Science.gov

Sample records for affecting cell survival

  1. Curcumin affects cell survival and cell volume regulation in human renal and intestinal cells

    PubMed Central

    Kössler, Sonja; Nofziger, Charity; Jakab, Martin; Dossena, Silvia; Paulmichl, Markus

    2012-01-01

    Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1E,6E-heptadiene-3,5-dione or diferuloyl methane) is a polyphenol derived from the Curcuma longa plant, commonly known as turmeric. This substance has been used extensively in Ayurvedic medicine for centuries for its anti-oxidant, analgesic, anti-inflammatory and antiseptic activity. More recently curcumin has been found to possess anti-cancer properties linked to its pro-apoptotic and anti-proliferative actions. The underlying mechanisms of these diverse effects are complex, not fully elucidated and subject of intense scientific debate. Despite increasing evidence indicating that different cation channels can be a molecular target for curcumin, very little is known about the effect of curcumin on chloride channels. Since, (i) the molecular structure of curcumin indicates that the substance could potentially interact with chloride channels, (ii) chloride channels play a role during the apoptotic process and regulation of the cell volume, and (iii) apoptosis is a well known effect of curcumin, we set out to investigate whether or not curcumin could (i) exert a modulatory effect (direct or indirect) on the swelling activated chloride current IClswell in a human cell system, therefore (ii) affect cell volume regulation and (iii) ultimately modulate cell survival. The IClswell channels, which are essential for regulating the cell volume after swelling, are also known to be activated under isotonic conditions as an early event in the apoptotic process. Here we show that long-term exposure of a human kidney cell line to extracellular 0.1–10 μM curcumin modulates IClswell in a dose-dependent manner (0.1 μM curcumin is ineffective, 0.5–5.0 μM curcumin increase, while 10 μM curcumin decrease the current), and short-term exposure to micromolar concentrations of curcumin does not affect IClswell neither if applied from the extracellular nor from the intracellular side – therefore, a direct effect of curcumin on

  2. Sensitivity of ovarian cancer cells to acetaminophen reveals biological pathways that affect patient survival

    PubMed Central

    BUSH, STEPHEN H.; TOLLIN, SHARON; MARCHION, DOUGLAS C.; XIONG, YIN; ABBASI, FOROUGH; RAMIREZ, INGRID J.; ZGHEIB, NADIM BOU; BOAC, BERNADETTE; JUDSON, PATRICIA L.; CHON, HYE SOOK; WENHAM, ROBERT M.; APTE, SACHIN M.; CUBITT, CHRISTOPHER L.; BERGLUND, ANDERS E.; HAVRILESKY, LAURA J.; LANCASTER, JOHNATHAN M.

    2016-01-01

    Experimental and epidemiological data support the potential activity of acetaminophen against ovarian cancer (OVCA). In this study, we sought to confirm the activity of acetaminophen in OVCA cell lines and to investigate the molecular basis of response. A total of 16 OVCA cell lines underwent pretreatment (baseline) genome-wide expression measurements and were then treated with and analyzed for acetaminophen sensitivity. Pearson's correlation analysis was performed to identify genes that were associated with OVCA acetaminophen response. The identified genes were subjected to pathway analysis, and the expression of each represented pathway was summarized using principal component analysis. OVCA acetaminophen response pathways were analyzed in 4 external clinico-genomic datasets from 820 women for associations with overall survival from OVCA. Acetaminophen exhibited antiproliferative activity against all tested OVCA cell lines, with half maximal inhibitory concentration values ranging from 63.2 to 403 µM. Pearson's correlation followed by biological pathway analysis identified 13 pathways to be associated with acetaminophen sensitivity (P<0.01). Associations were observed between patient survival from OVCA and expression of the following pathways: Development/angiotensin signaling via β-arrestin (P=0.04), protein folding and maturation/angiotensin system maturation (P=0.02), signal transduction/c-Jun N-terminal kinase (JNK) pathway (P=0.03) and androstenedione and testosterone biosynthesis and metabolism (P=0.02). We confirmed that acetaminophen was active against OVCA cells in vitro. Furthermore, we identified 4 molecular signaling pathways associated with acetaminophen response that may also affect overall survival in women with OVCA, including the JNK pathway, which has been previously implicated in the mechanism of action of acetaminophen and is predictive of decreased survival in women with OVCA. PMID:26998291

  3. Signet ring cell histology is associated with unique clinical features but does not affect gastric cancer survival.

    PubMed

    Theuer, C P; Nastanski, F; Brewster, W R; Butler, J A; Anton-Culver, H

    1999-10-01

    Signet ring cell histology is found in 3 to 39 per cent of gastric cancer cases and has been reported to be a feature of poor prognosis, although this issue has not been rigorously examined. The objective of this study was to determine those demographic and clinical variables associated with signet ring cell histology and to determine the effect of signet ring cell histology on survival using multivariate analyses. We studied a historical cohort of consecutive cases of gastric cancer reported to the population-based California Cancer Registries of Orange, San Diego, and Imperial Counties from 1984 through 1994. Factors associated with signet ring cell histology were assessed using chi2 and logistic regression. Life tables were constructed to assess unadjusted survival and survival differences in patient subgroups. Multivariate survival was determined using a Cox proportional hazards model. Of 3020 patients, 464 (15%) had signet ring cell histology. Patients with signet ring cell histology were more likely to be younger than 50 years (odds ratio (OR) = 2.4; 95% confidence interval (CI) = 1.6-3.5), less likely to be male (OR = 0.49; 95% CI = 0.37-0.66), and more likely to have tumors of the distal stomach (OR = 2.0; 95% CI = 1.4-3.0). Signet ring cell histology did not adversely affect unadjusted overall survival, race-stratified survival, or stage-stratified survival. Multivariate analysis indicated that patients with signet ring cell histology had an insignificant increased risk of dying (relative risk = 1.027; P>0.10) in comparison with patients without signet ring cell histology. Patients with signet ring cell histology were more likely to be young women and to have tumors of the distal stomach. Signet ring cell histology did not impact survival in our group of largely advanced gastric cancer cases. PMID:10515534

  4. Cisplatin-induced DNA damage activates replication checkpoint signaling components that differentially affect tumor cell survival.

    PubMed

    Wagner, Jill M; Karnitz, Larry M

    2009-07-01

    Cisplatin and other platinating agents are some of the most widely used chemotherapy agents. These drugs exert their antiproliferative effects by creating intrastrand and interstrand DNA cross-links, which block DNA replication. The cross-links mobilize signaling and repair pathways, including the Rad9-Hus1-Rad1-ATR-Chk1 pathway, a pathway that helps tumor cells survive the DNA damage inflicted by many chemotherapy agents. Here we show that Rad9 and ATR play critical roles in helping tumor cells survive cisplatin treatment. However, depleting Chk1 with small interfering RNA or inhibiting Chk1 with 3-(carbamoylamino)-5-(3-fluorophenyl)-N-(3-piperidyl)thiophene-2-carboxamide (AZD7762) did not sensitize these cells to cisplatin, oxaliplatin, or carboplatin. Moreover, when Rad18, Rad51, BRCA1, BRCA2, or FancD2 was disabled, Chk1 depletion did not further sensitize the cells to cisplatin. In fact, Chk1 depletion reversed the sensitivity seen when Rad18 was disabled. Collectively, these studies suggest that the pharmacological manipulation of Chk1 may not be an effective strategy to sensitize tumors to platinating agents. PMID:19403702

  5. Ciprofloxacin Derivatives Affect Parasite Cell Division and Increase the Survival of Mice Infected with Toxoplasma gondii

    PubMed Central

    Martins-Duarte, Erica S.; Dubar, Faustine; Lawton, Philippe; França da Silva, Cristiane; C. Soeiro, Maria de Nazaré; de Souza, Wanderley; Biot, Christophe; Vommaro, Rossiane C.

    2015-01-01

    Toxoplasmosis, caused by the protozoan Toxoplasma gondii, is a worldwide disease whose clinical manifestations include encephalitis and congenital malformations in newborns. Previously, we described the synthesis of new ethyl-ester derivatives of the antibiotic ciprofloxacin with ~40-fold increased activity against T. gondii in vitro, compared with the original compound. Cipro derivatives are expected to target the parasite’s DNA gyrase complex in the apicoplast. The activity of these compounds in vivo, as well as their mode of action, remained thus far uncharacterized. Here, we examined the activity of the Cipro derivatives in vivo, in a model of acute murine toxoplasmosis. In addition, we investigated the cellular effects T. gondii tachyzoites in vitro, by immunofluorescence and transmission electron microscopy (TEM). When compared with Cipro treatment, 7-day treatments with Cipro derivatives increased mouse survival significantly, with 13–25% of mice surviving for up to 60 days post-infection (vs. complete lethality 10 days post-infection, with Cipro treatment). Light microscopy examination early (6 and 24h) post-infection revealed that 6-h treatments with Cipro derivatives inhibited the initial event of parasite cell division inside host cells, in an irreversible manner. By TEM and immunofluorescence, the main cellular effects observed after treatment with Cipro derivatives and Cipro were cell scission inhibition - with the appearance of ‘tethered’ parasites – malformation of the inner membrane complex, and apicoplast enlargement and missegregation. Interestingly, tethered daughter cells resulting from Cipro derivatives, and also Cipro, treatment did not show MORN1 cap or centrocone localization. The biological activity of Cipro derivatives against C. parvum, an apicomplexan species that lacks the apicoplast, is, approximately, 50 fold lower than that in T. gondii tachyzoites, supporting that these compounds targets the apicoplast. Our results show

  6. Ciprofloxacin Derivatives Affect Parasite Cell Division and Increase the Survival of Mice Infected with Toxoplasma gondii.

    PubMed

    Martins-Duarte, Erica S; Dubar, Faustine; Lawton, Philippe; da Silva, Cristiane França; Soeiro, Maria de Nazaré C; de Souza, Wanderley; Biot, Christophe; Vommaro, Rossiane C

    2015-01-01

    Toxoplasmosis, caused by the protozoan Toxoplasma gondii, is a worldwide disease whose clinical manifestations include encephalitis and congenital malformations in newborns. Previously, we described the synthesis of new ethyl-ester derivatives of the antibiotic ciprofloxacin with ~40-fold increased activity against T. gondii in vitro, compared with the original compound. Cipro derivatives are expected to target the parasite's DNA gyrase complex in the apicoplast. The activity of these compounds in vivo, as well as their mode of action, remained thus far uncharacterized. Here, we examined the activity of the Cipro derivatives in vivo, in a model of acute murine toxoplasmosis. In addition, we investigated the cellular effects T. gondii tachyzoites in vitro, by immunofluorescence and transmission electron microscopy (TEM). When compared with Cipro treatment, 7-day treatments with Cipro derivatives increased mouse survival significantly, with 13-25% of mice surviving for up to 60 days post-infection (vs. complete lethality 10 days post-infection, with Cipro treatment). Light microscopy examination early (6 and 24h) post-infection revealed that 6-h treatments with Cipro derivatives inhibited the initial event of parasite cell division inside host cells, in an irreversible manner. By TEM and immunofluorescence, the main cellular effects observed after treatment with Cipro derivatives and Cipro were cell scission inhibition--with the appearance of 'tethered' parasites--malformation of the inner membrane complex, and apicoplast enlargement and missegregation. Interestingly, tethered daughter cells resulting from Cipro derivatives, and also Cipro, treatment did not show MORN1 cap or centrocone localization. The biological activity of Cipro derivatives against C. parvum, an apicomplexan species that lacks the apicoplast, is, approximately, 50 fold lower than that in T. gondii tachyzoites, supporting that these compounds targets the apicoplast. Our results show that Cipro

  7. A Vaccine Targeting Telomerase Enhances Survival of Dogs Affected by B-cell Lymphoma

    PubMed Central

    Peruzzi, Daniela; Gavazza, Alessandra; Mesiti, Giuseppe; Lubas, George; Scarselli, Elisa; Conforti, Antonella; Bendtsen, Claus; Ciliberto, Gennaro; La Monica, Nicola; Aurisicchio, Luigi

    2010-01-01

    Canine cancers occur with an incidence similar to that of humans and share many features with human malignancies including histological appearance, tumor genetics, biological behavior, and response to conventional therapies. As observed in humans, the telomerase reverse transcriptase (TERT) activity is largely confined to tumor tissues and absent in the majority of normal dog tissues. Therefore, dog TERT (dTERT) can constitute a valid target for translational cancer immunotherapy. We have evaluated the ability of adenovirus serotype 6 (Ad6) and DNA electroporation (DNA-EP) to induce immune responses against dTERT in dogs affected by malignant lymphoma (ML). The vaccine was combined with standard chemotherapy regimen [cyclophosphamide, vincristine, prednisone (COP)]. dTERT-specific immune response was induced in 13 out of 14 treated animals (93%) and remained detectable and long-lasting with the absence of autoimmunity or other side effects. Most interestingly, the survival time of vaccine/Chemo-treated dogs was significantly increased over historic controls of Chemo-treated animals (>97.8 versus 37 weeks, respectively, P = 0.001). Our results show that Ad6/DNA-EP-based cancer vaccine against dTERT overcomes host immune tolerance, should be combined with chemotherapy, induces long-lasting immune responses, and significantly prolongs the survival of ML canine patients. These data support further evaluation of this approach in human clinical trials. PMID:20531395

  8. In vivo genetic ablation of the periotic mesoderm affects cell proliferation survival and differentiation in the cochlea

    PubMed Central

    Xu, Huansheng; Chen, Li; Baldini, Antonio

    2007-01-01

    Tbx1 is required for ear development in humans and mice. Gene manipulation in the mouse has discovered multiple consequences of loss of function on early development of the inner ear, some of which are attributable to a cell autonomous role in maintaining cell proliferation of epithelial progenitors of the cochlear and vestibular apparata. However, ablation of the mesodermal domain of the gene also results in severe but more restricted abnormalities. Here we show that Tbx1 has a dynamic expression during late development of the ear, in particular, is expressed in the sensory epithelium of the vestibular organs but not of the cochlea. Vice versa, it is expressed in the condensed mesenchyme that surrounds the cochlea but not in the one that surrounds the vestibule. Loss of Tbx1 in the mesoderm disrupts this peri-cochlear capsule by strongly reducing the proliferation of mesenchymal cells. The organogenesis of the cochlea, which normally occurs inside the capsule, was dramatically affected in terms of growth of the organ, as well as proliferation, differentiation and survival of its epithelial cells. This model provides a striking demonstration of the essential role played by the periotic mesenchyme in the organogenesis of the cochlea. PMID:17825816

  9. Hedgehog signaling indirectly affects tubular cell survival after obstructive kidney injury.

    PubMed

    Rauhauser, Alysha A; Ren, Chongyu; Lu, Dongmei; Li, Binghua; Zhu, Jili; McEnery, Kayla; Vadnagara, Komal; Zepeda-Orozco, Diana; Zhou, Xin J; Lin, Fangming; Jetten, Anton M; Attanasio, Massimo

    2015-11-01

    Hedgehog (Hh) is an evolutionary conserved signaling pathway that has important functions in kidney morphogenesis and adult organ maintenance. Recent work has shown that Hh signaling is reactivated in the kidney after injury and is an important mediator of progressive fibrosis. Pericytes and fibroblasts have been proposed to be the principal cells that respond to Hh ligands, and pharmacological attenuation of Hh signaling has been considered as a possible treatment for fibrosis, but the effect of Hh inhibition on tubular epithelial cells after kidney injury has not been reported. Using genetically modified mice in which tubule-derived hedgehog signaling is increased and mice in which this pathway is conditionally suppressed in pericytes that express the proteoglycan neuron glial protein 2 (NG2), we found that suppression of Hh signaling is associated with decreased macrophage infiltration and tubular proliferation but also increased tubular apoptosis, an effect that correlated with the reduction of tubular β-catenin activity. Collectively, our data suggest a complex function of hedgehog signaling after kidney injury in initiating both reparative and proproliferative, prosurvival processes. PMID:26290370

  10. Down-regulated FSTL5 promotes cell proliferation and survival by affecting Wnt/β-catenin signaling in hepatocellular carcinoma

    PubMed Central

    Zhang, Dengyong; Ma, Xiang; Sun, Wanliang; Cui, Peiyuan; Lu, Zheng

    2015-01-01

    Follistatin-like 5 (FSTL5), a member of the follistatin family of genes, encodes a secretory glycoprotein. Previous study revealed that it might play a suppressive role in hepatocellular carcinoma (HCC). However, its clinical significances, biological functions and molecular mechanisms in HCC development are poorly understood. To gain insight to the functions of FSTL5 in HCC, We examined FSTL5 expression pattern in 117 HCC tissue samples. The results of immunohistochemical staining analysis showed that FSTL5 is more commonly down-regulated in HCC compared to adjacent tissues and further clinicopathological analysis showed that its expression level is closely correlated with tumor size, TNM stage, local infiltration and patient prognosis. Both gain function assays and recombinant human FSTL5 protein treatment assays in vitro revealed that over-expressing FSTL5 could inhibit the abilities of cancer cell proliferation and survival. Further, we found that those effects on HCC growth and survival are associated with Wnt/β-catenin signaling. Taken together, all of our results validate that FSTL5 plays a suppressive role in HCC and suggest that down-regulated FSTL5 could elevate abilities of growth and survival of HCC cells by activation of Wnt/β-catenin signaling. PMID:26045876

  11. Serine Protease Inhibitor-6 Differentially Affects the Survival of Effector and Memory Alloreactive CD8-T Cells

    PubMed Central

    Azzi, J.; Ohori, S.; Ting, C.; Uehara, M.; Abdoli, R.; Smith, B. D.; Safa, K.; Solhjou, Z.; Lukyanchykov, P.; Patel, J.; McGrath, M.; Abdi, R.

    2016-01-01

    The clonal expansion of effector T cells and subsequent generation of memory T cells are critical in determining the outcome of transplantation. While cytotoxic T lymphocytes induce direct cytolysis of target cells through secretion of Granzyme-B (GrB), they also express cytoplasmic serine protease inhibitor-6 (Spi6) to protect themselves from GrB that has leaked from granules. Here, we studied the role of GrB/Spi6 axis in determining clonal expansion of alloreactive CD8-T cells and subsequent generation of memory CD8-T cells in transplantation. CD8-T cells from Spi6−/− mice underwent more GrB mediated apoptosis upon alloantigen stimulation in vitro and in vivo following adoptive transfer into an allogeneic host. Interestingly, while OT1.Spi6−/− CD8 T cells showed significantly lower clonal expansion following skin transplants from OVA mice, there was no difference in the size of the effector memory CD8-T cells long after transplantation. Furthermore, lack of Spi6 resulted in a decrease of short-lived-effector-CD8-cells but did not impact the pool of memory-precursor-effector-CD8-cells. Similar results were found in heart transplant models. Our findings suggest that the final alloreactive CD8-memory-pool-size is independent from the initial clonal-proliferation as memory precursors express low levels of GrB and therefore are independent of Spi6 for survival. These data advance our understanding of memory T cells generation in transplantation and provide basis for Spi6 based strategies to target effector T cells. PMID:25534448

  12. Knockdown of Human TCF4 Affects Multiple Signaling Pathways Involved in Cell Survival, Epithelial to Mesenchymal Transition and Neuronal Differentiation

    PubMed Central

    Forrest, Marc P.; Waite, Adrian J.; Martin-Rendon, Enca; Blake, Derek J.

    2013-01-01

    Haploinsufficiency of TCF4 causes Pitt-Hopkins syndrome (PTHS): a severe form of mental retardation with phenotypic similarities to Angelman, Mowat-Wilson and Rett syndromes. Genome-wide association studies have also found that common variants in TCF4 are associated with an increased risk of schizophrenia. Although TCF4 is transcription factor, little is known about TCF4-regulated processes in the brain. In this study we used genome-wide expression profiling to determine the effects of acute TCF4 knockdown on gene expression in SH-SY5Y neuroblastoma cells. We identified 1204 gene expression changes (494 upregulated, 710 downregulated) in TCF4 knockdown cells. Pathway and enrichment analysis on the differentially expressed genes in TCF4-knockdown cells identified an over-representation of genes involved in TGF-β signaling, epithelial to mesenchymal transition (EMT) and apoptosis. Among the most significantly differentially expressed genes were the EMT regulators, SNAI2 and DEC1 and the proneural genes, NEUROG2 and ASCL1. Altered expression of several mental retardation genes such as UBE3A (Angelman Syndrome), ZEB2 (Mowat-Wilson Syndrome) and MEF2C was also found in TCF4-depleted cells. These data suggest that TCF4 regulates a number of convergent signaling pathways involved in cell differentiation and survival in addition to a subset of clinically important mental retardation genes. PMID:24058414

  13. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures

    PubMed Central

    Wesley-Smith, James; Berjak, Patricia; Pammenter, N. W.; Walters, Christina

    2014-01-01

    Background and Aims Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus, it is important to understand the relationships among cryo-exposure techniques, water content, structure and survival. Methods Undried embryonic axes of Acer saccharinum and those rapidly dried to two different water contents were cooled at three rates and re-warmed at two rates. Ultrastructural observations were carried out on radicle and shoot tips prepared by freeze-fracture and freeze-substitution to assess immediate (i.e. pre-thaw) responses to cooling treatments. Survival of axes was assessed in vitro. Key Results Intracellular ice formation was not necessarily lethal. Embryo cells survived when crystal diameter was between 0·2 and 0·4 µm and fewer than 20 crystals were distributed per μm2 in the cytoplasm. Ice was not uniformly distributed within the cells. In fully hydrated axes cooled at an intermediate rate, the interiors of many organelles were apparently ice-free; this may have prevented the disruption of vital intracellular machinery. Intracytoplasmic ice formation did not apparently impact the integrity of the plasmalemma. The maximum number of ice crystals was far greater in shoot apices, which were more sensitive than radicles to cryo-exposure. Conclusions The findings challenge the accepted paradigm that intracellular ice formation is always lethal, as the results show that cells can survive intracellular ice if crystals are small and localized in the cytoplasm. Further understanding of the interactions among water content, cooling rate, cell structure and ice structure is required to optimize cryopreservation treatments without undue reliance on empirical approaches. PMID:24368198

  14. Oxidized LDL Immune Complexes and Oxidized LDL Differentially Affect the Expression of Genes Involved with Inflammation and Survival In Human U937 Monocytic Cells

    PubMed Central

    Hammad, Samar M; Twal, Waleed O; Barth, Jeremy L; Smith, Kent J.; Saad, Antonio F; Virella, Gabriel; Argraves, W. Scott; Lopes-Virella., Maria F

    2008-01-01

    Objective To compare the global effects of oxidized LDL (oxLDL) and oxLDL-containing immune complexes (oxLDL-IC) on gene expression in human monocytic cells and to identify differentially expressed genes involved with inflammation and survival. Methods and Results U937 cells were treated with oxLDL-IC, oxLDL, Keyhole limpet hemocyanin immune complexes (KLH-IC), or vehicle for 4 h. Transcriptome profiling was performed using DNA microarrays. oxLDL-IC uniquely affected the expression of genes involved with pro-survival (RAD54B, RUFY3, SNRPB2, and ZBTB24). oxLDL-IC also regulated many genes in a manner similar to KLH-IC. Functional categorization of these genes revealed that 39% are involved with stress responses, including the unfolded protein response which impacts cell survival, 19% with regulation of transcription, 10% with endocytosis and intracellular transport of protein and lipid, and 16% with inflammatory responses including regulation of I-κB/NF-κB cascade and cytokine activity. One gene in particular, HSP70 6, greatly up-regulated by ox-LDL-IC, was found to be required for the process by which oxLDL-IC augments IL1-β secretion. The study also revealed genes uniquely up-regulated by oxLDL including genes involved with growth inhibition (OKL38, NEK3, and FTH1), oxidoreductase activity (SPXN1 and HMOX1), and transport of amino acids and fatty acids (SLC7A11 and ADFP). Conclusions These findings highlight early transcriptional responses elicited by oxLDL-IC that may underlie its cytoprotective and pro-inflammatory effects. Cross-linking of Fcγ receptors appears to be the trigger for most of the transcriptional responses to oxLDL-IC. The findings further strengthen the hypothesis that oxLDL and oxLDL-IC elicit disparate inflammatory responses and play distinct roles in the process of atherosclerosis. PMID:18597759

  15. Growth factors and hormones which affect survival, growth, and differentiation of the MCF-7 stem cells and their descendants

    SciTech Connect

    Resnicoff, M.; Medrano, E.E. )

    1989-03-01

    The human breast tumor cell line was separated by Percoll density gradient centrifugation into six different subpopulations, A to F, of which (E) appears to contain the stem cells on the basis of several criteria. The authors analyzed the response of the isolated subpopulations to insulin, thrombin, PGF{sub 2{alpha}}, estradiol, and 13-cis-retinal. They demonstrate that the first two growth factors stimulate ({sup 3}H)thymidine incorporation in the more differentiated subpopulations (D and F), while PGF{sub 2{alpha}} has mitogenic activity in subpopulations C and D. In the absence of any added growth factor, estradiol has the extreme and transient capacity of allowing the stem cell to detach from the tissue culture dish and to grow in suspension as multicellular aggregates (MCF-7/SE cells). 13-cis-Retinal acts as a negative modulator of differentiation and protects the cells from the inhibitory and differentiation activity in Na-butyrate.

  16. Downregulation of HOXA1 gene affects small cell lung cancer cell survival and chemoresistance under the regulation of miR-100.

    PubMed

    Xiao, Faman; Bai, Yifeng; Chen, Zhenzhu; Li, Yufa; Luo, Luqiao; Huang, Jie; Yang, Jie; Liao, Hongzhan; Guo, Linlang

    2014-05-01

    Chemoresistance is often developed in small cell lung cancer (SCLC) patients and leads to poor prognosis. Hox genes, a highly conserved family, play a crucial role in apoptosis, receptor signalling and differentiation. MicroRNAs (miRNAs) have also been shown to play a crucial role in these biological processes by regulating the target genes. Several studies reported that both Hox genes and miRNAs are involved in chemoresistance. The aim of our study is to characterise the clinical significance and functional roles of HOXA1 in SCLC. Expression of HOXA1 was examined in 63 cases of SCLC tissues and 29 cases of blood by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) methods. Multivariate analysis confirmed the prognostic significance of HOXA1 in SCLC patients. Restoration of HOXA1 expression was carried out in SCLC multidrug resistant cell line H69AR and its parental cell line H69 to assess its influence on chemoresistance. Luciferase reporter assay was used to assess HOXA1 as a target of miR-100. The results showed that HOXA1 was expressed in 46% (29/63) of SCLC. Low HOXA1 expression was associated with the poor prognosis of SCLC (P<0.05 by the Fisher's Exact Test) and the shorter survival rate (P<0.001 by the Kaplan-Meier method). HOXA1 expression on both mRNA and protein levels significantly correlated with chemotherapy response. Enforced expression of HOXA1 in resistant H69AR cells led to increased chemosensitivity through increasing cell apoptosis and cell-cycle arrest. Inhibition of HOXA1 expression using HOXA1 siRNA in H69 cells resulted in cell resistance to therapeutic drugs through reducing drug-induced cell apoptosis accompanied with cell cycle arrest. Expression of endogenous miR-100 was significantly elevated in resistant H69AR cells and negatively related with HOXA1 expression. The expression of HOXA1 in SCLC tissues correlated inversely with the expression levels of miR-100. Reporter assays confirmed that

  17. Dynamic O-Linked N-Acetylglucosamine Modification of Proteins Affects Stress Responses and Survival of Mesothelial Cells Exposed to Peritoneal Dialysis Fluids

    PubMed Central

    Herzog, Rebecca; Bender, Thorsten O.; Vychytil, Andreas; Bialas, Katarzyna; Aufricht, Christoph

    2014-01-01

    The ability of cells to respond and survive stressful conditions is determined, in part, by the attachment of O-linked N-acetylglucosamine (O-GlcNAc) to proteins (O-GlcNAcylation), a post-translational modification dependent on glucose and glutamine. This study investigates the role of dynamic O-GlcNAcylation of mesothelial cell proteins in cell survival during exposure to glucose-based peritoneal dialysis fluid (PDF). Immortalized human mesothelial cells and primary mesothelial cells, cultured from human omentum or clinical effluent of PD patients, were assessed for O-GlcNAcylation under normal conditions or after exposure to PDF. The dynamic status of O-GlcNAcylation and effects on cellular survival were investigated by chemical modulation with 6-diazo-5-oxo-L-norleucine (DON) to decrease or O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino N-phenyl carbamate (PUGNAc) to increase O-GlcNAc levels. Viability was decreased by reducing O-GlcNAc levels by DON, which also led to suppressed expression of the cytoprotective heat shock protein 72. In contrast, increasing O-GlcNAc levels by PUGNAc or alanyl-glutamine led to significantly improved cell survival paralleled by higher heat shock protein 72 levels during PDF treatment. Addition of alanyl-glutamine increased O-GlcNAcylation and partly counteracted its inhibition by DON, also leading to improved cell survival. Immunofluorescent analysis of clinical samples showed that the O-GlcNAc signal primarily originates from mesothelial cells. In conclusion, this study identified O-GlcNAcylation in mesothelial cells as a potentially important molecular mechanism after exposure to PDF. Modulating O-GlcNAc levels by clinically feasible interventions might evolve as a novel therapeutic target for the preservation of peritoneal membrane integrity in PD. PMID:24854264

  18. Dynamic O-linked N-acetylglucosamine modification of proteins affects stress responses and survival of mesothelial cells exposed to peritoneal dialysis fluids.

    PubMed

    Herzog, Rebecca; Bender, Thorsten O; Vychytil, Andreas; Bialas, Katarzyna; Aufricht, Christoph; Kratochwill, Klaus

    2014-12-01

    The ability of cells to respond and survive stressful conditions is determined, in part, by the attachment of O-linked N-acetylglucosamine (O-GlcNAc) to proteins (O-GlcNAcylation), a post-translational modification dependent on glucose and glutamine. This study investigates the role of dynamic O-GlcNAcylation of mesothelial cell proteins in cell survival during exposure to glucose-based peritoneal dialysis fluid (PDF). Immortalized human mesothelial cells and primary mesothelial cells, cultured from human omentum or clinical effluent of PD patients, were assessed for O-GlcNAcylation under normal conditions or after exposure to PDF. The dynamic status of O-GlcNAcylation and effects on cellular survival were investigated by chemical modulation with 6-diazo-5-oxo-L-norleucine (DON) to decrease or O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino N-phenyl carbamate (PUGNAc) to increase O-GlcNAc levels. Viability was decreased by reducing O-GlcNAc levels by DON, which also led to suppressed expression of the cytoprotective heat shock protein 72. In contrast, increasing O-GlcNAc levels by PUGNAc or alanyl-glutamine led to significantly improved cell survival paralleled by higher heat shock protein 72 levels during PDF treatment. Addition of alanyl-glutamine increased O-GlcNAcylation and partly counteracted its inhibition by DON, also leading to improved cell survival. Immunofluorescent analysis of clinical samples showed that the O-GlcNAc signal primarily originates from mesothelial cells. In conclusion, this study identified O-GlcNAcylation in mesothelial cells as a potentially important molecular mechanism after exposure to PDF. Modulating O-GlcNAc levels by clinically feasible interventions might evolve as a novel therapeutic target for the preservation of peritoneal membrane integrity in PD. PMID:24854264

  19. Survival of auditory hair cells.

    PubMed

    Seymour, Michelle L; Pereira, Fred A

    2015-07-01

    The inability of mammals to regenerate auditory hair cells creates a pressing need to understand the means of enhancing hair cell survival following insult or injury. Hair cells are easily damaged by noise exposure, by ototoxic medications and as a consequence of aging processes, all of which lead to progressive and permanent hearing impairment as hair cells are lost. Significant efforts have been invested in designing strategies to prevent this damage from occurring since permanent hearing loss has a profound impact on communication and quality of life for patients. In this mini-review, we discuss recent progress in the use of antioxidants, anti-inflammatories and apoptosis inhibitors to enhance hair cell survival. We conclude by clarifying the distinction between protection and rescue strategies and by highlighting important areas of future research. PMID:25743696

  20. Survival regulation of leukemia stem cells.

    PubMed

    Hu, Yiguo; Li, Shaoguang

    2016-03-01

    Leukemia stem cells (LSCs) are a subpopulation cells at the apex of hierarchies in leukemia cells and responsible for disease continuous propagation. In this article, we discuss some cellular and molecular components, which are critical for LSC survival. These components include intrinsic signaling pathways and extrinsic microenvironments. The intrinsic signaling pathways to be discussed include Wnt/β-catenin signaling, Hox genes, Hh pathway, Alox5, and some miRNAs, which have been shown to play important roles in regulating LSC survival and proliferation. The extrinsic components to be discussed include selectins, CXCL12/CXCR4, and CD44, which involve in LSC homing, survival, and proliferation by affecting bone marrow microenvironment. Potential strategies for eradicating LSCs will also discuss. PMID:26686687

  1. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cryogenic technologies are required to preserve embryonic axes of recalcitrant seeds. Formation of potentially lethal intracellular ice limits successful cryopreservation; thus, it is important to understand the relationships among cryo-exposure techniques, water content and survival. In this pap...

  2. Pathologic factors affecting postsplenectomy survival in dogs.

    PubMed

    Spangler, W L; Kass, P H

    1997-01-01

    The apparently high prevalence of splenomegaly in dogs, along with the surgical accessibility of the spleen, results in a relatively large number of splenectomies in dogs in clinical veterinary practice. Splenic nodular lesions are widely considered to be indicative of hemangiosarcoma and thus a disease that is ultimately fatal. This study correlates the results of complete pathologic evaluation and classification of 500 spleens obtained by splenectomy with survival information for each dog. Among the spleens examined, 257 of 500 (51.4%) were classified nonneoplastic and 241 (48.2%) were neoplastic; 2 (0.4%) were unclassified. Miscellaneous non-nodular splenomegaly accounted for 46 of 257 (18%) of the nonneoplastic lesions; nodular splenomegaly accounted for 206 of 257 (79%) of nonneoplastic splenic lesions and was composed of lymphoid hyperplastic nodules and associated hematomas, hyperplastic lymphoid nodules alone, or hematomas with no apparent underlying cause. Nodular neoplastic diseases of the spleen were divided among benign tumors (11.5%) and a variety of primary sarcomas. Hemangiosarcoma made up 51% of splenic malignancies but accounted for less than 25% of the spleens evaluated. Survival of dogs with hematomas associated with nonneoplastic conditions of the spleen was markedly different from that in dogs with hemangiosarcoma-associated hematomas, even though most could not be effectively differentiated on gross inspection. Two month postoperative survival was 83% for dogs with nonneoplastic-related hematomas, whereas only 31% of dogs with hemangiosarcoma, with or without associated hematomas, were alive after 2 months. Twelve-month survival times were 64% and 7%, respectively. An overall postsplenectomy survival rate of 52% was based on the number of dogs surviving for a minimum of 6 months postoperatively. PMID:9183768

  3. Risk factors affecting dental implant survival.

    PubMed

    Vehemente, Valerie A; Chuang, Sung-Kiang; Daher, Shadi; Muftu, Ali; Dodson, Thomas B

    2002-01-01

    Given the predictability of dental implant success, the attention of the scientific community is moving from descriptions of implant success toward a more detailed analysis of factors associated with implant failure. The purposes of this study were (1) to estimate the 1- and 5-year survival of Bicon dental implants and (2) to identify risk factors associated with implant failure in an objective, statistically valid manner. To address the research purposes, we used a retrospective cohort study design and a study sample composed of patients who had one or more implants placed. The predictor variables were grouped into the following categories: demographic, health status, anatomic, implant fixture-specific, prosthetic, perioperative, and ancillary variables. The major outcome variable of interest was implant failure defined as implant removal. Overall implant survival was estimated using the Kaplan-Meier analysis. Risk factors for implant failure were identified using the Cox proportional hazard regression models. The study sample was composed of 677 patients who had 677 implants randomly selected for analysis. The overall 1- and 5-year survival of the Bicon implant system was 95.2% and 90.2%, respectively. After adjusting for other covariates in a multivariate model, both tobacco use (P = .0004) and single-stage implant placement (P = .01) were statistically associated with an increased risk for failure. The results of these analyses suggest that the overall survival of the Bicon dental implant is comparable with other current implant systems. In addition, after controlling for covariates, we identified 2 exposures associated with implant survival, tobacco use and implant staging. Of interest, both of these exposures are under the clinician's control. PMID:12498449

  4. Prolonged survival of a patient affected by pancreatic adenocarcinoma with massive lymphocyte and dendritic cell infiltration after interleukin-2 immunotherapy. Report of a case.

    PubMed

    Nobili, Cinzia; Degrate, Luca; Caprotti, Roberto; Franciosi, Claudio; Leone, Biagio Eugenio; Trezzi, Rosangela; Romano, Fabrizio; Uggeri, Fabio; Uggeri, Franco

    2008-01-01

    Several studies have shown that there is a paucity of immune cells within the stroma of pancreatic adenocarcinoma, a very aggressive cancer with a median survival of about 18 months. A 65-year-old man presented with jaundice. Abdominal ultrasound revealed intra- and extrahepatic bile duct dilatation and a 45-mm diameter hypoechoic solid mass within the pancreatic head; a computed tomography scan excluded vascular infiltration and metastatic lesions. The patient received immunotherapy consisting of 6,000,000 IU human recombinant interleukin-2 administered subcutaneously twice a day for 3 consecutive days. Thirty-six hours after the last dose, he underwent a pylorus-preserving pancreatoduodenectomy. Because of the presence of high-grade dysplasia detected by intraoperative histological examination of a distal section, a spleen preserving total pancreatectomy was performed. The postoperative course was uneventful. The patient died 32 months after surgery because of local recurrence. Histopathology showed G3 pancreatic ductal adenocarcinoma infiltrating the anterior and posterior peripancreatic tissue, duodenal wall and intrapancreatic common bile duct, with sarcoma-like foci and a component of intraductal tumor involving the common bile duct. In the distal pancreas, widespread foci of pancreatic intraepithelial neoplasia (PanI2-3) were found. The Ki-67 proliferation index was 16%. TNM staging was pT3 pN1 R1. Sections were immunostained for the T-lymphocyte marker CD3 and for the dendritic cell marker CD1a. Intratumoral infiltration was high for CD1a+ cells and mild for CD3+ cells. Preoperative immunotherapy with interleukin-2 may contribute to massive stromal infiltration of immune cells in pancreatic adenocarcinoma. This may prolong the survival even in the presence of negative prognostic factors (age >65 years, tumor diameter >20 mm, R1, tumor grade G3). PMID:18705415

  5. ANRIL is associated with the survival rate of patients with colorectal cancer, and affects cell migration and invasion in vitro.

    PubMed

    Sun, Yi; Zheng, Zhao-Peng; Li, Hang; Zhang, Han-Qun; Ma, Fa-Qiang

    2016-08-01

    Antisense noncoding RNA in the INK4 locus (ANRIL) has been reported to be upregulated in various types of human cancer, and is also highly expressed in normal human tissue. The aim of the present study was to identify whether ANRIL may be a possible target for colorectal cancer (CRC) therapy. Reverse transcription‑quantitative polymerase chain reaction was used to quantify the expression levels of the long noncoding RNA (lncRNA) ANRIL in 97 paired CRC and adjacent non‑neoplastic tissue samples. In addition, the HT29 and RKO human CRC cell lines underwent ANRIL RNA interference, and knockdown efficiency was evaluated by western blotting. Cell viability, and migratory and invasive ability were subsequently assessed. The CRC tissues were revealed to express higher levels of ANRIL lncRNA compared with the adjacent non‑neoplastic tissues (P<0.05). Furthermore, high ANRIL expression was significantly associated with reduced survival rate (P<0.05). ANRIL gene expression was successfully silenced in human CRC cells. ANRIL knockdown decreased proliferation, inhibited migration and invasion, and reduced the colony‑forming ability of the cells. These data indicated that the lncRNA ANRIL is upregulated in CRC tissues, and is associated with CRC cell pathogenesis. Furthermore, the underlying mechanisms of these effects may be exploited for therapeutic benefit. PMID:27314206

  6. Cancer History May Affect Survival After Organ Transplant

    MedlinePlus

    ... nih.gov/medlineplus/news/fullstory_158468.html Cancer History May Affect Survival After Organ Transplant Study also ... death compared to organ recipients with no cancer history, new research suggests. The findings indicate that transplant ...

  7. Health Insurance Status May Affect Cancer Patients' Survival

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_160304.html Health Insurance Status May Affect Cancer Patients' Survival 2 studies ... certain cancers in America could depend on your health insurance status. Despite improvements in cancer diagnosis and treatment, ...

  8. Endothelium-mediated survival of leukemic cells and angiogenesis-related factors are affected by lenalidomide treatment in chronic lymphocytic leukemia.

    PubMed

    Maffei, Rossana; Fiorcari, Stefania; Bulgarelli, Jenny; Rizzotto, Lara; Martinelli, Silvia; Rigolin, Gian Matteo; Debbia, Giulia; Castelli, Ilaria; Bonacorsi, Goretta; Santachiara, Rita; Forconi, Francesco; Rossi, Davide; Laurenti, Luca; Palumbo, Giuseppe A; Vallisa, Daniele; Cuneo, Antonio; Gaidano, Gianluca; Luppi, Mario; Marasca, Roberto

    2014-02-01

    Lenalidomide is an IMID immunomodulatory agent clinically active in patients with chronic lymphocytic leukemia (CLL). We evaluated the activity of lenalidomide inside an in vitro coculture system of endothelial and CLL cells. Lenalidomide was able to inhibit CLL survival advantage mediated by endothelial contact. Moreover, the marked increase of in vitro angiogenesis determined by CLL-derived conditioned media was reduced by lenalidomide. We also analyzed peripheral blood collected from 27 patients with relapsed or refractory CLL being treated with lenalidomide within a phase II trial. Plasma levels of VEGF and THBS-1 decreased, whereas Ang2 and Ang increased during treatment. Patients who respond to lenalidomide showed a more pronounced decrease of VEGF and bFGF than did patients with stable or progressive disease (p = 0.007 and p = 0.005). Furthermore, lenalidomide reduced circulating endothelial cells and endothelial progenitors by increasing the percentage of apoptotic cells. Conversely, for six matched bone marrow biopsies available before and after treatment, we did not detect any modification in vessel density, suggesting a possible mechanism of vessel normalization rather than regression. In conclusion, our study provides further evidence that the anti-CLL effect of lenalidomide is mediated through the alteration of microenvironmental elements, implying the modulation of several angiogenesis-related factors and disruption of CLL crosstalk with endothelial cells. PMID:24212063

  9. Genitourinary mast cells and survival.

    PubMed

    Theoharides, Theoharis C; Stewart, Julia M

    2015-10-01

    Mast cells (MCs) are ubiquitous in the body, but they have historically been associated with allergies, and most recently with regulation of immunity and inflammation. However, it remains a puzzle why so many MCs are located in the diencephalon, which regulates emotions and in the genitourinary tract, including the bladder, prostate, penis, vagina and uterus that hardly ever get allergic reactions. A number of papers have reported that MCs have estrogen, gonadotropin and corticotropin-releasing hormone (CRH) receptors. Moreover, animal experiments have shown that diencephalic MCs increase in number during courting in doves. We had reported that allergic stimulation of nasal MCs leads to hypothalamic-pituitary adrenal (HPA) activation. Interestingly, anecdotal information indicates that female patients with mastocytosis or mast cell activation syndrome may have increased libido. Preliminary evidence also suggests that MCs may have olfactory receptors. MCs may, therefore, have been retained phylogenetically not only to "smell danger", but to promote survival and procreation. PMID:26813805

  10. Genitourinary mast cells and survival

    PubMed Central

    Stewart, Julia M.

    2015-01-01

    Mast cells (MCs) are ubiquitous in the body, but they have historically been associated with allergies, and most recently with regulation of immunity and inflammation. However, it remains a puzzle why so many MCs are located in the diencephalon, which regulates emotions and in the genitourinary tract, including the bladder, prostate, penis, vagina and uterus that hardly ever get allergic reactions. A number of papers have reported that MCs have estrogen, gonadotropin and corticotropin-releasing hormone (CRH) receptors. Moreover, animal experiments have shown that diencephalic MCs increase in number during courting in doves. We had reported that allergic stimulation of nasal MCs leads to hypothalamic-pituitary adrenal (HPA) activation. Interestingly, anecdotal information indicates that female patients with mastocytosis or mast cell activation syndrome may have increased libido. Preliminary evidence also suggests that MCs may have olfactory receptors. MCs may, therefore, have been retained phylogenetically not only to “smell danger”, but to promote survival and procreation. PMID:26813805

  11. Multiple Weather Factors Affect Apparent Survival of European Passerine Birds

    PubMed Central

    Salewski, Volker; Hochachka, Wesley M.; Fiedler, Wolfgang

    2013-01-01

    Weather affects the demography of animals and thus climate change will cause local changes in demographic rates. In birds numerous studies have correlated demographic factors with weather but few of those examined variation in the impacts of weather in different seasons and, in the case of migrants, in different regions. Using capture-recapture models we correlated weather with apparent survival of seven passerine bird species with different migration strategies to assess the importance of selected facets of weather throughout the year on apparent survival. Contrary to our expectations weather experienced during the breeding season did not affect apparent survival of the target species. However, measures for winter severity were associated with apparent survival of a resident species, two short-distance/partial migrants and a long-distance migrant. Apparent survival of two short distance migrants as well as two long-distance migrants was further correlated with conditions experienced during the non-breeding season in Spain. Conditions in Africa had statistically significant but relatively minor effects on the apparent survival of the two long-distance migrants but also of a presumably short-distance migrant and a short-distance/partial migrant. In general several weather effects independently explained similar amounts of variation in apparent survival for the majority of species and single factors explained only relatively low amounts of temporal variation of apparent survival. Although the directions of the effects on apparent survival mostly met our expectations and there are clear predictions for effects of future climate we caution against simple extrapolations of present conditions to predict future population dynamics. Not only did weather explains limited amounts of variation in apparent survival, but future demographics will likely be affected by changing interspecific interactions, opposing effects of weather in different seasons, and the potential for

  12. Early Life Triclocarban Exposure During Lactation Affects Neonate Rat Survival

    PubMed Central

    Kennedy, Rebekah C. M.; Menn, Fu-Min; Healy, Laura; Fecteau, Kellie A.; Hu, Pan; Bae, Jiyoung; Gee, Nancy A.; Lasley, Bill L.; Zhao, Ling

    2015-01-01

    Triclocarban (3,4,4′-trichlorocarbanilide; TCC), an antimicrobial used in bar soaps, affects endocrine function in vitro and in vivo. This study investigates whether TCC exposure during early life affects the trajectory of fetal and/or neonatal development. Sprague Dawley rats were provided control, 0.2% weight/weight (w/w), or 0.5% w/w TCC-supplemented chow through a series of 3 experiments that limited exposure to critical growth periods: gestation, gestation and lactation, or lactation only (cross-fostering) to determine the susceptible windows of exposure for developmental consequences. Reduced offspring survival occurred when offspring were exposed to TCC at concentrations of 0.2% w/w and 0.5% w/w during lactation, in which only 13% of offspring raised by 0.2% w/w TCC dams survived beyond weaning and no offspring raised by 0.5% w/w TCC dams survived to this period. In utero exposure status had no effect on survival, as all pups nursed by control dams survived regardless of their in utero exposure status. Microscopic evaluation of dam mammary tissue revealed involution to be a secondary outcome of TCC exposure rather than a primary effect of compound administration. The average concentration of TCC in the milk was almost 4 times that of the corresponding maternal serum levels. The results demonstrate that gestational TCC exposure does not affect the ability of dams to carry offspring to term but TCC exposure during lactation has adverse consequences on the survival of offspring although the mechanism of reduced survival is currently unknown. This information highlights the importance of evaluating the safety of TCC application in personal care products and the impacts during early life exposure. PMID:24803507

  13. Early life triclocarban exposure during lactation affects neonate rat survival.

    PubMed

    Kennedy, Rebekah C M; Menn, Fu-Min; Healy, Laura; Fecteau, Kellie A; Hu, Pan; Bae, Jiyoung; Gee, Nancy A; Lasley, Bill L; Zhao, Ling; Chen, Jiangang

    2015-01-01

    Triclocarban (3,4,4'-trichlorocarbanilide; TCC), an antimicrobial used in bar soaps, affects endocrine function in vitro and in vivo. This study investigates whether TCC exposure during early life affects the trajectory of fetal and/or neonatal development. Sprague Dawley rats were provided control, 0.2% weight/weight (w/w), or 0.5% w/w TCC-supplemented chow through a series of 3 experiments that limited exposure to critical growth periods: gestation, gestation and lactation, or lactation only (cross-fostering) to determine the susceptible windows of exposure for developmental consequences. Reduced offspring survival occurred when offspring were exposed to TCC at concentrations of 0.2% w/w and 0.5% w/w during lactation, in which only 13% of offspring raised by 0.2% w/w TCC dams survived beyond weaning and no offspring raised by 0.5% w/w TCC dams survived to this period. In utero exposure status had no effect on survival, as all pups nursed by control dams survived regardless of their in utero exposure status. Microscopic evaluation of dam mammary tissue revealed involution to be a secondary outcome of TCC exposure rather than a primary effect of compound administration. The average concentration of TCC in the milk was almost 4 times that of the corresponding maternal serum levels. The results demonstrate that gestational TCC exposure does not affect the ability of dams to carry offspring to term but TCC exposure during lactation has adverse consequences on the survival of offspring although the mechanism of reduced survival is currently unknown. This information highlights the importance of evaluating the safety of TCC application in personal care products and the impacts during early life exposure. PMID:24803507

  14. MiR-24 Promotes the Survival of Hematopoietic Cells

    PubMed Central

    Nguyen, Tan; Rich, Audrey; Dahl, Richard

    2013-01-01

    The microRNA, miR-24, inhibits B cell development and promotes myeloid development of hematopoietic progenitors. Differential regulation of cell survival in myeloid and lymphoid cells by miR-24 may explain how miR-24′s affects hematopoietic progenitors. MiR-24 is reported to regulate apoptosis, either positively or negatively depending on cell context. However, no role for miR-24 in regulating cell death has been previously described in blood cells. To examine miR-24′s effect on survival, we expressed miR-24 via retrovirus in hematopoietic cells and induced cell death with cytokine or serum withdrawal. We observed that miR-24 enhanced survival of myeloid and B cell lines as well as primary hematopoietic cells. Additionally, antagonizing miR-24 with shRNA in hematopoietic cells made them more sensitive to apoptotic stimuli, suggesting miR-24 functions normally to promote blood cell survival. Since we did not observe preferential protection of myeloid over B cells, miR-24′s pro-survival effect does not explain its promotion of myelopoiesis. Moreover, expression of pro-survival protein, Bcl-xL, did not mimic miR-24′s impact on cellular differentiation, further supporting this conclusion. Our results indicate that miR-24 is a critical regulator of hematopoietic cell survival. This observation has implications for leukemogenesis. Several miRNAs that regulate apoptosis have been shown to function as either tumor suppressors or oncogenes during leukemogenesis. MiR-24 is expressed highly in primary acute myelogenous leukemia, suggesting that its pro-survival activity could contribute to the transformation of hematopoietic cells. PMID:23383180

  15. Chemical ions affect survival of avian cholera organisms in pondwater

    USGS Publications Warehouse

    Price, J.I.; Yandell, B.S.; Porter, W.P.

    1992-01-01

    Avian cholera (Pasteurella multocida) is a major disease of wild waterfowl, but its epizootiology remains little understood. Consequently, we examined whether chemical ions affected survival of avian cholera organisms in water collected from the Nebraska Rainwater Basin where avian cholera is enzootic. We tested the response of P. multocida to ammonium (NH4), calcium (Ca), magnesium (Mg), nitrate (NO3), and ortho-phosphate (PO4) ions individually and in combination using a fractional factorial design divided into 4 blocks. High concentrations of Ca and Mg, singly or in combination, increased survival of P. multocida organisms (P < 0.001). We developed a survival index to predict whether or not specific ponds could be "problem" or "nonproblem" avian cholera sites based on concentrations of these ions in the water.

  16. Fine sediment affects on survival to emergence of robust redhorse

    USGS Publications Warehouse

    Jennings, C.A.; Dilts, E.W.; Shelton, J.L., Jr.; Peterson, Ronald C.

    2009-01-01

    Robust redhorse (Moxostoma robustum) is a rare riverine sucker for which life history information is scarce. Spawning occurs over loose gravel substrate and eggs and larvae may be adversely affected by fine sediments among the gravel. A 2-year study was conducted to determine the threshold at which fine sediments are detrimental to successful egg incubation and larval emergence. Year 1 gravel treatments contained 0, 25, 50, and 75% fine sediments. Mean survival during Year 1 ranged from 63.5% in the 0% fine sediment treatment to 0% in the 75% fine sediment treatment. The results also indicated an adverse affect threshold between 0 and 25% fine sediment. Year 2 gravel treatments contained 0, 5, 10, 15, 20, and 25% fine sediments. Mean survival during Year 2 ranged from 69.8% in the 0% treatment to 9.1% in the 25% treatment. Year 2 results also identified the 15% fine sediment treatment as the threshold at which survival began to decline. Substrates at one known spawning area used by robust redhorse typically contain 25 to 50% fine sediment, but the spawning act cleans some fines from the egg pocket. Whether the "cleaning" that results from the spawning act reduces the fines sufficiently to avoid adverse effects is unknown. According to our results, survival rates of robust redhorse eggs and larvae are predicted to be about 8.0% or less when fine sediment is >25%. ?? US Government 2009.

  17. Obesity Adversely Affects Survival in Pancreatic Cancer Patients

    PubMed Central

    McWilliams, Robert R.; Matsumoto, Martha E.; Burch, Patrick A.; Kim, George P.; Halfdanarson, Thorvardur R.; de Andrade, Mariza; Reid-Lombardo, Kaye; Bamlet, William R.

    2010-01-01

    Purpose Higher body-mass index (BMI) has been implicated as a risk factor for developing pancreatic cancer, but its effect on survival has not been thoroughly investigated. We assessed the association of BMI with survival in a sample of pancreatic cancer patients and utilized epidemiologic and clinical information to understand the contribution of diabetes and hyperglycemia. Methods A survival analysis using Cox proportional hazards by usual adult BMI was performed on 1,861 unselected patients with pancreatic adenocarcinoma; analyses were adjusted for covariates that included clinical stage, age, and sex. Secondary analyses incorporated self reported diabetes and fasting blood glucose in the survival model. Results BMI as a continuous variable was inversely associated with survival from pancreatic adenocarcinoma [hazard ratio 1.019 for each increased unit of BMI (kg/m2), p < 0.001] after adjustment for age, stage, and sex. In analysis by National Institutes of Health BMI category, BMI of 30–34.99 kg/m2 (HR 1.14, 95% confidence interval 0.98–1.33), 35–39.99 kg/m2 (HR 1.32, 95% CI 1.08–1.62), and ≥40 (HR 1.60, 95% CI 1.26–2.04) were associated with decreased survival compared to normal BMI of 18,5–24.99 kg/m2 (overall trend test p<0.001). Fasting blood glucose and diabetes did not affect the results. Conclusions Higher BMI is associated with decreased survival in pancreatic cancer. Although the mechanism of this association remains undetermined, diabetes and hyperglycemia do not appear to account for the observed association. PMID:20665496

  18. Death and survival of heterozygous Lurcher Purkinje cells in vitro

    PubMed Central

    Zanjani, Hadi; McFarland, Rebecca; Cavelier, Pauline; Blokhin, Andrei; Gautheron, Vanessa; Levenes, Carole; Bambrick, Linda L.; Mariani, Jean; Vogel, Michael W.

    2009-01-01

    The differentiation and survival of heterozygous Lurcher (+/Lc) Purkinje cells in vitro was examined as a model system for studying how chronic ionic stress affects neuronal differentiation and survival. The Lurcher mutation in the δ2 glutamate receptor (GluRδ2) converts an orphan receptor into a membrane channel that constitutively passes an inward cation current. In the GluRδ2+/Lc mutant, Purkinje cell dendritic differentiation is disrupted and the cells degenerate following the first week of postnatal development. To determine if the GluRδ2+/Lc Purkinje cell phenotype is recapitulated in vitro, +/+ and +/Lc Purkinje cells from postnatal day 0 pups were grown in either isolated cell or cerebellar slice cultures. GluRδ2+/+ and GluRδ2+/Lc Purkinje cells appeared to develop normally through the first 7 days in vitro (DIV), but by 11 DIV GluRδ2+/Lc Purkinje cells exhibited a significantly higher cation leak current. By 14 DIV, GluRδ2+/Lc Purkinje cell dendrites were stunted and the number of surviving GluRδ2+/Lc Purkinje cells was reduced by 75% compared to controls. However, treatment of +/Lc cerebellar cultures with 1-naphthyl acetyl spermine (NASP) increased +/Lc Purkinje cell survival to wild type levels. These results support the conclusion that the Lurcher mutation in GluRδ2 induces cell autonomous defects in differentiation and survival. The establishment of a tissue culture system for studying cell injury and death mechanisms in a relatively simple system like GluRδ2+/Lc Purkinje cells will provide a valuable model for studying how the induction of a chronic inward cation current in a single cell type affects neuronal differentiation and survival. PMID:19294643

  19. Functional TLR5 genetic variants affect human colorectal cancer survival.

    PubMed

    Klimosch, Sascha N; Försti, Asta; Eckert, Jana; Knezevic, Jelena; Bevier, Melanie; von Schönfels, Witigo; Heits, Nils; Walter, Jessica; Hinz, Sebastian; Lascorz, Jesus; Hampe, Jochen; Hartl, Dominik; Frick, Julia-Stefanie; Hemminki, Kari; Schafmayer, Clemens; Weber, Alexander N R

    2013-12-15

    Toll-like receptors (TLR) are overexpressed on many types of cancer cells, including colorectal cancer cells, but little is known about the functional relevance of these immune regulatory molecules in malignant settings. Here, we report frequent single-nucleotide polymorphisms (SNP) in the flagellin receptor TLR5 and the TLR downstream effector molecules MyD88 and TIRAP that are associated with altered survival in a large cohort of Caucasian patients with colorectal cancer (n = 613). MYD88 rs4988453, a SNP that maps to a promoter region shared with the acetyl coenzyme-A acyl-transferase-1 (ACAA1), was associated with decreased survival of patients with colorectal cancer and altered transcriptional activity of the proximal genes. In the TLR5 gene, rs5744174/F616L was associated with increased survival, whereas rs2072493/N592S was associated with decreased survival. Both rs2072493/N592S and rs5744174/F616L modulated TLR5 signaling in response to flagellin or to different commensal and pathogenic intestinal bacteria. Notably, we observed a reduction in flagellin-induced p38 phosphorylation, CD62L shedding, and elevated expression of interleukin (IL)-6 and IL-1β mRNA in human primary immune cells from TLR5 616LL homozygote carriers, as compared with 616FF carriers. This finding suggested that the well-documented effect of cytokines like IL-6 on colorectal cancer progression might be mediated by TLR5 genotype-dependent flagellin sensing. Our results establish an important link between TLR signaling and human colorectal cancer with relevance for biomarker and therapy development. PMID:24154872

  20. Targeting Cell Survival Proteins for Cancer Cell Death

    PubMed Central

    Pandey, Manoj K.; Prasad, Sahdeo; Tyagi, Amit Kumar; Deb, Lokesh; Huang, Jiamin; Karelia, Deepkamal N.; Amin, Shantu G.; Aggarwal, Bharat B.

    2016-01-01

    Escaping from cell death is one of the adaptations that enable cancer cells to stave off anticancer therapies. The key players in avoiding apoptosis are collectively known as survival proteins. Survival proteins comprise the Bcl-2, inhibitor of apoptosis (IAP), and heat shock protein (HSP) families. The aberrant expression of these proteins is associated with a range of biological activities that promote cancer cell survival, proliferation, and resistance to therapy. Several therapeutic strategies that target survival proteins are based on mimicking BH3 domains or the IAP-binding motif or competing with ATP for the Hsp90 ATP-binding pocket. Alternative strategies, including use of nutraceuticals, transcriptional repression, and antisense oligonucleotides, provide options to target survival proteins. This review focuses on the role of survival proteins in chemoresistance and current therapeutic strategies in preclinical or clinical trials that target survival protein signaling pathways. Recent approaches to target survival proteins-including nutraceuticals, small-molecule inhibitors, peptides, and Bcl-2-specific mimetic are explored. Therapeutic inventions targeting survival proteins are promising strategies to inhibit cancer cell survival and chemoresistance. However, complete eradication of resistance is a distant dream. For a successful clinical outcome, pretreatment with novel survival protein inhibitors alone or in combination with conventional therapies holds great promise. PMID:26927133

  1. Targeting Cell Survival Proteins for Cancer Cell Death.

    PubMed

    Pandey, Manoj K; Prasad, Sahdeo; Tyagi, Amit Kumar; Deb, Lokesh; Huang, Jiamin; Karelia, Deepkamal N; Amin, Shantu G; Aggarwal, Bharat B

    2016-01-01

    Escaping from cell death is one of the adaptations that enable cancer cells to stave off anticancer therapies. The key players in avoiding apoptosis are collectively known as survival proteins. Survival proteins comprise the Bcl-2, inhibitor of apoptosis (IAP), and heat shock protein (HSP) families. The aberrant expression of these proteins is associated with a range of biological activities that promote cancer cell survival, proliferation, and resistance to therapy. Several therapeutic strategies that target survival proteins are based on mimicking BH3 domains or the IAP-binding motif or competing with ATP for the Hsp90 ATP-binding pocket. Alternative strategies, including use of nutraceuticals, transcriptional repression, and antisense oligonucleotides, provide options to target survival proteins. This review focuses on the role of survival proteins in chemoresistance and current therapeutic strategies in preclinical or clinical trials that target survival protein signaling pathways. Recent approaches to target survival proteins-including nutraceuticals, small-molecule inhibitors, peptides, and Bcl-2-specific mimetic are explored. Therapeutic inventions targeting survival proteins are promising strategies to inhibit cancer cell survival and chemoresistance. However, complete eradication of resistance is a distant dream. For a successful clinical outcome, pretreatment with novel survival protein inhibitors alone or in combination with conventional therapies holds great promise. PMID:26927133

  2. Personality and morphological traits affect pigeon survival from raptor attacks.

    PubMed

    Santos, Carlos D; Cramer, Julia F; Pârâu, Liviu G; Miranda, Ana C; Wikelski, Martin; Dechmann, Dina K N

    2015-01-01

    Personality traits have recently been shown to impact fitness in different animal species, potentially making them similarly relevant drivers as morphological and life history traits along the evolutionary pathways of organisms. Predation is a major force of natural selection through its deterministic effects on individual survival, but how predation pressure has helped to shape personality trait selection, especially in free-ranging animals, remains poorly understood. We used high-precision GPS tracking to follow whole flocks of homing pigeons (Columba livia) with known personalities and morphology during homing flights where they were severely predated by raptors. This allowed us to determine how the personality and morphology traits of pigeons may affect their risk of being predated by raptors. Our survival model showed that individual pigeons, which were more tolerant to human approach, slower to escape from a confined environment, more resistant to human handling, with larger tarsi, and with lighter plumage, were more likely to be predated by raptors. We provide rare empirical evidence that the personality of prey influences their risk of being predated under free-ranging circumstances. PMID:26489437

  3. Personality and morphological traits affect pigeon survival from raptor attacks

    PubMed Central

    Santos, Carlos D.; Cramer, Julia F.; Pârâu, Liviu G.; Miranda, Ana C.; Wikelski, Martin; Dechmann, Dina K. N.

    2015-01-01

    Personality traits have recently been shown to impact fitness in different animal species, potentially making them similarly relevant drivers as morphological and life history traits along the evolutionary pathways of organisms. Predation is a major force of natural selection through its deterministic effects on individual survival, but how predation pressure has helped to shape personality trait selection, especially in free-ranging animals, remains poorly understood. We used high-precision GPS tracking to follow whole flocks of homing pigeons (Columba livia) with known personalities and morphology during homing flights where they were severely predated by raptors. This allowed us to determine how the personality and morphology traits of pigeons may affect their risk of being predated by raptors. Our survival model showed that individual pigeons, which were more tolerant to human approach, slower to escape from a confined environment, more resistant to human handling, with larger tarsi, and with lighter plumage, were more likely to be predated by raptors. We provide rare empirical evidence that the personality of prey influences their risk of being predated under free-ranging circumstances. PMID:26489437

  4. Cyclin-dependent kinase 7 controls mRNA synthesis by affecting stability of preinitiation complexes, leading to altered gene expression, cell cycle progression, and survival of tumor cells.

    PubMed

    Kelso, Timothy W R; Baumgart, Karen; Eickhoff, Jan; Albert, Thomas; Antrecht, Claudia; Lemcke, Sarah; Klebl, Bert; Meisterernst, Michael

    2014-10-01

    Cyclin-dependent kinase 7 (CDK7) activates cell cycle CDKs and is a member of the general transcription factor TFIIH. Although there is substantial evidence for an active role of CDK7 in mRNA synthesis and associated processes, the degree of its influence on global and gene-specific transcription in mammalian species is unclear. In the current study, we utilize two novel inhibitors with high specificity for CDK7 to demonstrate a restricted but robust impact of CDK7 on gene transcription in vivo and in in vitro-reconstituted reactions. We distinguish between relative low- and high-dose responses and relate them to distinct molecular mechanisms and altered physiological responses. Low inhibitor doses cause rapid clearance of paused RNA polymerase II (RNAPII) molecules and sufficed to cause genome-wide alterations in gene expression, delays in cell cycle progression at both the G1/S and G2/M checkpoints, and diminished survival of human tumor cells. Higher doses and prolonged inhibition led to strong reductions in RNAPII carboxyl-terminal domain (CTD) phosphorylation, eventual activation of the p53 program, and increased cell death. Together, our data reason for a quantitative contribution of CDK7 to mRNA synthesis, which is critical for cellular homeostasis. PMID:25047832

  5. Cyclin-Dependent Kinase 7 Controls mRNA Synthesis by Affecting Stability of Preinitiation Complexes, Leading to Altered Gene Expression, Cell Cycle Progression, and Survival of Tumor Cells

    PubMed Central

    Kelso, Timothy W. R.; Baumgart, Karen; Eickhoff, Jan; Albert, Thomas; Antrecht, Claudia; Lemcke, Sarah; Klebl, Bert

    2014-01-01

    Cyclin-dependent kinase 7 (CDK7) activates cell cycle CDKs and is a member of the general transcription factor TFIIH. Although there is substantial evidence for an active role of CDK7 in mRNA synthesis and associated processes, the degree of its influence on global and gene-specific transcription in mammalian species is unclear. In the current study, we utilize two novel inhibitors with high specificity for CDK7 to demonstrate a restricted but robust impact of CDK7 on gene transcription in vivo and in in vitro-reconstituted reactions. We distinguish between relative low- and high-dose responses and relate them to distinct molecular mechanisms and altered physiological responses. Low inhibitor doses cause rapid clearance of paused RNA polymerase II (RNAPII) molecules and sufficed to cause genome-wide alterations in gene expression, delays in cell cycle progression at both the G1/S and G2/M checkpoints, and diminished survival of human tumor cells. Higher doses and prolonged inhibition led to strong reductions in RNAPII carboxyl-terminal domain (CTD) phosphorylation, eventual activation of the p53 program, and increased cell death. Together, our data reason for a quantitative contribution of CDK7 to mRNA synthesis, which is critical for cellular homeostasis. PMID:25047832

  6. Coronary-Heart-Disease-Associated Genetic Variant at the COL4A1/COL4A2 Locus Affects COL4A1/COL4A2 Expression, Vascular Cell Survival, Atherosclerotic Plaque Stability and Risk of Myocardial Infarction

    PubMed Central

    Pu, Xiangyuan; Ren, Meixia; An, Weiwei; Zhang, Ruoxin; Yan, Shunying; Situ, Haiteng; He, Xinjie; Chen, Yequn; Tan, Xuerui; Xiao, Qingzhong; Tucker, Arthur T.; Caulfield, Mark J.; Ye, Shu

    2016-01-01

    Genome-wide association studies have revealed an association between coronary heart disease (CHD) and genetic variation on chromosome 13q34, with the lead single nucleotide polymorphism rs4773144 residing in the COL4A2 gene in this genomic region. We investigated the functional effects of this genetic variant. Analyses of primary cultures of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) from different individuals showed a difference between rs4773144 genotypes in COL4A2 and COL4A1 expression levels, being lowest in the G/G genotype, intermediate in A/G and highest in A/A. Chromatin immunoprecipitation followed by allelic imbalance assays of primary cultures of SMCs and ECs that were of the A/G genotype revealed that the G allele had lower transcriptional activity than the A allele. Electrophoretic mobility shift assays and luciferase reporter gene assays showed that a short DNA sequence encompassing the rs4773144 site interacted with a nuclear protein, with lower efficiency for the G allele, and that the G allele sequence had lower activity in driving reporter gene expression. Analyses of cultured SMCs from different individuals demonstrated that cells of the G/G genotype had higher apoptosis rates. Immunohistochemical and histological examinations of ex vivo atherosclerotic coronary arteries from different individuals disclosed that atherosclerotic plaques with the G/G genotype had lower collagen IV abundance and thinner fibrous cap, a hallmark of unstable, rupture-prone plaques. A study of a cohort of patients with angiographically documented coronary artery disease showed that patients of the G/G genotype had higher rates of myocardial infarction, a phenotype often caused by plaque rupture. These results indicate that the CHD-related genetic variant at the COL4A2 locus affects COL4A2/COL4A1 expression, SMC survival, and atherosclerotic plaque stability, providing a mechanistic explanation for the association between the genetic variant and CHD

  7. Coronary-Heart-Disease-Associated Genetic Variant at the COL4A1/COL4A2 Locus Affects COL4A1/COL4A2 Expression, Vascular Cell Survival, Atherosclerotic Plaque Stability and Risk of Myocardial Infarction.

    PubMed

    Yang, Wei; Ng, Fu Liang; Chan, Kenneth; Pu, Xiangyuan; Poston, Robin N; Ren, Meixia; An, Weiwei; Zhang, Ruoxin; Wu, Jingchun; Yan, Shunying; Situ, Haiteng; He, Xinjie; Chen, Yequn; Tan, Xuerui; Xiao, Qingzhong; Tucker, Arthur T; Caulfield, Mark J; Ye, Shu

    2016-07-01

    Genome-wide association studies have revealed an association between coronary heart disease (CHD) and genetic variation on chromosome 13q34, with the lead single nucleotide polymorphism rs4773144 residing in the COL4A2 gene in this genomic region. We investigated the functional effects of this genetic variant. Analyses of primary cultures of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) from different individuals showed a difference between rs4773144 genotypes in COL4A2 and COL4A1 expression levels, being lowest in the G/G genotype, intermediate in A/G and highest in A/A. Chromatin immunoprecipitation followed by allelic imbalance assays of primary cultures of SMCs and ECs that were of the A/G genotype revealed that the G allele had lower transcriptional activity than the A allele. Electrophoretic mobility shift assays and luciferase reporter gene assays showed that a short DNA sequence encompassing the rs4773144 site interacted with a nuclear protein, with lower efficiency for the G allele, and that the G allele sequence had lower activity in driving reporter gene expression. Analyses of cultured SMCs from different individuals demonstrated that cells of the G/G genotype had higher apoptosis rates. Immunohistochemical and histological examinations of ex vivo atherosclerotic coronary arteries from different individuals disclosed that atherosclerotic plaques with the G/G genotype had lower collagen IV abundance and thinner fibrous cap, a hallmark of unstable, rupture-prone plaques. A study of a cohort of patients with angiographically documented coronary artery disease showed that patients of the G/G genotype had higher rates of myocardial infarction, a phenotype often caused by plaque rupture. These results indicate that the CHD-related genetic variant at the COL4A2 locus affects COL4A2/COL4A1 expression, SMC survival, and atherosclerotic plaque stability, providing a mechanistic explanation for the association between the genetic variant and CHD

  8. Factors affecting survival of bacteriophage on tomato leaf surfaces.

    PubMed

    Iriarte, F B; Balogh, B; Momol, M T; Smith, L M; Wilson, M; Jones, J B

    2007-03-01

    The ability of bacteriophage to persist in the phyllosphere for extended periods is limited by many factors, including sunlight irradiation, especially in the UV zone, temperature, desiccation, and exposure to copper bactericides. The effects of these factors on persistence of phage and formulated phage (phage mixed with skim milk) were evaluated. In field studies, copper caused significant phage reduction if applied on the day of phage application but not if applied 4 or 7 days in advance. Sunlight UV was evaluated for detrimental effects on phage survival on tomato foliage in the field. Phage was applied in the early morning, midmorning, early afternoon, and late evening, while UVA plus UVB irradiation and phage populations were monitored. The intensity of UV irradiation positively correlated with phage population decline. The protective formulation reduced the UV effect. In order to demonstrate direct effects of UV, phage suspensions were exposed to UV irradiation and assayed for effectiveness against bacterial spot of tomato. UV significantly reduced phage ability to control bacterial spot. Ambient temperature had a pronounced effect on nonformulated phage but not on formulated phages. The effects of desiccation and fluorescent light illumination on phage were investigated. Desiccation caused a significant but only slight reduction in phage populations after 60 days, whereas fluorescent light eliminated phages within 2 weeks. The protective formulation eliminated the reduction caused by both of these factors. Phage persistence was dramatically affected by UV, while the other factors had less pronounced effects. Formulated phage reduced deleterious effects of the studied environmental factors. PMID:17259361

  9. DO AUTOCHTHONOUS BACTERIA AFFECT GIARDIA CYST SURVIVAL IN NATURAL WATERS?

    EPA Science Inventory

    Giardia lamblia survives in and is transmitted to susceptible human and animal populations via water, where it is present in an environmentally resistant cyst form. Previous research has highlighted the importance of water temperature in cyst survival, and has also suggested the ...

  10. Effects of Triclosan on Neural Stem Cell Viability and Survival

    PubMed Central

    Park, Bo Kyung; Gonzales, Edson Luck T.; Yang, Sung Min; Bang, Minji; Choi, Chang Soon; Shin, Chan Young

    2016-01-01

    Triclosan is an antimicrobial or sanitizing agent used in personal care and household products such as toothpaste, soaps, mouthwashes and kitchen utensils. There are increasing evidence of the potentially harmful effects of triclosan in many systemic and cellular processes of the body. In this study, we investigated the effects of triclosan in the survivability of cultured rat neural stem cells (NSCs). Cortical cells from embryonic day 14 rat embryos were isolated and cultured in vitro. After stabilizing the culture, triclosan was introduced to the cells with concentrations ranging from 1 μM to 50 μM and in varied time periods. Thereafter, cell viability parameters were measured using MTT assay and PI staining. TCS decreased the cell viability of treated NSC in a concentration-dependent manner along with increased expressions of apoptotic markers, cleaved caspase-3 and Bax, while reduced expression of Bcl2. To explore the mechanisms underlying the effects of TCS in NSC, we measured the activation of MAPKs and intracellular ROS. TCS at 50 μM induced the activations of both p38 and JNK, which may adversely affect cell survival. In contrast, the activities of ERK, Akt and PI3K, which are positively correlated with cell survival, were inhibited. Moreover, TCS at this concentration augmented the ROS generation in treated NSC and depleted the glutathione activity. Taken together, these results suggest that TCS can induce neurodegenerative effects in developing rat brains through mechanisms involving ROS activation and apoptosis initiation. PMID:26759708

  11. Effects of Triclosan on Neural Stem Cell Viability and Survival.

    PubMed

    Park, Bo Kyung; Gonzales, Edson Luck T; Yang, Sung Min; Bang, Minji; Choi, Chang Soon; Shin, Chan Young

    2016-01-01

    Triclosan is an antimicrobial or sanitizing agent used in personal care and household products such as toothpaste, soaps, mouthwashes and kitchen utensils. There are increasing evidence of the potentially harmful effects of triclosan in many systemic and cellular processes of the body. In this study, we investigated the effects of triclosan in the survivability of cultured rat neural stem cells (NSCs). Cortical cells from embryonic day 14 rat embryos were isolated and cultured in vitro. After stabilizing the culture, triclosan was introduced to the cells with concentrations ranging from 1 μM to 50 μM and in varied time periods. Thereafter, cell viability parameters were measured using MTT assay and PI staining. TCS decreased the cell viability of treated NSC in a concentration-dependent manner along with increased expressions of apoptotic markers, cleaved caspase-3 and Bax, while reduced expression of Bcl2. To explore the mechanisms underlying the effects of TCS in NSC, we measured the activation of MAPKs and intracellular ROS. TCS at 50 μM induced the activations of both p38 and JNK, which may adversely affect cell survival. In contrast, the activities of ERK, Akt and PI3K, which are positively correlated with cell survival, were inhibited. Moreover, TCS at this concentration augmented the ROS generation in treated NSC and depleted the glutathione activity. Taken together, these results suggest that TCS can induce neurodegenerative effects in developing rat brains through mechanisms involving ROS activation and apoptosis initiation. PMID:26759708

  12. Developmental and Evolutionary History Affect Survival in Stressful Environments

    PubMed Central

    Hopkins, Gareth R.; Brodie, Edmund D.; French, Susannah S.

    2014-01-01

    The world is increasingly impacted by a variety of stressors that have the potential to differentially influence life history stages of organisms. Organisms have evolved to cope with some stressors, while with others they have little capacity. It is thus important to understand the effects of both developmental and evolutionary history on survival in stressful environments. We present evidence of the effects of both developmental and evolutionary history on survival of a freshwater vertebrate, the rough-skinned newt (Taricha granulosa) in an osmotically stressful environment. We compared the survival of larvae in either NaCl or MgCl2 that were exposed to salinity either as larvae only or as embryos as well. Embryonic exposure to salinity led to greater mortality of newt larvae than larval exposure alone, and this reduced survival probability was strongly linked to the carry-over effect of stunted embryonic growth in salts. Larval survival was also dependent on the type of salt (NaCl or MgCl2) the larvae were exposed to, and was lowest in MgCl2, a widely-used chemical deicer that, unlike NaCl, amphibian larvae do not have an evolutionary history of regulating at high levels. Both developmental and evolutionary history are critical factors in determining survival in this stressful environment, a pattern that may have widespread implications for the survival of animals increasingly impacted by substances with which they have little evolutionary history. PMID:24748021

  13. Oncogenes in Cell Survival and Cell Death

    PubMed Central

    Shortt, Jake; Johnstone, Ricky W.

    2012-01-01

    The transforming effects of proto-oncogenes such as MYC that mediate unrestrained cell proliferation are countered by “intrinsic tumor suppressor mechanisms” that most often trigger apoptosis. Therefore, cooperating genetic or epigenetic effects to suppress apoptosis (e.g., overexpression of BCL2) are required to enable the dual transforming processes of unbridled cell proliferation and robust suppression of apoptosis. Certain oncogenes such as BCR-ABL are capable of concomitantly mediating the inhibition of apoptosis and driving cell proliferation and therefore are less reliant on cooperating lesions for transformation. Accordingly, direct targeting of BCR-ABL through agents such as imatinib have profound antitumor effects. Other oncoproteins such as MYC rely on the anti-apoptotic effects of cooperating oncoproteins such as BCL2 to facilitate tumorigenesis. In these circumstances, where the primary oncogenic driver (e.g., MYC) cannot yet be therapeutically targeted, inhibition of the activity of the cooperating antiapoptotic protein (e.g., BCL2) can be exploited for therapeutic benefit. PMID:23209150

  14. Survival during the Breeding Season: Nest Stage, Parental Sex, and Season Advancement Affect Reed Warbler Survival

    PubMed Central

    Wierucka, Kaja; Halupka, Lucyna; Klimczuk, Ewelina; Sztwiertnia, Hanna

    2016-01-01

    Avian annual survival has received much attention, yet little is known about seasonal patterns in survival, especially of migratory passerines. In order to evaluate survival rates and timing of mortality within the breeding season of adult reed warblers (Acrocephalus scirpaceus), mark-recapture data were collected in southwest Poland, between 2006 and 2012. A total of 612 individuals (304 females and 308 males) were monitored throughout the entire breeding season, and their capture-recapture histories were used to model survival rates. Males showed higher survival during the breeding season (0.985, 95% CI: 0.941–0.996) than females (0.869, 95% CI: 0.727–0.937). Survival rates of females declined with the progression of the breeding season (from May to August), while males showed constant survival during this period. We also found a clear pattern within the female (but not male) nesting cycle: survival was significantly lower during the laying, incubation, and nestling periods (0.934, 95% CI: 0.898–0.958), when birds spent much time on the nest, compared to the nest building and fledgling periods (1.000, 95% CI: 1.00–1.000), when we did not record any female mortality. These data (coupled with some direct evidence, like bird corpses or blood remains found next to/on the nest) may suggest that the main cause of adult mortality was on-nest predation. The calculated survival rates for both sexes during the breeding season were high compared to annual rates reported for this species, suggesting that a majority of mortality occurs at other times of the year, during migration or wintering. These results have implications for understanding survival variation within the reproductive period as well as general trends of avian mortality. PMID:26934086

  15. Weed Seedling Emergence and Survival as Affected by Crop Canopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study measured impact of cool-season crops on seedling emergence, survival, and seed production of weeds common in corn and soybean. Weed dynamics were monitored in permanently-marked quadrats in winter wheat, spring wheat, and canola. Three species, green foxtail, yellow foxtail, and common ...

  16. Circadian timing of single daily 'meal' affects survival of mice

    NASA Technical Reports Server (NTRS)

    Nelson, W.; Cadotte, L.; Halberg, F.

    1973-01-01

    It is shown that the survival of young mice after abrupt restriction to a single 4-hr span of daily food accessibility can depend on the temporal placement of this feeding span in relation to the lighting regimen. Housing conditions are an important codeterminant of this response.

  17. Sex Steroid Hormone Receptor Expression Affects Ovarian Cancer Survival12

    PubMed Central

    Jönsson, Jenny-Maria; Skovbjerg Arildsen, Nicolai; Malander, Susanne; Måsbäck, Anna; Hartman, Linda; Nilbert, Mef; Hedenfalk, Ingrid

    2015-01-01

    Background and Aims: Although most ovarian cancers express estrogen (ER), progesterone (PR), and androgen (AR) receptors, they are currently not applied in clinical decision making. We explored the prognostic impact of sex steroid hormone receptor protein and mRNA expression on survival in epithelial ovarian cancer. Methods: Immunohistochemical stainings for ERα, ERβ, PR, and AR were assessed in relation to survival in 118 serous and endometrioid ovarian cancers. Expression of the genes encoding the four receptors was studied in relation to prognosis in the molecular subtypes of ovarian cancer in an independent data set, hypothesizing that the expression levels and prognostic impact may differ between the subtypes. Results: Expression of PR or AR protein was associated with improved 5-year progression-free (P = .001 for both) and overall survival (P < .001 for both, log-rank test). ERα and ERβ did not provide prognostic information. Patients whose tumors coexpressed PR and AR had the most favorable prognosis, and this effect was retained in multivariable analyses. Analyses of the corresponding genes using an independent data set revealed differences among the molecular subtypes, but no clear relationship between high coexpression of PGR and AR and prognosis. Conclusions: A favorable outcome was seen for patients whose tumors coexpressed PR and AR. Gene expression data suggested variable effects in the different molecular subtypes. These findings demonstrate a prognostic role for PR and AR in ovarian cancer and support that tumors should be stratified based on molecular as well as histological subtypes in future studies investigating the role of endocrine treatment in ovarian cancer. PMID:26500033

  18. Effect of interleukins on the proliferation and survival of B cell chronic lymphocytic leukaemia cells.

    PubMed Central

    Mainou-Fowler, T; Copplestone, J A; Prentice, A G

    1995-01-01

    AIMS--To investigate the effects of interleukin (IL) 1, 2, 4, and 5 on the proliferation and survival of peripheral blood B cells from patients with B chronic lymphocytic leukaemia (B-CLL) and compare them with the effects on normal peripheral blood B cells. METHODS--The proliferation and survival of pokeweed mitogen (PWM) activated B cells from B-CLL (n = 12) and normal peripheral blood (n = 5) were studied in vitro in response to IL-1, IL-2 IL-4, and IL-5. Survival of cells in cultures with or without added interleukins was studied by microscopic examination of cells and DNA agarose gel electrophoresis. RESULTS--Proliferation was observed in both B-CLL and normal peripheral blood cells on culture with IL-2 alone and also in some, but not all, B-CLL and normal peripheral blood cells with IL-1 and IL-4. However, there was greater variability in B-CLL cell responses than in normal peripheral blood cells. Il-5 did not affect normal peripheral blood cell proliferation but it increased proliferation in two B-CLL cases. Synergistic effects of these cytokines were not detected. IL-4 inhibited normal peripheral blood and B-CLL cell proliferation after the addition of IL-2. Inhibition of B-CLL cell responses to IL-2 was also observed with IL-5 and Il-1. Survival of B-CLL cells in cultures was enhanced with IL-4 not by an increase in proliferation but by reduced apoptosis. No such effect was seen in normal peripheral blood cells. IL-2 had a less noticeable antiapoptotic effect; IL-5 enhanced apoptosis in B-CLL cells. CONCLUSIONS--B-CLL and normal peripheral blood cells proliferated equally well in response to IL-2. IL-4 had a much lower effect on B-CLL cell proliferation, but had noticeable antiapoptotic activity. IL-5 enhanced cell death by apoptosis. Images PMID:7629299

  19. The flavonoids hesperidin and rutin promote neural crest cell survival.

    PubMed

    Nones, Jader; Costa, Ana Paula; Leal, Rodrigo Bainy; Gomes, Flávia Carvalho Alcantara; Trentin, Andréa Gonçalves

    2012-11-01

    The neural crest (NC) corresponds to a collection of multipotent and oligopotent progenitors endowed with both neural and mesenchymal potentials. The derivatives of the NC at trunk level include neurons and glial cells of the peripheral nervous system in addition to melanocytes, smooth muscle cells and some endocrine cells. Environmental factors control the fate decisions of NC cells. Despite the well-known influence of flavonoids on the central nervous system, the issue of whether they also influence NC cells has not been yet addressed. Flavonoids are polyphenolic compounds that are integral components of the human diet. The biological activities of these compounds cover a very broad spectrum, from anticancer and antibacterial activities to inhibition of bone reabsorption and modulation of inflammatory response. In the present work, we have investigated the actions of the flavonoids hesperidin, rutin and quercetin on NC cells of quail, in vitro. We show for the first time, that hesperidin and rutin increase the viability of trunk NC cells in culture, without affecting cell differentiation and proliferation. The molecular mechanism of this action is dependent on ERK2 and PI3K pathways. Quercetin had no effect on NC progenitors. Taken together, these results suggest that flavonoids hesperidin and rutin increase NC cell survival, which may be useful against the toxicity of some chemicals during embryonic development. PMID:22855262

  20. Macrophage-mediated chronic lymphocytic leukemia cell survival is independent of APRIL signaling

    PubMed Central

    van Attekum, MHA; Terpstra, S; Reinen, E; Kater, AP; Eldering, E

    2016-01-01

    Survival of chronic lymphocytic leukemia (CLL) cells is mainly driven by interactions within the lymph node (LN) microenvironment with bystander cells such as T cells or cells from the monocytic lineage. Although the survival effect by T cells is largely governed by the TNFR ligand family member CD40L, the exact mechanism of monocyte-derived cell-induced survival is not known. An important role has been attributed to the TNFR ligand, a proliferation-inducing ligand (APRIL), although the exact mechanism remained unclear. Since we detected that APRIL was expressed by CD68+ cells in CLL LN, we addressed its relevance in various aspects of CLL biology, using a novel APRIL overexpressing co-culture system, recombinant APRIL, and APRIL reporter cells. Unexpectedly, we found, that in these various systems, APRIL had no effect on survival of CLL cells, and activation of NF-κB was not enhanced on APRIL stimulation. Moreover, APRIL stity mulation did not affect CLL proliferation, neither as single stimulus nor in combination with known CLL proliferation stimuli. Furthermore, the survival effect conveyed by macrophages to CLL cells was not affected by transmembrane activator and CAML interactor-Fc, an APRIL decoy receptor. We conclude that the direct role ascribed to APRIL in CLL cell survival might be overestimated due to application of supraphysiological levels of recombinant APRIL. PMID:27551513

  1. A systematic review of psychosocial factors affecting survival after bone marrow transplantation.

    PubMed

    Hoodin, Flora; Weber, Shauncie

    2003-01-01

    An electronic database search identified 15 studies of psychosocial factors affecting survival after bone marrow transplantation. The studies were assessed for methodological quality by two reviewers using the procedures of Bland and colleagues. Although some studies found that psychological variables affect survival after bone marrow transplantation, the reviewers' analysis of the methodologically sound studies suggested that survival after bone marrow transplantation is not substantively affected by depressed mood or other psychopathology in adults or by social support in adults or children. Longer survival may be related to lower "anxious preoccupation," higher "fighting spirit," and better quality of life ratings before and soon after transplant in adults. Overall, however, the literature is insufficiently developed to provide definitive evidence for a relationship between psychological variables and survival after bone marrow transplantation. Future primary studies in this area should be designed to maximize replicability and generalizability. PMID:12724499

  2. Factors affecting post-capture survivability of lobster Homarus americanus.

    PubMed

    Basti, David; Bricknell, Ian; Hoyt, Ken; Chang, Ernest S; Halteman, William; Bouchard, Deborah

    2010-06-11

    Technological advances in gear and fishing practices have driven the global expansion of the American lobster live seafood market. These changes have had a positive effect on the lobster industry by increasing capture efficiency. However, it is unknown what effect these improved methods will have on the post-capture fitness and survival of lobsters. This project utilized a repeated measures design to compare the physiological changes that occur in lobsters over time as the result of differences in depth, hauling rate, and storage methodology. The results indicate that lobsters destined for long distance transport or temporary storage in pounds undergo physiological disturbance as part of the capture process. These changes are significant over time for total hemocyte counts, crustacean hyperglycemic hormone, L-lactate, ammonia, and glucose. Repeated measures multivariate analysis of variance (MANOVA) for glucose indicates a significant interaction between depth and storage methodology over time for non-survivors. A Gram-negative bacterium, Photobacterium indicum, was identified in pure culture from hemolymph samples of 100% of weak lobsters. Histopathology revealed the presence of Gram-negative bacteria throughout the tissues with evidence of antemortem edema and necrosis suggestive of septicemia. On the basis of these findings, we recommend to the lobster industry that if a reduction in depth and hauling rate is not economically feasible, fishermen should take particular care in handling lobsters and provide them with a recovery period in recirculating seawater prior to land transport. The ecological role of P. indicum is not fully defined at this time. However, it may be an emerging opportunistic pathogen of stressed lobsters. Judicious preemptive antibiotic therapy may be necessary to reduce mortality in susceptible lobsters destined for high-density holding facilities. PMID:20662372

  3. Factors affecting survival in total artificial heart recipients before transplantation.

    PubMed

    Kawaguchi, A T; Gandjbakhch, I; Pavie, A; Muneretto, C; Solis, E; Bors, V; Leger, P; Vaissier, E; Levasseur, J P; Szefner, J

    1990-11-01

    To identify factors affecting the successful bridge to transplantation, experience with 32 recipients of the Jarvik-7 artificial heart was reviewed. Between patients with and without a successful bridge, there were no significant differences in preoperative hepatorenal function or postoperative hemodynamics, but there were significant differences in body size. When recipients were divided according to body surface areas of less than or greater than 1.8 m2, the smaller patients more frequently developed respirator dependence (73% vs. 18%, p less than 0.01), renal failure (53% vs. 18%, p less than 0.05), and hepatic failure and sepsis, resulting in less frequent qualification for transplantation (20% vs. 65%, p less than 0.05). There were no successful bridge operations in seven patients with body surface areas of less than 1.7 m2, and only one success in nine patients who were less than 170 cm in height, despite use of a smaller stroke volume model. The smaller patients had poorer ventricular filling, which was largely compensated for by the drive controls set for significantly longer diastole and higher vacuum, resulting in similar hemodynamics between the groups. The results suggest that device fitting as manifested by body size is an important factor affecting major organ recovery and subsequent transplantation in recipients of the Jarvik-7 artificial heart. A paracorporeal device may be advisable for patients with body surface areas of less than 1.8 m2 or who were less than 175 cm in height until an even smaller model with a better fit in the thorax becomes available. PMID:2225424

  4. CRYSTALLINS IN RETINAL GANGLION CELL SURVIVAL AND REGENERATION

    PubMed Central

    Piri, Natik; Kwong, Jacky MK; Caprioli, Joseph

    2013-01-01

    Crystallins are heterogeneous proteins classified into alpha, beta, and gamma families. Although crystallins were first identified as the major structural components of the ocular lens with a principal function to maintain lens transparency, further studies have demonstrated the expression of these proteins in a wide variety of tissues and cell types. Alpha crystallins (alpha A and alpha B) share significant homology with small heat shock proteins and have chaperone-like properties, including the ability to bind and prevent the precipitation of denatured proteins and to increase cellular resistance to stress-induced apoptosis. Stress-induced upregulation of crystallin expression is a commonly observed phenomenon and viewed as a cellular response mechanism against environmental and metabolic insults. However, several studies reported downregulation of crystallin gene expression in various models of glaucomatous nerodegeneration suggesting that that the decreased levels of crystallins may affect the survival properties of retinal ganglion cells and thus, be associated with their degeneration. This hypothesis was corroborated by increased survival of axotomized retinal ganglion cells (RGCs) in retinas overexpressing alpha A or alpha B crystallins. In addition to RGC protective functions of alpha crystallins, beta or gamma crystallins were implicated in RGC axonal regeneration. These findings demonstrate the importance of crystallin genes in RGC survival and regeneration and further in-depth studies are necessary to better understand the mechanisms underlying the functions of these proteins in healthy RGCs as well as during glaucomatous neurodegeneration, which in turn could help in designing new therapeutic strategies to preserve or regenerate these cells. PMID:23709342

  5. Factors affecting survivability of local Rohilkhand goats under organized farm

    PubMed Central

    Upadhyay, D.; Patel, B. H. M.; Sahu, S.; Gaur, G. K.; Singh, M.

    2015-01-01

    Aim: To study the pattern of mortality as affected by age, season and various diseases in local goats of Rohilkhand region maintained at the Indian Veterinary Research Institute, Bareilly. Materials and Methods: Post-mortem records of 12 years (2000-01 to 2011-12) were used, and total 243 mortality data were collected and analyzed. The causes of mortality were classified into seven major classes viz. digestive disorders, respiratory disorders, cardiovascular disorders, musculoskeletal disorder, parasitic disorders, mixed disorders (combination of digestive, respiratory, parasitic, and cardiovascular disorders) and miscellaneous disorders (cold, hypoglycemia, emaciation, endometritis, traumatic injury, etc.). Results: The average mortality was 10.93%. The overall mortality was more during rainy season followed by winter and summer season. The mortality in 4-6 months of age was high (2.52%) followed by 0-1 month (2.34%) and 2-3 months (1.35%). The average mortality among adult age groups (>12 months) was 3.42%. The mortality showed declining trend with the advancement of age up to 3 months and then again increased in 4-6 months age group. The digestive diseases (3.51%) followed by respiratory diseases (1.89%) and parasitic diseases (1.48%) contributed major share to the total mortality occurred and the remaining disorders were of lesser significance in causing death in goats. There is significant (p<0.01; χ2=55.62) association between year with season and age with the season (p<0.05, χ2=16.083) found in the present study. Conclusion: This study confirms that overall mortality rate averaged 10.93% (ranged between 1.10% and 25.56%) over 12 years under semi-intensive farm condition. It was generally higher in rainy season. The mortality remains higher in kids particularly under 1 month of age. The digestive diseases contributed major share to overall mortality. PMID:27047020

  6. Leptin promotes cell proliferation and survival of trophoblastic cells.

    PubMed

    Magariños, María Paula; Sánchez-Margalet, Víctor; Kotler, Mónica; Calvo, Juan Carlos; Varone, Cecilia L

    2007-02-01

    Leptin, the 16-kDa protein product of the obese gene, was originally considered as an adipocyte-derived signaling molecule for the central control of metabolism. However, leptin has been suggested to be involved in other functions during pregnancy, particularly in placenta. In the present work, we studied a possible effect of leptin on trophoblastic cell proliferation, survival, and apoptosis. Recombinant human leptin added to JEG-3 and BeWo choriocarcinoma cell lines showed a stimulatory effect on cell proliferation up to 3 and 2.4 times, respectively, measured by (3)H-thymidine incorporation and cell counting. These effects were time and dose dependent. Maximal effect was achieved at 250 ng leptin/ml for JEG-3 cells and 50 ng leptin/ml for BeWo cells. Moreover, by inhibiting endogenous leptin expression with 2 microM of an antisense oligonucleotide (AS), cell proliferation was diminished. We analyzed cell population distribution during the different stages of cell cycle by fluorescence-activated cell sorting, and we found that leptin treatment displaced the cells towards a G2/M phase. We also found that leptin upregulated cyclin D1 expression, one of the key cell cycle-signaling proteins. Since proliferation and death processes are intimately related, the effect of leptin on cell apoptosis was investigated. Treatment with 2 microM leptin AS increased the number of apoptotic cells 60 times, as assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining, and the caspase-3 activity was increased more than 2 fold. This effect was prevented by the addition of 100 ng leptin/ml. In conclusion, we provide evidence that suggests that leptin is a trophic and mitogenic factor for trophoblastic cells by virtue of its inhibiting apoptosis and promoting proliferation. PMID:17021346

  7. Cronobacter sakazakii in foods and factors affecting its survival, growth, and inactivation.

    PubMed

    Beuchat, Larry R; Kim, Hoikyung; Gurtler, Joshua B; Lin, Li-Chun; Ryu, Jee-Hoon; Richards, Glenner M

    2009-12-31

    Cronobacter sakazakii has been isolated from a wide range of environmental sources and from several foods of animal and plant origin. While infections caused by C. sakazakii have predominantly involved neonates and infants, its presence on or in foods other than powdered infant formula raises concern about the safety risks these foods pose to immunocompromised consumers. We have done a series of studies to better understand the survival and growth characteristics of C. sakazakii in infant formula, infant cereal, fresh-cut produce, and juices made from fresh produce. Over a 12-month storage period, the pathogen survived better in dried formula and cereal at low a(w) (0.25-0.30) than at high a(w) (0.69-0.82) and at 4 degrees C compared to 30 degrees C. C. sakazakii grows in formulas and cereals reconstituted with water or milk and held at 12-30 degrees C. The composition of formulas or cereals does not markedly affect the rate of growth. C. sakazakii grows well on fresh-cut apple, cantaloupe, watermelon, cabbage, carrot, cucumber, lettuce, and tomato at 25 degrees C and in some types of produce at 12 degrees C. Treatment of fresh fruits and vegetables with sanitizers such as chlorine, chlorine dioxide, and a peroxyacetic acid-based solution causes reductions of 1.6-5.4 log CFU/apple, tomato, and lettuce. Cells of C. sakazakii in biofilms formed on stainless steel and enteral feeding tubes or dried on the surface of stainless steel have increased resistance to disinfectants. Death of cells in biofilms is affected by atmospheric relative humidity. These studies have contributed to a better understanding of the behavior of C. sakazakii in and on foods and on food-contact surfaces, thereby enabling the development of more effective strategies and interventions for its control. PMID:19346021

  8. Integrin Signaling, Cell Survival, and Anoikis: Distinctions, Differences, and Differentiation

    PubMed Central

    Vachon, Pierre H.

    2011-01-01

    Cell survival and apoptosis implicate an increasing complexity of players and signaling pathways which regulate not only the decision-making process of surviving (or dying), but as well the execution of cell death proper. The same complex nature applies to anoikis, a form of caspase-dependent apoptosis that is largely regulated by integrin-mediated, cell-extracellular matrix interactions. Not surprisingly, the regulation of cell survival, apoptosis, and anoikis furthermore implicates additional mechanistic distinctions according to the specific tissue, cell type, and species. Incidentally, studies in recent years have unearthed yet another layer of complexity in the regulation of these cell processes, namely, the implication of cell differentiation state-specific mechanisms. Further analyses of such differentiation state-distinct mechanisms, either under normal or physiopathological contexts, should increase our understanding of diseases which implicate a deregulation of integrin function, cell survival, and anoikis. PMID:21785723

  9. Regulation of cell survival and death during Flavivirus infections

    PubMed Central

    Ghosh Roy, Sounak; Sadigh, Beata; Datan, Emmanuel; Lockshin, Richard A; Zakeri, Zahra

    2014-01-01

    Flaviviruses, ss(+) RNA viruses, include many of mankind’s most important pathogens. Their pathogenicity derives from their ability to infect many types of cells including neurons, to replicate, and eventually to kill the cells. Flaviviruses can activate tumor necrosis factor α and both intrinsic (Bax-mediated) and extrinsic pathways to apoptosis. Thus they can use many approaches for activating these pathways. Infection can lead to necrosis if viral load is extremely high or to other types of cell death if routes to apoptosis are blocked. Dengue and Japanese Encephalitis Virus can also activate autophagy. In this case the autophagy temporarily spares the infected cell, allowing a longer period of reproduction for the virus, and the autophagy further protects the cell against other stresses such as those caused by reactive oxygen species. Several of the viral proteins have been shown to induce apoptosis or autophagy on their own, independent of the presence of other viral proteins. Given the versatility of these viruses to adapt to and manipulate the metabolism, and thus to control the survival of, the infected cells, we need to understand much better how the specific viral proteins affect the pathways to apoptosis and autophagy. Only in this manner will we be able to minimize the pathology that they cause. PMID:24921001

  10. Survival of salmonella on dried fruits and in aqueous dried fruit homogenates as affected by temperature.

    PubMed

    Beuchat, Larry R; Mann, David A

    2014-07-01

    A study was done to determine the ability of Salmonella to survive on dried cranberries, raisins, and strawberries and in date paste, as affected by storage temperature. Acid-adapted Salmonella, initially at 6.57 to 7.01 log CFU/g, was recovered from mist-inoculated cranberries (water activity [aw] 0.47) and raisins (aw 0.46) stored at 25°C for 21 days but not 42 days, strawberries (aw 0.21) for 42 days but not 84 days, and date paste (aw 0.69) for 84 days but not 126 days. In contrast, the pathogen was detected in strawberries stored at 4°C for 182 days (6 months) but not 242 days (8 months) and in cranberries, date paste, and raisins stored for 242 days. Surface-grown cells survived longer than broth-grown cells in date paste. The order of rate of inactivation at 4°C was cranberry > strawberry > raisin > date paste. Initially at 2.18 to 3.35 log CFU/g, inactivation of Salmonella on dry (sand)&ndash inoculated fruits followed trends similar to those for mist-inoculated fruits. Survival of Salmonella in aqueous homogenates of dried fruits as affected by fruit concentration and temperature was also studied. Growth was not observed in 10% (aw 0.995 to 0.999) and 50% (aw 0.955 to 0.962) homogenates of the four fruits held at 4°C, 50% homogenates at 25°C, and 10% cranberry and strawberry homogenates at 25°C. Growth of the pathogen in 10% date paste and raisin homogenates stored at 25°C was followed by rapid inactivation. Results of these studies suggest the need to subject dried fruits that may be contaminated with Salmonella to a lethal process and prevent postprocess contamination before they are eaten out-of-hand or used as ingredients in ready-to-eat foods. Observations showing that Salmonella can grow in aqueous homogenates of date paste and raisins emphasize the importance of minimizing contact of these fruits with high-moisture environments during handling and storage. PMID:24988015

  11. Factors affecting breeding season survival of Red-Headed Woodpeckers in South Carolina.

    SciTech Connect

    Kilgo, John, C.; Vukovich, Mark

    2011-11-18

    Red-headed woodpecker (Melanerpes erythrocephalus) populations have declined in the United States and Canada over the past 40 years. However, few demographic studies have been published on the species and none have addressed adult survival. During 2006-2007, we estimated survival probabilities of 80 radio-tagged red-headed woodpeckers during the breeding season in mature loblolly pine (Pinus taeda) forests in South Carolina. We used known-fate models in Program MARK to estimate survival within and between years and to evaluate the effects of foliar cover (number of available cover patches), snag density treatment (high density vs. low density), and sex and age of woodpeckers. Weekly survival probabilities followed a quadratic time trend, being lowest during mid-summer, which coincided with the late nestling and fledgling period. Avian predation, particularly by Cooper's (Accipiter cooperii) and sharp-shinned hawks (A. striatus), accounted for 85% of all mortalities. Our best-supported model estimated an 18-week breeding season survival probability of 0.72 (95% CI = 0.54-0.85) and indicated that the number of cover patches interacted with sex of woodpeckers to affect survival; females with few available cover patches had a lower probability of survival than either males or females with more cover patches. At the median number of cover patches available (n = 6), breeding season survival of females was 0.82 (95% CI = 0.54-0.94) and of males was 0.60 (95% CI = 0.42-0.76). The number of cover patches available to woodpeckers appeared in all 3 of our top models predicting weekly survival, providing further evidence that woodpecker survival was positively associated with availability of cover. Woodpecker survival was not associated with snag density. Our results suggest that protection of {ge}0.7 cover patches per ha during vegetation control activities in mature pine forests will benefit survival of this Partners In Flight Watch List species.

  12. A statistical model for red blood cell survival.

    PubMed

    Korell, Julia; Coulter, Carolyn V; Duffull, Stephen B

    2011-01-01

    A statistical model for the survival time of red blood cells (RBCs) with a continuous distribution of cell lifespans is presented. The underlying distribution of RBC lifespans is derived from a probability density function with a bathtub-shaped hazard curve, and accounts for death of RBCs due to senescence (age-dependent increasing hazard rate) and random destruction (constant hazard), as well as for death due to initial or delayed failures and neocytolysis (equivalent to early red cell mortality). The model yields survival times similar to those of previously published studies of RBC survival and is easily amenable to inclusion of drug effects and haemolytic disorders. PMID:20950630

  13. Cell survival in a simulated Mars environment

    NASA Astrophysics Data System (ADS)

    Todd, Paul; Kurk, Michael Andy; Boland, Eugene; Thomas, David

    2016-07-01

    The most ancient life forms on earth date back comfortably to the time when liquid water was believed to be abundant on Mars. These ancient life forms include cyanobacteria, contemporary autotrophic earth organisms believed to have descended from ancestors present as long as 3.5 billion years ago. Contemporary cyanobacteria have adapted to the earth environment's harshest conditions (long-term drying, high and low temperature), and, being autotrophic, they are among the most likely life forms to withstand space travel and the Mars environment. However, it is unlikely that humans would unwittingly contaminate a planetary spacecraft with these microbes. One the other hand, heterotrophic microbes that co-habit with humans are more likely spacecraft contaminants, as history attests. Indeed, soil samples from the Atacama desert have yielded colony-forming organisms resembling enteric bacteria. There is a need to understand the survivability of cyanobacteria (likely survivors, unlikely contaminants) and heterotrophic eubacteria (unlikely survivors, likely contaminants) under simulated planetary conditions. A 35-day test was performed in a commercial planetary simulation system (Techshot, Inc., Greenville, IN) in which the minimum night-time temperature was -80 C, the maximum daytime temperature was +26 C, the simulated day-night light cycle in earth hours was 12-on and 12-off, and the total pressure of the pure CO _{2} atmosphere was maintained below 11 mbar. Any water present was allowed to equilibrate with the changing temperature and pressure. The gas phase was sampled into a CR1-A low-pressure hygrometer (Buck Technologies, Boulder, CO), and dew/frost point was measured once every hour and recorded on a data logger, along with the varying temperature in the chamber, from which the partial pressure of water was calculated. According to measurements there was no liquid water present throughout the test except during the initial pump-down period when aqueous specimens

  14. Leaf biomechanical properties in Arabidopsis thaliana polysaccharide mutants affect drought survival.

    PubMed

    Balsamo, Ronald; Boak, Merewyn; Nagle, Kayla; Peethambaran, Bela; Layton, Bradley

    2015-11-26

    Individual sugars are the building blocks of cell wall polysaccharides, which in turn comprise a plant׳s overall architectural structure. But which sugars play the most prominent role in maintaining a plant׳s mechanical stability during large cellular deformations induced by drought? We investigated the individual contributions of several genes that are involved in the synthesis of monosaccharides which are important for cell wall structure. We then measured drought tolerance and mechanical integrity during simulated drought in Arabidopsis thaliana. To assess mechanical properties, we designed a small-scale tensile tester for measuring failure strain, ultimate tensile stress, work to failure, toughness, and elastic modulus of 6-week-old leaves in both hydrated and drought-simulated states. Col-0 mutants used in this study include those deficient in lignin, cellulose, components of hemicellulose such as xylose and fucose, the pectic components arabinose and rhamnose, as well as mutants with enhanced arabinose and total pectin content. We found that drought tolerance is correlated to the mechanical and architectural stability of leaves as they experience dehydration. Of the mutants, S096418 with mutations for reduced xylose and galactose was the least drought tolerant, while the arabinose-altered CS8578 mutants were the least affected by water loss. There were also notable correlations between drought tolerance and mechanical properties in the diminished rhamnose mutant, CS8575 and the dehydrogenase-disrupted S120106. Our findings suggest that components of hemicellulose and pectins affect leaf biomechanical properties and may play an important role in the ability of this model system to survive drought. PMID:26520913

  15. The herpes simplex virus immediate-early protein ICP0 affects transcription from the viral genome and infected-cell survival in the absence of ICP4 and ICP27.

    PubMed Central

    Samaniego, L A; Wu, N; DeLuca, N A

    1997-01-01

    ICP4, ICP0, and ICP27 are the immediate-early (IE) regulatory proteins of herpes simplex virus that have the greatest effect on viral gene expression and growth. Comparative analysis of viral mutants defective in various subsets of these IE genes should help elucidate how these proteins affect cellular and viral processes. This study focuses on the mutant d97, which is defective for the genes encoding ICP4, ICP0, and ICP27 and expresses the bacterial beta-galactosidase (beta-gal) gene from the ICP0 promoter. Together with the d92 virus (ICP4- ICP27-) and the ICP0-complementing cell line L7, d97 provided a unique opportunity to evaluate ICP0 function in the absence of the regulatory activities specified by ICP4 and ICP27. The pattern of protein synthesis in d97-infected cells was unique relative to other IE gene mutants in that it was similar to that seen in the absence of prior viral protein synthesis, possibly approximating the effect of cellular factors and virion components alone. Inactivation of ICP0 in the absence of ICP4 produced a significant decrease in the levels of the early mRNAs ICP6 and thymidine kinase (tk). There was also a marginal reduction in the levels of the IE ICP22 mRNA, and this was most notable at low multiplicity of infection (MOI). In d97-infected L7 cells, the levels of the viral mRNAs were mostly restored to those observed in infections with d92. Nuclear runoff transcription analysis demonstrated that the presence of ICP0 resulted in an increase in the transcription rates of the analyzed genes. The transcription rates of the early genes were dramatically reduced in the absence of ICP0. At low MOI, the transcription rates of ICP6 and tk were comparable to the rate of transcription of a cellular gene. Relevant to the potential use of d97 as a transfer vector, it was also determined that the absence of ICP0 reduced the cellular toxicity of the virus compared to that of d92. The beta-gal transgene expressed from an IE promoter was detected

  16. Host-Cell Survival and Death During Chlamydia Infection

    PubMed Central

    Ying, Songmin; Pettengill, Matthew; Ojcius, David M.; Häcker, Georg

    2008-01-01

    Different Chlamydia trachomatis strains are responsible for prevalent bacterial sexually-transmitted disease and represent the leading cause of preventable blindness worldwide. Factors that predispose individuals to disease and mechanisms by which chlamydiae cause inflammation and tissue damage remain unclear. Results from recent studies indicate that prolonged survival and subsequent death of infected cells and their effect on immune effector cells during chlamydial infection may be important in determining the outcome. Survival of infected cells is favored at early times of infection through inhibition of the mitochondrial pathway of apoptosis. Death at later times displays features of both apoptosis and necrosis, but pro-apoptotic caspases are not involved. Most studies on chlamydial modulation of host-cell death until now have been performed in cell lines. The consequences for pathogenesis and the immune response will require animal models of chlamydial infection, preferably mice with targeted deletions of genes that play a role in cell survival and death. PMID:18843378

  17. CD84 is a survival receptor for CLL cells

    PubMed Central

    Binsky-Ehrenreich, Inbal; Marom, Ayelet; Sobotta, Mirko C.; Lantner, Frida; Harpaz, Nurit; Shvidel, Lev; Berrebi, Alain; Hazan-Halevy, Inbal; Haran, Michal; Herishanu, Yair; Aloshin, Anna; Sagi, Irit; Goldenberg, David M.; Leng, Lin; Bucala, Richard; Shachar, Idit

    2013-01-01

    Chronic lymphocytic leukemia (CLL) is a malignancy of mature lymphocytes that is manifest by the progressive accumulation of transformed cells, mostly due to their decreased apoptosis. CD84 belongs to the Signaling Lymphocyte Activating Molecule (SLAM) family of immunoreceptors and has an as yet unknown function in normal B cells and CLL lymphocytes. We show that CD84 is over-expressed in CLL cells. Activation of cell surface CD84 initiates a signaling cascade, which enhances cell survival. Both immunoneutralization or blockade of CD84 induce cell death in vitro and in vivo. Thus, overexpression of CD84 from an early stage may be critical for the survival of CLL. These findings suggest novel therapeutic strategies based on the blockade of a CD84 dependent survival pathway. PMID:23435417

  18. SOCS3 induces neurite differentiation and promotes neuronal cell survival.

    PubMed

    Mishra, Kanchan Kumar; Gupta, Sakshi; Banerjee, Kakoli

    2016-06-01

    Cytokines and growth factors play an important role in neuronal survival as well as cell death. The family of suppressors of cytokine signalling (SOCS) proteins, which includes SOCS1-7 and cytokine-induced suppressor (CIS), has been shown to act as negative regulators of cytokine-induced signalling. In this report, we highlight the role of SOCS3 in regulating neuronal differentiation and survival. We observed increased SOCS3 expression upon differentiation of PC12 cells as well as neural stem cells. SOCS3 overexpression upregulated differentiation of both neural stem cells and PC12 cells even in the absence of NGF, as evidenced by enhanced neurite outgrowth and upregulation of GAP43, marker associated with neurite outgrowth. siRNA-mediated silencing of SOCS3 confirmed the potential role of SOCS3 in neuritogenesis. We observed that, SOCS3-induced neurite differentiation was mediated via the PI3 kinase pathway. Another interesting observation was that SOCS3 overexpression promoted neuronal cell survival under H2 O2 -mediated stress indicating its fundamental role in cell survival. In conclusion, our results indicate that SOCS3 promotes differentiation and survival of neural cells and could be potentially useful in future therapy for treatment of neurodegenerative disorders. © 2016 IUBMB Life, 68(6):468-476, 2016. PMID:27118613

  19. Lima bean – lady beetle interactions: hooked trichomes affect survival of Stethorus punctillum larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested the hypothesis that Lima bean Phaseolus lunatus L. (Henderson cultivar) trichome density affects the survival of the acariphagous lady beetle Stethorus punctillum Weise. When isolated throughout larval development, 10% or less of S. punctillum larvae reared on two-spotted spider mite Tetr...

  20. Autophagy is a cell survival program for female germ cells in the murine ovary.

    PubMed

    Gawriluk, Thomas R; Hale, Amber N; Flaws, Jodi A; Dillon, Christopher P; Green, Douglas R; Rucker, Edmund B

    2011-06-01

    It is estimated that infertility affects 15-20% of couples and can arise from female or male reproductive defects. Mouse models have ascribed roles to over 100 genes in the maintenance of female fertility. Although previous models have determined roles for apoptosis in male and female fertility, we find that compromised autophagy within the perinatal ovary, through the loss of Becn1 or Atg7, results in the premature loss of female germ cells. Becn1(+/-) ovaries have a 56% reduction of germ cells compared with control ovaries at post-natal day 1, whereas Atg7(-/-) ovaries lack discernable germ cells at this stage. Thus autophagy appears to be a cell survival mechanism to maintain the endowment of female germ cells prior to establishing primordial follicle pools in the ovary. PMID:21464117

  1. Re-Evaluating Neonatal-Age Models for Ungulates: Does Model Choice Affect Survival Estimates?

    PubMed Central

    Grovenburg, Troy W.; Monteith, Kevin L.; Jacques, Christopher N.; Klaver, Robert W.; DePerno, Christopher S.; Brinkman, Todd J.; Monteith, Kyle B.; Gilbert, Sophie L.; Smith, Joshua B.; Bleich, Vernon C.; Swanson, Christopher C.; Jenks, Jonathan A.

    2014-01-01

    New-hoof growth is regarded as the most reliable metric for predicting age of newborn ungulates, but variation in estimated age among hoof-growth equations that have been developed may affect estimates of survival in staggered-entry models. We used known-age newborns to evaluate variation in age estimates among existing hoof-growth equations and to determine the consequences of that variation on survival estimates. During 2001–2009, we captured and radiocollared 174 newborn (≤24-hrs old) ungulates: 76 white-tailed deer (Odocoileus virginianus) in Minnesota and South Dakota, 61 mule deer (O. hemionus) in California, and 37 pronghorn (Antilocapra americana) in South Dakota. Estimated age of known-age newborns differed among hoof-growth models and varied by >15 days for white-tailed deer, >20 days for mule deer, and >10 days for pronghorn. Accuracy (i.e., the proportion of neonates assigned to the correct age) in aging newborns using published equations ranged from 0.0% to 39.4% in white-tailed deer, 0.0% to 3.3% in mule deer, and was 0.0% for pronghorns. Results of survival modeling indicated that variability in estimates of age-at-capture affected short-term estimates of survival (i.e., 30 days) for white-tailed deer and mule deer, and survival estimates over a longer time frame (i.e., 120 days) for mule deer. Conversely, survival estimates for pronghorn were not affected by estimates of age. Our analyses indicate that modeling survival in daily intervals is too fine a temporal scale when age-at-capture is unknown given the potential inaccuracies among equations used to estimate age of neonates. Instead, weekly survival intervals are more appropriate because most models accurately predicted ages within 1 week of the known age. Variation among results of neonatal-age models on short- and long-term estimates of survival for known-age young emphasizes the importance of selecting an appropriate hoof-growth equation and appropriately defining intervals (i.e., weekly

  2. Re-evaluating neonatal-age models for ungulates: Does model choice affect survival estimates?

    USGS Publications Warehouse

    Grovenburg, Troy W.; Monteith, Kevin L.; Jacques, Christopher N.; Klaver, Robert W.; DePerno, Christopher S.; Brinkman, Todd J.; Monteith, Kyle B.; Gilbert, Sophie L.; Smith, Joshua B.; Bleich, Vernon C.; Swanson, Christopher C.; Jenks, Jonathan A.

    2014-01-01

    New-hoof growth is regarded as the most reliable metric for predicting age of newborn ungulates, but variation in estimated age among hoof-growth equations that have been developed may affect estimates of survival in staggered-entry models. We used known-age newborns to evaluate variation in age estimates among existing hoof-growth equations and to determine the consequences of that variation on survival estimates. During 2001–2009, we captured and radiocollared 174 newborn (≤24-hrs old) ungulates: 76 white-tailed deer (Odocoileus virginianus) in Minnesota and South Dakota, 61 mule deer (O. hemionus) in California, and 37 pronghorn (Antilocapra americana) in South Dakota. Estimated age of known-age newborns differed among hoof-growth models and varied by >15 days for white-tailed deer, >20 days for mule deer, and >10 days for pronghorn. Accuracy (i.e., the proportion of neonates assigned to the correct age) in aging newborns using published equations ranged from 0.0% to 39.4% in white-tailed deer, 0.0% to 3.3% in mule deer, and was 0.0% for pronghorns. Results of survival modeling indicated that variability in estimates of age-at-capture affected short-term estimates of survival (i.e., 30 days) for white-tailed deer and mule deer, and survival estimates over a longer time frame (i.e., 120 days) for mule deer. Conversely, survival estimates for pronghorn were not affected by estimates of age. Our analyses indicate that modeling survival in daily intervals is too fine a temporal scale when age-at-capture is unknown given the potential inaccuracies among equations used to estimate age of neonates. Instead, weekly survival intervals are more appropriate because most models accurately predicted ages within 1 week of the known age. Variation among results of neonatal-age models on short- and long-term estimates of survival for known-age young emphasizes the importance of selecting an appropriate hoof-growth equation and appropriately defining intervals (i.e., weekly

  3. The extracellular matrix as a cell survival factor.

    PubMed Central

    Meredith, J E; Fazeli, B; Schwartz, M A

    1993-01-01

    Programmed cell death (PCD) or apoptosis is a naturally occurring cell suicide pathway induced in a variety of cell types. In many cases, PCD is induced by the withdrawal of specific hormones or growth factors that function as survival factors. In this study, we have investigated the potential role of the extracellular matrix (ECM) as a cell survival factor. Our results indicate that in the absence of any ECM interactions, human endothelial cells rapidly undergo PCD, as determined by cell morphology, nuclei fragmentation, DNA degradation, protein cross-linking, and the expression of the PCD-specific gene TRPM-2. PCD was blocked by plating cells on an immobilized integrin beta 1 antibody but not by antibodies to either the class I histocompatibility antigen (HLA) or vascular cell adhesion molecule-1 (VCAM-1), suggesting that integrin-mediated signals were required for maintaining cell viability. Treatment of the cells in suspension with the tyrosine phosphatase inhibitor sodium orthovanadate also blocked PCD. When other cell types were examined, some, but not all, underwent rapid cell death when deprived of adhesion to the ECM. These results suggest that in addition to regulating cell growth and differentiation, the ECM also functions as a survival factor for many cell types. Images PMID:8257797

  4. Social isolation increases cell proliferation in male and cell survival in female California mice (Peromyscus californicus).

    PubMed

    Ruscio, Michael G; Bradley King, S; Haun, Harold L

    2015-11-01

    Social environment has direct effects on an animal's behavior, physiology and neurobiology. In particular, adult neurogenesis is notably affected by a variety of social manipulations, including social isolation. We hypothesized that social isolation should have particularly acute effects on neurogenesis in a highly social (monogamous and bi-parental) species such as Peromyscus californicus, the California mouse. Adult male and female P. californicus mice were housed in isolation or in same-sex pairs for 4 or 24 days. At the end of each period, either cell proliferation or cell survival was quantified with BrdU label and neuronal markers (either TuJ1 or NeuN). After 4 days, isolated males had greater cellular proliferation in the dentate gyrus of the hippocampus (DG) than pair housed males. After 24 days, isolate females demonstrated greater cell survival in the DG than paired females. Males demonstrated a similar, but non-significant pattern. No differences in cellular proliferation or cell survival were found in the subventricular zone (SVZ), or medial amygdala (MeA). These results add to the evidence which demonstrates that neurogenic responses to environmental conditions are not identical across species. These data may be critical in understanding the functional significance of neurogenesis as it relates to the interactions between social systems, social environment and the display of social behaviors. PMID:26342752

  5. Prolonged Survival of Transplanted Osteoblastic Cells Does Not Directly Accelerate the Healing of Calvarial Bone Defects.

    PubMed

    Kitami, Megumi; Kaku, Masaru; Rocabado, Juan Marcelo Rosales; Ida, Takako; Akiba, Nami; Uoshima, Katsumi

    2016-09-01

    Considering the increased interest in cell-based bone regeneration, it is necessary to reveal the fate of transplanted cells and their substantive roles in bone regeneration. The aim of this study was to analyze the fate of transplanted cells and the effect of osteogenic cell transplantation on calvarial bone defect healing. An anti-apoptotic protein, heat shock protein (HSP) 27, was overexpressed in osteoblasts. Then, the treated osteoblasts were transplanted to calvarial bone defect and their fate was analyzed to evaluate the significance of transplanted cell survival. Transient overexpression of Hsp27 rescued MC3T3-E1 osteoblastic cells from H2 O2 -induced apoptosis without affecting osteoblastic differentiation in culture. Transplantation of Hsp27-overexpressing cells, encapsulated in collagen gel, showed higher proliferative activity, and fewer apoptotic cells in comparison with control cells. After 4-week of transplantation, both control cell- and Hsp27 overexpressed cell-transplanted groups showed significantly higher new bone formation in comparison with cell-free gel-transplantation group. Interestingly, the prolonged survival of transplanted osteoblastic cells by Hsp27 did not provide additional effect on bone healing. The transplanted cells in collagen gel survived for up to 4-week but did not differentiate into bone-forming osteoblasts. In conclusion, cell-containing collagen gel accelerated calvarial bone defect healing in comparison with cell-free collagen gel. However, prolonged survival of transplanted cells by Hsp27 overexpression did not provide additional effect. These results strongly indicate that cell transplantation-based bone regeneration cannot be explained only by the increment of osteogenic cells. Further studies are needed to elucidate the practical roles of transplanted cells that will potentiate successful bone regeneration. J. Cell. Physiol. 231: 1974-1982, 2016. © 2016 Wiley Periodicals, Inc. PMID:26754153

  6. Alpha tumor necrosis factor contributes to CD8{sup +} T cell survival in the transition phase

    SciTech Connect

    Shi, Meiqing; Ye, Zhenmin; Umeshappa, Keshav Sokke; Moyana, Terence; Xiang, Jim . E-mail: jxiang@scf.sk.ca

    2007-08-31

    Cytokine and costimulation signals determine CD8{sup +} T cell responses in proliferation phase. In this study, we assessed the potential effect of cytokines and costimulations to CD8{sup +} T cell survival in transition phase by transferring in vitro ovalbumin (OVA)-pulsed dendritic cell-activated CD8{sup +} T cells derived from OVA-specific T cell receptor transgenic OT I mice into wild-type C57BL/6 mice or mice with designated gene knockout. We found that deficiency of IL-10, IL-12, IFN-{gamma}, CD28, CD40, CD80, CD40L, and 41BBL in recipients did not affect CD8{sup +} T cell survival after adoptive transfer. In contrast, TNF-{alpha} deficiency in both recipients and donor CD8{sup +} effector T cells significantly reduced CD8{sup +} T cell survival. Therefore, our data demonstrate that the host- and T cell-derived TNF-{alpha} signaling contributes to CD8{sup +} effector T cell survival and their transition to memory T cells in the transition phase, and may be useful information when designing vaccination.

  7. Offspring size at weaning affects survival to recruitment and reproductive performance of primiparous gray seals

    PubMed Central

    Bowen, William D; den Heyer, Cornelia E; McMillan, Jim I; Iverson, Sara J

    2015-01-01

    Offspring size affects survival and subsequent reproduction in many organisms. However, studies of offspring size in large mammals are often limited to effects on juveniles because of the difficulty of following individuals to maturity. We used data from a long-term study of individually marked gray seals (Halichoerus grypus; Fabricius, 1791) to test the hypothesis that larger offspring have higher survival to recruitment and are larger and more successful primiparous mothers than smaller offspring. Between 1998 and 2002, 1182 newly weaned female pups were branded with unique permanent marks on Sable Island, Canada. Each year through 2012, all branded females returning to the breeding colony were identified in weekly censuses and a subset were captured and measured. Females that survived were significantly longer offspring than those not sighted, indicating size-selective mortality between weaning and recruitment. The probability of female survival to recruitment varied among cohorts and increased nonlinearly with body mass at weaning. Beyond 51.5 kg (mean population weaning mass) weaning mass did not influence the probability of survival. The probability of female survival to recruitment increased monotonically with body length at weaning. Body length at primiparity was positively related to her body length and mass at weaning. Three-day postpartum mass (proxy for birth mass) of firstborn pups was also positively related to body length of females when they were weaned. However, females that were longer or heavier when they were weaned did not wean heavier firstborn offspring. PMID:25897381

  8. Offspring size at weaning affects survival to recruitment and reproductive performance of primiparous gray seals.

    PubMed

    Bowen, William D; den Heyer, Cornelia E; McMillan, Jim I; Iverson, Sara J

    2015-04-01

    Offspring size affects survival and subsequent reproduction in many organisms. However, studies of offspring size in large mammals are often limited to effects on juveniles because of the difficulty of following individuals to maturity. We used data from a long-term study of individually marked gray seals (Halichoerus grypus; Fabricius, 1791) to test the hypothesis that larger offspring have higher survival to recruitment and are larger and more successful primiparous mothers than smaller offspring. Between 1998 and 2002, 1182 newly weaned female pups were branded with unique permanent marks on Sable Island, Canada. Each year through 2012, all branded females returning to the breeding colony were identified in weekly censuses and a subset were captured and measured. Females that survived were significantly longer offspring than those not sighted, indicating size-selective mortality between weaning and recruitment. The probability of female survival to recruitment varied among cohorts and increased nonlinearly with body mass at weaning. Beyond 51.5 kg (mean population weaning mass) weaning mass did not influence the probability of survival. The probability of female survival to recruitment increased monotonically with body length at weaning. Body length at primiparity was positively related to her body length and mass at weaning. Three-day postpartum mass (proxy for birth mass) of firstborn pups was also positively related to body length of females when they were weaned. However, females that were longer or heavier when they were weaned did not wean heavier firstborn offspring. PMID:25897381

  9. Angiotensin II promotes endometrial cancer cell survival.

    PubMed

    Nowakowska, Magdalena; Matysiak-Burzyńska, Zuzanna; Kowalska, Karolina; Płuciennik, Elżbieta; Domińska, Kamila; Piastowska-Ciesielska, Agnieszka W

    2016-08-01

    Endometrial cancer (EC) is one of the most common female cancers. One of the key processes involved in EC development is uncontrolled proliferation stimulated by local factors such as angiotensin. The aim of the present study was to evaluate the influence of angiotensin II (Ang II) on human EC cells. Biological assays and gene expression analysis were performed on three cell lines: ISH, MFE-296 and MFE-280. Our results indicated that at the beginning of cancerogenesis Ang II induced abnormal proliferation at lower doses. We also showed that dose-dependent induction of proliferation was connected with changes in the expression of MKI67, CCND1 and CCNE1 genes in well- and poorly differentiated cancer cells. After Ang II treatment, poorly differentiated endometrial cancer cell line acquired a mesenchymal phenotype, which was characterized by induced expression of EMT-related genes (VIM, CD44, SNAI1, ZEB1 and ZEB2). Our study revealed that Ang II influences EC cells in terms of cancer-related processes, and is responsible for increased proliferation, reduction in apoptosis, increased mobility and modulation of adhesion potential. Its effect and effectiveness appear to be highly connected with the differentiation status of the cancerous cells, as Ang II appears to play a crucial role in the early and late stages of malignant transformation. PMID:27349856

  10. Survival of Er(a+) red cells in a patient with allo-anti-Era

    SciTech Connect

    Thompson, H.W.; Skradski, K.J.; Thoreson, J.R.; Polesky, H.F.

    1985-03-01

    /sup 51/Chromium-labeled Er(a+) red cells survived nearly normally (T1/2 of 21 days) in a patient with allo-anti-Era. Transfusion of Er(a+) blood was without significant reaction and did not affect the anti-Era titer.

  11. Spatial Variation and Resuscitation Process Affecting Survival after Out-of-Hospital Cardiac Arrests (OHCA)

    PubMed Central

    Chen, Chien-Chou; Chen, Chao-Wen; Ho, Chi-Kung; Liu, I-Chuan; Lin, Bo-Cheng; Chan, Ta-Chien

    2015-01-01

    Background Ambulance response times and resuscitation efforts are critical predictors of the survival rate after out-of-hospital cardiac arrests (OHCA). On the other hand, rural-urban differences in the OHCA survival rates are an important public health issue. Methods We retrospectively reviewed the January 2011–December 2013 OHCA registry data of Kaohsiung City, Taiwan. With particular focus on geospatial variables, we aimed to unveil risk factors predicting the overall OHCA survival until hospital admission. Spatial analysis, network analysis, and the Kriging method by using geographic information systems were applied to analyze spatial variations and calculate the transport distance. Logistic regression was used to identify the risk factors for OHCA survival. Results Among the 4,957 patients, the overall OHCA survival to hospital admission was 16.5%. In the multivariate analysis, female sex (adjusted odds ratio:, AOR, 1.24 [1.06–1.45]), events in public areas (AOR: 1.30 [1.05–1.61]), exposure to automated external defibrillator (AED) shock (AOR: 1.70 [1.30–2.23]), use of laryngeal mask airway (LMA) (AOR: 1.35 [1.16–1.58]), non-trauma patients (AOR: 1.41 [1.04–1.90]), ambulance bypassed the closest hospital (AOR: 1.28 [1.07–1.53]), and OHCA within the high population density areas (AOR: 1.89 [1.55–2.32]) were positively associated with improved OHCA survival. By contrast, a prolonged total emergency medical services (EMS) time interval was negatively associated with OHCA survival (AOR: 0.98 [0.96–0.99]). Conclusions Resuscitative efforts, such as AED or LMA use, and a short total EMS time interval improved OHCA outcomes in emergency departments. The spatial heterogeneity of emergency medical resources between rural and urban areas might affect survival rate. PMID:26659851

  12. Bcl-2 family proteins: master regulators of cell survival.

    PubMed

    Hatok, Jozef; Racay, Peter

    2016-08-01

    The most prominent function of proteins of the Bcl-2 family is regulation of the initiation of intrinsic (mitochondrial) pathways of apoptosis. However, recent research has revealed that in addition to regulation of mitochondrial apoptosis, proteins of the Bcl-2 family play important roles in regulating other cellular pathways with a strong impact on cell survival like autophagy, endoplasmic reticulum (ER) stress response, intracellular calcium dynamics, cell cycle progression, mitochondrial dynamics and energy metabolism. This review summarizes the recent knowledge about functions of Bcl-2 family proteins that are related to cell survival. PMID:27505095

  13. Donor race does not affect cadaver kidney transplant survival--a single center experience.

    PubMed

    Tesi, R J; DeboisBlanc, M; Saul, C; O'Donovan, R; Etheredge, E

    1995-12-27

    Black kidney transplant recipients have worse graft survival than white recipients. Speculation regarding etiology has focused on differences in human lymphocyte antigens (HLA). Some suggest that improvements in graft survival would be obtained if donor and recipient race were matched. We reviewed 236 cadaver transplants performed over 9 years at a single center using an HLA-match-driven allocation system and a uniform immunosuppressive protocol to determine the impact of donor race on graft survival. A multivariate analysis of graft survival using patient race, sex, age, transplant number, current and maximum plasma renin activity, donor race, cold ischemia time and HLA mismatch, the need for dialysis, and the presence of rejection as independent variables. Sixty percent of recipients were black, and 82% were primary transplants; 28 kidneys (12%) were from black donors. The 112 patients with the same race donor had identical 5-year graft survival as the 124 who had a different race donor (40%; P = 0.1726). The 5-year survival of the 88 white recipients of white donor organs was better than that of the 120 black recipients of white donor organs (54% vs. 42%, respectively; P = 0.0398). Black recipients (t1/2 = 37 months) did worse than white recipients (t1/2 = 60 months) regardless of organ source (P = 0.023). In the multivariate analysis, neither donor nor recipient race were an independent variable in predicting graft survival. Rejection (RR = 2.9) and the need for dialysis on the transplant admission (RR = 4.1) were the only factors that predicted poor survival. Black recipients had more rejection (P = 0.04) but not more need for dialysis posttransplant regardless of donor race. Donor race did not affect graft survival in this series. The effect of recipient race on graft survival was due to an increased incidence of rejection episodes in black recipients, which was independent of HLA mismatch. These data suggest that improvements in immunosuppression, not

  14. VEGF improves survival of mesenchymal stem cells in infarcted hearts

    SciTech Connect

    Pons, Jennifer; Huang Yu; Arakawa-Hoyt, Janice; Washko, Daniel; Takagawa, Junya; Ye, Jianqin; Grossman, William; Su Hua

    2008-11-14

    Bone marrow-derived mesenchymal stem cells (MSC) are a promising source for cell-based treatment of myocardial infarction (MI), but existing strategies are restricted by low cell survival and engraftment. We examined whether vascular endothelial growth factor (VEGF) improve MSC viability in infracted hearts. We found long-term culture increased MSC-cellular stress: expressing more cell cycle inhibitors, p16{sup INK}, p21 and p19{sup ARF}. VEGF treatment reduced cellular stress, increased pro-survival factors, phosphorylated-Akt and Bcl-xL expression and cell proliferation. Co-injection of MSCs with VEGF to MI hearts increased cell engraftment and resulted in better improvement of cardiac function than that injected with MSCs or VEGF alone. In conclusion, VEGF protects MSCs from culture-induce cellular stress and improves their viability in ischemic myocardium, which results in improvements of their therapeutic effect for the treatment of MI.

  15. Brain size affects female but not male survival under predation threat

    PubMed Central

    Kotrschal, Alexander; Buechel, Séverine D; Zala, Sarah M; Corral-Lopez, Alberto; Penn, Dustin J; Kolm, Niclas; Sorci, Gabriele

    2015-01-01

    There is remarkable diversity in brain size among vertebrates, but surprisingly little is known about how ecological species interactions impact the evolution of brain size. Using guppies, artificially selected for large and small brains, we determined how brain size affects survival under predation threat in a naturalistic environment. We cohoused mixed groups of small- and large-brained individuals in six semi-natural streams with their natural predator, the pike cichlid, and monitored survival in weekly censuses over 5 months. We found that large-brained females had 13.5% higher survival compared to small-brained females, whereas the brain size had no discernible effect on male survival. We suggest that large-brained females have a cognitive advantage that allows them to better evade predation, whereas large-brained males are more colourful, which may counteract any potential benefits of brain size. Our study provides the first experimental evidence that trophic interactions can affect the evolution of brain size. PMID:25960088

  16. Brain size affects female but not male survival under predation threat.

    PubMed

    Kotrschal, Alexander; Buechel, Séverine D; Zala, Sarah M; Corral-Lopez, Alberto; Penn, Dustin J; Kolm, Niclas

    2015-07-01

    There is remarkable diversity in brain size among vertebrates, but surprisingly little is known about how ecological species interactions impact the evolution of brain size. Using guppies, artificially selected for large and small brains, we determined how brain size affects survival under predation threat in a naturalistic environment. We cohoused mixed groups of small- and large-brained individuals in six semi-natural streams with their natural predator, the pike cichlid, and monitored survival in weekly censuses over 5 months. We found that large-brained females had 13.5% higher survival compared to small-brained females, whereas the brain size had no discernible effect on male survival. We suggest that large-brained females have a cognitive advantage that allows them to better evade predation, whereas large-brained males are more colourful, which may counteract any potential benefits of brain size. Our study provides the first experimental evidence that trophic interactions can affect the evolution of brain size. PMID:25960088

  17. Capicua regulates proliferation and survival of RB-deficient cells in Drosophila

    PubMed Central

    Krivy, Kate; Bradley-Gill, Mary-Rose; Moon, Nam-Sung

    2013-01-01

    Summary Mutations in rbf1, the Drosophila homologue of the RB tumour suppressor gene, generate defects in cell cycle control, cell death, and differentiation during development. Previous studies have established that EGFR/Ras activity is an important determinant of proliferation and survival in rbf1 mutant cells. Here, we report that Capicua (Cic), an HMG box transcription factor whose activity is regulated by the EGFR/Ras pathway, regulates both proliferation and survival of RB-deficient cells in Drosophila. We demonstrate that cic mutations allow rbf1 mutant cells to bypass developmentally controlled cell cycle arrest and apoptotic pressure. The cooperative effect between Cic and RBF1 in promoting G1 arrest is mediated, at least in part, by limiting Cyclin E expression. Surprisingly, we also found evidence to suggest that cic mutant cells have decreased levels of reactive oxygen species (ROS), and that the survival of rbf1 mutant cells is affected by changes in ROS levels. Collectively, our results elucidate the importance of the crosstalk between EGFR/Ras and RBF1 in coordinating cell cycle progression and survival. PMID:23429853

  18. Demography of forest birds in Panama: How do transients affect estimates of survival rates?

    USGS Publications Warehouse

    Brawn, J.D.; Karr, J.R.; Nichols, J.D.; Robinson, W.D.

    1998-01-01

    Estimates of annual survival rates for a multispecies sample of neotropical birds from Panama have proven controversial. Traditionally, tropical birds were thought to have high survival rates for their size, but analyses by Kart et al. (1990. Am. Nat. 136:277-91) contradicted that view, suggesting tropical birds may not have systematically high survival rates. A persistent criticism of that study has been that the estimates were biased by transient birds captured only once as they passed through the area being sampled. New models that formally adjust for transient individuals have been developed since 1990. Preliminary analyses using these models indicate that, despite some variation among species, overall estimates of survival rates for understory birds in Panama are not strongly affected by adjustments for transients. We also compare estimates of survival rates based on mark-recapture models with observations of colour-marked birds. The demographic traits of birds in the tropics (and elsewhere) vary within and among species according to combinations of historical and ongoing ecological factors. Understanding sources of this variation is the challenge for future work.

  19. Histone deacetylase 10 promotes autophagy-mediated cell survival

    PubMed Central

    Oehme, Ina; Linke, Jan-Peter; Böck, Barbara C.; Milde, Till; Lodrini, Marco; Hartenstein, Bettina; Wiegand, Inga; Eckert, Christian; Roth, Wilfried; Kool, Marcel; Kaden, Sylvia; Gröne, Hermann-Josef; Schulte, Johannes H.; Lindner, Sven; Hamacher-Brady, Anne; Brady, Nathan R.; Deubzer, Hedwig E.; Witt, Olaf

    2013-01-01

    Tumor cells activate autophagy in response to chemotherapy-induced DNA damage as a survival program to cope with metabolic stress. Here, we provide in vitro and in vivo evidence that histone deacetylase (HDAC)10 promotes autophagy-mediated survival in neuroblastoma cells. We show that both knockdown and inhibition of HDAC10 effectively disrupted autophagy associated with sensitization to cytotoxic drug treatment in a panel of highly malignant V-MYC myelocytomatosis viral-related oncogene, neuroblastoma derived-amplified neuroblastoma cell lines, in contrast to nontransformed cells. HDAC10 depletion in neuroblastoma cells interrupted autophagic flux and induced accumulation of autophagosomes, lysosomes, and a prominent substrate of the autophagic degradation pathway, p62/sequestosome 1. Enforced HDAC10 expression protected neuroblastoma cells against doxorubicin treatment through interaction with heat shock protein 70 family proteins, causing their deacetylation. Conversely, heat shock protein 70/heat shock cognate 70 was acetylated in HDAC10-depleted cells. HDAC10 expression levels in high-risk neuroblastomas correlated with autophagy in gene-set analysis and predicted treatment success in patients with advanced stage 4 neuroblastomas. Our results demonstrate that HDAC10 protects cancer cells from cytotoxic agents by mediating autophagy and identify this HDAC isozyme as a druggable regulator of advanced-stage tumor cell survival. Moreover, these results propose a promising way to considerably improve treatment response in the neuroblastoma patient subgroup with the poorest outcome. PMID:23801752

  20. Histone deacetylase 10 promotes autophagy-mediated cell survival.

    PubMed

    Oehme, Ina; Linke, Jan-Peter; Böck, Barbara C; Milde, Till; Lodrini, Marco; Hartenstein, Bettina; Wiegand, Inga; Eckert, Christian; Roth, Wilfried; Kool, Marcel; Kaden, Sylvia; Gröne, Hermann-Josef; Schulte, Johannes H; Lindner, Sven; Hamacher-Brady, Anne; Brady, Nathan R; Deubzer, Hedwig E; Witt, Olaf

    2013-07-01

    Tumor cells activate autophagy in response to chemotherapy-induced DNA damage as a survival program to cope with metabolic stress. Here, we provide in vitro and in vivo evidence that histone deacetylase (HDAC)10 promotes autophagy-mediated survival in neuroblastoma cells. We show that both knockdown and inhibition of HDAC10 effectively disrupted autophagy associated with sensitization to cytotoxic drug treatment in a panel of highly malignant V-MYC myelocytomatosis viral-related oncogene, neuroblastoma derived-amplified neuroblastoma cell lines, in contrast to nontransformed cells. HDAC10 depletion in neuroblastoma cells interrupted autophagic flux and induced accumulation of autophagosomes, lysosomes, and a prominent substrate of the autophagic degradation pathway, p62/sequestosome 1. Enforced HDAC10 expression protected neuroblastoma cells against doxorubicin treatment through interaction with heat shock protein 70 family proteins, causing their deacetylation. Conversely, heat shock protein 70/heat shock cognate 70 was acetylated in HDAC10-depleted cells. HDAC10 expression levels in high-risk neuroblastomas correlated with autophagy in gene-set analysis and predicted treatment success in patients with advanced stage 4 neuroblastomas. Our results demonstrate that HDAC10 protects cancer cells from cytotoxic agents by mediating autophagy and identify this HDAC isozyme as a druggable regulator of advanced-stage tumor cell survival. Moreover, these results propose a promising way to considerably improve treatment response in the neuroblastoma patient subgroup with the poorest outcome. PMID:23801752

  1. Endothelial cell survival during angiogenesis requires the pro-survival protein MCL1.

    PubMed

    Watson, E C; Whitehead, L; Adams, R H; Dewson, G; Coultas, L

    2016-08-01

    Angiogenesis is essential to match the size of blood vessel networks to the metabolic demands of growing tissues. While many genes and pathways necessary for regulating angiogenesis have been identified, those responsible for endothelial cell (EC) survival during angiogenesis remain largely unknown. We have investigated the in vivo role of myeloid cell leukemia 1 (MCL1), a pro-survival member of the BCL2 family, in EC survival during angiogenesis. EC-specific deletion of Mcl1 resulted in a dose-dependent increase in EC apoptosis in the angiogenic vasculature and a corresponding decline in vessel density. Our results suggest this apoptosis was independent of the BH3-only protein BIM. Despite the known link between apoptosis and blood vessel regression, this was not the cause of reduced vessel density observed in the absence of endothelial MCL1. Rather, the reduction in vessel density was linked to ectopic apoptosis in regions of the angiogenic vasculature where EC proliferation and new vessel growth occurs. We have therefore identified MCL1 as an essential survival factor for ECs that is required for blood vessel production during angiogenesis. PMID:26943318

  2. Radiation effects on membranes - 1. Cellular permeability and cell survival

    SciTech Connect

    Khare, S.; Jayakumar, A.; Trivedi, A.; Kesavan, P.C.; Prasad, R.

    1982-05-01

    The effect of various doses of ..gamma.. radiation (5-60 krad) on the membrane permeability and cell survival of Candida albicans, a pathogenic yeast, was investigated. A reduction in the cell survival and in the accumulation of amino acids (proline, glycine, lysine, and glutamic acid) was observed following irradiation. The rate of oxygen uptake, which is often associated with transport, was also reduced. There was no damage to available sulfhydryl groups following the exposure of cells to various doses of ..gamma.. radiation. The membrane lipid composition of C. albicans cells can be altered by growing them in alkanes of varying chain lengths. The effects of such altered lipid composition on radiosensitivity was examined. It was observed that C. albicans cells with altered lipid content acquire resistance to ..gamma.. radiation.

  3. Cytokine signaling for proliferation, survival, and death in hematopoietic cells.

    PubMed

    Miyajima, A; Ito, Y; Kinoshita, T

    1999-04-01

    The survival, proliferation, and differentiation of hematopoietic cells are regulated by cytokines. In the absence of cytokines, hematopoietic cells not only stop proliferation, but undergo apoptosis. This strict dependency of hematopoietic cells on cytokines is an important mechanism that maintains the homeostasis of blood cells. Cytokines induce various intracellular signaling pathways by activating the receptor-associated Janus kinases (Jaks), and distinct signals are responsible for cell cycle progression and cell survival. Induction of signals for cell cycle progression without suppressing apoptosis results in apoptotic cell death, indicating the essential role of anti-apoptotic signaling for cell growth. In hematopoietic cells, Ras, a cellular protooncogen product, and phosphatidylinositol 3 kinase are involved in the suppression of apoptosis. Cytokine depletion not only turns off anti-apoptotic signaling, but also actively induces cell death by activating caspases, a distinct family of cysteine proteases. Alterations in the mechanisms of cytokine signaling for cell cycle progression and anti-apoptotic function are implicated in hematological disorders. PMID:10222650

  4. CCCTC-binding Factor Mediates Effects of Glucose On Beta Cell Survival

    PubMed Central

    Tsui, Shanli; Dai, Wei; Lu, Luo

    2013-01-01

    Objectives Pancreatic islet β-cell survival is important in regulating insulin activities and maintaining glucose homeostasis. Recently, Pax6 has been shown to be essential for many vital functions in β-cells, though the molecular mechanisms of its regulation in β-cells remain unclear. The present study investigates the novel effects of glucose- and insulin-induced CTCF activity on Pax6 gene expression as well as the subsequent effects of insulin-activated signaling pathways on β-cell proliferation. Material and methods Pancreatic β-TC-1-6 cells were cultured in DMEM medium and stimulated with high concentrations of glucose (5 to 125 mM) and cell viability was assessed by MTT assays. The effect of CTCF on Pax6 was evaluated in high glucose-induced and CCCTC-binding Factor (CTCF)/Erk suppressed cells by promoter reporter and Western analyses. Results Increases in glucose and insulin concentrations up-regulated CTCF and consequently down-regulated Pax6 in β-cell survival and proliferation. Knocking-down CTCF directly affected Pax6 transcription through CTCF binding and blocked the response to glucose. Altered Erk activity mediated the effects of CTCF on controlling Pax6 expression, which partially regulates β-cell proliferation. Conclusions CTCF functions as a molecular mediator between insulin-induced upstream Erk signaling and Pax6 expression in pancreatic β-cells. This pathway may contribute to regulation of β-cell survival and proliferation. PMID:24354619

  5. Risk factors affecting the survival rate in patients with symptomatic pericardial effusion undergoing surgical intervention

    PubMed Central

    Mirhosseini, Seyed Mohsen; Fakhri, Mohammad; Mozaffary, Amirhossein; Lotfaliany, Mojtaba; Behzadnia, Neda; Ansari Aval, Zahra; Ghiasi, Seyed Mohammad Saeed; Boloursaz, Mohammad Reza; Masjedi, Mohammad Reza

    2013-01-01

    OBJECTIVES The optimal management and treatment of pericardial effusion are still controversial. There is limited data related to the risk factors affecting survival in these patients. The aim of this study was to determine the risk factors affecting the survival rate of patients with symptomatic pericardial effusion who underwent surgical interventions. METHODS From 2004 to 2011, we retrospectively analysed 153 patients who underwent subxiphoid pericardial window as their surgical intervention to drain pericardial effusions at the National Research Institute of Tuberculosis and Lung diseases (NRITLD). To determine the effects of risk factors on survival rate, demographic data, clinical records, echocardiographic data, computed tomographic and cytopathological findings and also operative information of patients were recorded. Patients were followed annually until the last clinical follow-up (August 2011). To determine the prognostic factors affecting survival, both univariate analysis and multivariate Cox proportional hazards model were utilized. RESULTS There were 89 men and 64 women with a mean age of 50.3 ± 15.5 years. The most prevalent symptom was dyspnoea. Concurrent malignancies were present in 66 patients. Lungs were the most prevalent primary site for malignancy. The median duration of follow-up was 15 (range 1–85 months). Six-month, 1-year and 18-month survival rates were 85.6, 61.4 and 36.6%, respectively. In a multivariate analysis, positive history of lung cancer (hazard ratio [HR] 2.894, 95% confidence interval [CI] 1.362–6.147, P = 0.006) or other organ cancers (HR 2.315, 95% CI 1.009–50311, P = 0.048), presence of a mass in the computed tomography (HR 1.985, 95% CI 1.100–3.581, P = 0.023), and echocardiographic findings compatible with tamponade (HR 1.745, 95% CI 1.048–2.90 P = 0.032) were the three independent predictors of postoperative death. CONCLUSIONS In the surgical management of pericardial effusion, patients with underlying

  6. Factors Affecting Graft Survival among Patients Receiving Kidneys from Live Donors: A Single-Center Experience

    PubMed Central

    Ghoneim, Mohamed A.; Bakr, Mohamed A.; Refaie, Ayman F.; Akl, Ahmed I.; Shokeir, Ahmed A.; Shehab El-Dein, Ahmed B.; Ammar, Hesham M.; Ismail, Amani M.; Sheashaa, Hussein A.; El-Baz, Mahmoud A.

    2013-01-01

    Introduction. The aim of this report is to study the graft and patient survival in a large cohort of recipients with an analysis of factors that may affect the final outcomes. Methods. Between March 1976 and March 2008, 1967 consecutive live-donor renal transplants were carried out. Various variables that may have an impact on patients and/or graft survival were studied in two steps. Initially, a univariate analysis was carried out. Thereafter, significant variables were embedded in a stepwise regression analysis. Results. The overall graft survival was 86.7% and 65.5%, at 5 and 10 years, respectively. The projected half-life for grafts was 17.5 years and for patients was 22 years. Five factors had an independent negative impact on graft survival: donor's age, genetic considerations, the type of primary immunosuppression, number of acute rejection episodes, and total steroid dose during the first 3 months after transplantation. Conclusions. Despite refinements in tissue matching techniques and improvements in immunosuppression protocols, an important proportion of grafts is still lost following living donor kidney transplantation, presumably due to chronic allograft nephropathy. PMID:23878820

  7. Delay of Treatment Initiation Does Not Adversely Affect Survival Outcome in Breast Cancer

    PubMed Central

    Yoo, Tae-Kyung; Han, Wonshik; Moon, Hyeong-Gon; Kim, Jisun; Lee, Jun Woo; Kim, Min Kyoon; Lee, Eunshin; Kim, Jongjin; Noh, Dong-Young

    2016-01-01

    Purpose Previous studies examining the relationship between time to treatment and survival outcome in breast cancer have shown inconsistent results. The aim of this study was to analyze the overall impact of delay of treatment initiation on patient survival and to determine whether certain subgroups require more prompt initiation of treatment. Materials and Methods This study is a retrospective analysis of stage I-III patients who were treated in a single tertiary institution between 2005 and 2008. Kaplan-Meier survival analysis and Cox proportional hazards regression model were used to evaluate the impact of interval between diagnosis and treatment initiation in breast cancer and various subgroups. Results A total of 1,702 patients were included. Factors associated with longer delay of treatment initiation were diagnosis at another hospital, medical comorbidities, and procedures performed before admission for surgery. An interval between diagnosis and treatment initiation as a continuous variable or with a cutoff value of 15, 30, 45, and 60 days had no impact on disease-free survival (DFS). Subgroup analyses for hormone-responsiveness, triple-negative breast cancer, young age, clinical stage, and type of initial treatment showed no significant association between longer delay of treatment initiation and DFS. Conclusion Our results show that an interval between diagnosis and treatment initiation of 60 days or shorter does not appear to adversely affect DFS in breast cancer. PMID:26511801

  8. Gene and cell survival: lessons from prokaryotic plasmid R1.

    PubMed

    de la Cueva-Méndez, Guillermo; Pimentel, Belén

    2007-05-01

    Plasmids are units of extrachromosomal genetic inheritance found in all kingdoms of life. They replicate autonomously and undergo stable propagation in their hosts. Despite their small size, plasmid replication and gene expression constitute a metabolic burden that compromises their stable maintenance in host cells. This pressure has driven the evolution of strategies to increase plasmid stability--a process accelerated by the ability of plasmids to transfer horizontally between cells and to exchange genetic material with their host and other resident episomal DNAs. These abilities drive the adaptability and diversity of plasmids and their host cells. Indeed, survival functions found in plasmids have chromosomal homologues that have an essential role in cellular responses to stress. An analysis of these functions in the prokaryotic plasmid R1, and of their intricate interrelationships, reveals remarkable overall similarities with other gene- and cell-survival strategies found within and beyond the prokaryotic world. PMID:17471262

  9. Metabolic pathways promoting cancer cell survival and growth

    PubMed Central

    Boroughs, Lindsey K.; DeBerardinis, Ralph J.

    2016-01-01

    Activation of oncogenes and loss of tumour suppressors promote metabolic reprogramming in cancer, resulting in enhanced nutrient uptake to supply energetic and biosynthetic pathways. However, nutrient limitations within solid tumours may require that malignant cells exhibit metabolic flexibility to sustain growth and survival. Here, we highlight these adaptive mechanisms and also discuss emerging approaches to probe tumour metabolism in vivo and their potential to expand the metabolic repertoire of malignant cells even further. PMID:25774832

  10. Involvement of Ras in survival responsiveness to nitric oxide toxicity in pheochromocytoma cells.

    PubMed

    Jeong, Hyun Sik; Kim, Seong Won; Baek, Kwang Jin; Lee, Hee Sung; Kwon, Nyoun Soo; Kim, Young-Myeong; Yun, Hye-Young

    2002-11-01

    Nitric oxide (NO) plays a key role in attenuation of tumor growth by activated macrophages that generate large amount of cytotoxic/cytostatic free radicals. However, some tumor cells may survive from NO cytotoxicity and continue to proliferate to malignant tumors. Since a protooncogene product Ras was shown to be activated by NO, this study investigated the involvement of Ras in the cell survival in response to NO cytotoxicity in pheochromocytoma (PC12) cells. Treatment with Ras inhibitor or constitutive expression of dominant negative Ras markedly increased NO-induced cell death. NO-resistant PC12 cells (PC12-NO-R) exhibited higher steady state Ras activity than the parental PC12 cells. Inducible expression using tetracycline-on (Tet-on) system of Ras mutants (dominant negative Ras or dominant active Ras) demonstrated that blockade of Ras activity increased NO-induced cell death whereas enhancement of Ras activity attenuated NO-induced cell death. Furthermore, inducible expression of NO-insensitive mutant Ras selectively increased cellular vulnerability to NO but not to ROS. NO, Ras inhibitor and extracellular signal-regulated kinase (Erk) blocker synergistically increased cell death. These observations suggest that Ras activity may be a critical factor for survival response of tumor cells to NO toxicity and pharmacological agents affecting Ras activity may enhance efficacy of NO-mediated tumor therapies. PMID:12635656

  11. ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells.

    PubMed

    Karvela, Maria; Baquero, Pablo; Kuntz, Elodie M; Mukhopadhyay, Arunima; Mitchell, Rebecca; Allan, Elaine K; Chan, Edmond; Kranc, Kamil R; Calabretta, Bruno; Salomoni, Paolo; Gottlieb, Eyal; Holyoake, Tessa L; Helgason, G Vignir

    2016-06-01

    A major drawback of tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) is that primitive CML cells are able to survive TKI-mediated BCR-ABL inhibition, leading to disease persistence in patients. Investigation of strategies aiming to inhibit alternative survival pathways in CML is therefore critical. We have previously shown that a nonspecific pharmacological inhibition of autophagy potentiates TKI-induced death in Philadelphia chromosome-positive cells. Here we provide further understanding of how specific and pharmacological autophagy inhibition affects nonmitochondrial and mitochondrial energy metabolism and reactive oxygen species (ROS)-mediated differentiation of CML cells and highlight ATG7 (a critical component of the LC3 conjugation system) as a potential specific therapeutic target. By combining extra- and intracellular steady state metabolite measurements by liquid chromatography-mass spectrometry with metabolic flux assays using labeled glucose and functional assays, we demonstrate that knockdown of ATG7 results in decreased glycolysis and increased flux of labeled carbons through the mitochondrial tricarboxylic acid cycle. This leads to increased oxidative phosphorylation and mitochondrial ROS accumulation. Furthermore, following ROS accumulation, CML cells, including primary CML CD34(+) progenitor cells, differentiate toward the erythroid lineage. Finally, ATG7 knockdown sensitizes CML progenitor cells to TKI-induced death, without affecting survival of normal cells, suggesting that specific inhibitors of ATG7 in combination with TKI would provide a novel therapeutic approach for CML patients exhibiting persistent disease. PMID:27168493

  12. ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells

    PubMed Central

    Karvela, Maria; Baquero, Pablo; Kuntz, Elodie M.; Mukhopadhyay, Arunima; Mitchell, Rebecca; Allan, Elaine K.; Chan, Edmond; Kranc, Kamil R.; Calabretta, Bruno; Salomoni, Paolo; Gottlieb, Eyal; Holyoake, Tessa L.; Helgason, G. Vignir

    2016-01-01

    ABSTRACT A major drawback of tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) is that primitive CML cells are able to survive TKI-mediated BCR-ABL inhibition, leading to disease persistence in patients. Investigation of strategies aiming to inhibit alternative survival pathways in CML is therefore critical. We have previously shown that a nonspecific pharmacological inhibition of autophagy potentiates TKI-induced death in Philadelphia chromosome-positive cells. Here we provide further understanding of how specific and pharmacological autophagy inhibition affects nonmitochondrial and mitochondrial energy metabolism and reactive oxygen species (ROS)-mediated differentiation of CML cells and highlight ATG7 (a critical component of the LC3 conjugation system) as a potential specific therapeutic target. By combining extra- and intracellular steady state metabolite measurements by liquid chromatography-mass spectrometry with metabolic flux assays using labeled glucose and functional assays, we demonstrate that knockdown of ATG7 results in decreased glycolysis and increased flux of labeled carbons through the mitochondrial tricarboxylic acid cycle. This leads to increased oxidative phosphorylation and mitochondrial ROS accumulation. Furthermore, following ROS accumulation, CML cells, including primary CML CD34+ progenitor cells, differentiate toward the erythroid lineage. Finally, ATG7 knockdown sensitizes CML progenitor cells to TKI-induced death, without affecting survival of normal cells, suggesting that specific inhibitors of ATG7 in combination with TKI would provide a novel therapeutic approach for CML patients exhibiting persistent disease. PMID:27168493

  13. [A study on survival rates of oral squamous cell carcinoma].

    PubMed

    Chen, G S; Chen, C H

    1996-06-01

    Oral squamous cell carcinoma is seen predominantly after the fourth decade of life. We have retrospectively reviewed 103 patients (92 males and 11 females) with squamous cell carcinoma, which were confirmed by histopathologic examination and treated by surgical excision at Kaohsiung Medical College Hospital from 1987 to 1991. The age of the patients ranged from 23 to 87 years. 39.8% of cases occurred on the buccal mucosa, 27.2% on the tongue, 15.5% on the gingiva of mandible, 8% on the maxilla, 7.8% on the lower lip and 1% on the floor of the mouth. 23.3% of the patients had stage I disease, 14.6% were stage II, 43.7% were stage III and 18.4% stage IV. Of 103 patients treated with wide excision, about 65% (17/103) of patients treated with wide excision and radical neck dissection or suprahyoid neck dissection, and 41% (42/103) were treated by a combination of radiation and surgery. 96% (99/103) of our cases have completed a minimum follow-up period of 3 years. The sex and age of the patients did not influence survival significantly. The 5-year survival rates were 62% for patients with stage I disease, 80% for patients with stage II disease, 42% for patients with stage III, and 19% for patients with stage IV disease. Stage at initial presentation was an important factor influencing survival. The location of the primary tumor did not significantly influence survival for early stage tumors (stage I & II). In terminal stage tumors (stage III & IV). those with carcinomas of the floor of the mouth, gingiva of the mandible, lip, and maxilla had a 5-year survival of 15%, those with carcinomas of the tongue had a 5-year survival of 47%, and those with carcinomas of the buccal mucosa had a favorable survival rate of 53%. The differences were significant (P = 0.017). PMID:8699569

  14. Cancer Cell Cannibalism: A Primeval Option to Survive.

    PubMed

    Lozupone, F; Fais, S

    2015-01-01

    Cancer cell cannibalism is currently defined as a phenomenon in which an ensemble of a larger cell containing a smaller one, often in a big cytoplasmic vacuole, is detected in either cultured tumor cells or a tumor sample. After almost one century of considering this phenomenon as a sort of neglected curiosity, some recent studies have first proposed tumor cell cannibalism as a sort of "aberrant phagocytosis", making malignant cells very similar to professional phagocytes. Later, further research has shown that, differently to macrophages, exclusively ingesting exogenous material, apoptotic bodies, or cell debris, tumor cells are able to engulf other cells, including lymphocytes and erythrocytes, either dead or alive, with the main purpose to feed on them. This phenomenon has been associated to the malignancy of tumors, mostly exclusive of metastatic cells, and often associated to poor prognosis. The cannibalistic behavior increased depending on the microenvironmental condition of tumor cells, such as low nutrient supply or low pH, suggesting its key survival option for malignant cancers. However, the evidence that malignant cells may cannibalize tumor-infiltrating lymphocytes that act as their killers, suggests that tumor cell cannibalism could be a very direct and efficient way to neutralize immune response, as well. Tumor cell cannibalism may represent a sign of regression to a simpler, ancestral or primeval life style, similar to that of unicellular microorganisms, such as amoebas, where the goal is to survive and propagate in an overcrowded and very hostile microenvironment. In fact, we discovered that metastatic melanoma cells share with amoebas a transmembrane protein TM9SF4, indeed related to the cannibal behavior of these cells. This review attempts to provide a comprehensive description of the current knowledge about the role of TM9SF4 in cancer, highlighting its role as a key player in the cannibal behavior of malignant cancer cells. Moreover, we discuss

  15. Mechanosensitive pannexin-1 channels mediate microvascular metastatic cell survival.

    PubMed

    Furlow, Paul W; Zhang, Steven; Soong, T David; Halberg, Nils; Goodarzi, Hani; Mangrum, Creed; Wu, Y Gloria; Elemento, Olivier; Tavazoie, Sohail F

    2015-07-01

    During metastatic progression, circulating cancer cells become lodged within the microvasculature of end organs, where most die from mechanical deformation. Although this phenomenon was first described over a half-century ago, the mechanisms enabling certain cells to survive this metastasis-suppressive barrier remain unknown. By applying whole-transcriptome RNA-sequencing technology to isogenic cancer cells of differing metastatic capacities, we identified a mutation encoding a truncated form of the pannexin-1 (PANX1) channel, PANX1(1-89), as recurrently enriched in highly metastatic breast cancer cells. PANX1(1-89) functions to permit metastatic cell survival during traumatic deformation in the microvasculature by augmenting ATP release from mechanosensitive PANX1 channels activated by membrane stretch. PANX1-mediated ATP release acts as an autocrine suppressor of deformation-induced apoptosis through P2Y-purinergic receptors. Finally, small-molecule therapeutic inhibition of PANX1 channels is found to reduce the efficiency of breast cancer metastasis. These data suggest a molecular basis for metastatic cell survival on microvasculature-induced biomechanical trauma. PMID:26098574

  16. Erythropoietin Augments Survival of Glioma Cells After Radiation and Temozolomide

    SciTech Connect

    Hassouna, Imam; Sperling, Swetlana; Kim, Ella; Schulz-Schaeffer, Walter; Rave-Fraenk, Margret; Hasselblatt, Martin; Jelkmann, Wolfgang; Giese, Alf; Ehrenreich, Hannelore

    2008-11-01

    Purpose: Despite beneficial effects of irradiation/chemotherapy on survival of glioblastoma (GBM) patients, collateral damage to intact neural tissue leads to 'radiochemobrain' and reduced quality of life in survivors. For prophylactic neuroprotection, erythropoietin (EPO) is a promising candidate, provided that concerns regarding potential tumor promoting effects are alleviated. Methods and Materials: Human GBM-derived cell lines U87, G44, G112, and the gliosarcoma-derived line G28 were treated with EPO, with and without combinations of irradiation or temozolomide (TMZ). Responsiveness of glioma cells to EPO was measured by cell migration from spheroids, cell proliferation, and clonogenic survival. Implantation of U87 cells into brains of nude mice, followed 5 days later by EPO treatment (5,000 U/kg intraperitoneal every other day for 2 weeks) should reveal effects of EPO on tumor growth in vivo. Reverse transcriptase-polymerase chain reaction was performed for EPOR, HIF-1{alpha}, and epidermal growth factor receptor (EGFR)vIII in cell lines and 22 human GBM specimens. Results: EPO did not modulate basal glioma cell migration and stimulated proliferation in only one of four cell lines. Importantly, EPO did not enhance tumor growth in mouse brains. Preincubation of glioma cells with EPO for 3 h, followed by irradiation and TMZ for another 24 h, resulted in protection against chemoradiation-induced cytotoxicity in three cell lines. Conversely, EPO induced a dose-dependent decrease in survival of G28 gliosarcoma cells. In GBM specimens, expression of HIF-1{alpha} correlated positively with expression of EPOR and EGFRvIII. EPOR and EGFRvIII expression did not correlate. Conclusions: EPO is unlikely to appreciably influence basal glioma growth. However, concomitant use of EPO with irradiation/chemotherapy in GBM patients is not advisable.

  17. Variants on the promoter region of PTEN affect breast cancer progression and patient survival

    PubMed Central

    2011-01-01

    Introduction The PTEN gene, a regulator of the phosphatidylinositol-3-kinase (PI3K)/Akt oncogenic pathway, is mutated in various cancers and its expression has been associated with tumor progression in a dose-dependent fashion. We investigated the effect of germline variation in the promoter region of the PTEN gene on clinical characteristics and survival in breast cancer. Methods We screened the promoter region of the PTEN gene for germline variation in 330 familial breast cancer cases and further determined the genotypes of three detected PTEN promoter polymorphisms -903GA, -975GC, and -1026CA in a total of 2,412 breast cancer patients to evaluate the effects of the variants on tumor characteristics and disease outcome. We compared the gene expression profiles in breast cancers of 10 variant carriers and 10 matched non-carriers and performed further survival analyses based on the differentially expressed genes. Results All three promoter variants associated with worse prognosis. The Cox's regression hazard ratio for 10-year breast cancer specific survival in multivariate analysis was 2.01 (95% CI 1.17 to 3.46) P = 0.0119, and for 5-year breast cancer death or distant metastasis free survival 1.79 (95% CI 1.03 to 3.11) P = 0.0381 for the variant carriers, indicating PTEN promoter variants as an independent prognostic factor. The breast tumors from the promoter variant carriers exhibited a similar gene expression signature of 160 differentially expressed genes compared to matched non-carrier tumors. The signature further stratified patients into two groups with different recurrence free survival in independent breast cancer gene expression data sets. Conclusions Inherited variation in the PTEN promoter region affects the tumor progression and gene expression profile in breast cancer. Further studies are warranted to establish PTEN promoter variants as clinical markers for prognosis in breast cancer. PMID:22171747

  18. Exogenous Modulation of Retinoic Acid Signaling Affects Adult RGC Survival in the Frog Visual System after Optic Nerve Injury.

    PubMed

    Duprey-Díaz, Mildred V; Blagburn, Jonathan M; Blanco, Rosa E

    2016-01-01

    After lesions to the mammalian optic nerve, the great majority of retinal ganglion cells (RGCs) die before their axons have even had a chance to regenerate. Frog RGCs, on the other hand, suffer only an approximately 50% cell loss, and we have previously investigated the mechanisms by which the application of growth factors can increase their survival rate. Retinoic acid (RA) is a vitamin A-derived lipophilic molecule that plays major roles during development of the nervous system. The RA signaling pathway is also present in parts of the adult nervous system, and components of it are upregulated after injury in peripheral nerves but not in the CNS. Here we investigate whether RA signaling affects long-term RGC survival at 6 weeks after axotomy. Intraocular injection of all-trans retinoic acid (ATRA), the retinoic acid receptor (RAR) type-α agonist AM80, the RARβ agonist CD2314, or the RARγ agonist CD1530, returned axotomized RGC numbers to almost normal levels. On the other hand, inhibition of RA synthesis with disulfiram, or of RAR receptors with the pan-RAR antagonist Ro-41-5253, or the RARβ antagonist LE135E, greatly reduced the survival of the axotomized neurons. Axotomy elicited a strong activation of the MAPK, STAT3 and AKT pathways; this activation was prevented by disulfiram or by RAR antagonists. Finally, addition of exogenous ATRA stimulated the activation of the first two of these pathways. Future experiments will investigate whether these strong survival-promoting effects of RA are mediated via the upregulation of neurotrophins. PMID:27611191

  19. Surviving protein quality control catastrophes--from cells to organisms.

    PubMed

    Schneider, Kim; Bertolotti, Anne

    2015-11-01

    Organisms have evolved mechanisms to cope with and adapt to unexpected challenges and harsh conditions. Unfolded or misfolded proteins represent a threat for cells and organisms, and the deposition of misfolded proteins is a defining feature of many age-related human diseases, including the increasingly prevalent neurodegenerative diseases. These protein misfolding diseases are devastating and currently cannot be cured, but are hopefully not incurable. In fact, the aggregation-prone and potentially harmful proteins at the origins of protein misfolding diseases are expressed throughout life, whereas the diseases are late onset. This reveals that cells and organisms are normally resilient to disease-causing proteins and survive the threat of misfolded proteins up to a point. This Commentary will outline the limits of the cellular resilience to protein misfolding, and discuss the possibility of pushing these limits to help cells and organisms to survive the threat of misfolding proteins and to avoid protein quality control catastrophes. PMID:26483388

  20. Mast cell leukemia with prolonged survival on PKC412/midostaurin.

    PubMed

    Xu, Xiangdong; Kreisel, Friederike H; Frater, John L; Hassan, Anjum

    2014-01-01

    Mast cell leukemia (MCL) is a rare and aggressive form of systemic mastocytosis. There are approximately 50 reported cases since 1950s. MCL is refractory to cytoreduction chemotherapy and the average survival is only six months. We report a MCL case in a 71 year-old woman with high tumor load at the initial presentation in 2005, who did not respond to either interleukin-2 or dasatinib therapy. After enrolled in a clinical trial of PKC412 (or Midostaurin) with a daily dose of 100 mg, the patient responded well to PKC412 and became transfusion independent in three months. Since then, her disease had been stably controlled. This is the first report of a high-tumor-load MCL case which achieved prolonged survival (101 months) by PKC 412. The 101-month overall survival is the longest among reported MCL cases in the English literature. PMID:25031773

  1. Effects of IL-8 Up-Regulation on Cell Survival and Osteoclastogenesis in Multiple Myeloma.

    PubMed

    Herrero, Ana B; García-Gómez, Antonio; Garayoa, Mercedes; Corchete, Luis A; Hernández, José M; San Miguel, Jesús; Gutierrez, Norma C

    2016-08-01

    IL-8 promotes cancer cell growth, survival, angiogenesis, and metastasis in several tumors. Herein, we investigated the sources of IL-8 production in multiple myeloma (MM) and its potential roles in MM pathogenesis. We found that bone marrow cells from patients with MM secreted higher amounts of IL-8 than healthy donors. IL-8 production was detected in cultures of CD138(+) plasma cells and CD138(-) cells isolated from bone marrows of MM patients, and in three of seven human myeloma cell lines (HMCLs) analyzed. Interactions between MM and stromal cells increased IL-8 secretion by stromal cells through cell-cell adhesion and soluble factors. Interestingly, IL8 expression also increased in HMCLs, stromal cells, and osteoclasts after treatment with the antimyeloma drugs melphalan and bortezomib. In fact, the effect of bortezomib on IL-8 production was higher than that exerted by stromal-MM cell interactions. Addition of exogenous IL-8 did not affect growth of HMCLs, although it protected cells from death induced by serum starvation through a caspase-independent mechanism. Furthermore, IL-8 induced by stromal-MM cell interactions strongly contributed to osteoclast formation in vitro, because osteoclastogenesis was markedly reduced by IL-8-specific neutralizing antibodies. In conclusion, our results implicate IL-8 in myeloma bone disease and point to the potential utility of an anti-IL-8 therapy to prevent unwanted effects of IL-8 up-regulation on survival, angiogenesis, and osteolysis in MM. PMID:27301357

  2. Surviving change: the metabolic journey of hematopoietic stem cells.

    PubMed

    Kohli, Latika; Passegué, Emmanuelle

    2014-08-01

    Hematopoietic stem cells (HSCs) are a rare population of somatic stem cells that maintain blood production and are uniquely wired to adapt to diverse cellular fates during the lifetime of an organism. Recent studies have highlighted a central role for metabolic plasticity in facilitating cell fate transitions and in preserving HSC functionality and survival. This review summarizes our current understanding of the metabolic programs associated with HSC quiescence, self-renewal, and lineage commitment, and highlights the mechanistic underpinnings of these changing bioenergetics programs. It also discusses the therapeutic potential of targeting metabolic drivers in the context of blood malignancies. PMID:24768033

  3. Stress and morphine affect survival of rats challenged with a mammary ascites tumor (MAT 13762B).

    PubMed

    Lewis, J W; Shavit, Y; Terman, G W; Gale, R P; Liebeskind, J C

    We have previously shown that exposure to inescapable footshock stress decreases survival of rats injected with a mammary ascites tumor (MAT 13762B). This increased vulnerability to the tumor challenge was prevented by an opiate antagonist, naltrexone, suggesting mediation by opioid peptides. Supporting this hypothesis, we now report that a high dose of an opiate agonist, morphine, also reduces survival of rats given the same tumor. This effect shows tolerance after 14 daily injections. The adverse effect of stress, however, did not show other signs of opioid involvement: it manifested neither tolerance with repeated stress exposures nor cross-tolerance in morphine-tolerant rats. Our recent findings that stress and morphine reduce natural killer cell cytotoxicity in a similar fashion suggest an immune mechanism that may explain the present results. PMID:6678390

  4. Survival of tumor and normal cells upon targeting with electron-emitting radionuclides

    PubMed Central

    Rajon, Didier; Bolch, Wesley E.; Howell, Roger W.

    2013-01-01

    Purpose: Previous studies have shown that the mean absorbed dose to a tissue element may not be a suitable quantity for correlating with the biological response of cells in that tissue element. Cell survival can depend strongly on the distribution of radioactivity at the cellular and multicellular levels. Furthermore, when cellular absorbed doses are examined, the cross-dose from neighbor cells can be less radiotoxic than the self-dose component. To better understand how the nonuniformity of activity among cells can affect the dose response, a computer model of a 3D tissue culture was previously constructed and showed that activity distribution among cells is significantly more relevant than the mean absorbed dose for low-energy-electron emitters. The present work greatly expands upon those findings. Methods: In the present study, we used this same computer model but restricted the number of labeled cells to a fraction of the whole cell population (50%, 10%, and 1%, respectively). The labeled cells were randomly distributed among the whole cell population. Results: While the activity distribution is an important factor in determining the tissue response for low-energy-electron emitters, the fraction of labeled cells has an even more pronounced effect on survival response. For all electron energies studied, reducing the percentage of cells labeled significantly increases the surviving fraction of the whole population. Conclusions: This study provides abundant information on killing tumor and normal cells under some conditions relevant to targeted radionuclide therapy of isolated tumor cells and micrometastases. The percentage of cells labeled, activity distribution among the labeled cells, and electron energy play key roles in determining their response. Most importantly, and not previously demonstrated, lognormal activity distributions can have a profound impact on the response of the tumor cells even when the radionuclide emits high-energy electrons. PMID:23298125

  5. Survival of tumor and normal cells upon targeting with electron-emitting radionuclides

    SciTech Connect

    Rajon, Didier; Bolch, Wesley E.; Howell, Roger W.

    2013-01-15

    Purpose: Previous studies have shown that the mean absorbed dose to a tissue element may not be a suitable quantity for correlating with the biological response of cells in that tissue element. Cell survival can depend strongly on the distribution of radioactivity at the cellular and multicellular levels. Furthermore, when cellular absorbed doses are examined, the cross-dose from neighbor cells can be less radiotoxic than the self-dose component. To better understand how the nonuniformity of activity among cells can affect the dose response, a computer model of a 3D tissue culture was previously constructed and showed that activity distribution among cells is significantly more relevant than the mean absorbed dose for low-energy-electron emitters. The present work greatly expands upon those findings. Methods: In the present study, we used this same computer model but restricted the number of labeled cells to a fraction of the whole cell population (50%, 10%, and 1%, respectively). The labeled cells were randomly distributed among the whole cell population. Results: While the activity distribution is an important factor in determining the tissue response for low-energy-electron emitters, the fraction of labeled cells has an even more pronounced effect on survival response. For all electron energies studied, reducing the percentage of cells labeled significantly increases the surviving fraction of the whole population. Conclusions: This study provides abundant information on killing tumor and normal cells under some conditions relevant to targeted radionuclide therapy of isolated tumor cells and micrometastases. The percentage of cells labeled, activity distribution among the labeled cells, and electron energy play key roles in determining their response. Most importantly, and not previously demonstrated, lognormal activity distributions can have a profound impact on the response of the tumor cells even when the radionuclide emits high-energy electrons.

  6. Intercellular bridges are essential for human parthenogenetic cell survival.

    PubMed

    Pennarossa, Georgia; Maffei, Sara; Tettamanti, Gianluca; Congiu, Terenzio; deEguileor, Magda; Gandolfi, Fulvio; Brevini, Tiziana A L

    2015-05-01

    Parthenogenetic cells, obtained from in vitro activated mammalian oocytes, display multipolar spindles, chromosome malsegregation and a high incidence of aneuploidy, probably due to the lack of paternal contribution. Despite this, parthenogenetic cells do not show high rates of apoptosis and are able to proliferate in a way comparable to their biparental counterpart. We hypothesize that a series of adaptive mechanisms are present in parthenogenetic cells, allowing a continuous proliferation and ordinate cell differentiation both in vitro and in vivo. Here we identify the presence of intercellular bridges that contribute to the establishment of a wide communication network among human parthenogenetic cells, providing a mutual exchange of missing products. Silencing of two molecules essential for intercellular bridge formation and maintenance demonstrates the key function played by these cytoplasmic passageways that ensure normal cell functions and survival, alleviating the unbalance in cellular component composition. PMID:25700933

  7. Review of Factors Affecting the Growth and Survival of Follicular Grafts

    PubMed Central

    Parsley, William M; Perez-Meza, David

    2010-01-01

    Great strides have been made in hair restoration over the past 20 years. A better understanding of natural balding and non-balding patterns along with more respect for ageing has helped guide proper hairline design. Additionally, the use of smaller grafts has created a significantly improved natural appearance to the transplanted grafts. Inconsistent growth and survival of follicular grafts, however, has continued to be a problem that has perplexed hair restoration surgeons. This review attempts to explore the stresses affecting grafts during transplantation and some of the complexities involved in graft growth and survival. These authors reviewed the literature to determine the primary scope of aspects influencing growth and survival of follicular grafts. This scope includes patient selection, operating techniques, graft care, storage solutions and additives. The primary focus of the hair restoration surgeons should first be attention to the fundamentals of hair care, hydration, temperature, time out of body and gentle handling. Factors such as advanced storage solutions and additives can be helpful once the fundamentals have been addressed. PMID:21031063

  8. β-Catenin Signaling Increases during Melanoma Progression and Promotes Tumor Cell Survival and Chemoresistance

    PubMed Central

    Sinnberg, Tobias; Menzel, Moritz; Ewerth, Daniel; Sauer, Birgit; Schwarz, Michael; Schaller, Martin; Garbe, Claus; Schittek, Birgit

    2011-01-01

    Beta-catenin plays an important role in embryogenesis and carcinogenesis by controlling either cadherin-mediated cell adhesion or transcriptional activation of target gene expression. In many types of cancers nuclear translocation of beta-catenin has been observed. Our data indicate that during melanoma progression an increased dependency on the transcriptional function of beta-catenin takes place. Blockade of beta-catenin in metastatic melanoma cell lines efficiently induces apoptosis, inhibits proliferation, migration and invasion in monolayer and 3-dimensional skin reconstructs and decreases chemoresistance. In addition, subcutaneous melanoma growth in SCID mice was almost completely inhibited by an inducible beta-catenin knockdown. In contrast, the survival of benign melanocytes and primary melanoma cell lines was less affected by beta-catenin depletion. However, enhanced expression of beta-catenin in primary melanoma cell lines increased invasive capacity in vitro and tumor growth in the SCID mouse model. These data suggest that beta-catenin is an essential survival factor for metastatic melanoma cells, whereas it is dispensable for the survival of benign melanocytes and primary, non-invasive melanoma cells. Furthermore, beta-catenin increases tumorigenicity of primary melanoma cell lines. The differential requirements for beta-catenin signaling in aggressive melanoma versus benign melanocytic cells make beta-catenin a possible new target in melanoma therapy. PMID:21858114

  9. Metallodrug induced apoptotic cell death and survival attempts are characterizable by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    le Roux, K.; Prinsloo, L. C.; Meyer, D.

    2014-09-01

    Chrysotherapeutics are under investigation as new or additional treatments for different types of cancers. In this study, gold complexes were investigated for their anticancer potential using Raman spectroscopy. The aim of the study was to determine whether Raman spectroscopy could be used for the characterization of metallodrug-induced cell death. Symptoms of cell death such as decreased peak intensities of proteins bonds and phosphodiester bonds found in deoxyribose nucleic acids were evident in the principal component analysis of the spectra. Vibrational bands around 761 cm-1 and 1300 cm-1 (tryptophan, ethanolamine group, and phosphatidylethanolamine) and 1720 cm-1 (ester bonds associated with phospholipids) appeared in the Raman spectra of cervical adenocarcinoma (HeLa) cells after metallodrug treatment. The significantly (p < 0.05, one way analysis of variance) increased intensity of phosphatidylethanolamine after metallodrug treatment could be a molecular signature of induced apoptosis since both the co-regulated phosphatidylserine and phosphatidylethanolamine are externalized during cell death. Treated cells had significantly higher levels of glucose and glycogen vibrational peaks, indicative of a survival mechanism of cancer cells under chemical stress. Cancer cells excrete chemotherapeutics to improve their chances of survival and utilize glucose to achieve this. Raman spectroscopy was able to monitor a survival strategy of cancer cells in the form of glucose uptake to alleviate chemical stress. Raman spectroscopy was invaluable in obtaining molecular information generated by biomolecules affected by anticancer metallodrug treatments and presents an alternative to less reproducible, conventional biochemical assays for cytotoxicity analyses.

  10. Oxygen cycling to improve survival of stem cells for myocardial repair: A review.

    PubMed

    Dall, Christopher; Khan, Mahmood; Chen, Chun-An; Angelos, Mark G

    2016-05-15

    Heart disease represents the leading cause of death among Americans. There is currently no clinical treatment to regenerate viable myocardium following myocardial infarction, and patients may suffer progressive deterioration and decreased myocardial function from the effects of remodeling of the necrotic myocardium. New therapeutic strategies hold promise for patients who suffer from ischemic heart disease by directly addressing the restoration of functional myocardium following death of cardiomyocytes. Therapeutic stem cell transplantation has shown modest benefit in clinical human trials with decreased fibrosis and increased functional myocardium. Moreover, autologous transplantation holds the potential to implement these therapies while avoiding the immunomodulation concerns of heart transplantation. Despite these benefits, stem cell therapy has been characterized by poor survival and low engraftment of injected stem cells. The hypoxic tissue environment of the ischemic/infracting myocardium impedes stem cell survival and engraftment in myocardial tissue. Hypoxic preconditioning has been suggested as a viable strategy to increase hypoxic tolerance of stem cells. A number of in vivo and in vitro studies have demonstrated improved stem cell viability by altering stem cell secretion of protein signals and up-regulation of numerous paracrine signaling pathways that affect inflammatory, survival, and angiogenic signaling pathways. This review will discuss both the mechanisms of hypoxic preconditioning as well as the effects of hypoxic preconditioning in different cell and animal models, examining the pitfalls in current research and the next steps into potentially implementing this methodology in clinical research trials. PMID:27091653

  11. Age and Sex of Mice Markedly Affect Survival Times Associated with Hyperoxic Acute Lung Injury

    PubMed Central

    Prows, Daniel R.; Gibbons, William J.; Smith, Jessica J.; Pilipenko, Valentina; Martin, Lisa J.

    2015-01-01

    Mortality associated with acute lung injury (ALI) remains substantial, with recent estimates of 35–45% similar to those obtained decades ago. Although evidence for sex-related differences in ALI mortality remains equivocal, death rates differ markedly for age, with more than 3-fold increased mortality in older versus younger patients. Strains of mice also show large differences in ALI mortality. To tease out genetic factors affecting mortality, we established a mouse model of differential hyperoxic ALI (HALI) survival. Separate genetic analyses of backcross and F2 populations generated from sensitive C57BL/6J (B) and resistant 129X1/SvJ (X1) progenitor strains identified two quantitative trait loci (QTLs; Shali1 and Shali2) with strong, equal but opposite, within-strain effects on survival. Congenic lines confirmed these opposing QTL effects, but also retained the low penetrance seen in the 6–12 week X1 control strain. Sorting mice into distinct age groups revealed that ‘age at exposure’ inversely correlated with survival time and explained reduced penetrance of the resistance trait. While B mice were already sensitive by 6 weeks old, X1 mice maintained significant resistance up to 3–4 weeks longer. Reanalysis of F2 data gave analogous age-related findings, and also supported sex-specific linkage for Shali1 and Shali2. Importantly, we have demonstrated in congenic mice that these age effects on survival correspond with B alleles for Shali1 (6-week old mice more sensitive) and Shali2 (10-week old mice more resistant) placed on the X1 background. Further studies revealed significant sex-specific survival differences in subcongenics for both QTLs. Accounting for age and sex markedly improved penetrance of both QTLs, thereby reducing trait variability, refining Shali1 to <8.5Mb, and supporting several sub-QTLs within the Shali2 interval. Together, these congenics will allow age- and sex-specific studies to interrogate myriad subphenotypes affected during ALI

  12. Brain Metastasis-Initiating Cells: Survival of the Fittest

    PubMed Central

    Singh, Mohini; Manoranjan, Branavan; Mahendram, Sujeivan; McFarlane, Nicole; Venugopal, Chitra; Singh, Sheila K.

    2014-01-01

    Brain metastases (BMs) are the most common brain tumor in adults, developing in about 10% of adult cancer patients. It is not the incidence of BM that is alarming, but the poor patient prognosis. Even with aggressive treatments, median patient survival is only months. Despite the high rate of BM-associated mortality, very little research is conducted in this area. Lack of research and staggeringly low patient survival is indicative that a novel approach to BMs and their treatment is needed. The ability of a small subset of primary tumor cells to produce macrometastases is reminiscent of brain tumor-initiating cells (BTICs) or cancer stem cells (CSCs) hypothesized to form primary brain tumors. BTICs are considered stem cell-like due to their self-renewal and differentiation properties. Similar to the subset of cells forming metastases, BTICs are most often a rare subpopulation. Based on the functional definition of a TIC, cells capable of forming a BM could be considered to be brain metastasis-initiating cells (BMICs). These putative BMICs would not only have the ability to initiate tumor growth in a secondary niche, but also the machinery to escape the primary tumor, migrate through the circulation, and invade the neural niche. PMID:24857921

  13. Water transport and cell survival in cryobiological procedures.

    PubMed

    Farrant, J

    1977-03-29

    Living cells may be cooled to 77 K (liquid nitrogen) either to destroy them selectively or to store them for long periods. Water transport across the cell membranes during freezing and thawing is a primary factor determining whether the cells survive. These water movements are controlled by phase changes both intracellular and extracellular and by other factors such as the nature of any cryoprotective agent present, and the rates of cooling and thawing. The relation between cooling procedure, water transport and cell survival is discussed. In particular, the crucial rôle of dilution shock is emphasized: this is the damage to cells induced during the dilution that occurs both as ice melts during rewarming and when any cryoprotective additives are removed after thawing. Apart from the usefulness of understanding these processes for maximizing preservation or controlling selective destruction, the diverse responses of cells to different combinations of water transport and temperature changes appear likely to provide basic information on the properties of cell membranes. PMID:17873

  14. Emerging role of angiogenin in stress response and cell survival under adverse conditions

    PubMed Central

    Li, Shuping; Hu, Guo-Fu

    2011-01-01

    Angiogenin (ANG), also known as ribonuclease (RNASE) 5, is a member of the vertebrate-specific, secreted RNASE superfamily. ANG was originally identified as a tumor angiogenic factor, but its biological activity has been extended from inducing angiogenesis to stimulating cell proliferation and more recently, to promoting cell survival. Under growth conditions, ANG is translocated to nucleus where it accumulates in nucleolus and stimulates ribosomal RNA (rRNA) transcription, thus facilitating cell growth and proliferation. Under stress conditions, ANG is accumulated in cytoplasmic compartments and modulates the production of tiRNA, a novel class of small RNA that is derived from tRNA and is induced by stress. tiRNA suppress global protein translation by inhibiting both cap-dependent and -independent translation including that mediated by weak IRESes. However, strong IRES-mediated translation, a mechanism often used by genes involved in pro-survival and anti-apoptosis, is not affected. Thus, ANG-mediated tiRNA reprogram protein translation, save anabolic energy, and promote cell survival. This recently uncovered function of ANG presents a novel mechanism of action in regulating cell growth and survival. PMID:22021078

  15. Thrombospondin-1 Gene Expression Affects Survival and Tumor Spectrum of p53-Deficient Mice

    PubMed Central

    Lawler, Jack; Miao, Wei-Min; Duquette, Mark; Bouck, Noël; Bronson, Roderick T.; Hynes, Richard O.

    2001-01-01

    In vitro and in vivo data indicate that thrombospondin-1 (TSP1) inhibits tumor progression in several ways including direct effects on cellular growth and apoptosis in the stromal compartment. To evaluate the importance of TSP1 for the progression of naturally arising tumors in vivo, we have crossed TSP1-deficient mice with p53-deficient mice. In p53-null mice, the absence of TSP1 decreases survival from 160 ± 52 days to 149 ± 42 days. A log-rank test comparing survival curves for these two populations yields a two-sided P value of 0.0272. For mice that are heterozygous for the p53-null allele, survival is 500 ± 103 days in the presence of TSP1 expression, and 426 ± 125 days in its absence (P = 0.0058). Whereas TSP1 expression did not cause a measurable change in the incidence of the majority of tumor types, a statistically significant (P ≤ 0.05) decrease in the incidence of osteosarcomas is observed in the absence of TSP1. To determine more directly if host TSP1 inhibits tumor growth, B16F10 melanoma and F9 testicular teratocarcinoma cells have been implanted in C57BL/6J and 129Sv TSP1-null mice, respectively. The B16F10 tumors grow approximately twice as fast in the TSP1-null background and exhibit an increase in vascular density, a decrease in the rate of tumor cell apoptosis, and an increase in the rate of tumor cell proliferation. Increased tumor growth is also observed in the absence of TSP1 on the 129Sv genetic background. These data indicate that endogenous host TSP1 functions as a modifier or landscaper gene to suppress tumor growth. PMID:11696456

  16. Discrete dynamic modeling of T cell survival signaling networks

    NASA Astrophysics Data System (ADS)

    Zhang, Ranran

    2009-03-01

    Biochemistry-based frameworks are often not applicable for the modeling of heterogeneous regulatory systems that are sparsely documented in terms of quantitative information. As an alternative, qualitative models assuming a small set of discrete states are gaining acceptance. This talk will present a discrete dynamic model of the signaling network responsible for the survival and long-term competence of cytotoxic T cells in the blood cancer T-LGL leukemia. We integrated the signaling pathways involved in normal T cell activation and the known deregulations of survival signaling in leukemic T-LGL, and formulated the regulation of each network element as a Boolean (logic) rule. Our model suggests that the persistence of two signals is sufficient to reproduce all known deregulations in leukemic T-LGL. It also indicates the nodes whose inactivity is necessary and sufficient for the reversal of the T-LGL state. We have experimentally validated several model predictions, including: (i) Inhibiting PDGF signaling induces apoptosis in leukemic T-LGL. (ii) Sphingosine kinase 1 and NFκB are essential for the long-term survival of T cells in T-LGL leukemia. (iii) T box expressed in T cells (T-bet) is constitutively activated in the T-LGL state. The model has identified potential therapeutic targets for T-LGL leukemia and can be used for generating long-term competent CTL necessary for tumor and cancer vaccine development. The success of this model, and of other discrete dynamic models, suggests that the organization of signaling networks has an determining role in their dynamics. Reference: R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, R. Albert, T. P. Loughran, Jr., Network Model of Survival Signaling in LGL Leukemia, PNAS 105, 16308-16313 (2008).

  17. Ceramide Kinase Promotes Tumor Cell Survival and Mammary Tumor Recurrence

    PubMed Central

    Payne, Ania W.; Pant, Dhruv K.; Pan, Tien-chi; Chodosh, Lewis A.

    2014-01-01

    Recurrent breast cancer is typically an incurable disease and, as such, is disproportionately responsible for deaths from this disease. Recurrent breast cancers arise from the pool of disseminated tumor cells (DTCs) that survive adjuvant or neoadjuvant therapy, and patients with detectable DTCs following therapy are at substantially increased risk for recurrence. Consequently, the identification of pathways that contribute to the survival of breast cancer cells following therapy could aid in the development of more effective therapies that decrease the burden of residual disease and thereby reduce the risk of breast cancer recurrence. We now report that Ceramide Kinase (Cerk) is required for mammary tumor recurrence following HER2/neu pathway inhibition and is spontaneously up-regulated during tumor recurrence in multiple genetically engineered mouse models for breast cancer. We find that Cerk is rapidly up-regulated in tumor cells following HER2/neu down-regulation or treatment with Adriamycin and that Cerk is required for tumor cell survival following HER2/neu down-regulation. Consistent with our observations in mouse models, analysis of gene expression profiles from over 2,200 patients revealed that elevated CERK expression is associated with an increased risk of recurrence in women with breast cancer. Additionally, although CERK expression is associated with aggressive subtypes of breast cancer, including those that are ER–, HER2+, basal-like, or high grade, its association with poor clinical outcome is independent of these clinicopathological variables. Together, our findings identify a functional role for Cerk in breast cancer recurrence and suggest the clinical utility of agents targeted against this pro-survival pathway. PMID:25164007

  18. B-cell survival factors in autoimmune rheumatic disorders

    PubMed Central

    Morais, Sandra A.; Vilas-Boas, Andreia

    2015-01-01

    Autoimmune rheumatic disorders have complex etiopathogenetic mechanisms in which B cells play a central role. The importance of factors stimulating B cells, notably the B-cell activating factor (BAFF) and A proliferation inducing ligand (APRIL) axis is now recognized. BAFF and APRIL are cytokines essential for B-cell proliferation and survival from the immature stages to the development of plasma cells. Their levels are increased in some subsets of patients with autoimmune disorders. Several recent biologic drugs have been developed to block this axis, namely belimumab [already licensed for systemic lupus erythematosus (SLE) treatment], tabalumab, atacicept and blisibimod. Many clinical trials to evaluate the safety and efficacy of these drugs in several autoimmune disorders are ongoing, or have been completed recently. This review updates the information on the use of biologic agents blocking BAFF/APRIL for patients with SLE, rheumatoid arthritis, Sjögren’s syndrome and myositis. PMID:26288664

  19. Autophagy is activated for cell survival after endoplasmic reticulum stress.

    PubMed

    Ogata, Maiko; Hino, Shin-ichiro; Saito, Atsushi; Morikawa, Keisuke; Kondo, Shinichi; Kanemoto, Soshi; Murakami, Tomohiko; Taniguchi, Manabu; Tanii, Ichiro; Yoshinaga, Kazuya; Shiosaka, Sadao; Hammarback, James A; Urano, Fumihiko; Imaizumi, Kazunori

    2006-12-01

    Eukaryotic cells deal with accumulation of unfolded proteins in the endoplasmic reticulum (ER) by the unfolded protein response, involving the induction of molecular chaperones, translational attenuation, and ER-associated degradation, to prevent cell death. Here, we found that the autophagy system is activated as a novel signaling pathway in response to ER stress. Treatment of SK-N-SH neuroblastoma cells with ER stressors markedly induced the formation of autophagosomes, which were recognized at the ultrastructural level. The formation of green fluorescent protein (GFP)-LC3-labeled structures (GFP-LC3 "dots"), representing autophagosomes, was extensively induced in cells exposed to ER stress with conversion from LC3-I to LC3-II. In IRE1-deficient cells or cells treated with c-Jun N-terminal kinase (JNK) inhibitor, the autophagy induced by ER stress was inhibited, indicating that the IRE1-JNK pathway is required for autophagy activation after ER stress. In contrast, PERK-deficient cells and ATF6 knockdown cells showed that autophagy was induced after ER stress in a manner similar to the wild-type cells. Disturbance of autophagy rendered cells vulnerable to ER stress, suggesting that autophagy plays important roles in cell survival after ER stress. PMID:17030611

  20. Autophagy Is Activated for Cell Survival after Endoplasmic Reticulum Stress▿

    PubMed Central

    Ogata, Maiko; Hino, Shin-ichiro; Saito, Atsushi; Morikawa, Keisuke; Kondo, Shinichi; Kanemoto, Soshi; Murakami, Tomohiko; Taniguchi, Manabu; Tanii, Ichiro; Yoshinaga, Kazuya; Shiosaka, Sadao; Hammarback, James A.; Urano, Fumihiko; Imaizumi, Kazunori

    2006-01-01

    Eukaryotic cells deal with accumulation of unfolded proteins in the endoplasmic reticulum (ER) by the unfolded protein response, involving the induction of molecular chaperones, translational attenuation, and ER-associated degradation, to prevent cell death. Here, we found that the autophagy system is activated as a novel signaling pathway in response to ER stress. Treatment of SK-N-SH neuroblastoma cells with ER stressors markedly induced the formation of autophagosomes, which were recognized at the ultrastructural level. The formation of green fluorescent protein (GFP)-LC3-labeled structures (GFP-LC3 “dots”), representing autophagosomes, was extensively induced in cells exposed to ER stress with conversion from LC3-I to LC3-II. In IRE1-deficient cells or cells treated with c-Jun N-terminal kinase (JNK) inhibitor, the autophagy induced by ER stress was inhibited, indicating that the IRE1-JNK pathway is required for autophagy activation after ER stress. In contrast, PERK-deficient cells and ATF6 knockdown cells showed that autophagy was induced after ER stress in a manner similar to the wild-type cells. Disturbance of autophagy rendered cells vulnerable to ER stress, suggesting that autophagy plays important roles in cell survival after ER stress. PMID:17030611

  1. Cardiac cell survival and reversibility of myocardial ischemia.

    PubMed

    Rashed, E; Depre, C

    2006-12-01

    Because of a limited capacity for cell regeneration, the cardiac tissue, when submitted to ischemic stress, may activate endogenous mechanisms of cell survival resulting in physiological conditions of adaptation to ischemia, known as myocardial stunning, ischemic preconditioning and myocardial hibernation. These conditions result from a switch in gene and protein expression, which sustains cardiac cell survival in a context of oxygen deprivation and during the stress of reperfusion. Understanding how the molecular adaptation of the cardiac myocyte during stress sustains its survival in these conditions might help to define novel mechanisms of endogenous myocardial salvage, in order to expand the conditions of maintained cellular viability and functional salvage of the ischemic myocardium. This review summarizes recent progress made in the study of the molecular pathways controlling reversible ischemic dysfunction, and the unraveling of novel genomic paradigms. We also focus on the discovery and characterization of novel genes, which further increase our knowledge of myocardial ischemia and open novel therapeutic possibilities for ischemic heart disease. PMID:18942527

  2. Talc pleurodesis as surgical palliation of patients with malignant pleural effusion. Analysis of factors affecting survival.

    PubMed

    Lumachi, Franco; Mazza, Francesco; Ermani, Mario; Chiara, Giordano B; Basso, Stefano M M

    2012-11-01

    Malignant pleural effusion (MPE) is common in most patients with advanced cancer, especially in those with lung cancer, metastatic breast carcinoma and lymphoma. This complication usually leads patients to suffer from significant dyspnea, which may impair their mobility and reduce their quality of life. In patients with MPE, several interventions have been shown to be useful for palliation of the symptoms, including talc pleurodesis. The aim of this study was to evaluate prognostic factors for survival of patients with symptomatic MPE who underwent palliative video-assisted thoracoscopic (VATS) talc pleurodesis. Thirty-five patients with MPE underwent VATS, evacuation of the pleural fluid and talc pleurodesis with large-particle talc. There were 22 (62.9%) males and 13 (37.1%) females, with an overall median age of 69 years (range 42-81 years). The main causes of MPE were non-small cell lung carcinoma, breast or ovarian cancer and malignant pleural mesothelioma. The age did not differ (p=0.88) between men (68.6±11.6 years) and women (68.0±8.7 years). The mean quantity of pleural effusion was 2005.7±1078.9 ml, while the overall survival was 11.2±8.9 months. We did not find any relationship between survival and gender (log-rank test, p=0.53) or underlying malignancy associated with MPE (p=0.89, 0.48 and 0.36 for secondary cancer, lung cancer and mesothelioma, respectively). Similarly, no correlation was found between survival and age of the patients (Cox's regression, p=0.44) or quantity of pleural effusion (p=0.88). Our results show that the prognosis of patients after talc pleurodesis is independent of age, gender, type of malignancy and amount of pleural effusion, thus, suggesting the utility of treating all patients with symptomatic MPE early. PMID:23155281

  3. Factors associated with survival in a contemporary adult sickle cell disease cohort.

    PubMed

    Elmariah, Hany; Garrett, Melanie E; De Castro, Laura M; Jonassaint, Jude C; Ataga, Kenneth I; Eckman, James R; Ashley-Koch, Allison E; Telen, Marilyn J

    2014-05-01

    In this study, the relationship of clinical differences among patients with sickle cell disease (SCD) was examined to understand the major contributors to early mortality in a contemporary cohort. Survival data were obtained for 542 adult subjects who were enrolled since 2002 at three university hospitals in the southeast United States. Subjects were followed up for a median of 9.3 years. At enrollment, clinical parameters were collected, including hemoglobin (Hb) genotype, baseline laboratory values, comorbidities, and medication usage. Levels of soluble adhesion molecules were measured for a subset of 87 subjects. The relationship of clinical characteristics to survival was determined using regression analysis. Median age at enrollment was 32 years. Median survival was 61 years for all subjects. Median survival for Hb SS and Sβ(0) was 58 years and for Hb SC and Sβ(+) was 66 years. Elevated white blood count, lower estimated glomerular filtration rate, proteinuria, frequency of pain crises, pulmonary hypertension, cerebrovascular events, seizures, stroke, sVCAM-1, and short-acting narcotics use were significantly associated with decreased survival. Forty-two percent of subjects were on hydroxyurea therapy, which was not associated with survival. SCD continues to reduce life expectancy for affected individuals, particularly those with Hb Sβ(0) and SS. Not only were comorbidities individually associated with decreased survival but also an additive effect was observed, thus, those with a greater number of negative endpoints had worse survival (P < 0.0001). The association of higher sVCAM-1 levels with decreased survival suggests that targeted therapies to reduce endothelial damage and inflammation may also be beneficial. PMID:24478166

  4. Nicotine-mediated signals modulate cell death and survival of T lymphocytes

    SciTech Connect

    Oloris, Silvia C.S.; Frazer-Abel, Ashley A.; Jubala, Cristan M.; Fosmire, Susan P.; Helm, Karen M.; Robinson, Sally R.; Korpela, Derek M.; Duckett, Megan M.; Baksh, Shairaz; Modiano, Jaime F.

    2010-02-01

    The capacity of nicotine to affect the behavior of non-neuronal cells through neuronal nicotinic acetylcholine receptors (nAChRs) has been the subject of considerable recent attention. Previously, we showed that exposure to nicotine activates the nuclear factor of activated T cells (NFAT) transcription factor in lymphocytes and endothelial cells, leading to alterations in cellular growth and vascular endothelial growth factor production. Here, we extend these studies to document effects of nicotine on lymphocyte survival. The data show that nicotine induces paradoxical effects that might alternatively enforce survival or trigger apoptosis, suggesting that depending on timing and context, nicotine might act both as a survival factor or as an inducer of apoptosis in normal or transformed lymphocytes, and possibly other non-neuronal cells. In addition, our results show that, while having overlapping functions, low and high affinity nAChRs also transmit signals that promote distinct outcomes in lymphocytes. The sum of our data suggests that selective modulation of nAChRs might be useful to regulate lymphocyte activation and survival in health and disease.

  5. TSC2 epigenetic defect in primary LAM cells. Evidence of an anchorage-independent survival

    PubMed Central

    Lesma, Elena; Ancona, Silvia; Sirchia, Silvia M; Orpianesi, Emanuela; Grande, Vera; Colapietro, Patrizia; Chiaramonte, Eloisa; Di Giulio, Anna Maria; Gorio, Alfredo

    2014-01-01

    Tuberous sclerosis complex (TSC) is caused by mutations in TSC1 or TSC2 genes. Lymphangioleiomyomatosis (LAM) can be sporadic or associated with TSC and is characterized by widespread pulmonary proliferation of abnormal α-smooth muscle (ASM)-like cells. We investigated the features of ASM cells isolated from chylous thorax of a patient affected by LAM associated with TSC, named LAM/TSC cells, bearing a germline TSC2 mutation and an epigenetic defect causing the absence of tuberin. Proliferation of LAM/TSC cells is epidermal growth factor (EGF)-dependent and blockade of EGF receptor causes cell death as we previously showed in cells lacking tuberin. LAM/TSC cells spontaneously detach probably for the inactivation of the focal adhesion kinase (FAK)/Akt/mTOR pathway and display the ability to survive independently from adhesion. Non-adherent LAM/TSC cells show an extremely low proliferation rate consistent with tumour stem-cell characteristics. Moreover, LAM/TSC cells bear characteristics of stemness and secrete high amount of interleukin (IL)-6 and IL-8. Anti-EGF receptor antibodies and rapamycin affect proliferation and viability of non-adherent cells. In conclusion, the understanding of LAM/TSC cell features is important in the assessment of cell invasiveness in LAM and TSC and should provide a useful model to test therapeutic approaches aimed at controlling their migratory ability. PMID:24606538

  6. IGFBP2 promotes glioma tumor stem cell expansion and survival

    SciTech Connect

    Hsieh, David; Hsieh, Antony; Stea, Baldassarre; Ellsworth, Ron

    2010-06-25

    IGFBP2 is overexpressed in the most common brain tumor, glioblastoma (GBM), and its expression is inversely correlated to GBM patient survival. Previous reports have demonstrated a role for IGFBP2 in glioma cell invasion and astrocytoma development. However, the function of IGFBP2 in the restricted, self-renewing, and tumorigenic GBM cell population comprised of tumor-initiating stem cells has yet to be determined. Herein we demonstrate that IGFBP2 is overexpressed within the stem cell compartment of GBMs and is integral for the clonal expansion and proliferative properties of glioma stem cells (GSCs). In addition, IGFBP2 inhibition reduced Akt-dependent GSC genotoxic and drug resistance. These results suggest that IGFBP2 is a selective malignant factor that may contribute significantly to GBM pathogenesis by enriching for GSCs and mediating their survival. Given the current dearth of selective molecular targets against GSCs, we anticipate our results to be of high therapeutic relevance in combating the rapid and lethal course of GBM.

  7. Survival Outcome of Squamous Cell Carcinoma Arising from Sinonasal Inverted Papilloma

    PubMed Central

    Liang, Qing-Zhuang; Li, De-Zhi; Wang, Xiao-Lei; Huang, Hui; Xu, Zhen-Gang; Wu, Yue-Huang

    2015-01-01

    Background: Sinonasal inverted papilloma (IP) is a rare benign tumor of the nasal cavities and paranasal sinuses. It is destructive or bone-remodeling, tends to recur after surgical resection, and has a significant malignant potential. The present study aimed to perform a retrospective analysis of patients with squamous cell carcinoma (SCC) arising from IP, including characteristics, survival outcome, and predictors of associated malignancy. Methods: The medical records of 213 patients diagnosed with IP from January 1970 to January 2014 were retrospectively reviewed. Eighty-seven patients were diagnosed with SCC/IP; their clinical characteristics, treatments, and survival outcomes were analyzed. Results: Of the 87 patients with SCC/IP, the 5- and 10-year overall survival outcomes were 39.6% and 31.8%, respectively. Twenty-nine of these patients received surgery and 58 received combined surgery and radiation. Of the patients with stages III–IV, the 5-year survival rate was 30.7% for those treated with surgery only and 39.9% for those given the combination treatment (P = 0.849). Factors associated with significantly poor prognosis were advanced-stage, metachronous tumors, or with cranial base and orbit invasion. Age, synchronous or metachronous tumors, and pathological stage were independent risk factors for mortality, shown by multivariate analysis. Conclusion: Patients with SCC/IP had low overall survival outcomes. Advanced age, stage, and metachronous tumors are the main factors affecting prognosis. Treatment planning should consider high-risk factors to improve survival outcome. PMID:26365962

  8. Kremen1 and Dickkopf1 control cell survival in a Wnt-independent manner.

    PubMed

    Causeret, F; Sumia, I; Pierani, A

    2016-02-01

    In multicellular organisms, a tight control of cell death is required to ensure normal development and tissue homeostasis. Improper function of apoptotic or survival pathways can not only affect developmental programs but also favor cancer progression. Here we describe a novel apoptotic signaling pathway involving the transmembrane receptor Kremen1 and its ligand, the Wnt-antagonist Dickkopf1. Using a whole embryo culture system, we first show that Dickkopf1 treatment promotes cell survival in a mouse model exhibiting increased apoptosis in the developing neural plate. Remarkably, this effect was not recapitulated by chemical Wnt inhibition. We then show that Dickkopf1 receptor Kremen1 is a bona fide dependence receptor, triggering cell death unless bound to its ligand. We performed Wnt-activity assays to demonstrate that the pro-apoptotic and anti-Wnt functions mediated by Kremen1 are strictly independent. Furthermore, we combined phylogenetic and mutagenesis approaches to identify a specific motif in the cytoplasmic tail of Kremen1, which is (i) specifically conserved in the lineage of placental mammals and (ii) strictly required for apoptosis induction. Finally, we show that somatic mutations of kremen1 found in human cancers can affect its pro-apoptotic activity, supporting a tumor suppressor function. Our findings thus reveal a new Wnt-independent function for Kremen1 and Dickkopf1 in the regulation of cell survival with potential implications in cancer therapies. PMID:26206087

  9. Stromal cell-derived CSF-1 blockade prolongs xenograft survival of CSF-1-negative neuroblastoma

    PubMed Central

    Abraham, Dietmar; Zins, Karin; Sioud, Mouldy; Lucas, Trevor; Schäfer, Romana; Stanley, E. Richard; Aharinejad, Seyedhossein

    2011-01-01

    The molecular mechanisms of tumor–host interactions that render neuroblastoma (NB) cells highly invasive are unclear. Cancer cells upregulate host stromal cell colony-stimulating factor-1 (CSF-1) production to recruit tumor-associated macrophages (TAMs) and accelerate tumor growth by affecting extracellular matrix remodeling and angiogenesis. By coculturing NB with stromal cells in vitro, we showed the importance of host CSF-1 expression for macrophage recruitment to NB cells. To examine this interaction in NB in vivo, mice bearing human CSF-1-expressing SK-N-AS and CSF-1-negative SK-NDZ NB xenografts were treated with intratumoral injections of small interfering RNAs directed against mouse CSF-1. Significant suppression of both SK-N-AS and SK-N-DZ NB growth by these treatments was associated with decreased TAM infiltration, matrix metalloprotease (MMP)-12 levels and angiogenesis compared to controls, while expression of tissue inhibitors of MMPs increased following mouse CSF-1 blockade. Furthermore, Tie-2-positive and -negative TAMs recruited by host CSF-1 were identified in NB tumor tissue by confocal microscopy and flow cytometry. However, host-CSF-1 blockade prolonged survival only in CSF-1-negative SK-N-DZ NB. These studies demonstrated that increased CSF-1 production by host cells enhances TAM recruitment and NB growth and that the CSF-1 phenotype of NB tumor cells adversely affects survival. PMID:19711348

  10. PERK Integrates Oncogenic Signaling and Cell Survival During Cancer Development.

    PubMed

    Bu, Yiwen; Diehl, J Alan

    2016-10-01

    Unfolded protein responses (UPR), consisting of three major transducers PERK, IRE1, and ATF6, occur in the midst of a variety of intracellular and extracellular challenges that perturb protein folding in the endoplasmic reticulum (ER). ER stress occurs and is thought to be a contributing factor to a number of human diseases, including cancer, neurodegenerative disorders, and various metabolic syndromes. In the context of neoplastic growth, oncogenic stress resulting from dysregulation of oncogenes such as c-Myc, Braf(V600E) , and HRAS(G12V) trigger the UPR as an adaptive strategy for cancer cell survival. PERK is an ER resident type I protein kinase harboring both pro-apoptotic and pro-survival capabilities. PERK, as a coordinator through its downstream substrates, reprograms cancer gene expression to facilitate survival in response to oncogenes and microenvironmental challenges, such as hypoxia, angiogenesis, and metastasis. Herein, we discuss how PERK kinase engages in tumor initiation, transformation, adaption microenvironmental stress, chemoresistance and potential opportunities, and potential opportunities for PERK targeted therapy. J. Cell. Physiol. 231: 2088-2096, 2016. © 2016 Wiley Periodicals, Inc. PMID:26864318

  11. The adaptor 3BP2 is required for KIT receptor expression and human mast cell survival

    PubMed Central

    Ainsua-Enrich, Erola; Serrano-Candelas, Eva; Álvarez-Errico, Damiana; Picado, César; Sayós, Joan; Rivera, Juan; Martín, Margarita

    2015-01-01

    3BP2 is a cytoplasmic adaptor protein that acts as a positive regulator in mast cell FcεRI-dependent signaling. The KIT receptor whose ligand is the stem cell factor (SCF) is necessary for mast cell development, proliferation and survival as well as for optimal IgE-dependent signal. Activating mutations in KIT have been associated with several diseases including mastocytosis. In the present work, we found that 3BP2 silencing impairs KIT signaling pathways, thus affecting PI3K and MAP kinase pathways in human mast cells from HMC-1, LAD2 (human mast cell lines) and CD34+-derived mast cells. Unexpectedly, silencing of 3BP2 reduces KIT expression in normal human mast cells as well as in HMC-1 cells where KIT is mutated, thus increasing cellular apoptosis and caspase 3/7 activity. 3BP2 silencing reduces KIT transcription expression levels. Interestingly, 3BP2 silencing decreased MITF expression, a transcription factor involved in KIT expression. Reconstitution of 3BP2 in knockdown cells leads to reversal of KIT expression as well as survival phenotype. Accordingly MITF reconstitution enhances KIT expression levels in 3BP2 silenced cells. Moreover, downregulation of KIT expression by miRNA221 overexpression or the proteasome inhibitor bortezomib also reduced 3BP2 and MITF expression. Furthermore, KIT tyrosine activity inhibition reduced 3BP2 and MITF expression, demonstrating again a tight and reciprocal relationship between these molecules. Taken together, our results show that 3BP2 regulates human mast cell survival and participates in KIT-mediated signal transduction by directly controlling KIT receptor expression, suggesting its potential as a therapeutic target in mast cell-mediated inflammatory diseases and deregulated KIT disorders. PMID:25810396

  12. IL-15 promotes the survival of naive and memory phenotype CD8+ T cells.

    PubMed

    Berard, Marion; Brandt, Katja; Bulfone-Paus, Silvia; Tough, David F

    2003-05-15

    IL-15 stimulates the proliferation of memory phenotype CD44(high)CD8(+) T cells and is thought to play a key role in regulating the turnover of these cells in vivo. We have investigated whether IL-15 also has the capacity to affect the life span of naive phenotype (CD44(low)) CD8(+) T cells. We report that IL-15 promotes the survival of both CD44(low) and CD44(high) CD8(+) T cells, doing so at much lower concentrations than required to induce proliferation of CD44(high) cells. Rescue from apoptosis was associated with the up-regulation of Bcl-2 in both cell types, whereas elevated expression of Bcl-x(L) was observed among CD44(high) but not CD44(low) CD8(+) cells. An investigation into the role of IL-15R subunits in mediating the effects of IL-15 revealed distinct contributions of the alpha- and beta- and gamma-chains. Most strikingly, IL-15R alpha was not essential for either induction of proliferation or promotion of survival by IL-15, but did greatly enhance the sensitivity of cells to low concentrations of IL-15. By contrast, the beta- and gamma-chains of the IL-15R were absolutely required for the proliferative and pro-survival effects of IL-15, although it was not necessary for CD44(high)CD8(+) cells to express higher levels of IL-15R beta than CD44(low) cells to proliferate in response to IL-15. These results show that IL-15 has multiple effects on CD8 T cells and possesses the potential to regulate the life span of naive as well as memory CD8(+) T cells. PMID:12734346

  13. CXCR4 engagement promotes dendritic cell survival and maturation

    SciTech Connect

    Kabashima, Kenji Sugita, Kazunari; Shiraishi, Noriko; Tamamura, Hirokazu; Fujii, Nobutaka; Tokura, Yoshiki

    2007-10-05

    It has been reported that human monocyte derived-dendritic cells (DCs) express CXCR4, responsible for chemotaxis to CXCL12. However, it remains unknown whether CXCR4 is involved in other functions of DCs. Initially, we found that CXCR4 was expressed on bone marrow-derived DCs (BMDCs). The addition of specific CXCR4 antagonist, 4-F-Benzoyl-TN14003, to the culture of mouse BMDCs decreased their number, especially the mature subset of them. The similar effect was found on the number of Langerhans cells (LCs) but not keratinocytes among epidermal cell suspensions. Since LCs are incapable of proliferating in vitro, these results indicate that CXCR4 engagement is important for not only maturation but also survival of DCs. Consistently, the dinitrobenzene sulfonic acid-induced, antigen-specific in vitro proliferation of previously sensitized lymph node cells was enhanced by CXCL12, and suppressed by CXCR4 antagonist. These findings suggest that CXCL12-CXCR4 engagement enhances DC maturation and survival to initiate acquired immune response.

  14. Control of Neural Stem Cell Survival by Electroactive Polymer Substrates

    PubMed Central

    Lundin, Vanessa; Herland, Anna; Berggren, Magnus

    2011-01-01

    Stem cell function is regulated by intrinsic as well as microenvironmental factors, including chemical and mechanical signals. Conducting polymer-based cell culture substrates provide a powerful tool to control both chemical and physical stimuli sensed by stem cells. Here we show that polypyrrole (PPy), a commonly used conducting polymer, can be tailored to modulate survival and maintenance of rat fetal neural stem cells (NSCs). NSCs cultured on PPy substrates containing different counter ions, dodecylbenzenesulfonate (DBS), tosylate (TsO), perchlorate (ClO4) and chloride (Cl), showed a distinct correlation between PPy counter ion and cell viability. Specifically, NSC viability was high on PPy(DBS) but low on PPy containing TsO, ClO4 and Cl. On PPy(DBS), NSC proliferation and differentiation was comparable to standard NSC culture on tissue culture polystyrene. Electrical reduction of PPy(DBS) created a switch for neural stem cell viability, with widespread cell death upon polymer reduction. Coating the PPy(DBS) films with a gel layer composed of a basement membrane matrix efficiently prevented loss of cell viability upon polymer reduction. Here we have defined conditions for the biocompatibility of PPy substrates with NSC culture, critical for the development of devices based on conducting polymers interfacing with NSCs. PMID:21494605

  15. TAK1 is required for the survival of hematopoietic cells and hepatocytes in mice

    PubMed Central

    Tang, Minghui; Wei, Xudong; Guo, Yinshi; Breslin, Peter; Zhang, Shubin; Zhang, Shanshan; Wei, Wei; Xia, Zhenbiao; Diaz, Manuel; Akira, Shizuo; Zhang, Jiwang

    2008-01-01

    Transforming growth factor β–activated kinase 1 (TAK1), a member of the MAPKKK family, is a key mediator of proinflammatory and stress signals. Activation of TAK1 by proinflammatory cytokines and T and B cell receptors induces the nuclear localization of nuclear factor κB (NF-κB) and the activation of c-Jun N-terminal kinase (JNK)/AP1 and P38, which play important roles in mediating inflammation, immune responses, T and B cell activation, and epithelial cell survival. Here, we report that TAK1 is critical for the survival of both hematopoietic cells and hepatocytes. Deletion of TAK1 results in bone marrow (BM) and liver failure in mice due to the massive apoptotic death of hematopoietic cells and hepatocytes. Hematopoietic stem cells and progenitors were among those hematopoietic cells affected by TAK1 deletion–induced cell death. This apoptotic cell death is autonomous, as demonstrated by reciprocal BM transplantation. Deletion of TAK1 resulted in the inactivation of both JNK and NF-κB signaling, as well as the down-regulation of expression of prosurvival genes. PMID:18573910

  16. Myasthenia gravis in patients with thymoma affects survival rate following extended thymectomy

    PubMed Central

    ZHANG, ZHEFENG; CUI, YOUBIN; JIA, RUI; XUE, LEI; LIANG, HUAGANG

    2016-01-01

    Thymomas are the most common adult tumors in the anterior mediastinal compartment, and a significant amount of thymomas are complicated by myasthenia gravis (MG). Extended thymectomy (ET) is the primary treatment method for thymomas and is used to completely resect possible ectopic thymus to avoid recurrence. Studies on the effect of MG in thymoma patients following ET are limited. The aim of the present study was to determine whether the presence of MG affects the prognosis of patients with thymoma. The present study consisted of 104 patients with thymoma that underwent ET; 61 men (58.7%) and 43 women (41.3%) (mean age, 54.6 years). In total, 38 patients had MG (36.5%). MG was most frequently observed in World Health Organization (WHO) classification type B2 thymoma compared with other types of thymoma. During the 5-year follow-up period, 11 patients succumbed to a recurrence of thymoma or respiratory failure due to MG. The overall 5-year survival rate in patients without MG or with MG was 89.1 and 76.0%, respectively. The overall survival (OS) rate in patients with Masaoka stages I + II and III + IV was 90.0 and 68.0%, respectively. The OS rate in patients with WHO type A + AB + B1 and type B2 + B3 was 96.9 and 76.8%, respectively. The patients with MG (P=0.026), Masaoka stages III + IV (P=0.008) and WHO type B2 + B3 (P=0.032) had a poorer prognosis compared with patients without these characteristics. Furthermore, multivariate analysis by Cox regression revealed that age [P=0.032; relative risk (RR)=1.097; 95% confidence interval (CI)=1.097–1.192] and MG (P=0.042; RR=0.167; 95% CI=0.037–0.940) significantly affected OS rate. In summary, ET is a reliable method for the treatment of thymoma. Long-term survival is expected for patients at early Masaoka stages, and for patients without MG. The prognosis of patients with thymomas with MG is poorer compared with patients without MG. The present findings provide useful information for the future management of

  17. Impaired Survival of Neural Progenitor Cells in Dentate Gyrus of Adult Mice Lacking FMRP

    PubMed Central

    Lazarov, Orly; Demars, Michael P.; Zhao, Kai Da Tommy; Ali, Haroon M.; Grauzas, Vanessa; Kney, Adam; Larson, John

    2011-01-01

    Fragile X syndrome (FXS) is the most common form of inherited intellectual disability in humans. Individuals affected with the disorder exhibit a deficiency of the fragile X mental retardation protein (FMRP), due to transcriptional silencing of the Fmr1 gene. It is widely accepted that learning deficits in FXS result from impaired synaptic function and/or plasticity in the brain. Interestingly, recent evidence suggests that conditional knockout of Fmr1 in neural progenitor cells in mice impairs hippocampal neurogenesis, which in turn contributes to learning impairments. To examine the nature of the neurogenic impairments and determine whether they impact the morphology of the dentate gyrus, we assessed the extent of neural progenitor cell proliferation, survival, and differentiation in older adult Fmr1 knockout mice. Here we show that the number of fast- proliferating cells in the subgranule layer of the dentate gyrus, as well as the subsequent survival of these cells, are dramatically reduced in Fmr1 knockout mice. In addition, the number of mature neurons in the granule layer of the dentate gyrus of these mice is significantly smaller than in WT littermate controls, suggesting that impaired proliferation and survival of neural progenitor cells compromises the structure of the dentate gyrus. Impaired adult neurogenesis may underlie, at least in part, the learning deficits that characterize fragile X syndrome. PMID:22128095

  18. TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism.

    PubMed

    Rachakonda, P Sivaramakrishna; Hosen, Ismail; de Verdier, Petra J; Fallah, Mahdi; Heidenreich, Barbara; Ryk, Charlotta; Wiklund, N Peter; Steineck, Gunnar; Schadendorf, Dirk; Hemminki, Kari; Kumar, Rajiv

    2013-10-22

    The telomerase reverse transcriptase (TERT) promoter, an important element of telomerase expression, has emerged as a target of cancer-specific mutations. Originally described in melanoma, the mutations in TERT promoter have been shown to be common in certain other tumor types that include glioblastoma, hepatocellular carcinoma, and bladder cancer. To fully define the occurrence and effect of the TERT promoter mutations, we investigated tumors from a well-characterized series of 327 patients with urothelial cell carcinoma of bladder. The somatic mutations, mainly at positions -124 and -146 bp from ATG start site that create binding motifs for E-twenty six/ternary complex factors (Ets/TCF), affected 65.4% of the tumors, with even distribution across different stages and grades. Our data showed that a common polymorphism rs2853669, within a preexisting Ets2 binding site in the TERT promoter, acts as a modifier of the effect of the mutations on survival and tumor recurrence. The patients with the mutations showed poor survival in the absence [hazard ratio (HR) 2.19, 95% confidence interval (CI) 1.02-4.70] but not in the presence (HR 0.42, 95% CI 0.18-1.01) of the variant allele of the polymorphism. The mutations in the absence of the variant allele were highly associated with the disease recurrence in patients with Tis, Ta, and T1 tumors (HR 1.85, 95% CI 1.11-3.08). The TERT promoter mutations are the most common somatic lesions in bladder cancer with clinical implications. The association of the mutations with patient survival and disease recurrence, subject to modification by a common polymorphism, can be a unique putative marker with individualized prognostic potential. PMID:24101484

  19. Dam operations affect route-specific passage and survival of juvenile Chinook salmon at a main-stem diversion dam

    USGS Publications Warehouse

    Perry, Russell W.; Kock, Tobias J.; Couter, Ian I; Garrison, Thomas M; Hubble, Joel D; Child, David B

    2016-01-01

    Diversion dams can negatively affect emigrating juvenile salmon populations because fish must pass through the impounded river created by the dam, negotiate a passage route at the dam and then emigrate through a riverine reach that has been affected by reduced river discharge. To quantify the effects of a main-stem diversion dam on juvenile Chinook salmon in the Yakima River, Washington, USA, we used radio telemetry to understand how dam operations and river discharge in the 18-km reach downstream of the dam affected route-specific passage and survival. We found evidence of direct mortality associated with dam passage and indirect mortality associated with migration through the reach below the dam. Survival of fish passing over a surface spill gate (the west gate) was positively related to river discharge, and survival was similar for fish released below the dam, suggesting that passage via this route caused little additional mortality. However, survival of fish that passed under a sub-surface spill gate (the east gate) was considerably lower than survival of fish released downstream of the dam, with the difference in survival decreasing as river discharge increased. The probability of fish passing the dam via three available routes was strongly influenced by dam operations, with passage through the juvenile fish bypass and the east gate increasing with discharge through those routes. By simulating daily passage and route-specific survival, we show that variation in total survival is driven by river discharge and moderated by the proportion of fish passing through low-survival or high-survival passage routes.

  20. Estimating postoperative survival of gastric cancer patients and factors affecting it in Iran: Based on a TNM-7 Staging System.

    PubMed

    Zeraati, Hojjat; Amiri, Zohreh

    2016-02-01

    Recently, reports have shown that gastric cancer has high abundance in Iran and is at the second level in men, and fourth in total. This study aimed to determine the 5-year survival of gastric cancer patients and to investigate factors affecting the performance, based on TNM-7 staging system. In this study, we investigated 760 patients with gastric cancer since the beginning of 1993 to the end of 2006 in the Iran Cancer Institute who underwent surgery. Survival of these patients was determined after surgery, and the effects of demographic characteristics such as age (during operation), sex, and information on diseases such as cancer site, pathologic type, stage of disease progress (Stage), metastasis and sites of metastases were evaluated. The 5 -year survival probability of patients was 28 %, and median survival time was 25.69 months. Univariate tests showed that sex, cancer site, and pathologic type have no significant effects on patient's survival. But the probability of 5-year survival significantly decreases with increasing age, and as it is expected, those with metastases were significantly less likely to have 5-year survival, and disease stage was significantly effective on patients' life (P<0.001). Simultaneous evaluation of different variables' effects on the probability of survival using the multiple Cox proportional hazards models showed that age and stage disease variables were effective on the survival of patients. The 5-year survival of patients with gastric cancer is low in Iran, although it is improved compared to the past. It seems that one of the main reasons for low survival rate of these patients is a late referral of patients for diagnosis and treatment. Most patients refer in the final stages of the disease, at this stage most patients are affected by lymph nodes metastases, liver and as the result, their treatment will be more difficult. PMID:26997598

  1. Simulated predator extinctions: predator identity affects survival and recruitment of oysters.

    PubMed

    O'Connor, Nessa E; Grabowski, Jonathan H; Ladwig, Laura M; Bruno, John F

    2008-02-01

    The rate of species loss is increasing at a global scale, and human-induced extinctions are biased toward predator species. We examined the effects of predator extinctions on a foundation species, the eastern oyster (Crassostrea virginica). We performed a factorial experiment manipulating the presence and abundance of three of the most common predatory crabs, the blue crab (Callinectes sapidus), stone crab (Menippe mercenaria), and mud crab (Panopeus herbstii) in estuaries in the eastern United States. We tested the effects of species richness and identity of predators on juvenile oyster survival, oyster recruitment, and organic matter content of sediment. We also manipulated the density of each of the predators and controlled for the loss of biomass of species by maintaining a constant mass of predators in one set of treatments and simultaneously using an additive design. This design allowed us to test the density dependence of our results and test for functional compensation by other species. The identity of predator species, but not richness, affected oyster populations. The loss of blue crabs, alone or in combination with either of the other species, affected the survival rate of juvenile oysters. Blue crabs and stone crabs both affected oyster recruitment and sediment organic matter negatively. Mud crabs at higher than ambient densities, however, could fulfill some of the functions of blue and stone crabs, suggesting a level of ecological redundancy. Importantly, the strong effects of blue crabs in all processes measured no longer occurred when individuals were present at higher-than-ambient densities. Their role as dominant predator is, therefore, dependent on their density within the system and the density of other species within their guild (e.g., mud crabs). Our findings support the hypothesis that the effects of species loss at higher trophic levels are determined by predator identity and are subject to complex intraguild interactions that are largely

  2. Factors affecting high-oxygen survival of heterotrophic microorganisms from an antarctic lake.

    PubMed

    Mikell, A T; Parker, B C; Gregory, E M

    1986-12-01

    We sought to determine factors relating to the survival of heterotrophic microorganisms from the high-dissolved-oxygen (HDO) waters of Lake Hoare, Antarctica. This lake contains perpetual HDO about three times that of normal saturation (40 to 50 mg liter). Five isolates, one yeast and four bacteria, were selected from Lake Hoare waters by growth with the membrane filter technique with oxygen added to yield dissolved concentrations 14 times that in situ, 175 mg liter. One bacterial isolate was obtained from the microbial mat beneath the HDO waters. This organism was isolated at normal atmospheric oxygen saturation. The bacteria were gram-negative rods, motile, oxidase positive, catalase positive, and superoxide dismutase positive; they contained carotenoids. The planktonic isolates grew in media containing 10 mg of Trypticase soy (BBL Microbiology Systems)-peptone (2:1) liter but not at 10 g liter. Under low-nutrient levels simulating Lake Hoare waters (10 mg liter), two of the planktonic isolates tested were not inhibited by HDO. Growth inhibition by HDO increased as nutrient concentration was increased. A carotenoid-negative mutant of one isolate demonstrated a decreased growth rate, maximal cell density, and increased cell lysis in the death phase under HDO compared with the parent strain. The specific activity of superoxide dismutase was increased by HDO in four of the five bacterial isolates. The superoxide dismutase was of the manganese type on the basis of inhibition and electrophoretic studies. The bacterial isolates from Lake Hoare possess several adaptations which may aid their survival in the HDO waters, as well as protection due to the oligotrophic nature of the lake. PMID:16347231

  3. Physical parameters affecting living cells in space.

    PubMed

    Langbein, D

    1986-01-01

    The question is posed: Why does a living cell react to the absence of gravity? What sensors may it have? Does it note pressure, sedimentation, convection, or other parameters? If somewhere in a liquid volume sodium ions are replaced by potassium ions, the density of the liquid changes locally: the heavier regions sink, the lighter regions rise. This may contribute to species transport, to the metabolism. Under microgravity this mechanism is strongly reduced. On the other hand, other reasons for convection like thermal and solutal interface convection are left. Do they affect species transport? Another important effect of gravity is the hydrostatic pressure. On the macroscopic side, the pressure between our head and feet changes by 0.35 atmospheres. On the microscopic level the hydrostatic pressure on the upper half of a cell membrane is lower than on the lower half. This, by affecting the ion transport through the membrane, may change the surrounding electric potential. It has been suggested to be one of the reasons for graviperception. Following the discussion of these and other effects possibly important in life sciences in space, an order of magnitude analysis of the residual accelerations tolerable during experiments in materials sciences is outlined. In the field of life sciences only rough estimates are available at present. PMID:11537842

  4. Genetic Variants in the Wnt Signaling Pathway Are Not Associated with Survival Outcome of Non-Small Cell Lung Cancer in a Korean Population

    PubMed Central

    2016-01-01

    Recently, genetic variants in the WNT signaling pathway have been reported to affect the survival outcome of Caucasian patients with early stage non-small cell lung cancer (NSCLC). We therefore attempted to determine whether these same WNT signaling pathway gene variants had similar impacts on the survival outcome of NSCLC patients in a Korean population. A total of 761 patients with stages I–IIIA NSCLC were enrolled in this study. Eight variants of WNT pathway genes were genotyped and their association with overall survival and disease-free survival were analyzed. None of the eight variants were significantly associated with overall survival or disease-free survival. There were no differences in survival outcome after stratifying the subjects according to age, gender, smoking status, and histological type. These results suggest that genetic variants in the WNT signaling pathway may not affect the survival outcome of NSCLC in a Korean population. PMID:26955250

  5. Genetic Variants in the Wnt Signaling Pathway Are Not Associated with Survival Outcome of Non-Small Cell Lung Cancer in a Korean Population.

    PubMed

    Yoo, Seung Soo; Hong, Mi Jeong; Choi, Jin Eun; Lee, Jang Hyuck; Baek, Sun Ah; Lee, Won Kee; Lee, So Yeon; Lee, Shin Yup; Lee, Jaehee; Cha, Seung Ick; Kim, Chang Ho; Cho, Sukki; Park, Jae Yong

    2016-03-01

    Recently, genetic variants in the WNT signaling pathway have been reported to affect the survival outcome of Caucasian patients with early stage non-small cell lung cancer (NSCLC). We therefore attempted to determine whether these same WNT signaling pathway gene variants had similar impacts on the survival outcome of NSCLC patients in a Korean population. A total of 761 patients with stages I-IIIA NSCLC were enrolled in this study. Eight variants of WNT pathway genes were genotyped and their association with overall survival and disease-free survival were analyzed. None of the eight variants were significantly associated with overall survival or disease-free survival. There were no differences in survival outcome after stratifying the subjects according to age, gender, smoking status, and histological type. These results suggest that genetic variants in the WNT signaling pathway may not affect the survival outcome of NSCLC in a Korean population. PMID:26955250

  6. Nanotubes connect CD4+ T cells to airway smooth muscle cells: novel mechanism of T cell survival.

    PubMed

    Al Heialy, Saba; Zeroual, Melissa; Farahnak, Soroor; McGovern, Toby; Risse, Paul-André; Novali, Mauro; Lauzon, Anne-Marie; Roman, Horia N; Martin, James G

    2015-06-15

    Contact between airway smooth muscle (ASM) cells and activated CD4(+) T cells, a key interaction in diseases such as asthma, triggers ASM cell proliferation and enhances T cell survival. We hypothesized that direct contact between ASM and CD4(+) T cells facilitated the transfer of anti-apoptotic proteins via nanotubes, resulting in increased survival of activated CD4(+) T cells. CD4(+) T cells, isolated from PBMCs of healthy subjects, when activated and cocultured with ASM cells for 24 h, formed nanotubes that were visualized by immunofluorescence and atomic force microscopy. Cell-to-cell transfer of the fluorescent dye calcein-AM confirmed cytoplasmic communication via nanotubes. Immunoreactive B cell lymphoma 2 (Bcl-2) and induced myeloid leukemia cell differentiation protein (Mcl-1), two major anti-apoptotic proteins, were present within the nanotubes. Downregulation of Mcl-1 by small interfering RNA in ASM cells significantly increased T cell apoptosis, whereas downregulation of Bcl-2 had no effect. Transfer of GFP-tagged Mcl-1 from ASM cells to CD4(+) T cells via the nanotubes confirmed directionality of transfer. In conclusion, activated T cells communicate with ASM cells via nanotube formation. Direct transfer of Mcl-1 from ASM to CD(+) T cells via nanotubes is involved in T cell survival. This study provides a novel mechanism of survival of CD4(+) T cells that is dependent on interaction with a structural cell. PMID:25934863

  7. Differential roles of the mevalonate pathway in the development and survival of mouse Purkinje cells in culture.

    PubMed

    Barszczyk, Andrew; Sun, Hong-Shuo; Quan, Yi; Zheng, Wenhua; Charlton, Milton P; Feng, Zhong-Ping

    2015-01-01

    The cerebellum is an important locus for motor learning and higher cognitive functions, and Purkinje cells constitute a key component of its circuit. Biochemically, significant turnover of cholesterol occurs in Purkinje cells, causing the activation of the mevalonate pathway. The mevalonate pathway has important roles in cell survival and development. In this study, we investigated the outcomes of mevalonate inhibition in immature and mature mouse cerebellar Purkinje cells in culture. Specifically, we found that the inhibition of the mevalonate pathway by mevastatin resulted in cell death, and geranylgeranylpyrophosphate (GGPP) supplementation significantly enhanced neuronal survival. The surviving immature Purkinje cells, however, exhibited dendritic developmental deficits. The morphology of mature cells was not affected. The inhibition of squalene synthase by zaragozic acid caused impaired dendritic development, similar to that seen in the GGPP-rescued Purkinje cells. Our results indicate GGPP is required for cell survival and squalene synthase for the cell development of Purkinje cells. Abnormalities in Purkinje cells are linked to motor-behavioral learning disorders such as cerebellar ataxia. Thus, serious caution should be taken when using drugs that inhibit geranylgeranylation or the squalene-cholesterol branch of the pathway in the developing stage. PMID:24973985

  8. Factors Affecting Pathogen Survival in Finished Dairy Compost with Different Particle Sizes Under Greenhouse Conditions.

    PubMed

    Diao, Junshu; Chen, Zhao; Gong, Chao; Jiang, Xiuping

    2015-09-01

    This study investigated the survival of Escherichia coli O157:H7 and Salmonella Typhimurium in finished dairy compost with different particle sizes during storage as affected by moisture content and temperature under greenhouse conditions. The mixture of E. coli O157:H7 and S. Typhimurium strains was inoculated into the finished composts with moisture contents of 20, 30, and 40%, separately. The finished compost samples were then sieved into 3 different particle sizes (>1000, 500-1000, and <500 μm) and stored under greenhouse conditions. For compost samples with moisture contents of 20 and 30%, the average Salmonella reductions in compost samples with particle sizes of >1000, 500-1000, and <500 μm were 2.15, 2.27, and 2.47 log colony-forming units (CFU) g(-1) within 5 days of storage in summer, respectively, as compared with 1.60, 2.03, and 2.26 log CFU g(-1) in late fall, respectively, and 2.61, 3.33, and 3.67 log CFU g(-1) in winter, respectively. The average E. coli O157:H7 reductions in compost samples with particle sizes of >1000, 500-1000, and <500 μm were 1.98, 2.30, and 2.54 log CFU g(-1) within 5 days of storage in summer, respectively, as compared with 1.70, 2.56, and 2.90 log CFU g(-1) in winter, respectively. Our results revealed that both Salmonella and E. coli O157:H7 in compost samples with larger particle size survived better than those with smaller particle sizes, and the initial rapid moisture loss in compost may contribute to the fast inactivation of pathogens in the finished compost. For the same season, the pathogens in the compost samples with the same particle size survived much better at the initial moisture content of 20% compared to 40%. PMID:26153914

  9. Abdominally implanted satellite transmitters affect reproduction and survival rather than migration of large shorebirds

    USGS Publications Warehouse

    Hooijmeijer, Jos C. E. W.; Gill, Robert E., Jr.; Mulcahy, Daniel M.; Tibbitts, T. Lee; Kentie, Rosemarie; Gerritsen, Gerrit J.; Bruinzeel, Leo W.; Tijssen, David C.; Harwood, Christopher M.; Piersma, Theunis

    2014-01-01

    Satellite telemetry has become a common technique to investigate avian life-histories, but whether such tagging will affect fitness is a critical unknown. In this study, we evaluate multi-year effects of implanted transmitters on migratory timing and reproductive performance in shorebirds. Shorebirds increasingly are recognized as good models in ecology and evolution. That many of them are of conservation concern adds to the research responsibilities. In May 2009, we captured 56 female Black-tailed Godwits Limosa limosa limosa during late incubation in The Netherlands. Of these, 15 birds were equipped with 26-g satellite transmitters with a percutaneous antenna (7.8 % ± 0.2 SD of body mass), surgically implanted in the coelom. We compared immediate nest survival, timing of migration, subsequent nest site fidelity and reproductive behaviour including egg laying with those of the remaining birds, a comparison group of 41 females. We found no effects on immediate nest survival. Fledging success and subsequent southward and northward migration patterns of the implanted birds conformed to the expectations, and arrival time on the breeding grounds in 2010–2012 did not differ from the comparison group. Compared with the comparison group, in the year after implantation, implanted birds were equally faithful to the nest site and showed equal territorial behaviour, but a paucity of behaviours indicating nests or clutches. In the 3 years after implantation, the yearly apparent survival of implanted birds was 16 % points lower. Despite intense searching, we found only three eggs of two implanted birds; all were deformed. A similarly deformed egg was reported in a similarly implanted Whimbrel Numenius phaeopus returning to breed in central Alaska. The presence in the body cavity of an object slightly smaller than a normal egg may thus lead to egg malformation and, likely, reduced egg viability. That the use of implanted satellite transmitters in these large shorebirds

  10. Adult neural precursor cells form connexin-dependent networks that improve their survival.

    PubMed

    Ravella, Ajaya; Ringstedt, Thomas; Brion, Jean-Pierre; Pandolfo, Massimo; Herlenius, Eric

    2015-10-21

    Establishment of cellular networks and calcium homeostasis are essential for embryonic stem cell proliferation and differentiation. We also hypothesized that adult neural progenitor cells form functional cellular networks relevant for their development. We isolated neuronal progenitor cells from the subventricular zone of 5-week-old mice to investigate the role of gap junctions, calcium homeostasis, and cellular networks in cell differentiation and survival. Western blotting and reverse transcription-PCR showed that the cells expressed the gap junction components connexin 26, 36, 43, and 45, and that expression of connexin 43 increased in early (8 days) differentiated cells. Transmission electron microscopy and immunocytochemistry also indicated that gap junctions were present. Scrape-loading experiments showed dye transfer between cells that could be prevented by gapjunction blockers; thus, functional intercellular gap junctions had been established. However, dye transfer was four times stronger in differentiated cultures, correlating with the increased connexin 43 expression. During time-lapse calcium imaging, both differentiated and undifferentiated cultures showed spontaneous calcium activity that was reduced by gap junction blockers. Cross-correlation analysis of the calcium recordings showed that the cells were interconnected through gap junctions and that the early-differentiated cells were organized in small-world networks. Gap junction blockers did not affect proliferation and differentiation, but resulted in twice as many apoptotic cells. mRNAi knockdown of connexin 43 also doubled the number of apoptotic cells. We conclude that adult neural progenitor cells form networks in vitro that are strengthened during early differentiation by increased expression of connexin 43. The networks are functional and improve cell survival. PMID:26351758

  11. Aldehyde dehydrogenase activity promotes survival of human muscle precursor cells

    PubMed Central

    Jean, Elise; Laoudj-Chenivesse, Dalila; Notarnicola, Cécile; Rouger, Karl; Serratrice, Nicolas; Bonnieu, Anne; Gay, Stéphanie; Bacou, Francis; Duret, Cédric; Carnac, Gilles

    2011-01-01

    Abstract Aldehyde dehydrogenases (ALDH) are a family of enzymes that efficiently detoxify aldehydic products generated by reactive oxygen species and might therefore participate in cell survival. Because ALDH activity has been used to identify normal and malignant cells with stem cell properties, we asked whether human myogenic precursor cells (myoblasts) could be identified and isolated based on their levels of ALDH activity. Human muscle explant-derived cells were incubated with ALDEFLUOR, a fluorescent substrate for ALDH, and we determined by flow cytometry the level of enzyme activity. We found that ALDH activity positively correlated with the myoblast-CD56+ fraction in those cells, but, we also observed heterogeneity of ALDH activity levels within CD56-purified myoblasts. Using lentiviral mediated expression of shRNA we demonstrated that ALDH activity was associated with expression of Aldh1a1 protein. Surprisingly, ALDH activity and Aldh1a1 expression levels were very low in mouse, rat, rabbit and non-human primate myoblasts. Using different approaches, from pharmacological inhibition of ALDH activity by diethylaminobenzaldehyde, an inhibitor of class I ALDH, to cell fractionation by flow cytometry using the ALDEFLUOR assay, we characterized human myoblasts expressing low or high levels of ALDH. We correlated high ALDH activity ex vivo to resistance to hydrogen peroxide (H2O2)-induced cytotoxic effect and in vivo to improved cell viability when human myoblasts were transplanted into host muscle of immune deficient scid mice. Therefore detection of ALDH activity, as a purification strategy, could allow non-toxic and efficient isolation of a fraction of human myoblasts resistant to cytotoxic damage. PMID:19840193

  12. MORTALITY DURING TREATMENT: FACTORS AFFECTING THE SURVIVAL OF OILED, REHABILITATED COMMON MURRES (URIA AALGE).

    PubMed

    Duerr, Rebecca S; Ziccardi, Michael H; Massey, J Gregory

    2016-07-01

    After major oil spills, hundreds to thousands of live stranded birds enter rehabilitative care. To target aspects of rehabilitative efforts for improvement and to evaluate which initial physical examination and biomedical parameters most effectively predict survival to release, medical records were examined from 913 Common Murres ( Uria aalge ; COMUs) oiled during the November 2001-January 2003 oil spill associated with the sunken S.S. Jacob Luckenbach off San Francisco, California, US. Results showed that 52% of all deaths occurred during the first 2 days of treatment. Birds stranding closest to the wreck had greater amounts of oil on their bodies than birds stranding farther away. More heavily oiled birds were in better clinical condition than birds with lesser amounts of oil, as shown by higher body mass (BM), packed cell volumes (PCV), total plasma protein (TP), and higher survival proportions. Additionally, BM, PCV, TP, and body temperature were positively correlated. For comparison, medical records from all nonoiled COMUs admitted for rehabilitation at the same facility during 2007-09 (n=468) were examined, and these variables were also found to be positively correlated. Oiled birds with BM under 750 g had approximately 5% lower PCV than BM-matched nonoiled COMUs. More heavily oiled COMUs may be in better condition than less oiled birds because heavily oiled birds must beach themselves immediately to avoid drowning and hypothermia, whereas lightly oiled birds may postpone beaching until exhausted due to extreme body catabolism. The strong relationship of PCV to BM regardless of oiling provides evidence that anemia commonly encountered in oiled seabirds may be a sequela to overall loss of body condition rather than solely due to toxic effects of oiling. Clinical information garnered in this study provides guidance for triage decisions during oil spills. PMID:27187030

  13. Discovery of survival factor for primitive chronic myeloid leukemia cells using induced pluripotent stem cells.

    PubMed

    Suknuntha, Kran; Ishii, Yuki; Tao, Lihong; Hu, Kejin; McIntosh, Brian E; Yang, David; Swanson, Scott; Stewart, Ron; Wang, Jean Y J; Thomson, James; Slukvin, Igor

    2015-11-01

    A definitive cure for chronic myeloid leukemia (CML) requires identifying novel therapeutic targets to eradicate leukemia stem cells (LSCs). However, the rarity of LSCs within the primitive hematopoietic cell compartment remains a major limiting factor for their study in humans. Here we show that primitive hematopoietic cells with typical LSC features, including adhesion defect, increased long-term survival and proliferation, and innate resistance to tyrosine kinase inhibitor (TKI) imatinib, can be generated de novo from reprogrammed primary CML cells. Using CML iPSC-derived primitive leukemia cells, we discovered olfactomedin 4 (OLFM4) as a novel factor that contributes to survival and growth of somatic lin(-)CD34(+) cells from bone marrow of patients with CML in chronic phase, but not primitive hematopoietic cells from normal bone marrow. Overall, this study shows the feasibility and advantages of using reprogramming technology to develop strategies for targeting primitive leukemia cells. PMID:26561938

  14. Discovery of survival factor for primitive chronic myeloid leukemia cells using induced pluripotent stem cells

    PubMed Central

    Suknuntha, Kran; Ishii, Yuki; Tao, Lihong; Hu, Kejin; McIntosh, Brian E.; Yang, David; Swanson, Scott; Stewart, Ron; Wang, Jean Y.J.; Thomson, James; Slukvin, Igor

    2016-01-01

    A definitive cure for chronic myeloid leukemia (CML) requires identifying novel therapeutic targets to eradicate leukemia stem cells (LSCs). However, the rarity of LSCs within the primitive hematopoietic cell compartment remains a major limiting factor for their study in humans. Here we show that primitive hematopoietic cells with typical LSC features, including adhesion defect, increased long-term survival and proliferation, and innate resistance to tyrosine kinase inhibitor (TKI) imatinib, can be generated de novo from reprogrammed primary CML cells. Using CML iPSC-derived primitive leukemia cells, we discovered olfactomedin 4 (OLFM4) as a novel factor that contributes to survival and growth of somatic lin−CD34+ cells from bone marrow of patients with CML in chronic phase, but not primitive hematopoietic cells from normal bone marrow. Overall, this study shows the feasibility and advantages of using reprogramming technology to develop strategies for targeting primitive leukemia cells. PMID:26561938

  15. NAC, Tiron and Trolox Impair Survival of Cell Cultures Containing Glioblastoma Tumorigenic Initiating Cells by Inhibition of Cell Cycle Progression

    PubMed Central

    Stigliani, Sara; Carra, Elisa; Monteghirfo, Stefano; Longo, Luca; Daga, Antonio; Dono, Mariella; Zupo, Simona; Giaretti, Walter; Castagnola, Patrizio

    2014-01-01

    Reactive oxygen species (ROS) are metabolism by-products that may act as signaling molecules to sustain tumor growth. Antioxidants have been used to impair cancer cell survival. Our goal was to determine the mechanisms involved in the response to antioxidants of a human cell culture (PT4) containing glioblastoma (GBM) tumorigenic initiating cells (TICs). ROS production in the absence or presence of N-acetyl-L-cysteine (NAC), tiron, and trolox was evaluated by flow cytometry (FCM). The effects of these antioxidants on cell survival and apoptosis were evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) and FCM. The biological processes modulated by these drugs were determined by oligonucleotide microarray gene expression profiling. Our results showed that NAC, tiron and trolox impaired PT4 cell survival, had minor effects on ROS levels and caused wide deregulation of cell cycle genes. Furthermore, tiron and trolox caused inhibition of cell survival in two additional cell cultures containing TICs, FO-1 and MM1, established from a melanoma and a mesothelioma patient, respectively. NAC, instead, impaired survival of the MM1 cells but not of the FO-1 cells. However, when used in combination, NAC enhanced the inhibitory effect of PLX4032 (BRAF V600E inhibitor) and Gefitinib (EGFR inhibitor), on FO-1 and PT4 cell survival. Collectively, NAC, tiron and trolox modulated gene expression and impaired the growth of cultures containing TICs primarily by inhibiting cell cycle progression. PMID:24587218

  16. Romidepsin targets multiple survival signaling pathways in malignant T cells.

    PubMed

    Valdez, B C; Brammer, J E; Li, Y; Murray, D; Liu, Y; Hosing, C; Nieto, Y; Champlin, R E; Andersson, B S

    2015-01-01

    Romidepsin is a cyclic molecule that inhibits histone deacetylases. It is Food and Drug Administration-approved for treatment of cutaneous and peripheral T-cell lymphoma, but its precise mechanism of action against malignant T cells is unknown. To better understand the biological effects of romidepsin in these cells, we exposed PEER and SUPT1 T-cell lines, and a primary sample from T-cell lymphoma patient (Patient J) to romidepsin. We then examined the consequences in some key oncogenic signaling pathways. Romidepsin displayed IC50 values of 10.8, 7.9 and 7.0 nm in PEER, SUPT1 and Patient J cells, respectively. Strong inhibition of histone deacetylases and demethylases, increased production of reactive oxygen species and decreased mitochondrial membrane potential were observed, which may contribute to the observed DNA-damage response and apoptosis. The stress-activated protein kinase/c-Jun N-terminal kinase signaling pathway and unfolded protein response in the endoplasmic reticulum were activated, whereas the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and β-catenin pro-survival pathways were inhibited. The decreased level of β-catenin correlated with the upregulation of its inhibitor SFRP1 through romidepsin-mediated hypomethylation of its gene promoter. Our results provide new insights into how romidepsin invokes malignant T-cell killing, show evidence of its associated DNA hypomethylating activity and offer a rationale for the development of romidepsin-containing combination therapies. PMID:26473529

  17. Romidepsin targets multiple survival signaling pathways in malignant T cells

    PubMed Central

    Valdez, B C; Brammer, J E; Li, Y; Murray, D; Liu, Y; Hosing, C; Nieto, Y; Champlin, R E; Andersson, B S

    2015-01-01

    Romidepsin is a cyclic molecule that inhibits histone deacetylases. It is Food and Drug Administration-approved for treatment of cutaneous and peripheral T-cell lymphoma, but its precise mechanism of action against malignant T cells is unknown. To better understand the biological effects of romidepsin in these cells, we exposed PEER and SUPT1 T-cell lines, and a primary sample from T-cell lymphoma patient (Patient J) to romidepsin. We then examined the consequences in some key oncogenic signaling pathways. Romidepsin displayed IC50 values of 10.8, 7.9 and 7.0 nm in PEER, SUPT1 and Patient J cells, respectively. Strong inhibition of histone deacetylases and demethylases, increased production of reactive oxygen species and decreased mitochondrial membrane potential were observed, which may contribute to the observed DNA-damage response and apoptosis. The stress-activated protein kinase/c-Jun N-terminal kinase signaling pathway and unfolded protein response in the endoplasmic reticulum were activated, whereas the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and β-catenin pro-survival pathways were inhibited. The decreased level of β-catenin correlated with the upregulation of its inhibitor SFRP1 through romidepsin-mediated hypomethylation of its gene promoter. Our results provide new insights into how romidepsin invokes malignant T-cell killing, show evidence of its associated DNA hypomethylating activity and offer a rationale for the development of romidepsin-containing combination therapies. PMID:26473529

  18. Dietary magnesium and copper affect survival time and neuroinflammation in chronic wasting disease

    PubMed Central

    Nichols, Tracy A.; Spraker, Terry R.; Gidlewski, Thomas; Cummings, Bruce; Hill, Dana; Kong, Qingzhong; Balachandran, Aru; VerCauteren, Kurt C.; Zabel, Mark D.

    2016-01-01

    ABSTRACT Chronic wasting disease (CWD), the only known wildlife prion disease, affects deer, elk and moose. The disease is an ongoing and expanding problem in both wild and captive North American cervid populations and is difficult to control in part due to the extreme environmental persistence of prions, which can transmit disease years after initial contamination. The role of exogenous factors in CWD transmission and progression is largely unexplored. In an effort to understand the influence of environmental and dietary constituents on CWD, we collected and analyzed water and soil samples from CWD-negative and positive captive cervid facilities, as well as from wild CWD-endozootic areas. Our analysis revealed that, when compared with CWD-positive sites, CWD-negative sites had a significantly higher concentration of magnesium, and a higher magnesium/copper (Mg/Cu) ratio in the water than that from CWD-positive sites. When cevidized transgenic mice were fed a custom diet devoid of Mg and Cu and drinking water with varied Mg/Cu ratios, we found that higher Mg/Cu ratio resulted in significantly longer survival times after intracerebral CWD inoculation. We also detected reduced levels of inflammatory cytokine gene expression in mice fed a modified diet with a higher Mg/Cu ratio compared to those on a standard rodent diet. These findings indicate a role for dietary Mg and Cu in CWD pathogenesis through modulating inflammation in the brain. PMID:27216881

  19. Factors Affecting Survival in Patients with Lung Metastases from Colorectal Cancer. A Short Meta-analysis.

    PubMed

    Lumachi, Franco; Chiara, Giordano B; Tozzoli, Renato; Del Conte, Alessandro; Del Contea, Alessandro; Basso, Stefano M M

    2016-01-01

    Liver and pulmonary metastases (PMs) are relatively common in patients with colorectal cancer. The majority of metastases are suitable for surgical resection, and the effectiveness of metastasectomy is usually assessed based on overall survival (OS). Metastasectomy provides a mean 5-year OS rate of approximately 50%, but the results are better in patients with liver metastases compared to those with PMs. Unfortunately, the presence of bilateral or multiple PMs represents a relative contraindication to surgical metastasectomy. Unresectable PMs can be safely treated with percutaneous radiofrequency ablation or radiotherapy, but the reported results vary widely. Several clinical prognostic factors affecting OS after metastasectomy have been reported, such as number of PMs, hilar or mediastinal lymph node involvement, disease-free interval, age and gender, resection margins, size of the metastases, neoadjuvant chemotherapy administration, and histological type of the primary cancer. The accurate evaluation of all clinical prognostic factors, circulating and immunohistochemical markers, and the study of gene mutational status will lead to a more accurate selection of patients scheduled to metastasectomy, with the aim of improving outcome. PMID:26722023

  20. Analysis of factors affecting hemorrhagic diathesis and overall survival in patients with acute promyelocytic leukemia

    PubMed Central

    Lee, Ho Jin; Kim, Dong Hyun; Lee, Seul; Koh, Myeong Seok; Kim, So Yeon; Lee, Ji Hyun; Lee, Suee; Oh, Sung Yong; Han, Jin Yeong; Kim, Hyo-Jin; Kim, Sung-Hyun

    2015-01-01

    Background/Aims: This study investigated whether patients with acute promyelocytic leukemia (APL) truly fulfill the diagnostic criteria of overt disseminated intravascular coagulation (DIC), as proposed by the International Society on Thrombosis and Haemostasis (ISTH) and the Korean Society on Thrombosis and Hemostasis (KSTH), and analyzed which component of the criteria most contributes to bleeding diathesis. Methods: A single-center retrospective analysis was conducted on newly diagnosed APL patients between January 1995 and May 2012. Results: A total of 46 newly diagnosed APL patients were analyzed. Of these, 27 patients (58.7%) showed initial bleeding. The median number of points per patient fulfilling the diagnostic criteria of overt DIC by the ISTH and the KSTH was 5 (range, 1 to 7) and 3 (range, 1 to 4), respectively. At diagnosis of APL, 22 patients (47.8%) fulfilled the overt DIC diagnostic criteria by either the ISTH or KSTH. In multivariate analysis of the ISTH or KSTH diagnostic criteria for overt DIC, the initial fibrinogen level was the only statistically significant factor associated with initial bleeding (p = 0.035), but it was not associated with overall survival (OS). Conclusions: Initial fibrinogen level is associated with initial presentation of bleeding of APL patients, but does not affect OS. PMID:26552464

  1. Dietary magnesium and copper affect survival time and neuroinflammation in chronic wasting disease.

    PubMed

    Nichols, Tracy A; Spraker, Terry R; Gidlewski, Thomas; Cummings, Bruce; Hill, Dana; Kong, Qingzhong; Balachandran, Aru; VerCauteren, Kurt C; Zabel, Mark D

    2016-05-01

    Chronic wasting disease (CWD), the only known wildlife prion disease, affects deer, elk and moose. The disease is an ongoing and expanding problem in both wild and captive North American cervid populations and is difficult to control in part due to the extreme environmental persistence of prions, which can transmit disease years after initial contamination. The role of exogenous factors in CWD transmission and progression is largely unexplored. In an effort to understand the influence of environmental and dietary constituents on CWD, we collected and analyzed water and soil samples from CWD-negative and positive captive cervid facilities, as well as from wild CWD-endozootic areas. Our analysis revealed that, when compared with CWD-positive sites, CWD-negative sites had a significantly higher concentration of magnesium, and a higher magnesium/copper (Mg/Cu) ratio in the water than that from CWD-positive sites. When cevidized transgenic mice were fed a custom diet devoid of Mg and Cu and drinking water with varied Mg/Cu ratios, we found that higher Mg/Cu ratio resulted in significantly longer survival times after intracerebral CWD inoculation. We also detected reduced levels of inflammatory cytokine gene expression in mice fed a modified diet with a higher Mg/Cu ratio compared to those on a standard rodent diet. These findings indicate a role for dietary Mg and Cu in CWD pathogenesis through modulating inflammation in the brain. PMID:27216881

  2. Reduction of Cardiac Cell Death after Helium Postconditioning in Rats: Transcriptional Analysis of Cell Death and Survival Pathways

    PubMed Central

    Oei, Gezina TML; Heger, Michal; van Golen, Rowan F; Alles, Lindy K; Flick, Moritz; van der Wal, Allard C; van Gulik, Thomas M; Hollmann, Markus W; Preckel, Benedikt; Weber, Nina C

    2014-01-01

    Helium, a noble gas, has been used safely in humans. In animal models of regional myocardial ischemia/reperfusion (I/R) it was shown that helium conditioning reduces infarct size. Currently, it is not known how helium exerts its cytoprotective effects and which cell death/survival pathways are affected. The objective of this study, therefore, was to investigate the cell protective effects of helium postconditioning by PCR array analysis of genes involved in necrosis, apoptosis and autophagy. Male rats were subjected to 25 min of ischemia and 5, 15 or 30 min of reperfusion. Semiquantitative histological analysis revealed that 15 min of helium postconditioning reduced the extent of I/R-induced cell damage. This effect was not observed after 5 and 30 min of helium postconditioning. Analysis of the differential expression of genes showed that 15 min of helium postconditioning mainly caused upregulation of genes involved in autophagy and inhibition of apoptosis versus I/R alone. The results suggest that the cytoprotective effects of helium inhalation may be caused by a switch from pro-cell-death signaling to activation of cell survival mechanisms, which appears to affect a wide range of pathways. PMID:25171109

  3. R-ETODOLAC DECREASES BETA-CATENIN LEVELS ALONG WITH SURVIVAL AND PROLIFERATION OF HEPATOMA CELLS

    PubMed Central

    Behari, Jaideep; Zeng, Gang; Otruba, Wade; Thompson, Michael; Muller, Peggy; Micsenyi, Amanda; Sekhon, Sandeep S.; Leoni, Lorenzo; Monga, Satdarshan P. S.

    2007-01-01

    Background Inhibition of hepatoma cells by cyclooxygenase (COX)-2 dependent and independent mechanisms has been shown previously. Here, we examine the effect of Celecoxib, a COX-2-inhibitor and R-Etodolac, an enantiomer of the nonsteroidal anti-inflammatory drug Etodolac, which lacks COX-inhibitory activity, on the Wnt/β-catenin pathway and human hepatoma cells. Methods Hep3B and HepG2 cell lines were treated with Celecoxib or R-Etodolac, and examined for viability, DNA synthesis, Wnt/β-catenin pathway components, and downstream target gene expression. Results Celecoxib at high doses affected β-catenin protein by inducing its degradation via GSK3β and APC along with diminished tumor cell proliferation and survival. R-Etodolac at physiological doses caused decrease in total and activated β-catenin protein secondary to decrease in its gene expression and post-translationally through GSK3β activation. In addition, increased β-catenin-E-cadherin was also observed at the membrane. An associated inhibition of β-catenin-dependent Tcf reporter activity, decreased levels of downstream target gene products glutamine synthetase and cyclin-D1, and decreased proliferation and survival of hepatoma cells was evident. Conclusion The antitumor effects of Celecoxib (at high concentrations) and R-Etodolac (at physiological doses) on HCC cells were accompanied by the down-regulation of β-catenin demonstrating a useful therapeutic strategy in hepatocellular cancer. PMID:17275129

  4. Leukemia cell microvesicles promote survival in umbilical cord blood hematopoietic stem cells

    PubMed Central

    Razmkhah, Farnaz; Soleimani, Masoud; Mehrabani, Davood; Karimi, Mohammad Hossein; Kafi-abad, Sedigheh Amini

    2015-01-01

    Microvesicles can transfer their contents, proteins and RNA, to target cells and thereby transform them. This may induce apoptosis or survival depending on cell origin and the target cell. In this study, we investigate the effect of leukemic cell microvesicles on umbilical cord blood hematopoietic stem cells to seek evidence of apoptosis or cell survival. Microvesicles were isolated from both healthy donor bone marrow samples and Jurkat cells by ultra-centrifugation and were added to hematopoietic stem cells sorted from umbilical cord blood samples by magnetic associated cell sorting (MACS) technique. After 7 days, cell count, cell viability, flow cytometry analysis for hematopoietic stem cell markers and qPCR for P53 gene expression were performed. The results showed higher cell number, higher cell viability rate and lower P53 gene expression in leukemia group in comparison with normal and control groups. Also, CD34 expression as the most important hematopoietic stem cell marker, did not change during the treatment and lineage differentiation was not observed. In conclusion, this study showed anti-apoptotic effect of leukemia cell derived microvesicles on umbilical cord blood hematopoietic stem cells. PMID:26862318

  5. Cell populations can use aneuploidy to survive telomerase insufficiency

    PubMed Central

    Millet, Caroline; Ausiannikava, Darya; Le Bihan, Thierry; Granneman, Sander; Makovets, Svetlana

    2015-01-01

    Telomerase maintains ends of eukaryotic chromosomes, telomeres. Telomerase loss results in replicative senescence and a switch to recombination-dependent telomere maintenance. Telomerase insufficiency in humans leads to telomere syndromes associated with premature ageing and cancer predisposition. Here we use yeast to show that the survival of telomerase insufficiency differs from the survival of telomerase loss and occurs through aneuploidy. In yeast grown at elevated temperatures, telomerase activity becomes limiting: haploid cell populations senesce and generate aneuploid survivors—near diploids monosomic for chromosome VIII. This aneuploidy results in increased levels of the telomerase components TLC1, Est1 and Est3, and is accompanied by decreased abundance of ribosomal proteins. We propose that aneuploidy suppresses telomerase insufficiency through redistribution of cellular resources away from ribosome synthesis towards production of telomerase components and other non-ribosomal proteins. The aneuploidy-induced re-balance of the proteome via modulation of ribosome biogenesis may be a general adaptive response to overcome functional insufficiencies. PMID:26489519

  6. Resistin is a survival factor for porcine ovarian follicular cells.

    PubMed

    Rak, Agnieszka; Drwal, Eliza; Wróbel, Anna; Gregoraszczuk, Ewa Łucja

    2015-10-01

    Previously, we demonstrated the expression of resistin in the porcine ovary, the regulation of its expression and its direct effect on ovarian steroidogenesis. The objective of this study was to examine the effect of resistin on cell proliferation and apoptosis in a co-culture model of porcine granulosa and theca cells. First, we analysed the effect of resistin at 1 and 10  ng/ml alone or in combination with FSH- and IGF1 on ovarian cell proliferation with an alamarBlue assay and protein expression of cyclins A and B using western blot. Next, the mRNA and protein expression of selected pro-apoptotic and pro-survival regulators of cell apoptosis, caspase-9, -8 and -3 activity and DNA fragmentation using real time PCR, western blot, fluorescent assay and an ELISA kit, respectively, were analysed after resistin treatment. Furthermore, we determined the effect of resistin on the protein expression of ERK1/2, Stat and Akt kinase. Using specific inhibitors of these kinases, we also checked caspase-3 activity and protein expression. We found that resistin, at both doses, has no effect on cell proliferation. The results showed that resistin decreased pro-apoptotic genes, which was confirmed on protein expression of selected factors. We demonstrate an inhibitory effect of resistin on caspase activity and DNA fragmentation. Finally, resistin stimulated phosphorylation of the ERK1/2, Stat and Akt and kinases inhibitors reversed resistin action on caspase-3 activity and protein expression to control. All of these results showed that resistin has an inhibitory effect on porcine ovarian cell apoptosis by activation of the MAPK/ERK, JAK/Stat and Akt/PI3 kinase signalling pathways. PMID:26159832

  7. Targeting survival pathways in chronic myeloid leukaemia stem cells

    PubMed Central

    Sinclair, A; Latif, A L; Holyoake, T L

    2013-01-01

    Chronic myeloid leukaemia (CML) is a clonal myeloproliferative disorder characterized by the presence of a fusion oncogene BCR-ABL, which encodes a protein with constitutive TK activity. The implementation of tyrosine kinase inhibitors (TKIs) marked a major advance in CML therapy; however, there are problems with current treatment. For example, relapse occurs when these drugs are discontinued in the majority of patients who have achieved a complete molecular response on TKI and these agents are less effective in patients with mutations in the BCR-ABL kinase domain. Importantly, TKI can effectively target proliferating mature cells, but do not eradicate quiescent leukaemic stem cells (LSCs), therefore allowing disease persistence despite treatment. It is essential that alternative strategies are used to target the LSC population. BCR-ABL activation is responsible for the modulation of different signalling pathways, which allows the LSC fraction to evade cell death. Several pathways have been shown to be modulated by BCR-ABL, including PI3K/AKT/mTOR, JAK-STAT and autophagy signalling pathways. Targeting components of these survival pathways, alone or in combination with TKI, therefore represents an attractive potential therapeutic approach for targeting the LSC. However, many pathways are also active in normal stem cells. Therefore, potential targets must be validated to effectively eradicate CML stem cells while sparing normal counterparts. This review summarizes the main pathways modulated in CML stem cells, the recent developments and the use of novel drugs to target components in these pathways which may be used to target the LSC population. Linked Articles This article is part of a themed section on Emerging Therapeutic Aspects in Oncology. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-8 PMID:23517124

  8. Survival and growth of acid-adapted and unadapted Salmonella in and on raw tomatoes as affected by variety, stage of ripeness, and storage temperature.

    PubMed

    Beuchat, Larry R; Mann, David A

    2008-08-01

    Consumption of raw round and Roma tomatoes has been associated with outbreaks of salmonellosis. A study was done to determine whether survival and growth of Salmonella in and on tomatoes is affected by variety of tomato, stage of ripeness, and storage temperature. The influence of acid adaptation of cells and site of inoculation on survival and growth was studied. Salmonella grew in stem scar and pulp tissues of round, Roma, and grape tomatoes stored at 12 and 21 degrees C but not in those tomatoes stored at 4 degrees C. Survival and growth was largely unaffected by variety and stage of ripeness at the time of inoculation. The pathogen did not grow on the skin of grape tomatoes stored at 4, 12, and 21 degrees C. Survival and growth of Salmonella inoculated into stem scar and pulp tissues of round and Roma tomatoes were unaffected by exposure of cells to an acidic (pH 4.75) environment before inoculation. Results emphasize the importance of preventing contamination of tomatoes with Salmonella at all stages of ripeness, regardless of variety or previous exposure of cells to an acidic environment. PMID:18724750

  9. Does seawater acidification affect survival, growth and shell integrity in bivalve juveniles?

    PubMed

    Bressan, M; Chinellato, A; Munari, M; Matozzo, V; Manci, A; Marčeta, T; Finos, L; Moro, I; Pastore, P; Badocco, D; Marin, M G

    2014-08-01

    Anthropogenic emissions of carbon dioxide are leading to decreases in pH and changes in the carbonate chemistry of seawater. Ocean acidification may negatively affect the ability of marine organisms to produce calcareous structures while also influencing their physiological responses and growth. The aim of this study was to evaluate the effects of reduced pH on the survival, growth and shell integrity of juveniles of two marine bivalves from the Northern Adriatic sea: the Mediterranean mussel Mytilus galloprovincialis and the striped venus clam Chamelea gallina. An outdoor flow-through plant was set up and two pH levels (natural seawater pH as a control, pH 7.4 as the treatment) were tested in long-term experiments. Mortality was low throughout the first experiment for both mussels and clams, but a significant increase, which was sensibly higher in clams, was observed at the end of the experiment (6 months). Significant decreases in the live weight (-26%) and, surprisingly, in the shell length (-5%) were observed in treated clams, but not in mussels. In the controls of both species, no shell damage was ever recorded; in the treated mussels and clams, damage proceeded via different modes and to different extents. The severity of shell injuries was maximal in the mussels after just 3 months of exposure to a reduced pH, whereas it progressively increased in clams until the end of the experiment. In shells of both species, the damaged area increased throughout the experiment, peaking at 35% in mussels and 11% in clams. The shell thickness of the treated and control animals significantly decreased after 3 months in clams and after 6 months in mussels. In the second experiment (3 months), only juvenile mussels were exposed to a reduced pH. After 3 months, the mussels at a natural pH level or pH 7.4 did not differ in their survival, shell length or live weight. Conversely, shell damage was clearly visible in the treated mussels from the 1st month onward. Monitoring the

  10. Relation of CD30 expression to survival and morphology in large cell B cell lymphomas.

    PubMed Central

    Noorduyn, L A; de Bruin, P C; van Heerde, P; van de Sandt, M M; Ossenkoppele, G J; Meijer, C J

    1994-01-01

    AIMS--To investigate whether CD30 expression is correlated with anaplastic morphology, and whether this correlated with a better survival in large cell B cell lymphomas, as has been described for T cell lymphomas. METHODS--CD30 expression was investigated using frozen sections in a series of 146 large cell B cell lymphomas. Clinical data and follow up information were collected from 25 lymphomas with strong CD30 expression, 30 lymphomas with partial CD30 expression, and a control group of 25 lymphomas which did not express CD30. RESULTS--Morphological distinction between anaplastic and non-anaplastic tumours was difficult. Of the cases with an anaplastic morphology, 50% were CD30 positive, as were 24% of the polymorphic centroblastic B cell lymphomas. Only 65% of the morphologically non-anaplastic tumours were completely CD30 negative. There was no difference in survival among patients with lymphomas expressing CD30 and those that did not. Patients with morphologically anaplastic B cell lymphomas did not differ in their survivals from those with other high grade B cell lymphomas. Clinical stage at presentation was the only variable that was significantly associated with survival. CONCLUSIONS--CD30 expression occurs frequently in large cell B cell lymphomas and is poorly related to anaplastic morphology. Morphological distinction between anaplastic and non-anaplastic tumours is difficult. In contrast to T cell lymphomas, CD30 positive B cell lymphomas do not show a relatively favourable clinical course. The results presented here raise serious doubts as to whether large cell B cell lymphoma, based on the expression of CD30 or anaplastic morphology, can really be termed a separate entity. Images PMID:8132806

  11. Progression-Free Survival: An Important Prognostic Marker for Long-Term Survival of Small Cell Lung Cancer

    PubMed Central

    Park, Myoung-Rin; Park, Yeon-Hee; Choi, Jae-Woo; Park, Dong-Il; Chung, Chae-Uk; Moon, Jae-Young; Park, Hee-Sun; Jung, Sung-Soo; Kim, Ju-Ock; Kim, Sun-Young

    2014-01-01

    Background Small cell lung cancer (SCLC) is an extremely aggressive tumor with a poor clinical course. Although many efforts have been made to improve patients' survival rates, patients who survive longer than 2 years after chemotherapy are still very rare. We examined the baseline characteristics of patients with long-term survival rates in order to identify the prognostic factors for overall survivals. Methods A total of 242 patients with cytologically or histologically diagnosed SCLC were enrolled into this study. The patients were categorized into long- and short-term survival groups by using a survival cut-off of 2 years after diagnosis. Cox's analyses were performed to identify the independent factors. Results The mean patient age was 65.66 years, and 85.5% were males; among the patients, 61 of them (25.2%) survived longer than 2 years. In the multivariate analyses, CRP (hazard ratio [HR], 2.75; 95% confidence interval [CI], 1.25-6.06; p=0.012), TNM staging (HR, 3.29; 95% CI, 1.59-6.80; p=0.001), and progression-free survival (PFS) (HR, 11.14; 95% CI, 2.98-41.73; p<0.001) were independent prognostic markers for poor survival rates. Conclusion In addition to other well-known prognostic factors, this study discovered relationships between the long-term survival rates and serum CRP levels, TNM staging, and PFS. In situations with unfavorable conditions, the PFS would be particularly helpful for managing SCLC patients. PMID:24920948

  12. TAK1 Regulates Hepatic Cell Survival and Carcinogenesis

    PubMed Central

    Roh, Yoon Seok; Song, Jingyi; Seki, Ekihiro

    2014-01-01

    TGF-β-activated kinase 1 (TAK1 or MAP3K7) is an intracellular hub molecule that regulates both nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways that play key roles in development, cell survival, immune response, metabolism, and carcinogenesis. TAK1 activity is tightly regulated by its binding proteins, TAB1 and TAB2/TAB3, as well as by post-translational modification including ubiquitination and phosphorylation. Accumulating evidence demonstrates that TAK1 plays a role in tumor initiation, progression, and metastasis as a tumor prompter or tumor suppressor. Understanding of the role of TAK1 in liver physiology and diseases are required for the development of therapeutic agency targeting TAK1. In this review, we highlight the activation mechanism and pathophysiological roles of TAK1 in the liver. PMID:24443058

  13. TAK1 regulates hepatic cell survival and carcinogenesis.

    PubMed

    Roh, Yoon Seok; Song, Jingyi; Seki, Ekihiro

    2014-02-01

    TGF-β-activated kinase 1 (TAK1 or MAP3K7) is an intracellular hub molecule that regulates both nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways that play key roles in development, cell survival, immune response, metabolism, and carcinogenesis. TAK1 activity is tightly regulated by its binding proteins, TAB1 and TAB2/TAB3, as well as by post-translational modification including ubiquitination and phosphorylation. Accumulating evidence demonstrates that TAK1 plays a role in tumor initiation, progression, and metastasis as a tumor prompter or tumor suppressor. An understanding of the role of TAK1 in liver physiology and diseases is required for the development of therapeutic agencies targeting TAK1. In this review, we highlight the activation mechanism and pathophysiological roles of TAK1 in the liver. PMID:24443058

  14. Matrin 3 as a key regulator of endothelial cell survival

    SciTech Connect

    Przygodzka, Patrycja; Boncela, Joanna; Cierniewski, Czeslaw S.

    2011-04-01

    Matrin 3 is an integral component of nuclear matrix architecture that has been implicated in interacting with other nuclear proteins and thus modulating the activity of proximal promoters. In this study, we evaluated the contribution of this protein to proliferation of endothelial cells. To selectively modulate matrin 3 expression, we used siRNA oligonucleotides and transfection of cells with a pEGFP-N1-Mtr3. Our data indicate that downregulation of matrin 3 is responsible for reduced proliferation and leads to necrosis of endothelial cells. This conclusion is supported by observations that reducing matrin 3 expression results in (a) producing signs of necrosis detected by PI staining, LDH release, and scatter parameters in flow cytometry, (b) affecting cell cycle progression. It does not cause (c) membrane asymmetry of cells as indicated by lack of Annexin V binding as well as (d) activation of caspase 3 and cleavage of PARP. We conclude that matrin 3 plays a significant role in controlling cell growth and proliferation, probably via formation of complexes with nuclear proteins that modulate pro- and antiapoptotic signaling pathways. Thus, degradation of matrin 3 may be a switching event that induces a shift from apoptotic to necrotic death of cells.

  15. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras.

    PubMed

    Keighren, Margaret A; Flockhart, Jean H; West, John D

    2016-01-01

    The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1(-/-) null mouse embryos die but a previous study showed that some homozygous Gpi1(-/-) null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1(-/-)↔Gpi1(c/c) chimaera with functional Gpi1(-/-) null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1(-/-) null cells in adult Gpi1(-/-)↔Gpi1(c/c) chimaeras and determine if Gpi1(-/-) null germ cells are functional. Analysis of adult Gpi1(-/-)↔Gpi1(c/c) chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1(-/-) null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1(-/-) null oocytes in one female Gpi1(-/-)↔Gpi1(c/c) chimaera were functional and provided preliminary evidence that one male putative Gpi1(-/-)↔Gpi1(c/c) chimaera produced functional spermatozoa from homozygous Gpi1(-/-) null germ cells. Although the male chimaera was almost certainly Gpi1(-/-)↔Gpi1(c/c), this part of the study is considered preliminary because only blood was typed for GPI. Gpi1(-/-) null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1(-/-) null germ cells, it successfully identified functional Gpi1(-/-) null oocytes and revealed that some Gpi1(-/-) null cells could survive in many adult tissues. PMID:27103217

  16. Metabolic aspects of programmed cell survival and cell death in the heart.

    PubMed

    Depre, C; Taegtmeyer, H

    2000-02-01

    Normal cardiac function requires a tight interaction between metabolism, contractile function and gene expression. The main perturbation challenging this equilibrium in vivo is ischemia, which alters energy flux through the control of key enzymes. The review highlights metabolic imprints and energetic aspects of programmed cell survival, programmed cell death, and of necrosis. When sustained and severe, ischemia leads to a total collapse of energy transfer, to the accumulation of metabolic endproducts, and to the development of myocardial necrosis. When moderate, ischemia results in a coordinated cellular response including enhanced anaerobic glucose metabolism, a modification of cardiac gene expression, and the development of specific mechanisms for programmed cell survival (preconditioning, stunning, hibernation). Repetitive stress results in a decrease of contractile function, a downregulation of gene expression and an impairment of energy transfer, which eventually cause the heart to fail. When the failing heart becomes energy-depleted, the programs of cell survival are no longer operational and programmed cell death ensues. To define the point of departure from programmed cell survival to cell death remains a major challenge. PMID:10728375

  17. Recombinant Arabidopsis HSP70 Sustains Cell Survival and Metastatic Potential of Breast Cancer Cells.

    PubMed

    Nigro, Alessandra; Mauro, Loredana; Giordano, Francesca; Panza, Salvatore; Iannacone, Rina; Liuzzi, Grazia Maria; Aquila, Saveria; De Amicis, Francesca; Cellini, Francesco; Indiveri, Cesare; Panno, Maria Luisa

    2016-05-01

    The chaperone HSP70 protein is widely present in many different tumors and its expression correlates with an increased cell survival, low differentiation, and poor therapeutic outcome in human breast cancer. The intracellular protein has prevalently a cytoprotective function, while the extracellular HSP70 mediates immunologic responses. Evolutionarily, HSPs are well conserved from prokaryotes to eukaryotes, and human HSP70 shows a strong similarity to that of plant origin. In the current article, we have tested the potential effect of recombinant HSP70, from Arabidopsis thaliana, on cell survival and metastatic properties of breast cancer cells. Our data show that HSP70 sustains cell viability in MCF-7 and MDA-MB-231 breast tumoral cells and increases Cyclin D1 and Survivin expression. The extracellular HSP70 triggers cell migration and the activation of MMPs particularly in MDA-MB-231 cells. Furthermore, under UV-induced stress condition, the low levels of phospho-AKT were increased by exogenous HSP70, together with the upregulation of Cyclin D1, particularly in the tumoral cell phenotype. On the other hand, UV increased TP53 expression, and the coincubation of HSP70 lowers the TP53 levels similar to the control. These findings correlate with the cytoprotective and antiapoptotic role of HSPs, as reported in different cellular contexts. This is the first study on mammary cells that highlights how the heterologous HSP70 from Arabidopsis thaliana sustains cell survival prevalently in breast cancer cell types, thus maintaining their metastatic potential. Therefore, targeting HSP70 would be of clinical importance since HSP70 blocking selectively targets tumor cells, in which it supports cell growth and survival. Mol Cancer Ther; 15(5); 1063-73. ©2016 AACR. PMID:26939699

  18. Sugar concentration and timing of feeding affect feeding characteristics and survival of a parasitic wasp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The availability of food sources is critical for parasitoid survival, especially for those that do not host-feed, or in agroecosystems where nectar and honeydew are sometimes spatially and temporally scarce. Therefore, the value of even a single meal can be crucial for survival. Psyttalia lounsbur...

  19. Factors affecting winter survival of female mallards in the lower Mississippi alluvial valley

    USGS Publications Warehouse

    Davis, B.E.; Afton, A.D.; Cox, R.R., Jr.

    2011-01-01

    The lower Mississippi Alluvial Valley (hereafter LMAV) provides winter habitat for approximately 40% of the Mississippi Flyway's Mallard (Anas platyrhynhcos) population; information on winter survival rates of female Mallards in the LMAV is restricted to data collected prior to implementation of the North American Waterfowl Management Plan. To estimate recent survival and cause-specific mortality rates in the LMAV, 174 radio-marked female Mallards were tracked for a total of 11,912 exposure days. Survival varied by time periods defined by hunting seasons, and females with lower body condition (size adjusted body mass) at time of capture had reduced probability of survival. Female survival was less and the duration of our tracking period was greater than those in previous studies of similarly marked females in the LMAV; the product-limit survival estimate (??????SE) through the entire tracking period (136 days) was 0.54 ??0.10. Cause-specific mortality rates were 0.18 ??0.04 and 0.34 ??0.12 for hunting and other sources of mortality, respectively; the estimated mortality rate from other sources (including those from avian, mammalian, or unknown sources) was higher than mortality from non-hunting sources reported in previous studies of Mallards in the LMAV. Models that incorporate winter survival estimates as a factor in Mallard population growth rates should be adjusted for these reduced winter survival estimates.

  20. Role of ATG10 expression quantitative trait loci in non-small cell lung cancer survival.

    PubMed

    Xie, Kaipeng; Liang, Cheng; Li, Qin; Yan, Caiwang; Wang, Cheng; Gu, Yayun; Zhu, Meng; Du, Fangzhi; Wang, Hui; Dai, Juncheng; Liu, Xiao'an; Jin, Guangfu; Shen, Hongbing; Ma, Hongxia; Hu, Zhibin

    2016-10-01

    The aim of this article was to evaluate whether genetic variants in autophagy-related genes affect the overall survival (OS) of non-small cell lung cancer (NSCLC) patients. We analyzed 14 single nucleotide polymorphisms (SNPs) in core autophagy-related genes for OS in 1,001 NSCLC patients. Three promising SNPs in ATG10 were subsequently annotated by the expression quantitative trait loci (eQTL) and methylation quantitative trait loci (meQTL) analyses based on Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) datasets. We observed that the variants of rs10514231, rs1864182 and rs1864183 were associated with poor lung cancer survival (HR = 1.33, 95% CI = 1.07-1.65; HR = 1.43, 95% CI = 1.13-1.81; HR = 1.38, 95% CI = 1.14-1.68, respectively) and positively correlated with ATG10 expression (all p < 0.05) from GTEx and TCGA datasets. The elevated expression of ATG10 may predict shorter survival time in lung cancer patients in TCGA dataset (HR = 2.10, 95% CI = 1.33-3.29). Moreover, the variants of rs10514231 and rs1864182 were associated with the increased methylation levels of cg17942617 (meQTL), which in turn contributed to the elevated ATG10 expression and decreased survival time. Further functional assays revealed that ATG10 facilitated lung cancer cell proliferation and migration. Our findings suggest that eQTL/meQTL variations of ATG10 could influence lung cancer survival through regulating ATG10 expression. PMID:27225307

  1. Factors affecting infiltration and survival of Salmonella on in-shell pecans and pecan nutmeats.

    PubMed

    Beuchat, Larry R; Mann, David A

    2010-07-01

    A study was done to determine the infiltration and survival characteristics of Salmonella in pecans. The rate of infiltration of water into in-shell nuts varied among six varieties evaluated and was significantly (alpha = 0.05) affected by the extent of shell damage. The rate of infiltration at -20 or 4 degrees C was lower than the rate of infiltration into nuts at 21 or 37 degrees C when nuts were immersed in water at 21 degrees C. In-shell nuts immersed in a suspension of Salmonella (8.66 or 2.82 log CFU/ml) for 1 h contained populations of 6.94 to 6.99 and 1.85 to 1.95 log CFU/g, respectively. Salmonella that infiltrated in-shell nuts reached the kernel and remained viable after drying and during subsequent storage at 4 degrees C. Initially high (5.78 log CFU/g) and low (1.53 log CFU/g) populations of Salmonella did not significantly decrease in in-shell pecans stored at -20 and 4 degrees C for 78 weeks (18 months). Significant reductions of 2.49 and 3.29 log CFU/g occurred in in-shell nuts stored for 78 weeks at 21 and 37 degrees C, respectively. High (6.16 log CFU/g) and low (2.56 log CFU/g) populations on pecan halves and high (7.13 log CFU/g) and low (4.71 log CFU/g) populations on medium pieces stored for 52 weeks at -20 and 4 degrees C decreased slightly, but not always significantly. Significant reductions occurred on nutmeats stored for 52 weeks at 21 and 37 degrees C, but the pathogen was detectable, regardless of the initial inoculum level. Results emphasize the importance of applying process treatments that will inactivate Salmonella. PMID:20615338

  2. Schwann cell mitochondrial metabolism supports long-term axonal survival and peripheral nerve function

    PubMed Central

    Viader, Andreu; Golden, Judith P.; Baloh, Robert H.; Schmidt, Robert E.; Hunter, Daniel A.; Milbrandt, Jeffrey

    2011-01-01

    Mitochondrial dysfunction is a common cause of peripheral neuropathies. While the role of neuron and axonal mitochondria in peripheral nerve disease is well appreciated, whether Schwann cell (SC) mitochondrial deficits contribute to peripheral neuropathies is unclear. Here we examine how SC mitochondrial dysfunction affects axonal survival and contributes to the decline of peripheral nerve function by generating mice with SC-specific mitochondrial deficits. These mice (Tfam-SCKOs) were produced through the tissue-specific deletion of the mitochondrial transcription factor A gene (Tfam), which is essential for mitochondrial DNA (mtDNA) transcription and maintenance. Tfam-SCKOs were viable but, as they aged, they developed a progressive peripheral neuropathy characterized by nerve conduction abnormalities as well as extensive muscle denervation. Morphological examination of Tfam-SCKO nerves revealed early preferential loss of small unmyelinated fibers followed by prominent demyelination and degeneration of larger-caliber axons. Tfam-SCKOs displayed sensory and motor deficits consistent with this pathology. Remarkably, the severe mtDNA depletion and respiratory chain abnormalities in Tfam-SCKO mice did not affect SC proliferation or survival. Mitochondrial function in SCs is therefore essential for maintenance of axonal survival and normal peripheral nerve function, suggesting that SC mitochondrial dysfunction contributes to human peripheral neuropathies. PMID:21752989

  3. Inhibition of Dopamine Receptor D4 Impedes Autophagic Flux, Proliferation, and Survival of Glioblastoma Stem Cells.

    PubMed

    Dolma, Sonam; Selvadurai, Hayden J; Lan, Xiaoyang; Lee, Lilian; Kushida, Michelle; Voisin, Veronique; Whetstone, Heather; So, Milly; Aviv, Tzvi; Park, Nicole; Zhu, Xueming; Xu, ChangJiang; Head, Renee; Rowland, Katherine J; Bernstein, Mark; Clarke, Ian D; Bader, Gary; Harrington, Lea; Brumell, John H; Tyers, Mike; Dirks, Peter B

    2016-06-13

    Glioblastomas (GBM) grow in a rich neurochemical milieu, but the impact of neurochemicals on GBM growth is largely unexplored. We interrogated 680 neurochemical compounds in patient-derived GBM neural stem cells (GNS) to determine the effects on proliferation and survival. Compounds that modulate dopaminergic, serotonergic, and cholinergic signaling pathways selectively affected GNS growth. In particular, dopamine receptor D4 (DRD4) antagonists selectively inhibited GNS growth and promoted differentiation of normal neural stem cells. DRD4 antagonists inhibited the downstream effectors PDGFRβ, ERK1/2, and mTOR and disrupted the autophagy-lysosomal pathway, leading to accumulation of autophagic vacuoles followed by G0/G1 arrest and apoptosis. These results demonstrate a role for neurochemical pathways in governing GBM stem cell proliferation and suggest therapeutic approaches for GBM. PMID:27300435

  4. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures

    NASA Astrophysics Data System (ADS)

    Newcomb, Christina J.; Sur, Shantanu; Ortony, Julia H.; Lee, One-Sun; Matson, John B.; Boekhoven, Job; Yu, Jeong Min; Schatz, George C.; Stupp, Samuel I.

    2014-02-01

    Many naturally occurring peptides containing cationic and hydrophobic domains have evolved to interact with mammalian cell membranes and have been incorporated into materials for non-viral gene delivery, cancer therapy or treatment of microbial infections. Their electrostatic attraction to the negatively charged cell surface and hydrophobic interactions with the membrane lipids enable intracellular delivery or cell lysis. Although the effects of hydrophobicity and cationic charge of soluble molecules on the cell membrane are well known, the interactions between materials with these molecular features and cells remain poorly understood. Here we report that varying the cohesive forces within nanofibres of supramolecular materials with nearly identical cationic and hydrophobic structure instruct cell death or cell survival. Weak intermolecular bonds promote cell death through disruption of lipid membranes, while materials reinforced by hydrogen bonds support cell viability. These findings provide new strategies to design biomaterials that interact with the cell membrane.

  5. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures

    PubMed Central

    Newcomb, Christina J.; Sur, Shantanu; Ortony, Julia H.; Lee, One-Sun; Matson, John B.; Boekhoven, Job; Yu, Jeong Min; Schatz, George C.; Stupp, Samuel I.

    2014-01-01

    Many naturally occurring peptides containing cationic and hydrophobic domains have evolved to interact with mammalian cell membranes and have been incorporated into materials for non-viral gene delivery, cancer therapy, or treatment of microbial infections. Their electrostatic attraction to the negatively charged cell surface and hydrophobic interactions with the membrane lipids enable intracellular delivery or cell lysis. While the effects of hydrophobicity and cationic charge of soluble molecules on the cell membrane are well known, the interactions between materials with these molecular features and cells remain poorly understood. Here we report that varying the cohesive forces within nanofibres of supramolecular materials with nearly identical cationic and hydrophobic structure instruct cell death or cell survival. Weak intermolecular bonds promote cell death through disruption of lipid membranes, while materials reinforced by hydrogen bonds support cell viability. These findings provide new strategies to design biomaterials that interact with the cell membrane. PMID:24531236

  6. Factors affecting gadwall brood and duckling survival in prairie pothole landscapes

    USGS Publications Warehouse

    Pietz, P.J.; Krapu, G.L.; Brandt, D.A.; Cox, R.R., Jr.

    2003-01-01

    Waterfowl biologists need reliable predictors of brood and duckling survival to accurately estimate recruitment rates. We examined 30-day survival rates of gadwall (Anas strepera ) broods (1992-1994) and ducklings (1990-1994) in eastern North Dakota during years when water conditions ranged from extremely dry to extremely wet. Despite apparent resilience of gadwall populations during drought, our study documented a positive effect of seasonal wetland availability on gadwall duckling survival. Management efforts to improve recruitment will be more effective in years when most seasonal basins contain water.

  7. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival

    PubMed Central

    Wainwright, Derek A.; Balyasnikova, Irina V.; Chang, Alan L.; Ahmed, Atique U.; Moon, Kyung-Sub; Auffinger, Brenda; Tobias, Alex L.; Han, Yu; Lesniak, Maciej S.

    2012-01-01

    Purpose Glioblastoma multiforme (GBM) is an aggressive adult brain tumor with a poor prognosis. One hallmark of GBM is the accumulation of immunosuppressive and tumor-promoting CD4+FoxP3+GITR+ regulatory T cells (Tregs). Here, we investigated the role of indoleamine 2,3 dioxygenase (IDO) in brain tumors and the impact on Treg recruitment. Experimental Design To determine the clinical relevance of IDO expression in brain tumors, we first correlated patient survival to the level of IDO expression from resected glioma specimens. We also used novel orthotopic and transgenic models of glioma to study how IDO affects Tregs. The impact of tumor-derived and peripheral IDO expression on Treg recruitment, GITR expression and long-term survival was determined. Results Downregulated IDO expression in glioma predicted a significantly better prognosis in patients. Co-incidently, both IDO -competent and -deficient mice showed a survival advantage bearing IDO-deficient brain tumors, when compared to IDO-competent brain tumors. Moreover, IDO-deficiency was associated with a significant decrease in brain-resident Tregs, both in orthotopic and transgenic mouse glioma models. IDO-deficiency was also associated with lower GITR expression levels on Tregs. Interestingly, the long-term survival advantage conferred by IDO-deficiency was lost in T cell-deficient mice. Conclusions These clinical and pre-clinical data confirm that IDO expression increases the recruitment of immunosuppressive Tregs which leads to tumor outgrowth. In contrast, IDO deficiency decreases Treg recruitment and enhances T cell-mediated tumor rejection. Thus, the data suggest a critical role for IDO-mediated immunosuppression in glioma and supports the continued investigation of IDO-Treg interactions in the context of brain tumors. PMID:22932670

  8. High-density lipoprotein, mitochondrial dysfunction and cell survival mechanisms.

    PubMed

    White, C Roger; Giordano, Samantha; Anantharamaiah, G M

    2016-09-01

    Ischemic injury is associated with acute myocardial infarction, percutaneous coronary intervention, coronary artery bypass grafting and open heart surgery. The timely re-establishment of blood flow is critical in order to minimize cardiac complications. Reperfusion after a prolonged ischemic period, however, can induce severe cardiomyocyte dysfunction with mitochondria serving as a major target of ischemia/reperfusion (I/R) injury. An increase in the formation of reactive oxygen species (ROS) induces damage to mitochondrial respiratory complexes leading to uncoupling of oxidative phosphorylation. Mitochondrial membrane perturbations also contribute to calcium overload, opening of the mitochondrial permeability transition pore (mPTP) and the release of apoptotic mediators into the cytoplasm. Clinical and experimental studies show that ischemic preconditioning (ICPRE) and postconditioning (ICPOST) attenuate mitochondrial injury and improve cardiac function in the context of I/R injury. This is achieved by the activation of two principal cell survival cascades: 1) the Reperfusion Injury Salvage Kinase (RISK) pathway; and 2) the Survivor Activating Factor Enhancement (SAFE) pathway. Recent data suggest that high density lipoprotein (HDL) mimics the effects of conditioning protocols and attenuates myocardial I/R injury via activation of the RISK and SAFE signaling cascades. In this review, we discuss the roles of apolipoproteinA-I (apoA-I), the major protein constituent of HDL, and sphingosine 1-phosphate (S1P), a lysosphingolipid associated with small, dense HDL particles as mediators of cardiomyocyte survival. Both apoA-I and S1P exert an infarct-sparing effect by preventing ROS-dependent injury and inhibiting the opening of the mPTP. PMID:27150975

  9. Combined cisplatin and aurora inhibitor treatment increase neuroblastoma cell death but surviving cells overproduce BDNF.

    PubMed

    Polacchini, Alessio; Albani, Clara; Baj, Gabriele; Colliva, Andrea; Carpinelli, Patrizia; Tongiorgi, Enrico

    2016-01-01

    Drug-resistance to chemotherapics in aggressive neuroblastoma (NB) is characterized by enhanced cell survival mediated by TrkB and its ligand, brain-derived neurotrophic factor (BDNF); thus reduction in BDNF levels represent a promising strategy to overcome drug-resistance, but how chemotherapics regulate BDNF is unknown. Here, cisplatin treatment in SK-N-BE neuroblastoma upregulated multiple BDNF transcripts, except exons 5 and 8 variants. Cisplatin increased BDNF mRNA and protein, and enhanced translation of a firefly reporter gene flanked by BDNF 5'UTR exons 1, 2c, 4 or 6 and 3'UTR-long. To block BDNF translation we focused on aurora kinases inhibitors which are proposed as new chemotherapeutics. NB cell survival after 24 h treatment was 43% with cisplatin, and 22% by cisplatin+aurora kinase inhibitor PHA-680632, while the aurora kinases inhibitor alone was less effective; however the combined treatment induced a paradoxical increase of BDNF in surviving cells with strong translational activation of exon6-3'UTR-long transcript, while translation of BDNF transcripts 1, 2C and 4 was suppressed. In conclusion, combined cisplatin and aurora kinase inhibitor treatment increases cell death, but induces BDNF overproduction in surviving cells through an aurora kinase-independent mechanism. PMID:27256407

  10. Combined cisplatin and aurora inhibitor treatment increase neuroblastoma cell death but surviving cells overproduce BDNF

    PubMed Central

    Polacchini, Alessio; Albani, Clara; Baj, Gabriele; Colliva, Andrea; Carpinelli, Patrizia

    2016-01-01

    ABSTRACT Drug-resistance to chemotherapics in aggressive neuroblastoma (NB) is characterized by enhanced cell survival mediated by TrkB and its ligand, brain-derived neurotrophic factor (BDNF); thus reduction in BDNF levels represent a promising strategy to overcome drug-resistance, but how chemotherapics regulate BDNF is unknown. Here, cisplatin treatment in SK-N-BE neuroblastoma upregulated multiple BDNF transcripts, except exons 5 and 8 variants. Cisplatin increased BDNF mRNA and protein, and enhanced translation of a firefly reporter gene flanked by BDNF 5′UTR exons 1, 2c, 4 or 6 and 3′UTR-long. To block BDNF translation we focused on aurora kinases inhibitors which are proposed as new chemotherapeutics. NB cell survival after 24 h treatment was 43% with cisplatin, and 22% by cisplatin+aurora kinase inhibitor PHA-680632, while the aurora kinases inhibitor alone was less effective; however the combined treatment induced a paradoxical increase of BDNF in surviving cells with strong translational activation of exon6-3′UTR-long transcript, while translation of BDNF transcripts 1, 2C and 4 was suppressed. In conclusion, combined cisplatin and aurora kinase inhibitor treatment increases cell death, but induces BDNF overproduction in surviving cells through an aurora kinase-independent mechanism. PMID:27256407

  11. Detection of QTL in rainbow trout affecting survival when challenged with Flavobacterium psychrophilum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial cold water disease (BCWD) causes significant economic loss in salmonid aquaculture. We previously detected genetic variation in survival following challenge with Flavobacterium psychrophilum (Fp), the causative agent of BCWD in rainbow trout (Oncorhynchus mykiss). A family-based selectio...

  12. Myeloid-Derived Suppressor Cell Survival and Function Are Regulated by the Transcription Factor Nrf2.

    PubMed

    Beury, Daniel W; Carter, Kayla A; Nelson, Cassandra; Sinha, Pratima; Hanson, Erica; Nyandjo, Maeva; Fitzgerald, Phillip J; Majeed, Amry; Wali, Neha; Ostrand-Rosenberg, Suzanne

    2016-04-15

    Tumor-induced myeloid-derived suppressor cells (MDSC) contribute to immune suppression in tumor-bearing individuals and are a major obstacle to effective immunotherapy. Reactive oxygen species (ROS) are one of the mechanisms used by MDSC to suppress T cell activation. Although ROS are toxic to most cells, MDSC survive despite their elevated content and release of ROS. NF erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates a battery of genes that attenuate oxidative stress. Therefore, we hypothesized that MDSC resistance to ROS may be regulated by Nrf2. To test this hypothesis, we used Nrf2(+/+)and Nrf2(-/-)BALB/c and C57BL/6 mice bearing 4T1 mammary carcinoma and MC38 colon carcinoma, respectively. Nrf2 enhanced MDSC suppressive activity by increasing MDSC production of H2O2, and it increased the quantity of tumor-infiltrating MDSC by reducing their oxidative stress and rate of apoptosis. Nrf2 did not affect circulating levels of MDSC in tumor-bearing mice because the decreased apoptotic rate of tumor-infiltrating MDSC was balanced by a decreased rate of differentiation from bone marrow progenitor cells. These results demonstrate that Nrf2 regulates the generation, survival, and suppressive potency of MDSC, and that a feedback homeostatic mechanism maintains a steady-state level of circulating MDSC in tumor-bearing individuals. PMID:26936880

  13. Factors affecting nest survival of Henslow's Sparrows (Ammodramus henslowii) in southern Indiana

    USGS Publications Warehouse

    Crimmins, Shawn M.; McKann, Patrick C.; Robb, Joseph R.; Lewis, Jason P.; Vanosdol, Teresa; Walker, Benjamin A.; Williams, Perry J.; Thogmartin, Wayne E.

    2016-01-01

    Populations of Henslow’s Sparrows have declined dramatically in recent decades, coinciding with widespread loss of native grassland habitat. Prescribed burning is a primary tool for maintaining grassland patches, but its effects on nest survival of Henslow’s Sparrows remains largely unknown, especially in conjunction with other factors. We monitored 135 nests of Henslow’s Sparrows at Big Oaks National Wildlife Refuge in southern Indiana from 1998–2001 in an effort to understand factors influencing nest survival, including prescribed burning of habitat. We used a mixed-effects implementation of the logistic exposure model to predict daily nest survival in an information theoretic framework. We found that daily survival declined near the onset of hatching and increased with the height of standing dead vegetation, although this relationship was weak. We found only nominal support to suggest that time since burn influenced nest survival. Overall, nest age was the most important factor in estimating daily nest survival rates. Our daily survival estimate from our marginal model (0.937) was similar to that derived from the Mayfield method (0.944) suggesting that our results are comparable to previous studies using the Mayfield approach. Our results indicate that frequent burning to limit woody encroachment into grassland habitats might benefit Henslow’s Sparrow, but that a variety of factors ultimately influence daily nest survival. However, we note that burning too frequently can also limit occupancy by Henslow’s Sparrows. We suggest that additional research is needed to determine the population-level consequences of habitat alteration and if other extrinsic factors influence demographics of Henslow’s Sparrows.

  14. Survival of Manure-borne and Fecal Coliforms in Soil: Temperature Dependence as Affected by Site-Specific Factors.

    PubMed

    Park, Yongeun; Pachepsky, Yakov; Shelton, Daniel; Jeong, Jaehak; Whelan, Gene

    2016-05-01

    Understanding pathogenic and indicator bacteria survival in soils is essential for assessing the potential of microbial contamination of water and produce. The objective of this work was to evaluate the effects of soil properties, animal source, experimental conditions, and the application method on temperature dependencies of manure-borne generic , O157:H7, and fecal coliforms survival in soils. A literature search yielded 151 survival datasets from 70 publications. Either one-stage or two-stage kinetics was observed in the survival datasets. We used duration and rate of the logarithm of concentration change as parameters of the first stage in the two-stage kinetics data. The second stage of the two-stage kinetics and the one-stage kinetics were simulated with the model to find the dependence of the inactivation rate on temperature. Classification and regression trees and linear regressions were applied to parameterize the kinetics. Presence or absence of two-stage kinetics was controlled by temperature, soil texture, soil water content, and for fine-textured soils by setting experiments in the field or in the laboratory. The duration of the first stage was predominantly affected by soil water content and temperature. In the model dependencies of inactivation rates on temperature, parameter estimates were significantly affected by the laboratory versus field conditions and by the application method, whereas inactivation rates at 20°C were significantly affected by all survival and management factors. Results of this work can provide estimates of coliform survival parameters for models of microbial water quality. PMID:27136162

  15. Sarcopenia Does Not Affect Survival or Outcomes in Soft-Tissue Sarcoma

    PubMed Central

    Wilson, Robert J.; Alamanda, Vignesh K.; Hartley, Katherine G.; Mesko, Nathan W.; Halpern, Jennifer L.; Schwartz, Herbert S.; Holt, Ginger E.

    2015-01-01

    Background and Objective. Sarcopenia is associated with decreased survival and increased complications in carcinoma patients. We hypothesized that sarcopenic soft-tissue sarcoma (STS) patients would have decreased survival, increased incidence of wound complications, and increased length of postresection hospital stay (LOS). Methods. A retrospective, single-center review of 137 patients treated surgically for STS was conducted. Sarcopenia was assessed by measuring the cross-sectional area of bilateral psoas muscles (total psoas muscle area, TPA) at the level of the third lumbar vertebrae on a pretreatment axial computed tomography scan. TPA was then adjusted for height (cm2/m2). The association between height-adjusted TPA and survival was assessed using Cox proportional hazard model. A logistical model was used to assess the association between height-adjusted TPA and wound complications. A linear model was used to assess the association between height-adjusted TPA and LOS. Results. Height-adjusted TPA was not an independent predictor of overall survival (p = 0.746). Patient age (p = 0.02) and tumor size (p = 0.009) and grade (p = 0.001) were independent predictors of overall survival. Height-adjusted TPA was not a predictor of increased hospital LOS (p = 0.66), greater incidence of postoperative infection (p = 0.56), or other wound complications (p = 0.14). Conclusions. Sarcopenia does not appear to impact overall survival, LOS, or wound complications in patients with STS. PMID:26696772

  16. Human Olfactory Mucosa Multipotent Mesenchymal Stromal Cells Promote Survival, Proliferation, and Differentiation of Human Hematopoietic Cells

    PubMed Central

    Diaz-Solano, Dylana; Wittig, Olga; Ayala-Grosso, Carlos; Pieruzzini, Rosalinda

    2012-01-01

    Multipotent mesenchymal stromal cells (MSCs) from the human olfactory mucosa (OM) are cells that have been proposed as a niche for neural progenitors. OM-MSCs share phenotypic and functional properties with bone marrow (BM) MSCs, which constitute fundamental components of the hematopoietic niche. In this work, we investigated whether human OM-MSCs may promote the survival, proliferation, and differentiation of human hematopoietic stem cells (HSCs). For this purpose, human bone marrow cells (BMCs) were co-cultured with OM-MSCs in the absence of exogenous cytokines. At different intervals, nonadherent cells (NACs) were harvested from BMC/OM-MSC co-cultures, and examined for the expression of blood cell markers by flow cytometry. OM-MSCs supported the survival (cell viability >90%) and proliferation of BMCs, after 54 days of co-culture. At 20 days of co-culture, flow cytometric and microscopic analyses showed a high percentage (73%) of cells expressing the pan-leukocyte marker CD45, and the presence of cells of myeloid origin, including polymorphonuclear leukocytes, monocytes, basophils, eosinophils, erythroid cells, and megakaryocytes. Likewise, T (CD3), B (CD19), and NK (CD56/CD16) cells were detected in the NAC fraction. Colony-forming unit–granulocyte/macrophage (CFU-GM) progenitors and CD34+ cells were found, at 43 days of co-culture. Reverse transcriptase–polymerase chain reaction (RT-PCR) studies showed that OM-MSCs constitutively express early and late-acting hematopoietic cytokines (i.e., stem cell factor [SCF] and granulocyte- macrophage colony-stimulating factor [GM-CSF]). These results constitute the first evidence that OM-MSCs may provide an in vitro microenvironment for HSCs. The capacity of OM-MSCs to support the survival and differentiation of HSCs may be related with the capacity of OM-MSCs to produce hematopoietic cytokines. PMID:22471939

  17. Human clusterin gene expression is confined to surviving cells during in vitro programmed cell death.

    PubMed Central

    French, L E; Wohlwend, A; Sappino, A P; Tschopp, J; Schifferli, J A

    1994-01-01

    Clusterin is a serum glycoprotein endowed with cell aggregating, complement inhibitory, and lipid binding properties, and is also considered as a specific marker of dying cells, its expression being increased in various tissues undergoing programmed cell death (PCD). However, no study has so far directly shown that cells expressing clusterin in these tissues are actually apoptotic as defined by morphological and biochemical criteria. We have studied cellular clusterin gene expression in vitro using three different models of PCD: (a) ultraviolet B (UV-B) irradiation of human U937, HeLa, and A431 cell lines, (b) in vitro aging of human peripheral blood neutrophils (PMNs), and (c) dexamethasone-induced cell death of the human lymphoblastoid cell line CEM-C7. In all three models, the classical morphological and biochemical features of PCD observed did not correlate with an increase, but with either a marked decrease or an absence of clusterin gene expression as assessed by Northern blot analysis. In situ hybridization of U937 and A431 cells after UV-B irradiation revealed, in addition, that only morphologically normal cells that are surviving continue to express the clusterin gene. Our results demonstrate that in the human myeloid, lymphoid, and epithelial cell types studied, clusterin gene expression is not a prerequisite to their death by apoptosis. In addition, and most interestingly, in situ hybridization of U937 and A431 cells revealed that only surviving cells express the clusterin gene after the induction of PCD, thus providing novel evidence suggesting that clusterin may be associated with cell survival within tissues regressing as a consequence of PCD. Images PMID:8113419

  18. Exposure to Cerium Dioxide Nanoparticles Differently Affect Swimming Performance and Survival in Two Daphnid Species

    PubMed Central

    Artells, Ester; Issartel, Julien; Auffan, Mélanie; Borschneck, Daniel; Thill, Antoine; Tella, Marie; Brousset, Lenka; Rose, Jérôme; Bottero, Jean-Yves; Thiéry, Alain

    2013-01-01

    The CeO2 NPs are increasingly used in industry but the environmental release of these NPs and their subsequent behavior and biological effects are currently unclear. This study evaluates for the first time the effects of CeO2 NPs on the survival and the swimming performance of two cladoceran species, Daphnia similis and Daphnia pulex after 1, 10 and 100 mg.L−1 CeO2 exposures for 48 h. Acute toxicity bioassays were performed to determine EC50 of exposed daphnids. Video-recorded swimming behavior of both daphnids was used to measure swimming speeds after various exposures to aggregated CeO2 NPs. The acute ecotoxicity showed that D. similis is 350 times more sensitive to CeO2 NPs than D. pulex, showing 48-h EC50 of 0.26 mg.L−1 and 91.79 mg.L−1, respectively. Both species interacted with CeO2 NPs (adsorption), but much more strongly in the case of D. similis. Swimming velocities (SV) were differently and significantly affected by CeO2 NPs for both species. A 48-h exposure to 1 mg.L−1 induced a decrease of 30% and 40% of the SV in D. pulex and D. similis, respectively. However at higher concentrations, the SV of D. similis was more impacted (60% off for 10 mg.L−1 and 100 mg.L−1) than the one of D. pulex. These interspecific toxic effects of CeO2 NPs are explained by morphological variations such as the presence of reliefs on the cuticle and a longer distal spine in D. similis acting as traps for the CeO2 aggregates. In addition, D. similis has a mean SV double that of D. pulex and thus initially collides with twice more NPs aggregates. The ecotoxicological consequences on the behavior and physiology of a CeO2 NPs exposure in daphnids are discussed. PMID:23977004

  19. Functional SNP in stem of mir-146a affects Her2 status and breast cancer survival.

    PubMed

    Meshkat, Mahboobeh; Tanha, Hamzeh Mesrian; Naeini, Marjan Mojtabavi; Ghaedi, Kamran; Sanati, Mohammad H; Meshkat, Marzieh; Bagheri, Fatemeh

    2016-07-01

    In-silico investigation suggested a common variant within stem of miR-146a-5p precursor (rs2910164, n.60C>G) associated with breast cancer (BC) phenotypes. Our aim was computationally predicting possible targets of miR-146a-5p and probable rs2910164 mechanism of action in expression of phenotypes in BC. Additionally, a case-control study was designated to examine experimentally the correlation of mir-146a rs2910164 variant and BC phenotypes. In this study, 152 BC subjects and healthy controls were genotyped using RFLP-PCR. Allelic and genotypic association and Armitage's trend tests were run to investigate the correlation between the alleles and genotypes and expressed phenotypes of BC. Bioinformatics analyses introduce regulatory function of miR-146a-5p in numerous signaling pathways and impact of allele substitution upon mir-146a stem-loop stability. Logistic regression data represented the C allele of rs2910164 (OR = 4.00, p= 0.0037) as the risk allele and associated with Her2-positive phenotype. In a similar vein, data revealed the correlation of the C allele and cancer death less than two years in BC patients (OR = 2.65, p= 0.0217). Ultimately, unconditional logistical regression models suggested log-additive model for inheritance manner of rs2910164 in either Her2 status or BC survival (OR = 5.64, p= 0.0025 and OR = 3.13, p= 0.019, respectively). Using bioinformatics connected association of Her2 status to altered function of miR-146a-5p in regulation of focal adhesion and Ras pathway. Furthermore, computations inferred the association between death phenotype and studied SNP upon specific target genes of miR-146a-5p involved in focal adhesion, EGF receptor, Ras, ErbB, interleukin, Toll-like receptor, NGF, angiogenesis, and p53 feedback loops 2 signaling pathways. These verdicts may enhance our perceptions of how mir-146a rs2910164 affect expressed phenotypes in BC, and might have potential implications to develop BC treatment in future. PMID:27434289

  20. Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells

    PubMed Central

    Bauckman, K A; Haller, E; Flores, I; Nanjundan, M

    2013-01-01

    Ovarian cancer is a leading cause of cancer death in women in the United States. While the majority of ovarian cancers are serous, some rarer subtypes (i.e. clear cell) are often associated with endometriosis, a benign gynecological disease. Iron is rich in the cyst fluid of endometriosis-associated ovarian cancers and induces persistent oxidative stress. The role of iron, an essential nutrient involved in multiple cellular functions, in normal ovarian cell survival and ovarian cancer remains unclear. Iron, presented as ferric ammonium citrate (FAC), dramatically inhibits cell survival in ovarian cancer cell types associated with Ras mutations, while it is without effect in immortalized normal ovarian surface epithelial (T80) and endometriotic epithelial cells (lacking Ras mutations). Interestingly, FAC induced changes in cytoplasmic vacuolation concurrently with increases in LC3-II levels (an autophagy marker); these changes occurred in an ATG5/ATG7-dependent, beclin-1/hVps34-independent, and Ras-independent manner. Knockdown of autophagy mediators in HEY ovarian cancer cells reversed FAC-induced LC3-II levels, but there was little effect on reversing the cell death response. Intriguingly, transmission electron microscopy of FAC-treated T80 cells demonstrated abundant lysosomes (confirmed using Lysotracker) rich in iron particles, which occurred in a Ras-independent manner. Although the mitogen-activated protein kinase (MAPK) inhibitor, U0126, reversed FAC-induced LC3-II/autophagic punctae and lysosomes in a Ras-independent manner, it was remarkable that U0126 reversed cell death in malignant ovarian cells associated with Ras mutations. Moreover, FAC increased heme oxygenase-1 expression in H-Ras-overexpressing T80 cells, which was associated with increased cell death when overexpressed in T80 cells. Disruption of intracellular iron levels, via chelation of intracellular iron (deferoxamine), was also detrimental to malignant ovarian cell survival; thus

  1. Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells.

    PubMed

    Bauckman, K A; Haller, E; Flores, I; Nanjundan, M

    2013-01-01

    Ovarian cancer is a leading cause of cancer death in women in the United States. While the majority of ovarian cancers are serous, some rarer subtypes (i.e. clear cell) are often associated with endometriosis, a benign gynecological disease. Iron is rich in the cyst fluid of endometriosis-associated ovarian cancers and induces persistent oxidative stress. The role of iron, an essential nutrient involved in multiple cellular functions, in normal ovarian cell survival and ovarian cancer remains unclear. Iron, presented as ferric ammonium citrate (FAC), dramatically inhibits cell survival in ovarian cancer cell types associated with Ras mutations, while it is without effect in immortalized normal ovarian surface epithelial (T80) and endometriotic epithelial cells (lacking Ras mutations). Interestingly, FAC induced changes in cytoplasmic vacuolation concurrently with increases in LC3-II levels (an autophagy marker); these changes occurred in an ATG5/ATG7-dependent, beclin-1/hVps34-independent, and Ras-independent manner. Knockdown of autophagy mediators in HEY ovarian cancer cells reversed FAC-induced LC3-II levels, but there was little effect on reversing the cell death response. Intriguingly, transmission electron microscopy of FAC-treated T80 cells demonstrated abundant lysosomes (confirmed using Lysotracker) rich in iron particles, which occurred in a Ras-independent manner. Although the mitogen-activated protein kinase (MAPK) inhibitor, U0126, reversed FAC-induced LC3-II/autophagic punctae and lysosomes in a Ras-independent manner, it was remarkable that U0126 reversed cell death in malignant ovarian cells associated with Ras mutations. Moreover, FAC increased heme oxygenase-1 expression in H-Ras-overexpressing T80 cells, which was associated with increased cell death when overexpressed in T80 cells. Disruption of intracellular iron levels, via chelation of intracellular iron (deferoxamine), was also detrimental to malignant ovarian cell survival; thus

  2. Impact of Neoadjuvant Radiation on Survival in Stage III Non-Small-Cell Lung Cancer

    SciTech Connect

    Koshy, Matthew; Goloubeva, Olga; Suntharalingam, Mohan

    2011-04-01

    Purpose: The role of surgery in Stage III non-small-cell lung cancer (NSCLC) is controversial. This study was undertaken to assess the impact of neoadjuvant radiation therapy for Stage III NSCLC. Methods and Materials: This was a retrospective study from the Surveillance, Epidemiology, and End Results (SEER) database that included patients who were 18 years and older with NSCLC classified as Stage III and who underwent definitive therapy from 1988 to 2004. Patients were characterized by type of treatment received. Survival functions were estimated by the Kaplan-Meier method, and Cox regression model was used to analyze trends in overall (OS) and cause-specific survival (CSS). Results: A total of 48,131 patients were selected, with a median follow-up of 10 months (range, 0-203 months). By type of treatment, the 3-year OS was 10% with radiation therapy (RT), 37% with surgery (S), 34% with surgery and postoperative radiation (S-RT), and 45% with neoadjuvant radiation followed by surgery (Neo-RT) (p = 0.0001). Multivariable Cox model identified sex, race, laterality, T stage, N stage, and type of treatment as factors affecting survival. Estimated hazard ratios (HR) adjusted for other variables in regression model showed the types of treatment: S (HR, 1.3; 95% confidence interval [CI], 1.2-1.4), S-RT (HR, 1.2; 95% CI, 1.1-1.3), and RT (HR, 2.3; 95% CI, 2.15-2.53) were associated with significantly worse overall survival when compared with Neo-RT (p = 0.0001). Conclusion: This population based study demonstrates that patients with Stage III NSCLC receiving Neo-RT had significantly improved overall survival when compared with other treatment groups.

  3. Demography of forest birds in Panama: How do transients affect estimates of survival rates?

    USGS Publications Warehouse

    Brawn, J.D.; Karr, J.R.; Nichols, J.D.; Robinson, W.D.

    1999-01-01

    Estimates of annual survival rates of neotropical birds have proven controversial. Traditionally, tropical birds were thought to have high survival rates for their size, but analyses of a multispecies assemblage from Panama by Karr et al. (1990) provided a counterexample to that view. One criticism of that study has been that the estimates were biased by transient birds captured only once as they passed through the area being sampled. New models that formally adjust for transient individuals have been developed since 1990. Preliminary analyses indicate that these models are indeed useful in modelling the data from Panama. Nonetheless, there is considerable interspecific variation and overall estimates of annual survival rates for understorey birds in Panama remain lower than those from other studies in the Neotropics and well below the rates long assumed for tropical birds (i.e. > 0.80). Therefore, tropical birds may not have systematically higher survival rates than temperate-zone species. Variation in survival rates among tropical species suggests that theory based on a simple tradeoff between clutch size and longevity is inadequate. The demographic traits of birds in the tropics (and elsewhere) vary within and among species according to some combination of historical and ongoing ecological factors. Understanding these processes is the challenge for future work.

  4. Squamous cell carcinoma of the prostate: long-term survival after combined chemo-radiation

    PubMed Central

    Munoz, Fernando; Franco, Pierfrancesco; Ciammella, Patrizia; Clerico, Mario; Giudici, Mauro; Filippi, Andrea Riccardo; Ricardi, Umberto

    2007-01-01

    Background Carcinoma of the prostate gland is the most frequent malignant tumour affecting male population. While the large majority of tumours is represented by adenocarcinoma, pure squamous cell carcinoma comprises only 0,5–1% of all prostate neoplastic lesions. It is characterised by a high degree of malignancy, commonly metastasising to the bone (mainly with osteolytic lesions), liver and lungs with a median survival time of 14 months. Several therapeutic approaches have been employed in the effort to treat prostate pure squamous cell carcinoma, including radical surgery, radiotherapy, chemotherapy and hormonal therapy. All of them mostly failed to gain a significant survival benefit. Case report We herein report on a case of pure squamous cell carcinoma of the prostate approached with combined-modality treatment, with the administration of 3 courses of cisplatin 75 mg/m2 on day 1 and continous infusion 5-fluorouracil 750 mg/m2 on day 1 to 5 and, subsequently, radiotherapy, with the delivery of a total dose of 46 Gy to the whole pelvis, with additional boost doses of 20 Gy to the prostatic bed and adjunctive 6 Gy to the prostate gland (72 Gy in total). The patient remained free of disease for 5 years, finally experiencing local relapse and, subsequently, dying of acute renal failure due to bilateral uretero-hydro-nephrosis. In addition, we provide a complete overview of all reported cases available within the medical literature. Conclusion Since it remains questionable which should be the most appropriate therapeutic approach towards prostate pure squamous cell carcinoma, our report demonstrates that a prolonged disease control, with a consistent survival time, may be achieved by the combination of an effective local treatment such as radiotherapy with systemic infusion of chemotherapeutic drugs. PMID:17407588

  5. The caveolin-1 connection to cell death and survival.

    PubMed

    Quest, A F G; Lobos-González, L; Nuñez, S; Sanhueza, C; Fernández, J-G; Aguirre, A; Rodríguez, D; Leyton, L; Torres, V

    2013-02-01

    Caveolins are a family of membrane proteins required for the formation of small plasma membrane invaginations called caveolae that are implicated in cellular trafficking processes. In addition to this structural role, these scaffolding proteins modulate numerous intracellular signaling pathways; often via direct interaction with specific binding partners. Caveolin-1 is particularly well-studied in this respect and has been attributed a large variety of functions. Thus, Caveolin-1 also represents the best-characterized isoform of this family with respect to its participation in cancer. Rather strikingly, available evidence indicates that Caveolin-1 belongs to a select group of proteins that function, depending on the cellular settings, both as tumor suppressor and promoter of cellular traits commonly associated with enhanced malignant behavior, such as metastasis and multi-drug resistance. The mechanisms underlying such ambiguity in Caveolin-1 function constitute an area of great interest. Here, we will focus on discussing how Caveolin-1 modulates cell death and survival pathways and how this may contribute to a better understanding of the ambiguous role this protein plays in cancer. PMID:23228128

  6. FAK and p53 Synergistically Decrease Neuroblastoma Cell Survival

    PubMed Central

    Gillory, Lauren A.; Stewart, Jerry E.; Megison, Michael L.; Waters, Alicia M.; Beierle, Elizabeth A.

    2015-01-01

    Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is important in many facets of neuroblastoma tumor development and progression. The p53 oncogene, although wild type in most neuroblastomas, lacks significant function as a tumor suppressor in these tumors. Recent reports have found that FAK and p53 interact in some tumor types. We have hypothesized FAK and p53 coordinately control each other’s expression and also interact in neuroblastoma. In the current study, we showed that not only do FAK and p53 interact but each one controls the expression of the other. In addition, we also examined the effects of FAK inhibition combined with p53 activation in neuroblastoma and showed that these two, in combination, had a synergistic effect upon neuroblastoma cell survival. The findings from this current study help to further our understanding of the regulation of neuroblastoma tumorigenesis, and may provide novel therapeutic strategies and targets for neuroblastoma and other pediatric solid tumors. PMID:25862488

  7. Role for protein geranylgeranylation in adult T-cell leukemia cell survival

    SciTech Connect

    Nonaka, Mizuho; Uota, Shin; Saitoh, Yasunori; Takahashi, Mayumi; Sugimoto, Haruyo; Amet, Tohti; Arai, Ayako; Miura, Osamu; Yamamoto, Naoki; Yamaoka, Shoji

    2009-01-15

    Adult T-cell leukemia (ATL) is a fatal lymphoproliferative disease that develops in human T-cell leukemia virus type I (HTLV-I)-infected individuals. Despite the accumulating knowledge of the molecular biology of HTLV-I-infected cells, effective therapeutic strategies remain to be established. Recent reports showed that the hydroxyl-3-methylglutaryl (HMG)-CoA reductase inhibitor statins have anti-proliferative and apoptotic effects on certain tumor cells through inhibition of protein prenylation. Here, we report that statins hinder the survival of ATL cells and induce apoptotic cell death. Inhibition of protein geranylgeranylation is responsible for these effects, since simultaneous treatment with isoprenoid precursors, geranylgeranyl pyrophosphate or farnesyl pyrophosphate, but not a cholesterol precursor squalene, restored the viability of ATL cells. Simvastatin inhibited geranylgeranylation of small GTPases Rab5B and Rac1 in ATL cells, and a geranylgeranyl transferase inhibitor GGTI-298 reduced ATL cell viability more efficiently than a farnesyl transferase inhibitor FTI-277. These results not only unveil an important role for protein geranylgeranylation in ATL cell survival, but also implicate therapeutic potentials of statins in the treatment of ATL.

  8. Improvement of Cell Survival During Human Pluripotent Stem Cell Definitive Endoderm Differentiation.

    PubMed

    Wang, Han; Luo, Xie; Yao, Li; Lehman, Donna M; Wang, Pei

    2015-11-01

    Definitive endoderm (DE) is a vital precursor for internal organs such as liver and pancreas. Efficient protocol to differentiate human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) to DE is essential for regenerative medicine and for modeling diseases; yet, poor cell survival during DE differentiation remains unsolved. In this study, our use of B27 supplement in modified differentiation protocols has led to a substantial improvement. We used an SOX17-enhanced green fluorescent protein (eGFP) reporter hESC line to compare and modify established DE differentiation protocols. Both total live cell numbers and the percentages of eGFP-positive cells were used to assess differentiation efficiency. Among tested protocols, three modified protocols with serum-free B27 supplement were developed to generate a high number of DE cells. Massive cell death was avoided during DE differentiation and the percentage of DE cells remained high. When the resulting DE cells were further differentiated toward the pancreatic lineage, the expression of pancreatic-specific markers was significantly increased. Similar high DE differentiation efficiency was observed in H1 hESCs and iPSCs through the modified protocols. In B27 components, bovine serum albumin was found to facilitate DE differentiation and cell survival. Using our modified DE differentiation protocols, satisfactory quantities of quality DE can be produced as primary material for further endoderm lineage differentiation. PMID:26132288

  9. p53 Promotes Cell Survival Due to the Reversibility of its Cell Cycle Checkpoints

    PubMed Central

    Lukin, Dana J.; Carvajal, Luis A.; Liu, Wen-jun; Resnick-Silverman, Lois; Manfredi, James J.

    2014-01-01

    The tumor suppressor p53 (TP53) has a well-studied role in triggering cell cycle checkpoint in response to DNA damage. Previous studies have suggested that functional p53 enhances chemosensitivity. In contrast, data are presented to show that p53 can be required for cell survival following DNA damage due to activation of reversible cell cycle checkpoints. The cellular outcome to DNA damage is determined by the duration and extent of the stimulus in a p53-dependent manner. In response to transient or low levels of DNA damage, p53 triggers a reversible G2 arrest whereas a sustained p53-dependent cell cycle arrest and senescence follows prolonged or high levels of DNA damage. Regardless of the length of treatment, p53-null cells arrest in G2, but ultimately adapt and proceed into mitosis. Interestingly, they fail to undergo cytokinesis, become multinucleated, and then die from apoptosis. Upon transient treatment with DNA damaging agents, wild-type p53 cells reversibly arrest and repair the damage, whereas p53-null cells fail to do so and die. These data indicate that p53 can promote cell survival by inducing reversible cell cycle arrest, thereby allowing for DNA repair. Thus, transient treatments may exploit differences between wild-type p53 and p53-null cells. PMID:25158956

  10. Factors affecting the attachment of Treponema pallidum to mammalian cells in vitro.

    PubMed

    Wong, G H; Steiner, B; Faine, S; Graves, S

    1983-02-01

    Attachment of Treponema pallidum (Nichols) to mammalian cells is probably the first step in the pathogenesis of syphilis. It may also be important for the multiplication of T pallidum in vitro. When factors affecting the attachment of T pallidum to mammalian cells in vitro were studied significantly greater numbers of treponemes were found to attach to baby rabbit genital organ (BRGO) cells than to five other mammalian cell lines. When attached to BRGO cells T pallidum survived longer in vitro than unattached treponemes. Eagle's minimal essential medium was superior to three other culture media in increasing attachment and maintaining the survival of treponemes. Dithiothreitol (0.25-1.0 mmol/l) had no effect on the attachment of T pallidum to BRGO cells. Anaerobic conditions were superior to microaerophilic conditions, and the latter were superior to aerobic conditions for the attachment and survival of T pallidum to BRGO cells. Within the range of concentrations tested the number of treponemes attached to the BRGO cells was directly dependent on the concentrations of viable treponemes in the inoculum. Greater numbers of treponemes attached to actively metabolising BRGO cells than to quiescent or slowly growing cells. PMID:6337680

  11. Optimized Cell Survival and Seeding Efficiency for Craniofacial Tissue Engineering Using Clinical Stem Cell Therapy

    PubMed Central

    Rajan, Archana; Eubanks, Emily; Edwards, Sean; Aronovich, Sharon; Travan, Suncica; Rudek, Ivan; Wang, Feng; Lanis, Alejandro

    2014-01-01

    Traumatic injuries involving the face are very common, yet the clinical management of the resulting craniofacial deficiencies is challenging. These injuries are commonly associated with missing teeth, for which replacement is compromised due to inadequate jawbone support. Using cell therapy, we report the upper jaw reconstruction of a patient who lost teeth and 75% of the supporting jawbone following injury. A mixed population of bone marrow-derived autologous stem and progenitor cells was seeded onto β-tricalcium phosphate (β-TCP), which served as a scaffold to deliver cells directly to the defect. Conditions (temperature, incubation time) to achieve the highest cell survival and seeding efficiency were optimized. Four months after cell therapy, cone beam computed tomography and a bone biopsy were performed, and oral implants were placed to support an engineered dental prosthesis. Cell seeding efficiency (>81%) of the β-TCP and survival during the seeding process (94%) were highest when cells were incubated with β-TCP for 30 minutes, regardless of incubation temperature; however, at 1 hour, cell survival was highest when incubated at 4°C. Clinical, radiographic, and histological analyses confirmed that by 4 months, the cell therapy regenerated 80% of the original jawbone deficiency with vascularized, mineralized bone sufficient to stably place oral implants. Functional and aesthetic rehabilitation of the patient was successfully completed with installation of a dental prosthesis 6 months following implant placement. This proof-of-concept clinical report used an evidence-based approach for the cell transplantation protocol used and is the first to describe a cell therapy for craniofacial trauma reconstruction. PMID:25378653

  12. Inhibition of ER stress–associated IRE-1/XBP-1 pathway reduces leukemic cell survival

    PubMed Central

    Tang, Chih-Hang Anthony; Ranatunga, Sujeewa; Kriss, Crystina L.; Cubitt, Christopher L.; Tao, Jianguo; Pinilla-Ibarz, Javier A.; Del Valle, Juan R.; Hu, Chih-Chi Andrew

    2014-01-01

    Activation of the ER stress response is associated with malignant progression of B cell chronic lymphocytic leukemia (CLL). We developed a murine CLL model that lacks the ER stress–associated transcription factor XBP-1 in B cells and found that XBP-1 deficiency decelerates malignant progression of CLL-associated disease. XBP-1 deficiency resulted in acquisition of phenotypes that are disadvantageous for leukemic cell survival, including compromised BCR signaling capability and increased surface expression of sphingosine-1-phosphate receptor 1 (S1P1). Because XBP-1 expression requires the RNase activity of the ER transmembrane receptor IRE-1, we developed a potent IRE-1 RNase inhibitor through chemical synthesis and modified the structure to facilitate entry into cells to target the IRE-1/XBP-1 pathway. Treatment of CLL cells with this inhibitor (B-I09) mimicked XBP-1 deficiency, including upregulation of IRE-1 expression and compromised BCR signaling. Moreover, B-I09 treatment did not affect the transport of secretory and integral membrane-bound proteins. Administration of B-I09 to CLL tumor–bearing mice suppressed leukemic progression by inducing apoptosis and did not cause systemic toxicity. Additionally, B-I09 and ibrutinib, an FDA-approved BTK inhibitor, synergized to induce apoptosis in B cell leukemia, lymphoma, and multiple myeloma. These data indicate that targeting XBP-1 has potential as a treatment strategy, not only for multiple myeloma, but also for mature B cell leukemia and lymphoma. PMID:24812669

  13. Heme exporter FLVCR is required for T cell development and peripheral survival.

    PubMed

    Philip, Mary; Funkhouser, Scott A; Chiu, Edison Y; Phelps, Susan R; Delrow, Jeffrey J; Cox, James; Fink, Pamela J; Abkowitz, Janis L

    2015-02-15

    All aerobic cells and organisms must synthesize heme from the amino acid glycine and the tricarboxylic acid cycle intermediate succinyl CoA for incorporation into hemoproteins, such as the cytochromes needed for oxidative phosphorylation. Most studies on heme regulation have been done in erythroid cells or hepatocytes; however, much less is known about heme metabolism in other cell types. The feline leukemia virus subgroup C receptor (FLVCR) is a 12-transmembrane domain surface protein that exports heme from cells, and it was shown to be required for erythroid development. In this article, we show that deletion of Flvcr in murine hematopoietic precursors caused a complete block in αβ T cell development at the CD4(+)CD8(+) double-positive stage, although other lymphoid lineages were not affected. Moreover, FLVCR was required for the proliferation and survival of peripheral CD4(+) and CD8(+) T cells. These studies identify a novel and unexpected role for FLVCR, a major facilitator superfamily metabolite transporter, in T cell development and suggest that heme metabolism is particularly important in the T lineage. PMID:25582857

  14. Factors affecting the survival of patients with oesophageal carcinoma under radiotherapy in the north of Iran

    PubMed Central

    Hajian-Tilaki, K O

    2001-01-01

    Factors relevant to the survival of patients with oesophageal cancer under radiotherapy have been studied in northern Iran where its incidence is high. We conducted an analytical study using a historical cohort and information from the medical charts of patients with oesophageal cancer. Out of 523 patients referred to the Shahid Rajaii radiotherapy centre in Babolsar from 1992 to 1996, we followed 230 patients for whom an address was available in 1998. The frequency of prognostic factors among those not contacted was very similar to those included in the study. The data were analysed using survival analysis by the nonparametric method of Kaplan Meier and the Cox regression model to determine risk ratios (RR) of prognostic factors. Survival rates were 42% at 1 year, 21% at 2 years, and 8% at 5 years after diagnosis. Patients aged 50–64 were found to have poorer survival compared with those less than 50 (RR = 1.73, P = 0.03); the risk ratio for ages f = 65 was 1.88 (P = 0.03). Females had significantly better survival than males (RR = 0.71, P = 0.02). For each 100 rads dose of radiotherapy, the risk ratio was significantly decreased by 1% (RR = 0.99, P = 0.05); for each session of radiotherapy, the risk ratio was significantly decreased by 4% (RR = 0.96, P = 0.0001); for each square centimetre size of surface under radiotherapy, the risk ratio significantly increased (RR = 1.002, P = 0.04). We did not observe a significant difference on survival by histology, anatomical location of tumours, or type of treatment (P > 0.05). Prognosis is extremely poor. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11742486

  15. Early organ dysfunction affects long-term survival in acute pancreatitis patients

    PubMed Central

    Skouras, Christos; Hayes, Alastair J; Williams, Linda; Garden, O James; Parks, Rowan W; Mole, Damian J

    2014-01-01

    Background The effect of early organ dysfunction on long-term survival in acute pancreatitis (AP) patients is unknown. Objective The aim of this study was to ascertain whether early organ dysfunction impacts on long-term survival after an episode of AP. Methods A retrospective analysis was performed using survival data sourced from a prospectively maintained database of patients with AP admitted to the Royal Infirmary of Edinburgh during a 5-year period commencing January 2000. A multiple organ dysfunction syndrome (MODS) score of ≥ 2 during the first week of admission was used to define early organ dysfunction. After accounting for in-hospital deaths, long-term survival probabilities were estimated using the Kaplan–Meier test. The prognostic significance of patient characteristics was assessed by univariate and multivariate analyses using Cox's proportional hazards methods. Results A total of 694 patients were studied (median follow-up: 8.8 years). Patients with early organ dysfunction (MODS group) were found to have died prematurely [mean survival: 10.0 years, 95% confidence interval (CI) 9.4–10.6 years] in comparison with the non-MODS group (mean survival: 11.6 years, 95% CI 11.2–11.9 years) (log-rank test, P = 0.001) after the exclusion of in-hospital deaths. Multivariate analysis confirmed MODS as an independent predictor of long-term survival [hazard ratio (HR): 1.528, 95% CI 1.72–2.176; P = 0.019] along with age (HR: 1.062; P < 0.001), alcohol-related aetiology (HR: 2.027; P = 0.001) and idiopathic aetiology (HR: 1.548; P = 0.048). Conclusions Early organ dysfunction in AP is an independent predictor of long-term survival even when in-hospital deaths are accounted for. Negative predictors also include age, and idiopathic and alcohol-related aetiologies. PMID:24712663

  16. TopBP1 Governs Hematopoietic Stem/Progenitor Cells Survival in Zebrafish Definitive Hematopoiesis

    PubMed Central

    Gao, Lei; Li, Dantong; Ma, Ke; Zhang, Wenjuan; Xu, Tao; Fu, Cong; Jing, Changbin; Jia, Xiaoe; Wu, Shuang; Sun, Xin; Dong, Mei; Deng, Min; Chen, Yi; Zhu, Wenge; Peng, Jinrong; Wan, Fengyi; Zhou, Yi; Zon, Leonard I.; Pan, Weijun

    2015-01-01

    In vertebrate definitive hematopoiesis, nascent hematopoietic stem/progenitor cells (HSPCs) migrate to and reside in proliferative hematopoietic microenvironment for transitory expansion. In this process, well-established DNA damage response pathways are vital to resolve the replication stress, which is deleterious for genome stability and cell survival. However, the detailed mechanism on the response and repair of the replication stress-induced DNA damage during hematopoietic progenitor expansion remains elusive. Here we report that a novel zebrafish mutantcas003 with nonsense mutation in topbp1 gene encoding topoisomerase II β binding protein 1 (TopBP1) exhibits severe definitive hematopoiesis failure. Homozygous topbp1cas003 mutants manifest reduced number of HSPCs during definitive hematopoietic cell expansion, without affecting the formation and migration of HSPCs. Moreover, HSPCs in the caudal hematopoietic tissue (an equivalent of the fetal liver in mammals) in topbp1cas003 mutant embryos are more sensitive to hydroxyurea (HU) treatment. Mechanistically, subcellular mislocalization of TopBP1cas003 protein results in ATR/Chk1 activation failure and DNA damage accumulation in HSPCs, and eventually induces the p53-dependent apoptosis of HSPCs. Collectively, this study demonstrates a novel and vital role of TopBP1 in the maintenance of HSPCs genome integrity and survival during hematopoietic progenitor expansion. PMID:26131719

  17. Inhibitory killer cell immunoglobulin-like receptor (iKIR) mismatches improve survival after T-cell-repleted haploidentical transplantation.

    PubMed

    Bastos-Oreiro, Mariana; Anguita, Javier; Martínez-Laperche, Carolina; Fernández, Lucía; Buces, Elena; Navarro, Almudena; Pascual, Cristina; Pérez-Corral, Ana; Balsalobre, Pascual; Muñoz, Cristina; Kwon, Mi; Serrano, David; Perez-Martinez, Antonio; Buño, Ismael; Gayoso, Jorge; Díez-Martín, José Luís

    2016-05-01

    Alloreactivity triggered by interaction between killer cell immunoglobulin-like receptors (KIRs) and natural killer (NK) cells plays a role in the graft-versus-tumor effect after hematopoietic stem cell transplantation (SCT). Our aim in this study was to evaluate this role in the setting of T-cell-repleted haploidentical SCT with postinfusion high-dose cyclophosphamide (PT-Cy). We included 33 patients. Among patient-donor pairs with at least 1 inhibitory KIR (iKIR) gene mismatch, event-free survival (EFS) and cumulative incidence of relapse 1 year after transplant were significantly better (85% vs. 37% [P = 0.008] and 18% vs. 46% [P = 0.041], respectively). A subanalysis in 12 patients with Hodgkin's lymphoma (HL) showed an improvement in EFS 1 year after transplant in those patients with KIR ligand mismatch (100% vs. 25%, P = 0.012), although overall survival (OS) was not affected (85% vs. 80%, P = 0.2). Eight of 12 patient-donors pairs presented iKIR mismatches. Of note, this outcome was better in the small subgroup, both for EFS (100% vs. 25%, P = 0.012) and for OS (100% vs. 37%, P = 0.004). Our data suggest that in the setting of T-cell-repleted haploidentical SCT with PT-Cy, iKIR mismatch is associated with improved survival, with particularly good results for both iKIR and KIR ligand mismatches in patients with HL. PMID:26133015

  18. Stem cell factor enhances the survival of murine intestinal stem cells after photon irradiation

    SciTech Connect

    Leigh, B.R.; Khan, W.; Hancock, S.L.

    1995-04-01

    Recombinant rat stem cell factor (SCF) has been shown to decrease lethality in mice exposed to total-body irradiation (TBI) in the lower range of lethality through radioprotection of hematopoietic stem cells and acceleration of bone marrow repopulation. This study evaluates the effect of SCF on the survival of the intestinal mucosal stem cell after TBI. This non-hematopoietic cell is clinically relevant. Gastrointestinal toxicity is common during and after abdominal and pelvic radiation therapy and limits the radiation dose in these regions. As observed with bone marrow, the administration of SCF to mice prior to TBI enhanced the survival of mouse duodenal crypt stem cells. The maximum enhancement of survival was seen when 100 {mu}/kg of SCF was given intraperitoneally 8 h before irradiation. This regimen increased the survival of duodenal crypt stem cells after 12.0 Gy TBI from 22.5 {+-} 0.7 per duodenal cross section for controls to 30.0 {+-} 1.7 after treatment with SCF (P=0.03). The TBI dose producing 50% mortality of 6 days (LD{sub 50/6}) was increased from 14.9 Gy for control mice to 19.0 Gy for mice treated with SCF (dose modification factor = 1.28). These findings demonstrate that SCF (dose modification factor = 1.28). These findings demonstrate that SCF has radioprotective effects on a non-hematopoietic stem cell population and suggest that SCF may be of clinical value in preventing radiation injury to the intestine. 29 refs., 4 figs.

  19. HIPK2 modification code for cell death and survival

    PubMed Central

    Wook Choi, Dong; Yong Choi, Cheol

    2014-01-01

    Homeodomain-interacting protein kinase 2 (HIPK2) is a serine/threonine protein kinase that participates in the regulation of diverse cellular activities as a transcriptional cofactor and signal transducer. HIPK2 senses various signaling cues that in turn phosphorylate downstream substrates to coordinate developmental processes, cell cycle regulation, cell proliferation, differentiation, and the DNA damage response. HIPK2 functions are affected by its catalytic activity, stability, and subcellular localization, which in turn are dynamically regulated by diverse post-translational modifications such as polyubiquitination, SUMOylation, phosphorylation, and acetylation. HIPK2 is not modified with small molecules and/or peptides individually or independently, but in a combinatorial manner that is referred to as the “HIPK2 modification code.” HIPK2 integrates various signaling cues and senses different doses of DNA damage and ROS stimuli, which are reflected by unique patterns of HIPK2 modification. Hence, the HIPK2 modification code differentially contributes to cellular homeostasis and determination of cell fate depending on cellular context. PMID:27308327

  20. Short-term exposure to predation affects body elemental composition, climbing speed and survival ability in Drosophila melanogaster.

    PubMed

    Krams, Indrikis; Eichler Inwood, Sarah; Trakimas, Giedrius; Krams, Ronalds; Burghardt, Gordon M; Butler, David M; Luoto, Severi; Krama, Tatjana

    2016-01-01

    Factors such as temperature, habitat, larval density, food availability and food quality substantially affect organismal development. In addition, risk of predation has a complex impact on the behavioural and morphological life history responses of prey. Responses to predation risk seem to be mediated by physiological stress, which is an adaptation for maintaining homeostasis and improving survivorship during life-threatening situations. We tested whether predator exposure during the larval phase of development has any influence on body elemental composition, energy reserves, body size, climbing speed and survival ability of adult Drosophila melanogaster. Fruit fly larvae were exposed to predation by jumping spiders (Phidippus apacheanus), and the percentage of carbon (C) and nitrogen (N) content, extracted lipids, escape response and survival were measured from predator-exposed and control adult flies. The results revealed predation as an important determinant of adult phenotype formation and survival ability. D. melanogaster reared together with spiders had a higher concentration of body N (but equal body C), a lower body mass and lipid reserves, a higher climbing speed and improved adult survival ability. The results suggest that the potential of predators to affect the development and the adult phenotype of D. melanogaster is high enough to use predators as a more natural stimulus in laboratory experiments when testing, for example, fruit fly memory and learning ability, or when comparing natural populations living under different predation pressures. PMID:27602281

  1. Short-term exposure to predation affects body elemental composition, climbing speed and survival ability in Drosophila melanogaster

    PubMed Central

    Eichler Inwood, Sarah; Trakimas, Giedrius; Krams, Ronalds; Burghardt, Gordon M.; Butler, David M.; Luoto, Severi; Krama, Tatjana

    2016-01-01

    Factors such as temperature, habitat, larval density, food availability and food quality substantially affect organismal development. In addition, risk of predation has a complex impact on the behavioural and morphological life history responses of prey. Responses to predation risk seem to be mediated by physiological stress, which is an adaptation for maintaining homeostasis and improving survivorship during life-threatening situations. We tested whether predator exposure during the larval phase of development has any influence on body elemental composition, energy reserves, body size, climbing speed and survival ability of adult Drosophila melanogaster. Fruit fly larvae were exposed to predation by jumping spiders (Phidippus apacheanus), and the percentage of carbon (C) and nitrogen (N) content, extracted lipids, escape response and survival were measured from predator-exposed and control adult flies. The results revealed predation as an important determinant of adult phenotype formation and survival ability. D. melanogaster reared together with spiders had a higher concentration of body N (but equal body C), a lower body mass and lipid reserves, a higher climbing speed and improved adult survival ability. The results suggest that the potential of predators to affect the development and the adult phenotype of D. melanogaster is high enough to use predators as a more natural stimulus in laboratory experiments when testing, for example, fruit fly memory and learning ability, or when comparing natural populations living under different predation pressures. PMID:27602281

  2. Extremes of urine osmolality - Lack of effect on red blood cell survival

    NASA Technical Reports Server (NTRS)

    Leon, H. A.; Fleming, J. E.

    1980-01-01

    Rats were allowed a third of normal water intake for 20 days, and food consumption decreased. The reticulocyte count indicated a suppression of erythropoiesis. Urine osmolality increased from 2,000 mosmol/kg to 3,390 mosmol/kg. Random hemolysis and senescence of a cohort of red blood cell (RBC) previously labeled with (2-(C-14)) glycine was monitored via the production of (C-14)O. Neither hemolysis nor senescence was affected. Following water restriction, the polydipsic rats generated a hypotonic urine. Urine osmolality decreased to 1,300 mosmol/kg for at least 6 days; a reticulocytosis occurred, but RBC survival was unaffected. These results contradict those previously reported, which suggest that RBC survival is influenced by the osmotic stress imposed on the RBC by extremes of urine tonicity. This discrepancy, it is concluded, is due to differences in the methods employed for measuring RBC survival. The random-labeling technique employed previously assumes a steady state between RBC production and destruction. The cohort-labeling technique used here measures hemolysis and senescence independent of changes in RBC production, which is known to be depressed by fasting.

  3. A retrospective study on related factors affecting the survival rate of dental implants

    PubMed Central

    Kang, Jeong-Kyung; Lee, Ki; Lee, Yong-Sang; Park, Pil-Kyoo

    2011-01-01

    PURPOSE The aim of this retrospective study is to analyze the relationship between local factors and survival rate of dental implant which had been installed and restored in Seoul Veterans Hospital dental center for past 10 years. And when the relationship is found out, it could be helpful to predict the prognosis of dental implants. MATERIALS AND METHODS A retrospective study of patients receiving root-shaped screw-type dental implants placed from January 2000 to December 2009 was conducted. 6385 implants were placed in 3755 patients. The following data were collected from the dental records and radiographs: patient's age, gender, implant type and surface, length, diameter, location of implant placement, bone quality, prosthesis type. The correlations between these data and survival rate were analyzed. Statistical analysis was performed with the use of Kaplan-Meier analysis, Chi-square test and odds ratio. RESULTS In all, 6385 implants were placed in 3755 patients (3120 male, 635 female; mean age 65 ± 10.58 years). 108 implants failed and the cumulative survival rate was 96.33%. There were significant differences in age, implant type and surface, length, location and prosthesis type (P<.05). No significant differences were found in relation to the following factors: gender, diameter and bone quality (P>.05). CONCLUSION Related factors such as age, implant type, length, location and prosthesis type had a significant effect on the implant survival. PMID:22259704

  4. Mate loss affects survival but not breeding in black brant geese

    USGS Publications Warehouse

    Nicolai, Christopher A.; Sedinger, James S.; Ward, David H.; Boyd, W. Sean

    2012-01-01

    For birds maintaining long-term monogamous relationships, mate loss might be expected to reduce fitness, either through reduced survival or reduced future reproductive investment. We used harvest of male brant during regular sport hunting seasons as an experimental removal to examine effects of mate loss on fitness of female black brant (Branta bernicla nigricans; hereafter brant). We used the Barker model in program MARK to examine effects of mate loss on annual survival, reporting rate, and permanent emigration. Survival rates decreased from 0.847 ± 0.004 for females who did not lose their mates to 0.690 ± 0.072 for birds who lost mates. Seber ring reporting rate for females that lost their mates were 2 times higher than those that did not lose mates, 0.12 ± 0.086 and 0.06 ± 0.006, respectively, indicating that mate loss increased vulnerability to harvest and possibly other forms of predation. We found little support for effects of mate loss on fidelity to breeding site and consequently on breeding. Our results indicate substantial fitness costs to females associated with mate loss, but that females who survived and were able to form new pair bonds may have been higher quality than the average female in the population.

  5. Affect of crop residue on colonization and survival of Phoma sclerotioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phoma sclerotioides causes brown root rot (BRR) of alfalfa and root rot of other perennial legumes and some winter hardy grasses. It can survive as a saprophyte on crop debris so crop residues that support the fungus may increase inocula levels. Current management of BRR is based on crop rotation wi...

  6. SURVIVAL OF SALMONELLA TYPHIMURIUM IN FOUR SOIL MICROCOSMS AS AFFECTED BY SOIL TYPE AND INCUBATION TEMPERATURE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Survival of Salmonella typhimurium was determined in sterile and non-sterile microcosms in four soil series (Brooksville, Leeper, Marietta, and Ruston) held at 10, 15, 25 and 35 degrees C. Exponential linear destruction was observed for S. typhimurium in non-sterile soil stored at all temperatures....

  7. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras

    PubMed Central

    Keighren, Margaret A.; Flockhart, Jean H.

    2016-01-01

    ABSTRACT The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1−/− null mouse embryos die but a previous study showed that some homozygous Gpi1−/− null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1−/−↔Gpi1c/c chimaera with functional Gpi1−/− null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1−/− null cells in adult Gpi1−/−↔Gpi1c/c chimaeras and determine if Gpi1−/− null germ cells are functional. Analysis of adult Gpi1−/−↔Gpi1c/c chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1−/− null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1−/− null oocytes in one female Gpi1−/−↔Gpi1c/c chimaera were functional and provided preliminary evidence that one male putative Gpi1−/−↔Gpi1c/c chimaera produced functional spermatozoa from homozygous Gpi1−/− null germ cells. Although the male chimaera was almost certainly Gpi1−/−↔Gpi1c/c, this part of the study is considered preliminary because only blood was typed for GPI. Gpi1−/− null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1−/− null germ cells, it successfully identified functional Gpi1−/− null oocytes and revealed that some Gpi1−/− null cells could survive in many adult tissues. PMID:27103217

  8. Survival and neurite growth of chick embryo spinal cord cells in serum-free culture.

    PubMed

    Tanaka, H; Obata, K

    1982-07-01

    Cell survival and neurite growth were investigated in serum-free spinal cord cell cultures on polyornithine coating (PORN). Cells were obtained from 6- or 7-day-old chick embryos. Isolated spinal cord cells required promoting factors for their survival and neurite growth. The survival-promoting factors were initially present in spinal cord cells. High density cultures, co-cultures with spinal cord explants, and spinal cord extract promoted survival of isolated spinal cord cells in MEM with no additives. Other tissue extracts (brain, liver, heart and skeletal muscle), serum, and serum-free conditioned medium (SF-CM) of muscle or glioma C6 cells also promoted survival. The active substances in the brain extract and SF-CM were shown to be protein and were separated into 3 fractions (approximately molecular weight 150,000, 70,000, 40,000) by gel filtration chromatography. Survival and neurite growth were suggested to be promoted by different factors because: (1) survival was promoted by both tissue extract and SF-CM, but neurite growth was promoted only by SF-CM; (2) the neurite growth-stimulating activity of SF-CM was lost following dialysis and heat (100 degrees C, 2 min) treatment; however, the survival-promoting activity was not. It was also suggested that spinal cord cells produce neurite growth promoting factors, but did not initially contain these factors. PMID:7104764

  9. Method of freezing living cells and tissues with improved subsequent survival

    DOEpatents

    Senkan, Selim M.; Hirsch, Gerald P.

    1980-01-01

    This invention relates to an improved method for freezing red blood cells, ther living cells, or tissues with improved subsequent survival, wherein constant-volume freezing is utilized that results in significantly improved survival compared with constant-pressure freezing; optimization is attainable through the use of different vessel geometries, cooling baths and warming baths, and sample concentrations.

  10. Tumor infiltration by Tbet+ effector T cells and CD20+ B cells is associated with survival in gastric cancer patients

    PubMed Central

    Hennequin, Audrey; Derangère, Valentin; Boidot, Romain; Apetoh, Lionel; Vincent, Julie; Orry, David; Fraisse, Jean; Causeret, Sylvain; Martin, François; Arnould, Laurent; Beltjens, Françoise; Ghiringhelli, François; Ladoire, Sylvain

    2016-01-01

    Tumor-infiltrating T and B lymphocytes could have the potential to affect cancer prognosis. The objective of this study was to investigate the prognostic significance of tumor infiltration by CD8 and CD4 T cells, and B lymphocytes in patients with localized gastric cancer. In a retrospective cohort of 82 patients with localized gastric cancer and treated by surgery we quantitatively assessed by immunohistochemistry on surgical specimen, immune infiltrates of IL-17+, CD8+, Foxp3+, Tbet+ T cells and CD20+ B cells both in the tumor core and at the invasive margin via immunohistochemical analyses of surgical specimens. We observed that CD8+ and IL17+ T-cell densities were not significantly associated with gastric cancer prognosis. In contrast, high infiltration of Tbet+ T cells, high numbers of CD20+ B-cell follicles, and low infiltration of Foxp3+ T cells, were associated with better relapse-free survival. Interestingly, treatment with neoadjuvant chemotherapy or histological tumor type (diffuse versus intestinal) did not influence type and density of immune infiltrates or their prognostic value. Immunohistochemical analysis of the gastric cancer stromal microenvironment revealed organized T and B cell aggregates, with strong structural analogies to normal secondary lymphoid organs and which could be considered as tertiary lymphoid structures. Using transcriptomic data from an independent cohort of 365 localized gastric cancer, we confirmed that a coordinated Th1, and B cell stromal gene signature is associated with better outcome. Altogether, these data suggest that tumor infiltration by B and Th1 T cells could affect gastric cancer prognosis and may be used to better define the outcome of patients with localized gastric cancer. PMID:27057426

  11. The dark side of BrdU in neural stem cell biology: detrimental effects on cell cycle, differentiation and survival.

    PubMed

    Lehner, Bernadette; Sandner, Beatrice; Marschallinger, Julia; Lehner, Christine; Furtner, Tanja; Couillard-Despres, Sebastien; Rivera, Francisco J; Brockhoff, Gero; Bauer, Hans-Christian; Weidner, Norbert; Aigner, Ludwig

    2011-09-01

    5-Bromo-2'-deoxyuridin (BrdU) is frequently used in anaylsis of neural stem cell biology, in particular to label and to fate-map dividing cells. However, up to now, only a few studies have addressed the question as to whether BrdU labeling per se affects the cells to be investigated. Here, we focused on the potential impact of BrdU on neurosphere cultures derived from the adult rat brain and on proliferation of progenitors in vivo. In vitro, neurospheres were pulsed for 48 h with BrdU, and cell proliferation, cell cycle, differentiation, survival and adhesion properties were subsequently analyzed. BrdU inhibited the expansion of neural progenitors as assessed by MTS assay and increased the fraction of cells in the G0/G1-phase of the cell cycle. Moreover, BrdU increased cell death and dose-dependently induced adherence of NPCs. Cell adherence was accompanied by a reduced amount of active matrix-metalloproteinase-2 (MMP-2). Furthermore, BrdU repressed neuronal and oligodendroglial differentiation, whereas astroglial fate was not affected. In contrast to the in vitro situation, BrdU apparently did not influence endogenous proliferation of NPCs or neurogenesis in concentrations that are typically used for labeling of neural progenitors in vivo. Our results reveal so far uncharacterized effects of BrdU on adult NPCs. We conclude that, because of its ubiquitous use in stem cell biology, any potential effect of BrdU of NPCs has to be scrutinized prior to interpretation of data. PMID:21837406

  12. Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-dependent signals.

    PubMed

    Cassese, Giuliana; Arce, Sergio; Hauser, Anja E; Lehnert, Katja; Moewes, Beate; Mostarac, Miro; Muehlinghaus, Gwendolin; Szyska, Martin; Radbruch, Andreas; Manz, Rudolf A

    2003-08-15

    Recent results suggest that plasma cell longevity is not an intrinsic capacity, but depends on yet unknown factors produced in their environment. In this study, we show that the cytokines IL-5, IL-6, TNF-alpha, and stromal cell-derived factor-1alpha as well as signaling via CD44 support the survival of isolated bone marrow plasma cells. The cytokines IL-7 and stem cell factor, crucially important for early B cell development, do not mediate plasma cell survival, indicating that plasma cells and early B cells have different survival requirements. As shown in IL-6-deficient mice, IL-6 is required for a normal induction, but not for the maintenance of plasma cell responses in vivo, indicating that the effects of individual survival factors are redundant. Optimal survival of isolated plasma cells requires stimulation by a combination of factors acting synergistically. These results strongly support the concept that plasma cell survival depends on niches in which a combination of specific signals, including IL-5, IL-6, stromal cell-derived factor-1alpha, TNF-alpha, and ligands for CD44, provides an environment required to mediate plasma cell longevity. PMID:12902466

  13. IMPACT OF PRE-TRANSPLANT RITUXIMAB ON SURVIVAL AFTER AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION FOR DIFFUSE LARGE B-CELL LYMPHOMA

    PubMed Central

    Fenske, Timothy S.; Hari, Parameswaran N.; Carreras, Jeanette; Zhang, Mei-Jie; Kamble, Rammurti T.; Bolwell, Brian J.; Cairo, Mitchell S.; Champlin, Richard E.; Chen, Yi-Bin; Freytes, César O.; Gale, Robert Peter; Hale, Gregory A.; Ilhan, Osman; Khoury, H. Jean; Lister, John; Maharaj, Dipnarine; Marks, David I.; Munker, Reinhold; Pecora, Andrew L.; Rowlings, Philip A.; Shea, Thomas C.; Stiff, Patrick; Wiernik, Peter H.; Winter, Jane N.; Rizzo, J. Douglas; van Besien, Koen; Lazarus, Hillard M.; Vose, Julie M.

    2010-01-01

    Incorporation of the anti-CD20 monoclonal antibody rituximab into front-line regimens for diffuse large B-cell lymphoma (DLBCL) has resulted in improved survival. Despite this progress, many patients develop refractory or recurrent DLBCL and then receive autologous hematopoietic stem cell transplantation (AuHCT). It is unclear to what extent pre-transplant exposure to rituximab affects outcomes following AuHCT. Outcomes of 994 patients receiving AuHCT for DLBCL between 1996 and 2003 were analyzed according to whether rituximab was (n=176, “+R” group) or was not (n=818, “ −R” group) administered with front-line or salvage therapy prior to AuHCT. The +R group had superior progression-free survival (50% versus 38%, p=0.008) and overall survival (57% versus 45%, p=0.006) at 3 years. Platelet and neutrophil engraftment were not affected by exposure to rituximab. Non-relapse mortality (NRM) did not differ significantly between the +R and −R groups. In multivariate analysis, the +R group had improved progression-free survival (relative risk of relapse/progression or death 0.64, p<0.001) and improved overall survival (relative risk of death of 0.74, p=0.039). We conclude that pre-transplant rituximab is associated with a lower rate of progression and improved survival following AuHCT for DLBCL, with no evidence of impaired engraftment or increased NRM. PMID:19822306

  14. Atypical protein kinase C zeta: potential player in cell survival and cell migration of ovarian cancer.

    PubMed

    Seto, Kelly K Y; Andrulis, Irene L

    2015-01-01

    Ovarian cancer is one of the most aggressive gynaecological cancers, thus understanding the different biological pathways involved in ovarian cancer progression is important in identifying potential therapeutic targets for the disease. The aim of this study was to investigate the potential roles of Protein Kinase C Zeta (PRKCZ) in ovarian cancer. The atypical protein kinase C isoform, PRKCZ, is involved in the control of various signalling processes including cell proliferation, cell survival, and cell motility, all of which are important for cancer development and progression. Herein, we observe a significant increase in cell survival upon PRKCZ over-expression in SKOV3 ovarian cancer cells; additionally, when the cells are treated with small interference RNA (siRNA) targeting PRKCZ, the motility of SKOV3 cells decreased. Furthermore, we demonstrate that over-expression of PRKCZ results in gene and/or protein expression alterations of insulin-like growth factor 1 receptor (IGF1R) and integrin beta 3 (ITGB3) in SKOV3 and OVCAR3 cells. Collectively, our study describes PRKCZ as a potential regulatory component of the IGF1R and ITGB3 pathways and suggests that it may play critical roles in ovarian tumourigenesis. PMID:25874946

  15. Atypical Protein Kinase C Zeta: Potential Player in Cell Survival and Cell Migration of Ovarian Cancer

    PubMed Central

    Seto, Kelly K. Y.; Andrulis, Irene L.

    2015-01-01

    Ovarian cancer is one of the most aggressive gynaecological cancers, thus understanding the different biological pathways involved in ovarian cancer progression is important in identifying potential therapeutic targets for the disease. The aim of this study was to investigate the potential roles of Protein Kinase C Zeta (PRKCZ) in ovarian cancer. The atypical protein kinase C isoform, PRKCZ, is involved in the control of various signalling processes including cell proliferation, cell survival, and cell motility, all of which are important for cancer development and progression. Herein, we observe a significant increase in cell survival upon PRKCZ over-expression in SKOV3 ovarian cancer cells; additionally, when the cells are treated with small interference RNA (siRNA) targeting PRKCZ, the motility of SKOV3 cells decreased. Furthermore, we demonstrate that over-expression of PRKCZ results in gene and/or protein expression alterations of insulin-like growth factor 1 receptor (IGF1R) and integrin beta 3 (ITGB3) in SKOV3 and OVCAR3 cells. Collectively, our study describes PRKCZ as a potential regulatory component of the IGF1R and ITGB3 pathways and suggests that it may play critical roles in ovarian tumourigenesis. PMID:25874946

  16. ORP4L is essential for T-cell acute lymphoblastic leukemia cell survival.

    PubMed

    Zhong, Wenbin; Yi, Qing; Xu, Bing; Li, Shiqian; Wang, Tong; Liu, Fupei; Zhu, Biying; Hoffmann, Peter R; Ji, Guangju; Lei, Pingsheng; Li, Guoping; Li, Jiwei; Li, Jian; Olkkonen, Vesa M; Yan, Daoguang

    2016-01-01

    Metabolic pathways are reprogrammed in cancer to support cell survival. Here, we report that T-cell acute lymphoblastic leukemia (T-ALL) cells are characterized by increased oxidative phosphorylation and robust ATP production. We demonstrate that ORP4L is expressed in T-ALL but not normal T-cells and its abundance is proportional to cellular ATP. ORP4L acts as an adaptor/scaffold assembling CD3ɛ, Gαq/11 and PLCβ3 into a complex that activates PLCβ3. PLCβ3 catalyzes IP3 production in T-ALL as opposed to PLCγ1 in normal T-cells. Up-regulation of ORP4L thus results in a switch in the enzyme responsible for IP3-induced endoplasmic reticulum Ca(2+) release and oxidative phosphorylation. ORP4L knockdown results in suboptimal bioenergetics, cell death and abrogation of T-ALL engraftment in vivo. In summary, we uncovered a signalling pathway operating specifically in T-ALL cells in which ORP4L mediates G protein-coupled ligand-induced PLCβ3 activation, resulting in an increase of mitochondrial respiration for cell survival. Targeting ORP4L might represent a promising approach for T-ALL treatment. PMID:27581363

  17. Predator functional response and prey survival: Direct and indirect interactions affecting a marked prey population

    USGS Publications Warehouse

    Miller, David A.; Grand, J.B.; Fondell, T.F.; Anthony, M.

    2006-01-01

    1. Predation plays an integral role in many community interactions, with the number of predators and the rate at which they consume prey (i.e. their functional response) determining interaction strengths. Owing to the difficulty of directly observing predation events, attempts to determine the functional response of predators in natural systems are limited. Determining the forms that predator functional responses take in complex systems is important in advancing understanding of community interactions. 2. Prey survival has a direct relationship to the functional response of their predators. We employed this relationship to estimate the functional response for bald eagle Haliaeetus leucocepalus predation of Canada goose Branta canadensis nests. We compared models that incorporated eagle abundance, nest abundance and alternative prey presence to determine the form of the functional response that best predicted intra-annual variation in survival of goose nests. 3. Eagle abundance, nest abundance and the availability of alternative prey were all related to predation rates of goose nests by eagles. There was a sigmoidal relationship between predation rate and prey abundance and prey switching occurred when alternative prey was present. In addition, predation by individual eagles increased as eagle abundance increased. 4. A complex set of interactions among the three species examined in this study determined survival rates of goose nests. Results show that eagle predation had both prey- and predator-dependent components with no support for ratio dependence. In addition, indirect interactions resulting from the availability of alternative prey had an important role in mediating the rate at which eagles depredated nests. As a result, much of the within-season variation in nest survival was due to changing availability of alternative prey consumed by eagles. 5. Empirical relationships drawn from ecological theory can be directly integrated into the estimation process to

  18. Tetrandrine suppresses human glioma growth by inhibiting cell survival, proliferation and tumour angiogenesis through attenuating STAT3 phosphorylation.

    PubMed

    Ma, Ji-wei; Zhang, Yong; Li, Ru; Ye, Jie-cheng; Li, Hai-ying; Zhang, Yi-kai; Ma, Zheng-lai; Li, Jin-ying; Zhong, Xue-yun; Yang, Xuesong

    2015-10-01

    Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid, has been reported to possess anti-tumour activity. However, its effects on human glioma remain unknown. In this study, we demonstrated that Tet inhibited human glioma cell growth in vitro and in vivo. It has been hypothesised that Tet inhibits glioma growth by affecting glioma cell survival, proliferation and vasculature in and around the xenograft tumour in the chick CAM model and signal transducer and activator of transcription 3 (STAT3) mediated these activities. Therefore, we conducted a detailed analysis of the inhibitory effects of Tet on cell survival using a TUNEL assay and flow cytometric analysis; on cell proliferation based on the expression of proliferating cell nuclear antigen; and on angiogenesis using a CAM anti-angiogenesis assay. We used western blotting to investigate the role of STAT3 on the anti-glioma activities of Tet. The results revealed that Tet inhibited survival and proliferation in human glioma cells, impaired tumour angiogenesis and decreased the expression of phosphorylated STAT3 and its downstream proteins. In sum, our data indicate that STAT3 is involved in Tet-induced the regression of glioma growth by activating tumour cell apoptosis, inhibiting glioma cell proliferation and inhibiting angiogenesis. PMID:26086859

  19. Drak2 Regulates the Survival of Activated T Cells and Is Required for Organ-Specific Autoimmune Disease1

    PubMed Central

    McGargill, Maureen A.; Choy, Carmen; Wen, Ben G.; Hedrick, Stephen M.

    2009-01-01

    Drak2 is a serine/threonine kinase expressed in T and B cells. The absence of Drak2 renders T cells hypersensitive to suboptimal stimulation, yet Drak2–/– mice are enigmatically resistant to experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. We show in this study that Drak2–/– mice were also completely resistant to type 1 diabetes when bred to the NOD strain of mice that spontaneously develop autoimmune diabetes. However, there was not a generalized suppression of the immune system, because Drak2–/– mice remained susceptible to other models of autoimmunity. Adoptive transfer experiments revealed that resistance to disease was intrinsic to the T cells and was due to a loss of T cell survival under conditions of chronic autoimmune stimulation. Importantly, the absence of Drak2 did not alter the survival of naive T cells, memory T cells, or T cells responding to an acute viral infection. These experiments reveal a distinction between the immune response to persistent self-encoded molecules and transiently present infectious agents. We present a model whereby T cell survival depends on a balance of TCR and costimulatory signals to explain how the absence of Drak2 affects autoimmune disease without generalized suppression of the immune system. PMID:19017948

  20. The Survival of Engrafted Neural Stem Cells Within Hyaluronic Acid Hydrogels

    PubMed Central

    Liang, Yajie; Walczak, Piotr; Bulte, Jeff W.M.

    2013-01-01

    Successful cell-based therapy of neurological disorders is highly dependent on the survival of transplanted stem cells, with the overall graft survival of naked, unprotected cells in general remaining poor. We investigated the use of an injectable hyaluronic acid (HA) hydrogel for enhancement of survival of transplanted mouse C17.2 cells, human neural progenitor cells (ReNcells), and human glial-restricted precursors (GRPs). The gelation properties of the HA hydrogel were first characterized and optimized for intracerebral injection, resulting in a 25 min delayed-injection after mixing of the hydrogel components. Using bioluminescence imaging (BLI) as a non-invasive readout of cell survival, we found that the hydrogel can protect xenografted cells as evidenced by the prolonged survival of C17.2 cells implanted in immunocompetent rats (p<0.01 at day 12). The survival of human ReNcells and human GRPs implanted in the brain of immunocompetent or immunodeficient mice was also significantly improved after hydrogel scaffolding (ReNcells, p<0.05 at day 5; GRPs, p<0.05 at day 7). However, an inflammatory response could be noted two weeks after injection of hydrogel into immunocompetent mice brains. We conclude that hydrogel scaffolding increases the survival of engrafted neural stem cells, justifying further optimization of hydrogel compositions. PMID:23623429

  1. Factors affecting route selection and survival of steelhead kelts at Snake River dams in 2012 and 2013

    SciTech Connect

    Harnish, Ryan A.; Colotelo, Alison H. A.; Li, Xinya; Fu, Tao; Ham, Kenneth D.; Deng, Zhiqun; Green, Ethan D.

    2015-03-31

    In 2012 and 2013, Pacific Northwest National Laboratory (PNNL) conducted a study that summarized the passage route proportions and route-specific survival rates of steelhead kelts that passed through Federal Columbia River Power System (FCRPS) dams. To accomplish this, a total of 811 steelhead kelts were tagged with Juvenile Salmon Acoustic Telemetry System (JSATS) transmitters. Acoustic receivers, both autonomous and cabled, were deployed throughout the FCRPS to monitor the downstream movements of tagged kelts. Kelts were also tagged with passive integrated transponder tags to monitor passage through juvenile bypass systems (JBS) and detect returning fish. The current study evaluated data collected in 2012 and 2013 to identify environmental, temporal, operational, individual, and behavioral variables that were related to forebay residence time, route of passage, and survival of steelhead kelts at FCRPS dams on the Snake River. Multiple approaches, including 3-D tracking, bivariate and multivariable regression modeling, and decision tree analyses were used to identify the environmental, temporal, operational, individual, and behavioral variables that had the greatest effect on forebay residence time, route of passage, and route-specific and overall dam passage survival probabilities for tagged kelts at Lower Granite (LGR), Little Goose (LGS), and Lower Monumental (LMN) dams. In general, kelt behavior and discharge appeared to work independently to affect forebay residence times. Kelt behavior, primarily approach location, migration depth, and “searching” activities in the forebay, was found to have the greatest influence on their route of passage. The condition of kelts was the single most important factor affecting their survival. The information gathered in this study may be used by dam operators and fisheries managers to identify potential management actions to improve in-river survival of kelts or collection methods for kelt reconditioning programs to aid

  2. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection

    PubMed Central

    Petrovas, Constantinos; Casazza, Joseph P.; Brenchley, Jason M.; Price, David A.; Gostick, Emma; Adams, William C.; Precopio, Melissa L.; Schacker, Timothy; Roederer, Mario; Douek, Daniel C.; Koup, Richard A.

    2006-01-01

    Here, we report on the expression of programmed death (PD)-1 on human virus-specific CD8+ T cells and the effect of manipulating signaling through PD-1 on the survival, proliferation, and cytokine function of these cells. PD-1 expression was found to be low on naive CD8+ T cells and increased on memory CD8+ T cells according to antigen specificity. Memory CD8+ T cells specific for poorly controlled chronic persistent virus (HIV) more frequently expressed PD-1 than memory CD8+ T cells specific for well-controlled persistent virus (cytomegalovirus) or acute (vaccinia) viruses. PD-1 expression was independent of maturational markers on memory CD8+ T cells and was not directly associated with an inability to produce cytokines. Importantly, the level of PD-1 surface expression was the primary determinant of apoptosis sensitivity of virus-specific CD8+ T cells. Manipulation of PD-1 led to changes in the ability of the cells to survive and expand, which, over several days, affected the number of cells expressing cytokines. Therefore, PD-1 is a major regulator of apoptosis that can impact the frequency of antiviral T cells in chronic infections such as HIV, and could be manipulated to improve HIV-specific CD8+ T cell numbers, but possibly not all functions in vivo. PMID:16954372

  3. Hydrogel Microwell Arrays Allow the Assessment of Protease-Associated Enhancement of Cancer Cell Aggregation and Survival

    PubMed Central

    Loessner, Daniela; Kobel, Stefan; Clements, Judith A.; Lutolf, Matthias P.; Hutmacher, Dietmar W.

    2013-01-01

    Current routine cell culture techniques are only poorly suited to capture the physiological complexity of tumor microenvironments, wherein tumor cell function is affected by intricate three-dimensional (3D), integrin-dependent cell-cell and cell-extracellular matrix (ECM) interactions. 3D cell cultures allow the investigation of cancer-associated proteases like kallikreins as they degrade ECM proteins and alter integrin signaling, promoting malignant cell behaviors. Here, we employed a hydrogel microwell array platform to probe using a high-throughput mode how ovarian cancer cell aggregates of defined size form and survive in response to the expression of kallikreins and treatment with paclitaxel, by performing microscopic, quantitative image, gene and protein analyses dependent on the varying microwell and aggregate sizes. Paclitaxel treatment increased aggregate formation and survival of kallikrein-expressing cancer cells and levels of integrins and integrin-related factors. Cancer cell aggregate formation was improved with increasing aggregate size, thereby reducing cell death and enhancing integrin expression upon paclitaxel treatment. Therefore, hydrogel microwell arrays are a powerful tool to screen the viability of cancer cell aggregates upon modulation of protease expression, integrin engagement and anti-cancer treatment providing a micro-scaled yet high-throughput technique to assess malignant progression and drug-resistance.

  4. Elevation of osteopontin levels in brain tumor cells reduces burden and promotes survival through the inhibition of cell dispersal

    PubMed Central

    Morrow, Jay; Barone, Tara A.; Hoffer, Alan; Lock, Jeffrey; DeChant, Anne; Mangla, Saisho; Plunkett, Robert J.; Miller, Robert H.

    2010-01-01

    Osteopontin (OPN) is a pleotrophic molecule that has been associated with multiple disorders of the central nervous system (CNS). Its roles in CNS malignancy are unclear but suggest that higher levels of OPN expression correlate with increased tumor grade and increased migratory capacity of tumor cells. In this study OPN cDNA was cloned into a retroviral vector and used to infect F98 Fischer rat-derived glioma cells and U87 human-derived glioblastoma multiforme (GBM) cells in vitro. Cells expressing high levels of OPN migrated less distance than control cells in vitro. This effect was not RGD mediated, but was reversed in the presence of c-Jun N-terminal kinase (JNK) inhibitor suggesting that JNK1 is an essential component of a negative feedback loop affecting OPN activated signaling cascades. Implantation of tumor cells expressing high levels of OPN into adult Fischer rats and nude rats resulted in morphologically distinct tumors and prolonged host survival relative to controls. We propose that local produced, high level OPN expression limits the malignant character of glioma cells and that the downstream mechanisms involved represent pathways that may have therapeutic value in the treatment of human CNS malignancy. PMID:17928956

  5. Factors that affect response to chemotherapy and survival of patients with advanced head and neck cancer.

    PubMed

    Amer, M H; Al-Sarraf, M; Vaitkevicius, V K

    1979-06-01

    A review of 164 patients with far advanced head and neck cancer, treated by a cytotoxic chemotherapy over a ten year period, at WAyne State University, Detroit, Michigan, was done in an attempt to determine factors that may influence the response to chemotherapy and subsequent survival. Response rate to methotrexate was 28%, 5-FU 31%, and porfiromycin 13%. Improved responses were noted with combination chemotherapy. Patients who failed to first line therapy rarely responded to other single agent or combination chemotherapy. Those who did not have prior surgery and/or radiotherapy had better results from drug therapy. Patients with good performance status at the time of initial chemotherapy, had better response to treatment (32% vs. 13% PR & CR) and longer survival (28 weeks vs. 9 weeks, p = 0.01) when compared to those with poor status. Patients who responded to chemotherapy have better survival compared to nonresponders (29 weeks vs. 16 weeks, p = 0.002). This information may prove helpful in future planning of multidisciplinary approach in the treatment of patients with head and neck cancer. PMID:455217

  6. Cell Cycle Arrest and Cell Survival Induce Reverse Trends of Cardiolipin Remodeling

    PubMed Central

    Chao, Yu-Jen; Chang, Wan-Hsin; Ting, Hsiu-Chi; Chao, Wei-Ting; Hsu, Yuan-Hao Howard

    2014-01-01

    Cell survival from the arrested state can be a cause of the cancer recurrence. Transition from the arrest state to the growth state is highly regulated by mitochondrial activity, which is related to the lipid compositions of the mitochondrial membrane. Cardiolipin is a critical phospholipid for the mitochondrial integrity and functions. We examined the changes of cardiolipin species by LC-MS in the transition between cell cycle arrest and cell reviving in HT1080 fibrosarcoma cells. We have identified 41 cardiolipin species by MS/MS and semi-quantitated them to analyze the detailed changes of cardiolipin species. The mass spectra of cardiolipin with the same carbon number form an envelope, and the C64, C66, C68, C70 C72 and C74 envelopes in HT1080 cells show a normal distribution in the full scan mass spectrum. The cardiolipin quantity in a cell decreases while entering the cell cycle arrest, but maintains at a similar level through cell survival. While cells awakening from the arrested state and preparing itself for replication, the groups with short acyl chains, such as C64, C66 and C68 show a decrease of cardiolipin percentage, but the groups with long acyl chains, such as C70 and C72 display an increase of cardiolipin percentage. Interestingly, the trends of the cardiolipin species changes during the arresting state are completely opposite to cell growing state. Our results indicate that the cardiolipin species shift from the short chain to long chain cardiolipin during the transition from cell cycle arrest to cell progression. PMID:25422939

  7. Analytic considerations and axiomatic approaches to the concept cell death and cell survival functions in biology and cancer treatment.

    PubMed

    Gkigkitzis, Ioannis; Haranas, Ioannis; Austerlitz, Carlos

    2015-01-01

    This study contains a discussion on the connection between current mathematical and biological modeling systems in response to the main research need for the development of a new mathematical theory for study of cell survival after medical treatment and cell biological behavior in general. This is a discussion of suggested future research directions and relations with interdisciplinary science. In an effort to establish the foundations for a possible framework that may be adopted to study and analyze the process of cell survival during treatment, we investigate the organic connection among an axiomatic system foundation, a predator-prey rate equation, and information theoretic signal processing. A new set theoretic approach is also introduced through the definition of cell survival units or cell survival units indicating the use of "proper classes" according to the Zermelo-Fraenkel set theory and the axiom of choice, as the mathematics appropriate for the development of biological theory of cell survival. PMID:25416979

  8. Radiation-induced autophagy promotes esophageal squamous cell carcinoma cell survival via the LKB1 pathway.

    PubMed

    Lu, Chi; Xie, Conghua

    2016-06-01

    Radiotherapy is an important treatment modality for esophageal cancer; however, the clinical efficacy of radiotherapy is limited by tumor radioresistance. In the present study, we explored the hypothesis that radiation induces tumor cell autophagy as a cytoprotective adaptive response, which depends on liver kinase B1 (LKB1) also known as serine/threonine kinase 11 (STK11). Radiation-induced Eca-109 cell autophagy was found to be dependent on signaling through the LKB1 pathway, and autophagy inhibitors that disrupted radiation-induced Eca-109 cell autophagy increased cell cycle arrest and cell death in vitro. Inhibition of autophagy also reduced the clonogenic survival of the Eca-109 cells. When treated with radiation alone, human esophageal carcinoma xenografts showed increased LC3B and p-LKB1 expression, which was decreased by the autophagy inhibitor chloroquine. In vivo inhibition of autophagy disrupted tumor growth and increased tumor apoptosis when combined with 6 Gy of ionizing radiation. In summary, our findings elucidate a novel mechanism of resistance to radiotherapy in which radiation-induced autophagy, via the LKB1 pathway, promotes tumor cell survival. This indicates that inhibition of autophagy can serve as an adjuvant treatment to improve the curative effect of radiotherapy. PMID:27109915

  9. Does the use of vaginal-implant transmitters affect neonate survival rate of white-tailed deer Odocoileus virginianus?

    USGS Publications Warehouse

    Swanson, C.C.; Jenks, J.A.; DePerno, C.S.; Klaver, R.W.; Osborn, R.G.; Tardiff, J.A.

    2008-01-01

    We compared survival of neonate white-tailed deer Odocoileus virginianus captured using vaginal-implant transmitters (VITs) and traditional ground searches to determine if capture method affects neonate survival. During winter 2003, 14 adult female radio-collared deer were fitted with VITs to aid in the spring capture of neonates; neonates were captured using VITs (N = 14) and traditional ground searches (N = 7). Of the VITs, seven (50%) resulted in the location of birth sites and the capture of 14 neonates. However, seven (50%) VITs were prematurely expelled prior to parturition. Predation accounted for seven neonate mortalities, and of these, five were neonates captured using VITs. During summer 2003, survival for neonates captured using VITs one. two, and three months post capture was 0.76 (SE = 0.05; N = 14). 0.64 (SE = 0.07; N = 11) and 0.64 (SE = 0.08; N = 9), respectively. Neonate survival one, two and three months post capture for neonates captured using ground searches was 0.71 (SE = 0.11 N = 7), 0.71 (SE = 0.15; N = 5) and 0.71 (SE = 0.15; N = 5), respectively. Although 71% of neonates that died were captured <24 hours after birth using VITs, survival did not differ between capture methods. Therefore, use of VITs to capture neonate white-tailed deer did not influence neonate survival. VITs enabled us to capture neonates in dense habitats which would have been difficult to locate using traditional ground searches. ?? Wildlife Biology (2008).

  10. Prognostic factors for long term survival in patients with advanced non-small cell lung cancer

    PubMed Central

    Moumtzi, Despoina; Lampaki, Sofia; Porpodis, Konstantinos; Lagoudi, Kalliopi; Hohenforst-Schmidt, Wolfgang; Pataka, Athanasia; Tsiouda, Theodora; Zissimopoulos, Athanasios; Lazaridis, George; Karavasilis, Vasilis; Timotheadou, Helen; Barbetakis, Nikolaos; Pavlidis, Pavlos; Kontakiotis, Theodoros; Zarogoulidis, Konstantinos

    2016-01-01

    Background Non-small cell lung cancer (NSCLC) represents 85% of all lung cancers. It is estimated that 60% of patients with NSCLC at time of diagnosis have advanced disease. The aim of this study was to investigate clinical and demographic prognostic factors of long term survival in patients with unresectable NSCLC. Methods We retrospectively reviewed data of 1,156 patients with NSCLC stage IIIB or IV who survived more than 60 days from the time of diagnosis and treated from August 1987 until March 2013 in the Oncology Department of Pulmonary Clinic of the General Hospital Papanikolaou. Initially univariate analysis using the log-rank test was conducted and then multivariate analysis using the proportional hazards model of Cox. Also Kaplan Meier curves were used to describe the distribution of survival times of patients. The level of significance was set at 0.05. Results The mean age at diagnosis was 62 years. About 11.9% of patients were women and 88.1% were male. The majority of cases were adenocarcinomas (42.2%), followed squamous (33%) and finally the large cell (6%). Unlike men, most common histological type among women was adenocarcinoma rather than squamous (63% vs. 10.9%). In univariate analysis statistically significant factors in the progression free survival (PFS) and overall survival (OS) were: weight loss ≥5%, histological type, line 1 drugs, line 1 combination, line 1 cycles and radio lung. Specifically radio lung gives clear survival benefit in the PFS and OS in stage IIIB (P=0.002) and IV (P<0.001). On the other hand, the number of distant metastases in stage IV patients did not affect OS, neither PFS. In addition patients who received platinum and taxane had better PFS (P=0.001) and OS (P<0.001) than those who received platinum without taxane. Also the third drug administration proved futile, since survival (682.06±34.9) (P=0.023) and PFS (434.93±26.93) (P=0.012) of patients who received less than three drugs was significantly larger. Finally

  11. Factors affecting settling, survival, and viability of black bears reintroduced to Felsenthal National Wildlife Refuge, Arkansas

    USGS Publications Warehouse

    Wear, B.J.; Eastridge, R.; Clark, J.D.

    2005-01-01

    We used radiotelemetry and population modeling techniques to examine factors related to population establishment of black bears (Ursus americanus) reintroduced to Felsenthal National Wildlife Refuge (NWR), Arkansas. Our objectives were to determine whether settling (i.e., establishment of a home range at or near the release site), survival, recruitment, and population viability were related to age class of reintroduced bears, presence of cubs, time since release, or number of translocated animals. We removed 23 adult female black bears with 56 cubs from their winter dens at White River NWR and transported them 160 km to man-made den structures at Felsenthal NWR during spring 2000–2002. Total movement and average circuity of adult females decreased from 1 month, 6 months, and 1 year post-emergence (F2,14 =19.7, P < 0.001 and F2,14 =5.76, P=0.015, respectively). Mean first-year post-release survival of adult female bears was 0.624 (SE = 0.110, SEinterannual = 0.144), and the survival rate of their cubs was 0.750 (SE = 0.088, SEinterannual = 0.109). The homing rate (i.e., the proportion of bears that returned to White River NWR) was 13%. Annual survival for female bears that remained at the release site and survived >1-year post-release increased to 0.909 (SE = 0.097, SEinterannual=0.067; Z=3.5, P < 0.001). Based on stochastic population growth simulations, the average annual growth rate (λ) was 1.093 (SD = 0.053) and the probability of extinction with no additional stockings ranged from 0.56-1.30%. The bear population at Felsenthal NWR is at or above the number after which extinction risk declines dramatically, although additional releases of bears could significantly decrease time to population reestablishment. Poaching accounted for at least 3 of the 8 adult mortalities that we documented; illegal kills could be a significant impediment to population re-establishment at Felsenthal NWR should poaching rates escalate.

  12. PDK1 regulates VDJ recombination, cell-cycle exit and survival during B-cell development.

    PubMed

    Venigalla, Ram K C; McGuire, Victoria A; Clarke, Rosemary; Patterson-Kane, Janet C; Najafov, Ayaz; Toth, Rachel; McCarthy, Pierre C; Simeons, Frederick; Stojanovski, Laste; Arthur, J Simon C

    2013-04-01

    Phosphoinositide-dependent kinase-1 (PDK1) controls the activation of a subset of AGC kinases. Using a conditional knockout of PDK1 in haematopoietic cells, we demonstrate that PDK1 is essential for B cell development. B-cell progenitors lacking PDK1 arrested at the transition of pro-B to pre-B cells, due to a cell autonomous defect. Loss of PDK1 decreased the expression of the IgH chain in pro-B cells due to impaired recombination of the IgH distal variable segments, a process coordinated by the transcription factor Pax5. The expression of Pax5 in pre-B cells was decreased in PDK1 knockouts, which correlated with reduced expression of the Pax5 target genes IRF4, IRF8 and Aiolos. As a result, Ccnd3 is upregulated in PDK1 knockout pre-B cells and they have an impaired ability to undergo cell-cycle arrest, a necessary event for Ig light chain rearrangement. Instead, these cells underwent apoptosis that correlated with diminished expression of the pro-survival gene Bcl2A1. Reintroduction of both Pax5 and Bcl2A1 together into PDK1 knockout pro-B cells restored their ability to differentiate in vitro into mature B cells. PMID:23463102

  13. Cocaine decreases cell survival and inhibits neurite extension of rat locus coeruleus neurons.

    PubMed

    Snow, D M; Smith, J D; Booze, R M; Welch, M A; Mactutus, C F

    2001-01-01

    Cocaine use during pregnancy is affiliated with neurobehavioral abnormalities in offspring that are associated with problems of attention. Given the putative role of the noradrenergic system in attentional processes, impairments in the noradrenergic system may underlie specific attentionally sensitive, neurobehavioral alterations. Recent data using a clinically relevant intravenous (iv) route of administration show that the norepinephrine cell bodies of the locus coeruleus (LC) are a primary target for in utero cocaine exposure. Cell survival and neurite outgrowth of LC neurons were studied using two paradigms: (1) in vitro, using a physiologically relevant concentration of cocaine, and (2) in vivo, using a clinically relevant intravenous rat model. Fetal cocaine exposure significantly decreased neuronal survival (in vitro: P=.0001, n=24; in vivo: P=.0337, n=30), reduced neurite initiation (in vitro: P=.001, n=24; in vivo: P=.0169, n=30), decreased the number of neurites elaborated (in vivo: P=.0031, n=30), and reduced total neurite length (in vivo: P=.0237, n=30). The results of this novel approach toward an understanding of noradrenergic neurons as they respond to cocaine during development suggest that cocaine may affect behavior by negatively regulating neuronal pathfinding and synaptic connectivity. PMID:11418264

  14. c-Myb regulates NOX1/p38 to control survival of colorectal carcinoma cells.

    PubMed

    Pekarčíková, Lucie; Knopfová, Lucia; Beneš, Petr; Šmarda, Jan

    2016-08-01

    The c-Myb transcription factor is important for maintenance of immature cells of many tissues including colon epithelium. Overexpression of c-Myb occurring in colorectal carcinomas (CRC) as well as in other cancers often marks poor prognosis. However, the molecular mechanism explaining how c-Myb contributes to progression of CRC has not been fully elucidated. To address this point, we investigated the way how c-Myb affects sensitivity of CRC cells to anticancer drugs. Using CRC cell lines expressing exogenous c-myb we show that c-Myb protects CRC cells from the cisplatin-, oxaliplatin-, and doxorubicin-induced apoptosis, elevates reactive oxygen species via up-regulation of NOX1, and sustains the pro-survival p38 MAPK pathway. Using pharmacological inhibitors and gene silencing of p38 and NOX1 we found that these proteins are essential for the protective effect of c-Myb and that NOX1 acts upstream of p38 activation. In addition, our result suggests that transcription of NOX1 is directly controlled by c-Myb and these genes are strongly co-expressed in human tumor tissue of CRC patients. The novel c-Myb/NOX1/p38 signaling axis that protects CRC cells from chemotherapy described in this study could provide a new base for design of future therapies of CRC. PMID:27107996

  15. Mitochondrial Uncoupling Protein 2 (UCP2) Regulates Retinal Ganglion Cell Number and Survival.

    PubMed

    Barnstable, Colin J; Reddy, Rajini; Li, Hong; Horvath, Tamas L

    2016-04-01

    In the brain, mitochondrial uncoupling protein 2 (UCP2) has emerged as a stress signal associated with neuronal survival. In the retina, UCP2 is expressed primarily by retinal ganglion cells. Here, we investigated the functional relevance of UCP2 in the mouse retina. Increased expression of UCP2 significantly reduced apoptosis during the critical developmental period resulting in elevated numbers of retinal ganglion cells in the adult. Elevated UCP2 levels also protected against excitotoxic cell death induced by intraocular injection of either NMDA or kainic acid. In monolayer cultures of retinal cells, elevated UCP2 levels increased cell survival and rendered the cells independent of the survival-promoting effects of the neurotrophic factors BDNF and CNTF. Taken together, these data implicate UCP2 as an important regulator of retinal neuron survival both during development and in adult animals. PMID:26846222

  16. Enhanced endogenous type I interferon cell-driven survival and inhibition of spontaneous apoptosis by Riluzole

    SciTech Connect

    Achour, Ammar

    2009-03-30

    Highly active antiretroviral therapy (HAART), although effective in improving the survival of HIV-1-infected individuals, has not been able to reconstitute the adaptive immune response. We have described the use of novel chemical agents to restore T-cell survival/proliferation by inducing cytokine production. Due to its cationic amphiphilic structure, these molecules appear to enhance immune restoration. In this study, we investigated the action of Riluzole (2-amino-6-trifuromethoxybenzothiazole) in HIV-1 infection. Riluzole is able to increase (effective dose from 1 to 1000 nM) the cell-survival of T cells from HIV-1-infected patients and inhibit spontaneous apoptosis. The immunomodulatory effect of riluzole-sensitized cells was ascribed to endogenous type I interferon (IFN) derived from monocytes. Riluzole might be used for restoring the cell survival of immunocompromised patients and eliminating latent infected cells upon HIV-1 reactivation.

  17. BAFF activation of the ERK5 MAP kinase pathway regulates B cell survival

    PubMed Central

    Jacque, Emilie; Schweighoffer, Edina; Tybulewicz, Victor L.J.

    2015-01-01

    B cell activating factor (BAFF) stimulation of the BAFF receptor (BAFF-R) is essential for the homeostatic survival of mature B cells. Earlier in vitro experiments with inhibitors that block MEK 1 and 2 suggested that activation of ERK 1 and 2 MAP kinases is required for BAFF-R to promote B cell survival. However, these inhibitors are now known to also inhibit MEK5, which activates the related MAP kinase ERK5. In the present study, we demonstrated that BAFF-induced B cell survival was actually independent of ERK1/2 activation but required ERK5 activation. Consistent with this, we showed that conditional deletion of ERK5 in B cells led to a pronounced global reduction in mature B2 B cell numbers, which correlated with impaired survival of ERK5-deficient B cells after BAFF stimulation. ERK5 was required for optimal BAFF up-regulation of Mcl1 and Bcl2a1, which are prosurvival members of the Bcl-2 family. However, ERK5 deficiency did not alter BAFF activation of the PI3-kinase–Akt or NF-κB signaling pathways, which are also important for BAFF to promote mature B cell survival. Our study reveals a critical role for the MEK5-ERK5 MAP kinase signaling pathway in BAFF-induced mature B cell survival and homeostatic maintenance of B2 cell numbers. PMID:25987726

  18. Plant Quantity Affects Development and Survival of a Gregarious Insect Herbivore and Its Endoparasitoid Wasp

    PubMed Central

    Fei, Minghui; Gols, Rieta; Zhu, Feng; Harvey, Jeffrey A.

    2016-01-01

    Virtually all studies of plant-herbivore-natural enemy interactions focus on plant quality as the major constraint on development and survival. However, for many gregarious feeding insect herbivores that feed on small or ephemeral plants, the quantity of resources is much more limiting, yet this area has received virtually no attention. Here, in both lab and semi-field experiments using tents containing variably sized clusters of food plants, we studied the effects of periodic food deprivation in a tri-trophic system where quantitative constraints are profoundly important on insect performance. The large cabbage white Pieris brassicae, is a specialist herbivore of relatively small wild brassicaceous plants that grow in variable densities, with black mustard (Brassica nigra) being one of the most important. Larvae of P. brassicae are in turn attacked by a specialist endoparasitoid wasp, Cotesia glomerata. Increasing the length of food deprivation of newly molted final instar caterpillars significantly decreased herbivore and parasitoid survival and biomass, but shortened their development time. Moreover, the ability of caterpillars to recover when provided with food again was correlated with the length of the food deprivation period. In outdoor tents with natural vegetation, we created conditions similar to those faced by P. brassicae in nature by manipulating plant density. Low densities of B. nigra lead to potential starvation of P. brassicae broods and their parasitoids, replicating nutritional conditions of the lab experiments. The ability of both unparasitized and parasitized caterpillars to find corner plants was similar but decreased with central plant density. Survival of both the herbivore and parasitoid increased with plant density and was higher for unparasitized than for parasitized caterpillars. Our results, in comparison with previous studies, reveal that quantitative constraints are far more important that qualitative constraints on the performance of

  19. Symptom Interval and Patient Delay Affect Survival Outcomes in Adolescent Cancer Patients

    PubMed Central

    Jin, Song Lee; Hahn, Seung Min; Kim, Hyo Sun; Shin, Yoon Jung; Kim, Sun Hee; Lee, Yoon Sun; Lyu, Chuhl Joo

    2016-01-01

    Purpose Unique features of adolescent cancer patients include cancer types, developmental stages, and psychosocial issues. In this study, we evaluated the relationship between diagnostic delay and survival to improve adolescent cancer care. Materials and Methods A total of 592 patients aged 0–18 years with eight common cancers were grouped according to age (adolescents, ≥10 years; children, <10 years). We retrospectively reviewed their symptom intervals (SIs, between first symptom/sign of disease and diagnosis), patient delay (PD, between first symptom/sign of disease and first contact with a physician), patient delay proportion (PDP), and overall survival (OS). Results Mean SI was significantly longer in adolescents than in children (66.4 days vs. 28.4 days; p<0.001), and OS rates were higher in patients with longer SIs (p=0.001). In children with long SIs, OS did not differ according to PDP (p=0.753). In adolescents with long SIs, OS was worse when PDP was ≥0.6 (67.2%) than <0.6 (95.5%, p=0.007). In a multivariate analysis, adolescents in the long SI/PDP ≥0.6 group tended to have a higher hazard ratio (HR, 6.483; p=0.069) than those in the long SI/PDP <0.6 group (HR=1, reference). Conclusion Adolescents with a long SI/PDP ≥0.6 had lower survival rates than those with a short SI/all PDP or a long SI/PDP <0.6. They should be encouraged to seek prompt medical assistance by a physician or oncologist to lessen PDs. PMID:26996554

  20. Warming affects hatching time and early season survival of eastern tent caterpillars.

    PubMed

    Abarca, Mariana; Lill, John T

    2015-11-01

    Climate change is disrupting species interactions by altering the timing of phenological events such as budburst for plants and hatching for insects. We combined field observations with laboratory manipulations to investigate the consequences of climate warming on the phenology and performance of the eastern tent caterpillar (Malacosoma americanum). We evaluated the effects of warmer winter and spring regimes on caterpillar hatching patterns and starvation endurance, traits likely to be under selection in populations experiencing phenological asynchrony, using individuals from two different populations (Washington, DC, and Roswell, GA). We also quantified the proximate and extended fitness effects of early food deprivation and recorded spring phenology of local caterpillars and their host plants. In addition, we conducted laboratory assays to determine if caterpillars are using plant chemical cues to fine-tune their hatching times. Warmer winter temperatures induced earlier hatching and caterpillars from GA survived starvation for periods that were 30% longer than caterpillars from DC. Warmer spring regimes reduced the starvation endurance of caterpillars overwintering in the wild but not in the laboratory. Early starvation dramatically reduced hatchling survival; however, surviving caterpillars did not show detrimental effects on pupal mass or development time. In the field, hatching preceded budburst in both 2013 and 2014 and the period of optimal foliage quality was 2 weeks shorter in 2013. Hatching time was unaffected by exposure to plant volatiles. Overall, we found that warmer temperatures can trigger late-season asynchrony by accelerating plant phenology and caterpillars from different populations exhibit differential abilities to cope with environmental unreliability. PMID:26093630

  1. Plant Quantity Affects Development and Survival of a Gregarious Insect Herbivore and Its Endoparasitoid Wasp.

    PubMed

    Fei, Minghui; Gols, Rieta; Zhu, Feng; Harvey, Jeffrey A

    2016-01-01

    Virtually all studies of plant-herbivore-natural enemy interactions focus on plant quality as the major constraint on development and survival. However, for many gregarious feeding insect herbivores that feed on small or ephemeral plants, the quantity of resources is much more limiting, yet this area has received virtually no attention. Here, in both lab and semi-field experiments using tents containing variably sized clusters of food plants, we studied the effects of periodic food deprivation in a tri-trophic system where quantitative constraints are profoundly important on insect performance. The large cabbage white Pieris brassicae, is a specialist herbivore of relatively small wild brassicaceous plants that grow in variable densities, with black mustard (Brassica nigra) being one of the most important. Larvae of P. brassicae are in turn attacked by a specialist endoparasitoid wasp, Cotesia glomerata. Increasing the length of food deprivation of newly molted final instar caterpillars significantly decreased herbivore and parasitoid survival and biomass, but shortened their development time. Moreover, the ability of caterpillars to recover when provided with food again was correlated with the length of the food deprivation period. In outdoor tents with natural vegetation, we created conditions similar to those faced by P. brassicae in nature by manipulating plant density. Low densities of B. nigra lead to potential starvation of P. brassicae broods and their parasitoids, replicating nutritional conditions of the lab experiments. The ability of both unparasitized and parasitized caterpillars to find corner plants was similar but decreased with central plant density. Survival of both the herbivore and parasitoid increased with plant density and was higher for unparasitized than for parasitized caterpillars. Our results, in comparison with previous studies, reveal that quantitative constraints are far more important that qualitative constraints on the performance of

  2. Does diabetes mellitus affect presentation, stage and survival in operable pancreatic cancer?

    PubMed Central

    Lee, Anthea Y. S.; Shelat, Vishal G.; Ahmed, Saleem; Junnarkar, Sameer P.; Woon, Winston W. L.; Low, Jee-Keem

    2016-01-01

    Background The aim of the study is to investigate differences in clinical presentation, disease stage and survival of operable pancreatic cancer patients with new onset DM compared to long standing diabetes mellitus (DM) and non diabetics. Methods A prospectively maintained pancreatic cancer surgery database of a tertiary care teaching hospital from January 2006 to August 2012 was reviewed. Only patients with a histological diagnosis of pancreatic carcinoma (PC) were included in final analysis. DM was defined as HbA1c >6.5% or any patient on anti-diabetic treatment regardless of HbA1c value. New onset DM was defined when diagnosed within two preceding years of surgery. Patients were stratified into two groups: DM and non DM. Among the DM patients, patients with new onset DM were further stratified and studied separately. Staging of PC was performed according to the 6th edition of AJCC. Survival of patients with PC was determined by reviewing medical records. Patients and their families were contacted if there was no existing follow-up. Results Eighty-six patients (n=55, 63.9% male) with a mean age of 62 years (range, 29-85 years) underwent pancreatic cancer surgery during the study period. Of the 86 patients, 30 (34%) had DM of which eight patients (9% overall) had new onset DM. DM patients tended to be older compared to non DM patients (67.8 vs. 58.5 years, P=0.0005). The majority of non DM patients were symptomatic (98.2%), and there was a tendency for DM group patients to be asymptomatic at presentation (13.3% vs. 1.8%, P=0.05). Abdominal pain was less common in DM patients compared to non DM patients (30% vs. 53.6%, P=0.04). The median duration of new onset DM prior to diagnosis of PC was 2 months (range, 1-23 months). There was a tendency for DM patients to present at an early stage (stage I and stage II) (P=0.08). There was no difference in survival (P=0.17) for new onset DM compared to long standing DM and non DM patients. Conclusions DM patients tend to be

  3. Factors affecting the survival, fertilization, and embryonic development of mouse oocytes after vitrification using glass capillaries.

    PubMed

    Tan, Xiuwen; Song, Enliang; Liu, Xiaomu; You, Wei; Wan, Fachun

    2009-09-01

    Cryopreservation of mammalian oocytes is an important way to provide a steady source of materials for research and practice of parthenogenetic activation, in vitro fertilization, and nuclear transfer. However, oocytes cryopreservation has not been common used, as there still are some problems waiting to be solved on the repeatability, safety, and validity. Then, it is necessary to investigate the damage occurred from vitrification and find a way to avoid or repair it. In this study, mouse mature oocytes were firstly pretreated in different equilibrium media, such as 5% ethylene glycol (EG) + 5% dimethyl sulfoxide (DMSO), 10% EG + 10% DMSO, and 15% EG + 15% DMSO in TCM199 supplemented with 20% fetal calf serum (FCS), for 1, 3, and 5 min, respectively, and then oocytes were transferred into vitrification solution (20% EG, 20% DMSO, 0.3 M sucrose, and 20% FCS in TCM199, M2, Dulbecco's phosphate buffered saline, and 0.9% saline medium, respectively) and immediately loaded into glass capillaries to be plunged into liquid nitrogen. After storage from 1 h to 1 wk, they were diluted in stepwise sucrose solutions. The surviving oocytes were stained for cortical granule, meiotic spindles, and chromosomes. Oocytes without treatments were used as controls. The results showed that oocytes pretreated in 5% EG +5% DMSO group for 3-5 min or in 10% EG + 10% DMSO group for 1-3 min were better than other treatments. Oocytes vitrified in TCM199 as basic medium showed higher survival and better subsequent embryonic development than other groups. When the concentration of FCS in vitrification solution reduced below 15%, the rates of survival, fertilization, and developing to blastocyst declined dramatically. The inner diameter (0.6 mm) of glass capillaries and amount of vitrification solution (1-3 microl) achieved more rapid cooling and warming and so reduce the injury to oocytes. Cropreservation led to the exocytosis of cortical granule of oocytes (about 10%) and serious disturbance of

  4. Survival analysis of factors affecting incidence risk of Salmonella Dublin in Danish dairy herds during a 7-year surveillance period.

    PubMed

    Nielsen, Liza Rosenbaum; Dohoo, Ian

    2012-12-01

    A national surveillance programme for Salmonella Dublin, based on regular bulk-tank milk antibody screening and movements of cattle, was initiated in Denmark in 2002. From 2002 to end of 2009 the prevalence of test-positive dairy herds was reduced from 26% to 10%. However, new infections and spread of S. Dublin between herds continued to occur. The objective of this study was to investigate factors affecting incidence risk of S. Dublin infection in Danish dairy herds between 2003 and 2009. Herds were considered at risk when they had been test-negative for at least four consecutive year-quarters (YQs), either at the start of the study period or after recovery from infection. Survival analysis was performed on a dataset including 6931 dairy herds with 118,969 YQs at risk, in which 1523 failures (new infection events) occurred. Predictors obtained from register data were tested in a multivariable, proportional hazard model allowing for recurrence within herds. During October to December the hazard of failures was higher (hazard ratio HR=3.4, P=0.0005) than the rest of the year. Accounting for the delay in bulk-tank milk antibody responses to S. Dublin infection, this indicates that introduction of bacteria was most frequent between July and October. Purchase from test-positive cattle herds within the previous 6 months was associated with higher hazard of failures (HR=2.5, P<0.0001) compared to no purchase and purchase from test-negative herds. Increasing local prevalence, herd size and bulk-tank milk somatic cell counts were also associated with increasing hazard of failures. The effect of prior infection was time-dependent; the hazard of failures was reduced following a logarithmic decline with increasing time at risk. The hazard was markedly higher in herds with prior infections the first year after becoming at risk again, and then approached the hazard in herds without known prior infections 2-3 years after becoming test-negative. This showed that herds with prior

  5. Sialylation Facilitates the Maturation of Mammalian Sperm and Affects Its Survival in Female Uterus.

    PubMed

    Ma, Xue; Pan, Qian; Feng, Ying; Choudhury, Biswa P; Ma, Qianhong; Gagneux, Pascal; Ma, Fang

    2016-06-01

    Establishment of adequate levels of sialylation is crucial for sperm survival and function after insemination; however, the mechanism for the addition of the sperm sialome has not been identified. Here, we report evidence for several different mechanisms that contribute to the establishment of the mature sperm sialome. Directly quantifying the source of the nucleotide sugar CMP-beta-N-acetylneuraminic acid in epididymal fluid indicates that transsialylation occurs in the upper epididymis. Western blots for the low-molecular-mass sialoglycoprotein (around 20-50 kDa) in C57BL/6 mice epididymal fluid reflect that additional sialome could be obtained by glycosylphosphatidylinositol-anchored sialoglycopeptide incorporation during epididymal transit in the caput of the epididymis. Additionally, we found that in Cmah (CMP-N-acetylneuraminic acid hydroxylase)-/- transgenic mice, epididymal sperm obtained sialylated-CD52 from seminal vesicle fluid (SVF). Finally, we used Gfp (green fluorescent protein)+/+ mouse sperm to test the role of sialylation on sperm for protection from female leukocyte attack. There is very low phagocytosis of the epididymal sperm when compared to that of sperm coincubated with SVF. Treating sperm with Arthrobacter ureafaciens sialidase (AUS) increased phagocytosis even further. Our results highlight the different mechanisms of increasing sialylation, which lead to the formation of the mature sperm sialome, as well as reveal the sialome's function in sperm survival within the female genital tract. PMID:27075617

  6. Nonlinearity in MCF7 Cell Survival Following Exposure to Modulated 6 MV Radiation Fields

    PubMed Central

    Castiella, Marion; Franceries, Xavier; Cassol, Emmanuelle; Vieillevigne, Laure; Pereda, Veronica; Bardies, Manuel; Courtade-Saïdi, Monique

    2015-01-01

    The study of cell survival following exposure to nonuniform radiation fields is taking on particular interest because of the increasing evidence of a nonlinear relationship at low doses. We conducted in vitro experiments using the MCF7 breast cancer cell line. A 2.4 × 2.4 cm2 square area of a T25 flask was irradiated by a Varian Novalis accelerator delivering 6 MV photons. Cell survival inside the irradiation field, in the dose gradient zone and in the peripheral zone, was determined using a clonogenic assay for different radiation doses at the isocenter. Increased cell survival was observed inside the irradiation area for doses of 2, 10, and 20 Gy when nonirradiated cells were present at the periphery, while the cells at the periphery showed decreased survival compared to controls. Increased survival was also observed at the edge of the dose gradient zone for cells receiving 0.02 to 0.01 Gy when compared with cells at the periphery of the same flask, whatever the isocenter dose. These data are the first to report cell survival in the dose gradient zone. Radiotherapists must be aware of this nonlinearity in dose response. PMID:26740805

  7. Role of "cancer stem cells" and cell survival in tumor development and maintenance.

    PubMed

    Adams, J M; Kelly, P N; Dakic, A; Carotta, S; Nutt, S L; Strasser, A

    2008-01-01

    One critical issue for cancer biology is the nature of the cells that drive the inexorable growth of malignant tumors. Reports that only rare cell populations within human leukemias seeded leukemia in mice stimulated the now widely embraced hypothesis that only such "cancer stem cells" maintain all tumor growth. However, the mouse microenvironment might instead fail to support the dominant human tumor cell populations. Indeed, on syngeneic transplantation of mouse lymphomas and leukemias, we and other investigators have found that a substantial proportion (>10%) of their cells drive tumor growth. Thus, dominant clones rather than rare cancer stem cells appear to sustain many tumors. Another issue is the role of cell survival in tumorigenesis. Because tumor development can be promoted by the overexpression of prosurvival genes such as bcl-2, we are exploring the role of endogenous Bcl-2-like proteins in lymphomagenesis. The absence of endogenous Bcl-2 in mice expressing an Emu-myc transgene reduced mature B-cell numbers and enhanced their apoptosis, but unexpectedly, lymphoma development was undiminished or even delayed. This suggests that these tumors originate in an earlier cell type, such as the pro-B or pre-B cell, and that the nascent neoplastic clones do not require Bcl-2 but may instead be protected by a Bcl-2 relative. PMID:19022754

  8. Out-of-Field Cell Survival Following Exposure to Intensity-Modulated Radiation Fields

    SciTech Connect

    Butterworth, Karl T.; McGarry, Conor K.; Trainor, Colman; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2011-04-01

    Purpose: To determine the in-field and out-of-field cell survival of cells irradiated with either primary field or scattered radiation in the presence and absence of intercellular communication. Methods and Materials: Cell survival was determined by clonogenic assay in human prostate cancer (DU145) and primary fibroblast (AGO1552) cells following exposure to different field configurations delivered using a 6-MV photon beam produced with a Varian linear accelerator. Results: Nonuniform dose distributions were delivered using a multileaf collimator (MLC) in which half of the cell population was shielded. Clonogenic survival in the shielded region was significantly lower than that predicted from the linear quadratic model. In both cell lines, the out-of-field responses appeared to saturate at 40%-50% survival at a scattered dose of 0.70 Gy in DU-145 cells and 0.24 Gy in AGO1522 cells. There was an approximately eightfold difference in the initial slopes of the out-of-field response compared with the {alpha}-component of the uniform field response. In contrast, cells in the exposed part of the field showed increased survival. These observations were abrogated by direct physical inhibition of cellular communication and by the addition of the inducible nitric oxide synthase inhibitor aminoguanidine known to inhibit intercellular bystander effects. Additional studies showed the proportion of cells irradiated and dose delivered to the shielded and exposed regions of the field to impact on response. Conclusions: These data demonstrate out-of-field effects as important determinants of cell survival following exposure to modulated irradiation fields with cellular communication between differentially irradiated cell populations playing an important role. Validation of these observations in additional cell models may facilitate the refinement of existing radiobiological models and the observations considered important determinants of cell survival.

  9. Bag-1 promotes cell survival through c-Myc-mediated ODC upregulation that is not preferred under apoptotic stimuli in MCF-7 cells.

    PubMed

    Ozfiliz, Pelin; Kizilboga, Tugba; Demir, Salih; Alkurt, Gizem; Palavan-Unsal, Narçin; Arisan, Elif Damla; Dinler-Doganay, Gizem

    2015-07-01

    Bag-1, Bcl-2 associated athanogene-1, is a multifunctional protein that can regulate a wide variety of cellular processes: proliferation, cell survival, transcription, apoptosis and motility. Bag-1 interacts with various targets in the modulation of these pathways; yet molecular details of Bag-1's involvement in each cellular event are still unclear. We first showed that forced Bag-1 expression promotes cell survival and prevents drug-induced apoptosis in MCF-7 breast cancer cells. Increased mRNA expressions of c-myc protooncogene and ornithine decarboxylase (ODC), biosynthetic enzyme of polyamines, were detected in Bag-1L+ cells, and western blots against the protein product of c-Myc and ODC confirmed these findings. Once ODC, a c-Myc target, gets activated, polyamine biosynthesis increases. We observed enhanced polyamine content in the Bag-1L+ cells. On the contrary, when polyamine catabolic mechanisms were investigated, Bag-1 silencing suppressed biosynthesis of polyamines because of the downregulation of ODC and upregulation of PAO. Exposure of cells to apoptotic inducers enhances the cell death mechanism by producing toxic products such as H2 O2 and aldehydes. Bag-1L+ cells prevented drug-induced PAO activation leading to a decrease in H2 O2 production following cisplatin or paclitaxel treatment. In this line, our results suggested that Bag-1 indirectly affects cell survival through c-Myc activated signalling that causes elevation of ODC levels, leading to an increase of the polyamine content. PMID:26178413

  10. Determination of the reliability of Ni-Cd batteries from survival data on cells fabricated 1964 - 1977

    NASA Technical Reports Server (NTRS)

    Jordan, A. S.; Osullivan, T. D.

    1983-01-01

    The probability of Ni-Cd battery survival was determined by researching survival data on cells fabricated from 1964-1977. A log of cell failure times were plotted against cumulative failure percentage and mean and standard deviation were determined.

  11. Regulatory T cell expressed MyD88 is critical for prolongation of allograft survival.

    PubMed

    Borges, Christopher M; Reichenbach, Dawn K; Kim, Beom Seok; Misra, Aditya; Blazar, Bruce R; Turka, Laurence A

    2016-08-01

    MyD88 signaling directly promotes T-cell survival and is required for optimal T-cell responses to pathogens. To examine the role of T-cell-intrinsic MyD88 signals in transplantation, we studied mice with targeted T-cell-specific MyD88 deletion. Contrary to expectations, we found that these mice were relatively resistant to prolongation of graft survival with anti-CD154 plus rapamycin in a class II-mismatched system. To specifically examine the role of MyD88 in Tregs, we created a Treg-specific MyD88-deficient mouse. Transplant studies in these animals replicated the findings observed with a global T-cell MyD88 knockout. Surprisingly, given the role of MyD88 in conventional T-cell survival, we found no defect in the survival of MyD88-deficient Tregs in vitro or in the transplant recipients and also observed intact cell homing and expression of Treg effector molecules. MyD88-deficient Tregs also fail to protect allogeneic bone marrow transplant recipients from chronic graft-versus-host disease, confirming the observations of defective regulation seen in a solid organ transplant system. Together, our data define MyD88 as having a divergent requirement for cell survival in non-Tregs and Tregs, and a yet-to-be defined survival-independent requirement for Treg function during the response to alloantigen. PMID:27112509

  12. Radioresistant human lung adenocarcinoma cells that survived multiple fractions of ionizing radiation are sensitive to HSP90 inhibition.

    PubMed

    Gomez-Casal, Roberto; Epperly, Michael W; Wang, Hong; Proia, David A; Greenberger, Joel S; Levina, Vera

    2015-12-29

    Despite the common usage of radiotherapy for the treatment of NSCLC, outcomes for these cancers when treated with ionizing radiation (IR) are still unsatisfactory. A better understanding of the mechanisms underlying resistance to IR is needed to design approaches to eliminate the radioresistant cells and prevent tumor recurrence and metastases. Using multiple fractions of IR we generated radioresistant cells from T2821 and T2851 human lung adenocarcinoma cells. The radioresistant phenotypes present in T2821/R and T2851/R cells include multiple changes in DNA repair genes and proteins expression, upregulation of EMT markers, alterations of cell cycle distribution, upregulation of PI3K/AKT signaling and elevated production of growth factors, cytokines, important for lung cancer progression, such as IL-6, PDGFB and SDF-1 (CXCL12). In addition to being radioresistant these cells were also found to be resistant to cisplatin.HSP90 is a molecular chaperone involved in stabilization and function of multiple client proteins implicated in NSCLC cell survival and radioresistance. We examined the effect of ganetespib, a novel HSP90 inhibitor, on T2821/R and T2851/R cell survival, migration and radioresistance. Our data indicates that ganetespib has cytotoxic activity against parental T2821 and T2851 cells and radioresistant T2821/R and T2851/R lung tumor cells. Ganetespib does not affect proliferation of normal human lung fibroblasts. Combining IR with ganetespib completely abrogates clonogenic survival of radioresistant cells.Our data show that HSP90 inhibition can potentiate the effect of radiotherapy and eliminate radioresistant and cisplatin -resistant residual cells, thus it may aid in reducing NSCLC tumor recurrence after fractionated radiotherapy. PMID:26517240

  13. Radioresistant human lung adenocarcinoma cells that survived multiple fractions of ionizing radiation are sensitive to HSP90 inhibition

    PubMed Central

    Gomez-Casal, Roberto; Epperly, Michael W.; Wang, Hong; Proia, David A.; Greenberger, Joel S.; Levina, Vera

    2015-01-01

    Despite the common usage of radiotherapy for the treatment of NSCLC, outcomes for these cancers when treated with ionizing radiation (IR) are still unsatisfactory. A better understanding of the mechanisms underlying resistance to IR is needed to design approaches to eliminate the radioresistant cells and prevent tumor recurrence and metastases. Using multiple fractions of IR we generated radioresistant cells from T2821 and T2851 human lung adenocarcinoma cells. The radioresistant phenotypes present in T2821/R and T2851/R cells include multiple changes in DNA repair genes and proteins expression, upregulation of EMT markers, alterations of cell cycle distribution, upregulation of PI3K/AKT signaling and elevated production of growth factors, cytokines, important for lung cancer progression, such as IL-6, PDGFB and SDF-1 (CXCL12). In addition to being radioresistant these cells were also found to be resistant to cisplatin. HSP90 is a molecular chaperone involved in stabilization and function of multiple client proteins implicated in NSCLC cell survival and radioresistance. We examined the effect of ganetespib, a novel HSP90 inhibitor, on T2821/R and T2851/R cell survival, migration and radioresistance. Our data indicates that ganetespib has cytotoxic activity against parental T2821 and T2851 cells and radioresistant T2821/R and T2851/R lung tumor cells. Ganetespib does not affect proliferation of normal human lung fibroblasts. Combining IR with ganetespib completely abrogates clonogenic survival of radioresistant cells. Our data show that HSP90 inhibition can potentiate the effect of radiotherapy and eliminate radioresistant and cisplatin -resistant residual cells, thus it may aid in reducing NSCLC tumor recurrence after fractionated radiotherapy. PMID:26517240

  14. Non-small cell lung cancer cell survival crucially depends on functional insulin receptors.

    PubMed

    Frisch, Carolin Maria; Zimmermann, Katrin; Zilleßen, Pia; Pfeifer, Alexander; Racké, Kurt; Mayer, Peter

    2015-08-01

    Insulin plays an important role as a growth factor and its contribution to tumor proliferation is intensely discussed. It acts via the cognate insulin receptor (IR) but can also activate the IGF1 receptor (IGF1R). Apart from increasing proliferation, insulin might have additional effects in lung cancer. Therefore, we investigated insulin action and effects of IR knockdown (KD) in three (NCI-H292, NCI-H226 and NCI-H460) independent non-small cell lung cancer (NSCLC) cell lines. All lung cancer lines studied were found to express IR, albeit with marked differences in the ratio of the two variants IR-A and IR-B. Insulin activated the classical signaling pathway with IR autophosphorylation and Akt phosphorylation. Moreover, activation of MAPK was observed in H292 cells, accompanied by enhanced proliferation. Lentiviral shRNA IR KD caused strong decrease in survival of all three lines, indicating that the effects of insulin in lung cancer go beyond enhancing proliferation. Unspecific effects were ruled out by employing further shRNAs and different insulin-responsive cells (human pre-adipocytes) for comparison. Caspase assays demonstrated that IR KD strongly induced apoptosis in these lung cancer cells, providing the physiological basis of the rapid cell loss. In search for the underlying mechanism, we analyzed alterations in the gene expression profile in response to IR KD. A strong induction of certain cytokines (e.g. IL20 and tumour necrosis factor) became obvious and it turned out that these cytokines trigger apoptosis in the NSCLC cells tested. This indicates a novel role of IR in tumor cell survival via suppression of pro-apoptotic cytokines. PMID:26113601

  15. Stat3 Signaling Promotes Survival And Maintenance Of Medullary Thymic Epithelial Cells

    PubMed Central

    Bolner, Michelle; Reeh, Kaitlin A. G.; Kang, Rhea; Reddy, Madhava C.; DiGiovanni, John; Richie, Ellen R.

    2016-01-01

    Medullary thymic epithelial cells (mTECs) are essential for establishing central tolerance by expressing a diverse array of self-peptides that delete autoreactive thymocytes and/or divert thymocytes into the regulatory T cell lineage. Activation of the NFκB signaling pathway in mTEC precursors is indispensable for mTEC maturation and proliferation resulting in proper medullary region formation. Here we show that the Stat3-mediated signaling pathway also plays a key role in mTEC development and homeostasis. Expression of a constitutively active Stat3 transgene targeted to the mTEC compartment increases mTEC cellularity and bypasses the requirement for signals from positively selected thymocytes to drive medullary region formation. Conversely, conditional deletion of Stat3 disrupts medullary region architecture and reduces the number of mTECs. Stat3 signaling does not affect mTEC proliferation, but rather promotes survival of immature MHCIIloCD80lo mTEC precursors. In contrast to striking alterations in the mTEC compartment, neither enforced expression nor deletion of Stat3 affects cTEC cellularity or organization. These results demonstrate that in addition to the NFkB pathway, Stat3-mediated signals play an essential role in regulating mTEC cellularity and medullary region homeostasis. PMID:26789196

  16. Stat3 Signaling Promotes Survival And Maintenance Of Medullary Thymic Epithelial Cells.

    PubMed

    Lomada, Dakshayani; Jain, Manju; Bolner, Michelle; Reeh, Kaitlin A G; Kang, Rhea; Reddy, Madhava C; DiGiovanni, John; Richie, Ellen R

    2016-01-01

    Medullary thymic epithelial cells (mTECs) are essential for establishing central tolerance by expressing a diverse array of self-peptides that delete autoreactive thymocytes and/or divert thymocytes into the regulatory T cell lineage. Activation of the NFκB signaling pathway in mTEC precursors is indispensable for mTEC maturation and proliferation resulting in proper medullary region formation. Here we show that the Stat3-mediated signaling pathway also plays a key role in mTEC development and homeostasis. Expression of a constitutively active Stat3 transgene targeted to the mTEC compartment increases mTEC cellularity and bypasses the requirement for signals from positively selected thymocytes to drive medullary region formation. Conversely, conditional deletion of Stat3 disrupts medullary region architecture and reduces the number of mTECs. Stat3 signaling does not affect mTEC proliferation, but rather promotes survival of immature MHCIIloCD80lo mTEC precursors. In contrast to striking alterations in the mTEC compartment, neither enforced expression nor deletion of Stat3 affects cTEC cellularity or organization. These results demonstrate that in addition to the NFkB pathway, Stat3-mediated signals play an essential role in regulating mTEC cellularity and medullary region homeostasis. PMID:26789196

  17. Controlling Redox Status for Stem Cell Survival, Expansion, and Differentiation

    PubMed Central

    Sart, Sébastien; Song, Liqing; Li, Yan

    2015-01-01

    Reactive oxygen species (ROS) have long been considered as pathological agents inducing apoptosis under adverse culture conditions. However, recent findings have challenged this dogma and physiological levels of ROS are now considered as secondary messengers, mediating numerous cellular functions in stem cells. Stem cells represent important tools for tissue engineering, drug screening, and disease modeling. However, the safe use of stem cells for clinical applications still requires culture improvements to obtain functional cells. With the examples of mesenchymal stem cells (MSCs) and pluripotent stem cells (PSCs), this review investigates the roles of ROS in the maintenance of self-renewal, proliferation, and differentiation of stem cells. In addition, this work highlights that the tight control of stem cell microenvironment, including cell organization, and metabolic and mechanical environments, may be an effective approach to regulate endogenous ROS generation. Taken together, this paper indicates the need for better quantification of ROS towards the accurate control of stem cell fate. PMID:26273419

  18. Autophagy in response to photodynamic therapy: cell survival vs. cell death

    NASA Astrophysics Data System (ADS)

    Oleinick, Nancy L.; Xue, Liang-yan; Chiu, Song-mao; Joseph, Sheeba

    2009-02-01

    Autophagy (or more properly, macroautophagy) is a pathway whereby damaged organelles or other cell components are encased in a double membrane, the autophagosome, which fuses with lysosomes for digestion by lysosomal hydrolases. This process can promote cell survival by removing damaged organelles, but when damage is extensive, it can also be a mechanism of cell death. Similar to the Kessel and Agostinis laboratories, we have reported the vigorous induction of autophagy by PDT; this was found in human breast cancer MCF-7 cells whether or not they were able to efficiently induce apoptosis. One way to evaluate the role of autophagy in PDT-treated cells is to silence one of the essential genes in the pathway. Kessel and Reiners silenced the Atg7 gene of murine leukemia L1210 cells using inhibitory RNA and found sensitization to PDT-induced cell death at a low dose of PDT, implying that autophagy is protective when PDT damage is modest. We have examined the role of autophagy in an epithelium-derived cancer cell by comparing parental and Atg7-silenced MCF-7 cells to varying doses of PDT with the phthalocyanine photosensitizer Pc 4. In contrast to L1210 cells, autophagy-deficient MCF-7 cells were more resistant to the lethal effects of PDT, as judged by clonogenic assays. A possible explanation for the difference in outcome for L1210 vs. MCF-7 cells is the greatly reduced ability of the latter to undergo apoptosis, a deficiency that may convert autophagy into a cell-death process even at low PDT doses. Experiments to investigate the mechanism(s) responsible are in process.

  19. Glycogen Synthase Kinase-3 promotes cell survival, growth and PAX3 levels in human melanoma cells

    PubMed Central

    Kubic, Jennifer D.; Mascarenhas, Joseph B.; Iizuka, Takumi; Wolfgeher, Don; Lang, Deborah

    2012-01-01

    Glycogen Synthase Kinase-3 (GSK-3) is a serine/threonine kinase involved in a diverse range of cellular processes. GSK-3 exists in two isoforms, GSK-3α and GSK-3β, which possess some functional redundancy but also play distinct roles depending on developmental and cellular context. In this report we found that GSK-3 actively promoted cell growth and survival in melanoma cells, and blocking this activity with small molecule inhibitor SB216763 or gene-specific siRNA decreased proliferation, increased apoptosis and altered cellular morphology. These alterations coincided with loss of PAX3, a transcription factor implicated in proliferation, survival and migration of developing melanoblasts. We further found that PAX3 directly interacted with and was phosphorylated in vitro on a number of residues by GSK-3β. In melanoma cells, direct inhibition of PAX3 lead to cellular changes that paralleled the response to GSK-3 inhibition. Maintenance of PAX3 expression protected melanoma cells from the anti-tumor effects of SB216763. These data support a model wherein GSK-3 regulates proliferation and morphology of melanoma through phosphorylation and increased levels of PAX3. PMID:22679108

  20. Lentivirus mediated HO-1 gene transfer enhances myogenic precursor cell survival after autologous transplantation in pig.

    PubMed

    Laumonier, Thomas; Yang, Sheng; Konig, Stephane; Chauveau, Christine; Anegon, Ignacio; Hoffmeyer, Pierre; Menetrey, Jacques

    2008-02-01

    Cell therapy for Duchenne muscular dystrophy and other muscle diseases is limited by a massive early cell death following injections. In this study, we explored the potential benefit of heme oxygenase-1 (HO-1) expression in the survival of porcine myogenic precursor cells (MPCs) transplanted in pig skeletal muscle. Increased HO-1 expression was assessed either by transient hyperthermia or by HO-1 lentiviral infection. One day after the thermic shock, we observed a fourfold and a threefold increase in HSP70/72 and HO-1 levels, respectively. This treatment protected 30% of cells from staurosporine-induced apoptosis in vitro. When porcine MPC were heat-shocked prior to grafting, we improved cell survival by threefold at 5 days after autologous transplantation (26.3 +/- 5.5% surviving cells). After HO-1 lentiviral transduction, almost 60% of cells expressed the transgene and kept their myogenic properties to proliferate and fuse in vitro. Apoptosis of HO-1 transduced cells was reduced by 50% in vitro after staurosporine induction. Finally, a fivefold enhancement in cell survival was observed after transplantation of HO-1-group (47.5 +/- 9.1% surviving cells) as compared to the nls-LacZ-group or control group. These results identify HO-1 as a protective gene against early MPC death post-transplantation. PMID:18026170

  1. CEACAM1 induces B-cell survival and is essential for protective antiviral antibody production

    PubMed Central

    Khairnar, Vishal; Duhan, Vikas; Maney, Sathish Kumar; Honke, Nadine; Shaabani, Namir; Pandyra, Aleksandra A.; Seifert, Marc; Pozdeev, Vitaly; Xu, Haifeng C.; Sharma, Piyush; Baldin, Fabian; Marquardsen, Florian; Merches, Katja; Lang, Elisabeth; Kirschning, Carsten; Westendorf, Astrid M.; Häussinger, Dieter; Lang, Florian; Dittmer, Ulf; Küppers, Ralf; Recher, Mike; Hardt, Cornelia; Scheffrahn, Inka; Beauchemin, Nicole; Göthert, Joachim R.; Singer, Bernhard B.; Lang, Philipp A.; Lang, Karl S.

    2015-01-01

    B cells are essential for antiviral immune defence because they produce neutralizing antibodies, present antigen and maintain the lymphoid architecture. Here we show that intrinsic signalling of CEACAM1 is essential for generating efficient B-cell responses. Although CEACAM1 exerts limited influence on the proliferation of B cells, expression of CEACAM1 induces survival of proliferating B cells via the BTK/Syk/NF-κB-axis. The absence of this signalling cascade in naive Ceacam1−/− mice limits the survival of B cells. During systemic infection with cytopathic vesicular stomatitis virus, Ceacam1−/− mice can barely induce neutralizing antibody responses and die early after infection. We find, therefore, that CEACAM1 is a crucial regulator of B-cell survival, influencing B-cell numbers and protective antiviral antibody responses. PMID:25692415

  2. CEACAM1 induces B-cell survival and is essential for protective antiviral antibody production.

    PubMed

    Khairnar, Vishal; Duhan, Vikas; Maney, Sathish Kumar; Honke, Nadine; Shaabani, Namir; Pandyra, Aleksandra A; Seifert, Marc; Pozdeev, Vitaly; Xu, Haifeng C; Sharma, Piyush; Baldin, Fabian; Marquardsen, Florian; Merches, Katja; Lang, Elisabeth; Kirschning, Carsten; Westendorf, Astrid M; Häussinger, Dieter; Lang, Florian; Dittmer, Ulf; Küppers, Ralf; Recher, Mike; Hardt, Cornelia; Scheffrahn, Inka; Beauchemin, Nicole; Göthert, Joachim R; Singer, Bernhard B; Lang, Philipp A; Lang, Karl S

    2015-01-01

    B cells are essential for antiviral immune defence because they produce neutralizing antibodies, present antigen and maintain the lymphoid architecture. Here we show that intrinsic signalling of CEACAM1 is essential for generating efficient B-cell responses. Although CEACAM1 exerts limited influence on the proliferation of B cells, expression of CEACAM1 induces survival of proliferating B cells via the BTK/Syk/NF-κB-axis. The absence of this signalling cascade in naive Ceacam1(-/-) mice limits the survival of B cells. During systemic infection with cytopathic vesicular stomatitis virus, Ceacam1(-/-) mice can barely induce neutralizing antibody responses and die early after infection. We find, therefore, that CEACAM1 is a crucial regulator of B-cell survival, influencing B-cell numbers and protective antiviral antibody responses. PMID:25692415

  3. A stochastic model of cell survival for high-Z nanoparticle radiotherapy

    SciTech Connect

    Zygmanski, Piotr; Tsiamas, Panagiotis; Ngwa, Wil; Berbeco, Ross; Makrigiorgos, Mike; Hoegele, Wolfgang; Cifter, Fulya; Sajo, Erno

    2013-02-15

    Purpose: The authors present a stochastic framework for the assessment of cell survival in gold nanoparticle radiotherapy. Methods: The authors derive the equations for the effective macroscopic dose enhancement for a population of cells with nonideal distribution of gold nanoparticles (GNP), allowing different number of GNP per cell and different distances with respect to the cellular target. They use the mixed Poisson distribution formalism to model the impact of the aforementioned physical factors on the effective dose enhancement. Results: The authors show relatively large differences in the estimation of cell survival arising from using approximated formulae. They predict degeneration of the cell killing capacity due to different number of GNP per cell and different distances with respect to the cellular target. Conclusions: The presented stochastic framework can be used in interpretation of experimental cell survival or tumor control probability studies.

  4. Survival of Airborne MS2 Bacteriophage Generated from Human Saliva, Artificial Saliva, and Cell Culture Medium

    PubMed Central

    Kuehn, Thomas H.; Bekele, Aschalew Z.; Mor, Sunil K.; Verma, Harsha; Goyal, Sagar M.; Raynor, Peter C.; Pui, David Y. H.

    2014-01-01

    Laboratory studies of virus aerosols have been criticized for generating airborne viruses from artificial nebulizer suspensions (e.g., cell culture media), which do not mimic the natural release of viruses (e.g., from human saliva). The objectives of this study were to determine the effect of human saliva on the infectivity and survival of airborne virus and to compare it with those of artificial saliva and cell culture medium. A stock of MS2 bacteriophage was diluted in one of three nebulizer suspensions, aerosolized, size selected (100 to 450 nm) using a differential mobility analyzer, and collected onto gelatin filters. Uranine was used as a particle tracer. The resulting particle size distribution was measured using a scanning mobility particle sizer. The amounts of infectious virus, total virus, and fluorescence in the collected samples were determined by infectivity assays, quantitative reverse transcription-PCR (RT-PCR), and spectrofluorometry, respectively. For all nebulizer suspensions, the virus content generally followed a particle volume distribution rather than a number distribution. The survival of airborne MS2 was independent of particle size but was strongly affected by the type of nebulizer suspension. Human saliva was found to be much less protective than cell culture medium (i.e., 3% tryptic soy broth) and artificial saliva. These results indicate the need for caution when extrapolating laboratory results, which often use artificial nebulizer suspensions. To better assess the risk of airborne transmission of viral diseases in real-life situations, the use of natural suspensions such as saliva or respiratory mucus is recommended. PMID:24561592

  5. Human intrahepatic regulatory T cells are functional, require IL‐2 from effector cells for survival, and are susceptible to Fas ligand‐mediated apoptosis

    PubMed Central

    Chen, Yung‐Yi; Jeffery, Hannah C.; Hunter, Stuart; Bhogal, Ricky; Birtwistle, Jane; Braitch, Manjit Kaur; Roberts, Sheree; Ming, Mikaela; Hannah, Jack; Thomas, Clare; Adali, Gupse; Hübscher, Stefan G.; Syn, Wing‐Kin; Afford, Simon; Lalor, Patricia F.; Adams, David H.

    2016-01-01

    Regulatory T cells (Treg) suppress T effector cell proliferation and maintain immune homeostasis. Autoimmune liver diseases persist despite high frequencies of Treg in the liver, suggesting that the local hepatic microenvironment might affect Treg stability, survival, and function. We hypothesized that interactions between Treg and endothelial cells during recruitment and then with epithelial cells within the liver affect Treg stability, survival, and function. To model this, we explored the function of Treg after migration through human hepatic sinusoidal‐endothelium (postendothelial migrated Treg [PEM Treg]) and the effect of subsequent interactions with cholangiocytes and local proinflammatory cytokines on survival and stability of Treg. Our findings suggest that the intrahepatic microenvironment is highly enriched with proinflammatory cytokines but deficient in the Treg survival cytokine interleukin (IL)‐2. Migration through endothelium into a model mimicking the inflamed liver microenvironment did not affect Treg stability; however, functional capacity was reduced. Furthermore, the addition of exogenous IL‐2 enhanced PEM Treg phosphorylated STAT5 signaling compared with PEMCD8. CD4 and CD8 T cells are the main source of IL‐2 in the inflamed liver. Liver‐infiltrating Treg reside close to bile ducts and coculture with cholangiocytes or their supernatants induced preferential apoptosis of Treg compared with CD8 effector cells. Treg from diseased livers expressed high levels of CD95, and their apoptosis was inhibited by IL‐2 or blockade of CD95. Conclusion: Recruitment through endothelium does not impair Treg stability, but a proinflammatory microenvironment deficient in IL‐2 leads to impaired function and increased susceptibility of Treg to epithelial cell‐induced Fas‐mediated apoptosis. These results provide a mechanism to explain Treg dysfunction in inflamed tissues and suggest that IL‐2 supplementation, particularly if used in conjunction

  6. Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells

    PubMed Central

    Krishnamurthy, Sudha; Dong, Zhihong; Vodopyanov, Dmitry; Imai, Atsushi; Helman, Joseph I.; Prince, Mark E.; Wicha, Max S.; Nör, Jacques E.

    2010-01-01

    Recent studies have demonstrated that cancer stem cells play an important role in the pathobiology of head and neck squamous cell carcinomas (HNSCC). However, little is known about functional interactions between head and neck cancer stem-like cells (CSC) and surrounding stromal cells. Here, we used Aldehyde Dehydrogenase activity and CD44 expression to sort putative stem cells from primary human HNSCC. Implantation of 1,000 CSC (ALDH+CD44+Lin−) led to tumors in 13 (out of 15) mice, while 10,000 non-cancer stem cells (NCSC; ALDH−CD44−Lin−) resulted in 2 tumors in 15 mice. These data demonstrated that ALDH and CD44 select a sub-population of cells that are highly tumorigenic. The ability to self-renew was confirmed by the observation that ALDH+CD44+Lin− cells sorted from human HNSCC formed more spheroids (orospheres) in 3-D agarose matrices or ultra-low attachment plates than controls and were serially passaged in vivo. We observed that approximately 80% of the CSC were located in close proximity (within 100-µm radius) of blood vessels in human tumors, suggesting the existence of perivascular niches in HNSCC. In vitro studies demonstrated that endothelial cell-secreted factors promoted self-renewal of CSC, as demonstrated by the upregulation of Bmi-1 expression and the increase in the number of orospheres as compared to controls. Notably, selective ablation of tumor-associated endothelial cells stably transduced with a caspase-based artificial death switch (iCaspase-9) caused a marked reduction in the fraction of CSC in xenograft tumors. Collectively, these findings indicate that endothelial cell-initiated signaling can enhance the survival and self-renewal of head and neck cancer stem cells. PMID:21098716

  7. The imaging viewpoint: how imaging affects determination of progression-free survival.

    PubMed

    Sullivan, Daniel Carl; Schwartz, Lawrence H; Zhao, Binsheng

    2013-05-15

    Tumor measurements on computed tomgoraphic or MRI scans and/or the appearance of new lesions on any of a variety of imaging studies including positron emission tomographic scans are key determinants for assessing progression-free survival as an endpoint in many clinical trials of therapies for solid tumors. Test-retest tumor measurement reproducibility may vary considerably across serial scans on the same patient unless rigorous attention is paid to standardization of image acquisition parameters and unless measurements are made by trained, experienced observers using validated objective methods. Target lesion selection also must be done with care to choose lesions that are or will be reproducibly measurable. Likewise, new lesions will be missed or misinterpreted on follow-up imaging studies unless those imaging studies are obtained using techniques suitable for detecting early, small lesions. Reader variability is clearly a major component of the problem. The increasing availability of semiautomatic image processing algorithms will help ameliorate that issue. In addition, an array of internationally accepted guidelines, standards, and accreditation programs now exist to help address these problems. PMID:23669422

  8. Maternally derived carotenoid pigments affect offspring survival, sex ratio, and sexual attractiveness in a colorful songbird

    NASA Astrophysics Data System (ADS)

    McGraw, K. J.; Adkins-Regan, E.; Parker, R. S.

    2005-08-01

    In egg-laying animals, mothers can influence the development of their offspring via the suite of biochemicals they incorporate into the nourishing yolk (e.g. lipids, hormones). However, the long-lasting fitness consequences of this early nutritional environment have often proved elusive. Here, we show that the colorful carotenoid pigments that female zebra finches ( Taeniopygia guttata) deposit into egg yolks influence embryonic and nestling survival, the sex ratio of fledged offspring, and the eventual ornamental coloration displayed by their offspring as adults. Mothers experimentally supplemented with dietary carotenoids prior to egg-laying incorporated more carotenoids into eggs, which, due to the antioxidant activity of carotenoids, rendered their embryos less susceptible to free-radical attack during development. These eggs were subsequently more likely to hatch, fledge offspring, produce more sons than daughters, and produce sons who exhibited more brightly colored carotenoid-based beak pigmentation. Provisioned mothers also acquired more colorful beaks, which directly predicted levels of carotenoids found in eggs, thus indicating that these pigments may function not only as physiological ‘damage-protectants’ in adults and offspring but also as morphological signals of maternal reproductive capabilities.

  9. Impact of Treatment Modalities on Survival of Patients With Locoregional Esophageal Squamous-Cell Carcinoma in Taiwan.

    PubMed

    Chen, Hui-Shan; Hung, Wei-Heng; Ko, Jiunn-Liang; Hsu, Po-Kuei; Liu, Chia-Chuan; Wu, Shiao-Chi; Lin, Ching-Hsiung; Wang, Bing-Yen

    2016-03-01

    The optimal treatment modality for locoregional esophageal squamous-cell carcinoma (ESCC) is still undetermined. This study investigated the treatment modalities affecting survival of patients with ESCC in Taiwan.Data on 6202 patients who underwent treatment for locoregional esophageal squamous-cell carcinoma during 2008 to 2012 in Taiwan were collected from the Taiwan Cancer Registry. Patients were stratified by clinical stage. The major treatment approaches included definitive chemoradiotherapy, preoperative chemoradiation followed by esophagectomy, esophagectomy followed by adjuvant therapy, and esophagectomy alone. The impact of different treatment modalities on overall survival was analyzed.The majority of patients had stage III disease (n = 4091; 65.96%), followed by stage II (n = 1582, 25.51%) and stage I cancer (n = 529, 8.53%). The 3-year overall survival rates were 60.65% for patients with stage I disease, 36.21% for those with stage II cancer, and 21.39% for patients with stage III carcinoma. Surgery alone was associated with significantly better overall survival than the other treatment modalities for patients with stage I disease (P = 0.029) and was associated with significantly worse overall survival for patients with stage III cancer (P < 0.001). There was no survival risk difference among the different treatment methods for patients with clinical stage II disease.Multimodality treatment is recommended for patients with stage II-III esophageal squamous-cell carcinoma. Patients with clinical stage I disease can be treated with esophagectomy without preoperative therapy. PMID:26962818

  10. Lysophosphatidic acid enhances survival of human CD34+ cells in ischemic conditions

    PubMed Central

    Kostic, Ivana; Fidalgo-Carvalho, Isabel; Aday, Sezin; Vazão, Helena; Carvalheiro, Tiago; Grãos, Mário; Duarte, António; Cardoso, Carla; Gonçalves, Lino; Carvalho, Lina; Paiva, Artur; Ferreira, Lino

    2015-01-01

    Several clinical trials are exploring therapeutic effect of human CD34+ cells in ischemic diseases, including myocardial infarction. Unfortunately, most of the cells die few days after delivery. Herein we show that lysophosphatidic acid (LPA)-treated human umbilical cord blood-derived CD34+ cells cultured under hypoxic and serum-deprived conditions present 2.2-fold and 1.3-fold higher survival relatively to non-treated cells and prostaglandin E2-treated cells, respectively. The pro-survival effect of LPA is concentration- and time-dependent and it is mediated by the activation of peroxisome proliferator-activator receptor γ (PPARγ) and downstream, by the activation of pro-survival ERK and Akt signaling pathways and the inhibition of mitochondrial apoptotic pathway. In hypoxia and serum-deprived culture conditions, LPA induces CD34+ cell proliferation without maintaining the their undifferentiating state, and enhances IL-8, IL-6 and G-CSF secretion during the first 12 h compared to non-treated cells. LPA-treated CD34+ cells delivered in fibrin gels have enhanced survival and improved cardiac fractional shortening at 2 weeks on rat infarcted hearts as compared to hearts treated with placebo. We have developed a new platform to enhance the survival of CD34+ cells using a natural and cost-effective ligand and demonstrated its utility in the preservation of the functionality of the heart after infarction. PMID:26553339

  11. Cell Survival and Apoptosis Signaling as Therapeutic Target for Cancer: Marine Bioactive Compounds

    PubMed Central

    Kalimuthu, Senthilkumar; Se-Kwon, Kim

    2013-01-01

    Inhibition of apoptosis leads to activation of cell survival factors (e.g., AKT) causes continuous cell proliferation in cancer. Apoptosis, the major form of cellular suicide, is central to various physiological processes and the maintenance of homeostasis in multicellular organisms. A number of discoveries have clarified the molecular mechanism of apoptosis, thus clarifying the link between apoptosis and cell survival factors, which has a therapeutic outcome. Induction of apoptosis and inhibition of cell survival by anticancer agents has been shown to correlate with tumor response. Cellular damage induces growth arrest and tumor suppression by inducing apoptosis, necrosis and senescence; the mechanism of cell death depends on the magnitude of DNA damage following exposure to various anticancer agents. Apoptosis is mainly regulated by cell survival and proliferating signaling molecules. As a new therapeutic strategy, alternative types of cell death might be exploited to control and eradicate cancer cells. This review discusses the signaling of apoptosis and cell survival, as well as the potential contribution of marine bioactive compounds, suggesting that new therapeutic strategies might follow. PMID:23348928

  12. Survival of weed seeds and animal parasites as affected by anaerobic digestion at meso- and thermophilic conditions.

    PubMed

    Johansen, Anders; Nielsen, Henrik B; Hansen, Christian M; Andreasen, Christian; Carlsgart, Josefine; Hauggard-Nielsen, Henrik; Roepstorff, Allan

    2013-04-01

    Anaerobic digestion of residual materials from animals and crops offers an opportunity to simultaneously produce bioenergy and plant fertilizers at single farms and in farm communities where input substrate materials and resulting digested residues are shared among member farms. A surplus benefit from this practice may be the suppressing of propagules from harmful biological pests like weeds and animal pathogens (e.g. parasites). In the present work, batch experiments were performed, where survival of seeds of seven species of weeds and non-embryonated eggs of the large roundworm of pigs, Ascaris suum, was assessed under conditions similar to biogas plants managed at meso- (37°C) and thermophilic (55°C) conditions. Cattle manure was used as digestion substrate and experimental units were sampled destructively over time. Regarding weed seeds, the effect of thermophilic conditions (55°C) was very clear as complete mortality, irrespective of weed species, was reached after less than 2 days. At mesophilic conditions, seeds of Avena fatua, Sinapsis arvensis, Solidago canadensis had completely lost germination ability, while Brassica napus, Fallopia convolvulus and Amzinckia micrantha still maintained low levels (~1%) of germination ability after 1 week. Chenopodium album was the only weed species which survived 1 week at substantial levels (7%) although after 11 d germination ability was totally lost. Similarly, at 55°C, no Ascaris eggs survived more than 3h of incubation. Incubation at 37°C did not affect egg survival during the first 48 h and it took up to 10 days before total elimination was reached. In general, anaerobic digestion in biogas plants seems an efficient way (thermophilic more efficient than mesophilic) to treat organic farm wastes in a way that suppresses animal parasites and weeds so that the digestates can be applied without risking spread of these pests. PMID:23266071

  13. Eat this, not that! How selective autophagy helps cancer cells survive

    PubMed Central

    Mathew, Robin; White, Eileen

    2015-01-01

    Autophagy degrades the cellular proteome to promote survival, but the underlying mechanism and substrates of consequence are poorly understood. We found that autophagy selectively remodels the proteome in cancer cells by eliminating proinflammatory signaling proteins. Autophagy ablation causes aberrant accumulation of these proteins that primes cancer cells for interferon-dependent cell death, explaining how autophagy suppresses inflammation and promotes tumor maintenance. PMID:27308434

  14. Expression of CD39 on Activated T Cells Impairs their Survival in Older Individuals.

    PubMed

    Fang, Fengqin; Yu, Mingcan; Cavanagh, Mary M; Hutter Saunders, Jessica; Qi, Qian; Ye, Zhongde; Le Saux, Sabine; Sultan, William; Turgano, Emerson; Dekker, Cornelia L; Tian, Lu; Weyand, Cornelia M; Goronzy, Jörg J

    2016-02-01

    In an immune response, CD4(+) T cells expand into effector T cells and then contract to survive as long-lived memory cells. To identify age-associated defects in memory cell formation, we profiled activated CD4(+) T cells and found an increased induction of the ATPase CD39 with age. CD39(+) CD4(+) T cells resembled effector T cells with signs of metabolic stress and high susceptibility to undergo apoptosis. Pharmacological inhibition of ATPase activity dampened effector cell differentiation and improved survival, suggesting that CD39 activity influences T cell fate. Individuals carrying a low-expressing CD39 variant responded better to vaccination with an increase in vaccine-specific memory T cells. Increased inducibility of CD39 after activation may contribute to the impaired vaccine response with age. PMID:26832412

  15. B-cell lymphoma 6 promotes proliferation and survival of trophoblastic cells.

    PubMed

    Muschol-Steinmetz, Cornelia; Jasmer, Britta; Kreis, Nina-Naomi; Steinhäuser, Kerstin; Ritter, Andreas; Rolle, Udo; Yuan, Juping; Louwen, Frank

    2016-03-18

    Preeclampsia is one of the leading causes of maternal and perinatal mortality and morbidity and its pathogenesis is not fully understood. B-cell lymphoma 6 (BCL6), a key regulator of B-lymphocyte development, is altered in preeclamptic placentas. We show here that BCL6 is present in all 3 studied trophoblast cell lines and it is predominantly expressed in trophoblastic HTR-8/SVneo cells derived from a 1(st) trimester placenta, suggestive of its involvement in trophoblast expansion in the early stage of placental development. BCL6 is strongly stabilized upon stress stimulation. Inhibition of BCL6, by administrating either small interfering RNA or a specific small molecule inhibitor 79-6, reduces proliferation and induces apoptosis in trophoblastic cells. Intriguingly, depletion of BCL6 in HTR-8/SVneo cells results in a mitotic arrest associated with mitotic defects in centrosome integrity, indicative of its involvement in mitotic progression. Thus, like in haematopoietic cells and breast cancer cells, BCL6 promotes proliferation and facilitates survival of trophoblasts under stress situation. Further studies are required to decipher its molecular roles in differentiation, migration and the fusion process of trophoblasts. Whether increased BCL6 observed in preeclamptic placentas is one of the causes or the consequences of preeclampsia warrants further investigations in vivo and in vitro. PMID:27029530

  16. Factors Affecting Polymer Electrolyte Fuel Cells Performance and Reproducibility

    SciTech Connect

    Moller-Holst S.

    1998-11-01

    Development of fuel cells is often based on small-scale laboratory studies. Due to limited time and budgets, a minimum number of cells are usually prepared and tested, thus, conclusions about improved performance are often drawn from studies of a few cells. Generally, statistics showing the significance of an effect are seldom reported. In this work a simple PEM fuel cell electrode optimization experiment is used as an example to illustrate the importance of statistical evaluation of factors affecting cell performance. The use of fractional factorial design of experiments to reduce the number of cells that have to be studied is also addressed.

  17. Skin toxins in coral-associated Gobiodon species (Teleostei: Gobiidae) affect predator preference and prey survival

    PubMed Central

    Gratzer, Barbara; Millesi, Eva; Walzl, Manfred; Herler, Juergen

    2015-01-01

    Predation risk is high for the many small coral reef fishes, requiring successful sheltering or other predator defence mechanisms. Coral-dwelling gobies of the genus Gobiodon live in close association with scleractinian corals of the genus Acropora. Earlier studies indicated that the low movement frequency of adult fishes and the development of skin toxins (crinotoxicity) are predation avoidance mechanisms. Although past experiments showed that predators refuse food prepared with goby skin mucus, direct predator–prey interactions have not been studied. The present study compares the toxicity levels of two crinotoxic coral gobies – Gobiodon histrio, representative of a conspicuously coloured species, and Gobiodon sp.3 with cryptic coloration – using a standard bioassay method. The results show that toxin levels of both species differ significantly shortly after mucus release but become similar over time. Predator preferences were tested experimentally in an aquarium in which the two gobies and a juvenile damselfish Chromis viridis were exposed to the small grouper Epinephelus fasciatus. Video-analysis revealed that although coral gobies are potential prey, E. fasciatus clearly preferred the non-toxic control fish (C. viridis) over Gobiodon. When targeting a goby, the predator did not prefer one species over the other. Contrary to our expectations that toxic gobies are generally avoided, gobies were often captured, but they were expelled quickly, repeatedly and alive. This unusual post-capture avoidance confirms that these gobies have a very good chance of surviving attacks in the field due to their skin toxins. Nonetheless, some gobies were consumed: the coral shelter may therefore also provide additional protection, with toxins protecting them mainly during movement between corals. In summary, chemical deterrence by crinotoxic fishes seems to be far more efficient in predation avoidance than in physical deterrence involving body squamation and/or strong fin

  18. Manure source and age affect survival of zoonotic pathogens during aerobic composting at sublethal temperatures.

    PubMed

    Erickson, Marilyn C; Smith, Chris; Jiang, Xiuping; Flitcroft, Ian D; Doyle, Michael P

    2015-02-01

    Heat is the primary mechanism by which aerobic composting inactivates zoonotic bacterial pathogens residing within animal manures, but at sublethal temperatures, the time necessary to hold the compost materials to ensure pathogen inactivation is uncertain. To determine the influence of the type of nitrogen amendment on inactivation of Salmonella, Listeria monocytogenes, and Escherichia coli O157:H7 in compost mixtures stored at sublethal temperatures, specific variables investigated in these studies included the animal source of the manure, the initial carbon/nitrogen (C:N) ratio of the compost mixture, and the age of the manure. Salmonella and L. monocytogenes were both inactivated more rapidly in chicken and swine compost mixtures stored at 20°C when formulated to an initial C:N ratio of 20:1 compared with 40:1, whereas a C:N ratio did not have an effect on inactivation of these pathogens in cow compost mixtures. Pathogen inactivation was related to the elevated pH of the samples that likely arises from ammonia produced by the indigenous microflora in the compost mixtures. Indigenous microbial activity was reduced when compost mixtures were stored at 30°C and drier conditions (<10% moisture level) were prevalent. Furthermore, under these drier conditions, Salmonella persisted to a greater extent than L. monocytogenes, and the desiccation resistance of Salmonella appeared to convey cross-protection to ammonia. Salmonella persisted longer in compost mixtures prepared with aged chicken litter compared with fresh chicken litter, whereas E. coli O157:H7 survived to similar extents in compost mixtures prepared with either fresh or aged cow manure. The different responses observed when different sources of manure were used in compost mixtures reveal that guidelines with times required for pathogen inactivation in compost mixtures stored at sublethal temperatures should be dependent on the source of nitrogen, i.e., type of animal manure, present. PMID:25710145

  19. The radiosensitivity of a murine fibrosarcoma as measured by three cell survival assays.

    PubMed

    Rice, L; Urano, M; Suit, H D

    1980-04-01

    The radiation sensitivity of a weakly immunogenic spontaneous fibrosarcoma of the C3Hf/Sed mouse (designated FSa-II) was assessed by three in vivo cell survival methods: end-point dilution (TD50) assay, lung colony (LC) assay, and agar diffusion chamber (ADC) assay. The hypoxic fraction of this tumour was also determined by the ADC method. Although there was a good agreement of the cell survival data between the ADC and LC methods, the TD50 method yielded a considerably less steep cell survival curve. Beneficial aspects and limitations of each assay are discussed. In addition, the use of the ADC method for the growth of xenogeneic cell lines and a preliminary experiment with human tumour cells in non-immunosuppressed hosts suggest that this method may be a valuable adjunct for studying the growth and therapeutic responses of human tumour cells. PMID:6932931

  20. Effects of pressure and temperature on the survival rate of adherent A-172 cells

    NASA Astrophysics Data System (ADS)

    Yasuhara, Ryo; Kushida, Ryo; Ishii, Shiwori; Yamanoha, Banri; Shimizu, Akio

    2013-06-01

    Preservation of cells under high pressure is an important alternative to cryopreservation. We studied the effect of temperature (4, 25, 37°C) and pressure (0.1-350 MPa) on the survival rate of A-172 glioblastoma cells. The survival rate was not changed by brief (10 min) pressurization of up to 150 MPa, but the survival rate began to decrease from 150 MPa, and most of the A-172 cells died when treated with over 200 MPa. Lengthy pressurization (4 days) at lower pressure (upto 20.1 MPa) without medium exchange showed complex results. The survival rate of cells preserved at 25°C showed two maxima at 1.6 and 20.1 MPa. After preservation, cells adhered and proliferated in the same way as normal cells when cultured at 37°C in a CO2 incubator. The other two temperatures, 4° and 37°C, showed no maximum survival rate. Therefore, a high survival rate can be maintained with high pressure treatment.

  1. A THEMIS:SHP1 complex promotes T-cell survival

    PubMed Central

    Paster, Wolfgang; Bruger, Annika M; Katsch, Kristin; Grégoire, Claude; Roncagalli, Romain; Fu, Guo; Gascoigne, Nicholas RJ; Nika, Konstantina; Cohnen, Andre; Feller, Stephan M; Simister, Philip C; Molder, Kelly C; Cordoba, Shaun-Paul; Dushek, Omer; Malissen, Bernard; Acuto, Oreste

    2015-01-01

    THEMIS is critical for conventional T-cell development, but its precise molecular function remains elusive. Here, we show that THEMIS constitutively associates with the phosphatases SHP1 and SHP2. This complex requires the adapter GRB2, which bridges SHP to THEMIS in a Tyr-phosphorylation-independent fashion. Rather, SHP1 and THEMIS engage with the N-SH3 and C-SH3 domains of GRB2, respectively, a configuration that allows GRB2-SH2 to recruit the complex onto LAT. Consistent with THEMIS-mediated recruitment of SHP to the TCR signalosome, THEMIS knock-down increased TCR-induced CD3-ζ phosphorylation, Erk activation and CD69 expression, but not LCK phosphorylation. This generalized TCR signalling increase led to augmented apoptosis, a phenotype mirrored by SHP1 knock-down. Remarkably, a KI mutation of LCK Ser59, previously suggested to be key in ERK-mediated resistance towards SHP1 negative feedback, did not affect TCR signalling nor ligand discrimination in vivo. Thus, the THEMIS:SHP complex dampens early TCR signalling by a previously unknown molecular mechanism that favours T-cell survival. We discuss possible implications of this mechanism in modulating TCR output signals towards conventional T-cell development and differentiation. PMID:25535246

  2. Clinical Significance of the Relationship between Progression-Free Survival or Postprogression Survival and Overall Survival in Patients with Extensive Disease-Small-Cell Lung Cancer Treated with Carboplatin plus Etoposide

    PubMed Central

    Imai, Hisao; Mori, Keita; Watase, Nodoka; Fujimoto, Sakae; Kaira, Kyoichi; Yamada, Masanobu; Minato, Koichi

    2016-01-01

    Background. The effects of first-line chemotherapy on overall survival (OS) might be confounded by subsequent therapies in patients with small-cell lung cancer (SCLC). Therefore, by using individual-level data, we aimed to determine the relationships between progression-free survival (PFS) or postprogression survival (PPS) and OS after first-line chemotherapies in patients with extensive disease-SCLC (ED-SCLC) treated with carboplatin plus etoposide. Methods. Between July 1998 and December 2014, we analyzed 63 cases of patients with ED-SCLC who were treated with carboplatin and etoposide as first-line chemotherapy. The relationships of PFS and PPS with OS were analyzed at the individual level. Results. Spearman rank correlation analysis and linear regression analysis showed that PPS was strongly correlated with OS (r = 0.90, p < 0.05, and R2 = 0.71) and PFS was moderately correlated with OS (r = 0.72, p < 0.05, and R2 = 0.62). Type of relapse (refractory/sensitive) and the number of regimens administered after disease progression after the first-line chemotherapy were both significantly associated with PPS (p < 0.05). Conclusions. PPS has a stronger relationship with OS than does PFS in ED-SCLC patients who have received first-line chemotherapy. These results suggest that treatments administered after first-line chemotherapy affect the OS of ED-SCLC patients treated with carboplatin plus etoposide. PMID:27445549

  3. Pro-survival role of p62 during granulocytic differentiation of acute myeloid leukemia cells

    PubMed Central

    Ségal-Bendirdjian, Evelyne; Tschan, Mario P; Reiffers, Josy; Djavaheri-Mergny, Mojgan

    2014-01-01

    p62 regulates key signaling pathways including those that control cell death and autophagy. Recently, we reported that p62 is upregulated during all-trans retinoic acid (ATRA)-induced terminal differentiation of acute myeloid leukemia (AML) cells. This response reduces levels of ubiquitinated protein aggregates in mature cells and protects these cells against ATRA treatment. Thus, p62 confers a survival advantage to mature AML cells. PMID:27308379

  4. The natural killer cell response and tumor debulking are associated with prolonged survival in recurrent glioblastoma patients receiving dendritic cells loaded with autologous tumor lysates.

    PubMed

    Pellegatta, Serena; Eoli, Marica; Frigerio, Simona; Antozzi, Carlo; Bruzzone, Maria Grazia; Cantini, Gabriele; Nava, Sara; Anghileri, Elena; Cuppini, Lucia; Cuccarini, Valeria; Ciusani, Emilio; Dossena, Marta; Pollo, Bianca; Mantegazza, Renato; Parati, Eugenio A; Finocchiaro, Gaetano

    2013-03-01

    Recurrent glioblastomas (GBs) are highly aggressive tumors associated with a 6-8 mo survival rate. In this study, we evaluated the possible benefits of an immunotherapeutic strategy based on mature dendritic cells (DCs) loaded with autologous tumor-cell lysates in 15 patients affected by recurrent GB. The median progression-free survival (PFS) of this patient cohort was 4.4 mo, and the median overall survival (OS) was 8.0 mo. Patients with small tumors at the time of the first vaccination (< 20 cm(3); n = 8) had significantly longer PFS and OS than the other patients (6.0 vs. 3.0 mo, p = 0.01; and 16.5 vs. 7.0 mo, p = 0.003, respectively). CD8(+) T cells, CD56(+) natural killer (NK) cells and other immune parameters, such as the levels of transforming growth factor β, vascular endothelial growth factor, interleukin-12 and interferon γ (IFNγ), were measured in the peripheral blood and serum of patients before and after immunization, which enabled us to obtain a vaccination/baseline ratio (V/B ratio). An increased V/B ratio for NK cells, but not CD8(+) T cells, was significantly associated with prolonged PFS and OS. Patients exhibiting NK-cell responses were characterized by high levels of circulating IFNγ and E4BP4, an NK-cell transcription factor. Furthermore, the NK cell V/B ratio was inversely correlated with the TGFβ2 and VEGF V/B ratios. These results suggest that tumor-loaded DCs may increase the survival rate of patients with recurrent GB after effective tumor debulking, and emphasize the role of the NK-cell response in this therapeutic setting. PMID:23802079

  5. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells

    PubMed Central

    Somaiah, Chinnapaka; Kumar, Atul; Mawrie, Darilang; Sharma, Amit; Patil, Suraj Dasharath; Bhattacharyya, Jina; Swaminathan, Rajaram; Jaganathan, Bithiah Grace

    2015-01-01

    Mesenchymal stem cells (MSC) can differentiate into several cell types and are desirable candidates for cell therapy and tissue engineering. However, due to poor cell survival, proliferation and differentiation in the patient, the therapy outcomes have not been satisfactory. Although several studies have been done to understand the conditions that promote proliferation, differentiation and migration of MSC in vitro and in vivo, still there is no clear understanding on the effect of non-cellular bio molecules. Of the many factors that influence the cell behavior, the immediate cell microenvironment plays a major role. In this context, we studied the effect of extracellular matrix (ECM) proteins in controlling cell survival, proliferation, migration and directed MSC differentiation. We found that collagen promoted cell proliferation, cell survival under stress and promoted high cell adhesion to the cell culture surface. Increased osteogenic differentiation accompanied by high active RHOA (Ras homology gene family member A) levels was exhibited by MSC cultured on collagen. In conclusion, our study shows that collagen will be a suitable matrix for large scale production of MSC with high survival rate and to obtain high osteogenic differentiation for therapy. PMID:26661657

  6. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells.

    PubMed

    Somaiah, Chinnapaka; Kumar, Atul; Mawrie, Darilang; Sharma, Amit; Patil, Suraj Dasharath; Bhattacharyya, Jina; Swaminathan, Rajaram; Jaganathan, Bithiah Grace

    2015-01-01

    Mesenchymal stem cells (MSC) can differentiate into several cell types and are desirable candidates for cell therapy and tissue engineering. However, due to poor cell survival, proliferation and differentiation in the patient, the therapy outcomes have not been satisfactory. Although several studies have been done to understand the conditions that promote proliferation, differentiation and migration of MSC in vitro and in vivo, still there is no clear understanding on the effect of non-cellular bio molecules. Of the many factors that influence the cell behavior, the immediate cell microenvironment plays a major role. In this context, we studied the effect of extracellular matrix (ECM) proteins in controlling cell survival, proliferation, migration and directed MSC differentiation. We found that collagen promoted cell proliferation, cell survival under stress and promoted high cell adhesion to the cell culture surface. Increased osteogenic differentiation accompanied by high active RHOA (Ras homology gene family member A) levels was exhibited by MSC cultured on collagen. In conclusion, our study shows that collagen will be a suitable matrix for large scale production of MSC with high survival rate and to obtain high osteogenic differentiation for therapy. PMID:26661657

  7. Homotypic RANK signaling differentially regulates proliferation, motility and cell survival in osteosarcoma and mammary epithelial cells.

    PubMed

    Beristain, Alexander G; Narala, Swami R; Di Grappa, Marco A; Khokha, Rama

    2012-02-15

    RANKL (receptor activator of NF-κB ligand) is a crucial cytokine for regulating diverse biological systems such as innate immunity, bone homeostasis and mammary gland differentiation, operating through activation of its cognate receptor RANK. In these normal physiological processes, RANKL signals through paracrine and/or heterotypic mechanisms where its expression and function is tightly controlled. Numerous pathologies involve RANKL deregulation, such as bone loss, inflammatory diseases and cancer, and aberrant RANK expression has been reported in bone cancer. Here, we investigated the significance of RANK in tumor cells with a particular emphasis on homotypic signaling. We selected RANK-positive mouse osteosarcoma and RANK-negative preosteoblastic MC3T3-E1 cells and subjected them to loss- and gain-of-RANK function analyses. By examining a spectrum of tumorigenic properties, we demonstrate that RANK homotypic signaling has a negligible effect on cell proliferation, but promotes cell motility and anchorage-independent growth of osteosarcoma cells and preosteoblasts. By contrast, establishment of RANK signaling in non-tumorigenic mammary epithelial NMuMG cells promotes their proliferation and anchorage-independent growth, but not motility. Furthermore, RANK activation initiates multiple signaling pathways beyond its canonical target, NF-κB. Among these, biochemical inhibition reveals that Erk1/2 is dominant and crucial for the promotion of anchorage-independent survival and invasion of osteoblastic cells, as well as the proliferation of mammary epithelial cells. Thus, RANK signaling functionally contributes to key tumorigenic properties through a cell-autonomous homotypic mechanism. These data also identify the likely inherent differences between epithelial and mesenchymal cell responsiveness to RANK activation. PMID:22421365

  8. Population-related variation in plant defense more strongly affects survival of an herbivore than its solitary parasitoid wasp.

    PubMed

    Harvey, Jeffrey A; Gols, Rieta

    2011-10-01

    The performance of natural enemies, such as parasitoid wasps, is affected by differences in the quality of the host's diet, frequently mediated by species or population-related differences in plant allelochemistry. Here, we compared survival, development time, and body mass in a generalist herbivore, the cabbage moth, Mamestra brassicae, and its solitary endoparasitoid, Microplitis mediator, when reared on two cultivated (CYR and STH) and three wild (KIM, OH, and WIN) populations of cabbage, Brassica oleracea. Plants either were undamaged or induced by feeding of larvae of the cabbage butterfly, Pieris rapae. Development and biomass of M. brassicae and Mi. mediator were similar on both cultivated and one wild cabbage population (KIM), intermediate on the OH population, and significantly lower on the WIN population. Moreover, development was prolonged and biomass was reduced on herbivore-induced plants. However, only the survival of parasitized hosts (and not that of healthy larvae) was affected by induction. Analysis of glucosinolates in leaves of the cabbages revealed higher levels in the wild populations than cultivars, with the highest concentrations in WIN plants. Multivariate statistics revealed a negative correlation between insect performance and total levels of glucosinolates (GS) and levels of 3-butenyl GS. However, GS chemistry could not explain the reduced performance on induced plants since only indole GS concentrations increased in response to herbivory, which did not affect insect performance based on multivariate statistics. This result suggests that, in addition to aliphatic GS, other non-GS chemicals are responsible for the decline in insect performance, and that these chemicals affect the parasitoid more strongly than the host. Remarkably, when developing on WIN plants, the survival of Mi. mediator to adult eclosion was much higher than in its host, M. brassicae. This may be due to the fact that hosts parasitized by Mi. mediator pass through fewer

  9. Autonomic dysreflexia: one more way EMS can positively affect patient survival.

    PubMed

    Tomassoni, Paul J; Campagnolo, Denise I

    2003-12-01

    Autonomic dysreflexia is a life-threatening medical condition that affects people with spinal cord injuries above T6. Caused by the division of the autonomic nervous system, it can result in disastrous hypertension. Although complicated in nature, AD can be quickly treated and reversed by prehospital providers. The prompt emptying of a patient's bladder and/or bowels will resolve most occurrences. Other factors that can't be resolved in the prehospital setting may cause AD. In these situations, quickly transport the patient to a definitive care facility and consider the use of antihypertensive agents. Bladder catheterization and digital bowel emptying are not everyday EMS skills. They are, however, skills within the range of EMS abilities. Providers should contact their medical directors or training supervisors to obtain the training necessary to carry out both techniques. Having these skills will arm you with the necessary abilities to mitigate an episode of autonomic dysreflexia. PMID:14699347

  10. Genetic Engineering of Mesenchymal Stem Cells to Induce Their Migration and Survival

    PubMed Central

    Nowakowski, Adam; Walczak, Piotr; Lukomska, Barbara; Janowski, Miroslaw

    2016-01-01

    Mesenchymal stem cells (MSCs) are very attractive for regenerative medicine due to their relatively easy derivation and broad range of differentiation capabilities, either naturally or induced through cell engineering. However, efficient methods of delivery to diseased tissues and the long-term survival of grafted cells still need improvement. Here, we review genetic engineering approaches designed to enhance the migratory capacities of MSCs, as well as extend their survival after transplantation by the modulation of prosurvival approaches, including prevention of senescence and apoptosis. We highlight some of the latest examples that explore these pivotal points, which have great relevance in cell-based therapies. PMID:27242906

  11. Flt3 permits survival during infection by rendering dendritic cells competent to activate NK cells.

    PubMed

    Eidenschenk, Céline; Crozat, Karine; Krebs, Philippe; Arens, Ramon; Popkin, Daniel; Arnold, Carrie N; Blasius, Amanda L; Benedict, Chris A; Moresco, Eva Marie Y; Xia, Yu; Beutler, Bruce

    2010-05-25

    A previously unappreciated signal necessary for dendritic cell (DC)-mediated activation of natural killer (NK) cells during viral infection was revealed by a recessive N-ethyl-N-nitrosourea-induced mutation called warmflash (wmfl). Wmfl homozygotes displayed increased susceptibility to mouse cytomegalovirus (MCMV) infection. In response to MCMV infection in vivo, delayed NK cell activation was observed, but no intrinsic defects in NK cell activation or function were identified. Rather, coculture experiments demonstrated that NK cells are suboptimally activated by wmfl DCs, which showed impaired cytokine production in response to MCMV or synthetic TLR7 and TLR9 ligands. The wmfl mutation was identified in the gene encoding the Fms-like tyrosine kinase 3 (Flt3). Flt3 ligand (Flt3L) is transiently induced in the serum upon infection or TLR activation. However, antibody blockade reveals no acute requirement for Flt3L, suggesting that the Flt3L --> Flt3 axis programs the development of DCs, making them competent to support NK effector function. In the absence of Flt3 signaling, NK cell activation is delayed and survival during MCMV infection is markedly compromised. PMID:20457904

  12. Flt3 permits survival during infection by rendering dendritic cells competent to activate NK cells

    PubMed Central

    Eidenschenk, Céline; Crozat, Karine; Krebs, Philippe; Arens, Ramon; Popkin, Daniel; Arnold, Carrie N.; Blasius, Amanda L.; Benedict, Chris A.; Moresco, Eva Marie Y.; Xia, Yu; Beutler, Bruce

    2010-01-01

    A previously unappreciated signal necessary for dendritic cell (DC)-mediated activation of natural killer (NK) cells during viral infection was revealed by a recessive N-ethyl-N-nitrosourea-induced mutation called warmflash (wmfl). Wmfl homozygotes displayed increased susceptibility to mouse cytomegalovirus (MCMV) infection. In response to MCMV infection in vivo, delayed NK cell activation was observed, but no intrinsic defects in NK cell activation or function were identified. Rather, coculture experiments demonstrated that NK cells are suboptimally activated by wmfl DCs, which showed impaired cytokine production in response to MCMV or synthetic TLR7 and TLR9 ligands. The wmfl mutation was identified in the gene encoding the Fms-like tyrosine kinase 3 (Flt3). Flt3 ligand (Flt3L) is transiently induced in the serum upon infection or TLR activation. However, antibody blockade reveals no acute requirement for Flt3L, suggesting that the Flt3L → Flt3 axis programs the development of DCs, making them competent to support NK effector function. In the absence of Flt3 signaling, NK cell activation is delayed and survival during MCMV infection is markedly compromised. PMID:20457904

  13. High expression of prolactin receptor is associated with cell survival in cervical cancer cells

    PubMed Central

    2013-01-01

    Background The altered expression of prolactin (PRL) and its receptor (PRLR) has been implicated in breast and other types of cancer. There are few studies that have focused on the analysis of PRL/PRLR in cervical cancer where the development of neoplastic lesions is influenced by the variation of the hormonal status. The aim of this study was to evaluate the expression of PRL/PRLR and the effect of PRL treatment on cell proliferation and apoptosis in cervical cancer cell lines. Results High expression of multiple PRLR forms and PRLvariants of 60–80 kDa were observed in cervical cancer cell lines compared with non-tumorigenic keratinocytes evaluated by Western blot, immunofluorecence and real time PCR. Treatment with PRL (200 ng/ml) increased cell proliferation in HeLa cells determined by the MTT assay at day 3 and after 1 day a protective effect against etoposide induced apoptosis in HeLa, SiHa and C-33A cervical cancer cell lines analyzed by the TUNEL assay. Conclusions Our data suggests that PRL/PRLR signaling could act as an important survival factor for cervical cancer. The use of an effective PRL antagonist may provide a better therapeutic intervention in cervical cancer. PMID:24148306

  14. CCL9 Induced by TGFβ Signaling in Myeloid Cells Enhances Tumor Cell Survival in the Premetastatic Organ.

    PubMed

    Yan, Hangyi H; Jiang, Jian; Pang, Yanli; Achyut, B R; Lizardo, Michael; Liang, Xinhua; Hunter, Kent; Khanna, Chand; Hollander, Christine; Yang, Li

    2015-12-15

    Tumor cell survival in the hostile distant organ is a rate-limiting step in cancer metastasis. Bone marrow-derived myeloid cells can form a premetastatic niche and provide a tumor-promoting microenvironment. However, it is unclear whether these myeloid cells in the premetastatic site have any direct effect on tumor cell survival. Here, we report that chemokine CCL9 was highly induced in Gr-1(+)CD11b(+) immature myeloid cells and in premetastatic lung in tumor-bearing mice. Knockdown of CCL9 in myeloid cells decreased tumor cell survival and metastasis. Importantly, CCL9 overexpression in myeloid cells lacking TGFβ signaling rescued the tumor metastasis defect observed in mice with myeloid-specific Tgfbr2 deletion. The expression level of CCL23, the human orthologue for CCL9, in peripheral blood mononuclear cells correlated with progression and survival of cancer patients. Our study demonstrates that CCL9 could serve as a good candidate for anti-metastasis treatment by targeting the rate-limiting step of cancer cell survival. In addition, targeting CCL9 may avoid the adverse effects of TGFβ-targeted therapy. PMID:26483204

  15. The Relationship of Immune Cell Signatures to Patient Survival Varies within and between Tumor Types

    PubMed Central

    Linsley, Peter S.; Chaussabel, Damien; Speake, Cate

    2015-01-01

    Enhancing pre-existing anti-tumor immunity leads to therapeutic benefit for some patients, but why some tumors are more immunogenic than others remains unresolved. We took a unique systems approach to relate patient survival to immune gene expression in >3,500 tumor RNAseq profiles from a dozen tumor types. We found significant links between immune gene expression and patient survival in 8/12 tumor types, with tumors partitioned by gene expression comprising distinct molecular subtypes. T/NK cell genes were most clearly survival-related for melanoma, head and neck, and bladder tumors, whereas myeloid cell genes were most clearly survival-related with kidney and breast tumors. T/NK or myeloid cell gene expression was linked to poor prognosis in bladder and kidney tumors, respectively, suggesting tumor-specific immunosuppressive checkpoints. Our results suggest new biomarkers for existing cancer immunotherapies and identify targets for new immunotherapies. PMID:26398410

  16. The Effect of Transient Local Anti-inflammatory Treatment on the Survival of Pig Retinal Progenitor Cell Allotransplants

    PubMed Central

    Abud, Murilo; Baranov, Petr; Hicks, Caroline; Patel, Sara; Lieppman, Burke; Regatieri, Caio; Sinden, John; Isaac, David; Avila, Marcos; Young, Michael

    2015-01-01

    Purpose The development of photoreceptor replacement therapy for retinal degenerative disorders requires the identification of the optimal cell source and immunosuppressive regimen in a large animal model. Allotransplants are not acutely rejected in swine subretinal space, although it is not known if survival can be improved with immunosuppression. Here we investigated the survival and integration of expanded pig retinal progenitor cells (pRPCs) in normal recipients with and without transient anti-inflammatory suppression. Methods pRPCs were derived from the neural retina of E60 GFP transgenic pigs, expanded for six passages, characterized, and transplanted into the subretinal space of 12 pigs. Six recipients received a single intravitreal injection of rapamycin and dexamethasone. Results pRPCs expressed the photoreceptor development genes Sox2, Pax6, Lhx2, Crx, Nrl, and Recoverin in vitro. Transplanted cells were identified in 9 out of 12 recipients 4 weeks after the injection. pRPCs integrated primarily into the photoreceptor inner segment layer and outer nuclear layer with single cells present in the inner nuclear layer. Donor cells remained recoverin-positive and acquired rhodopsin. We did not observe any signs of graft proliferation. The immunosuppression did not affect the survival or distribution of grafts. No macrophage infiltration or loss of retinal structure was observed in either group. Conclusions Local immunosuppression with rapamycin and dexamethasone does not improve the outcome of pRPC allotransplantation into the subretinal space. Translational Relevance Survival and integration of pRPC together with the lack of graft proliferation suggests that allogeneic RPC transplantation without transient immunosuppression is a favorable approach for photoreceptor cell replacement. PMID:26425402

  17. Factors Affecting Route Selection and Survival of Steelhead Kelts at Snake River Dams in 2012 and 2013

    SciTech Connect

    Harnish, Ryan A.; Colotelo, Alison HA; Li, Xinya; Ham, Kenneth D.; Deng, Zhiqun

    2014-12-15

    turbines. The side of the river in which kelts approached the dam and dam operations also affected route of passage. Dam operations and the size and condition of kelts were found to have the greatest effect on route-specific survival probabilities for fish that passed via the spillway at LGS. That is, longer kelts and those in fair condition had a lower probability of survival for fish that passed via the spillway weir. The survival of spillway weir- and deep-spill passed kelts was positively correlated with the percent of the total discharge that passed through turbine unit 4. Too few kelts passed through the traditional spill, JBS, and turbine units to evaluate survival through these routes. The information gathered in this study describes Snake River steelhead kelt passage behavior, rates, and distributions through the FCRPS as well as provide information to biologists and engineers about the dam operations and abiotic conditions that are related to passage and survival of steelhead kelts.

  18. Factors affecting growth and survival of the asiatic clam Corbicula sp. under controlled laboratory conditions

    SciTech Connect

    Double, D.D.; Daly, D.S.; Abernethy, C.S.

    1983-04-01

    Growth of Corbicula sp. was determined in relation to food supply, water temperature, and clam size as an aid to researchers conducting chronic effects toxicity studies. Water temperatures for the two 84-day test series were 10, 20, and 30/sup 0/C. Linear models provided good relationships (r/sup 2/ > 0.90) between clam shell length (SL), total weight (TW), and wet/dry tissue weights. Clam growth was minimal during low phytoplankton densities (approx. 300 cells/ml), and all three size groups lost weight at 20 and 30/sup 0/C. Mortality of small clams at 30/sup 0/C was 100% after 71 days. At phytoplankton densities > 1000 cells/ml, overall differences in growth with respect to clam size and temperature were detectable at p < 0.01; growth of all clam groups was greatest at 30/sup 0/C. Small clams exhibited the greatest absolute increase in mean shell length at all test temperatures, and weight gains were similar to those of medium and large clams.

  19. Estimation of transfused red cell survival using an enzyme-linked antiglobulin test

    SciTech Connect

    Kickler, T.S.; Smith, B.; Bell, W.; Drew, H.; Baldwin, M.; Ness, P.M.

    1985-09-01

    An enzyme-linked antiglobulin test (ELAT) method was developed to estimate survival of transfused red cells. This procedure is based on a principle analogous to that of the Ashby technique were antigenically distinct red cells are transfused and their survival studied. The authors compared the ELAT survival to the V Chromium method (V Cr) in four patients. Three patients with hypoproliferative anemias showed T 1/2 by ELAT of 17.5, 18, and 17 days versus 18.5, 20, and 19 days by the V Cr method. A fourth patient with traumatic cardiac hemolysis had two studies performed. In this case, the ELAT showed a T 1/2 of 10 and 8.1 days while V Cr T 1/2 values were 11 and 10.5 days. The ELAT method for measuring red cell survival yielded data which agreed closely with the results of the V Cr method. Although V Cr is the accepted method for red cell survival, the ELAT method can be used to estimate transfused red cell survival.

  20. Conditioning the cochlea to facilitate survival and integration of exogenous cells into the auditory epithelium.

    PubMed

    Park, Yong-Ho; Wilson, Kevin F; Ueda, Yoshihisa; Tung Wong, Hiu; Beyer, Lisa A; Swiderski, Donald L; Dolan, David F; Raphael, Yehoash

    2014-04-01

    The mammalian auditory epithelium (AE) cannot replace supporting cells and hair cells once they are lost. Therefore, sensorineural hearing loss associated with missing cells is permanent. This inability to regenerate critical cell types makes the AE a potential target for cell replacement therapies such as stem cell transplantation. Inserting stem cells into the AE of deaf ears is a complicated task due to the hostile, high potassium environment of the scala media in the cochlea, and the robust junctional complexes between cells in the AE that resist stem cell integration. Here, we evaluate whether temporarily reducing potassium levels in the scala media and disrupting the junctions in the AE make the cochlear environment more receptive and facilitate survival and integration of transplanted cells. We used sodium caprate to transiently disrupt the AE junctions, replaced endolymph with perilymph, and blocked stria vascularis pumps with furosemide. We determined that these three steps facilitated survival of HeLa cells in the scala media for at least 7 days and that some of the implanted cells formed a junctional contact with native AE cells. The data suggest that manipulation of the cochlear environment facilitates survival and integration of exogenously transplanted HeLa cells in the scala media. PMID:24394296

  1. The promoting effect of pentadecapeptide BPC 157 on tendon healing involves tendon outgrowth, cell survival, and cell migration.

    PubMed

    Chang, Chung-Hsun; Tsai, Wen-Chung; Lin, Miao-Sui; Hsu, Ya-Hui; Pang, Jong-Hwei Su

    2011-03-01

    Pentadecapeptide BPC 157, composed of 15 amino acids, is a partial sequence of body protection compound (BPC) that is discovered in and isolated from human gastric juice. Experimentally it has been demonstrated to accelerate the healing of many different wounds, including transected rat Achilles tendon. This study was designed to investigate the potential mechanism of BPC 157 to enhance healing of injured tendon. The outgrowth of tendon fibroblasts from tendon explants cultured with or without BPC 157 was examined. Results showed that BPC 157 significantly accelerated the outgrowth of tendon explants. Cell proliferation of cultured tendon fibroblasts derived from rat Achilles tendon was not directly affected by BPC 157 as evaluated by MTT assay. However, the survival of BPC 157-treated cells was significantly increased under the H(2)O(2) stress. BPC 157 markedly increased the in vitro migration of tendon fibroblasts in a dose-dependent manner as revealed by transwell filter migration assay. BPC 157 also dose dependently accelerated the spreading of tendon fibroblasts on culture dishes. The F-actin formation as detected by FITC-phalloidin staining was induced in BPC 157-treated fibroblasts. The protein expression and activation of FAK and paxillin were determined by Western blot analysis, and the phosphorylation levels of both FAK and paxillin were dose dependently increased by BPC 157 while the total amounts of protein was unaltered. In conclusion, BPC 157 promotes the ex vivo outgrowth of tendon fibroblasts from tendon explants, cell survival under stress, and the in vitro migration of tendon fibroblasts, which is likely mediated by the activation of the FAK-paxillin pathway. PMID:21030672

  2. Glycogen Synthase Kinase 3 Regulates Cell Death and Survival Signaling in Tumor Cells under Redox Stress1

    PubMed Central

    Venè, Roberta; Cardinali, Barbara; Arena, Giuseppe; Ferrari, Nicoletta; Benelli, Roberto; Minghelli, Simona; Poggi, Alessandro; Noonan, Douglas M.; Albini, Adriana; Tosetti, Francesca

    2014-01-01

    Targeting tumor-specific metabolic adaptations is a promising anticancer strategy when tumor defense mechanisms are restrained. Here, we show that redox-modulating drugs including the retinoid N-(4-hydroxyphenyl)retinamide (4HPR), the synthetic triterpenoid bardoxolone (2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid methyl ester), arsenic trioxide (As2O3), and phenylethyl isothiocyanate (PEITC), while affecting tumor cell viability, induce sustained Ser9 phosphorylation of the multifunctional kinase glycogen synthase kinase 3β (GSK3β). The antioxidant N-acetylcysteine decreased GSK3β phosphorylation and poly(ADP-ribose) polymerase cleavage induced by 4HPR, As2O3, and PEITC, implicating oxidative stress in these effects. GSK3β phosphorylation was associated with up-regulation of antioxidant enzymes, in particular heme oxygenase-1 (HO-1), and transient elevation of intracellular glutathione (GSH) in cells surviving acute stress, before occurrence of irreversible damage and death. Genetic inactivation of GSK3β or transfection with the non-phosphorylatable GSK3β-S9A mutant inhibited HO-1 induction under redox stress, while tumor cells resistant to 4HPR exhibited increased GSK3β phosphorylation, HO-1 expression, and GSH levels. The above-listed findings are consistent with a role for sustained GSK3β phosphorylation in a signaling network activating antioxidant effector mechanisms during oxidoreductive stress. These data underlie the importance of combination regimens of antitumor redox drugs with inhibitors of survival signaling to improve control of tumor development and progression and overcome chemoresistance. PMID:25246272

  3. Altered Retinoid Uptake and Action Contributes to Cell Survival in Endometriosis

    PubMed Central

    Pavone, Mary Ellen; Reierstad, Scott; Sun, Hui; Milad, Magdy; Bulun, Serdar E.; Cheng, You-Hong

    2010-01-01

    Context: Retinoic acid (RA) controls multiple biological processes via exerting opposing effects on cell survival. Retinol uptake into cells is controlled by stimulated by RA 6 (STRA6). RA is then produced from retinol in the cytosol. Partitioning of RA between the nuclear receptors RA receptor α and peroxisome-proliferator-activated receptor β/δ is regulated by cytosol-to-nuclear shuttling proteins cellular RA binding protein 2 (CRABP2) and fatty acid binding protein 5 (FABP5), which induce apoptosis or enhance survival, respectively. The roles of these mechanisms in endometrium or endometriosis remain unknown. Objective: The aim was to determine the regulation of retinoid uptake and RA action in primary stromal cells from endometrium (n = 10) or endometriosis (n = 10). Results: Progesterone receptor was necessary for high STRA6 and CRABP2 expression in endometrial stromal cells. STRA6, which was responsible for labeled retinoid uptake, was strikingly lower in endometriotic cells compared to endometrial cells. CRABP2 knockdown in endometrial cells increased survival, and FABP5 knockdown in endometriotic cells decreased survival without altering the expression of downstream nuclear retinoic acid receptor α and peroxisome-proliferator-activated receptor β/δ. Conclusions: In endometrial stromal cells, progesterone receptor up-regulates expression of STRA6 and CRABP2, which control retinol uptake and growth-suppressor actions of RA. In endometriotic stromal cells, decreased expression of these genes leads to decreased retinol uptake and dominant FABP5-mediated prosurvival activity. PMID:20702525

  4. Mitochondrial Peroxiredoxin 3 Regulates Sensory Cell Survival in the Cochlea

    PubMed Central

    Chen, Fu-Quan; Zheng, Hong-Wei; Schacht, Jochen; Sha, Su-Hua

    2013-01-01

    This study delineates the role of peroxiredoxin 3 (Prx3) in hair cell death induced by several etiologies of acquired hearing loss (noise trauma, aminoglycoside treatment, age). In vivo, Prx3 transiently increased in mouse cochlear hair cells after traumatic noise exposure, kanamycin treatment, or with progressing age before any cell loss occurred; when Prx3 declined, hair cell loss began. Maintenance of high Prx3 levels via treatment with the radical scavenger 2,3-dihydroxybenzoate prevented kanamycin-induced hair cell death. Conversely, reducing Prx3 levels with Prx3 siRNA increased the severity of noise-induced trauma. In mouse organ of Corti explants, reactive oxygen species and levels of Prx3 mRNA and protein increased concomitantly at early times of drug challenge. When Prx3 levels declined after prolonged treatment, hair cells began to die. The radical scavenger p-phenylenediamine maintained Prx3 levels and attenuated gentamicin-induced hair cell death. Our results suggest that Prx3 is up-regulated in response to oxidative stress and that maintenance of Prx3 levels in hair cells is a critical factor in their susceptibility to acquired hearing loss. PMID:23626763

  5. Oct4 is required for primordial germ cell survival

    PubMed Central

    Kehler, James; Tolkunova, Elena; Koschorz, Birgit; Pesce, Maurizio; Gentile, Luca; Boiani, Michele; Lomelí, Hilda; Nagy, Andras; McLaughlin, K John; Schöler, Hans R; Tomilin, Alexey

    2004-01-01

    Previous studies have shown that Oct4 has an essential role in maintaining pluripotency of cells of the inner cell mass (ICM) and embryonic stem cells. However, Oct4 null homozygous embryos die around the time of implantation, thus precluding further analysis of gene function during development. We have used the conditional Cre/loxP gene targeting strategy to assess Oct4 function in primordial germ cells (PGCs). Loss of Oct4 function leads to apoptosis of PGCs rather than to differentiation into a trophectodermal lineage, as has been described for Oct4-deficient ICM cells. These new results suggest a previously unknown function of Oct4 in maintaining viability of mammalian germline. PMID:15486564

  6. Short communication: Dairy bedding type affects survival of Prototheca in vitro.

    PubMed

    Adhikari, N; Bonaiuto, H E; Lichtenwalner, A B

    2013-01-01

    Protothecae are algal pathogens, capable of causing bovine mastitis, that are unresponsive to treatment; they are believed to have an environmental reservoir. The role of bedding management in control of protothecal mastitis has not been studied. The purpose of this study was to evaluate the growth of either environmental or mastitis-associated Prototheca genotypes in dairy bedding materials that are commonly used in Maine. Prototheca zopfii genotypes 1 and 2 (gt1 and gt2) were inoculated into sterile broth only (control ), kiln-dried spruce shavings, "green" hemlock sawdust, sand, or processed manure-pack beddings with broth, and incubated for 2 d. Fifty microliters of each isolate was then cultured onto plates and the resulting colonies counted at 24 and 48 h postinoculation. Shavings were associated with significantly less total Prototheca growth than other bedding types. Growth of P. zopfii gt1 was significantly higher than that of gt2 in the manure-pack bedding material. Spruce shavings, compared with manure, sand, or sawdust, may be a good bedding type to prevent growth of Prototheca. Based on these in vitro findings, bedding type may affect Prototheca infection of cattle in vivo. PMID:24119794

  7. A Systems-Level Interrogation Identifies Regulators of Drosophila Blood Cell Number and Survival

    PubMed Central

    Makhijani, Kalpana; Alexander, Brandy; Perrimon, Norbert; Brückner, Katja

    2015-01-01

    In multicellular organisms, cell number is typically determined by a balance of intracellular signals that positively and negatively regulate cell survival and proliferation. Dissecting these signaling networks facilitates the understanding of normal development and tumorigenesis. Here, we study signaling by the Drosophila PDGF/VEGF Receptor (Pvr) in embryonic blood cells (hemocytes) and in the related cell line Kc as a model for the requirement of PDGF/VEGF receptors in vertebrate cell survival and proliferation. The system allows the investigation of downstream and parallel signaling networks, based on the ability of Pvr to activate Ras/Erk, Akt/TOR, and yet-uncharacterized signaling pathway/s, which redundantly mediate cell survival and contribute to proliferation. Using Kc cells, we performed a genome wide RNAi screen for regulators of cell number in a sensitized, Pvr deficient background. We identified the receptor tyrosine kinase (RTK) Insulin-like receptor (InR) as a major Pvr Enhancer, and the nuclear hormone receptors Ecdysone receptor (EcR) and ultraspiracle (usp), corresponding to mammalian Retinoid X Receptor (RXR), as Pvr Suppressors. In vivo analysis in the Drosophila embryo revealed a previously unrecognized role for EcR to promote apoptotic death of embryonic blood cells, which is balanced with pro-survival signaling by Pvr and InR. Phosphoproteomic analysis demonstrates distinct modes of cell number regulation by EcR and RTK signaling. We define common phosphorylation targets of Pvr and InR that include regulators of cell survival, and unique targets responsible for specialized receptor functions. Interestingly, our analysis reveals that the selection of phosphorylation targets by signaling receptors shows qualitative changes depending on the signaling status of the cell, which may have wide-reaching implications for other cell regulatory systems. PMID:25749252

  8. Nivolumab versus Cabozantinib: Comparing Overall Survival in Metastatic Renal Cell Carcinoma

    PubMed Central

    Wiecek, Witold; Karcher, Helene

    2016-01-01

    Renal-cell carcinoma (RCC) affects over 330,000 new patients every year, of whom 1/3 present with metastatic RCC (mRCC) at diagnosis. Most mRCC patients treated with a first-line agent relapse within 1 year and need second-line therapy. The present study aims to compare overall survival (OS) between nivolumab and cabozantinib from two recent pivotal studies comparing, respectively, each one of the two emerging treatments against everolimus in patients who relapse following first-line treatment. Comparison is traditionally carried out using the Bucher method, which assumes proportional hazard. Since OS curves intersected in one of the pivotal studies, models not assuming proportional hazards were also considered to refine the comparison. Four Bayesian parametric survival network meta-analysis models were implemented on overall survival (OS) data digitized from the Kaplan-Meier curves reported in the studies. Three models allowing hazard ratios (HR) to vary over time were assessed against a fixed-HR model. The Bucher method favored cabozantinib, with a fixed HR for OS vs. nivolumab of 1.09 (95% confidence interval: [0.77, 1.54]). However, all models with time-varying HR showed better fits than the fixed-HR model. The log-logistic model fitted the data best, exhibiting a HR for OS initially favoring cabozantinib, the trend inverting to favor nivolumab after month 5 (95% credible interval <1 from 10 months). The initial probability of cabozantinib conferring superior OS was 54%, falling to 41.5% by month 24. Numerical differences in study-adjusted OS estimates between the two treatments remained small. This study evidences that HR for OS of nivolumab vs. cabozantinib varies over time, favoring cabozantinib in the first months of treatment but nivolumab afterwards, a possible indication that patients with poor prognosis benefit more from cabozantinib in terms of survival, nivolumab benefiting patients with better prognosis. More evidence, including real

  9. Kuwanon V Inhibits Proliferation, Promotes Cell Survival and Increases Neurogenesis of Neural Stem Cells

    PubMed Central

    Kong, Sun-Young; Park, Min-Hye; Lee, Mina; Kim, Jae-Ouk; Lee, Ha-Rim; Han, Byung Woo; Svendsen, Clive N.; Sung, Sang Hyun; Kim, Hyun-Jung

    2015-01-01

    Neural stem cells (NSCs) have the ability to proliferate and differentiate into neurons and glia. Regulation of NSC fate by small molecules is important for the generation of a certain type of cell. The identification of small molecules that can induce new neurons from NSCs could facilitate regenerative medicine and drug development for neurodegenerative diseases. In this study, we screened natural compounds to identify molecules that are effective on NSC cell fate determination. We found that Kuwanon V (KWV), which was isolated from the mulberry tree (Morus bombycis) root, increased neurogenesis in rat NSCs. In addition, during NSC differentiation, KWV increased cell survival and inhibited cell proliferation as shown by 5-bromo-2-deoxyuridine pulse experiments, Ki67 immunostaining and neurosphere forming assays. Interestingly, KWV enhanced neuronal differentiation and decreased NSC proliferation even in the presence of mitogens such as epidermal growth factor and fibroblast growth factor 2. KWV treatment of NSCs reduced the phosphorylation of extracellular signal-regulated kinase 1/2, increased mRNA expression levels of the cyclin-dependent kinase inhibitor p21, down-regulated Notch/Hairy expression levels and up-regulated microRNA miR-9, miR-29a and miR-181a. Taken together, our data suggest that KWV modulates NSC fate to induce neurogenesis, and it may be considered as a new drug candidate that can regenerate or protect neurons in neurodegenerative diseases. PMID:25706719

  10. Ubiquitin at the crossroad of cell death and survival

    PubMed Central

    Chen, Yu-Shan; Qiu, Xiao-Bo

    2013-01-01

    Ubiquitination is crucial for cellular processes, such as protein degradation, apoptosis, autophagy, and cell cycle progression. Dysregulation of the ubiquitination network accounts for the development of numerous diseases, including cancer. Thus, targeting ubiquitination is a promising strategy in cancer therapy. Both apoptosis and autophagy are involved in tumorigenesis and response to cancer therapy. Although both are categorized as types of cell death, autophagy is generally considered to have protective functions, including protecting cells from apoptosis under certain cellular stress conditions. This review highlights recent advances in understanding the regulation of apoptosis and autophagy by ubiquitination. PMID:23816559

  11. A RUNX2-Mediated Epigenetic Regulation of the Survival of p53 Defective Cancer Cells

    PubMed Central

    Shin, Min Hwa; He, Yunlong; Marrogi, Eryney; Piperdi, Sajida; Ren, Ling; Khanna, Chand; Gorlick, Richard; Liu, Chengyu; Huang, Jing

    2016-01-01

    The inactivation of p53 creates a major challenge for inducing apoptosis in cancer cells. An attractive strategy is to identify and subsequently target the survival signals in p53 defective cancer cells. Here we uncover a RUNX2-mediated survival signal in p53 defective cancer cells. The inhibition of this signal induces apoptosis in cancer cells but not non-transformed cells. Using the CRISPR technology, we demonstrate that p53 loss enhances the apoptosis caused by RUNX2 knockdown. Mechanistically, RUNX2 provides the survival signal partially through inducing MYC transcription. Cancer cells have high levels of activating histone marks on the MYC locus and concomitant high MYC expression. RUNX2 knockdown decreases the levels of these histone modifications and the recruitment of the Menin/MLL1 (mixed lineage leukemia 1) complex to the MYC locus. Two inhibitors of the Menin/MLL1 complex induce apoptosis in p53 defective cancer cells. Together, we identify a RUNX2-mediated epigenetic mechanism of the survival of p53 defective cancer cells and provide a proof-of-principle that the inhibition of this epigenetic axis is a promising strategy to kill p53 defective cancer cells. PMID:26925584

  12. A RUNX2-Mediated Epigenetic Regulation of the Survival of p53 Defective Cancer Cells.

    PubMed

    Shin, Min Hwa; He, Yunlong; Marrogi, Eryney; Piperdi, Sajida; Ren, Ling; Khanna, Chand; Gorlick, Richard; Liu, Chengyu; Huang, Jing

    2016-02-01

    The inactivation of p53 creates a major challenge for inducing apoptosis in cancer cells. An attractive strategy is to identify and subsequently target the survival signals in p53 defective cancer cells. Here we uncover a RUNX2-mediated survival signal in p53 defective cancer cells. The inhibition of this signal induces apoptosis in cancer cells but not non-transformed cells. Using the CRISPR technology, we demonstrate that p53 loss enhances the apoptosis caused by RUNX2 knockdown. Mechanistically, RUNX2 provides the survival signal partially through inducing MYC transcription. Cancer cells have high levels of activating histone marks on the MYC locus and concomitant high MYC expression. RUNX2 knockdown decreases the levels of these histone modifications and the recruitment of the Menin/MLL1 (mixed lineage leukemia 1) complex to the MYC locus. Two inhibitors of the Menin/MLL1 complex induce apoptosis in p53 defective cancer cells. Together, we identify a RUNX2-mediated epigenetic mechanism of the survival of p53 defective cancer cells and provide a proof-of-principle that the inhibition of this epigenetic axis is a promising strategy to kill p53 defective cancer cells. PMID:26925584

  13. Heparan Sulfate Proteoglycans May Promote or Inhibit Cancer Progression by Interacting with Integrins and Affecting Cell Migration

    PubMed Central

    Soares, Mariana A.; Teixeira, Felipe C. O. B.; Fontes, Miguel; Arêas, Ana Lúcia; Leal, Marcelo G.; Pavão, Mauro S. G.; Stelling, Mariana P.

    2015-01-01

    The metastatic disease is one of the main consequences of tumor progression, being responsible for most cancer-related deaths worldwide. This review intends to present and discuss data on the relationship between integrins and heparan sulfate proteoglycans in health and cancer progression. Integrins are a family of cell surface transmembrane receptors, responsible for cell-matrix and cell-cell adhesion. Integrins' main functions include cell adhesion, migration, and survival. Heparan sulfate proteoglycans (HSPGs) are cell surface molecules that play important roles as cell receptors, cofactors, and overall direct or indirect contributors to cell organization. Both molecules can act in conjunction to modulate cell behavior and affect malignancy. In this review, we will discuss the different contexts in which various integrins, such as α5, αV, β1, and β3, interact with HSPGs species, such as syndecans and perlecans, affecting tissue homeostasis. PMID:26558271

  14. RecBC enzyme overproduction affects UV and gamma radiation survival of Deinococcus radiodurans.

    PubMed

    Khairnar, Nivedita P; Kamble, Vidya A; Misra, Hari S

    2008-01-01

    Deinococcus radiodurans recovering from the effect of acute dose of gamma (gamma) radiation shows a biphasic mechanism of DNA double strands breaks repair that involves an efficient homologous recombination. However, it shows higher sensitivity to near-UV (NUV) than Escherichia coli and lacks RecBC, a DNA strand break (DSB) repair enzyme in some bacteria. Recombinant Deinococcus expressing the recBC genes of E. coli showed nearly three-fold improvements in near-UV tolerance and nearly 2 log cycle reductions in wild type gamma radiation resistance. RecBC over expression effect on radiation response of D. radiodurans was independent of indigenous RecD. Loss of gamma radiation tolerance was attributed to the enhanced rate of in vivo degradation of radiation damaged DNA and delayed kinetics of DSB repair during post-irradiation recovery. RecBC expressing cells of Deinococcus showed wild type response to Far-UV. These results suggest that the overproduction of RecBC competes with the indigenous mechanism of gamma radiation damaged DNA repair while it supports near-UV tolerance in D. radiodurans. PMID:17720630

  15. Increased cell survival of cells exposed to superparamagnetic iron oxide nanoparticles through biomaterial substrate-induced autophagy.

    PubMed

    Tseng, Ting-Chen; Hsieh, Fu-Yu; Hsu, Shan-Hui

    2016-04-22

    The cellular uptake of nanoparticles (NPs) can be promoted by NP surface modification but cell viability is often sacrificed. Our previous study has shown that intracellular uptake of iron oxide NPs was significantly increased for cells cultured on chitosan. However, the mechanism for having the higher cellular uptake as well as better cell survival on the chitosan surface remains unclear. In this study, we sought to clarify if the autophagic response may contribute to cell survival under excessive NP exposure conditions on chitosan. L929 fibroblasts and neural stem cells (NSCs) were challenged with different concentrations (0-300 μg ml(-1)) of superparamagnetic iron oxide NPs. The autophagic response as well as the metabolic activity of cells was evaluated. Results showed that culturing both types of cells on chitosan substrates significantly enhanced the cellular uptake of NPs. At higher NP concentrations, cells on chitosan showed a greater survival rate than those on TCPS. The expression levels of autophagy-related genes (Atg5 and Atg7 genes) and autophagy associated protein (LC3-II) on chitosan were higher than that on TCPS. The NP exposure further increased the expressions. We suggest that cells cultured on chitosan were more tolerant to NP cytotoxicity because of the increased autophagic response. Moreover, NP exposure increased the metabolic activity of cells grown on chitosan, while it decreased the metabolism of cells cultured on TCPS. In animal studies, iron oxide-labeled NSCs were injected in zebrafish embryos. Results also showed that cells grown on chitosan had better survival after transplantation than those grown on TCPS. Taken together, chitosan as a culture substrate can induce cell autophagy to increase cell survival in particular for NP-labeled cells. This will be valuable for the biomedical application of NPs in cell therapy. PMID:26815305

  16. EGF Induced Centrosome Separation Promotes Mitotic Progression and Cell Survival

    PubMed Central

    Mardin, Balca R.; Isokane, Mayumi; Cosenza, Marco R.; Krämer, Alwin; Ellenberg, Jan; Fry, Andrew M.; Schiebel, Elmar

    2014-01-01

    Summary Timely and accurate assembly of the mitotic spindle is critical for the faithful segregation of chromosomes and centrosome separation is a key step in this process. The timing of centrosome separation varies dramatically between cell types; however, the mechanisms responsible for these differences and its significance are unclear. Here, we show that activation of epidermal growth factor receptor (EGFR) signaling determines the timing of centrosome separation. Premature separation of centrosomes decreases the requirement for the major mitotic kinesin Eg5 for spindle assembly, accelerates mitosis and decreases the rate of chromosome missegregation. Importantly, EGF stimulation impacts upon centrosome separation and mitotic progression to different degrees in different cell lines. Cells with high EGFR levels fail to arrest in mitosis upon Eg5 inhibition. This has important implications for cancer therapy since cells with high centrosomal response to EGF are more susceptible to combinatorial inhibition of EGFR and Eg5. PMID:23643362

  17. Human umbilical cord blood mononuclear cells activate the survival protein Akt in cardiac myocytes and endothelial cells that limits apoptosis and necrosis during hypoxia.

    PubMed

    Henning, Robert J; Dennis, Steve; Sawmiller, Darrell; Hunter, Lorynn; Sanberg, Paul; Miller, Leslie

    2012-06-01

    We have previously reported that human umbilical cord blood mononuclear cells (HUCBC), which contain hematopoietic, mesenchymal, and endothelial stem cells, can significantly reduce acute myocardial infarction size. To determine the mechanism whereby HUCBC increase myocyte and vascular endothelial cell survival, we treated cardiac myocytes and coronary artery endothelial cells in separate experiments with HUCBC plus culture media or culture media alone and subjected the cells to 24 h of hypoxia or normoxia. We then determined in myocytes and endothelial cells activation of the cell survival protein Akt by Western blots. We also determined in these cells apoptosis by annexin V staining and necrosis by propidium iodide staining. Thereafter, we inhibited with API, a specific and sensitive Akt inhibitor, Akt activation in myocytes and endothelial cells cultured with HUCBC during hypoxia and determined cell apoptosis and necrosis. In cells cultured without HUCBC, hypoxia only slightly activated Akt. Moreover, hypoxia increased myocyte apoptosis by ≥ 226% and necrosis by 58% in comparison with myocytes in normoxia. Hypoxic treatment of endothelial cells without HUCBC increased apoptosis by 94% and necrosis by 59%. In contrast, hypoxia did not significantly affect HUCBC. Moreover, in myocyte + HUCBC cultures in hypoxia, HUCBC induced a ≥ 135% increase in myocyte phospho-Akt. Akt activation decreased myocyte apoptosis by 76% and necrosis by 35%. In endothelial cells, HUCBC increased phospho-Akt by 116%. HUCBC also decreased endothelial cell apoptosis by 58% and necrosis by 42%. Inhibition of Akt with API in myocytes and endothelial cells cultured with HUCBC during hypoxia nearly totally prevented the HUCBC-induced decrease in apoptosis and necrosis. We conclude that HUCBC can significantly decrease hypoxia-induced myocyte and endothelial cell apoptosis and necrosis by activating Akt in these cells and in this manner HUCBC can limit myocardial ischemia and injury. PMID

  18. PPAR-delta promotes survival of breast cancer cells in harsh metabolic conditions

    PubMed Central

    Wang, X; Wang, G; Shi, Y; Sun, L; Gorczynski, R; Li, Y-J; Xu, Z; Spaner, D E

    2016-01-01

    Expression of the nuclear receptor peroxisome proliferator activated receptor delta (PPARδ) in breast cancer cells is negatively associated with patient survival, but the underlying mechanisms are not clear. High PPARδ protein levels in rat breast adenocarcinomas were found to be associated with increased growth in soft agar and mice. Transgenic expression of PPARδ increased the ability of human breast cancer cell lines to migrate in vitro and form lung metastases in mice. PPARδ also conferred the ability to grow in exhausted tissue culture media and survive in low-glucose and other endoplasmic reticulum stress conditions such as hypoxia. Upregulation of PPARδ by glucocorticoids or synthetic agonists also protected human breast cancer cells from low glucose. Survival in low glucose was related to increased antioxidant defenses mediated in part by catalase and also to late AKT phosphorylation, which is associated with the prolonged glucose-deprivation response. Synthetic antagonists reversed the survival benefits conferred by PPARδ in vitro. These findings suggest that PPARδ conditions breast cancer cells to survive in harsh microenvironmental conditions by reducing oxidative stress and enhancing survival signaling responses. Drugs that target PPARδ may have a role in the treatment of breast cancer. PMID:27270614

  19. PPAR-delta promotes survival of breast cancer cells in harsh metabolic conditions.

    PubMed

    Wang, X; Wang, G; Shi, Y; Sun, L; Gorczynski, R; Li, Y-J; Xu, Z; Spaner, D E

    2016-01-01

    Expression of the nuclear receptor peroxisome proliferator activated receptor delta (PPARδ) in breast cancer cells is negatively associated with patient survival, but the underlying mechanisms are not clear. High PPARδ protein levels in rat breast adenocarcinomas were found to be associated with increased growth in soft agar and mice. Transgenic expression of PPARδ increased the ability of human breast cancer cell lines to migrate in vitro and form lung metastases in mice. PPARδ also conferred the ability to grow in exhausted tissue culture media and survive in low-glucose and other endoplasmic reticulum stress conditions such as hypoxia. Upregulation of PPARδ by glucocorticoids or synthetic agonists also protected human breast cancer cells from low glucose. Survival in low glucose was related to increased antioxidant defenses mediated in part by catalase and also to late AKT phosphorylation, which is associated with the prolonged glucose-deprivation response. Synthetic antagonists reversed the survival benefits conferred by PPARδ in vitro. These findings suggest that PPARδ conditions breast cancer cells to survive in harsh microenvironmental conditions by reducing oxidative stress and enhancing survival signaling responses. Drugs that target PPARδ may have a role in the treatment of breast cancer. PMID:27270614

  20. Factors affecting songbird nest survival in riparian forests in a Midwestern agricultural landscape

    USGS Publications Warehouse

    Peak, R.G.; Thompson, F. R., III; Shaffer, T.L.

    2004-01-01

    We investigated factors affecting nest success of songbirds in riparian forest and buffers in northeastern Missouri. We used an information-theoretic approach to determine support for hypotheses concerning effects of nest-site, habitat-patch, edge, and temporal factors on nest success of songbirds in three narrow (55DS95 m) and three wide (400DS530 m) riparian forests with adjacent grasslandDSshrub buffer strips and in three narrow and three wide riparian forests without adjacent grasslandDSshrub buffer strips. We predicted that temporal effects would have the most support and that habitat-patch and edge effects would have little support, because nest predation would be great across all sites in the highly fragmented, predominantly agricultural landscape. Interval nest success was 0.404, 0.227, 0.070, and 0.186, respectively, for Gray Catbird (Dumetella carolinensis), Northern Cardinal (Cardinalis cardinalis), Indigo Bunting (Passerina cyanea), and forest interior species pooled (Acadian Flycatcher [Empidonax virescens], Wood Thrush [Hylocichla mustelina], Ovenbird [Seiurus aurocapillus], and Kentucky Warbler [Oporornis formosus]). The effect of nest stage on nest success had the most support; daily nest success for Gray Catbird and Indigo Bunting were lowest in the laying stage. We found strong support for greater nest success of Gray Catbird in riparian forests with adjacent buffer strips than in riparian forests without adjacent buffer strips. Patch width also occurred in the most supported model for Gray Catbird, but with very limited support. The null model received the most support for Northern Cardinal. Riparian forests provided breeding habitat for areas sensitive forest species and grassland-shrub nesting species. Buffer strips provided additional breeding habitat for grassland-shrub nesting species. Interval nest success for Indigo Bunting and area-sensitive forest species pooled, however, fell well below the level that is likely necessary to balance

  1. Factors affecting songbird nest survival in riparian forests in a midwestern agricultural landscape

    USGS Publications Warehouse

    Peak, R.G.; Thompson, F. R., III; Shaffer, T.L.

    2004-01-01

    We investigated factors affecting nest success of songbirds in riparian forest and buffers in northeastern Missouri. We used an information-theoretic approach to determine support for hypotheses concerning effects of nest-site, habitat-patch, edge, and temporal factors on nest success of songbirds in three narrow (55-95 m) and three wide (400-530 m) riparian forests with adjacent grassland-shrub buffer strips and in three narrow and three wide riparian forests without adjacent grassland-shrub buffer strips. We predicted that temporal effects would have the most support and that habitat-patch and edge effects would have little support, because nest predation would be great across all sites in the highly fragmented, predominantly agricultural landscape. Interval nest success was 0.404, 0.227, 0.070, and 0.186, respectively, for Gray Catbird (Dumetella carolinensis), Northern Cardinal (Cardinalis cardinalis), Indigo Bunting (Passerina cyanea), and forest interior species pooled (Acadian Flycatcher [Empidonax virescens], Wood Thrush [Hylocichla mustelina], Ovenbird [Seiurus aurocapillus], and Kentucky Warbler [Oporornis formosus]). The effect of nest stage on nest success had the most support; daily nest success for Gray Catbird and Indigo Bunting were lowest in the laying stage. We found strong support for greater nest success of Gray Catbird in riparian forests with adjacent buffer strips than in riparian forests without adjacent buffer strips. Patch width also occurred in the most-supported model for Gray Catbird, but with very limited support. The null model received the most support for Northern Cardinal. Riparian forests provided breeding habitat for area-sensitive forest species and grassland-shrub nesting species. Buffer strips provided additional breeding habitat for grassland-shrub nesting species. Interval nest success for Indigo Bunting and area-sensitive forest species pooled, however, fell well below the level that is likely necessary to balance juvenile

  2. Long-term survival and prognosis for primary clear cell carcinoma of the liver after hepatectomy

    PubMed Central

    Chen, Zu-Shun; Zhu, Shao-Liang; Qi, Lu-Nan; Li, Le-Qun

    2016-01-01

    Background The aim of this study was to investigate the long-term survival and prognosis for primary clear cell carcinoma of the liver (PCCCL) of the liver after hepatectomy. Methods Our study retrospectively analyzed the clinicopathological data of 64 patients with PCCCL (PCCCL group) and 247 with nonclear cell hepatocellular carcinoma (NHCC group) after hepatectomy between January 1996 and December 2006. The overall survival (OS) and disease-free survival of the two groups was compared using the Kaplan–Meier method. Prognostic factors of survival were identified by multivariate analysis. Results The 1-, 3-, and 5-year OS (P=0.016) and disease-free survival (P<0.001) of the PCCCL group were significantly higher than that of the NHCC group. In mutivariate analysis, tumor size >5 cm, presence of portal vein tumor thrombosis and proportion of clear cells ≤70% were risk factors for OS of the PCCCL group. The prognosis of a subgroup with higher proportion of clear cells was markedly better than that of the subgroup with a lower proportion of clear cells. Conclusion Our results suggested that the prognosis of patients with PCCCL was better than that of the patients with NHCC. The higher the proportion of clear cells, the better the prognosis. PMID:27462167

  3. Protein tyrosine phosphatase mu regulates glioblastoma cell growth and survival in vivo

    PubMed Central

    Kaur, Harpreet; Burden-Gulley, Susan M.; Phillips-Mason, Polly J.; Basilion, James P.; Sloan, Andrew E.; Brady-Kalnay, Susann M.

    2012-01-01

    Glioblastoma multiforme (GBM) is the most lethal primary brain tumor. Extensive proliferation and dispersal of GBM tumor cells within the brain limits patient survival to approximately 1 year. Hence, there is a great need for the development of better means to treat GBM. Receptor protein tyrosine phosphatase (PTP)µ is proteolytically cleaved in GBM to yield fragments that promote dispersal of GBM cells. While normal brain tissue retains expression of full-length PTPµ, low-grade human astrocytoma samples have varying amounts of full-length PTPµ and cleaved PTPµ. In the highest-grade astrocytomas (i.e., GBM), PTPµ is completely proteolyzed into fragments. We demonstrate that short hairpin RNA mediated knockdown of full-length PTPµ and PTPµ fragments reduces glioma cell growth and survival in vitro. The reduction in growth and survival following PTPµ knockdown is enhanced when cells are grown in the absence of serum, suggesting that PTPµ may regulate autocrine signaling. Furthermore, we show for the first time that reduction of PTPµ protein expression decreases the growth and survival of glioma cells in vivo using mouse xenograft flank and i.c. tumor models. Inhibitors of PTPµ could be used to reduce the growth and survival of GBM cells in the brain, representing a promising therapeutic target for GBM. PMID:22505657

  4. Factors associated with graft survival and endothelial cell density after Descemet's stripping automated endothelial keratoplasty.

    PubMed

    Ishii, Nobuhito; Yamaguchi, Takefumi; Yazu, Hiroyuki; Satake, Yoshiyuki; Yoshida, Akitoshi; Shimazaki, Jun

    2016-01-01

    Postoperative endothelial cell loss leads to graft failure after corneal transplantation, and is one of the important issues for long-term prognosis. The objective of this study was to identify clinical factors affecting graft survival and postoperative endothelial cell density (ECD) after Descemet's stripping automated endothelial keratoplasty (DSAEK). A total of 198 consecutive Japanese patients (225 eyes) who underwent DSAEK were analysed using Cox proportional hazard regression and multiple linear regression models. The candidate factors included recipient age; gender; diagnosis; pre-existing iris damage state, scored based on its severity; the number of previous intraocular surgeries; graft ECD; graft diameter; simultaneous cataract surgery; surgeons experience; intraoperative iris damage; postoperative rebubbling; and graft rejection. Eyes with higher pre-existing iris damage score and more number of previous intraocular surgery had a significantly higher risk of graft failure (HR = 8.53; P < 0.0001, and HR = 2.66; P = 0.026, respectively). Higher pre-existing iris damage score, lower graft ECD, and smaller graft diameter were identified as significant predisposing factors for lower postoperative ECD. The results show that iris damage status before DSAEK may be clinically useful in predicting the postoperative course. Avoiding intraoperative iris damage, especially in eyes with low ECD can change the prognosis of future DSAEK. PMID:27121659

  5. The effect of interferon-{beta} on mouse neural progenitor cell survival and differentiation

    SciTech Connect

    Hirsch, Marek; Knight, Julia; Tobita, Mari; Soltys, John; Panitch, Hillel; Mao-Draayer, Yang

    2009-10-16

    Interferon-{beta} (IFN-{beta}) is a mainstay therapy for relapse-remitting multiple sclerosis (MS). However, the direct effects of IFN-{beta} on the central nervous system (CNS) are not well understood. To determine whether IFN-{beta} has direct neuroprotective effects on CNS cells, we treated adult mouse neural progenitor cells (NPCs) in vitro with IFN-{beta} and examined the effects on proliferation, apoptosis, and differentiation. We found that mouse NPCs express high levels of IFN{alpha}/{beta} receptor (IFNAR). In response to IFN-{beta} treatment, no effect was observed on differentiation or proliferation. However, IFN-{beta} treated mouse NPCs demonstrated decreased apoptosis upon growth factor withdrawal. Pathway-specific polymerase chain reaction (PCR) arrays demonstrated that IFN-{beta} treatment upregulated the STAT 1 and 2 signaling pathway, as well as GFRA2, NOD1, Caspases 1 and 12, and TNFSF10. These results suggest that IFN-{beta} can directly affect NPC survival, possibly playing a neuroprotective role in the CNS by modulating neurotrophic factors.

  6. Physiological restraint of Bak by Bcl-xL is essential for cell survival.

    PubMed

    Lee, Erinna F; Grabow, Stephanie; Chappaz, Stephane; Dewson, Grant; Hockings, Colin; Kluck, Ruth M; Debrincat, Marlyse A; Gray, Daniel H; Witkowski, Matthew T; Evangelista, Marco; Pettikiriarachchi, Anne; Bouillet, Philippe; Lane, Rachael M; Czabotar, Peter E; Colman, Peter M; Smith, Brian J; Kile, Benjamin T; Fairlie, W Douglas

    2016-05-15

    Due to the myriad interactions between prosurvival and proapoptotic members of the Bcl-2 family of proteins, establishing the mechanisms that regulate the intrinsic apoptotic pathway has proven challenging. Mechanistic insights have primarily been gleaned from in vitro studies because genetic approaches in mammals that produce unambiguous data are difficult to design. Here we describe a mutation in mouse and human Bak that specifically disrupts its interaction with the prosurvival protein Bcl-xL Substitution of Glu75 in mBak (hBAK Q77) for leucine does not affect the three-dimensional structure of Bak or killing activity but reduces its affinity for Bcl-xL via loss of a single hydrogen bond. Using this mutant, we investigated the requirement for physical restraint of Bak by Bcl-xL in apoptotic regulation. In vitro, Bak(Q75L) cells were significantly more sensitive to various apoptotic stimuli. In vivo, loss of Bcl-xL binding to Bak led to significant defects in T-cell and blood platelet survival. Thus, we provide the first definitive in vivo evidence that prosurvival proteins maintain cellular viability by interacting with and inhibiting Bak. PMID:27198225

  7. c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling

    PubMed Central

    Fontana, Xavier; Hristova, Mariya; Da Costa, Clive; Patodia, Smriti; Thei, Laura; Makwana, Milan; Spencer-Dene, Bradley; Latouche, Morwena; Mirsky, Rhona; Jessen, Kristjan R.; Klein, Rüdiger

    2012-01-01

    The AP-1 transcription factor c-Jun is a master regulator of the axonal response in neurons. c-Jun also functions as a negative regulator of myelination in Schwann cells (SCs) and is strongly reactivated in SCs upon axonal injury. We demonstrate here that, after injury, the absence of c-Jun specifically in SCs caused impaired axonal regeneration and severely increased neuronal cell death. c-Jun deficiency resulted in decreased expression of several neurotrophic factors, and GDNF and Artemin, both of which encode ligands for the Ret receptor tyrosine kinase, were identified as novel direct c-Jun target genes. Genetic inactivation of Ret specifically in neurons resulted in regeneration defects without affecting motoneuron survival and, conversely, administration of recombinant GDNF and Artemin protein substantially ameliorated impaired regeneration caused by c-Jun deficiency. These results reveal an unexpected function for c-Jun in SCs in response to axonal injury, and identify paracrine Ret signaling as an important mediator of c-Jun function in SCs during regeneration. PMID:22753894

  8. SIRT1 is a critical regulator of K562 cell growth, survival, and differentiation.

    PubMed

    Duncan, Mark T; DeLuca, Teresa A; Kuo, Hsin-Yu; Yi, Minchang; Mrksich, Milan; Miller, William M

    2016-05-15

    Inhibition of histone deacetylases (HDACi) has emerged as a promising approach in the treatment of many types of cancer, including leukemias. Among the HDACs, Class III HDACs, also known as sirtuins (SIRTs), are unique in that their function is directly related to the cell's metabolic state through their dependency on the co-factor NAD(+). In this study, we examined the relation between SIRTs and the growth, survival, and differentiation of K562 erythroleukemia cells. Using a mass spectrometry approach we previously developed, we show that SIRT expression and deacetylase activity in these cells changes greatly with differentiation state (undifferentiated vs. megakaryocytic differentiation vs. erythroid differentiation). Moreover, SIRT1 is crucially involved in regulating the differentiation state. Overexpression of wildtype (but not deacetylase mutant) SIRT1 resulted in upregulation of glycophorin A, ~2-fold increase in the mRNA levels of α, γ, ε, and ζ-globins, and spontaneous hemoglobinization. Hemin-induced differentiation was also enhanced by (and depended on) higher SIRT1 levels. Since K562 cells are bipotent, we also investigated whether SIRT1 modulation affected their ability to undergo megakaryocytic (MK) differentiation. SIRT1 was required for commitment to the MK lineage and subsequent maturation, but was not directly involved in polyploidization of either K562 cells or an already-MK-committed cell line, CHRF-288-11. The observed blockage in commitment to the MK lineage was associated with a dramatic decrease in the formation of autophagic vacuoles, which was previously shown to be required for K562 cell MK commitment. Autophagy-associated conversion of the protein LC3-I to LC3-II was greatly enhanced by overexpression of wildtype SIRT1, further suggesting a functional connection between SIRT1, autophagy, and MK differentiation. Based on its clear effects on autophagy, we also examined the effect of SIRT1 modulation on stress responses. Consistent

  9. Hemolin triggers cell survival on fibroblasts in response to serum deprivation by inhibition of apoptosis.

    PubMed

    Bosch, Rosemary Viola; Alvarez-Flores, Miryam Paola; Maria, Durvanei Augusto; Chudzinski-Tavassi, Ana Marisa

    2016-08-01

    Fibroblasts are the main cellular component of connective tissues and play important roles in health and disease through the production of collagen, fibronectin and growth factors. Under certain conditions, such as wound healing, fibroblasts intensify their metabolic demand, while the restriction of nutrients affect matrix composition, cell metabolism and behavior. In lepidopterans, wound healing is regulated by ecdysteroid hormones, which upregulate multifunctional proteins such as hemolin. However, the role of hemolin in cell proliferation and wound healing is not clear. rLosac is a recombinant hemolin from the caterpillar Lonomia obliqua whose proliferative and cytoprotective effects on endothelial cells have been described. Here, we show that rLosac induces a marked cell survival effect on fibroblast submitted to serum deprivation, which is observable as early as 24h, as demonstrated through the MTT assay, as well as an increase in migration of human dermal fibroblasts (HDF). No effects on cell proliferation or cell cycle distribution of fibroblasts in normal conditions were observed, suggesting that rLosac induces an effect in stressful conditions such serum deprivation but not when nutrient are sufficient. By flow cytometry, rLosac caused an apparent dose-dependent increase in cells in the S phase of the cell cycle and a significant reduction of cells with fragmented DNA. Furthermore, treatment with rLosac results in a significant decrease in the production of reactive oxygen species and in the loss of mitochondrial membrane potential, indicating that a reduction in oxidative stress is involved in rLosac-mediated cytoprotection. Our results also show an up-regulation of Bcl-2 and a down-regulation of Bax protein levels, inhibition of cytochrome c release and a reduction in caspase-3 levels, all considered critical factors for apoptosis. Moreover, rLosac treatment reduces the morphological changes induced by prolonged serum deprivation including the emergence

  10. The RBE-LET relationship for rodent intestinal crypt cell survival, testes weight loss, and multicellular spheroid cell survival after heavy-ion irradiation

    NASA Technical Reports Server (NTRS)

    Rodriguez, A.; Alpen, E. L.; Powers-Risius, P.

    1992-01-01

    This report presents data for survival of mouse intestinal crypt cells, mouse testes weight loss as an indicator of survival of spermatogonial stem cells, and survival of rat 9L spheroid cells after irradiation in the plateau region of unmodified particle beams ranging in mass from 4He to 139La. The LET values range from 1.6 to 953 keV/microns. These studies examine the RBE-LET relationship for two normal tissues and for an in vitro tissue model, multicellular spheroids. When the RBE values are plotted as a function of LET, the resulting curve is characterized by a region in which RBE increases with LET, a peak RBE at an LET value of 100 keV/microns, and a region of decreasing RBE at LETs greater than 100 keV/microns. Inactivation cross sections (sigma) for these three biological systems have been calculated from the exponential terminal slope of the dose-response relationship for each ion. For this determination the dose is expressed as particle fluence and the parameter sigma indicates effect per particle. A plot of sigma versus LET shows that the curve for testes weight loss is shifted to the left, indicating greater radiosensitivity at lower LETs than for crypt cell and spheroid cell survival. The curves for cross section versus LET for all three model systems show similar characteristics with a relatively linear portion below 100 keV/microns and a region of lessened slope in the LET range above 100 keV/microns for testes and spheroids. The data indicate that the effectiveness per particle increases as a function of LET and, to a limited extent, Z, at LET values greater than 100 keV/microns. Previously published results for spread Bragg peaks are also summarized, and they suggest that RBE is dependent on both the LET and the Z of the particle.

  11. Sox2 promotes survival of satellite glial cells in vitro

    SciTech Connect

    Koike, Taro Wakabayashi, Taketoshi; Mori, Tetsuji; Hirahara, Yukie; Yamada, Hisao

    2015-08-14

    Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling.

  12. Ionizing Radiation Impairs T Cell Activation by Affecting Metabolic Reprogramming

    PubMed Central

    Li, Heng-Hong; Wang, Yi-wen; Chen, Renxiang; Zhou, Bin; Ashwell, Jonathan D.; Fornace, Albert J.

    2015-01-01

    Ionizing radiation has a variety of acute and long-lasting adverse effects on the immune system. Whereas measureable effects of radiation on immune cell cytotoxicity and population change have been well studied in human and animal models, little is known about the functional alterations of the surviving immune cells after ionizing radiation. The objective of this study was to delineate the effects of radiation on T cell function by studying the alterations of T cell receptor activation and metabolic changes in activated T cells isolated from previously irradiated animals. Using a global metabolomics profiling approach, for the first time we demonstrate that ionizing radiation impairs metabolic reprogramming of T cell activation, which leads to substantial decreases in the efficiency of key metabolic processes required for activation, such as glucose uptake, glycolysis, and energy metabolism. In-depth understanding of how radiation impacts T cell function highlighting modulation of metabolism during activation is not only a novel approach to investigate the pivotal processes in the shift of T cell homeostasis after radiation, it also may lead to new targets for therapeutic manipulation in the combination of radiotherapy and immune therapy. Given that appreciable effects were observed with as low as 10 cGy, our results also have implications for low dose environmental exposures. PMID:26078715

  13. Sweet connections: O-GlcNAcylation links cancer cell metabolism and survival

    PubMed Central

    Ferrer, Christina M; Reginato, Mauricio J

    2015-01-01

    Increased O-GlcNAcylation is emerging as a general characteristic of cancer cells that is critical for multiple oncogenic phenotypes. Recently, we demonstrated that elevated O-GlcNAcylation contributes to the metabolic shift seen in cancer through stabilization of the glycolytic regulator HIF-1α and links metabolism to stress and cancer cell survival. PMID:27308381

  14. Imprinted survival genes preclude loss of heterozygosity of chromosome 7 in cancer cells.

    PubMed

    Boot, Arnoud; Oosting, Jan; de Miranda, Noel Fcc; Zhang, Yinghui; Corver, Willem E; van de Water, Bob; Morreau, Hans; van Wezel, Tom

    2016-09-01

    The genomes of a wide range of cancers, including colon, breast, and thyroid cancers, frequently show copy number gains of chromosome 7 and rarely show loss of heterozygosity. The molecular basis for this phenomenon is unknown. Strikingly, oncocytic follicular thyroid carcinomas can display an extreme genomic profile, with homozygosity of all chromosomes except for chromosome 7. The observation that homozygosity of chromosome 7 is never observed suggests that retention of heterozygosity is essential for cells. We hypothesized that cell survival genes are genetically imprinted on either of two copies of chromosome 7, which thwarts loss of heterozygosity at this chromosome in cancer cells. By employing a DNA methylation screen and gene expression analysis, we identified six imprinted genes that force retention of heterozygosity on chromosome 7. Subsequent knockdown of gene expression showed that CALCR, COPG2, GRB10, KLF14, MEST, and PEG10 were essential for cancer cell survival, resulting in reduced cell proliferation, G1 -phase arrest, and increased apoptosis. We propose that imprinted cell survival genes provide a genetic basis for retention of chromosome 7 heterozygosity in cancer cells. The monoallelically expressed cell survival genes identified in this study, and the cellular pathways that they are involved in, offer new therapeutic targets for the treatment of tumours showing retention of heterozygosity on chromosome 7. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:27265324

  15. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    SciTech Connect

    Wang, Suna Zhou, Yifu; Andreyev, Oleg; Hoyt, Robert F.; Singh, Avneesh; Hunt, Timothy; Horvath, Keith A.

    2014-04-15

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative {sup RT}PCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  16. Rapamycin-resistant and torin-sensitive mTOR signaling promotes the survival and proliferation of leukemic cells

    PubMed Central

    Park, Seohyun; Sim, Hyunsub; Lee, Keunwook

    2016-01-01

    The serine/threonine kinase mTOR is essential for the phosphoinositide 3-kinases (PI3K) signaling pathway, and regulates the development and function of immune cells. Aberrant activation of mTOR signaling pathway is associated with many cancers including leukemia. Here, we report the contributions of mTOR signaling to growth of human leukemic cell lines and mouse T-cell acute leukemia (T-ALL) cells. Torin, an ATP-competitive mTOR inhibitor, was found to have both cytotoxic and cytostatic effects on U-937, THP-1, and RPMI-8226 cells, but not on Jurkat or K-562 cells. All cells were relatively resistant to rapamycin even with suppressed activity of mTOR complex 1. Growth of T-ALL cells induced by Notch1 was profoundly affected by torin partially due to increased expression of Bcl2l11 and Bbc3. Of note, activation of Akt or knockdown of FoxO1 mitigated the effect of mTOR inhibition on T-ALL cells. Our data provide insight on the effect of mTOR inhibitors on the survival and proliferation of leukemic cells, thus further improving our understanding on cell-context-dependent impacts of mTOR signaling. [BMB Reports 2016; 49(1): 63-68] PMID:26497580

  17. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    SciTech Connect

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee; Jun, Mi-Hee; Ban, Byung-Kwan; Jang, Deok-Jin; Lee, Jin-A

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalized to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.

  18. Increased IL-17-producing cells correlate with poor survival and lymphangiogenesis in NSCLC patients.

    PubMed

    Chen, Xi; Wan, Jin; Liu, Jiankun; Xie, Wei; Diao, Xinwei; Xu, Jianping; Zhu, Bo; Chen, Zhengtang

    2010-09-01

    The presence of IL-17-positive cells is observed in a variety of inflammatory associated cancers and IL-17 has been found to be involved in angiogenesis. The aim of this study is to determine the prognostic significance of IL-17 in NSCLC patients and to examine the correlation between IL-17 expression and lymphatic vessel density in NSCLC tissues. The expression of IL-17 was measured by immunohistochemistry in 52 paraffin-embedded tissues with non-small cell lung cancer. The chi(2) test was used to analyze the correlation between IL-17 expression and clinical parameters and lymphatic vessel density (LVD). The Kaplan-Meier method, univariate and multivariate regression analysis was used to analyze the correlation between IL-17 expression and overall survival and disease-free survival. High expression of IL-17 was observed in 25 of 52 lung cancer patients and was associated with smoking status, TNM stage, LVD, overall survival and disease-free survival. Univariate and multivariate analysis showed that IL-17 was an independent prognostic factor for overall survival and disease-free survival. Our results indicate that IL-17 may play a role in the metastasis of lung cancer by promoting lymphangiogenesis. IL-17 expression is an independent prognostic factor in both overall and disease-free survival in NSCLC. PMID:20022135

  19. Morbid obesity in liver transplant recipients adversely affects longterm graft and patient survival in a single-institution analysis

    PubMed Central

    Conzen, Kendra D; Vachharajani, Neeta; Collins, Kelly M; Anderson, Christopher D; Lin, Yiing; Wellen, Jason R; Shenoy, Surendra; Lowell, Jeffrey A; Doyle, M B Majella; Chapman, William C

    2015-01-01

    Objective The effects of obesity in liver transplantation remain controversial. Earlier institutional data demonstrated no significant difference in postoperative complications or 1-year mortality. This study was conducted to test the hypothesis that obesity alone has minimal effect on longterm graft and overall survival. Methods A retrospective, single-institution analysis of outcomes in patients submitted to primary adult orthotopic liver transplantation was conducted using data for the period from 1 January 2002 to 31 December 2012. Recipients were divided into six groups by pre-transplant body mass index (BMI), comprising those with BMIs of <18.0 kg/m2, 18.0–24.9 kg/m2, 25.0–29.9 kg/m2, 30.0–35.0 kg/m2, 35.1–40.0 kg/m2 and >40 kg/m2, respectively. Pre- and post-transplant parameters were compared. A P-value of <0.05 was considered to indicate statistical significance. Independent predictors of patient and graft survival were determined using multivariate analysis. Results A total of 785 patients met the study inclusion criteria. A BMI of >35 kg/m2 was associated with non-alcoholic steatohepatitis (NASH) cirrhosis (P < 0.0001), higher Model for End-stage Liver Disease (MELD) score, and longer wait times for transplant (P = 0.002). There were no differences in operative time, intensive care unit or hospital length of stay, or perioperative complications. Graft and patient survival at intervals up to 3 years were similar between groups. Compared with non-obese recipients, recipients with a BMI of >40 kg/m2 showed significantly reduced 5-year graft (49.0% versus 75.8%; P < 0.02) and patient (51.3% versus 78.8%; P < 0.01) survival. Conclusions Obesity increasingly impacts outcomes in liver transplantation. Although the present data are limited by the fact that they were sourced from a single institution, they suggest that morbid obesity adversely affects longterm outcomes despite providing similar short-term results. Further analysis is

  20. Cancer stem cells and chemoresistance: The smartest survives the raid.

    PubMed

    Zhao, Jihe

    2016-04-01

    Chemoresistant metastatic relapse of minimal residual disease plays a significant role for poor prognosis of cancer. Growing evidence supports a critical role of cancer stem cell (CSC) behind the mechanisms for this deadly disease. This review briefly introduces the basics of the conventional chemotherapies, updates the CSC theories, highlights the molecular and cellular mechanisms by which CSC smartly designs and utilizes multiple lines of self-defense to avoid being killed by chemotherapy, and concisely summarizes recent progress in studies on CSC-targeted therapies in the end, with the hope to help guide future research toward developing more effective therapeutic strategies to eradicate tumor cells in the patients. PMID:26899500

  1. Dietary Pectin Increases Intestinal Crypt Stem Cell Survival following Radiation Injury

    PubMed Central

    Sureban, Sripathi M.; May, Randal; Qu, Dongfeng; Chandrakesan, Parthasarathy; Weygant, Nathaniel; Ali, Naushad; Lightfoot, Stan A.; Ding, Kai; Umar, Shahid; Schlosser, Michael J.; Houchen, Courtney W.

    2015-01-01

    Gastrointestinal (GI) mucosal damage is a devastating adverse effect of radiation therapy. We have recently reported that expression of Dclk1, a Tuft cell and tumor stem cell (TSC) marker, 24h after high dose total-body gamma-IR (TBI) can be used as a surrogate marker for crypt survival. Dietary pectin has been demonstrated to possess chemopreventive properties, whereas its radioprotective property has not been studied. The aim of this study was to determine the effects of dietary pectin on ionizing radiation (IR)-induced intestinal stem cell (ISC) deletion, crypt and overall survival following lethal TBI. C57BL/6 mice received a 6% pectin diet and 0.5% pectin drinking water (pre-IR mice received pectin one week before TBI until death; post-IR mice received pectin after TBI until death). Animals were exposed to TBI (14 Gy) and euthanized at 24 and 84h post-IR to assess ISC deletion and crypt survival respectively. Animals were also subjected to overall survival studies following TBI. In pre-IR treatment group, we observed a three-fold increase in ISC/crypt survival, a two-fold increase in Dclk1+ stem cells, increased overall survival (median 10d vs. 7d), and increased expression of Dclk1, Msi1, Lgr5, Bmi1, and Notch1 (in small intestine) post-TBI in pectin treated mice compared to controls. We also observed increased survival of mice treated with pectin (post-IR) compared to controls. Dietary pectin is a radioprotective agent; prevents IR-induced deletion of potential reserve ISCs; facilitates crypt regeneration; and ultimately promotes overall survival. Given the anti-cancer activity of pectin, our data support a potential role for dietary pectin as an agent that can be administered to patients receiving radiation therapy to protect against radiation-induces mucositis. PMID:26270561

  2. Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species

    PubMed Central

    Lee, Mi Jin; Lee, Seung Jun; Yun, Su Jin; Jang, Ji-Young; Kang, Hangoo; Kim, Kyongmin; Choi, In-Hong; Park, Sun

    2016-01-01

    The silver nanoparticle (AgNP) is a candidate for anticancer therapy because of its effects on cell survival and signaling. Although numerous reports are available regarding their effect on cell death, the effect of AgNPs on metabolism is not well understood. In this study, we investigated the effect of AgNPs on glucose metabolism in hepatoma cell lines. Lactate release from both HepG2 and Huh7 cells was reduced with 5 nm AgNPs as early as 1 hour after treatment, when cell death did not occur. Treatment with 5 nm AgNPs decreased glucose consumption in HepG2 cells but not in Huh7 cells. Treatment with 5 nm AgNPs reduced nuclear factor erythroid 2-like 2 expression in both cell types without affecting its activation at the early time points after AgNPs’ treatment. Increased reactive oxygen species (ROS) production was detected 1 hour after 5 nm AgNPs’ treatment, and lactate release was restored in the presence of an ROS scavenger. Our results suggest that 5 nm AgNPs affect glucose metabolism by producing ROS. PMID:26730190

  3. SAMM50 Affects Mitochondrial Morphology through the Association of Drp1 in Mammalian Cells.

    PubMed

    Liu, Shuo; Gao, Yali; Zhang, Cheng; Li, Han; Pan, Shiyi; Wang, Xiaoli; Du, Shiming; Deng, Zixin; Wang, Lianrong; Song, Zhiyin; Chen, Shi

    2016-05-01

    Mitochondrial fission and fusion activities are important for cell survival and function. Drp1 is a GTPase protein responsible for mitochondrial division, and SAMM50 is responsible for protein sorting and assembly. We demonstrated that SAMM50 overexpression results in Drp1-dependent mitochondrial fragmentation in HeLa cells. However, the mitochondrial fragmentation induced by SAMM50 overexpression could be reversed through co-expression with MFN2. Furthermore, SAMM50 interacts with Drp1 both in vivo and in vitro. The mitochondria in SAMM50 knockdown HeLa cells displayed a swollen phenotype, and the levels of the SAM complex and OPA1, along with the mitochondrial Drp1 levels, significantly decreased. In addition, mitochondrial inheritance was impaired in SAMM50 silenced cells. These results suggest that SAMM50 affects the Drp1-dependent mitochondrial morphology. PMID:27059175

  4. Cell surface lectin array: parameters affecting cell glycan signature.

    PubMed

    Landemarre, Ludovic; Cancellieri, Perrine; Duverger, Eric

    2013-04-01

    Among the "omics", glycomics is one of the most complex fields and needs complementary strategies of analysis to decipher the "glycan dictionary". As an alternative method, which has developed since the beginning of the 21st century, lectin array technology could generate relevant information related to glycan motifs, accessibility and a number of other valuable insights from molecules (purified and non-purified) or cells. Based on a cell line model, this study deals with the key parameters that influence the whole cell surface glycan interaction with lectin arrays and the consequences on the interpretation and reliability of the results. The comparison between the adherent and suspension forms of Chinese Hamster Ovary (CHO) cells, showed respective glycan signatures, which could be inhibited specifically by neoglycoproteins. The modifications of the respective glycan signatures were also revealed according to the detachment modes and cell growth conditions. Finally the power of lectin array technology was highlighted by the possibility of selecting and characterizing a specific clone from the mother cell line, based on the slight difference determination in the respective glycan signatures. PMID:22899543

  5. Polysialic acid sustains cancer cell survival and migratory capacity in a hypoxic environment

    PubMed Central

    Elkashef, Sara M.; Allison, Simon J.; Sadiq, Maria; Basheer, Haneen A.; Ribeiro Morais, Goreti; Loadman, Paul M.; Pors, Klaus; Falconer, Robert A.

    2016-01-01

    Polysialic acid (polySia) is a unique carbohydrate polymer expressed on the surface of NCAM (neuronal cell adhesion molecule) in a number of cancers where it modulates cell-cell and cell-matrix adhesion, migration, invasion and metastasis and is strongly associated with poor clinical prognosis. We have carried out the first investigation into the effect of polySia expression on the behaviour of cancer cells in hypoxia, a key source of chemoresistance in tumours. The role of polysialylation and associated tumour cell migration and cell adhesion were studied in hypoxia, along with effects on cell survival and the potential role of HIF-1. Our findings provide the first evidence that polySia expression sustains migratory capacity and is associated with tumour cell survival in hypoxia. Initial mechanistic studies indicate a potential role for HIF-1 in sustaining polySia-mediated migratory capacity, but not cell survival. These data add to the growing body of evidence pointing to a crucial role for the polysialyltransferases (polySTs) in neuroendocrine tumour progression and provide the first evidence to suggest that polySia is associated with an aggressive phenotype in tumour hypoxia. These results have significant potential implications for polyST inhibition as an anti-metastatic therapeutic strategy and for targeting hypoxic cancer cells. PMID:27611649

  6. An optimized colony forming assay for low-dose-radiation cell survival measurement

    SciTech Connect

    Zhu J.; Sutherland B.; Hu W.; Ding N.; Ye C.; Usikalu M.; Li S.; Hu B.; Zhou G.

    2011-11-01

    The aim of this study is to develop a simple and reliable method to quantify the cell survival of low-dose irradiations. Two crucial factors were considered, the same number of cells plated in each flask and an appropriate interval between cell plating and irradiation. For the former, we optimized cell harvest with trypsin, diluted cells in one container, and directly seeded cells on the bottom of flasks in a low density before irradiation. Reproducible plating efficiency was obtained. For the latter, we plated cells on the bottom of flasks and then monitored the processing of attachment, cell cycle variations, and the plating efficiency after exposure to 20 cGy of X-rays. The results showed that a period of 4.5 h to 7.5 h after plating was suitable for further treatment. In order to confirm the reliability and feasibility of our method, we also measured the survival curves of these M059K and M059J glioma cell lines by following the optimized protocol and obtained consistent results reported by others with cell sorting system. In conclusion, we successfully developed a reliable and simple way to measure the survival fractions of human cells exposed to low dose irradiation, which might be helpful for the studies on low-dose radiation biology.

  7. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    SciTech Connect

    Huang, Er-Wen; Xue, Sheng-Jiang; Li, Xiao-Yan; Xu, Suo-Wen; Cheng, Jian-Ding; Zheng, Jin-Xiang; Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong; Li, Jie; Liu, Chao

    2014-05-02

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.

  8. Polysialic acid sustains cancer cell survival and migratory capacity in a hypoxic environment.

    PubMed

    Elkashef, Sara M; Allison, Simon J; Sadiq, Maria; Basheer, Haneen A; Ribeiro Morais, Goreti; Loadman, Paul M; Pors, Klaus; Falconer, Robert A

    2016-01-01

    Polysialic acid (polySia) is a unique carbohydrate polymer expressed on the surface of NCAM (neuronal cell adhesion molecule) in a number of cancers where it modulates cell-cell and cell-matrix adhesion, migration, invasion and metastasis and is strongly associated with poor clinical prognosis. We have carried out the first investigation into the effect of polySia expression on the behaviour of cancer cells in hypoxia, a key source of chemoresistance in tumours. The role of polysialylation and associated tumour cell migration and cell adhesion were studied in hypoxia, along with effects on cell survival and the potential role of HIF-1. Our findings provide the first evidence that polySia expression sustains migratory capacity and is associated with tumour cell survival in hypoxia. Initial mechanistic studies indicate a potential role for HIF-1 in sustaining polySia-mediated migratory capacity, but not cell survival. These data add to the growing body of evidence pointing to a crucial role for the polysialyltransferases (polySTs) in neuroendocrine tumour progression and provide the first evidence to suggest that polySia is associated with an aggressive phenotype in tumour hypoxia. These results have significant potential implications for polyST inhibition as an anti-metastatic therapeutic strategy and for targeting hypoxic cancer cells. PMID:27611649

  9. Promotion of glioma cell survival by acyl-CoA synthetase 5 under extracellular acidosis conditions.

    PubMed

    Mashima, T; Sato, S; Sugimoto, Y; Tsuruo, T; Seimiya, H

    2009-01-01

    Extracellular acidosis (low pH) is a tumor microenvironmental stressor that has a critical function in the malignant progression and metastatic dissemination of tumors. To survive under stress conditions, tumor cells must evolve resistance to stress-induced toxicity. Acyl-CoA synthetase 5 (ACSL5) is a member of the ACS family, which converts fatty acid to acyl-CoA. ACSL5 is frequently overexpressed in malignant glioma, whereas its functional significance is still unknown. Using retrovirus-mediated stable gene transfer (gain of function) and small interfering RNA-mediated gene silencing (loss of function), we show here that ACSL5 selectively promotes human glioma cell survival under extracellular acidosis. ACSL5 enhanced cell survival through its ACS catalytic activity. To clarify the genome-wide changes in cell signaling pathways by ACSL5, we performed cDNA microarray analysis and identified an ACSL5-dependent gene expression signature. The analysis revealed that ACSL5 was critical to the expression of tumor-related factors including midkine (MDK), a heparin-binding growth factor frequently overexpressed in cancer. Knockdown of MDK expression significantly attenuated ACSL5-mediated survival under acidic state. These results indicate that ACSL5 is a critical factor for survival of glioma cells under acidic tumor microenvironment, thus providing novel molecular basis for cancer therapy. PMID:18806831

  10. STAT signaling in mammary gland differentiation, cell survival and tumorigenesis

    PubMed Central

    Haricharan, S; Li, Y

    2013-01-01

    The mammary gland is a unique organ that undergoes extensive and profound changes during puberty, menstruation, pregnancy, lactation and involution. The changes that take place during puberty involve large-scale proliferation and invasion of the fat-pad. During pregnancy and lactation, the mammary cells are exposed to signaling pathways that inhibit apoptosis, induce proliferation and invoke terminal differentiation. Finally, during involution the mammary gland is exposed to milk stasis, programed cell death and stromal reorganization to clear the differentiated milk-producing cells. Not surprisingly, the signaling pathways responsible for bringing about these changes in breast cells are often subverted during the process of tumorigenesis. The STAT family of proteins is involved in every stage of mammary gland development, and is also frequently implicated in breast tumorigenesis. While the roles of STAT3 and STAT5 during mammary gland development and tumorigenesis are well studied, others members, e.g. STAT1 and STAT6, have only recently been observed to play a role in mammary gland biology. Continued investigation into the STAT protein network in the mammary gland will likely yield new biomarkers and risk factors for breast cancer, and may also lead to novel prophylactic or therapeutic strategies against breast cancer. PMID:23541951

  11. The FRIABLE1 Gene Product Affects Cell Adhesion in Arabidopsis

    PubMed Central

    Neumetzler, Lutz; Humphrey, Tania; Lumba, Shelley; Snyder, Stephen; Yeats, Trevor H.; Usadel, Björn; Vasilevski, Aleksandar; Patel, Jignasha; Rose, Jocelyn K. C.; Persson, Staffan; Bonetta, Dario

    2012-01-01

    Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1), was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246). Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion. PMID:22916179

  12. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    PubMed Central

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  13. Modelling Circulating Tumour Cells for Personalised Survival Prediction in Metastatic Breast Cancer

    PubMed Central

    2015-01-01

    Ductal carcinoma is one of the most common cancers among women, and the main cause of death is the formation of metastases. The development of metastases is caused by cancer cells that migrate from the primary tumour site (the mammary duct) through the blood vessels and extravasating they initiate metastasis. Here, we propose a multi-compartment model which mimics the dynamics of tumoural cells in the mammary duct, in the circulatory system and in the bone. Through a branching process model, we describe the relation between the survival times and the four markers mainly involved in metastatic breast cancer (EPCAM, CD47, CD44 and MET). In particular, the model takes into account the gene expression profile of circulating tumour cells to predict personalised survival probability. We also include the administration of drugs as bisphosphonates, which reduce the formation of circulating tumour cells and their survival in the blood vessels, in order to analyse the dynamic changes induced by the therapy. We analyse the effects of circulating tumour cells on the progression of the disease providing a quantitative measure of the cell driver mutations needed for invading the bone tissue. Our model allows to design intervention scenarios that alter the patient-specific survival probability by modifying the populations of circulating tumour cells and it could be extended to other cancer metastasis dynamics. PMID:25978366

  14. Aromatase Expression Increases the Survival and Malignancy of Estrogen Receptor Positive Breast Cancer Cells

    PubMed Central

    Bandyopadhyay, Abhik; Kirma, Nameer B.; Tekmal, Rajeshwar R.; Wang, Shui; Sun, Lu-Zhe

    2015-01-01

    In postmenopausal women, local estrogen produced by adipose stromal cells in the breast is believed to support estrogen receptor alpha (ERα) positive breast cancer cell survival and growth. This raises the question of how the ERα positive metastatic breast cancer cells survive after they enter blood and lymph circulation, where estrogen level is very low in postmenopausal women. In this study, we show that the aromatase expression increased when ERα positive breast cancer cells were cultured in suspension. Furthermore, treatment with the aromatase substrate, testosterone, inhibited suspension culture-induced apoptosis whereas an aromatase inhibitor attenuated the effect of testosterone suggesting that suspended circulating ERα positive breast cancer cells may up-regulate intracrine estrogen activity for survival. Consistent with this notion, a moderate level of ectopic aromatase expression rendered a non-tumorigenic ERα positive breast cancer cell line not only tumorigenic but also metastatic in female nude mice without exogenous estrogen supplementation. The increased malignant phenotype was confirmed to be due to aromatase expression as the growth of orthotopic tumors regressed with systemic administration of an aromatase inhibitor. Thus, our study provides experimental evidence that aromatase plays an important role in the survival of metastatic ERα breast cancer cells by suppressing anoikis. PMID:25837259

  15. Tumor cell survival dependence on helical tomotherapy, continuous arc and segmented dose delivery

    NASA Astrophysics Data System (ADS)

    Yang, Wensha; Wang, Li; Larner, James; Read, Paul; Benedict, Stan; Sheng, Ke

    2009-11-01

    The temporal pattern of radiation delivery has been shown to influence the tumor cell survival fractions for the same radiation dose. To study the effect more specifically for state of the art rotational radiation delivery modalities, 2 Gy of radiation dose was delivered to H460 lung carcinoma, PC3 prostate cancer cells and MCF-7 breast tumor cells by helical tomotherapy (HT), seven-field LINAC (7F), and continuous dose delivery (CDD) over 2 min that simulates volumetric rotational arc therapy. Cell survival was measured by the clonogenic assay. The number of viable H460 cell colonies was 23.2 ± 14.4% and 27.7 ± 15.6% lower when irradiated by CDD compared with HT and 7F, respectively, and the corresponding values were 36.8 ± 18.9% and 35.3 ± 18.9% lower for MCF7 cells (p < 0.01). The survival of PC3 was also lower when irradiated by CDD than by HT or 7F but the difference was not as significant (p = 0.06 and 0.04, respectively). The higher survival fraction from HT delivery was unexpected because 90% of the 2 Gy was delivered in less than 1 min at a significantly higher dose rate than the other two delivery techniques. The results suggest that continuous dose delivery at a constant dose rate results in superior in vitro tumor cell killing compared with prolonged, segmented or variable dose rate delivery.

  16. Zebrafish cerebrospinal fluid mediates cell survival through a retinoid signaling pathway.

    PubMed

    Chang, Jessica T; Lehtinen, Maria K; Sive, Hazel

    2016-01-01

    Cerebrospinal fluid (CSF) includes conserved factors whose function is largely unexplored. To assess the role of CSF during embryonic development, CSF was repeatedly drained from embryonic zebrafish brain ventricles soon after their inflation. Removal of CSF increased cell death in the diencephalon, indicating a survival function. Factors within the CSF are required for neuroepithelial cell survival as injected mouse CSF but not artificial CSF could prevent cell death after CSF depletion. Mass spectrometry analysis of the CSF identified retinol binding protein 4 (Rbp4), which transports retinol, the precursor to retinoic acid (RA). Consistent with a role for Rbp4 in cell survival, inhibition of Rbp4 or RA synthesis increased neuroepithelial cell death. Conversely, ventricle injection of exogenous human RBP4 plus retinol, or RA alone prevented cell death after CSF depletion. Zebrafish rbp4 is highly expressed in the yolk syncytial layer, suggesting Rbp4 protein and retinol/RA precursors can be transported into the CSF from the yolk. In accord with this suggestion, injection of human RBP4 protein into the yolk prevents neuroepithelial cell death in rbp4 loss-of-function embryos. Together, these data support the model that Rbp4 and RA precursors are present within the CSF and used for synthesis of RA, which promotes embryonic neuroepithelial survival. PMID:25980532

  17. Angiopoietin-1 preconditioning enhances survival and functional recovery of mesenchymal stem cell transplantation*

    PubMed Central

    Liu, Xian-bao; Chen, Han; Chen, Hui-qiang; Zhu, Mei-fei; Hu, Xin-yang; Wang, Ya-ping; Jiang, Zhi; Xu, Yin-chuan; Xiang, Mei-xiang; Wang, Jian-an

    2012-01-01

    Objective: Mesenchymal stem cell (MSC) transplantation is a promising therapy for ischemic heart diseases. However, poor cell survival after transplantation greatly limits the therapeutic efficacy of MSCs. The purpose of this study was to investigate the protective effect of angiopoietin-1 (Ang1) preconditioning on MSC survival and subsequent heart function improvement after transplantation. Methods: MSCs were cultured with or without 50 ng/ml Ang1 in complete medium for 24 h prior to experiments on cell survival and transplantation. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Hoechst staining were applied to evaluate MSC survival after serum deprivation in vitro, while cell survival in vivo was detected by terminal deoxynucleotidyl transferase biotin-dUPT nick end labeling (TUNEL) assay 24 and 72 h after transplantation. Heart function and infarct size were measured four weeks later by small animal echocardiography and Masson’s trichrome staining, respectively. Results: Ang1 preconditioning induced Akt phosphorylation and increased expression of Bcl-2 and the ratio of Bcl-2/Bax. In comparison with non-preconditioned MSCs, Ang1-preconditioned cell survival was significantly increased while the apoptotic rate decreased in vitro. However, the PI3K/Akt pathway inhibitor, LY294002, abrogated the protective effect of Ang1 preconditioning. After transplantation, the Ang1-preconditioned-MSC group showed a lower death rate, smaller infarct size, and better heart functional recovery compared to the non-preconditioned-MSC group. Conclusions: Ang1 preconditioning enhances MSC survival, contributing to further improvement of heart function. PMID:22843181

  18. Survival of mammalian cells under high vacuum condition for ion bombardment.

    PubMed

    Feng, Huiyun; Wu, Lijun; Xu, An; Hu, Burong; Hei, Tom K; Yu, Zengliang

    2004-12-01

    An ion beam has been used to irradiate various organisms and its effects have been studied. Because of the poor tolerance that mammalian cells have for vacuum, such studies have not been carried out on living mammalian cells until now. However, this work is important both for elucidating the mechanism of mutation in response to low-energy ions and in exploring possible new applications of ion beam technology. The current paper describes an investigation of the survival of mammalian cells (the A(L) cell line) in a high-vacuum chamber in preparation for ion bombardment studies. The ion beam facility is described and the actual vacuum profile that the cells endured in the target chamber is reported. Cells were damaged immediately following vacuum exposure; the injury was characterized by alteration of the membrane permeability, loss of firm adhesion to the dish, and increased fragility. Three cryoprotective agents were tested (glycerol, propylene glycol, and trehalose) and of these, glycerol showed the highest potency for protecting cells against vacuum stress. This was revealed by an increase in the cell survival level from <1 to >10% with a glycerol concentration of 15 and 20%. Two glycerol-based protocols were investigated (freezing-vacuum vs. non-freezing-vacuum), but there was no significant difference (P > 0.1) in their ability to improve cell survival, the values being 10.31 +/- 4.5 and 12.7 +/- 3.37%, respectively with 20% glycerol concentration. These cells had a normal growth capability, and also retained integrity of the cell surface antigen CD59. These initial experiments indicate that mammalian cells can withstand vacuum to the degree that is needed to study the effect of the ion beam. In addition to the improvements made in this study, other factors are discussed that may increase the survival of mammalian cells exposed to a vacuum in future studies. PMID:15615610

  19. Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes

    PubMed Central

    2013-01-01

    Ionizing radiation (IR) is used for patients diagnosed with unresectable non small cell lung cancer (NSCLC), however radiotherapy remains largely palliative due to radioresistance. Cancer stem cells (CSCs), as well as epithelial-mesenchymal transition (EMT), may contribute to drug and radiation resistance mechanisms in solid tumors. Here we investigated the molecular phenotype of A549 and H460 NSCLC cells that survived treatment with IR (5Gy) and are growing as floating tumor spheres and cells that are maintained in a monolayer after irradiation. Non-irradiated and irradiated cells were collected after one week, seeded onto ultra low attachment plates and propagated as tumor spheres. Bulk NSCLC cells which survived radiation and grew in spheres express cancer stem cell surface and embryonic stem cell markers and are able to self-renew, and generate differentiated progeny. These cells also have a mesenchymal phenotype. Particularly, the radiation survived sphere cells express significantly higher levels of CSC markers (CD24 and CD44), nuclear β-catenin and EMT markers (Snail1, Vimentin, and N-cadherin) than non-irradiated lung tumor sphere cells. Upregulated levels of Oct-4, Sox2 and beta-catenin were detected in H460 cells maintained in a monolayer after irradiation, but not in radiation survived adherent A459 cells. PDGFR-beta was upregulated in radiation survived sphere cells and in radiation survived adherent cells in both A549 and H460 cell lines. Combining IR treatment with axitinib or dasatinib, inhibitors with anti-PDFGR activity, potentiates the efficacy of NSCLC radiotherapy in vitro. Our findings suggest that radiation survived cells have a complex phenotype combining the properties of CSCs and EMT. CD44, SNAIL and PDGFR-beta are dramatically upregulated in radiation survived cells and might be considered as markers of radiotherapy response in NSCLC. PMID:23947765

  20. Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes.

    PubMed

    Gomez-Casal, Roberto; Bhattacharya, Chitralekha; Ganesh, Nandita; Bailey, Lisa; Basse, Per; Gibson, Michael; Epperly, Michael; Levina, Vera

    2013-01-01

    Ionizing radiation (IR) is used for patients diagnosed with unresectable non small cell lung cancer (NSCLC), however radiotherapy remains largely palliative due to radioresistance. Cancer stem cells (CSCs), as well as epithelial-mesenchymal transition (EMT), may contribute to drug and radiation resistance mechanisms in solid tumors. Here we investigated the molecular phenotype of A549 and H460 NSCLC cells that survived treatment with IR (5Gy) and are growing as floating tumor spheres and cells that are maintained in a monolayer after irradiation.Non-irradiated and irradiated cells were collected after one week, seeded onto ultra low attachment plates and propagated as tumor spheres. Bulk NSCLC cells which survived radiation and grew in spheres express cancer stem cell surface and embryonic stem cell markers and are able to self-renew, and generate differentiated progeny. These cells also have a mesenchymal phenotype. Particularly, the radiation survived sphere cells express significantly higher levels of CSC markers (CD24 and CD44), nuclear β-catenin and EMT markers (Snail1, Vimentin, and N-cadherin) than non-irradiated lung tumor sphere cells. Upregulated levels of Oct-4, Sox2 and beta-catenin were detected in H460 cells maintained in a monolayer after irradiation, but not in radiation survived adherent A459 cells.PDGFR-beta was upregulated in radiation survived sphere cells and in radiation survived adherent cells in both A549 and H460 cell lines. Combining IR treatment with axitinib or dasatinib, inhibitors with anti-PDFGR activity, potentiates the efficacy of NSCLC radiotherapy in vitro.Our findings suggest that radiation survived cells have a complex phenotype combining the properties of CSCs and EMT. CD44, SNAIL and PDGFR-beta are dramatically upregulated in radiation survived cells and might be considered as markers of radiotherapy response in NSCLC. PMID:23947765

  1. FAK and HAS inhibition synergistically decrease colon cancer cell viability and affect expression of critical genes.

    PubMed

    Heffler, Melissa; Golubovskaya, Vita M; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G; Dunn, Kelli B

    2013-05-01

    Focal adhesion kinase (FAK), hyaluronan (HA), and hyaluronan synthase-3 (HAS3) have been implicated in cancer growth and progression. FAK inhibition with the small molecule inhibitor Y15 decreases colon cancer cell growth in vitro and in vivo. HAS3 inhibition in colon cancer cells decreases FAK expression and activation, and exogenous HA increases FAK activation. We sought to determine the genes affected by HAS and FAK inhibition and hypothesized that dual inhibition would synergistically inhibit viability. Y15 (FAK inhibitor) and the HAS inhibitor 4-methylumbelliferone (4-MU) decreased viability in a dose dependent manner; viability was further inhibited by treatment with Y15 and 4-MU in colon cancer cells. HAS inhibited cells treated with 2 μM of Y15 showed significantly decreased viability compared to HAS scrambled cells treated with the same dose (p < 0.05) demonstrating synergistic inhibition of viability with dual FAK/HAS inhibition. Microarray analysis showed more than 2-fold up- or down-regulation of 121 genes by HAS inhibition, and 696 genes by FAK inhibition (p < 0.05) and revealed 29 common genes affected by both signaling. Among the genes affected by FAK or HAS3 inhibition were genes, playing role in apoptosis, cell cycle regulation, adhesion, transcription, heatshock and WNT pathways. Thus, FAK or HAS inhibition decreases SW620 viability and affects several similar genes, which are involved in the regulation of tumor survival. Dual inhibition of FAK and HAS3 decreases viability to a greater degree than with either agent alone, and suggests that synergistic inhibition of colon cancer cell growth can result from affecting similar genetic pathways. PMID:22934709

  2. Caffeine-enhanced survival of radiation-sensitive, repair-deficient Chinese hamster cells

    SciTech Connect

    Utsumi, H.; Elkind, M.M.

    1983-11-01

    A clone of V79 Chinese hamster cells (V79-AL162/S-10) with unique properties has been isolated after a challenge of parental cells (V79-AL162) with 1 mM ouabain. Compared with parental cells, or with other clones isolated after the ouabain challenge, these cells form smaller colonies, are more sensitive to both x rays and fission-spectrum neutrons, and respond atypically to a postirradiation treatment with caffeine. Their enhanced response to x rays results mainly from a large reduction in the shoulder of their survival curve, probably because in late S phase, the most resistant phase in the cell cycle, the survival curve of these cells has a reduced shoulder width. Caffeine, and to a lesser extent theophylline, added to the colony-forming medium immediately after exposure appreciably increases the width of the shoulder of these sensitive cells, whereas caffeine has the opposite effect on the response of normal V79 cells. Thus the unique response of the V79-AL162/S-10 cells to a radiation posttreatment with caffeine (increased survival) results from a net increase in their ability to repair damage that is otherwise lethal; caffeine treatment ordinarly prevents normal V79 cells from repairing damage that is only potentially lethal.

  3. Effect of brefelamide on HGF-induced survival of 1321N1 human astrocytoma cells.

    PubMed

    Honma, Shigeyoshi; Takasaka, Sachina; Ishikawa, Takahiro; Shibuya, Takahiro; Mitazaki, Satoru; Abe, Sumiko; Yoshida, Makoto

    2016-06-01

    Malignant gliomas are characterized by their high level of resistance to chemo- and radiotherapy and new treatment options are urgently required. We previously demonstrated that brefelamide, an aromatic amide isolated from methanol extracts of cellular slime molds Dictyostelium brefeldianum and D. giganteum, had antiproliferative effects on 1321N1 human astrocytoma cells, a model of glioma. In this study, we investigated the mechanisms by which brefelamide inhibited 1321N1 and PC12 rat pheochromocytoma cell proliferation. When cells were cultured in serum-free medium, hepatocyte growth factor (HGF) increased survival of 1321N1 cells but not PC12 cells. HGF receptor, c-MET, was strongly expressed in 1321N1 cells, but not in PC12 cells. Pretreatment of 1321N1 cells with brefelamide inhibited both HGF-induced cell survival and expression of c-MET. Phosphorylation of extracellular signal-regulated kinase (ERK) and AKT was increased by HGF, but these changes were inhibited by brefelamide pretreatment. Moreover, HGF mRNA levels and secretion were reduced by brefelamide. These results suggest that brefelamide reduces survival of 1321N1 cells via multiple effects including suppression of HGF receptor expression and HGF secretion and inhibition of ERK and AKT phosphorylation. PMID:27130674

  4. Survival in rectal cancer is predicted by T cell infiltration of tumour-associated lymphoid nodules

    PubMed Central

    McMullen, T P W; Lai, R; Dabbagh, L; Wallace, T M; de Gara, C J

    2010-01-01

    Lymphoid nodules are a normal component of the mucosa of the rectum, but little is known about their function and whether they contribute to the host immune response in malignancy. In rectal cancer specimens from patients with local (n = 18), regional (n = 12) and distant (n = 10) disease, we quantified T cell (CD3, CD25) and dendritic cell (CD1a, CD83) levels at the tumour margin as well as within tumour-associated lymphoid nodules. In normal tissue CD3+, but not CD25+, T cells are concentrated at high levels within lymphoid nodules, with significantly fewer cells found in surrounding normal mucosa (P = 0·001). Mature (CD83), but not immature (CD1a), dendritic cells in normal tissue are also found clustered almost exclusively within lymphoid nodules (P = < 0·0001). In rectal tumours, both CD3+ T cells (P = 0·004) and CD83+ dendritic cells (P = 0·0001) are also localized preferentially within tumour-associated lymphoid nodules. However, when comparing tumour specimens to normal rectal tissue, the average density of CD3+ T cells (P = 0·0005) and CD83+ dendritic cells (P = 0·0006) in tumour-associated lymphoid nodules was significantly less than that seen in lymphoid nodules in normal mucosa. Interestingly, regardless of where quantified, T cell and dendritic cell levels did not depend upon the stage of disease. Increased CD3+ T cell infiltration of tumour-associated lymphoid nodules predicted improved survival, independent of stage (P = 0·05). Other T cell (CD25) markers and different levels of CD1a+ or CD83+ dendritic cells did not predict survival. Tumour-associated lymphoid nodules, enriched in dendritic cells and T cells, may be an important site for antigen presentation and increased T cell infiltration may be a marker for improved survival. PMID:20408858

  5. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival

    PubMed Central

    Tinkum, Kelsey L.; Stemler, Kristina M.; White, Lynn S.; Loza, Andrew J.; Jeter-Jones, Sabrina; Michalski, Basia M.; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S.; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-01-01

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy. PMID:26644583

  6. Rheb promotes cancer cell survival through p27Kip1-dependent activation of autophagy.

    PubMed

    Campos, Tania; Ziehe, Javiera; Palma, Mario; Escobar, David; Tapia, Julio C; Pincheira, Roxana; Castro, Ariel F

    2016-02-01

    We previously found that the small GTPase Rheb regulates the cell-cycle inhibitor p27KIP1 (p27) in colon cancer cells by a mTORC1-independent mechanism. However, the biological function of the Rheb/p27 axis in cancer cells remains unknown. Here, we show that siRNA-mediated depletion of Rheb decreases survival of human colon cancer cells under serum deprivation. As autophagy can support cell survival, we analyzed the effect of Rheb on this process by detecting the modification of the autophagy marker protein LC3 by western blot and imunofluorescence. We found that Rheb promotes autophagy in several human cancer cell lines under serum deprivation. Accordingly, blocking autophagy inhibited the pro-survival effect of Rheb in colon cancer cells. We then analyzed whether p27 was involved in the biological effect of Rheb. Depletion of p27 inhibited colon cancer cell survival, and Rheb induction of autophagy. These results suggest that p27 has an essential role in the effect of Rheb in response to serum deprivation. In addition, we demonstrated that the role of p27 in autophagy stands on the N-terminal portion of the protein, where the CDK-inhibitory domain is located. Our results indicate that a Rheb/p27 axis accounts for the activation of autophagy that supports cancer cell survival. Our work therefore highlights a biological function of Rheb and prompts the need for future studies to address whether the mTORC1-independent Rheb/p27 axis could contribute to tumorigenesis and/or resistance to mTOR inhibitors. PMID:25594310

  7. Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment.

    PubMed

    Rausch, Vanessa; Liu, Li; Apel, Anja; Rettig, Theresa; Gladkich, Jury; Labsch, Sabrina; Kallifatidis, Georgios; Kaczorowski, Adam; Groth, Ariane; Gross, Wolfgang; Gebhard, Martha M; Schemmer, Peter; Werner, Jens; Salnikov, Alexei V; Zentgraf, Hanswalter; Büchler, Markus W; Herr, Ingrid

    2012-07-01

    Involvement of dysregulated autophagy in cancer growth and progression has been shown in different tumour entities, including pancreatic ductal adenocarcinoma (PDA). PDA is an extremely aggressive tumour characterized by a small population of highly therapy-resistant cancer stem cells (CSCs) capable of self-renewal and migration. We examined whether autophagy might be involved in the survival of CSCs despite nutrition and oxygen deprivation typical for the hypoxic tumour microenvironment of PDA. Immunohistochemistry revealed that markers for hypoxia, CSCs and autophagy are co-expressed in patient-derived tissue of PDA. Hypoxia starvation (H/S) enhanced clonogenic survival and migration of established pancreatic cancer cells with stem-like properties (CSC(high)), while pancreatic tumour cells with fewer stem cell markers (CSC(low)) did not survive these conditions. Electron microscopy revealed more advanced autophagic vesicles in CSC(high) cells, which exhibited higher expression of autophagy-related genes under normoxic conditions and relative to CSC(low) cells, as found by RT-PCR and western blot analysis. LC3 was already fully converted to the active LC3-II form in both cell lines, as evaluated by western blot and detection of accumulated GFP-LC3 protein by fluorescence microscopy. H/S increased formation of autophagic and acid vesicles, as well as expression of autophagy-related genes, to a higher extent in CSC(high) cells. Modulation of autophagy by inhibitors and activators resensitized CSC(high) to apoptosis and diminished clonogenicity, spheroid formation, expression of CSC-related genes, migratory activity and tumourigenicity in mice. Our data suggest that enhanced autophagy levels may enable survival of CSC(high) cells under H/S. Interference with autophagy-activating or -inhibiting drugs disturbs the fine-tuned physiological balance of enhanced autophagy in CSC and switches survival signalling to suicide. PMID:22262369

  8. Novel thiazolidinedione mitoNEET ligand-1 acutely improves cardiac stem cell survival under oxidative stress.

    PubMed

    Logan, Suzanna J; Yin, Liya; Geldenhuys, Werner J; Enrick, Molly K; Stevanov, Kelly M; Carroll, Richard T; Ohanyan, Vahagn A; Kolz, Christopher L; Chilian, William M

    2015-03-01

    Ischemic heart disease (IHD) is a leading cause of death worldwide, and regenerative therapies through exogenous stem cell delivery hold promising potential. One limitation of such therapies is the vulnerability of stem cells to the oxidative environment associated with IHD. Accordingly, manipulation of stem cell mitochondrial metabolism may be an effective strategy to improve survival of stem cells under oxidative stress. MitoNEET is a redox-sensitive, mitochondrial target of thiazolidinediones (TZDs), and influences cellular oxidative capacity. Pharmacological targeting of mitoNEET with the novel TZD, mitoNEET Ligand-1 (NL-1), improved cardiac stem cell (CSC) survival compared to vehicle (0.1% DMSO) during in vitro oxidative stress (H2O2). 10 μM NL-1 also reduced CSC maximal oxygen consumption rate (OCR) compared to vehicle. Following treatment with dexamethasone, CSC maximal OCR increased compared to baseline, but NL-1 prevented this effect. Smooth muscle α-actin expression increased significantly in CSC following differentiation compared to baseline, irrespective of NL-1 treatment. When CSCs were treated with glucose oxidase for 7 days, NL-1 significantly improved cell survival compared to vehicle (trypan blue exclusion). NL-1 treatment of cells isolated from mitoNEET knockout mice did not increase CSC survival with H2O2 treatment. Following intramyocardial injection of CSCs into Zucker obese fatty rats, NL-1 significantly improved CSC survival after 24 h, but not after 10 days. These data suggest that pharmacological targeting of mitoNEET with TZDs may acutely protect stem cells following transplantation into an oxidative environment. Continued treatment or manipulation of mitochondrial metabolism may be necessary to produce long-term benefits related to stem cell therapies. PMID:25725808

  9. Transplanted microvascular endothelial cells promote oligodendrocyte precursor cell survival in ischemic demyelinating lesions.

    PubMed

    Iijima, Keiya; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Puentes, Sandra; Imai, Hideaki; Yoshimoto, Yuhei; Mikuni, Masahiko; Ishizaki, Yasuki

    2015-11-01

    We previously showed that transplantation of brain microvascular endothelial cells (MVECs) greatly stimulated remyelination in the white matter infarct of the internal capsule (IC) induced by endothelin-1 injection and improved the behavioral outcome. In the present study, we examined the effect of MVEC transplantation on the infarct volume using intermittent magnetic resonance image and on the behavior of oligodendrocyte lineage cells histochemically. Our results in vivo show that MVEC transplantation reduced the infarct volume in IC and apoptotic death of oligodendrocyte precursor cells (OPCs). These results indicate that MVECs have a survival effect on OPCs, and this effect might contribute to the recovery of the white matter infarct. The conditioned-medium from cultured MVECs reduced apoptosis of cultured OPCs, while the conditioned medium from cultured fibroblasts did not show such effect. These results suggest a possibility that transplanted MVECs increased the number of OPCs through the release of humoral factors that prevent their apoptotic death. Identification of such humoral factors may lead to the new therapeutic strategy against ischemic demyelinating diseases. PMID:26212499

  10. A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells

    SciTech Connect

    Hatkevich, Talia; Ramos, Joseph; Santos-Sanchez, Idalys; Patel, Yashomati M.

    2014-10-01

    Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. The grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells. - Highlights: • Nar–Tam impairs cell viability more effectively than

  11. Protease inhibitors suppress the survival increase mediated by uncouplers in X-irradiated mammalian cells.

    PubMed

    Michel, S; Laval, F

    1982-01-01

    When mammalian cells are incubated with an uncoupler of oxidative phosphorylation prior to and during X-irradiation, the survival and the mutation frequency are markedly increased. This process requires protein synthesis and is inhibited when the cells are plated in the presence of a protease inhibitor (antipain or leupeptin). These results suggest the existence of an error-prone DNA repair process in X-irradiated mammalian cells. PMID:6814524

  12. Targeted inhibition of {alpha}v{beta}3 integrin with an RNA aptamer impairs endothelial cell growth and survival

    SciTech Connect

    Mi Jing; Zhang Xiuwu; Giangrande, Paloma H.; McNamara, James O.; Nimjee, Shahid M.; Sarraf-Yazdi, Shiva; Sullenger, Bruce A.; Clary, Bryan M. . E-mail: mi001@duke.edu

    2005-12-16

    {alpha}v{beta}3 integrin is a crucial factor involved in a variety of physiological processes, such as cell growth and migration, tumor invasion and metastasis, angiogenesis, and wound healing. {alpha}v{beta}3 integrin exerts its effect by regulating endothelial cell (EC) migration, proliferation, and survival. Inhibiting the function of {alpha}v{beta}3 integrin, therefore, represents a potential anti-cancer, anti-thrombotic, and anti-inflammatory strategy. In this study, we tested an RNA aptamer, Apt-{alpha}v{beta}3 that binds recombinant {alpha}v{beta}3 integrin, for its ability to bind endogenous {alpha}v{beta}3 integrin on the surface of cells in culture and to subsequently affect cellular response. Our data illustrate that Apt-{alpha}v{beta}3 binds {alpha}v{beta}3 integrin expressed on the surface of live HUVECs. This interaction significantly decreases both basal and PDGF-induced cell proliferation as well as inhibition of cell adhesion. Apt-{alpha}v{beta}3 can also reduce PDGF-stimulated tube formation and increase HUVEC apoptosis through inhibition of FAK phosphorylation pathway. Our results demonstrate that by binding to its target, Apt-{alpha}v{beta}3 can efficiently inhibit human EC proliferation and survival, resulting in reduced angiogenesis. It predicts that Apt-{alpha}v{beta}3 could become useful in both tumor imaging and the treatment of tumor growth, atherosclerosis, thrombosis, and inflammation.

  13. Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation

    PubMed Central

    Mutschelknaus, Lisa; Peters, Carsten; Winkler, Klaudia; Yentrapalli, Ramesh; Heider, Theresa; Atkinson, Michael John; Moertl, Simone

    2016-01-01

    Exosomes are nanometer-sized extracellular vesicles that are believed to function as intercellular communicators. Here, we report that exosomes are able to modify the radiation response of the head and neck cancer cell lines BHY and FaDu. Exosomes were isolated from the conditioned medium of irradiated as well as non-irradiated head and neck cancer cells by serial centrifugation. Quantification using NanoSight technology indicated an increased exosome release from irradiated compared to non-irradiated cells 24 hours after treatment. To test whether the released exosomes influence the radiation response of other cells the exosomes were transferred to non-irradiated and irradiated recipient cells. We found an enhanced uptake of exosomes isolated from both irradiated and non-irradiated cells by irradiated recipient cells compared to non-irradiated recipient cells. Functional analyses by exosome transfer indicated that all exosomes (from non-irradiated and irradiated donor cells) increase the proliferation of non-irradiated recipient cells and the survival of irradiated recipient cells. The survival-promoting effects are more pronounced when exosomes isolated from irradiated compared to non-irradiated donor cells are transferred. A possible mechanism for the increased survival after irradiation could be the increase in DNA double-strand break repair monitored at 6, 8 and 10 h after the transfer of exosomes isolated from irradiated cells. This is abrogated by the destabilization of the exosomes. Our results demonstrate that radiation influences both the abundance and action of exosomes on recipient cells. Exosomes transmit prosurvival effects by promoting the proliferation and radioresistance of head and neck cancer cells. Taken together, this study indicates a functional role of exosomes in the response of tumor cells to radiation exposure within a therapeutic dose range and encourages that exosomes are useful objects of study for a better understanding of tumor

  14. Hsc70 Contributes to Cancer Cell Survival by Preventing Rab1A Degradation under Stress Conditions

    PubMed Central

    Tanaka, Masako; Mun, Saya; Harada, Akihito; Ohkawa, Yasuyuki; Inagaki, Azusa; Sano, Soichi; Takahashi, Katsuyuki; Izumi, Yasukatsu; Osada-Oka, Mayuko; Wanibuchi, Hideki; Yamagata, Masayo; Yukimura, Tokihito; Miura, Katsuyuki; Shiota, Masayuki; Iwao, Hiroshi

    2014-01-01

    Heat shock cognate protein 70 (Hsc70) acts as a molecular chaperone for the maintenance of intracellular proteins, which allows cancer cells to survive under proteotoxic stress. We attempted to use Hsc70 to identify key molecules in cancer cell survival. Here, we performed mass-spectrometry-based proteomics analysis utilizing affinity purification with anti-Hsc70 antibodies; as a result, 83 differentially expressed proteins were identified under stress conditions. This result implies that there was a change in the proteins with which Hsc70 interacted in response to stress. Among the proteins identified under both serum-depleted and 5-fluorouracil-treated conditions, Rab1A was identified as an essential molecule for cancer cell survival. Hsc70 interacted with Rab1A in a chaperone-dependent manner. In addition, Hsc70 knockdown decreased the level of Rab1A and increased the level of its ubiquitination under stress conditions, suggesting that Hsc70 prevented the degradation of Rab1A denatured by stress exposure. We also found that Rab1A knockdown induced cell death by inhibition of autophagosome formation. Rab1A may therefore contribute to overcoming proteotoxic insults, which allows cancer cells to survive under stress conditions. Analysis of Hsc70 interactors provided insight into changes of intracellular status. We expect further study of the Hsc70 interactome to provide a more comprehensive understanding of cancer cell physiology. PMID:24801886

  15. Cholecystokinin Is Up-Regulated in Obese Mouse Islets and Expands β-Cell Mass by Increasing β-Cell Survival

    PubMed Central

    Lavine, Jeremy A.; Raess, Philipp W.; Stapleton, Donald S.; Rabaglia, Mary E.; Suhonen, Joshua I.; Schueler, Kathryn L.; Koltes, James E.; Dawson, John A.; Yandell, Brian S.; Samuelson, Linda C.; Beinfeld, Margery C.; Davis, Dawn Belt; Hellerstein, Marc K.; Keller, Mark P.; Attie, Alan D.

    2010-01-01

    An absolute or functional deficit in β-cell mass is a key factor in the pathogenesis of diabetes. We model obesity-driven β-cell mass expansion by studying the diabetes-resistant C57BL/6-Leptinob/ob mouse. We previously reported that cholecystokinin (Cck) was the most up-regulated gene in obese pancreatic islets. We now show that islet cholecystokinin (CCK) is up-regulated 500-fold by obesity and expressed in both α- and β-cells. We bred a null Cck allele into the C57BL/6-Leptinob/ob background and investigated β-cell mass and metabolic parameters of Cck-deficient obese mice. Loss of CCK resulted in decreased islet size and reduced β-cell mass through increased β-cell death. CCK deficiency and decreased β-cell mass exacerbated fasting hyperglycemia and reduced hyperinsulinemia. We further investigated whether CCK can directly affect β-cell death in cell culture and isolated islets. CCK was able to directly reduce cytokine- and endoplasmic reticulum stress-induced cell death. In summary, CCK is up-regulated by islet cells during obesity and functions as a paracrine or autocrine factor to increase β-cell survival and expand β-cell mass to compensate for obesity-induced insulin resistance. PMID:20534724

  16. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance.

    PubMed

    Kim, Dohoon; Fiske, Brian P; Birsoy, Kivanc; Freinkman, Elizaveta; Kami, Kenjiro; Possemato, Richard L; Chudnovsky, Yakov; Pacold, Michael E; Chen, Walter W; Cantor, Jason R; Shelton, Laura M; Gui, Dan Y; Kwon, Manjae; Ramkissoon, Shakti H; Ligon, Keith L; Kang, Seong Woo; Snuderl, Matija; Vander Heiden, Matthew G; Sabatini, David M

    2015-04-16

    Cancer cells adapt their metabolic processes to support rapid proliferation, but less is known about how cancer cells alter metabolism to promote cell survival in a poorly vascularized tumour microenvironment. Here we identify a key role for serine and glycine metabolism in the survival of brain cancer cells within the ischaemic zones of gliomas. In human glioblastoma multiforme, mitochondrial serine hydroxymethyltransferase (SHMT2) and glycine decarboxylase (GLDC) are highly expressed in the pseudopalisading cells that surround necrotic foci. We find that SHMT2 activity limits that of pyruvate kinase (PKM2) and reduces oxygen consumption, eliciting a metabolic state that confers a profound survival advantage to cells in poorly vascularized tumour regions. GLDC inhibition impairs cells with high SHMT2 levels as the excess glycine not metabolized by GLDC can be converted to the toxic molecules aminoacetone and methylglyoxal. Thus, SHMT2 is required for cancer cells to adapt to the tumour environment, but also renders these cells sensitive to glycine cleavage system inhibition. PMID:25855294

  17. In vivo vascularization of cell sheets provided better long-term tissue survival than injection of cell suspension.

    PubMed

    Takeuchi, Ryohei; Kuruma, Yosuke; Sekine, Hidekazu; Dobashi, Izumi; Yamato, Masayuki; Umezu, Mitsuo; Shimizu, Tatsuya; Okano, Teruo

    2016-08-01

    Cell sheets have shown a remarkable ability for repairing damaged myocardium in clinical and preclinical studies. Although they demonstrate a high degree of viability as engrafted cells in vivo, the reason behind their survivability is unclear. In this study, the survival and vascularization of rat cardiac cell sheets transplanted in the subcutaneous tissue of athymic rats were investigated temporally. The cell sheets showed significantly higher survival than cell suspensions for up to 12 months, using an in vivo bioluminescence imaging system to detect luciferase-positive transplanted cells. Terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay also showed a smaller number of apoptotic cells in the cell sheets than in the cell suspensions at 1 day. Rapid vascular formation and maturation were observed inside the cell sheets using an in vivo imaging system. Leaky vessels appeared at 6 h, red blood cells flowing through functional vessels appeared at 12 h, and morphologically matured vessels appeared at 7 days. In addition, immunostaining of cell sheets with nerve/glial antigen-2 (NG2) showed that vessel maturity increased over time. Interestingly, these results correlated with the dynamics of cell sheet mRNA expression. Genes related to endothelial cells (ECs) proliferation, migration and vessel sprouting were highly expressed within 1 day, and genes related to pericyte recruitment and vessel maturation were highly expressed at 3 days or later. This suggested that the cell sheets could secrete appropriate angiogenic factors in a timely way after transplantation, and this ability might be a key reason for their high survival. Copyright © 2014 John Wiley & Sons, Ltd. PMID:24470393

  18. The survival of cryopreserved human bone marrow stem cells.

    PubMed

    Hill, R S; Mackinder, C A; Postlewaight, B F; Blacklock, H A

    1979-07-01

    Two methods for cryopreservation of bone marrow stem cells were compared using bone marrow obtained from 36 patients. Included in this group were 21 persons with the diagnosis of leukaemia including 14 either with acute myeloid or lymphoblastic leukaemia in remission following intensive remission induction chemotherapy. After freeze-preservation and reconstitution, all marrow samples were tested for nucleated cell (NC) recovery and grown on agar to assess colony forming units (CFUC) and cluster forming units in culture (CluFUc). A slow dilution reconstitution method using freezing media containing AB negative plasma resulted in recovery of 85% of the CFUc activity of fresh marrow. This result was significantly better than the 47% CFUc recovery obtained when freezing media without plasma and a rapid dilution reconstitution technique were used. NC recoveries following slow dilution (51%) and rapid dilution (44%) were not significantly different. CluFUc were disproportionately reduced compared with CFUc although yielding similar results with both methods (26% and 32%). No correlation was found for either method between CFUc and NC recovery or between CFUc and CluFUc recovery in cryopreserved bone marrow. PMID:392422

  19. Regulatory T cells are not a strong predictor of survival for patients with glioblastoma

    PubMed Central

    Thomas, Alissa A.; Fisher, Jan L.; Rahme, Gilbert J.; Hampton, Thomas H.; Baron, Udo; Olek, Sven; Schwachula, Tim; Rhodes, C. Harker; Gui, Jiang; Tafe, Laura J.; Tsongalis, Gregory J.; Lefferts, Joel A.; Wishart, Heather; Kleen, Jonathan; Miller, Michael; Whipple, Chery A.; de Abreu, Francine B.; Ernstoff, Marc S.; Fadul, Camilo E.

    2015-01-01

    Background Regulatory T cells (Tregs) are potentially prognostic indicators in patients with glioblastoma. If differences in frequency of Tregs in tumor or blood account for substantial variation in patient survival, then reliably measuring Tregs may enhance treatment selection and improve outcomes. Methods We measured Tregs and CD3+ T cells in tumors and blood from 25 patients with newly diagnosed glioblastoma. Tumor-infiltrating Tregs and CD3+ T cells, measured by quantitative DNA demethylation analysis (epigenetic qPCR) and by immunohistochemistry, and peripheral blood Treg proportions measured by flow cytometry were correlated with patient survival. Additionally, we analyzed data from The Cancer Genome Atlas (TCGA) to correlate the expression of Treg markers with patient survival and glioblastoma subtypes. Results Tregs, as measured in tumor tissue and peripheral blood, did not correlate with patient survival. Although there was a correlation between tumor-infiltrating Tregs expression by epigenetic qPCR and immunohistochemistry, epigenetic qPCR was more sensitive and specific. Using data from TCGA, mRNA expression of Forkhead box protein 3 (FoxP3) and Helios and FoxP3 methylation level did not predict survival. While the classical glioblastoma subtype corresponded to lower expression of Treg markers, these markers did not predict survival in any of the glioblastoma subtypes. Conclusions Although immunosuppression is a hallmark of glioblastoma, Tregs as measured in tissue by gene expression, immunohistochemistry, or demethylation and Tregs in peripheral blood measured by flow cytometry do not predict survival of patients. Quantitative DNA demethylation analysis provides an objective, sensitive, and specific way of identifying Tregs and CD3+ T cells in glioblastoma. PMID:25618892

  20. Increased Fracture Collapse after Intertrochanteric Fractures Treated by the Dynamic Hip Screw Adversely Affects Walking Ability but Not Survival

    PubMed Central

    Fang, Christian; Gudushauri, Paata; Wong, Tak-Man; Lau, Tak-Wing; Pun, Terence; Leung, Frankie

    2016-01-01

    In osteoporotic hip fractures, fracture collapse is deliberately allowed by commonly used implants to improve dynamic contact and healing. The muscle lever arm is, however, compromised by shortening. We evaluated a cohort of 361 patients with AO/OTA 31.A1 or 31.A2 intertrochanteric fracture treated by the dynamic hip screw (DHS) who had a minimal follow-up of 3 months and an average follow-up of 14.6 months and long term survival data. The amount of fracture collapse and shortening due to sliding of the DHS was determined at the latest follow-up and graded as minimal (<1 cm), moderate (1-2 cm), or severe (>2 cm). With increased severity of collapse, more patients were unable to maintain their premorbid walking function (minimal collapse = 34.2%, moderate = 33.3%, severe = 62.8%, and p = 0.028). Based on ordinal regression of risk factors, increased fracture collapse was significantly and independently related to increasing age (p = 0.037), female sex (p = 0.024), A2 fracture class (p = 0.010), increased operative duration (p = 0.011), poor reduction quality (p = 0.000), and suboptimal tip-apex distance of >25 mm (p = 0.050). Patients who had better outcome in terms of walking function were independently predicted by younger age (p = 0.036), higher MMSE marks (p = 0.000), higher MBI marks (p = 0.010), better premorbid walking status (p = 0.000), less fracture collapse (p = 0.011), and optimal lag screw position in centre-centre or centre-inferior position (p = 0.020). According to Kaplan-Meier analysis, fracture collapse had no association with mortality from 2.4 to 7.6 years after surgery. In conclusion, increased fracture collapse after fixation of geriatric intertrochanteric fractures adversely affected walking but not survival. PMID:26955637

  1. Increased Fracture Collapse after Intertrochanteric Fractures Treated by the Dynamic Hip Screw Adversely Affects Walking Ability but Not Survival.

    PubMed

    Fang, Christian; Gudushauri, Paata; Wong, Tak-Man; Lau, Tak-Wing; Pun, Terence; Leung, Frankie

    2016-01-01

    In osteoporotic hip fractures, fracture collapse is deliberately allowed by commonly used implants to improve dynamic contact and healing. The muscle lever arm is, however, compromised by shortening. We evaluated a cohort of 361 patients with AO/OTA 31.A1 or 31.A2 intertrochanteric fracture treated by the dynamic hip screw (DHS) who had a minimal follow-up of 3 months and an average follow-up of 14.6 months and long term survival data. The amount of fracture collapse and shortening due to sliding of the DHS was determined at the latest follow-up and graded as minimal (<1 cm), moderate (1-2 cm), or severe (>2 cm). With increased severity of collapse, more patients were unable to maintain their premorbid walking function (minimal collapse = 34.2%, moderate = 33.3%, severe = 62.8%, and p = 0.028). Based on ordinal regression of risk factors, increased fracture collapse was significantly and independently related to increasing age (p = 0.037), female sex (p = 0.024), A2 fracture class (p = 0.010), increased operative duration (p = 0.011), poor reduction quality (p = 0.000), and suboptimal tip-apex distance of >25 mm (p = 0.050). Patients who had better outcome in terms of walking function were independently predicted by younger age (p = 0.036), higher MMSE marks (p = 0.000), higher MBI marks (p = 0.010), better premorbid walking status (p = 0.000), less fracture collapse (p = 0.011), and optimal lag screw position in centre-centre or centre-inferior position (p = 0.020). According to Kaplan-Meier analysis, fracture collapse had no association with mortality from 2.4 to 7.6 years after surgery. In conclusion, increased fracture collapse after fixation of geriatric intertrochanteric fractures adversely affected walking but not survival. PMID:26955637

  2. Role of adipose-derived stromal cells in pedicle skin flap survival in experimental animal models.

    PubMed

    Foroglou, Pericles; Karathanasis, Vasileios; Demiri, Efterpi; Koliakos, George; Papadakis, Marios

    2016-03-26

    The use of skin flaps in reconstructive surgery is the first-line surgical treatment for the reconstruction of skin defects and is essentially considered the starting point of plastic surgery. Despite their excellent usability, their application includes general surgical risks or possible complications, the primary and most common is necrosis of the flap. To improve flap survival, researchers have used different methods, including the use of adipose-derived stem cells, with significant positive results. In our research we will report the use of adipose-derived stem cells in pedicle skin flap survival based on current literature on various experimental models in animals. PMID:27022440

  3. Role of adipose-derived stromal cells in pedicle skin flap survival in experimental animal models

    PubMed Central

    Foroglou, Pericles; Karathanasis, Vasileios; Demiri, Efterpi; Koliakos, George; Papadakis, Marios

    2016-01-01

    The use of skin flaps in reconstructive surgery is the first-line surgical treatment for the reconstruction of skin defects and is essentially considered the starting point of plastic surgery. Despite their excellent usability, their application includes general surgical risks or possible complications, the primary and most common is necrosis of the flap. To improve flap survival, researchers have used different methods, including the use of adipose-derived stem cells, with significant positive results. In our research we will report the use of adipose-derived stem cells in pedicle skin flap survival based on current literature on various experimental models in animals. PMID:27022440

  4. NOTE: The Hug-Kellerer equation as the universal cell survival curve

    NASA Astrophysics Data System (ADS)

    Ekstrand, Kenneth E.

    2010-05-01

    The Hug-Kellerer (H-K) equation is one of the earliest proposed radiation cell survival curves. We examine this equation in view of the recent perceived need for a universal cell survival curve which would be applicable to single radiation fractions at high doses. We derive relationships between the three parameters of the H-K equation and the parameters α and β of the linear-quadratic equation. Using these relationships we show how the H-K equation can be used to determine single-fraction doses which are equivalent in theory to the dose in a conventional multi-fraction course of radiation therapy.

  5. Survival and mortality among users and non-users of hydroxyurea with sickle cell disease

    PubMed Central

    de Araujo, Olinda Maria Rodrigues; Ivo, Maria Lúcia; Ferreira, Marcos Antonio; Pontes, Elenir Rose Jardim Cury; Bispo, Ieda Maria Gonçalves Pacce; de Oliveira, Eveny Cristine Luna

    2015-01-01

    OBJECTIVE: to estimate survival, mortality and cause of death among users or not of hydroxyurea with sickle cell disease. METHOD: cohort study with retrospective data collection, from 1980 to 2010 of patients receiving inpatient treatment in two Brazilian public hospitals. The survival probability was determined using the Kaplan-Meier estimator, survival calculations (SPSS version 10.0), comparison between survival curves, using the log rank method. The level of significance was p=0.05. RESULTS: of 63 patients, 87% had sickle cell anemia, with 39 using hydroxyurea, with a mean time of use of the drug of 20.0±10.0 years and a mean dose of 17.37±5.4 to 20.94±7.2 mg/kg/day, raising the fetal hemoglobin. In the comparison between those using hydroxyurea and those not, the survival curve was greater among the users (p=0.014). A total of 10 deaths occurred, with a mean age of 28.1 years old, and with Acute Respiratory Failure as the main cause. CONCLUSION: the survival curve is greater among the users of hydroxyurea. The results indicate the importance of the nurse incorporating therapeutic advances of hydroxyurea in her care actions. PMID:25806633

  6. Post-thaw survival of ram spermatozoa and fertility after insemination as affected by prefreezing sperm concentration and extender composition.

    PubMed

    D'Alessandro, A G; Martemucci, A G; Colonna, M A; Bellitti, A

    2001-03-15

    A study was conducted to investigate the effects of prefreezing sperm concentration using two extenders on post-thaw survival and acrosomal status of ram spermatozoa (Experiment 1) and fertility after intrauterine insemination with differing doses of semen (Experiment 2). In autumn (Northern hemisphere), semen was collected by artificial vagina from 8 adult Leccese rams and ejaculates of good quality semen were pooled. Two extender systems for cryopreservation were considered, one based on milk-lactose egg yolk (Milk-LY) and the other based on tris-fructose egg yolk (Tris-FY). Experiment 1 (2 x 6 factorial scheme) examined the in vitro characteristics of spermatozoa in relation to the Milk-LY and Tris-FY extenders and six prefreezing sperm concentrations (50, 100, 200, 400, 500 and 800 x 10(6) spermatozoa/mL). Experiment 2 (2 x 4 factorial) evaluated the influence of the Milk-LY vs Tris-FY extenders and four doses (20, 40, 80 and 160 x 10(6) spermatozoa/0.25 mL) corresponding to prefreezing spermatozoa concentrations of 100, 200, 400 and 800 x 10(6) spermatozoa/mL, on fertility of ewes inseminated in uterus by laparoscope. Prefreezing sperm concentration influenced (P < 0.01) freezability of spermatozoa and affected negatively all the in vitro parameters at 800 x 10(6) spermatozoa/mL. Overall, Milk-LY tended to ensure higher viability and acrosomal integrity of spermatozoa after thawing at the intermediate sperm densities (range 100 to 500 x 10(6) spermatozoa/mL). At 500 x 10(6) spermatozoa/mL concentration corresponded the best condition for survival of spermatozoa (71.2%), acrosome integrity (71.5%) and acrosomal loss (6.0%). At the lowest sperm concentration (50 x 10(6) spermatozoa/mL), Tris-FY resulted in a higher survival rate than Milk-LY (61.3%, P < 0.05) and lower acrosomal loss (9.7%, P < 0.05). Milk-LY supported spermatozoa motility better than Tris-FY after incubation at sperm concentration between 50 and 400 x 10(6) spermatozoa/mL (0.05 > P < 0

  7. Radiation-induced homotypic cell fusions of innately resistant glioblastoma cells mediate their sustained survival and recurrence.

    PubMed

    Kaur, Ekjot; Rajendra, Jacinth; Jadhav, Shailesh; Shridhar, Epari; Goda, Jayant Sastri; Moiyadi, Aliasgar; Dutt, Shilpee

    2015-06-01

    Understanding of molecular events underlying resistance and relapse in glioblastoma (GBM) is hampered due to lack of accessibility to resistant cells from patients undergone therapy. Therefore, we mimicked clinical scenario in an in vitro cellular model developed from five GBM grade IV primary patient samples and two cell lines. We show that upon exposure to lethal dose of radiation, a subpopulation of GBM cells, innately resistant to radiation, survive and transiently arrest in G2/M phase via inhibitory pCdk1(Y15). Although arrested, these cells show multinucleated and giant cell phenotype (MNGC). Significantly, we demonstrate that these MNGCs are not pre-existing giant cells from parent population but formed via radiation-induced homotypic cell fusions among resistant cells. Furthermore, cell fusions induce senescence, high expression of senescence-associated secretory proteins (SASPs) and activation of pro-survival signals (pAKT, BIRC3 and Bcl-xL) in MNGCs. Importantly, following transient non-proliferation, MNGCs escape senescence and despite having multiple spindle poles during mitosis, they overcome mitotic catastrophe to undergo normal cytokinesis forming mononucleated relapse population. This is the first report showing radiation-induced homotypic cell fusions as novel non-genetic mechanism in radiation-resistant cells to sustain survival. These data also underscore the importance of non-proliferative phase in resistant glioma cells. Accordingly, we show that pushing resistant cells into premature mitosis by Wee1 kinase inhibitor prevents pCdk1(Y15)-mediated cell cycle arrest and relapse. Taken together, our data provide novel molecular insights into a multistep process of radiation survival and relapse in GBM that can be exploited for therapeutic interventions. PMID:25863126

  8. HIV-1 Tat and Cocaine Impair Survival of Cultured Primary Neuronal Cells via a Mitochondrial Pathway.

    PubMed

    De Simone, Francesca Isabella; Darbinian, Nune; Amini, Shohreh; Muniswamy, Madesh; White, Martyn K; Elrod, John W; Datta, Prasun K; Langford, Dianne; Khalili, Kamel

    2016-06-01

    Addictive stimulant drugs, such as cocaine, are known to increase the risk of exposure to HIV-1 infection and hence predispose towards the development of AIDS. Previous findings suggested that the combined effect of chronic cocaine administration and HIV-1 infection enhances cell death. Neuronal survival is highly dependent on the health of mitochondria providing a rationale for assessing mitochondrial integrity and functionality following cocaine treatment, either alone or in combination with the HIV-1 viral protein Tat, by monitoring ATP release and mitochondrial membrane potential (ΔΨm). Our results indicate that exposing human and rat primary hippocampal neurons to cocaine and HIV-1 Tat synergistically decreased both mitochondrial membrane potential and ATP production. Additionally, since previous studies suggested HIV-1 infection alters autophagy in the CNS, we investigated how HIV-1 Tat and cocaine affect autophagy in neurons. The results indicated that Tat induces an increase in LC3-II levels and the formation of Parkin-ring-like structures surrounding damaged mitochondria, indicating the possible involvement of the Parkin/PINK1/DJ-1 (PPD) complex in neuronal degeneration. The importance of mitochondrial damage is also indicated by reductions in mitochondrial membrane potential and ATP content induced by HIV-1 Tat and cocaine. PMID:27032771

  9. Control of Homeostasis and Dendritic Cell Survival by the GTPase RhoA.

    PubMed

    Li, Shuai; Dislich, Bastian; Brakebusch, Cord H; Lichtenthaler, Stefan F; Brocker, Thomas

    2015-11-01

    Tissues accommodate defined numbers of dendritic cells (DCs) in highly specific niches where different intrinsic and environmental stimuli control DC life span and numbers. DC homeostasis in tissues is important, because experimental changes in DC numbers influence immunity and tolerance toward various immune catastrophes and inflammation. However, the precise molecular mechanisms regulating DC life span and homeostasis are unclear. We report that the GTPase RhoA controls homeostatic proliferation, cytokinesis, survival, and turnover of cDCs. Deletion of RhoA strongly decreased the numbers of CD11b(-)CD8(+) and CD11b(+)Esam(hi) DC subsets, wher