα protein and mRNA level upon miR-135b overexpression in BCa cells. MiR-135b reduces proliferation of ERα-positive BCa cells MCF-7 and BT-474 as well as AR-positive PCa cells LNCaP and 22Rv1 when grown in 2D. To identify other genes regulated by miR-135b we performed gene expression studies and found a link to the hypoxia inducible factor 1α (HIF1α) pathway. We show that miR-135b influences the protein level of the inhibitor for hypoxia inducible factor 1α (HIF1AN) and is able to bind to HIF1AN 3'UTR. Our study demonstrates that miR-135b regulates ERα, AR and HIF1AN protein levels through interaction with their 3'UTR regions, and proliferation in ERα-positive BCa and AR-positive PCa cells.

  17. Monitoring cell growth.

    PubMed

    Strober, W

    2001-05-01

    This appendix provides two protocols for monitoring cell growth. Counting cells using a hemacytometer is tedious but it allows one to effectively distinguish live cells from dead cells (using Trypan Blue exclusion). In addition, this procedure is less subject to errors due to cell clumping or heterogeneity of cell size. The use of an electronic cell counter is quicker and easier than counting cells using a hemacytometer. However, an electronic cell counter as currently constructed does not distinguish live from dead cells in a reliable fashion and is subject to error due to the presence of cell clumps. Overall, the electronic cell counter is best reserved for repetitive and rapid counting of fresh peripheral blood cells and should be used with caution when counting cell populations derived from tissues. PMID:18432653

  18. Cell growth and proteolytic activity of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus in milk as affected by supplementation with peptide fractions.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2014-12-01

    The present investigation examined the effects of supplementation of milk peptide fractions produced by enzymatic hydrolysis on the fermentation of reconstituted skim milk (RSM). Changes in pH, cell growth, proteolytic activity, and angiotensin-converting enzyme (ACE)-inhibitory activity were monitored during fermentation of RSM by pure cultures of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus. The study showed that supplementation with peptide fractions of different molecular weights did not significantly affect the bacterial growth in RSM. All bacteria showed an increased proteolytic activity in RSM supplemented with large peptides (>10 kDa), and L. helveticus in general exhibited the highest proteolytic activity among the bacteria studied. The ACE-inhibitory activity was observed to be the maximum in RSM supplemented with larger peptides (>10 kDa) for all bacteria. The results suggest that proteolysis by bacteria leads to increased production of ACE-inhibitory peptides compared to the supplemented peptides produced by enzymatic hydrolysis.

  19. Melatonin affects voltage-dependent calcium and potassium currents in MCF-7 cell line cultured either in growth or differentiation medium.

    PubMed

    Squecco, Roberta; Tani, Alessia; Zecchi-Orlandini, Sandra; Formigli, Lucia; Francini, Fabio

    2015-07-01

    Big efforts have been dedicated up to now to identify novel targets for cancer treatment. The peculiar biophysical profile and the atypical ionic channels activity shown by diverse types of human cancers suggest that ion channels may be possible targets in cancer therapy. Earlier studies have shown that melatonin exerts an oncostatic action on different tumors. In particular, it was shown that melatonin was able to inhibit growth/viability and proliferation, to reduce the invasiveness and metastatic properties of human estrogen-sensitive breast adenocarcinoma MCF-7 cell line cultured in growth medium, with substantial impairments of epidermal growth factor (EGF) and Notch-1-mediated signaling. The purpose of this work was to evaluate on MCF-7 cells the possible effects of melatonin on the biophysical features known to have a role in proliferation and differentiation, by using the patch-clamp technique. Our results show that in cells cultured in growth as well as in differentiation medium melatonin caused a hyperpolarization of resting membrane potential paralleled by significant changes of the inward Ca(2+) currents (T- and L-type), outward delayed rectifier K(+) currents and cell capacitance. All these effects are involved in MCF-7 growth and differentiation. These findings strongly suggest that melatonin, acting as a modulator of different voltage-dependent ion channels, might be considered a new promising tool for specifically disrupting cell viability and differentiation pathways in tumour cells with possible beneficial effects on cancer therapy. PMID:25843408

  20. Mechanics of Cell Growth

    PubMed Central

    Ateshian, Gerard A.; Morrison, Barclay; Holmes, Jeffrey W.; Hung, Clark T.

    2012-01-01

    Cell growth describes an essential feature of biological tissues. This growth process may be modeled by using a set of relatively simple governing equations based on the axioms of mass and momentum balance, and using a continuum framework that describes cells and tissues as mixtures of a solid matrix, a solvent and multiple solutes. In this model the mechanics of cell growth is driven by osmotic effects, regulated by the cells’ active uptake of solutes and passive uptake of solvent. By accounting for the anisotropy of the cells’ cytoskeletal structures or extracellular matrix, as well as external constraints, a wide variety of growing shapes may be produced as illustrated in various examples. PMID:22904576

  1. 5‑Azacytidine inhibits human rhabdomyosarcoma cell growth by downregulating insulin‑like growth factor 2 expression and reactivating the H19 gene product miR‑675, which negatively affects insulin‑like growth factors and insulin signaling.

    PubMed

    Tarnowski, Maciej; Tkacz, Marta; Czerewaty, Michał; Poniewierska-Baran, Agata; Grymuła, Katarzyna; Ratajczak, Mariusz Z

    2015-05-01

    Insulin-like growth factor 2 (IGF2) and 1 (IGF1) and insulin (INS) promote proliferation of rhabdomyosarcoma (RMS) cells by interacting with the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor (INSR). Loss of imprinting (LOI) by DNA hypermethylation at the differentially methylated region (DMR) for the IGF2‑H19 locus is commonly observed in RMS cells and results in an increase in the expression of proliferation-promoting IGF2 and downregulation of proliferation-inhibiting non-coding H19 miRNAs. One of these miRNAs, miR‑675, has been reported in murine cells to be a negative regulator of IGF1R expression. To better address the role of IGF2 and 1, as well as INS signaling in the pathogenesis of RMS and the involvement of LOI at the IGF2‑H19 locus, we employed the DNA demethylating agent 5‑azacytidine (AzaC). We observed that AzaC‑mediated demethylation of the DMR at the IGF2‑H19 locus resulted in downregulation of IGF2 and an increase in the expression of H19. This epigenetic change resulted in a decrease in RMS proliferation due to downregulation of IGF2 and, IGF1R expression in an miR‑675‑dependent manner. Interestingly, we observed that miR‑675 not only inhibited the expression of IGF1R in a similar manner in human and murine cells, but we also observed its negative effect on the expression of the INSR. These results confirm the crucial role of LOI at the IGF2‑H19 DMR in the pathogenesis of RMS and are relevant to the development of new treatment strategies. PMID:25707431

  2. Cell Growth Enhancement

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Exogene Corporation uses advanced technologies to enhance production of bio-processed substances like proteins, antibiotics and amino acids. Among them are genetic modification and a genetic switch. They originated in research for Jet Propulsion Laboratory. Extensive experiments in cell growth through production of hemoglobin to improve oxygen supply to cells were performed. By improving efficiency of oxygen use by cells, major operational expenses can be reduced. Greater product yields result in decreased raw material costs and more efficient use of equipment. A broad range of applications is cited.

  3. Cancer Cell Growth Is Differentially Affected by Constitutive Activation of NRF2 by KEAP1 Deletion and Pharmacological Activation of NRF2 by the Synthetic Triterpenoid, RTA 405

    PubMed Central

    Probst, Brandon L.; McCauley, Lyndsey; Trevino, Isaac; Wigley, W. Christian; Ferguson, Deborah A.

    2015-01-01

    Synthetic triterpenoids are antioxidant inflammation modulators (AIMs) that exhibit broad anticancer activity. AIMs bind to KEAP1 and inhibit its ability to promote NRF2 degradation. As a result, NRF2 increases transcription of genes that restore redox balance and reduce inflammation. AIMs inhibit tumor growth and metastasis by increasing NRF2 activity in the tumor microenvironment and by modulating the activity of oncogenic signaling pathways, including NF-κB, in tumor cells. Accumulating evidence suggests that KEAP1 loss or mutation—which results in high levels of sustained NRF2 activity—may promote cancer growth and increase chemoresistance. Loss of KEAP1 also increases the levels of other oncogenic proteins, including IKKβ and BCL2. The apparent survival advantage provided to some tumor cells by loss of functional KEAP1 raises the question of whether pharmacological inhibition of KEAP1 could promote tumor growth. To address this issue, we characterized the basal levels of KEAP1 and NRF2 in a panel of human tumor cell lines and profiled the activity of an AIM, RTA 405. We found that in tumor cell lines with low or mutant KEAP1, and in Keap1-/- murine embryonic fibroblasts, multiple KEAP1 targets including NRF2, IKKβ, and BCL2 were elevated. Keap1-/- murine embryonic fibroblasts also had higher rates of proliferation and colony formation than their wild-type counterparts. In cells with functional KEAP1, RTA 405 increased NRF2 levels, but not IKKβ or BCL2 levels, and did not increase cell proliferation or survival. Moreover, RTA 405 inhibited growth at similar concentrations in cells with different basal NRF2 activity levels and in cells with wild-type or mutant KRAS. Finally, pre-treatment with RTA 405 did not protect tumor cells from doxorubicin- or cisplatin-mediated growth inhibition. Collectively, these data demonstrate that pharmacological activation of NRF2 by AIMs is distinct from genetic activation and does not provide a growth or survival

  4. Natural polyamines and synthetic analogs modify the growth and the morphology of Pyrus communis pollen tubes affecting ROS levels and causing cell death.

    PubMed

    Aloisi, Iris; Cai, Giampiero; Tumiatti, Vincenzo; Minarini, Anna; Del Duca, Stefano

    2015-10-01

    Polyamines (PAs) are small molecules necessary for pollen maturation and tube growth. Their role is often controversial, since they may act as pro-survival factors as well as factors promoting Programmed Cell Death (PCD). The aim of the present work was to evaluate the effect of exogenous PAs on the apical growth of pear (Pyrus communis) pollen tube and to understand if PAs and reactive oxygen species (ROS) are interconnected in the process of tip-growth. In the present study besides natural PAs, also aryl-substituted spermine and methoctramine (Met 6-8-6) analogs were tested. Among the natural PAs, Spm showed strongest effects on tube growth. Spm entered through the pollen tube tip, then diffused in the sub-apical region that underwent drastic morphological changes, showing enlarged tip. Analogs were mostly less efficient than natural PAs but BD23, an asymmetric synthetic PAs bearing a pyridine ring, showed similar effects. These effects were related to the ability of PAs to cause the decrease of ROS level in the apical zone, leading to cell death, counteracted by the caspase-3 inhibitor Ac-DEVD-CHO (DEVD). In conclusions, ROS are essential for pollen germination and a strict correlation between ROS regulation and PA concentration is reported. Moreover, an imbalance between ROS and PAs can be detrimental thereby driving pollen toward cell death. PMID:26398794

  5. Natural polyamines and synthetic analogs modify the growth and the morphology of Pyrus communis pollen tubes affecting ROS levels and causing cell death.

    PubMed

    Aloisi, Iris; Cai, Giampiero; Tumiatti, Vincenzo; Minarini, Anna; Del Duca, Stefano

    2015-10-01

    Polyamines (PAs) are small molecules necessary for pollen maturation and tube growth. Their role is often controversial, since they may act as pro-survival factors as well as factors promoting Programmed Cell Death (PCD). The aim of the present work was to evaluate the effect of exogenous PAs on the apical growth of pear (Pyrus communis) pollen tube and to understand if PAs and reactive oxygen species (ROS) are interconnected in the process of tip-growth. In the present study besides natural PAs, also aryl-substituted spermine and methoctramine (Met 6-8-6) analogs were tested. Among the natural PAs, Spm showed strongest effects on tube growth. Spm entered through the pollen tube tip, then diffused in the sub-apical region that underwent drastic morphological changes, showing enlarged tip. Analogs were mostly less efficient than natural PAs but BD23, an asymmetric synthetic PAs bearing a pyridine ring, showed similar effects. These effects were related to the ability of PAs to cause the decrease of ROS level in the apical zone, leading to cell death, counteracted by the caspase-3 inhibitor Ac-DEVD-CHO (DEVD). In conclusions, ROS are essential for pollen germination and a strict correlation between ROS regulation and PA concentration is reported. Moreover, an imbalance between ROS and PAs can be detrimental thereby driving pollen toward cell death.

  6. Parabolic growth patterns in 96-well plate cell growth experiments.

    PubMed

    Faessel, H M; Levasseur, L M; Slocum, H K; Greco, W R

    1999-05-01

    In preparing for the routine use of the ubiquitous in vitro cell growth inhibition assay for the study of anticancer agents, we characterized the statistical properties of the assay and found some surprising results. Parabolic well-to-well cell growth patterns were discovered, which could profoundly affect the results of routine growth inhibition studies of anticancer and other agents. Four human ovarian cell lines, A2780/WT, A2780/DX5, A2780/DX5B, and A121, and one human ileocecal adenocarcinoma cell line, HCT-8, were seeded into plastic 96-well plates with a 12-channel pipette, without drugs, and grown from 1-5 d. The wells were washed with a plate washer, cells stained with sulforhodamine B (SRB), and dye absorbance measured with a plate reader. Variance models were fit to the data from replicates to determine the nature of the heteroscedastic error structure. Exponential growth models were fit to data to estimate doubling times for each cell line. Polynomial models were fit to data from 10-plate stacks of 96-well plates to explore nonuniformity of cell growth in wells in different regions of the stacks. Each separate step in the assay was examined for precision, patterns, and underlying causes of variation. Differential evaporation of water from wells is likely a major, but not exclusive, contributor to the systematic well-to-well cell growth patterns. Because the fundamental underlying causes of the parabolic growth patterns were not conclusively found, a randomization step for the growth assay was developed.

  7. Spaceflight and age affect tibial epiphyseal growth plate histomorphometry

    NASA Technical Reports Server (NTRS)

    Montufar-Solis, Dina; Duke, Pauline J.; Durnova, G.

    1992-01-01

    Growth plate histomorphometry of rats flown aboard the Soviet biosatellite Cosmos 2044, a 14-day spaceflight, was compared with that of control groups. In growth plates of flight animals, there was a significant increase in cell number per column and height of the proliferative zone and a reduction in height and cell number in the hypertrophy/calcification zone. No significant differences were found in matrix organization at the ultrastructural level of flight animals, indicating that although spacefligfht continues to affect bone growth of 15-wk-old rats, extracellular matrix is not altered in the same manner as seen previously in younger animals. All groups showed growth plate characteristics attributed to aging: lack of calcification zone, reduced hypertrophy zone, and unraveling of collagen fibrils. Tail-suspended controls did not differ from other controls in any of the parameters measured. The results suggest that growth plates of older rats are less responsive to unloading by spaceflight or suspension than those of younger rats and provide new evidence about the modifying effect of spaceflight on the growth plate.

  8. CbCBF from Capsella bursa-pastoris enhances cold tolerance and restrains growth in Nicotiana tabacum by antagonizing with gibberellin and affecting cell cycle signaling.

    PubMed

    Zhou, Mingqi; Xu, Ming; Wu, Lihua; Shen, Chen; Ma, Hong; Lin, Juan

    2014-06-01

    Plant cells respond to cold stress via a regulatory mechanism leading to enhanced cold acclimation accompanied by growth retardation. The C-repeat binding factor (CBF) signaling pathway is essential for cold response of flowering plants. Our previously study documented a novel CBF-like gene from the cold-tolerant Capsella bursa-pastoris named CbCBF, which was responsive to chilling temperatures. Here, we show that CbCBF expression is obviously responsive to chilling, freezing, abscisic acid, gibberellic acid (GA), indoleacetic acid or methyl jasmonate treatments and that the CbCBF:GFP fusion protein was localized to the nucleus. In addition, CbCBF overexpression conferred to the cold-sensitive tobacco plants enhanced tolerance to chilling and freezing, as well as dwarfism and delayed flowering. The leaf cells of CbCBF overexpression tobacco lines attained smaller sizes and underwent delayed cell division with reduced expression of cyclin D genes. The dwarfism of CbCBF transformants can be partially restored by GA application. Consistently, CbCBF overexpression reduced the bioactive gibberellin contents and disturbed the expression of gibberellin metabolic genes in tobacco. Meanwhile, cold induced CbCBF expression and cold tolerance in C. bursa-pastoris are reduced by GA. We conclude that CbCBF confers cold resistance and growth inhibition to tobacco cells by interacting with gibberellin and cell cycle pathways, likely through activation of downstream target genes.

  9. Ethyl-2-amino-pyrrole-3-carboxylates are novel potent anticancer agents that affect tubulin polymerization, induce G2/M cell-cycle arrest, and effectively inhibit soft tissue cancer cell growth in vitro.

    PubMed

    Boichuk, Sergei; Galembikova, Aigul; Zykova, Svetlana; Ramazanov, Bulat; Khusnutdinov, Ramil; Dunaev, Pavel; Khaibullina, Svetlana; Lombardi, Vincent

    2016-08-01

    Microtubules are known to be one of the most attractive and validated targets in cancer therapy. However, the clinical use of drugs that affect the dynamic state of microtubules has been hindered by chemoresistance and toxicity issues. Accordingly, the development of novel agents that target microtubules is needed. Here, we report the identification of novel compounds with pirrole and carboxylate structures: ethyl-2-amino-pyrrole-3-carboxylates (EAPCs) that provide potent cytotoxic activities against multiple soft tissue cancer cell lines in vitro. Using the MTS cell proliferation assay, we assessed the activity of EAPCs on various cancer cell lines including leiomyosarcoma SK-LMS-1, rhabdomyosarcoma RD, gastrointestinal stromal tumor GIST-T1, A-673 Ewing's sarcoma, and U-2 OS osteosarcoma. We found that in the majority of cases, two EAPC compounds (EAPC-20 and EAPC-24) considerably inhibited cancer cell proliferation in vitro. The growth-inhibitory effects of EAPC-20 and EAPC-24 were time and dose dependent. The molecular mechanisms of action of these compounds were because of the inhibition of tubulin polymerization and induction of a robust G2/M cell-cycle arrest, leading to considerable accumulation of tumor cells in the M-phase. Finally, EAPCs induced tumor cell death by apoptotic pathways. The above-mentioned effects were also observed in most soft tissue tumor cell lines and the gastrointestinal stromal tumor cell line investigated. Taken together, our data identify potent antitumor activity of EAPCs in vitro, thus providing a novel scaffold with which to develop potent chemotherapeutic agents for cancer therapy.

  10. Disruption of the pdhB Pyruvate Dehydrogenase Gene Affects Colony Morphology, In Vitro Growth and Cell Invasiveness of Mycoplasma agalactiae

    PubMed Central

    Hegde, Shivanand; Rosengarten, Renate; Chopra-Dewasthaly, Rohini

    2015-01-01

    The utilization of available substrates, the metabolic potential and the growth rates of bacteria can play significant roles in their pathogenicity. This study concentrates on Mycoplasma agalactiae, which causes significant economic losses through its contribution to contagious agalactia in small ruminants by as yet unknown mechanisms. This lack of knowledge is primarily due to its fastidious growth requirements and the scarcity of genetic tools available for its manipulation and analysis. Transposon mutagenesis of M. agalactiae type strain PG2 resulted in several disruptions throughout the genome. A mutant defective in growth in vitro was found to have a transposon insertion in the pdhB gene, which encodes a component of the pyruvate dehydrogenase complex. This growth difference was quite significant during the actively dividing logarithmic phase but a gradual recovery was observed as the cells approached stationary phase. The mutant also exhibited a different and smaller colony morphology compared to the wild type strain PG2. For complementation, pdhAB was cloned downstream of a strong vpma promoter and upstream of a lacZ reporter gene in a newly constructed complementation vector. When transformed with this vector the pdhB mutant recovered its normal growth and colony morphology. Interestingly, the pdhB mutant also had significantly reduced invasiveness in HeLa cells, as revealed by double immunofluorescence staining. This deficiency was recovered in the complemented strain, which had invasiveness comparable to that of PG2. Taken together, these data indicate that pyruvate dehydrogenase might be an important player in infection with and colonization by M. agalactiae. PMID:25799063

  11. Role of mast cells in tumor growth.

    PubMed

    Conti, Pio; Castellani, Maria L; Kempuraj, Durasamy; Salini, Vincenzo; Vecchiet, Jacopo; Tetè, Stefano; Mastrangelo, Filiberto; Perrella, Alessandro; De Lutiis, Maria Anna; Tagen, Michael; Theoharides, Theoharis C

    2007-01-01

    The growth of malignant tumors is determined in large part by the proliferative capacity of the tumor cells. Clinical observations and animal experiments have established that tumor cells elicit immune responses. Histopathologic studies show that many tumors are surrounded by mononuclear cell and mast cell infiltrates. Mast cells are ubiquitous in the body and are critical for allergic reactions. Increasing evidence indicates that mast cells secrete proinflammatory cytokines and are involved in neuro-inflammatory processes and cancer. Mast cells accumulate in the stroma surrounding certain tumors, especially mammary adenocarcinoma, and the molecules they secrete can benefit the tumor. However, mast cells can also increase at the site of tumor growth and participate in tumor rejection. Mast cells may be recruited by tumor-derived chemoattractants and selectively secrete molecules such as growth factors, histamine, heparin, VEGF, and IL-8, as well as proteases that permit the formation of new blood vessels and metastases. Tumor mast cell intersections play regulatory and modulatory roles affecting various aspects of tumor growth. Discovery of these new roles of mast cells further complicates the understanding of tumor growth. This review focuses on the strategic importance of mast cells to the progression of tumors, and proposes a revised immune effector mechanism of mast cell involvement in tumor growth. PMID:18000287

  12. Overexpression of two cambium-abundant Chinese fir (Cunninghamia lanceolata) α-expansin genes ClEXPA1 and ClEXPA2 affect growth and development in transgenic tobacco and increase the amount of cellulose in stem cell walls.

    PubMed

    Wang, Guifeng; Gao, Yan; Wang, Jinjun; Yang, Liwei; Song, Rentao; Li, Xiaorong; Shi, Jisen

    2011-05-01

    Expansins are unique plant cell wall proteins that possess the ability to induce immediately cell wall extension in vitro and cell expansion in vivo. To investigate the biological functions of expansins that are abundant in wood-forming tissues, we cloned two expansin genes from the differentiating xylem of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook). Phylogenetic reconstruction indicated that they belong to α-expansin (EXPA), named ClEXPA1 and ClEXPA2. Expression pattern analysis demonstrated that they are preferentially expressed in the cambium region. Overexpression of ClEXPA1 and ClEXPA2 in tobacco plants yielded pleiotropic phenotypes of plant height, stem diameter, leaf number and seed pod. The height and diameter growth of the 35S(pro) :ClEXPA1 and 35S(pro) :ClEXPA2 transgenic plants were increased drastically, exhibiting an enlargement of pith parenchyma cell size. Isolated cell walls of ClEXPA1 and ClEXPA2 overexpressors contained 30%-50% higher cellulose contents than the wild type, accompanied by a thickening of the cell walls in the xylem region. Both ClEXPA1 and ClEXPA2 are involved in plant growth and development, with a partially functional overlap. Expansins are not only able to induce cell expansion in different tissues/organs in vivo, but they also can act as a potential activator during secondary wall formation by directly or indirectly affecting cellulose metabolism, probably in a cell type-dependent manner.

  13. Insulin-like Growth Factor 1 Differentially Affects Lithium Sensitivity of Lymphoblastoid Cell Lines from Lithium Responder and Non-responder Bipolar Disorder Patients.

    PubMed

    Milanesi, Elena; Hadar, Adva; Maffioletti, Elisabetta; Werner, Haim; Shomron, Noam; Gennarelli, Massimo; Schulze, Thomas G; Costa, Marta; Del Zompo, Maria; Squassina, Alessio; Gurwitz, David

    2015-07-01

    Bipolar disorder (BD) is a chronic psychiatric illness with an unknown etiology. Lithium is considered the cornerstone in the management of BD, though about 50-60 % of patients do not respond sufficiently to chronic treatment. Insulin-like growth factor 1 (IGF1) has been identified as a candidate gene for BD susceptibility, and its low expression has been suggested as a putative biomarker for lithium unresponsiveness. In this study, we examined the in vitro effects of insulin-like growth factor 1 (IGF-1) on lithium sensitivity in lymphoblastoid cell lines (LCLs) from lithium responder (R) and non-responder (NR) bipolar patients. Moreover, we evaluated levels of microRNA let-7c, a small RNA predicted to target IGF1. We found that exogenous IGF-1 added to serum-free media increased lithium sensitivity selectively in LCLs from NR BD patients. However, no significant differences were observed when comparing let-7c expression in LCLs from R vs. NR BD patients. Our data support a key role for IGF-1 in lithium resistance/response in the treatment of bipolar disorder.

  14. How population growth affects linkage disequilibrium.

    PubMed

    Rogers, Alan R

    2014-08-01

    The "LD curve" relates the linkage disequilibrium (LD) between pairs of nucleotide sites to the distance that separates them along the chromosome. The shape of this curve reflects natural selection, admixture between populations, and the history of population size. This article derives new results about the last of these effects. When a population expands in size, the LD curve grows steeper, and this effect is especially pronounced following a bottleneck in population size. When a population shrinks, the LD curve rises but remains relatively flat. As LD converges toward a new equilibrium, its time path may not be monotonic. Following an episode of growth, for example, it declines to a low value before rising toward the new equilibrium. These changes happen at different rates for different LD statistics. They are especially slow for estimates of [Formula: see text], which therefore allow inferences about ancient population history. For the human population of Europe, these results suggest a history of population growth.

  15. How does cancer cell metabolism affect tumor migration and invasion?

    PubMed

    Han, Tianyu; Kang, De; Ji, Daokun; Wang, Xiaoyu; Zhan, Weihua; Fu, Minggui; Xin, Hong-Bo; Wang, Jian-Bin

    2013-01-01

    Cancer metastasis is the major cause of cancer-associated death. Accordingly, identification of the regulatory mechanisms that control whether or not tumor cells become "directed walkers" is a crucial issue of cancer research. The deregulation of cell migration during cancer progression determines the capacity of tumor cells to escape from the primary tumors and invade adjacent tissues to finally form metastases. The ability to switch from a predominantly oxidative metabolism to glycolysis and the production of lactate even when oxygen is plentiful is a key characteristic of cancer cells. This metabolic switch, known as the Warburg effect, was first described in 1920s, and affected not only tumor cell growth but also tumor cell migration. In this review, we will focus on the recent studies on how cancer cell metabolism affects tumor cell migration and invasion. Understanding the new aspects on molecular mechanisms and signaling pathways controlling tumor cell migration is critical for development of therapeutic strategies for cancer patients.

  16. The P21-activated kinase expression pattern is different in non-small cell lung cancer and affects lung cancer cell sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors.

    PubMed

    Liu, Yang; Wang, Si; Dong, Qian-Ze; Jiang, Gui-Yang; Han, Yong; Wang, Liang; Wang, En-Hua

    2016-03-01

    Exploring methods for increasing epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) sensitivity has become a major focus in non-small cell lung cancer (NSCLC). Major downstream effectors of the Rho family small guanosine triphosphatases, P21-activated kinases (PAKs) activate the main signaling pathways downstream of EGFR and thus promote tumor cell proliferation. In this study, we explored the expression pattern of phosphorylated PAKs in NSCLC and their potential value as drug targets for treating cancer. The expression and prognostic significance of phosphorylated group I and II PAKs were evaluated in 182 patients with NSCLC. Immunohistochemical analysis revealed low group I PAK expression in normal lung tissues and increased expressed in the cytoplasm, particularly in lung squamous cell carcinoma. Abnormal group I PAK expression was associated with lymph node metastases and high tumor-node-metastases (TNM) stage in NSCLC patients and correlated with poor prognosis. We used group I PAK inhibitor (IPA3) to specifically decrease group I PAK activity in human lung cancer cell lines. Decreased group I PAK activity inhibited cell proliferation and combined IPA3 and EGFR-TKI (gefitinib) treatment inhibited cell proliferation in an obvious manner. Together, our results revealed the PAK expression pattern in NSCLC, and a role for group I PAK in cell proliferation, which provides evidence that decreased PAK activity may have a potential application as a molecular targeted therapy in advanced NSCLC.

  17. Metabolic flux and the regulation of mammalian cell growth

    PubMed Central

    Locasale, Jason W.; Cantley, Lewis C.

    2011-01-01

    The study of normal mammalian cell growth and the defects that contribute to disease pathogenesis constitutes a fundamental avenue of research that links metabolism to cell growth. Here we visit several aspects of this metabolism, emphasizing recent advances in our understanding of how alterations in glucose metabolism affect cytosolic and mitochondrial redox potential and ATP generation. These alterations drive cell growth not only through supporting biosynthesis, energy metabolism, and maintaining redox potential but also through initiating signaling mechanisms that are still poorly characterized. The evolutionary basis of these additional layers of growth control is also discussed. PMID:21982705

  18. Single-cell dynamics reveals sustained growth during diauxic shifts.

    PubMed

    Boulineau, Sarah; Tostevin, Filipe; Kiviet, Daniel J; ten Wolde, Pieter Rein; Nghe, Philippe; Tans, Sander J

    2013-01-01

    Stochasticity in gene regulation has been characterized extensively, but how it affects cellular growth and fitness is less clear. We study the growth of E. coli cells as they shift from glucose to lactose metabolism, which is characterized by an obligatory growth arrest in bulk experiments that is termed the lag phase. Here, we follow the growth dynamics of individual cells at minute-resolution using a single-cell assay in a microfluidic device during this shift, while also monitoring lac expression. Mirroring the bulk results, the majority of cells displays a growth arrest upon glucose exhaustion, and resume when triggered by stochastic lac expression events. However, a significant fraction of cells maintains a high rate of elongation and displays no detectable growth lag during the shift. This ability to suppress the growth lag should provide important selective advantages when nutrients are scarce. Trajectories of individual cells display a highly non-linear relation between lac expression and growth, with only a fraction of fully induced levels being sufficient for achieving near maximal growth. A stochastic molecular model together with measured dependencies between nutrient concentration, lac expression level, and growth accurately reproduces the observed switching distributions. The results show that a growth arrest is not obligatory in the classic diauxic shift, and underscore that regulatory stochasticity ought to be considered in terms of its impact on growth and survival. PMID:23637881

  19. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice.

    PubMed

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  20. Measurement of adherent cell mass and growth

    PubMed Central

    Park, Kidong; Millet, Larry J.; Kim, Namjung; Li, Huan; Jin, Xiaozhong; Popescu, Gabriel; Aluru, N. R.; Hsia, K. Jimmy; Bashir, Rashid

    2010-01-01

    The characterization of physical properties of cells such as their mass and stiffness has been of great interest and can have profound implications in cell biology, tissue engineering, cancer, and disease research. For example, the direct dependence of cell growth rate on cell mass for individual adherent human cells can elucidate the mechanisms underlying cell cycle progression. Here we develop an array of micro-electro-mechanical systems (MEMS) resonant mass sensors that can be used to directly measure the biophysical properties, mass, and growth rate of single adherent cells. Unlike conventional cantilever mass sensors, our sensors retain a uniform mass sensitivity over the cell attachment surface. By measuring the frequency shift of the mass sensors with growing (soft) cells and fixed (stiff) cells, and through analytical modeling, we derive the Young’s modulus of the unfixed cell and unravel the dependence of the cell mass measurement on cell stiffness. Finally, we grew individual cells on the mass sensors and measured their mass for 50+ hours. Our results demonstrate that adherent human colon epithelial cells have increased growth rates with a larger cell mass, and the average growth rate increases linearly with the cell mass, at 3.25%/hr. Our sensitive mass sensors with a position-independent mass sensitivity can be coupled with microscopy for simultaneous monitoring of cell growth and status, and provide an ideal method to study cell growth, cell cycle progression, differentiation, and apoptosis. PMID:21068372

  1. ABSENCE OF SCLEROSTIN ADVERSELY AFFECTS B CELL SURVIVAL

    PubMed Central

    Cain, Corey J.; Rueda, Randell; McLelland, Bryce; Collette, Nicole M.; Loots, Gabriela G.; Manilay, Jennifer O.

    2012-01-01

    Increased osteoblast activity in sclerostin-knockout (Sost−/−) mice results in generalized hyperostosis and bones with small bone marrow cavities due to hyperactive mineralizing osteoblast populations. Hematopoietic cell fate decisions are dependent on their local microenvironment, which contains osteoblast and stromal cell populations that support both hematopoietic stem cell quiescence and facilitate B cell development. In this study, we investigated whether high bone mass environments affect B cell development via the utilization of Sost−/− mice, a model of sclerosteosis. We found the bone marrow of Sost−/− mice to be specifically depleted of B cells, due to elevated apoptosis at all B cell developmental stages. In contrast, B cell function in the spleen was normal. Sost expression analysis confirmed that Sost is primarily expressed in osteocytes and is not expressed in any hematopoietic lineage, which indicated that the B cell defects in Sost−/− mice are non-cell autonomous and this was confirmed by transplantation of wildtype (WT) bone marrow into lethally irradiated Sost−/− recipients. WT→Sost−/− chimeras displayed a reduction in B cells, whereas reciprocal Sost−/−→WT chimeras did not, supporting the idea that the Sost−/− bone environment cannot fully support normal B cell development. Expression of the pre-B cell growth stimulating factor, Cxcl12, was significantly lower in bone marrow stromal cells of Sost−/− mice while the Wnt target genes Lef-1 and Ccnd1 remained unchanged in B cells. Taken together, these results demonstrate a novel role for Sost in the regulation of bone marrow environments that support B cells. PMID:22434688

  2. Stiff mutant genes of phycomyces affect turgor pressure and wall mechanical properties to regulate elongation growth rate.

    PubMed

    Ortega, Joseph K E; Munoz, Cindy M; Blakley, Scott E; Truong, Jason T; Ortega, Elena L

    2012-01-01

    Regulation of cell growth is paramount to all living organisms. In plants, algae and fungi, regulation of expansive growth of cells is required for development and morphogenesis. Also, many sensory responses of stage IVb sporangiophores of Phycomyces blakesleeanus are produced by regulating elongation growth rate (growth responses) and differential elongation growth rate (tropic responses). "Stiff" mutant sporangiophores exhibit diminished tropic responses and are found to be defective in at least five genes; madD, E, F, G, and J. Prior experimental research suggests that the defective genes affect growth regulation, but this was not verified. All the growth of the single-celled stalk of the stage IVb sporangiophore occurs in a short region termed the "growth zone." Prior experimental and theoretical research indicates that elongation growth rate of the stage IVb sporangiophore can be regulated by controlling the cell wall mechanical properties within the growth zone and the magnitude of the turgor pressure. A quantitative biophysical model for elongation growth rate is required to elucidate the relationship between wall mechanical properties and turgor pressure during growth regulation. In this study, it is hypothesized that the mechanical properties of the wall within the growth zone of stiff mutant sporangiophores are different compared to wild type (WT). A biophysical equation for elongation growth rate is derived for fungal and plant cells with a growth zone. Two strains of stiff mutants are studied, C149 madD120 (-) and C216 geo- (-). Experimental results demonstrate that turgor pressure is larger but irreversible wall deformation rates within the growth zone and growth zone length are smaller for stiff mutant sporangiophores compared to WT. These findings can explain the diminished tropic responses of the stiff mutant sporangiophores. It is speculated that the defective genes affect the amount of wall-building material delivered to the inner cell wall.

  3. L-Carnosine Affects the Growth of Saccharomyces cerevisiae in a Metabolism-Dependent Manner

    PubMed Central

    Cartwright, Stephanie P.; Bill, Roslyn M.; Hipkiss, Alan R.

    2012-01-01

    The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose), 10–30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol), L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types. PMID:22984600

  4. L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner.

    PubMed

    Cartwright, Stephanie P; Bill, Roslyn M; Hipkiss, Alan R

    2012-01-01

    The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose), 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol), L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types.

  5. Growth, nitrogen uptake and flow in maize plants affected by root growth restriction.

    PubMed

    Xu, Liangzheng; Niu, Junfang; Li, Chunjian; Zhang, Fusuo

    2009-07-01

    The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root: shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.

  6. Interplay between cell growth and cell cycle in plants.

    PubMed

    Sablowski, Robert; Carnier Dornelas, Marcelo

    2014-06-01

    The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.

  7. Substrate elasticity affects bovine satellite cell activation kinetics in vitro.

    PubMed

    Lapin, M R; Gonzalez, J M; Johnson, S E

    2013-05-01

    Satellite cells support efficient postnatal skeletal muscle hypertrophy through fusion into the adjacent muscle fiber. Nuclear contribution allows for maintenance of the fiber myonuclear domain and proficient transcription of myogenic genes. Niche growth factors affect satellite cell biology; however, the interplay between fiber elasticity and microenvironment proteins remains largely unknown. The objective of the experiment was to examine the effects of hepatocyte growth factor (HGF) and surface elasticity on bovine satellite cell (BSC) activation kinetics in vitro. Young's elastic modulus was calculated for the semimembranosus (SM) and LM muscles of young bulls (5 d; n = 8) and adult cows (27 mo; n = 4) cattle. Results indicate that LM elasticity decreased (P < 0.05) with age; no difference in Young's modulus for the SM was noted. Bovine satellite cells were seeded atop polyacrylamide bioscaffolds with surface elasticities that mimic young bull and adult cow LM or traditional cultureware. Cells were maintained in low-serum media supplemented with 5 ng/mL HGF or vehicle only for 24 or 48 h. Activation was evaluated by proliferating cell nuclear antigen (PCNA) immunocytochemistry. Results indicate that BSC maintained on rigid surfaces were activated at 24 h and refractive to HGF supplementation. By contrast, fewer (P < 0.05) BSC had exited quiescence after 24 h of culture on surfaces reflective of either young bull (8.1 ± 1.7 kPa) or adult cow (14.6 ± 1.6 kPa) LM. Supplementation with HGF promoted activation of BSC cultured on bioscaffolds as measured by an increase (P < 0.05) in PCNA immunopositive cells. Culture on pliant surfaces affected neither activation kinetics nor numbers of Paired box 7 (Pax7) immunopositive muscle stem cells (P > 0.05). However, with increasing surface elasticity, an increase (P < 0.05) in the numbers of muscle progenitors was observed. These results confirm that biophysical and biochemical signals regulate BSC activation.

  8. Strength of Rocks Affected by Deformation Enhanced Grain Growth

    NASA Astrophysics Data System (ADS)

    Kellermann Slotemaker, A.; de Bresser, H.; Spiers, C.

    2005-12-01

    One way of looking into the possibility of long-term strength changes in the lithosphere is to study transient effects resulting from modifications of the microstructure of rocks. It is generally accepted that mechanical weakening may occur due to progressive grain size refinement resulting from dynamic recrystallization. A decrease in grain size may induce a switch from creep controlled by grain size insensitive dislocation mechanisms to creep governed by grain size sensitive (GSS) mechanisms involving diffusion and grain boundary sliding processes. This switch forms a well-known scenario to explain localization in the lithosphere. However, fine-grained rocks in localized deformation zones are prone to grain coarsening due to surface energy driven grain boundary migration (SED-GBM). This might harden the rock, affecting its role in localizing strain in the long term. The question has arisen if grain growth by SED-GBM in a rock deforming in the GSS creep field can be significantly affected by strain. The broad aim of this study is to shed more light onto this. We have experimentally investigated the microstructural and strength evolution of fine-grained (~0.6 μm) synthetic forsterite and Fe-bearing olivine aggregates that coarsen in grain size while deforming by GSS creep at elevated pressure (600 MPa) and temperature (850-1000 °C). The materials were prepared by `sol-gel' method and contained 0.3-0.5 wt% water and 5-10 vol% enstatite. We performed i) static heat treatment tests of various time durations involving hot isostatic pressing (HIP), and ii) heat treatment tests starting with HIP and continuing with deformation up to 45% axial strain at strain rates in the range 4x10-7 - 1x10-4 s-1. Microstructures were characterized by analyzing full grain size distributions and textures using SEM/EBSD. In addition to the experiments, we studied microstructural evolution in simple two-dimensional numerical models, combining deformation and SED-GBM by means of the

  9. Physical parameters affecting living cells in space

    NASA Astrophysics Data System (ADS)

    Langbein, Dieter

    The question is posed: Why does a living cell react to the absence of gravity? What sensors may it have? Does it note pressure, sedimentation, convection, or other parameters? If somewhere in a liquid volume sodium ions are replaced by potassium ions, the density of the liquid changes locally: the heavier regions sink, the lighter regions rise. This may contribute to species transport, to the metabolism. Under microgravity this mechanism is strongly reduced. On the other hand, other reasons for convection like thermal and solutal interface convection are left. Do they affect species transport? Another important effect of gravity is the hydrostatic pressure. On the macroscopic side, the pressure between our head and feet changes by 0.35 atmospheres. On the microscopic level the hydrostatic pressure on the upper half of a cell membrane is lower than on the lower half. This, by affecting the ion transport through the membrane, may change the surrounding electric potential. It has been suggested to be one of the reasons for graviperception. Following the discussion of these and other effects possibly important in life sciences in space, an order of magnitude analysis of the residual accelerations tolerable during experiments in materials sciences is outlined. In the field of life sciences only rough estimates are available at present.

  10. Factors Affecting Growth of Pinus radiata in Chile

    NASA Astrophysics Data System (ADS)

    Alvarez-Munoz, Jose Santos

    The Chilean forestry industry is based on hundreds of thousands of hectares of Pinus radiata plantations that have been established in a variety of soil and climate conditions. This approach has resulted in highly variable plantation productivity even when the best available technology was used. Little information is known about the ecophysiology basis for this variability. We explored the spatial and temporal variation of stand growth in Chile using a network of permanent sample plots from Modelo Nacional de Simulacion de Pino radiata. We hypothesized that the climate would play an important role in the annual variations in productivity. To answer these questions we developed the following projects: (1) Determination of site resource availability from historical data from automatic weather stations (rainfall, temperatures) and a geophysical model for solar irradiation, (2) Determination of peak annual leaf area index (LAI) for selected permanent sample plots using remote sensing technologies, (3) Analysis of soil, climate, canopy and stand factors affecting the Pinus radiata plantation growth and the use efficiency of site resources. For project 1, we estimated solar irradiation using the r.sun , Hargreaves-Samani (HS), and Bristow-Campbell (BC) models and validated model estimates with observations from weather stations. Estimations from a calibrated r.sun model accounted for 94% of the variance (r2=0.94) in monthly mean measured values. The r.sun model performed quite well for a wide range of Chilean conditions when compared with the HS and BC models. Our estimates of global irradiation may be improved with better estimates of cloudiness as they become available. Our model was able to provide spatial estimates of daily, weekly, monthly and yearly solar irradiation. For project 2, we estimated the inter-annual variation of LAI (Leaf Area Index), using remote sensing technologies. We determined LAI using Landsat Thematic Mapper (TM) data covering a 5 year period

  11. Proteinase production in Pseudomonas fluorescens ON2 is affected by carbon sources and allows surface-attached but not planktonic cells to utilize protein for growth in lake water.

    PubMed

    Nicolaisen, Mette H; Worm, Jakob; Jørgensen, Niels O G; Middelboe, Mathias; Nybroe, Ole

    2012-04-01

    Proteins may be an important carbon and nitrogen source to bacteria in aquatic habitats, yet knowledge on the actual utilization of this substrate by proteolytic bacteria is scarce. In this study, Pseudomonas fluorescens ON2 produced an alkaline proteinase (AprX) during growth, and there was no evidence for cell density-regulated or starvation-induced proteinase production. Proteinase was produced in the absence of an organic nitrogen source, and citrate had a negative while glucose had a positive effect on the production. Hence, P. fluorescens ON2 seems to exploit protein sources by expressing the proteinase during growth unless a preferred carbon source such as citrate is present. Lake water model systems were subsequently used to investigate the ability of proteolytic vs. nonproteolytic ON2 strains to utilize protein for growth at moderate cell densities. Only cells forming surface-attached microcolonies were able to utilize this resource, while planktonic cells were not. Our experiments are the first to experimentally support models predicting that production of extracellular enzymes in dilute environments may be a waste of resources, whereas it represents a favorable feeding strategy in organic matrices such as detritus, microcolonies, or biofilm. PMID:22224410

  12. Survivin inhibitor YM155 suppresses gastric cancer xenograft growth in mice without affecting normal tissues

    PubMed Central

    Cheng, Xiao Jiao; Lin, Jia Cheng; Ding, Yan Fei; Zhu, Liming; Ye, Jing; Tu, Shui Ping

    2016-01-01

    Survivin overexpression is associated with poor prognosis of human gastric cancer, and is a target for gastric cancer therapy. YM155 is originally identified as a specific inhibitor of survivin. In this study, we investigated the antitumor effect of YM155 on human gastric cancer. Our results showed that YM155 treatment significantly inhibited cell proliferation, reduced colony formation and induced apoptosis of gastric cancer cells in a dose-dependent manner. Accordingly, YM155 treatment significantly decreased survivin expression without affecting XIAP expression and increased the cleavage of apoptosis-associated proteins caspase 3, 7, 8, 9. YM155 significantly inhibited sphere formation of gastric cancer cells, suppressed expansion and growth of the formed spheres (cancer stem cell-like cells, CSCs) and downregulated the protein levels of β-catenin, c-Myc, Cyclin D1 and CD44 in gastric cancer cells. YM155 infusion at 5 mg/kg/day for 7 days markedly inhibited growth of gastric cancer xenograft in a nude mouse model. Immunohistochemistry staining and Western Blot showed that YM155 treatment inhibited expression of survivin and CD44, induced apoptosis and reduced CD44+ CSCs in xenograft tumor tissues in vivo. No obvious pathological changes were observed in organs (e.g. heart, liver, lung and kidney) in YM155-treated mice. Our results demonstrated that YM155 inhibits cell proliferation, induces cell apoptosis, reduces cancer stem cell expansion, and inhibits xenograft tumor growth in gastric cancer cells. Our results elucidate a new mechanism by which YM155 inhibits gastric cancer growth by inhibition of CSCs. YM155 may be a promising agent for gastric cancer treatment. PMID:26771139

  13. Protein restriction during pregnancy affects postnatal growth in swine progeny.

    PubMed

    Schoknecht, P A; Pond, W G; Mersmann, H J; Maurer, R R

    1993-11-01

    Protein deficiency during pregnancy affects fetal development. The critical period, when the fetus is most susceptible to maternal protein deficiency and its effect on neonatal growth, is unknown. Therefore, we studied the effect of a protein-restricted diet during early and late pregnancy and throughout pregnancy on growth of pigs from birth to market weight. Sows were fed a control (13% protein) or protein-restricted (0.5% protein) diet throughout pregnancy or protein-restricted diet from d 1 to 44, then control diet to term or control diet from d 1 to 81, then the protein-restricted diet to term. In Experiment 1, birth weights were measured, and 12 pigs/diet group were weaned at 4 wk and raised to market weight. Feeding the protein-restricted diet throughout pregnancy reduced birth and slaughter weights, whereas the control followed by protein-restricted and protein-restricted followed by control diets reduced only birth weight relative to controls. Indices of carcass lean were reduced in the protein-restricted piglets, with carcass fat not affected. In Experiment 2, control and control-protein-restricted litters were reduced to six piglets and 3/litter cross-fostered to a sow of the other treatment group. After weaning at 4 wk, 4 piglets/group were individually fed to 8 wk. The control and control followed by protein-restricted diet fed piglets had similar weights at birth, but piglets raised by a control-protein-restricted sow tended to weight less at weaning than their littermates raised by a control sow. After weaning, these piglets had greater feed intakes relative to other groups and there were no weight differences by 8 wk.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Epitaxial silicon growth for solar cells

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Richman, D.

    1978-01-01

    Growth and fabrication procedures for the baseline solar cells are described along with measured cell parameters, and the results. Reproducibility of these results was established and the direction to be taken for higher efficiency is identified.

  15. Do plastic particles affect microalgal photosynthesis and growth?

    PubMed

    Sjollema, Sascha B; Redondo-Hasselerharm, Paula; Leslie, Heather A; Kraak, Michiel H S; Vethaak, A Dick

    2016-01-01

    The unbridled increase in plastic pollution of the world's oceans raises concerns about potential effects these materials may have on microalgae, which are primary producers at the basis of the food chain and a major global source of oxygen. Our current understanding about the potential modes and mechanisms of toxic action that plastic particles exert on microalgae is extremely limited. How effects might vary with particle size and the physico-chemical properties of the specific plastic material in question are equally unelucidated, but may hold clues to how toxicity, if observed, is exerted. In this study we selected polystyrene particles, both negatively charged and uncharged, and three different sizes (0.05, 0.5 and 6μm) for testing the effects of size and material properties. Microalgae were exposed to different polystyrene particle sizes and surface charges for 72h. Effects on microalgal photosynthesis and growth were determined by pulse amplitude modulation fluorometry and flow cytometry, respectively. None of the treatments tested in these experiments had an effect on microalgal photosynthesis. Microalgal growth was negatively affected (up to 45%) by uncharged polystyrene particles, but only at high concentrations (250mg/L). Additionally, these adverse effects were demonstrated to increase with decreasing particle size.

  16. Do plastic particles affect microalgal photosynthesis and growth?

    PubMed

    Sjollema, Sascha B; Redondo-Hasselerharm, Paula; Leslie, Heather A; Kraak, Michiel H S; Vethaak, A Dick

    2016-01-01

    The unbridled increase in plastic pollution of the world's oceans raises concerns about potential effects these materials may have on microalgae, which are primary producers at the basis of the food chain and a major global source of oxygen. Our current understanding about the potential modes and mechanisms of toxic action that plastic particles exert on microalgae is extremely limited. How effects might vary with particle size and the physico-chemical properties of the specific plastic material in question are equally unelucidated, but may hold clues to how toxicity, if observed, is exerted. In this study we selected polystyrene particles, both negatively charged and uncharged, and three different sizes (0.05, 0.5 and 6μm) for testing the effects of size and material properties. Microalgae were exposed to different polystyrene particle sizes and surface charges for 72h. Effects on microalgal photosynthesis and growth were determined by pulse amplitude modulation fluorometry and flow cytometry, respectively. None of the treatments tested in these experiments had an effect on microalgal photosynthesis. Microalgal growth was negatively affected (up to 45%) by uncharged polystyrene particles, but only at high concentrations (250mg/L). Additionally, these adverse effects were demonstrated to increase with decreasing particle size. PMID:26675372

  17. Cell Assisted Cell Growth Experiments with Dictyostelium discoideum

    NASA Astrophysics Data System (ADS)

    Bae, Albert; Ip, Wui; Franck, Carl

    2007-03-01

    In eukaryotic cell culture, it is routinely recommended to keep the cells above a minimum cell density to maintain vigorous growth. We are investigating the basis for this prescription by viewing cell growth as a social behavior facilitated by cell-cell communication. Employing Dictyostelium discoideum, we find good evidence for a slow-fast transition in the cell growth rate vs. density in well mixed, 25 ml, cell cultures. We also use low height microfluidic chambers (four orders of magnitude smaller in volume) to find similar behavior even though the system is not well mixed and the cells are confined to substrates. A preliminary measurement at a flow rate that should strongly perturb cell-cell communication by means of diffusing signal molecules suggests that cell communication essential for growth is not accomplished by such means but possibly via direct contacts.

  18. Stochastic Gompertz model of tumour cell growth.

    PubMed

    Lo, C F

    2007-09-21

    In this communication, based upon the deterministic Gompertz law of cell growth, a stochastic model in tumour growth is proposed. This model takes account of both cell fission and mortality too. The corresponding density function of the size of the tumour cells obeys a functional Fokker--Planck equation which can be solved analytically. It is found that the density function exhibits an interesting "multi-peak" structure generated by cell fission as time evolves. Within this framework the action of therapy is also examined by simply incorporating a therapy term into the deterministic cell growth term.

  19. Family Poverty Affects the Rate of Human Infant Brain Growth

    PubMed Central

    Hanson, Jamie L.; Hair, Nicole; Shen, Dinggang G.; Shi, Feng; Gilmore, John H.; Wolfe, Barbara L.; Pollak, Seth D.

    2013-01-01

    Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems. PMID:24349025

  20. Artificial Polychromatic Light Affects Growth and Physiology in Chicks

    PubMed Central

    Yang, Bo; Yu, Yonghua

    2014-01-01

    Despite the overwhelming use of artificial light on captive animals, its effect on those animals has rarely been studied experimentally. Housing animals in controlled light conditions is useful for assessing the effects of light. The chicken is one of the best-studied animals in artificial light experiments, and here, we evaluate the effect of polychromatic light with various green and blue components on the growth and physiology in chicks. The results indicate that green-blue dual light has two side-effects on chick body mass, depending on the various green to blue ratios. Green-blue dual light with depleted and medium blue component decreased body mass, whereas enriched blue component promoted body mass in chicks compared with monochromatic green- or blue spectra-treated chicks. Moreover, progressive changes in the green to blue ratios of green-blue dual light could give rise to consistent progressive changes in body mass, as suggested by polychromatic light with higher blue component resulting in higher body mass. Correlation analysis confirmed that food intake was positively correlated with final body mass in chicks (R2 = 0.7664, P = 0.0001), suggesting that increased food intake contributed to the increased body mass in chicks exposed to higher blue component. We also found that chicks exposed to higher blue component exhibited higher blood glucose levels. Furthermore, the glucose level was positively related to the final body mass (R2 = 0.6406, P = 0.0001) and food intake (R2 = 0.784, P = 0.0001). These results demonstrate that spectral composition plays a crucial role in affecting growth and physiology in chicks. Moreover, consistent changes in spectral components might cause the synchronous response of growth and physiology. PMID:25469877

  1. Family poverty affects the rate of human infant brain growth.

    PubMed

    Hanson, Jamie L; Hair, Nicole; Shen, Dinggang G; Shi, Feng; Gilmore, John H; Wolfe, Barbara L; Pollak, Seth D

    2013-01-01

    Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems.

  2. Growth modulating effects of chlorinated oleic acid in cell cultures.

    PubMed

    Høstmark, A T; Lystad, E; Jebens, E; Skramstad, J; Frøyen, P

    1998-07-01

    Chlorinated fatty acids represent a major fraction of extractable, organically bound chlorine in fish. After dietary intake such fatty acids may be transferred from the mother to the foetus through the placenta, and via breast milk to the child. In the present work we have studied the effect of chlorinated oleic acid on the growth of three widely differing types of cells in culture. Chlorinated oleic acid inhibited growth of Human Microvascular Endothelial Cells (HMVEC), Immortilized Human Kidney Epithelial (IHKE) cells, and human Hepatoma cells (HepG2). The order of potency was: HMVEC > IHKE > HepG2. Vitamin E counteracted the inhibitory effect of chlorinated oleic acid on HepG2 cells, but did not significantly affect the fatty acid effect on HMVEC or IHKE. Defatted serum albumin stimulated the growth of HMVEC and IHKE. With HMVEC there was no major interaction between the effect of albumin and chlorinated oleic acid on cell growth. In contrast, with IHKE albumin at low concentration abolished the growth inhibiting effect of chlorinated oleic acid and appreciably counteracted growth inhibition by the fatty acid of HepG2. We conclude that the growth modulation by chlorinated oleic acid and its interaction with vitamin E and albumin are cell specific.

  3. Anabolic androgens affect the competitive interactions in cell migration and adhesion between normal mouse urothelial cells and urothelial carcinoma cells.

    PubMed

    Huang, Chi-Ping; Hsieh, Teng-Fu; Chen, Chi-Cheng; Hung, Xiao-Fan; Yu, Ai-Lin; Chang, Chawnshang; Shyr, Chih-Rong

    2014-09-26

    The urothelium is constantly rebuilt by normal urothelial cells to regenerate damaged tissues caused by stimuli in urine. However, the urothelial carcinoma cells expand the territory by aberrant growth of tumor cells, which migrate and occupy the damaged tissues to spread outside and disrupt the normal cells and organized tissues and form a tumor. Therefore, the interaction between normal urothelial cells and urothelial carcinoma cells affect the initiation and progression of urothelial tumors if normal urothelial cells fail to migrate and adhere to the damages sites to regenerate the tissues. Here, comparing normal murine urothelial cells with murine urothelial carcinoma cells (MBT-2), we found that normal cells had less migration ability than carcinoma cells. And in our co-culture system we found that carcinoma cells had propensity migrating toward normal urothelial cells and carcinoma cells had more advantages to adhere than normal cells. To reverse this condition, we used anabolic androgen, dihyrotestosterone (DHT) to treat normal cells and found that DHT treatment increased the migration ability of normal urothelial cells toward carcinoma cells and the adhesion capacity in competition with carcinoma cells. This study provides the base of a novel therapeutic approach by using anabolic hormone-enforced normal urothelial cells to regenerate the damage urothelium and defend against the occupancy of carcinoma cells to thwart cancer development and recurrence.

  4. Loss of stromal JUNB does not affect tumor growth and angiogenesis.

    PubMed

    Braun, Jennifer; Strittmatter, Karin; Nübel, Tobias; Komljenovic, Dorde; Sator-Schmitt, Melanie; Bäuerle, Tobias; Angel, Peter; Schorpp-Kistner, Marina

    2014-03-15

    The transcription factor AP-1 subunit JUNB has been shown to play a pivotal role in angiogenesis. It positively controls angiogenesis by regulating Vegfa as well as the transcriptional regulator Cbfb and its target Mmp13. In line with these findings, it has been demonstrated that tumor cell-derived JUNB promotes tumor growth and angiogenesis. In contrast to JUNB's function in tumor cells, the role of host-derived stromal JUNB has not been elucidated so far. Here, we show that ablation of Junb in stromal cells including endothelial cells (ECs), vascular smooth muscle cells (SMCs) and fibroblasts does not affect tumor growth in two different syngeneic mouse models, the B16-F1 melanoma and the Lewis lung carcinoma model. In-depth analyses of the tumors revealed that tumor angiogenesis remains unaffected as assessed by measurements of the microvascular density and relative blood volume in the tumor. Furthermore, we could show that the maturation status of the tumor vasculature, analyzed by the SMC marker expression, α-smooth muscle actin and Desmin, as well as the attachment of pericytes to the endothelium, is not changed upon ablation of Junb. Taken together, these results indicate that the pro-angiogenic functions of stromal JUNB are well compensated with regard to tumor angiogenesis and tumor growth. PMID:24027048

  5. Molecular crowding limits translation and cell growth.

    PubMed

    Klumpp, Stefan; Scott, Matthew; Pedersen, Steen; Hwa, Terence

    2013-10-15

    Bacterial growth is crucially dependent on protein synthesis and thus on the cellular abundance of ribosomes and related proteins. Here, we show that the slow diffusion of the bulky tRNA complexes in the crowded cytoplasm imposes a physical limit on the speed of translation, which ultimately limits the rate of cell growth. To study the required allocation of ancillary translational proteins to alleviate the effect of molecular crowding, we develop a model for cell growth based on a coarse-grained partitioning of the proteome. We find that coregulation of ribosome- and tRNA-affiliated proteins is consistent with measured growth-rate dependencies and results in near-optimal allocation over a broad range of growth rates. The analysis further resolves a long-standing controversy in bacterial growth physiology concerning the growth-rate dependence of translation speed and serves as a caution against premature identification of phenomenological parameters with mechanistic processes.

  6. Substrate properties affect collective cell motion

    NASA Astrophysics Data System (ADS)

    Pegoraro, Adrian; Guo, Ming; Ehrlicher, Allen; Weitz, David

    2013-03-01

    When cells move collectively, cooperative motion, which is characterized by long range correlations in cell movement, is necessary for migration. This collective cell motion is influenced by cell-cell interactions as well as by cell-substrate coupling. Furthermore, on soft substrates it is possible for cells to mechanically couple over long distances through the substrate itself. By changing the properties of the substrate, it is possible to decouple some of these contributions and better understand the role they play in collective cell motion. We vary both the substrate stiffness and adhesion protein concentration and find changes in the collective cell motion of the cells despite only small differences in total cell density and average cell size in the confluent layers. We test these changes on polyacrylamide and PDMS substrates as well as on structured substrates made of PDMS posts that prevent mechanical coupling through the substrate while still allowing stiffness to be varied.

  7. Shoot Turgor Does Not Limit Shoot Growth of NaCl-Affected Wheat and Barley 1

    PubMed Central

    Termaat, Annie; Passioura, John B.; Munns, Rana

    1985-01-01

    The aim of this work was to test the hypothesis that the reduced growth rate of wheat and barley that results when the roots are exposed to NaCl is due to inadequate turgor in the expanding cells of the leaves. The hypothesis was tested by exposing plants to 100 millimolar NaCl (which reduced their growth rates by about 20%), growing them for 7 to 10 days with their roots in pressure chambers, and applying sufficient pneumatic pressure in the chambers to offset the osmotic pressure of the NaCl, namely, 0.48 megapascals. The results showed that applying the pressure had no sustained effect (relative to unpressurized controls) on growth rates, transpiration rates, or osmotic pressures of the cell sap, in either the fully expanded or currently expanding leaf tissue, of both wheat and barley. The results indicate that the applied pressure correspondingly increased turgor in the shoot although this was not directly measured. We conclude that shoot turgor alone was not regulating the growth of these NaCl-affected plants, and, after discussing other possible influences, argue that a message arising in the roots may be regulating the growth of the shoot. PMID:16664152

  8. A strategy for isolation of cDNAs encoding proteins affecting human intestinal epithelial cell growth and differentiation: characterization of a novel gut-specific N-myristoylated annexin.

    PubMed

    Wice, B M; Gordon, J I

    1992-01-01

    The human intestinal epithelium is rapidly and perpetually renewed as the descendants of multipotent stem cells located in crypts undergo proliferation, differentiation, and eventual exfoliation during a very well organized migration along the crypt to villus axis. The mechanisms that establish and maintain this balance between proliferation and differentiation are largely unknown. We have utilized HT-29 cells, derived from a human colon adenocarcinoma, as a model system for identifying gene products that may regulate these processes. Proliferating HT-29 cells cultured in the absence of glucose (e.g., using inosine as the carbon source) have some of the characteristics of undifferentiated but committed crypt epithelial cells while postconfluent cells cultured in the absence of glucose resemble terminally differentiated enterocytes or goblet cells. A cDNA library, constructed from exponentially growing HT-29 cells maintained in inosine-containing media, was sequentially screened with a series of probes depleted of sequences encoding housekeeping functions and enriched for intestine-specific sequences that are expressed in proliferating committed, but not differentiated, epithelial cells. Of 100,000 recombinant phage surveyed, one was found whose cDNA was derived from an apparently gut-specific mRNA. It encodes a 316 residue, 35,463-D protein that is a new member of the annexin/lipocortin family. Other family members have been implicated in regulation of cellular growth and in signal transduction pathways. RNA blot and in situ hybridization studies indicate that the gene encoding this new annexin exhibits region-specific expression along both axes of the human gut: (a) highest levels of mRNA are present in the jejunum with marked and progressive reductions occurring distally; (b) its mRNA appears in crypt-associated epithelial cells and increases in concentration as they exit the crypt. Villus-associated epithelial cells continue to transcribe this gene during their

  9. Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana.

    PubMed

    Vespermann, Anja; Kai, Marco; Piechulla, Birgit

    2007-09-01

    Volatiles of Stenotrophomonas, Serratia, and Bacillus species inhibited mycelial growth of many fungi and Arabidopsis thaliana (40 to 98%), and volatiles of Pseudomonas species and Burkholderia cepacia retarded the growth to lesser extents. Aspergillus niger and Fusarium species were resistant, and B. cepacia and Staphylococcus epidermidis promoted the growth of Rhizoctonia solani and A. thaliana. Bacterial volatiles provide a new source of compounds with antibiotic and growth-promoting features.

  10. PI3K/PTEN/Akt pathway status affects the sensitivity of high-grade glioma cell cultures to the insulin-like growth factor-1 receptor inhibitor NVP-AEW541.

    PubMed

    Hägerstrand, Daniel; Lindh, Maja Bradic; Peña, Cristina; Garcia-Echeverria, Carlos; Nistér, Monica; Hofmann, Francesco; Ostman, Arne

    2010-09-01

    IGF-1 receptor signaling contributes to the growth of many solid tumors, including glioblastoma. This study analyzed the sensitivity of 8 glioblastoma cultures to the IGF-1 receptor inhibitor NVP-AEW541. Growth reduction, caused by a combination of antiproliferative and proapoptotic effects, varied between 20% and 100%. Growth-inhibitory effects of IGF-1 receptor siRNA were also demonstrated in 2 of the cultures. Activating mutations in PIK3CA were found in 2 cultures, and 2 other cultures displayed ligand-independent Akt phosphorylation. Growth inhibition was significantly reduced in cultures with PIK3CA mutations or ligand-independent Akt phosphorylation. PTEN siRNA experiments supported the notion that the status of the PI3K/PTEN/Akt pathway is involved in determining NVP-AEW541 sensitivity. Combination treatments with either PI3 kinase or mTOR inhibitors together with NVP-AEW541 were performed. These experiments demonstrated the effects of NVP-AEW541 in cells not responding to mono-treatment with the IGF-1 receptor inhibitor, when used together with either of the 2 other inhibitors. Together, the studies support continued clinical development of IGF-1 receptor antagonists for glioblastomas and identify links between PI3K/PTEN/Akt status and sensitivity to mono-treatment with NVP-AEW541. Furthermore, the studies suggest that NVP-AEW541 is also active together with PI3 kinase and mTOR inhibitors in cultures with a dysregulated PI3K/PTEN/Akt pathway. These studies should assist in future clinical development of IGF-1 receptor antagonists for glioblastoma and other tumors.

  11. Catalase regulates cell growth in HL60 human promyelocytic cells: evidence for growth regulation by H(2)O(2).

    PubMed

    Hachiya, Misao; Akashi, Makoto

    2005-03-01

    Reactive oxygen species (ROS) including hydrogen peroxide (H(2)O(2)) are generated constitutively in mammalian cells. Because of its relatively long life and high permeability across membranes, H(2)O(2) is thought to be an important second messenger. Generation of H(2)O(2) is increased in response to external insults, including radiation. Catalase is located at the peroxisome and scavenges H(2)O(2). In this study, we investigated the role of catalase in cell growth using the H(2)O(2)-resistant variant HP100-1 of human promyelocytic HL60 cells. HP100-1 cells had an almost 10-fold higher activity of catalase than HL60 cells without differences in levels of glutathione peroxidase, manganese superoxide dismutase (MnSOD), and copper-zinc SOD (CuZnSOD). HP100-1 cells had higher proliferative activity than HL60 cells. Treatment with catalase or the introduction of catalase cDNA into HL60 cells stimulated cell growth. Exposure of HP100-1 cells to a catalase inhibitor resulted in suppression of cell growth with concomitant increased levels of intracellular H(2)O(2). Moreover, exogenously added H(2)O(2) or depletion of glutathione suppressed cell growth in HL60 cells. Extracellular signal regulated kinase 1/2 (ERK1/2) was constitutively phosphorylated in HP100-1 cells but not in HL60 cells. Inhibition of the ERK1/2 pathway suppressed the growth of HP100-1 cells, but inhibition of p38 mitogen-activated protein kinase (p38MAPK) did not affect growth. Moreover, inhibition of catalase blocked the phosphorylation of ERK1/2 but not of p38MAPK in HP100-1 cells. Thus our results suggest that catalase activates the growth of HL60 cells through dismutation of H(2)O(2), leading to activation of the ERK1/2 pathway; H(2)O(2) is an important regulator of growth in HL60 cells.

  12. Growth regulation of cultured human nevus cells.

    PubMed

    Mancianti, M L; Györfi, T; Shih, I M; Valyi-Nagy, I; Levengood, G; Menssen, H D; Halpern, A C; Elder, D E; Herlyn, M

    1993-03-01

    Cells isolated from congenital melanocytic nevi and cultured in vitro have growth characteristics that resemble their premalignant stage in situ. A serum-free, chemically defined medium has been developed that allows continuous growth of established nevus cultures for up to several months. Like primary melanoma cells, nevus cells in high-calcium-containing W489 medium require insulin for growth. In contrast to melanoma cells, nevus cells in serum-free medium require the presence of alpha-melanocyte-stimulating hormone, which enhanced intracellular levels of cyclic adenosine monophosphate. In contrast to the requirements of normal human melanocytes from newborn foreskin, congenital nevus cells grow with less dependency on basic fibroblast growth factor (bFGF). Nevus cultures contain bFGF-like activity, and they express bFGF mRNA. Nevic cells of compound nevi also express bFGF mRNA in situ but only in the junctional areas. These results indicate that bFGF plays an important growth regulatory role for nevus cells in vitro and in vivo. PMID:8440904

  13. Cloned Hemoglobin Genes Enhance Growth Of Cells

    NASA Technical Reports Server (NTRS)

    Khosla, Chaitan; Bailey, James E.

    1991-01-01

    Experiments show that portable deoxyribonucleic acid (DNA) sequences incorporated into host cells make them produce hemoglobins - oxygen-binding proteins essential to function of red blood cells. Method useful in several biotechnological applications. One, enhancement of growth of cells at higher densities. Another, production of hemoglobin to enhance supplies of oxygen in cells, for use in chemical reactions requiring oxygen, as additive to serum to increase transport of oxygen, and for binding and separating oxygen from mixtures of gases.

  14. Factors affecting Staphylococcus epidermidis growth in peritoneal dialysis solutions.

    PubMed Central

    McDonald, W A; Watts, J; Bowmer, M I

    1986-01-01

    Staphylococcus epidermidis is the most frequent cause of peritonitis complicating continuous ambulatory peritoneal dialysis. We studied factors that might influence the growth of S. epidermidis in commercially available peritoneal dialysis solution (PDS). Test strains were inoculated into PDS and incubated overnight at 37 degrees C. Samples were removed at appropriate intervals, bacterial counts were performed, and growth curves were constructed. We studied the effects of various osmolarities, the neutralization and acidification of fresh and spent PDS, and the effect of intraperitoneal dwell time on the ability PDS to support growth of S. epidermidis. In fresh PDS, numbers of bacteria remained constant after 24 h. No significant differences in growth were observed among PDS with 0.5, 1.5, 2.5, and 4.25% glucose. Neutralizing acidic fresh PDS had no effect on bacterial growth. However, growth did occur in spent PDS. PDS which was recovered after only 2 h in the peritoneal cavity supported growth to the same extent as did PDS recovered after 4 to 6 h. Mean log10 changes after 24 h of incubation were as follows: for fresh PDS, -1.3; after 2 h dwell time, 2.9; after 4 h dwell time, 1.9; and after 6 h dwell time, 1.3. Acidification of spent PDS to less than pH 6.35 produced less rapid growth; mean log10 increases after 24 h of incubation were 1.9 for pH 7.75, 1.6 for pH 6.35, 0.6 for pH 5.75, and 0.7 for pH 4.95. Fresh PDS of all available osmolarities neither supported the growth of S. epidermidis nor was bactericidal. Spent PDS supported bacterial growth, and this growth was partly independent of the neutralization which occurred during the dialysis. PMID:3722356

  15. Organizational Career Growth, Affective Occupational Commitment and Turnover Intentions

    ERIC Educational Resources Information Center

    Weng, Qingxiong; McElroy, James C.

    2012-01-01

    Survey data, collected from the People's Republic of China, were used to test Weng's (2010) four facet model of career growth and to examine its effect on occupational commitment and turnover intentions. Weng conceptualized career growth as consisting of four factors: career goal progress, professional ability development, promotion speed, and…

  16. Environmental Crack Growth Behavior Affected by Thickness/Geometry Constraint

    NASA Astrophysics Data System (ADS)

    Kujawski, Daniel

    2013-03-01

    This article gives a short review on the effects of thickness/constraint and environment on crack growth behavior under cyclic and static loadings. Fatigue crack growth data taken from the literature, corresponding to different environments, ranging from vacuum to air and NaCl solution for a number of alloys and different specimens geometries are presented and analyzed. Reported results indicate that for relatively inert material/environment systems, there is a weak thickness/constraint effect on fatigue crack growth behavior. On the other hand, for corrosive material/environment systems, there is a significant thickness/constraint effect on crack growth rate behavior under both cyclic and static loadings. Some implications related to crack growth modeling are suggested.

  17. Genome rearrangement affects RNA virus adaptability on prostate cancer cells

    PubMed Central

    Pesko, Kendra; Voigt, Emily A.; Swick, Adam; Morley, Valerie J.; Timm, Collin; Yin, John; Turner, Paul E.

    2015-01-01

    Gene order is often highly conserved within taxonomic groups, such that organisms with rearranged genomes tend to be less fit than wild type gene orders, and suggesting natural selection favors genome architectures that maximize fitness. But it is unclear whether rearranged genomes hinder adaptability: capacity to evolutionarily improve in a new environment. Negative-sense non-segmented RNA viruses (order Mononegavirales) have specific genome architecture: 3′ UTR – core protein genes – envelope protein genes – RNA-dependent RNA-polymerase gene – 5′ UTR. To test how genome architecture affects RNA virus evolution, we examined vesicular stomatitis virus (VSV) variants with the nucleocapsid (N) gene moved sequentially downstream in the genome. Because RNA polymerase stuttering in VSV replication causes greater mRNA production in upstream genes, N gene translocation toward the 5′ end leads to stepwise decreases in N transcription, viral replication and progeny production, and also impacts the activation of type 1 interferon mediated antiviral responses. We evolved VSV gene-order variants in two prostate cancer cell lines: LNCap cells deficient in innate immune response to viral infection, and PC-3 cells that mount an IFN stimulated anti-viral response to infection. We observed that gene order affects phenotypic adaptability (reproductive growth; viral suppression of immune function), especially on PC-3 cells that strongly select against virus infection. Overall, populations derived from the least-fit ancestor (most-altered N position architecture) adapted fastest, consistent with theory predicting populations with low initial fitness should improve faster in evolutionary time. Also, we observed correlated responses to selection, where viruses improved across both hosts, rather than suffer fitness trade-offs on unselected hosts. Whole genomics revealed multiple mutations in evolved variants, some of which were conserved across selective environments for a

  18. Alteration of proteoglycan sulfation affects bone growth and remodeling

    PubMed Central

    Gualeni, Benedetta; de Vernejoul, Marie-Christine; Marty-Morieux, Caroline; De Leonardis, Fabio; Franchi, Marco; Monti, Luca; Forlino, Antonella; Houillier, Pascal; Rossi, Antonio; Geoffroy, Valerie

    2013-01-01

    Diastrophic dysplasia (DTD) is a chondrodysplasia caused by mutations in the SLC26A2 gene, leading to reduced intracellular sulfate pool in chondrocytes, osteoblasts and fibroblasts. Hence, proteoglycans are undersulfated in the cartilage and bone of DTD patients. To characterize the bone phenotype of this skeletal dysplasia we used the Slc26a2 knock-in mouse (dtd mouse), that was previously validated as an animal model of DTD in humans. X-rays, bone densitometry, static and dynamic histomorphometry, and in vitro studies revealed a primary bone defect in the dtd mouse model. We showed in vivo that this primary bone defect in dtd mice is due to decreased bone accrual associated with a decreased trabecular and periosteal appositional rate at the cell level in one month-old mice. Although the osteoclast number evaluated by histomorphometry was not different in dtd compared to wild-type mice, urine analysis of deoxypyridinoline cross-links and serum levels of type I collagen C-terminal telopeptides showed a higher resorption rate in dtd mice compared to wild-type littermates. Electron microscopy studies showed that collagen fibrils in bone were thinner and less organized in dtd compared to wild-type mice. These data suggest that the low bone mass observed in mutant mice could possibly be linked to the different bone matrix compositions/organizations in dtd mice triggering changes in osteoblast and osteoclast activities. Overall, these results suggest that proteoglycan undersulfation not only affects the properties of hyaline cartilage, but can also lead to unbalanced bone modeling and remodeling activities, demonstrating the importance of proteoglycan sulfation in bone homeostasis. PMID:23369989

  19. Shape of growth cells in directional solidification.

    PubMed

    Pocheau, A; Georgelin, M

    2006-01-01

    The purpose of this study is to characterize experimentally the whole shape of the growth cells displayed in directional solidification and its evolution with respect to control parameters. A library of cells is first built up from observation of directional solidification of a succinonitrile alloy in a large range of pulling velocity, cell spacing, and thermal gradient. Cell boundaries are then extracted from these images and fitted by trial functions on their whole profile, from cell tip to cell grooves. A coherent evolution of the fit parameters with the control parameters is evidenced. It enables us to characterize the whole cell shape by a single function involving only two parameters which vary smoothly in the control parameter space. This, in particular, evidences a continuous evolution of the cell geometry at the cell to dendrite transition which denies the existence of a change of branch of solutions at the occurrence of sidebranching. More generally, this global determination of cell shape complemented with a previous determination of the position of cells in the thermal field (the cell tip undercooling) provides a complete characterization of growth solutions and of their evolutions in this system. It thus brings about a relevant framework for testing and improving theoretical and numerical understanding of cell shapes and cell stability in directional solidification.

  20. Role of bentonite clays on cell growth.

    PubMed

    Cervini-Silva, Javiera; Ramírez-Apan, María Teresa; Kaufhold, Stephan; Ufer, Kristian; Palacios, Eduardo; Montoya, Ascención

    2016-04-01

    Bentonites, naturally occurring clays, are produced industrially because of their adsorbent capacity but little is known about their effects on human health. This manuscript reports on the effect of bentonites on cell growth behaviour. Bentonites collected from India (Bent-India), Hungary (Bent-Hungary), Argentina (Bent-Argentina), and Indonesia (Bent-Indonesia) were studied. All four bentonites were screened in-vitro against two human cancer cell lines [U251 (central nervous system, glioblastoma) and SKLU-1 (lung adenocarcinoma)] supplied by the National Cancer Institute (USA). Bentonites induced growth inhibition in the presence of U251 cells, and growth increment in the presence of SKLU-1 cells, showing that interactions between bentonite and cell surfaces were highly specific. The proliferation response for U251 cells was explained because clay surfaces controlled the levels of metabolic growth components, thereby inhibiting the development of high-grade gliomas, particularly primary glioblastomas. On the other hand, the proliferation response for SKLU-1 was explained by an exacerbated growth favoured by swelling, and concomitant accumulation of solutes, and their hydration and transformation via clay-surface mediated reactions. PMID:26849195

  1. Role of bentonite clays on cell growth.

    PubMed

    Cervini-Silva, Javiera; Ramírez-Apan, María Teresa; Kaufhold, Stephan; Ufer, Kristian; Palacios, Eduardo; Montoya, Ascención

    2016-04-01

    Bentonites, naturally occurring clays, are produced industrially because of their adsorbent capacity but little is known about their effects on human health. This manuscript reports on the effect of bentonites on cell growth behaviour. Bentonites collected from India (Bent-India), Hungary (Bent-Hungary), Argentina (Bent-Argentina), and Indonesia (Bent-Indonesia) were studied. All four bentonites were screened in-vitro against two human cancer cell lines [U251 (central nervous system, glioblastoma) and SKLU-1 (lung adenocarcinoma)] supplied by the National Cancer Institute (USA). Bentonites induced growth inhibition in the presence of U251 cells, and growth increment in the presence of SKLU-1 cells, showing that interactions between bentonite and cell surfaces were highly specific. The proliferation response for U251 cells was explained because clay surfaces controlled the levels of metabolic growth components, thereby inhibiting the development of high-grade gliomas, particularly primary glioblastomas. On the other hand, the proliferation response for SKLU-1 was explained by an exacerbated growth favoured by swelling, and concomitant accumulation of solutes, and their hydration and transformation via clay-surface mediated reactions.

  2. Slower Economic Growth Affects the 1995 Labor Market.

    ERIC Educational Resources Information Center

    Gardner, Jennifer M.; Hayghe, Howard V.

    1996-01-01

    Shows how job growth slowed dramatically in 1995, but the unemployment rate remained little changed. Discusses trends in nonfarm payroll employment by industry and changes in employment status of people in various demographic and occupational groups. (Author)

  3. Piper and Vismia species from Colombian Amazonia differentially affect cell proliferation of hepatocarcinoma cells.

    PubMed

    Lizcano, Leandro J; Siles, Maite; Trepiana, Jenifer; Hernández, M Luisa; Navarro, Rosaura; Ruiz-Larrea, M Begoña; Ruiz-Sanz, José Ignacio

    2015-01-01

    There is an increasing interest to identify plant-derived natural products with antitumor activities. In this work, we have studied the effects of aqueous leaf extracts from Amazonian Vismia and Piper species on human hepatocarcinoma cell toxicity. Results showed that, depending on the cell type, the plants displayed differential effects; thus, Vismia baccifera induced the selective killing of HepG2, while increasing cell growth of PLC-PRF and SK-HEP-1. In contrast, these two last cell lines were sensitive to the toxicity by Piper krukoffii and Piper putumayoense, while the Piperaceae did not affect HepG2 growth. All the extracts induced cytotoxicity to rat hepatoma McA-RH7777, but were innocuous (V. baccifera at concentrations < 75 µg/mL) or even protected cells from basal death (P. putumayoense) in primary cultures of rat hepatocytes. In every case, cytotoxicity was accompanied by an intracellular accumulation of reactive oxygen species (ROS). These results provide evidence for the anticancer activities of the studied plants on specific cell lines and suggest that cell killing could be mediated by ROS, thus involving mechanisms independent of the plants free radical scavenging activities. Results also support the use of these extracts of the Vismia and Piper genera with opposite effects as a model system to study the mechanisms of the antitumoral activity against different types of hepatocarcinoma. PMID:25558904

  4. Postnatal nutritional restriction affects growth and immune function of piglets with intra-uterine growth restriction.

    PubMed

    Hu, Liang; Liu, Yan; Yan, Chuan; Peng, Xie; Xu, Qin; Xuan, Yue; Han, Fei; Tian, Gang; Fang, Zhengfeng; Lin, Yan; Xu, Shengyu; Zhang, Keying; Chen, Daiwen; Wu, De; Che, Lianqiang

    2015-07-14

    Postnatal rapid growth by excess intake of nutrients has been associated with an increased susceptibility to diseases in neonates with intra-uterine growth restricted (IUGR). The aim of the present study was to determine whether postnatal nutritional restriction could improve intestinal development and immune function of neonates with IUGR using piglets as model. A total of twelve pairs of normal-birth weight (NBW) and IUGR piglets (7 d old) were randomly assigned to receive adequate nutrient intake or restricted nutrient intake (RNI) by artificially liquid feeding for a period of 21 d. Blood samples and intestinal tissues were collected at necropsy and were analysed for morphology, digestive enzyme activities, immune cells and expression of innate immunity-related genes. The results indicated that both IUGR and postnatal nutritional restriction delayed the growth rate during the sucking period. Irrespective of nutrient intake, piglets with IUGR had a significantly lower villous height and crypt depth in the ileum than the NBW piglets. Moreover, IUGR decreased alkaline phosphatase activity while enhanced lactase activity in the jejunum and mRNA expressions of Toll-like receptor 9 (TLR-9) and DNA methyltransferase 1 (DNMT1) in the ileum of piglets. Irrespective of body weight, RNI significantly decreased the number and/or percentage of peripheral leucocytes, lymphocytes and monocytes of piglets, whereas the percentage of neutrophils and the ratio of CD4+ to CD8+ were increased. Furthermore, RNI markedly enhanced the mRNA expression of TLR-9 and DNMT1, but decreased the expression of NOD2 and TRAF-6 in the ileum of piglets. In summary, postnatal nutritional restriction led to abnormal cellular and innate immune response, as well as delayed the growth and intestinal development of IUGR piglets. PMID:26059215

  5. Modeling circadian clock-cell cycle interaction effects on cell population growth rates.

    PubMed

    El Cheikh, R; Bernard, S; El Khatib, N

    2014-12-21

    The circadian clock and the cell cycle are two tightly coupled oscillators. Recent analytical studies have shown counter-intuitive effects of circadian gating of the cell cycle on growth rates of proliferating cells which cannot be explained by a molecular model or a population model alone. In this work, we present a combined molecular-population model that studies how coupling the circadian clock to the cell cycle, through the protein WEE1, affects a proliferating cell population. We show that the cell cycle can entrain to the circadian clock with different rational period ratios and characterize multiple domains of entrainment. We show that coupling increases the growth rate for autonomous periods of the cell cycle around 24 h and above 48 h. We study the effect of mutation of circadian genes on the growth rate of cells and show that disruption of the circadian clock can lead to abnormal proliferation. Particularly, we show that Cry 1, Cry 2 mutations decrease the growth rate of cells, Per 2 mutation enhances it and Bmal 1 knockout increases it for autonomous periods of the cell cycle less than 21 h and decreases it elsewhere. Combining a molecular model to a population model offers new insight on the influence of the circadian clock on the growth of a cell population. This can help chronotherapy which takes benefits of physiological rhythms to improve anti-cancer efficacy and tolerance to drugs by administering treatments at a specific time of the day.

  6. Culture surfaces coated with various implant materials affect chondrocyte growth and metabolism.

    PubMed

    Hambleton, J; Schwartz, Z; Khare, A; Windeler, S W; Luna, M; Brooks, B P; Dean, D D; Boyan, B D

    1994-07-01

    The effect on chondrocyte metabolism of culture surfaces sputter-coated with various materials used for orthopaedic implants was studied and correlated with the stage of cartilage cell maturation. Confluent, fourth-passage chondrocytes from the costochondral resting zone and growth zone of rats were cultured for 6 or 9 days on 24-well plates sputter-coated with ultrathin films of titanium, titanium dioxide, aluminum oxide, zirconium oxide, and calcium phosphate (1.67:1). Corona-discharged tissue culture plastic served as the control. The effect of surface material was examined with regard to cell morphology; cell proliferation (cell number) and DNA synthesis ([3H]thymidine incorporation); RNA synthesis ([3H]uridine incorporation); collagenase-digestible protein, noncollagenase-digestible protein, and percentage of collagen production; and alkaline phosphatase-specific activity, both in the cell layer and in trypsinized chondrocytes. Cell morphology was dependent on surface material; only cells cultured on titanium had an appearance similar to that of cells cultured on plastic. While titanium or titanium dioxide surfaces had no effect on cell number or [3H]thymidine incorporation, aluminum oxide, calcium phosphate, and zirconium oxide surfaces inhibited both parameters. Cells cultured on aluminum oxide, calcium phosphate, zirconium oxide, and titanium dioxide exhibited decreased collagenase-digestible protein, noncollagenase-digestible protein, and percentage of collagen production, but [3H]uridine incorporation was decreased only in those chondrocytes cultured on aluminum oxide, calcium phosphate, or zirconium oxide. Chondrocytes cultured on titanium had greater alkaline phosphatase-specific activity than did cells cultured on plastic, but the incorporation of [3H]uridine and production of collagenase-digestible protein, noncollagenase-digestible protein, and percentage of collagen was comparable. The response of chondrocytes from the growth zone and resting zone

  7. Some factors affecting the growth and decay of plages

    NASA Astrophysics Data System (ADS)

    Howard, Robert F.

    1993-09-01

    The Mount Wilson coarse array magnetograph data set is analyzed to examine the dependence of growth and decay rates on the tilt angles of the magnetic axes of the regions. It is found that there is a relationship between these quantities which is similar to that found earlier for sunspot groups. Regions near the average tilt angle show larger average (absolute) growth and decay rates. The percentage growth and decay rates show minima (in absolute values) at the average tilt angles because the average areas of regions are largest near this angle. This result is similar to that derived earlier for sunspot groups. As in the case of spot groups, this suggests that, for decay, the effect results from the fact that the average tilt angle may represent the simplest subsurface configuration of the flux loop or loops that make up the region. In the case of region growth, it was suggested that the more complicated loop configuration should result in increased magnetic tension in the flux loop, and thus in a slower ascent of the loop to the surface, and thus a slower growth rate.

  8. Chlamydia trachomatis growth depends on eukaryotic cholesterol esterification and is affected by Acyl-CoA:cholesterol acyltransferase inhibition

    PubMed Central

    Peters, Jan; Byrne, Gerald I.

    2015-01-01

    Chlamydia trachomatis is auxotrophic for a variety of essential metabolites. Inhibitors that interrupt host cell catabolism may inhibit chlamydial growth and reveal Chlamydia metabolite requirements. We used the known indoleamine-2,3-dioxygenase (IDO)-inhibitor 4-phenyl imidazole (4-PI) to reverse Interferon (IFN)-γ-induced chlamydial growth inhibition. However, at elevated inhibitor concentrations chlamydial growth was arrested even in the absence of IFN-γ. Since 4-PI is known to interfere with cholesterol metabolism, the effect of cholesterol add-back was tested. Chlamydia growth was restored in the presence of cholesterol in serum-containing, but not serum-free medium suggesting that cholesterol and other serum components are required for growth recovery. When serum factors were tested, either cholesteryl linoleate or the combination of cholesterol and linoleic acid restored chlamydial growth. However, growth was not restored when either cholesterol or linoleic acid were added alone, suggesting that the production of cholesteryl esters from cholesterol and fatty acids was affected by 4-PI treatment. In eukaryotic cells, the enzyme Acyl-CoA:cholesterol acyltransferase (ACAT) catalyzes the production of cholesteryl esters. When HeLa cells were treated with the ACAT-specific inhibitor 4-hydroxycinnamicacid amide C. trachomatis growth was interrupted, but was restored by the addition of cholesteryl linoleate, suggesting that ACAT activity is necessary for intracellular Chlamydia growth. PMID:25883118

  9. Corn metabolites affect growth and virulence of Agrobacterium tumefaciens.

    PubMed Central

    Sahi, S V; Chilton, M D; Chilton, W S

    1990-01-01

    Homogenates of corn seedlings inhibit both growth of Agrobacterium tumefaciens and induction of its Ti plasmid virulence (vir) genes by acetosyringone (AS). The heat-labile inhibitor has been identified as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), present in 2-week-old seedlings (B73) at a concentration of 1.5 mM or greater. A concentration of 0.3 mM DIMBOA is sufficient to block growth of A. tumefaciens completely for 220 hr. DIMBOA at 0.1 mM concentration completely inhibited vir gene induction by 100 microM AS and reduced growth rate by 50%. Thus, DIMBOA can be expected to have a significant effect on attempts to transform corn by using A. tumefaciens as a vector. Images PMID:11607078

  10. The pituitary growth hormone cell in space

    NASA Technical Reports Server (NTRS)

    Hymer, Wesley C.; Grindeland, R.

    1989-01-01

    Growth hormone (GH), produced and secreted from specialized cells in the pituitary gland, controls the metabolism of protein, fat, and carbohydrate. It is also probably involved in the regulation of proper function of bone, muscle and immune systems. The behavior of the GH cell system was studied by flying either isolated pituitary cells or live rats. In the latter case, pituitary GH cells are prepared on return to earth and then either transplanted into hypophysectomized rats or placed into cell culture so that function of GH cells in-vivo vs. in-vitro can be compared. The results from three flights to date (STS-8, 1983; SL-3, 1985; Cosmos 1887, 1987) established that the ability of GH cells to release hormone, on return to earth, is compromised. The mechanism(s) responsible for this attenuation response is unknown. However, the data are sufficiently positive to indicate that the nature of the secretory defect resides directly within the GH cells.

  11. Factors affecting plant growth in membrane nutrient delivery

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Wheeler, R. M.; Sager, J. C.; Knott, W. M.

    1990-01-01

    The development of the tubular membrane plant growth unit for the delivery of water and nutrients to roots in microgravity has recently focused on measuring the effects of changes in physical variables controlling solution availability to the plants. Significant effects of membrane pore size and the negative pressure used to contain the solution were demonstrated. Generally, wheat grew better in units with a larger pore size but equal negative pressure and in units with the same pore size but less negative pressure. Lettuce also exhibited better plant growth at less negative pressure.

  12. The Tzs protein and exogenous cytokinin affect virulence gene expression and bacterial growth of Agrobacterium tumefaciens.

    PubMed

    Hwang, Hau-Hsuan; Yang, Fong-Jhih; Cheng, Tun-Fang; Chen, Yi-Chun; Lee, Ying-Ling; Tsai, Yun-Long; Lai, Erh-Min

    2013-09-01

    The soil phytopathogen Agrobacterium tumefaciens causes crown gall disease in a wide range of plant species. The neoplastic growth at the infection sites is caused by transferring, integrating, and expressing transfer DNA (T-DNA) from A. tumefaciens into plant cells. A trans-zeatin synthesizing (tzs) gene is located in the nopaline-type tumor-inducing plasmid and causes trans-zeatin production in A. tumefaciens. Similar to known virulence (Vir) proteins that are induced by the vir gene inducer acetosyringone (AS) at acidic pH 5.5, Tzs protein is highly induced by AS under this growth condition but also constitutively expressed and moderately upregulated by AS at neutral pH 7.0. We found that the promoter activities and protein levels of several AS-induced vir genes increased in the tzs deletion mutant, a mutant with decreased tumorigenesis and transient transformation efficiencies, in Arabidopsis roots. During AS induction and infection of Arabidopsis roots, the tzs deletion mutant conferred impaired growth, which could be rescued by genetic complementation and supplementing exogenous cytokinin. Exogenous cytokinin also repressed vir promoter activities and Vir protein accumulation in both the wild-type and tzs mutant bacteria with AS induction. Thus, the tzs gene or its product, cytokinin, may be involved in regulating AS-induced vir gene expression and, therefore, affect bacterial growth and virulence during A. tumefaciens infection. PMID:23593941

  13. The Tzs protein and exogenous cytokinin affect virulence gene expression and bacterial growth of Agrobacterium tumefaciens.

    PubMed

    Hwang, Hau-Hsuan; Yang, Fong-Jhih; Cheng, Tun-Fang; Chen, Yi-Chun; Lee, Ying-Ling; Tsai, Yun-Long; Lai, Erh-Min

    2013-09-01

    The soil phytopathogen Agrobacterium tumefaciens causes crown gall disease in a wide range of plant species. The neoplastic growth at the infection sites is caused by transferring, integrating, and expressing transfer DNA (T-DNA) from A. tumefaciens into plant cells. A trans-zeatin synthesizing (tzs) gene is located in the nopaline-type tumor-inducing plasmid and causes trans-zeatin production in A. tumefaciens. Similar to known virulence (Vir) proteins that are induced by the vir gene inducer acetosyringone (AS) at acidic pH 5.5, Tzs protein is highly induced by AS under this growth condition but also constitutively expressed and moderately upregulated by AS at neutral pH 7.0. We found that the promoter activities and protein levels of several AS-induced vir genes increased in the tzs deletion mutant, a mutant with decreased tumorigenesis and transient transformation efficiencies, in Arabidopsis roots. During AS induction and infection of Arabidopsis roots, the tzs deletion mutant conferred impaired growth, which could be rescued by genetic complementation and supplementing exogenous cytokinin. Exogenous cytokinin also repressed vir promoter activities and Vir protein accumulation in both the wild-type and tzs mutant bacteria with AS induction. Thus, the tzs gene or its product, cytokinin, may be involved in regulating AS-induced vir gene expression and, therefore, affect bacterial growth and virulence during A. tumefaciens infection.

  14. Shade periodicity affects growth of container grown dogwoods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Container-grown dogwoods rank third in the US in nursery sales of ornamental trees. However, Dogwoods are a challenging crop to produce in container culture, especially when bare root liners are used as the initial transplant into containers due unacceptable levels of mortality and poor growth. This...

  15. Dissolved oxygen concentration affects hybrid striped bass growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of dissolved oxygen (DO) concentration in ponds at night during the growing season is important because fish growth and yield are greater in ponds with higher nightly DO concentrations. Three studies were conducted to quantify performance traits and metabolic responses of hybrid striped b...

  16. Inhibitory effects of indomethacin on growth and proliferation of gastric carcinoma cells KATO III.

    PubMed

    Fujiwara, Y; Tarnawski, A; Fujiwara, K; Arakawa, T; Kobayashi, K

    1993-06-01

    The effects of indomethacin on growth and proliferation of gastric carcinoma cells KATO III were examined. Indomethacin (10(-4) and 10(-3) M) significantly inhibited cell growth and these effects were not affected by treatment with 16,16-dimethyl prostaglandin E2 (3 x 10(-7) M and 3 x 10(-6) M). Indomethacin 10(-3) M significantly reduced cell viability and completely inhibited cell growth. Indomethacin 10(-4) M did not affect cell viability and its inhibitory effect of cell growth became apparent on the fifth day of culture. Indomethacin 10(-4) M reduced BrdU labeling index within 2 hours. These results suggest that indomethacin inhibited growth and proliferation of gastric carcinoma cells KATO III. This effect is not mediated by prostaglandins. PMID:8358051

  17. Metabolism, cell growth and the bacterial cell cycle.

    PubMed

    Wang, Jue D; Levin, Petra A

    2009-11-01

    Adaptation to fluctuations in nutrient availability is a fact of life for single-celled organisms in the 'wild'. A decade ago our understanding of how bacteria adjust cell cycle parameters to accommodate changes in nutrient availability stemmed almost entirely from elegant physiological studies completed in the 1960s. In this Opinion article we summarize recent groundbreaking work in this area and discuss potential mechanisms by which nutrient availability and metabolic status are coordinated with cell growth, chromosome replication and cell division.

  18. Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system.

    PubMed

    Oksbjerg, Niels; Gondret, Florence; Vestergaard, Mogens

    2004-10-01

    This presentation aims to describe how the basic events in prenatal muscle development and postnatal muscle growth are controlled by the insulin-like growth factor system (IGF). The prenatal events (myogenesis) cover the rate of proliferation, the rate and extent of fusion, and the differentiation of three myoblast populations, giving rise to primary fibers, secondary fibers, and a satellite cell population, respectively. The number of muscle fibers, a key determinant of the postnatal growth rate, is fixed late in gestation. The postnatal events contributing to myofiber hypertrophy comprise satellite cell proliferation and differentiation, and protein turnover. Muscle cell cultures produce IGFs and IGF binding proteins (IGFBPs) in various degrees depending on the origin (species, muscle type) and state of development of these cells, suggesting an autocrine/paracrine mode of action of IGF-related factors. In vivo studies and results based on cell lines or primary cell cultures show that IGF-I and IGF-II stimulate both proliferation and differentiation of myoblasts and satellite cells in a time and concentration-dependent way, via interaction with type I IGF receptors. However, IGF binding proteins (IGFBP) may either inhibit or potentiate the stimulating effects of IGFs on proliferation or differentiation. During postnatal growth in vivo or in fully differentiated muscle cells in culture, IGF-I stimulates the rate of protein synthesis and inhibits the rate of protein degradation, thereby enhancing myofiber hypertrophy. The possible roles and actions of the IGF system in regulating and determining muscle growth as affected by developmental stage and age, muscle type, feeding levels, treatment with growth hormone and selection for growth performance are discussed.

  19. Phasic temperature change patterns affect growth and tuberization in potatoes

    SciTech Connect

    Cao, W.; Tibbitts, T.W. . Dept. of Horticulture)

    1994-07-01

    This study determined the response of potato (Solanum tuberosum L., cv. Norland) plants to various patterns of air temperature changes over different growth periods. In each of two experiments under controlled environments, eight treatments of temperature changes were carried out in two growth rooms maintained at 17 and 22 C and a constant vapor pressure deficit of 0.60 kPa and 14-hour photoperiod. Plants were grown for 63 days after transplanting of tissue culture plantlets in 20-liter pots containing peat-vermiculite mix. Temperature changes were imposed on days 21 and 42, which were essentially at the beginning of tuber initiation and tuber enlargement, respectively, for this cultivar. Plants were moved between two temperature rooms to obtain eight temperature change patterns: 17-17-17, 17-17-22, 17-22-17, 22-17-17, 17-22-22, 22-17-22, 22-22-17, and 22-22-22C over three 21-day growth periods. At harvest on day 63, total plant dry weight was higher for the treatments beginning with 22 C than for those beginning with 17C, with highest biomass obtained at 22-22-17 and 22-17-17C. Shoot dry weight increased with temperature increased from 17-17-17 to 22-22-22C during the three growth periods. Tuber dry weight was highest with 22-17-17C, and lowest with 17-17-22 and 17-22-22C. With 22-17-17C, both dry weights of stolons and roots were lowest. Total tuber number and number of small tubers were highest with 17-17-17 and 17-17-22C, and lowest with 17-22-22 and 22-22-22C, whereas number of medium tubers was highest with 22-17-22C, and number of large tubers was highest with 22-17-17C. This study indicates that tuber development of potatoes is optimized with a phasic pattern of high temperature during early growth and low temperature during later growth.

  20. Growth and aggressiveness factors affecting Monilinia spp. survival peaches.

    PubMed

    Villarino, M; Melgarejo, P; De Cal, A

    2016-05-01

    Brown rot of stone fruit is caused by three species of Monilinia, Monilinia laxa, M. fructigena, and M. fructicola. Eleven components of 20 different isolates of each of the three Monilinia species were analysed to determine distinct aggressiveness and growth characteristics among the three fungi. M. fructicola showed the greatest lesion diameter, and the lowest incubation and latency period on fruit postharvest, however isolates of M. fructigena exhibited less aggressiveness components. Five growth characteristics of M. fructicola could be used to distinguish M. fructicola from the other two species. The dendrogram generated from only the presence of sclerotia and lesion length on infected fruit separated the 60 isolates into two clusters (r=0.93). One cluster was composed of the M. laxa and M. fructigena isolates and the other cluster comprised the M. fructicola isolates. However, the dendrogram generated based on the presence of stromata and sclerotia in the same colony of the three species when they were grown on potato dextrose agar, and the lesion diameter on fruit infected with each species separated the 60 isolates into three clusters (r=0.81). Each cluster comprised the isolates of each of three Monilinia spp. We discussed the effect of M. fructicola growth and aggressiveness differences on the displacement of M. laxa and M. fructigena by M. fructicola recorded in Spanish peach orchards and their effect on brown rot at postharvest.

  1. Organic Matter Loading Affects Lodgepole Pine Seedling Growth

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M. J.; Armleder, H. M.

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  2. Growth and aggressiveness factors affecting Monilinia spp. survival peaches.

    PubMed

    Villarino, M; Melgarejo, P; De Cal, A

    2016-06-16

    Brown rot of stone fruit is caused by three species of Monilinia, Monilinia laxa, M. fructigena, and M. fructicola. Eleven components of 20 different isolates of each of the three Monilinia species were analyzed to determine distinct aggressiveness and growth characteristics among the three fungi. M. fructicola showed the greatest lesion diameter, and the lowest incubation and latency period on fruit postharvest, however isolates of M. fructigena exhibited less aggressiveness components. Five growth characteristics of M. fructicola could be used to distinguish M. fructicola from the other two species. The dendrogram generated from only the presence of sclerotia and lesion length on infected fruit separated the 60 isolates into two clusters (r=0.93). One cluster was composed of the M. laxa and M. fructigena isolates and the other cluster comprised the M. fructicola isolates. However, the dendrogram generated based on the presence of stromata and sclerotia in the same colony of the three species when they were grown on potato dextrose agar, and the lesion diameter on fruit infected with each species separated the 60 isolates into three clusters (r=0.81). Each cluster comprised the isolates of each of three Monilinia spp. We discussed the effect of M. fructicola growth and aggressiveness differences on the displacement of M. laxa and M. fructigena by M. fructicola recorded in Spanish peach orchards and their effect on brown rot at postharvest. PMID:27043383

  3. Growth in body size affects rotational performance in women's gymnastics.

    PubMed

    Ackland, Timothy; Elliott, Bruce; Richards, Joanne

    2003-07-01

    National and state representative female gymnasts (n = 37), aged initially between 10 and 12 years, completed a mixed longitudinal study over 3.3 years, to investigate the effect of body size on gymnastic performance. Subjects were tested at four-monthly intervals on a battery of measures including structural growth, strength and gymnastic performance. The group were divided into 'high growers' and 'low growers' based on height (> 18 cm or < 14 cm/37 months, respectively) and body mass (> 15 kg or < 12 kg/37 months, respectively) for comparative purposes. Development of gymnastic performance was assessed through generic skills (front and back rotations, a twisting jump and a V-sit action) and a vertical jump for maximum height. The results show that the smaller gymnast, with a high strength to mass ratio, has greater potential for performing skills involving whole-body rotations. Larger gymnasts, while able to produce more power and greater angular momentum, could not match the performance of the smaller ones. The magnitude of growth experienced by the gymnast over this period has a varying effect on performance. While some activities were greatly influenced by rapid increases in whole-body moment of inertia (e.g. back rotation), performance on others like the front rotation and vertical jump, appeared partly immune to the physical and mechanical changes associated with growth. PMID:14737925

  4. Growth and aggressiveness factors affecting Monilinia spp. survival peaches.

    PubMed

    Villarino, M; Melgarejo, P; De Cal, A

    2016-05-01

    Brown rot of stone fruit is caused by three species of Monilinia, Monilinia laxa, M. fructigena, and M. fructicola. Eleven components of 20 different isolates of each of the three Monilinia species were analysed to determine distinct aggressiveness and growth characteristics among the three fungi. M. fructicola showed the greatest lesion diameter, and the lowest incubation and latency period on fruit postharvest, however isolates of M. fructigena exhibited less aggressiveness components. Five growth characteristics of M. fructicola could be used to distinguish M. fructicola from the other two species. The dendrogram generated from only the presence of sclerotia and lesion length on infected fruit separated the 60 isolates into two clusters (r=0.93). One cluster was composed of the M. laxa and M. fructigena isolates and the other cluster comprised the M. fructicola isolates. However, the dendrogram generated based on the presence of stromata and sclerotia in the same colony of the three species when they were grown on potato dextrose agar, and the lesion diameter on fruit infected with each species separated the 60 isolates into three clusters (r=0.81). Each cluster comprised the isolates of each of three Monilinia spp. We discussed the effect of M. fructicola growth and aggressiveness differences on the displacement of M. laxa and M. fructigena by M. fructicola recorded in Spanish peach orchards and their effect on brown rot at postharvest. PMID:26918325

  5. Toxicology across scales: Cell population growth in vitro predicts reduced fish growth

    PubMed Central

    Stadnicka-Michalak, Julita; Schirmer, Kristin; Ashauer, Roman

    2015-01-01

    Environmental risk assessment of chemicals is essential but often relies on ethically controversial and expensive methods. We show that tests using cell cultures, combined with modeling of toxicological effects, can replace tests with juvenile fish. Hundreds of thousands of fish at this developmental stage are annually used to assess the influence of chemicals on growth. Juveniles are more sensitive than adult fish, and their growth can affect their chances to survive and reproduce. Thus, to reduce the number of fish used for such tests, we propose a method that can quantitatively predict chemical impact on fish growth based on in vitro data. Our model predicts reduced fish growth in two fish species in excellent agreement with measured in vivo data of two pesticides. This promising step toward alternatives to fish toxicity testing is simple, inexpensive, and fast and only requires in vitro data for model calibration. PMID:26601229

  6. The novel herbicide oxaziclomefone inhibits cell expansion in maize cell cultures without affecting turgor pressure or wall acidification.

    PubMed

    O'Looney, Nichola; Fry, Stephen C

    2005-11-01

    Oxaziclomefone [OAC; IUPAC name 3-(1-(3,5-dichlorophenyl)-1-methylethyl)-3,4-dihydro-6-methyl-5-phenyl-2H-1,3-oxazin-4-one] is a new herbicide that inhibits cell expansion in grass roots. Its effects on cell cultures and mode of action were unknown. In principle, cell expansion could be inhibited by a decrease in either turgor pressure or wall extensibility. Cell expansion was estimated as settled cell volume; cell division was estimated by cell counting. Membrane permeability to water was measured by a novel method involving simultaneous assay of the efflux of (3)H(2)O and [(14)C]mannitol from a 'bed' of cultured cells. Osmotic potential was measured by depression of freezing point. OAC inhibited cell expansion in cultures of maize (Zea mays), spinach (Spinacia oleracea) and rose (Rosa sp.), with an ID(50) of 5, 30 and 250 nm, respectively. In maize cultures, OAC did not affect cell division for the first 40 h. It did not affect the osmotic potential of cell sap or culture medium, nor did it impede water transport across cell membranes. It did not affect cells' ability to acidify the apoplast (medium), which may be necessary for 'acid growth'. As OAC did not diminish turgor pressure, its ability to inhibit cell expansion must depend on changes in wall extensibility. It could be a valuable tool for studies on cell expansion.

  7. Reduction in DNA topoisomerase I level affects growth, phenotype and nucleoid architecture of Mycobacterium smegmatis.

    PubMed

    Ahmed, Wareed; Menon, Shruti; Karthik, Pullela V; Nagaraja, Valakunja

    2015-02-01

    The steady-state negative supercoiling of eubacterial genomes is maintained by the action of DNA topoisomerases. Topoisomerase distribution varies in different species of mycobacteria. While Mycobacterium tuberculosis (Mtb) contains a single type I (TopoI) and a single type II (Gyrase) enzyme, Mycobacterium smegmatis (Msm) and other members harbour additional relaxases. TopoI is essential for Mtb survival. However, the necessity of TopoI or other relaxases in Msm has not been investigated. To recognize the importance of TopoI for growth, physiology and gene expression of Msm, we have developed a conditional knock-down strain of TopoI in Msm. The TopoI-depleted strain exhibited extremely slow growth and drastic changes in phenotypic characteristics. The cessation of growth indicates the essential requirement of the enzyme for the organism in spite of having additional DNA relaxation enzymes in the cell. Notably, the imbalance in TopoI level led to the altered expression of topology modulatory proteins, resulting in a diffused nucleoid architecture. Proteomic and transcript analysis of the mutant indicated reduced expression of the genes involved in central metabolic pathways and core DNA transaction processes. RNA polymerase (RNAP) distribution on the transcription units was affected in the TopoI-depleted cells, suggesting global alteration in transcription. The study thus highlights the essential requirement of TopoI in the maintenance of cellular phenotype, growth characteristics and gene expression in mycobacteria. A decrease in TopoI level led to altered RNAP occupancy and impaired transcription elongation, causing severe downstream effects. PMID:25516959

  8. Intrauterine growth restriction affects the preterm infant's hippocampus.

    PubMed

    Lodygensky, Gregory A; Seghier, Mohammed L; Warfield, Simon K; Tolsa, Cristina Borradori; Sizonenko, Stephane; Lazeyras, François; Hüppi, Petra S

    2008-04-01

    The hippocampus is known to be vulnerable to hypoxia, stress, and undernutrition, all likely to be present in fetal intrauterine growth restriction (IUGR). The effect of IUGR in preterm infants on the hippocampus was studied using 3D magnetic resonance imaging at term-equivalent age Thirteen preterm infants born with IUGR after placental insufficiency were compared with 13 infants with normal intrauterine growth age matched for gestational age. The hippocampal structural differences were defined using voxel-based morphometry and manual segmentation. The specific neurobehavioral function was evaluated by the Assessment of Preterm Infants' Behavior at term and at 24 mo of corrected age by a Bayley Scales of Infant and Toddler Development. Voxel-based morphometry detected significant gray matter volume differences in the hippocampus between the two groups. This finding was confirmed by manual segmentation of the hippocampus with a reduction of hippocampal volume after IUGR. The hippocampal volume reduction was further associated with functional behavioral differences at term-equivalent age in all six subdomains of the Assessment of Preterm Infants' Behavior but not at 24 mo of corrected age. We conclude that hippocampal development in IUGR is altered and might result from a combination of maternal corticosteroid hormone exposure, hypoxemia, and micronutrient deficiency. PMID:18356754

  9. The Drosophila Transcription Factor Dimmed Affects Neuronal Growth and Differentiation in Multiple Ways Depending on Neuron Type and Developmental Stage

    PubMed Central

    Liu, Yiting; Luo, Jiangnan; Nässel, Dick R.

    2016-01-01

    Growth of postmitotic neurons occurs during different stages of development, including metamorphosis, and may also be part of neuronal plasticity and regeneration. Recently we showed that growth of post-mitotic neuroendocrine cells expressing the basic helix loop helix (bHLH) transcription factor Dimmed (Dimm) in Drosophila could be regulated by insulin/IGF signaling and the insulin receptor (dInR). Dimm is also known to confer a secretory phenotype to neuroendocrine cells and can be part of a combinatorial code specifying terminal differentiation in peptidergic neurons. To further understand the mechanisms of Dimm function we ectopically expressed Dimm or Dimm together with dInR in a wide range of Dimm positive and Dimm negative peptidergic neurons, sensory neurons, interneurons, motor neurons, and gut endocrine cells. We provide further evidence that dInR mediated cell growth occurs in a Dimm dependent manner and that one source of insulin-like peptide (DILP) for dInR mediated cell growth in the CNS is DILP6 from glial cells. Expressing both Dimm and dInR in Dimm negative neurons induced growth of cell bodies, whereas dInR alone did not. We also found that Dimm alone can regulate cell growth depending on specific cell type. This may be explained by the finding that the dInR is a direct target of Dimm. Conditional gene targeting experiments showed that Dimm alone could affect cell growth in certain neuron types during metamorphosis or in the adult stage. Another important finding was that ectopic Dimm inhibits apoptosis of several types of neurons normally destined for programmed cell death (PCD). Taken together our results suggest that Dimm plays multiple transcriptional roles at different developmental stages in a cell type-specific manner. In some cell types ectopic Dimm may act together with resident combinatorial code transcription factors and affect terminal differentiation, as well as act in transcriptional networks that participate in long term maintenance

  10. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    PubMed

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle. PMID:27632932

  11. Formaldehyde exposure affects growth and metabolism of common bean

    SciTech Connect

    Mutters, R.G.; Madore, M. ); Bytnerowicz, A. )

    1993-01-01

    Recent state and federal directives have slated a substantial increase in the use of methanol as an alternative to gasoline in both fleet and private vehicles in the coming decade. The incomplete combustion of methanol produces formaldehyde vapor, and catalytic converter technology that completely oxidizes formaldehyde has yet to be developed. The approach of this study was to use a range of methanol concentrations encompassing levels currently found or that may occur in the future in the ambient air of some heavily polluted areas to test the potential phytotoxicity of formaldehyde. The study had the following objectives: (1) design and build a formaldehyde vapor generator with sufficient capacity for long-term plant fumigations; (2) determine growth response of common bean to formaldehyde; (3) evaluate physiological and biochemical changes of bean plants associated with formaldehyde exposures. 20 refs., 2 figs., 2 tabs.

  12. Growth of ponderosa pine seedlings as affected by air pollution

    NASA Astrophysics Data System (ADS)

    Momen, B.; Anderson, P. D.; Houpis, J. L. J.; Helms, J. A.

    The effect of air pollution on seedling survival and competitive ability is important to natural and artificial regeneration of forest trees. Although biochemical and physiological processes are sensitive indicators of pollution stress, the cumulative effects of air pollutants on seedling vigor and competitive ability may be assessed directly from whole-plant growth characteristics such as diameter, height, and photosynthetic area. A few studies that have examined intraspecific variation in seedling response to air pollution indicate that genotypic differences are important in assessing potential effects of air pollution on forest regeneration. Here, we studied the effects of acid rain (no-rain, pH 5.1 rain, pH 3.0 rain) and ozone (filtered, ambient, twice-ambient) in the field on height, diameter, volume, the height:diameter ratio, maximum needle length, and time to reach maximum needle length in seedlings of three families of ponderosa pine ( Pinus ponderosa Dougl. ex Laws). Seedling diameter, height, volume, and height:diameter ratio related significantly to their pre-treatment values. Twice-ambient ozone decreased seedling diameter compared with ozone-filtered air. A significant family-by-ozone interaction was detected for seedling height, as the height of only one of the three families was decreased by twice-ambient ozone compared with the ambient level. Seedling diameter was larger and the height:diameter ratio was smaller under pH 3.0 rain compared to either the no-rain or the pH 5.1-rain treatment. This suggests greater seedling vigor, perhaps due to a foliar fertilization effect of the pH 3.0 rain.

  13. How meristem plasticity in response to soil nutrients and light affects plant growth in four Festuca grass species.

    PubMed

    Sugiyama, Shu-ichi; Gotoh, Minako

    2010-02-01

    Investigation of responses of meristems to environmental conditions is important for understanding the mechanisms and consequences of plant phenotypic plasticity. Here, we examined how meristem plasticity to light and soil nutrients affected leaf growth and relative growth rate (RGR) in fast- and slow-growing Festuca grass species. Activity in shoot apical meristems was measured by leaf appearance rate, and that in leaf meristems by the duration and rate of cell production, which was further divided into single cell cycle time and the number of dividing cells. Light and soil nutrients affected activity in shoot apical meristems similarly. The high nutrient supply increased the number of dividing cells, which was responsible for enhancement of cell production rate; shaded conditions extended the duration of cell production. As a result, leaf length increased under high nutrient and shaded conditions. The RGR was correlated positively with the total meristem size of the shoot under a low nutrient supply, implying inhibition of RGR by cell production under nutrient-limited conditions. Fast-growing species were more plastic for cell production rate and specific leaf area (SLA) but less plastic for RGR than slow-growing species. This study demonstrates that meristem plasticity plays key roles in characterizing environmental responses of plant species.

  14. Short-chain fatty acids affect cystic fibrosis airway inflammation and bacterial growth.

    PubMed

    Ghorbani, Peyman; Santhakumar, Prisila; Hu, Qingda; Djiadeu, Pascal; Wolever, Thomas M S; Palaniyar, Nades; Grasemann, Hartmut

    2015-10-01

    The hypoxic environment of cystic fibrosis airways allows the persistence of facultative anaerobic bacteria, which can produce short-chain fatty acids (SCFAs) through fermentation. However, the relevance of SCFAs in cystic fibrosis lung disease is unknown. We show that SCFAs are present in sputum samples from cystic fibrosis patients in millimolar concentrations (mean±sem 1.99±0.36 mM).SCFAs positively correlated with sputum neutrophil count and higher SCFAs were predictive for impaired nitric oxide production. We studied the effects of the SCFAs acetate, propionate and butyrate on airway inflammatory responses using epithelial cell lines and primary cell cultures. SCFAs in concentrations present in cystic fibrosis airways (0.5-2.5 mM) affected the release of granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor and interleukin (IL)-6. SCFAs also resulted in higher IL-8 release from stimulated cystic fibrosis transmembrane conductance regulator (CFTR) F508del-mutant compared to wild-type CFTR-corrected bronchial epithelial cells. At 25 mM propionate reduced IL-8 release in control but not primary cystic fibrosis epithelial cells. Low (0.5-2.5 mM) SCFA concentrations increased, while high (25-50 mM) concentrations decreased inducible nitric oxide synthase expression. In addition, SCFAs affected the growth of Pseudomonas aeruginosa in a concentration- and pH-dependent manner.Thus, our data suggest that SCFAs contribute to cystic fibrosis-specific alterations of responses to airway infection and inflammation.

  15. Budding yeast colony growth study based on circular granular cell

    NASA Astrophysics Data System (ADS)

    Aprianti, Devi; Khotimah, S. N.; Viridi, S.

    2016-08-01

    Yeast colony growth can be modelled by using circular granular cells, which can grow and produce buds. The bud growth angle can be set to regulate cell budding pattern. Cohesion force, contact force and Stokes force were adopted to accommodate the behaviour and interactions among cells. Simulation steps are divided into two steps, the explicit step is due to cell growing and implicit step for the cell rearrangement. Only in explicit step that time change was performed. In this study, we examine the influence of cell diameter growth time and reproduction time combination toward the growth of cell number and colony formation. We find a commutative relation between the cell diameter growth time and reproduction time to the specific growth rate. The greater value of the multiplication of the parameters, the smaller specific growth rate is obtained. It also shows a linear correlation between the specific growth rate and colony diameter growth rate.

  16. Intranasal nerve growth factor bypasses the blood-brain barrier and affects spinal cord neurons in spinal cord injury

    PubMed Central

    Aloe, Luigi; Bianchi, Patrizia; De Bellis, Alberto; Soligo, Marzia; Rocco, Maria Luisa

    2014-01-01

    The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could be of value in the treatment of spinal cord injury. Adult Sprague-Dawley rats with intact and injured spinal cord received daily intranasal nerve growth factor administration in both nostrils for 1 day or for 3 consecutive weeks. We found an increased content of nerve growth factor and enhanced expression of nerve growth factor receptor in the spinal cord 24 hours after a single intranasal administration of nerve growth factor in healthy rats, while daily treatment for 3 weeks in a model of spinal cord injury improved the deficits in locomotor behaviour and increased spinal content of both nerve growth factor and nerve growth factor receptors. These outcomes suggest that the intranasal nerve growth factor bypasses blood-brain barrier and affects spinal cord neurons in spinal cord injury. They also suggest exploiting the possible therapeutic role of intranasally delivered nerve growth factor for the neuroprotection of damaged spinal nerve cells. PMID:25206755

  17. Metformin selectively affects human glioblastoma tumor-initiating cell viability

    PubMed Central

    Würth, Roberto; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adirana; Corsaro, Alessandro; Parodi, Alessia; Sirito, Rodolfo; Massollo, Michela; Marini, Cecilia; Zona, Gianluigi; Fenoglio, Daniela; Sambuceti, Gianmario; Filaci, Gilberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2013-01-01

    Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect. PMID:23255107

  18. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    SciTech Connect

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva; Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs; Apati, Agota

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  19. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.

    1996-01-01

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  20. Ca-alginate hydrogel mechanical transformations--the influence on yeast cell growth dynamics.

    PubMed

    Pajić-Lijaković, Ivana; Plavsić, Milenko; Bugarski, Branko; Nedović, Viktor

    2007-05-01

    A mathematical model was formulated to describe yeast cell growth within the Ca-alginate microbead during air-lift bioreactor cultivation. Model development was based on experimentally obtained data for the intra-bead cell concentration profile, after reached the equilibrium state, as well as, total yeast cell concentration per microbed and microbead volume as function of time. Relatively uniform cell concentration in the carrier matrix indicated that no internal nutrient diffusion limitations, but microenvironmental restriction, affected dominantly the dynamics of cell growth. Also interesting phenomenon of very different rates of cell number growth during cultivation is observed. After some critical time, the growth rate of cell colonies decreased drastically, but than suddenly increased again under all other experimental condition been the same. It is interpreted as disintegration of gel network and opening new free space for growth of cell clusters. These complex phenomena are modeled using the thermodynamical, free energy formalism. The particular form of free energy functional is proposed to describe various kinds of interactions, which affected the dynamics of cell growth and cause pseudo-phase transition of hydrogel. The good agreement of experimentally obtained data and model predictions are obtained. In that way the model provides both, the quantitative tools for further technological optimization of the process and deeper insight into dynamics of cell growth mechanism.

  1. The effect of light direction and suspended cell concentrations on algal biofilm growth rates.

    PubMed

    Schnurr, Peter J; Espie, George S; Allen, D Grant

    2014-10-01

    Algae biofilms were grown in a semicontinuous flat plate biofilm photobioreactor to study the effects of light direction and suspended algal cell populations on algal biofilm growth. It was determined that, under the growth conditions and biofilm thicknesses studied, light direction had no effect on long-term algal biofilm growth (26 days); however, light direction did affect the concentration of suspended algal cells by influencing the photon flux density in the growth medium in the photobioreactors. This suspended algal cell population affected short-term (7 days) algae cell recruitment and algal biofilm growth, but additional studies showed that enhanced suspended algal cell populations did not affect biofilm growth rates over the long term (26 days). Studying profiles of light transmittance through biofilms as they grew showed that most of the light became attenuated by the biomass after just a few days of growth (88 % after 3 days). The estimated biofilm thicknesses after these few days of growth were approximately 150 μm. The light attenuation data suggests that, although the biofilms grew to 700-900 μm, under these light intensities, only the first few hundred micrometers of the biofilm is receiving enough light to be photosynthetically active. We postulate that this photosynthetically active layer of the biofilm grows adjacent to the light source, while the rest of the biofilm is in a stationary growth phase. The results of this study have implications for algal biofilm photobioreactor design and operation.

  2. The effect of light direction and suspended cell concentrations on algal biofilm growth rates.

    PubMed

    Schnurr, Peter J; Espie, George S; Allen, D Grant

    2014-10-01

    Algae biofilms were grown in a semicontinuous flat plate biofilm photobioreactor to study the effects of light direction and suspended algal cell populations on algal biofilm growth. It was determined that, under the growth conditions and biofilm thicknesses studied, light direction had no effect on long-term algal biofilm growth (26 days); however, light direction did affect the concentration of suspended algal cells by influencing the photon flux density in the growth medium in the photobioreactors. This suspended algal cell population affected short-term (7 days) algae cell recruitment and algal biofilm growth, but additional studies showed that enhanced suspended algal cell populations did not affect biofilm growth rates over the long term (26 days). Studying profiles of light transmittance through biofilms as they grew showed that most of the light became attenuated by the biomass after just a few days of growth (88 % after 3 days). The estimated biofilm thicknesses after these few days of growth were approximately 150 μm. The light attenuation data suggests that, although the biofilms grew to 700-900 μm, under these light intensities, only the first few hundred micrometers of the biofilm is receiving enough light to be photosynthetically active. We postulate that this photosynthetically active layer of the biofilm grows adjacent to the light source, while the rest of the biofilm is in a stationary growth phase. The results of this study have implications for algal biofilm photobioreactor design and operation. PMID:25149444

  3. Close interactions between mesenchymal stem cells and neuroblastoma cell lines lead to tumor growth inhibition.

    PubMed

    Bianchi, Giovanna; Morandi, Fabio; Cilli, Michele; Daga, Antonio; Bocelli-Tyndall, Chiara; Gambini, Claudio; Pistoia, Vito; Raffaghello, Lizzia

    2012-01-01

    Mesenchymal stem cells (MSCs) have attracted much interest in oncology since they exhibit marked tropism for the tumor microenvironment and support or suppress malignant cell growth depending on the tumor model tested. The aim of this study was to investigate the role of MSCs in the control of the growth of neuroblastoma (NB), which is the second most common solid tumor in children. In vivo experiments showed that systemically administered MSCs, under our experimental conditions, did not home to tumor sites and did not affect tumor growth or survival. However, MSCs injected intratumorally in an established subcutaneous NB model reduced tumor growth through inhibition of proliferation and induction of apoptosis of NB cells and prolonged the survival of hMSC-treated mice. The need for contact between MSCs and NB cells was further supported by in vitro experiments. In particular, MSCs were found to be attracted by NB cells, and to affect NB cell proliferation with different results depending on the cell line tested. Moreover, NB cells, after pre-incubation with hMSCs, acquired a more invasive behavior towards CXCL12 and the bone marrow, i.e., the primary site of NB metastases. In conclusion, this study demonstrates that functional cross-talk between MSCs and NB cell lines used in our experiments can occur only within short range interaction. Thus, this report does not support the clinical use of MSCs as vehicles for selective delivery of antitumor drugs at the NB site unless chemotherapy and/or radiotherapy create suitable local conditions for MSCs recruitment.

  4. Close Interactions between Mesenchymal Stem Cells and Neuroblastoma Cell Lines Lead to Tumor Growth Inhibition

    PubMed Central

    Bianchi, Giovanna; Morandi, Fabio; Cilli, Michele; Daga, Antonio; Bocelli-Tyndall, Chiara; Gambini, Claudio

    2012-01-01

    Mesenchymal stem cells (MSCs) have attracted much interest in oncology since they exhibit marked tropism for the tumor microenvironment and support or suppress malignant cell growth depending on the tumor model tested. The aim of this study was to investigate the role of MSCs in the control of the growth of neuroblastoma (NB), which is the second most common solid tumor in children. In vivo experiments showed that systemically administered MSCs, under our experimental conditions, did not home to tumor sites and did not affect tumor growth or survival. However, MSCs injected intratumorally in an established subcutaneous NB model reduced tumor growth through inhibition of proliferation and induction of apoptosis of NB cells and prolonged the survival of hMSC-treated mice. The need for contact between MSCs and NB cells was further supported by in vitro experiments. In particular, MSCs were found to be attracted by NB cells, and to affect NB cell proliferation with different results depending on the cell line tested. Moreover, NB cells, after pre-incubation with hMSCs, acquired a more invasive behavior towards CXCL12 and the bone marrow, i.e., the primary site of NB metastases. In conclusion, this study demonstrates that functional cross-talk between MSCs and NB cell lines used in our experiments can occur only within short range interaction. Thus, this report does not support the clinical use of MSCs as vehicles for selective delivery of antitumor drugs at the NB site unless chemotherapy and/or radiotherapy create suitable local conditions for MSCs recruitment. PMID:23119082

  5. Insulin and insulin-like growth factor I exert different effects on plasminogen activator production or cell growth in the ovine thyroid cell line OVNIS.

    PubMed

    Degryse, B; Maisonobe, F; Hovsépian, S; Fayet, G

    1991-11-01

    Insulin and Insulin-like Growth Factor I (IGF-I) are evaluated for their capacity to affect cell proliferation and plasminogen activator (PA) activity production in an ovine thyroid cell line OVNIS. Insulin at physiological and supraphysiological doses induces cell proliferation and increases PA activity. IGF-I, which is also clearly mitogenic for these cells, surprisingly does not modulate PA activity. The results indicate that the growth promoting effect is mediated through the insulin and IGF-I receptors whereas PA activity is solely regulated via the insulin receptors. PMID:1802921

  6. Root pressurization affects growth-induced water potentials and growth in dehydrated maize leaves.

    PubMed

    Tang, An-Ching; Boyer, John S

    2003-11-01

    Profiles of water potential (Psi w) were measured from the soil to the tips of growing leaves of maize (Zea mays L.) when pressure (P) was applied to the soil/root system. At moderately low soil Psi w, leaf elongation was somewhat inhibited, large tensions existed in the xylem, and Psi w were slightly lower in the elongating leaf tissues than in the xylem, i.e. a growth-induced Psi w was present but small. With P, the tension was relieved, enlarging the difference in Psi w between the xylem and the elongating tissues, i.e. enlarging the growth-induced Psi w, which is critical for growth. Guttation occurred, confirming the high Psi w of the xylem, and the mature leaf tissue rehydrated. Water uptake increased and met the requirements of transpiration. Leaf elongation recovered to control rates. Under more severe conditions at lower soil Psi w, P induced only a brief elongation and the growth-induced Psi w responded only slightly. Guttation did not occur, water flow did not meet the requirements of transpiration, and the mature leaf tissues did not rehydrate. A rewatering experiment indicated that a low conductance existed in the severely dehydrated soil, which limited water delivery to the root and shoot. Therefore, the initial growth inhibition appeared to be hydraulic because the enlargement of the growth-induced Psi w by P together with rehydration of the mature leaf tissue were essential for growth recovery. In more severe conditions, P was ineffective because the soil could not supply water at the required rate, and metabolic factors began to contribute to the inhibition. PMID:14512379

  7. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    SciTech Connect

    Biemann, Ronald; Navarrete Santos, Anne; Navarrete Santos, Alexander; Riemann, Dagmar; Knelangen, Julia; Blueher, Matthias; Koch, Holger; Fischer, Bernd

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). Black-Right-Pointing-Pointer The adipogenic impact depends strongly on the window of exposure. Black-Right-Pointing-Pointer Bisphenol A reduces the potential of MSC to differentiate into adipocytes. Black-Right-Pointing-Pointer DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. Black-Right-Pointing-Pointer BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study, we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPAR{gamma}2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 {mu}M) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 {mu}M) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.

  8. Insights into Embryo Defenses of the Invasive Apple Snail Pomacea canaliculata: Egg Mass Ingestion Affects Rat Intestine Morphology and Growth

    PubMed Central

    Gimeno, Eduardo J.; Heras, Horacio

    2014-01-01

    Background The spread of the invasive snail Pomacea canaliculata is expanding the rat lungworm disease beyond its native range. Their toxic eggs have virtually no predators and unusual defenses including a neurotoxic lectin and a proteinase inhibitor, presumably advertised by a warning coloration. We explored the effect of egg perivitellin fluid (PVF) ingestion on the rat small intestine morphology and physiology. Methodology/Principal Findings Through a combination of biochemical, histochemical, histopathological, scanning electron microscopy, cell culture and feeding experiments, we analyzed intestinal morphology, growth rate, hemaglutinating activity, cytotoxicity and cell proliferation after oral administration of PVF to rats. PVF adversely affects small intestine metabolism and morphology and consequently the standard growth rate, presumably by lectin-like proteins, as suggested by PVF hemaglutinating activity and its cytotoxic effect on Caco-2 cell culture. Short-term effects of ingested PVF were studied in growing rats. PVF-supplemented diet induced the appearance of shorter and wider villi as well as fused villi. This was associated with changes in glycoconjugate expression, increased cell proliferation at crypt base, and hypertrophic mucosal growth. This resulted in a decreased absorptive surface after 3 days of treatment and a diminished rat growth rate that reverted to normal after the fourth day of treatment. Longer exposure to PVF induced a time-dependent lengthening of the small intestine while switching to a control diet restored intestine length and morphology after 4 days. Conclusions/Significance Ingestion of PVF rapidly limits the ability of potential predators to absorb nutrients by inducing large, reversible changes in intestinal morphology and growth rate. The occurrence of toxins that affect intestinal morphology and absorption is a strategy against predation not recognized among animals before. Remarkably, this defense is rather similar to

  9. The Role of Tumor Cell-Derived Connective Tissue Growth Factor (CTGF/CCN2) in Pancreatic Tumor Growth

    PubMed Central

    Bennewith, Kevin L.; Huang, Xin; Ham, Christine M.; Graves, Edward E.; Erler, Janine T.; Kambham, Neeraja; Feazell, Jonathan; Yang, George P.; Koong, Albert

    2009-01-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted subcutaneously. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by PET imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed co-localization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer. PMID:19179545

  10. [Stem cells and growth factors in wound healing].

    PubMed

    Pikuła, Michał; Langa, Paulina; Kosikowska, Paulina; Trzonkowski, Piotr

    2015-01-02

    Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), vascular endothelial growth factor (VEGF). Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.

  11. Function of Membrane-Associated Proteoglycans in the Regulation of Satellite Cell Growth.

    PubMed

    Song, Yan

    2016-01-01

    Muscle growth can be divided into embryonic and postnatal periods. During the embryonic period, mesenchymal stem cells proliferate and differentiate to form muscle fibers. Postnatal muscle growth (hypertrophy) is characterized by the enlargement of existing muscle fiber size. Satellite cells (also known as adult myoblasts) are responsible for hypertrophy. The activity of satellite cells can be regulated by their extracellular matrix (ECM). The ECM is composed of collagens, proteoglycans, non-collagenous glycoproteins, cytokines and growth factors. Proteoglycans contain a central core protein with covalently attached glycosaminoglycans (GAGs: chondroitin sulfate, keratan sulfate, dermatan sulfate, and heparan sulfate) and N- or O-linked glycosylation chains. Membrane-associated proteoglycans attach to the cell membrane either through a glycosylphosphatidylinositol anchor or transmembrane domain. The GAGs can bind proteins including cytokines and growth factors. Both cytokines and growth factors play important roles in regulating satellite cell growth and development. Cytokines are generally associated with immune cells. However, cytokines can also affect muscle cell development. For instance, interleukin-6, tumor necrosis factor-α, and leukemia inhibitory factor have been reported to affect the proliferation and differentiation of satellite cells and myoblasts. Growth factors are potent stimulators or inhibitors of satellite cell proliferation and differentiation. The proper function of some cytokines and growth factors requires an interaction with the cell membrane-associated proteoglycans to enhance the affinity to bind to their primary receptors to initiate downstream signal transduction. This chapter is focused on the interaction of membrane-associated proteoglycans with cytokines and growth factors, and their role in satellite cell growth and development.

  12. Growth Phase, Oxygen, Temperature, and Starvation Affect the Development of Viable but Non-culturable State of Vibrio cholerae.

    PubMed

    Wu, Bin; Liang, Weili; Kan, Biao

    2016-01-01

    Vibrio cholerae can enter into a viable but non-culturable (VBNC) state in order to survive in unfavorable environments. In this study, we studied the roles of five physicochemical and microbiological factors or states, namely, different strains, growth phases, oxygen, temperature, and starvation, on the development of VBNC of V. cholerae in artificial sea water (ASW). Different strains of the organism, the growth phase, and oxygen levels affected the progress of VBNC development. It was found that the VBNC state was induced faster in V. cholerae serogroup O1 classical biotype strain O395 than in O1 El Tor biotype strains C6706 and N16961. When cells in different growth phases were used for VBNC induction, stationary-phase cells lost their culturability more quickly than exponential-phase cells, while induction of a totally non-culturable state took longer to achieve for stationary-phase cells in all three strains, suggesting that heterogeneity of cells should be considered. Aeration strongly accelerated the loss of culturability. During the development of the VBNC state, the culturable cell count under aeration conditions was almost 10(6)-fold lower than under oxygen-limited conditions for all three strains. The other two factors, temperature and nutrients-rich environment, may prevent the induction of VBNC cells. At 22 or 37°C in ASW, most of the cells rapidly died and the culturable cell count reduced from about 10(8) to 10(6)-10(5) CFU/mL. The total cell counts showed that cells that lost viability were decomposed, and the viable cell counts were the same as culturable cell counts, indicating that the cells did not reach the VBNC state. VBNC state development was blocked when ASW was supplied with Luria-Bertani broth (LB), but it was not affected in ASW with M9, suggesting that specific nutrients in LB may prevent the development of VBNC state. These results revealed that the five factors evaluated in this study had different roles during the progress of VBNC

  13. Growth Phase, Oxygen, Temperature, and Starvation Affect the Development of Viable but Non-culturable State of Vibrio cholerae.

    PubMed

    Wu, Bin; Liang, Weili; Kan, Biao

    2016-01-01

    Vibrio cholerae can enter into a viable but non-culturable (VBNC) state in order to survive in unfavorable environments. In this study, we studied the roles of five physicochemical and microbiological factors or states, namely, different strains, growth phases, oxygen, temperature, and starvation, on the development of VBNC of V. cholerae in artificial sea water (ASW). Different strains of the organism, the growth phase, and oxygen levels affected the progress of VBNC development. It was found that the VBNC state was induced faster in V. cholerae serogroup O1 classical biotype strain O395 than in O1 El Tor biotype strains C6706 and N16961. When cells in different growth phases were used for VBNC induction, stationary-phase cells lost their culturability more quickly than exponential-phase cells, while induction of a totally non-culturable state took longer to achieve for stationary-phase cells in all three strains, suggesting that heterogeneity of cells should be considered. Aeration strongly accelerated the loss of culturability. During the development of the VBNC state, the culturable cell count under aeration conditions was almost 10(6)-fold lower than under oxygen-limited conditions for all three strains. The other two factors, temperature and nutrients-rich environment, may prevent the induction of VBNC cells. At 22 or 37°C in ASW, most of the cells rapidly died and the culturable cell count reduced from about 10(8) to 10(6)-10(5) CFU/mL. The total cell counts showed that cells that lost viability were decomposed, and the viable cell counts were the same as culturable cell counts, indicating that the cells did not reach the VBNC state. VBNC state development was blocked when ASW was supplied with Luria-Bertani broth (LB), but it was not affected in ASW with M9, suggesting that specific nutrients in LB may prevent the development of VBNC state. These results revealed that the five factors evaluated in this study had different roles during the progress of VBNC

  14. New thiazolidinediones affect endothelial cell activation and angiogenesis.

    PubMed

    Rudnicki, Martina; Tripodi, Gustavo L; Ferrer, Renila; Boscá, Lisardo; Pitta, Marina G R; Pitta, Ivan R; Abdalla, Dulcineia S P

    2016-07-01

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor-γ (PPARγ) agonists used in treating type 2 diabetes that may exhibit beneficial pleiotropic effects on endothelial cells. In this study, we characterized the effects of three new TZDs [GQ-32 (3-biphenyl-4-ylmethyl-5-(4-nitro-benzylidene)-thiazolidine-2,4-dione), GQ-169 (5-(4-chloro-benzylidene)-3-(2,6-dichloro-benzyl)-thiazolidine-2,4-dione), and LYSO-7 (5-(5-bromo-1H-indol-3-ylmethylene)-3-(4-chlorobenzyl)-thiazolidine-2,4-dione)] on endothelial cells. The effects of the new TZDs were evaluated on the production of nitric oxide (NO) and reactive oxygen species (ROS), cell migration, tube formation and the gene expression of adhesion molecules and angiogenic mediators in human umbilical vein endothelial cells (HUVECs). PPARγ activation by new TZDs was addressed with a reporter gene assay. The three new TZDs activated PPARγ and suppressed the tumor necrosis factor α-induced expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. GQ-169 and LYSO-7 also inhibited the glucose-induced ROS production. Although NO production assessed with 4-amino-5-methylamino-2',7'-difluorofluorescein-FM probe indicated that all tested TZDs enhanced intracellular levels of NO, only LYSO-7 treatment significantly increased the release of NO from HUVEC measured by chemiluminescence analysis of culture media. Additionally, GQ-32 and GQ-169 induced endothelial cell migration and tube formation by the up-regulation of angiogenic molecules expression, such as vascular endothelial growth factor A and interleukin 8. GQ-169 also increased the mRNA levels of basic fibroblast growth factor, and GQ-32 enhanced transforming growth factor-β expression. Together, the results of this study reveal that these new TZDs act as partial agonists of PPARγ and modulate endothelial cell activation and endothelial dysfunction besides to stimulate migration and tube formation. PMID:27108791

  15. Role of the Placental Vitamin D Receptor in Modulating Feto-Placental Growth in Fetal Growth Restriction and Preeclampsia-Affected Pregnancies

    PubMed Central

    Murthi, Padma; Yong, Hannah E. J.; Ngyuen, Thy P. H.; Ellery, Stacey; Singh, Harmeet; Rahman, Rahana; Dickinson, Hayley; Walker, David W.; Davies-Tuck, Miranda; Wallace, Euan M.; Ebeling, Peter R.

    2016-01-01

    Fetal growth restriction (FGR) is a common pregnancy complication that affects up to 5% of pregnancies worldwide. Recent studies demonstrate that Vitamin D deficiency is implicated in reduced fetal growth, which may be rescued by supplementation of Vitamin D. Despite this, the pathway(s) by which Vitamin D modulate fetal growth remains to be investigated. Our own studies demonstrate that the Vitamin D receptor (VDR) is significantly decreased in placentae from human pregnancies complicated by FGR and contributes to abnormal placental trophoblast apoptosis and differentiation and regulation of cell-cycle genes in vitro. Thus, Vitamin D signaling is important for normal placental function and fetal growth. This review discusses the association of Vitamin D with fetal growth, the function of Vitamin D and its receptor in pregnancy, as well as the functional significance of a placental source of Vitamin D in FGR. Additionally, we propose that for Vitamin D to be clinically effective to prevent and manage FGR, the molecular mechanisms of Vitamin D and its receptor in modulating fetal growth requires further investigation. PMID:26924988

  16. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows.

    PubMed

    Biemann, Ronald; Navarrete Santos, Anne; Navarrete Santos, Alexander; Riemann, Dagmar; Knelangen, Julia; Blüher, Matthias; Koch, Holger; Fischer, Bernd

    2012-01-13

    Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study, we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPARγ2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 μM) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 μM) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.

  17. TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast.

    PubMed

    Rallis, Charalampos; Codlin, Sandra; Bähler, Jürg

    2013-08-01

    Target of rapamycin complex 1 (TORC1) is implicated in growth control and aging from yeast to humans. Fission yeast is emerging as a popular model organism to study TOR signaling, although rapamycin has been thought to not affect cell growth in this organism. Here, we analyzed the effects of rapamycin and caffeine, singly and combined, on multiple cellular processes in fission yeast. The two drugs led to diverse and specific phenotypes that depended on TORC1 inhibition, including prolonged chronological lifespan, inhibition of global translation, inhibition of cell growth and division, and reprograming of global gene expression mimicking nitrogen starvation. Rapamycin and caffeine differentially affected these various TORC1-dependent processes. Combined drug treatment augmented most phenotypes and effectively blocked cell growth. Rapamycin showed a much more subtle effect on global translation than did caffeine, while both drugs were effective in prolonging chronological lifespan. Rapamycin and caffeine did not affect the lifespan via the pH of the growth media. Rapamycin prolonged the lifespan of nongrowing cells only when applied during the growth phase but not when applied after cells had stopped proliferation. The doses of rapamycin and caffeine strongly correlated with growth inhibition and with lifespan extension. This comprehensive analysis will inform future studies into TORC1 function and cellular aging in fission yeast and beyond. PMID:23551936

  18. Promotion of Growth of Tumour Cells in Acutely Inflamed Tissues

    PubMed Central

    van den Brenk, H. A. S.; Stone, M.; Kelly, H.; Orton, C.; Sharpington, C.

    1974-01-01

    Acute inflammatory reactions were induced in rats by the intravenous injection of cellulose sulphate (CS) or an extract of normal rat lung homogenate (LH), or by intraperitoneal injections of Compound 48/80. These treatments greatly increased survival and clonogenic growth in the lungs of rats of intravenously injected allogeneic W-256 and Y-P388 tumour cells. Increase in the dose of intravenously injected CS caused a logarithmic increase in colony forming efficiency (CFE) of tumour cells in the lungs. CFE was not stimulated by the intravenous injection of rats with pharmacological mediators of inflammation (histamine, 5-hydroxytryptamine, bradykinin and prostaglandins PGE1 and PGF2α) which are released from tissues by agents which induce inflammation. Stimulation of CFE by CS occurred in adrenalectomized rats but was inhibited by treatment of rats with an anti-inflammatory steroid, dexamethasone. CFE was stimulated by CS in tumour immunized rats; the inflammatory state did not prevent the expression of immunity but “rescued” a proportion (approximately 20%) of the injected tumour cells from immunodestruction in the lungs. A higher proportion of tumours grew in the paws of rats when a small number of W-256 cells were injected interdigitally into the acute inflammatory swellings produced by the local injection of paws with LH or CS. CS is a “synthetic heparin” which causes marked prolongation of blood clotting time and also increases fibrinolytic activity of the blood. Anticoagulant treatment of rats with heparin did not affect CFE. Thus, there was no direct correlation between blood clotting time and CFE of blood borne tumour cells in the rat. The mechanisms which may be responsible for the nonspecific growth promoting effects of inflammatory reactions induced by various types of tissue injury on tumour induction and growth are discussed. ImagesFig. 2 PMID:4451630

  19. Post-transcriptional RNA Regulons Affecting Cell Cycle and Proliferation

    PubMed Central

    Blackinton, Jeff G.

    2014-01-01

    The cellular growth cycle is initiated and maintained by punctual, yet agile, regulatory events involving modifications of cell cycle proteins as well as coordinated gene expression to support cyclic checkpoint decisions. Recent evidence indicates that post-transcriptional partitioning of messenger RNA subsets by RNA-binding proteins help physically localize, temporally coordinate, and efficiently translate cell cycle proteins. This dynamic organization of mRNAs encoding cell cycle components contributes to the overall economy of the cell cycle consistent with the post-transcriptional RNA regulon model of gene expression. This review examines several recent studies demonstrating the coordination of mRNA subsets encoding cell cycle proteins during nuclear export and subsequent coupling to protein synthesis, and discusses evidence for mRNA coordination of p53 targets and the DNA damage response pathway. We consider how these observations may connect to upstream and downstream post-transcriptional coordination and coupling of splicing, export, localization, and translation. Published examples from yeast, nematode, insect, and mammalian systems are discussed, and we consider genetic evidence supporting the conclusion that dysregulation of RNA regulons may promote pathogenic states of growth such as carcinogenesis. PMID:24882724

  20. Cells from the adult corneal stroma can be reprogrammed to a neuron-like cell using exogenous growth factors

    SciTech Connect

    Greene, Carol Ann Chang, Chuan-Yuan; Fraser, Cameron J.; Nelidova, Dasha E.; Chen, Jing A.; Lim, Angela; Brebner, Alex; McGhee, Jennifer; Sherwin, Trevor; Green, Colin R.

    2014-03-10

    Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. The switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors.

  1. Modulators affecting the immune dialogue between human immune and colon cancer cells

    PubMed Central

    Djaldetti, Meir; Bessler, Hanna

    2014-01-01

    The link between chronic inflammation and colorectal cancer has been well established. The events proceeding along tumorigenesis are complicated and involve cells activated at the cancer microenvironment, tumor infiltrating polymorphonuclears, immune cells including lymphocyte subtypes and peripheral blood mononuclear cells (PBMC), as well as tumor-associated macrophages. The immune cells generate inflammatory cytokines, several of them playing a crucial role in tumorigenesis. Additional factors, such as gene expression regulated by cytokines, assembling of tumor growth- and transforming factors, accelerated angiogenesis, delayed apoptosis, contribute all to initiation, development and migration of tumor cells. Oxygen radical species originating from the inflammatory area promote cell mutation and cancer proliferation. Tumor cells may over-express pro-inflammatory mediators that in turn activate immune cells for inflammatory cytokines production. Consequently, an immune dialogue emerges between immune and cancer cells orchestrated through a number of activated molecular pathways. Cytokines, encompassing migration inhibitory factor, transforming growth factor beta 1, tumor necrosis factor-α, Interleukin (IL)-6, IL-10, IL-12, IL-17, IL-23 have been reported to be involved in human cancer development. Some cytokines, namely IL-5, IL-6, IL-10, IL-22 and growth factors promote tumor development and metastasis, and inhibit apoptosis via activation of signal transducer activator transcription-3 transcription factor. Colon cancer environment comprises mesenchymal, endothelial and immune cells. Assessment of the interaction between components in the tumor environment and malignant cells requires a reconsideration of a few topics elucidating the role of chronic inflammation in carcinogenesis, the function of the immune cells expressed by inflammatory cytokine production, the immunomodulation of cancer cells and the existence of a cross-talk between immune and malignant

  2. Potato Snakin-1 Gene Silencing Affects Cell Division, Primary Metabolism, and Cell Wall Composition1[W

    PubMed Central

    Nahirñak, Vanesa; Almasia, Natalia Inés; Fernandez, Paula Virginia; Hopp, Horacio Esteban; Estevez, José Manuel; Carrari, Fernando; Vazquez-Rovere, Cecilia

    2012-01-01

    Snakin-1 (SN1) is an antimicrobial cysteine-rich peptide isolated from potato (Solanum tuberosum) that was classified as a member of the Snakin/Gibberellic Acid Stimulated in Arabidopsis protein family. In this work, a transgenic approach was used to study the role of SN1 in planta. Even when overexpressing SN1, potato lines did not show remarkable morphological differences from the wild type; SN1 silencing resulted in reduced height, which was accompanied by an overall reduction in leaf size and severe alterations of leaf shape. Analysis of the adaxial epidermis of mature leaves revealed that silenced lines had 70% to 90% increases in mean cell size with respect to wild-type leaves. Consequently, the number of epidermal cells was significantly reduced in these lines. Confocal microscopy analysis after agroinfiltration of Nicotiana benthamiana leaves showed that SN1-green fluorescent protein fusion protein was localized in plasma membrane, and bimolecular fluorescence complementation assays revealed that SN1 self-interacted in vivo. We further focused our study on leaf metabolism by applying a combination of gas chromatography coupled to mass spectrometry, Fourier transform infrared spectroscopy, and spectrophotometric techniques. These targeted analyses allowed a detailed examination of the changes occurring in 46 intermediate compounds from primary metabolic pathways and in seven cell wall constituents. We demonstrated that SN1 silencing affects cell division, leaf primary metabolism, and cell wall composition in potato plants, suggesting that SN1 has additional roles in growth and development beyond its previously assigned role in plant defense. PMID:22080603

  3. Small interfering RNA silencing of interleukin-6 in mesenchymal stromal cells inhibits multiple myeloma cell growth.

    PubMed

    Teoh, Hoon Koon; Chong, Pei Pei; Abdullah, Maha; Sekawi, Zamberi; Tan, Geok Chin; Leong, Chooi Fun; Cheong, Soon Keng

    2016-01-01

    Studies demonstrated that mesenchymal stromal cells (MSC) from bone marrow stroma produced high concentration of interleukin-6 (IL-6) that promoted multiple myeloma cell growth. In view of the failure of IL-6 monoclonal antibody therapy to demonstrate substantial clinical responses in early clinical trials, more effective methods are needed in order to disrupt the favourable microenvironment provided by the bone marrow stroma. In this study, we evaluated the short interfering RNA (siRNA)-mediated silencing of IL-6 in MSC and the efficacy of these genetically modified MSC, with IL-6 suppression, on inhibition of U266 multiple myeloma cell growth. IL-6 mRNA and protein were significantly suppressed by 72h post IL-6 siRNA transfection without affecting the biological properties of MSC. Here we show significant inhibition of cell growth and IL-6 production in U266 cells co-cultured with MSC transfected with IL-6 siRNA when compared to U266 cells co-cultured with control MSC. We also show that the tumour volume and mitotic index of tumours in nude mice co-injected with U266 and MSC transfected with IL-6 siRNA were significantly reduced compared to tumours of mice co-injected with control MSC. Our results suggest potential use of RNA interference mediated therapy for multiple myeloma.

  4. Cytokines and growth factors which regulate bone cell function

    NASA Astrophysics Data System (ADS)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  5. Rosmarinic Acid and Melissa officinalis Extracts Differently Affect Glioblastoma Cells

    PubMed Central

    Ramanauskiene, Kristina; Raudonis, Raimondas

    2016-01-01

    Lemon balm (Melissa officinalis L.) has many biological effects but especially important is its neuroprotective activity. The aim of the study is to produce different extracts of Melissa officinalis and analyse their chemical composition and biological properties on rat glioblastoma C6 cells. Results revealed that rosmarinic acid (RA) is the predominant compound of lemon balm extracts. RA has cytotoxic effect on glioblastoma cells (LC50 290.5 μM after the incubation of 24 h and LC50 171.3 μM after 48 h). RA at concentration 80–130 μM suppresses the cell proliferation and has an antioxidant effect. 200 μM and higher concentrations of RA have a prooxidant effect and initiate cell death through necrosis. The aqueous extract of lemon balm is also enriched in phenolic compounds: protocatechuic, caftaric, caffeic, ferulic, and cichoric acids and flavonoid luteolin-7-glucoside. This extract at concentrations 50 μM–200 μM RA has cytotoxic activity and initiates cell death through apoptosis. Extracts prepared with 70% ethanol contain the biggest amount of active compounds. These extracts have the highest cytotoxic activity on glioblastoma cells. They initiate generation of intracellular ROS and cell death through apoptosis and necrosis. Our data suggest that differently prepared lemon balm extracts differently affect glioblastoma cells and can be used as neuroprotective agents in several therapeutic strategies.

  6. Rosmarinic Acid and Melissa officinalis Extracts Differently Affect Glioblastoma Cells

    PubMed Central

    Ramanauskiene, Kristina; Raudonis, Raimondas

    2016-01-01

    Lemon balm (Melissa officinalis L.) has many biological effects but especially important is its neuroprotective activity. The aim of the study is to produce different extracts of Melissa officinalis and analyse their chemical composition and biological properties on rat glioblastoma C6 cells. Results revealed that rosmarinic acid (RA) is the predominant compound of lemon balm extracts. RA has cytotoxic effect on glioblastoma cells (LC50 290.5 μM after the incubation of 24 h and LC50 171.3 μM after 48 h). RA at concentration 80–130 μM suppresses the cell proliferation and has an antioxidant effect. 200 μM and higher concentrations of RA have a prooxidant effect and initiate cell death through necrosis. The aqueous extract of lemon balm is also enriched in phenolic compounds: protocatechuic, caftaric, caffeic, ferulic, and cichoric acids and flavonoid luteolin-7-glucoside. This extract at concentrations 50 μM–200 μM RA has cytotoxic activity and initiates cell death through apoptosis. Extracts prepared with 70% ethanol contain the biggest amount of active compounds. These extracts have the highest cytotoxic activity on glioblastoma cells. They initiate generation of intracellular ROS and cell death through apoptosis and necrosis. Our data suggest that differently prepared lemon balm extracts differently affect glioblastoma cells and can be used as neuroprotective agents in several therapeutic strategies. PMID:27688825

  7. Disruption of the lower food web in Lake Ontario: Did it affect alewife growth or condition?

    USGS Publications Warehouse

    O'Gorman, R.; Prindle, S.E.; Lantry, J.R.; Lantry, B.F.

    2008-01-01

    From the early 1980s to the late 1990s, a succession of non-native invertebrates colonized Lake Ontario and the suite of consequences caused by their colonization became known as "food web disruption". For example, the native burrowing amphipod Diporeia spp., a key link in the profundal food web, declined to near absence, exotic predaceous cladocerans with long spines proliferated, altering the zooplankton community, and depth distributions of fishes shifted. These changes had the potential to affect growth and condition of planktivorous alewife Alosa pseudoharengus, the most abundant fish in the lake. To determine if food web disruption affected alewife, we used change-point analysis to examine alewife growth and adult alewife condition during 1976-2006 and analysis-of-variance to determine if values between change points differed significantly. There were no change points in growth during the first year of life. Of three change points in growth during the second year of life, one coincided with the shift in springtime distribution of alewife to deeper water but it was not associated with a significant change in growth. After the second year of life, no change points in growth were evident, although growth in the third year of life spiked in those years when Bythotrephes, the largest of the exotic cladocerans, was abundant suggesting that it was a profitable prey item for age-2 fish. We detected two change points in condition of adult alewife in fall, but the first occurred in 1981, well before disruption began. A second change point occurred in 2003, well after disruption began. After the springtime distribution of alewife shifted deeper during 1992-1994, growth in the first two years of life became more variable, and growth in years of life two and older became correlated (P < 0.05). In conclusion, food web disruption had no negative affect on growth and condition of alewife in Lake Ontario although it appears to have resulted in growth in the first two years of

  8. Human Lung Cancer Cell Line A-549 ATCC Is Differentially Affected by Supranutritional Organic and Inorganic Selenium

    PubMed Central

    Flores Villavicencio, Lérida Liss; Cruz-Jiménez, Gustavo; Barbosa-Sabanero, Gloria; Kornhauser-Araujo, Carlos; Mendoza-Garrido, M. Eugenia; de la Rosa, Guadalupe; Sabanero-López, Myrna

    2014-01-01

    The effects of organic and inorganic forms of selenium (Se) on human cells have been extensively studied for nutritional concentrations; however, to date, little is known about the potential toxicity at supranutritional levels. In the present study we determined the effects of sodium selenite (SSe) and selenomethionine (SeMet) on cell growth and intracellular structures in lung cancer cells exposed at Se concentrations between 0 and 3 mM. Our results showed that SSe affected cell growth more rapidly than SeMet (24 h and 48 h, resp.). After 24 h of cells exposure to 0.5, 1.5, and 3 mM SSe, cell growth was reduced by 10, 50, and 60%, as compared to controls. After 48 h, nuclear fragmentation was evident in cells exposed to SSe, suggesting an induction to cell death. In contrast, SeMet did not affect cell proliferation, and the cells were phenotypically similar to controls. Microtubules and microfilaments structures were also affected by both Se compounds, again SSe being more toxic than SeMet. To our knowledge, this is the first report on the differential effects of organic and inorganic Se in supranutritional levels in lung cancer cells. PMID:25477771

  9. Beyond growth: novel functions for bacterial cell wall hydrolases.

    PubMed

    Wyckoff, Timna J; Taylor, Jennifer A; Salama, Nina R

    2012-11-01

    The peptidoglycan cell wall maintains turgor pressure and cell shape of most bacteria. Cell wall hydrolases are essential, together with synthases, for growth and daughter cell separation. Recent work in diverse organisms has uncovered new cell wall hydrolases that act autonomously or on neighboring cells to modulate invasion of prey cells, cell shape, innate immune detection, intercellular communication, and competitor lysis. The hydrolases involved in these processes catalyze the cleavage of bonds throughout the sugar and peptide moities of peptidoglycan. Phenotypes associated with these diverse hydrolases reveal new functions of the bacterial cell wall beyond growth and division.

  10. Sexual dimorphism in epigenomic responses of stem cells to extreme fetal growth.

    PubMed

    Delahaye, Fabien; Wijetunga, N Ari; Heo, Hye J; Tozour, Jessica N; Zhao, Yong Mei; Greally, John M; Einstein, Francine H

    2014-10-10

    Extreme fetal growth is associated with increased susceptibility to a range of adult diseases through an unknown mechanism of cellular memory. We tested whether heritable epigenetic processes in long-lived CD34(+) haematopoietic stem/progenitor cells showed evidence for re-programming associated with the extremes of fetal growth. Here we show that both fetal growth restriction and over-growth are associated with global shifts towards DNA hypermethylation, targeting cis-regulatory elements in proximity to genes involved in glucose homeostasis and stem cell function. We find a sexually dimorphic response; intrauterine growth restriction is associated with substantially greater epigenetic dysregulation in males, whereas large for gestational age growth predominantly affects females. The findings are consistent with extreme fetal growth interacting with variable fetal susceptibility to influence cellular ageing and metabolic characteristics through epigenetic mechanisms, potentially generating biomarkers that could identify infants at higher risk for chronic disease later in life.

  11. Sexual dimorphism in epigenomic responses of stem cells to extreme fetal growth.

    PubMed

    Delahaye, Fabien; Wijetunga, N Ari; Heo, Hye J; Tozour, Jessica N; Zhao, Yong Mei; Greally, John M; Einstein, Francine H

    2014-01-01

    Extreme fetal growth is associated with increased susceptibility to a range of adult diseases through an unknown mechanism of cellular memory. We tested whether heritable epigenetic processes in long-lived CD34(+) haematopoietic stem/progenitor cells showed evidence for re-programming associated with the extremes of fetal growth. Here we show that both fetal growth restriction and over-growth are associated with global shifts towards DNA hypermethylation, targeting cis-regulatory elements in proximity to genes involved in glucose homeostasis and stem cell function. We find a sexually dimorphic response; intrauterine growth restriction is associated with substantially greater epigenetic dysregulation in males, whereas large for gestational age growth predominantly affects females. The findings are consistent with extreme fetal growth interacting with variable fetal susceptibility to influence cellular ageing and metabolic characteristics through epigenetic mechanisms, potentially generating biomarkers that could identify infants at higher risk for chronic disease later in life. PMID:25300954

  12. Sexual dimorphism in epigenomicresponses of stem cells to extreme fetal growth

    PubMed Central

    Delahaye, Fabien; Wijetunga, N. Ari; Heo, Hye J.; Tozour, Jessica N.; Zhao, Yong Mei; Greally, John M.; Einstein, Francine H.

    2014-01-01

    Extreme fetal growth is associated with increased susceptibility to a range of adult diseases through an unknown mechanism of cellular memory. We tested whether heritable epigenetic processes in long-lived CD34+ hematopoietic stem/progenitor cells (HSPCs) showed evidence for re-programming associated with the extremes of fetal growth. Here we show that both fetal growth restriction and over-growth are associated with global shifts towards DNA hypermethylation, targeting cis-regulatory elements in proximity to genes involved in glucose homeostasis and stem cell function. We find a sexually dimorphic response; intrauterine growth restriction (IUGR) is associated with substantially greater epigenetic dysregulation in males, whereas large for gestational age (LGA) growth predominantly affects females. The findings are consistent with extreme fetal growth interacting with variable fetal susceptibility to influence cellular aging and metabolic characteristics through epigenetic mechanisms, potentially generating biomarkers that could identify infants at higher risk for chronic disease later in life. PMID:25300954

  13. Cell differentiation within a yeast colony: metabolic and regulatory parallels with a tumor-affected organism.

    PubMed

    Cáp, Michal; Stěpánek, Luděk; Harant, Karel; Váchová, Libuše; Palková, Zdena

    2012-05-25

    Nutrient sensing and metabolic reprogramming are crucial for metazoan cell aging and tumor growth. Here, we identify metabolic and regulatory parallels between a layered, multicellular yeast colony and a tumor-affected organism. During development, a yeast colony stratifies into U and L cells occupying the upper and lower colony regions, respectively. U cells activate a unique metabolism controlled by the glutamine-induced TOR pathway, amino acid-sensing systems (SPS and Gcn4p) and signaling from mitochondria with lowered respiration. These systems jointly modulate U cell physiology, which adapts to nutrient limitations and utilize the nutrients released from L cells. Stress-resistant U cells share metabolic pathways and other similar characteristics with tumor cells, including the ability to proliferate. L cells behave similarly to stressed and starving cells, which activate degradative mechanisms to provide nutrients to U cells. Our data suggest a nutrient flow between both cell types, resembling the Cori cycle and glutamine-NH(4)(+) shuttle between tumor and healthy metazoan cells.

  14. Factors affecting the growth and titration by immunofluorescence of simian foamy virus.

    PubMed

    Gould, E A; Hartley, J

    1979-01-01

    This paper presents some observations concerned with the growth of simian foamy virus and some modifications which should be introduced to the fluorescence assay of foamy virus. The modified procedure is the most sensitive method described for the titration of foamy virus. Examination of the optimal conditions for the growth and titration by fluorescence assay of simian foamy virus showed that the virus was particularly sensitive to changes in virus and cell concentration. At the low cell concentrations employed previously a "saturation-type" response was obtained with high titre virus and virus adsorption efficiency was decreased as input virus was diluted. Maximum virus production was obtained with high cell concentrations at input multiplicities of 5 and 10. At high multiplicities of infection more than 90 per cent of the cells adsorbed virus but only 45 per cent became infected, this appeared to be related to cell DNA synthesis.

  15. Thyroid status affects number and localization of thyroid hormone receptor expressing mast cells in bone marrow.

    PubMed

    Siebler, T; Robson, H; Bromley, M; Stevens, D A; Shalet, S M; Williams, G R

    2002-01-01

    Thyroid hormone (T(3)) plays a key role in endochondral ossification. The process relies on the coordinated synthesis and degradation of cartilage matrix and is disrupted in juvenile hypothyroidism, leading to abnormal skeletal development. Mast cells synthesize and store matrix-degrading enzymes. We examined whether thyroid status influences skeletal mast cell distribution in growing rats to determine whether they might modulate the actions of T(3) in bone. Tibiae were collected for histological, histochemical, immunohistochemical, and immunofluorescence analysis. Mast cells were increased throughout the bone marrow in hypothyroid rats compared with euthyroid, thyrotoxic, and hypothyroid-thyroxine replaced animals. Large numbers were present in metaphyseal marrow adjacent to the growth plate in hypothyroid animals and cells were distributed evenly throughout the marrow. Very few mast cells were present in metaphyseal marrow in other groups, but their numbers increased with increasing distance from the growth plate. T(3) receptor alpha1 (TRalpha1) was expressed in the nucleus and cytoplasm of skeletal mast cells, whereas TRalpha2 and TRbeta1 were restricted to the cytoplasm. Localization of TRs was not affected by altered thyroid status. Thus, disrupted endochondral ossification in hypothyroidism may be mediated in part by skeletal mast cells, which express TR proteins and may function as T(3) target cells.

  16. Amber mutation affecting the length of Escherichia coli cells.

    PubMed Central

    Martínez-Salas, E; Vicente, M

    1980-01-01

    An amber mutation in a newly found gene (wee) of Escherichia coli has been isolated from strain OV-2, which harbors a temperature-sensitive suppressor. At 42 degrees C cells of the mutant, OV-25, increased in mass and deoxyribonucleic acid content and divided at normal rates, compared with the wild type under the same growth conditions. Total cell length increased under the restrictive conditions, although at a slightly lower rate. Values of mean cell length and cell volume, contrary to what would be expected from the increment in the rate of increase in particles, mass, and deoxyribonucleic acid, became at 42 degrees C smaller than those found in the wild type. A parallel increase in protein content per length and cell density and a loss of viability were found to occur after four generations at the restrictive temperature. The behavior of strain OV-25 in the absence of the wee gene product could be interpreted in terms of either a faulty regulation of the elongation processes or their abnormal coordination with the cell cycle. The genetic location of the wee gene has been found to be at 83.5 min on the E. coli genetic map. PMID:7000749

  17. Phosphorus Deficiency Inhibits Cell Division But Not Growth in the Dinoflagellate Amphidinium carterae

    PubMed Central

    Li, Meizhen; Shi, Xinguo; Guo, Chentao; Lin, Senjie

    2016-01-01

    Phosphorus (P) is an essential nutrient element for the growth of phytoplankton. How P deficiency affects population growth and the cell division cycle in dinoflagellates has only been studied in some species, and how it affects photosynthesis and cell growth remains poorly understood. In the present study, we investigated the impact of P deficiency on the cell division cycle, the abundance of the carbon-fixing enzyme Rubisco, and other cellular characteristics in the Gymnodiniales peridinin-plastid species Amphidinium carterae. We found that under P-replete condition, the cell cycle actively progressed in the culture in a 24-h diel cycle with daily growth rates markedly higher than the P-deficient cultures, in which cells were arrested in the G1 phase and cell size significantly enlarged. The results suggest that, as in previously studied dinoflagellates, P deficiency likely disenables A. carterae to complete DNA duplication or check-point protein phosphorylation. We further found that under P-deficient condition, overall photosystem II quantum efficiency (Fv/Fm ratio) and Rubisco abundance decreased but not significantly, while cellular contents of carbon, nitrogen, and proteins increased significantly. These observations indicated that under P-deficiency, this dinoflagellate was able to continue photosynthesis and carbon fixation, such that proteins and photosynthetically fixed carbon could accumulate resulting in continued cell growth in the absence of division. This is likely an adaptive strategy thereby P-limited cells can be ready to resume the cell division cycle upon resupply of phosphorus. PMID:27313570

  18. Phosphorus Deficiency Inhibits Cell Division But Not Growth in the Dinoflagellate Amphidinium carterae.

    PubMed

    Li, Meizhen; Shi, Xinguo; Guo, Chentao; Lin, Senjie

    2016-01-01

    Phosphorus (P) is an essential nutrient element for the growth of phytoplankton. How P deficiency affects population growth and the cell division cycle in dinoflagellates has only been studied in some species, and how it affects photosynthesis and cell growth remains poorly understood. In the present study, we investigated the impact of P deficiency on the cell division cycle, the abundance of the carbon-fixing enzyme Rubisco, and other cellular characteristics in the Gymnodiniales peridinin-plastid species Amphidinium carterae. We found that under P-replete condition, the cell cycle actively progressed in the culture in a 24-h diel cycle with daily growth rates markedly higher than the P-deficient cultures, in which cells were arrested in the G1 phase and cell size significantly enlarged. The results suggest that, as in previously studied dinoflagellates, P deficiency likely disenables A. carterae to complete DNA duplication or check-point protein phosphorylation. We further found that under P-deficient condition, overall photosystem II quantum efficiency (Fv/Fm ratio) and Rubisco abundance decreased but not significantly, while cellular contents of carbon, nitrogen, and proteins increased significantly. These observations indicated that under P-deficiency, this dinoflagellate was able to continue photosynthesis and carbon fixation, such that proteins and photosynthetically fixed carbon could accumulate resulting in continued cell growth in the absence of division. This is likely an adaptive strategy thereby P-limited cells can be ready to resume the cell division cycle upon resupply of phosphorus. PMID:27313570

  19. Salinity fluctuation of the brine discharge affects growth and survival of the seagrass Cymodocea nodosa.

    PubMed

    Garrote-Moreno, A; Fernández-Torquemada, Y; Sánchez-Lizaso, J L

    2014-04-15

    The increase of seawater desalination plants may affect seagrasses as a result of its hypersaline effluents. There are some studies on the salinity tolerance of seagrasses under controlled laboratory conditions, but few have been done in situ. To this end, Cymodocea nodosa shoots were placed during one month at four localities: two close to a brine discharge; and the other two not affected by the discharge, and this experiment was repeated four times. The results obtained showed a decrease in growth and an increased mortality at the localities affected by the brine discharge. An increase was detected in the percentage of horizontal shoots in respect to vertical shoots at the impacted localities. It is probably that not only the average salinity, but also the constant salinity fluctuations and slightly higher temperatures associated with the brine that may have caused physiological stress thus reducing C. nodosa growth and survival.

  20. Triclosan and bisphenol a affect decidualization of human endometrial stromal cells.

    PubMed

    Forte, Maurizio; Mita, Luigi; Cobellis, Luigi; Merafina, Verdiana; Specchio, Raffaella; Rossi, Sergio; Mita, Damiano Gustavo; Mosca, Lavinia; Castaldi, Maria Antonietta; De Falco, Maria; Laforgia, Vincenza; Crispi, Stefania

    2016-02-15

    In recent years, impaired fertility and endometrium related diseases are increased. Many evidences suggest that environmental pollution might be considered a risk factor for endometrial physiopathology. Among environmental pollutants, endocrine disrupting chemicals (EDCs) act on endocrine system, causing hormonal imbalance which, in turn, leads to female and male reproductive dysfunctions. In this work, we studied the effects of triclosan (TCL) and bisphenol A (BPA), two widespread EDCs, on human endometrial stromal cells (ESCs), derived from endometrial biopsies from woman not affected by endometriosis. Cell proliferation, cell cycle, migration and decidualization mechanisms were investigated. Treatments have been performed with both the EDCs separately or in presence and in absence of progesterone used as decidualization stimulus. Both TCL and BPA did not affect cell proliferation, but they arrested ESCs at G2/M phase of cell cycle enhancing cell migration. TCL and BPA also increased gene expression and protein levels of some decidualization markers, such as insulin growth factor binding protein 1 (IGFBP1) and prolactin (PRL), amplifying the effect of progesterone alone. All together, our data strongly suggest that TCL and BPA might alter human endometrium physiology so affecting fertility and pregnancy outcome. PMID:26604029

  1. Dietary fish oil affects food intake, growth and hematologic values of weanling rats.

    PubMed

    Domínguez, Z; Bosch, V

    1994-06-01

    The object of this study was to evaluate the effect of increasing amounts of dietary fish oil on growth and hematological variables of the weanling male Sprague-Dawley rat. Animals were fed diets containing either fish oil (FO) or sesame oil (SO) at 5, 10 or 15% (w/w) for 31 d. Growth retardation and reduced food intake was noted in groups fed FO. Hemoglobin (Hb) concentration diminished when the dietary FO was above 5% (w/w). FO is a poor source of (n-6) fatty acids. We postulate that a partial deficiency in (n-6) polyenic family, is a consequence of the increasing amounts of FO in the diets, that may affect growth and erytropoiesis. In this report we show evidence supporting the hypothesis that diets enriched with fish oil can alter normal growth and induced hematological changes in the male weanling rat.

  2. Dietary zinc affects concentrations of insulin, insulin-like growth factor-I and growth hormone in lambs

    SciTech Connect

    Droke, E.A.; Spears, J.W.; Armstrong, J.D. )

    1991-03-15

    Glucose tolerance and concentrations of insulin, growth hormone (GH) and insulin-like growth factor-I (IGF-I) were evaluated in lambs deficient, marginal or adequate in zinc (Zn). Lambs were fed a semipurified diet that contained either 3.7, 8.7, or 43.7 mg Zn/kg. Zinc deficiency resulted in lower serum insulin levels 1 h after feeding while levels in marginal lambs were not different from that of adequate lambs. Dietary Zn did not affect plasma glucose post feeding. One h after IV glucose administration plasma glucose concentrations were lower in deficient lambs compared to adequate lambs; marginal lambs had intermediate glucose levels. Concentration of GH before and after feeding or glucose challenge were not affected by Zn status; however, serum IGF-I was lower in deficient than in marginal or adequate lambs. A GH releasing factor (GRF) analog was given to evaluate the release of GH. Serum GH in response to GRF challenge was higher in deficient lambs and tended to be higher in marginal lambs when compared to adequate lambs. Impaired growth observed with Zn deficiency may be mediated in part by its effect on insulin, GH and IGF-I concentrations.

  3. Factors affecting white cell content in platelet concentrates.

    PubMed

    Champion, A B; Carmen, R A

    1985-01-01

    In this study, we investigated the factors affecting white cell content in platelet concentrates. White cell yields can be reduced 50 percent by stopping platelet-rich plasma expression when the interface is 1 cm from the top of the blood bag as compared to stopping expression when the interface reaches the top of the bag. Further reductions can be achieved by careful handling during transfer of units from the centrifuge cups to expressors (after the first spin) and by carefully balancing units against each other to ensure proper rotor balance during the first spin. Following these suggestions, blood banks should be able to produce platelet concentrates with white cell yields between 2 and 6 X 10(7) and with platelet yields between 7.5 and 8 X 10(10). Transfusion of this product may reduce febrile reactions and lower the incidence of alloimmunizations. PMID:4024231

  4. Noggin 1 overexpression in retinal progenitors affects bipolar cell generation.

    PubMed

    Messina, Andrea; Bridi, Simone; Bozza, Angela; Bozzi, Yuri; Baudet, Marie-Laure; Casarosa, Simona

    2016-01-01

    Waves of Bone Morphogenetic Proteins (BMPs) and their antagonists are present during initial eye development, but their possible roles in retinogenesis are still unknown. We have recently shown that noggin 1, a BMP antagonist, renders pluripotent cells able to differentiate into retinal precursors, and might be involved in the maintenance of retinal structures in the adult vertebrate eye. Here, we report that noggin 1, differently from noggin 2 and noggin 4, is expressed during all phases of Xenopus laevis retinal development. Gain-of-function experiments by electroporation in the optic vesicle show that overexpression of noggin 1 significantly decreases the number of bipolar cells in the inner nuclear layer of the retina, without significantly affecting the generation of the other retinal cell types. Our data suggest that BMP signaling could be involved in the differentiation of retinal progenitors into specific retinal subtypes during late phases of vertebrate retinal development. PMID:27389985

  5. Endogenous Abscisic Acid Promotes Hypocotyl Growth and Affects Endoreduplication during Dark-Induced Growth in Tomato (Solanum lycopersicum L.)

    PubMed Central

    Humplík, Jan F.; Bergougnoux, Véronique; Jandová, Michaela; Šimura, Jan; Pěnčík, Aleš; Tomanec, Ondřej; Rolčík, Jakub; Novák, Ondřej; Fellner, Martin

    2015-01-01

    Dark-induced growth (skotomorphogenesis) is primarily characterized by rapid elongation of the hypocotyl. We have studied the role of abscisic acid (ABA) during the development of young tomato (Solanum lycopersicum L.) seedlings. We observed that ABA deficiency caused a reduction in hypocotyl growth at the level of cell elongation and that the growth in ABA-deficient plants could be improved by treatment with exogenous ABA, through which the plants show a concentration dependent response. In addition, ABA accumulated in dark-grown tomato seedlings that grew rapidly, whereas seedlings grown under blue light exhibited low growth rates and accumulated less ABA. We demonstrated that ABA promotes DNA endoreduplication by enhancing the expression of the genes encoding inhibitors of cyclin-dependent kinases SlKRP1 and SlKRP3 and by reducing cytokinin levels. These data were supported by the expression analysis of the genes which encode enzymes involved in ABA and CK metabolism. Our results show that ABA is essential for the process of hypocotyl elongation and that appropriate control of the endogenous level of ABA is required in order to drive the growth of etiolated seedlings. PMID:25695830

  6. Characterization of the activities of actin-affecting drugs on tumor cell migration

    SciTech Connect

    Hayot, Caroline; Debeir, Olivier; Ham, Philippe van; Damme, Marc van; Kiss, Robert; Decaestecker, Christine . E-mail: cdecaes@ulb.ac.be

    2006-02-15

    Metastases kill 90% of cancer patients. It is thus a major challenge in cancer therapy to inhibit the spreading of tumor cells from primary tumor sites to those particular organs where metastases are likely to occur. Whereas the actin cytoskeleton is a key component involved in cell migration, agents targeting actin dynamics have been relatively poorly investigated. Consequently, valuable in vitro pharmacological tools are needed to selectively identify this type of agent. In response to the absence of any standardized process, the present work aims to develop a multi-assay strategy for screening actin-affecting drugs with anti-migratory potentials. To validate our approach, we used two cancer cell lines (MCF7 and A549) and three actin-affecting drugs (cytochalasin D, latrunculin A, and jasplakinolide). We quantified the effects of these drugs on the kinetics of actin polymerization in tubes (by means of spectrofluorimetry) and on the dynamics of actin cytoskeletons within whole cells (by means of fluorescence microscopy). Using quantitative videomicroscopy, we investigated the actual effects of the drugs on cell motility. Finally, the combined drug effects on cell motility and cell growth were evaluated by means of a scratch-wound assay. While our results showed concordant drug-induced effects on actin polymerization occurring in vitro in test tubes and within whole cells, the whole cell assay appeared more sensitive than the tube assay. The inhibition of actin polymerization induced by cytochalasin D was paralleled by a decrease in cell motility for both cell types. In the case of jasplakinolide, which induces actin polymerization, while it significantly enhanced the locomotion of the A549 cells, it significantly inhibited that of the MCF-7 ones. All these effects were confirmed by means of the scratch-wound assay except of the jasplakinolide-induced effects on MCF-7 cell motility. These later seemed compensated by an additional effect occurring during wound

  7. Nitrogen deficiency inhibits leaf blade growth in Lolium perenne by increasing cell cycle duration and decreasing mitotic and post-mitotic growth rates.

    PubMed

    Kavanová, Monika; Lattanzi, Fernando Alfredo; Schnyder, Hans

    2008-06-01

    Nitrogen deficiency severely inhibits leaf growth. This response was analysed at the cellular level by growing Lolium perenne L. under 7.5 mM (high) or 1 mM (low) nitrate supply, and performing a kinematic analysis to assess the effect of nitrogen status on cell proliferation and cell growth in the leaf blade epidermis. Low nitrogen supply reduced leaf elongation rate (LER) by 43% through a similar decrease in the cell production rate and final cell length. The former was entirely because of a decreased average cell division rate (0.023 versus 0.032 h(-1)) and thus longer cell cycle duration (30 versus 22 h). Nitrogen status did not affect the number of division cycles of the initial cell's progeny (5.7), and accordingly the meristematic cell number (53). Meristematic cell length was unaffected by nitrogen deficiency, implying that the division and mitotic growth rates were equally impaired. The shorter mature cell length arose from a considerably reduced post-mitotic growth rate (0.033 versus 0.049 h(-1)). But, nitrogen stress did not affect the position where elongation stopped, and increased cell elongation duration. In conclusion, nitrogen deficiency limited leaf growth by increasing the cell cycle duration and decreasing mitotic and post-mitotic elongation rates, delaying cell maturation.

  8. Culture materials affect ex vivo expansion of hematopoietic progenitor cells.

    PubMed

    LaIuppa, J A; McAdams, T A; Papoutsakis, E T; Miller, W M

    1997-09-01

    Ex vivo expansion of hematopoietic cells is important for applications such as cancer treatment, gene therapy, and transfusion medicine. While cell culture systems are widely used to evaluate the biocompatibility of materials for implantation, the ability of materials to support proliferation of primary human cells in cultures for reinfusion into patients has not been addressed. We screened a variety of commercially available polymer (15 types), metal (four types), and glass substrates for their ability to support expansion of hematopoietic cells when cultured under conditions that would be encountered in a clinical setting. Cultures of peripheral blood (PB) CD34+ cells and mononuclear cells (MNC) were evaluated for expansion of total cells and colony-forming unit-granulocyte monocyte (CFU-GM; progenitors committed to the granulocyte and/or monocyte lineage). Human hematopoietic cultures in serum-free medium were found to be extremely sensitive to the substrate material. The only materials tested that supported expansion at or near the levels of polystyrene were tissue culture polystyrene, Teflon perfluoroalkoxy, Teflon fluorinated ethylene propylene, cellulose acetate, titanium, new polycarbonate, and new polymethylpentene. MNC were less sensitive to the substrate materials than the primitive CD34+ progenitors, although similar trends were seen for expansion of the two cell populations on the substrates tested. CFU-GM expansion was more sensitive to substrate materials than was total cell expansion. The detrimental effects of a number of the materials on hematopoietic cultures appear to be caused by protein adsorption and/or leaching of toxins. Factors such as cleaning, sterilization, and reuse significantly affected the performance of some materials as culture substrates. We also used PB CD34+ cell cultures to examine the biocompatibility of gas-permeable cell culture and blood storage bags and several types of tubing commonly used with biomedical equipment

  9. Fibroblast growth factor 8 increases breast cancer cell growth by promoting cell cycle progression and by protecting against cell death

    SciTech Connect

    Nilsson, Emeli M.; Brokken, Leon J.S.; Haerkoenen, Pirkko L.

    2010-03-10

    Fibroblast growth factor 8 (FGF-8) is expressed in a large proportion of breast cancers, whereas its level in normal mammary gland epithelium is low. Previous studies have shown that FGF-8b stimulates breast cancer cell growth in vitro and in vivo. To explore the mechanisms by which FGF-8b promotes growth, we studied its effects on cell cycle regulatory proteins and signalling pathways in mouse S115 and human MCF-7 breast cancer cells. We also studied the effect of FGF-8b on cell survival. FGF-8b induced cell cycle progression and up-regulated particularly cyclin D1 mRNA and protein in S115 cells. Silencing cyclin D1 with siRNA inhibited most but not all FGF-8b-induced proliferation. Inhibition of the FGF-8b-activated ERK/MAPK pathway decreased FGF-8b-stimulated proliferation. Blocking the constitutively active PI3K/Akt and p38 MAPK pathways also lowered FGF-8b-induced cyclin D1 expression and proliferation. Corresponding results were obtained in MCF-7 cells. In S115 and MCF-7 mouse tumours, FGF-8b increased cyclin D1 and Ki67 levels. Moreover, FGF-8b opposed staurosporine-induced S115 cell death which effect was blocked by inhibiting the PI3K/Akt pathway but not the ERK/MAPK pathway. In conclusion, our results suggest that FGF-8b increases breast cancer cell growth both by stimulating cell cycle progression and by protecting against cell death.

  10. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling.

    PubMed

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption. PMID:26617587

  11. Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling

    PubMed Central

    Bitas, Vasileios; McCartney, Nathaniel; Li, Ningxiao; Demers, Jill; Kim, Jung-Eun; Kim, Hye-Seon; Brown, Kathleen M.; Kang, Seogchan

    2015-01-01

    Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption. PMID:26617587

  12. Controlled Cu nanoparticle growth on wrinkle affecting deposition of large scale graphene

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohsin; Uddin, Md Jasim; Rahman, Muhammad Anisur; Kishi, Naoki; Soga, Tetsuo

    2016-09-01

    For Chemical Vapor Deposition (CVD) grown graphene on Cu substrate, deviation from atomic orientation in crystals may be resulted from diffusion of abnormalities in the form of Cu nanoparticle (NP) formation or defects and affects graphene quality and properties drastically. However, for the uniform graphene deposition, mechanism of nanoparticle formation and its suppression procedure need to be better understood. We report growth of graphene, affected by Cu nanoparticles (NPs) emergence on Cu substrates. In the current study, growth of these nanoparticles has been suppressed by fine tuning of carrier gas by two-fold gas insertion mechanism and hence, quality and uniformity of graphene is significantly improved. It has been also observed that during the deposition by CVD, Cu nanoparticles cluster preferentially on wrinkles or terrace of the Cu surface. Composition of NP is extensively studied and found to be the oxide nanoparticle of Cu. Our result, controlled NP growth affecting deposition of graphene layer would provide useful insight on the growth of uniform and high quality Single layer or bilayer graphene for numerous electronics applications.

  13. VHL Induces Renal Cell Differentiation and Growth Arrest through Integration of Cell-Cell and Cell-Extracellular Matrix Signaling

    PubMed Central

    Davidowitz, Eliot J.; Schoenfeld, Alan R.; Burk, Robert D.

    2001-01-01

    Mutations in the von Hippel-Lindau (VHL) gene are involved in the family cancer syndrome for which it is named and the development of sporadic renal cell cancer (RCC). Reintroduction of VHL into RCC cells lacking functional VHL [VHL(−)] can suppress their growth in nude mice, but not under standard tissue culture conditions. To examine the hypothesis that the tumor suppressor function of VHL requires signaling through contact with extracellular matrix (ECM), 786-O VHL(−) RCC cells and isogenic sublines stably expressing VHL gene products [VHL(+)] were grown on ECMs. Cell-cell and cell-ECM signalings were required to elicit VHL-dependent differences in growth and differentiation. VHL(+) cells differentiated into organized epithelial sheets, whereas VHL(−) cells were branched and disorganized. VHL(+) cells grown to high density on collagen I underwent growth arrest, whereas VHL(−) cells continued to proliferate. Integrin levels were up-regulated in VHL(−) cells, and cell adhesion was down-regulated in VHL(+) cells during growth at high cell density. Hepatocyte nuclear factor 1α, a transcription factor and global activator of proximal tubule-specific genes in the nephron, was markedly up-regulated in VHL(+) cells grown at high cell density. These data indicate that VHL can induce renal cell differentiation and mediate growth arrest through integration of cell-cell and cell-ECM signals. PMID:11154273

  14. Cell Wall Nonlinear Elasticity and Growth Dynamics: How Do Bacterial Cells Regulate Pressure and Growth?

    NASA Astrophysics Data System (ADS)

    Deng, Yi

    In my thesis, I study intact and bulging Escherichia coli cells using atomic force microscopy to separate the contributions of the cell wall and turgor pressure to the overall cell stiffness. I find strong evidence of power--law stress--stiffening in the E. coli cell wall, with an exponent of 1.22±0.12, such that the wall is significantly stiffer in intact cells (E = 23±8 MPa and 49±20 MPa in the axial and circumferential directions) than in unpressurized sacculi. These measurements also indicate that the turgor pressure in living cells E. coli is 29±3 kPa. The nonlinearity in cell elasticity serves as a plausible mechanism to balance the mechanical protection and tension measurement sensitivity of the cell envelope. I also study the growth dynamics of the Bacillus subtilis cell wall to help understand the mechanism of the spatiotemporal order of inserting new cell wall material. High density fluorescent markers are used to label the entire cell surface to capture the morphological changes of the cell surface at sub-cellular to diffraction-limited spatial resolution and sub-minute temporal resolution. This approach reveals that rod-shaped chaining B. subtilis cells grow and twist in a highly heterogeneous fashion both spatially and temporally. Regions of high growth and twisting activity have a typical length scale of 5 μm, and last for 10-40 minutes. Motivated by the quantification of the cell wall growth dynamics, two microscopy and image analysis techniques are developed and applied to broader applications beyond resolving bacterial growth. To resolve densely distributed quantum dots, we present a fast and efficient image analysis algorithm, namely Spatial Covariance Reconstruction (SCORE) microscopy that takes into account the blinking statistics of the fluorescence emitters. We achieve sub-diffraction lateral resolution of 100 nm from 5 to 7 seconds of imaging, which is at least an order of magnitude faster than single-particle localization based methods

  15. Accumulation of distinct prelamin A variants in human diploid fibroblasts differentially affects cell homeostasis

    SciTech Connect

    Candelario, Jose; Borrego, Stacey; Reddy, Sita; Comai, Lucio

    2011-02-01

    Lamin A is a component of the nuclear lamina that plays a major role in the structural organization and function of the nucleus. Lamin A is synthesized as a prelamin A precursor which undergoes four sequential post-translational modifications to generate mature lamin A. Significantly, a large number of point mutations in the LMNA gene cause a range of distinct human disorders collectively known as laminopathies. The mechanisms by which mutations in lamin A affect cell function and cause disease are unclear. Interestingly, recent studies have suggested that alterations in the normal lamin A pathway can contribute to cellular dysfunction. Specifically, we and others have shown, at the cellular level, that in the absence of mutations or altered splicing events, increased expression of wild-type prelamin A results in a growth defective phenotype that resembles that of cells expressing the mutant form of lamin A, termed progerin, associated with Hutchinson-Gilford Progeria syndrome (HGPS). Remarkably, the phenotypes of cells expressing elevated levels of wild-type prelamin A can be reversed by either treatment with farnesyltransferase inhibitors or overexpression of ZMPSTE24, a critical prelamin A processing enzyme, suggesting that minor increases in the steady-state levels of one or more prelamin A intermediates is sufficient to induce cellular toxicity. Here, to investigate the molecular basis of the lamin A pathway toxicity, we characterized the phenotypic changes occurring in cells expressing distinct prelamin A variants mimicking specific prelamin A processing intermediates. This analysis demonstrates that distinct prelamin A variants differentially affect cell growth, nuclear membrane morphology, nuclear distribution of lamin A and the fundamental process of transcription. Expression of prelamin A variants that are constitutively farnesylated induced the formation of lamin A aggregates and dramatic changes in nuclear membrane morphology, which led to reduced

  16. Cell growth on immobilized cell growth factor. 8. Protein-free cell culture on insulin-immobilized microcarriers.

    PubMed

    Ito, Y; Uno, T; Liu, S Q; Imanishi, Y

    1992-12-01

    In order to develop a new protein-free cell culture system, microcarriers immobilized with insulin were synthesized. For the synthesis, glass and polyacrylamide beads were treated for the introduction of amino groups on the surface, and insulin was immobilized on the surface by using several method. Anchorage-dependent cells. mouse fibroblast cells STO and fibroic sarcoma cells HSDM(1)C(1), and the anchorage-independent cells, mouse hybridoma cells SJK132-20 and RDP 45/20 were cultivated on the microcarriers immobilized with insulin. The insulin-immobilized microcarriers did not have any effect on the proliferation of the anchorage independent cells but promoted the growth of anchorage-dependent cells remarkably. The activity of immobilized insulin was larger than that of free or adsorbed insulin. The repeated use of the insulin-immobilized microcarrier was possible, and the promotion activity in the the repeated use was greater than that in the use.

  17. Timing of cotyledon damage affects growth and flowering in mature plants.

    PubMed

    Hanley, M E; Fegan, E L

    2007-07-01

    Although the effects of herbivory on plant fitness are strongly linked to age, we understand little about how the timing of herbivory at the seedling stage affects growth and reproduction for plants that survive attack. In this study, we subjected six north-western European, dicotyledonous grassland species (Leontodon autumnalis, Leontodon hispidus, Plantago lanceolata, Plantago major, Trifolium pratense and Trifolium repens) to cotyledon removal at 7, 14 and 21 d old. We monitored subsequent growth and flowering (number of inflorescences recorded, and time taken for first flowers to open) over a 107 d period. Cotyledon removal reduced growth during establishment (35 d) for all species, and a further three exhibited reduced growth at maturity. Four species developed fewer inflorescences, or had delayed flowering after cotyledon removal. Although early damage (7 d old) had the greatest long-term effect on plant performance, responses varied according to the age at which the damage occurred and the species involved. Our results illustrate how growth and flowering into the mature phase is affected by cotyledon damage during different stages of seedling ontogeny, and we highlight the ways in which ontogenetic variation in seedling tolerance of tissue loss might impact upon plant fitness in mature plant communities. PMID:17547653

  18. Bcl-2 accelerates retinoic acid-induced growth arrest and recovery in human gastric cancer cells.

    PubMed Central

    Chou, H K; Chen, S L; Hsu, C T; Chao, Y C; Tsao, Y P

    2000-01-01

    The role of Bcl-2 as an anti-apoptotic protein has been well documented. In the present work, we present evidence that Bcl-2 may also be involved in cell growth regulation. SC-M1 is an unique cell line which responds to retinoic acid (RA) treatment with reversible growth arrest [Shyu, Jiang, Huang, Chang, Wu, Roffler and Yeh (1995) Eur. J. Cancer 31, 237-243]. In this study, when treated with RA, SC-M1/Bcl2 cells, which were generated by transfecting SC-M1 cells with bcl-2 DNA, were growth-arrested two days earlier than SC-M1/neo cells, which were generated by transfecting SC-M1 cells with vector DNA. This indicates that Bcl-2 accelerates RA-induced growth arrest. In addition to the accelerated growth arrest, RA-treated SC-M1/Bcl2 cells also recovered from growth arrest two days faster than SC-M1/neo cells after the removal of RA. Previously, we had identified the cyclin-dependent kinase inhibitor p21((WAF1/CIP1)) (p21) as a mediator of RA-induced growth arrest [Tsao, Li, Kuo, Liu and Chen (1996) Biochem. J. 317, 707-711]. In a search for the mechanism by which Bcl-2 affects growth regulation, we found that p21 gene expression was more prominent in SC-M1/Bcl2 cells than in SC-M1/neo cells in the presence of RA, but when RA was removed, p21 gene expression levels in SC-M1/Bcl2 cells were also reduced earlier than in SC-M1/neo cells. The present report is the first to show that Bcl-2 accelerates not only growth arrest but also recovery from growth arrest. Moreover, the close correlation between the effect of Bcl-2 on both RA-induced growth arrest and RA-induced p21 gene expression suggests the possibility that Bcl-2 affects cell growth through the mechanism of p21. PMID:10816444

  19. Melanopsin, photosensitive ganglion cells, and seasonal affective disorder.

    PubMed

    Roecklein, Kathryn A; Wong, Patricia M; Miller, Megan A; Donofry, Shannon D; Kamarck, Marissa L; Brainard, George C

    2013-03-01

    In two recent reports, melanopsin gene variations were associated with seasonal affective disorder (SAD), and in changes in the timing of sleep and activity in healthy individuals. New studies have deepened our understanding of the retinohypothalamic tract, which translates environmental light received by the retina into neural signals sent to a set of nonvisual nuclei in the brain that are responsible for functions other than sight including circadian, neuroendocrine and neurobehavioral regulation. Because this pathway mediates seasonal changes in physiology, behavior, and mood, individual variations in the pathway may explain why approximately 1-2% of the North American population develops mood disorders with a seasonal pattern (i.e., Major Depressive and Bipolar Disorders with a seasonal pattern, also known as seasonal affective disorder/SAD). Components of depression including mood changes, sleep patterns, appetite, and cognitive performance can be affected by the biological and behavioral responses to light. Specifically, variations in the gene sequence for the retinal photopigment, melanopsin, may be responsible for significant increased risk for mood disorders with a seasonal pattern, and may do so by leading to changes in activity and sleep timing in winter. The retinal sensitivity of SAD is hypothesized to be decreased compared to controls, and that further decrements in winter light levels may combine to trigger depression in winter. Here we outline steps for new research to address the possible role of melanopsin in seasonal affective disorder including chromatic pupillometry designed to measure the sensitivity of melanopsin containing retinal ganglion cells.

  20. Lipid raft involvement in yeast cell growth and death.

    PubMed

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na(+), K(+), and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  1. Lipid raft involvement in yeast cell growth and death

    PubMed Central

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases. PMID:23087902

  2. Calcium influences sensitivity to growth inhibition induced by a cell surface sialoglycopeptide

    NASA Technical Reports Server (NTRS)

    Betz, N. A.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    While studies concerning mitogenic factors have been an important area of research for many years, much less is understood about the mechanisms of action of cell surface growth inhibitors. We have purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) which can reversibly inhibit the proliferation of diverse cell types. The studies discussed in this article show that three mouse keratinocyte cell lines exhibit sixty-fold greater sensitivity than other fibroblasts and epithelial-like cells to CeReS-18-induced growth inhibition. Growth inhibition induced by CeReS-18 treatment is a reversible process, and the three mouse keratinocyte cell lines exhibited either single or multiple cell cycle arrest points, although a predominantly G0/G1 cell cycle arrest point was exhibited in Swiss 3T3 fibroblasts. The sensitivity of the mouse keratinocyte cell lines to CeReS-18-induced growth inhibition was not affected by the degree of tumorigenic progression in the cell lines and was not due to differences in CeReS-18 binding affinity or number of cell surface receptors per cell. However, the sensitivity of both murine fibroblasts and keratinocytes could be altered by changing the extracellular calcium concentration, such that increased extracellular calcium concentrations resulted in decreased sensitivity to CeReS-18-induced proliferation inhibition. Thus the increased sensitivity of the murine keratinocyte cell lines to CeReS-18 could be ascribed to the low calcium concentration used in their propagation. Studies are currently under way investigating the role of calcium in CeReS-18-induced growth arrest. The CeReS-18 may serve as a very useful tool to study negative growth control and the signal transduction events associated with cell cycling.

  3. Hyaluronic acid hydrogel stiffness and oxygen tension affect cancer cell fate and endothelial sprouting

    PubMed Central

    Shen, Yu-I; Abaci, Hasan E.; Krupsi, Yoni; Weng, Lien-Chun; Burdick, Jason A.; Gerecht, Sharon

    2014-01-01

    Three-dimensional (3D) tissue culture models may recapitulate aspects of the tumorigenic microenvironment in vivo, enabling the study of cancer progression in vitro. Both hypoxia and matrix stiffness are known to regulate tumor growth. Using a modular culture system employing an acrylated hyaluronic acid (AHA) hydrogel, three hydrogel matrices with distinctive degrees of viscoelasticity — soft (78±16 Pa), medium (309± 57 Pa), and stiff (596± 73 Pa) — were generated using the same concentration of adhesion ligands. Oxygen levels within the hydrogel in atmospheric (21 %), hypoxic (5 %), and severely hypoxic (1 %) conditions were assessed with a mathematical model. HT1080 fibrosarcoma cells, encapsulated within the AHA hydrogels in high densities, generated nonuniform oxygen distributions, while lower cell densities resulted in more uniform oxygen distributions in the atmospheric and hypoxic environments. When we examined how varying viscoelasticity in atmospheric and hypoxic environments affects cell cycles and the expression of BNIP3 and BNIP3L (autophagy and apoptosis genes), and GLUT-1 (a glucose transport gene), we observed that HT1080 cells in 3D hydrogel adapted better to hypoxic conditions than those in a Petri dish, with no obvious correlation to matrix viscoelasticity, by recovering rapidly from possible autophagy/apoptotic events and alternating metabolism mechanisms. Further, we examined how HT1080 cells cultured in varying viscoelasticity and oxygen tension conditions affected endothelial sprouting and invasion. We observed that increased matrix stiffness reduced endothelial sprouting and invasion in atmospheric conditions; however, we observed increased endothelial sprouting and invasion under hypoxia at all levels of matrix stiffness with the upregulation of vascular endothelial growth factor (VEGF) and angiopoeitin-1 (ANG-1). Overall, HT1080 cells encapsulated in the AHA hydrogels under hypoxic stress recovered better from apoptosis and

  4. Regulation of human amnion cell growth and morphology by sera, plasma, and growth factors.

    PubMed

    Gaffney, E V; Grimaldi, M A

    1981-01-01

    The requirements of human epithelial cells derived from the amnion membrane for serum factors were investigated. The growth promoting effects of human whole blood serum (WBS), platelet-poor defibrinogenated plasma, and plasma-derived serum (PDS) were examined in primary cultures of these ectodermal cells. The numbers of population doublings recorded after 10 days in the presence of 10% WBS, defibrinogenated plasma, or PDS were 2.3, 2.0 or 1.5, respectively. Although dialysis of sera or plasma had little effect on growth promotion, it markedly decreased the capacity of plasma to maintain cells in culture beyond 10 days. The differences in growth activities could not be attributed to the presence of anticoagulant in plasma and PDS or to the presence of excess calcium in PDS. Platelet lysates and purified platelet-derived growth factor had no effect on growth. Amnion cell growth was enhanced by epidermal growth factor (EGF) or hydrocortisone, but the glucocorticoid did not condition cells to respond to growth factors. Insulin and fibroblast growth factor singly or in combination had no effect on cell replication. Giant cell formation accompanied maintenance in hydrocortisone with defibrinogenated plasma and PDS. Discrete regions of dense population appeared in the presence of hydrocortisone, EGF, and undialyzed supplements.

  5. Autocrine growth factors for human tumor clonogenic cells.

    PubMed

    Hamburger, A W; White, C P

    1985-11-01

    A human epithelial-derived cell line, SW-13, releases a soluble substance that functions as an autocrine growth factor. SW-13 cells, derived from a human adenocarcinoma of the adrenal cortex, form a few small colonies when suspended in soft agar at low densities. The number of colonies increased significantly when either viable SW-13 cells or serum-free medium conditioned by SW-13 cells (CM) was added to agar underlayers. CM increased colony formation in a dose-dependent fashion. Clonal growth at low cell densities was dependent on the presence of both horse serum and SW-13 CM. Neither activity alone was capable of sustaining growth. Even when cells were plated at high densities CM could not substitute for serum, but could reduce the threshold serum concentration. The results suggest that autocrine and serum-derived factors act in concert to maintain clonal growth of epithelial tumor cells in soft agar.

  6. Pleiotropic Genes Affecting Carcass Traits in Bos indicus (Nellore) Cattle Are Modulators of Growth.

    PubMed

    G T Pereira, Anirene; Utsunomiya, Yuri T; Milanesi, Marco; Torrecilha, Rafaela B P; Carmo, Adriana S; Neves, Haroldo H R; Carvalheiro, Roberto; Ajmone-Marsan, Paolo; Sonstegard, Tad S; Sölkner, Johann; Contreras-Castillo, Carmen J; Garcia, José F

    2016-01-01

    Two complementary methods, namely Multi-Trait Meta-Analysis and Versatile Gene-Based Test for Genome-wide Association Studies (VEGAS), were used to identify putative pleiotropic genes affecting carcass traits in Bos indicus (Nellore) cattle. The genotypic data comprised over 777,000 single-nucleotide polymorphism markers scored in 995 bulls, and the phenotypic data included deregressed breeding values (dEBV) for weight measurements at birth, weaning and yearling, as well visual scores taken at weaning and yearling for carcass finishing precocity, conformation and muscling. Both analyses pointed to the pleomorphic adenoma gene 1 (PLAG1) as a major pleiotropic gene. VEGAS analysis revealed 224 additional candidates. From these, 57 participated, together with PLAG1, in a network involved in the modulation of the function and expression of IGF1 (insulin like growth factor 1), IGF2 (insulin like growth factor 2), GH1 (growth hormone 1), IGF1R (insulin like growth factor 1 receptor) and GHR (growth hormone receptor), suggesting that those pleiotropic genes operate as satellite regulators of the growth pathway. PMID:27410030

  7. Pleiotropic Genes Affecting Carcass Traits in Bos indicus (Nellore) Cattle Are Modulators of Growth

    PubMed Central

    Milanesi, Marco; Torrecilha, Rafaela B. P.; Carmo, Adriana S.; Neves, Haroldo H. R.; Carvalheiro, Roberto; Ajmone-Marsan, Paolo; Sonstegard, Tad S.; Sölkner, Johann; Contreras-Castillo, Carmen J.; Garcia, José F.

    2016-01-01

    Two complementary methods, namely Multi-Trait Meta-Analysis and Versatile Gene-Based Test for Genome-wide Association Studies (VEGAS), were used to identify putative pleiotropic genes affecting carcass traits in Bos indicus (Nellore) cattle. The genotypic data comprised over 777,000 single-nucleotide polymorphism markers scored in 995 bulls, and the phenotypic data included deregressed breeding values (dEBV) for weight measurements at birth, weaning and yearling, as well visual scores taken at weaning and yearling for carcass finishing precocity, conformation and muscling. Both analyses pointed to the pleomorphic adenoma gene 1 (PLAG1) as a major pleiotropic gene. VEGAS analysis revealed 224 additional candidates. From these, 57 participated, together with PLAG1, in a network involved in the modulation of the function and expression of IGF1 (insulin like growth factor 1), IGF2 (insulin like growth factor 2), GH1 (growth hormone 1), IGF1R (insulin like growth factor 1 receptor) and GHR (growth hormone receptor), suggesting that those pleiotropic genes operate as satellite regulators of the growth pathway. PMID:27410030

  8. Cooperative nutrient accumulation sustains growth of mammalian cells.

    PubMed

    Son, Sungmin; Stevens, Mark M; Chao, Hui Xiao; Thoreen, Carson; Hosios, Aaron M; Schweitzer, Lawrence D; Weng, Yaochung; Wood, Kris; Sabatini, David; Vander Heiden, Matthew G; Manalis, Scott

    2015-01-01

    The coordination of metabolic processes to allow increased nutrient uptake and utilization for macromolecular synthesis is central for cell growth. Although studies of bulk cell populations have revealed important metabolic and signaling requirements that impact cell growth on long time scales, whether the same regulation influences short-term cell growth remains an open question. Here we investigate cell growth by monitoring mass accumulation of mammalian cells while rapidly depleting particular nutrients. Within minutes following the depletion of glucose or glutamine, we observe a growth reduction that is larger than the mass accumulation rate of the nutrient. This indicates that if one particular nutrient is depleted, the cell rapidly adjusts the amount that other nutrients are accumulated, which is consistent with cooperative nutrient accumulation. Population measurements of nutrient sensing pathways involving mTOR, AKT, ERK, PKA, MST1, or AMPK, or pro-survival pathways involving autophagy suggest that they do not mediate this growth reduction. Furthermore, the protein synthesis rate does not change proportionally to the mass accumulation rate over these time scales, suggesting that intracellular metabolic pools buffer the growth response. Our findings demonstrate that cell growth can be regulated over much shorter time scales than previously appreciated. PMID:26620632

  9. Dietary nucleotides affect hepatic growth and composition in the weanling mouse.

    PubMed

    Novak, D A; Carver, J D; Barness, L A

    1994-01-01

    The effect of dietary nucleotides upon hepatic growth and composition was examined in weanling mice. For 5 weeks, mice were fed either Purina Rat Chow, a nucleotide-free diet (NT-), a nucleotide-free diet supplemented with a mixture of five nucleotides (0.21% w/w), (NT+) or a nucleotide-free diet supplemented with adenosine 5'-monophosphate (0.0425% w/w) (NTA). Hepatic cholesterol and lipid phosphorous were significantly higher, whereas liver weight (expressed as a percentage of body weight), and glycogen were lower in animals fed NT- vs all other groups. NTA-fed animals presented a greater contrast to the NT- group than did animals fed the mixture of nucleotides. Liver fatty acid composition and distribution of phospholipid subclasses were not affected by dietary nucleotide supplementation. Dietary nucleotide supplementation in weanling mice affects hepatic growth and composition; adenosine 5'-monophosphate may play a unique role in these effects.

  10. Color of illumination during growth affects LHCII chiral macroaggregates in pea plant leaves.

    PubMed

    Gussakovsky, Eugene E; Shahak, Yosepha; Schroeder, Dana F

    2007-02-01

    To determine whether the color of illumination under which plants are grown, affects the structure of photosynthetic antennae, pea plants were grown under either blue-enriched, red-enriched, or white light. Carotenoid content of isolated chloroplasts was found to be insensitive to the color of illumination during growth, while chlorophyll a/b ratio in chloroplasts isolated from young illuminated leaves showed susceptibility to color. Color of illumination affects the LHCII chiral macroaggregates in intact leaves and isolated chloroplasts, providing light-induced alteration of the handedness of the LHCII chiral macroaggregate, as measured with circular dichroism and circularly polarized luminescence. The susceptibility of handedness to current illumination (red light excitation of chlorophyll fluorescence) is dependent on the color under which the plants were grown, and was maximal for the red-enriched illumination. We propose the existence of a long-term (growth period) color memory, which influences the susceptibility of the handedness of LHCII chiral macroaggregates to current light.

  11. Interleukin-8 as an autocrine growth factor for human colon carcinoma cells in vitro.

    PubMed

    Brew, R; Erikson, J S; West, D C; Kinsella, A R; Slavin, J; Christmas, S E

    2000-01-01

    Cell lines derived from human colon carcinomas secrete interleukin 8 (IL-8) in vitro and this chemokine has also been detected immunohistochemically in human colon carcinoma specimens, in which it is tumour cell associated. In these experiments, IL-8 was shown to comprise an important component of the angiogenic activity of colon carcinoma cell line supernatants. The effect of modulating IL-8 activity upon the growth of the colon carcinoma cell lines HCT116A, HT29 and CaCo2 was investigated. Supplementing endogenously produced IL-8 by recombinant chemokine led to stimulation of cell growth. Neutralization of the effect of endogenously produced IL-8, either with the specific antagonist peptide AcRRWWCR or with blocking anti-IL-8 antibody, resulted in around 50% inhibition of cell growth (P<0.05). All of the colon carcinoma cell lines tested expressed mRNA for both IL-8RA and RB when grown at confluence. At the protein level, all cell lines expressed IL-8RA. Expression of IL-8RB was weak, although increased expression was seen in HCT116A cells as they approached confluence. Antibodies to IL-8RA and RB did not affect proliferation at low cell density but were strongly inhibitory when cells were cultured at a higher density. These data suggest that IL-8 acts as an autocrine growth factor for colon carcinoma cell lines and would support the concept that a similar autocrine loop operates in vivo.

  12. Macronutrient content of plant-based food affects growth of a carnivorous arthropod.

    PubMed

    Wilder, Shawn M; Holway, David A; Suarez, Andrew V; Eubanks, Micky D

    2011-02-01

    Many arthropods engage in mutualisms in which they consume plant-based foods including nectar, extrafloral nectar, and honeydew. However, relatively little is known about the manner in which the specific macronutrients in these plant-based resources affect growth, especially for carnivorous arthropods. Using a combination of laboratory and field experiments, we tested (1) how plant-based foods, together with ad libitum insect prey, affect the growth of a carnivorous ant, Solenopsis invicta, and (2) which macronutrients in these resources (i.e., carbohydrates, amino acids, or both) contribute to higher colony growth. Access to honeydew increased the production of workers and brood in experimental colonies. This growth effect appeared to be due to carbohydrates alone as colonies provided with the carbohydrate component of artificial extrafloral nectar had greater worker and brood production compared to colonies deprived of carbohydrates. Surprisingly, amino acids only had a slight interactive effect on the proportion of a colony composed of brood and negatively affected worker survival. Diet choice in the laboratory and field matched performance in the laboratory with high recruitment to carbohydrate baits and only slight recruitment to amino acids. The strong, positive effects of carbohydrates on colony growth and the low cost of producing this macronutrient for plants and hemipterans may have aided the evolution of food-for-protection mutualisms and help explain why these interactions are so common in ants. In addition, greater access to plant-based resources in the introduced range of S. invicta may help to explain the high densities achieved by this species throughout the southeastern United States.

  13. Macronutrient content of plant-based food affects growth of a carnivorous arthropod.

    PubMed

    Wilder, Shawn M; Holway, David A; Suarez, Andrew V; Eubanks, Micky D

    2011-02-01

    Many arthropods engage in mutualisms in which they consume plant-based foods including nectar, extrafloral nectar, and honeydew. However, relatively little is known about the manner in which the specific macronutrients in these plant-based resources affect growth, especially for carnivorous arthropods. Using a combination of laboratory and field experiments, we tested (1) how plant-based foods, together with ad libitum insect prey, affect the growth of a carnivorous ant, Solenopsis invicta, and (2) which macronutrients in these resources (i.e., carbohydrates, amino acids, or both) contribute to higher colony growth. Access to honeydew increased the production of workers and brood in experimental colonies. This growth effect appeared to be due to carbohydrates alone as colonies provided with the carbohydrate component of artificial extrafloral nectar had greater worker and brood production compared to colonies deprived of carbohydrates. Surprisingly, amino acids only had a slight interactive effect on the proportion of a colony composed of brood and negatively affected worker survival. Diet choice in the laboratory and field matched performance in the laboratory with high recruitment to carbohydrate baits and only slight recruitment to amino acids. The strong, positive effects of carbohydrates on colony growth and the low cost of producing this macronutrient for plants and hemipterans may have aided the evolution of food-for-protection mutualisms and help explain why these interactions are so common in ants. In addition, greater access to plant-based resources in the introduced range of S. invicta may help to explain the high densities achieved by this species throughout the southeastern United States. PMID:21618912

  14. Vascular endothelial growth factor B, a novel growth factor for endothelial cells.

    PubMed Central

    Olofsson, B; Pajusola, K; Kaipainen, A; von Euler, G; Joukov, V; Saksela, O; Orpana, A; Pettersson, R F; Alitalo, K; Eriksson, U

    1996-01-01

    We have isolated and characterized a novel growth factor for endothelial cells, vascular endothelial growth factor B (VEGF-B), with structural similarities to vascular endothelial growth factor (VEGF) and placenta growth factor. VEGF-B was particularly abundant in heart and skeletal muscle and was coexpressed with VEGF in these and other tissues. VEGF-B formed cell-surface-associated disulfide-linked homodimers and heterodimerized with VEGF when coexpressed. Conditioned medium from transfected 293EBNA cells expressing VEGF-B stimulated DNA synthesis in endothelial cells. Our results suggest that VEGF-B has a role in angiogenesis and endothelial cell growth, particularly in muscle. Images Fig. 3 Fig. 4 Fig. 5 PMID:8637916

  15. Soil Particle Heterogeneity Affects the Growth of a Rhizomatous Wetland Plant

    PubMed Central

    Xue, Wei; Peng, Yi-Ke; Zhang, Ming-Xiang; Yu, Fei-Hai

    2013-01-01

    Soil is commonly composed of particles of different sizes, and soil particle size may greatly affect the growth of plants because it affects soil physical and chemical properties. However, no study has tested the effects of soil particle heterogeneity on the growth of clonal plants. We conducted a greenhouse experiment in which individual ramets of the wetland plant Bolboschoenus planiculmis were grown in three homogeneous soil treatments with uniformly sized quartz particles (small: 0.75 mm, medium: 1.5 mm, or large: 3 mm), one homogeneous treatment with an even mixture of large and medium particles, and two heterogeneous treatments consisting of 16 or 4 patches of large and medium particles. Biomass, ramet number, rhizome length and spacer length were significantly greater in the treatment with only medium particles than in the one with only large particles. Biomass, ramet number, rhizome length and tuber number in the patchy treatments were greater in patches of medium than of large particles; this difference was more pronounced when patches were small than when they were large. Soil particle size and soil particle heterogeneity can greatly affect the growth of clonal plants. Thus, studies to test the effects of soil heterogeneity on clonal plants should distinguish the effects of nutrient heterogeneity from those of particle heterogeneity. PMID:23936110

  16. Gonadotropin ratio affects the in vitro growth of rhesus ovarian preantral follicles.

    PubMed

    Kim, Yoon Young; Yun, Jun-Won; Kim, Jong Min; Park, Chung Gyu; Rosenwaks, Zev; Liu, Hung Ching; Kang, Byeong-Cheol; Ku, Seung-Yup

    2016-04-01

    In vitro follicle growth (IVFG) strategy is critical in the fertility preservation of cancer survivors; however, its optimal protocol needs to be developed using primate models since the availability of human samples is limited. Only a few previous studies have reported the successful IVFG of rhesus monkey ovaries using low-dose follicle-stimulating hormone (FSH) (0.3 or 3 ng/mL) and long-term culture (up to 5 weeks) and it is still uncertain in regard to the optimal culture duration and effective dose of treated gonadotropins applicable to the IVFG of rhesus preantral follicles. Recently, we have reported that the FSH to luteinizing hormone (LH) ratio affects the in vitro growth of murine ovarian follicles. We aimed to investigate whether gonadotropin ratios affect the efficiency of rhesus follicular growth in vitro Ovaries were collected from six necropsied rhesus macaques (4-9 years) and preantral follicles were retrieved and cultured for 14 days using 200 mIU/mL FSH. The characteristics of follicular growth were compared between the FSH:LH=1:1 (n=24) and FSH:LH=2:1 (n=24) groups. High concentration gonadotropin treatment shortened the duration required for in vitro maturation of rhesus preantral follicles. The FSH:LH=2:1 group showed a faster follicular growth and enabled the acquisition of mature oocytes, although the expression of growth differentiation factor (GDF)-9 and anti-Müllerian hormone (AMH) did not differ significantly between the two groups. Taken together, high dose gonadotropin treatment can shorten the duration of IVFG and the gonadotropin ratio is important in the IVFG of rhesus monkey ovaries.

  17. Gonadotropin ratio affects the in vitro growth of rhesus ovarian preantral follicles

    PubMed Central

    Kim, Yoon Young; Yun, Jun-Won; Kim, Jong Min; Park, Chung Gyu; Rosenwaks, Zev; Liu, Hung Ching; Kang, Byeong-Cheol; Ku, Seung-Yup

    2016-01-01

    In vitro follicle growth (IVFG) strategy is critical in the fertility preservation of cancer survivors; however, its optimal protocol needs to be developed using primate models since the availability of human samples is limited. Only a few previous studies have reported the successful IVFG of rhesus monkey ovaries using low-dose follicle-stimulating hormone (FSH) (0.3 or 3 ng/mL) and long-term culture (up to 5 weeks) and it is still uncertain in regard to the optimal culture duration and effective dose of treated gonadotropins applicable to the IVFG of rhesus preantral follicles. Recently, we have reported that the FSH to luteinizing hormone (LH) ratio affects the in vitro growth of murine ovarian follicles. We aimed to investigate whether gonadotropin ratios affect the efficiency of rhesus follicular growth in vitro. Ovaries were collected from six necropsied rhesus macaques (4–9 years) and preantral follicles were retrieved and cultured for 14 days using 200 mIU/mL FSH. The characteristics of follicular growth were compared between the FSH:LH=1:1 (n=24) and FSH:LH=2:1 (n=24) groups. High concentration gonadotropin treatment shortened the duration required for in vitro maturation of rhesus preantral follicles. The FSH:LH=2:1 group showed a faster follicular growth and enabled the acquisition of mature oocytes, although the expression of growth differentiation factor (GDF)-9 and anti-Müllerian hormone (AMH) did not differ significantly between the two groups. Taken together, high dose gonadotropin treatment can shorten the duration of IVFG and the gonadotropin ratio is important in the IVFG of rhesus monkey ovaries. PMID:26980777

  18. Organotypic Cultures of Intervertebral Disc Cells: Responses to Growth Factors and Signaling Pathways Involved.

    PubMed

    Pratsinis, Harris; Kletsas, Dimitris

    2015-01-01

    Intervertebral disc (IVD) degeneration is strongly associated with low back pain, a major cause of disability worldwide. An in-depth understanding of IVD cell physiology is required for the design of novel regenerative therapies. Accordingly, aim of this work was the study of IVD cell responses to mitogenic growth factors in a three-dimensional (3D) organotypic milieu, comprising characteristic molecules of IVD's extracellular matrix. In particular, annulus fibrosus (AF) cells were cultured inside collagen type-I gels, while nucleus pulposus (NP) cells in chondroitin sulfate A (CSA) supplemented collagen gels, and the effects of Platelet-Derived Growth Factor (PDGF), basic Fibroblast Growth Factor (bFGF), and Insulin-Like Growth Factor-I (IGF-I) were assessed. All three growth factors stimulated DNA synthesis in both AF and NP 3D cell cultures, with potencies similar to those observed previously in monolayers. CSA supplementation inhibited basal DNA synthesis rates, without affecting the response to growth factors. ERK and Akt were found to be phosphorylated following growth factor stimulation. Blockade of these two signaling pathways using pharmacologic inhibitors significantly, though not completely, inhibited growth factor-induced DNA synthesis. The proposed culture systems may prove useful for further in vitro studies aiming at future interventions for IVD regeneration. PMID:26583105

  19. Organotypic Cultures of Intervertebral Disc Cells: Responses to Growth Factors and Signaling Pathways Involved

    PubMed Central

    Pratsinis, Harris; Kletsas, Dimitris

    2015-01-01

    Intervertebral disc (IVD) degeneration is strongly associated with low back pain, a major cause of disability worldwide. An in-depth understanding of IVD cell physiology is required for the design of novel regenerative therapies. Accordingly, aim of this work was the study of IVD cell responses to mitogenic growth factors in a three-dimensional (3D) organotypic milieu, comprising characteristic molecules of IVD's extracellular matrix. In particular, annulus fibrosus (AF) cells were cultured inside collagen type-I gels, while nucleus pulposus (NP) cells in chondroitin sulfate A (CSA) supplemented collagen gels, and the effects of Platelet-Derived Growth Factor (PDGF), basic Fibroblast Growth Factor (bFGF), and Insulin-Like Growth Factor-I (IGF-I) were assessed. All three growth factors stimulated DNA synthesis in both AF and NP 3D cell cultures, with potencies similar to those observed previously in monolayers. CSA supplementation inhibited basal DNA synthesis rates, without affecting the response to growth factors. ERK and Akt were found to be phosphorylated following growth factor stimulation. Blockade of these two signaling pathways using pharmacologic inhibitors significantly, though not completely, inhibited growth factor-induced DNA synthesis. The proposed culture systems may prove useful for further in vitro studies aiming at future interventions for IVD regeneration. PMID:26583105

  20. Separating growth from elastic deformation during cell enlargement

    SciTech Connect

    Proseus, T.E.; Boyer, J.S. . Coll. of Marine Studies); Ortega, J.K.E. . Dept. of Mechanical Engineering)

    1999-02-01

    Plants change size by deforming reversibly (elastically) whenever turgor pressure changes, and by growing. The elastic deformation is independent of growth because it occurs in nongrowing cells. Its occurrence with growth has prevented growth from being observed alone. The authors investigated whether the two processes could be separated in internode cells of Chara corallina Klien ex Willd., em R.D.W. by injecting or removing cell solution with a pressure probe to change turgor while the cell length was continuously measured. Cell size changed immediately when turgor changed, and growth rates appeared to be altered. Low temperature eliminated growth but did not alter the elastic effects. This allowed elastic deformation measured at low temperature to be subtracted from elongation at warm temperature in the same cell. After te subtraction, growth alone could be observed for the first time. Alternations in turgor caused growth to change rapidly to a new, steady rate with no evidence of rapid adjustments in wall properties. This turgor response, together with the marked sensitivity of growth to temperature, suggested that the growth rate was not controlled by inert polymer extension but rather by the biochemical reactions that include a turgor-sensitive step.

  1. On the growth of walled cells: From shells to vesicles.

    NASA Astrophysics Data System (ADS)

    Boudaoud, Arezki

    2003-03-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi and yeast cells. They are modeled as elastic shells inflated by a liquid. Cell growth is driven by fluid pressure and is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  2. Growth of Walled Cells: From Shells to Vesicles

    NASA Astrophysics Data System (ADS)

    Boudaoud, Arezki

    2003-07-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi, and yeast cells. They are modeled as elastic shells containing a liquid. Cell growth is driven by fluid pressure and is is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  3. Indomethacin interferes with epidermal growth factor binding and proliferative response of gastric KATO III cells.

    PubMed

    Fujiwara, Y; Schmassmann, A; Arakawa, T; Halter, F; Tarnawski, A

    1995-01-01

    Indomethacin induces gastric ulcerations and decreases cell proliferation in the gastric ulcer margin. Since epithelial cell proliferation is under control of epidermal growth factor (EGF), we studied whether indomethacin may affect specific binding of [125I]-EGF to its receptors in cultured human gastric KATO III cells. To assess effects of EGF, indomethacin and their combination on cell proliferation, KATO III cells were incubated for 24 h with either (a) vehicle (b) indomethacin (doses from 10(-5) to 10(-3) M), EGF (doses 0.01, 0.05 or 0.1 microgram/ml) or (d) a combination of b and c, and the bromodeoxyuridine labeling index was determined. Indomethacin in a dose which did not affect cell viability significantly (by 21.5%) decreased [125I]-EGF binding to the KATO III cells and decreased the bromodeoxyuridine labeling index. Epidermal growth factor significantly increased cell proliferation and increased the labeling index from 28.9 +/- 0.6% in the vehicle group to 36.2 +/- 0.5%. Co-treatment with indomethacin significantly reduced the proliferative response of KATO III cells to EGF. In conclusion, indomethacin, in a dose which does not affect cell viability, decreased binding of EGF to cultured gastric KATO III cells and decreased their proliferative response to EGF. PMID:8549878

  4. Iron affects the structure of cell membrane molecular models.

    PubMed

    Suwalsky, M; Martínez, F; Cárdenas, H; Grzyb, J; Strzałka, K

    2005-03-01

    The effects of Fe(3+) and Fe(2+) on molecular models of biomembranes were investigated. These consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and of dimyristoylphosphatidylethanolamine (DMPE), classes of phospholipids located in the outer and inner moieties of cell membranes, respectively. X-ray studies showed that very low concentrations of Fe(3+) affected DMPC organization and 10(-3)M induced a total loss of its multilamellar periodic stacking. Experiments carried out with Fe(2+) on DMPC showed weaker effects than those induced by Fe(3+) ions. Similar experiments were performed on DMPE bilayers. Fe(3+) from 10(-7)M up to 10(-4)M had practically no effect on DMPE structure. However, 10(-3)M Fe(3+) induced a deep perturbation of the multilamellar structure of DMPE. However, 10(-3)M Fe(2+) had no effect on DMPE organization practically. Differential scanning calorimetry measurements also revealed different effects of Fe(3+) and Fe(2+) on the phase transition and other thermal properties of the examined lipids. In conclusion, the results obtained indicate that iron ions interact with phospholipid bilayers perturbing their structures. These findings are consistent with the observation that iron ions change cell membrane fluidity and, therefore, affect its functions. PMID:15752465

  5. Elevated pressure of carbon dioxide affects growth of thermophilic Petrotoga sp.

    NASA Astrophysics Data System (ADS)

    Rakoczy, Jana; Gniese, Claudia; Schippers, Axel; Schlömann, Michael; Krüger, Martin

    2014-05-01

    Carbon capture and storage (CCS) is considered a promising new technology which reduces carbon dioxide emissions into the atmosphere and thereby decelerates global warming. During CCS, carbon dioxide is captured from emission sources (e.g. fossil fuel power plants or other industries), pressurised, and finally stored in deep geological formations, such as former gas or oil reservoirs as well as saline aquifers. However, with CCS being a very young technology, there are a number of unknown factors that need to be investigated before declaring CCS as being safe. Our research investigates the effect of high carbon dioxide concentrations and pressures on an indigenous microorganism that colonises a potential storage site. Growth experiments were conducted using the thermophilic thiosulphate-reducing bacterium Petrotoga sp., isolated from formation water of the gas reservoir Schneeren (Lower Saxony, Germany), situated in the Northern German Plain. Growth (OD600) was monitored over one growth cycle (10 days) at different carbon dioxide concentrations (50%, 100%, and 150% in the gas phase), and was compared to control cultures grown with 20% carbon dioxide. An additional growth experiment was performed over a period of 145 days with repeated subcultivation steps in order to detect long-term effects of carbon dioxide. Cultivation over 10 days at 50% and 100% carbon dioxide slightly reduced cell growth. In contrast, long-term cultivation at 150% carbon dioxide reduced cell growth and finally led to cell death. This suggested a more pronounced effect of carbon dioxide at prolonged cultivation and stresses the need for a closer consideration of long-term effects. Experiments with supercritical carbon dioxide at 100 bar completely inhibited growth of freshly inoculated cultures and also caused a rapid decrease of growth of a pre-grown culture. This demonstrated that supercritical carbon dioxide had a sterilising effect on cells. This effect was not observed in control cultures

  6. Oridonin inhibits BxPC-3 cell growth through cell apoptosis.

    PubMed

    Xu, Bin; Shen, Wen; Liu, Xing; Zhang, Ting; Ren, Jun; Fan, Yongjun; Xu, Jian

    2015-03-01

    Oridonin, an ent-kaurene diterpenoid extracted from the traditional Chinese herb Rabdosia rubescens, has multiple biological and pharmaceutical functions and has been used clinically for many years. While the antitumor function of oridonin has been corroborated by numerous lines of evidence, its anticancer mechanism has not been well documented. In this study, the pancreatic cancer cell line BxPC-3 was used as a model to investigate a possible anticancer mechanism of oridonin through examining its effects on cell viability. The results showed that oridonin affected cell viability in a time- and dose-dependent manner. After exposure to different oridonin concentrations, growth rates and cell cycle arrest of BxPC-3 cells were significantly reduced compared with untreated cells, suggesting its effects on proliferation inhibition. Detailed signaling pathway analysis by western blot analysis revealed that low-dose oridonin treatment inhibited BxPC-3 cell proliferation by up-regulating p53 and down-regulating cyclin-dependent kinase 1 (CDK1), which led to cell cycle arrest in the G2/M phase. A high-dose oridonin not only arrested BxPC-3 cells in the G2/M phase but also induced cell accumulation in the S phase, presumably through γH2AX up-regulation and DNA damage. In addition, our results showed that a cell subpopulation was stained with propidium iodide after oridonin treatment. Protein quantification showed that cleaved poly(ADP-ribose) polymerase (PARP) expression was increased after a high-dose oridonin treatment, especially after long-term exposure. Accompanied by the increased level of deactivated PARP in BxPC-3 cells, the apoptosis initiators caspase-3 and caspase-7 expressions were also significantly increased, suggesting that caspase-mediated apoptosis contributed to cell death. PMID:25651847

  7. Cell Competition Drives the Growth of Intestinal Adenomas in Drosophila.

    PubMed

    Suijkerbuijk, Saskia J E; Kolahgar, Golnar; Kucinski, Iwo; Piddini, Eugenia

    2016-02-22

    Tumor-host interactions play an increasingly recognized role in modulating tumor growth. Thus, understanding the nature and impact of this complex bidirectional communication is key to identifying successful anti-cancer strategies. It has been proposed that tumor cells compete with and kill neighboring host tissue to clear space that they can expand into; however, this has not been demonstrated experimentally. Here we use the adult fly intestine to investigate the existence and characterize the role of competitive tumor-host interactions. We show that APC(-/-)-driven intestinal adenomas compete with and kill surrounding cells, causing host tissue attrition. Importantly, we demonstrate that preventing cell competition, by expressing apoptosis inhibitors, restores host tissue growth and contains adenoma expansion, indicating that cell competition is essential for tumor growth. We further show that JNK signaling is activated inside the tumor and in nearby tissue and is required for both tumor growth and cell competition. Lastly, we find that APC(-/-) cells display higher Yorkie (YAP) activity than host cells and that this promotes tumor growth, in part via cell competition. Crucially, we find that relative, rather than absolute, Hippo activity determines adenoma growth. Overall, our data indicate that the intrinsic over-proliferative capacity of APC(-/-) cells is not uncontrolled and can be constrained by host tissues if cell competition is inhibited, suggesting novel possible therapeutic approaches.

  8. Cell Competition Drives the Growth of Intestinal Adenomas in Drosophila

    PubMed Central

    Suijkerbuijk, Saskia J.E.; Kolahgar, Golnar; Kucinski, Iwo; Piddini, Eugenia

    2016-01-01

    Summary Tumor-host interactions play an increasingly recognized role in modulating tumor growth. Thus, understanding the nature and impact of this complex bidirectional communication is key to identifying successful anti-cancer strategies. It has been proposed that tumor cells compete with and kill neighboring host tissue to clear space that they can expand into; however, this has not been demonstrated experimentally. Here we use the adult fly intestine to investigate the existence and characterize the role of competitive tumor-host interactions. We show that APC−/−-driven intestinal adenomas compete with and kill surrounding cells, causing host tissue attrition. Importantly, we demonstrate that preventing cell competition, by expressing apoptosis inhibitors, restores host tissue growth and contains adenoma expansion, indicating that cell competition is essential for tumor growth. We further show that JNK signaling is activated inside the tumor and in nearby tissue and is required for both tumor growth and cell competition. Lastly, we find that APC−/− cells display higher Yorkie (YAP) activity than host cells and that this promotes tumor growth, in part via cell competition. Crucially, we find that relative, rather than absolute, Hippo activity determines adenoma growth. Overall, our data indicate that the intrinsic over-proliferative capacity of APC−/− cells is not uncontrolled and can be constrained by host tissues if cell competition is inhibited, suggesting novel possible therapeutic approaches. PMID:26853366

  9. Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells

    PubMed Central

    2013-01-01

    Background Mesenchymal stromal cells (MSCs) are attractive for cell-based therapies ranging from regenerative medicine and tissue engineering to immunomodulation. However, clinical efficacy is variable and it is unclear how the phenotypes defining bone marrow (BM)-derived MSCs as well as donor characteristics affect their functional properties. Methods BM-MSCs were isolated from 53 (25 female, 28 male; age: 13 to 80 years) donors and analyzed by: (1) phenotype using flow cytometry and cell size measurement; (2) in vitro growth kinetics using population doubling time; (3) colony formation capacity and telomerase activity; and (4) function by in vitro differentiation capacity, suppression of T cell proliferation, cytokines and trophic factors secretion, and hormone and growth factor receptor expression. Additionally, expression of Oct4, Nanog, Prdm14 and SOX2 mRNA was compared to pluripotent stem cells. Results BM-MSCs from younger donors showed increased expression of MCAM, VCAM-1, ALCAM, PDGFRβ, PDL-1, Thy1 and CD71, and led to lower IL-6 production when co-cultured with activated T cells. Female BM-MSCs showed increased expression of IFN-γR1 and IL-6β, and were more potent in T cell proliferation suppression. High-clonogenic BM-MSCs were smaller, divided more rapidly and were more frequent in BM-MSC preparations from younger female donors. CD10, β1integrin, HCAM, CD71, VCAM-1, IFN-γR1, MCAM, ALCAM, LNGFR and HLA ABC were correlated to BM-MSC preparations with high clonogenic potential and expression of IFN-γR1, MCAM and HLA ABC was associated with rapid growth of BM-MSCs. The mesodermal differentiation capacity of BM-MSCs was unaffected by donor age or gender but was affected by phenotype (CD10, IFN-γR1, GD2). BM-MSCs from female and male donors expressed androgen receptor and FGFR3, and secreted VEGF-A, HGF, LIF, Angiopoietin-1, basic fibroblast growth factor (bFGF) and NGFB. HGF secretion correlated negatively to the expression of CD71, CD140b and

  10. Growth inhibition of Candida by human oral epithelial cells.

    PubMed

    Steele, C; Leigh, J; Swoboda, R; Fidel, P L

    2000-11-01

    Oropharyngeal candidiasis (OPC) caused by Candida albicans is a significant problem in human immunodeficiency virus (HIV)-infected persons. Recognizing the paucity of information on innate and/or adaptive mucosal host defenses against C. albicans, we recently reported that human and nonhuman primate and mouse vaginal epithelial cells inhibit the growth of C. albicans in vitro. In the present study, oral epithelial cells collected from saliva of healthy volunteers and a purified oral epithelial cell line were found to inhibit blastoconidia and/or hyphal growth of several Candida species. Cell contact was a strict requirement for the epithelial cell anti-Candida activity; neither saliva nor culture supernatants alone inhibited Candida growth, and addition of saliva to the coculture did not modulate the epithelial cell activity. Finally, epithelial cell anti-Candida activity was significantly lower in HIV-infected persons with OPC. Together, these results suggest that oral epithelial cells may play a role in innate resistance against OPC.

  11. Identification of a novel variant hepatocyte growth factor secreted by spleen-derived stromal cells.

    PubMed

    Miau, L H; Jan, Y W; Shen, B J; Tsai, W H; Lee, H S; Lee, S C

    1996-06-25

    Stromal cells can interact with parenchymal cells by secreting various cytokines to affect the growth, differentiation or movement of the latter. Here we report the identification and characterization of a novel variant hepatocyte growth factor (HGF) from the conditioned medium of stromal cells derived from mouse spleen. Compared to human HGF, it has much lower heparin-binding activity and lacks the beta-chain. Its molecular weight, 70 kDa, is very close to that of the alpha-chain of HGF. Human HGF homologue was not found in the conditioned medium. The conditioned medium of stromal cells, like recombinant HGF, could inhibit the growth of rat hepatoma cells. The inhibitory activity was presumably attributed to this novel HGF because the inhibitory activity, as the existence of this novel HGF, was confined to the identical fractions after heparin-column chromatography. Furthermore, this activity could be specifically abrogated by neutralizing anti-HGF antibodies.

  12. Atrial natriuretic factor inhibits mitogen-induced growth in aortic smooth muscle cells.

    PubMed

    Baldini, P M; De Vito, P; Fraziano, M; Mattioli, P; Luly, P; Di Nardo, P

    2002-10-01

    Atrial natriuretic factor (ANF) is a polypeptide able to affect cardiovascular homeostasis exhibiting diuretic, natriuretic, and vasorelaxant activities. ANF shows antimitogenic effects in different cell types acting through R(2) receptor. Excessive proliferation of smooth muscle cells is a common phenomenon in diseases such as atherosclerosis, but the role of growth factors in the mechanism which modulate this process has yet to be clarified. The potential antimitogenic role of ANF on the cell growth induced by growth factors appears very intriguing. Aim of the present study was to investigate the possible involvement of ANF on rat aortic smooth muscle (RASM) cells proliferation induced by known mitogens and the mechanism involved. Our data show that ANF, at physiological concentration range, inhibits RASM cell proliferation induced by known mitogens such as PDGF and insulin, and the effect seems to be elicited through the modulation of phosphatidic acid (PA) production and MAP kinases involvement.

  13. Attachment, Growth, and Detachment of Human Mesenchymal Stem Cells in a Chemically Defined Medium

    PubMed Central

    Salzig, Denise; Leber, Jasmin; Merkewitz, Katharina; Lange, Michaela C.; Köster, Natascha; Czermak, Peter

    2016-01-01

    The manufacture of human mesenchymal stem cells (hMSCs) for clinical applications requires an appropriate growth surface and an optimized, preferably chemically defined medium (CDM) for expansion. We investigated a new protein/peptide-free CDM that supports the adhesion, growth, and detachment of an immortalized hMSC line (hMSC-TERT) as well as primary cells derived from bone marrow (bm-hMSCs) and adipose tissue (ad-hMSCs). We observed the rapid attachment and spreading of hMSC-TERT cells and ad-hMSCs in CDM concomitant with the expression of integrin and actin fibers. Cell spreading was promoted by coating the growth surface with collagen type IV and fibronectin. The growth of hMSC-TERT cells was similar in CDM and serum-containing medium whereas the lag phase of bm-hMSCs was prolonged in CDM. FGF-2 or surface coating with collagen type IV promoted the growth of bm-hMSCs, but laminin had no effect. All three cell types retained their trilineage differentiation capability in CDM and were detached by several enzymes (but not collagenase in the case of hMSC-TERT cells). The medium and coating did not affect detachment efficiency but influenced cell survival after detachment. CDM combined with cell-specific surface coatings and/or FGF-2 supplements is therefore as effective as serum-containing medium for the manufacture of different hMSC types. PMID:27006663

  14. Attachment, Growth, and Detachment of Human Mesenchymal Stem Cells in a Chemically Defined Medium.

    PubMed

    Salzig, Denise; Leber, Jasmin; Merkewitz, Katharina; Lange, Michaela C; Köster, Natascha; Czermak, Peter

    2016-01-01

    The manufacture of human mesenchymal stem cells (hMSCs) for clinical applications requires an appropriate growth surface and an optimized, preferably chemically defined medium (CDM) for expansion. We investigated a new protein/peptide-free CDM that supports the adhesion, growth, and detachment of an immortalized hMSC line (hMSC-TERT) as well as primary cells derived from bone marrow (bm-hMSCs) and adipose tissue (ad-hMSCs). We observed the rapid attachment and spreading of hMSC-TERT cells and ad-hMSCs in CDM concomitant with the expression of integrin and actin fibers. Cell spreading was promoted by coating the growth surface with collagen type IV and fibronectin. The growth of hMSC-TERT cells was similar in CDM and serum-containing medium whereas the lag phase of bm-hMSCs was prolonged in CDM. FGF-2 or surface coating with collagen type IV promoted the growth of bm-hMSCs, but laminin had no effect. All three cell types retained their trilineage differentiation capability in CDM and were detached by several enzymes (but not collagenase in the case of hMSC-TERT cells). The medium and coating did not affect detachment efficiency but influenced cell survival after detachment. CDM combined with cell-specific surface coatings and/or FGF-2 supplements is therefore as effective as serum-containing medium for the manufacture of different hMSC types. PMID:27006663

  15. Involvement of nucleotides in glial growth following scratch injury in avian retinal cell monolayer cultures.

    PubMed

    Silva, Thayane Martins; França, Guilherme Rapozeiro; Ornelas, Isis Moraes; Loiola, Erick Correia; Ulrich, Henning; Ventura, Ana Lucia Marques

    2015-06-01

    When retinal cell cultures were mechanically scratched, cell growth over the empty area was observed. Only dividing and migrating, 2 M6-positive glial cells were detected. Incubation of cultures with apyrase (APY), suramin, or Reactive Blue 2 (RB-2), but not MRS 2179, significantly attenuated the growth of glial cells, suggesting that nucleotide receptors other than P2Y1 are involved in the growth of glial cells. UTPγS but not ADPβS antagonized apyrase-induced growth inhibition in scratched cultures, suggesting the participation of UTP-sensitive receptors. No decrease in proliferating cell nuclear antigen (PCNA(+)) cells was observed at the border of the scratch in apyrase-treated cultures, suggesting that glial proliferation was not affected. In apyrase-treated cultures, glial cytoplasm protrusions were smaller and unstable. Actin filaments were less organized and alfa-tubulin-labeled microtubules were mainly parallel to scratch. In contrast to control cultures, very few vinculin-labeled adhesion sites could be noticed in these cultures. Increased Akt and ERK phosphorylation was observed in UTP-treated cultures, effect that was inhibited by SRC inhibitor 1 and PI3K blocker LY294002. These inhibitors and the FAK inhibitor PF573228 also decreased glial growth over the scratch, suggesting participation of SRC, PI3K, and FAK in UTP-induced growth of glial cells in scratched cultures. RB-2 decreased dissociated glial cell attachment to fibronectin-coated dishes and migration through transwell membranes, suggesting that nucleotides regulated adhesion and migration of glial cells. In conclusion, mechanical scratch of retinal cell cultures induces growth of glial cells over the empty area through a mechanism that is dependent on activation of UTP-sensitive receptors, SRC, PI3K, and FAK.

  16. Ozone affects gas exchange, growth and reproductive development in Brassica campestris (Wisconsin fast plants).

    PubMed

    Black, V J; Stewart, C A; Roberts, J A; Black, C R

    2007-01-01

    Exposure to ozone (O(3)) may affect vegetative and reproductive development, although the consequences for yield depend on the effectiveness of the compensatory processes induced. This study examined the impact on reproductive development of exposing Brassica campestris (Wisconsin Fast Plants) to ozone during vegetative growth. Plants were exposed to 70 ppb ozone for 2 d during late vegetative growth or 10 d spanning most of the vegetative phase. Effects on gas exchange, vegetative growth, reproductive development and seed yield were determined. Impacts on gas exchange and foliar injury were related to pre-exposure stomatal conductance. Exposure for 2 d had no effect on growth or reproductive characteristics, whereas 10-d exposure reduced vegetative growth and reproductive site number on the terminal raceme. Mature seed number and weight per pod and per plant were unaffected because seed abortion was reduced. The observation that mature seed yield per plant was unaffected by exposure during the vegetative phase, despite adverse effects on physiological, vegetative and reproductive processes, shows that indeterminate species such as B. campestris possess sufficient compensatory flexibility to avoid reductions in seed production. PMID:17803646

  17. Rearing Tenebrio molitor in BLSS: Dietary fiber affects larval growth, development, and respiration characteristics

    NASA Astrophysics Data System (ADS)

    Li, Leyuan; Stasiak, Michael; Li, Liang; Xie, Beizhen; Fu, Yuming; Gidzinski, Danuta; Dixon, Mike; Liu, Hong

    2016-01-01

    Rearing of yellow mealworm (Tenebrio molitor L.) will provide good animal nutrition for astronauts in a bioregenerative life support system. In this study, growth and biomass conversion data of T. molitor larvae were tested for calculating the stoichiometric equation of its growth. Result of a respiratory quotient test proved the validity of the equation. Fiber had the most reduction in mass during T. molitor‧s consumption, and thus it is speculated that fiber is an important factor affecting larval growth of T. molitor. In order to further confirm this hypothesis and find out a proper feed fiber content, T. molitor larvae were fed on diets with 4 levels of fiber. Larval growth, development and respiration in each group were compared and analyzed. Results showed that crude-fiber content of 5% had a significant promoting effect on larvae in early instars, and is beneficial for pupa eclosion. When fed on feed of 5-10% crude-fiber, larvae in later instars reached optimal levels in growth, development and respiration. Therefore, we suggest that crude fiber content in feed can be controlled within 5-10%, and with the consideration of food palatability, a crude fiber of 5% is advisable.

  18. Ozone affects gas exchange, growth and reproductive development in Brassica campestris (Wisconsin fast plants).

    PubMed

    Black, V J; Stewart, C A; Roberts, J A; Black, C R

    2007-01-01

    Exposure to ozone (O(3)) may affect vegetative and reproductive development, although the consequences for yield depend on the effectiveness of the compensatory processes induced. This study examined the impact on reproductive development of exposing Brassica campestris (Wisconsin Fast Plants) to ozone during vegetative growth. Plants were exposed to 70 ppb ozone for 2 d during late vegetative growth or 10 d spanning most of the vegetative phase. Effects on gas exchange, vegetative growth, reproductive development and seed yield were determined. Impacts on gas exchange and foliar injury were related to pre-exposure stomatal conductance. Exposure for 2 d had no effect on growth or reproductive characteristics, whereas 10-d exposure reduced vegetative growth and reproductive site number on the terminal raceme. Mature seed number and weight per pod and per plant were unaffected because seed abortion was reduced. The observation that mature seed yield per plant was unaffected by exposure during the vegetative phase, despite adverse effects on physiological, vegetative and reproductive processes, shows that indeterminate species such as B. campestris possess sufficient compensatory flexibility to avoid reductions in seed production.

  19. [Effects of several factors on cell growth and ginsenoside accumulation of Panax ginseng suspension culture].

    PubMed

    Li, Tie-Jun; Lian, Mei-Lan; Yu, Dan; Shao, Chun-Hui; Piao, Xuan-Chun

    2013-12-01

    To improve cell suspension culture system of Panax ginseng, the dynamic of cell growth and medium consumption were studied, and the effects of filter on the culture vessel, revolution number, and inoculation density on cell growth and ginsenoside accumulation were also investigated. The maximum cell growth and ginsenoside accumulation was found on the 20th days of suspension culture, therefore, 20 days were confirmed as a suitable culture period for mass production of ginsenoside. Cell growth and ginsenoside content were promoted when the culture vessel had a ventilated filter. Revolution speed during suspension culture affected cell growth, but not ginsenoside content, a peak of ginsenoside productivity was found in the treatment of 120 r x min(-1). Inoculation density also influenced cell growth and ginsenoside accumulation, inoculation density of 6 g was better than other inoculation densities, the ginsenoside content and productivity were up to 12.8 mg x g(-1) DW and 146.6 mg x L(-1), respectively. PMID:24791486

  20. Symbiotic Cell Differentiation and Cooperative Growth in Multicellular Aggregates

    PubMed Central

    Yamagishi, Jumpei F; Saito, Nen; Kaneko, Kunihiko

    2016-01-01

    As cells grow and divide under a given environment, they become crowded and resources are limited, as seen in bacterial biofilms and multicellular aggregates. These cells often show strong interactions through exchanging chemicals, as evident in quorum sensing, to achieve mutualism and division of labor. Here, to achieve stable division of labor, three characteristics are required. First, isogenous cells differentiate into several types. Second, this aggregate of distinct cell types shows better growth than that of isolated cells without interaction and differentiation, by achieving division of labor. Third, this cell aggregate is robust with respect to the number distribution of differentiated cell types. Indeed, theoretical studies have thus far considered how such cooperation is achieved when the ability of cell differentiation is presumed. Here, we address how cells acquire the ability of cell differentiation and division of labor simultaneously, which is also connected with the robustness of a cell society. For this purpose, we developed a dynamical-systems model of cells consisting of chemical components with intracellular catalytic reaction dynamics. The reactions convert external nutrients into internal components for cellular growth, and the divided cells interact through chemical diffusion. We found that cells sharing an identical catalytic network spontaneously differentiate via induction from cell-cell interactions, and then achieve division of labor, enabling a higher growth rate than that in the unicellular case. This symbiotic differentiation emerged for a class of reaction networks under the condition of nutrient limitation and strong cell-cell interactions. Then, robustness in the cell type distribution was achieved, while instability of collective growth could emerge even among the cooperative cells when the internal reserves of products were dominant. The present mechanism is simple and general as a natural consequence of interacting cells with

  1. Tricellulin deficiency affects tight junction architecture and cochlear hair cells

    PubMed Central

    Nayak, Gowri; Lee, Sue I.; Yousaf, Rizwan; Edelmann, Stephanie E.; Trincot, Claire; Van Itallie, Christina M.; Sinha, Ghanshyam P.; Rafeeq, Maria; Jones, Sherri M.; Belyantseva, Inna A.; Anderson, James M.; Forge, Andrew; Frolenkov, Gregory I.; Riazuddin, Saima

    2013-01-01

    The two compositionally distinct extracellular cochlear fluids, endolymph and perilymph, are separated by tight junctions that outline the scala media and reticular lamina. Mutations in TRIC (also known as MARVELD2), which encodes a tricellular tight junction protein known as tricellulin, lead to nonsyndromic hearing loss (DFNB49). We generated a knockin mouse that carries a mutation orthologous to the TRIC coding mutation linked to DFNB49 hearing loss in humans. Tricellulin was absent from the tricellular junctions in the inner ear epithelia of the mutant animals, which developed rapidly progressing hearing loss accompanied by loss of mechanosensory cochlear hair cells, while the endocochlear potential and paracellular permeability of a biotin-based tracer in the stria vascularis were unaltered. Freeze-fracture electron microscopy revealed disruption of the strands of intramembrane particles connecting bicellular and tricellular junctions in the inner ear epithelia of tricellulin-deficient mice. These ultrastructural changes may selectively affect the paracellular permeability of ions or small molecules, resulting in a toxic microenvironment for cochlear hair cells. Consistent with this hypothesis, hair cell loss was rescued in tricellulin-deficient mice when generation of normal endolymph was inhibited by a concomitant deletion of the transcription factor, Pou3f4. Finally, comprehensive phenotypic screening showed a broader pathological phenotype in the mutant mice, which highlights the non-redundant roles played by tricellulin. PMID:23979167

  2. Molecular-level variation affects population growth in a butterfly metapopulation.

    PubMed

    Hanski, Ilkka; Saccheri, Ilik

    2006-05-01

    The dynamics of natural populations are thought to be dominated by demographic and environmental processes with little influence of intraspecific genetic variation and natural selection, apart from inbreeding depression possibly reducing population growth in small populations. Here we analyse hundreds of well-characterised local populations in a large metapopulation of the Glanville fritillary butterfly (Melitaea cinxia), which persists in a balance between stochastic local extinctions and recolonisations in a network of 4,000 discrete habitat patches. We show that the allelic composition of the glycolytic enzyme phosphoglucose isomerase (Pgi) has a significant effect on the growth of local populations, consistent with previously reported effects of allelic variation on flight metabolic performance and fecundity in the Glanville fritillary and Colias butterflies. The strength and the sign of the molecular effect on population growth are sensitive to the ecological context (the area and spatial connectivity of the habitat patches), which affects genotype-specific gene flow and the influence of migration on the dynamics of local populations. The biological significance of the results for Pgi is underscored by lack of any association between population growth and allelic variation at six other loci typed in the same material. In demonstrating, to our knowledge for the first time, that molecular variation in a candidate gene affects population growth, this study challenges the perception that differential performance of individual genotypes, leading to differential fitness, is irrelevant to population dynamics. These results also demonstrate that the spatial configuration of habitat and spatial dynamics of populations contribute to maintenance of Pgi polymorphism in this species.

  3. Role of calcium in growth inhibition induced by a novel cell surface sialoglycopeptide

    NASA Technical Reports Server (NTRS)

    Betz, N. A.; Westhoff, B. A.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Our laboratory has purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) from intact bovine cerebral cortex cells. Evidence presented here demonstrates that sensitivity to CeReS-18-induced growth inhibition in BALB-c 3T3 cells is influenced by calcium, such that a decrease in the calcium concentration in the growth medium results in an increase in sensitivity to CeReS-18. Calcium did not alter CeReS-18 binding to its cell surface receptor and CeReS-18 does not bind calcium directly. Addition of calcium, but not magnesium, to CeReS-18-inhibited 3T3 cells results in reentry into the cell cycle. A greater than 3-hour exposure to increased calcium is required for escape from CeReS-18-induced growth inhibition. The calcium ionophore ionomycin could partially mimic the effect of increasing extracellular calcium, but thapsigargin was ineffective in inducing escape from growth inhibition. Increasing extracellular calcium 10-fold resulted in an approximately 7-fold increase in total cell-associated 45Ca+2, while free intracellular calcium only increased approximately 30%. However, addition of CeReS-18 did not affect total cell-associated calcium or the increase in total cell-associated calcium observed with an increase in extracellular calcium. Serum addition induced mobilization of intracellular calcium and influx across the plasma membrane in 3T3 cells, and pretreatment of 3T3 cells with CeReS-18 appeared to inhibit these calcium mobilization events. These results suggest that a calcium-sensitive step exists in the recovery from CeReS-18-induced growth inhibition. CeReS-18 may inhibit cell proliferation through a novel mechanism involving altering the intracellular calcium mobilization/regulation necessary for cell cycle progression.

  4. Growth rate and nutrient limitation affect the transport of Rhodococcus sp. strain DN22 through sand.

    PubMed

    Priestley, James T; Coleman, Nicholas V; Duxbury, Trevor

    2006-12-01

    Rhodococcus strain DN22 grows on the nitramine explosive RDX as a sole nitrogen source, and is potentially useful for bioremediation of explosives-contaminated soil. In order for strain DN22 to be effectively applied in situ, inoculum cells must reach zones of RDX contamination via passive transport, a process that is difficult to predict at field-scale. We examined the effect of growth conditions on the transport of DN22 cells through sand columns, using chemostat-grown cultures. Strain DN22 formed smaller coccoid cells at low dilution rate (0.02 h(-1)) and larger rods at high dilution rate (0.1 h(-1)). Under all nutrient limitation conditions studied, smaller cells grown at low dilution rate were retained more strongly by sand columns than larger cells grown at high dilution rate. At a dilution rate of 0.05, cells from nitrate-limited cultures were retained more strongly than cells from RDX-limited or succinate-limited cultures. Breakthrough concentrations (C/C (0)) from sand columns ranged from 0.04 (nitrate-limited, D=0.02 h(-1)) to 0.98 (succinate-limited, D=0.1 h(-1)). The observed strong effect of culture conditions on transport of DN22 cells emphasizes the importance of physiology studies in guiding the development of bioremediation technologies.

  5. Factors affecting growth and survival of the asiatic clam Corbicula sp. under controlled laboratory conditions

    SciTech Connect

    Double, D.D.; Daly, D.S.; Abernethy, C.S.

    1983-04-01

    Growth of Corbicula sp. was determined in relation to food supply, water temperature, and clam size as an aid to researchers conducting chronic effects toxicity studies. Water temperatures for the two 84-day test series were 10, 20, and 30/sup 0/C. Linear models provided good relationships (r/sup 2/ > 0.90) between clam shell length (SL), total weight (TW), and wet/dry tissue weights. Clam growth was minimal during low phytoplankton densities (approx. 300 cells/ml), and all three size groups lost weight at 20 and 30/sup 0/C. Mortality of small clams at 30/sup 0/C was 100% after 71 days. At phytoplankton densities > 1000 cells/ml, overall differences in growth with respect to clam size and temperature were detectable at p < 0.01; growth of all clam groups was greatest at 30/sup 0/C. Small clams exhibited the greatest absolute increase in mean shell length at all test temperatures, and weight gains were similar to those of medium and large clams.

  6. Study of factors affecting growth and cold acclimation of Vitis callus cultures

    SciTech Connect

    Deng, L.

    1987-01-01

    In vitro grape tissue culture initiation, growth, and cold acclimation were studied. Factors involved were genotypes, media, plant growth regulators, age, light, temperature, antioxidant, clearing and adsorbing agents, sucrose level, osmotic potential, ABA, chilling and freezing treatments. Murashige and Skoog (MS) medium containing 1 ..mu..M 2,4-d + 0.1 uM Ba, MS containing 1 uM 2,4-D, and woody plant medium containing 1 uM 2,4-D + 0.1 uM BA produced abundant callus tissue for most grape genotypes; either WPM or MS containing 1 uM BA stimulated shoot growth in all the 12 genotypes tested. Adding 1 uM abscisic acid (ABA) to the B5 medium with 1 uM 2,4-D and 0.5 uM BA enhanced growth and quality of Chancellor callus. /sup 3/H-ABA was taken up actively by callus tissue at 12 days after subculture, but by 20 d this effect disappeared. When /sup 14/C-sucrose was added to the medium. /sup 14/C level of cells reached a plateau after 48 h; this plateau was higher if ABA was also present in the medium. Cells on media containing ABA were larger in size, lighter in color, and more loosely connected.

  7. Another brick in the cell wall: biosynthesis dependent growth model.

    PubMed

    Barbacci, Adelin; Lahaye, Marc; Magnenet, Vincent

    2013-01-01

    Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i) a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii) new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  8. Another brick in the cell wall: biosynthesis dependent growth model.

    PubMed

    Barbacci, Adelin; Lahaye, Marc; Magnenet, Vincent

    2013-01-01

    Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i) a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii) new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper. PMID:24066142

  9. Beta(2)-microglobulin as a negative growth regulator of myeloma cells.

    PubMed

    Min, Rui; Li, Zhongkui; Epstein, Joshua; Barlogie, Bart; Yi, Qing

    2002-08-01

    High beta(2)-microglobulin (beta(2)m) levels in myeloma correlate with poor prognosis. We hypothesized that beta(2)m may affect myeloma cell growth and survival. In this study, we examined the in vitro effects of beta(2)m on myeloma cells. Primary myeloma cells freshly isolated from patients and myeloma cell lines were used, cultured in the presence of beta(2)m, and monitored for growth and survival. Beta(2)m suppressed the growth of primary tumour cells and myeloma cell lines (ARK-RS, ARP-1, RPMI-8226, U266, ARH-77 and IM-9). High concentrations of beta(2)m induced apoptosis and cell cycle arrest. Beta(2)m-induced apoptosis was dependent on activation of a caspase cascade, inhibited by interleukin 6, and did not involve the surface death receptors, as receptor-neutralizing antibodies had no inhibitory effect. Beta(2)m-induced growth arrest was associated with downregulation of cyclins A and D2. Surprisingly, anti-beta(2)m antibodies did not block the effect of beta(2)m but were synergistic with beta(2)m, resulting in 90% growth inhibition and 70% apoptosis of myeloma cells. Whereas beta(2)m treatment resulted in slight upregulation of surface beta(2)m and major histocompatibility complex class I alpha-chain expression, treatment of myeloma cells with anti-beta(2)m antibodies alone or with beta(2)m resulted in significant downregulation of surface beta(2)m and class I molecules, suggesting that class I molecules may be involved in signal transduction. Our data demonstrate that beta(2)m plays an important role in regulating the growth and survival of myeloma cells in vitro and warrants further investigation to delineate the mechanisms of beta(2)m and anti-beta(2)m antibody-induced growth regulation of myeloma cells.

  10. An important role of the hepcidin-ferroportin signaling in affecting tumor growth and metastasis.

    PubMed

    Guo, Wenli; Zhang, Shuping; Chen, Yue; Zhang, Daoqiang; Yuan, Lin; Cong, Haibo; Liu, Sijin

    2015-09-01

    Epidemiological and experimental studies have suggested that deregulated hepcidin-ferroportin (FPN) signaling is associated with the increased risk of cancers. However, the effects of deregulated hepcidin-FPN signaling on tumor behaviors such as metastasis and epithelial to mesenchymal transition (EMT) have not been closely investigated. In this study, LL/2 cancer cells were found to exhibit an impaired propensity to home into lungs, and a reduced ability to develop tumors was also demonstrated in lungs of Hamp1(-/-) mice. Moreover, hepatic hepcidin deficiency was found to considerably favor tumor-free survival in Hamp1(-/-) mice, compared with wild-type mice. These data thus underscored a contributive role of hepatic hepcidin in promoting lung cancer cell homing and fostering tumor progression. To explore the role of FPN in regulating tumor progression, we genetically engineered 4T1 cells with FPN over-expression upon induction by doxycycline. With this cell line, it was discovered that increased FPN expression reduced cell division and colony formation in vitro, without eliciting significant cell death. Analogously, FPN over-expression impeded tumor growth and metastasis to lung and liver in mice. At the molecular level, FPN over-expression was identified to undermine DNA synthesis and cell cycle progression. Importantly, FPN over-expression inhibited EMT, as reflected by the significant decrease of representative EMT markers, such as Snail1, Twist1, ZEB2, and vimentin. Additionally, there was also a reduction of lactate production in cells upon induction of FPN over-expression. Together, our results highlighted a crucial role of the hepcidin-FPN signaling in modulating tumor growth and metastasis, providing new evidence to understand the contribution of this signaling in cancers.

  11. Crack growth rates of irradiated austenitic stainless steel weld heat affected zone in BWR environments.

    SciTech Connect

    Chopra, O. K.; Alexandreanu, B.; Gruber, E. E.; Daum, R. S.; Shack, W. J.; Energy Technology

    2006-01-31

    Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of reactor pressure vessels because of their superior fracture toughness. However, exposure to high levels of neutron irradiation for extended periods can exacerbate the corrosion fatigue and stress corrosion cracking (SCC) behavior of these steels by affecting the material microchemistry, material microstructure, and water chemistry. Experimental data are presented on crack growth rates of the heat affected zone (HAZ) in Types 304L and 304 SS weld specimens before and after they were irradiated to a fluence of 5.0 x 10{sup 20} n/cm{sup 2} (E > 1 MeV) ({approx} 0.75 dpa) at {approx}288 C. Crack growth tests were conducted under cycling loading and long hold time trapezoidal loading in simulated boiling water reactor environments on Type 304L SS HAZ of the H5 weld from the Grand Gulf reactor core shroud and on Type 304 SS HAZ of a laboratory-prepared weld. The effects of material composition, irradiation, and water chemistry on growth rates are discussed.

  12. Proliferation rate but not mismatch repair affects the long-term response of colon carcinoma cells to 5FU treatment.

    PubMed

    Choudhary, B; Hanski, M L; Zeitz, M; Hanski, C

    2012-07-01

    The role of mismatch repair (MMR) in the response of colon carcinoma cells to 5-fluorouracil (5FU) is not well understood. In most of the in vitro studies only short-term response was investigated. We focussed here on the influence of MMR status on the mechanism of the short- and long-term response to clinically relevant 5FU concentrations by using isogenic or semiisogenic cell line pairs expressing/nonexpressing the hMLH1 protein, an important component of the MMR system. We show that the lower survival of MMR-proficient than of MMR-deficient cells in the clonogenic survival assay is due to a more frequent early cell arrest and to subsequent senescence. By contrast, the long-term cell growth after treatment, which is also affected by long-term arrest and senescence, is independent from the MMR status. The overall effect on the long-term cell growth is a cumulative result of cell proliferation rate-dependent growth inhibition, apoptosis and necrotic cell death. The main long-term cytotoxic effect of 5FU is the inhibition of growth while apoptosis and the necrotic cell death are minor contributions.

  13. A primary screen of the bovine genome for quantitative trait loci affecting carcass and growth traits.

    PubMed

    Stone, R T; Keele, J W; Shackelford, S D; Kappes, S M; Koohmaraie, M

    1999-06-01

    A primary genomic screen for quantitative trait loci (QTL) affecting carcass and growth traits was performed by genotyping 238 microsatellite markers on 185 out of 300 total progeny from a Bos indicus x Bos taurus sire mated to Bos taurus cows. The following traits were analyzed for QTL effects: birth weight (BWT), weaning weight (WW), yearling weight (YW), hot carcass weight (HCW), dressing percentage (DP), fat thickness (FT), marbling score (MAR), longissimus muscle area (LMA), rib bone (RibB), rib fat (RibF), and rib muscle (RibM), and the predicted whole carcass traits, retail product yield (RPYD), fat trim yield (FATYD), bone yield (BOYD), retail product weight (RPWT), fat weight (FATWT), and bone weight (BOWT). Data were analyzed by generating an F-statistic profile computed at 1-cM intervals for each chromosome by the regression of phenotype on the conditional probability of receiving the Brahman allele from the sire. There was compelling evidence for a QTL allele of Brahman origin affecting an increase in RibB and a decrease in DP on chromosome 5 (BTA5). Putative QTL at or just below the threshold for genome-wide significance were as follows: an increase in RPYD and component traits on BTA2 and BTA13, an increase in LMA on BTA14, and an increase in BWT on BTA1. Results provided represent a portion of our efforts to identify and characterize QTL affecting carcass and growth traits. PMID:10375215

  14. Genetic mapping of quantitative trait loci affecting growth and carcass traits in F2 intercross chickens.

    PubMed

    Uemoto, Y; Sato, S; Odawara, S; Nokata, H; Oyamada, Y; Taguchi, Y; Yanai, S; Sasaki, O; Takahashi, H; Nirasawa, K; Kobayashi, E

    2009-03-01

    We constructed a chicken F(2) resource population to facilitate the genetic improvement of economically important traits, particularly growth and carcass traits. An F(2) population comprising 240 chickens obtained by crossing a Shamo (lean, lightweight Japanese native breed) male and White Plymouth Rock breed (fat, heavyweight broiler) females was measured for BW, carcass weight (CW), abdominal fat weight (AFW), breast muscle weight (BMW), and thigh muscle weight (TMW) and was used for genome-wide linkage and QTL analysis, using a total of 240 microsatellite markers. A total of 14 QTL were detected at a 5% chromosome-wide level, and 7 QTL were significant at a 5% experiment-wide level for the traits evaluated in the F(2) population. For growth traits, significant and suggestive QTL affecting BW (measured at 6 and 9 wk) and average daily gain were identified on similar regions of chromosomes 1 and 3. For carcass traits, the QTL effects on CW were detected on chromosomes 1 and 3, with the greatest F-ratio of 15.0 being obtained for CW on chromosome 3. Quantitative trait loci positions affecting BMW and TMW were not detected at the same loci as those detected for BMW percentage of CW and TMW percentage of CW. For AFW, QTL positions were detected at the same loci as those detected for AFW percentage of CW. The present study identified significant QTL affecting BW, CW, and AFW. PMID:19211515

  15. A primary screen of the bovine genome for quantitative trait loci affecting carcass and growth traits.

    PubMed

    Stone, R T; Keele, J W; Shackelford, S D; Kappes, S M; Koohmaraie, M

    1999-06-01

    A primary genomic screen for quantitative trait loci (QTL) affecting carcass and growth traits was performed by genotyping 238 microsatellite markers on 185 out of 300 total progeny from a Bos indicus x Bos taurus sire mated to Bos taurus cows. The following traits were analyzed for QTL effects: birth weight (BWT), weaning weight (WW), yearling weight (YW), hot carcass weight (HCW), dressing percentage (DP), fat thickness (FT), marbling score (MAR), longissimus muscle area (LMA), rib bone (RibB), rib fat (RibF), and rib muscle (RibM), and the predicted whole carcass traits, retail product yield (RPYD), fat trim yield (FATYD), bone yield (BOYD), retail product weight (RPWT), fat weight (FATWT), and bone weight (BOWT). Data were analyzed by generating an F-statistic profile computed at 1-cM intervals for each chromosome by the regression of phenotype on the conditional probability of receiving the Brahman allele from the sire. There was compelling evidence for a QTL allele of Brahman origin affecting an increase in RibB and a decrease in DP on chromosome 5 (BTA5). Putative QTL at or just below the threshold for genome-wide significance were as follows: an increase in RPYD and component traits on BTA2 and BTA13, an increase in LMA on BTA14, and an increase in BWT on BTA1. Results provided represent a portion of our efforts to identify and characterize QTL affecting carcass and growth traits.

  16. Response to long-term growth hormone therapy in patients affected by RASopathies and growth hormone deficiency: Patterns of growth, puberty and final height data.

    PubMed

    Tamburrino, Federica; Gibertoni, Dino; Rossi, Cesare; Scarano, Emanuela; Perri, Annamaria; Montanari, Francesca; Fantini, Maria Pia; Pession, Andrea; Tartaglia, Marco; Mazzanti, Laura

    2015-11-01

    RASopathies are developmental disorders caused by heterozygous germline mutations in genes encoding proteins in the RAS-MAPK signaling pathway. Reduced growth is a common feature. Several studies generated data on growth, final height (FH), and height velocity (HV) after growth hormone (GH) treatment in patients with these disorders, particularly in Noonan syndrome, the most common RASopathy. These studies, however, refer to heterogeneous cohorts in terms of molecular information, GH status, age at start and length of therapy, and GH dosage. This work reports growth data in 88 patients affected by RASopathies with molecularly confirmed diagnosis, together with statistics on body proportions, pubertal pattern, and FH in 33, including 16 treated with GH therapy for proven GH deficiency. Thirty-three patients showed GH deficiency after pharmacological tests, and were GH-treated for an average period of 6.8 ± 4.8 years. Before starting therapy, HV was -2.6 ± 1.3 SDS, and mean basal IGF1 levels were -2.0 ± 1.1 SDS. Long-term GH therapy, starting early during childhood, resulted in a positive height response compared with untreated patients (1.3 SDS in terms of height-gain), normalizing FH for Ranke standards but not for general population and Target Height. Pubertal timing negatively affected pubertal growth spurt and FH, with IGF1 standardized score increased from -2.43 to -0.27 SDS. During GH treatment, no significant change in bone age velocity, body proportions, or cardiovascular function was observed.

  17. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    PubMed

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes.

  18. Alkyl-methylimidazolium ionic liquids affect the growth and fermentative metabolism of Clostridium sp

    SciTech Connect

    Nancharaiah, Y.V.; Francis, A.

    2011-06-01

    In this study, the effect of ionic liquids, 1-ethyl-3-methylimidazolium acetate [EMIM][Ac], 1-ethyl-3-methylimidazolium diethylphosphate [EMIM][DEP], and 1-methyl-3-methylimidazolium dimethylphosphate [MMIM][DMP] on the growth and glucose fermentation of Clostridium sp. was investigated. Among the three ionic liquids tested, [MMIM][DMP] was found to be least toxic. Growth of Clostridium sp. was not inhibited up to 2.5, 4 and 4 g L{sup -1} of [EMIM][Ac], [EMIM][DEP] and [MMIM][DMP], respectively. [EMIM][Ac] at <2.5 g L{sup -1}, showed hormetic effect and stimulated the growth and fermentation by modulating medium pH. Total organic acid production increased in the presence of 2.5 and 2 g L{sup -1} of [EMIM][Ac] and [MMIM][DMP]. Ionic liquids had no significant influence on alcohol production at <2.5 g L{sup -1}. Total gas production was affected by ILs at {ge}2.5 g L{sup -1} and varied with type of methylimidazolium IL. Overall, the results show that the growth and fermentative metabolism of Clostridium sp. is not impacted by ILs at concentrations below 2.5 g L{sup -1}.

  19. Long-term cleaner fish presence affects growth of a coral reef fish.

    PubMed

    Clague, Gillian E; Cheney, Karen L; Goldizen, Anne W; McCormick, Mark I; Waldie, Peter A; Grutter, Alexandra S

    2011-12-23

    Cleaning behaviour is considered to be a classical example of mutualism. However, no studies, to our knowledge, have measured the benefits to clients in terms of growth. In the longest experimental study of its kind, over an 8 year period, cleaner fish Labroides dimidiatus were consistently removed from seven patch reefs (61-285 m(2)) and left undisturbed on nine control reefs, and the growth and parasite load of the damselfish Pomacentrus moluccensis determined. After 8 years, growth was reduced and parasitic copepod abundance was higher on fish from removal reefs compared with controls, but only in larger individuals. Behavioural observations revealed that P. moluccensis cleaned by L. dimidiatus were 27 per cent larger than nearby conspecifics. The selective cleaning by L. dimidiatus probably explains why only larger P. moluccensis individuals benefited from cleaning. This is the first demonstration, to our knowledge, that cleaners affect the growth rate of client individuals; a greater size for a given age should result in increased fecundity at a given time. The effect of the removal of so few small fish on the size of another fish species is unprecedented on coral reefs. PMID:21733872

  20. Dynamic mast cell-stromal cell interactions promote growth of pancreatic cancer

    PubMed Central

    Ma, Ying; Hwang, Rosa F.; Logsdon, Craig D.; Ullrich, Stephen E.

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) exists in a complex desmoplastic microenvironment, which includes cancer-associated fibroblasts (also known as pancreatic stellate cells, PSCs) and immune cells that provide a fibrotic niche that impedes successful cancer therapy. We have found that mast cells are essential for PDAC tumorigenesis. Whether mast cells contribute to the growth of PDAC and/or PSCs is unknown. Here we tested the hypothesis that mast cells contribute to the growth of PSCs and tumor cells, thus contributing to PDAC development. Tumor cells promoted mast cell migration. Both tumor cells and PSCs stimulated mast cell activation. Conversely, mast cell-derived IL-13 and tryptase stimulated PSC proliferation. Treating tumor-bearing mice with agents that block mast cell migration and function depressed PDAC growth. Our findings suggest that mast cells exacerbate the cellular and extracellular dynamics of the tumor microenvironment found in PDAC. Therefore, targeting mast cells may inhibit stromal formation and improve therapy. PMID:23633481

  1. New common variants affecting susceptibility to basal cell carcinoma.

    PubMed

    Stacey, Simon N; Sulem, Patrick; Masson, Gisli; Gudjonsson, Sigurjon A; Thorleifsson, Gudmar; Jakobsdottir, Margret; Sigurdsson, Asgeir; Gudbjartsson, Daniel F; Sigurgeirsson, Bardur; Benediktsdottir, Kristrun R; Thorisdottir, Kristin; Ragnarsson, Rafn; Scherer, Dominique; Hemminki, Kari; Rudnai, Peter; Gurzau, Eugene; Koppova, Kvetoslava; Botella-Estrada, Rafael; Soriano, Virtudes; Juberias, Pablo; Saez, Berta; Gilaberte, Yolanda; Fuentelsaz, Victoria; Corredera, Cristina; Grasa, Matilde; Höiom, Veronica; Lindblom, Annika; Bonenkamp, Johannes J; van Rossum, Michelle M; Aben, Katja K H; de Vries, Esther; Santinami, Mario; Di Mauro, Maria G; Maurichi, Andrea; Wendt, Judith; Hochleitner, Pia; Pehamberger, Hubert; Gudmundsson, Julius; Magnusdottir, Droplaug N; Gretarsdottir, Solveig; Holm, Hilma; Steinthorsdottir, Valgerdur; Frigge, Michael L; Blondal, Thorarinn; Saemundsdottir, Jona; Bjarnason, Hjördis; Kristjansson, Kristleifur; Bjornsdottir, Gyda; Okamoto, Ichiro; Rivoltini, Licia; Rodolfo, Monica; Kiemeney, Lambertus A; Hansson, Johan; Nagore, Eduardo; Mayordomo, José I; Kumar, Rajiv; Karagas, Margaret R; Nelson, Heather H; Gulcher, Jeffrey R; Rafnar, Thorunn; Thorsteinsdottir, Unnur; Olafsson, Jon H; Kong, Augustine; Stefansson, Kari

    2009-08-01

    In a follow-up to our previously reported genome-wide association study of cutaneous basal cell carcinoma (BCC), we describe here several new susceptibility variants. SNP rs11170164, encoding a G138E substitution in the keratin 5 (KRT5) gene, affects risk of BCC (OR = 1.35, P = 2.1 x 10(-9)). A variant at 9p21 near CDKN2A and CDKN2B also confers susceptibility to BCC (rs2151280[C]; OR = 1.19, P = 6.9 x 10(-9)), as does rs157935[T] at 7q32 near the imprinted gene KLF14 (OR = 1.23, P = 5.7 x 10(-10)). The effect of rs157935[T] is dependent on the parental origin of the risk allele. None of these variants were found to be associated with melanoma or fair-pigmentation traits. A melanoma- and pigmentation-associated variant in the SLC45A2 gene, L374F, is associated with risk of both BCC and squamous cell carcinoma. Finally, we report conclusive evidence that rs401681[C] in the TERT-CLPTM1L locus confers susceptibility to BCC but protects against melanoma. PMID:19578363

  2. Physcomitrella patens: a model for tip cell growth and differentiation.

    PubMed

    Vidali, Luis; Bezanilla, Magdalena

    2012-12-01

    The moss Physcomitrella patens has emerged as an excellent model system owing to its amenability to reverse genetics. The moss gametophyte has three filamentous tissues that grow by tip growth: chloronemata, caulonemata, and rhizoids. Because establishment of the moss plant relies on this form of growth, it is particularly suited for dissecting the molecular basis of tip growth. Recent studies demonstrate that a core set of actin cytoskeletal proteins is essential for tip growth. Additional actin cytoskeletal components are required for modulating growth to produce caulonemata and rhizoids. Differentiation into these cell types has previously been linked to auxin, light and nutrients. Recent studies have identified that core auxin signaling components as well as transcription factors that respond to auxin or nutrient levels are required for tip-growing cell differentiation. Future studies may establish a connection between the actin cytoskeleton and auxin or nutrient-induced cell differentiation.

  3. Plasticity in sunflower leaf and cell growth under high salinity.

    PubMed

    Céccoli, G; Bustos, D; Ortega, L I; Senn, M E; Vegetti, A; Taleisnik, E

    2015-01-01

    A group of sunflower lines that exhibit a range of leaf Na(+) concentrations under high salinity was used to explore whether the responses to the osmotic and ionic components of salinity can be distinguished in leaf expansion kinetics analysis. It was expected that at the initial stages of the salt treatment, leaf expansion kinetics changes would be dominated by responses to the osmotic component of salinity, and that later on, ion inclusion would impose further kinetics changes. It was also expected that differential leaf Na(+) accumulation would be reflected in specific changes in cell division and expansion rates. Plants of four sunflower lines were gradually treated with a relatively high (130 mm NaCl) salt treatment. Leaf expansion kinetics curves were compared in leaves that were formed before, during and after the initiation of the salt treatment. Leaf areas were smaller in salt-treated plants, but the analysis of growth curves did not reveal differences that could be attributed to differential Na(+) accumulation, since similar changes in leaf expansion kinetics were observed in lines with different magnitudes of salt accumulation. Nevertheless, in a high leaf Na(+) -including line, cell divisions were affected earlier, resulting in leaves with proportionally fewer cells than in a Na(+) -excluding line. A distinct change in leaf epidermal pavement shape caused by salinity is reported for the first time. Mature pavement cells in leaves of control plants exhibited typical lobed, jigsaw-puzzle shape, whereas in treated plants, they tended to retain closer-to-circular shapes and a lower number of lobes. PMID:24942979

  4. Oriented cell division affects the global stress and cell packing geometry of a monolayer under stretch.

    PubMed

    Xu, Guang-Kui; Liu, Yang; Zheng, Zhaoliang

    2016-02-01

    Cell division plays a vital role in tissue morphogenesis and homeostasis, and the division plane is crucial for cell fate. For isolated cells, extensive studies show that the orientation of divisions is sensitive to cell shape and the direction of extrinsic mechanical forces. However, it is poorly understood that how the cell divides within a cell monolayer and how the local stress change, due to the division, affects the global stress of epithelial monolayers. Here, we use the vertex dynamics models to investigate the effects of division orientation on the configurations and mechanics of a cell monolayer under stretch. We examine three scenarios of the divisions: dividing along the stretch axis, dividing along the geometric long axis of cells, and dividing at a random angle. It is found that the division along the long cell axis can induce the minimal energy difference, and the global stress of the monolayer after stretch releases more rapidly in this case. Moreover, the long-axis division can result in more random cell orientations and more isotropic cell shapes within the monolayer, comparing with other two cases. This study helps understand the division orientation of cells within a monolayer under mechanical stimuli, and may shed light on linking individual cell's behaviors to the global mechanics and patterns of tissues. PMID:26774292

  5. Oriented cell division affects the global stress and cell packing geometry of a monolayer under stretch.

    PubMed

    Xu, Guang-Kui; Liu, Yang; Zheng, Zhaoliang

    2016-02-01

    Cell division plays a vital role in tissue morphogenesis and homeostasis, and the division plane is crucial for cell fate. For isolated cells, extensive studies show that the orientation of divisions is sensitive to cell shape and the direction of extrinsic mechanical forces. However, it is poorly understood that how the cell divides within a cell monolayer and how the local stress change, due to the division, affects the global stress of epithelial monolayers. Here, we use the vertex dynamics models to investigate the effects of division orientation on the configurations and mechanics of a cell monolayer under stretch. We examine three scenarios of the divisions: dividing along the stretch axis, dividing along the geometric long axis of cells, and dividing at a random angle. It is found that the division along the long cell axis can induce the minimal energy difference, and the global stress of the monolayer after stretch releases more rapidly in this case. Moreover, the long-axis division can result in more random cell orientations and more isotropic cell shapes within the monolayer, comparing with other two cases. This study helps understand the division orientation of cells within a monolayer under mechanical stimuli, and may shed light on linking individual cell's behaviors to the global mechanics and patterns of tissues.

  6. Targeting Btk with ibrutinib inhibit gastric carcinoma cells growth

    PubMed Central

    Wang, Jin Dao; Chen, Xiao Ying; Ji, Ke Wei; Tao, Feng

    2016-01-01

    Bruton’s tyrosine kinase (Btk) is a member of the Tec-family non-receptor tyrosine kinases family. It has previously been reported to be expressed in B cells and has an important role in B-cell malignancies. While the roles of Btk in the pathogenesis of certain B-cell malignancies are well established, the functions of Btk in gastric carcinoma have never been investigated. Herein, we found that Btk is over-expressed in gastric carcinoma tissues and gastric cancer cells. Knockdown of Btk expression selectively inhibits the growth of gastric cancer cells, but not that of the normal gastric mucosa epithelial cell, which express very little Btk. Inhibition of Btk by its inhibitor ibrutinib has an additive inhibitory effect on gastric cancer cell growth. Treatment of gastric cancer cells, but not immortalized breast epithelial cells with ibrutinib results in effective cell killing, accompanied by the attenuation of Btk signals. Ibrutinib also induces apoptosis in gastric carcinoma cells as well as is a chemo-sensitizer for docetaxel (DTX), a standard of care for gastric carcinoma patients. Finally, ibrutinib markedly reduces tumor growth and increases tumor cell apoptosis in the tumors formed in mice inoculated with the gastric carcinoma cells. Given these promising preclinical results for ibrutinib in gastric carcinoma, a strategy combining Btk inhibitor warrants attention in gastric cancer. PMID:27508020

  7. Essential oils from clove affect growth of Penicillium species obtained from lemons.

    PubMed

    Martínez, J A; González, R

    2013-01-01

    Continuous use of fungicides to control citrus postharvest diseases has led to increasing resistant strains of pathogens. Since the appearance of fungicide resistance has become an important factor in limiting the efficacy fungicide treatments, new studies have been needed in order to improve control methods. There is a growing consumer's concern about the possible harmful effects of synthetic fungicides on the human health and the environment. Alternatives to synthetic fungicides for citrus decay control include essential oils. These compounds are known for their natural components and they are searched for potential bioactive plant extracts against fungi. In this study, two isolates of P. digitatum and P. italicum each were collected from lemon fruits affected by green and blue mould, respectively. Isolates were purified in potato dextrose agar (PDA) in order to separate the two species which we are demonstrated that they commonly grow together in nature. In vitro assays, in which isolates were grown at 26 degrees C on Petri dishes containing PDA for up to 17 days, were carried out by pouring several doses of essential oils from clove (Syzygium aromaticum L.) on PDA to obtain the following concentrations (v/v): 1.6; 8, 40, 200 and 500 microL L(-1) + tween 80 (0.1 mL L(-1)). Mycelial growth curves and growth, conidiation, mass of aerial mycelium and conidial size were measured. Penicillium isolates showed a slight degree of variability in their growth kinetics, depending on the isolate. 500 microL L(-1) inhibited the growth of all the isolates, whereas concentrations lower than 40 microL L(-1) slightly increased the growth. 200 microL L(-1) reduced both growth and conidiation in all isolates. Aerial mycelium of P. digitatum was not affected by clove, whereas reduced the mass of mycelium of P. italicum at concentrations higher than 8 microL L(-1). In vivo experiment was carried out inoculating a drop of an extract of conidia with a hypodermal syringe though a

  8. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1984-01-01

    A multiphase study was conducted to examine the properties of growth hormone cells. Topics investigated included: (1) to determine if growth hormone (GH) cells contained within the rat pituitary gland can be separated from the other hormone producing cell types by continuous flow electrophoresis (CFE); (2) to determine what role, if any, gravity plays in the electrophoretic separation of GH cells; (3) to compare in vitro GH release from rat pituitary cells previously exposed to microgravity conditions vs release from cells not exposed to microgravity; (4) to determine if the frequency of different hormone producing pituitary cell types contained in cell suspensions can be quantitated by flow cytometry; and (5) to determine if GH contained within the human post mortem pituitary gland can be purified by CFE. Specific experimental procedures and results are included.

  9. Factors Affecting Phage D29 Infection: A Tool to Investigate Different Growth States of Mycobacteria

    PubMed Central

    Swift, Benjamin M. C.; Gerrard, Zara E.; Huxley, Jonathan N.; Rees, Catherine E. D.

    2014-01-01

    Bacteriophages D29 and TM4 are able to infect a wide range of mycobacteria, including pathogenic and non-pathogenic species. Successful phage infection of both fast- and slow-growing mycobacteria can be rapidly detected using the phage amplification assay. Using this method, the effect of oxygen limitation during culture of mycobacteria on the success of phage infection was studied. Both D29 and TM4 were able to infect cultures of M. smegmatis and Mycobacterium avium subspecies paratuberculosis (MAP) grown in liquid with aeration. However when cultures were grown under oxygen limiting conditions, only TM4 could productively infect the cells. Cell attachment assays showed that D29 could bind to the cells surface but did not complete the lytic cycle. The ability of D29 to productively infect the cells was rapidly recovered (within 1 day) when the cultures were returned to an aerobic environment and this recovery required de novo RNA synthesis. These results indicated that under oxygen limiting conditions the cells are entering a growth state which inhibits phage D29 replication, and this change in host cell biology which can be detected by using both phage D29 and TM4 in the phage amplification assay. PMID:25184428

  10. NIMA-related kinase NEK6 affects plant growth and stress response in Arabidopsis.

    PubMed

    Zhang, Bo; Chen, Hao-Wei; Mu, Rui-Ling; Zhang, Wang-Ke; Zhao, Ming-Yu; Wei, Wei; Wang, Fang; Yu, Hui; Lei, Gang; Zou, Hong-Feng; Ma, Biao; Chen, Shou-Yi; Zhang, Jin-Song

    2011-12-01

    The NIMA-related kinases (NEKs) are a family of serine/threonine kinases involved largely in cell cycle control in fungi, mammals and other eukaryotes. In Arabidopsis, NEK6 is involved in the regulation of epidermal cell morphogenesis. However, other roles of NEK6 in plants are less well understood. Here we report functions of NEK6 in plant growth, development and stress responses in Arabidopsis. NEK6 transcripts and proteins are induced by ethylene precursor ACC and salt stress. Expression of other NEK genes except NEK5 is also responsive to the two treatments. Overexpression and mutant analysis disclose that the NEK6 gene increases rosette growth, seed yield and lateral root formation. However, NEK6 appears to play a negative role in the control of seed size. The gene also promotes plant tolerance to salt stress and osmotic stress in its overexpressing plants. The NEK6 gene may achieve its function through suppression of ethylene biosynthesis and activation of CYCB1;1 and CYCA3;1 expression. Our present study reveals new functions of the NEK6 gene in plant growth and stress tolerance, and manipulation of NEK6 may improve important agronomic traits in crop plants. PMID:21801253

  11. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1978-01-01

    The maintainance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro was studied. The primary approach was the testing of agents which may be expected to increase the release of the human growth hormone (hGH). A procedure for tissue procurement is described along with the methodologies used to dissociate human pituitary tissue (obtained either at autopsy or surgery) into single cell suspensions. The validity of the Biogel cell column perfusion system for studying the dynamics of GH release was developed and documented using a rat pituitary cell system.

  12. Reduction of Nup107 attenuates the growth factor signaling in the senescent cells

    SciTech Connect

    Kim, Sung Young; Kang, Hyun Tae; Choi, Hae Ri; Park, Sang Chul

    2010-10-08

    Research highlights: {yields} Decreased expression of Nup107 in aged cells and organs. {yields} Depletion of Nup107 results in impaired nuclear translocation of p-ERK. {yields} Depletion of Nup107 affects downstream effectors of ERK signaling. {yields} Depletion of Nup107 inhibits cell proliferation of oligodendroglioma cells. -- Abstract: Hypo-responsiveness to growth factors is a fundamental feature of cellular senescence. In this study, we found markedly decreased level of Nup107, a key scaffold protein in nuclear pore complex assembly, in senescent human diploid fibroblasts as well as in organs of aged mice. Depletion of Nup107 by specific siRNA in young human diploid fibroblasts prevented the effective nuclear translocation of phosphorylated extracellular signal-regulated kinase (ERK) following epidermal growth factor (EGF) stimulation, and decreased the expression of c-Fos in consequence. The disturbances in ERK signaling in Nup107 depleted cells closely mirror the similar changes in senescent cells. Knockdown of Nup107 in anaplastic oligodendroglioma cells caused cell death, rather than growth retardation, indicating a greater sensitivity to Nup107 depletion in cancer cells than in normal cells. These findings support the notion that Nup107 may contribute significantly to the regulation of cell fate in aged and transformed cells by modulating nuclear trafficking of signal molecules.

  13. No Stress! Relax! Mechanisms Governing Growth and Shape in Plant Cells

    PubMed Central

    Guerriero, Gea; Hausman, Jean-Francois; Cai, Giampiero

    2014-01-01

    The mechanisms through which plant cells control growth and shape are the result of the coordinated action of many events, notably cell wall stress relaxation and turgor-driven expansion. The scalar nature of turgor pressure would drive plant cells to assume spherical shapes; however, this is not the case, as plant cells show an amazing variety of morphologies. Plant cell walls are dynamic structures that can display alterations in matrix polysaccharide composition and concentration, which ultimately affect the wall deformation rate. The wide varieties of plant cell shapes, spanning from elongated cylinders (as pollen tubes) and jigsaw puzzle-like epidermal cells, to very long fibres and branched stellate leaf trichomes, can be understood if the underlying mechanisms regulating wall biosynthesis and cytoskeletal dynamics are addressed. This review aims at gathering the available knowledge on the fundamental mechanisms regulating expansion, growth and shape in plant cells by putting a special emphasis on the cell wall-cytoskeleton system continuum. In particular, we discuss from a molecular point of view the growth mechanisms characterizing cell types with strikingly different geometries and describe their relationship with primary walls. The purpose, here, is to provide the reader with a comprehensive overview of the multitude of events through which plant cells manage to expand and control their final shapes. PMID:24663059

  14. Remnant Trees Affect Species Composition but Not Structure of Tropical Second-Growth Forest

    PubMed Central

    Sandor, Manette E.; Chazdon, Robin L.

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2–3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests (“control plots”). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields. PMID:24454700

  15. Remnant trees affect species composition but not structure of tropical second-growth forest.

    PubMed

    Sandor, Manette E; Chazdon, Robin L

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2-3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests ("control plots"). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.

  16. TOR and paradigm change: cell growth is controlled.

    PubMed

    Hall, Michael N

    2016-09-15

    This year marks the 25th anniversary of the discovery of target of rapamycin (TOR), a highly conserved kinase and central controller of cell growth. In this Retrospective, I briefly describe the discovery of TOR and the subsequent elucidation of its cellular role. I place particular emphasis on an article by Barbet et al. from 1996, the first suggesting that TOR controls cell growth in response to nutrients. PMID:27634743

  17. TOR and paradigm change: cell growth is controlled.

    PubMed

    Hall, Michael N

    2016-09-15

    This year marks the 25th anniversary of the discovery of target of rapamycin (TOR), a highly conserved kinase and central controller of cell growth. In this Retrospective, I briefly describe the discovery of TOR and the subsequent elucidation of its cellular role. I place particular emphasis on an article by Barbet et al. from 1996, the first suggesting that TOR controls cell growth in response to nutrients.

  18. Cell growth on immobilized cell growth factor. 7. Protein-free cell culture by using growth-factor-immobilized polymer membrane.

    PubMed

    Liu, S Q; Ito, Y; Imanishi, Y

    1993-02-01

    A protein-free culture of anchorage-dependent cells, mouse fibroblast cells, STO and 3T3-L1 and fibroic sarcoma cells, Swiss albino HSDM1C1, grown on a cell-growth protein, insulin, and/or a cell-adhesion protein, collagen, which are immobilized or coimmobilized on surface-hydrolyzed poly(methyl methacrylate) membrane, was investigated. By adding metal ions and lipids to the culture medium, a protein-free culture medium was composed, which was potent in promoting cell proliferation similarly to serum-containing culture medium. In particular, with insulin/collagen-coimmobilized membrane, a protein-free culture was established without detachment of growing cells over a long period. These protein-immobilized membranes could be used repeatedly. PMID:7763456

  19. Regulation of the proliferation of colon cancer cells by compounds that affect glycolysis, including 3-bromopyruvate, 2-deoxyglucose and biguanides.

    PubMed

    Lea, Michael A; Qureshi, Mehreen S; Buxhoeveden, Michael; Gengel, Nicolette; Kleinschmit, Jessica; Desbordes, Charles

    2013-02-01

    In previous studies performed by our group, we observed that 2-deoxyglucose blocked the acidification of the medium used for culture of colon cancer cells caused by incubation with biguanides and it had an additive inhibitory effect on growth. In the present work, we found that 3-bromopyruvate can also prevent the lowering of pH caused by biguanide treatment. 3-Bromopyruvate inhibited colonic cancer cell proliferation, but the effect was not always additive to that of biguanides and an additive effect was more notable in combined treatment with 3-bromopyruvate and 2-deoxyglucose. The induction of alkaline phosphatase activity by butyrate was not consistently affected by combination with other agents that modified glucose metabolism. The drug combinations that were examined inhibited proliferation of wild-type and p53-null cells and affected colonic cancer lines with different growth rates.

  20. Statins affect ETS1-overexpressing triple-negative breast cancer cells by restoring DUSP4 deficiency

    PubMed Central

    Jung, Hae Hyun; Lee, Soo-Hyeon; Kim, Ji-Yeon; Ahn, Jin Seok; Park, Yeon Hee; Im, Young-Hyuck

    2016-01-01

    We investigated the molecular mechanisms underlying statin-induced growth suppression of triple-negative breast cancer (TNBC) that overexpress the transcription factor ets proto-oncogene 1(ets-1) and downregulate dual specific protein phosphatase 4(dusp4) expression. We examined the gene expression of BC cell lines using the nCounter expression assay, MTT viability assay, cell proliferation assay and Western blot to evaluate the effects of simvastatin. Finally, we performed cell viability testing in TNBC cell line-transfected DUSP4. We demonstrated that ETS1 mRNA and protein were overexpressed in TNBC cells compared with other BC cell lines (P = <0.001) and DUSP4 mRNA was downregulated (P = <0.001). MTT viability assay showed that simvastatin had significant antitumor activity (P = 0.002 in 0.1 μM). In addition, simvastatin could restore dusp4 deficiency and suppress ets-1 expression in TNBC. Lastly, we found that si-DUSP4 RNA transfection overcame the antitumor activity of statins. MAPK pathway inhibitor, U0126 and PI3KCA inhibitor LY294002 also decreased levels of ets-1, phosphor-ERK and phosphor-AKT on Western blot assay. Accordingly, our study indicates that simvastatin potentially affects the activity of transcriptional factors such as ets-1 and dusp4 through the MAPK pathway. In conclusion, statins might be potential candidates for TNBC therapy reducing ets-1 expression via overexpression of dusp4. PMID:27604655

  1. Statins affect ETS1-overexpressing triple-negative breast cancer cells by restoring DUSP4 deficiency.

    PubMed

    Jung, Hae Hyun; Lee, Soo-Hyeon; Kim, Ji-Yeon; Ahn, Jin Seok; Park, Yeon Hee; Im, Young-Hyuck

    2016-01-01

    We investigated the molecular mechanisms underlying statin-induced growth suppression of triple-negative breast cancer (TNBC) that overexpress the transcription factor ets proto-oncogene 1(ets-1) and downregulate dual specific protein phosphatase 4(dusp4) expression. We examined the gene expression of BC cell lines using the nCounter expression assay, MTT viability assay, cell proliferation assay and Western blot to evaluate the effects of simvastatin. Finally, we performed cell viability testing in TNBC cell line-transfected DUSP4. We demonstrated that ETS1 mRNA and protein were overexpressed in TNBC cells compared with other BC cell lines (P = <0.001) and DUSP4 mRNA was downregulated (P = <0.001). MTT viability assay showed that simvastatin had significant antitumor activity (P = 0.002 in 0.1 μM). In addition, simvastatin could restore dusp4 deficiency and suppress ets-1 expression in TNBC. Lastly, we found that si-DUSP4 RNA transfection overcame the antitumor activity of statins. MAPK pathway inhibitor, U0126 and PI3KCA inhibitor LY294002 also decreased levels of ets-1, phosphor-ERK and phosphor-AKT on Western blot assay. Accordingly, our study indicates that simvastatin potentially affects the activity of transcriptional factors such as ets-1 and dusp4 through the MAPK pathway. In conclusion, statins might be potential candidates for TNBC therapy reducing ets-1 expression via overexpression of dusp4.

  2. Statins affect ETS1-overexpressing triple-negative breast cancer cells by restoring DUSP4 deficiency.

    PubMed

    Jung, Hae Hyun; Lee, Soo-Hyeon; Kim, Ji-Yeon; Ahn, Jin Seok; Park, Yeon Hee; Im, Young-Hyuck

    2016-01-01

    We investigated the molecular mechanisms underlying statin-induced growth suppression of triple-negative breast cancer (TNBC) that overexpress the transcription factor ets proto-oncogene 1(ets-1) and downregulate dual specific protein phosphatase 4(dusp4) expression. We examined the gene expression of BC cell lines using the nCounter expression assay, MTT viability assay, cell proliferation assay and Western blot to evaluate the effects of simvastatin. Finally, we performed cell viability testing in TNBC cell line-transfected DUSP4. We demonstrated that ETS1 mRNA and protein were overexpressed in TNBC cells compared with other BC cell lines (P = <0.001) and DUSP4 mRNA was downregulated (P = <0.001). MTT viability assay showed that simvastatin had significant antitumor activity (P = 0.002 in 0.1 μM). In addition, simvastatin could restore dusp4 deficiency and suppress ets-1 expression in TNBC. Lastly, we found that si-DUSP4 RNA transfection overcame the antitumor activity of statins. MAPK pathway inhibitor, U0126 and PI3KCA inhibitor LY294002 also decreased levels of ets-1, phosphor-ERK and phosphor-AKT on Western blot assay. Accordingly, our study indicates that simvastatin potentially affects the activity of transcriptional factors such as ets-1 and dusp4 through the MAPK pathway. In conclusion, statins might be potential candidates for TNBC therapy reducing ets-1 expression via overexpression of dusp4. PMID:27604655

  3. Effects of drought-affected corn and nonstarch polysaccharide enzyme inclusion on nursery pig growth performance.

    PubMed

    Jones, C K; Frantz, E L; Bingham, A C; Bergstrom, J R; DeRouchey, J M; Patience, J F

    2015-04-01

    The effectiveness of carbohydrase enzymes has been inconsistent in corn-based swine diets; however, the increased substrate of nonstarch polysaccharides in drought-affected corn may provide an economic model for enzyme inclusion, but this has not been evaluated. A total of 360 barrows (PIC 1050 × 337, initially 5.85 kg BW) were used to determine the effects of drought-affected corn inclusion with or without supplementation of commercial carbohydrases on growth performance and nutrient digestibility of nursery pigs. Initially, 34 corn samples were collected to find representatives of normal and drought-affected corn. The lot selected to represent the normal corn had a test weight of 719.4 kg/m3, 15.0% moisture, and 4.2% xylan. The lot selected to represent drought-affected corn had a test weight of 698.8 kg/m3, 14.3% moisture, and 4.7% xylan. After a 10-d acclimation period postweaning, nursery pigs were randomly allotted to 1 of 8 dietary treatments in a completely randomized design. Treatments were arranged in a 2 × 4 factorial with main effects of corn (normal vs. drought affected) and enzyme inclusion (none vs. 100 mg/kg Enzyme A vs. 250 mg/kg Enzyme B vs. 100 mg/kg Enzyme A + 250 mg/kg Enzyme B). Both enzymes were included blends of β-glucanase, cellulose, and xylanase (Enzyme A) or hemicellulase and pectinases (Enzyme B). Pigs were fed treatment diets from d 10 to 35 postweaning in 2 phases. Feed and fecal samples were collected on d 30 postweaning to determine apparent total tract digestibility of nutrients. The nutrient concentrations of normal and drought-affected corn were similar, which resulted in few treatment or main effects differences of corn type or enzyme inclusion. No interactions were observed (P > 0.10) between corn source and enzyme inclusion. Overall (d 10 to 35), treatments had no effect on ADG or ADFI, but enzyme A inclusion tended to improve (P < 0.10; 0.74 vs. 0.69) G:F, which was primarily driven by the improved feed efficiency (0

  4. Effects of drought-affected corn and nonstarch polysaccharide enzyme inclusion on nursery pig growth performance.

    PubMed

    Jones, C K; Frantz, E L; Bingham, A C; Bergstrom, J R; DeRouchey, J M; Patience, J F

    2015-04-01

    The effectiveness of carbohydrase enzymes has been inconsistent in corn-based swine diets; however, the increased substrate of nonstarch polysaccharides in drought-affected corn may provide an economic model for enzyme inclusion, but this has not been evaluated. A total of 360 barrows (PIC 1050 × 337, initially 5.85 kg BW) were used to determine the effects of drought-affected corn inclusion with or without supplementation of commercial carbohydrases on growth performance and nutrient digestibility of nursery pigs. Initially, 34 corn samples were collected to find representatives of normal and drought-affected corn. The lot selected to represent the normal corn had a test weight of 719.4 kg/m3, 15.0% moisture, and 4.2% xylan. The lot selected to represent drought-affected corn had a test weight of 698.8 kg/m3, 14.3% moisture, and 4.7% xylan. After a 10-d acclimation period postweaning, nursery pigs were randomly allotted to 1 of 8 dietary treatments in a completely randomized design. Treatments were arranged in a 2 × 4 factorial with main effects of corn (normal vs. drought affected) and enzyme inclusion (none vs. 100 mg/kg Enzyme A vs. 250 mg/kg Enzyme B vs. 100 mg/kg Enzyme A + 250 mg/kg Enzyme B). Both enzymes were included blends of β-glucanase, cellulose, and xylanase (Enzyme A) or hemicellulase and pectinases (Enzyme B). Pigs were fed treatment diets from d 10 to 35 postweaning in 2 phases. Feed and fecal samples were collected on d 30 postweaning to determine apparent total tract digestibility of nutrients. The nutrient concentrations of normal and drought-affected corn were similar, which resulted in few treatment or main effects differences of corn type or enzyme inclusion. No interactions were observed (P > 0.10) between corn source and enzyme inclusion. Overall (d 10 to 35), treatments had no effect on ADG or ADFI, but enzyme A inclusion tended to improve (P < 0.10; 0.74 vs. 0.69) G:F, which was primarily driven by the improved feed efficiency (0

  5. Epitaxial silicon growth for solar cells

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Richman, D.

    1979-01-01

    The epitaxial procedures, solar cell fabrication, and evaluation techniques are described. The development of baseline epitaxial solar cell structures grown on high quality conventional silicon substrates is discussed. Diagnostic layers and solar cells grown on four potentially low cost silicon substrates are considered. The crystallographic properties of such layers and the performance of epitaxially grown solar cells fabricated on these materials are described. An advanced epitaxial reactor, the rotary disc, is described along with the results of growing solar cell structures of the baseline type on low cost substrates. The add on cost for the epitaxial process is assessed and the economic advantages of the epitaxial process as they relate to silicon substrate selection are examined.

  6. Critical telomerase activity for uncontrolled cell growth

    NASA Astrophysics Data System (ADS)

    Wesch, Neil L.; Burlock, Laura J.; Gooding, Robert J.

    2016-08-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed.

  7. Critical telomerase activity for uncontrolled cell growth.

    PubMed

    Wesch, Neil L; Burlock, Laura J; Gooding, Robert J

    2016-01-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed. PMID:27500377

  8. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis.

    PubMed Central

    Connolly, D T; Heuvelman, D M; Nelson, R; Olander, J V; Eppley, B L; Delfino, J J; Siegel, N R; Leimgruber, R M; Feder, J

    1989-01-01

    Vascular permeability factor (VPF) is an Mr 40-kD protein that has been purified from the conditioned medium of guinea pig line 10 tumor cells grown in vitro, and increases fluid permeability from blood vessels when injected intradermally. Addition of VPF to cultures of vascular endothelial cells in vitro unexpectedly stimulated cellular proliferation. VPF promoted the growth of new blood vessels when administered into healing rabbit bone grafts or rat corneas. The identity of the growth factor activity with VPF was established in four ways: (a) the molecular weight of the activity in preparative SDS-PAGE was the same as VPF (Mr approximately 40 kD); (b) multiple isoforms (pI greater than or equal to 8) for both VPF and the growth-promoting activity were observed; (c) a single, unique NH2-terminal amino acid sequence was obtained; (d) both growth factor and permeability-enhancing activities were immunoadsorbed using antipeptide IgG that recognized the amino terminus of VPF. Furthermore, 125I-VPF was shown to bind specifically and with high affinity to endothelial cells in vitro and could be chemically cross-linked to a high-molecular weight cell surface receptor, thus demonstrating a mechanism whereby VPF can interact directly with endothelial cells. Unlike other endothelial cell growth factors, VPF did not stimulate [3H]thymidine incorporation or promote growth of other cell types including mouse 3T3 fibroblasts or bovine smooth muscle cells. VPF, therefore, appears to be unique in its ability to specifically promote increased vascular permeability, endothelial cell growth, and angio-genesis. Images PMID:2478587

  9. Deregulated expression of Cdc6 in the skin facilitates papilloma formation and affects the hair growth cycle.

    PubMed

    Búa, Sabela; Sotiropoulou, Peggy; Sgarlata, Cecilia; Borlado, Luis R; Eguren, Manuel; Domínguez, Orlando; Ortega, Sagrario; Malumbres, Marcos; Blanpain, Cedric; Méndez, Juan

    2015-01-01

    Cdc6 encodes a key protein for DNA replication, responsible for the recruitment of the MCM helicase to replication origins during the G1 phase of the cell division cycle. The oncogenic potential of deregulated Cdc6 expression has been inferred from cellular studies, but no mouse models have been described to study its effects in mammalian tissues. Here we report the generation of K5-Cdc6, a transgenic mouse strain in which Cdc6 expression is deregulated in tissues with stratified epithelia. Higher levels of CDC6 protein enhanced the loading of MCM complexes to DNA in epidermal keratinocytes, without affecting their proliferation rate or inducing DNA damage. While Cdc6 overexpression did not promote skin tumors, it facilitated the formation of papillomas in cooperation with mutagenic agents such as DMBA. In addition, the elevated levels of CDC6 protein in the skin extended the resting stage of the hair growth cycle, leading to better fur preservation in older mice.

  10. Drosophila Ten-m and Filamin Affect Motor Neuron Growth Cone Guidance

    PubMed Central

    Zheng, Lihua; Michelson, Yehudit; Freger, Vita; Avraham, Ziva; Venken, Koen J. T.; Bellen, Hugo J.; Justice, Monica J.; Wides, Ron

    2011-01-01

    The Drosophila Ten-m (also called Tenascin-major, or odd Oz (odz)) gene has been associated with a pair-rule phenotype. We identified and characterized new alleles of Drosophila Ten-m to establish that this gene is not responsible for segmentation defects but rather causes defects in motor neuron axon routing. In Ten-m mutants the inter-segmental nerve (ISN) often crosses segment boundaries and fasciculates with the ISN in the adjacent segment. Ten-m is expressed in the central nervous system and epidermal stripes during the stages when the growth cones of the neurons that form the ISN navigate to their targets. Over-expression of Ten-m in epidermal cells also leads to ISN misrouting. We also found that Filamin, an actin binding protein, physically interacts with the Ten-m protein. Mutations in cheerio, which encodes Filamin, cause defects in motor neuron axon routing like those of Ten-m. During embryonic development, the expression of Filamin and Ten-m partially overlap in ectodermal cells. These results suggest that Ten-m and Filamin in epidermal cells might together influence growth cone progression. PMID:21857973

  11. Water potential affects Coniothyrium minitans growth, germination and parasitism of Sclerotinia sclerotiorum sclerotia.

    PubMed

    Jones, E Eirian; Stewart, Alison; Whipps, John M

    2011-09-01

    Water availability is an important environmental factor which has major effects on fungal activity. The effects of osmotic (KCl amended agar) and matric Polyethylene glycol ((PEG) 8000 amended agar) potentials over the range -0.1 to -5.0MPa on mycelial growth and conidial germination of eight isolates of the sclerotial parasite Coniothyrium minitans was assessed. The influence of soil water potential on the ability of three selected isolates (LU112, LU545, and T5R42i) to parasitise sclerotia of the plant pathogen Sclerotinia sclerotiorum was determined. For all eight C. minitans isolates, decreasing osmotic and matric potentials caused a reduction in mycelial growth and conidial germination. Isolates were more sensitive to decreasing matric potential than osmotic potential. Across the isolates, growth at an osmotic potential of -5.0MPa was 30-70% of the growth seen in the control, whereas less than 20% of the control growth was seen at the corresponding matric potential. Across all isolates no conidial germination was seen at matric potential of -5.0MPa. The C. minitans isolates varied in their sensitivity to decreasing water potentials. Mycelial growth and conidial germination of three isolates (LU112, Conio, and CH1) were more tolerant of low osmotic potential and matric potential with respect to mycelial growth. Isolates T5R42i and LU430 were least tolerant. In contrast, conidial germination of isolates Conio, LU545, and T5R42i were less sensitive to decreasing matric potential. Soil water potential was seen to affect infection and viability of sclerotia by the three C. minitans isolates. Isolate LU545 reduced sclerotial viability over a wider water potential range (-0.01 to -1.5MPa) compared with LU112 (-0.01 to -1.0MPa), with isolate T5R42i being intermediate. Indigenous soil fungi (Trichoderma spp. and Clonostachys rosea) were recovered from sclerotia but did not result in reduction in sclerotial viability. The relevance of these results in relation to

  12. Water potential affects Coniothyrium minitans growth, germination and parasitism of Sclerotinia sclerotiorum sclerotia.

    PubMed

    Jones, E Eirian; Stewart, Alison; Whipps, John M

    2011-09-01

    Water availability is an important environmental factor which has major effects on fungal activity. The effects of osmotic (KCl amended agar) and matric Polyethylene glycol ((PEG) 8000 amended agar) potentials over the range -0.1 to -5.0MPa on mycelial growth and conidial germination of eight isolates of the sclerotial parasite Coniothyrium minitans was assessed. The influence of soil water potential on the ability of three selected isolates (LU112, LU545, and T5R42i) to parasitise sclerotia of the plant pathogen Sclerotinia sclerotiorum was determined. For all eight C. minitans isolates, decreasing osmotic and matric potentials caused a reduction in mycelial growth and conidial germination. Isolates were more sensitive to decreasing matric potential than osmotic potential. Across the isolates, growth at an osmotic potential of -5.0MPa was 30-70% of the growth seen in the control, whereas less than 20% of the control growth was seen at the corresponding matric potential. Across all isolates no conidial germination was seen at matric potential of -5.0MPa. The C. minitans isolates varied in their sensitivity to decreasing water potentials. Mycelial growth and conidial germination of three isolates (LU112, Conio, and CH1) were more tolerant of low osmotic potential and matric potential with respect to mycelial growth. Isolates T5R42i and LU430 were least tolerant. In contrast, conidial germination of isolates Conio, LU545, and T5R42i were less sensitive to decreasing matric potential. Soil water potential was seen to affect infection and viability of sclerotia by the three C. minitans isolates. Isolate LU545 reduced sclerotial viability over a wider water potential range (-0.01 to -1.5MPa) compared with LU112 (-0.01 to -1.0MPa), with isolate T5R42i being intermediate. Indigenous soil fungi (Trichoderma spp. and Clonostachys rosea) were recovered from sclerotia but did not result in reduction in sclerotial viability. The relevance of these results in relation to

  13. Growth and differentiation in cultured human thyroid cells: effects of epidermal growth factor and thyrotropin.

    PubMed

    Errick, J E; Ing, K W; Eggo, M C; Burrow, G N

    1986-01-01

    Human thyroid cells were grown and subcultured in vitro to examine their responses to known hormones and growth factors, and to serum. The cells were obtained from surgical specimens and were either neoplastic or nonneoplastic. The effects of culture conditions on cell growth were measured by changes in cell numbers and by stimulation of [3H]thymidine incorporation. The results showed that serum (0.5%) was essential for cell proliferation, and that a mixture of insulin (10 micrograms/ml), transferrin (5 micrograms/ml), hydrocortisone (10 micrograms/ml), somatostatin (10 ng/ml), and glycyl-histidyl-lysine (10 ng/ml) enhanced the effect of serum. Maximum growth of the cells was obtained when epidermal growth factor was present at 10(-9) M. Differentiation was measured by production of thyroglobulin, which was found to be stimulated by thyrotropin. This system provides a means to study the hormonal control of growth and differentiation in human thyroid cells. PMID:3511027

  14. Molecular mobility of scaffolds' biopolymers influences cell growth.

    PubMed

    Podlipec, Rok; Gorgieva, Selestina; Jurašin, Darija; Urbančič, Iztok; Kokol, Vanja; Strancar, Janez

    2014-09-24

    Understanding biocompatibility of materials and scaffolds is one of the main challenges in the field of tissue engineering and regeneration. The complex nature of cell-biomaterial interaction requires extensive preclinical functionality testing by studying specific cell responses to different biomaterial properties, from morphology and mechanics to surface characteristics at the molecular level. Despite constant improvements, a more general picture of biocompatibility is still lacking and tailormade scaffolds are not yet available. The scope of our study was thus the investigation of the correlation of fibroblast cell growth on different gelatin scaffolds with their morphological, mechanical as well as surface molecular properties. The latter were thoroughly investigated via polymer molecular mobility studied by site-directed spin labeling and electron paramagnetic resonance spectroscopy (EPR) for the first time. Anisotropy of the rotational motion of the gelatin side chain mobility was identified as the most correlated quantity with cell growth in the first days after adhesion, while weaker correlations were found with scaffold viscoelasticity and no correlations with scaffold morphology. Namely, the scaffolds with highly mobile or unrestricted polymers identified with the cell growth being five times less efficient (N(cells) = 60 ± 25 mm(-2)) as compared to cell growth on the scaffolds with considerable part of polymers with the restricted rotational motion (N(cells) = 290 ± 25 mm(-2)). This suggests that molecular mobility of scaffold components could play an important role in cell response to medical devices, reflecting a new aspect of the biocompatibility concept.

  15. Phosphoinositide turnover in cell growth and transformation

    SciTech Connect

    Fleischman, L.F.

    1987-01-01

    Interaction of cells with various stimuli triggers a common signal transduction pathway involving breakdown and resynthesis of the minor membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP/sub 2/). Hydrolysis of PIP/sub 2/ by phospholipase C generates two key catabolites-inositol-1,4,5-trisphosphate (IP/sub 3/) and diacylglycerol (DAG)-which mediate and amplify cellular responses. These studies provide evidence for potential involvement of this pathway in oncogenic transformation and cell cycle progression. Altered levels of PIP/sub 2/ and its breakdown products were found in cells transformed by ras oncogenes, in contrast to untransformed counterparts. Steady-state levels of PIP/sub 2/, DAG and inositol phosphates were measured in NIH 3T3 and NRK cells metabolically labelled with /sup 3/H-glycerol and /sup 3/H-inositol. DAG and inositol phosphate levels were significantly elevated by 2.5-3 fold in the transformed cells while levels of PIP/sub 2/ were decreased. These findings suggest that the ras protein may activate phospholipase C. Elevated DAG content in the transformed cells was also measured by phosphorylation of DAG using a partially purified DAG kinase, indicating that the differences seen could not be attributed to differences in labelling between the cell lines.

  16. A growth QTL on chicken chromosome 1 affects emotionality and sociality.

    PubMed

    Wirén, Anna; Jensen, Per

    2011-03-01

    Domestication of animals, regardless of species, is often accompanied by simultaneous changes in several physiological and behavioral traits (e.g. growth rate and fearfulness). In this study we compared the social behavior and emotional reactivity, as measured in a battery of behavioral tests, of two groups of chickens selected from a common genetic background, an advanced intercross line between the ancestral red junglefowl ("RJF") and the domesticated White Leghorn layer ("WL"). The birds were selected for homozygosity for alternative alleles at one locus (a microsatellite marker), centrally positioned in a previously identified pleiotropic growth QTL on chromosome 1, closely linked to one major candidate gene (AVPR1a) for certain aspects of social behavior. Birds homozygous for the WL allele ("WL genotype") had a modified pattern of social and emotional reactions than birds homozygous for the RJF allele ("RJF genotype"), shown by different scores in a principal components analysis. These results suggest that the growth QTL affects a number of domestication related behavioral traits, and may have been a primary target of selection during domestication. The QTL contains a multitude of genes, several of which have been linked to social behavior (for example the vasotocin receptor AVPR1a targeted in this experiment). Future studies aimed at making a higher resolution genotypic characterization of the QTL should give more information about which of these genes may be considered the strongest candidates for bringing about the behavioral changes associated with animal domestication. PMID:20596888

  17. Overexpression of a glutamine synthetase gene affects growth and development in sorghum.

    PubMed

    Urriola, Jazmina; Rathore, Keerti S

    2015-06-01

    Nitrogen is a primary macronutrient in plants, and nitrogen fertilizers play a critical role in crop production and yield. In this study, we investigated the effects of overexpressing a glutamine synthetase (GS) gene on nitrogen metabolism, and plant growth and development in sorghum (Sorghum bicolor L., Moench). GS catalyzes the ATP dependent reaction between ammonia and glutamate to produce glutamine. A 1,071 bp long coding sequence of a sorghum cytosolic GS gene (Gln1) under the control of the maize ubiquitin (Ubq) promoter was introduced into sorghum immature embryos by Agrobacterium-mediated transformation. Progeny of the transformants exhibited higher accumulation of the Gln1 transcripts and up to 2.2-fold higher GS activity compared to the non-transgenic controls. When grown under optimal nitrogen conditions, these Gln1 transgenic lines showed greater tillering and up to 2.1-fold increase in shoot vegetative biomass. Interestingly, even under greenhouse conditions, we observed a seasonal component to both these parameters and the grain yield. Our results, showing that the growth and development of sorghum Gln1 transformants are also affected by N availability and other environmental factors, suggest complexity of the relationship between GS activity and plant growth and development. A better understanding of other control points and the ability to manipulate these will be needed to utilize the transgenic technology to improve nitrogen use efficiency of crop plants.

  18. Sodic soil properties and sunflower growth as affected by byproducts of flue gas desulfurization.

    PubMed

    Wang, Jinman; Bai, Zhongke; Yang, Peiling

    2012-01-01

    The main component of the byproducts of flue gas desulfurization (BFGD) is CaSO(4), which can be used to improve sodic soils. The effects of BFGD on sodic soil properties and sunflower growth were studied in a pot experiment. The experiment consisted of eight treatments, at four BFGD rates (0, 7.5, 15 and 22.5 t ha(-1)) and two leaching levels (750 and 1200 m(3) ha(-1)). The germination rate and yield of the sunflower increased, and the exchangeable sodium percentage (ESP), pH and total dissolved salts (TDS) in the soils decreased after the byproducts were applied. Excessive BFGD also affected sunflower germination and growth, and leaching improved reclamation efficiency. The physical and chemical properties of the reclaimed soils were best when the byproducts were applied at 7.5 t ha(-1) and water was supplied at 1200 m(3)·ha(-1). Under these conditions, the soil pH, ESP, and TDS decreased from 9.2, 63.5 and 0.65% to 7.8, 2.8 and 0.06%, and the germination rate and yield per sunflower reached 90% and 36.4 g, respectively. Salinity should be controlled by leaching when sodic soils are reclaimed with BFGD as sunflower growth is very sensitive to salinity during its seedling stage. PMID:23285042

  19. Streptomycin affects the growth and photochemical activity of the alga Chlorella vulgaris.

    PubMed

    Perales-Vela, Hugo Virgilio; García, Roberto Velasco; Gómez-Juárez, Evelyn Alicia; Salcedo-Álvarez, Martha Ofelia; Cañizares-Villanueva, Rosa Olivia

    2016-10-01

    Antibiotics are increasingly being used in human and veterinary medicine, as well as pest control in agriculture. Recently, their emergence in the aquatic environment has become a global concern. The aim of this study was to evaluate the effect of streptomycin on growth and photosynthetic activity of Chlorella vulgaris after 72h exposure. We found that growth, photosynthetic activity and the content of the D1 protein of photosystem II decreased. Analysis of chlorophyll a fluorescence emission shows a reduction in the energy transfer between the antenna complex and reaction center. Also the activity of the oxygen evolution complex and electron flow between QA and QB were significantly reduced; in contrast, we found an increase in the reduction rate of the acceptor side of photosystem I. The foregoing can be attributed to the inhibition of the synthesis of the D1 protein and perhaps other coded chloroplast proteins that are part of the electron transport chain which are essential for the transformation of solar energy in the photosystems. We conclude that micromolar concentrations of streptomycin can affect growth and photosynthetic activity of Chlorella vulgaris. The accumulation of antibiotics in the environment can become an ecological problem for primary producers in the aquatic environment. PMID:27344399

  20. Pollen development and tube growth are affected in the symbiotic mutant of Lotus japonicus, crinkle.

    PubMed

    Tansengco, Myra L; Imaizumi-Anraku, Haruko; Yoshikawa, Makoto; Takagi, Shingo; Kawaguchi, Masayoshi; Hayashi, Makoto; Murooka, Yoshikatsu

    2004-05-01

    The symbiotic mutant of Lotus japonicus, crinkle (crk), exhibits abnormal nodulation and other alterations in the root hairs, trichomes, and seedpods. Defective nodulation in crk mutant is due to the arrested infection thread growth from the epidermis into the cortex. Here, we describe that crk is also affected in male fertility that causes the production of small pods with few seeds. Under in vitro conditions, pollen germination and tube growth were markedly reduced in the crk mutant. A swollen tip phenotype with disorganized filamentous actin (F-actin) was observed in the mutant pollen tubes after prolonged in vitro culture. During pollen development, the striking difference noted in the mutant was the small size of the microspores that remained spherical. Histological examination of ovule development, as well as outcrosses of the mutant as female to wild type as male, showed no evidence of abnormality in the female gametophyte development. Based on these findings, the Crk gene, aside from its role in the infection process during nodulation, is also involved in male gametophyte development and function. Therefore, this gene represents a connection between nodule symbiosis, polar tip growth, and other plant developmental processes.

  1. Sodic Soil Properties and Sunflower Growth as Affected by Byproducts of Flue Gas Desulfurization

    PubMed Central

    Wang, Jinman; Bai, Zhongke; Yang, Peiling

    2012-01-01

    The main component of the byproducts of flue gas desulfurization (BFGD) is CaSO4, which can be used to improve sodic soils. The effects of BFGD on sodic soil properties and sunflower growth were studied in a pot experiment. The experiment consisted of eight treatments, at four BFGD rates (0, 7.5, 15 and 22.5 t ha−1) and two leaching levels (750 and 1200 m3 ha−1). The germination rate and yield of the sunflower increased, and the exchangeable sodium percentage (ESP), pH and total dissolved salts (TDS) in the soils decreased after the byproducts were applied. Excessive BFGD also affected sunflower germination and growth, and leaching improved reclamation efficiency. The physical and chemical properties of the reclaimed soils were best when the byproducts were applied at 7.5 t ha−1 and water was supplied at 1200 m3·ha−1. Under these conditions, the soil pH, ESP, and TDS decreased from 9.2, 63.5 and 0.65% to 7.8, 2.8 and 0.06%, and the germination rate and yield per sunflower reached 90% and 36.4 g, respectively. Salinity should be controlled by leaching when sodic soils are reclaimed with BFGD as sunflower growth is very sensitive to salinity during its seedling stage. PMID:23285042

  2. Streptomycin affects the growth and photochemical activity of the alga Chlorella vulgaris.

    PubMed

    Perales-Vela, Hugo Virgilio; García, Roberto Velasco; Gómez-Juárez, Evelyn Alicia; Salcedo-Álvarez, Martha Ofelia; Cañizares-Villanueva, Rosa Olivia

    2016-10-01

    Antibiotics are increasingly being used in human and veterinary medicine, as well as pest control in agriculture. Recently, their emergence in the aquatic environment has become a global concern. The aim of this study was to evaluate the effect of streptomycin on growth and photosynthetic activity of Chlorella vulgaris after 72h exposure. We found that growth, photosynthetic activity and the content of the D1 protein of photosystem II decreased. Analysis of chlorophyll a fluorescence emission shows a reduction in the energy transfer between the antenna complex and reaction center. Also the activity of the oxygen evolution complex and electron flow between QA and QB were significantly reduced; in contrast, we found an increase in the reduction rate of the acceptor side of photosystem I. The foregoing can be attributed to the inhibition of the synthesis of the D1 protein and perhaps other coded chloroplast proteins that are part of the electron transport chain which are essential for the transformation of solar energy in the photosystems. We conclude that micromolar concentrations of streptomycin can affect growth and photosynthetic activity of Chlorella vulgaris. The accumulation of antibiotics in the environment can become an ecological problem for primary producers in the aquatic environment.

  3. Review of Factors Affecting the Growth and Survival of Follicular Grafts

    PubMed Central

    Parsley, William M; Perez-Meza, David

    2010-01-01

    Great strides have been made in hair restoration over the past 20 years. A better understanding of natural balding and non-balding patterns along with more respect for ageing has helped guide proper hairline design. Additionally, the use of smaller grafts has created a significantly improved natural appearance to the transplanted grafts. Inconsistent growth and survival of follicular grafts, however, has continued to be a problem that has perplexed hair restoration surgeons. This review attempts to explore the stresses affecting grafts during transplantation and some of the complexities involved in graft growth and survival. These authors reviewed the literature to determine the primary scope of aspects influencing growth and survival of follicular grafts. This scope includes patient selection, operating techniques, graft care, storage solutions and additives. The primary focus of the hair restoration surgeons should first be attention to the fundamentals of hair care, hydration, temperature, time out of body and gentle handling. Factors such as advanced storage solutions and additives can be helpful once the fundamentals have been addressed. PMID:21031063

  4. Factors affecting the cryosurvival of mouse two-cell embryos.

    PubMed

    Critser, J K; Arneson, B W; Aaker, D V; Huse-Benda, A R; Ball, G D

    1988-01-01

    A series of 4 experiments was conducted to examine factors affecting the survival of frozen-thawed 2-cell mouse embryos. Rapid addition of 1.5 M-DMSO (20 min equilibration at 25 degrees C) and immediate, rapid removal using 0.5 M-sucrose did not alter the frequency (mean +/- s.e.m.) of blastocyst development in vitro when compared to untreated controls (90.5 +/- 2.7% vs 95.3 +/- 2.8%). There was an interaction between the temperature at which slow cooling was terminated and thawing rate. Termination of slow cooling (-0.3 degrees C/min) at -40 degrees C with subsequent rapid thawing (approximately 1500 degrees C/min) resulted in a lower frequency of blastocyst development than did termination of slow cooling at -80 degrees C with subsequent slow thawing (+8 degrees C/min) (36.8 +/- 5.6% vs 63.9 +/- 5.7%). When slow cooling was terminated between -40 and -60 degrees C, higher survival rates were achieved with rapid thawing. When slow cooling was terminated below -60 degrees C, higher survival rates were obtained with slow thawing rates. In these comparisons absolute survival rates were highest among embryos cooled below -60 degrees C and thawed slowly. However, when slow cooling was terminated at -32 degrees C, with subsequent rapid warming, survival rates were not different from those obtained when embryos were cooled to -80 degrees C and thawed slowly (52.4 +/- 9.5%, 59.5 +/- 8.6%). These results suggest that optimal cryosurvival rates may be obtained from 2-cell mouse embryos by a rapid or slow thawing procedure, as has been found for mouse preimplantation embryos at later stages.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Modest maternal caffeine exposure affects developing embryonic cardiovascular function and growth.

    PubMed

    Momoi, Nobuo; Tinney, Joseph P; Liu, Li J; Elshershari, Huda; Hoffmann, Paul J; Ralphe, John C; Keller, Bradley B; Tobita, Kimimasa

    2008-05-01

    Caffeine consumption during pregnancy is reported to increase the risk of in utero growth restriction and spontaneous abortion. In the present study, we tested the hypothesis that modest maternal caffeine exposure affects in utero developing embryonic cardiovascular (CV) function and growth without altering maternal hemodynamics. Caffeine (10 mg.kg(-1).day(-1) subcutaneous) was administered daily to pregnant CD-1 mice from embryonic days (EDs) 9.5 to 18.5 of a 21-day gestation. We assessed maternal and embryonic CV function at baseline and at peak maternal serum caffeine concentration using high-resolution echocardiography on EDs 9.5, 11.5, 13.5, and 18.5. Maternal caffeine exposure did not influence maternal body weight gain, maternal CV function, or embryo resorption. However, crown-rump length and body weight were reduced in maternal caffeine treated embryos by ED 18.5 (P < 0.05). At peak maternal serum caffeine concentration, embryonic carotid artery, dorsal aorta, and umbilical artery flows transiently decreased from baseline at ED 11.5 (P < 0.05). By ED 13.5, embryonic aortic and umbilical artery flows were insensitive to the peak maternal caffeine concentration; however, the carotid artery flow remained affected. By ED 18.5, baseline embryonic carotid artery flow increased and descending aortic flow decreased versus non-caffeine-exposed embryos. Maternal treatment with the adenosine A(2A) receptor inhibitor reproduced the embryonic hemodynamic effects of maternal caffeine exposure. Adenosine A(2A) receptor gene expression levels of ED 11.5 embryo and ED 18.5 uterus were decreased. Results suggest that modest maternal caffeine exposure has adverse effects on developing embryonic CV function and growth, possibly mediated via adenosine A(2A) receptor blockade.

  6. Thermal manipulation during embryogenesis affects myoblast proliferation and skeletal muscle growth in meat-type chickens.

    PubMed

    Piestun, Yogev; Yahav, Shlomo; Halevy, Orna

    2015-10-01

    Thermal manipulation (TM) of 39.5°C applied during mid-embryogenesis (embryonic d 7 to 16) has been proven to promote muscle development and enhance muscle growth and meat production in meat-type chickens. This study aimed to elucidate the cellular basis for this effect. Continuous TM or intermittent TM (for 12 h/d) increased myoblast proliferation manifested by higher (25 to 48%) myoblast number in the pectoral muscles during embryonic development but also during the first week posthatch. Proliferation ability of the pectoral-muscle-derived myoblasts in vitro was significantly higher in the TM treatments until embryonic d 15 (intermittent TM) or 13 (continuous TM) compared to that of controls, suggesting increased myogenic progeny reservoir in the muscle. However, the proliferation ability of myoblasts was lower in the TM treatments vs. control during the last days of incubation. This coincided with higher levels of myogenin expression in the muscle, indicating enhanced cell differentiation in the TM muscle. A similar pattern was observed posthatch: Myoblast proliferation was significantly higher in the TM chicks relative to controls during the peak of posthatch cell proliferation until d 6, followed by lower cell number 2 wk posthatch as myoblast number sharply decreases. Higher myogenin expression was observed in the TM chicks on d 6. This resulted in increased muscle growth, manifested by significantly higher relative weight of breast muscle in the embryo and posthatch. It can be concluded that temperature elevation during mid-term embryogenesis promotes myoblast proliferation, thus increasing myogenic progeny reservoir in the muscle, resulting in enhanced muscle growth in the embryo and posthatch.

  7. Phenotype of proliferating cells stimulated during compensatory adrenal growth.

    PubMed

    Holzwarth, M A; Gomez-Sanchez, C E; Engeland, W C

    1996-11-01

    The phenotype of the proliferating cells during adrenocortical growth has remained controversial although glomerulosa, fasciculata and intermediate zone cells have all been considered possible candidates. This was due in part to the inability to identify specific adrenocortical cell types in comparing different types of growth. In the present studies, using immunocytochemical localization of cytochrome P450 aldosterone synthase (P450aldo) and cytochrome P450 11 beta-hydroxylase (P45011 beta) to identify adrenocortical cell phenotypes as well as Ki-67 to label proliferating cells, we have investigated the phenotype of the proliferating cells in the compensatory adrenal growth response to unilateral adrenalectomy. Between 24 and 96 hrs after unilateral adrenalectomy, most Ki-67(+) nuclei were found in the outermost region of the fasciculata, as defined by P45011 beta immunoreactive cells. Few Ki-67(+) nuclei were found in the glomerulosa, defined by P450aldo cells or in the z intermedia, identified by the absence of both P450aldo and P45011 beta. To test which cell type is activated by unilateral adrenalectomy, we altered the phenotypic configuration of the adrenal cortex; rats were placed on a low Na+ diet for three weeks, resulting in a marked expansion of the number of P450aldo(+) cells. An abundance of proliferating cells was identified primarily in the expanded glomerulosa, but not in the intermedia or fasciculata. In contrast, the proliferation associated with compensatory growth in these low Na+ rats, was localized primarily in the outer P45011 beta(+) zone. These findings suggest that the phenotype of the proliferating cell is specific to the growth promoting stimulus.

  8. Unicellular Algal Growth: A Biomechanical Approach to Cell Wall Dynamics

    NASA Astrophysics Data System (ADS)

    Kam, Royce; Levine, Herbert

    1997-11-01

    We model a growing cell in a calcium solution as an elastic shell on short time scales. The turgor pressure and elastic properties (Young's modulus, thickness) of the cell wall determine a stressed cell shape. Enzyme-mediated relaxation of the unstressed toward the stressed configuration results in a slow (plastic) deformation of the cell. The cell wall thickness is then modulated by calcium-mediated fusion of material and elongation. We analyze small perturbations to a circular cell and find an instability related to modulations of the wall thickness, leading to growth rates which peak at a finite wave number.

  9. Growth-stimulatory effect of resveratrol in human cancer cells.

    PubMed

    Fukui, Masayuki; Yamabe, Noriko; Kang, Ki Sung; Zhu, Bao Ting

    2010-08-01

    Earlier studies have shown that resveratrol could induce death in several human cancer cell lines in culture. Here we report our observation that resveratrol can also promote the growth of certain human cancer cells when they are grown either in culture or in athymic nude mice as xenografts. At relatively low concentrations (growth-stimulatory effect in the MDA-MB-435s human cancer cells, but this effect was not observed in several other human cell lines tested. Analysis of cell signaling molecules showed that resveratrol induced the activation of JNK, p38, Akt, and NF-kappaB signaling pathways in these cells. Further analysis using pharmacological inhibitors showed that only the NF-kappaB inhibitor (BAY11-7082) abrogated the growth-stimulatory effect of resveratrol in cultured cells. In athymic nude mice, resveratrol at 16.5 mg/kg body weight enhanced the growth of MDA-MB-435s xenografts compared to the control group, while resveratrol at the 33 mg/kg body weight dose did not have a similar effect. Additional analyses confirmed that resveratrol stimulated cancer cell growth in vivo through activation of the NF-kappaB signaling pathway. Taken together, these observations suggest that resveratrol at low concentrations could stimulate the growth of certain types of human cancer cells in vivo. This cell type-specific mitogenic effect of resveratrol may also partly contribute to the procarcinogenic effect of alcohol consumption (rich in resveratrol) in the development of certain human cancers.

  10. Does Coral Disease Affect Symbiodinium? Investigating the Impacts of Growth Anomaly on Symbiont Photophysiology

    PubMed Central

    Burns, John Henrik Robert; Gregg, Toni Makani; Takabayashi, Misaki

    2013-01-01

    Growth anomaly (GA) is a commonly observed coral disease that impairs biological functions of the affected tissue. GA is prevalent at Wai ‘ōpae tide pools, southeast Hawai ‘i Island. Here two distinct forms of this disease, Type A and Type B, affect the coral, Montiporacapitata. While the effects of GA on biology and ecology of the coral host are beginning to be understood, the impact of this disease on the photophysiology of the dinoflagellate symbiont, Symbiodinium spp., has not been investigated. The GA clearly alters coral tissue structure and skeletal morphology and density. These tissue and skeletal changes are likely to modify not only the light micro-environment of the coral tissue, which has a direct impact on the photosynthetic potential of Symbiodinium spp., but also the physiological interactions within the symbiosis. This study utilized Pulse amplitude modulation fluorometry (PAM) to characterize the photophysiology of healthy and GA-affected M. capitata tissue. Overall, endosymbionts within GA-affected tissue exhibit reduced photochemical efficiency. Values of both Fv/Fm and ΔF/ Fm’ were significantly lower (p<0.01) in GA tissue compared to healthy and unaffected tissues. Tracking the photophysiology of symbionts over a diurnal time period enabled a comparison of symbiont responses to photosynthetically available radiation (PAR) among tissue conditions. Symbionts within GA tissue exhibited the lowest values of ΔF/Fm’ as well as the highest pressure over photosystem II (p<0.01). This study provides evidence that the symbionts within GA-affected tissue are photochemically compromised compared to those residing in healthy tissue. PMID:23967301

  11. Prolonged cyclic strain inhibits human endothelial cell growth.

    PubMed

    Peyton, Kelly J; Liu, Xiao-ming; Durante, William

    2016-01-01

    The vascular endothelium is continuously exposed to cyclic mechanical strain due to the periodic change in vessel diameter as a result of pulsatile blood flow. Since emerging evidence indicates the cyclic strain plays an integral role in regulating endothelial cell function, the present study determined whether application of a physiologic regimen of cyclic strain (6% at 1 hertz) influences the proliferation of human arterial endothelial cells. Prolonged exposure of human dermal microvascular or human aortic endothelial cells to cyclic strain for up to 7 days resulted in a marked decrease in cell growth. The strain-mediated anti-proliferative effect was associated with the arrest of endothelial cells in the G2/M phase of the cell cycle, did not involve cell detachment or cytotoxicity, and was due to the induction of p21. Interestingly, the inhibition in endothelial cell growth was independent of the strain regimen since prolonged application of constant or intermittent 6% strain was also able to block endothelial cell proliferation. The ability of chronic physiologic cyclic strain to inhibit endothelial cell growth represents a previously unrecognized mechanism by which hemodynamic forces maintain these cells in a quiescent, non-proliferative state. PMID:26709656

  12. Vascular CD39/ENTPD1 Directly Promotes Tumor Cell Growth by Scavenging Extracellular Adenosine Triphosphate12

    PubMed Central

    Feng, Lili; Sun, Xiaofeng; Csizmadia, Eva; Han, Lihui; Bian, Shu; Murakami, Takashi; Wang, Xin; Robson, Simon C; Wu, Yan

    2011-01-01

    Extracellular adenosine triphosphate (ATP) is known to boost immune responses in the tumor microenvironment but might also contribute directly to cancer cell death. CD39/ENTPD1 is the dominant ectonucleotidase expressed by endothelial cells and regulatory T cells and catalyzes the sequential hydrolysis of ATP to AMP that is further degraded to adenosine by CD73/ecto-5′-nucleotidase. We have previously shown that deletion of Cd39 results in decreased growth of transplanted tumors in mice, as a result of both defective angiogenesis and heightened innate immune responses (secondary to loss of adenosinergic immune suppression). Whether alterations in local extracellular ATP and adenosine levels as a result of CD39 bioactivity directly affect tumor growth and cytotoxicity has not been investigated to date. We show here that extracellular ATP exerts antitumor activity by directly inhibiting cell proliferation and promoting cancer cell death. ATP-induced antiproliferative effects and cell death are, in large part, mediated through P2X7 receptor signaling. Tumors in Cd39 null mice exhibit increased necrosis in association with P2X7 expression. We further demonstrate that exogenous soluble NTPDase, or CD39 expression by cocultured liver sinusoidal endothelial cells, stimulates tumor cell proliferation and limits cell death triggered by extracellular ATP. Collectively, our findings indicate that local expression of CD39 directly promotes tumor cell growth by scavenging extracellular ATP. Pharmacological or targeted inhibition of CD39 enzymatic activity may find utility as an adjunct therapy in cancer management. PMID:21390184

  13. Rheumatoid synovial cells from intact joints. Morphology, growth, and polykaryocytosis.

    PubMed

    Clarris, B J; Fraser, J R; Moran, C J; Muirden, K D

    1977-08-01

    Synovial cell lines were isolated by instillation of trypsin or chymotrypsin into intact knee joints of patients with persistent rheumatoid effusions resistant to conventional therapy. Morphology and growth in the primary phase were compared with rheumatoid cells isolated from excised synovium and nonrheumatoid synovial cells obtained from intact joints of cadavers or amputated limbs. Cell populations from all sources included varying proportions of macrophage-like and fibroblast-like cells, with only 1-3% multinucleated cells. In medium supplemented with calf serum alone, rheumatoid cells from intact joints showed negligible changes in morphology. However, in the presence of nonrheumatoid, autologous rheumatoid or homologous rheumatoid serum a rapid increase occurred in size of the macrophage-like cells and numbers of polykaryocytes, including some giant syncytial cells. These effects were directly proportional to serum concentration and were identical in fresh or heat-inactivated serum. In most of these rheumatoid cell lines no multiplication occurred, regardless of serum type or concentration. In rheumatoid synovial cells from excised synovium, human serum induced both polykaryocytosis and rapid growth of fibroblasts. Nonrheumatoid synovial cells grew rapidly but few polykaryocytes developed, mostly with less than 6 nuclei. Evidence of viral infection in rheumatoid synovial cells was sought by electron microscopy after stimulation of polykaryocytosis by human serum. In one of the cultures many cells were found with intranuclear particles possessing characteristics of the adenovirus group. PMID:901027

  14. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus.

    PubMed

    Swamy, Prashant S; Hu, Hao; Pattathil, Sivakumar; Maloney, Victoria J; Xiao, Hui; Xue, Liang-Jiao; Chung, Jeng-Der; Johnson, Virgil E; Zhu, Yingying; Peter, Gary F; Hahn, Michael G; Mansfield, Shawn D; Harding, Scott A; Tsai, Chung-Jui

    2015-10-01

    Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues during regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. Taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis.

  15. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus

    PubMed Central

    Swamy, Prashant S.; Hu, Hao; Pattathil, Sivakumar; Maloney, Victoria J.; Xiao, Hui; Xue, Liang-Jiao; Chung, Jeng-Der; Johnson, Virgil E.; Zhu, Yingying; Peter, Gary F.; Hahn, Michael G.; Mansfield, Shawn D.; Harding, Scott A.; Tsai, Chung-Jui

    2015-01-01

    Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues during regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. Taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis. PMID:26246616

  16. Sertoli cell glycosylation patterns as affected by culture age and extracellular matrix.

    PubMed

    Page, K C; Killian, G J; Nyquist, S E

    1990-10-01

    This study evaluated the responsiveness of Sertoli cell glycosylation in vitro to changes in culture age and to the presence of a reconstituted basement membrane (Matrigel) or collagen IV/laminin substrata. Primary Sertoli cell cultures were prepared from 20-day-old rats and incubated with [3H]mannose, a monosaccharide specific for asparagine-linked oligosaccharides. The cells were harvested on Days 4, 6, or 10 of culture life. A supernatant enriched in cell-surface glycopeptides (the trypsinate) and a cell pellet stripped of surface glycoconjugates were evaluated separately. Glycopeptides derived from a Pronase digest of the two samples were fractionated using concanavalin-A lectin affinity chromatography into three major classes: multiantennary complex-type, biantennary complex-type, and high-mannose-type oligosaccharide structures. The proportion of radiolabeled glycopeptides appearing in each of the three classes did not differ between Days 4 and 6 of culture. In contrast, a significant increase in the percentage of radiolabeled glycopeptides containing multiantennary complex-type oligosaccharides was observed in cells harvested from the 10-day-old cultures. In other experiments, Sertoli cells were grown on various substrata: plastic; collagen IV/laminin; or Matrigel, a reconstituted basement membrane (RBM) composed of laminin, collagen IV, proteoglycan sulfate, entactin, and nidogen. Growth on RBM significantly increased multiantennary complex-type oligosaccharide formation compared to plastic, whereas the high-mannose-type glycopeptides increased in cells grown on collagen IV/laminin. These studies suggest that environmental and physiological conditions such as culture age and the presence of extracellular matrix significantly affect glycosylation patterns in Sertoli cell cultures.

  17. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    PubMed

    Wang, Mo-Zhu; Liu, Zheng-Yuan; Luo, Fang-Li; Lei, Guang-Chun; Li, Hong-Li

    2016-01-01

    Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii) and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm) of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm) were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions.

  18. Temperature-induced elevation of basal metabolic rate does not affect testis growth in great tits.

    PubMed

    Caro, Samuel P; Visser, Marcel E

    2009-07-01

    The timing of reproduction varies from year to year in many bird species. To adjust their timing to the prevailing conditions of that year, birds use cues from their environment. However, the relative importance of these cues, such as the initial predictive (e.g. photoperiod) and the supplemental factors (e.g. temperature), on the seasonal sexual development are difficult to distinguish. In particular, the fine-tuning effect of temperature on gonadal growth is not well known. One way temperature may affect timing is via its strong effect on energy expenditure as gonadal growth is an energy-demanding process. To study the interaction of photoperiod and temperature on gonadal development, we first exposed 35 individually housed male great tits (Parus major) to mid-long days (after 6 weeks of 8 h L:16 h D at 15 degrees C, photoperiod was set to 13 h L:11 h D at 15 degrees C). Two weeks later, for half of the males the temperature was set to 8 degrees C, and for the other half to 22 degrees C. Unilateral laparotomies were performed at weeks 5 (i.e one week before the birds were transferred to mid-long days), 8 and 11 to measure testis size. Two measures of basal metabolic rate (BMR) were performed at the end of the experiment (weeks 11 and 12). Testis size increased significantly during the course of the experiment, but independently of the temperature treatment. BMR was significantly higher in birds exposed to the cold treatment. These results show that temperature-related elevation of BMR did not impair the long-day-induced testis growth in great tits. As a consequence, temperature may not be a crucial cue and/or constraint factor in the fine-tuning of the gonadal recrudescence in male great tits, and testis growth is not a high energy-demanding seasonal process. PMID:19525424

  19. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    PubMed Central

    Wang, Mo-Zhu; Liu, Zheng-Yuan; Luo, Fang-Li; Lei, Guang-Chun; Li, Hong-Li

    2016-01-01

    Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii) and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm) of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm) were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions. PMID:26735689

  20. A study of cell electrophoresis as a means of purifying growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Plank, Lindsay D.; Hymer, W. C.; Kunze, M. Elaine; Marks, Gary M.; Lanham, J. Wayne

    1983-01-01

    Growth hormone secreting cells of the rat anterior pituitary are heavily laden with granules of growth hormone and can be partialy purified on the basis of their resulting high density. Two methods of preparative cell electrophoresis were investigated as methods of enhancing the purification of growth hormone producing cells: density gradient electrophoresis and continuous flow electrophoresis. Both methods provided a two- to four-fold enrichment in growth hormone production per cell relative to that achieved by previous methods. Measurements of electrophoretic mobilities by two analytical methods, microscopic electrophoresis and laser-tracking electrophoresis, revealed very little distinction between unpurified anterior pituitary cell suspensions and somatotroph-enriched cell suspensions. Predictions calculated on the basis of analytical electrophoretic data are consistent with the hypothesis that sedimentation plays a significant role in both types of preparative electrophoresis and the electrophoretic mobility of the growth hormone secreting subpopulation of cells remains unknown.

  1. Cationic Pillararenes Potently Inhibit Biofilm Formation without Affecting Bacterial Growth and Viability.

    PubMed

    Joseph, Roymon; Naugolny, Alissa; Feldman, Mark; Herzog, Ido M; Fridman, Micha; Cohen, Yoram

    2016-01-27

    It is estimated that up to 80% of bacterial infections are accompanied by biofilm formation. Since bacteria in biofilms are less susceptible to antibiotics than are bacteria in the planktonic state, biofilm-associated infections pose a major health threat, and there is a pressing need for antibiofilm agents. Here we report that water-soluble cationic pillararenes differing in the quaternary ammonium groups efficiently inhibited the formation of biofilms by clinically important Gram-positive pathogens. Biofilm inhibition did not result from antimicrobial activity; thus, the compounds should not inhibit growth of natural bacterial flora. Moreover, none of the cationic pillararenes caused detectable membrane damage to red blood cells or toxicity to human cells in culture. The results indicate that cationic pillararenes have potential for use in medical applications in which biofilm formation is a problem. PMID:26745311

  2. Role of growth factors in the growth of normal and transformed cells

    SciTech Connect

    Lokeshwar, V.B.

    1989-01-01

    Growth factors play an important role in the growth of normal cells. However, their untimely and/or excess production leads to neoplastic transformation. The role of growth factors in the growth of normal cells was studied by investigating the mechanism of transmodulation of the cell surface EGF receptor number by protamine. Protamine increased the EGF stimulated mitogenic response in Swiss mouse 3T3 cells and A431 cells by increasing the number of functionally active EGF receptors. Protamine also increased EGF receptor number in plasma membranes and solubilized membranes. This was evidenced by an increase in both {sup 125}I-EGF-EGF-receptor complex and EGF stimulated phosphorylation of the EGF receptor. The solubilized EGF receptor was retained on a protamine-agarose gel indicating that protamine might increase EGF receptor number by directly activating cryptic EGF receptors in the plasma membranes. The role of growth factors in neoplastic transformation was studied by investigating the role of the oncogene v-sis in the growth of Simian sarcoma virus (SSV) transformed cells. The product of the oncogene v-sis is 94% homologous to the B chain of PDGF. This study found that (i) v-sis gene product is synthesized as a 32 kDa unglycosylated monomer which is glycosylated, dimerized and proteolytically processed into p36, p72, p68, p58, p44 and p27 mol. wt. species respectively. (ii) p36, p72, p68 and p58 are very likely formed in the endoplasmic reticulum and/or Golgi complex. A fraction of newly synthesized p72, p68 and p58 is degraded intracellularly at a fast rate. (iii) p44 is a secretory product which remains tightly associated with the cell surface. p44 is recaptured by the cells through interaction with cell surface PDGF receptors and degraded into p27. (iv) During long term cultures p44 is extracellularly cleaved into a 27 kDa product.

  3. Assaying binding of nerve growth factor to cell surface receptors

    SciTech Connect

    Vale, R.D.; Shooter, E.M.

    1985-01-01

    The paper describes methods both for the radioiodination of nerve growth factor (NGF) and for assaying NFG receptors by reversible binding techniques. Preparation of (/sup 125/I)NGF along with a rapid method for determining the amount of cell-bound ligand have allowed the detection of NGF receptors on a number of cell types.

  4. ROS Regulation of Polar Growth in Plant Cells1[OPEN

    PubMed Central

    Mangano, Silvina; Juárez, Silvina Paola Denita

    2016-01-01

    Root hair cells and pollen tubes, like fungal hyphae, possess a typical tip or polar cell expansion with growth limited to the apical dome. Cell expansion needs to be carefully regulated to produce a correct shape and size. Polar cell growth is sustained by oscillatory feedback loops comprising three main components that together play an important role regulating this process. One of the main components are reactive oxygen species (ROS) that, together with calcium ions (Ca2+) and pH, sustain polar growth over time. Apoplastic ROS homeostasis controlled by NADPH oxidases as well as by secreted type III peroxidases has a great impact on cell wall properties during cell expansion. Polar growth needs to balance a focused secretion of new materials in an extending but still rigid cell wall in order to contain turgor pressure. In this review, we discuss the gaps in our understanding of how ROS impact on the oscillatory Ca2+ and pH signatures that, coordinately, allow root hair cells and pollen tubes to expand in a controlled manner to several hundred times their original size toward specific signals. PMID:27208283

  5. Would cancer stem cells affect the future investment in stem cell therapy.

    PubMed

    Rameshwar, Pranela

    2012-04-20

    The common goal within the overwhelming interests in stem cell research is to safely translate the science to patients. Although there are various methods by which this goal can be reached, this editorial emphasizes the safety of mesenchymal stem cell (MSC) transplant and possible confounds by the growing information on cancer stem cells (CSCs). There are several ongoing clinical trials with MSCs and their interactions with CSCs need to be examined. The rapid knowledge on MSCs and CSCs has now collided with regards to the safe treatment of MSCs. The information discussed on MSCs can be extrapolated to other stem cells with similar phenotype and functions such as placenta stem cells. MSCs are attractive for cell therapy, mainly due to reduced ethical concerns, ease in expansion and reduced ability to be transformed. Also, MSCs can exert both immune suppressor and tissue regeneration simultaneously. It is expected that any clinical trial with MSCs will take precaution to ensure that the cells are not transformed. However, going forward, the different centers should be aware that MSCs might undergo oncogenic events, especially as undifferentiated cells or early differentiated cells. Another major concern for MSC therapy is their ability to promote tumor growth and perhaps, to protect CSCs by altered immune responses. These issues are discussed in light of a large number of undiagnosed cancers.

  6. Inhibition of the mevalonate pathway affects epigenetic regulation in cancer cells.

    PubMed

    Karlic, Heidrun; Thaler, Roman; Gerner, Christopher; Grunt, Thomas; Proestling, Katharina; Haider, Florian; Varga, Franz

    2015-05-01

    The mevalonate pathway provides metabolites for post-translational modifications such as farnesylation, which are critical for the activity of RAS downstream signaling. Subsequently occurring regulatory processes can induce an aberrant stimulation of DNA methyltransferase (DNMT1) as well as changes in histone deacetylases (HDACs) and microRNAs in many cancer cell lines. Inhibitors of the mevalonate pathway are increasingly recognized as anticancer drugs. Extensive evidence indicates an intense cross-talk between signaling pathways, which affect growth, differentiation, and apoptosis either directly or indirectly via epigenetic mechanisms. Herein, we show data obtained by novel transcriptomic and corresponding methylomic or proteomic analyses from cell lines treated with pharmacologic doses of respective inhibitors (i.e., simvastatin, ibandronate). Metabolic pathways and their epigenetic consequences appear to be affected by a changed concentration of NADPH. Moreover, since the mevalonate metabolism is part of a signaling network, including vitamin D metabolism or fatty acid synthesis, the epigenetic activity of associated pathways is also presented. This emphasizes the far-reaching epigenetic impact of metabolic therapies on cancer cells and provides some explanation for clinical observations, which indicate the anticancer activity of statins and bisphosphonates.

  7. APEH Inhibition Affects Osteosarcoma Cell Viability via Downregulation of the Proteasome

    PubMed Central

    Palumbo, Rosanna; Gogliettino, Marta; Cocca, Ennio; Iannitti, Roberta; Sandomenico, Annamaria; Ruvo, Menotti; Balestrieri, Marco; Rossi, Mosè; Palmieri, Gianna

    2016-01-01

    The proteasome is a multienzymatic complex that controls the half-life of the majority of intracellular proteins, including those involved in apoptosis and cell-cycle progression. Recently, proteasome inhibition has been shown to be an effective anticancer strategy, although its downregulation is often accompanied by severe undesired side effects. We previously reported that the inhibition of acylpeptide hydrolase (APEH) by the peptide SsCEI 4 can significantly affect the proteasome activity in A375 melanoma or Caco-2 adenocarcinoma cell lines, thus shedding new light on therapeutic strategies based on downstream regulation of proteasome functions. In this work, we investigated the functional correlation between APEH and proteasome in a panel of cancer cell lines, and evaluated the cell proliferation upon SsCEI 4-treatments. Results revealed that SsCEI 4 triggered a proliferative arrest specifically in osteosarcoma U2OS cells via downregulation of the APEH–proteasome system, with the accumulation of the typical hallmarks of proteasome: NF-κB, p21Waf1, and polyubiquitinylated proteins. We found that the SsCEI 4 anti-proliferative effect involved a senescence-like growth arrest without noticeable cytotoxicity. These findings represent an important step toward understanding the mechanism(s) underlying the APEH-mediated downregulation of proteasome in order to design new molecules able to efficiently regulate the proteasome system for alternative therapeutic strategies. PMID:27669226

  8. APEH Inhibition Affects Osteosarcoma Cell Viability via Downregulation of the Proteasome.

    PubMed

    Palumbo, Rosanna; Gogliettino, Marta; Cocca, Ennio; Iannitti, Roberta; Sandomenico, Annamaria; Ruvo, Menotti; Balestrieri, Marco; Rossi, Mosè; Palmieri, Gianna

    2016-01-01

    The proteasome is a multienzymatic complex that controls the half-life of the majority of intracellular proteins, including those involved in apoptosis and cell-cycle progression. Recently, proteasome inhibition has been shown to be an effective anticancer strategy, although its downregulation is often accompanied by severe undesired side effects. We previously reported that the inhibition of acylpeptide hydrolase (APEH) by the peptide SsCEI 4 can significantly affect the proteasome activity in A375 melanoma or Caco-2 adenocarcinoma cell lines, thus shedding new light on therapeutic strategies based on downstream regulation of proteasome functions. In this work, we investigated the functional correlation between APEH and proteasome in a panel of cancer cell lines, and evaluated the cell proliferation upon SsCEI 4-treatments. Results revealed that SsCEI 4 triggered a proliferative arrest specifically in osteosarcoma U2OS cells via downregulation of the APEH-proteasome system, with the accumulation of the typical hallmarks of proteasome: NF-κB, p21(Waf1), and polyubiquitinylated proteins. We found that the SsCEI 4 anti-proliferative effect involved a senescence-like growth arrest without noticeable cytotoxicity. These findings represent an important step toward understanding the mechanism(s) underlying the APEH-mediated downregulation of proteasome in order to design new molecules able to efficiently regulate the proteasome system for alternative therapeutic strategies. PMID:27669226

  9. 3D Multi-Cell Simulation of Tumor Growth and Angiogenesis

    PubMed Central

    Shirinifard, Abbas; Gens, J. Scott; Zaitlen, Benjamin L.; Popławski, Nikodem J.; Swat, Maciej; Glazier, James A.

    2009-01-01

    We present a 3D multi-cell simulation of a generic simplification of vascular tumor growth which can be easily extended and adapted to describe more specific vascular tumor types and host tissues. Initially, tumor cells proliferate as they take up the oxygen which the pre-existing vasculature supplies. The tumor grows exponentially. When the oxygen level drops below a threshold, the tumor cells become hypoxic and start secreting pro-angiogenic factors. At this stage, the tumor reaches a maximum diameter characteristic of an avascular tumor spheroid. The endothelial cells in the pre-existing vasculature respond to the pro-angiogenic factors both by chemotaxing towards higher concentrations of pro-angiogenic factors and by forming new blood vessels via angiogenesis. The tumor-induced vasculature increases the growth rate of the resulting vascularized solid tumor compared to an avascular tumor, allowing the tumor to grow beyond the spheroid in these linear-growth phases. First, in the linear-spherical phase of growth, the tumor remains spherical while its volume increases. Second, in the linear-cylindrical phase of growth the tumor elongates into a cylinder. Finally, in the linear-sheet phase of growth, tumor growth accelerates as the tumor changes from cylindrical to paddle-shaped. Substantial periods during which the tumor grows slowly or not at all separate the exponential from the linear-spherical and the linear-spherical from the linear-cylindrical growth phases. In contrast to other simulations in which avascular tumors remain spherical, our simulated avascular tumors form cylinders following the blood vessels, leading to a different distribution of hypoxic cells within the tumor. Our simulations cover time periods which are long enough to produce a range of biologically reasonable complex morphologies, allowing us to study how tumor-induced angiogenesis affects the growth rate, size and morphology of simulated tumors. PMID:19834621

  10. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth.

    PubMed

    Khodakovskaya, Mariya; Dervishi, Enkeleda; Mahmood, Meena; Xu, Yang; Li, Zhongrui; Watanabe, Fumiya; Biris, Alexandru S

    2009-10-27

    Carbon nanotubes (CNTs) were found to penetrate tomato seeds and affect their germination and growth rates. The germination was found to be dramatically higher for seeds that germinated on medium containing CNTs (10-40 mug/mL) compared to control. Analytical methods indicated that the CNTs are able to penetrate the thick seed coat and support water uptake inside seeds, a process which can affect seed germination and growth of tomato seedlings. PMID:19772305

  11. In vitro melanoma cell growth after preenucleation radiation therapy

    SciTech Connect

    Kenneally, C.Z.; Farber, M.G.; Smith, M.E.; Devineni, R.

    1988-02-01

    The in vitro efficacy of 20 Gy (2000 rad) of external beam irradiation delivered to patients with choroidal melanomas prior to enucleation was investigated in 11 patients whose tumors were grown in cell culture. Phase-contrast microscopy was used to compare growth patterns between irradiated and nonirradiated tumors. Cell types were determined by histologic stains, and electron microscopy identified intracytoplasmic melanin. Irradiated melanomas did not grow and did not attach to culture flasks, thus demonstrating that preenucleation irradiation alters the in vitro growth of melanoma cells.

  12. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    PubMed

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate.

  13. Fibroblast growth factor 9 is a novel modulator of negative affect.

    PubMed

    Aurbach, Elyse L; Inui, Edny Gula; Turner, Cortney A; Hagenauer, Megan H; Prater, Katherine E; Li, Jun Z; Absher, Devin; Shah, Najmul; Blandino, Peter; Bunney, William E; Myers, Richard M; Barchas, Jack D; Schatzberg, Alan F; Watson, Stanley J; Akil, Huda

    2015-09-22

    Both gene expression profiling in postmortem human brain and studies using animal models have implicated the fibroblast growth factor (FGF) family in affect regulation and suggest a potential role in the pathophysiology of major depressive disorder (MDD). FGF2, the most widely characterized family member, is down-regulated in the depressed brain and plays a protective role in rodent models of affective disorders. By contrast, using three microarray analyses followed by quantitative RT-PCR confirmation, we show that FGF9 expression is up-regulated in the hippocampus of individuals with MDD, and that FGF9 expression is inversely related to the expression of FGF2. Because little is known about FGF9's function in emotion regulation, we used animal models to shed light on its potential role in affective function. We found that chronic social defeat stress, an animal model recapitulating some aspects of MDD, leads to a significant increase in hippocampal FGF9 expression, paralleling the elevations seen in postmortem human brain tissue. Chronic intracerebroventricular administration of FGF9 increased both anxiety- and depression-like behaviors. In contrast, knocking down FGF9 expression in the dentate gyrus of the hippocampus using a lentiviral vector produced a decrease in FGF9 expression and ameliorated anxiety-like behavior. Collectively, these results suggest that high levels of hippocampal FGF9 play an important role in the development or expression of mood and anxiety disorders. We propose that the relative levels of FGF9 in relation to other members of the FGF family may prove key to understanding vulnerability or resilience in affective disorders.

  14. Fibroblast growth factor 9 is a novel modulator of negative affect

    PubMed Central

    Aurbach, Elyse L.; Inui, Edny Gula; Turner, Cortney A.; Hagenauer, Megan H.; Prater, Katherine E.; Li, Jun Z.; Absher, Devin; Shah, Najmul; Blandino, Peter; Bunney, William E.; Myers, Richard M.; Barchas, Jack D.; Schatzberg, Alan F.; Watson, Stanley J.; Akil, Huda

    2015-01-01

    Both gene expression profiling in postmortem human brain and studies using animal models have implicated the fibroblast growth factor (FGF) family in affect regulation and suggest a potential role in the pathophysiology of major depressive disorder (MDD). FGF2, the most widely characterized family member, is down-regulated in the depressed brain and plays a protective role in rodent models of affective disorders. By contrast, using three microarray analyses followed by quantitative RT-PCR confirmation, we show that FGF9 expression is up-regulated in the hippocampus of individuals with MDD, and that FGF9 expression is inversely related to the expression of FGF2. Because little is known about FGF9’s function in emotion regulation, we used animal models to shed light on its potential role in affective function. We found that chronic social defeat stress, an animal model recapitulating some aspects of MDD, leads to a significant increase in hippocampal FGF9 expression, paralleling the elevations seen in postmortem human brain tissue. Chronic intracerebroventricular administration of FGF9 increased both anxiety- and depression-like behaviors. In contrast, knocking down FGF9 expression in the dentate gyrus of the hippocampus using a lentiviral vector produced a decrease in FGF9 expression and ameliorated anxiety-like behavior. Collectively, these results suggest that high levels of hippocampal FGF9 play an important role in the development or expression of mood and anxiety disorders. We propose that the relative levels of FGF9 in relation to other members of the FGF family may prove key to understanding vulnerability or resilience in affective disorders. PMID:26351673

  15. Mast cells, angiogenesis, and tumour growth.

    PubMed

    Ribatti, Domenico; Crivellato, Enrico

    2012-01-01

    Accumulation of mast cells (MCs) in tumours was described by Ehrlich in his doctoral thesis. Since this early account, ample evidence has been provided highlighting participation of MCs to the inflammatory reaction that occurs in many clinical and experimental tumour settings. MCs are bone marrow-derived tissue-homing leukocytes that are endowed with a panoply of releasable mediators and surface receptors. These cells actively take part to innate and acquired immune reactions as well as to a series of fundamental functions such as angiogenesis, tissue repair, and tissue remodelling. The involvement of MCs in tumour development is debated. Although some evidence suggests that MCs can promote tumourigenesis and tumour progression, there are some clinical sets as well as experimental tumour models in which MCs seem to have functions that favour the host. One of the major issues linking MCs to cancer is the ability of these cells to release potent pro-angiogenic factors. This review will focus on the most recent acquisitions about this intriguing field of research. This article is part of a Special Issue entitled: Mast cells in inflammation.

  16. Growth of respiratory syncytial virus in mink lung epithelial cells.

    PubMed

    Yeolekar, L R; Damle, R G; Basu, A; Rao, B L

    2002-12-01

    Mink lung epithelial cells (Mv-1-Lu) were tested for their ability to support the growth and serial passage of respiratory syncytial virus (RSV) in vitro. Indian isolates of RSV induced distinctive cytopathic effect with typical rounding of cells followed by detachment with more than 50 per cent cells showing bright fluorescence using anti-RSV monoclonal antibodies in immunofluorescence test. Serial passage of RSV was possible in Mv-1-Lu cells without loss of sensitivity of the cells for virus growth. Titration of cell associated virus and virus released in the supernatant indicated that 60 per cent of the virus was released in the supernatant, and 40 per cent remained cell associated. Transmission electron microscopic studies of negatively stained RSV particles and ultra-thin sections of RSV infected Mv-1-Lu cells showed roughly spherical particles with club shaped projections, budding from the cytoplasmic membrane. These results indicate that Mv-1-Lu cell line is suitable for the growth and propagation of RSV.

  17. Oak ellagitannins suppress the phosphorylation of the epidermal growth factor receptor in human colon carcinoma cells.

    PubMed

    Fridrich, Diana; Glabasnia, Arne; Fritz, Jessica; Esselen, Melanie; Pahlke, Gudrun; Hofmann, Thomas; Marko, Doris

    2008-05-14

    The ellagitannins castalagin and vescalagin, and the C-glycosides grandinin and roburin E as well as ellagic acid were found to potently inhibit the growth of human colon carcinoma cells (HT29) in vitro. In a cell-free system these compounds were identified as potent inhibitors of the protein tyrosine kinase activity of the epidermal growth factor receptor (EGFR) with IC 50 values in the low nanomolar range. To address the question of whether the interference with the activity of the isolated EGFR also plays a role within intact cells, effects on the phosphorylation status of the EGFR, as a measure for its activity, were determined in HT29 cells. As exemplified for castalagin and grandinin, both the nonglycosylated and the glycosylated ellagitannins effectively suppressed EGFR phosphorylation, but only at concentrations > or =10 microM, thus, in a concentration range where growth inhibition was observed. These results indicate that the suppression of EGFR-mediated signaling might contribute to the growth inhibitory effects of these compounds present in oak-matured wines and spirits such as whiskey. In contrast, despite substantial growth inhibitory properties, ellagic acid did not significantly affect EGFR phosphorylation in HT29 cells up to 100 microM. PMID:18419129

  18. Woodland Patch Dynamics Affected by Oak Growth: Fire, Climate, and Human Influences

    NASA Astrophysics Data System (ADS)

    Murray, D. B.; White, J. D.

    2010-12-01

    Woodland fragmentation and aggregation occur due to impacts of fire, climate, and human factors. In our study we investigate the growth response of a deciduous oak species, Quercus buckleyii (Texas Red Oak) within a juniper-dominated woodland. This species may be a sentinel species for woodland patch developmental processes that could be used as a proxy for woodland patch contraction and expansion events. In this study, we used tree rings, fire scar, and multi-temporal aerial photographic data to assess response of oaks to disturbance type and resultant impact on woodland patches. Three hundred and seventy tree slabs from downed and dead red oaks were collected in the Balcones National Wildlife Refuge outside Austin, Texas. We analyzed tree rings from these slabs to determine recruitment date, annual ring width, and where evident, time of fire. Changes in tree ring widths associated with canopy openings were derived from neighborhood analysis of digital aerial photos from 1939, 1951, 1964, 1980, 1995, and 2004. Results indicated that red oaks increased radial growth following fire. Analysis of canopy openings associated with the aerial photographs showed that the oak species did not respond to canopy openings with increased radial growth as predicted by gap-phase dynamics. Climate impacted average radial ring growth as demonstrated by comparison with the Palmer Drought Severity and Nino 3 Index values (p = .56). Given that radial growth is influenced by both fire and climate, we explored the possibility that dramatic climate and related disturbance events (drought and high occurrence of fire) of the 1950’s created a possible ecological regime shift. Changes in both index value variance and disturbance frequency were noted during the 1950’s. These results were confirmed by landscape analysis of disturbance patches identified from the historical photographs which show cutting and burning occurred with the highest frequency between 1951 and 1964 with 70% of the

  19. Growth hormone replacement in patients with Langerhan's cell histiocytosis

    PubMed Central

    Howell, S; Wilton, P; Shalet, S

    1998-01-01

    OBJECTIVES—To assess the impact of growth hormone on growth and the underlying disease in children with growth hormone deficiency as a result of Langerhan's cell histiocytosis.
STUDY DESIGN—Retrospective analysis of data from the Kabi (Pharmacia & Upjohn) international growth database (KIGS) for 82 children with Langerhan's cell histiocytosis treated with recombinant growth hormone.
RESULTS—At the start of treatment the median (10-90th centile) age was 9.0 (5.2 to 14.7) years, with a median height standard deviation score (SDS) of −2.0 (−3.5 to −0.9). The median pretreatment height velocity (measured in cm/year) was 3.6 (0.9 to 6.4); this increased to 8.8 (3.8 to 12.0) in the first year of treatment with growth hormone, and then remained significantly greater than the pretreatment height velocity at 7.3 (4.4 to 9.7) and 7.1 (4.1 to 9.3) cm/year in the second and third years, respectively. The median height SDS increased from −2.0 to −0.8 (−2.3 to 0.6) by the end of three years of treatment. There was no increase in the recurrence rate of the underlying disease and no adverse event could be directly attributed to growth hormone treatment, apart from one case of benign intracranial hypertension that resolved on stopping treatment with growth hormone.
CONCLUSIONS—Growth hormone replacement treatment for patients with Langerhan's cell histiocytosis with growth hormone deficiency is beneficial and safe.

 PMID:9659097

  20. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    PubMed

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  1. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    PubMed

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  2. Antagonizing the Hedgehog Pathway with Vismodegib Impairs Malignant Pleural Mesothelioma Growth In Vivo by Affecting Stroma.

    PubMed

    Meerang, Mayura; Bérard, Karima; Felley-Bosco, Emanuela; Lauk, Olivia; Vrugt, Bart; Boss, Andreas; Kenkel, David; Broggini-Tenzer, Angela; Stahel, Rolf A; Arni, Stephan; Weder, Walter; Opitz, Isabelle

    2016-05-01

    An autocrine-driven upregulation of the Hedgehog (Hh) signaling pathway has been described in malignant pleural mesothelioma (MPM), in which the ligand, desert Hh (DHH), was produced from tumor cells. However, our investigation revealed that the Hh pathway is activated in both tumor and stroma of MPM tumor specimens and an orthotopic immunocompetent rat MPM model. This was demonstrated by positive immunohistochemical staining of Glioma-associated oncogene 1 (GLI1) and Patched1 (PTCH1) in both tumor and stromal fractions. DHH was predominantly expressed in the tumor fractions. To further investigate the role of the Hh pathway in MPM stroma, we antagonized Hh signaling in the rat model of MPM using a Hh antagonist, vismodegib, (100 mg/kg orally). Daily treatment with vismodegib efficiently downregulated Hh target genes Gli1, Hedgehog Interacting Protein (Hhip), and Ptch1, and caused a significant reduction of tumor volume and tumor growth delay. Immunohistochemical analyses revealed that vismodegib treatment primarily downregulated GLI1 and HHIP in the stromal compartment along with a reduced expression of previously described fibroblast Hh-responsive genes such as Fibronectin (Fn1) and Vegfa Primary cells isolated from the rat model cultured in 3% O2 continued to express Dhh but did not respond to vismodegib in vitro However, culture supernatant from these cells stimulated Gli1, Ptch1, and Fn1 expression in mouse embryonic fibroblasts, which was suppressed by vismodegib. Our study provides new evidence regarding the role of Hh signaling in MPM stroma in the maintenance of tumor growth, emphasizing Hh signaling as a treatment target for MPM. Mol Cancer Ther; 15(5); 1095-105. ©2016 AACR. PMID:26839306

  3. When Cells Collide: A Model for Cell-Assisted Cell Growth based on Direct Contacts

    NASA Astrophysics Data System (ADS)

    Franck, Carl; Ip, Wui; Bae, Albert; Franck, Nathan; Bogart, Elijah; Thi Le, Thanhbinh

    2008-03-01

    Although intercellular communication is frequently viewed as involving the transport of small molecules through an intracellular fluid medium, biologists have proposed chemical signaling with chemical specificity due to chemical recognition through direct contacts. Considering the collective computation behind the decision of a cell to divide when it senses the presence of a sufficient number of like neighbors, we offer a model for the transition from slow to exponential growth in shaken suspension cell culture of the model eukaryote, Dictyostelium discoideum. Besides exploring an elegantly simple example of multicellular life, this discussion might well prove useful in considering the limits of cell culture on small spatial scales as required for contemporary massively parallel biotechnology.

  4. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.

    PubMed

    Medina, Karina; Boido, Eduardo; Dellacassa, Eduardo; Carrau, Francisco

    2012-07-01

    Yeast produces numerous secondary metabolites during fermentation that impact final wine quality. Although it is widely recognized that growth of diverse non-Saccharomyces (NS) yeast can positively affect flavor complexity during Saccharomyces cerevisiae wine fermentation, the inability to control spontaneous or co-fermentation processes by NS yeast has restricted their use in winemaking. We selected two NS yeasts from our Uruguayan native collection to study NS-S. cerevisiae interactions during wine fermentation. The selected strains of Hanseniaspora vineae and Metschnikowia pulcherrima had different yeast assimilable nitrogen consumption profiles and had different effects on S. cerevisiae fermentation and growth kinetics. Studies in which we varied inoculum size and using either simultaneous or sequential inoculation of NS yeast and S. cerevisiae suggested that competition for nutrients had a significant effect on fermentation kinetics. Sluggish fermentations were more pronounced when S. cerevisiae was inoculated 24h after the initial stage of fermentation with a NS strain compared to co-inoculation. Monitoring strain populations using differential WL nutrient agar medium and fermentation kinetics of mixed cultures allowed for a better understanding of strain interactions and nutrient addition effects. Limitation of nutrient availability for S. cerevisiae was shown to result in stuck fermentations as well as to reduce sensory desirability of the resulting wine. Addition of diammonium phosphate (DAP) and a vitamin mix to a defined medium allowed for a comparison of nutrient competition between strains. Addition of DAP and the vitamin mix was most effective in preventing stuck fermentations. PMID:22687186

  5. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.

    PubMed

    Medina, Karina; Boido, Eduardo; Dellacassa, Eduardo; Carrau, Francisco

    2012-07-01

    Yeast produces numerous secondary metabolites during fermentation that impact final wine quality. Although it is widely recognized that growth of diverse non-Saccharomyces (NS) yeast can positively affect flavor complexity during Saccharomyces cerevisiae wine fermentation, the inability to control spontaneous or co-fermentation processes by NS yeast has restricted their use in winemaking. We selected two NS yeasts from our Uruguayan native collection to study NS-S. cerevisiae interactions during wine fermentation. The selected strains of Hanseniaspora vineae and Metschnikowia pulcherrima had different yeast assimilable nitrogen consumption profiles and had different effects on S. cerevisiae fermentation and growth kinetics. Studies in which we varied inoculum size and using either simultaneous or sequential inoculation of NS yeast and S. cerevisiae suggested that competition for nutrients had a significant effect on fermentation kinetics. Sluggish fermentations were more pronounced when S. cerevisiae was inoculated 24h after the initial stage of fermentation with a NS strain compared to co-inoculation. Monitoring strain populations using differential WL nutrient agar medium and fermentation kinetics of mixed cultures allowed for a better understanding of strain interactions and nutrient addition effects. Limitation of nutrient availability for S. cerevisiae was shown to result in stuck fermentations as well as to reduce sensory desirability of the resulting wine. Addition of diammonium phosphate (DAP) and a vitamin mix to a defined medium allowed for a comparison of nutrient competition between strains. Addition of DAP and the vitamin mix was most effective in preventing stuck fermentations.

  6. Estimation of the growth kinetic parameters of Bacillus cereus spores as affected by pulsed light treatment.

    PubMed

    Aguirre, Juan S; de Fernando, Gonzalo García; Hierro, Eva; Hospital, Xavier F; Ordóñez, Juan A; Fernández, Manuela

    2015-06-01

    Quantitative microbial risk assessment requires the knowledge of the effect of food preservation technologies on the growth parameters of the survivors of the treatment. This is of special interest in the case of the new non-thermal technologies that are being investigated for minimal processing of foods. This is a study on the effect of pulsed light technology (PL) on the lag phase of Bacillus cereus spores surviving the treatment and the maximum growth rate (μmax) of the survivors after germination. The D value was estimated as 0.35 J/cm(2) and our findings showed that PL affected the kinetic parameters of the microorganism. A log linear relationship was observed between the lag phase and the intensity of the treatment. Increasing the lethality lengthened the mean lag phase and proportionally increased its variability. A polynomial regression was fitted between the μmax of the survivors and the inactivation achieved. The μmax decreased as intensity increased. From these data, and their comparison to published results on the effect of heat and e-beam irradiation on B. cereus spores, it was observed that the shelf-life of PL treated foods would be longer than those treated with heat and similar to irradiated ones. These findings offer information of interest for the implementation of PL for microbial decontamination in the food industry. PMID:25755081

  7. Mest but Not MiR-335 Affects Skeletal Muscle Growth and Regeneration.

    PubMed

    Hiramuki, Yosuke; Sato, Takahiko; Furuta, Yasuhide; Surani, M Azim; Sehara-Fujisawa, Atsuko

    2015-01-01

    When skeletal muscle fibers are injured, they regenerate and grow until their sizes are adjusted to surrounding muscle fibers and other relevant organs. In this study, we examined whether Mest, one of paternally expressed imprinted genes that regulates body size during development, and miR-335 located in the second intron of the Mest gene play roles in muscle regeneration. We generated miR-335-deficient mice, and found that miR-335 is a paternally expressed imprinted microRNA. Although both Mest and miR-335 are highly expressed during muscle development and regeneration, only Mest+/- (maternal/paternal) mice show retardation of body growth. In addition to reduced body weight in Mest+/-; DMD-null mice, decreased muscle growth was observed in Mest+/- mice during cardiotoxin-induced regeneration, suggesting roles of Mest in muscle regeneration. Moreover, expressions of H19 and Igf2r, maternally expressed imprinted genes were affected in tibialis anterior muscle of Mest+/-; DMD-null mice compared to DMD-null mice. Thus, Mest likely mediates muscle regeneration through regulation of imprinted gene networks in skeletal muscle.

  8. A review on the factors affecting mite growth in stored grain commodities.

    PubMed

    Collins, D A

    2012-03-01

    A thorough review of the literature has identified the key factors and interactions that affect the growth of mite pests on stored grain commodities. Although many factors influence mite growth, the change and combinations of the physical conditions (temperature, relative humidity and/or moisture content) during the storage period are likely to have the greatest impact, with biological factors (e.g. predators and commodity) playing an important role. There is limited information on the effects of climate change, light, species interactions, local density dependant factors, spread of mycotoxins and action thresholds for mites. A greater understanding of these factors may identify alternative control techniques. The ability to predict mite population dynamics over a range of environmental conditions, both physical and biological, is essential in providing an early warning of mite infestations, advising when appropriate control measures are required and for evaluating control measures. This information may provide a useful aid in predicting and preventing mite population development as part of a risk based decision support system.

  9. Meloidogyne incognita Inoculum Source Affects Host Suitability and Growth of Yellow Nutsedge and Chile Pepper.

    PubMed

    Thomas, S H; Schroeder, J; Kenney, M J; Murray, L W

    1997-09-01

    Meloidogyne incognita (Mi) reproduction and host plant responses in chile pepper (Capsicum annuum) and yellow nutsedge (Cyperus esculentus = YNS) to three sources of inoculum obtained by rearing a single Mi population on chile, YNS, and tomato were evaluated in two factorial greenhouse experiments. The interactive effects of Mi inoculum source and crop-weed competition were determined. In the absence of YNS competition, chile growth was reduced less by Mi inoculum from chile than by inoculum from YNS or tomato. When YNS was present, chile root weight was not affected and shoot weight increased with Mi initial inoculation, regardless of inoculum source. Chile plants inoculated with Mi from tomato exhibited double the nematode reproduction observed with inoculum from chile or YNS. With chile present, Mi reproduction on YNS was nearly three times greater with inoculum from tomato, but reproduction was similar among inoculum sources when chile was absent. Reductions in YNS root mass due to competition from chile failed to reduce the total number of Mi eggs produced on YNS plants. Differences in total Mi reproduction among inoculum sources were not attributable to differences in root growth or plant competition. This study illustrates the influence of Mi-YNS interactions and previous hosts on severity of Mi infection. PMID:19274174

  10. Estimation of the growth kinetic parameters of Bacillus cereus spores as affected by pulsed light treatment.

    PubMed

    Aguirre, Juan S; de Fernando, Gonzalo García; Hierro, Eva; Hospital, Xavier F; Ordóñez, Juan A; Fernández, Manuela

    2015-06-01

    Quantitative microbial risk assessment requires the knowledge of the effect of food preservation technologies on the growth parameters of the survivors of the treatment. This is of special interest in the case of the new non-thermal technologies that are being investigated for minimal processing of foods. This is a study on the effect of pulsed light technology (PL) on the lag phase of Bacillus cereus spores surviving the treatment and the maximum growth rate (μmax) of the survivors after germination. The D value was estimated as 0.35 J/cm(2) and our findings showed that PL affected the kinetic parameters of the microorganism. A log linear relationship was observed between the lag phase and the intensity of the treatment. Increasing the lethality lengthened the mean lag phase and proportionally increased its variability. A polynomial regression was fitted between the μmax of the survivors and the inactivation achieved. The μmax decreased as intensity increased. From these data, and their comparison to published results on the effect of heat and e-beam irradiation on B. cereus spores, it was observed that the shelf-life of PL treated foods would be longer than those treated with heat and similar to irradiated ones. These findings offer information of interest for the implementation of PL for microbial decontamination in the food industry.

  11. Genotypic differences and prior defoliation affect re-growth and phytochemistry after coppicing in Populus tremuloides.

    PubMed

    Stevens, Michael T; Gusse, Adam C; Lindroth, Richard L

    2012-03-01

    Although considerable research has explored how tree growth and defense can be influenced by genotype, the biotic environment, and their interaction, little is known about how genotypic differences, prior defoliation, and their interactive effects persist in trees that re-grow after damage that severs their primary stem. To address these issues, we established a common garden consisting of twelve genotypes of potted aspen (Populus tremuloides) trees, and subjected half of the trees to defoliation in two successive years. At the beginning of the third year, all trees were severed at the soil surface (coppiced) and allowed to regenerate for five months. Afterwards, we counted the number of root and stump sprouts produced and measured the basal diameter (d) and height (h) of the tallest ramet in each pot. We collected leaves one and two years after the second defoliation and assessed levels of phenolic glycosides, condensed tannins, and nitrogen. In terms of re-growth, we found that the total number of sprouts produced varied by 3.6-fold among genotypes, and that prior defoliation decreased total sprout production by 24%. The size (d(2)h) of ramets, however, did not differ significantly among genotypes or defoliation classes. In terms of phytochemistry, we observed genotypic differences in concentrations of all phytochemicals assessed both one and two years after the second defoliation. Two years after defoliation, we observed effects of prior defoliation in a genotype-by-defoliation interaction for condensed tannins. Results from this study demonstrate that genotypic differences and impacts of prior defoliation persist to influence growth and defense traits in trees even after complete removal of above-ground stems, and thus likely influence productivity and plant-herbivore interactions in forests affected by natural disturbances or actively managed through coppicing.

  12. Limited and excess dietary protein during gestation affects growth and compositional traits in gilts and impairs offspring fetal growth.

    PubMed

    Rehfeldt, C; Lang, I S; Görs, S; Hennig, U; Kalbe, C; Stabenow, B; Brüssow, K-P; Pfuhl, R; Bellmann, O; Nürnberg, G; Otten, W; Metges, C C

    2011-02-01

    The aim of this study was to investigate whether dietary protein intake during gestation less than or greater than recommendations affects gilts growth and body composition, gestation outcome, and colostrum composition. German Landrace gilts were fed gestation diets (13.7 MJ of ME/kg) containing a low (n = 18; LP, 6.5% CP), an adequate (n = 20; AP, 12.1%), or a high (n = 16; HP, 30%) protein content corresponding to a protein:carbohydrate ratio of 1:10.4, 1:5, and 1:1.3, respectively, from mating until farrowing. Gilts were inseminated by semen of pure German Landrace boars and induced to farrow at 114 d postcoitum (dpc; Exp. 1). Energy and protein intake during gestation were 33.3, 34.4, and 35.8 MJ of ME/d (P < 0.001) and 160, 328, and 768 g/d, respectively, in LP, AP, and HP gilts (P < 0.001). From insemination to 109 dpc, BW gain was least in LP (42.1 kg), intermediate in HP (63.1 kg), and greatest in AP gilts (68.3 kg), whereas increase of backfat thickness was least in gilts fed the HP diet compared with LP and AP diets (3.8, 5.1, 5.0 mm; P = 0.01). Litter size, % stillborn piglets, and mummies were unaffected (P > 0.28) by the gestation diet. Total litter weight tended to be less in the offspring of LP and HP gilts (14.67, 13.77 vs. 15.96 kg; P = 0.07), and the percentage of male piglets was greater in litters of HP gilts (59.4%; P < 0.01). In piglets originating from LP and HP gilts, individual birth weight was less (1.20, 1.21 vs. 1.40 kg; P = 0.001) and birth weight/crown-rump length ratio was reduced (45.3, 46.4 vs. 50.7 g/cm; P = 0.003). Colostrum fat (7.8, 7.4 vs. 8.1%) and lactose concentrations (2.2, 2.1 vs. 2.6%) tended to be reduced in LP and HP gilts (P = 0.10). In Exp. 2, 28 gilts (LP, 10; AP, 9; HP, 9) were treated as in Exp. 1 but slaughtered at 64 dpc. At 64 dpc, LP gilts were 7% lighter than AP gilts (P = 0.03), whereas HP gilts were similar to AP gilts. Body composition was markedly altered in response to LP and HP feeding with less lean (P

  13. Cell density modulates growth, extracellular matrix, and protein synthesis of cultured rat mesangial cells.

    PubMed

    Wolthuis, A; Boes, A; Grond, J

    1993-10-01

    Mesangial cell (MC) hyperplasia and accumulation of extracellular matrix are hallmarks of chronic glomerular disease. The present in vitro study examined the effects of cell density on growth, extracellular matrix formation, and protein synthesis of cultured rat MCs. A negative linear relationship was found between initial plating density and DNA synthesis per cell after 24 hours incubation in medium with 10% fetal calf serum (range: 1 x 10(3) to 7 x 10(5) MCs/2cm2, r = 0.996, P < 0.001). Enzyme-linked immunosorbent assay of the amount of fibronectin in the conditioned medium after 72 hours showed a negative relationship with increasing cell density. In contrast, the amount of cell-associated fibronectin increased to maximal values in confluent cultures, and no further increase was seen at supraconfluency. The relative collagen synthesis in the conditioned medium and cell layer--assessed by collagenase digestion after 5 hours [3H]proline pulse labeling--showed a similar pattern. Secreted collagen decreased with increasing cell density from 3.4% to 0.2% of total protein synthesis. In contrast, cell-associated collagen increased from 1.1% to 11.8% of newly synthesized protein until confluency followed by a decrease to 4.2% at supraconfluency. Specific immunoprecipitation of collagen types I, III, and IV revealed a significant (twofold) increase in collagen I synthesis per cell at confluency. Collagen III and IV synthesis was not affected by cell density. Specific protein expression in both the medium and cell layer were analyzed by two-dimensional polyacrylamide gel electrophoresis (150 to 20 kd, pI 5.0 to 7.0) after 20 hours steady-state metabolic labeling with [35S]methionine. Supraconfluent MCs displayed overexpression of 10, underexpression of four, new expression of five, and changed mobility of three different intracellular proteins. Of interest was the overexpression of two proteins (89 kd, pI 5.31 and 72 kd, pI 5.32) that were identified by immunoblotting as

  14. Calpain-Mediated Positional Information Directs Cell Wall Orientation to Sustain Plant Stem Cell Activity, Growth and Development.

    PubMed

    Liang, Zhe; Brown, Roy C; Fletcher, Jennifer C; Opsahl-Sorteberg, Hilde-Gunn

    2015-09-01

    Eukaryotic development and stem cell control depend on the integration of cell positional sensing with cell cycle control and cell wall positioning, yet few factors that directly link these events are known. The DEFECTIVE KERNEL1 (DEK1) gene encoding the unique plant calpain protein is fundamental for development and growth, being essential to confer and maintain epidermal cell identity that allows development beyond the globular embryo stage. We show that DEK1 expression is highest in the actively dividing cells of seeds, meristems and vasculature. We further show that eliminating Arabidopsis DEK1 function leads to changes in developmental cues from the first zygotic division onward, altered microtubule patterns and misshapen cells, resulting in early embryo abortion. Expression of the embryonic marker genes WOX2, ATML1, PIN4, WUS and STM, related to axis organization, cell identity and meristem functions, is also altered in dek1 embryos. By monitoring cell layer-specific DEK1 down-regulation, we show that L1- and 35S-induced down-regulation mainly affects stem cell functions, causing severe shoot apical meristem phenotypes. These results are consistent with a requirement for DEK1 to direct layer-specific cellular activities and set downstream developmental cues. Our data suggest that DEK1 may anchor cell wall positions and control cell division and differentiation, thereby balancing the plant's requirement to maintain totipotent stem cell reservoirs while simultaneously directing growth and organ formation. A role for DEK1 in regulating microtubule-orchestrated cell wall orientation during cell division can explain its effects on embryonic development, and suggests a more general function for calpains in microtubule organization in eukaryotic cells.

  15. Total triterpenoids from Ganoderma Lucidum suppresses prostate cancer cell growth by inducing growth arrest and apoptosis.

    PubMed

    Wang, Tao; Xie, Zi-ping; Huang, Zhan-sen; Li, Hao; Wei, An-yang; Di, Jin-ming; Xiao, Heng-jun; Zhang, Zhi-gang; Cai, Liu-hong; Tao, Xin; Qi, Tao; Chen, Di-ling; Chen, Jun

    2015-10-01

    In this study, one immortalized human normal prostatic epithelial cell line (BPH) and four human prostate cancer cell lines (LNCaP, 22Rv1, PC-3, and DU-145) were treated with Ganoderma Lucidum triterpenoids (GLT) at different doses and for different time periods. Cell viability, apoptosis, and cell cycle were analyzed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR and Western blotting. It was found that GLT dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. GLT-induced apoptosis was due to activation of Caspases-9 and -3 and turning on the downstream apoptotic events. GLT-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and E2F1 expression at the late time. These findings demonstrate that GLT suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which might suggest that GLT or Ganoderma Lucidum could be used as a potential therapeutic drug for prostate cancer. PMID:26489631

  16. Total triterpenoids from Ganoderma Lucidum suppresses prostate cancer cell growth by inducing growth arrest and apoptosis.

    PubMed

    Wang, Tao; Xie, Zi-ping; Huang, Zhan-sen; Li, Hao; Wei, An-yang; Di, Jin-ming; Xiao, Heng-jun; Zhang, Zhi-gang; Cai, Liu-hong; Tao, Xin; Qi, Tao; Chen, Di-ling; Chen, Jun

    2015-10-01

    In this study, one immortalized human normal prostatic epithelial cell line (BPH) and four human prostate cancer cell lines (LNCaP, 22Rv1, PC-3, and DU-145) were treated with Ganoderma Lucidum triterpenoids (GLT) at different doses and for different time periods. Cell viability, apoptosis, and cell cycle were analyzed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR and Western blotting. It was found that GLT dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. GLT-induced apoptosis was due to activation of Caspases-9 and -3 and turning on the downstream apoptotic events. GLT-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and E2F1 expression at the late time. These findings demonstrate that GLT suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which might suggest that GLT or Ganoderma Lucidum could be used as a potential therapeutic drug for prostate cancer.

  17. Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells.

    PubMed

    Fan, Chuandong; Wang, Weiwei; Zhao, Baoxiang; Zhang, Shangli; Miao, Junying

    2006-05-01

    To investigate the effects of chloroquine diphosphate (CQ) on lung cancer cell growth, we treated A549 cells, a lung cancer cell line, with the drug at various concentrations (0.25-128 microM) for 24-72 h. The results showed that, at lower concentrations (from 0.25 to 32 microM), CQ inhibited the growth of A549 cells and, at the same time, it induced vacuolation with increased volume of acidic compartments (VAC). On the other hand, at higher concentrations (64-128 microM), CQ induced apoptosis at 24 h, while its effect of inducing vacuolation declined. The lactate dehydrogenase (LDH) assay showed that with the treatment of CQ 32-64 microM for 72 h or 128 microM for 48 h, CQ induced necrosis of A549 cells. To understand the possible mechanism by which CQ acts in A549 cells, we further incubated the cells with this drug at the concentrations of 32 or 128 microM in the presence of D609, a specific inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC). The results showed that D609 (50 microM) could inhibit the effects of CQ 32 microM on the viability and VAC, but it could not change the effects of CQ 128 microM on the same. Our data suggested that CQ inhibited A549 lung cancer cell growth at lower concentrations by increasing the volume of lysosomes and that PC-PLC might be involved in this process. The data also indicated that, at higher concentrations, CQ induced apoptosis and necrosis, but at this time its ability to increase the volume of lysosome gradually declined, and PC-PLC might not be implicated in the process. PMID:16413786

  18. How Hydrogen Bonds Affect the Growth of Reverse Micelles around Coordinating Metal Ions.

    PubMed

    Qiao, Baofu; Demars, Thomas; Olvera de la Cruz, Monica; Ellis, Ross J

    2014-04-17

    Extensive research on hydrogen bonds (H-bonds) have illustrated their critical role in various biological, chemical and physical processes. Given that existing studies are predominantly performed in aqueous conditions, how H-bonds affect both the structure and function of aggregates in organic phase is poorly understood. Herein, we investigate the role of H-bonds on the hierarchical structure of an aggregating amphiphile-oil solution containing a coordinating metal complex by means of atomistic molecular dynamics simulations and X-ray techniques. For the first time, we show that H-bonds not only stabilize the metal complex in the hydrophobic environment by coordinating between the Eu(NO3)3 outer-sphere and aggregating amphiphiles, but also affect the growth of such reverse micellar aggregates. The formation of swollen, elongated reverse micelles elevates the extraction of metal ions with increased H-bonds under acidic condition. These new insights into H-bonds are of broad interest to nanosynthesis and biological applications, in addition to metal ion separations.

  19. Salivary enzymes and exhaled air affect Streptococcus salivarius growth and physiological state in complemented artificial saliva.

    PubMed

    Roger, P; Harn-Arsa, S; Delettre, J; Béal, C

    2011-12-01

    To better understand the phenomena governing the establishment of the oral bacterium Streptococcus salivarius in the mouth, the effect of some environmental factors has been studied in complemented artificial saliva, under oral pH and temperature conditions. Three salivary enzymes at physiological concentrations were tested: peroxidase, lysozyme and amylase, as well as injection of exhaled air. Injection of air containing 5% CO2 and 16% O2 induced a deleterious effect on S. salivarius K12, mainly by increasing redox potential. Addition of lysozyme slightly affected the physiological state of S. salivarius by altering membrane integrity. In contrast, peroxidase was not detrimental as it made it possible to decrease the redox potential. The addition of amylase reduced the specific growth rate of S. salivarius by formation of a complex with amylase and mucins, but led to high final biomass, as a result of enzymatic degradation of some nutrients. Finally, this work demonstrated that salivary enzymes had a slight impact on S. salivarius behaviour. It can thus be concluded that this bacterium was well adapted to in-mouth conditions, as it was able to resist certain salivary enzymes, even if tolerance to expired air was affected, as a result of an increased redox potential. PMID:21892611

  20. SIAH-1 inhibits cell growth by altering the mitotic process.

    PubMed

    Bruzzoni-Giovanelli, H; Faille, A; Linares-Cruz, G; Nemani, M; Le Deist, F; Germani, A; Chassoux, D; Millot, G; Roperch, J P; Amson, R; Telerman, A; Calvo, F

    1999-11-25

    SIAH-1, the human homologue of the drosophila seven in absentia gene, is a p53-p21Waf-1 inducible gene. We report that stable transfection with SIAH-1 of the epithelial breast cancer cell line MCF-7 blocks its growth process. The transfectants show a redistribution of SIAH-1 protein within the nucleus, more specifically to the nuclear matrix, associated to dramatic changes in cell morphology and defective mitosis. Multinucleated giant cells (2-12 nuclei in more than 50% cells) were a most striking observation associated with tubulin spindle disorganization and defective cytokinesis. There were also present at high frequency abortive mitotic figures, DNA bridges and persistance of intercellular bridges and midbodies, along with an increased expression of p21Waf-1. These results indicate that the mechanism of growth arrest induced by SIAH-1 in MCF-7 cells involves disorganization of the mitotic program, mainly during nuclei separation and cytokinesis.

  1. DNA Replication Licensing Affects Cell Proliferation or Endoreplication in a Cell Type–Specific Manner

    PubMed Central

    del Mar Castellano, María; Boniotti, María Beatrice; Caro, Elena; Schnittger, Arp; Gutierrez, Crisanto

    2004-01-01

    In eukaryotic cells, the function of DNA replication licensing components (Cdc6 and Cdt1, among others) is crucial for cell proliferation and genome stability. However, little is known about their role in whole organisms and whether licensing control interfaces with differentiation and developmental programs. Here, we study Arabidopsis thaliana CDT1, its regulation, and the consequences of overriding licensing control. The availability of AtCDT1 is strictly regulated at two levels: (1) at the transcription level, by E2F and growth-arresting signals, and (2) posttranscriptionally, by CDK phosphorylation, a step that is required for its proteasome-mediated degradation. We also show that CDC6 and CDT1 are key targets for the coordination of cell proliferation, differentiation, and development. Indeed, altered CDT1 or CDC6 levels have cell type–specific effects in developing Arabidopsis plants: in leaf cells competent to divide, cell proliferation is stimulated, whereas in cells programmed to undergo differentiation-associated endoreplication rounds, extra endocycles are triggered. Thus, we propose that DNA replication licensing control is critical for the proper maintenance of proliferative potential, developmental programs, and morphogenetic patterns. PMID:15316110

  2. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth

    PubMed Central

    Mollet, Jean-Claude; Leroux, Christelle; Dardelle, Flavien; Lehner, Arnaud

    2013-01-01

    The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed. PMID:27137369

  3. Effect of low dose rate radiation on cell growth kinetics.

    PubMed Central

    Gregg, E C; Yau, T M; Kim, S C

    1979-01-01

    Experimental determinations were made of cell number as a function of time for two strains of L5178Y mammalian cells maintained continuously in various environments of radiation. One strain possessed a shoulder in its dose response curve whereas the other did not. Neither strain showed any significant difference in growth rate for interdivision doses on the order of the median lethal dose or less delivered continuously at a low dose rate or pulsed every 4 h at a high instantaneous dose rate. It was also shown that large numbers of dead cells have little effect on growth rate and that these dead cells last as discrete entities for many days. A simple theory of growth rate in the presence of radiation is presented, and the agreement with the observations implies that there is no effect of any sublethal low dose rate radiation received in one generation on the growth rate or radiation sensitivity of the succeeding generation. Further analysis of the data also showed that for the no-shoulder cells at 37 degrees C, tritiated water had a relative biological effect close to unity for cell sterilization. PMID:262446

  4. Lymphatic endothelial cells support tumor growth in breast cancer

    PubMed Central

    Lee, Esak; Pandey, Niranjan B.; Popel, Aleksander S.

    2014-01-01

    Tumor lymphatic vessels (LV) serve as a conduit of tumor cell dissemination, due to their leaky nature and secretion of tumor-recruiting factors. Though lymphatic endothelial cells (LEC) lining the LV express distinct factors (also called lymphangiocrine factors), these factors and their roles in the tumor microenvironment are not well understood. Here we employ LEC, microvascular endothelial cells (MEC), and human umbilical vein endothelial cells (HUVEC) cultured in triple-negative MDA-MB-231 tumor-conditioned media (TCM) to determine the factors that may be secreted by various EC in the MDA-MB-231 breast tumor. These factors will serve as endothelium derived signaling molecules in the tumor microenvironment. We co-injected these EC with MDA-MB-231 breast cancer cells into animals and showed that LEC support tumor growth, HUVEC have no significant effect on tumor growth, whereas MEC suppress it. Focusing on LEC-mediated tumor growth, we discovered that TCM-treated LEC (‘tumor-educated LEC') secrete high amounts of EGF and PDGF-BB, compared to normal LEC. LEC-secreted EGF promotes tumor cell proliferation. LEC-secreted PDGF-BB induces pericyte infiltration and angiogenesis. These lymphangiocrine factors may support tumor growth in the tumor microenvironment. This study shows that LV serve a novel role in the tumor microenvironment apart from their classical role as conduits of metastasis. PMID:25068296

  5. Modification of growth of neuroblastoma cells in syngeneic mice by aldehyde-treated neuroblastoma cells.

    PubMed

    Bertolini, L; Diamond, L; Revoltella, R

    1976-06-01

    Pretreatment of syngeneic strain A mice with aldehyde-fixed neuroblastoma cells (clone NB6R) almost completely protected the mice against challenge with viable NB6R cells. In contrast, tumor growth was enhanced in mice treated with fixed cells after challenge with viable cells.

  6. Hepatocyte growth factor protects human endothelial cells against advanced glycation end products-induced apoposis

    SciTech Connect

    Zhou Yijun . E-mail: zhou-yijun@hotmail.com; Wang Jiahe; Zhang Jin

    2006-06-02

    Advanced glycation end products (AGEs) form by a non-enzymatic reaction between reducing sugars and biological proteins, which play an important role in the pathogenesis of atherosclerosis. In this study, we assessed AGEs effects on human umbilical vein endothelial cells (HUVECs) growth, proliferation and apoptosis. Additionally, we investigated whether hepatocyte growth factor (HGF), an anti-apoptotic factor for endothelial cells, prevents AGEs-induced apoptosis of HUVECs. HUVECs were treated with AGEs in the presence or absence of HGF. Treatment of HUVECs with AGEs changed cell morphology, decreased cell viability, and induced DNA fragmentation, leading to apoptosis. Apoptosis was induced by AGEs in a dose- and time-dependent fashion. AGEs markedly elevated Bax and decreased NF-{kappa}B, but not Bcl-2 expression. Additionally, AGEs significantly inhibited cell growth through a pro-apoptotic action involving caspase-3 and -9 activations in HUVECs. Most importantly, pretreatment with HGF protected against AGEs-induced cytotoxicity in the endothelial cells. HGF significantly promoted the expression of Bcl-2 and NF-{kappa}B, while decreasing the activities of caspase-3 and -9 without affecting Bax level. Our data suggest that AGEs induce apoptosis in endothelial cells. HGF effectively attenuate AGEs-induced endothelial cell apoptosis. These findings provide new perspectives in the role of HGF in cardiovascular disease.

  7. GPER agonist G-1 decreases adrenocortical carcinoma (ACC) cell growth in vitro and in vivo.

    PubMed

    Chimento, Adele; Sirianni, Rosa; Casaburi, Ivan; Zolea, Fabiana; Rizza, Pietro; Avena, Paola; Malivindi, Rocco; De Luca, Arianna; Campana, Carmela; Martire, Emilia; Domanico, Francesco; Fallo, Francesco; Carpinelli, Giulia; Cerquetti, Lidia; Amendola, Donatella; Stigliano, Antonio; Pezzi, Vincenzo

    2015-08-01

    We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC.

  8. GPER agonist G-1 decreases adrenocortical carcinoma (ACC) cell growth in vitro and in vivo

    PubMed Central

    Zolea, Fabiana; Rizza, Pietro; Avena, Paola; Malivindi, Rocco; De Luca, Arianna; Campana, Carmela; Martire, Emilia; Domanico, Francesco; Fallo, Francesco; Carpinelli, Giulia; Cerquetti, Lidia; Amendola, Donatella; Stigliano, Antonio; Pezzi, Vincenzo

    2015-01-01

    We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC. PMID:26131713

  9. GPER agonist G-1 decreases adrenocortical carcinoma (ACC) cell growth in vitro and in vivo.

    PubMed

    Chimento, Adele; Sirianni, Rosa; Casaburi, Ivan; Zolea, Fabiana; Rizza, Pietro; Avena, Paola; Malivindi, Rocco; De Luca, Arianna; Campana, Carmela; Martire, Emilia; Domanico, Francesco; Fallo, Francesco; Carpinelli, Giulia; Cerquetti, Lidia; Amendola, Donatella; Stigliano, Antonio; Pezzi, Vincenzo

    2015-08-01

    We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC. PMID:26131713

  10. Phase transitions in tumor growth: II prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Llanos-Pérez, J. A.; Betancourt-Mar, A.; De Miguel, M. P.; Izquierdo-Kulich, E.; Royuela-García, M.; Tejera, E.; Nieto-Villar, J. M.

    2015-05-01

    We propose a mechanism for prostate cancer cell lines growth, LNCaP and PC3 based on a Gompertz dynamics. This growth exhibits a multifractal behavior and a "second order" phase transition. Finally, it was found that the cellular line PC3 exhibits a higher value of entropy production rate compared to LNCaP, which is indicative of the robustness of PC3, over to LNCaP and may be a quantitative index of metastatic potential tumors.

  11. Primary cilia mechanics affects cell mechanosensation: A computational study.

    PubMed

    Khayyeri, Hanifeh; Barreto, Sara; Lacroix, Damien

    2015-08-21

    Primary cilia (PC) are mechanical cell structures linked to the cytoskeleton and are central to how cells sense biomechanical signals from their environment. However, it is unclear exactly how PC mechanics influences cell mechanosensation. In this study we investigate how the PC mechanical characteristics are involved in the mechanotransduction process whereby cilium deflection under fluid flow induces strains on the internal cell components that regulate the cell׳s mechanosensitive response. Our investigation employs a computational approach in which a finite element model of a cell consisting of a nucleus, cytoplasm, cortex, microtubules, actin bundles and a primary cilium was used together with a finite element representation of a flow chamber. Fluid-structure interaction analysis was performed by simulating perfusion flow of 1mm/s on the cell model. Simulations of cells with different PC mechanical characteristics, showed that the length and the stiffness of PC are responsible for the transmission of mechanical stimuli to the cytoskeleton. Fluid flow deflects the cilium, with the highest strains found at the base of the PC and in the cytoplasm. The PC deflection created further strains on the cell nucleus but did not influence microtubules and actin bundles significantly. Our results indicate that PC deflection under fluid flow stimulation transmits mechanical strain primarily to other essential organelles in the cytoplasm, such as the Golgi complex, that regulate cells' mechanoresponse. The simulations further suggest that cell mechanosensitivity can be altered by targeting PC length and rigidity.

  12. Hydrodynamic effects on cell growth in agitated microcarrier bioreactors

    NASA Technical Reports Server (NTRS)

    Cherry, Robert S.; Papoutsakis, E. Terry

    1988-01-01

    The net growth rate of bovine embryonic kidney cells in microcarrier bioreactor is the result of a variable death rate imposed on a cell culture trying to grow at a constant intrinsic growth rate. The death rate is a function of the agitation conditions in the system, and increases at higher agitation because of increasingly energetic interactions of the cell covered microcarriers with turbulent eddies in the fluid. At very low agitation rates bead-bead bridging becomes important; the large clumps formed by bridging can interact with larger eddies than single beads, leading to a higher death rate at low agitation. The growth and death rate were correlated with a dimensionless eddy number which compares eddy forces to the buoyant force on the bead.

  13. 4-Quinolone drugs affect cell cycle progression and function of human lymphocytes in vitro.

    PubMed Central

    Forsgren, A; Schlossman, S F; Tedder, T F

    1987-01-01

    Most antibacterial agents do not affect human lymphocyte function, but a few are inhibitory. In contrast, a pronounced increase in the incorporation of [3H]thymidine in the presence of 4-quinolones was observed in these studies. The uptake of [3H]thymidine into DNA (trichloroacetic acid precipitable) was significantly increased in phytohemagglutinin-stimulated human lymphocytes when they were exposed to eight new 4-quinolone derivatives, ciprofloxacin, norfloxacin, ofloxacin, A-56619, A-56620, amifloxacin, enoxacin, and pefloxacin, at 1.6 to 6.25 micrograms/ml for 5 days. Four less antibacterially active 4-quinolones (nalidixic acid, cinoxacin, flumequine, and pipemidic acid) stimulated [3H]thymidine incorporation only at higher concentrations or not at all. Kinetic studies showed that incorporation of [3H]thymidine was not affected or slightly inhibited by ciprofloxacin 2 days after phytohemagglutinin stimulation but was increased on days 3 to 6. The total incorporation of [3H]thymidine from day 1 to day 6 after phytohemagglutinin stimulation was increased by 42 to 45% at 5 to 20 micrograms of ciprofloxacin per ml. Increased [3H]thymidine incorporation was also seen when human lymphocytes were stimulated with mitogens other than phytohemagglutinin. Ciprofloxacin added at the start of the culture had a more pronounced effect on [3H]thymidine incorporation than when added later. In spite of the apparent increase in DNA synthesis, lymphocyte growth was inhibited by 20 micrograms of ciprofloxacin per ml, and cell cycle analysis showed that ciprofloxacin inhibited progression through the cell cycle. In addition, immunoglobulin secretion by human lymphocytes stimulated by pokeweed mitogen for Epstein-Barr virus was inhibited by approximately 50% at 5 micrograms of ciprofloxacin per ml. These results suggest that the 4-quinolone drugs may also affect eucaryotic cell function in vitro, but additional studies are needed to establish an in vivo relevance. PMID:3606076

  14. Ets-1 controls breast cancer cell balance between invasion and growth.

    PubMed

    Furlan, Alessandro; Vercamer, Chantal; Bouali, Fatima; Damour, Isabelle; Chotteau-Lelievre, Anne; Wernert, Nicolas; Desbiens, Xavier; Pourtier, Albin

    2014-11-15

    Ets-1 overexpression in human breast cancers is associated with invasiveness and poor prognosis. By overexpressing Ets-1 or a dominant negative mutant in MMT breast cancer cells, we previously highlighted the key role of Ets-1 in coordinating multiple invasive features of these cells. Interestingly, we also noticed that Ets-1 decreased the density of breast cancer cells cultured in three-dimensional extracellular matrix gels. The 3D context was instrumental to this phenomenon, as such downregulation was not observed in cells grown on two-dimensional plastic or matrix-coated dishes. Ets-1 overexpression was deleterious to anchorage-independent growth of MMT cells in soft agar, a standard model for in vitro tumorigenicity. The relevance of this mechanism was confirmed in vivo, during primary tumor growth and in a metastatic assay of lung colonization. In these models, Ets-1 was associated with epithelial-to-mesenchymal transition features and modulated the ratio of Ki67-positive cells, while hardly affecting in vivo apoptotic cell death. Finally, siRNA-mediated knockdown of Ets-1 in human breast cancer cell lines also decreased colony growth, both in anchorage-independent assays and 3D extracellular matrix cultures. These in vitro and in vivo observations shed light on an unsuspected facet of Ets-1 in breast tumorigenesis. They show that while promoting malignancy through the acquisition of invasive features, Ets-1 also attenuates breast tumor cell growth and could therefore repress the growth of primary tumors and metastases. This work also demonstrates that 3D models may reveal mechanisms of tumor biology that are cryptic in standard 2D models.

  15. Effects of Selenium Yeast on Oxidative Stress, Growth Inhibition, and Apoptosis in Human Breast Cancer Cells.

    PubMed

    Guo, Chih-Hung; Hsia, Simon; Shih, Min-Yi; Hsieh, Fang-Chin; Chen, Pei-Chung

    2015-01-01

    Recent evidence suggests that selenium (Se) yeast may exhibit potential anti-cancer properties; whereas the precise mechanisms remain unknown. The present study was aimed at evaluating the effects of Se yeast on oxidative stress, growth inhibition, and apoptosis in human breast cancer cells. Treatments of ER-positive MCF-7 and triple-negative MDA-MB-231 cells with Se yeast (100, 750, and 1500 ng Se/mL), methylseleninic acid (MSA, 1500 ng Se/mL), or methylselenocysteine (MSC, 1500 ng Se/mL) at a time course experiment (at 24, 48, 72, and 96 h) were analyzed. Se yeast inhibited the growth of these cancer cells in a dose- and time-dependent manner. Compared with the same level of MSA, cancer cells exposure to Se yeast exhibited a lower growth-inhibitory response. The latter has also lower superoxide production and reduced antioxidant enzyme activities. Furthermore, MSA (1500 ng Se/mL)-exposed non-tumorigenic human mammary epithelial cells (HMEC) have a significant growth inhibitory effect, but not Se yeast and MSC. Compared with MSA, Se yeast resulted in a greater increase in the early apoptosis in MCF-7 cells as well as a lower proportion of early and late apoptosis in MDA-MB-231 cells. In addition, nuclear morphological changes and loss of mitochondrial membrane potential were observed. In conclusion, a dose of 100 to 1500 ng Se/mL of Se yeast can increase oxidative stress, and stimulate growth inhibitory effects and apoptosis induction in breast cancer cell lines, but does not affect non-tumorigenic cells. PMID:26392813

  16. Nordihydroguaiaretic Acid Inhibits Insulin-Like Growth Factor Signaling, Growth, and Survival in Human Neuroblastoma Cells

    PubMed Central

    Meyer, Gary E.; Chesler, Louis; Liu, Dandan; Gable, Karissa; Maddux, Betty A.; Goldenberg, David D.; Youngren, Jack F.; Goldfine, Ira D.; Weiss, William A.; Matthay, Katherine K.; Rosenthal, Stephen M.

    2010-01-01

    Neuroblastoma is a common pediatric malignancy that metastasizes to the liver, bone, and other organs. Children with metastatic disease have a less than 50% chance of survival with current treatments. Insulin-like growth factors (IGFs) stimulate neuroblastoma growth, survival, and motility, and are expressed by neuroblastoma cells and the tissues they invade. Thus, therapies that disrupt the effects of IGFs on neuroblastoma tumorigenesis may slow disease progression. We show that NVP-AEW541, a specific inhibitor of the IGF-I receptor (IGF-IR), potently inhibits neuroblastoma growth in vitro. Nordihydroguaiaretic acid (NDGA), a phenolic compound isolated from the creosote bush (Larrea divaricata), has anti-tumor properties against a number of malignancies, has been shown to inhibit the phosphorylation and activation of the IGF-IR in breast cancer cells, and is currently in Phase I trials for prostate cancer. In the present study in neuroblastoma, NDGA inhibits IGF-I-mediated activation of the IGF-IR and disrupts activation of ERK and Akt signaling pathways induced by IGF-I. NDGA inhibits growth of neuroblastoma cells and induces apoptosis at higher doses, causing IGF-I-resistant activation of caspase-3 and a large increase in the fraction of sub-G0 cells. In addition, NDGA inhibits the growth of xenografted human neuroblastoma tumors in nude mice. These results indicate that NDGA may be useful in the treatment of neuroblastoma and may function in part via disruption of IGF-IR signaling. PMID:17486636

  17. Nordihydroguaiaretic acid inhibits insulin-like growth factor signaling, growth, and survival in human neuroblastoma cells.

    PubMed

    Meyer, Gary E; Chesler, Louis; Liu, Dandan; Gable, Karissa; Maddux, Betty A; Goldenberg, David D; Youngren, Jack F; Goldfine, Ira D; Weiss, William A; Matthay, Katherine K; Rosenthal, Stephen M

    2007-12-15

    Neuroblastoma is a common pediatric malignancy that metastasizes to the liver, bone, and other organs. Children with metastatic disease have a less than 50% chance of survival with current treatments. Insulin-like growth factors (IGFs) stimulate neuroblastoma growth, survival, and motility, and are expressed by neuroblastoma cells and the tissues they invade. Thus, therapies that disrupt the effects of IGFs on neuroblastoma tumorigenesis may slow disease progression. We show that NVP-AEW541, a specific inhibitor of the IGF-I receptor (IGF-IR), potently inhibits neuroblastoma growth in vitro. Nordihydroguaiaretic acid (NDGA), a phenolic compound isolated from the creosote bush (Larrea divaricata), has anti-tumor properties against a number of malignancies, has been shown to inhibit the phosphorylation and activation of the IGF-IR in breast cancer cells, and is currently in Phase I trials for prostate cancer. In the present study in neuroblastoma, NDGA inhibits IGF-I-mediated activation of the IGF-IR and disrupts activation of ERK and Akt signaling pathways induced by IGF-I. NDGA inhibits growth of neuroblastoma cells and induces apoptosis at higher doses, causing IGF-I-resistant activation of caspase-3 and a large increase in the fraction of sub-G0 cells. In addition, NDGA inhibits the growth of xenografted human neuroblastoma tumors in nude mice. These results indicate that NDGA may be useful in the treatment of neuroblastoma and may function in part via disruption of IGF-IR signaling.

  18. Changes in Cell Morphology Are Coordinated with Cell Growth through the TORC1 Pathway

    PubMed Central

    Goranov, Alexi I.; Gulati, Amneet; Dephoure, Noah; Takahara, Terunao; Maeda, Tatsuya; Gygi, Steven P.; Manalis, Scott; Amon, Angelika

    2013-01-01

    Summary Background Growth rate is determined not only by extracellular cues such as nutrient availability but also by intracellular processes. Changes in cell morphology in budding yeast, mediated by polarization of the actin cytoskeleton, have been shown to reduce cell growth. Results Here we demonstrate that polarization of the actin cytoskeleton inhibits the highly conserved Target of Rapamycin Complex 1 (TORC1) pathway. This downregulation is suppressed by inactivation of the TORC1 pathway regulatory Iml1 complex, which also regulates TORC1 during nitrogen starvation. We further demonstrate that attenuation of growth is important for cell recovery after conditions of prolonged polarized growth. Conclusions Our results indicate that extended periods of polarized growth inhibit protein synthesis, mass accumulation, and the increase in cell size at least in part through inhibiting the TORC1 pathway. We speculate that this mechanism serves to coordinate the ability of cells to increase in size with their biosynthetic capacity. PMID:23810534

  19. Development of neural crest cells expressing nerve growth factor receptors

    SciTech Connect

    Greiner, C.A.

    1987-01-01

    The present study examines the ontogeny of the nerve growth factor receptor of neural crest cells in vitro and the phenotypic nature of the neural crest cells expressing this receptor. /sup 125/I-NGF binding assays and autoradiographic and immunofluorescence techniques have demonstrated the presence of a subpopulation of quail neural crest cells that express specific NGF receptors after 3-4 days in vitro. This subpopulations represents approximately 28% of the cells in 5-day primary cultures and 30-35% of the cells in secondary cultures; these cells generally exhibited a flattened, phase-dark morphology. Approximately one-third of these cells also labeled with a 2 hr pulse of /sup 3/H thymidine. Catecholamine-containing neural crest cells generally lacked NGF receptors. NGF receptor-positive cells also failed to demonstrate somatostatin-, neuron-specific enolase-, or S-100-like immunoreactivity. Melanocytes do not appear to express NGF receptors. Exogenous nerve growth factor did not influence the morphology or mitotic status of the cells in culture.

  20. Rice LGD1 containing RNA binding activity affects growth and development through alternative promoters.

    PubMed

    Thangasamy, Saminathan; Chen, Pei-Wei; Lai, Ming-Hsing; Chen, Jychian; Jauh, Guang-Yuh

    2012-07-01

    Tiller initiation and panicle development are important agronomical traits for grain production in Oryza sativa L. (rice), but their regulatory mechanisms are not yet fully understood. In this study, T-DNA mutant and RNAi transgenic approaches were used to functionally characterize a unique rice gene, LAGGING GROWTH AND DEVELOPMENT 1 (LGD1). The lgd1 mutant showed slow growth, reduced tiller number and plant height, altered panicle architecture and reduced grain yield. The fewer unelongated internodes and cells in lgd1 led to respective reductions in tiller number and to semi-dwarfism. Several independent LGD1-RNAi lines exhibited defective phenotypes similar to those observed in lgd1. Interestingly, LGD1 encodes multiple transcripts with different transcription start sites (TSSs), which were validated by RNA ligase-mediated rapid amplification of 5' and 3' cDNA ends (RLM-RACE). Additionally, GUS assays and a luciferase promoter assay confirmed the promoter activities of LGD1.1 and LGD1.5. LGD1 encoding a von Willebrand factor type A (vWA) domain containing protein is a single gene in rice that is seemingly specific to grasses. GFP-tagged LGD1 isoforms were predominantly detected in the nucleus, and weakly in the cytoplasm. In vitro northwestern analysis showed the RNA-binding activity of the recombinant C-terminal LGD1 protein. Our results demonstrated that LGD1 pleiotropically regulated rice vegetative growth and development through both the distinct spatiotemporal expression patterns of its multiple transcripts and RNA binding activity. Hence, the study of LGD1 will strengthen our understanding of the molecular basis of the multiple transcripts, and their corresponding polypeptides with RNA binding activity, that regulate pleiotropic effects in rice.

  1. Rice LGD1 containing RNA binding activity affects growth and development through alternative promoters.

    PubMed

    Thangasamy, Saminathan; Chen, Pei-Wei; Lai, Ming-Hsing; Chen, Jychian; Jauh, Guang-Yuh

    2012-07-01

    Tiller initiation and panicle development are important agronomical traits for grain production in Oryza sativa L. (rice), but their regulatory mechanisms are not yet fully understood. In this study, T-DNA mutant and RNAi transgenic approaches were used to functionally characterize a unique rice gene, LAGGING GROWTH AND DEVELOPMENT 1 (LGD1). The lgd1 mutant showed slow growth, reduced tiller number and plant height, altered panicle architecture and reduced grain yield. The fewer unelongated internodes and cells in lgd1 led to respective reductions in tiller number and to semi-dwarfism. Several independent LGD1-RNAi lines exhibited defective phenotypes similar to those observed in lgd1. Interestingly, LGD1 encodes multiple transcripts with different transcription start sites (TSSs), which were validated by RNA ligase-mediated rapid amplification of 5' and 3' cDNA ends (RLM-RACE). Additionally, GUS assays and a luciferase promoter assay confirmed the promoter activities of LGD1.1 and LGD1.5. LGD1 encoding a von Willebrand factor type A (vWA) domain containing protein is a single gene in rice that is seemingly specific to grasses. GFP-tagged LGD1 isoforms were predominantly detected in the nucleus, and weakly in the cytoplasm. In vitro northwestern analysis showed the RNA-binding activity of the recombinant C-terminal LGD1 protein. Our results demonstrated that LGD1 pleiotropically regulated rice vegetative growth and development through both the distinct spatiotemporal expression patterns of its multiple transcripts and RNA binding activity. Hence, the study of LGD1 will strengthen our understanding of the molecular basis of the multiple transcripts, and their corresponding polypeptides with RNA binding activity, that regulate pleiotropic effects in rice. PMID:22409537

  2. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    PubMed Central

    Chang, Ming-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-01-01

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5–10 μm) having higher endotoxin levels than did fine particles (0.5–2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers. PMID:24368426

  3. Fibroblast growth factor rescues brain endothelial cells lacking presenilin 1 from apoptotic cell death following serum starvation

    PubMed Central

    Gama Sosa, Miguel A.; De Gasperi, Rita; Hof, Patrick R.; Elder, Gregory A.

    2016-01-01

    Presenilin 1 (Psen1) is important for vascular brain development and is known to influence cellular stress responses. To understand the role of Psen1 in endothelial stress responses, we investigated the effects of serum withdrawal on wild type (wt) and Psen1−/− embryonic brain endothelial cells. Serum starvation induced apoptosis in Psen1−/− cells but did not affect wt cells. PI3K/AKT signaling was reduced in serum-starved Psen1−/− cells, and this was associated with elevated levels of phospho-p38 consistent with decreased pro-survival AKT signaling in the absence of Psen1. Fibroblast growth factor (FGF1 and FGF2), but not vascular endothelial growth factor (VEGF) rescued Psen1−/− cells from serum starvation induced apoptosis. Inhibition of FGF signaling induced apoptosis in wt cells under serum withdrawal, while blocking γ-secretase activity had no effect. In the absence of serum, FGF2 immunoreactivity was distributed diffusely in cytoplasmic and nuclear vesicles of wt and Psen1−/− cells, as levels of FGF2 in nuclear and cytosolic fractions were not significantly different. Thus, sensitivity of Psen1−/− cells to serum starvation is not due to lack of FGF synthesis but likely to effects of Psen1 on FGF release onto the cell surface and impaired activation of the PI3K/AKT survival pathway. PMID:27443835

  4. Biciliated ependymal cell proliferation contributes to spinal cord growth

    PubMed Central

    Alfaro-Cervello, Clara; Soriano-Navarro, Mario; Mirzadeh, Zaman; Alvarez-Buylla, Arturo; Garcia-Verdugo, Jose Manuel

    2013-01-01

    Two neurogenic regions have been described in the adult brain, the lateral ventricle subventricular zone and the dentate gyrus subgranular zone. It has been suggested that neural stem cells also line the central canal of the adult spinal cord. Using transmission and scanning electron microscopy and immunostaining, we describe here the organization and cell types of the central canal epithelium in adult mice. The identity of dividing cells was determined by three-dimensional ultrastructural reconstructions of [3H]thymidine-labeled cells and confocal analysis of bromodeoxyuridine labeling. The most common cell type lining the central canal had two long motile (9+2) cilia and was vimentin+, CD24+, FoxJ1+, Sox2+ and CD133+, but nestin- and glial fibrillary acidic protein (GFAP)-. These biciliated ependymal cells of the central canal (Ecc) resembled E2 cells of the lateral ventricles, but their basal bodies were different from that of E2 or E1 cells. Interestingly, we frequently found Ecc cells with two nuclei and four cilia, suggesting they are formed by incomplete cytokinesis or cell fusion. GFAP+ astrocytes with a single cilium and an orthogonally oriented centriole were also observed. The majority of dividing cells corresponded to biciliated Ecc cells. Central canal proliferation was most common during the active period of spinal cord growth. Pairs of labeled Ecc cells were observed within the central canal in adult mice 2.5 weeks post-labeling. Our work suggests that the vast majority of postnatal dividing cells in the central canal are Ecc cells and their proliferation is associated with the growth of the spinal cord. PMID:22434575

  5. Freshwater environment affects growth rate and muscle fibre recruitment in seawater stages of Atlantic salmon (Salmo salar L.).

    PubMed

    Johnston, Ian A; Manthri, Sujatha; Alderson, Richard; Smart, Alistair; Campbell, Patrick; Nickell, David; Robertson, Billy; Paxton, Charles G M; Burt, M Louise

    2003-04-01

    The influence of freshwater environment on muscle growth in seawater was investigated in an inbred population of farmed Atlantic salmon (Salmo salar L.). The offspring from a minimum of 64 families per group were incubated at either ambient temperature (ambient treatment) or in heated water (heated treatment). Growth was investigated using a mixed-effect statistical model with repeated measures, which included terms for treatment effect and random fish effects for individual growth rate (alpha) and the instantaneous growth rate per unit change in temperature (gamma). Prior to seawater transfer, fish were heavier in the heated (61.6+/-1.0 g; N=298) than in the ambient (34.1+/-0.4 g; N=206) treatments, reflecting their greater growth opportunity: 4872 degree-days and 4281 degree-days, respectively. However, the subsequent growth rate of the heated group was lower, such that treatments had a similar body mass (3.7-3.9 kg) after approximately 450 days in seawater. The total cross-sectional area of fast muscle and the number (FN) and size distribution of the fibres was determined in a subset of the fish. We tested the hypothesis that freshwater temperature regime affected the rate of recruitment and hypertrophy of muscle fibres. There were differences in FN between treatments and a significant age x treatment interaction but no significant cage effect (ANOVA). Cessation of fibre recruitment was identified by the absence of fibres of <10 micro m diameter. The maximum fibre number was 22.4% more in the ambient (9.3 x 10(5)+/-2.0 x 10(4) than in the heated (7.6 x 10(5)+/-1.5 x 10(4)) treatments (N=44 and 40 fish, respectively; P<0.001). For fish that had completed fibre recruitment, there was a significant correlation between FN and individual growth rate, explaining 35% of the total variation. The density of myogenic progenitor cells was quantified using an antibody to c-met and was approximately 2-fold higher in the ambient than in the heated group, equivalent to 2-3% of

  6. Direct inhibition of Retinoblastoma phosphorylation by Nimbolide causes cell cycle arrest and suppresses glioblastoma growth

    PubMed Central

    Anderson, Jane; Liu, Xiaona; Henry, Heather; Gasilina, Anjelika; Nassar, Nicholas; Ghosh, Jayeeta; Clark, Jason P; Kumar, Ashish; Pauletti, Giovanni M.; Ghosh, Pradip K; Dasgupta, Biplab

    2013-01-01

    Purpose Classical pharmacology allows the use and development of conventional phytomedicine faster and more economically than conventional drugs. This approach should be tested for their efficacy in terms of complementarity and disease control. The purpose of this study was to determine the molecular mechanisms by which nimbolide, a triterpenoid found in the well-known medicinal plant Azadirachta indica controls glioblastoma (GBM) growth. Experimental Design Using in vitro signaling, anchorage-independent growth, kinase assays, and xenograft models, we investigated the mechanisms of its growth inhibition in glioblastoma. Results We show that nimbolide or an ethanol soluble fraction of A. indica leaves (Azt) that contains nimbolide as the principal cytotoxic agent is highly cytotoxic against GBM in vitro and in vivo. Azt caused cell cycle arrest, most prominently at the G1-S stage in GBM cells expressing EGFRvIII, an oncogene present in about 20-25% of GBMs. Azt/nimbolide directly inhibited CDK4/CDK6 kinase activity leading to hypophosphorylation of the retinoblastoma (RB) protein, cell cycle arrest at G1-S and cell death. Independent of RB hypophosphorylation, Azt also significantly reduced proliferative and survival advantage of GBM cells in vitro and in tumor xenografts by downregulating Bcl2 and blocking growth factor induced phosphorylation of Akt, Erk1/2 and STAT3. These effects were specific since Azt did not affect mTOR or other cell cycle regulators. In vivo, Azt completely prevented initiation and inhibited progression of GBM growth. Conclusions Our preclinical findings demonstrate Nimbolide as a potent anti-glioma agent that blocks cell cycle and inhibits glioma growth in vitro and in vivo. PMID:24170547

  7. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1979-01-01

    Efforts were directed towards maintenance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro. The production of human growth hormone (hGH) by this means would be of benefit for the treatment of certain human hypopituitary diseases such as dwarfism. One of the primary approaches was the testing of agents which may logically be expected to increase hGH release. The progress towards this goal is summarized. Results from preliminary experiments dealing with electrophoresis of pituitary cell for the purpose of somatotroph separation are described.

  8. Microcrystalline silicon growth for heterojunction solar cells

    NASA Technical Reports Server (NTRS)

    Leung, D. C.; Iles, P. A.; Fang, P. H.

    1984-01-01

    Microcrystalline Si (m-Si) films with a 1.7eV energy bandgap and crystal size of several hundred A were e-beam evaporated on single crystalline Si (c-Si) to form a heterojunction with the substrate, or a window layer to a single crystalline p-n junction (heteroface structure). The goal was to enhance Voc by such uses of the larger bandgap m-Si, with the intriguing prospect of forming heterostructures with exact lattice match on each layer. The heterojunction structure was affected by interface and shunting problems and the best Voc achieved was only 482mV, well below that of single crystal Si homojunctions. The heteroface structure showed promise for some of the samples with p m-Si/p-n structure (the complementary structure did not show any improvement). Although several runs with different deposition conditions were run, the results were inconsistent. Any Voc enhancement obtained was too small to compensate for the current loss due to the extra absorption and poor carrier transport properties of the m-Si film.

  9. Cell longevity and sustained primary growth in palm stems.

    PubMed

    Tomlinson, P Barry; Huggett, Brett A

    2012-12-01

    Longevity, or organismal life span, is determined largely by the period over which constituent cells can function metabolically. Plants, with modular organization (the ability continually to develop new organs and tissues) differ from animals, with unitary organization (a fixed body plan), and this difference is reflected in their respective life spans, potentially much longer in plants than animals. We draw attention to the observation that palm trees, as a group of monocotyledons without secondary growth comparable to that of lignophytes (plants with secondary growth from a bifacial cambium), retain by means of sustained primary growth living cells in their trunks throughout their organismal life span. Does this make palms the longest-lived trees because they can grow as individuals for several centuries? No conventional lignophyte retains living metabolically active differentiated cell types in its trunk for this length of time, even though the tree as a whole can exist for millennia. Does this contrast also imply that the long-lived cells in a palm trunk have exceptional properties, which allows this seeming immortality? We document the long-life of many tall palm species and their inherent long-lived stem cell properties, comparing such plants to conventional trees. We provide a summary of aspects of cell age and life span in animals and plants. Cell replacement is a feature of animal function, whereas conventional trees rely on active growth centers (meristems) to sustain organismal development. However, the long persistence of living cells in palm trunks is seen not as evidence for unique metabolic processes that sustain longevity, but is a consequence of unique constructional features. This conclusion suggests that the life span of plant cells is not necessarily genetically determined.

  10. Tackling Cell Transplantation Anoikis: An Injectable, Shape Memory Cryogel Microcarrier Platform Material for Stem Cell and Neuronal Cell Growth.

    PubMed

    Newland, Ben; Welzel, Petra B; Newland, Heike; Renneberg, Claudia; Kolar, Petr; Tsurkan, Mikhail; Rosser, Anne; Freudenberg, Uwe; Werner, Carsten

    2015-10-01

    Highly macroporous semisynthetic cryogel microcarriers can be synthesized for culturing stem cells and neuronal type cells. Growth factors loaded to heparin-containing microcarriers show near zero-order release kinetics and cell-loaded microcarriers can be injected through a fine gauge cannula without negative effect on the cells. These carriers can be applied for cell transplantation applications.

  11. How does metabolism affect cell death in cancer?

    PubMed

    Villa, Elodie; Ricci, Jean-Ehrland

    2016-07-01

    In cancer research, identifying a specificity of tumor cells compared with 'normal' proliferating cells for targeted therapy is often considered the Holy Grail for researchers and clinicians. Although diverse in origin, most cancer cells share characteristics including the ability to escape cell death mechanisms and the utilization of different methods of energy production. In the current paradigm, aerobic glycolysis is considered the central metabolic characteristic of cancer cells (Warburg effect). However, recent data indicate that cancer cells also show significant changes in other metabolic pathways. Indeed, it was recently suggested that Kreb's cycle, pentose phosphate pathway intermediates, and essential and nonessential amino acids have key roles. Renewed interest in the fact that cancer cells have to reprogram their metabolism in order to proliferate or resist treatment must take into consideration the ability of tumor cells to adapt their metabolism to the local microenvironment (low oxygen, low nutrients). This variety of metabolic sources might be either a strength, resulting in infinite possibilities for adaptation and increased ability to resist chemotherapy-induced death, or a weakness that could be targeted to kill cancer cells. Here, we discuss recent insights showing how energetic metabolism may regulate cell death and how this might be relevant for cancer treatment.

  12. Stem cell origin differently affects bone tissue engineering strategies

    PubMed Central

    Mattioli-Belmonte, Monica; Teti, Gabriella; Salvatore, Viviana; Focaroli, Stefano; Orciani, Monia; Dicarlo, Manuela; Fini, Milena; Orsini, Giovanna; Di Primio, Roberto; Falconi, Mirella

    2015-01-01

    Bone tissue engineering approaches are encouraging for the improvement of conventional bone grafting technique drawbacks. Thanks to their self-renewal and multi-lineage differentiation ability, stem cells are one of the major actors in tissue engineering approaches, and among these adult mesenchymal stem cells (MSCs) hold a great promise for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs) are the first- identified and well-recognized stem cell population used in bone tissue engineering. Nevertheless, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The fruitful selection and combination of tissue engineered scaffold, progenitor cells, and physiologic signaling molecules allowed the surgeon to reconstruct the missing natural tissue. On the basis of these considerations, we analyzed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e., periodontal ligament, maxillary periosteum) as well as adipose-derived stem cells (ASCs), in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, taking into account their specific features, they could be intriguing cell sources in different stem cell-based bone/periodontal tissue regeneration approaches. PMID:26441682

  13. Heterogeneity of epidermal growth factor binding kinetics on individual cells.

    PubMed Central

    Chung, J C; Sciaky, N; Gross, D J

    1997-01-01

    Binding of fluorescein-conjugated epidermal growth factor (EGF) to individual A431 cells at 4 degrees C is measured by a quantitative fluorescence imaging technique. After background fluorescence and cell autofluorescence photobleaching corrections, the kinetic data are fit to simple models of one monovalent site and two independent monovalent sites, both of which include a first-order dye photobleaching process. Model simulations and the results from data analysis indicate that the one-monovalent-site model does not describe EGF binding kinetics at the single-cell level, whereas the two-site model is consistent with, but not proved by, the single-cell binding data. In addition, the kinetics of binding of fluorescein-EGF to different cells from the same coverslip often differ significantly from each other, indicating cell-to-cell variations in the binding properties of the EGF receptor. PMID:9251825

  14. Measuring in-vitro extensibility of growth plant cell walls

    SciTech Connect

    Cosgrove, Daniel

    2011-01-01

    This article summarizes the theory and practical aspects of measuring cell wall properties by four different extensometer techniques and how the results of these methods relate to the concept and ideal measurement of cell wall extensibility in the context of cell growth. These in vivo techniques are particularly useful for studies of the molecular basis of cell wall extension. Measurements of breaking strength, elastic compliance, and plastic compliance may be informative about changes in cell wall structure, whereas measurements of wall stress relaxation and creep are sensitive to both changes in wall structure and wall-loosening processes, such as those mediated by expansins and some lytic enzymes. A combination of methods is needed to obtain a broader view of cell wall behavior and properties connected with the concept of cell wall extensibility.

  15. Single-cell mass spectrometry reveals small molecules that affect cell fates in the 16-cell embryo

    PubMed Central

    Onjiko, Rosemary M.; Moody, Sally A.; Nemes, Peter

    2015-01-01

    Spatial and temporal changes in molecular expression are essential to embryonic development, and their characterization is critical to understand mechanisms by which cells acquire different phenotypes. Although technological advances have made it possible to quantify expression of large molecules during embryogenesis, little information is available on metabolites, the ultimate indicator of physiological activity of the cell. Here, we demonstrate that single-cell capillary electrophoresis-electrospray ionization mass spectrometry is able to test whether differential expression of the genome translates to the domain of metabolites between single embryonic cells. Dissection of three different cell types with distinct tissue fates from 16-cell embryos of the South African clawed frog (Xenopus laevis) and microextraction of their metabolomes enabled the identification of 40 metabolites that anchored interconnected central metabolic networks. Relative quantitation revealed that several metabolites were differentially active between the cell types in the wild-type, unperturbed embryos. Altering postfertilization cytoplasmic movements that perturb dorsal development confirmed that these three cells have characteristic small-molecular activity already at cleavage stages as a result of cell type and not differences in pigmentation, yolk content, cell size, or position in the embryo. Changing the metabolite concentration caused changes in cell movements at gastrulation that also altered the tissue fates of these cells, demonstrating that the metabolome affects cell phenotypes in the embryo. PMID:25941375

  16. Altered tumor cell growth and tumorigenicity in models of microgravity

    NASA Astrophysics Data System (ADS)

    Yamauchi, K.; Taga, M.; Furian, L.; Odle, J.; Sundaresan, A.; Pellis, N.; Andrassy, R.; Kulkarni, A.

    Spaceflight environment and microgravity (MG) causes immune dysfunction and is a major health risk to humans, especially during long-term space missions. The effects of microgravity environment on tumor growth and carcinogenesis are yet unknown. Hence, we investigated the effects of simulated MG (SMG) on tumor growth and tumorigenicity using in vivo and in vitro models. B16 melanoma cells were cultured in static flask (FL) and rotating wall vessel bioreactors (BIO) to measure growth and properties, melanin production and apoptosis. BIO cultures had 50% decreased growth (p<0.01), increased doubling time and a 150% increase in melanin production (p<0.05). Flow cytometric analysis showed increased apoptosis in BIO. When BIO cultured melanoma cells were inoculated sc in mice there was a significant increase in tumorigenicity as compared to FL cells. Thus SMG may have supported &selected highly tumorigenic cells and it is pos sible that in addition to decreased immune function MG may alter tumor cell characteristics and invasiveness. Thus it is important to study effects of microgravity environment and its stressors using experimental tumors and SMG to understand and evaluate carcinogenic responses to true microgravity. Further studies on carcinogenic events and their mechanisms will allow us develop and formulate countermeasures and protect space travelers. Additional results will be presented. (Supported by NASA NCC8-168 grant, ADK)

  17. Systemic but not intraovarian concentrations of insulin-like growth factor-I are affected by short-term fasting.

    PubMed

    Spicer, L J; Crowe, M A; Prendiville, D J; Goulding, D; Enright, W J

    1992-05-01

    To determine whether systemic and/or intraovarian concentrations of insulin-like growth factor-I (IGF-I) are affected by short-term fasting, 24 heifers were blocked by weight and, within block, were assigned to one of three treatments: fasted for 0 h (controls; n = 8), fasted for 24 h (n = 8), or fasted for 48 h (n = 8). Blood plasma was collected every 8 h from -64 h to 0 h before ovariectomy (OVEX). OVEX was performed per vagina under local anesthesia during the follicular phase of an estrous cycle (36-42 h after synchronization with prostaglandin-F2 alpha). Follicular fluid (FFL) and granulosa cells were collected individually from follicles greater than or equal to 6 mm (large), and FFL was pooled from follicles 1.0-5.9 mm (small) in diameter. Fasting did not affect (p greater than 0.20) the number (mean +/- SE) of small (52 +/- 7) or large (1.5 +/- 0.4) follicles per heifer, specific binding of 125I-hCG to granulosa cells of follicles greater than or equal to 8 mm in diameter, or concentrations of progesterone in FFL of small follicles. At OVEX, body weight was less (p less than 0.01) for 24 h- and 48 h-fasted heifers (412 +/- 7 kg and 399 +/- 7 kg, respectively) than for 0 h-fasted heifers (442 +/- 7 kg). At OVEX, plasma concentrations of IGF-I were lower (p less than 0.05) in the 48 h-fasted group (105 +/- 8 ng/ml) than in the 0 h-fasted group (140 +/- 8 ng/ml).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1591347

  18. Genetic background affects susceptibility to tumoral stem cell reprogramming

    PubMed Central

    García-Ramírez, Idoia; Ruiz-Roca, Lucía; Martín-Lorenzo, Alberto; Blanco, Óscar; García-Cenador, María Begoña; García-Criado, Francisco Javier; Vicente-Dueñas, Carolina; Sánchez-García, Isidro

    2013-01-01

    The latest studies of the interactions between oncogenes and its target cell have shown that certain oncogenes may act as passengers to reprogram tissue-specific stem/progenitor cell into a malignant cancer stem cell state. In this study, we show that the genetic background influences this tumoral stem cell reprogramming capacity of the oncogenes using as a model the Sca1-BCRABLp210 mice, where the type of tumor they develop, chronic myeloid leukemia (CML), is a function of tumoral stem cell reprogramming. Sca1-BCRABLp210 mice containing FVB genetic components were significantly more resistant to CML. However, pure Sca1-BCRABLp210 FVB mice developed thymomas that were not seen in the Sca1-BCRABLp210 mice into the B6 background. Collectively, our results demonstrate for the first time that tumoral stem cell reprogramming fate is subject to polymorphic genetic control. PMID:23839033

  19. Nanomechanical sensors for single microbial cell growth monitoring

    NASA Astrophysics Data System (ADS)

    Maloney, Niall; Lukacs, Gyongyi; Jensen, Jason; Hegner, Martin

    2014-06-01

    A nanomechanical technique for rapid real time detection and monitoring of microorganism growth will significantly reduce costs and diagnosis times in industrial and clinical settings. Owing to their label free detection mechanism and unprecedented sensitivity to the mass and elastic modulus of biological structures, dynamically operated cantilever arrays provide an opportunity to rapidly detect and track the evolution of microbial growth. Here we report the monitoring of the growth of single Aspergillus niger spores via the multimode response of microcantilevers. The fungal hyphal structure affects the cantilevers' nanomechanical properties as it propagates along the sensor. We demonstrate, for the first time, the mapping of cellular events with great accuracy using a cantilever frequency response. Imaging of growth conditions on the cantilever, which is performed in parallel, allows for verification of these results. Theoretical comparison and finite element modelling confirm experimental findings and allow for determination of the hyphal elastic modulus.A nanomechanical technique for rapid real time detection and monitoring of microorganism growth will significantly reduce costs and diagnosis times in industrial and clinical settings. Owing to their label free detection mechanism and unprecedented sensitivity to the mass and elastic modulus of biological structures, dynamically operated cantilever arrays provide an opportunity to rapidly detect and track the evolution of microbial growth. Here we report the monitoring of the growth of single Aspergillus niger spores via the multimode response of microcantilevers. The fungal hyphal structure affects the cantilevers' nanomechanical properties as it propagates along the sensor. We demonstrate, for the first time, the mapping of cellular events with great accuracy using a cantilever frequency response. Imaging of growth conditions on the cantilever, which is performed in parallel, allows for verification of these

  20. Harvesting Technique Affects Adipose-Derived Stem Cell Yield

    PubMed Central

    Iyyanki, Tejaswi; Hubenak, Justin; Liu, Jun; Chang, Edward I.; Beahm, Elisabeth K.; Zhang, Qixu

    2015-01-01

    Background The success of an autologous fat graft depends in part on its total stromal vascular fraction (SVF) and adipose-derived stem cells (ASCs). However, variations in the yields of ASCs and SVF cells as a result of different harvesting techniques and donor sites are poorly understood. Objective To investigate the effects of adipose tissue harvesting technique and donor site on the yield of ASCs and SVF cells. Methods Subcutaneous fat tissues from the abdomen, flank, or axilla were harvested from patients of various ages by mechanical liposuction, direct surgical excision, or Coleman's technique with or without centrifugation. Cells were isolated and then analyzed with flow cytometry to determine the yields of total SVF cells and ASCs (CD11b−, CD45−, CD34+, CD90+, D7-FIB+). Differences in ASC and total SVF yields were assessed with one-way analysis of variance. Differentiation experiments were performed to confirm the multilineage potential of cultured SVF cells. Results Compared with Coleman's technique without centrifugation, direct excision yielded significantly more ASCs (P < .001) and total SVF cells (P = .007); liposuction yielded significantly fewer ASCs (P < .001) and total SVF cells (P < .05); and Coleman's technique with centrifugation yielded significantly more total SVF cells (P < .005), but not ASCs. The total number of SVF cells in fat harvested from the abdomen was significantly larger than the number in fat harvested from the flank or axilla (P < .05). Cultured SVF cells differentiated to adipocytes, osteocytes, and chondrocytes. Conclusions Adipose tissue harvested from the abdomen through direct excision or Coleman's technique with centrifugation was found to yield the most SVF cells and ASCs. PMID:25791999

  1. Decreased Ferroportin Promotes Myeloma Cell Growth and Osteoclast Differentiation

    PubMed Central

    Gu, Zhimin; Wang, He; Xia, Jiliang; Yang, Ye; Jin, Zhendong; Xu, Hongwei; Shi, Jumei; De Domenico, Ivana; Tricot, Guido; Zhan, Fenghuang

    2016-01-01

    Iron homeostasis is disrupted in multiple myeloma, a difficult-to-cure plasma cell malignancy with lytic bone lesions. Here, we systematically analyzed iron gene expression signature and demonstrated that mRNA expression of iron exporter ferroportin (FPN1) is significantly downregulated in myeloma cells and correlates negatively with clinic outcome. Restoring expression of FPN1 reduces intracellular liable iron pool, inhibits STAT3-MCL-1 signaling, and suppresses myeloma cells growth. Furthermore, we demonstrated that mRNA of FPN1 is also downregulated at the initial stages of osteoclast differentiation and suppresses myeloma cell–induced osteoclast differentiation through regulating iron regulator TFRC, NF-κB, and JNK pathways. Altogether, we demonstrated that downregulation of FPN1 plays critical roles in promoting myeloma cell growth and bone resorption in multiple myeloma. PMID:25855377

  2. Soliton growth-signal transduction in topologically quantized T cells

    NASA Astrophysics Data System (ADS)

    Matsson, Leif

    1993-09-01

    A model for growth-signal transduction of the T cell and its growth factor, interleukin-2, is presented. It is obtained as a generalization of the usual rate equation and is founded on the observation that a definite number of receptor occupations must take place in order to promote transition to the S phase and subsequent DNA replication. The generalized rate equation is identified as the equation of motion of a Lagrangian field theory of Ginzburg-Landau (Goldstone) type. However it is not an ad hoc model but is a microscopic theory of the interaction of interleukin-2 and its receptor. The topological quantum number of the model is related to the observed definite number of receptor occupations required to elicit growth-signal transduction. Individual receptor quanta, up to this limit, are subjected to a type of Bose condensation. This collective excitation constitutes the growth signal in the form of a topological kink soliton which is then launched by the next potential receptor occupation that makes the interaction repulsive. The model provides a possible long-absent explanation of the triggering mechanism for growth-signal transduction by means of the ambivalent interaction, which switches sign after a definite number of receptor occupations. Moreover, it offers an explanation of how Nature screens out fractional signals in the growth-signal-transduction process of T cells. Although the model is derived for assumed point-like cells and certain other restrictions, the obtained dose-response curves are in striking agreement with proliferation data from studies of both the leukemic T cell line MLA-144 from gibbon ape and normal human T cells in, and without, the presence of monoclonal anti-Tac antibodies.

  3. Protein phosphatase 2A in Saccharomyces cerevisiae: effects on cell growth and bud morphogenesis.

    PubMed Central

    Ronne, H; Carlberg, M; Hu, G Z; Nehlin, J O

    1991-01-01

    We have cloned three genes for protein phosphatases in the yeast Saccharomyces cerevisiae. Two of the genes, PPH21 and PPH22, encode highly similar proteins that are homologs of the mammalian protein phosphatase 2A (PP2A), while the third gene, PPH3, encodes a new PP2A-related protein. Disruptions of either PPH21 or PPH22 had no effects, but spores disrupted for both genes produced very small colonies with few surviving cells. We conclude that PP2A performs an important function in yeast cells. A disruption of the third gene, PPH3, did not in itself affect growth, but it completely prevented growth of spores disrupted for both PPH21 and PPH22. Thus, PPH3 provides some PP2A-complementing activity which allows for a limited growth of PP2A-deficient cells. Strains were constructed in which we could study the phenotypes caused by either excess PP2A or total PP2A depletion. We found that the level of PP2A activity has dramatic effects on cell shape. PP2A-depleted cells develop an abnormal pear-shaped morphology which is particularly pronounced in the growing bud. In contrast, overexpression of PP2A produces more elongated cells, and high-level overexpression causes a balloonlike phenotype with huge swollen cells filled by large vacuoles. Images PMID:1656215

  4. Vascular Endothelial Growth Factor A Regulates the Secretion of Different Angiogenic Factors in Lung Cancer Cells.

    PubMed

    Frezzetti, Daniela; Gallo, Marianna; Roma, Cristin; D'Alessio, Amelia; Maiello, Monica R; Bevilacqua, Simona; Normanno, Nicola; De Luca, Antonella

    2016-07-01

    Vascular endothelial growth factor A (VEGFA) is one of the main mediators of angiogenesis in non-small cell lung cancer (NSCLC). Recently, it has been described an autocrine feed-forward loop in NSCLC cells in which tumor-derived VEGFA promoted the secretion of VEGFA itself, amplifying the proangiogenic signal. In order to investigate the role of VEGFA in lung cancer progression, we assessed the effects of recombinant VEGFA on proliferation, migration, and secretion of other angiogenic factors in A549, H1975, and HCC827 NSCLC cell lines. We found that VEGFA did not affect NSCLC cell proliferation and migration. On the other hand, we demonstrated that VEGFA not only produced a strong and persistent increase of VEGFA itself but also significantly induced the secretion of a variety of angiogenic factors, including follistatin (FST), hepatocyte growth factor (HGF), angiopoietin-2 (ANGPT2), granulocyte-colony stimulating factor (G-CSF), interleukin (IL)-8, leptin (LEP), platelet/endothelial cell adhesion molecule 1 (PECAM-1), and platelet-derived growth factor bb (PDGF-BB). PI3K/AKT, RAS/ERK, and STAT3 signalling pathways were found to mediate the effects of VEGFA in NSCLC cell lines. We also observed that VEGFA regulation mainly occurred at post-transcriptional level and that NSCLC cells expressed different isoforms of VEGFA. Collectively, our data suggested that VEGFA contributes to lung cancer progression by inducing a network of angiogenic factors, which might offer potential for therapeutic intervention. PMID:26542886

  5. Establishment of clonal myogenic cell lines from severely affected dystrophic muscles - CDK4 maintains the myogenic population

    PubMed Central

    2011-01-01

    Background A hallmark of muscular dystrophies is the replacement of muscle by connective tissue. Muscle biopsies from patients severely affected with facioscapulohumeral muscular dystrophy (FSHD) may contain few myogenic cells. Because the chromosomal contraction at 4q35 linked to FSHD is thought to cause a defect within myogenic cells, it is important to study this particular cell type, rather than the fibroblasts and adipocytes of the endomysial fibrosis, to understand the mechanism leading to myopathy. Results We present a protocol to establish clonal myogenic cell lines from even severely dystrophic muscle that has been replaced mostly by fat, using overexpression of CDK4 and the catalytic component of telomerase (human telomerase reverse transcriptase; hTERT), and a subsequent cloning step. hTERT is necessary to compensate for telomere loss during in vitro cultivation, while CDK4 prevents a telomere-independent growth arrest affecting CD56+ myogenic cells, but not their CD56- counterpart, in vitro. Conclusions These immortal cell lines are valuable tools to reproducibly study the effect of the FSHD mutation within myoblasts isolated from muscles that have been severely affected by the disease, without the confounding influence of variable amounts of contaminating connective-tissue cells. PMID:21798090

  6. Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana

    PubMed Central

    2013-01-01

    Background Second-generation biofuels are generally produced from the polysaccharides in the lignocellulosic plant biomass, mainly cellulose. However, because cellulose is embedded in a matrix of other polysaccharides and lignin, its hydrolysis into the fermentable glucose is hampered. The senesced inflorescence stems of a set of 20 Arabidopsis thaliana mutants in 10 different genes of the lignin biosynthetic pathway were analyzed for cell wall composition and saccharification yield. Saccharification models were built to elucidate which cell wall parameters played a role in cell wall recalcitrance. Results Although lignin is a key polymer providing the strength necessary for the plant’s ability to grow upward, a reduction in lignin content down to 64% of the wild-type level in Arabidopsis was tolerated without any obvious growth penalty. In contrast to common perception, we found that a reduction in lignin was not compensated for by an increase in cellulose, but rather by an increase in matrix polysaccharides. In most lignin mutants, the saccharification yield was improved by up to 88% cellulose conversion for the cinnamoyl-coenzyme A reductase1 mutants under pretreatment conditions, whereas the wild-type cellulose conversion only reached 18%. The saccharification models and Pearson correlation matrix revealed that the lignin content was the main factor determining the saccharification yield. However, also lignin composition, matrix polysaccharide content and composition, and, especially, the xylose, galactose, and arabinose contents influenced the saccharification yield. Strikingly, cellulose content did not significantly affect saccharification yield. Conclusions Although the lignin content had the main effect on saccharification, also other cell wall factors could be engineered to potentially increase the cell wall processability, such as the galactose content. Our results contribute to a better understanding of the effect of lignin perturbations on plant cell

  7. Co-stimulation of gastrointestinal tumour cell growth by gastrin, transforming growth factor alpha and insulin like growth factor-I.

    PubMed Central

    Durrant, L. G.; Watson, S. A.; Hall, A.; Morris, D. L.

    1991-01-01

    Epidermal growth factor receptors and insulin like growth factor-I receptors were co-expressed on two gastric and three colorectal tumour cell lines. Previous studies have shown that gastrin receptors were also expressed at a low level or two of these cell lines. Both TGF alpha and IGF-I promoted cell growth in all of the cell lines tested. The cell doubling time of a colorectal cell line was reduced from 48 to 30-34 h. Furthermore the effects of the growth factors were additive. Each growth factor also increased the response of the cells to gastrin, but a combination of both growth factors and gastrin did not further increase growth. PMID:1846553

  8. Regulation of intestinal epithelial cell growth by transforming growth factor type. beta

    SciTech Connect

    Barnard, J.A.; Beauchamp, R.D.; Coffey, R.J.; Moses, H.L. )

    1989-03-01

    A nontransformed rat jejunal crypt cell line (IEC-6) expresses transforming growth factor type {beta}1 (TGF-{beta}1) mRNA, secretes latent {sup 125}I-labeled TGF-{beta}1 to specific, high-affinity cell surface receptors. IEC-6 cell growth is markedly inhibited by TGF-{beta}1 and TGF-{beta}2 with half-maximal inhibition occurring between 0.1 and 1.0 ng of TGF-{beta}1 per ml. TGF-{beta}1-mediated growth inhibition is not associated with the appearance of biochemical markers of enterocyte differentiation such as alkaline phosphatase expression and sucrase activity. TGF-{beta}1 increases steady-state levels of its own mRNA expression within 8 hr of treatment of rapidly growing IEC-6 cells. In freshly isolated rat jejunal enterocytes that are sequentially eluted from the crypt villus axis, TGF-{beta}1 mRNA expression is most abundant in terminally differentiated villus tip cells and least abundant in the less differentiated, mitotically active crypt cells. The authors conclude that TGF-{beta}1 is an autoregulated growth inhibitor in IEC-6 cells that potentially functions in an autocrine manner. In the rat jejunal epithelium, TGF-{beta}1 expression is most prominently localized to the villus tip--i.e., the region of the crypt villus unit that is characterized by the terminally differentiated phenotype. These data suggest that TGF-{beta}1 may function in coordination of the rapid cell turnover typical for the intestinal epithelium.

  9. Zinc Affects Differently Growth, Photosynthesis, Antioxidant Enzyme Activities and Phytochelatin Synthase Expression of Four Marine Diatoms

    PubMed Central

    Nguyen-Deroche, Thi Le Nhung; Caruso, Aurore; Le, Thi Trung; Bui, Trang Viet; Schoefs, Benoît; Tremblin, Gérard; Morant-Manceau, Annick

    2012-01-01

    Zinc-supplementation (20 μM) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses. PMID:22645501

  10. Placental CLIC3 is increased in fetal growth restriction and pre-eclampsia affected human pregnancies.

    PubMed

    Murthi, P; Stevenson, J L; Money, T T; Borg, A J; Brennecke, S P; Gude, N M

    2012-09-01

    Chloride intracellular channel (CLIC) proteins constitute a subgroup of the glutathione-S-transferase (GSTs) superfamily. In humans, the CLIC family of proteins consists of six members, designated CLIC 1-6, which have a conserved C-terminal 240 residue module and one major transmembrane domain. CLIC proteins regulate fundamental cellular processes including regulation of chloride ion concentration, stabilization of cell membrane potential, trans-epithelial transport, regulation of cell volume and stimulation of apoptotic processes in response to cellular stress. Previously, we described the expression profile of a member of the CLIC family of proteins, CLIC3, in human placentae and fetal membranes. In the current study, we determined CLIC3 expression in placentae from pregnancies complicated with either fetal growth restriction (FGR, n=19), pre-eclampsia (PE, n=16) or both FGR and PE combined (n=12) compared to gestation-matched controls (n=13) using real-time PCR and a CLIC3 specific immunoassay. Significantly increased CLIC3 mRNA and protein were detected in placental extracts from pregnancies with FGR, PE and PE with FGR compared to controls. Our results suggest that increased expression of CLIC3 may play a role in abnormal placental function associated with the human pregnancy disorders FGR and PE. PMID:22795578

  11. Brucella abortus Choloylglycine Hydrolase Affects Cell Envelope Composition and Host Cell Internalization

    PubMed Central

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C.; Mujer, Cesar V.; DelVecchio, Vito G.; Comerci, Diego J.

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization. PMID:22174816

  12. Brucella abortus choloylglycine hydrolase affects cell envelope composition and host cell internalization.

    PubMed

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C; Mujer, Cesar V; DelVecchio, Vito G; Comerci, Diego J

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization.

  13. Chronic maternal stress affects growth, behaviour and hypothalamo-pituitary-adrenal function in juvenile offspring.

    PubMed

    Emack, Jeff; Kostaki, Alice; Walker, Claire-Dominique; Matthews, Stephen G

    2008-09-01

    Maternal stress during pregnancy, particularly that combined with low socioeconomic status (SES), has been linked to an increased risk for impaired behavioural and emotional development and affective disorders in children. In animal models, acute periods of prenatal stress have profound effects on hypothalamo-pituitary-adrenal (HPA) function and behaviour. However, few studies have determined the impact of chronic exposure to stress in animal models. The objective of this study was to determine the effects of chronic maternal stress (CMS) during the 2nd half of pregnancy and nursing on growth, locomotor behaviour and HPA axis function in juvenile guinea pig offspring. Pregnant guinea pigs were exposed to a random combination of variable stressors every other day over the 2nd half of gestation and from postnatal day (pnd) 1 until weaning (pnd25). CMS mothers displayed increased basal salivary cortisol levels in the later stages of pregnancy compared to control mothers (p<0.05). The male offspring of CMS mothers had a lower bodyweight, which was maintained to weaning (p<0.01). In open-field testing, CMS male offspring showed a decrease in activity compared to controls (p<0.05). There was no effect of CMS on bodyweight or activity in female offspring. In contrast, both male and female offspring born to CMS mothers displayed increased (p<0.05) basal salivary cortisol at pnd25, but a blunted adrenocortical response to exposure to the novel open-field enclosure. In conclusion, CMS leads to modification of growth trajectory, locomotor activity and adrenocortical responses to stress in juvenile offspring. Further, males appear considerably more vulnerable to these effects than females. PMID:18674758

  14. Metabolic pathways promoting cancer cell survival and growth.

    PubMed

    Boroughs, Lindsey K; DeBerardinis, Ralph J

    2015-04-01

    Activation of oncogenes and loss of tumour suppressors promote metabolic reprogramming in cancer, resulting in enhanced nutrient uptake to supply energetic and biosynthetic pathways. However, nutrient limitations within solid tumours may require that malignant cells exhibit metabolic flexibility to sustain growth and survival. Here, we highlight these adaptive mechanisms and also discuss emerging approaches to probe tumour metabolism in vivo and their potential to expand the metabolic repertoire of malignant cells even further.

  15. Effects of Grape Xylem Sap and Cell-Wall Constituents on In Vitro Growth, Biofilm Formation and Cellular Aggregation of Xylella fastidiosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purified cell-wall constituents or grape xylem sap added to media affected in vitro growth, biofilm formation, cell aggregation and gene expression of Xylella fastidiosa. Media containing xylem sap from Pierce’s disease (PD)-susceptible plants provided better support for bacterial growth and biofil...

  16. Mutations in Coliphage P1 Affecting Host Cell Lysis

    PubMed Central

    Walker, Jean Tweedy; Walker, Donald H.

    1980-01-01

    A total of 103 amber mutants of coliphage P1 were tested for lysis of nonpermissive cells. Of these, 83 caused cell lysis at the normal lysis time and have defects in particle morphogenesis. Five amber mutants, with mutations in the same gene (gene 2), caused premature lysis and may have a defect in a lysis regulator. Fifteen amber mutants were unable to cause cell lysis. Artificially lysed cells infected with five of these mutants produced viable phage particles, and phage particles were seen in thin sections of unlysed, infected cells. However, phage production by these mutants was not continued after the normal lysis time. We conclude that the defect of these five mutants is in a lysis function. The five mutations were found to be in the same gene (designated gene 17). The remaining 10 amber mutants, whose mutations were found to be in the same gene (gene 10), were also unable to cause cell lysis. They differed from those in gene 17 in that no viable phage particles were produced from artificially lysed cells, and no phage particles were seen in thin sections of unlysed, infected cells. We conclude that the gene 10 mutants cannot synthesize late proteins, and it is possible that gene 10 may code for a regulator of late gene expression for P1. Images PMID:16789200

  17. Glycosaminoglycans affect heparanase location in CHO cell lines.

    PubMed

    Piva, Maria B R; Suarez, Eloah R; Melo, Carina M; Cavalheiro, Renan P; Nader, Helena B; Pinhal, Maria A S

    2015-09-01

    Glycosaminoglycans (GAG) play a ubiquitous role in tissues and cells. In eukaryotic cells, heparan sulfate (HS) is initially degraded by an endo-β-glucuronidase called heparanase-1 (HPSE). HS oligosaccharides generated by the action of HPSE intensify the activity of signaling molecules, activating inflammatory response, tumor metastasis, and angiogenesis. The aim of the present study was to understand if sulfated GAG could modulate HPSE, since the mechanisms that regulate HPSE have not been completely defined. CHO-K1 cells were treated with 4-methylumbelliferone (4-MU) and sodium chlorate, to promote total inhibition of GAG synthesis, and reduce the sulfation pattern, respectively. The GAG profile of the wild CHO-K1 cells and CHO-745, deficient in xylosyltransferase, was determined after [(35)S]-sulfate labeling. HPSE expression was determined via real-time quantitative polymerase chain reaction. Total ablation of GAG with 4-MU in CHO-K1 inhibited HPSE expression, while the lack of sulfation had no effect. Interestingly, 4-MU had no effect in CHO-745 cells for these assays. In addition, a different enzyme location was observed in CHO-K1 wild-type cells, which presents HPSE mainly in the extracellular matrix, in comparison with the CHO-745 mutant cells, which is found in the cytoplasm. In view of our results, we can conclude that GAG are essential modulators of HPSE expression and location. Therefore, GAG profile could impact cell behavior mediated by the regulation of HPSE.

  18. Cell culture density affects the proliferation activity of human adipose tissue stem cells.

    PubMed

    Kim, Dae Seong; Lee, Myoung Woo; Ko, Young Jong; Chun, Yong Hoon; Kim, Hyung Joon; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    In this study, we investigated the effect of cell density on the proliferation activity of human mesenchymal stem cells (MSCs) derived from adipose tissue (AT-MSCs) over time in culture. Passage #4 (P4) and #12 (P12) AT-MSCs from two donors were plated at a density of 200 (culture condition 1, CC1) or 5000 (culture condition 2, CC2) cells cm(-2) . After 7 days of incubation, P4 and P12 AT-MSCs cultured in CC1 were thin and spindle-shaped, whereas those cultured in CC2 had extensive cell-to-cell contacts and an expanded cell volume. In addition, P4 and P12 AT-MSCs in CC1 divided more than three times, while those in CC2 divided less than once on average. Flow cytometric analysis using 5(6)-carboxyfluorescein diacetate N-succinimidyl ester dye showed that the fluorescence intensity of AT-MSCs was lower in CC1 than in CC2. Furthermore, expression of proliferation-associated genes, such as CDC45L, CDC20A and KIF20A, in P4 A