Science.gov

Sample records for affecting chromatin structure

  1. Perturbation of chromatin structure globally affects localization and recruitment of splicing factors.

    PubMed

    Schor, Ignacio E; Llères, David; Risso, Guillermo J; Pawellek, Andrea; Ule, Jernej; Lamond, Angus I; Kornblihtt, Alberto R

    2012-01-01

    Chromatin structure is an important factor in the functional coupling between transcription and mRNA processing, not only by regulating alternative splicing events, but also by contributing to exon recognition during constitutive splicing. We observed that depolarization of neuroblastoma cell membrane potential, which triggers general histone acetylation and regulates alternative splicing, causes a concentration of SR proteins in nuclear speckles. This prompted us to analyze the effect of chromatin structure on splicing factor distribution and dynamics. Here, we show that induction of histone hyper-acetylation results in the accumulation in speckles of multiple splicing factors in different cell types. In addition, a similar effect is observed after depletion of the heterochromatic protein HP1α, associated with repressive chromatin. We used advanced imaging approaches to analyze in detail both the structural organization of the speckle compartment and nuclear distribution of splicing factors, as well as studying direct interactions between splicing factors and their association with chromatin in vivo. The results support a model where perturbation of normal chromatin structure decreases the recruitment efficiency of splicing factors to nascent RNAs, thus causing their accumulation in speckles, which buffer the amount of free molecules in the nucleoplasm. To test this, we analyzed the recruitment of the general splicing factor U2AF65 to nascent RNAs by iCLIP technique, as a way to monitor early spliceosome assembly. We demonstrate that indeed histone hyper-acetylation decreases recruitment of U2AF65 to bulk 3' splice sites, coincident with the change in its localization. In addition, prior to the maximum accumulation in speckles, ∼20% of genes already show a tendency to decreased binding, while U2AF65 seems to increase its binding to the speckle-located ncRNA MALAT1. All together, the combined imaging and biochemical approaches support a model where chromatin

  2. Perturbation of Chromatin Structure Globally Affects Localization and Recruitment of Splicing Factors

    PubMed Central

    Risso, Guillermo J.; Pawellek, Andrea; Ule, Jernej; Lamond, Angus I.; Kornblihtt, Alberto R.

    2012-01-01

    Chromatin structure is an important factor in the functional coupling between transcription and mRNA processing, not only by regulating alternative splicing events, but also by contributing to exon recognition during constitutive splicing. We observed that depolarization of neuroblastoma cell membrane potential, which triggers general histone acetylation and regulates alternative splicing, causes a concentration of SR proteins in nuclear speckles. This prompted us to analyze the effect of chromatin structure on splicing factor distribution and dynamics. Here, we show that induction of histone hyper-acetylation results in the accumulation in speckles of multiple splicing factors in different cell types. In addition, a similar effect is observed after depletion of the heterochromatic protein HP1α, associated with repressive chromatin. We used advanced imaging approaches to analyze in detail both the structural organization of the speckle compartment and nuclear distribution of splicing factors, as well as studying direct interactions between splicing factors and their association with chromatin in vivo. The results support a model where perturbation of normal chromatin structure decreases the recruitment efficiency of splicing factors to nascent RNAs, thus causing their accumulation in speckles, which buffer the amount of free molecules in the nucleoplasm. To test this, we analyzed the recruitment of the general splicing factor U2AF65 to nascent RNAs by iCLIP technique, as a way to monitor early spliceosome assembly. We demonstrate that indeed histone hyper-acetylation decreases recruitment of U2AF65 to bulk 3′ splice sites, coincident with the change in its localization. In addition, prior to the maximum accumulation in speckles, ∼20% of genes already show a tendency to decreased binding, while U2AF65 seems to increase its binding to the speckle-located ncRNA MALAT1. All together, the combined imaging and biochemical approaches support a model where chromatin

  3. Chromatin structure and DNA damage

    SciTech Connect

    Gale, J.M.

    1987-01-01

    This dissertation examines the structure and structural transitions of chromatin in relation to DNA damage. The ability of intact and histone H1 depleted chromatin fibers to fold into higher ordered structures in vitro was examined following DNA photodamage introduced by two different agents. (1) 254-nm UV radiation and (2) trimethylpsoralen (plus near-UV radiation). Both agents are highly specific for DNA and form adducts predicted to cause different degrees of distortion in the DNA helix. The salt-induced structural transitions of intact and histone H1 depleted chromatin fibers were monitored by both analytical ultracentrifugation and light scattering. Our results show that even in the presence of extremely large, nonphysiological amounts of photodamage by either agent the ability of chromatin to fold into higher ordered structures is not affected. The compact, 30 nm fiber must therefore be able to accommodate a large amount of DNA damage without any measurable changes in the overall size or degree of compaction of this structure. The distribution of pyrimidine dimers was mapped at the single nucleotide level in nucleosome core DNA from UV-irradiated mononucleosomes, chromatin fibers, and human cells in culture using the 3' ..-->.. 5' exonuclease activity of T4 DNA polymerase.

  4. Physiological and Pathological Aging Affects Chromatin Dynamics, Structure and Function at the Nuclear Edge

    PubMed Central

    Robin, Jérôme D.; Magdinier, Frédérique

    2016-01-01

    Lamins are intermediate filaments that form a complex meshwork at the inner nuclear membrane. Mammalian cells express two types of Lamins, Lamins A/C and Lamins B, encoded by three different genes, LMNA, LMNB1, and LMNB2. Mutations in the LMNA gene are associated with a group of phenotypically diverse diseases referred to as laminopathies. Lamins interact with a large number of binding partners including proteins of the nuclear envelope but also chromatin-associated factors. Lamins not only constitute a scaffold for nuclear shape, rigidity and resistance to stress but also contribute to the organization of chromatin and chromosomal domains. We will discuss here the impact of A-type Lamins loss on alterations of chromatin organization and formation of chromatin domains and how disorganization of the lamina contributes to the patho-physiology of premature aging syndromes. PMID:27602048

  5. Physiological and Pathological Aging Affects Chromatin Dynamics, Structure and Function at the Nuclear Edge.

    PubMed

    Robin, Jérôme D; Magdinier, Frédérique

    2016-01-01

    Lamins are intermediate filaments that form a complex meshwork at the inner nuclear membrane. Mammalian cells express two types of Lamins, Lamins A/C and Lamins B, encoded by three different genes, LMNA, LMNB1, and LMNB2. Mutations in the LMNA gene are associated with a group of phenotypically diverse diseases referred to as laminopathies. Lamins interact with a large number of binding partners including proteins of the nuclear envelope but also chromatin-associated factors. Lamins not only constitute a scaffold for nuclear shape, rigidity and resistance to stress but also contribute to the organization of chromatin and chromosomal domains. We will discuss here the impact of A-type Lamins loss on alterations of chromatin organization and formation of chromatin domains and how disorganization of the lamina contributes to the patho-physiology of premature aging syndromes.

  6. Genome-Wide Views of Chromatin Structure

    PubMed Central

    Rando, Oliver J.; Chang, Howard Y.

    2010-01-01

    Eukaryotic genomes are packaged into a nucleoprotein complex known as chromatin, which affects most processes that occur on DNA. Along with genetic and biochemical studies of resident chromatin proteins and their modifying enzymes, mapping of chromatin structure in vivo is one of the main pillars in our understanding of how chromatin relates to cellular processes. In this review, we discuss the use of genomic technologies to characterize chromatin structure in vivo, with a focus on data from budding yeast and humans. The picture emerging from these studies is the detailed chromatin structure of a typical gene, where the typical behavior gives insight into the mechanisms and deep rules that establish chromatin structure. Important deviation from the archetype is also observed, usually as a consequence of unique regulatory mechanisms at special genomic loci. Chromatin structure shows substantial conservation from yeast to humans, but mammalian chromatin has additional layers of complexity that likely relate to the requirements of multicellularity such as the need to establish faithful gene regulatory mechanisms for cell differentiation. PMID:19317649

  7. Chromatin structure in barley nuclei.

    PubMed

    Mithieux, G; Roux, B

    1983-10-03

    In order to study the chromatin structure of a higher plant we used a high-yield method, which allows one to obtain up to 10(9) nuclei/kg fresh barley leaves. Significant amounts of low-ionic-strength-soluble chromatin can be extracted from these nuclei. Physicochemical properties were examined and discussed. Electric birefringence allowed us to observe the same transition in electro-optical properties as has been observed for animal chromatin, and suggested the existence of a symetrical structure occurring for approximately six nucleosomes. Circular dichroism showed that barley oligonucleosomes exhibit a higher molar ellipticity at 282 nm than total soluble chromatin and than their animal counterparts.

  8. Structure of chromatin in spermatozoa.

    PubMed

    Björndahl, Lars; Kvist, Ulrik

    2014-01-01

    The specialized structure of the sperm chromatin has a dual function - first to protect the DNA from damage during storage and transport to the oocyte, and then to enable a rapid and complete unpacking of the undamaged paternal genome in the ooplasm. It is evident that zinc has a pivotal role in maintaining the structural stability and in enabling a rapid decondensation at the appropriate time. It is important for the sperm chromatin structure that the spermatozoa are ejaculated together with the zinc-rich prostatic secretion. Early exposure to zinc-binding seminal vesicular fluid can deplete the sperm chromatin of zinc and most likely induce surplus formation of disulfide bridges, likely to cause incomplete and delayed decondensation of the sperm chromatin in the oocyte. A premature decrease in sperm chromatin structure stability is likely to increase the risk for damage to the DNA due to increased access to the genome for DNA damaging compounds. The status of the sperm chromatin structure can vary in vitro depending on the exposure to zinc-depleting conditions when spermatozoa are stored in semen after ejaculation. When sperm DNA damage tests are evaluated and validated, it is therefore essential to also take into account the dynamics of zinc-dependent and zinc-independent sperm chromatin stability.

  9. Unraveling chromatin structure using magnetic tweezers

    NASA Astrophysics Data System (ADS)

    van Noort, John

    2010-03-01

    The compact, yet dynamic organization of chromatin plays an essential role in regulating gene expression. Although the static structure of chromatin fibers has been studied extensively, the controversy about the higher order folding remains. The compaction of eukaryotic DNA into chromatin has been implicated in the regulation of all DNA processes. To understand the relation between gene regulation and chromatin structure it is essential to uncover the mechanisms by which chromatin fibers fold and unfold. We used magnetic tweezers to probe the mechanical properties of individual nucleosomes and chromatin fibers consisting of a single, well-defined array of 25 nucleosomes. From these studies five major features appeared upon forced extension of chromatin fibers: the elastic stretching of chromatin's higher order structure, the breaking of internucleosomal contacts, unwrapping of the first turn of DNA, unwrapping of the second turn of DNA, and the dissociation of histone octamers. These events occur sequentially at the increasing force. Neighboring nucleosomes stabilize DNA folding into a nucleosome relative to isolated nucleosomes. When an array of nucleosomes is folded into a 30 nm fiber, representing the first level of chromatin condensation, the fiber stretched like a Hookian spring at forces up to 4 pN. Together with a nucleosome-nucleosome stacking energy of 14 kT this points to a solenoid as the underlying topology of the 30 nm fiber. Surprisingly, linker histones do not affect the length or stiffness of the fibers, but stabilize fiber folding up to forces of 7 pN. The stiffness of the folded chromatin fiber points at histone tails that mediate nucleosome stacking. Fibers with a nucleosome repeat length of 167 bp instead of 197 bp are significantly stiffer, consistent with a two-start helical arrangement. The extensive thermal breathing of the chromatin fiber that is a consequence of the observed high compliance provides a structural basis for understanding the

  10. Chromatin Structure in Telomere Dynamics

    PubMed Central

    Galati, Alessandra; Micheli, Emanuela; Cacchione, Stefano

    2013-01-01

    The establishment of a specific nucleoprotein structure, the telomere, is required to ensure the protection of chromosome ends from being recognized as DNA damage sites. Telomere shortening below a critical length triggers a DNA damage response that leads to replicative senescence. In normal human somatic cells, characterized by telomere shortening with each cell division, telomere uncapping is a regulated process associated with cell turnover. Nevertheless, telomere dysfunction has also been associated with genomic instability, cell transformation, and cancer. Despite the essential role telomeres play in chromosome protection and in tumorigenesis, our knowledge of the chromatin structure involved in telomere maintenance is still limited. Here we review the recent findings on chromatin modifications associated with the dynamic changes of telomeres from protected to deprotected state and their role in telomere functions. PMID:23471416

  11. Chromatin, DNA structure and alternative splicing.

    PubMed

    Nieto Moreno, Nicolás; Giono, Luciana E; Cambindo Botto, Adrián E; Muñoz, Manuel J; Kornblihtt, Alberto R

    2015-11-14

    Coupling of transcription and alternative splicing via regulation of the transcriptional elongation rate is a well-studied phenomenon. Template features that act as roadblocks for the progression of RNA polymerase II comprise histone modifications and variants, DNA-interacting proteins and chromatin compaction. These may affect alternative splicing decisions by inducing pauses or decreasing elongation rate that change the time-window for splicing regulatory sequences to be recognized. Herein we discuss the evidence supporting the influence of template structural modifications on transcription and splicing, and provide insights about possible roles of non-B DNA conformations on the regulation of alternative splicing.

  12. Initiation of meiotic recombination in chromatin structure.

    PubMed

    Yamada, Takatomi; Ohta, Kunihiro

    2013-08-01

    Meiotic homologous recombination is markedly activated during meiotic prophase to play central roles in faithful chromosome segregation and conferring genetic diversity to gametes. It is initiated by programmed DNA double-strand breaks (DSBs) by the conserved protein Spo11, and preferentially occurs at discrete sites called hotspots. Since the functions of Spo11 are influenced by both of local chromatin at hotspots and higher-order chromosome structures, formation of meiotic DSBs is under regulation of chromatin structure. Therefore, investigating features and roles of meiotic chromatin is crucial to elucidate the in vivo mechanism of meiotic recombination initiation. Recent progress in genome-wide chromatin analyses tremendously improved our understanding on this point, but many critical questions are left unaddressed. In this review, we summarize current knowledge in the field, and also discuss the future problems that must be solved to understand the role of chromatin structure in meiotic recombination.

  13. Computational strategies to address chromatin structure problems

    NASA Astrophysics Data System (ADS)

    Perišić, Ognjen; Schlick, Tamar

    2016-06-01

    While the genetic information is contained in double helical DNA, gene expression is a complex multilevel process that involves various functional units, from nucleosomes to fully formed chromatin fibers accompanied by a host of various chromatin binding enzymes. The chromatin fiber is a polymer composed of histone protein complexes upon which DNA wraps, like yarn upon many spools. The nature of chromatin structure has been an open question since the beginning of modern molecular biology. Many experiments have shown that the chromatin fiber is a highly dynamic entity with pronounced structural diversity that includes properties of idealized zig-zag and solenoid models, as well as other motifs. This diversity can produce a high packing ratio and thus inhibit access to a majority of the wound DNA. Despite much research, chromatin’s dynamic structure has not yet been fully described. Long stretches of chromatin fibers exhibit puzzling dynamic behavior that requires interpretation in the light of gene expression patterns in various tissue and organisms. The properties of chromatin fiber can be investigated with experimental techniques, like in vitro biochemistry, in vivo imagining, and high-throughput chromosome capture technology. Those techniques provide useful insights into the fiber’s structure and dynamics, but they are limited in resolution and scope, especially regarding compact fibers and chromosomes in the cellular milieu. Complementary but specialized modeling techniques are needed to handle large floppy polymers such as the chromatin fiber. In this review, we discuss current approaches in the chromatin structure field with an emphasis on modeling, such as molecular dynamics and coarse-grained computational approaches. Combinations of these computational techniques complement experiments and address many relevant biological problems, as we will illustrate with special focus on epigenetic modulation of chromatin structure.

  14. Nucleosome structure in chromatin from heated cells

    SciTech Connect

    Warters, R.L.; Roti Roti, J.L.; Winward, R.T.

    1980-12-01

    The effect of hyperthermia (40 to 80/sup 0/C) on the nucleosome structure of mammalian chromatin was determined using the enzyme micrococcal nuclease. At equivalent fractional DNA digestion it was found that neither the size of DNA nor the total fraction of cellular DNA associated with nucleosome structure is altered by heat exposure up to 48/sup 0/C for 30 min. It is proposed that this heat-induced reduction in the accessibility to nuclease attack of DNA in chromatin from heated cells is due to the increased protein mass associated with chromatin.

  15. Nucleosome repeat lengths and columnar chromatin structure.

    PubMed

    Trifonov, Edward N

    2016-06-01

    Thorough quantitative study of nucleosome repeat length (NRL) distributions, conducted in 1992 by J. Widom, resulted in a striking observation that the linker lengths between the nucleosomes are quantized. Comparison of the NRL average values with the MNase cut distances predicted from the hypothetical columnar structure of chromatin (this work) shows a close correspondence between the two. This strongly suggests that the NRL distribution, actually, reflects the dominant role of columnar chromatin structure common for all eukaryotes.

  16. Chromatin Higher-order Structure and Dynamics

    PubMed Central

    Woodcock, Christopher L.; Ghosh, Rajarshi P.

    2010-01-01

    The primary role of the nucleus as an information storage, retrieval, and replication site requires the physical organization and compaction of meters of DNA. Although it has been clear for many years that nucleosomes constitute the first level of chromatin compaction, this contributes a relatively small fraction of the condensation needed to fit the typical genome into an interphase nucleus or set of metaphase chromosomes, indicating that there are additional “higher order” levels of chromatin condensation. Identifying these levels, their interrelationships, and the principles that govern their occurrence has been a challenging and much discussed problem. In this article, we focus on recent experimental advances and the emerging evidence indicating that structural plasticity and chromatin dynamics play dominant roles in genome organization. We also discuss novel approaches likely to yield important insights in the near future, and suggest research areas that merit further study. PMID:20452954

  17. Inferential modeling of 3D chromatin structure.

    PubMed

    Wang, Siyu; Xu, Jinbo; Zeng, Jianyang

    2015-04-30

    For eukaryotic cells, the biological processes involving regulatory DNA elements play an important role in cell cycle. Understanding 3D spatial arrangements of chromosomes and revealing long-range chromatin interactions are critical to decipher these biological processes. In recent years, chromosome conformation capture (3C) related techniques have been developed to measure the interaction frequencies between long-range genome loci, which have provided a great opportunity to decode the 3D organization of the genome. In this paper, we develop a new Bayesian framework to derive the 3D architecture of a chromosome from 3C-based data. By modeling each chromosome as a polymer chain, we define the conformational energy based on our current knowledge on polymer physics and use it as prior information in the Bayesian framework. We also propose an expectation-maximization (EM) based algorithm to estimate the unknown parameters of the Bayesian model and infer an ensemble of chromatin structures based on interaction frequency data. We have validated our Bayesian inference approach through cross-validation and verified the computed chromatin conformations using the geometric constraints derived from fluorescence in situ hybridization (FISH) experiments. We have further confirmed the inferred chromatin structures using the known genetic interactions derived from other studies in the literature. Our test results have indicated that our Bayesian framework can compute an accurate ensemble of 3D chromatin conformations that best interpret the distance constraints derived from 3C-based data and also agree with other sources of geometric constraints derived from experimental evidence in the previous studies. The source code of our approach can be found in https://github.com/wangsy11/InfMod3DGen.

  18. HMGA proteins as modulators of chromatin structure during transcriptional activation

    PubMed Central

    Ozturk, Nihan; Singh, Indrabahadur; Mehta, Aditi; Braun, Thomas; Barreto, Guillermo

    2013-01-01

    High mobility group (HMG) proteins are the most abundant non-histone chromatin associated proteins. HMG proteins bind to DNA and nucleosome and alter the structure of chromatin locally and globally. Accessibility to DNA within chromatin is a central factor that affects DNA-dependent nuclear processes, such as transcription, replication, recombination, and repair. HMG proteins associate with different multi-protein complexes to regulate these processes by mediating accessibility to DNA. HMG proteins can be subdivided into three families: HMGA, HMGB, and HMGN. In this review, we will focus on recent advances in understanding the function of HMGA family members, specifically their role in gene transcription regulation during development and cancer. PMID:25364713

  19. Topological constraints strongly affect chromatin reconstitution in silico

    PubMed Central

    Brackley, C.A.; Allan, J.; Keszenman-Pereyra, D.; Marenduzzo, D.

    2015-01-01

    The fundamental building block of chromatin, and of chromosomes, is the nucleosome, a composite material made up from DNA wrapped around a histone octamer. In this study we provide the first computer simulations of chromatin self-assembly, starting from DNA and histone proteins, and use these to understand the constraints which are imposed by the topology of DNA molecules on the creation of a polynucleosome chain. We take inspiration from the in vitro chromatin reconstitution protocols which are used in many experimental studies. Our simulations indicate that during self-assembly, nucleosomes can fall into a number of topological traps (or local folding defects), and this may eventually lead to the formation of disordered structures, characterised by nucleosome clustering. Remarkably though, by introducing the action of topological enzymes such as type I and II topoisomerase, most of these defects can be avoided and the result is an ordered 10-nm chromatin fibre. These findings provide new insight into the biophysics of chromatin formation, both in the context of reconstitution in vitro and in terms of the topological constraints which must be overcome during de novo nucleosome formation in vivo, e.g. following DNA replication or repair. PMID:25432958

  20. Statistical physics of nucleosome positioning and chromatin structure

    NASA Astrophysics Data System (ADS)

    Morozov, Alexandre

    2012-02-01

    Genomic DNA is packaged into chromatin in eukaryotic cells. The fundamental building block of chromatin is the nucleosome, a 147 bp-long DNA molecule wrapped around the surface of a histone octamer. Arrays of nucleosomes are positioned along DNA according to their sequence preferences and folded into higher-order chromatin fibers whose structure is poorly understood. We have developed a framework for predicting sequence-specific histone-DNA interactions and the effective two-body potential responsible for ordering nucleosomes into regular higher-order structures. Our approach is based on the analogy between nucleosomal arrays and a one-dimensional fluid of finite-size particles with nearest-neighbor interactions. We derive simple rules which allow us to predict nucleosome occupancy solely from the dinucleotide content of the underlying DNA sequences.Dinucleotide content determines the degree of stiffness of the DNA polymer and thus defines its ability to bend into the nucleosomal superhelix. As expected, the nucleosome positioning rules are universal for chromatin assembled in vitro on genomic DNA from baker's yeast and from the nematode worm C.elegans, where nucleosome placement follows intrinsic sequence preferences and steric exclusion. However, the positioning rules inferred from in vivo C.elegans chromatin are affected by global nucleosome depletion from chromosome arms relative to central domains, likely caused by the attachment of the chromosome arms to the nuclear membrane. Furthermore, intrinsic nucleosome positioning rules are overwritten in transcribed regions, indicating that chromatin organization is actively managed by the transcriptional and splicing machinery.

  1. A computer lab exploring evolutionary aspects of chromatin structure and dynamics for an undergraduate chromatin course*.

    PubMed

    Eirín-López, José M

    2013-01-01

    The study of chromatin constitutes one of the most active research fields in life sciences, being subject to constant revisions that continuously redefine the state of the art in its knowledge. As every other rapidly changing field, chromatin biology requires clear and straightforward educational strategies able to efficiently translate such a vast body of knowledge to the classroom. With this aim, the present work describes a multidisciplinary computer lab designed to introduce undergraduate students to the dynamic nature of chromatin, within the context of the one semester course "Chromatin: Structure, Function and Evolution." This exercise is organized in three parts including (a) molecular evolutionary biology of histone families (using the H1 family as example), (b) histone structure and variation across different animal groups, and (c) effect of histone diversity on nucleosome structure and chromatin dynamics. By using freely available bioinformatic tools that can be run on common computers, the concept of chromatin dynamics is interactively illustrated from a comparative/evolutionary perspective. At the end of this computer lab, students are able to translate the bioinformatic information into a biochemical context in which the relevance of histone primary structure on chromatin dynamics is exposed. During the last 8 years this exercise has proven to be a powerful approach for teaching chromatin structure and dynamics, allowing students a higher degree of independence during the processes of learning and self-assessment.

  2. Inhibitory activity of a heterochromatin-associated serpin (MENT) against papain-like cysteine proteinases affects chromatin structure and blocks cell proliferation.

    PubMed

    Irving, James A; Shushanov, Sain S; Pike, Robert N; Popova, Evgenya Y; Brömme, Dieter; Coetzer, Theresa H T; Bottomley, Stephen P; Boulynko, Iaroslava A; Grigoryev, Sergei A; Whisstock, James C

    2002-04-12

    MENT (Myeloid and Erythroid Nuclear Termination stage-specific protein) is a developmentally regulated chromosomal serpin that condenses chromatin in terminally differentiated avian blood cells. We show that MENT is an effective inhibitor of the papain-like cysteine proteinases cathepsins L and V. In addition, ectopic expression of MENT in mammalian cells is apparently sufficient to inhibit a nuclear papain-like cysteine proteinase and prevent degradation of the retinoblastoma protein, a major regulator of cell proliferation. MENT also accumulates in the nucleus, causes a strong block in proliferation, and promotes condensation of chromatin. Variants of MENT with mutations or deletions within the M-loop, which contains a nuclear localization signal and an AT-hook motif, reveal that this region mediates nuclear transport and morphological changes associated with chromatin condensation. Non-inhibitory mutants of MENT were constructed to determine whether its inhibitory activity has a role in blocking proliferation. These mutations changed the mode of association with chromatin and relieved the block in proliferation, without preventing transport to the nucleus. We conclude that the repressive effect of MENT on chromatin is mediated by its direct interaction with a nuclear protein that has a papain-like cysteine proteinase active site.

  3. Regulation of chromatin structure in the cardiovascular system.

    PubMed

    Rosa-Garrido, Manuel; Karbassi, Elaheh; Monte, Emma; Vondriska, Thomas M

    2013-01-01

    It has been appreciated for some time that cardiovascular disease involves large-scale transcriptional changes in various cell types. What has become increasingly clear only in the past few years, however, is the role of chromatin remodeling in cardiovascular phenotypes in normal physiology, as well as in development and disease. This review summarizes the state of the chromatin field in terms of distinct mechanisms to regulate chromatin structure in vivo, identifying when these modes of regulation have been demonstrated in cardiovascular tissues. We describe areas in which a better understanding of chromatin structure is leading to new insights into the fundamental biology of cardiovascular disease. 

  4. The Ino80 chromatin-remodeling complex restores chromatin structure during UV DNA damage repair

    PubMed Central

    Sarkar, Sovan; Kiely, Rhian

    2010-01-01

    Chromatin structure is modulated during deoxyribonucleic acid excision repair, but how this is achieved is unclear. Loss of the yeast Ino80 chromatin-remodeling complex (Ino80-C) moderately sensitizes cells to ultraviolet (UV) light. In this paper, we show that INO80 acts in the same genetic pathway as nucleotide excision repair (NER) and that the Ino80-C contributes to efficient UV photoproduct removal in a region of high nucleosome occupancy. Moreover, Ino80 interacts with the early NER damage recognition complex Rad4–Rad23 and is recruited to chromatin by Rad4 in a UV damage–dependent manner. Using a modified chromatin immunoprecipitation assay, we find that chromatin disruption during UV lesion repair is normal, whereas the restoration of nucleosome structure is defective in ino80 mutant cells. Collectively, our work suggests that Ino80 is recruited to sites of UV lesion repair through interactions with the NER apparatus and is required for the restoration of chromatin structure after repair. PMID:21135142

  5. Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange

    PubMed Central

    Smolle, Michaela; Venkatesh, Swaminathan; Gogol, Madelaine M.; Li, Hua; Zhang, Ying; Florens, Laurence; Washburn, Michael P.; Workman, Jerry L.

    2012-01-01

    Set2-mediated methylation of histone H3 Lys36 (H3K36) is a mark associated with the coding sequences of actively transcribed genes, yet plays a negative role during transcription elongation. It prevents trans-histone exchange over coding regions and signals for histone deacetylation in the wake of RNA polymerase II (RNAPII) passage. We have found that in Saccharomyces cerevisiae the Isw1b chromatin-remodeling complex is specifically recruited to open reading frames (ORFs) by H3K36 methylation through the PWWP domain of its Ioc4 subunit in vivo and in vitro. Isw1b acts in conjunction with Chd1 to regulate chromatin structure by preventing trans-histone exchange from taking place over coding regions and thus maintains chromatin integrity during transcription elongation by RNA polymerase II. PMID:22922743

  6. HMG Nuclear Proteins: Linking Chromatin Structure to Cellular Phenotype

    PubMed Central

    Reeves, Raymond

    2009-01-01

    I. Summary Although the three families of mammalian HMG proteins (HMGA, HMGB and HMGN) participate in many of the same nuclear processes, each family plays its own unique role in modulating chromatin structure and regulating genomic function. This review focuses on the similarities and differences in the mechanisms by which the different HMG families impact chromatin structure and influence cellular phenotype. The biological implications of having three architectural transcription factor families with complementary, but partially overlapping, nuclear functions are discussed. PMID:19748605

  7. Neutron scattering studies on chromatin higher-order structure

    SciTech Connect

    Graziano, V.; Gerchman, S.E.; Schneider, D.K.; Ramakrishnan, V.

    1994-12-31

    We have been engaged in studies of the structure and condensation of chromatin into the 30nm filament using small-angle neutron scattering. We have also used deuterated histone H1 to determine its location in the chromatin 30nm filament. Our studies indicate that chromatin condenses with increasing ionic strength to a limiting structure that has a mass per unit length of 6-7 nucleosomes/11 nm. They also show that the linker histone H1/H5 is located in the interior of the chromatin filament, in a position compatible with its binding to the inner face of the nucleosome. Analysis of the mass per unit length as a function of H5 stoichiometry suggests that 5-7 contiguous nucleosomes need to have H5 bound before a stable higher order structure can exist.

  8. Stress-induced structural changes in plant chromatin.

    PubMed

    Probst, Aline V; Mittelsten Scheid, Ortrun

    2015-10-01

    Stress defense in plants is elaborated at the level of protection and adaptation. Dynamic changes in sophisticated chromatin substructures and concomitant transcriptional changes play an important role in response to stress, as illustrated by the transient rearrangement of compact heterochromatin structures or the modulation of chromatin composition and modification upon stress exposure. To connect cytological, developmental, and molecular data around stress and chromatin is currently an interesting, multifaceted, and sometimes controversial field of research. This review highlights some of the most recent findings on nuclear reorganization, histone variants, histone chaperones, DNA- and histone modifications, and somatic and meiotic heritability in connection with stress.

  9. Alteration of Large-Scale Chromatin Structure by Estrogen Receptor

    PubMed Central

    Nye, Anne C.; Rajendran, Ramji R.; Stenoien, David L.; Mancini, Michael A.; Katzenellenbogen, Benita S.; Belmont, Andrew S.

    2002-01-01

    The estrogen receptor (ER), a member of the nuclear hormone receptor superfamily important in human physiology and disease, recruits coactivators which modify local chromatin structure. Here we describe effects of ER on large-scale chromatin structure as visualized in live cells. We targeted ER to gene-amplified chromosome arms containing large numbers of lac operator sites either directly, through a lac repressor-ER fusion protein (lac rep-ER), or indirectly, by fusing lac repressor with the ER interaction domain of the coactivator steroid receptor coactivator 1. Significant decondensation of large-scale chromatin structure, comparable to that produced by the ∼150-fold-stronger viral protein 16 (VP16) transcriptional activator, was produced by ER in the absence of estradiol using both approaches. Addition of estradiol induced a partial reversal of this unfolding by green fluorescent protein-lac rep-ER but not by wild-type ER recruited by a lac repressor-SRC570-780 fusion protein. The chromatin decondensation activity did not require transcriptional activation by ER nor did it require ligand-induced coactivator interactions, and unfolding did not correlate with histone hyperacetylation. Ligand-induced coactivator interactions with helix 12 of ER were necessary for the partial refolding of chromatin in response to estradiol using the lac rep-ER tethering system. This work demonstrates that when tethered or recruited to DNA, ER possesses a novel large-scale chromatin unfolding activity. PMID:11971975

  10. Distal chromatin structure influences local nucleosome positions and gene expression.

    PubMed

    Jansen, An; van der Zande, Elisa; Meert, Wim; Fink, Gerald R; Verstrepen, Kevin J

    2012-05-01

    The positions of nucleosomes across the genome influence several cellular processes, including gene transcription. However, our understanding of the factors dictating where nucleosomes are located and how this affects gene regulation is still limited. Here, we perform an extensive in vivo study to investigate the influence of the neighboring chromatin structure on local nucleosome positioning and gene expression. Using truncated versions of the Saccharomyces cerevisiae URA3 gene, we show that nucleosome positions in the URA3 promoter are at least partly determined by the local DNA sequence, with so-called 'anti-nucleosomal elements' like poly(dA:dT) tracts being key determinants of nucleosome positions. In addition, we show that changes in the nucleosome positions in the URA3 promoter strongly affect the promoter activity. Most interestingly, in addition to demonstrating the effect of the local DNA sequence, our study provides novel in vivo evidence that nucleosome positions are also affected by the position of neighboring nucleosomes. Nucleosome structure may therefore be an important selective force for conservation of gene order on a chromosome, because relocating a gene to another genomic position (where the positions of neighboring nucleosomes are different from the original locus) can have dramatic consequences for the gene's nucleosome structure and thus its expression.

  11. The Fun30 chromatin remodeler Fft3 controls nuclear organization and chromatin structure of insulators and subtelomeres in fission yeast.

    PubMed

    Steglich, Babett; Strålfors, Annelie; Khorosjutina, Olga; Persson, Jenna; Smialowska, Agata; Javerzat, Jean-Paul; Ekwall, Karl

    2015-03-01

    In eukaryotic cells, local chromatin structure and chromatin organization in the nucleus both influence transcriptional regulation. At the local level, the Fun30 chromatin remodeler Fft3 is essential for maintaining proper chromatin structure at centromeres and subtelomeres in fission yeast. Using genome-wide mapping and live cell imaging, we show that this role is linked to controlling nuclear organization of its targets. In fft3∆ cells, subtelomeres lose their association with the LEM domain protein Man1 at the nuclear periphery and move to the interior of the nucleus. Furthermore, genes in these domains are upregulated and active chromatin marks increase. Fft3 is also enriched at retrotransposon-derived long terminal repeat (LTR) elements and at tRNA genes. In cells lacking Fft3, these sites lose their peripheral positioning and show reduced nucleosome occupancy. We propose that Fft3 has a global role in mediating association between specific chromatin domains and the nuclear envelope.

  12. SANS spectra of the fractal supernucleosomal chromatin structure models

    NASA Astrophysics Data System (ADS)

    Ilatovskiy, Andrey V.; Lebedev, Dmitry V.; Filatov, Michael V.; Petukhov, Michael G.; Isaev-Ivanov, Vladimir V.

    2012-03-01

    The eukaryotic genome consists of chromatin—a nucleoprotein complex with hierarchical architecture based on nucleosomes, the organization of higher-order chromatin structures still remains unknown. Available experimental data, including SANS spectra we had obtained for whole nuclei, suggested fractal nature of chromatin. Previously we had built random-walk supernucleosomal models (up to 106 nucleosomes) to interpret our SANS spectra. Here we report a new method to build fractal supernucleosomal structure of a given fractal dimension or two different dimensions. Agreement between calculated and experimental SANS spectra was significantly improved, especially for model with two fractal dimensions—3 and 2.

  13. MPE-seq, a new method for the genome-wide analysis of chromatin structure

    PubMed Central

    Ishii, Haruhiko; Kadonaga, James T.; Ren, Bing

    2015-01-01

    The analysis of chromatin structure is essential for the understanding of transcriptional regulation in eukaryotes. Here we describe methidiumpropyl-EDTA sequencing (MPE-seq), a method for the genome-wide characterization of chromatin that involves the digestion of nuclei withMPE-Fe(II) followed by massively parallel sequencing. Like micrococcal nuclease (MNase), MPE-Fe(II) preferentially cleaves the linker DNA between nucleosomes. However, there are differences in the cleavage of nuclear chromatin by MPE-Fe(II) relative to MNase. Most notably, immediately upstream of the transcription start site of active promoters, we frequently observed nucleosome-sized (141–190 bp) and subnucleosome-sized (such as 101–140 bp) peaks of digested chromatin fragments with MPE-seq but not with MNase-seq. These peaks also correlate with the presence of core histones and could thus be due, at least in part, to noncanonical chromatin structures such as labile nucleosome-like particles that have been observed in other contexts. The subnucleosome-sized MPE-seq peaks exhibit a particularly distinct association with active promoters. In addition, unlike MNase, MPE-Fe(II) cleaves nuclear DNA with little sequence bias. In this regard, we found that DNA sequences at RNA splice sites are hypersensitive to digestion by MNase but not by MPE-Fe(II). This phenomenon may have affected the analysis of nucleosome occupancy over exons. These findings collectively indicate that MPE-seq provides a unique and straightforward means for the genome-wide analysis of chromatin structure with minimal DNA sequence bias. In particular, the combined use of MPE-seq and MNase-seq enables the identification of noncanonical chromatin structures that are likely to be important for the regulation of gene expression. PMID:26080409

  14. Concerted Flexibility of Chromatin Structure, Methylome, and Histone Modifications along with Plant Stress Responses

    PubMed Central

    Santos, Ana Paula; Ferreira, Liliana J.; Oliveira, M. Margarida

    2017-01-01

    The spatial organization of chromosome structure within the interphase nucleus, as well as the patterns of methylome and histone modifications, represent intersecting layers that influence genome accessibility and function. This review is focused on the plastic nature of chromatin structure and epigenetic marks in association to stress situations. The use of chemical compounds (epigenetic drugs) or T-DNA-mediated mutagenesis affecting epigenetic regulators (epi-mutants) are discussed as being important tools for studying the impact of deregulated epigenetic backgrounds on gene function and phenotype. The inheritability of epigenetic marks and chromatin configurations along successive generations are interpreted as a way for plants to “communicate” past experiences of stress sensing. A mechanistic understanding of chromatin and epigenetics plasticity in plant response to stress, including tissue- and genotype-specific epigenetic patterns, may help to reveal the epigenetics contributions for genome and phenotype regulation. PMID:28275209

  15. Analysis of chromatin structure at meiotic DSB sites in yeasts.

    PubMed

    Hirota, Kouji; Fukuda, Tomoyuki; Yamada, Takatomi; Ohta, Kunihiro

    2009-01-01

    One of the major features of meiosis is a high frequency of homologous recombination that not only confers genetic diversity to a successive generation but also ensures proper segregation of chromosomes. Meiotic recombination is initiated by DNA double-strand breaks that require many proteins including the catalytic core, Spo11. In this regard, like transcription and repair, etc., recombination is hindered by a compacted chromatin structure because trans-acting factors cannot easily access the DNA. Such inhibitory effects must be alleviated prior to recombination initiation. Indeed, a number of groups showed that chromatin around recombination hotspots is less condensed, by using nucleases as a probe to assess local DNA accessibility. Here we describe a method to analyze chromatin structure of a recombination hotspot in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. This method, combining micrococcal nuclease (MNase) digestion ofchromatin DNA and subsequent Southern blotting, is expected to provide information as to chromatin context around a hotspot. Moreover, by virtue of MNase preferentially targeting linker DNA, positions of several nucleosomes surrounding a hotspot can also be determined. Our protocol is a very powerful way to analyze several-kb regions of interest and can be applied to other purposes.

  16. (Neutron scatter studies of chromatin structure related to function)

    SciTech Connect

    Bradbury, E.M.

    1990-01-01

    This study is concerned with the application of neutron scatter techniques to the different structural states of nucleosomes and chromatin with the long term objective of understanding how the enormous lengths of DNA are folded into chromosomes. Micrococcal nuclease digestion kinetics have defined two subnucleosome particles; the chromatosome with 168 bp DNA, the histone octamer and one H1 and the nucleosome core particle with 146 bp DNA and the histone octamer. As will be discussed, the structure of the 146 bp DNA core particle is known in solution at low resolution from neutron scatter studies and in crystals. Based on this structure, the authors have a working model for the chromatosome and the mode of binding of H1. In order to define the structure of the nucleosome and also the different orders of chromatin structures they need to know the paths of DNA that link nucleosomes and the factors associated with chromosome functions that act on those DNA paths. The major region for this situation is the inherent variabilities in nucleosome DNA sequences, in the histone subtypes and their states of chemical modification and in the precise locations of nucleosomes. Such variabilities obscure the underlying principles that govern the packaging of DNA into the different structural states of nucleosomes and chromatin. The only way to elucidate these principles is to study the structures of nucleosomes and oligonucleosomes that are fully defined. They have largely achieved these objectives.

  17. Alterations in chromatin structure during early sea urchin embryogenesis.

    PubMed Central

    Savić, A; Richman, P; Williamson, P; Poccia, D

    1981-01-01

    Sea urchin sperm before fertilization possess the longest nucleosome repeat length yet determined for any chromatin. By the time the fertilized egg gives rise to a blastula or gastrula embryo, the chromatin has a considerably shorter repeat length and, in addition, a sequence of different histone variants of H1, H2A, and H2B has appeared. We have investigated the relationship between these variations in histone composition and concomitant alterations in chromatin structure during the earliest stages of embryogenesis in two species of sea urchin. In contrast to the long repeat distance in sperm, chromatin loaded with cleavage stage histones has a much smaller repeat. Later stages containing predominantly alpha histones display an intermediate spacing. More detailed analysis of the events in the first cell cycle was carried out with polyspermically fertilized eggs. During the first 30 min after fertilization, in which sperm-specific H1 is completely replaced by cleavage-stage H1, the male pronuclear repeat remains unchanged. The decrease toward the repeat length of cleavage stages begins at about the time of DNA synthesis. Higher degrees of polyspermy extend the length of the cell cycle, including the duration of S phase and the length of time to reach the first chromosome condensation. At these higher degrees of polyspermy, the decrease in repeat length is also slowed. We conclude that the adjustment of the arrangement of nucleosomes in embryonic chromatin from that found in sperm can occur within the first cell cycle and that its timing is cell-cycle dependent. The adjustment is separable from a corresponding change in H1 composition. Images PMID:6943576

  18. Structural differences in the chromatin from compartmentalized cells of the sea urchin embryo: differential nuclease accessibility of micromere chromatin.

    PubMed Central

    Cognetti, G; Shaw, B R

    1981-01-01

    The chromatin structure of three cell types isolated from the 16-cell stage sea urchin embryo has been probed with micrococcal nuclease. In micromeres, the four small cells at the vegetal pole, the chromatin is found to be considerably more resistant to degradation by micrococcal nuclease than chromatin in the larger mesomere and macromere cells which undergo more cellular divisions and are committed to different developmental fates. The micromeres show an order of magnitude decrease in the initial digestion rate and a limit digest value which is one third that of the larger blastomeres; both observations are suggestive of the formation of a more condensed chromatin structure during the process of commitment, or as the rate of cell division decreases. The decreased sensitivity to nuclease for micromeres is similar to results reported for sperm and larval stages of development. Images PMID:7312627

  19. Light scattering measurements supporting helical structures for chromatin in solution.

    PubMed

    Campbell, A M; Cotter, R I; Pardon, J F

    1978-05-01

    Laser light scattering measurements have been made on a series of polynucleosomes containing from 50 to 150 nucleosomes. Radii of gyration have been determined as a function of polynucleosome length for different ionic strength solutions. The results suggest that at low ionic strength the chromatin adopts a loosely helical structure rather than a random coil. The helix becomes more regular on increasing the ionic strength, the dimension resembling those proposed by Finch and Klug for their solenoid model.

  20. Repression and activation by multiprotein complexes that alter chromatin structure.

    PubMed

    Kingston, R E; Bunker, C A; Imbalzano, A N

    1996-04-15

    Recent studies have provided strong evidence that macromolecular complexes are used in the cell to remodel chromatin structure during activation and to create an inaccessible structure during repression, Although there is not yet any rigorous demonstration that modification of chromatin structure plays a direct, causal role in either activation or repression, there is sufficient smoke to indicate the presence of a blazing inferno nearby. It is clear that complexes that remodel chromatin are tractable in vitro; hopefully this will allow the establishment of systems that provide a direct analysis of the role that remodeling might play in activation. These studies indicate that establishment of functional systems to corroborate the elegant genetic studies on repression might also be tractable. As the mechanistic effects of these complexes are sorted out, it will become important to understand how the complexes are regulated. In many of the instances discussed above, the genes whose products make up these complexes were identified in genetic screens for effects on developmental processes. This implies a regulation of the activity of these complexes in response to developmental cues and further implies that the work to fully understand these complexes will occupy a generation of scientists.

  1. Neutron scatter studies of chromatin structures related to functions

    SciTech Connect

    Bradbury, E.M.

    1992-01-01

    We have made considerable progress in chromatin reconstitution with very lysine rich histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized in intrinsically bent DNA region flaking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interactions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear Magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin.

  2. Neutron scatter studies of chromatin structures related to functions

    SciTech Connect

    Bradbury, E.M.

    1992-01-01

    Despite of setbacks in the lack of neutrons for the proposed We have made considerable progress in chromatin reconstitution with the VLR histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized an intrinsically bent DNA region flanking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interatctions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin.

  3. piRNA clusters and open chromatin structure

    PubMed Central

    2014-01-01

    Transposable elements (TEs) are major structural components of eukaryotic genomes; however, mobilization of TEs generally has negative effects on the host genome. To counteract this threat, host cells have evolved genetic and epigenetic mechanisms that keep TEs silenced. One such mechanism involves the Piwi-piRNA complex, which represses TEs in animal gonads either by cleaving TE transcripts in the cytoplasm or by directing specific chromatin modifications at TE loci in the nucleus. Most Piwi-interacting RNAs (piRNAs) are derived from genomic piRNA clusters. There has been remarkable progress in our understanding of the mechanisms underlying piRNA biogenesis. However, little is known about how a specific locus in the genome is converted into a piRNA-producing site. In this review, we will discuss a possible link between chromatin boundaries and piRNA cluster formation. PMID:25126116

  4. A Computer Lab Exploring Evolutionary Aspects of Chromatin Structure and Dynamics for an Undergraduate Chromatin Course

    ERIC Educational Resources Information Center

    Eirin-Lopez, Jose M.

    2013-01-01

    The study of chromatin constitutes one of the most active research fields in life sciences, being subject to constant revisions that continuously redefine the state of the art in its knowledge. As every other rapidly changing field, chromatin biology requires clear and straightforward educational strategies able to efficiently translate such a…

  5. Super-resolution microscopy reveals decondensed chromatin structure at transcription sites

    NASA Astrophysics Data System (ADS)

    Wang, Yejun; Maharana, Shovamayee; Wang, Michelle D.; Shivashankar, G. V.

    2014-03-01

    Remodeling of the local chromatin structure is essential for the regulation of gene expression. While a number of biochemical and bioimaging experiments suggest decondensed chromatin structures are associated with transcription, a direct visualization of DNA and transcriptionally active RNA polymerase II (RNA pol II) at super-resolution is still lacking. Here we investigate the structure of chromatin isolated from HeLa cells using binding activatable localization microscopy (BALM). The sample preparation method preserved the structural integrity of chromatin. Interestingly, BALM imaging of the chromatin spreads revealed the presence of decondensed chromatin as gap structures along the spreads. These gaps were enriched with phosphorylated S5 RNA pol II, and were sensitive to the cellular transcriptional state. Taken together, we could visualize the decondensed chromatin regions together with active RNA pol II for the first time using super-resolution microscopy.

  6. Statistical Mechanics of Nucleosomes Constrained by Higher-Order Chromatin Structure

    NASA Astrophysics Data System (ADS)

    Chereji, Răzvan V.; Morozov, Alexandre V.

    2011-07-01

    Eukaryotic DNA is packaged into chromatin: one-dimensional arrays of nucleosomes separated by stretches of linker DNA are folded into 30-nm chromatin fibers which in turn form higher-order structures (Felsenfeld and Groudine in Nature 421:448, 2003). Each nucleosome, the fundamental unit of chromatin, has 147 base pairs (bp) of DNA wrapped around a histone octamer (Richmond and Davey in Nature 423:145, 2003). In order to describe how chromatin fiber formation affects nucleosome positioning and energetics, we have developed a thermodynamic model of finite-size particles with effective nearest-neighbor interactions and arbitrary DNA-binding energies. We show that both one- and two-body interactions can be extracted from one-particle density profiles based on high-throughput maps of in vitro or in vivo nucleosome positions. Although a simpler approach that neglects two-body interactions (even if they are in fact present in the system) can be used to predict sequence determinants of nucleosome positions, the full theory is required to disentangle one- and two-body effects. Finally, we construct a minimal model in which nucleosomes are positioned primarily by steric exclusion and two-body interactions rather than intrinsic histone-DNA sequence preferences. The model reproduces nucleosome occupancy patterns observed over transcribed regions in living cells.

  7. SMARCA4 regulates gene expression and higher-order chromatin structure in proliferating mammary epithelial cells

    PubMed Central

    Barutcu, A. Rasim; Lajoie, Bryan R.; Fritz, Andrew J.; McCord, Rachel P.; Nickerson, Jeffrey A.; van Wijnen, Andre J.; Lian, Jane B.; Stein, Janet L.; Dekker, Job; Stein, Gary S.; Imbalzano, Anthony N.

    2016-01-01

    The packaging of DNA into chromatin plays an important role in transcriptional regulation and nuclear processes. Brahma-related gene-1 SMARCA4 (also known as BRG1), the essential ATPase subunit of the mammalian SWI/SNF chromatin remodeling complex, uses the energy from ATP hydrolysis to disrupt nucleosomes at target regions. Although the transcriptional role of SMARCA4 at gene promoters is well-studied, less is known about its role in higher-order genome organization. SMARCA4 knockdown in human mammary epithelial MCF-10A cells resulted in 176 up-regulated genes, including many related to lipid and calcium metabolism, and 1292 down-regulated genes, some of which encode extracellular matrix (ECM) components that can exert mechanical forces and affect nuclear structure. ChIP-seq analysis of SMARCA4 localization and SMARCA4-bound super-enhancers demonstrated extensive binding at intergenic regions. Furthermore, Hi-C analysis showed extensive SMARCA4-mediated alterations in higher-order genome organization at multiple resolutions. First, SMARCA4 knockdown resulted in clustering of intra- and inter-subtelomeric regions, demonstrating a novel role for SMARCA4 in telomere organization. SMARCA4 binding was enriched at topologically associating domain (TAD) boundaries, and SMARCA4 knockdown resulted in weakening of TAD boundary strength. Taken together, these findings provide a dynamic view of SMARCA4-dependent changes in higher-order chromatin organization and gene expression, identifying SMARCA4 as a novel component of chromatin organization. PMID:27435934

  8. Roberts syndrome: New evidence supporting an altered metaphase chromatin structure

    SciTech Connect

    Shang, X.M.; Schultz, E.L.; Tonk, V.

    1994-09-01

    Roberts syndrome is a rare autosomal recessive disease clinically manifested in the newborn by mental and growth retardation, tetraphocomelia, and a variety of craniofacial abnormalities. Cell lines derived from RS patients exhibit subtle mutagen hypersensitivity and cytogenetic abnormalities which include random chromosome loss and the splaying of heterochromatic chromosomal regions. The latter, typically detected on C-banded metaphases, has been used prenatally for the diagnosis of RS. To gain further insights into the RS defect, we have examined a number of parameters related to metaphase chromatin structure, with observations as follows. (1) The heterochromatic splaying associated with RS was found to be visible on G- as well as C-banded metaphases. (2) Quantitative evaluations using fluorescence image analysis revealed that RS metaphase chromosomes bind DAPI less efficiently than chromosomes from normal cells. (3) Denaturation of chromosomal DNA with either a C-banding procedure or 70% formamide at 70{degree}C each produced an aberrant hybridization pattern on RS chromosomes in FISH experiments employing biotinylated total human DNA as probe. (4) RS cells exhibited a >3-fold increase in sensitivity to VM-26, a potent inhibitor of topoisomerase II. Collectively, the aforementioned data support the notion that the primary defect in RS results in an altered metaphase chromatin structure.

  9. RNA is an integral component of chromatin that contributes to its structural organization.

    PubMed

    Rodríguez-Campos, Antonio; Azorín, Fernando

    2007-11-14

    Chromatin structure is influenced by multiples factors, such as pH, temperature, nature and concentration of counterions, post-translational modifications of histones and binding of structural non-histone proteins. RNA is also known to contribute to the regulation of chromatin structure as chromatin-induced gene silencing was shown to depend on the RNAi machinery in S. pombe, plants and Drosophila. Moreover, both in Drosophila and mammals, dosage compensation requires the contribution of specific non-coding RNAs. However, whether RNA itself plays a direct structural role in chromatin is not known. Here, we report results that indicate a general structural role for RNA in eukaryotic chromatin. RNA is found associated to purified chromatin prepared from chicken liver, or cultured Drosophila S2 cells, and treatment with RNase A alters the structural properties of chromatin. Our results indicate that chromatin-associated RNAs, which account for 2%-5% of total chromatin-associated nucleic acids, are polyA(-) and show a size similar to that of the DNA contained in the corresponding chromatin fragments. Chromatin-associated RNA(s) are not likely to correspond to nascent transcripts as they are also found bound to chromatin when cells are treated with alpha-amanitin. After treatment with RNase A, chromatin fragments of molecular weight >3.000 bp of DNA showed reduced sedimentation through sucrose gradients and increased sensitivity to micrococcal nuclease digestion. This structural transition, which is observed both at euchromatic and heterochromatic regions, proceeds without loss of histone H1 or any significant change in core-histone composition and integrity.

  10. Nucleosome distribution and linker DNA: connecting nuclear function to dynamic chromatin structure.

    PubMed

    Szerlong, Heather J; Hansen, Jeffrey C

    2011-02-01

    Genetic information in eukaryotes is managed by strategic hierarchical organization of chromatin structure. Primary chromatin structure describes an unfolded nucleosomal array, often referred to as "beads on a string". Chromatin is compacted by the nonlinear rearrangement of nucleosomes to form stable secondary chromatin structures. Chromatin conformational transitions between primary and secondary structures are mediated by both nucleosome-stacking interactions and the intervening linker DNA. Chromatin model system studies find that the topography of secondary structures is sensitive to the spacing of nucleosomes within an array. Understanding the relationship between nucleosome spacing and higher order chromatin structure will likely yield important insights into the dynamic nature of secondary chromatin structure as it occurs in vivo. Genome-wide nucleosome mapping studies find the distance between nucleosomes varies, and regions of uniformly spaced nucleosomes are often interrupted by regions of nonuniform spacing. This type of organization is found at a subset of actively transcribed genes in which a nucleosome-depleted region near the transcription start site is directly adjacent to uniformly spaced nucleosomes in the coding region. Here, we evaluate secondary chromatin structure and discuss the structural and functional implications of variable nucleosome distributions in different organisms and at gene regulatory junctions.

  11. AIRE-PHD fingers are structural hubs to maintain the integrity of chromatin-associated interactome.

    PubMed

    Gaetani, Massimiliano; Matafora, Vittoria; Saare, Mario; Spiliotopoulos, Dimitrios; Mollica, Luca; Quilici, Giacomo; Chignola, Francesca; Mannella, Valeria; Zucchelli, Chiara; Peterson, Pärt; Bachi, Angela; Musco, Giovanna

    2012-12-01

    Mutations in autoimmune regulator (AIRE) gene cause autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. AIRE is expressed in thymic medullary epithelial cells, where it promotes the expression of peripheral-tissue antigens to mediate deletional tolerance, thereby preventing self-reactivity. AIRE contains two plant homeodomains (PHDs) which are sites of pathological mutations. AIRE-PHD fingers are important for AIRE transcriptional activity and presumably play a crucial role in the formation of multimeric protein complexes at chromatin level which ultimately control immunological tolerance. As a step forward the understanding of AIRE-PHD fingers in normal and pathological conditions, we investigated their structure and used a proteomic SILAC approach to assess the impact of patient mutations targeting AIRE-PHD fingers. Importantly, both AIRE-PHD fingers are structurally independent and mutually non-interacting domains. In contrast to D297A and V301M on AIRE-PHD1, the C446G mutation on AIRE-PHD2 destroys the structural fold, thus causing aberrant AIRE localization and reduction of AIRE target genes activation. Moreover, mutations targeting AIRE-PHD1 affect the formation of a multimeric protein complex at chromatin level. Overall our results reveal the importance of AIRE-PHD domains in the interaction with chromatin-associated nuclear partners and gene regulation confirming the role of PHD fingers as versatile protein interaction hubs for multiple binding events.

  12. Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation.

    PubMed

    Lopez, Rita; Sarg, Bettina; Lindner, Herbert; Bartolomé, Salvador; Ponte, Inma; Suau, Pedro; Roque, Alicia

    2015-05-19

    Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation.

  13. Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation

    PubMed Central

    Lopez, Rita; Sarg, Bettina; Lindner, Herbert; Bartolomé, Salvador; Ponte, Inma; Suau, Pedro; Roque, Alicia

    2015-01-01

    Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation. PMID:25870416

  14. Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin

    PubMed Central

    Bancaud, Aurélien; Huet, Sébastien; Daigle, Nathalie; Mozziconacci, Julien; Beaudouin, Joël; Ellenberg, Jan

    2009-01-01

    The nucleus of eukaryotes is organized into functional compartments, the two most prominent being heterochromatin and nucleoli. These structures are highly enriched in DNA, proteins or RNA, and thus thought to be crowded. In vitro, molecular crowding induces volume exclusion, hinders diffusion and enhances association, but whether these effects are relevant in vivo remains unclear. Here, we establish that volume exclusion and diffusive hindrance occur in dense nuclear compartments by probing the diffusive behaviour of inert fluorescent tracers in living cells. We also demonstrate that chromatin-interacting proteins remain transiently trapped in heterochromatin due to crowding induced enhanced affinity. The kinetic signatures of these crowding consequences allow us to derive a fractal model of chromatin organization, which explains why the dynamics of soluble nuclear proteins are affected independently of their size. This model further shows that the fractal architecture differs between heterochromatin and euchromatin, and predicts that chromatin proteins use different target-search strategies in the two compartments. We propose that fractal crowding is a fundamental principle of nuclear organization, particularly of heterochromatin maintenance. PMID:19927119

  15. Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin.

    PubMed

    Bancaud, Aurélien; Huet, Sébastien; Daigle, Nathalie; Mozziconacci, Julien; Beaudouin, Joël; Ellenberg, Jan

    2009-12-16

    The nucleus of eukaryotes is organized into functional compartments, the two most prominent being heterochromatin and nucleoli. These structures are highly enriched in DNA, proteins or RNA, and thus thought to be crowded. In vitro, molecular crowding induces volume exclusion, hinders diffusion and enhances association, but whether these effects are relevant in vivo remains unclear. Here, we establish that volume exclusion and diffusive hindrance occur in dense nuclear compartments by probing the diffusive behaviour of inert fluorescent tracers in living cells. We also demonstrate that chromatin-interacting proteins remain transiently trapped in heterochromatin due to crowding induced enhanced affinity. The kinetic signatures of these crowding consequences allow us to derive a fractal model of chromatin organization, which explains why the dynamics of soluble nuclear proteins are affected independently of their size. This model further shows that the fractal architecture differs between heterochromatin and euchromatin, and predicts that chromatin proteins use different target-search strategies in the two compartments. We propose that fractal crowding is a fundamental principle of nuclear organization, particularly of heterochromatin maintenance.

  16. The role of Nucleosome Positions on Chromatin Structure: A multi-scale approach

    NASA Astrophysics Data System (ADS)

    Lequieu, Joshua; Cordoba, Andres; de Pablo, Juan J.

    Nucleosomes compose the basic unit of chromatin, and their locations are central to the regulation and compaction of eukaryotic genomes. In this work, we examine the coupling between different length scales within chromatin by examining the influence of nucleosome positions on three-dimensional chromatin structure. First, using a detailed molecular model of DNA and proteins, we predict the one-dimensional positioning of nucleosomes and the repositioning mechanisms of nucleosomal DNA. We demonstrate that this mechanism is strongly dependent on DNA sequence and that DNA slides around the histone proteins by either a screw-like or loop-like rearrangement. Next, we couple this detailed model to a coarsened model of chromatin and examine the impact of DNA sequence on chromatin's three-dimensional structure. We show that both the locations of nucleosomes and the mechanisms by which they move have a significant impact on higher-order chromatin structure and that variations in DNA sequence lead to ''open'' or ''closed'' regions of chromatin. This approach represents an efficient tool towards understanding the higher order structure of chromatin and how various aspects of chromatin structure are coupled together.

  17. Insights into interphase large-scale chromatin structure from analysis of engineered chromosome regions.

    PubMed

    Belmont, A S; Hu, Y; Sinclair, P B; Wu, W; Bian, Q; Kireev, I

    2010-01-01

    How chromatin folds into mitotic and interphase chromosomes has remained a difficult question for many years. We have used three generations of engineered chromosome regions as a means of visualizing specific chromosome regions in live cells and cells fixed under conditions that preserve large-scale chromatin structure. Our results confirm the existence of large-scale chromatin domains and fibers formed by the folding of 10-nm and 30-nm chromatin fibers into larger, spatially distinct domains. Transcription at levels within severalfold of the levels measured for endogenous loci occur within these large-scale chromatin structures on a condensed template linearly compacted several hundred fold to 1000-fold relative to B-form DNA. However, transcriptional induction is accompanied by a severalfold decondensation of this large-scale chromatin structure that propagates hundreds of kilobases beyond the induced gene. Examination of engineered chromosome regions in mouse embryonic stem cells (ESCs) and differentiated cells suggests a surprising degree of plasticity in this large-scale chromatin structure, allowing long-range DNA interactions within the context of large-scale chromatin fibers. Recapitulation of gene-specific differences in large-scale chromatin conformation and nuclear positioning using these engineered chromosome regions will facilitate identification of cis and trans determinants of interphase chromosome architecture.

  18. Insights into interphase large-scale chromatin structure from analysis of engineered chromosome regions

    PubMed Central

    Belmont, Andrew S.; Hu, Yan; Sinclair, Paul; Wu, Wei; Bian, Qian; Kireev, Igor

    2012-01-01

    How chromatin folds into mitotic and interphase chromosomes has remained a difficult question for many years. We have used three generations of engineered chromosome regions as a means of visualizing specific chromosome regions in live cells and cells fixed under conditions which preserve large-scale chromatin structure. Our results confirm the existence of large-scale chromatin domains and fibers formed by the folding of 10 and 30 nm chromatin fibers into larger, spatially distinct domains. Transcription at levels within several fold of the levels measured for endogenous loci occur within these large-scale chromatin structures on a condensed template linearly compacted several hundred fold to one thousand fold relative to B-form DNA. However, transcriptional induction is accompanied by a several fold decondensation of this large-scale chromatin structure that propagates hundreds of kb beyond the induced gene. Examination of engineered chromosome regions in mouse ES and differentiated cells suggests a surprising degree of plasticity in this large-scale chromatin structure, allowing long-range DNA interactions within the context of large-scale chromatin fibers. Recapitulation of gene specific differences in large-scale chromatin conformation and nuclear positioning using these engineered chromosome regions will facilitate identification of cis and trans determinants of interphase chromosome architecture. PMID:21467143

  19. The shades of gray of the chromatin fiber: recent literature provides new insights into the structure of chromatin.

    PubMed

    Ausió, Juan

    2015-01-01

    The chromatin fiber consists of a string of nucleosomes connected by linker DNA regions. The hierarchy of folding of this fiber within the cell has long been controversial, and the existence of an originally described 30 nm fiber has been debated and reviewed extensively. This review contextualizes two recent papers on this topic that suggest the 30 nm fiber to be an over-simplification. The idealized model from the first study provides good insight into the constraints and histone participation in the maintenance of the fiber structure. The second paper provides a theoretical description of a more realistic view of the highly heterogeneous and dynamic chromatin organization in the in vivo setting. It is now time to abandon the highly regular "one start" solenoidal 30 nm structure and replace it with a more realistic highly dynamic, polymorphic fiber.

  20. Neutron scatter studies of chromatin structures related to function

    SciTech Connect

    Not Available

    1990-01-01

    In the Progress Report for last year (7-1-88 to 6-30-89) we proposed to complete the following experiments: (1) Structure of TFIIIA/DNA complex, (2) Effect of histone acetylation on nucleosome structure, and (3) Location of lysine rich histone H5 on the nucleosome. Our major source of neutrons is LANSCE, LANL. However, for the period of this report LANSCE has been down between cycles of operation. Continuing neutron scatter studies have been carried out at the Institute Laue Langevin, Grenoble, France, on the trimmed nucleosome core particles. X-ray scatter studies have been carried out at DESY, Hamburg on the histone octamer and trimmed octamer. X-ray scatter studies have been performed also at LANL on proposed objectives. We have continued with the following of our research program; (i) assembly of fully characterized nucleosomes; (ii) effect of histone acetylation on nucleosomes; (iii) effect of full acetylation of H3 and H4 on nucleosome DNA linking number; (iv) assembly and characterization of defined minichromosomes; (v) neutron and X-ray scatter of the histone octamer and trimmed octamer; (vi) structural studies of human sperm chromatin, histones and protamines. 5 refs.

  1. Three-dimensional structure of human chromatin accessibility complex hCHRAC by electron microscopy

    SciTech Connect

    Hu, M.; Hainfeld, J.; Zhang, Y.-B.; Qian, L.; Brinas, R. P.; Kuznetsova, L.

    2008-12-01

    ATP-dependent chromatin remodeling complexes modulate the dynamic assembly and remodeling of chromatin involved in DNA transcription, replication, and repair. There is little structural detail known about these important multiple-subunit enzymes that catalyze chromatin remodeling processes. Here we report a three-dimensional structure of the human chromatin accessibility complex, hCHRAC, using single particle reconstruction by negative stain electron microscopy. This structure shows an asymmetric 15 x 10 x 12 nm disk shape with several lobes protruding out of its surfaces. Based on the factors of larger contact area, smaller steric hindrance, and direct involvement of hCHRAC in interactions with the nucleosome, we propose that four lobes on one side form a multiple-site contact surface 10 nm in diameter for nucleosome binding. This work provides the first determination of the three-dimensional structure of the ISWI-family of chromatin remodeling complexes.

  2. Acute and chronic effects of gold nanoparticles on sperm parameters and chromatin structure in Mice

    PubMed Central

    Nazar, Mahsa; Talebi, Ali Reza; Hosseini Sharifabad, Mohammad; Abbasi, Abolghasem; Khoradmehr, Arezoo; Danafar, Amir Hossein

    2016-01-01

    Background: The particles in the range of 1-100 nm are called nanoparticles. Gold nanoparticle is one of the most important metal nanoparticles with wide usage. Objective: This study investigated the effects of gold nanoparticles on sperm parameters and chromatin structure in mice. Materials and Methods: In this experimental study, 72 male bulb-c mice were divided into 9 groups including: 4 Sham groups (Sc 1-4), 4 experimental groups (Au 1-4), and 1 control group (C). Experimental groups received 40 and 200 µg/kg/day soluble gold (Au) nano-particles for 7 and 35 days, by intra peritoneal injection, respectively. Sham groups were treated with 1.2 mM sodium citrate solution with 40 and 200 µg/kg/day doses for same days and control group did not receive any materials. Motility and Morphology of spermatozoa were analyzed. Chromatin quality was also evaluated using AB (Aniline blue), TB (Toluidine blue) and CMA3 (Chromomycin A3) staining methods. Results: The sperm analysis results showed that motility and morphology of sperm in experimental groups (especially in groups that have been treated for 35 days with nano-particles) had significant decrease in comparison with control group. TB, AB and CMA3 results showed a significant increase in abnormal spermatozoa from all Au-treated groups. Conclusion: Gold nano-particles firstly can reduce the sperm parameters such as motility and normal morphology and secondly affect sperm chromatin remodeling and cause the increase instability of chromatin and also increase the rate of sperm DNA damage. These deleterious effects were more obvious in maximum dose and chronic phase. PMID:27921087

  3. Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing

    PubMed Central

    Schor, Ignacio E.; Rascovan, Nicolás; Pelisch, Federico; Alló, Mariano; Kornblihtt, Alberto R.

    2009-01-01

    In search for physiological pathways affecting alternative splicing through its kinetic coupling with transcription, we found that membrane depolarization of neuronal cells triggers the skipping of exon 18 from the neural cell adhesion molecule (NCAM) mRNA, independently of the calcium/calmodulin protein kinase IV pathway. We show that this exon responds to RNA polymerase II elongation, because its inclusion is increased by a slow polymerase II mutant. Depolarization affects the chromatin template in a specific way, by causing H3K9 hyper-acetylation restricted to an internal region of the NCAM gene surrounding the alternative exon. This intragenic histone hyper-acetylation is not paralleled by acetylation at the promoter, is associated with chromatin relaxation, and is linked to H3K36 tri-methylation. The effects on acetylation and splicing fully revert when the depolarizing conditions are withdrawn and can be both duplicated and potentiated by the histone deacetylase inhibitor trichostatin A. Our results are consistent with a mechanism involving the kinetic coupling of splicing and transcription in response to depolarization through intragenic epigenetic changes on a gene that is relevant for the differentiation and function of neuronal cells. PMID:19251664

  4. Chromatin structure revealed by X-ray scattering analysis and computational modeling.

    PubMed

    Maeshima, Kazuhiro; Imai, Ryosuke; Hikima, Takaaki; Joti, Yasumasa

    2014-12-01

    It remains unclear how the 2m of human genomic DNA is organized in each cell. The textbook model has long assumed that the 11-nm-diameter nucleosome fiber (beads-on-a-string), in which DNA is wrapped around core histones, is folded into a 30-nm chromatin fiber. One of the classical models assumes that the 30-nm chromatin fiber is further folded helically to form a larger fiber. Small-angle X-ray scattering (SAXS) is a powerful method for investigating the bulk structure of interphase chromatin and mitotic chromosomes. SAXS can detect periodic structures in biological materials in solution. In our SAXS results, no structural feature larger than 11 nm was detected. Combining this with a computational analysis of "in silico condensed chromatin" made it possible to understand more about the X-ray scattering profiles and suggested that the chromatin in interphase nuclei and mitotic chromosomes essentially consists of irregularly folded nucleosome fibers lacking the 30-nm chromatin structure. In this article, we describe the experimental details of our SAXS and modeling systems. We also discuss other methods for investigating the chromatin structure in cells.

  5. High resolution genome-wide mapping of the primary structure of chromatin

    PubMed Central

    Zhang, Zhenhai; Pugh, B. Franklin

    2011-01-01

    The genomic organization of chromatin is increasingly recognized as a key regulator of cell behavior, but deciphering its regulation mechanisms requires detailed knowledge of chromatin’s primary structure - the assembly of nucleosomes throughout the genome. This Primer explains the principles for mapping and analyzing the primary organization of chromatin on a genomic scale. After introducing chromatin organization and its impact on gene regulation and human health, we then describe methods that detect nucleosome positioning and occupancy levels using chromatin-immunoprecipitation in combination with deep sequencing (ChIP-Seq), a strategy that is now straightforward and cost-efficient. We then explore current strategies for converting the sequence information into knowledge about chromatin, an exciting challenge for biologists and bioinformaticians. PMID:21241889

  6. Chromatin structure and pre-mRNA processing work together.

    PubMed

    Jimeno-González, Silvia; Reyes, José C

    2016-05-26

    Chromatin is the natural context for transcription elongation. However, the elongating RNA polymerase II (RNAPII) is forced to pause by the positioned nucleosomes present in gene bodies. Here, we briefly discuss the current results suggesting that those pauses could serve as a mechanism to coordinate transcription elongation with pre-mRNA processing. Further, histone post-translational modifications have been found to regulate the recruitment of factors involved in pre-mRNA processing. This view highlights the important regulatory role of the chromatin context in the whole process of the mature mRNA synthesis.

  7. Sperm Chromatin Immaturity Observed in Short Abstinence Ejaculates Affects DNA Integrity and Longevity In Vitro

    PubMed Central

    Salian, Sujith Raj; Kumar, Dayanidhi; Singh, Vikram Jeet; D’Souza, Fiona; Kalthur, Guruprasad; Kamath, Asha; Adiga, Satish Kumar

    2016-01-01

    Background The influence of ejaculatory abstinence (EA) on semen parameters and subsequent reproductive outcome is still debatable; hence understanding the impact of EA on sperm structural and functional integrity may provide a valuable information on predicting successful clinical outcome. Objective To understand the influence of EA on sperm chromatin maturity, integrity, longevity and global methylation status. Methods This experimental prospective study included 76 ejaculates from 19 healthy volunteers who provided ejaculates after observing 1, 3, 5 and 7 days of abstinence. Sperm chromatin maturity, DNA integrity and global methylation status were assessed in the neat ejaculate. Sperm motility, DNA integrity and longevity were assessed in the processed fraction of the fresh and frozen-thawed ejaculates to determine their association with the length of EA. Results Spermatozoa from 1 day ejaculatory abstinence (EA-1) displayed significantly higher level of sperm chromatin immaturity in comparison to EA-3 (P < 0.05) and EA-5 (P < 0.01) whereas; the number of 5-methyl cytosine immunostained spermatozoa did not vary significantly across groups. On the other hand, in vitro incubation of processed ejaculate from EA-1 resulted in approximately 20 and 40 fold increase in the DNA fragmented spermatozoa at the end of 6 and 24h respectively (P < 0.01–0.001). Conclusion Use of short-term EA for therapeutic fertilization would be a clinically valuable strategy to improve the DNA quality. However, use of such spermatozoa after prolonged incubation in vitro should be avoided as it can carry a substantial risk of transmitting DNA fragmentation to the oocytes. PMID:27043437

  8. Chromatin structure and gene expression changes associated with loss of MOP1 activity in Zea mays.

    PubMed

    Madzima, Thelma F; Huang, Ji; McGinnis, Karen M

    2014-07-01

    Though the mechanisms governing nuclear organization are not well understood, it is apparent that epigenetic modifications coordinately modulate chromatin organization as well as transcription. In maize, MEDIATOR OF PARAMUTATION1 (MOP1) is required for 24 nt siRNA-mediated epigenetic regulation and transcriptional gene silencing via a putative Pol IV- RdDM pathway. To elucidate the mechanisms of nuclear chromatin organization, we investigated the relationship between chromatin structure and transcription in response to loss of MOP1 function. We used a microarray based micrococcal nuclease sensitivity assay to identify genome-wide changes in chromatin structure in mop1-1 immature ears and observed an increase in chromatin accessibility at chromosome arms associated with loss of MOP1 function. Within the many genes misregulated in mop1 mutants, we identified one subset likely to be direct targets of epigenetic transcriptional silencing via Pol-IV RdDM. We found that target specificity for MOP1-mediated RdDM activity is governed by multiple signals that include accumulation of 24 nt siRNAs and the presence of specific classes of gene-proximal transposons, but neither of these attributes alone is sufficient to predict transcriptional misregulation in mop1-1 homozygous mutants. Our results suggest a role for MOP1 in regulation of higher-order chromatin organization where loss of MOP1 activity at a subset of loci triggers a broader cascade of transcriptional consequences and genome-wide changes in chromatin structure.

  9. Chromatin structure in bands and interbands of polytene chromosomes imaged by atomic force microscopy.

    PubMed

    de Grauw, C J; Avogadro, A; van den Heuvel, D J; vd Werf, K O; Otto, C; Kraan, Y; van Hulst, N F; Greve, J

    1998-01-01

    Polytene chromosomes from Drosophila melanogaster, observed from squash preparations, and chromosomes from Chironomus thummi thummi, investigated under physiological conditions, are imaged using an Atomic Force Microscope. Various chromatin fiber structures can be observed with high detail in fixed chromosomes and correspond to structures which are also observed in chromosomes of diploid cells. Unfixed chromosomes can be imaged in buffer and show less fiber-like details because of the inherent soft nature of the chromatin material.

  10. When TADs go bad: chromatin structure and nuclear organisation in human disease.

    PubMed

    Kaiser, Vera B; Semple, Colin A

    2017-01-01

    Chromatin in the interphase nucleus is organised as a hierarchical series of structural domains, including self-interacting domains called topologically associating domains (TADs). This arrangement is thought to bring enhancers into closer physical proximity with their target genes, which often are located hundreds of kilobases away in linear genomic distance. TADs are demarcated by boundary regions bound by architectural proteins, such as CTCF and cohesin, although much remains to be discovered about the structure and function of these domains. Recent studies of TAD boundaries disrupted in engineered mouse models show that boundary mutations can recapitulate human developmental disorders as a result of aberrant promoter-enhancer interactions in the affected TADs. Similar boundary disruptions in certain cancers can result in oncogene overexpression, and CTCF binding sites at boundaries appear to be hyper-mutated across cancers. Further insights into chromatin organisation, in parallel with accumulating whole genome sequence data for disease cohorts, are likely to yield additional valuable insights into the roles of noncoding sequence variation in human disease.

  11. Involvement of the SIN4 global transcriptional regulator in the chromatin structure of Saccharomyces cerevisiae.

    PubMed Central

    Jiang, Y W; Stillman, D J

    1992-01-01

    We have cloned and sequenced the SIN4 gene and determined that SIN4 is identical to TSF3, identified as a negative regulator of GAL1 gene transcription (S. Chen, R.W. West, Jr., S.L. Johnson, H. Gans, and J. Ma, submitted for publication). Yeast strains bearing a sin4 delta null mutation have been constructed and are temperature sensitive for growth and display defects in both negative and positive regulation of transcription. Transcription of the CTS1 gene is reduced in sin4 delta mutants, suggesting that Sin4 functions as a positive transcriptional regulator. Additionally, a Sin4-LexA fusion protein activates transcription from test promoters containing LexA binding sites. The sin4 delta mutant also shows phenotypes common to histone and spt mutants, including suppression of delta insertion mutations in the HIS4 and LYS2 promoters, expression of promoters lacking upstream activation sequence elements, and decreased superhelical density of circular DNA molecules. These results suggest that the sin4 delta mutation may alter the structure of chromatin, and these changes in chromatin structure may affect transcriptional regulation. Images PMID:1406639

  12. When TADs go bad: chromatin structure and nuclear organisation in human disease

    PubMed Central

    Kaiser, Vera B; Semple, Colin A

    2017-01-01

    Chromatin in the interphase nucleus is organised as a hierarchical series of structural domains, including self-interacting domains called topologically associating domains (TADs). This arrangement is thought to bring enhancers into closer physical proximity with their target genes, which often are located hundreds of kilobases away in linear genomic distance. TADs are demarcated by boundary regions bound by architectural proteins, such as CTCF and cohesin, although much remains to be discovered about the structure and function of these domains. Recent studies of TAD boundaries disrupted in engineered mouse models show that boundary mutations can recapitulate human developmental disorders as a result of aberrant promoter-enhancer interactions in the affected TADs. Similar boundary disruptions in certain cancers can result in oncogene overexpression, and CTCF binding sites at boundaries appear to be hyper-mutated across cancers. Further insights into chromatin organisation, in parallel with accumulating whole genome sequence data for disease cohorts, are likely to yield additional valuable insights into the roles of noncoding sequence variation in human disease.

  13. Nuclear pore proteins regulate chromatin structure and transcriptional memory by a conserved mechanism.

    PubMed

    Light, William H; Brickner, Jason H

    2013-01-01

    Previous experience alters the rate of transcriptional induction of many genes in yeast and this phenomenon persists through several cell division cycles. This phenomenon is called epigenetic transcriptional memory. For the yeast gene INO1, transcriptional memory requires a physical interaction with the nuclear pore complex (NPC) and changes in the chromatin structure of the promoter. These changes lead to binding of a preinitiation form of RNA Polymerase II (RNAPII) to the INO1 promoter, bypassing the need to recruit RNAPII to the promoter during reactivation. In our recent study, we found that in human cells, hundreds of interferon-γ responsive genes exhibit a mechanistically similar form of transcriptional memory. Transcriptional memory requires a homologous nuclear pore protein in yeast and humans, which interacts with the promoters of genes that exhibit transcriptional memory and promotes both alteration of chromatin structure and binding of RNAPII. Whereas the interaction of yeast genes with nuclear pore proteins occurs at the NPC, the interaction of human genes with nuclear pore proteins occurs in the nucleoplasm. Thus, the interaction of nuclear pore proteins with genes plays an important and conserved role in affecting long-term epigenetic changes in transcriptional regulation.

  14. Altered sperm chromatin structure in mice exposed to sodium fluoride through drinking water.

    PubMed

    Sun, Zilong; Niu, Ruiyan; Wang, Bin; Wang, Jundong

    2014-06-01

    This study investigated the effects of sodium fluoride (NaF) on sperm abnormality, sperm chromatin structure, protamine 1 and protamine 2 (P1 and P2) mRNA expression, and histones expression in sperm in male mice. NaF was orally administrated to male mice at 30, 70, and 150 mg/l for 49 days (more than one spermatogenic cycle). Sperm head and tail abnormalities were significantly enhanced at middle and high doses. Similarly, sperm chromatin structure was also adversely affected by NaF exposure, indicating DNA integrity damage. Furthermore, middle and high NaF significantly reduced the mRNA expressions of P1 and P2, and P1/P2 ratio, whereas the sperm histones level was increased, suggesting the abnormal histone-protamine replacement. Therefore, we concluded that the mechanism by which F induced mice sperm abnormality and DNA integrity damage may involved in the alterations in P1, P2, and histones expression in sperm of mice.

  15. Statistical mechanics of nucleosome ordering by chromatin-structure-induced two-body interactions.

    PubMed

    Chereji, Răzvan V; Tolkunov, Denis; Locke, George; Morozov, Alexandre V

    2011-05-01

    One-dimensional arrays of nucleosomes (DNA-bound histone octamers separated by stretches of linker DNA) fold into higher-order chromatin structures which ultimately make up eukaryotic chromosomes. Chromatin structure formation leads to 10-11 base pair (bp) discretization of linker lengths caused by the smaller free energy cost of packaging nucleosomes into regular chromatin fibers if their rotational setting (defined by the DNA helical twist) is conserved. We describe nucleosome positions along the fiber using a thermodynamic model of finite-size particles with both intrinsic histone-DNA interactions and an effective two-body potential. We infer one- and two-body energies directly from high-throughput maps of nucleosome positions. We show that higher-order chromatin structure helps explains in vitro and in vivo nucleosome ordering in transcribed regions, and plays a leading role in establishing well-known 10-11 bp genome-wide periodicity of nucleosome positions.

  16. Roles of pRB in the Regulation of Nucleosome and Chromatin Structures.

    PubMed

    Uchida, Chiharu

    2016-01-01

    Retinoblastoma protein (pRB) interacts with E2F and other protein factors to play a pivotal role in regulating the expression of target genes that induce cell cycle arrest, apoptosis, and differentiation. pRB controls the local promoter activity and has the ability to change the structure of nucleosomes and/or chromosomes via histone modification, epigenetic changes, chromatin remodeling, and chromosome organization. Functional inactivation of pRB perturbs these cellular events and causes dysregulated cell growth and chromosome instability, which are hallmarks of cancer cells. The role of pRB in regulation of nucleosome/chromatin structures has been shown to link to tumor suppression. This review focuses on the ability of pRB to control nucleosome/chromatin structures via physical interactions with histone modifiers and chromatin factors and describes cancer therapies based on targeting these protein factors.

  17. Roles of pRB in the Regulation of Nucleosome and Chromatin Structures

    PubMed Central

    2016-01-01

    Retinoblastoma protein (pRB) interacts with E2F and other protein factors to play a pivotal role in regulating the expression of target genes that induce cell cycle arrest, apoptosis, and differentiation. pRB controls the local promoter activity and has the ability to change the structure of nucleosomes and/or chromosomes via histone modification, epigenetic changes, chromatin remodeling, and chromosome organization. Functional inactivation of pRB perturbs these cellular events and causes dysregulated cell growth and chromosome instability, which are hallmarks of cancer cells. The role of pRB in regulation of nucleosome/chromatin structures has been shown to link to tumor suppression. This review focuses on the ability of pRB to control nucleosome/chromatin structures via physical interactions with histone modifiers and chromatin factors and describes cancer therapies based on targeting these protein factors. PMID:28101510

  18. Statistical mechanics of nucleosome ordering by chromatin-structure-induced two-body interactions

    NASA Astrophysics Data System (ADS)

    Chereji, Răzvan V.; Tolkunov, Denis; Locke, George; Morozov, Alexandre V.

    2011-05-01

    One-dimensional arrays of nucleosomes (DNA-bound histone octamers separated by stretches of linker DNA) fold into higher-order chromatin structures which ultimately make up eukaryotic chromosomes. Chromatin structure formation leads to 10-11 base pair (bp) discretization of linker lengths caused by the smaller free energy cost of packaging nucleosomes into regular chromatin fibers if their rotational setting (defined by the DNA helical twist) is conserved. We describe nucleosome positions along the fiber using a thermodynamic model of finite-size particles with both intrinsic histone-DNA interactions and an effective two-body potential. We infer one- and two-body energies directly from high-throughput maps of nucleosome positions. We show that higher-order chromatin structure helps explains in vitro and in vivo nucleosome ordering in transcribed regions, and plays a leading role in establishing well-known 10-11 bp genome-wide periodicity of nucleosome positions.

  19. Chromatin structure and dynamics in hot environments: architectural proteins and DNA topoisomerases of thermophilic archaea.

    PubMed

    Visone, Valeria; Vettone, Antonella; Serpe, Mario; Valenti, Anna; Perugino, Giuseppe; Rossi, Mosè; Ciaramella, Maria

    2014-09-25

    In all organisms of the three living domains (Bacteria, Archaea, Eucarya) chromosome-associated proteins play a key role in genome functional organization. They not only compact and shape the genome structure, but also regulate its dynamics, which is essential to allow complex genome functions. Elucidation of chromatin composition and regulation is a critical issue in biology, because of the intimate connection of chromatin with all the essential information processes (transcription, replication, recombination, and repair). Chromatin proteins include architectural proteins and DNA topoisomerases, which regulate genome structure and remodelling at two hierarchical levels. This review is focussed on architectural proteins and topoisomerases from hyperthermophilic Archaea. In these organisms, which live at high environmental temperature (>80 °C <113 °C), chromatin proteins and modulation of the DNA secondary structure are concerned with the problem of DNA stabilization against heat denaturation while maintaining its metabolic activity.

  20. Histone gene expression and chromatin structure in mammalian cell hybrids

    PubMed Central

    1980-01-01

    DNA isolated from mammalian cell nuclear reveals discrete size patterns when partially digested with micrococcal nuclease. The DNA repeat lengths from different tissues within a species or from different species may vary. These differences have been attributed to the presence of different species of histone H1. To examine the nature of regulation of DNA repeat lengths and their possible relationship to histone H1, we have selected several mouse and human cell lines that differ in their DNA repeat lengths and examined them and their cell hybrids. 24 mouse X human and five mouse X mouse hybrid cell lines were analyzed. All the interspecific hybrids exhibited the repeat pattern characteristic of the murine parent. The mouse intraspecific hybrids had a repeat pattern of only one of the parents. We conclude that the partial human chromosome complements retained in the hybrids assume the repeat lengths exhibited by the mouse cells. Because H1 histones have been implicated in the determination of DNA repeat lengths, we also investigated the regulation of H1 histone expression in these cell hybrids. Purified H1 histones were radioactively labeled in vitro, and individual subfractions were subjected to proteolysis followed by gel electrophoresis. The resulting partial peptide maps off H1 histone subfractions A and B were distinguishable from one another and from different cell lines. In the mouse X human hybrids analyzed, only the mouse H1 histones were detected. These observations were extended to H2b by analysis of the hybrid cell histone by Triton-acid-urea gels. Neither the DNA repeat length nor histone expression is affected by the presence of any specific human chromosome. The fact that human genes are expressed in these hybrids suggests that the H1 histones of one species is able to interact with the chromatin of another species in a biologically funtional conformation. Analysis of the intraspecific PG19 X B82 (mouse X mouse) hybrids reveals the presence of H1

  1. The Drosophila Mi-2 Chromatin-Remodeling Factor Regulates Higher-Order Chromatin Structure and Cohesin Dynamics In Vivo

    PubMed Central

    Fasulo, Barbara; Deuring, Renate; Murawska, Magdalena; Gause, Maria; Dorighi, Kristel M.; Schaaf, Cheri A.; Dorsett, Dale; Brehm, Alexander; Tamkun, John W.

    2012-01-01

    dMi-2 is a highly conserved ATP-dependent chromatin-remodeling factor that regulates transcription and cell fates by altering the structure or positioning of nucleosomes. Here we report an unanticipated role for dMi-2 in the regulation of higher-order chromatin structure in Drosophila. Loss of dMi-2 function causes salivary gland polytene chromosomes to lose their characteristic banding pattern and appear more condensed than normal. Conversely, increased expression of dMi-2 triggers decondensation of polytene chromosomes accompanied by a significant increase in nuclear volume; this effect is relatively rapid and is dependent on the ATPase activity of dMi-2. Live analysis revealed that dMi-2 disrupts interactions between the aligned chromatids of salivary gland polytene chromosomes. dMi-2 and the cohesin complex are enriched at sites of active transcription; fluorescence-recovery after photobleaching (FRAP) assays showed that dMi-2 decreases stable association of cohesin with polytene chromosomes. These findings demonstrate that dMi-2 is an important regulator of both chromosome condensation and cohesin binding in interphase cells. PMID:22912596

  2. The Global Relationship between Chromatin Physical Topology, Fractal Structure, and Gene Expression.

    PubMed

    Almassalha, L M; Tiwari, A; Ruhoff, P T; Stypula-Cyrus, Y; Cherkezyan, L; Matsuda, H; Dela Cruz, M A; Chandler, J E; White, C; Maneval, C; Subramanian, H; Szleifer, I; Roy, H K; Backman, V

    2017-01-24

    Most of what we know about gene transcription comes from the view of cells as molecular machines: focusing on the role of molecular modifications to the proteins carrying out transcriptional reactions at a loci-by-loci basis. This view ignores a critical reality: biological reactions do not happen in an empty space, but in a highly complex, interrelated, and dense nanoenvironment that profoundly influences chemical interactions. We explored the relationship between the physical nanoenvironment of chromatin and gene transcription in vitro. We analytically show that changes in the fractal dimension, D, of chromatin correspond to simultaneous increases in chromatin accessibility and compaction heterogeneity. Using these predictions, we demonstrate experimentally that nanoscopic changes to chromatin D within thirty minutes correlate with concomitant enhancement and suppression of transcription. Further, we show that the increased heterogeneity of physical structure of chromatin due to increase in fractal dimension correlates with increased heterogeneity of gene networks. These findings indicate that the higher order folding of chromatin topology may act as a molecular-pathway independent code regulating global patterns of gene expression. Since physical organization of chromatin is frequently altered in oncogenesis, this work provides evidence pairing molecular function to physical structure for processes frequently altered during tumorigenesis.

  3. SIR-nucleosome interactions: structure-function relationships in yeast silent chromatin.

    PubMed

    Oppikofer, Mariano; Kueng, Stephanie; Gasser, Susan M

    2013-09-15

    Discrete regions of the eukaryotic genome assume a heritable chromatin structure that is refractory to gene expression, referred to as heterochromatin or "silent" chromatin. Constitutively silent chromatin is found in subtelomeric domains in a number of species, ranging from yeast to man. In addition, chromatin-dependent repression of mating type loci occurs in both budding and fission yeasts, to enable sexual reproduction. The silencing of chromatin in budding yeast is characterized by an assembly of Silent Information Regulatory (SIR) proteins-Sir2, Sir3 and Sir4-with unmodified nucleosomes. Silencing requires the lysine deacetylase activity of Sir2, extensive contacts between Sir3 and the nucleosome, as well as interactions among the SIR proteins, to generate the Sir2-3-4 or SIR complex. Results from recent structural and reconstitution studies suggest an updated model for the ordered assembly and organization of SIR-dependent silent chromatin in yeast. Moreover, studies of subtelomeric gene expression reveal the importance of subtelomeric silent chromatin in the regulation of genes other than the silent mating type loci. This review covers recent advances in this field.

  4. The Global Relationship between Chromatin Physical Topology, Fractal Structure, and Gene Expression

    PubMed Central

    Almassalha, L. M.; Tiwari, A.; Ruhoff, P. T.; Stypula-Cyrus, Y.; Cherkezyan, L.; Matsuda, H.; Dela Cruz, M. A.; Chandler, J. E.; White, C.; Maneval, C.; Subramanian, H.; Szleifer, I.; Roy, H. K.; Backman, V.

    2017-01-01

    Most of what we know about gene transcription comes from the view of cells as molecular machines: focusing on the role of molecular modifications to the proteins carrying out transcriptional reactions at a loci-by-loci basis. This view ignores a critical reality: biological reactions do not happen in an empty space, but in a highly complex, interrelated, and dense nanoenvironment that profoundly influences chemical interactions. We explored the relationship between the physical nanoenvironment of chromatin and gene transcription in vitro. We analytically show that changes in the fractal dimension, D, of chromatin correspond to simultaneous increases in chromatin accessibility and compaction heterogeneity. Using these predictions, we demonstrate experimentally that nanoscopic changes to chromatin D within thirty minutes correlate with concomitant enhancement and suppression of transcription. Further, we show that the increased heterogeneity of physical structure of chromatin due to increase in fractal dimension correlates with increased heterogeneity of gene networks. These findings indicate that the higher order folding of chromatin topology may act as a molecular-pathway independent code regulating global patterns of gene expression. Since physical organization of chromatin is frequently altered in oncogenesis, this work provides evidence pairing molecular function to physical structure for processes frequently altered during tumorigenesis. PMID:28117353

  5. [Automated morphometric evaluation of the chromatin structure of liver cell nuclei after vagotomy].

    PubMed

    Butusova, N N; Zhukotskiĭ, A V; Sherbo, I V; Gribkov, E N; Dubovaia, T K

    1989-05-01

    The morphometric analysis of the interphase chromatine structure of the hepatic cells nuclei was carried out on the automated TV installation for the quantitative analysis of images "IBAS-2" (by the OPTON firm, the FRG) according to 50 optical and geometric parameters during various periods (1.2 and 4 weeks) after the vagotomy operation. It is determined that upper-molecular organisation of chromatine undergoes the biggest changes one week after operation, and changes of granular component are more informative than changes of the nongranular component (with the difference 15-20%). It was also revealed that chromatine components differ in tinctorial properties, which are evidently dependent on physicochemical characteristics of the chromatine under various functional conditions of the cell. As a result of the correlation analysis the group of morphometric indices of chromatine structure was revealed, which are highly correlated with level of transcription activity of chromatine during various terms after denervation. The correlation quotient of these parameters is 0.85-0.97. The summing up: vagus denervation of the liver causes changes in the morphofunctional organisation of the chromatine.

  6. Ectopic histone H3S10 phosphorylation causes chromatin structure remodeling in Drosophila.

    PubMed

    Deng, Huai; Bao, Xiaomin; Cai, Weili; Blacketer, Melissa J; Belmont, Andrew S; Girton, Jack; Johansen, Jørgen; Johansen, Kristen M

    2008-02-01

    Histones are subject to numerous post-translational modifications that correlate with the state of higher-order chromatin structure and gene expression. However, it is not clear whether changes in these epigenetic marks are causative regulatory factors in chromatin structure changes or whether they play a mainly reinforcing or maintenance role. In Drosophila phosphorylation of histone H3S10 in euchromatic chromatin regions by the JIL-1 tandem kinase has been implicated in counteracting heterochromatization and gene silencing. Here we show, using a LacI-tethering system, that JIL-1 mediated ectopic histone H3S10 phosphorylation is sufficient to induce a change in higher-order chromatin structure from a condensed heterochromatin-like state to a more open euchromatic state. This effect was absent when a ;kinase dead' LacI-JIL-1 construct without histone H3S10 phosphorylation activity was expressed. Instead, the 'kinase dead' construct had a dominant-negative effect, leading to a disruption of chromatin structure that was associated with a global repression of histone H3S10 phosphorylation levels. These findings provide direct evidence that the epigenetic histone tail modification of H3S10 phosphorylation at interphase can function as a causative regulator of higher-order chromatin structure in Drosophila in vivo.

  7. Radiation-induced DNA damage and chromatin structure

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    DNA lesions induced by ionizing radiation in cells are clustered and not randomly distributed. For low linear energy transfer (LET) radiation this clustering occurs mainly on the small scales of DNA molecules and nucleosomes. For example, experimental evidence suggests that both strands of DNA on the nucleosomal surface can be damaged in single events and that this damage occurs with a 10-bp modulation because of protection by histones. For high LET radiation, clustering also occurs on a larger scale and depends on chromatin organization. A particularly significant clustering occurs when an ionizing particle traverses the 30 nm chromatin fiber with generation of heavily damaged DNA regions with an average size of about 2 kbp. On an even larger scale, high LET radiation can produce several DNA double-strand breaks in closer proximity than expected from randomness. It is suggested that this increases the probability of misrejoining of DNA ends and generation of lethal chromosome aberrations.

  8. Hypoxia-induced and stress-specific changes in chromatin structure and function

    PubMed Central

    Johnson, Amber Buescher; Barton, Michelle Craig

    2007-01-01

    Cellular adaptation to stress relies on specific, regulated responses to evoke changes in gene expression. Stresses such as hypoxia, heat shock, oxidative stress and DNA-damage activate signaling cascades that ultimately lead to either induction or repression of stress-responsive genes. In this review, we concentrate on the mechanisms by which stress-induced signaling promotes alterations in chromatin structure, whether the read-out is activation or repression of transcription. Specific alterations in chromatin are highly regulated and dictated by the type of imposed stress. Our primary focus is on the types of chromatin alterations that occur under hypoxic conditions, which exist within a majority of tumors, and to compare these to changes in chromatin structure that occur in response to a wide variety of cellular stresses. PMID:17292925

  9. [Chromatin structure, heterochromatin, and transposable genetic elements--are they from one team?].

    PubMed

    Leĭbovich, B A

    2002-01-01

    Gene content proved to be less than expected in completely sequenced eukaryotic genomes. Moreover, gene number differs only three times between such distant organisms as human and Drosophila. Hence it is likely that the essential functional and structural differences between the two species mostly depend on the regulation of gene activity than on the set and quality of genes themselves. New data demonstrate that changes in chromatin structure play a greater role in the fine gene activity regulation than considered before. R.B. Khesin had foresaw many chromatin functions that only recently came to be recognized. Khesin was interested in genome inconstancy over his last years. A higher content of several important chromosomal proteins was recently revealed in chromatin of transposable genetic elements (TGE). The possible role of TGE in chromatin organization in the nucleus is considered.

  10. Role of ATRX in chromatin structure and function: implications for chromosome instability and human disease

    PubMed Central

    De La Fuente, Rabindranath; Baumann, Claudia; Viveiros, Maria M

    2011-01-01

    Functional differentiation of chromatin structure is essential for the control of gene expression, nuclear architecture, and chromosome stability. Compelling evidence indicates that alterations in chromatin remodeling proteins play an important role in the pathogenesis of human disease. Among these, α-thalassemia mental retardation X-linked protein (ATRX) has recently emerged as a critical factor involved in heterochromatin formation at mammalian centromeres and telomeres as well as facultative heterochromatin on the murine inactive X chromosome. Mutations in human ATRX result in an X-linked neurodevelopmental condition with various degrees of gonadal dysgenesis (ATRX syndrome). Patients with ATRX syndrome may exhibit skewed X chromosome inactivation (XCI) patterns, and ATRX-deficient mice exhibit abnormal imprinted XCI in the trophoblast cell line. Non-random or skewed XCI can potentially affect both the onset and severity of X-linked disease. Notably, failure to establish epigenetic modifications associated with the inactive X chromosome (Xi) results in several conditions that exhibit genomic and chromosome instability such as fragile X syndrome as well as cancer development. Insight into the molecular mechanisms of ATRX function and its interacting partners in different tissues will no doubt contribute to our understanding of the pathogenesis of ATRX syndrome as well as the epigenetic origins of aneuploidy. In turn, this knowledge will be essential for the identification of novel drug targets and diagnostic tools for cancer progression as well as the therapeutic management of global epigenetic changes commonly associated with malignant neoplastic transformation. PMID:21653732

  11. Synthetic CpG islands reveal DNA sequence determinants of chromatin structure

    PubMed Central

    Wachter, Elisabeth; Quante, Timo; Merusi, Cara; Arczewska, Aleksandra; Stewart, Francis; Webb, Shaun; Bird, Adrian

    2014-01-01

    The mammalian genome is punctuated by CpG islands (CGIs), which differ sharply from the bulk genome by being rich in G + C and the dinucleotide CpG. CGIs often include transcription initiation sites and display ‘active’ histone marks, notably histone H3 lysine 4 methylation. In embryonic stem cells (ESCs) some CGIs adopt a ‘bivalent’ chromatin state bearing simultaneous ‘active’ and ‘inactive’ chromatin marks. To determine whether CGI chromatin is developmentally programmed at specific genes or is imposed by shared features of CGI DNA, we integrated artificial CGI-like DNA sequences into the ESC genome. We found that bivalency is the default chromatin structure for CpG-rich, G + C-rich DNA. A high CpG density alone is not sufficient for this effect, as A + T-rich sequence settings invariably provoke de novo DNA methylation leading to loss of CGI signature chromatin. We conclude that both CpG-richness and G + C-richness are required for induction of signature chromatin structures at CGIs. DOI: http://dx.doi.org/10.7554/eLife.03397.001 PMID:25259796

  12. Modification of Chromatin Structure by the Thyroid Hormone Receptor.

    PubMed

    Li; Sachs; Shi; Wolffe

    1999-05-01

    Pioneering experiments and recent observations have established the thyroid hormone receptor as a master manipulator of the chromosomal environment in targeting the activation and repression of transcription. Here we review how the thyroid hormone receptor is assembled into chromatin, where in the absence of thyroid hormone the receptor recruits histone deacetylase to silence transcription. On addition of hormone, the receptor undergoes a conformational change that leads to the release of deacetylase, while facilitating the recruitment of transcriptional coactivators that act as histone acetyltransferases. We discuss the biological importance of these observations for gene control by the thyroid hormone receptor and for oncogenic transformation by the mutated thyroid hormone receptor, v-ErbA.

  13. Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure

    PubMed Central

    Nishino, Yoshinori; Eltsov, Mikhail; Joti, Yasumasa; Ito, Kazuki; Takata, Hideaki; Takahashi, Yukio; Hihara, Saera; Frangakis, Achilleas S; Imamoto, Naoko; Ishikawa, Tetsuya; Maeshima, Kazuhiro

    2012-01-01

    How a long strand of genomic DNA is compacted into a mitotic chromosome remains one of the basic questions in biology. The nucleosome fibre, in which DNA is wrapped around core histones, has long been assumed to be folded into a 30-nm chromatin fibre and further hierarchical regular structures to form mitotic chromosomes, although the actual existence of these regular structures is controversial. Here, we show that human mitotic HeLa chromosomes are mainly composed of irregularly folded nucleosome fibres rather than 30-nm chromatin fibres. Our comprehensive and quantitative study using cryo-electron microscopy and synchrotron X-ray scattering resolved the long-standing contradictions regarding the existence of 30-nm chromatin structures and detected no regular structure >11 nm. Our finding suggests that the mitotic chromosome consists of irregularly arranged nucleosome fibres, with a fractal nature, which permits a more dynamic and flexible genome organization than would be allowed by static regular structures. PMID:22343941

  14. Structural hierarchy of chromatin in chicken erythrocyte nuclei based on small-angle neutron scattering: Fractal nature of the large-scale chromatin organization

    SciTech Connect

    Lebedev, D. V. Filatov, M. V.; Kuklin, A. I.; Islamov, A. Kh.; Stellbrink, J.; Pantina, R. A.; Denisov, Yu. Yu.; Toperverg, B. P.; Isaev-Ivanov, V. V.

    2008-01-15

    The chromatin organization in chicken erythrocyte nuclei was studied by small-angle neutron scattering in the scattering-vector range from 1.5 x 10{sup -1} to 10{sup -4} A{sup -1} with the use of the contrast-variation technique. This scattering-vector range corresponds to linear dimensions from 4 nm to 6 {mu}m and covers the whole hierarchy of chromatin structures, from the nucleosomal structure to the entire nucleus. The results of the present study allowed the following conclusions to be drawn: (1) both the chromatin-protein structure and the structure of the nucleic acid component in chicken erythrocyte nuclei have mass-fractal properties, (2) the structure of the protein component of chromatin exhibits a fractal behavior on scales extending over two orders of magnitude, from the nucleosomal size to the size of an entire nucleus, and (3) the structure of the nucleic acid component of chromatin in chicken erythrocyte nuclei is likewise of a fractal nature and has two levels of organization or two phases with the crossover point at about 300-400 nm.

  15. Chromatin Structure Following UV-Induced DNA Damage—Repair or Death?

    PubMed Central

    Farrell, Andrew W.; Halliday, Gary M.; Lyons, James Guy

    2011-01-01

    In eukaryotes, DNA is compacted into a complex structure known as chromatin. The unravelling of DNA is a crucial step in DNA repair, replication, transcription and recombination as this allows access to DNA for these processes. Failure to package DNA into the nucleosome, the individual unit of chromatin, can lead to genomic instability, driving a cell into apoptosis, senescence, or cellular proliferation. Ultraviolet (UV) radiation damage causes destabilisation of chromatin integrity. UV irradiation induces DNA damage such as photolesions and subjects the chromatin to substantial rearrangements, causing the arrest of transcription forks and cell cycle arrest. Highly conserved processes known as nucleotide and base excision repair (NER and BER) then begin to repair these lesions. However, if DNA repair fails, the cell may be forced into apoptosis. The modification of various histones as well as nucleosome remodelling via ATP-dependent chromatin remodelling complexes are required not only to repair these UV-induced DNA lesions, but also for apoptosis signalling. Histone modifications and nucleosome remodelling in response to UV also lead to the recruitment of various repair and pro-apoptotic proteins. Thus, the way in which a cell responds to UV irradiation via these modifications is important in determining its fate. Failure of these DNA damage response steps can lead to cellular proliferation and oncogenic development, causing skin cancer, hence these chromatin changes are critical for a proper response to UV-induced injury. PMID:22174650

  16. Telomere Chromatin Condensation Assay (TCCA): a novel approach to study structural telomere integrity.

    PubMed

    Gonzalez-Vasconcellos, Iria; Alonso-Rodríguez, Silvia; López-Baltar, Isidoro; Fernández, José Luis

    2015-01-01

    Telomeres, the DNA-protein complexes located at the end of linear eukaryotic chromosomes are essential for genome stability. Improper higher-order chromatin organization at the chromosome ends can give rise to telomeric recombination and genomic instability. We report the development of an assay to quantify differences in the condensation of telomeric chromatin, thereby offering new opportunities to study telomere biology and stability. We have combined a DNA nuclease digestion with a quantitative PCR (qPCR) assay of telomeric DNA, which we term the Telomere Chromatin Condensation Assay (TCCA). By quantifying the relative quantities of telomeric DNA that are progressively digested with the exonuclease Bal 31 the method can discriminate between different levels of telomeric chromatin condensation. The structural chromatin packaging at telomeres shielded against exonuclease digestion delivered an estimate, which we term Chromatin Protection Factor (CPF) that ranged from 1.7 to 2.3 fold greater than that present in unpacked DNA. The CPF was significantly decreased when cell cultures were incubated with the DNA hypomethylating agent 5-azacytidine, demonstrating the ability of the TCCA assay to discriminate between packaging levels of telomeric DNA.

  17. Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template

    PubMed Central

    Hu, Yan; Kireev, Igor; Plutz, Matt; Ashourian, Nazanin

    2009-01-01

    The structure of interphase chromosomes, and in particular the changes in large-scale chromatin structure accompanying transcriptional activation, remain poorly characterized. Here we use light microscopy and in vivo immunogold labeling to directly visualize the interphase chromosome conformation of 1–2 Mbp chromatin domains formed by multi-copy BAC transgenes containing 130–220 kb of genomic DNA surrounding the DHFR, Hsp70, or MT gene loci. We demonstrate near-endogenous transcription levels in the context of large-scale chromatin fibers compacted nonuniformly well above the 30-nm chromatin fiber. An approximately 1.5–3-fold extension of these large-scale chromatin fibers accompanies transcriptional induction and active genes remain mobile. Heat shock–induced Hsp70 transgenes associate with the exterior of nuclear speckles, with Hsp70 transcripts accumulating within the speckle. Live-cell imaging reveals distinct dynamic events, with Hsp70 transgenes associating with adjacent speckles, nucleating new speckles, or moving to preexisting speckles. Our results call for reexamination of classical models of interphase chromosome organization. PMID:19349581

  18. Multimerization of Drosophila sperm protein Mst77F causes a unique condensed chromatin structure

    PubMed Central

    Kost, Nils; Kaiser, Sophie; Ostwal, Yogesh; Riedel, Dietmar; Stützer, Alexandra; Nikolov, Miroslav; Rathke, Christina; Renkawitz-Pohl, Renate; Fischle, Wolfgang

    2015-01-01

    Despite insights on the cellular level, the molecular details of chromatin reorganization in sperm development, which involves replacement of histone proteins by specialized factors to allow ultra most condensation of the genome, are not well understood. Protamines are dispensable for DNA condensation during Drosophila post-meiotic spermatogenesis. Therefore, we analyzed the interaction of Mst77F, another very basic testis-specific protein with chromatin and DNA as well as studied the molecular consequences of such binding. We show that Mst77F on its own causes severe chromatin and DNA aggregation. An intrinsically unstructured domain in the C-terminus of Mst77F binds DNA via electrostatic interaction. This binding results in structural reorganization of the domain, which induces interaction with an N-terminal region of the protein. Via putative cooperative effects Mst77F is induced to multimerize in this state causing DNA aggregation. In agreement, overexpression of Mst77F results in chromatin aggregation in fly sperm. Based on these findings we postulate that Mst77F is crucial for sperm development by giving rise to a unique condensed chromatin structure. PMID:25735749

  19. Analysis of chromatin structure in mouse preimplantation embryos by fluorescent recovery after photobleaching

    PubMed Central

    Ooga, Masatoshi; Fulka, Helena; Hashimoto, Satoshi; Suzuki, Masataka G.; Aoki, Fugaku

    2016-01-01

    Abstract Zygotes are totipotent cells that have the ability to differentiate into all cell types. It is believed that this ability is lost gradually and differentiation occurs along with the progression of preimplantation development. Here, we hypothesized that the loose chromatin structure is involved in the totipotency of one-cell stage embryos and that the change from loose to tight chromatin structure is associated with the loss of totipotency. To address this hypothesis, we investigated the mobility of eGFP-tagged histone H2B (eGFP-H2B), which is an index for the looseness of chromatin, during preimplantation development based on fluorescent recovery after photobleaching (FRAP) analysis. The highest mobility of eGFP-H2B was observed in pronuclei in 1-cell stage embryos and mobility gradually decreased during preimplantation development. The decrease in mobility between the 1- and 2-cell stages depended on DNA synthesis in 2-cell stage embryos. In nuclear transferred embryos, chromatin in the pseudopronuclei loosened to a level comparable to the pronuclei in 1-cell stage embryos. These results indicated that the mobility of eGFP-H2B is negatively correlated with the degree of differentiation of preimplantation embryos. Therefore, we suggest that highly loosened chromatin is involved in totipotency of 1-cell embryos and the loss of looseness is associated with differentiation during preimplantation development. PMID:26901819

  20. Hypothesis for the influence of fixatives on the chromatin patterns of interphase nuclei, based on shrinkage and retraction of nuclear and perinuclear structures.

    PubMed

    Bignold, L P

    2002-01-01

    Nuclear chromatin patterns are used to distinguish normal and abnormal cells in histopathology and cytopathology. However, many chromatin pattern features are affected by aspects of tissue processing, especially fixation. Major effects of aldehyde and/or ethanol fixation on nuclei in the living state include shrinkage, chromatin aggregation and production of a 'chromatinic rim'. The mechanisms of these effects are poorly understood. In the past, possible mechanisms of fixation-induced morphological change have been considered only in terms of the theoretical model of the nucleus, which involves only a random tangle of partly unfolded chromosomes contained within the nuclear membrane. Such a model provides no basis for chromatin to be associated with the nuclear envelope, and hence no obvious clue to a mechanism for the formation of the 'chromatinic rim' in fixed nuclei. In recent years, two new models of nuclear structure have been described. The nuclear membrane-bound, chromosomal-domain model is based on the discoveries of chromatin-nuclear membrane attachments and of the localisation of the chromatin of each chromosome within discrete, exclusive parts of the nucleus (the 'domain' of each partly unfolded chromosome). The nuclear matrix/scaffold model is based on the discovery of relatively insoluble proteins in nuclei, which it suggests forms a 'matrix' and modulates gene expression by affecting transcription of DNA. Here, a hypothesis for fixation-associated chromatin pattern formation based mainly on the first model but partially relying on the second, is presented. The hypothesis offers explanations of the variations of appearance of nuclei according to fixation (especially air-drying versus wet-fixation with formaldehyde, glutaraldehyde or ethanol); the appearances of the nuclei of more metabolically active versus less metabolically active cells of the same type; the appearances of nuclei after fixation with osmium tetroxide; and of the marked central

  1. Binding of DNA-bending non-histone proteins destabilizes regular 30-nm chromatin structure

    PubMed Central

    Bajpai, Gaurav; Jain, Ishutesh; Inamdar, Mandar M.; Das, Dibyendu; Padinhateeri, Ranjith

    2017-01-01

    Why most of the in vivo experiments do not find the 30-nm chromatin fiber, well studied in vitro, is a puzzle. Two basic physical inputs that are crucial for understanding the structure of the 30-nm fiber are the stiffness of the linker DNA and the relative orientations of the DNA entering/exiting nucleosomes. Based on these inputs we simulate chromatin structure and show that the presence of non-histone proteins, which bind and locally bend linker DNA, destroys any regular higher order structures (e.g., zig-zag). Accounting for the bending geometry of proteins like nhp6 and HMG-B, our theory predicts phase-diagram for the chromatin structure as a function of DNA-bending non-histone protein density and mean linker DNA length. For a wide range of linker lengths, we show that as we vary one parameter, that is, the fraction of bent linker region due to non-histone proteins, the steady-state structure will show a transition from zig-zag to an irregular structure—a structure that is reminiscent of what is observed in experiments recently. Our theory can explain the recent in vivo observation of irregular chromatin having co-existence of finite fraction of the next-neighbor (i + 2) and neighbor (i + 1) nucleosome interactions. PMID:28135276

  2. The formation and modification of chromatin-like structure of human parvovirus B19 regulate viral genome replication and RNA processing.

    PubMed

    Xu, Huanzhou; Hao, Sujuan; Zhang, Junmei; Chen, Zhen; Wang, Hanzhong; Guan, Wuxiang

    2017-03-02

    B19 virus (B19V) is a single stranded virus in the genus of Erythroparvovirus in the family of Parvoviridae. One of the limiting steps of B19V infection is the replication of viral genome which affected the alternative processing of its RNA. Minute virus of mice (MVM) and adeno-associated virus (AAV) have been reported to form chromatin-like structure within hours after infection of cells. However, the role of chromatin-like structure is unclear. In the present study, we found that B19V formed chromatin-like structure after 12hours when B19V infectious clone was co-transfected with pHelper plasmid to HEK293T cells. Interestingly, the inhibitor of DNA methyl-transferase (5-Aza-2'-deoxycytidine, DAC) inhibited not only the formation of chromatin-like structure, but also the replication of the viral genomic DNA. More importantly, the splicing of the second intron at splice acceptor sites (A2-1, and A2-2) were reduced and polyadenylation at (pA)p increased when transfected HEK293T cells were treated with DAC. Our results showed that the formation and modification of chromatin-like structure is a new layer to regulate B19V gene expression and RNA processing.

  3. Structural studies of chromatin and chromosomes. Progress report, March 15--September 15, 1997

    SciTech Connect

    Bradbury, E.M.

    1997-11-01

    This study focused on the following: (1) the structure of chromatin and chromosomes by neutron and x-ray scatter and atomic force microscope; (2) the architecture of human sperm and the structure of sperm by atomic force microscopy (AFM); (3) genome-architecture and higher-order structures in human sperm nuclei; and (4) the effects of histone modifications on the structure of nucleosomes by protein DNA crosslinking method.

  4. Reshaping chromatin after DNA damage: the choreography of histone proteins.

    PubMed

    Polo, Sophie E

    2015-02-13

    DNA damage signaling and repair machineries operate in a nuclear environment where DNA is wrapped around histone proteins and packaged into chromatin. Understanding how chromatin structure is restored together with the DNA sequence during DNA damage repair has been a topic of intense research. Indeed, chromatin integrity is central to cell functions and identity. However, chromatin shows remarkable plasticity in response to DNA damage. This review presents our current knowledge of chromatin dynamics in the mammalian cell nucleus in response to DNA double strand breaks and UV lesions. I provide an overview of the key players involved in regulating histone dynamics in damaged chromatin regions, focusing on histone chaperones and their concerted action with histone modifiers, chromatin remodelers and repair factors. I also discuss how these dynamics contribute to reshaping chromatin and, by altering the chromatin landscape, may affect the maintenance of epigenetic information.

  5. Human cytomegalovirus IE1 protein alters the higher-order chromatin structure by targeting the acidic patch of the nucleosome.

    PubMed

    Fang, Qianglin; Chen, Ping; Wang, Mingzhu; Fang, Junnan; Yang, Na; Li, Guohong; Xu, Rui-Ming

    2016-01-26

    Human cytomegalovirus (hCMV) immediate early 1 (IE1) protein associates with condensed chromatin of the host cell during mitosis. We have determined the structure of the chromatin-tethering domain (CTD) of IE1 bound to the nucleosome core particle, and discovered that IE1-CTD specifically interacts with the H2A-H2B acidic patch and impairs the compaction of higher-order chromatin structure. Our results suggest that IE1 loosens up the folding of host chromatin during hCMV infections.

  6. Stress Induces Changes in the Phosphorylation of Trypanosoma cruzi RNA Polymerase II, Affecting Its Association with Chromatin and RNA Processing

    PubMed Central

    Rocha, Antônio Augusto; Moretti, Nilmar Silvio

    2014-01-01

    The phosphorylation of the carboxy-terminal heptapeptide repeats of the largest subunit of RNA polymerase II (Pol II) controls several transcription-related events in eukaryotes. Trypanosomatids lack these typical repeats and display an unusual transcription control. RNA Pol II associates with the transcription site of the spliced leader (SL) RNA, which is used in the trans-splicing of all mRNAs transcribed on long polycistronic units. We found that Trypanosoma cruzi RNA Pol II associated with chromatin is highly phosphorylated. When transcription is inhibited by actinomycin D, the enzyme runs off from SL genes, remaining hyperphosphorylated and associated with polycistronic transcription units. Upon heat shock, the enzyme is dephosphorylated and remains associated with the chromatin. Transcription is partially inhibited with the accumulation of housekeeping precursor mRNAs, except for heat shock genes. DNA damage caused dephosphorylation and transcription arrest, with RNA Pol II dissociating from chromatin although staying at the SL. In the presence of calyculin A, the hyperphosphorylated form detached from chromatin, including the SL loci. These results indicate that in trypanosomes, the unusual RNA Pol II is phosphorylated during the transcription of SL and polycistronic operons. Different types of stresses modify its phosphorylation state, affecting pre-RNA processing. PMID:24813189

  7. Gibberellin-induced change in the structure of chromatin in wheat sprouts: decrease in the accessibility of DNA in preparations of soluble chromatin to the action of EcoRII methylase

    SciTech Connect

    Noskov, V.A.; Kintsurashvili, L.N.; Smirnova, T.A.; Manamsh'yan, T.A.; Kir'yanov, G.I.; Vanyushin, B.F.

    1986-05-20

    A method has been perfected for producing soluble chromatin from whole wheat sprouts at low ionic strength. The chromatin preparations isolated possess a native structure: they have a nucleosome organization. Under identical conditions the soluble wheat chromatin undergoes more profound degradation by DNase I and staphylococcal nuclease than the chromatin from the rat liver. The DNA contained in the isolated chromatin is capable of accepting CHnumber groups from S-(methyl-/sup 3/H)-adenosylmethionine during incubation with DNA methylase EcoRII; not all the CC A/T GG sequences in DNA are methylated in vivo. Chromatin from gibberellin A/sub 3/-treated wheat sprout DNA accepts 40% fewer CH/sub 3/ groups than that from the control sprouts, which is probably due to the greater compactness of the chromatin. In the case of longer incubation, the level of methylation of the chromatin falls, which may be associated with the presence of DNA-demethylating activity.

  8. Mathematical model of the chromatin structure of the nuclei of blood cells

    NASA Astrophysics Data System (ADS)

    Nikitaev, V. G.; Nagornov, O. V.; Pronichev, A. N.; Dmitrieva, V. V.; Polyakov, E. V.

    2017-01-01

    This paper describes the model of images of the nuclei of blood cells for research informative texture features in the diagnostics of acute leukemias on the basis of computer microscopy. The proposed model allows to simulate the structure of chromatin and factors distorting the signal in the formation of image.

  9. Direct evidence for SIR2 modulation of chromatin structure in yeast rDNA.

    PubMed Central

    Fritze, C E; Verschueren, K; Strich, R; Easton Esposito, R

    1997-01-01

    The yeast SIR2 gene maintains inactive chromatin domains required for transcriptional repression at the silent mating-type loci and telomeres. We previously demonstrated that SIR2 also acts to repress mitotic and meiotic recombination between the tandem ribosomal RNA gene array (rDNA). Here we address whether rDNA chromatin structure is altered by loss of SIR2 function by in vitro and in vivo assays of sensitivity to micrococcal nuclease and dam methyltransferase, respectively, and present the first chromatin study that maps sites of SIR2 action within the rDNA locus. Control studies at the MAT alpha locus also revealed a previously undetected MNase-sensitive site at the a1-alpha 2 divergent promoter which is protected in sir2 mutant cells by the derepressed a1-alpha 2 regulator. In rDNA, SIR2 is required for a more closed chromatin structure in two regions: SRR1, the major SIR-Responsive Region in the non-transcribed spacer, and SRR2, in the 18S rRNA coding region. None of the changes in rDNA detected in sir2 mutants are due to the presence of the a1-alpha 2 repressor. Reduced recombination in the rDNA correlates with a small, reproducible transcriptional silencing position effect. Deletion and overexpression studies demonstrate that SIR2, but not SIR1, SIR3 or SIR4, is required for this rDNA position effect. Significantly, rDNA transcriptional silencing and rDNA chromatin accessibility respond to SIR2 dosage, indicating that SIR2 is a limiting component required for chromatin modeling in rDNA. PMID:9351831

  10. Chromatin insulator bodies are nuclear structures that form in response to osmotic stress and cell death

    PubMed Central

    Schoborg, Todd; Rickels, Ryan; Barrios, Josh

    2013-01-01

    Chromatin insulators assist in the formation of higher-order chromatin structures by mediating long-range contacts between distant genomic sites. It has been suggested that insulators accomplish this task by forming dense nuclear foci termed insulator bodies that result from the coalescence of multiple protein-bound insulators. However, these structures remain poorly understood, particularly the mechanisms triggering body formation and their role in nuclear function. In this paper, we show that insulator proteins undergo a dramatic and dynamic spatial reorganization into insulator bodies during osmostress and cell death in a high osmolarity glycerol–p38 mitogen-activated protein kinase–independent manner, leading to a large reduction in DNA-bound insulator proteins that rapidly repopulate chromatin as the bodies disassemble upon return to isotonicity. These bodies occupy distinct nuclear territories and contain a defined structural arrangement of insulator proteins. Our findings suggest insulator bodies are novel nuclear stress foci that can be used as a proxy to monitor the chromatin-bound state of insulator proteins and provide new insights into the effects of osmostress on nuclear and genome organization. PMID:23878275

  11. Superresolution imaging reveals structurally distinct periodic patterns of chromatin along pachytene chromosomes

    PubMed Central

    Fournier, David; Redl, Stefan; Best, Gerrit; Borsos, Máté; Tiwari, Vijay K.; Tachibana-Konwalski, Kikuë; Ketting, René F.; Parekh, Sapun H.; Cremer, Christoph; Birk, Udo J.

    2015-01-01

    During meiosis, homologous chromosomes associate to form the synaptonemal complex (SC), a structure essential for fertility. Information about the epigenetic features of chromatin within this structure at the level of superresolution microscopy is largely lacking. We combined single-molecule localization microscopy (SMLM) with quantitative analytical methods to describe the epigenetic landscape of meiotic chromosomes at the pachytene stage in mouse oocytes. DNA is found to be nonrandomly distributed along the length of the SC in condensed clusters. Periodic clusters of repressive chromatin [trimethylation of histone H3 at lysine (Lys) 27 (H3K27me3)] are found at 500-nm intervals along the SC, whereas one of the ends of the SC displays a large and dense cluster of centromeric histone mark [trimethylation of histone H3 at Lys 9 (H3K9me3)]. Chromatin associated with active transcription [trimethylation of histone H3 at Lys 4 (H3K4me3)] is arranged in a radial hair-like loop pattern emerging laterally from the SC. These loops seem to be punctuated with small clusters of H3K4me3 with an average spread larger than their periodicity. Our findings indicate that the nanoscale structure of the pachytene chromosomes is constrained by periodic patterns of chromatin marks, whose function in recombination and higher order genome organization is yet to be elucidated. PMID:26561583

  12. Structure of the CENP-A nucleosome and its implications for centromeric chromatin architecture.

    PubMed

    Tachiwana, Hiroaki; Kurumizaka, Hitoshi

    2011-01-01

    Centromeres are dictated by the epigenetic inheritance of the centromeric nucleosome containing the centromere-specific histone H3 variant, CENP-A. The structure of the CENP-A nucleosome has been considered to be the fundamental architecture of the centromeric chromatin. Controversy exists in the literature regarding the CENP-A nucleosome structures, with octasome, hemisome, compact octasome, hexasome, and tetrasome models being reported. Some of these CENP-A nucleosome models may correspond to transient intermediates for the assembly of the mature CENP-A nucleosome; however, their significances are still unclear. Therefore, the structure of the mature CENP-A nucleosome has been eagerly awaited. We reconstituted the human CENP-A nucleosome with its cognate centromeric DNA fragment, and determined its crystal structure. In this review, we describe the structure and the physical properties of the CENP-A nucleosome, and discuss their implications for centromeric chromatin architecture.

  13. Low 17beta-estradiol levels in CNR1 knock-out mice affect spermatid chromatin remodeling by interfering with chromatin reorganization.

    PubMed

    Cacciola, Giovanna; Chioccarelli, Teresa; Altucci, Lucia; Ledent, Catherine; Mason, J Ian; Fasano, Silvia; Pierantoni, Riccardo; Cobellis, Gilda

    2013-06-01

    The type 1-cannabinoid receptor, CNR1, regulates differentiation of spermatids. Indeed, we have recently reported that the genetic inactivation of Cnr1 in mice influenced chromatin remodeling of spermatids, by reducing histone displacement and then sperm chromatin quality indices (chromatin condensation and DNA integrity). Herein, we have studied, at both central and testicular levels, the molecular signals potentially involved in histone displacement. In particular, investigation of the neuroendocrine axis involved in estrogen production demonstrated down-regulation of the axis supporting FSH/estrogen secretion in Cnr1-knockout male mice. Conversely, Cnr1-knockout male mice treated with 17beta-estradiol showed a weak increase of pituitary Fsh-beta subunit mRNA levels and a rescue of sperm chromatin quality indices demonstrating that estrogens, possibly in combination with FSH secretion, play an important role in regulating chromatin remodeling of spermatids.

  14. Local chromatin structure of heterochromatin regulates repeated DNA stability, nucleolus structure, and genome integrity

    SciTech Connect

    Peng, Jamy C.

    2007-01-01

    Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) that binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in

  15. Community structure affects behavior.

    PubMed

    Jaenson, C

    1991-06-01

    AID's prevention efforts can benefit from taking into account 5 main aspects (KEPRA) of community structure identified by anthropologists: 1) kinship patterns, 2) economics, 3) politics, 4) religion, and 5) associations. For example, in Uganda among the Basoga and paternal aunt or senga is responsible for female sex education. Such culturally determined patterns need to be targeted in order to enhance education and effectiveness. Economics can reflect differing systems of family support through sexual means. The example given involves a poor family with a teenager in Thailand who exchanges a water buffalo or basic necessity for this daughter's prostitution. Politics must be considered because every society identifies people who have the power to persuade, influence, exchange resources, coerce, or in some way get people to do what is wanted. Utilizing these resources whether its ministers of health, factory owners, or peers is exemplified in the Monterey, Mexico factor floor supervisor and canteen worker introducing to workers the hows and whys of a new AID's education program. His peer status will command more respect than the director with direct authority. Religious beliefs have explanations for causes of sickness or disease, or provide instruction in sex practices. The example given is of a health workers in Uganda discussing AIDS with rural women by saying that we all know that disease and deaths are caused by spells. "But not AIDS - slim. AIDS is different." Associations can help provide educational, economic, and emotional assistance to the AID's effort or families affected.

  16. The role of the nucleosome acidic patch in modulating higher order chromatin structure.

    PubMed

    Kalashnikova, Anna A; Porter-Goff, Mary E; Muthurajan, Uma M; Luger, Karolin; Hansen, Jeffrey C

    2013-05-06

    Higher order folding of chromatin fibre is mediated by interactions of the histone H4 N-terminal tail domains with neighbouring nucleosomes. Mechanistically, the H4 tails of one nucleosome bind to the acidic patch region on the surface of adjacent nucleosomes, causing fibre compaction. The functionality of the chromatin fibre can be modified by proteins that interact with the nucleosome. The co-structures of five different proteins with the nucleosome (LANA, IL-33, RCC1, Sir3 and HMGN2) recently have been examined by experimental and computational studies. Interestingly, each of these proteins displays steric, ionic and hydrogen bond complementarity with the acidic patch, and therefore will compete with each other for binding to the nucleosome. We first review the molecular details of each interface, focusing on the key non-covalent interactions that stabilize the protein-acidic patch interactions. We then propose a model in which binding of proteins to the nucleosome disrupts interaction of the H4 tail domains with the acidic patch, preventing the intrinsic chromatin folding pathway and leading to assembly of alternative higher order chromatin structures with unique biological functions.

  17. Different chromatin structures along the spacers flanking active and inactive Xenopus rRNA genes.

    PubMed Central

    Lucchini, R; Sogo, J M

    1992-01-01

    The accessibility of DNA in chromatin to psoralen was assayed to compare the chromatin structure of the rRNA coding and spacer regions of the two related frog species Xenopus laevis and Xenopus borealis. Isolated nuclei from tissue culture cells were photoreacted with psoralen, and the extent of cross-linking in the different rDNA regions was analyzed by using a gel retardation assay. In both species, restriction fragments from the coding regions showed two distinct extents of cross-linking, indicating the presence of two types of chromatin, one that contains nucleosomes and represents the inactive gene copies, and the other one which is more cross-linked and corresponds to the transcribed genes. A similar cross-linking pattern was obtained with restriction fragments from the enhancer region. Analysis of fragments including these sequences and the upstream portions of the genes suggests that active genes are preceded by nonnucleosomal enhancer regions. The spacer regions flanking the 3' end of the genes gave different results in the two frog species. In X. borealis, all these sequences are packaged in nucleosomes, whereas in X. laevis a distinct fraction, presumably those flanking the active genes, show a heterogeneous chromatin structure. This disturbed nucleosomal organization correlates with the presence of a weaker terminator at the 3' end of the X. laevis genes compared with those of X. borealis, which allows polymerases to transcribe into the downstream spacer. Images PMID:1406621

  18. Increased histone H1 phosphorylation and relaxed chromatin structure in Rb-deficient fibroblasts.

    PubMed

    Herrera, R E; Chen, F; Weinberg, R A

    1996-10-15

    Fibroblasts derived from embryos homozygous for a disruption of the retinoblastoma gene (Rb) exhibit a shorter G1 than their wild-type counterparts, apparently due to highly elevated levels of cyclin E protein and deregulated cyclin-dependent kinase 2 (CDK2) activity. Here we demonstrate that the Rb-/- fibroblasts display higher levels of phosphorylated H1 throughout G1 with the maximum being 10-fold higher than that of the Rb+/+ fibroblasts. This profile of intracellular H1 phosphorylation corresponds with deregulated CDK2 activity observed in in vitro assays, suggesting that CDK2 may be directly responsible for the in vivo phosphorylation of H1. H1 phosphorylation has been proposed to lead to a relaxation of chromatin structure due to a decreased affinity of this protein for chromatin after phosphorylation. In accord with this, chromatin from the Rb-/- cells is more susceptible to micrococcal nuclease digestion than that from Rb+/+ fibroblasts. Increased H1 phosphorylation and relaxed chromatin structure have also been observed in cells expressing several oncogenes, suggesting a common mechanism in oncogene and tumor suppressor gene function.

  19. Chromatin structure analysis of single gene molecules by psoralen cross-linking and electron microscopy.

    PubMed

    Brown, Christopher R; Eskin, Julian A; Hamperl, Stephan; Griesenbeck, Joachim; Jurica, Melissa S; Boeger, Hinrich

    2015-01-01

    Nucleosomes occupy a central role in regulating eukaryotic gene expression by blocking access of transcription factors to their target sites on chromosomal DNA. Analysis of chromatin structure and function has mostly been performed by probing DNA accessibility with endonucleases. Such experiments average over large numbers of molecules of the same gene, and more recently, over entire genomes. However, both digestion and averaging erase the structural variation between molecules indicative of dynamic behavior, which must be reconstructed for any theory of regulation. Solution of this problem requires the structural analysis of single gene molecules. In this chapter, we describe a method by which single gene molecules are purified from the yeast Saccharomyces cerevisiae and cross-linked with psoralen, allowing the determination of nucleosome configurations by transmission electron microscopy. We also provide custom analysis software that semi-automates the analysis of micrograph data. This single-gene technique enables detailed examination of chromatin structure at any genomic locus in yeast.

  20. Establishment and maintenance of heritable chromatin structure during early Drosophila embryogenesis

    PubMed Central

    Blythe, Shelby A; Wieschaus, Eric F

    2016-01-01

    During embryogenesis, the initial chromatin state is established during a period of rapid proliferative activity. We have measured with 3-min time resolution how heritable patterns of chromatin structure are initially established and maintained during the midblastula transition (MBT). We find that regions of accessibility are established sequentially, where enhancers are opened in advance of promoters and insulators. These open states are stably maintained in highly condensed mitotic chromatin to ensure faithful inheritance of prior accessibility status across cell divisions. The temporal progression of establishment is controlled by the biological timers that control the onset of the MBT. In general, acquisition of promoter accessibility is controlled by the biological timer that measures the nucleo-cytoplasmic (N:C) ratio, whereas timing of enhancer accessibility is regulated independently of the N:C ratio. These different timing classes each associate with binding sites for two transcription factors, GAGA-factor and Zelda, previously implicated in controlling chromatin accessibility at ZGA. DOI: http://dx.doi.org/10.7554/eLife.20148.001 PMID:27879204

  1. Neutron scatter studies of chromatin structures related to functions

    SciTech Connect

    Bradbury, E.M.

    1991-01-01

    We have completed a study on the structure of trypsin trimmed histone octamers using small angle neutron and X-ray scattering studies and nuclear magnetic resonance. We have also completed studies on the structure of TFIIIA induced DNA bending by a circular permutation gel electrophoresis assay. Individual acetylated species of core histones from butyrate treated HeLa cells were isolated and reconstituted into nucleosomes using a 5S rDNA nucleosome positioning DNA sequence from sea urchin. These nucleosomes were characterized by sulfhydryl group probing, nucleoprotein particle gel electrophoresis and DNase I footprinting. Fully acetylated species of histones H3 and H4 were also reconstituted in closed circular minichromosomes and the effect of DNA topology changes caused by acetylation was studied. Finally, protamines isolated from human sperm were characterized and a full set of core histones were isolated and characterized. 7 refs.

  2. Structure and Dynamic Properties of a Glucocorticoid Receptor-Induced Chromatin Transition

    PubMed Central

    Fletcher, Terace M.; Ryu, Byung-Woo; Baumann, Christopher T.; Warren, Barbour S.; Fragoso, Gilberto; John, Sam; Hager, Gordon L.

    2000-01-01

    Activation of the mouse mammary tumor virus (MMTV) promoter by the glucocorticoid receptor (GR) is associated with a chromatin structural transition in the B nucleosome region of the viral long terminal repeat (LTR). Recent evidence indicates that this transition extends upstream of the B nucleosome, encompassing a region larger than a single nucleosome (G. Fragoso, W. D. Pennie, S. John, and G. L. Hager, Mol. Cell. Biol. 18:3633–3644). We have reconstituted MMTV LTR DNA into a polynucleosome array using Drosophila embryo extracts. We show binding of purified GR to specific GR elements within a large, multinucleosome array and describe a GR-induced nucleoprotein transition that is dependent on ATP and a HeLa nuclear extract. Previously uncharacterized GR binding sites in the upstream C nucleosome region are involved in the extended region of chromatin remodeling. We also show that GR-dependent chromatin remodeling is a multistep process; in the absence of ATP, GR binds to multiple sites on the chromatin array and prevents restriction enzyme access to recognition sites. Upon addition of ATP, GR induces remodeling and a large increase in access to enzymes sites within the transition region. These findings suggest a dynamic model in which GR first binds to chromatin after ligand activation, recruits a remodeling activity, and is then lost from the template. This model is consistent with the recent description of a “hit-and-run” mechanism for GR action in living cells (J. G. McNally, W. G. Müller, D. Walker, and G. L. Hager, Science 287:1262–1264, 2000). PMID:10938123

  3. Neutron scatter studies of chromatin structure related to functions

    SciTech Connect

    Bradbury, E.M.

    1989-01-01

    Neutron scatter studies have been performed at LANSCE, LANL and at the Institute Laue Langevin, Grenoble, France. In the previous progress report (April 1, 1988--July 1, 1988) the following objectives were listed: shape of the histone octamer; location of the N-terminal domains of histone in the nucleosome core particle (specific aim 1 of original grant proposal); effect of acetylation on nucleosome structure (specific aim 2); location of the globular domain of histone H1 (specific aim 6); and complexes of the transcription factor 3A with its DNA binding site. Progress is briefly discussed.

  4. Chromatin structure implicated in activation of HIV-1 gene expression by ultraviolet light

    SciTech Connect

    Valerie, K.; Rosenberg, M. )

    1990-08-01

    We have investigated the effects of different DNA-damaging agents on HIV-1 gene expression. We find that agents that produce bulky DNA lesions, similar to those induced by ultraviolet light (UV), all dramatically increase HIV-1 gene expression, whereas agents that produce primarily base damage and DNA breakage, such as ionizing radiation, have little or no effect. We show that these effects are independent of DNA synthesis per se and do not require DNA nucleotide excision repair. The drug novobiocin effectively prevents the UV activation process, consistent with the idea that a change in DNA chromatin structure may be required. We suggest that a transient decondensation of chromatin structure, an early step in DNA nucleotide excision repair but not in base excision repair, may be the triggering mechanism. The decondensation may allow the transcriptional machinery better access to the HIV-1 promoter region, thereby increasing gene expression.

  5. Structure of RCC1 chromatin factor bound to the nucleosome core particle

    SciTech Connect

    Makde, Ravindra D.; England, Joseph R.; Yennawar, Hemant P.; Tan, Song

    2010-11-11

    The small GTPase Ran enzyme regulates critical eukaryotic cellular functions including nuclear transport and mitosis through the creation of a RanGTP gradient around the chromosomes. This concentration gradient is created by the chromatin-bound RCC1 (regulator of chromosome condensation) protein, which recruits Ran to nucleosomes and activates Ran's nucleotide exchange activity. Although RCC1 has been shown to bind directly with the nucleosome, the molecular details of this interaction were not known. Here we determine the crystal structure of a complex of Drosophila RCC1 and the nucleosome core particle at 2.9 {angstrom} resolution, providing an atomic view of how a chromatin protein interacts with the histone and DNA components of the nucleosome. Our structure also suggests that the Widom 601 DNA positioning sequence present in the nucleosomes forms a 145-base-pair nucleosome core particle, not the expected canonical 147-base-pair particle.

  6. The chromatin structure of Saccharomyces cerevisiae autonomously replicating sequences changes during the cell division cycle.

    PubMed Central

    Brown, J A; Holmes, S G; Smith, M M

    1991-01-01

    The chromatin structures of two well-characterized autonomously replicating sequence (ARS) elements were examined at their chromosomal sites during the cell division cycle in Saccharomyces cerevisiae. The H4 ARS is located near one of the duplicate nonallelic histone H4 genes, while ARS1 is present near the TRP1 gene. Cells blocked in G1 either by alpha-factor arrest or by nitrogen starvation had two DNase I-hypersensitive sites of about equal intensity in the ARS element. This pattern of DNase I-hypersensitive sites was altered in synchronous cultures allowed to proceed into S phase. In addition to a general increase in DNase I sensitivity around the core consensus sequence, the DNase I-hypersensitive site closest to the core consensus became more nuclease sensitive than the distal site. This change in chromatin structure was restricted to the ARS region and depended on replication since cdc7 cells blocked near the time of replication initiation did not undergo the transition. Subsequent release of arrested cdc7 cells restored entry into S phase and was accompanied by the characteristic change in ARS chromatin structure. Images PMID:1922046

  7. Chromatin structure and ionizing-radiation-induced chromosome aberrations

    SciTech Connect

    Muehlmann-Diaz, M.C.

    1993-01-01

    The possible influence of chromatic structure or activity on chromosomal radiosensitivity was studied. A cell line was isolated which contained some 10[sup 5] copies of an amplified plasmid in a single large mosquito artificial chromosome (MAC). This chromosome was hypersensitive to DNase I. Its radiosensitivity was some three fold greater than normal mosquito chromosomes in the same cell. In cultured human cells irradiated during G[sub 0], the initial breakage frequency in chromosome 4, 19 and the euchromatic and heterochromatic portions of the Y chromosome were measured over a wide range of doses by inducing Premature Chromosome Condensation (PCC) immediately after irradiation with Cs-137 gamma rays. No evidence was seen that Y heterochromatin or large fragments of it remained unbroken. The only significant deviation from the expected initial breakage frequency per Gy per unit length of chromosome was that observed for the euchromatic portion of the Y chromosome, with breakage nearly twice that expected. The development of aberrations involving X and Y chromosomes at the first mitosis after irradation was also studied. Normal female cells sustained about twice the frequency of aberrations involving X chromosomes for a dose of 7.3 Gy than the corresponding male cells. Fibroblasts from individuals with supernumerary X chromosomes did not show any further increase in X aberrations for this dos. The frequency of aberrations involving the heterochromatic portion of the long arm of the Y chromosome was about what would be expected for a similar length of autosome, but the euchromatic portion of the Y was about 3 times more radiosensitive per unit length. 5-Azacytidine treatment of cultured human female fibroblasts or fibroblasts from a 49,XXXXY individual, reduced the methylation of cytosine residues in DNA, and resulted in an increased chromosomal radiosensitivity in general, but it did not increase the frequency of aberrations involving the X chromosomes.

  8. Higher-order chromatin structure in DSB induction, repair and misrepair.

    PubMed

    Falk, Martin; Lukasova, Emilie; Kozubek, Stanislav

    2010-01-01

    Double-strand breaks (DSBs), continuously introduced into DNA by cell metabolism, ionizing radiation and some chemicals, are the biologically most deleterious type of genome damage, and must be accurately repaired to protect genomic integrity, ensure cell survival, and prevent carcinogenesis. Although a huge amount of information has been published on the molecular basis and biological significance of DSB repair, our understanding of DSB repair and its spatiotemporal arrangement is still incomplete. In particular, the role of higher-order chromatin structure in DSB induction and repair, movement of DSBs and the mechanism giving rise to chromatin exchanges, and many other currently disputed questions are discussed in this review. Finally, a model explaining the formation of chromosome translocations is proposed.

  9. Large Scale Chromosome Folding Is Stable against Local Changes in Chromatin Structure

    PubMed Central

    Therizols, Pierre

    2016-01-01

    Characterizing the link between small-scale chromatin structure and large-scale chromosome folding during interphase is a prerequisite for understanding transcription. Yet, this link remains poorly investigated. Here, we introduce a simple biophysical model where interphase chromosomes are described in terms of the folding of chromatin sequences composed of alternating blocks of fibers with different thicknesses and flexibilities, and we use it to study the influence of sequence disorder on chromosome behaviors in space and time. By employing extensive computer simulations, we thus demonstrate that chromosomes undergo noticeable conformational changes only on length-scales smaller than 105 basepairs and time-scales shorter than a few seconds, and we suggest there might exist effective upper bounds to the detection of chromosome reorganization in eukaryotes. We prove the relevance of our framework by modeling recent experimental FISH data on murine chromosomes. PMID:27295501

  10. Exploring binding affinity of oxaliplatin and carboplatin, to nucleoprotein structure of chromatin: spectroscopic study and histone proteins as a target.

    PubMed

    Soori, Hosna; Rabbani-Chadegani, Azra; Davoodi, Jamshid

    2015-01-07

    Platinum drugs are potent chemotherapeutic agents widely used in cancer therapy. They exert their biological activity by binding to DNA, producing DNA adducts; however, in the cell nucleus, DNA is complexed with histone proteins into a nucleoprotein structure known as chromatin. The aim of this study was to explore the binding affinity of oxaliplatin and carboplatin to chromatin using spectroscopic as well as thermal denaturation and equilibrium dialysis techniques. The results showed that the drugs quenched with chromophores of chromatin and the quenching effect for oxaliplatin (Ksv = 3.156) was higher than carboplatin (Ksv = 0.28). The binding of the drugs exhibited hypochromicity both in thermal denaturation profiles and UV absorbance at 210 nm. The binding was positive cooperation with spontaneous reaction and oxaliplatin (Ka = 5.3 × 10(3) M(-1), n = 1.7) exhibited higher binding constant and number of binding sites than carboplatin (Ka = 0.33 × 10(3) M(-1), n = 1.0) upon binding to chromatin. Also secondary structure of chromatin proteins was altered upon drugs binding. It is concluded that oxaliplatin represents higher binding affinity to chromatin compared to carboplatin. In chromatin where DNA is compacted into nucleosomes structure with histones, the affinity of the platinated drugs is reduced and histone proteins may play a fundamental role in this binding process.

  11. Effect of Chromatin Structure on the Extent and Distribution of DNA Double Strand Breaks Produced by Ionizing Radiation; Comparative Study of hESC and Differentiated Cells Lines.

    PubMed

    Venkatesh, Priyanka; Panyutin, Irina V; Remeeva, Evgenia; Neumann, Ronald D; Panyutin, Igor G

    2016-01-02

    Chromatin structure affects the extent of DNA damage and repair. Thus, it has been shown that heterochromatin is more protective against DNA double strand breaks (DSB) formation by ionizing radiation (IR); and that DNA DSB repair may proceed differently in hetero- and euchromatin regions. Human embryonic stem cells (hESC) have a more open chromatin structure than differentiated cells. Here, we study the effect of chromatin structure in hESC on initial DSB formation and subsequent DSB repair. DSB were scored by comet assay; and DSB repair was assessed by repair foci formation via 53BP1 antibody staining. We found that in hESC, heterochromatin is confined to distinct regions, while in differentiated cells it is distributed more evenly within the nuclei. The same dose of ionizing radiation produced considerably more DSB in hESC than in differentiated derivatives, normal human fibroblasts; and one cancer cell line. At the same time, the number of DNA repair foci were not statistically different among these cells. We showed that in hESC, DNA repair foci localized almost exclusively outside the heterochromatin regions. We also noticed that exposure to ionizing radiation resulted in an increase in heterochromatin marker H3K9me3 in cancer HT1080 cells, and to a lesser extent in IMR90 normal fibroblasts, but not in hESCs. These results demonstrate the importance of chromatin conformation for DNA protection and DNA damage repair; and indicate the difference of these processes in hESC.

  12. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions.

    PubMed

    Schep, Alicia N; Buenrostro, Jason D; Denny, Sarah K; Schwartz, Katja; Sherlock, Gavin; Greenleaf, William J

    2015-11-01

    Transcription factors canonically bind nucleosome-free DNA, making the positioning of nucleosomes within regulatory regions crucial to the regulation of gene expression. Using the assay of transposase accessible chromatin (ATAC-seq), we observe a highly structured pattern of DNA fragment lengths and positions around nucleosomes in Saccharomyces cerevisiae, and use this distinctive two-dimensional nucleosomal "fingerprint" as the basis for a new nucleosome-positioning algorithm called NucleoATAC. We show that NucleoATAC can identify the rotational and translational positions of nucleosomes with up to base-pair resolution and provide quantitative measures of nucleosome occupancy in S. cerevisiae, Schizosaccharomyces pombe, and human cells. We demonstrate the application of NucleoATAC to a number of outstanding problems in chromatin biology, including analysis of sequence features underlying nucleosome positioning, promoter chromatin architecture across species, identification of transient changes in nucleosome occupancy and positioning during a dynamic cellular response, and integrated analysis of nucleosome occupancy and transcription factor binding.

  13. Suberoylanilide Hydroxyamic Acid Modification of Chromatin Architecture Affects DNA Break Formation and Repair

    SciTech Connect

    Singh, Sheetal; Le Hongan; Shih, S.-J.; Ho, Bay; Vaughan, Andrew T.

    2010-02-01

    Purpose: Chromatin-modifying compounds that inhibit the activity of histone deacetylases have shown potency as radiosensitizers, but the action of these drugs at a molecular level is not clear. Here we investigated the effect of suberoylanilide hydroxyamic acid (SAHA) on DNA breaks and their repair and induction of rearrangements. Methods and Materials: The effect of SAHA on both clonogenic survival and repair was assessed using cell lines SCC-25, MCF7, and TK6. In order to study unique DNA double-strand breaks, anti-CD95 antibody was employed to introduce a DNA double-strand break at a known location within the 11q23 region. The effects of SAHA on DNA cleavage and rearrangements were analyzed by ligation-mediated PCR and inverse PCR, respectively. Results: SAHA acts as radiosensitizer at 1 {mu}M, with dose enhancement factors (DEFs) at 10% survival of: SCC-25 - 1.24 +- 0.05; MCF7 - 1.16 +- 0.09 and TK6 - 1.17 +- 0.05, and it reduced the capacity of SCC-25 cells to repair radiation induced lesions. Additionally, SAHA treatment diffused site-specific fragmentation over at least 1 kbp in TK6 cells. Chromosomal rearrangements produced in TK6 cells exposed to SAHA showed a reduction in microhomology at the breakpoint between 11q23 and partner chromosomes. Conclusions: SAHA shows efficacy as a radiosensitizer at clinically obtainable levels. In its presence, targeted DNA strand breaks occur over an expanded region, indicating increased chromatin access. The rejoining of such breaks is degraded by SAHA when measured as rearrangements at the molecular level and rejoining that contributes to cell survival.

  14. Modeling and small-angle neutron scattering spectra of chromatin supernucleosomal structures at genome scale

    NASA Astrophysics Data System (ADS)

    Ilatovskiy, Andrey V.; Lebedev, Dmitry V.; Filatov, Michael V.; Grigoriev, Mikhail; Petukhov, Michael G.; Isaev-Ivanov, Vladimir V.

    2011-11-01

    Eukaryotic genome is a highly compacted nucleoprotein complex organized in a hierarchical structure based on nucleosomes. Detailed organization of this structure remains unknown. In the present work we developed algorithms for geometry modeling of the supernucleosomal chromatin structure and for computing distance distribution functions and small-angle neutron scattering (SANS) spectra of the genome-scale (˜106 nucleosomes) chromatin structure at residue resolution. Our physical nucleosome model was based on the mononucleosome crystal structure. A nucleosome was assumed to be rigid within a local coordinate system. Interface parameters between nucleosomes can be set for each nucleosome independently. Pair distance distributions were computed with Monte Carlo simulation. SANS spectra were calculated with Fourier transformation of weighted distance distribution; the concentration of heavy water in solvent and probability of H/D exchange were taken into account. Two main modes of supernucleosomal structure generation were used. In a free generation mode all interface parameters were chosen randomly, whereas nucleosome self-intersections were not allowed. The second generation mode (generation in volume) enabled spherical or cubical wall restrictions. It was shown that calculated SANS spectra for a number of our models were in general agreement with available experimental data.

  15. Replication domains are self-interacting structural chromatin units of human chromosomes

    NASA Astrophysics Data System (ADS)

    Arneodo, Alain

    2011-03-01

    In higher eukaryotes, the absence of specific sequence motifs marking the origins of replication has been a serious hindrance to the understanding of the mechanisms that regulate the initiation and the maintenance of the replication program in different cell types. In silico analysis of nucleotide compositional skew has predicted the existence, in the germline, of replication N-domains bordered by putative replication origins and where the skew decreases rather linearly as the signature of a progressive inversion of the average fork polarity. Here, from the demonstration that the average fork polarity can be directly extracted from the derivative of replication timing profiles, we develop a wavelet-based pattern recognition methodology to delineate replication U-domains where the replication timing profile is shaped as a U and its derivative as a N. Replication U-domains are robustly found in seven cell lines as covering a significant portion (40-50%) of the human genome where the replication timing data actually displays some plasticity between cell lines. The early replication initiation zones at U-domains borders are found to be hypersensitive to DNase I cleavage, to be associated with transcriptional activity and to present a significant enrichment in insular-binding proteins CTCF, the hallmark of an open chromatin structure. A comparative analysis of genome-wide chromatin interaction (HiC) data shows that replication-U domains correspond to self-interacting structural high order chromatin units of megabase characteristic size. Taken together, these findings provide evidence that the epigenetic compartmentalization of the human genome into autonomous replication U-domains comes along with an extensive remodelling of the threedimensional chromosome architecture during development or in specific diseases. The observed cell specific conservation of the replication timing between the human and mouse genomes strongly suggests that this chromosome organization into

  16. Dynamic structures of intact chicken erythrocyte chromatins as studied by 1H-31P cross-polarization NMR.

    PubMed Central

    Akutsu, H; Nishimoto, S; Kyogoku, Y

    1994-01-01

    The dynamic properties of DNA in intact chicken erythrocyte cells, nuclei, nondigested chromatins, digested soluble chromatins, H1, H5-depleted soluble chromatins and nucleosome cores were investigated by means of single-pulse and 1H-31P cross-polarization NMR. The temperature dependence of the phosphorus chemical shift anisotropy was identical for the former three in the presence of 3 mM MgCl2, suggesting that the local higher order structure is identical for these chromatins. The intrinsic phosphorus chemical shift anisotropy of the nucleosome cores was -159 ppm. The chemical shift anisotropy of DNA in the chromatins can be further averaged by the motion of the linker DNA. The spin-lattice relaxation time in the rotating frame of the proton spins (T1p) of the nondigested chromatins was measured at various locking fields. The result was analyzed on the assumption of the isotropic motion to get a rough value of the correlation time of the motion efficient for the relaxation, which was eventually ascribed to the segmental motion of the linker DNA with restricted amplitude. The 30 nm filament structure induced by NaCl was shown to be dynamically different from that induced by MgCl2. Side-by-side compaction of 30-nm filaments was suggested to be induced in the MgCl2 concentration range higher than 0.3 mM. Biological significance of the dynamic structure was discussed in connection with the results obtained. PMID:7948693

  17. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin

    PubMed Central

    Dechat, Thomas; Pfleghaar, Katrin; Sengupta, Kaushik; Shimi, Takeshi; Shumaker, Dale K.; Solimando, Liliana; Goldman, Robert D.

    2008-01-01

    Over the past few years it has become evident that the intermediate filament proteins, the types A and B nuclear lamins, not only provide a structural framework for the nucleus, but are also essential for many aspects of normal nuclear function. Insights into lamin-related functions have been derived from studies of the remarkably large number of disease-causing mutations in the human lamin A gene. This review provides an up-to-date overview of the functions of nuclear lamins, emphasizing their roles in epigenetics, chromatin organization, DNA replication, transcription, and DNA repair. In addition, we discuss recent evidence supporting the importance of lamins in viral infections. PMID:18381888

  18. Measurement of Family Affective Structure.

    ERIC Educational Resources Information Center

    Lowman, Joseph

    1980-01-01

    Three studies demonstrate that the Inventory of Family Feelings, a measure of family affective structure, has high reliability and construct and concurrent validity. It is appropriate for affective comparisons by age, sex, and ordinal position of children and for measuring change after family or marital therapy, or after predictable stress…

  19. Structure of a RSC-nucleosome complex and insights into chromatin remodeling.

    PubMed

    Chaban, Yuriy; Ezeokonkwo, Chukwudi; Chung, Wen-Hsiang; Zhang, Fan; Kornberg, Roger D; Maier-Davis, Barbara; Lorch, Yahli; Asturias, Francisco J

    2008-12-01

    ATP-dependent chromatin-remodeling complexes, such as RSC, can reposition, evict or restructure nucleosomes. A structure of a RSC-nucleosome complex with a nucleosome determined by cryo-EM shows the nucleosome bound in a central RSC cavity. Extensive interaction of RSC with histones and DNA seems to destabilize the nucleosome and lead to an overall ATP-independent rearrangement of its structure. Nucleosomal DNA appears disordered and largely free to bulge out into solution as required for remodeling, but the structure of the RSC-nucleosome complex indicates that RSC is unlikely to displace the octamer from the nucleosome to which it is bound. Consideration of the RSC-nucleosome structure and published biochemical information suggests that ATP-dependent DNA translocation by RSC may result in the eviction of histone octamers from adjacent nucleosomes.

  20. FoxA1 binding to the MMTV LTR modulates chromatin structure and transcription

    SciTech Connect

    Holmqvist, Per-Henrik; Belikov, Sergey; Zaret, Kenneth S.; Wrange, Oerjan . E-mail: orjan.wrange@cmb.ki.se

    2005-04-01

    Novel binding sites for the forkhead transcription factor family member Forkhead box A (FoxA), previously referred to as Hepatocyte Nuclear Factor 3 (HNF3), were found within the mouse mammary tumor virus long terminal repeat (MMTV LTR). The effect of FoxA1 on MMTV LTR chromatin structure, and expression was evaluated in Xenopus laevis oocytes. Mutagenesis of either of the two main FoxA binding sites showed that the distal site, -232/-221, conferred FoxA1-dependent partial inhibition of glucocorticoid receptor (GR) driven MMTV transcription. The proximal FoxA binding segment consisted of two individual FoxA sites at -57/-46 and -45/-34, respectively, that mediated an increased basal MMTV transcription. FoxA1 binding altered the chromatin structure of both the inactive- and the hormone-activated MMTV LTR. Hydroxyl radical foot printing revealed FoxA1-mediated changes in the nucleosome arrangement. Micrococcal nuclease digestion showed the hormone-dependent sub-nucleosome complex, containing {approx}120 bp of DNA, to be expanded by FoxA1 binding to the proximal segment into a larger complex containing {approx}200 bp. The potential function of the FoxA1-mediated expression of the MMTV provirus for maintenance of expression in different tissues is discussed.

  1. CTCF depletion alters chromatin structure and transcription of myeloid-specific factors.

    PubMed

    Ouboussad, Lylia; Kreuz, Sarah; Lefevre, Pascal F

    2013-10-01

    Differentiation is a multistep process tightly regulated and controlled by complex transcription factor networks. Here, we show that the rate of differentiation of common myeloid precursor cells increases after depletion of CTCF, a protein emerging as a potential key factor regulating higher-order chromatin structure. We identified CTCF binding in the vicinity of important transcription factors regulating myeloid differentiation and showed that CTCF depletion impacts on the expression of these genes in concordance with the observed acceleration of the myeloid commitment. Furthermore, we observed a loss of the histone variant H2A.Z within the selected promoter regions and an increase in non-coding RNA transcription upstream of these genes. Both abnormalities suggest a global chromatin structure destabilization and an associated increase of non-productive transcription in response to CTCF depletion but do not drive the CTCF-mediated transcription alterations of the neighbouring genes. Finally, we detected a transient eviction of CTCF at the Egr1 locus in correlation with Egr1 peak of expression in response to lipopolysaccharide (LPS) treatment in macrophages. This eviction is also correlated with the expression of an antisense non-coding RNA transcribing through the CTCF-binding region indicating that non-coding RNA transcription could be the cause and the consequence of CTCF eviction.

  2. Control of Chromatin Structure by Spt6: Different Consequences in Coding and Regulatory Regions▿ †

    PubMed Central

    Ivanovska, Iva; Jacques, Pierre-Étienne; Rando, Oliver J.; Robert, François; Winston, Fred

    2011-01-01

    Spt6 is a highly conserved factor required for normal transcription and chromatin structure. To gain new insights into the roles of Spt6, we measured nucleosome occupancy along Saccharomyces cerevisiae chromosome III in an spt6 mutant. We found that the level of nucleosomes is greatly reduced across some, but not all, coding regions in an spt6 mutant, with nucleosome loss preferentially occurring over highly transcribed genes. This result provides strong support for recent studies that have suggested that transcription at low levels does not displace nucleosomes, while transcription at high levels does, and adds the idea that Spt6 is required for restoration of nucleosomes at the highly transcribed genes. Unexpectedly, our studies have also suggested that the spt6 effects on nucleosome levels across coding regions do not cause the spt6 effects on mRNA levels, suggesting that the role of Spt6 across coding regions is separate from its role in transcriptional regulation. In the case of the CHA1 gene, regulation by Spt6 likely occurs by controlling the position of the +1 nucleosome. These results, along with previous studies, suggest that Spt6 regulates transcription by controlling chromatin structure over regulatory regions, and its effects on nucleosome levels over coding regions likely serve an independent function. PMID:21098123

  3. Structure and Function of the SWIRM Domain, a Conserved Protein Module Found in Chromatin Regulatory Complexes

    SciTech Connect

    Da,G.; Lenkart, J.; Zhao, K.; Shiekhattar, R.; Cairns, B.; Marmorstein, R.

    2006-01-01

    The SWIRM domain is a module found in the Swi3 and Rsc8 subunits of SWI/SNF-family chromatin remodeling complexes, and the Ada2 and BHC110/LSD1 subunits of chromatin modification complexes. Here we report the high-resolution crystal structure of the SWIRM domain from Swi3 and characterize the in vitro and in vivo function of the SWIRM domains from Saccharomyces cerevisiae Swi3 and Rsc8. The Swi3 SWIRM forms a four-helix bundle containing a pseudo 2-fold axis and a helix-turn-helix motif commonly found in DNA-binding proteins. We show that the Swi3 SWIRM binds free DNA and mononucleosomes with high and comparable affinity and that a subset of Swi3 substitution mutants that display growth defects in vivo also show impaired DNA-binding activity in vitro, consistent with a nucleosome targeting function of this domain. Genetic and biochemical studies also reveal that the Rsc8 and Swi3 SWIRM domains are essential for the proper assembly and in vivo functions of their respective complexes. Together, these studies identify the SWIRM domain as an essential multifunctional module for the regulation of gene expression.

  4. Drosophila Poly(ADP-Ribose) Glycohydrolase Mediates Chromatin Structure and SIR2-Dependent Silencing

    PubMed Central

    Tulin, Alexei; Naumova, Natalia M.; Menon, Ammini K.; Spradling, Allan C.

    2006-01-01

    Protein ADP ribosylation catalyzed by cellular poly(ADP-ribose) polymerases (PARPs) and tankyrases modulates chromatin structure, telomere elongation, DNA repair, and the transcription of genes involved in stress resistance, hormone responses, and immunity. Using Drosophila genetic tools, we characterize the expression and function of poly(ADP-ribose) glycohydrolase (PARG), the primary enzyme responsible for degrading protein-bound ADP-ribose moieties. Strongly increasing or decreasing PARG levels mimics the effects of Parp mutation, supporting PARG's postulated roles in vivo both in removing ADP-ribose adducts and in facilitating multiple activity cycles by individual PARP molecules. PARP is largely absent from euchromatin in PARG mutants, but accumulates in large nuclear bodies that may be involved in protein recycling. Reducing the level of either PARG or the silencing protein SIR2 weakens copia transcriptional repression. In the absence of PARG, SIR2 is mislocalized and hypermodified. We propose that PARP and PARG promote chromatin silencing at least in part by regulating the localization and function of SIR2 and possibly other nuclear proteins. PMID:16219773

  5. The role of chromatin structure in regulating stress-induced transcription in Saccharomyces cerevisiae.

    PubMed

    Uffenbeck, Shannon R; Krebs, Jocelyn E

    2006-08-01

    All cells, whether free-living or part of a multicellular organism, must contend with a variety of environmental fluctuations that can be harmful or lethal to the cell. Cells exposed to different kinds of environmental stress rapidly alter gene transcription, resulting in the immediate downregulation of housekeeping genes, while crucial stress-responsive transcription is drastically increased. Common cis-acting elements within many stress-induced promoters, such as stress response elements and heat shock elements, allow for coordinated expression in response to many different stresses. However, specific promoter architectures, i.e., specific combinations of high- and low-affinity stress-responsive cis elements embedded in a particular chromatin environment, allow for unique expression patterns that are responsive to the individual type and degree of stress. The coordination of transcriptional stress responses and the role that chromatin structure plays in the regulation and kinetics of such responses is discussed. The interplay among global and gene-specific stress responses is illustrated using the constitutive and stress-induced transcriptional regulation of HSP82 as a model. This review also investigates evidence suggesting that stress-induced transcription is globally synchronized with the stress-induced repression of housekeeping gene via 2 distinct mechanisms of facilitating the binding of TATA-binding protein (TBP): TFIID and SAGA-mediated TBP binding.

  6. Chromatin structures and transcription of rDNA in yeast Saccharomyces cerevisiae.

    PubMed Central

    Dammann, R; Lucchini, R; Koller, T; Sogo, J M

    1993-01-01

    The chromatin structure of yeast ribosomal DNA was analyzed in vivo by crosslinking intact cells with psoralen. We found that in exponentially growing cultures the regions coding for the 35S rRNA precursor fall into two distinct classes. One class was highly accessible to psoralen and associated with nascent RNAs, characteristic for transcriptionally active rRNA genes devoid of nucleosomes, whereas the other class showed a crosslinking pattern indistinguishable from that of bulk chromatin and was interpreted to represent the inactive rRNA gene copies. By crosslinking the same strain growing in complex or minimal medium, we have shown that yeast cells can modulate the proportion of active (non-nucleosomal) and inactive (nucleosomal) rRNA gene copies in response to variations in environmental conditions which suggests that yeast can regulate rRNA synthesis by varying the number of active gene copies, in contrast to the vertebrate cells studied so far. Whereas intergenic spacers flanking inactive rRNA gene copies are packaged in a regular nucleosomal array, spacers flanking active genes show an unusual crosslinking pattern suggesting a complex interaction of regulatory factors and histones with DNA. Images PMID:8506130

  7. Structure and function of the SWIRM domain, a conserved protein module found in chromatin regulatory complexes.

    PubMed

    Da, Guoping; Lenkart, Jeffrey; Zhao, Kehao; Shiekhattar, Ramin; Cairns, Bradley R; Marmorstein, Ronen

    2006-02-14

    The SWIRM domain is a module found in the Swi3 and Rsc8 subunits of SWI/SNF-family chromatin remodeling complexes, and the Ada2 and BHC110/LSD1 subunits of chromatin modification complexes. Here we report the high-resolution crystal structure of the SWIRM domain from Swi3 and characterize the in vitro and in vivo function of the SWIRM domains from Saccharomyces cerevisiae Swi3 and Rsc8. The Swi3 SWIRM forms a four-helix bundle containing a pseudo 2-fold axis and a helix-turn-helix motif commonly found in DNA-binding proteins. We show that the Swi3 SWIRM binds free DNA and mononucleosomes with high and comparable affinity and that a subset of Swi3 substitution mutants that display growth defects in vivo also show impaired DNA-binding activity in vitro, consistent with a nucleosome targeting function of this domain. Genetic and biochemical studies also reveal that the Rsc8 and Swi3 SWIRM domains are essential for the proper assembly and in vivo functions of their respective complexes. Together, these studies identify the SWIRM domain as an essential multifunctional module for the regulation of gene expression.

  8. Long range chromatin organization

    PubMed Central

    Acuña, Luciana I Gómez; Kornblihtt, Alberto R

    2014-01-01

    Splicing is a predominantly co-transcriptional process that has been shown to be tightly coupled to transcription. Chromatin structure is a key factor that mediates this functional coupling. In light of recent evidence that shows the importance of higher order chromatin organization in the coordination and regulation of gene expression, we discuss here the possible roles of long-range chromatin organization in splicing and alternative splicing regulation. PMID:25764333

  9. Neuronal accumulation of unrepaired DNA in a novel specific chromatin domain: structural, molecular and transcriptional characterization.

    PubMed

    Mata-Garrido, Jorge; Casafont, Iñigo; Tapia, Olga; Berciano, Maria T; Lafarga, Miguel

    2016-04-22

    There is growing evidence that defective DNA repair in neurons with accumulation of DNA lesions and loss of genome integrity underlies aging and many neurodegenerative disorders. An important challenge is to understand how neurons can tolerate the accumulation of persistent DNA lesions without triggering the apoptotic pathway. Here we study the impact of the accumulation of unrepaired DNA on the chromatin architecture, kinetics of the DNA damage response and transcriptional activity in rat sensory ganglion neurons exposed to 1-to-3 doses of ionizing radiation (IR). In particular, we have characterized the structural, molecular and transcriptional compartmentalization of unrepaired DNA in persistent DNA damaged foci (PDDF). IR induced the formation of numerous transient foci, which repaired DNA within the 24 h post-IR, and a 1-to-3 PDDF. The latter concentrate DNA damage signaling and repair factors, including γH2AX, pATM, WRAP53 and 53BP1. The number and size of PDDF was dependent on the doses of IR administered. The proportion of neurons carrying PDDF decreased over time of post-IR, indicating that a slow DNA repair occurs in some foci. The fine structure of PDDF consisted of a loose network of unfolded 30 nm chromatin fiber intermediates, which may provide a structural scaffold accessible for DNA repair factors. Furthermore, the transcription assay demonstrated that PDDF are transcriptionally silent, although transcription occurred in flanking euchromatin. Therefore, the expression of γH2AX can be used as a reliable marker of gene silencing in DNA damaged neurons. Moreover, PDDF were located in repressive nuclear environments, preferentially in the perinucleolar domain where they were frequently associated with Cajal bodies or heterochromatin clumps forming a structural triad. We propose that the sequestration of unrepaired DNA in discrete PDDF and the transcriptional silencing can be essential to preserve genome stability and prevent the synthesis of

  10. NF-E2 disrupts chromatin structure at human beta-globin locus control region hypersensitive site 2 in vitro.

    PubMed Central

    Armstrong, J A; Emerson, B M

    1996-01-01

    The human beta-globin locus control region (LCR) is responsible for forming an active chromatin structure extending over the 100-kb locus, allowing expression of the beta-globin gene family. The LCR consists of four erythroid-cell-specific DNase I hypersensitive sites (HS1 to -4). DNase I hypersensitive sites are thought to represent nucleosome-free regions of DNA which are bound by trans-acting factors. Of the four hypersensitive sites only HS2 acts as a transcriptional enhancer. In this study, we examine the binding of an erythroid protein to its site within HS2 in chromatin in vitro. NF-E2 is a transcriptional activator consisting of two subunits, the hematopoietic cell-specific p45 and the ubiquitous DNA-binding subunit, p18. NF-E2 binds two tandem AP1-like sites in HS2 which form the core of its enhancer activity. In this study, we show that when bound to in vitro-reconstituted chromatin, NF-E2 forms a DNase I hypersensitive site at HS2 similar to the site observed in vivo. Moreover, NF-E2 binding in vitro results in a disruption of nucleosome structure which can be detected 200 bp away. Although NF-E2 can disrupt nucleosomes when added to preformed chromatin, the disruption is more pronounced when NF-E2 is added to DNA prior to chromatin assembly. Interestingly, the hematopoietic cell-specific subunit, p45, is necessary for binding to chromatin but not to naked DNA. Interaction of NF-E2 with its site in chromatin-reconstituted HS2 allows a second erythroid factor, GATA-1, to bind its nearby sites. Lastly, nucleosome disruption by NF-E2 is an ATP-dependent process, suggesting the involvement of energy-dependent nucleosome remodeling factors. PMID:8816476

  11. Functional Interplay Between Histone H1 and HMG Proteins in Chromatin

    PubMed Central

    Postnikov, Yuri V.; Bustin, Michael

    2015-01-01

    The dynamic interaction of nucleosome binding proteins with their chromatin targets is an important element in regulating the structure and function of chromatin. Histone H1 variants and High Mobility Group (HMG) proteins are ubiquitously expressed in all vertebrate cells, bind dynamically to chromatin, and are known to affect chromatin condensation and the ability of regulatory factors to access their genomic binding sites. Here, we review the studies that focus on the interactions between H1 and HMGs and highlight the functional consequences of the interplay between these architectural chromatin binding proteins. H1 and HMG proteins are mobile molecules that bind to nucleosomes as members of a dynamic protein network. All HMGs compete with H1 for chromatin binding sites, in a dose dependent fashion, but each HMG family has specific effects on the interaction of H1 with chromatin. The interplay between H1 and HMGs affects chromatin organization and plays a role in epigenetic regulation. PMID:26455954

  12. X-ray crystal structure of MENT: evidence for functional loop-sheet polymers in chromatin condensation.

    PubMed

    McGowan, Sheena; Buckle, Ashley M; Irving, James A; Ong, Poh Chee; Bashtannyk-Puhalovich, Tanya A; Kan, Wan-Ting; Henderson, Kate N; Bulynko, Yaroslava A; Popova, Evgenya Y; Smith, A Ian; Bottomley, Stephen P; Rossjohn, Jamie; Grigoryev, Sergei A; Pike, Robert N; Whisstock, James C

    2006-07-12

    Most serpins are associated with protease inhibition, and their ability to form loop-sheet polymers is linked to conformational disease and the human serpinopathies. Here we describe the structural and functional dissection of how a unique serpin, the non-histone architectural protein, MENT (Myeloid and Erythroid Nuclear Termination stage-specific protein), participates in DNA and chromatin condensation. Our data suggest that MENT contains at least two distinct DNA-binding sites, consistent with its simultaneous binding to the two closely juxtaposed linker DNA segments on a nucleosome. Remarkably, our studies suggest that the reactive centre loop, a region of the MENT molecule essential for chromatin bridging in vivo and in vitro, is able to mediate formation of a loop-sheet oligomer. These data provide mechanistic insight into chromatin compaction by a non-histone architectural protein and suggest how the structural plasticity of serpins has adapted to mediate physiological, rather than pathogenic, loop-sheet linkages.

  13. Poly(ADP-ribosyl)ation of Methyl CpG Binding Domain Protein 2 Regulates Chromatin Structure*

    PubMed Central

    Becker, Annette; Zhang, Peng; Allmann, Lena; Meilinger, Daniela; Bertulat, Bianca; Eck, Daniel; Hofstaetter, Maria; Bartolomei, Giody; Hottiger, Michael O.; Schreiber, Valérie; Leonhardt, Heinrich; Cardoso, M. Cristina

    2016-01-01

    The epigenetic information encoded in the genomic DNA methylation pattern is translated by methylcytosine binding proteins like MeCP2 into chromatin topology and structure and gene activity states. We have shown previously that the MeCP2 level increases during differentiation and that it causes large-scale chromatin reorganization, which is disturbed by MeCP2 Rett syndrome mutations. Phosphorylation and other posttranslational modifications of MeCP2 have been described recently to modulate its function. Here we show poly(ADP-ribosyl)ation of endogenous MeCP2 in mouse brain tissue. Consequently, we found that MeCP2 induced aggregation of pericentric heterochromatin and that its chromatin accumulation was enhanced in poly(ADP-ribose) polymerase (PARP) 1−/− compared with wild-type cells. We mapped the poly(ADP-ribosyl)ation domains and engineered MeCP2 mutation constructs to further analyze potential effects on DNA binding affinity and large-scale chromatin remodeling. Single or double deletion of the poly(ADP-ribosyl)ated regions and PARP inhibition increased the heterochromatin clustering ability of MeCP2. Increased chromatin clustering may reflect increased binding affinity. In agreement with this hypothesis, we found that PARP-1 deficiency significantly increased the chromatin binding affinity of MeCP2 in vivo. These data provide novel mechanistic insights into the regulation of MeCP2-mediated, higher-order chromatin architecture and suggest therapeutic opportunities to manipulate MeCP2 function. PMID:26772194

  14. Enhancers and chromatin structures: regulatory hubs in gene expression and diseases.

    PubMed

    Hu, Zhenhua; Tee, Wee Wei

    2017-03-28

    Gene expression requires successful communication between enhancer and promoter regions, whose activities are regulated by a variety of factors and associated with distinct chromatin structures; in addition, functionally related genes and their regulatory repertoire tend to be arranged in the same sub-chromosomal regulatory domains. In this review, we discuss the importance of enhancers, especially clusters of enhancers (such as super-enhancers), as key regulatory hubs to integrate environmental cues and encode spatiotemporal instructions for genome expression, which are critical for a variety of biological processes governing mammalian development. Furthermore, we emphasize that the enhancer-promoter interaction landscape provides a critical context to understand the etiologies and mechanisms behind numerous complex human diseases, and provides new avenues for effective transcriptional-based interventions.

  15. Chromatin structure in granulocytes. A link between tight compaction and accumulation of a heterochromatin-associated protein (MENT).

    PubMed

    Grigoryev, S A; Woodcock, C L

    1998-01-30

    To study the mechanism of heterochromatin formation in vertebrate cells, we isolated nuclei from chicken polymorphonuclear granulocytes and examined the chromatin organization. We found granulocyte chromatin to remain insoluble after nuclease digestion and to be resistant to swelling in low salt/high pH media. Both insolubility and resistance to swelling were lost after washing with 0.3 M NaCl, a procedure that released two abundant tissue-specific proteins from granulocyte nuclei. One of them (42 kDa) is identified as MENT, a protein previously shown to be associated with repressed chromatin from mature chicken erythrocytes. We show that MENT is immunolocalized in granulocyte heterochromatin, where it is one of the most abundant chromatin proteins ( approximately 2 molecules/200 base pairs of DNA). MENT is the first nuclear protein structurally related to the serine protease inhibitor family. The other abundant protein is similar to or identical with mim-1, a myeloid-specific protein that is known to be stored in cell granules and to associate with isolated nuclei. MENT (but not mim-1) binds chromatin and free DNA, and, at its physiological protein/DNA ratio, enhances compaction and the reversible Mg2+-dependent self-association of nucleosome arrays. MENT appears to promote the formation of heterochromatin by acting as a "glue" within and between chains of nucleosomes.

  16. X-ray structure of a tetranucleosome and its implications for the chromatin fibre

    NASA Astrophysics Data System (ADS)

    Schalch, Thomas; Duda, Sylwia; Sargent, David F.; Richmond, Timothy J.

    2005-07-01

    DNA in eukaryotic chromosomes is organized in arrays of nucleosomes compacted into chromatin fibres. This higher-order structure of nucleosomes is the substrate for DNA replication, recombination, transcription and repair. Although the structure of the nucleosome core is known at near-atomic resolution, even the most fundamental information about the organization of nucleosomes in the fibre is controversial. Here we report the crystal structure of an oligonucleosome (a compact tetranucleosome) at 9Å resolution, solved by molecular replacement using the nucleosome core structure. The structure shows that linker DNA zigzags back and forth between two stacks of nucleosome cores, which form a truncated two-start helix, and does not follow a path compatible with a one-start solenoidal helix. The length of linker DNA is most probably buffered by stretching of the DNA contained in the nucleosome cores. We have built continuous fibre models by successively stacking tetranucleosomes one on another. The resulting models are nearly fully compacted and most closely resemble the previously described crossed-linker model. They suggest that the interfaces between nucleosomes along a single helix start are polymorphic.

  17. Structurally divergent histone H1 variants in chromosomes containing highly condensed interphase chromatin.

    PubMed

    Schulze, E; Nagel, S; Gavenis, K; Grossbach, U

    1994-12-01

    Condensed and late-replicating interphase chromatin in the Dipertan insect Chironomus contains a divergent type of histone H1 with an inserted KAP-KAP repeat that is conserved in single H1 variants of Caenorhabditis elegans and Volvox carteri. H1 peptides comprising the insertion interact specifically with DNA. The Chironomid Glyptotendipes exhibits a corresponding correlation between the presence of condensed chromosome sections and the appearance of a divergent H1 subtype. The centromere regions and other sections of Glyptotendipes barbipes chromosomes are inaccessible to immunodecoration by anti-H2B and anti-H1 antibodies one of which is known to recognize nine different epitopes in all domains of the H1 molecule. Microelectrophoresis of the histones from manually isolated unfixed centromeres revealed the presence of H1 and core histones. H1 genes of G. barpipes were sequenced and found to belong to two groups. H1 II and H1 III are rather similar but differ remarkably from H1 I. About 30% of the deduced amino acid residues were found to be unique to H1 I. Most conspicuous is the insertion, SPAKSPGR, in H1 I that is lacking in H1 II and H1 III and at its position gives rise to the sequence repeat SPAKSPAKSPGR. The homologous H1 I gene in Glyptotendipes salinus encodes the very similar repeat TPAKSPAKSPGR. Both sequences are structurally related to the KAPKAP repeat in H1 I-1 specific for condensed chromosome sites in Chironomus and to the SPKKSPKK repeat in sea urchin sperm H1, lie at almost the same distance from the central globular domain, and could interact with linker DNA in packaging condensed chromatin.

  18. Comparative sperm chromatin structure assay measurements on epiillumination and orthogonal axes flow cytometers

    SciTech Connect

    Evenson, D.; Jost, L.; Gandour, D.; Gandour, D.; Rhodes, L.

    1995-04-01

    The sperm chromatin structure assay (SCSA) measures the susceptibility of sperm nuclear DNA to acid-induced denaturation in situ, and was developed on two Ortho flow cytometers, an FC200 and a cytofluorograf 30 (BDIS), both having orthogonal axes of fluorochrome excitation, emission, and sample flow. Sperm cells are first treated with a pH 1.4 buffer to denature DNA in situ and then stained with the metachromatic dye acridine orange (AO). The metachromatic fluorescence measured reflects relative amounts of denatured (red fluorescence) and native (green fluorescence) DNA present per cell. The extent of DNA denaturation is quantified by the calculated parameter alpha t [{alpha}{sub t} = red/(red + green) fluorescence]. Alpha t variables important for correlations with fertility and toxicant-induced chromatin damage include mean (X{alpha}{sub t}), standard deviation (SD{alpha}{sub t}), and cells outside the main population (COMP{alpha}{sub t}). This study showed that the SCSA can be successfully run on two epiillumination-type instruments, an Ortho ICP22A and Skatron Argus {trademark}, and two additional orthogonal axes instruments, a Becton Dickinson FACScan {trademark} and a Coulter Elite {trademark}. Epiillumination instruments produced a different fluorescence distribution than orthogonal instruments, but the resulting {alpha}{sub t} values showed strong conformity and interpretation of results was the same. SCSA values obtained on the Coultier Elite {trademark} were most similar to the Cytofluorograf 30; the FACScan {trademark} green fluorescence distribution was narrower and allowed resolution of cell doublets. Neither orthogonal instrument has the ability to directly calculate {alpha}{sub t} values. Listmode data from these instruments were transferred to an off-line personal computer (PC) for calculation of {alpha}{sub t} values using LIST-VIEW {trademark} software. 28 refs., 5 figs., 2 tabs.

  19. Nuclear c-Abl-mediated tyrosine phosphorylation induces chromatin structural changes through histone modifications that include H4K16 hypoacetylation

    SciTech Connect

    Aoyama, Kazumasa; Fukumoto, Yasunori; Ishibashi, Kenichi; Kubota, Sho; Morinaga, Takao; Horiike, Yasuyoshi; Yuki, Ryuzaburo; Takahashi, Akinori; Nakayama, Yuji; Yamaguchi, Naoto

    2011-12-10

    c-Abl tyrosine kinase, which is ubiquitously expressed, has three nuclear localization signals and one nuclear export signal and can shuttle between the nucleus and the cytoplasm. c-Abl plays important roles in cell proliferation, adhesion, migration, and apoptosis. Recently, we developed a pixel imaging method for quantitating the level of chromatin structural changes and showed that nuclear Src-family tyrosine kinases are involved in chromatin structural changes upon growth factor stimulation. Using this method, we show here that nuclear c-Abl induces chromatin structural changes in a manner dependent on the tyrosine kinase activity. Expression of nuclear-targeted c-Abl drastically increases the levels of chromatin structural changes, compared with that of c-Abl. Intriguingly, nuclear-targeted c-Abl induces heterochromatic profiles of histone methylation and acetylation, including hypoacetylation of histone H4 acetylated on lysine 16 (H4K16Ac). The level of heterochromatic histone modifications correlates with that of chromatin structural changes. Adriamycin-induced DNA damage stimulates translocation of c-Abl into the nucleus and induces chromatin structural changes together with H4K16 hypoacetylation. Treatment with trichostatin A, a histone deacetylase inhibitor, blocks chromatin structural changes but not nuclear tyrosine phosphorylation by c-Abl. These results suggest that nuclear c-Abl plays an important role in chromatin dynamics through nuclear tyrosine phosphorylation-induced heterochromatic histone modifications.

  20. The influence of chromatin structure on the frequency of radiation-induced DNA strand breaks: a study using nuclear and nucleoid monolayers

    SciTech Connect

    Ljungman, M. )

    1991-04-01

    To assess the influence of chromatin structure on the frequency of radiation-induced DNA strand breaks, the alkaline unwinding technique was applied to nuclear and nucleoid monolayers. These chromatin substrates were prepared by treating human fibroblasts grown as monolayers with the nonionic detergent Triton X-100 and varying concentrations of cations. The chromatin structure was modified either by a stepwise removal of DNA-bound proteins by extraction in increasing concentrations of monovalent salt, or by the addition or deletion of mono- and divalent cations to condense or decondense the chromatin, respectively. It was found that the stepwise removal of DNA-bound proteins from the chromatin dramatically increased the frequency of radiation-induced DNA strand breaks. The DNA-bound proteins showed a qualitative difference in their ability to protect the DNA where proteins removed by salt concentrations above 1.0 M exerted the greatest protection. Furthermore, the frequency of radiation-induced DNA strand breaks was found to be 6 times lower in condensed chromatin than in decondensed chromatin and about 80 times lower than in protein-depleted chromatin. It is concluded that the presence of DNA-bound proteins and the folding of the chromatin into higher-order structures protect the DNA against radiation-induced strand breaks.

  1. The dynamics of HMG protein–chromatin interactions in living cells1

    PubMed Central

    Gerlitz, Gabi; Hock, Robert; Ueda, Tetsuya; Bustin, Michael

    2012-01-01

    The dynamic interaction between nuclear proteins and chromatin leads to the functional plasticity necessary to mount adequate responses to regulatory signals. Here, we review the factors regulating the chromatin interactions of the high mobility group proteins (HMGs), an abundant and ubiquitous superfamily of chromatin-binding proteins in living cells. HMGs are highly mobile and interact with the chromatin fiber in a highly dynamic fashion, as part of a protein network. The major factors that affect the binding of HMGs to chromatin are operative at the level of the single nucleosome. These factors include structural features of the HMGs, competition with other chromatin-binding proteins for nucleosome binding sites, complex formation with protein partners, and post-translational modifications in the protein or in the chromatin-binding sites. The versatile modulation of the interaction between HMG proteins and chromatin plays a role in processes that establish the cellular phenotype. PMID:19234529

  2. A model for chromatin sub-structure incorporating symmetry considerations of histone oligomers

    PubMed Central

    Hyde, J.E.; Walker, I.O.

    1975-01-01

    Symmetry considerations of the kind of structures which can be generated when dimers of histones f2a1-f3 and f2a2-f2b interact lead to the following conclusions: chromatin subunits based on closed-shell structures give rise to discrete, non-interacting nucleoprotein subunits with the histones arranged at random along the DNA chain; open structures based on infinite helices give rise to highly ordered, regular arrangements of dimers. A model is proposed in which helical polymers of f2a1-f3 and f2b-f2a2 form a central core with the DNA helically arranged around it. The helical repeat contains 9.6 turns of B-form DNA and one molecule each of f2a1, f2a2, f2b, f3 and f1. The pitch of the helix is 53Å and the outer diameter 130Å. The protein molecular repeat is 106Å. PMID:1129140

  3. Unusual chromatin structural organization in the sperm head of a murid rodent from southern Africa: the red veld rat, Aethomys chrysophilus type B.

    PubMed

    Breed, W G

    1997-11-01

    The structural organization of the chromatin of cauda epididymal spermatozoa of the red veld rat Aethomys chrysophilus type B was investigated by fluorescence microscopy after staining with DNA specific dyes and by transmission electron microscopy after incubation with Triton X100, dithiothreitol, and SDS. Staining with DNA dyes showed variation in intensity of fluorescence of the sperm chromatin, with an anterior spherical region staining far more intensely than the surrounding chromatin. Transmission electron microscopy of these spermatozoa indicated that this region was composed of cords and fibres. This chromatin region dispersed more readily than the surrounding chromatin when spermatozoa were incubated with the detergents, and it is suggested that, unlike the rest of the sperm chromatin, it may be a histone-rich region, with protamine(s) being either scarce or absent.

  4. Hormonally induced alterations of chromatin structure in the polyadenylation and transcription termination regions of the chicken ovalbumin gene.

    PubMed Central

    Bellard, M; Dretzen, G; Bellard, F; Kaye, J S; Pratt-Kaye, S; Chambon, P

    1986-01-01

    We have studied the chromatin structure of a 16-kb region of the chicken genome containing the 3'-terminal 2 kb of the ovalbumin pre-mRNA coding sequence and the 14-kb segment located immediately downstream from the main mRNA polyadenylation site. Using the indirect end-labelling technique, four major and two minor DNase I-hypersensitive regions were found in the oviduct chromatin, whereas they were not present in liver, kidney or erythrocyte chromatin. The first hypersensitive region (region A) was present in chromatin of oviducts from laying hen and estrogen- or progesterone-stimulated immature chicks, in which the ovalbumin gene is expressed, but not in the chromatin of 'acute withdrawn' chicks where the gene is no longer transcribed. Region A spans 1.3 kb, from 7.2 to 8.5 kb downstream from the ovalbumin gene capsite (position +1), and encompasses the 3' moiety of the last exon including the major polyadenylation signal and polyadenylation site located at +7546 and +7564, respectively. Region A also contains a minor polyadenylation signal present at +7294 and the corresponding polyadenylation site at +7368. Two putative termination sequences at +8445 and +8483 are also found at the 3' extremity of region A in a 170-bp DNA segment within which 90% of the ovalbumin primary transcripts apparently terminate. Two minor hormone-independent DNase I-hypersensitive regions (a1 and a2) located at +8.6 and +8.8 kb are also specific to oviduct chromatin.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3011414

  5. Impact of Chromatin Structure on PR Signaling: Transition from Local to Global Analysis

    PubMed Central

    Grøntved, Lars; Hager, Gordon L

    2011-01-01

    The progesterone receptor (PR) interacts with chromatin in a highly dynamic manner that requires ongoing chromatin remodeling, interaction with chaparones and activity of the proteasome. Here we discuss dynamic interaction of steroid receptor with chromatin, with special attention not only to PR but also to the glucocorticoid receptor (GR), as these receptors share many similarities regarding interaction with, and remodeling of, chromatin. Both receptors can bind nucleosomal DNA and have accordingly been described as pioneering factors. However recent genomic approaches (ChIP-seq and DHS-seq) show that a large fraction of receptor binding events occur at pre-accessible chromatin. Thus factors which generate and maintain accessible chromatin during development, and in fully differentiated tissue, contribute a major fraction of receptor tissue specificity. In addition, chromosome conformation capture techniques suggest that steroid receptors preferentially sequester within distinct nuclear hubs. We will integrate dynamic studies from single cells and genomic studies from cell populations, and discuss how genomic approaches have reshaped our current understanding of mechanisms that control steroid receptor interaction with chromatin. PMID:21958695

  6. The forkhead transcription factor FoxI1 remains bound to condensed mitotic chromosomes and stably remodels chromatin structure.

    PubMed

    Yan, Jizhou; Xu, Lisha; Crawford, Gregory; Wang, Zenfeng; Burgess, Shawn M

    2006-01-01

    All forkhead (Fox) proteins contain a highly conserved DNA binding domain whose structure is remarkably similar to the winged-helix structures of histones H1 and H5. Little is known about Fox protein binding in the context of higher-order chromatin structure in living cells. We created a stable cell line expressing FoxI1-green fluorescent protein (GFP) or FoxI1-V5 fusion proteins under control of the reverse tetracycline-controlled transactivator doxycycline inducible system and found that unlike most transcription factors, FoxI1 remains bound to the condensed chromosomes during mitosis. To isolate DNA fragments directly bound by the FoxI1 protein within living cells, we performed chromatin immunoprecipitation assays (ChIPs) with antibodies to either enhanced GFP or the V5 epitope and subcloned the FoxI1-enriched DNA fragments. Sequence analyses indicated that 88% (106/121) of ChIP sequences contain the consensus binding sites for all Fox proteins. Testing ChIP sequences with a quantitative DNase I hypersensitivity assay showed that FoxI1 created stable DNase I sensitivity changes in condensed chromosomes. The majority of ChIP targets and random targets increased in resistance to DNase I in FoxI1-expressing cells, but a small number of targets became more accessible to DNase I. Consistently, the accessibility of micrococcal nuclease to chromatin was generally inhibited. Micrococcal nuclease partial digestion generated a ladder in which all oligonucleosomes were slightly longer than those observed with the controls. On the basis of these findings, we propose that FoxI1 is capable of remodeling chromatin higher-order structure and can stably create site-specific changes in chromatin to either stably create or remove DNase I hypersensitive sites.

  7. Dynamic Nucleosome Movement Provides Structural Information of Topological Chromatin Domains in Living Human Cells

    PubMed Central

    Shinkai, Soya; Nozaki, Tadasu; Maeshima, Kazuhiro

    2016-01-01

    The mammalian genome is organized into submegabase-sized chromatin domains (CDs) including topologically associating domains, which have been identified using chromosome conformation capture-based methods. Single-nucleosome imaging in living mammalian cells has revealed subdiffusively dynamic nucleosome movement. It is unclear how single nucleosomes within CDs fluctuate and how the CD structure reflects the nucleosome movement. Here, we present a polymer model wherein CDs are characterized by fractal dimensions and the nucleosome fibers fluctuate in a viscoelastic medium with memory. We analytically show that the mean-squared displacement (MSD) of nucleosome fluctuations within CDs is subdiffusive. The diffusion coefficient and the subdiffusive exponent depend on the structural information of CDs. This analytical result enabled us to extract information from the single-nucleosome imaging data for HeLa cells. Our observation that the MSD is lower at the nuclear periphery region than the interior region indicates that CDs in the heterochromatin-rich nuclear periphery region are more compact than those in the euchromatin-rich interior region with respect to the fractal dimensions as well as the size. Finally, we evaluated that the average size of CDs is in the range of 100–500 nm and that the relaxation time of nucleosome movement within CDs is a few seconds. Our results provide physical and dynamic insights into the genome architecture in living cells. PMID:27764097

  8. The Correlation of Interphase Chromatin Structure with the Radiation-Induced Inter- and Intrachromosome Exchange Hotspots

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Mangala, Lingegowda S.; Purgason, Ashley M.; Hada, Megumi; Cucinotta, Francis A.; Wu, Honglu

    2011-01-01

    To investigate the relationship between chromosome aberrations induced by radiation and chromatin folding, we reconstructed three dimensional structure of chromosome 3 and measured the physical distances between different regions of the chromosome. Previously, we have investigated the location of breaks involved in inter- and intrachromosomal type exchange events in human chromosome 3, using the multicolor banding in situ hybridization (mBAND) technique. In human epithelial cells exposed to both low- and high-LET radiations in vitro, we reported that intra-chromosome exchanges occurred preferentially between a break in the 3p21 and one in the 3q11 regions, and the breaks involving in inter-chromosome exchanges occurred in two regions towards the telomeres of the chromosome. Exchanges were also observed between a break in 3p21 and one in 3q26, but few exchanges were observed between breaks in 3q11 and 3q26, even though the two regions are located on the same arm of the chromosome. In this study, human epithelial cells were fixed at G1 phase and the interphase cells were hybridized using the XCyte3 mBAND kit from MetaSystems. The z-section images of chromosome 3 were captured with a Leica and an LSM 510 Meta laser scanning confocal microscopes. A total of 100 chromosomes were analyzed. The reconstruction of three dimensional structure of interphase chromosome 3 with six different colored regions was achieved using the Imaris software. The relative distance between different regions was measured as well. We further analyzed fragile sites on the chromosome that have been identified in various types of cancers. The data showed that, in majority of the cells, the regions containing 3p21 and 3q11 are colocalized in the center of the chromosome, whereas, the regions towards the telomeres of the chromosome are either physically wrapping outside the chromosome center or with arms sticking out. Our results demonstrated that the distribution of breaks involved in radiation

  9. Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure.

    PubMed

    Pepenella, Sharon; Murphy, Kevin J; Hayes, Jeffrey J

    2014-03-01

    Eukaryotic chromatin is a hierarchical collection of nucleoprotein structures that package DNA to form chromosomes. The initial levels of packaging include folding of long strings of nucleosomes into secondary structures and array-array association into higher-order tertiary chromatin structures. The core histone tail domains are required for the assembly of higher-order structures and mediate short- and long-range intra- and inter-nucleosome interactions with both DNA and protein targets to direct their assembly. However, important details of these interactions remain unclear and are a subject of much interest and recent investigations. Here, we review work defining the interactions of the histone N-terminal tails with DNA and protein targets relevant to chromatin higher-order structures, with a specific emphasis on the contributions of H3 and H4 tails to oligonucleosome folding and stabilization. We evaluate both classic and recent experiments determining tail structures, effect of tail cleavage/loss, and posttranslational modifications of the tails on nucleosomes and nucleosome arrays, as well as inter-nucleosomal and inter-array interactions of the H3 and H4 N-terminal tails.

  10. Chromatin structural changes in synchronized cells blocked in early S phase by sequential use of isoleucine deprivation and hydroxyurea blockade

    SciTech Connect

    D'Anna, J.A.; Prentice, D.A.

    1983-01-01

    The authors have investigated the loss of histone H1 from chromatin and the structure of chromatin from Chinese hamster (line CHO) cells blocked in early S phase by sequential use of isoleucine deprivation G/sub 1/ block and 1 mM hydroxyurea (HU) blockade. Measurements of H1 content in the cell and histone turnover indicate that H1 is lost from the cell and that there is negligible replacement synthesis of H1 during the period of the S-phase block. As H1 is lost, chromatin appears to undergo structural change. After 10 h of HU block, the new deoxyribonucleic acid (DNA) and a portion of the old DNA have measured nucleosome repeat lengths (37/sup 0/C digestion). By 24 h of HU block, nearly all of the chromatin has assumed a pseudoimmature conformation in which the nucleosome cores appear to be more closely packed along the DNA chain, but the new DNA is slightly more resistant than old DNA to attack by micrococcal nuclease. Electrophoretic analysis of nucleoprotein particles produced by micrococcal nuclease digestion of nuclei indicates that: the distribution of mononucleosome species changes during Hu block and some mononucleosome species appear to be enriched in normally minor proteins which may determine the electrophoretic mobility of the nucleoprotein particles in agarose-acrylamide gels. The results raise the possibility that: during the early stages of replication (or prior to the passage of the replication fork), H1 is dissociated from initiated replicons and H1 does not reassociate in a concerted fashion with the H1-depleted chromatin until the replication fork has passed and, perhaps, a substantial portion of the replicon has been replicated.

  11. Epigenome and chromatin structure in human embryonic stem cells undergoing differentiation.

    PubMed

    Bártová, Eva; Galiová, Gabriela; Krejcí, Jana; Harnicarová, Andrea; Strasák, Ludek; Kozubek, Stanislav

    2008-12-01

    Epigenetic histone (H3) modification patterns and the nuclear radial arrangement of select genetic elements were compared in human embryonic stem cells (hESCs) before and after differentiation. H3K9 acetylation, H3K9 trimethylation, and H3K79 monomethylation were reduced at the nuclear periphery of differentiated hESCs. Differentiation coincided with centromere redistribution, as evidenced by perinucleolar accumulation of the centromeric markers CENP-A and H3K9me3, central repositioning of centromeres 1, 5, 19, and rearrangement of other centromeres at the nuclear periphery. The radial positions of PML, RARalpha genes, and human chromosomes 10, 12, 15, 17, and 19 remained relatively stable as hESCs differentiated. However, the female inactive H3K27-trimethylated X chromosome occupied a more peripheral nuclear position in differentiated cells. Thus, pluripotent and differentiated hESCs have distinct nuclear patterns of heterochromatic structures (centromeres and inactive X chromosome) and epigenetic marks (H3K9me3, and H3K27me3), while relatively conserved gene density-related radial chromatin distributions are already largely established in undifferentiated hES cells.

  12. Effects of X-irradiation on mouse testicular cells and sperm chromatin structure

    SciTech Connect

    Sailer, B.L.; Jost, L.K.; Erickson, K.R.; Tajiran, M.A.; Evenson, D.P.

    1995-07-01

    The testicular regions of male mice were exposed to x-ray doses ranging from 0 to 400 rads. Forty days after exposure the mice were killed and the testes and cauda epididymal sperm removed surgically. Flow cytometric measurements of acridine orange stained testicular samples indicated a repopulation of testicular samples indicated a repopulation of testicular cell types following x-ray killing of stem cells. Cauda epididymal sperm were analyzed by the sperm chromatin structure assay (SCSA), a flow cytometric measurement of the susceptibility of the sperm nuclear DNA to in situ acid denaturation. The SCSA detected increased susceptibility to DNA denaturation in situ after 12.5 rads of x-ray exposure, with significant increases following 25 rads. Abnormal sperm head morphology was not significantly increased until the testes were exposed to 60 rads of x-rays. These data suggest that the SCSA is currently the most sensitive, noninvasive method of detecting x-ray damage to testicular stem spermatogonia. 47 refs., 5 figs.

  13. Please do not disturb: Destruction of chromatin structure by supravital nucleic acid probes revealed by a novel assay of DNA-histone interaction

    PubMed Central

    Wlodkowic, Donald; Darzynkiewicz, Zbigniew

    2008-01-01

    The biomarkers designed to be used supravitally are expected to have minimal effect on structure and function of the cell. Unfortunately nearly all fluorochromes developed to probe live cells interact in undesired way with cellular constituents and affect functional pathways. Herein we comment on potential applications of diverse DNA binding probes in view of the recent article by Wojcik & Dobrucki on DRAQ 5 and SYTO 17. The approach used by these authors to assess DNA-histone interactions using the cells having histones tagged with fluorescent proteins offers a valuable tool to study mechanism of action of antitumor drugs targeting DNA. While the effect of many intercalating drugs may be similar to that of DRAQ5, it may be of particular interest to observe the effects induced by intra-strand and inter-strand DNA crosslinking drugs, alkylating agents, histone deacetylase inhibitors or even anti-metabolites. The cells having histones tagged with fluorescent proteins thus may serve as biomarkers to probe mechanism of action of drugs targeting DNA or affecting chromatin structure. In fact, because such gross chromatin changes as revealed by dissociation and segregation of histones from DNA are most likely incompatible with long-term cell survival, the methodology may be applied for rapid screening of investigational antitumor agents. PMID:18671237

  14. Radiation-induced thymine base damage in replicating chromatin

    SciTech Connect

    Warters, R.L.; Childers, T.J.

    1982-06-01

    The efficiency of radiation-induced production of 5',6'-dihydroxydihydrothymine (t/sup ..gamma../)-type damage was determined in nascent and mature chromatin DNA for the dose range of 50 to 150 krad. These large doses affected neither the total fraction of nuclear DNA in chromatin subunits nor the nucleosome subunit repeat length. The DNA in nascent chromatin, however, was found to be 3.3 times more sensitive than mature chromatin DNA to ..gamma..-ray (/sup 137/Cs)-induced t/sup ..gamma../-type damage, while thymine damage of this type was uniformly distributed in the nucleosomal DNA of mature chromatin (i.e., in the nucleosome core and spacer DNA). The half-time for the transition of nascent DNA sensitivity to mature chromatin DNA sensitivity levels was the same as the half-time at 37/sup 0/C for the maturation of nascent into mature chromatin structure. The rate at which nascent chromatin matured was unaffected by radiation doses as large as 150 krad. The most logical explanation for the greater sensitivity of nascent DNA to radiation is the decreased concentration of histone chromosomal proteins in nascent chromatin.

  15. Monte Carlo simulation of ionizing radiation induced DNA strand breaks utilizing coarse grained high-order chromatin structures

    NASA Astrophysics Data System (ADS)

    Liang, Ying; Yang, Gen; Liu, Feng; Wang, Yugang

    2016-01-01

    Ionizing radiation threatens genome integrity by causing DNA damage. Monte Carlo simulation of the interaction of a radiation track structure with DNA provides a powerful tool for investigating the mechanisms of the biological effects. However, the more or less oversimplification of the indirect effect and the inadequate consideration of high-order chromatin structures in current models usually results in discrepancies between simulations and experiments, which undermine the predictive role of the models. Here we present a biophysical model taking into consideration factors that influence indirect effect to simulate radiation-induced DNA strand breaks in eukaryotic cells with high-order chromatin structures. The calculated yields of single-strand breaks and double-strand breaks (DSBs) for photons are in good agreement with the experimental measurements. The calculated yields of DSB for protons and α particles are consistent with simulations by the PARTRAC code, whereas an overestimation is seen compared with the experimental results. The simulated fragment size distributions for 60Co γ irradiation and α particle irradiation are compared with the measurements accordingly. The excellent agreement with 60Co irradiation validates our model in simulating photon irradiation. The general agreement found in α particle irradiation encourages model applicability in the high linear energy transfer range. Moreover, we demonstrate the importance of chromatin high-order structures in shaping the spectrum of initial damage.

  16. Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene

    SciTech Connect

    Buschhausen, G.; Wittig, B.; Graessmann, M.; Graessmann, A.

    1987-03-01

    Inhibition of herpes simplex virus (HSV) thymidine kinase (TK) gene transcription (pHSV-106, pML-BPV-TK4) by DNA methylation is an indirect effect, which occurs with a latency period of approx. 8 hr microinjection of the DNA into TK/sup -/ rat 2 and mouse LTK/sup -/ cells. The authors have strong evidence that chromatin formation is critical for the transition of the injected DNA from methylation insensitivity to methylation sensitivity. Chromatin was reconstituted in vitro by using methylated and mock-methylated HSV TK DNA and purified chicken histone octamers. After microinjection, the methylated chromatin was always biologically inactive, as tested by autoradiography of the cells after incubation with (/sup 3/H)thymidine and by RNA dot blot analysis. However, in transformed cell lines, reactivation of the methylated chromatic occurred after treatment with 5-azacytidine. Furthermore, integration of the TK chromatin into the host genome is not required to block expression of the methylated TK gene. Mouse cells that contained the pML-BPV-TK4 chromatin permanently in an episomal state also did not support TK gene expression as long as the TK DNA remained methylated.

  17. Function of chromatin structure and dynamics in DNA damage, repair and misrepair: γ-rays and protons in action.

    PubMed

    Ježková, Lucie; Falk, Martin; Falková, Iva; Davídková, Marie; Bačíková, Alena; Štefančíková, Lenka; Vachelová, Jana; Michaelidesová, Anna; Lukášová, Emilie; Boreyko, Alla; Krasavin, Evgeny; Kozubek, Stanislav

    2014-01-01

    According to their physical characteristics, protons and ion beams promise a revolution in cancer radiotherapy. Curing protocols however reflect rather the empirical knowledge than experimental data on DNA repair. This especially holds for the spatio-temporal organization of repair processes in the context of higher-order chromatin structure-the problematics addressed in this work. The consequences for the mechanism of chromosomal translocations are compared for gamma rays and proton beams.

  18. NET23/STING promotes chromatin compaction from the nuclear envelope.

    PubMed

    Malik, Poonam; Zuleger, Nikolaj; de las Heras, Jose I; Saiz-Ros, Natalia; Makarov, Alexandr A; Lazou, Vassiliki; Meinke, Peter; Waterfall, Martin; Kelly, David A; Schirmer, Eric C

    2014-01-01

    Changes in the peripheral distribution and amount of condensed chromatin are observed in a number of diseases linked to mutations in the lamin A protein of the nuclear envelope. We postulated that lamin A interactions with nuclear envelope transmembrane proteins (NETs) that affect chromatin structure might be altered in these diseases and so screened thirty-one NETs for those that promote chromatin compaction as determined by an increase in the number of chromatin clusters of high pixel intensity. One of these, NET23 (also called STING, MITA, MPYS, ERIS, Tmem173), strongly promoted chromatin compaction. A correlation between chromatin compaction and endogenous levels of NET23/STING was observed for a number of human cell lines, suggesting that NET23/STING may contribute generally to chromatin condensation. NET23/STING has separately been found to be involved in innate immune response signaling. Upon infection cells make a choice to either apoptose or to alter chromatin architecture to support focused expression of interferon genes and other response factors. We postulate that the chromatin compaction induced by NET23/STING may contribute to this choice because the cells expressing NET23/STING eventually apoptose, but the chromatin compaction effect is separate from this as the condensation was still observed when cells were treated with Z-VAD to block apoptosis. NET23/STING-induced compacted chromatin revealed changes in epigenetic marks including changes in histone methylation and acetylation. This indicates a previously uncharacterized nuclear role for NET23/STING potentially in both innate immune signaling and general chromatin architecture.

  19. NET23/STING Promotes Chromatin Compaction from the Nuclear Envelope

    PubMed Central

    de las Heras, Jose I.; Saiz-Ros, Natalia; Makarov, Alexandr A.; Lazou, Vassiliki; Meinke, Peter; Waterfall, Martin; Kelly, David A.; Schirmer, Eric C.

    2014-01-01

    Changes in the peripheral distribution and amount of condensed chromatin are observed in a number of diseases linked to mutations in the lamin A protein of the nuclear envelope. We postulated that lamin A interactions with nuclear envelope transmembrane proteins (NETs) that affect chromatin structure might be altered in these diseases and so screened thirty-one NETs for those that promote chromatin compaction as determined by an increase in the number of chromatin clusters of high pixel intensity. One of these, NET23 (also called STING, MITA, MPYS, ERIS, Tmem173), strongly promoted chromatin compaction. A correlation between chromatin compaction and endogenous levels of NET23/STING was observed for a number of human cell lines, suggesting that NET23/STING may contribute generally to chromatin condensation. NET23/STING has separately been found to be involved in innate immune response signaling. Upon infection cells make a choice to either apoptose or to alter chromatin architecture to support focused expression of interferon genes and other response factors. We postulate that the chromatin compaction induced by NET23/STING may contribute to this choice because the cells expressing NET23/STING eventually apoptose, but the chromatin compaction effect is separate from this as the condensation was still observed when cells were treated with Z-VAD to block apoptosis. NET23/STING-induced compacted chromatin revealed changes in epigenetic marks including changes in histone methylation and acetylation. This indicates a previously uncharacterized nuclear role for NET23/STING potentially in both innate immune signaling and general chromatin architecture. PMID:25386906

  20. The structure of the core NuRD repression complex provides insights into its interaction with chromatin

    PubMed Central

    Millard, Christopher J; Varma, Niranjan; Saleh, Almutasem; Morris, Kyle; Watson, Peter J; Bottrill, Andrew R; Fairall, Louise; Smith, Corinne J; Schwabe, John WR

    2016-01-01

    The NuRD complex is a multi-protein transcriptional corepressor that couples histone deacetylase and ATP-dependent chromatin remodelling activities. The complex regulates the higher-order structure of chromatin, and has important roles in the regulation of gene expression, DNA damage repair and cell differentiation. HDACs 1 and 2 are recruited by the MTA1 corepressor to form the catalytic core of the complex. The histone chaperone protein RBBP4, has previously been shown to bind to the carboxy-terminal tail of MTA1. We show that MTA1 recruits a second copy of RBBP4. The crystal structure reveals an extensive interface between MTA1 and RBBP4. An EM structure, supported by SAXS and crosslinking, reveals the architecture of the dimeric HDAC1:MTA1:RBBP4 assembly which forms the core of the NuRD complex. We find evidence that in this complex RBBP4 mediates interaction with histone H3 tails, but not histone H4, suggesting a mechanism for recruitment of the NuRD complex to chromatin. DOI: http://dx.doi.org/10.7554/eLife.13941.001 PMID:27098840

  1. The structure of the core NuRD repression complex provides insights into its interaction with chromatin.

    PubMed

    Millard, Christopher J; Varma, Niranjan; Saleh, Almutasem; Morris, Kyle; Watson, Peter J; Bottrill, Andrew R; Fairall, Louise; Smith, Corinne J; Schwabe, John W R

    2016-04-21

    The NuRD complex is a multi-protein transcriptional corepressor that couples histone deacetylase and ATP-dependent chromatin remodelling activities. The complex regulates the higher-order structure of chromatin, and has important roles in the regulation of gene expression, DNA damage repair and cell differentiation. HDACs 1 and 2 are recruited by the MTA1 corepressor to form the catalytic core of the complex. The histone chaperone protein RBBP4, has previously been shown to bind to the carboxy-terminal tail of MTA1. We show that MTA1 recruits a second copy of RBBP4. The crystal structure reveals an extensive interface between MTA1 and RBBP4. An EM structure, supported by SAXS and crosslinking, reveals the architecture of the dimeric HDAC1:MTA1:RBBP4 assembly which forms the core of the NuRD complex. We find evidence that in this complex RBBP4 mediates interaction with histone H3 tails, but not histone H4, suggesting a mechanism for recruitment of the NuRD complex to chromatin.

  2. Control of V(D)J Recombination through Transcriptional Elongation and Changes in Locus Chromatin Structure and Nuclear Organization.

    PubMed

    Del Blanco, Beatriz; García, Vanina; García-Mariscal, Alberto; Hernández-Munain, Cristina

    2011-01-01

    V(D)J recombination is the assembly of gene segments at the antigen receptor loci to generate antigen receptor diversity in T and B lymphocytes. This process is regulated, according to defined developmental programs, by the action of a single specific recombinase complex formed by the recombination antigen gene (RAG-1/2) proteins that are expressed in immature lymphocytes. V(D)J recombination is strictly controlled by RAG-1/2 accessibility to specific recombination signal sequences in chromatin at several levels: cellular lineage, temporal regulation, gene segment order, and allelic exclusion. DNA cleavage by RAG-1/2 is regulated by the chromatin structure, transcriptional elongation, and three-dimensional architecture and position of the antigen receptor loci in the nucleus. Cis-elements specifically direct transcription and V(D)J recombination at these loci through interactions with transacting factors that form molecular machines that mediate a sequence of structural events. These events open chromatin to activate transcriptional elongation and to permit the access of RAG-1/2 to their recombination signal sequences to drive the juxtaposition of the V, D, and J segments and the recombination reaction itself. This chapter summarizes the advances in this area and the important role of the structure and position of antigen receptor loci within the nucleus to control this process.

  3. The chromatin structure at the promoter of a glyceraldehyde phosphate dehydrogenase gene from Saccharomyces cerevisiae reflects its functional state.

    PubMed Central

    Pavlović, B; Hörz, W

    1988-01-01

    The chromatin structure of TDH3, one of three genes encoding glyceraldehyde phosphate dehydrogenases in Saccharomyces cerevisiae, was analyzed by nuclease digestion. A large hypersensitive region was found at the TDH3 promoter extending from the RNA initiation site at position -40 to position -560. This hypersensitive domain is nucleosome free and includes all putative cis-acting regulatory DNA elements. It is equally present in cells grown on fermentable as well as nonfermentable carbon sources. In a mutant which lacks the trans-activating protein GCR1 and which as a consequence expresses TDH3 at less than 5% of the wild-type level, the chromatin structure is different. Hypersensitivity between -40 and -370 is lost, due to the deposition of nucleosomes on a stretch that is nucleosome free in wild-type cells. Hypersensitivity is retained, however, further upstream (from -370 to -560). A similarly altered chromatin structure, as in a ger1 mutant, is found in wild-type cells when they approach stationary phase. This is the first evidence for a growth-dependent regulation of the TDH3 promoter. Images PMID:2854200

  4. Interaction of chromatin with NaCl and MgCl2. Solubility and binding studies, transition to and characterization of the higher-order structure.

    PubMed

    Ausio, J; Borochov, N; Seger, D; Eisenberg, H

    1984-08-15

    Chicken erythrocyte chromatin containing histones H1 and H5 was carefully separated into a number of well-characterized fractions. A distinction could be made between chromatin insoluble in NaCl above about 80 mM, and chromatin soluble at all NaCl concentrations. Both chromatin forms were indistinguishable electrophoretically and both underwent the transition from the low salt "10 nm" coil to the "30 nm" higher-order structure solenoid by either raising the MgCl2 concentration to about 0.3 mM or the NaCl concentration to about 75 mM. The transitions were examined in detail by elastic light-scattering procedures. It could be shown that the 10 nm form is a flexible coil. For the 30 nm solenoid, the assumption of a rigid cylindrical structure was in good agreement with 5.7 nucleosomes per helical turn. However, disagreement of calculated frictional parameters with values derived from quasielastic light-scattering and sedimentation introduced the possibility that the higher-order structure, under these conditions, is more extended, flexible, or perhaps a mixture of structures. Values for density and refractive index increments of chromatin are also given. To understand the interaction of chromatin with NaCl and with MgCl2, a number of experiments were undertaken to study solubility, precipitation, conformational transitions and binding of ions over a wide range of experimental conditions, including chromatin concentration.

  5. Chromatin hydrodynamics.

    PubMed

    Bruinsma, Robijn; Grosberg, Alexander Y; Rabin, Yitzhak; Zidovska, Alexandra

    2014-05-06

    Following recent observations of large scale correlated motion of chromatin inside the nuclei of live differentiated cells, we present a hydrodynamic theory-the two-fluid model-in which the content of a nucleus is described as a chromatin solution with the nucleoplasm playing the role of the solvent and the chromatin fiber that of a solute. This system is subject to both passive thermal fluctuations and active scalar and vector events that are associated with free energy consumption, such as ATP hydrolysis. Scalar events drive the longitudinal viscoelastic modes (where the chromatin fiber moves relative to the solvent) while vector events generate the transverse modes (where the chromatin fiber moves together with the solvent). Using linear response methods, we derive explicit expressions for the response functions that connect the chromatin density and velocity correlation functions to the corresponding correlation functions of the active sources and the complex viscoelastic moduli of the chromatin solution. We then derive general expressions for the flow spectral density of the chromatin velocity field. We use the theory to analyze experimental results recently obtained by one of the present authors and her co-workers. We find that the time dependence of the experimental data for both native and ATP-depleted chromatin can be well-fitted using a simple model-the Maxwell fluid-for the complex modulus, although there is some discrepancy in terms of the wavevector dependence. Thermal fluctuations of ATP-depleted cells are predominantly longitudinal. ATP-active cells exhibit intense transverse long wavelength velocity fluctuations driven by force dipoles. Fluctuations with wavenumbers larger than a few inverse microns are dominated by concentration fluctuations with the same spectrum as thermal fluctuations but with increased intensity.

  6. Sperm chromatin structure assay results in Nigerian men with unexplained infertility

    PubMed Central

    Kolade, Charles Oluwabukunmi

    2015-01-01

    Objective Several publications have established a relationship between sperm DNA damage and male factor infertility, based on data from America, Europe, and Asia. This study aimed to compare the extent of sperm DNA damage in sperm samples from Nigerian men with unexplained infertility and in sperm samples from a fertile group composed of sperm donors who had successfully impregnated a female partner naturally or through assisted conception. Methods A total of 404 men underwent male fertility evaluation at Androcare Laboratories and Cryobank participated in this study. Semen analysis and a sperm chromatin structure assay (SCSA) were performed on all subjects. Results The men in the unexplained infertility group were slightly older than the men in the fertile sperm group (36±10 years vs. 32±6 years, p=0.051). No significant difference was observed between the two groups in semen analysis parameters (p≥0.05). Men in the unexplained infertility group with normal semen parameters had a significantly higher DNA fragmentation index (DFI) than men in the fertile sperm group (27.5%±7.0% vs. 14.1%±5.3%, p<0.05). In the unexplained infertility group, 63% of the men had a DFI greater than 20%, compared to 4% in the fertile sperm group. In the unexplained infertility group, 15.2% of the subjects had a DFI greater than 30%, compared to 1% in the fertile sperm group. Conclusion Our study showed that the SCSA may be a more reliable predictor of fertility potential than traditional semen analysis in cases of unexplained infertility. PMID:26473109

  7. Neutron scatter studies of chromatin structures related to functions. Technical progress report, November 1, 1991--May 15, 1992

    SciTech Connect

    Bradbury, E.M.

    1992-06-01

    We have made considerable progress in chromatin reconstitution with very lysine rich histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized in intrinsically bent DNA region flaking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interactions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear Magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin.

  8. Neutron scatter studies of chromatin structures related to functions. Technical progress report, November 1, 1991--May 15, 1992

    SciTech Connect

    Bradbury, E.M.

    1992-11-01

    Despite of setbacks in the lack of neutrons for the proposed We have made considerable progress in chromatin reconstitution with the VLR histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized an intrinsically bent DNA region flanking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interatctions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin.

  9. The effect of a high mobility group protein (HMG 17) on the structure of acetylated and control core HeLa cell chromatin.

    PubMed

    Sasi, R; Fasman, G D

    1984-05-15

    The effect of binding a high mobility group protein (HMG 17) on the stability and conformation of acetylated and control HeLa high molecular weight core chromatin (stripped of H1 and non-histone chromosomal proteins) was studied by circular dichroism and thermal-denaturation measurements. Previously it had been shown that conformational differences exist between native whole chromatin derived from butyrate-treated (acetylated) and control HeLa cells and that these conformational differences disappear by removing H1 and non-histone chromosomal proteins ( Reczek , P.R., Weissman , D., Huvos , P.E. and Fasman, G.D. (1982) Biochemistry 21, 993-1002). The circular dichroism spectra and the thermal denaturation profiles of control and acetylated core chromatin were found to be similar. The circular dichroism properties of HMG 17 reconstituted highly acetylated and control core chromatin indicated the same alteration of chromatin structure at low ionic strength (1 mM sodium phosphate/0.25 mM EDTA, pH 7.0). The magnitudes of the decrease in ellipticity were proportional to the amount of HMG 17 bound and were found to be the same for both the acetylated and control core chromatin. Thermal denaturation profiles confirmed this change in structure induced by HMG 17 on control and highly acetylated core chromatin. The thermal denaturation profiles, which were resolved into three component transitions, exhibited a shifting of hyperchromicity from the lower melting transitions to the higher melting transitions, with a concomitant rise in Tm, on HMG 17 binding to both control and acetylated chromatin. The natures of the interactions of HMG 17 at higher ionic strength (50 mM NaCl/0.25 mM EDTA/1 mM sodium phosphate, pH 7.0) with acetylated and control core chromatin were slightly different, as measured by circular dichroism; however, a decrease in ellipticity was observed for both samples upon binding of HMG 17. These observations suggest that acetylation coupled with HMG 17 binding

  10. Disclosure of a structural milieu for the proximity ligation reveals the elusive nature of an active chromatin hub

    PubMed Central

    Gavrilov, Alexey A.; Gushchanskaya, Ekaterina S.; Strelkova, Olga; Zhironkina, Oksana; Kireev, Igor I.; Iarovaia, Olga V.; Razin, Sergey V.

    2013-01-01

    The current progress in the study of the spatial organization of interphase chromosomes became possible owing to the development of the chromosome conformation capture (3C) protocol. The crucial step of this protocol is the proximity ligation—preferential ligation of DNA fragments assumed to be joined within nuclei by protein bridges and solubilized as a common complex after formaldehyde cross-linking and DNA cleavage. Here, we show that a substantial, and in some cases the major, part of DNA is not solubilized from cross-linked nuclei treated with restriction endonuclease(s) and sodium dodecyl sulphate and that this treatment neither causes lysis of the nucleus nor drastically affects its internal organization. Analysis of the ligation frequencies of the mouse β-globin gene domain DNA fragments demonstrated that the previously reported 3C signals were generated predominantly, if not exclusively, in the insoluble portion of the 3C material. The proximity ligation thus occurs within the cross-linked chromatin cage in non-lysed nuclei. The finding does not compromise the 3C protocol but allows the consideration of an active chromatin hub as a folded chromatin domain or a nuclear compartment rather than a rigid complex of regulatory elements. PMID:23396278

  11. Disclosure of a structural milieu for the proximity ligation reveals the elusive nature of an active chromatin hub.

    PubMed

    Gavrilov, Alexey A; Gushchanskaya, Ekaterina S; Strelkova, Olga; Zhironkina, Oksana; Kireev, Igor I; Iarovaia, Olga V; Razin, Sergey V

    2013-04-01

    The current progress in the study of the spatial organization of interphase chromosomes became possible owing to the development of the chromosome conformation capture (3C) protocol. The crucial step of this protocol is the proximity ligation-preferential ligation of DNA fragments assumed to be joined within nuclei by protein bridges and solubilized as a common complex after formaldehyde cross-linking and DNA cleavage. Here, we show that a substantial, and in some cases the major, part of DNA is not solubilized from cross-linked nuclei treated with restriction endonuclease(s) and sodium dodecyl sulphate and that this treatment neither causes lysis of the nucleus nor drastically affects its internal organization. Analysis of the ligation frequencies of the mouse β-globin gene domain DNA fragments demonstrated that the previously reported 3C signals were generated predominantly, if not exclusively, in the insoluble portion of the 3C material. The proximity ligation thus occurs within the cross-linked chromatin cage in non-lysed nuclei. The finding does not compromise the 3C protocol but allows the consideration of an active chromatin hub as a folded chromatin domain or a nuclear compartment rather than a rigid complex of regulatory elements.

  12. Human sperm chromatin stabilization: a proposed model including zinc bridges.

    PubMed

    Björndahl, Lars; Kvist, Ulrik

    2010-01-01

    The primary focus of this review is to challenge the current concepts on sperm chromatin stability. The observations (i) that zinc depletion at ejaculation allows a rapid and total sperm chromatin decondensation without the addition of exogenous disulfide cleaving agents and (ii) that the human sperm chromatin contains one zinc for every protamine for every turn of the DNA helix suggest an alternative model for sperm chromatin structure may be plausible. An alternative model is therefore proposed, that the human spermatozoon could at ejaculation have a rapidly reversible zinc dependent chromatin stability: Zn(2+) stabilizes the structure and prevents the formation of excess disulfide bridges by a single mechanism, the formation of zinc bridges with protamine thiols of cysteine and potentially imidazole groups of histidine. Extraction of zinc enables two biologically totally different outcomes: immediate decondensation if chromatin fibers are concomitantly induced to repel (e.g. by phosphorylation in the ooplasm); otherwise freed thiols become committed into disulfide bridges creating a superstabilized chromatin. Spermatozoa in the zinc rich prostatic fluid (normally the first expelled ejaculate fraction) represent the physiological situation. Extraction of chromatin zinc can be accomplished by the seminal vesicular fluid. Collection of the ejaculate in one single container causes abnormal contact between spermatozoa and seminal vesicular fluid affecting the sperm chromatin stability. There are men in infertile couples with low content of sperm chromatin zinc due to loss of zinc during ejaculation and liquefaction. Tests for sperm DNA integrity may give false negative results due to decreased access for the assay to the DNA in superstabilized chromatin.

  13. Chromatin Dynamics in Interphase Nuclei and Its Implications for Nuclear Structure

    PubMed Central

    Abney, James R.; Cutler, Bryan; Fillbach, Misty L.; Axelrod, Daniel; Scalettar, Bethe A.

    1997-01-01

    Translational dynamics of chromatin in interphase nuclei of living Swiss 3T3 and HeLa cells was studied using fluorescence microscopy and fluorescence recovery after photobleaching. Chromatin was fluorescently labeled using dihydroethidium, a membrane-permeant derivative of ethidium bromide. After labeling, a laser was used to bleach small (∼0.4 μm radius) spots in the heterochromatin and euchromatin of cells of both types. These spots were observed to persist for >1 h, implying that interphase chromatin is immobile over distance scales ⩾0.4 μm. Over very short times (<1 s), a partial fluorescence recovery within the spots was observed. This partial recovery is attributed to independent dye motion, based on comparison with results obtained using ethidium homodimer-1, which binds essentially irreversibly to nucleic acids. The immobility observed here is consistent with chromosome confinement to domains in interphase nuclei. This immobility may reflect motion-impeding steric interactions that arise in the highly concentrated nuclear milieu or outright attachment of the chromatin to underlying nuclear substructures, such as nucleoli, the nuclear lamina, or the nuclear matrix. PMID:9199163

  14. [Correcting influence of vitamin E short chain derivatives on lipid peroxidation, liver cell membrane, and chromatin structure when rats are exposed to embichin].

    PubMed

    Kovalenko, V M; Byshovets', T F; Hubs'kyĭ, Iu I; Levyts'kyĭ, Ie L; Shaiakhmetova, H M; Marchenko, O M; Voloshyna, O S; Saĭfetdinova, H A; Okhrimenko, V O; Donchenko, H V

    2000-01-01

    Embikhin causes activation of LPO processes in endoplasmic reticulum and in nuclear chromatine fractions of rat liver cells. The latter is accompanied by the impairment of repressive and active nuclear chromatine fractions structure. Derivate of vitamin E in these conditions renders correcting action on parameters of lipid peroxidation in the investigated subcellular structures, testifying its positive influence on the cell heredity apparatus state. The normalizing action of tocopherol derivative on cytochromes P450 and b5 levels is shown.

  15. The Chromatin Fiber: Multiscale Problems and Approaches

    PubMed Central

    Ozer, Gungor; Luque, Antoni; Schlick, Tamar

    2015-01-01

    The structure of chromatin, affected by many factors from DNA linker lengths to posttranslational modifications, is crucial to the regulation of eukaryotic cells. Combined experimental and computational methods have led to new insights into its structural and dynamical features, from interactions due to the flexible core histone tails of the nucleosomes to the physical mechanism driving the formation of chromosomal domains. Here we present a perspective of recent advances in chromatin modeling techniques at the atomic, mesoscopic, and chromosomal scales with a view toward developing multiscale computational strategies to integrate such findings. Innovative modeling methods that connect molecular to chromosomal scales are crucial for interpreting experiments and eventually deciphering the complex dynamic organization and function of chromatin in the cell. PMID:26057099

  16. Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure.

    PubMed

    Wang, Xiaodong; Hayes, Jeffrey J

    2008-01-01

    Nucleosome arrays undergo salt-dependent self-association into large oligomers in a process thought to recapitulate essential aspects of higher-order tertiary chromatin structure formation. Lysine acetylation within the core histone tail domains inhibits self-association, an effect likely related to its role in facilitating transcription. As acetylation of specific tail domains may encode distinct functions, we investigated biochemical and self-association properties of model nucleosome arrays containing combinations of native and mutant core histones with lysine-to-glutamine substitutions to mimic acetylation. Acetylation mimics within the tail domains of H2B and H4 caused the largest inhibition of array self-association, while modification of the H3 tail uniquely affected the stability of DNA wrapping within individual nucleosomes. In addition, the effect of acetylation mimics on array self-association is inconsistent with a simple charge neutralization mechanism. For example, acetylation mimics within the H2A tail can have either a positive or negative effect on self-association, dependent upon the acetylation state of the other tails and nucleosomal repeat length. Finally, we demonstrate that glutamine substitutions and lysine acetylation within the H4 tail domain have identical effects on nucleosome array self-association. Our results indicate that acetylation of specific tail domains plays distinct roles in the regulation of chromatin structure.

  17. Toxicants and human sperm chromatin integrity.

    PubMed

    Delbès, Geraldine; Hales, Barbara F; Robaire, Bernard

    2010-01-01

    The integrity of the paternal genome is essential as the spermatozoon can bring genetic damage into the oocyte at fertilization and contribute to the development of abnormal pregnancy outcome. During the past two decades, many assays have been developed to measure sperm DNA strand breaks, chromatin structure and compaction and assess the proteins associated with the DNA, as well as epigenetic modifications. Using these assays, it has been shown that exposure to physical agents or chemicals, including therapeutic drugs and environmental toxicants, can affect the integrity of sperm chromatin, inducing structural, genetic and/or epigenetic abnormalities. The mechanisms by which such damage is triggered are still largely unresolved and the susceptibility of each individual will depend on their genetic background, lifestyle and exposure to various insults. Depending on the nature of the chemicals, they may directly target the DNA, induce an oxidative stress, or modify the epigenetic elements. The significance of measuring the sperm chromatin integrity comes from the fact that this end-point correlates well with the low IVF and ICSI outcomes, and idiopathic infertility. Nevertheless, it is hard to establish a direct link between the paternal sperm chromatin integrity and the health of the future generations. Thus, it seems essential to undertake studies that will resolve the impact of chemical and environmental factors on chromatin structure and epigenetic components of human spermatozoa and to elucidate what sperm nuclear end-points are predictors of the quality of progeny outcome.

  18. Diazinon alters sperm chromatin structure in mice by phosphorylating nuclear protamines

    SciTech Connect

    Pina-Guzman, B.; Solis-Heredia, M.J.; Quintanilla-Vega, B. . E-mail: mquintan@mail.cinvestav.mx

    2005-01-15

    Organophosphorus (OP) pesticides, widely used in agriculture and pest control, are associated with male reproductive effects, including sperm chromatin alterations, but the mechanisms underlying these effects are unknown. The main toxic action of OP is related to phosphorylation of proteins. Chemical alterations in sperm nuclear proteins (protamines), which pack DNA during the last steps of spermatogenesis, contribute to male reproductive toxicity. Therefore, in the present study, we tested the ability of diazinon (DZN), an OP compound, to alter sperm chromatin by phosphorylating nuclear protamines. Mice were injected with a single dose of DZN (8.12 mg/kg, i.p.), and killed 8 and 15 days after treatment. Quality of sperm from epididymis and vas deferens was evaluated through standard methods and chromatin condensation by flow cytometry (DNA Fragmented Index parameters: DFI and DFI%) and fluorescence microscopy using chromomycin-A{sub 3} (CMA{sub 3}). Increases in DFI (15%), DFI% (4.5-fold), and CMA{sub 3} (2-fold) were observed only at 8 days post-treatment, indicating an alteration in sperm chromatin condensation and DNA damage during late spermatid differentiation. In addition, an increase of phosphorous content (approximately 50%) in protamines, especially in the phosphoserine content (approximately 73%), was found at 8 days post-treatment. Sperm viability, motility, and morphology showed significant alterations at this time. These data strongly suggest that spermatozoa exposed during the late steps of maturation were the targets of DZN exposure. The correlation observed between the phosphorous content in nuclear protamines with DFI%, DFI, and CMA{sub 3} provides evidence that phosphorylation of nuclear protamines is involved in the OP effects on sperm chromatin.

  19. PcG-Mediated Higher-Order Chromatin Structures Modulate Replication Programs at the Drosophila BX-C

    PubMed Central

    Comoglio, Federico; De Bardi, Marco; Paro, Renato; Orlando, Valerio

    2013-01-01

    Polycomb group proteins (PcG) exert conserved epigenetic functions that convey maintenance of repressed transcriptional states, via post-translational histone modifications and high order structure formation. During S-phase, in order to preserve cell identity, in addition to DNA information, PcG-chromatin-mediated epigenetic signatures need to be duplicated requiring a tight coordination between PcG proteins and replication programs. However, the interconnection between replication timing control and PcG functions remains unknown. Using Drosophila embryonic cell lines, we find that, while presence of specific PcG complexes and underlying transcription state are not the sole determinants of cellular replication timing, PcG-mediated higher-order structures appear to dictate the timing of replication and maintenance of the silenced state. Using published datasets we show that PRC1, PRC2, and PhoRC complexes differently correlate with replication timing of their targets. In the fully repressed BX-C, loss of function experiments revealed a synergistic role for PcG proteins in the maintenance of replication programs through the mediation of higher-order structures. Accordingly, replication timing analysis performed on two Drosophila cell lines differing for BX-C gene expression states, PcG distribution, and chromatin domain conformation revealed a cell-type-specific replication program that mirrors lineage-specific BX-C higher-order structures. Our work suggests that PcG complexes, by regulating higher-order chromatin structure at their target sites, contribute to the definition and the maintenance of genomic structural domains where genes showing the same epigenetic state replicate at the same time. PMID:23437006

  20. Post-translational modifications of the intrinsically disordered terminal domains of histone H1: effects on secondary structure and chromatin dynamics.

    PubMed

    Roque, A; Ponte, I; Suau, P

    2016-04-21

    H1 linker histones are involved both in the maintenance of chromatin higher-order structure and in gene regulation. H1 binds to linker DNA regions on the surface of the nucleosome. In higher eukaryotes, H1 contains three distinct domains: a short N-terminal domain (NTD), a central globular domain, and a long C-terminal domain (CTD). Terminal domains determine subtype specificity and to a large extent the linker DNA binding and chromatin condensing properties of histone H1. This review is focused on the recent numerous studies that have provided insights in the role of H1 terminal domains in chromatin dynamics. The N- and C-terminal domains behave as intrinsically disordered proteins with coupled binding and folding. We examine the potential kinetic advantages of intrinsic disorder in the recognition of the specific H1 binding sites in chromatin. As typical intrinsically disordered regions, H1 terminal domains are post-translationally modified. Post-translational modifications in the NTD determine the interaction of histone H1 with other proteins involved in heterochromatin formation and transcriptional regulation, while phosphorylation by cyclin-dependent kinases modulates the secondary structure of the CTD and chromatin condensation. We review the arguments in favor of the involvement of H1 hyperphosphorylation in metaphase chromatin condensation and of partial phosphorylation in interphase chromatin relaxation. In addition, the interplay of histone H1 and other chromatin architectural proteins, such as proteins of the high-mobility group, protamines, and MeCP2, is associated with changes in chromatin structure.

  1. CHD chromatin remodelers and the transcription cycle.

    PubMed

    Murawska, Magdalena; Brehm, Alexander

    2011-01-01

    It is well established that ATP-dependent chromatin remodelers modulate DNA access of transcription factors and RNA polymerases by "opening" or "closing" chromatin structure. However, this view is far too simplistic. Recent findings have demonstrated that these enzymes not only set the stage for the transcription machinery to act but are actively involved at every step of the transcription process. As a consequence, they affect initiation, elongation, termination and RNA processing. In this review we will use the CHD family as a paradigm to illustrate the progress that has been made in revealing these new concepts.

  2. APPLICATION OF THE SPERM CHROMATIN STRUCTURE ASSAY TO THE TEPLICE PROGRAM SEMEN STUDIES: A NEW METHOD FOR EVALUATING SPERM NUCLEAR CHROMATIN DAMAGE

    EPA Science Inventory

    ABSTRACT
    A measure of sperm chromatin integrity was added to the routine semen end points evaluated in the Teplice Program male reproductive health studies. To address the hypothesis that exposure to periods of elevated air pollution may be associated with abnormalities in sp...

  3. Direct Evidence for Pitavastatin Induced Chromatin Structure Change in the KLF4 Gene in Endothelial Cells

    PubMed Central

    Kanki, Yasuharu; Kohro, Takahide; Li, Guoliang; Ohta, Yoshihiro; Kimura, Hiroshi; Kobayashi, Mika; Taguchi, Akashi; Tsutsumi, Shuichi; Iwanari, Hiroko; Yamamoto, Shogo; Aruga, Hirofumi; Dong, Shoulian; Stevens, Junko F.; Poh, Huay Mei; Yamamoto, Kazuki; Kawamura, Takeshi; Mimura, Imari; Suehiro, Jun-ichi; Sugiyama, Akira; Kaneki, Kiyomi; Shibata, Haruki; Yoshinaka, Yasunobu; Doi, Takeshi; Asanuma, Akimune; Tanabe, Sohei; Tanaka, Toshiya; Minami, Takashi; Hamakubo, Takao; Sakai, Juro; Nozaki, Naohito; Aburatani, Hiroyuki; Nangaku, Masaomi; Ruan, Xiaoan; Tanabe, Hideyuki; Ruan, Yijun; Ihara, Sigeo; Endo, Akira; Kodama, Tatsuhiko; Wada, Youichiro

    2014-01-01

    Statins exert atheroprotective effects through the induction of specific transcriptional factors in multiple organs. In endothelial cells, statin-dependent atheroprotective gene up-regulation is mediated by Kruppel-like factor (KLF) family transcription factors. To dissect the mechanism of gene regulation, we sought to determine molecular targets by performing microarray analyses of human umbilical vein endothelial cells (HUVECs) treated with pitavastatin, and KLF4 was determined to be the most highly induced gene. In addition, it was revealed that the atheroprotective genes induced with pitavastatin, such as nitric oxide synthase 3 (NOS3) and thrombomodulin (THBD), were suppressed by KLF4 knockdown. Myocyte enhancer factor-2 (MEF2) family activation is reported to be involved in pitavastatin-dependent KLF4 induction. We focused on MEF2C among the MEF2 family members and identified a novel functional MEF2C binding site 148 kb upstream of the KLF4 gene by chromatin immunoprecipitation along with deep sequencing (ChIP-seq) followed by luciferase assay. By applying whole genome and quantitative chromatin conformation analysis {chromatin interaction analysis with paired end tag sequencing (ChIA-PET), and real time chromosome conformation capture (3C) assay}, we observed that the MEF2C-bound enhancer and transcription start site (TSS) of KLF4 came into closer spatial proximity by pitavastatin treatment. 3D-Fluorescence in situ hybridization (FISH) imaging supported the conformational change in individual cells. Taken together, dynamic chromatin conformation change was shown to mediate pitavastatin-responsive gene induction in endothelial cells. PMID:24797675

  4. [Immunochemical study of nuclear matrix proteins localization in the structure of perinucleolar chromatin].

    PubMed

    Murasheva, M I; Chentsov, Iu S

    2014-01-01

    Immunofluorescence labeling of proteins with molecular mass of 27, 38, 40, 50 and 65 kDa obtained from serum of patients with autoimmune disease demonstrated different patterns (small clusters or granules) in interphase nuclei of pig kidney cells. It was remarkable that there was no staining inside the nucleoli, but the proteins immunoreactivity was detected around them in the regions of perinucleolar chromatin. Moreover, expression of nucleolar proteins, such as fibrillarin and B23, was found only in nucleoli. After extraction of DNA, PNA and histones, the proteins with molecular mass 27 and 38 kDa were found in the periphery of residual nucleoli, and proteins with molecular mass 40, 50 and 65 kDa had similar localization and were also present in karyoplasm of cells as small clusters. According to our data, nucleolar protein, fibrillarin, was distributed regularly throughout the whole volume of residual nucleoli. At the same time, B23 protein was revealed only at their periphery, where perinucleolar chromatin had localized before treatment. Thus, it has been revealed that the proteins of nuclear matrix with molecular mass 27, 38, 40, 50 and 65 kDa, as well as nucleolar protein B23 are the parts of perinucleolar chromatin, which could be considered as special chromosomal domain associated with the functioning of the nucleolus.

  5. Radiation breakage of DNA: a model based on random-walk chromatin structure

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Sachs, R. K.

    2001-01-01

    Monte Carlo computer software, called DNAbreak, has recently been developed to analyze observed non-random clustering of DNA double strand breaks in chromatin after exposure to densely ionizing radiation. The software models coarse-grained configurations of chromatin and radiation tracks, small-scale details being suppressed in order to obtain statistical results for larger scales, up to the size of a whole chromosome. We here give an analytic counterpart of the numerical model, useful for benchmarks, for elucidating the numerical results, for analyzing the assumptions of a more general but less mechanistic "randomly-located-clusters" formalism, and, potentially, for speeding up the calculations. The equations characterize multi-track DNA fragment-size distributions in terms of one-track action; an important step in extrapolating high-dose laboratory results to the much lower doses of main interest in environmental or occupational risk estimation. The approach can utilize the experimental information on DNA fragment-size distributions to draw inferences about large-scale chromatin geometry during cell-cycle interphase.

  6. Chromatin Dynamics

    PubMed Central

    Hübner, Michael R.; Spector, David L.

    2010-01-01

    The expression patterns of many protein-coding genes are orchestrated in response to exogenous stimuli, as well as cell-type-specific developmental programs. In recent years, researchers have shown that dynamic chromatin movements and interactions in the nucleus play a crucial role in gene regulation. In this review, we highlight our current understanding of the organization of chromatin in the interphase nucleus and the impact of chromatin dynamics on gene expression. We also discuss the current state of knowledge with regard to the localization of active and inactive genes within the three-dimensional nuclear space. Furthermore, we address recent findings that demonstrate the movements of chromosomal regions and genomic loci in association with changes in transcriptional activity. Finally, we discuss the role of intra-and interchromosomal interactions in the control of coregulated genes. PMID:20462379

  7. The Chromatin Structure of the Long Control Region of Human Papillomavirus Type 16 Represses Viral Oncoprotein Expression

    PubMed Central

    Stünkel, Walter; Bernard, Hans-Ulrich

    1999-01-01

    The long control region (LCR) of human papillomavirus type 16 (HPV-16) has a size of 850 bp (about 12% of the viral genome) and regulates transcription and replication of the viral DNA. The 5′ segment of the LCR contains transcription termination signals and a nuclear matrix attachment region, the central segment contains an epithelial cell-specific enhancer, and the 3′ segment contains the replication origin and the E6 promoter. Here we report observations on the chromatin organization of this part of the HPV-16 genome. Treatment of the nuclei of CaSki cells, a cell line with 500 intrachromosomal copies of HPV-16, with methidiumpropyl-EDTA-Fe(II) reveals nucleosomes in specific positions on the LCR and the E6 and E7 genes. One of these nucleosomes, which we termed Ne, overlaps with the center of the viral enhancer, while a second nucleosome, Np16, overlaps with the replication origin and the E6 promoter. The two nucleosomes become positioned on exactly the same segments after in vitro assembly of chromatin on the cloned HPV-16 LCR. Primer extension mapping of DNase I-cleaved chromatin revealed Np16 to be positioned centrally over E6 promoter elements, extending into the replication origin. Ne covers the center of the enhancer but leaves an AP-1 site, one of the strongest cis-responsive elements of the enhancer, unprotected. Np16, or a combination of Np16 and Ne, represses the activity of the E6 promoter during in vitro transcription of HPV-16 chromatin. Repression is relieved by addition of Sp1 and AP-1 transcription factors. Sp1 alters the structure of Np16 in vitro, while no changes can be observed during the binding of AP-1. HPV-18, which has a similar arrangement of cis-responsive elements despite its evolutionary divergence from HPV-16, shows specific assembly in vitro of a nucleosome, Np18, over the E1 binding site and E6 promoter elements but positioned about 90 bp 5′ of the position of Np16 on the homologous HPV-16 sequences. The chromatin

  8. Glutamine-Expanded Ataxin-7 Alters TFTC/STAGA Recruitment and Chromatin Structure Leading to Photoreceptor Dysfunction

    PubMed Central

    Helmlinger, Dominique; Eberlin, Adrien; Bowman, Aaron B; Gansmüller, Anne; Picaud, Serge; Zoghbi, Huda Y; Trottier, Yvon

    2006-01-01

    Spinocerebellar ataxia type 7 (SCA7) is one of several inherited neurodegenerative disorders caused by a polyglutamine (polyQ) expansion, but it is the only one in which the retina is affected. Increasing evidence suggests that transcriptional alterations contribute to polyQ pathogenesis, although the mechanism is unclear. We previously demonstrated that theSCA7 gene product, ataxin-7 (ATXN7), is a subunit of the GCN5 histone acetyltransferase–containing coactivator complexes TFTC/STAGA. We show here that TFTC/STAGA complexes purified from SCA7 mice have normal TRRAP, GCN5, TAF12, and SPT3 levels and that their histone or nucleosomal acetylation activities are unaffected. However, rod photoreceptors from SCA7 mouse models showed severe chromatin decondensation. In agreement, polyQ-expanded ataxin-7 induced histone H3 hyperacetylation, resulting from an increased recruitment of TFTC/STAGA to specific promoters. Surprisingly, hyperacetylated genes were transcriptionally down-regulated, and expression analysis revealed that nearly all rod-specific genes were affected, leading to visual impairment in SCA7 mice. In conclusion, we describe here a set of events accounting for SCA7 pathogenesis in the retina, in which polyQ-expanded ATXN7 deregulated TFTC/STAGA recruitment to a subset of genes specifically expressed in rod photoreceptors, leading to chromatin alterations and consequent progressive loss of rod photoreceptor function. PMID:16494529

  9. Long-term effects of triethylenemelamine exposure on mouse testis cells and sperm chromatin structure assayed by flow cytometry

    SciTech Connect

    Evenson, D.P.; Baer, R.K.; Jost, L.K. )

    1989-01-01

    The toxic and potentially mutagenic actions of triethylenemelamine (TEM) on mouse body and testis weights, testicular cell kinetics, sperm production, sperm head morphology, and sperm chromatin structure were assessed in two experiments. The first experiment examined effects of four dose levels of TEM, assayed 1, 4, or 10 wk after toxic exposure. In the second study, effects from five dosage levels were measured at 1, 4, and 10 wk, and the highest dosage level was evaluated over 44 wk. TEM produced an expected dose related loss of spermatogenic activity and subsequent recovery as determined by dual-parameter (DNA, RNA) flow cytometry (FCM) measurements of testicular cells. Both testicular weights and caudal sperm reserves remained generally below controls after 44 wk recovery following exposure to the highest dosage. Chromatin structure alterations, defined as increased susceptibility to DNA denaturation in situ, and sperm head morphology were highly correlated with dose and with each other. Sperm head morphology and sperm chromatic structure remained abnormal at 44 wk for the 1.0 mg/kg TEM dosage, suggesting that the abnormalities, present long after the initial toxic response, may be a result of mutation. This study demonstrates that flow cytometry provides a unique, rapid, and efficient means to measure effects of reproductive toxins and potential mutagens.

  10. Polycomb Group-Dependent, Heterochromatin Protein 1-Independent, Chromatin Structures Silence Retrotransposons in Somatic Tissues Outside Ovaries

    PubMed Central

    Dufourt, J.; Brasset, E.; Desset, S.; Pouchin, P.; Vaury, C.

    2011-01-01

    Somatic cells are equipped with different silencing mechanisms that protect the genome against retrotransposons. In Drosophila melanogaster, a silencing pathway implicating the argonaute protein PIWI represses retrotransposons in cells surrounding the oocyte, whereas a PIWI-independent pathway is involved in other somatic tissues. Here, we show that these two silencing mechanisms result in distinct chromatin structures. Using sensor transgenes, we found that, in somatic tissues outside of the ovaries, these transgenes adopt a heterochromatic configuration implicating hypermethylation of H3K9 and K27. We identified the Polycomb repressive complexes (PRC1 and 2), but not heterochromatin protein 1 to be necessary factors for silencing. Once established, the compact structure is stably maintained through cell divisions. By contrast, in cells where the silencing is PIWI-dependent, the transgenes display an open and labile chromatin structure. Our data suggest that a post-transcriptional gene silencing (PTGS) mechanism is responsible for the repression in the ovarian somatic cells, whereas a mechanism that couples PTGS to transcriptional gene silencing operates to silence retrotransposons in the other somatic tissues. PMID:21908513

  11. Structural Modeling of GR Interactions with the SWI/SNF Chromatin Remodeling Complex and C/EBP.

    PubMed

    Muratcioglu, Serena; Presman, Diego M; Pooley, John R; Grøntved, Lars; Hager, Gordon L; Nussinov, Ruth; Keskin, Ozlem; Gursoy, Attila

    2015-09-15

    The glucocorticoid receptor (GR) is a steroid-hormone-activated transcription factor that modulates gene expression. Transcriptional regulation by the GR requires dynamic receptor binding to specific target sites located across the genome. This binding remodels the chromatin structure to allow interaction with other transcription factors. Thus, chromatin remodeling is an essential component of GR-mediated transcriptional regulation, and understanding the interactions between these molecules at the structural level provides insights into the mechanisms of how GR and chromatin remodeling cooperate to regulate gene expression. This study suggests models for the assembly of the SWI/SNF-A (SWItch/Sucrose-NonFermentable) complex and its interaction with the GR. We used the PRISM algorithm (PRotein Interactions by Structural Matching) to predict the three-dimensional complex structures of the target proteins. The structural models indicate that BAF57 and/or BAF250 mediate the interaction between the GR and the SWI/SNF-A complex, corroborating experimental data. They further suggest that a BAF60a/BAF155 and/or BAF60a/BAF170 interaction is critical for association between the core and variant subunits. Further, we model the interaction between GR and CCAAT-enhancer-binding proteins (C/EBPs), since the GR can regulate gene expression indirectly by interacting with other transcription factors like C/EBPs. We observe that GR can bind to bZip domains of the C/EBPα homodimer as both a monomer and dimer of the DNA-binding domain. In silico mutagenesis of the predicted interface residues confirm the importance of these residues in binding. In vivo analysis of the computationally suggested mutations reveals that double mutations of the leucine residues (L317D+L335D) may disrupt the interaction between GR and C/EBPα. Determination of the complex structures of the GR is of fundamental relevance to understanding its interactions and functions, since the function of a protein or a

  12. Analysis of DNA double-strand break response and chromatin structure in mitosis using laser microirradiation

    PubMed Central

    Gomez-Godinez, Veronica; Wu, Tao; Sherman, Adria J.; Lee, Christopher S.; Liaw, Lih-Huei; Zhongsheng, You; Yokomori, Kyoko; Berns, Michael W.

    2010-01-01

    In this study the femtosecond near-IR and nanosecond green lasers are used to induce alterations in mitotic chromosomes. The subsequent double-strand break responses are studied. We show that both lasers are capable of creating comparable chromosomal alterations and that a phase paling observed within 1–2 s of laser exposure is associated with an alteration of chromatin as confirmed by serial section electron microscopy, DAPI, γH2AX and phospho-H3 staining. Additionally, the accumulation of dark material observed using phase contrast light microscopy (indicative of a change in refractive index of the chromatin) ∼34 s post-laser exposure corresponds spatially to the accumulation of Nbs1, Ku and ubiquitin. This study demonstrates that chromosomes selectively altered in mitosis initiate the DNA damage response within 30 s and that the accumulation of proteins are visually represented by phase-dark material at the irradiation site, allowing us to determine the fate of the damage as cells enter G1. These results occur with two widely different laser systems, making this approach to study DNA damage responses in the mitotic phase generally available to many different labs. Additionally, we present a summary of most of the published laser studies on chromosomes in order to provide a general guide of the lasers and operating parameters used by other laboratories. PMID:20923785

  13. Transcription-dependent generation of a specialized chromatin structure at the TCRβ locus.

    PubMed

    Zacarías-Cabeza, Joaquin; Belhocine, Mohamed; Vanhille, Laurent; Cauchy, Pierre; Koch, Frederic; Pekowska, Aleksandra; Fenouil, Romain; Bergon, Aurélie; Gut, Marta; Gut, Ivo; Eick, Dirk; Imbert, Jean; Ferrier, Pierre; Andrau, Jean-Christophe; Spicuglia, Salvatore

    2015-04-01

    V(D)J recombination assembles Ag receptor genes during lymphocyte development. Enhancers at AR loci are known to control V(D)J recombination at associated alleles, in part by increasing chromatin accessibility of the locus, to allow the recombination machinery to gain access to its chromosomal substrates. However, whether there is a specific mechanism to induce chromatin accessibility at AR loci is still unclear. In this article, we highlight a specialized epigenetic marking characterized by high and extended H3K4me3 levels throughout the Dβ-Jβ-Cβ gene segments. We show that extended H3K4 trimethylation at the Tcrb locus depends on RNA polymerase II (Pol II)-mediated transcription. Furthermore, we found that the genomic regions encompassing the two DJCβ clusters are highly enriched for Ser(5)-phosphorylated Pol II and short-RNA transcripts, two hallmarks of transcription initiation and early transcription. Of interest, these features are shared with few other tissue-specific genes. We propose that the entire DJCβ regions behave as transcription "initiation" platforms, therefore linking a specialized mechanism of Pol II transcription with extended H3K4 trimethylation and highly accessible Dβ and Jβ gene segments.

  14. Changes in histone H1 content and chromatin structure of cells blocked in early S phase by 5-fluorodeoxyuridine and aphidicolin

    SciTech Connect

    D'Anna, J.A.; Tobey, R.A.

    1984-01-01

    The authors have measured changes in histone H1 content and changes in chromatin structure of Chinese hamster (line CHO) cells blocked in early S phase by sequential use of isoleucine deprivation and blockade with 5-fluorodeoxyuridine or aphidicolin. Both the H1:core histone ratio in isolated nuclei and the H1 content of the cell are reduced 20-60%, depending on the duration of the block. The new deoxyribonucleic acid synthesized during S-phase block has a shorter nucleosome repeat length than that of bulk chromatin, but it is nearly equally resistant as bulk DNA to attack by micrococcal nuclease. During the time that H1 content is decreasing, bulk chromatin also undergoes structural changes so that its nucleosome cores appear to be more closely packed along the DNA chain. The losses in H1 content and changes in chromatin structure are similar to those reported for cells blocked in early S phase by hydroxyurea. The results suggest that losses of H1 and changes in chromatin structure are general events which occur when the elongation of initiated replicons or the joining of intermediate-sized DNA fragments is retarded during replication. They are consistent with the notions that (1) H1 is lost from initiated replicons and/or (2) the loss of H1 is part of an alarm response in the cell which might facilitate events leading to gene amplification. 39 references, 5 figures, 3 tables.

  15. Chromatin conformation and salt-induced compaction: three-dimensional structural information from cryoelectron microscopy

    PubMed Central

    1995-01-01

    Cryoelectron microscopy has been used to examine the three-dimensional (3-D) conformation of small oligonucleosomes from chicken erythrocyte nuclei after vitrification in solutions of differing ionic strength. From tilt pairs of micrographs, the 3-D location and orientation of the nucleosomal disks, and the paths of segments of exposed linker can be obtained. In "low-salt" conditions (5 mM NaCl, 1 mM EDTA, pH 7.5), the average trinucleosome assumes the shape of an equilateral triangle, with nucleosomes at the vertices, and a length of exposed linker DNA between consecutive nucleosomes equivalent to approximately 46 bp. The two linker DNA segments converge at the central nucleosome. Removal of histones H1 and H5 results in a much more variable trinucleosome morphology, and the two linker DNA segments usually join the central nucleosome at different locations. Trinucleosomes vitrified in 20 mM NaCl, 1 mM EDTA, (the salt concentration producing the maximal increase in sedimentation), reveal that compaction occurs by a reduction in the included angle made by the linker DNA segments at the central nucleosome, and does not involve a reduction in the distance between consecutive nucleosomes. Frequently, there is also a change in morphology at the linker entry-exit site. At 40 mM NaCl, there is no further change in trinucleosome morphology, but polynucleosomes are appreciably more compact. Nevertheless, the 3-D zig-zag conformation observed in polynucleosomes at low salt is retained at 40 mM NaCl, and individual nucleosome disks remain separated from each other. There is no evidence for the formation of solenoidal arrangements within polynucleosomes. Comparison of the solution conformation of individual oligonucleosomes with data from physical measurements on bulk chromatin samples suggests that the latter should be reinterpreted. The new data support the concept of an irregular zig-zag chromatin conformation in solution over a range of ionic strengths, in agreement with

  16. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation

    PubMed Central

    Nguyen, Carvell T.; Gonzales, Felicidad A.; Jones, Peter A.

    2001-01-01

    Silencing of tumor-suppressor genes by hypermethylation of promoter CpG islands is well documented in human cancer and may be mediated by methyl-CpG-binding proteins, like MeCP2, that are associated in vivo with chromatin modifiers and transcriptional repressors. However, the exact dynamic between methylation and chromatin structure in the regulation of gene expression is not well understood. In this study, we have analyzed the methylation status and chromatin structure of three CpG islands in the p14(ARF)/p16(INK4A) locus in a series of normal and cancer cell lines using methylation-sensitive digestion, MspI accessibility in intact nuclei and chromatin immunoprecipitation (ChIP) assays. We demonstrate the existence of an altered chromatin structure associated with the silencing of tumor-suppressor genes in human cancer cell lines involving CpG island methylation, chromatin condensation, histone deacetylation and MeCP2 binding. The data showed that MeCP2 could bind to methylated CpG islands in both promoters and exons; MeCP2 does not interfere with transcription when bound at an exon, suggesting a more generalized role for the protein beyond transcriptional repression. In the absence of methylation, it is demonstrated that CpG islands located in promoters versus exons display marked differences in the levels of acetylation of associated histone H3, suggesting that chromatin remodeling can be achieved by methylation-independent processes and perhaps explaining why non-promoter CpG islands are more susceptible to de novo methylation than promoter islands. PMID:11713309

  17. Histone H3 lysine 14 (H3K14) acetylation facilitates DNA repair in a positioned nucleosome by stabilizing the binding of the chromatin Remodeler RSC (Remodels Structure of Chromatin).

    PubMed

    Duan, Ming-Rui; Smerdon, Michael J

    2014-03-21

    Histone H3 acetylation is induced by UV damage in yeast and may play an important role in regulating the repair of UV photolesions in nucleosome-loaded genomic loci. However, it remains elusive how H3 acetylation facilitates repair. We generated a strongly positioned nucleosome containing homogeneously acetylated H3 at Lys-14 (H3K14ac) and investigated possible mechanisms by which H3K14 acetylation modulates repair. We show that H3K14ac does not alter nucleosome unfolding dynamics or enhance the repair of UV-induced cyclobutane pyrimidine dimers by UV photolyase. Importantly, however, nucleosomes with H3K14ac have a higher affinity for purified chromatin remodeling complex RSC (Remodels the Structure of Chromatin) and show greater cyclobutane pyrimidine dimer repair compared with unacetylated nucleosomes. Our study indicates that, by anchoring RSC, H3K14 acetylation plays an important role in the unfolding of strongly positioned nucleosomes during repair of UV damage.

  18. Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles.

    PubMed

    Igaz, Nóra; Kovács, Dávid; Rázga, Zsolt; Kónya, Zoltán; Boros, Imre M; Kiricsi, Mónika

    2016-10-01

    Histone deacetylase (HDAC) inhibitors are considered as novel therapeutic agents inducing cell cycle arrest and apoptotic cell death in various cancer cells. Inhibition of deacetylase activity results in a relaxed chromatin structure thereby rendering the genetic material more vulnerable to DNA targeting agents that could be exploited by combinational cancer therapy. The unique potential of silver nanoparticles (AgNPs) in tumor therapy relies on the generation of reactive radicals which trigger oxidative stress, DNA damage and apoptosis in cancer cells. The revolutionary application of AgNPs as chemotherapeutical drugs seems very promising, nevertheless the exact molecular mechanisms of AgNP action in combination with other anti-cancer agents have yet to be elucidated in details before clinical administrations. As a step towards this we investigated the combinational effect of HDAC inhibition and AgNP administration in HeLa cervical cancer cells. We identified synergistic inhibition of cancer cell growth and migration upon combinational treatments. Here we report that the HDAC inhibitor Trichostatin A enhances the DNA targeting capacity and apoptosis inducing efficacy of AgNPs most probably due to its effect on chromatin condensation. These results point to the potential benefits of combinational application of HDAC inhibitors and AgNPs in novel cancer medication protocols.

  19. Structures of RNA polymerase II complexes with Bye1, a chromatin-binding PHF3/DIDO homologue

    PubMed Central

    Kinkelin, Kerstin; Wozniak, Glenn G.; Rothbart, Scott B.; Lidschreiber, Michael; Strahl, Brian D.; Cramer, Patrick

    2013-01-01

    Bypass of Ess1 (Bye1) is a nuclear protein with a domain resembling the central domain in the transcription elongation factor TFIIS. Here we show that Bye1 binds with its TFIIS-like domain (TLD) to RNA polymerase (Pol) II, and report crystal structures of the Bye1 TLD bound to Pol II and three different Pol II–nucleic acid complexes. Like TFIIS, Bye1 binds with its TLD to the Pol II jaw and funnel. In contrast to TFIIS, however, it neither alters the conformation nor the in vitro functions of Pol II. In vivo, Bye1 is recruited to chromatin via its TLD and occupies the 5′-region of active genes. A plant homeo domain (PHD) in Bye1 binds histone H3 tails with trimethylated lysine 4, and this interaction is enhanced by the presence of neighboring posttranslational modifications (PTMs) that mark active transcription and conversely is impaired by repressive PTMs. We identify putative human homologs of Bye1, the proteins PHD finger protein 3 and death-inducer obliterator, which are both implicated in cancer. These results establish Bye1 as the founding member of a unique family of chromatin transcription factors that link histones with active PTMs to transcribing Pol II. PMID:24003114

  20. A bivalent chromatin structure marks key developmental genes in embryonic stem cells.

    PubMed

    Bernstein, Bradley E; Mikkelsen, Tarjei S; Xie, Xiaohui; Kamal, Michael; Huebert, Dana J; Cuff, James; Fry, Ben; Meissner, Alex; Wernig, Marius; Plath, Kathrin; Jaenisch, Rudolf; Wagschal, Alexandre; Feil, Robert; Schreiber, Stuart L; Lander, Eric S

    2006-04-21

    The most highly conserved noncoding elements (HCNEs) in mammalian genomes cluster within regions enriched for genes encoding developmentally important transcription factors (TFs). This suggests that HCNE-rich regions may contain key regulatory controls involved in development. We explored this by examining histone methylation in mouse embryonic stem (ES) cells across 56 large HCNE-rich loci. We identified a specific modification pattern, termed "bivalent domains," consisting of large regions of H3 lysine 27 methylation harboring smaller regions of H3 lysine 4 methylation. Bivalent domains tend to coincide with TF genes expressed at low levels. We propose that bivalent domains silence developmental genes in ES cells while keeping them poised for activation. We also found striking correspondences between genome sequence and histone methylation in ES cells, which become notably weaker in differentiated cells. These results highlight the importance of DNA sequence in defining the initial epigenetic landscape and suggest a novel chromatin-based mechanism for maintaining pluripotency.

  1. Effects of compensatory solutes on DNA and chromatin structural organization in solution.

    PubMed

    Houssier, C; Gilles, R; Flock, S

    1997-07-01

    We investigated the effect of glycine and other osmotic effectors on DNA and chromatin precipitation by mono-, di- and multivalent cations and histone H1. The addition of these compounds drastically reduces the precipitation effects with an efficiency in the order taurine > glycine > proline and sorbitol > inositol > betaine. Aminocarboxylic acids with increasing distance between the charged C- and N-terminal groups displayed enhanced efficiency in the protection effect against DNA precipitation. We interpreted these observations on the basis of Manning's counterion condensation theory, taking into account the increase in dielectric constant upon osmotic effector addition. 23Na-NMR was used to evidence sodium counterions release as a result of this increase in dielectric constant.

  2. Correlation Between Interphase Chromatin Structure and - and High-Let Radiation-Induced - and Intra-Chromosome Exchange Hotspots

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Wu, Honglu; Mangala, Lingegowda; Asaithamby, Aroumougame; Chen, David

    2012-07-01

    CORRELATION BETWEEN INTERPHASE CHROMATIN STRUCTURE AND LOW- AND HIGH-LET RADIATION-INDUCED INTER- AND INTRA-CHROMOSOME EXCHANGE HOTSPOTS Ye Zhang1,2, Lingegowda S. Mangala1,3, Aroumougame Asaithamby4, David J. Chen4, and Honglu Wu1 1 NASA Johnson Space Center, Houston, Texas, USA 2 Wyle Integrated Science and Engineering Group, Houston, Texas, USA 3 University of Houston Clear Lake, Houston, Texas, USA 4 University of Texas, Southwestern Medical Center, Dallas, Texas, USA To investigate the relationship between chromosome aberrations induced by low- and high-LET radiation and chromatin folding, we reconstructed the three dimensional structure of chromosome 3 and measured the physical distances between different regions of this chromosome. Previously, we investigated the location of breaks involved in inter- and intrachromosomal type exchange events in chromosome 3 of human epithelial cells, using the multicolor banding in situ hybridization (mBAND) technique. After exposure to both low- and high-LET radiations in vitro, intra-chromosome exchanges occurred preferentially between a break in the 3p21 and one in the 3q11 regions, and the breaks involved in inter-chromosome exchanges occurred in two regions near the telomeres of the chromosome. In this study, human epithelial cells were fixed in G1 phase and interphase chromosomes hybridized with an mBAND probe for chromosome 3 were captured with a laser scanning confocal microscope. The 3-dimensional structure of interphase chromosome 3 with different colored regions was reconstructed, and the distance between different regions was measured. We show that, in most of the G1 cells, the regions containing 3p21 and 3q11 are colocalized in the center of the chromosome domain, whereas, the regions towards the telomeres of the chromosome are located in the peripherals of the chromosome domain. Our results demonstrate that the distribution of breaks involved in radiation-induced inter and intra-chromosome aberrations depends

  3. Single Molecule Studies of Chromatin

    SciTech Connect

    Jeans, C; Colvin, M E; Thelen, M P; Noy, A

    2004-01-06

    The DNA in eukaryotic cells is tightly packaged as chromatin through interactions with histone proteins to form nucleosomes. These nucleosomes are themselves packed together through interactions with linker histone and non-histone proteins. In order for processes such as DNA replication, DNA repair, and transcription to occur, the chromatin fiber must be remodeled such that the necessary enzymes can access the DNA. The structure of the chromatin fiber beyond the level of the single nucleosome and the structural changes which accompany the remodeling process are poorly understood. We are studying the structures and forces behind the remodeling process through the use of atomic force microscopy (AFM). This allows both high-resolution imaging of the chromatin, and manipulation of individual fibers. Pulling a single chromatin fiber apart using the AFM tip yields information on the forces which hold the structure together. We have isolated chromatin fibers from chicken erythrocytes and Chinese hamster ovary cell lines. AFM images of these fibers will be presented, along with preliminary data from the manipulation of these fibers using the AFM tip. The implications of these data for the structure of chromatin undergoing the remodeling process are discussed.

  4. An all-atom model of the chromatin fiber containing linker histones reveals a versatile structure tuned by the nucleosomal repeat length.

    PubMed

    Wong, Hua; Victor, Jean-Marc; Mozziconacci, Julien

    2007-09-12

    In the nucleus of eukaryotic cells, histone proteins organize the linear genome into a functional and hierarchical architecture. In this paper, we use the crystal structures of the nucleosome core particle, B-DNA and the globular domain of H5 linker histone to build the first all-atom model of compact chromatin fibers. In this 3D jigsaw puzzle, DNA bending is achieved by solving an inverse kinematics problem. Our model is based on recent electron microscopy measurements of reconstituted fiber dimensions. Strikingly, we find that the chromatin fiber containing linker histones is a polymorphic structure. We show that different fiber conformations are obtained by tuning the linker histone orientation at the nucleosomes entry/exit according to the nucleosomal repeat length. We propose that the observed in vivo quantization of nucleosomal repeat length could reflect nature's ability to use the DNA molecule's helical geometry in order to give chromatin versatile topological and mechanical properties.

  5. Histone variants: key players of chromatin.

    PubMed

    Biterge, Burcu; Schneider, Robert

    2014-06-01

    Histones are fundamental structural components of chromatin. Eukaryotic DNA is wound around an octamer of the core histones H2A, H2B, H3, and H4. Binding of linker histone H1 promotes higher order chromatin organization. In addition to their structural role, histones impact chromatin function and dynamics by, e.g., post-translational histone modifications or the presence of specific histone variants. Histone variants exhibit differential expression timings (DNA replication-independent) and mRNA characteristics compared to canonical histones. Replacement of canonical histones with histone variants can affect nucleosome stability and help to create functionally distinct chromatin domains. In line with this, several histone variants have been implicated in the regulation of cellular processes such as DNA repair and transcriptional activity. In this review, we focus on recent progress in the study of core histone variants H2A.X, H2A.Z, macroH2A, H3.3, and CENP-A, as well as linker histone H1 variants, their functions and their links to development and disease.

  6. Multiple isoforms of GAGA factor, a critical component of chromatin structure.

    PubMed Central

    Benyajati, C; Mueller, L; Xu, N; Pappano, M; Gao, J; Mosammaparast, M; Conklin, D; Granok, H; Craig, C; Elgin, S

    1997-01-01

    The GAGA transcription factor of Drosophila melanogaster is ubiquitous and plays multiple roles. Characterization of cDNA clones and detection by domain- specific antibodies has revealed that the 70-90 kDa major GAGA species are encoded by two open reading frames producing GAGA factor proteins of 519 amino acids (GAGA-519) and 581 amino acids (GAGA-581), which share a common N-terminal region that is linked to two different glutamine-rich C-termini. Purified recombinant GAGA-519 and GAGA-581 proteins can form homomeric complexes that bind specifically to a single GAGA sequence in vitro. The two GAGA isoforms also function similarly in transient transactivation assays in tissue culture cells and in chromatin remodeling experiments in vitro . Only GAGA-519 protein accumulates during the first 6 h of embryogenesis. Thereafter, both GAGA proteins are present in nearly equal amounts throughout development; in larval salivary gland nuclei they colocalize completely to specific regions along the euchromatic arms of the polytene chromosomes. Coimmunoprecipitation of GAGA-519 and GAGA-581 from crude nuclear extracts and from mixtures of purified recombinant proteins, indicates direct interactions. We suggest that homomeric complexes of GAGA-519 may function during early embryogenesis; both homomeric and heteromeric complexes of GAGA-519 and GAGA-581 may function later. PMID:9241251

  7. Structural analyses of the chromatin remodeling enzymes INO80-C and SWR-C

    PubMed Central

    Watanabe, Shinya; Tan, Dongyan; Lakshminarasimhan, Mahadevan; Washburn, Michael P.; Hong, Eun-Jin Erica; Walz, Thomas; Peterson, Craig L.

    2015-01-01

    INO80-C and SWR-C are conserved members of a subfamily of ATP-dependent chromatin remodeling enzymes that function in transcription and genome-maintenance pathways. A crucial role for these enzymes is to control chromosomal distribution of the H2A.Z histone variant. Here we use electron microscopy (EM) and two-dimensional (2D) class averaging to demonstrate that these remodeling enzymes have similar overall architectures. Each enzyme is characterized by a dynamic ‘tail’ domain and a compact ‘head’ that contains Rvb1/Rvb2 subunits organized as hexameric rings. EM class averages and mass spectrometry support the existence of single heterohexameric rings in both SWR-C and INO80-C. EM studies define the position of the Arp8/Arp4/Act1 module within INO80-C, and we find that this module enhances nucleosome binding affinity but is largely dispensable for remodeling activities. In contrast, the Ies6/Arp5 module is essential for INO80-C remodeling, and furthermore this module controls conformational changes that may couple nucleosome binding to remodeling. PMID:25964121

  8. A Herpesviral Lytic Protein Regulates the Structure of Latent Viral Chromatin

    PubMed Central

    Raja, Priya; Lee, Jennifer S.; Pan, Dongli; Pesola, Jean M.; Coen, Donald M.

    2016-01-01

    ABSTRACT Latent infections by viruses usually involve minimizing viral protein expression so that the host immune system cannot recognize the infected cell through the viral peptides presented on its cell surface. Herpes simplex virus (HSV), for example, is thought to express noncoding RNAs such as latency-associated transcripts (LATs) and microRNAs (miRNAs) as the only abundant viral gene products during latent infection. Here we describe analysis of HSV-1 mutant viruses, providing strong genetic evidence that HSV-infected cell protein 0 (ICP0) is expressed during establishment and/or maintenance of latent infection in murine sensory neurons in vivo. Studies of an ICP0 nonsense mutant virus showed that ICP0 promotes heterochromatin and latent and lytic transcription, arguing that ICP0 is expressed and functional. We propose that ICP0 promotes transcription of LATs during establishment or maintenance of HSV latent infection, much as it promotes lytic gene transcription. This report introduces the new concept that a lytic viral protein can be expressed during latent infection and can serve dual roles to regulate viral chromatin to optimize latent infection in addition to its role in epigenetic regulation during lytic infection. An additional implication of the results is that ICP0 might serve as a target for an antiviral therapeutic acting on lytic and latent infections. PMID:27190217

  9. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.

    PubMed

    Tsai, Zing Tsung-Yeh; Shiu, Shin-Han; Tsai, Huai-Kuang

    2015-08-01

    Transcription factor (TF) binding is determined by the presence of specific sequence motifs (SM) and chromatin accessibility, where the latter is influenced by both chromatin state (CS) and DNA structure (DS) properties. Although SM, CS, and DS have been used to predict TF binding sites, a predictive model that jointly considers CS and DS has not been developed to predict either TF-specific binding or general binding properties of TFs. Using budding yeast as model, we found that machine learning classifiers trained with either CS or DS features alone perform better in predicting TF-specific binding compared to SM-based classifiers. In addition, simultaneously considering CS and DS further improves the accuracy of the TF binding predictions, indicating the highly complementary nature of these two properties. The contributions of SM, CS, and DS features to binding site predictions differ greatly between TFs, allowing TF-specific predictions and potentially reflecting different TF binding mechanisms. In addition, a "TF-agnostic" predictive model based on three DNA "intrinsic properties" (in silico predicted nucleosome occupancy, major groove geometry, and dinucleotide free energy) that can be calculated from genomic sequences alone has performance that rivals the model incorporating experiment-derived data. This intrinsic property model allows prediction of binding regions not only across TFs, but also across DNA-binding domain families with distinct structural folds. Furthermore, these predicted binding regions can help identify TF binding sites that have a significant impact on target gene expression. Because the intrinsic property model allows prediction of binding regions across DNA-binding domain families, it is TF agnostic and likely describes general binding potential of TFs. Thus, our findings suggest that it is feasible to establish a TF agnostic model for identifying functional regulatory regions in potentially any sequenced genome.

  10. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast

    PubMed Central

    Tsai, Zing Tsung-Yeh; Shiu, Shin-Han; Tsai, Huai-Kuang

    2015-01-01

    Transcription factor (TF) binding is determined by the presence of specific sequence motifs (SM) and chromatin accessibility, where the latter is influenced by both chromatin state (CS) and DNA structure (DS) properties. Although SM, CS, and DS have been used to predict TF binding sites, a predictive model that jointly considers CS and DS has not been developed to predict either TF-specific binding or general binding properties of TFs. Using budding yeast as model, we found that machine learning classifiers trained with either CS or DS features alone perform better in predicting TF-specific binding compared to SM-based classifiers. In addition, simultaneously considering CS and DS further improves the accuracy of the TF binding predictions, indicating the highly complementary nature of these two properties. The contributions of SM, CS, and DS features to binding site predictions differ greatly between TFs, allowing TF-specific predictions and potentially reflecting different TF binding mechanisms. In addition, a "TF-agnostic" predictive model based on three DNA “intrinsic properties” (in silico predicted nucleosome occupancy, major groove geometry, and dinucleotide free energy) that can be calculated from genomic sequences alone has performance that rivals the model incorporating experiment-derived data. This intrinsic property model allows prediction of binding regions not only across TFs, but also across DNA-binding domain families with distinct structural folds. Furthermore, these predicted binding regions can help identify TF binding sites that have a significant impact on target gene expression. Because the intrinsic property model allows prediction of binding regions across DNA-binding domain families, it is TF agnostic and likely describes general binding potential of TFs. Thus, our findings suggest that it is feasible to establish a TF agnostic model for identifying functional regulatory regions in potentially any sequenced genome. PMID:26291518

  11. The Pu.1 locus is differentially regulated at the level of chromatin structure and noncoding transcription by alternate mechanisms at distinct developmental stages of hematopoiesis.

    PubMed

    Hoogenkamp, Maarten; Krysinska, Hanna; Ingram, Richard; Huang, Gang; Barlow, Rachael; Clarke, Deborah; Ebralidze, Alexander; Zhang, Pu; Tagoh, Hiromi; Cockerill, Peter N; Tenen, Daniel G; Bonifer, Constanze

    2007-11-01

    The Ets family transcription factor PU.1 is crucial for the regulation of hematopoietic development. Pu.1 is activated in hematopoietic stem cells and is expressed in mast cells, B cells, granulocytes, and macrophages but is switched off in T cells. Many of the transcription factors regulating Pu.1 have been identified, but little is known about how they organize Pu.1 chromatin in development. We analyzed the Pu.1 promoter and the upstream regulatory element (URE) using in vivo footprinting and chromatin immunoprecipitation assays. In B cells, Pu.1 was bound by a set of transcription factors different from that in myeloid cells and adopted alternative chromatin architectures. In T cells, Pu.1 chromatin at the URE was open and the same transcription factor binding sites were occupied as in B cells. The transcription factor RUNX1 was bound to the URE in precursor cells, but binding was down-regulated in maturing cells. In PU.1 knockout precursor cells, the Ets factor Fli-1 compensated for the lack of PU.1, and both proteins could occupy a subset of Pu.1 cis elements in PU.1-expressing cells. In addition, we identified novel URE-derived noncoding transcripts subject to tissue-specific regulation. Our results provide important insights into how overlapping, but different, sets of transcription factors program tissue-specific chromatin structures in the hematopoietic system.

  12. Chromatin and DNA replication.

    PubMed

    MacAlpine, David M; Almouzni, Geneviève

    2013-08-01

    The size of a eukaryotic genome presents a unique challenge to the cell: package and organize the DNA to fit within the confines of the nucleus while at the same time ensuring sufficient dynamics to allow access to specific sequences and features such as genes and regulatory elements. This is achieved via the dynamic nucleoprotein organization of eukaryotic DNA into chromatin. The basic unit of chromatin, the nucleosome, comprises a core particle with 147 bp of DNA wrapped 1.7 times around an octamer of histones. The nucleosome is a highly versatile and modular structure, both in its composition, with the existence of various histone variants, and through the addition of a series of posttranslational modifications on the histones. This versatility allows for both short-term regulatory responses to external signaling, as well as the long-term and multigenerational definition of large functional chromosomal domains within the nucleus, such as the centromere. Chromatin organization and its dynamics participate in essentially all DNA-templated processes, including transcription, replication, recombination, and repair. Here we will focus mainly on nucleosomal organization and describe the pathways and mechanisms that contribute to assembly of this organization and the role of chromatin in regulating the DNA replication program.

  13. Archaeal chromatin proteins.

    PubMed

    Zhang, ZhenFeng; Guo, Li; Huang, Li

    2012-05-01

    Archaea, along with Bacteria and Eukarya, are the three domains of life. In all living cells, chromatin proteins serve a crucial role in maintaining the integrity of the structure and function of the genome. An array of small, abundant and basic DNA-binding proteins, considered candidates for chromatin proteins, has been isolated from the Euryarchaeota and the Crenarchaeota, the two major phyla in Archaea. While most euryarchaea encode proteins resembling eukaryotic histones, crenarchaea appear to synthesize a number of unique DNA-binding proteins likely involved in chromosomal organization. Several of these proteins (e.g., archaeal histones, Sac10b homologs, Sul7d, Cren7, CC1, etc.) have been extensively studied. However, whether they are chromatin proteins and how they function in vivo remain to be fully understood. Future investigation of archaeal chromatin proteins will lead to a better understanding of chromosomal organization and gene expression in Archaea and provide valuable information on the evolution of DNA packaging in cellular life.

  14. Reconstruction of the three-dimensional structure of simian virus 40 and visualization of the chromatin core.

    PubMed Central

    Baker, T S; Drak, J; Bina, M

    1988-01-01

    The three-dimensional structure of the capsid and the nucleohistone core of simian virus 40 (SV40) has been reconstructed by image analysis of electron micrographs of frozen hydrated samples. The 72 prominent capsomere units that comprise the T = 7d icosahedral surface lattice of the capsid are clearly resolved. Both the pentavalent and hexavalent capsomeres appear with pentameric substructure, indicating that bonding specificity in the shell is not quasi-equivalent. There is a remarkable similarity between the structure of the SV40 virion capsid and the structure reported for the polyoma empty capsid. This result establishes that (i) the unexpected pentameric substructure of the hexavalent capsomeres is also present in virions and (ii) the arrangement of the 72 pentamers in the capsid lattice may be a characteristic feature of the entire papova family of viruses. The center of the SV40 reconstruction reveals electron density corresponding to the nucleohistone core. This density is smeared, suggesting that the minichromosome is not organized with icosahedral symmetry matching the capsid symmetry. The visualization of the virion chromatin provides a basis for invoking new models for the higher order structure of the encapsidated minichromosome. Images PMID:2829185

  15. Differential contribution of cis-regulatory elements to higher order chromatin structure and expression of the CFTR locus

    PubMed Central

    Yang, Rui; Kerschner, Jenny L.; Gosalia, Nehal; Neems, Daniel; Gorsic, Lidija K.; Safi, Alexias; Crawford, Gregory E.; Kosak, Steven T.; Leir, Shih-Hsing; Harris, Ann

    2016-01-01

    Higher order chromatin structure establishes domains that organize the genome and coordinate gene expression. However, the molecular mechanisms controlling transcription of individual loci within a topological domain (TAD) are not fully understood. The cystic fibrosis transmembrane conductance regulator (CFTR) gene provides a paradigm for investigating these mechanisms. CFTR occupies a TAD bordered by CTCF/cohesin binding sites within which are cell-type-selective cis-regulatory elements for the locus. We showed previously that intronic and extragenic enhancers, when occupied by specific transcription factors, are recruited to the CFTR promoter by a looping mechanism to drive gene expression. Here we use a combination of CRISPR/Cas9 editing of cis-regulatory elements and siRNA-mediated depletion of architectural proteins to determine the relative contribution of structural elements and enhancers to the higher order structure and expression of the CFTR locus. We found the boundaries of the CFTR TAD are conserved among diverse cell types and are dependent on CTCF and cohesin complex. Removal of an upstream CTCF-binding insulator alters the interaction profile, but has little effect on CFTR expression. Within the TAD, intronic enhancers recruit cell-type selective transcription factors and deletion of a pivotal enhancer element dramatically decreases CFTR expression, but has minor effect on its 3D structure. PMID:26673704

  16. Chromatin endogenous cleavage and psoralen crosslinking assays to analyze rRNA gene chromatin in vivo.

    PubMed

    Griesenbeck, Joachim; Wittner, Manuel; Charton, Romain; Conconi, Antonio

    2012-01-01

    In eukaryotes, multiple copies of ribosomal RNA (rRNA) genes co-exist in two different chromatin states: actively transcribed (nucleosome depleted) chromatin, and nontranscribed (nucleosomal) chromatin. The presence of two rRNA gene populations compromises the interpretation of analyses obtained by the standard biochemical methods that are used to study chromatin structure (e.g., nuclease digestion and chromatin immunoprecipitation). Here, we provide a protocol to investigate the specific association of proteins with the two rRNA gene chromatin populations in vivo, using Saccharomyces cerevisiae as a model eukaryote.

  17. Unusual chromatin in human telomeres.

    PubMed Central

    Tommerup, H; Dousmanis, A; de Lange, T

    1994-01-01

    We report that human telomeres have an unusual chromatin structure characterized by diffuse micrococcal nuclease patterns. The altered chromatin manifested itself only in human telomeres that are relatively short (2 to 7 kb). In contrast, human and mouse telomeres with telomeric repeat arrays of 14 to 150 kb displayed a more canonical chromatin structure with extensive arrays of tightly packed nucleosomes. All telomeric nucleosomes showed a shorter repeat size than bulk nucleosomes, and telomeric mononucleosomal particles were found to be hypersensitive to micrococcal nuclease. However, telomeric nucleosomes were similar to bulk nucleosomes in the rate at which they sedimented through sucrose gradients. We speculate that mammalian telomeres have a bipartite structure with unusual chromatin near the telomere terminus and a more canonical nucleosomal organization in the proximal part of the telomere. Images PMID:8065312

  18. Chromatin and Transcription in Yeast

    PubMed Central

    Rando, Oliver J.; Winston, Fred

    2012-01-01

    Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field. PMID:22345607

  19. Mesoscale Modeling of Chromatin Folding

    NASA Astrophysics Data System (ADS)

    Schlick, Tamar

    2009-03-01

    Eukaryotic chromatin is the fundamental protein/nucleic acid unit that stores the genetic material. Understanding how chromatin fibers fold and unfold in physiological conditions is important for interpreting fundamental biological processes like DNA replication and transcription regulation. Using a mesoscopic model of oligonucleosome chains and tailored sampling protocols, we elucidate the energetics of oligonucleosome folding/unfolding and the role of each histone tail, linker histones, and divalent ions in regulating chromatin structure. The resulting compact topologies reconcile features of the zigzag model with straight linker DNAs with the solenoid model with bent linker DNAs for optimal fiber organization and reveal dynamic and energetic aspects involved.

  20. The Usefulness of Selected Physicochemical Indices, Cell Membrane Integrity and Sperm Chromatin Structure in Assessments of Boar Semen Sensitivity

    PubMed Central

    Wysokińska, A.; Kondracki, S.; Iwanina, M.

    2015-01-01

    The present work describes experiments undertaken to evaluate the usefulness of selected physicochemical indices of semen, cell membrane integrity and sperm chromatin structure for the assessment of boar semen sensitivity to processes connected with pre-insemination procedures. The experiments were carried out on 30 boars: including 15 regarded as providers of sensitive semen and 15 regarded as providers of semen that is little sensitive to laboratory processing. The selection of boars for both groups was based on sperm morphology analyses, assuming secondary morphological change incidence in spermatozoa as the criterion. Two ejaculates were manually collected from each boar at an interval of 3 to 4 months. The following analyses were carried out for each ejaculate: sperm motility assessment, sperm pH measurement, sperm morphology assessment, sperm chromatin structure evaluation and cell membrane integrity assessment. The analyses were performed three times. Semen storage did not cause an increase in the incidence of secondary morphological changes in the group of boars considered to provide sperm of low sensitivity. On the other hand, with continued storage there was a marked increase in the incidence of spermatozoa with secondary morphological changes in the group of boars regarded as producing more sensitive semen. Ejaculates of group I boars evaluated directly after collection had an approximately 6% smaller share of spermatozoa with undamaged cell membranes than the ejaculates of boars in group II (p≤0.05). In the process of time the percentage of spermatozoa with undamaged cell membranes decreased. The sperm of group I boars was characterised with a lower sperm motility than the semen of group II boars. After 1 hour of storing diluted semen, the sperm motility of boars producing highly sensitive semen was already 4% lower (p≤0.05), and after 24 hours of storage it was 6.33% lower than that of the boars that produced semen with a low sensitivity. Factors

  1. Histone lysine methylation and chromatin replication.

    PubMed

    Rivera, Carlos; Gurard-Levin, Zachary A; Almouzni, Geneviève; Loyola, Alejandra

    2014-12-01

    In eukaryotic organisms, the replication of the DNA sequence and its organization into chromatin are critical to maintain genome integrity. Chromatin components, such as histone variants and histone post-translational modifications, along with the higher-order chromatin structure, impact several DNA metabolic processes, including replication, transcription, and repair. In this review we focus on lysine methylation and the relationships between this histone mark and chromatin replication. We first describe studies implicating lysine methylation in regulating early steps in the replication process. We then discuss chromatin reassembly following replication fork passage, where the incorporation of a combination of newly synthesized histones and parental histones can impact the inheritance of lysine methylation marks on the daughter strands. Finally, we elaborate on how the inheritance of lysine methylation can impact maintenance of the chromatin landscape, using heterochromatin as a model chromatin domain, and we discuss the potential mechanisms involved in this process.

  2. Resistance of the nucleosomal organization of eucaryotic chromatin to ionizing radiation. [/sup 60/Co

    SciTech Connect

    Chiu, S.M.; Oleinick, N.L.

    1982-09-01

    The structural organization and radiation sensitivity of Tetrahymena chromatin under several conditions of modified transcriptional activity were investigated using the structure-specific nucleases, micrococcal nuclease and DNase I. Digestion of unirradiated nuclei by those nucleases proceeded with very similar kinetics and to a similar extent irrespective of the stages of growth of the cultures, except for the cultures in stationary phase, which became more resistant to DNase I digestion. Neither for suppression of total cellular RNA synthesis by actinomycin D nor the transient inhibition of only rRNA synthesis by 40 krad of ..gamma.. radiation affected the sensitivity of the chromatin of the nucleases. These results confirm that activity transcribing chromatin remains in an active conformation even when its function is temporarily inhibited, while more permanent repression of some genes during stationary phase appears to alter the chromatin and hence its susceptibility to DNase I. Actively transcribing ribosomal chromatin was found to be very sensitive to DNase I degradation compared to bulk chromatin; its sensitivity to DNase I was also not altered by 40 krad of ..gamma.. radiation, but was reduced in stationary phase. It is concluded that damage to DNA and/or chromatin resulting from ..gamma.. irradiation does not produce alterations in the nucleosome-level organization of chromatin which can be measured by micrococcal nuclease and DNase I.

  3. Role of Histone H1 as an Architectural Determinant of Chromatin Structure and as a Specific Repressor of Transcription on Xenopus Oocyte 5S rRNA Genes

    PubMed Central

    Sera, Takashi; Wolffe, Alan P.

    1998-01-01

    We explore the role of histone H1 as a DNA sequence-dependent architectural determinant of chromatin structure and of transcriptional activity in chromatin. The Xenopus laevis oocyte- and somatic-type 5S rRNA genes are differentially transcribed in embryonic chromosomes in vivo depending on the incorporation of somatic histone H1 into chromatin. We establish that this effect can be reconstructed at the level of a single nucleosome. H1 selectively represses oocyte-type 5S rRNA genes by directing the stable positioning of a nucleosome such that transcription factors cannot bind to the gene. This effect does not occur on the somatic-type genes. Histone H1 binds to the 5′ end of the nucleosome core on the somatic 5S rRNA gene, leaving key regulatory elements in the promoter accessible, while histone H1 binds to the 3′ end of the nucleosome core on the oocyte 5S rRNA genes, specifically blocking access to a key promoter element (the C box). TFIIIA can bind to the somatic 5S rRNA gene assembled into a nucleosome in the presence of H1. Because H1 binds with equivalent affinities to nucleosomes containing either gene, we establish that it is the sequence-selective assembly of a specific repressive chromatin structure on the oocyte 5S rRNA genes that accounts for differential transcriptional repression. Thus, general components of chromatin can determine the assembly of specific regulatory nucleoprotein complexes. PMID:9632749

  4. Teaching resources. Chromatin remodeling.

    PubMed

    Lue, Neal F

    2005-07-26

    This Teaching Resource provides lecture notes and slides for a class covering chromatin remodeling mechanisms and is part of the course "Cell Signaling Systems: a Course for Graduate Students." The lecture begins with a discussion of chromatin organization and then proceeds to describe the process of chromatin remodeling through a review of chromatin remodeling complexes and methods used to study their function.

  5. Identification and analysis of the human murine putative chromatin structure regulator SUPT6H and Supt6h

    SciTech Connect

    Chiang, Pei-Wen; Wang, SuQing; Hillman, J.

    1996-06-15

    We have isolated and sequenced SUPT6H and Supt6h, the human and murine homologues of the Saccharomyces cerevisiae and Caenorhabditis elegans genes SPT6 (P using 1603 aa = 6.7 e-{sup 95}) and emb-5 (P using 1603 aa = 7.0 e-{sup 288}), respectively. The human and murine SPT6 homologues are virtually identical, as they share >98% identity and >99% similarity at the protein level. The derived amino acid sequences of these two genes predict a 1603-aa protein (human) and a 1726-bp protein (mouse), respectively. There were several known features, including a highly acidic 5{prime}-region, a degenerate SH2 domain, and a leucine zipper. These features are consistent with a nuclear protein that regulates transcription, whose extreme conservation underscores the likely importance of this gene in mammalian development. Expression of human and murine SPT6 homologues was analyzed by Northern blotting, which revealed a 7.0-kb transcript that was expressed constitutively. The SPT6 homologue was mapped to chromosome 17q11.2 in human by somatic cell hybrid analysis and in situ hybridization. These data indicate that SUPT6H and Supt6h are functionally analogous to SPT6 and emb-5 and may therefore regulate transcription through establishment or maintenance of chromatin structure. 23 refs., 3 figs.

  6. Sperm DNA quality evaluated by comet assay and sperm chromatin structure assay in stallions after unilateral orchiectomy.

    PubMed

    Serafini, R; Varner, D D; Bissett, W; Blanchard, T L; Teague, S R; Love, C C

    2015-09-15

    Unilateral orchiectomy (UO) may interfere with thermoregulation of the remaining testis caused by inflammation surrounding the incision site, thus altering normal spermatogenesis and consequently sperm quality. Two measures of sperm DNA quality (neutral comet assay and the sperm chromatin structure assay [SCSA]) were compared before UO (0 days) and at 14, 30, and 60 days after UO to determine whether sperm DNA changed after a mild testis stress (i.e., UO). The percent DNA in the comet tail was higher at 14 and 60 days compared to 0 days (P < 0.05) after UO. All other comet tail measures (i.e., length, moment, migration) were higher at all time periods after UO compared to 0 days (P < 0.05). Two SCSA measures (mean-αt, mode-αt) increased at 14 days after UO (P < 0.05), whereas two measures (SD-αt and COMP-αt) did not change. This study identified a decrease in sperm DNA quality using both the neutral comet assay and the SCSA, which was not identified using traditional measures of sperm quality.

  7. The “lnc” between 3D Chromatin Structure and X Chromosome Inactivation

    PubMed Central

    Pandya-Jones, Amy; Plath, Kathrin

    2016-01-01

    The long non-coding RNA Xist directs a remarkable instance of developmentally regulated, epigenetic change known as X Chromosome Inactivation (XCI). By spreading in cis across the X chromosome from which it is expressed, Xist RNA facilities the creation of a heritably silent, heterochromatic nuclear territory that displays a three-dimensional structure distinct from that of the active X chromosome. How Xist RNA attaches to and propagates across a chromosome and its influence over the three-dimensional (3D) structure of the inactive X are aspects of XCI that have remained largely unclear. Here, we discuss studies that have made significant contributions towards answering these open questions. PMID:27062886

  8. Regulation of cellular chromatin state

    PubMed Central

    Mishra, Rakesh K; Dhawan, Jyotsna

    2010-01-01

    The identity and functionality of eukaryotic cells is defined not just by their genomic sequence which remains constant between cell types, but by their gene expression profiles governed by epigenetic mechanisms. Epigenetic controls maintain and change the chromatin state throughout development, as exemplified by the setting up of cellular memory for the regulation and maintenance of homeotic genes in proliferating progenitors during embryonic development. Higher order chromatin structure in reversibly arrested adult stem cells also involves epigenetic regulation and in this review we highlight common trends governing chromatin states, focusing on quiescence and differentiation during myogenesis. Together, these diverse developmental modules reveal the dynamic nature of chromatin regulation providing fresh insights into the role of epigenetic mechanisms in potentiating development and differentiation. PMID:20592864

  9. Chromatin fiber polymorphism triggered by variations of DNA linker lengths.

    PubMed

    Collepardo-Guevara, Rosana; Schlick, Tamar

    2014-06-03

    Deciphering the factors that control chromatin fiber structure is key to understanding fundamental chromosomal processes. Although details remain unknown, it is becoming clear that chromatin is polymorphic depending on internal and external factors. In particular, different lengths of the linker DNAs joining successive nucleosomes (measured in nucleosome-repeat lengths or NRLs) that characterize different cell types and cell cycle stages produce different structures. NRL is also nonuniform within single fibers, but how this diversity affects chromatin fiber structure is not clear. Here we perform Monte Carlo simulations of a coarse-grained oligonucleosome model to help interpret fiber structure subject to intrafiber NRL variations, as relevant to proliferating cells of interphase chromatin, fibers subject to remodeling factors, and regulatory DNA sequences. We find that intrafiber NRL variations have a profound impact on chromatin structure, with a wide range of different architectures emerging (highly bent narrow forms, canonical and irregular zigzag fibers, and polymorphic conformations), depending on the NRLs mixed. This stabilization of a wide range of fiber forms might allow NRL variations to regulate both fiber compaction and selective DNA exposure. The polymorphic forms spanning canonical to sharply bent structures, like hairpins and loops, arise from large NRL variations and are surprisingly more compact than uniform NRL structures. They are distinguished by tail-mediated far-nucleosome interactions, in addition to the near-nucleosome interactions of canonical 30-nm fibers. Polymorphism is consistent with chromatin's diverse biological functions and heterogeneous constituents. Intrafiber NRL variations, in particular, may contribute to fiber bending and looping and thus to distant communication in associated regulatory processes.

  10. Structure of the SANT domain from the Xenopus chromatin remodeling factor ISWI

    SciTech Connect

    Horton, John R.; Elgar, Stuart J.; Khan, Seema I.; Zhang, Xing; Wade, Paul A.; Cheng, Xiaodong

    2008-09-17

    The SANT (Swi3, Ada2, N-Cor, and TFIIIB) module was first described as a putative DNA-binding domain with strong similarity to the helix-turn-helix DNA binding domain of Myb-related proteins. The X-ray structure of the C-terminal one third portion of the ATPase ISWI of Drosophila melangoaster, containing both SANT and SLIDE (SANT-Like ISWI Domain), confirmed the overall helix-turn-helix structural architecture of SANT as well as SLIDE. However, the DNA-contacting residues in Myb are not conserved in SANT and the structurally corresponding residues in the ISWI SANT domain are acidic, and therefore incompatible with DNA interaction. Recent studies suggested that SANT domains might be a histone-tail-binding module, including the DNA binding SANT domain of c-Myb. Here they present the X-ray structure of Xenopus laevis ISWI SANT domain, derived from limited proteolysis of a C-terminal fragment of ISWI protein.

  11. Single Molecule Studies of Chromatin

    SciTech Connect

    Jeans, C; Thelen, M P; Noy, A

    2006-02-06

    In eukaryotic cells, DNA is packaged as chromatin, a highly ordered structure formed through the wrapping of the DNA around histone proteins, and further packed through interactions with a number of other proteins. In order for processes such as DNA replication, DNA repair, and transcription to occur, the structure of chromatin must be remodeled such that the necessary enzymes can access the DNA. A number of remodeling enzymes have been described, but our understanding of the remodeling process is hindered by a lack of knowledge of the fine structure of chromatin, and how this structure is modulated in the living cell. We have carried out single molecule experiments using atomic force microscopy (AFM) to study the packaging arrangements in chromatin from a variety of cell types. Comparison of the structures observed reveals differences which can be explained in terms of the cell type and its transcriptional activity. During the course of this project, sample preparation and AFM techniques were developed and optimized. Several opportunities for follow-up work are outlined which could provide further insight into the dynamic structural rearrangements of chromatin.

  12. Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure.

    PubMed

    North, Justin A; Šimon, Marek; Ferdinand, Michelle B; Shoffner, Matthew A; Picking, Jonathan W; Howard, Cecil J; Mooney, Alex M; van Noort, John; Poirier, Michael G; Ottesen, Jennifer J

    2014-04-01

    Nucleosomes contain ∼146 bp of DNA wrapped around a histone protein octamer that controls DNA accessibility to transcription and repair complexes. Posttranslational modification (PTM) of histone proteins regulates nucleosome function. To date, only modest changes in nucleosome structure have been directly attributed to histone PTMs. Histone residue H3(T118) is located near the nucleosome dyad and can be phosphorylated. This PTM destabilizes nucleosomes and is implicated in the regulation of transcription and repair. Here, we report gel electrophoretic mobility, sucrose gradient sedimentation, thermal disassembly, micrococcal nuclease digestion and atomic force microscopy measurements of two DNA-histone complexes that are structurally distinct from nucleosomes. We find that H3(T118ph) facilitates the formation of a nucleosome duplex with two DNA molecules wrapped around two histone octamers, and an altosome complex that contains one DNA molecule wrapped around two histone octamers. The nucleosome duplex complex forms within short ∼150 bp DNA molecules, whereas altosomes require at least ∼250 bp of DNA and form repeatedly along 3000 bp DNA molecules. These results are the first report of a histone PTM significantly altering the nucleosome structure.

  13. The H2B ubiquitin ligase RNF40 cooperates with SUPT16H to induce dynamic changes in chromatin structure during DNA double-strand break repair.

    PubMed

    Kari, Vijayalakshmi; Shchebet, Andrei; Neumann, Heinz; Johnsen, Steven A

    2011-10-15

    Many anticancer therapies function largely by inducing DNA double-strand breaks (DSBs) or altering the ability of cancer cells to repair them. Proper and timely DNA repair requires dynamic changes in chromatin assembly and disassembly characterized by histone H3 lysine 56 acetylation (H3K56ac) and phosphorylation of the variant histone H2AX (γH2AX). Similarly, histone H2B monoubiquitination (H2Bub1) functions in DNA repair, but its role in controlling dynamic changes in chromatin structure following DSBs and the histone chaperone complexes involved remain unknown. Therefore, we investigated the role of the H2B ubiquitin ligase RNF40 in the DSB response. We show that RNF40 depletion results in sustained H2AX phosphorylation and a decrease in rapid cell cycle checkpoint activation. Furthermore, RNF40 knockdown resulted in decreased H3K56ac and decreased recruitment of the facilitates chromatin transcription (FACT) complex to chromatin following DSB. Knockdown of the FACT component suppressor of Ty homolog-16 (SUPT16H) phenocopied the effects of RNF40 knockdown on both γH2AX and H3K56ac following DSB induction. Consistently, both RNF40 and SUPT16H were required for proper DNA end resection and timely DNA repair, suggesting that H2Bub1 and FACT cooperate to increase chromatin dynamics, which facilitates proper checkpoint activation and timely DNA repair. These results provide important mechanistic insights into the tumor suppressor function of H2Bub1 and provide a rational basis for pursuing H2Bub1-based therapies in conjunction with traditional chemo- and radiotherapy.

  14. Nucleosomes, Linker DNA, and Linker Histone form a Unique Structural Motif that Directs the Higher-Order Folding and Compaction of Chromatin

    NASA Astrophysics Data System (ADS)

    Bednar, Jan; Horowitz, Rachel A.; Grigoryev, Sergei A.; Carruthers, Lenny M.; Hansen, Jeffrey C.; Koster, Abraham J.; Woodcock, Christopher L.

    1998-11-01

    The compaction level of arrays of nucleosomes may be understood in terms of the balance between the self-repulsion of DNA (principally linker DNA) and countering factors including the ionic strength and composition of the medium, the highly basic N termini of the core histones, and linker histones. However, the structural principles that come into play during the transition from a loose chain of nucleosomes to a compact 30-nm chromatin fiber have been difficult to establish, and the arrangement of nucleosomes and linker DNA in condensed chromatin fibers has never been fully resolved. Based on images of the solution conformation of native chromatin and fully defined chromatin arrays obtained by electron cryomicroscopy, we report a linker histone-dependent architectural motif beyond the level of the nucleosome core particle that takes the form of a stem-like organization of the entering and exiting linker DNA segments. DNA completes ≈ 1.7 turns on the histone octamer in the presence and absence of linker histone. When linker histone is present, the two linker DNA segments become juxtaposed ≈ 8 nm from the nucleosome center and remain apposed for 3-5 nm before diverging. We propose that this stem motif directs the arrangement of nucleosomes and linker DNA within the chromatin fiber, establishing a unique three-dimensional zigzag folding pattern that is conserved during compaction. Such an arrangement with peripherally arranged nucleosomes and internal linker DNA segments is fully consistent with observations in intact nuclei and also allows dramatic changes in compaction level to occur without a concomitant change in topology.

  15. [Changes in the chromatin structure of lymphoid cells under the influence of low-intensity extremely high-frequency electromagnetic radiation against the background of inflammatory process].

    PubMed

    Gapeev, A B; Romanova, N A; Chemeris, N K

    2011-01-01

    Using the alkaline single cell gel electrophoresis technique (comet assay), changes in chromatin structure of peripheral blood leukocytes and peritoneal neutrophils have been studied in mice exposed to low-intensity extremely high-frequency electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, 20 min at 1 h after induction of inflammation) against the background of the systemic inflammatory process. It was revealed that the exposure of mice with the developing inflammation leads to a pronounced decrease in the level of DNA damage to peripheral blood leukocytes and peritoneal neutrophils. It is supposed that the changes in the chromatin structure of lymphoid cells have a genoprotective character in the inflammatory process and can underlie the mechanisms of realization of antiinflammatory effects of the electromagnetic radiation.

  16. Sperm chromatin structure assay results after swim-up are related only to embryo quality but not to fertilization and pregnancy rates following IVF.

    PubMed

    Niu, Zhi-Hong; Shi, Hui-Juan; Zhang, Hui-Qin; Zhang, Ai-Jun; Sun, Yi-Juan; Feng, Yun

    2011-11-01

    The aim of this study was to investigate whether the sperm chromatin structure assay (SCSA) results after swim-up are related to fertilization rates, embryo quality and pregnancy rates following in vitro fertilization (IVF). A total of 223 couples undergoing IVF in our hospital from October 2008 to September 2009 were included in this study. Data on the IVF process and sperm chromatin structure assay results were collected. Fertilization rate, embryo quality and IVF success rates of different DNA fragmentation index (DFI) subgroups and high DNA stainability (HDS) subgroups were compared. There were no significant differences in fertilization rate, clinical pregnancy or delivery rates between the DFI and HDS subgroups. However, the group with abnormal DFI had a lower good embryo rate. So, we concluded that the SCSA variables, either DFI or HDS after swim-up preparation, were not valuable in predicting fertilization failure or pregnancy rate, but an abnormal DFI meant a lower good embryo rate following IVF.

  17. Chromatin-like structures obtained after alkaline disruption of bovine and human papillomaviruses.

    PubMed Central

    Favre, M; Breitburd, F; Croissant, O; Orth, G

    1977-01-01

    Four low-molecular-weight polypeptides migrating like H2a, H2b, H3, and H4 calf liver histones were detected by sodium dodecyl sulfate-acrylamide gel electrophoresis of highly purified preparations of bovine papillomavirus (BPV) and human papillomavirus (HPV). Complexes of these polypeptides and viral DNA were isolated by agarose-gel filtration of the alkaline disruption products of both viruses. When observed under the electron microscope, these complexes appeared as circular structures composed of nucleosomes with a diameter of about 8.0 nm interconnected by a naked DNA filament. The maximal frequency of nucleosomes per molecule was 30 for both viruses, corresponding to a condensation ratio of the viral DNA of 2.5. Images PMID:191643

  18. Forced unraveling of chromatin fibers with nonuniform linker DNA lengths

    NASA Astrophysics Data System (ADS)

    Ozer, Gungor; Collepardo-Guevara, Rosana; Schlick, Tamar

    2015-02-01

    The chromatin fiber undergoes significant structural changes during the cell's life cycle to modulate DNA accessibility. Detailed mechanisms of such structural transformations of chromatin fibers as affected by various internal and external conditions such as the ionic conditions of the medium, the linker DNA length, and the presence of linker histones, constitute an open challenge. Here we utilize Monte Carlo (MC) simulations of a coarse grained model of chromatin with nonuniform linker DNA lengths as found in vivo to help explain some aspects of this challenge. We investigate the unfolding mechanisms of chromatin fibers with alternating linker lengths of 26-62 bp and 44-79 bp using a series of end-to-end stretching trajectories with and without linker histones and compare results to uniform-linker-length fibers. We find that linker histones increase overall resistance of nonuniform fibers and lead to fiber unfolding with superbeads-on-a-string cluster transitions. Chromatin fibers with nonuniform linker DNA lengths display a more complex, multi-step yet smoother process of unfolding compared to their uniform counterparts, likely due to the existence of a more continuous range of nucleosome-nucleosome interactions. This finding echoes the theme that some heterogeneity in fiber component is biologically advantageous.

  19. The Chd Family of Chromatin Remodelers

    PubMed Central

    Marfella, Concetta G.A.; Imbalzano, Anthony N.

    2007-01-01

    Chromatin remodeling enzymes contribute to the dynamic changes that occur in chromatin structure during cellular processes such as transcription, recombination, repair, and replication. Members of the chromodomain helicase DNA-binding (Chd) family of enzymes belong to the SNF2 superfamily of ATP-dependent chromatin remodelers. The Chd proteins are distinguished by the presence of two N-terminal chromodomains that function as interaction surfaces for a variety of chromatin components. Genetic, biochemical, and structural studies demonstrate that Chd proteins are important regulators of transcription and play critical roles during developmental processes. Numerous Chd proteins are also implicated in human disease. PMID:17350655

  20. Linker DNA destabilizes condensed chromatin.

    PubMed

    Green, G R; Ferlita, R R; Walkenhorst, W F; Poccia, D L

    2001-01-01

    The contribution of the linker region to maintenance of condensed chromatin was examined in two model systems, namely sea urchin sperm nuclei and chicken red blood cell nuclei. Linkerless nuclei, prepared by extensive digestion with micrococcal nuclease, were compared with Native nuclei using several assays, including microscopic appearance, nuclear turbidity, salt stability, and trypsin resistance. Chromatin in the Linkerless nuclei was highly condensed, resembling pyknotic chromatin in apoptotic cells. Linkerless nuclei were more stable in low ionic strength buffers and more resistant to trypsin than Native nuclei. Analysis of histones from the trypsinized nuclei by polyacrylamide gel electrophoresis showed that specific histone H1, H2B, and H3 tail regions stabilized linker DNA in condensed nuclei. Thermal denaturation of soluble chromatin preparations from differentially trypsinized sperm nuclei demonstrated that the N-terminal regions of histones Sp H1, Sp H2B, and H3 bind tightly to linker DNA, causing it to denature at a high temperature. We conclude that linker DNA exerts a disruptive force on condensed chromatin structure which is counteracted by binding of specific histone tail regions to the linker DNA. The inherent instability of the linker region may be significant in all eukaryotic chromatins and may promote gene activation in living cells.

  1. The structure of sea-urchin-sperm histone phi 1 (H1) in chromatin and in free solution. Trypsin digestion and spectroscopic studies.

    PubMed

    Puigdomenech, P; Palau, J; Crane-Robinson, C

    1980-02-01

    The lysine-rich H1-type histone phi 1 from the sperm of the sea urchin Arbacia lixula has been subjected to tryptic digestion in free solution at high ionic strength. Tw trypsin-resistant peptides G phi 1 and LG phi 1 have been isolated, comprising 81 and 95 amino acids respectively, i.e. about a third of the intact histone. Circular dichroism and 270-MHz proton NMR have been used to demonstrate that the smaller peptide G phi 1 contains all the secondary and tertiary structure of intact histone phi 1. It is concluded that the resistant peptides represent a compact folded portion of the histone phi 1 chain, whilst the remaining two-thirds is disordered in free solution. Trypsin digestion of Arbacia lixula nuclei, under conditions where histone phi 1 remains tightly bound to the chromatin, leads to the same resistant peptide G phi 1. From this it is concluded that in chromatin the chain region corresponding to G phi 1 is likewise folded and inaccessible to trypsin, whilst the remaining exposed residues are located periferally and probably in an extended conformation. The rather unusual H1-type histone phi 1 from sea urchin sperm thus has a three-domain structure like calf thymus H1 and chicken erythrocyte H5. The present data emphasise the fact that this three-domain structure exists in chromatin and is not merely a free-solution artefact.

  2. Transcription factor complex formation and chromatin fine structure alterations at the murine c-fms (CSF-1 receptor) locus during maturation of myeloid precursor cells

    PubMed Central

    Tagoh, Hiromi; Himes, Roy; Clarke, Deborah; Leenen, Pieter J.M.; Riggs, Arthur D.; Hume, David; Bonifer, Constanze

    2002-01-01

    Expression of the gene for the macrophage colony stimulating factor receptor (CSF-1R), c-fms, has been viewed as a hallmark of the commitment of multipotent precursor cells to macrophages. Lineage-restricted expression of the gene is controlled by conserved elements in the proximal promoter and within the first intron. To investigate the developmental regulation of c-fms at the level of chromatin structure, we developed an in vitro system to examine the maturation of multipotent myeloid precursor cells into mature macrophages. The dynamics of chromatin fine structure alterations and transcription factor occupancy at the c-fms promoter and intronic enhancer was examined by in vivo DMS and UV-footprinting. We show that the c-fms gene is already transcribed at low levels in early myeloid precursors on which no CSF-1R surface expression can be detected. At this stage of myelopoiesis, the formation of transcription factor complexes on the promoter was complete. By contrast, occupancy of the enhancer was acutely regulated during macrophage differentiation. Our data show that cell-intrinsic differentiation decisions at the c-fms locus precede the appearance of c-fms on the cell surface. They also suggest that complex lineage-specific enhancers such as the c-fms intronic enhancer regulate local chromatin structure through the coordinated assembly and disassembly of distinct transcription factor complexes. PMID:12101129

  3. Identification of lamin B–regulated chromatin regions based on chromatin landscapes

    PubMed Central

    Zheng, Xiaobin; Kim, Youngjo; Zheng, Yixian

    2015-01-01

    Lamins, the major structural components of the nuclear lamina (NL) found beneath the nuclear envelope, are known to interact with most of the nuclear peripheral chromatin in metazoan cells. Although NL–chromatin associations correlate with a repressive chromatin state, the role of lamins in tethering chromatin to NL and how such tether influences gene expression have remained challenging to decipher. Studies suggest that NL proteins regulate chromatin in a context-dependent manner. Therefore understanding the context of chromatin states based on genomic features, including chromatin–NL interactions, is important to the study of lamins and other NL proteins. By modeling genome organization based on combinatorial patterns of chromatin association with lamin B1, core histone modification, and core and linker histone occupancy, we report six distinct large chromatin landscapes, referred to as histone lamin landscapes (HiLands)-red (R), -orange (O), -yellow (Y), -green (G), -blue (B), and -purple (P), in mouse embryonic stem cells (mESCs). This HiLands model demarcates the previously mapped lamin-associated chromatin domains (LADs) into two HiLands, HiLands-B and HiLands-P, which are similar to facultative and constitutive heterochromatins, respectively. Deletion of B-type lamins in mESCs caused a reduced interaction between regions of HiLands-B and NL as measured by emerin–chromatin interaction. Our findings reveal the importance of analyzing specific chromatin types when studying the function of NL proteins in chromatin tether and regulation. PMID:25995381

  4. Chromatin Dynamics during Lytic Infection with Herpes Simplex Virus 1

    PubMed Central

    Conn, Kristen L.; Schang, Luis M.

    2013-01-01

    Latent HSV-1 genomes are chromatinized with silencing marks. Since 2004, however, there has been an apparent inconsistency in the studies of the chromatinization of the HSV-1 genomes in lytically infected cells. Nuclease protection and chromatin immunoprecipitation assays suggested that the genomes were not regularly chromatinized, having only low histone occupancy. However, the chromatin modifications associated with transcribed and non-transcribed HSV-1 genes were those associated with active or repressed transcription, respectively. Moreover, the three critical HSV-1 transcriptional activators all had the capability to induce chromatin remodelling, and interacted with critical chromatin modifying enzymes. Depletion or overexpression of some, but not all, chromatin modifying proteins affected HSV-1 transcription, but often in unexpected manners. Since 2010, it has become clear that both cellular and HSV-1 chromatins are highly dynamic in infected cells. These dynamics reconcile the weak interactions between HSV-1 genomes and chromatin proteins, detected by nuclease protection and chromatin immunoprecipitation, with the proposed regulation of HSV-1 gene expression by chromatin, supported by the marks in the chromatin in the viral genomes and the abilities of the HSV-1 transcription activators to modulate chromatin. It also explains the sometimes unexpected results of interventions to modulate chromatin remodelling activities in infected cells. PMID:23863878

  5. Changeability of sperm chromatin structure during liquid storage of ovine semen in milk-egg yolk- and soybean lecithin-based extenders and their relationships to field-fertility.

    PubMed

    Khalifa, Tarek; Lymberopoulos, Aristotelis

    2013-12-01

    The aim of this experiment was to study the effect of semen extender on sperm chromatin structure and to correlate chromatin integrity with field-fertility of preserved ram semen. Ejaculates of at least 2 × 10(9) sperm/ml and 70 % progressive motility were collected using an artificial vagina from Chios rams (n = 11, 4-6 years old), split-diluted to 1 × 10(9) sperm/ml with milk-egg yolk- and soybean lecithin (Ovixcell®)-based extenders, packaged in 0.5-ml straws and examined after 6, 24 and 48 h of storage at 5 ± 1 °C. Evaluation endpoints were computer-assisted sperm motion analysis, fluorescence-based analysis of chromatin structure by chromomycin A3 and acridine orange assays, and 65-day pregnancy rate (PR) of 34- to 36-h preserved semen after intra-cervical insemination of ewes (n = 154) in progestagen-synchronized estrus. Neither extender nor storage time had any influence on incidence of decondensed chromatin. Unlike Ovixcell® extender, deterioration of sperm motility (P < 0.01) and chromatin stability (P < 0.005) was detected after 48 h of storage in milk-egg yolk extender. Sperm motility accounted for 14.4-18.5 % of variations in chromatin integrity (P < 0.001). No significant difference was found in PR of Ovixcell®- and milk-egg yolk-stored semen. Nevertheless, PR differed between rams (14.3-71.4 %; P < 0.025). Chromatin integrity explained 10.2-56.3 % of variations in PR (P < 0.05-0.01). A pronounced decline in PR (19.1 %) was observed when percentages of decondensed and destabilized chromatin have reached thresholds of 10.5-30 % and 4-9 %, respectively. In conclusion, Ovixcell® is superior to milk-egg yolk extender in preserving chromatin stability and motility. Chromatin defects are negatively associated with sperm fertility.

  6. Chromatin shapes the mitotic spindle.

    PubMed

    Dinarina, Ana; Pugieux, Céline; Corral, Maria Mora; Loose, Martin; Spatz, Joachim; Karsenti, Eric; Nédélec, François

    2009-08-07

    In animal and plant cells, mitotic chromatin locally generates microtubules that self-organize into a mitotic spindle, and its dimensions and bipolar symmetry are essential for accurate chromosome segregation. By immobilizing microscopic chromatin-coated beads on slide surfaces using a microprinting technique, we have examined the effect of chromatin on the dimensions and symmetry of spindles in Xenopus laevis cytoplasmic extracts. While circular spots with diameters around 14-18 microm trigger bipolar spindle formation, larger spots generate an incorrect number of poles. We also examined lines of chromatin with various dimensions. Their length determined the number of poles that formed, with a 6 x 18 microm rectangular patch generating normal spindle morphology. Around longer lines, multiple poles formed and the structures were disorganized. While lines thinner than 10 mum generated symmetric structures, thicker lines induced the formation of asymmetric structures where all microtubules are on the same side of the line. Our results show that chromatin defines spindle shape and orientation. For a video summary of this article, see the PaperFlick file available with the online Supplemental Data.

  7. Do chromatin changes around a nascent double strand DNA break spread spherically into linearly non-adjacent chromatin?

    PubMed

    Savic, Velibor

    2013-01-01

    In the last decade, a lot has been done in elucidating the sequence of events that occur at the nascent double strand DNA break. Nevertheless, the overall structure formed by the DNA damage response (DDR) factors around the break site, the repair focus, remains poorly understood. Although most of the data presented so far only address events that occur in chromatin in cis around the break, there are strong indications that in mammalian systems it may also occur in trans, analogous to the recent findings showing this if budding yeast. There have been attempts to address the issue but the final proof is still missing due to lack of a proper experimental system. If found to be true, the spatial distribution of DDR factors would have a major impact on the neighboring chromatin both in cis and in trans, significantly affecting local chromatin function; gene transcription and potentially other functions.

  8. Histone chaperone networks shaping chromatin function.

    PubMed

    Hammond, Colin M; Strømme, Caroline B; Huang, Hongda; Patel, Dinshaw J; Groth, Anja

    2017-03-01

    The association of histones with specific chaperone complexes is important for their folding, oligomerization, post-translational modification, nuclear import, stability, assembly and genomic localization. In this way, the chaperoning of soluble histones is a key determinant of histone availability and fate, which affects all chromosomal processes, including gene expression, chromosome segregation and genome replication and repair. Here, we review the distinct structural and functional properties of the expanding network of histone chaperones. We emphasize how chaperones cooperate in the histone chaperone network and via co-chaperone complexes to match histone supply with demand, thereby promoting proper nucleosome assembly and maintaining epigenetic information by recycling modified histones evicted from chromatin.

  9. Human linker histones: interplay between phosphorylation and O-β-GlcNAc to mediate chromatin structural modifications

    PubMed Central

    2011-01-01

    Eukaryotic chromatin is a combination of DNA and histone proteins. It is established fact that epigenetic mechanisms are associated with DNA and histones. Initial studies emphasize on core histones association with DNA, however later studies prove the importance of linker histone H1 epigenetic. There are many types of linker histone H1 found in mammals. These subtypes are cell specific and their amount in different types of cells varies as the cell functions. Many types of post-translational modifications which occur on different residues in each subtype of linker histone H1 induce conformational changes and allow the different subtypes of linker histone H1 to interact with chromatin at different stages during cell cycle which results in the regulation of transcription and gene expression. Proposed O-glycosylation of linker histone H1 promotes condensation of chromatin while phosphorylation of linker histone H1 is known to activate transcription and gene regulation by decondensation of chromatin. Interplay between phosphorylation and O-β-GlcNAc modification on Ser and Thr residues in each subtype of linker histone H1 in Homo sapiens during cell cycle may result in diverse functional regulation of proteins. This in silico study describes the potential phosphorylation, o-glycosylation and their possible interplay sites on conserved Ser/Thr residues in various subtypes of linker histone H1 in Homo sapiens. PMID:21749719

  10. Overlapping chromatin-remodeling systems collaborate genome wide at dynamic chromatin transitions.

    PubMed

    Morris, Stephanie A; Baek, Songjoon; Sung, Myong-Hee; John, Sam; Wiench, Malgorzata; Johnson, Thomas A; Schiltz, R Louis; Hager, Gordon L

    2014-01-01

    ATP-dependent chromatin remodeling is an essential process required for the dynamic organization of chromatin structure. Here we describe the genome-wide location and activity of three remodeler proteins with diverse physiological functions in the mouse genome: Brg1, Chd4 and Snf2h. The localization patterns of all three proteins substantially overlap with one another and with regions of accessible chromatin. Furthermore, using inducible mutant variants, we demonstrate that the catalytic activity of these proteins contributes to the remodeling of chromatin genome wide and that each of these remodelers can independently regulate chromatin reorganization at distinct sites. Many regions require the activity of more than one remodeler to regulate accessibility. These findings provide a dynamic view of chromatin organization and highlight the differential contributions of remodelers to chromatin maintenance in higher eukaryotes.

  11. Chromatin enrichment for proteomics

    PubMed Central

    Kustatscher, Georg; Wills, Karen L. H.; Furlan, Cristina; Rappsilber, Juri

    2015-01-01

    During interphase, chromatin hosts fundamental cellular processes, such as gene expression, DNA replication and DNA damage repair. To analyze chromatin on a proteomic scale, we have developed chromatin enrichment for proteomics (ChEP), which is a simple biochemical procedure that enriches interphase chromatin in all its complexity. It enables researchers to take a ‘snapshot’ of chromatin and to isolate and identify even transiently bound factors. In ChEP, cells are fixed with formaldehyde; subsequently, DNA together with all cross-linked proteins is isolated by centrifugation under denaturing conditions. This approach enables the analysis of global chromatin composition and its changes, which is in contrast with existing chromatin enrichment procedures, which either focus on specific chromatin loci (e.g., affinity purification) or are limited in specificity, such as the analysis of the chromatin pellet (i.e., analysis of all insoluble nuclear material). ChEP takes half a day to complete and requires no specialized laboratory skills or equipment. ChEP enables the characterization of chromatin response to drug treatment or physiological processes. Beyond proteomics, ChEP may preclear chromatin for chromatin immunoprecipitation (ChIP) analyses. PMID:25101823

  12. Developing Hierarchical Structures Integrating Cognition and Affect.

    ERIC Educational Resources Information Center

    Hurst, Barbara Martin

    Several categories of the affective domain are important to the schooling process. Schools are delegated the responsibility of helping students to clarify their esthetic, instrumental, and moral values. Three areas of affect are related to student achievement: subject-related affect, school-related affect, and academic self concept. In addition,…

  13. Chromatin modification by PSC occurs at one PSC per nucleosome and does not require the acidic patch of histone H2A.

    PubMed

    Lo, Stanley M; McElroy, Kyle A; Francis, Nicole J

    2012-01-01

    Chromatin architecture is regulated through both enzymatic and non-enzymatic activities. For example, the Polycomb Group (PcG) proteins maintain developmental gene silencing using an array of chromatin-based mechanisms. The essential Drosophila PcG protein, Posterior Sex Combs (PSC), compacts chromatin and inhibits chromatin remodeling and transcription through a non-enzymatic mechanism involving nucleosome bridging. Nucleosome bridging is achieved through a combination of nucleosome binding and self-interaction. Precisely how PSC interacts with chromatin to bridge nucleosomes is not known and is the subject of this work. We determine the stoichiometry of PSC-chromatin interactions in compact chromatin (in which nucleosomes are bridged) using Scanning Transmission Electron Microscopy (STEM). We find that full compaction occurs with one PSC per nucleosome. In addition to compacting chromatin, we show that PSC oligomerizes nucleosome arrays. PSC-mediated oligomerization of chromatin occurs at similar stoichiometry as compaction suggesting it may also involve nucleosome bridging. Interactions between the tail of histone H4 and the acidic patch of histone H2A are important for chromatin folding and oligomerization, and several chromatin proteins bind the histone H2A acidic patch. However, mutation of the acidic patch of histone H2A does not affect PSC's ability to inhibit chromatin remodeling or bridge nucleosomes. In fact, PSC does not require nucleosomes for bridging activity but can bridge naked DNA segments. PSC clusters nucleosomes on sparsely assembled templates, suggesting it interacts preferentially with nucleosomes over bare DNA. This may be due to the ability of PSC to bind free histones. Our data are consistent with a model in which each PSC binds a nucleosome and at least one other PSC to directly bridge nucleosomes and compact chromatin, but also suggest that naked DNA can be included in compacted structures. We discuss how our data highlight the diversity

  14. Environmental toxicants cause sperm DNA fragmentation as detected by the Sperm Chromatin Structure Assay (SCSA[reg])

    SciTech Connect

    Evenson, Donald P. . E-mail: scsa@brookings.net; Wixon, Regina

    2005-09-01

    Studies over the past two decades have clearly shown that reproductive toxicants cause sperm DNA fragmentation. This DNA fragmentation can usually be detected prior to observing alterations of metaphase chromosomes in embryos. Thus, Sperm Chromatin Structure Assay (SCSA)-detected DNA damage is viewed as the molecular precursor to later gross chromosome damage observed under the light microscope. SCSA measurements of animal or human sperm consist of first obtaining a fresh or flash frozen neat semen sample in LN2 or dry ice. Samples are then sent to a SCSA diagnostic laboratory where the samples are thawed, diluted to {approx}1-2 x 106 sperm/ml, treated for 30 s with a pH 1.2 detergent buffer and then stained with acridine orange (AO). The low pH partially denatures DNA at the sites of DNA strand breaks and the AO-ssDNA fluoresces red while the AO-dsDNA fluoresces green. Flow cytometry measurements of 5000 sperm/sample provide statistically robust data on the ratio of red to green sperm, the extent of the DNA fragmentation and the standard deviations of measures. Numerous experiments on rodents treated with reproductive toxicants clearly showed that SCSA measures are highly dose responsive and have a very low CV. Different agents that act on germ cells at various stages of development usually showed sperm DNA fragmentation when that germ cell fraction arrived in the epididymis or ejaculate. Some of these treated samples were capable of successful in vitro fertilization but with frequent embryo failure. A 2-year longitudinal study of men living a valley town with a reported abnormal level of infertility and spontaneous miscarriages and also a seasonal atmospheric smog pollution, showed, for the first time, that SCSA measurements of human sperm DNA fragmentation were detectable and correlated with dosage of air pollution while the classical semen measures were not correlated. Also, young men spraying pesticides without protective gear are at an increased risk for

  15. [The effect of structure of benzimidazoles on the character of forming intramolecular cross-links in DNA and chromatin].

    PubMed

    Mil', E M; Zhil'tsova, V M; Biniukov, V I; Zhizhina, G P; Stoliarova, L G; Kuznetsov, Iu P

    1994-01-01

    An investigation of a number of benzimidazole class preparations, being distinguished by a position of aminomethyl substitutes, has been carried out. It has been shown, that the non-substituted preparation BIO-10 does not form UV-cross-links in DNA and chromatine; BIO-40, having one substitute in the position 2, causes the formation of inter-molecular cross-links DNA-DNA. The preparation BIO-50, having 2 aminomethyl groups in the imidazole nucleus positions 2 and 6, forms cross-links DNA-DNA and DNA-protein in chromatine. The generation of radicals by the preparations BIO-10 and BIO-50 has been studied by the EPR-method by use of spin trap. It has been demonstrated, that BIO-10, unlike BIO-50, actively generates superoxide. A supposition has been made, that an UV-formation of superoxide-radical in the presence of BIO-10 might be a reason of DNA-macromolecule destruction.

  16. Hyperinsulinemia adversely affects lung structure and function.

    PubMed

    Singh, Suchita; Bodas, Manish; Bhatraju, Naveen K; Pattnaik, Bijay; Gheware, Atish; Parameswaran, Praveen Kolumam; Thompson, Michael; Freeman, Michelle; Mabalirajan, Ulaganathan; Gosens, Reinoud; Ghosh, Balaram; Pabelick, Christina; Linneberg, Allan; Prakash, Y S; Agrawal, Anurag

    2016-05-01

    There is limited knowledge regarding the consequences of hyperinsulinemia on the lung. Given the increasing prevalence of obesity, insulin resistance, and epidemiological associations with asthma, this is a critical lacuna, more so with inhaled insulin on the horizon. Here, we demonstrate that insulin can adversely affect respiratory health. Insulin treatment (1 μg/ml) significantly (P < 0.05) increased the proliferation of primary human airway smooth muscle (ASM) cells and induced collagen release. Additionally, ASM cells showed a significant increase in calcium response and mitochondrial respiration upon insulin exposure. Mice administered intranasal insulin showed increased collagen deposition in the lungs as well as a significant increase in airway hyperresponsiveness. PI3K/Akt mediated activation of β-catenin, a positive regulator of epithelial-mesenchymal transition and fibrosis, was observed in the lungs of insulin-treated mice and lung cells. Our data suggests that hyperinsulinemia may have adverse effects on airway structure and function. Insulin-induced activation of β-catenin in lung tissue and the contractile effects on ASM cells may be causally related to the development of asthma-like phenotype.

  17. Chromatin fine structure of the c-MYC insulator element/DNase I-hypersensitive site I is not preserved during mitosis.

    PubMed

    Komura, Jun-Ichiro; Ikehata, Hironobu; Ono, Tetsuya

    2007-10-02

    During mitosis in higher eukaryotic cells, transcription is silenced and transcription complexes are absent from promoters in the condensed chromosomes; however, epigenetic information concerning the pattern of expressed and silent genes must be preserved. Recently, it has been reported that CTCF, a major protein in vertebrate insulator elements, remains associated with mitotic chromatin. If the structure of insulators is preserved during mitosis, then it is possible that insulators can function as components or elements of the mechanism involved in the transfer of epigenetic information through the mitotic phase and can help guide the reconstitution of domain structure and nuclear organization after the completion of this phase. We have studied the chromatin structure of the insulator upstream of the c-MYC gene in mitotic HeLa cells. The region of the insulator corresponds to the DNase I hypersensitive site I, but Southern blot analysis revealed that hypersensitivity was lost during mitosis. High resolution in vivo footprinting analysis using dimethyl sulfate, UV light, psoralen, and DNase I also demonstrated the disappearance of the sequence-specific direct binding of CTCF and the absence of detectable structures during mitosis. Thus, it appears that the nucleoprotein complex involving this insulator element must be reassembled de novo with each new cell generation.

  18. Micro- and nanoscale devices for the investigation of epigenetics and chromatin dynamics

    NASA Astrophysics Data System (ADS)

    Aguilar, Carlos A.; Craighead, Harold G.

    2013-10-01

    Deoxyribonucleic acid (DNA) is the blueprint on which life is based and transmitted, but the way in which chromatin -- a dynamic complex of nucleic acids and proteins -- is packaged and behaves in the cellular nucleus has only begun to be investigated. Epigenetic modifications sit 'on top of' the genome and affect how DNA is compacted into chromatin and transcribed into ribonucleic acid (RNA). The packaging and modifications around the genome have been shown to exert significant influence on cellular behaviour and, in turn, human development and disease. However, conventional techniques for studying epigenetic or conformational modifications of chromosomes have inherent limitations and, therefore, new methods based on micro- and nanoscale devices have been sought. Here, we review the development of these devices and explore their use in the study of DNA modifications, chromatin modifications and higher-order chromatin structures.

  19. Micro- and nanoscale devices for the investigation of epigenetics and chromatin dynamics.

    PubMed

    Aguilar, Carlos A; Craighead, Harold G

    2013-10-01

    Deoxyribonucleic acid (DNA) is the blueprint on which life is based and transmitted, but the way in which chromatin - a dynamic complex of nucleic acids and proteins - is packaged and behaves in the cellular nucleus has only begun to be investigated. Epigenetic modifications sit 'on top of' the genome and affect how DNA is compacted into chromatin and transcribed into ribonucleic acid (RNA). The packaging and modifications around the genome have been shown to exert significant influence on cellular behaviour and, in turn, human development and disease. However, conventional techniques for studying epigenetic or conformational modifications of chromosomes have inherent limitations and, therefore, new methods based on micro- and nanoscale devices have been sought. Here, we review the development of these devices and explore their use in the study of DNA modifications, chromatin modifications and higher-order chromatin structures.

  20. Chromatin structural changes around satellite repeats on the female sex chromosome in Schistosoma mansoni and their possible role in sex chromosome emergence

    PubMed Central

    2012-01-01

    Background In the leuphotrochozoan parasitic platyhelminth Schistosoma mansoni, male individuals are homogametic (ZZ) whereas females are heterogametic (ZW). To elucidate the mechanisms that led to the emergence of sex chromosomes, we compared the genomic sequence and the chromatin structure of male and female individuals. As for many eukaryotes, the lower estimate for the repeat content is 40%, with an unknown proportion of domesticated repeats. We used massive sequencing to de novo assemble all repeats, and identify unambiguously Z-specific, W-specific and pseudoautosomal regions of the S. mansoni sex chromosomes. Results We show that 70 to 90% of S. mansoni W and Z are pseudoautosomal. No female-specific gene could be identified. Instead, the W-specific region is composed almost entirely of 36 satellite repeat families, of which 33 were previously unknown. Transcription and chromatin status of female-specific repeats are stage-specific: for those repeats that are transcribed, transcription is restricted to the larval stages lacking sexual dimorphism. In contrast, in the sexually dimorphic adult stage of the life cycle, no transcription occurs. In addition, the euchromatic character of histone modifications around the W-specific repeats decreases during the life cycle. Recombination repression occurs in this region even if homologous sequences are present on both the Z and W chromosomes. Conclusion Our study provides for the first time evidence for the hypothesis that, at least in organisms with a ZW type of sex chromosomes, repeat-induced chromatin structure changes could indeed be the initial event in sex chromosome emergence. PMID:22377319

  1. The many faces of plant chromatin: Meeting summary of the 4th European workshop on plant chromatin 2015, Uppsala, Sweden.

    PubMed

    Mozgová, Iva; Köhler, Claudia; Gaudin, Valérie; Hennig, Lars

    2015-01-01

    In June 2015, the fourth European Workshop on Plant Chromatin took place in Uppsala, Sweden, bringing together 80 researchers studying various aspects of plant chromatin and epigenetics. The intricate relationships between plant chromatin dynamics and gene expression change, chromatin organization within the plant cell nucleus, and the impact of chromatin structure on plant development were discussed. Among the main highlights of the meeting were an ever-growing list of newly identified players in chromatin structure establishment and the development of novel tools and approaches to foster our understanding of chromatin-mediated gene regulation, taking into account the context of the plant cell nucleus and its architecture. In this report, we summarize some of the main advances and prospects of plant chromatin research presented at this meeting.

  2. The many faces of plant chromatin: Meeting summary of the 4th European workshop on plant chromatin 2015, Uppsala, Sweden

    PubMed Central

    Mozgová, Iva; Köhler, Claudia; Gaudin, Valérie; Hennig, Lars

    2015-01-01

    In June 2015, the fourth European Workshop on Plant Chromatin took place in Uppsala, Sweden, bringing together 80 researchers studying various aspects of plant chromatin and epigenetics. The intricate relationships between plant chromatin dynamics and gene expression change, chromatin organization within the plant cell nucleus, and the impact of chromatin structure on plant development were discussed. Among the main highlights of the meeting were an ever-growing list of newly identified players in chromatin structure establishment and the development of novel tools and approaches to foster our understanding of chromatin-mediated gene regulation, taking into account the context of the plant cell nucleus and its architecture. In this report, we summarize some of the main advances and prospects of plant chromatin research presented at this meeting. PMID:26646904

  3. 915 MHz microwaves and 50 Hz magnetic field affect chromatin conformation and 53BP1 foci in human lymphocytes from hypersensitive and healthy persons.

    PubMed

    Belyaev, Igor Y; Hillert, Lena; Protopopova, Marina; Tamm, Christoffer; Malmgren, Lars O G; Persson, Bertil R R; Selivanova, Galina; Harms-Ringdahl, Mats

    2005-04-01

    We used exposure to microwaves from a global system for mobile communication (GSM) mobile phone (915 MHz, specific absorption rate (SAR) 37 mW/kg) and power frequency magnetic field (50 Hz, 15 muT peak value) to investigate the response of lymphocytes from healthy subjects and from persons reporting hypersensitivity to electromagnetic field (EMF). The hypersensitive and healthy donors were matched by gender and age and the data were analyzed blind to treatment condition. The changes in chromatin conformation were measured with the method of anomalous viscosity time dependencies (AVTD). 53BP1 protein, which has been shown to colocalize in foci with DNA double strand breaks (DSBs), was analyzed by immunostaining in situ. Exposure at room temperature to either 915 MHz or 50 Hz resulted in significant condensation of chromatin, shown as AVTD changes, which was similar to the effect of heat shock at 41 degrees C. No significant differences in responses between normal and hypersensitive subjects were detected. Neither 915 MHz nor 50 Hz exposure induced 53BP1 foci. On the contrary, a distinct decrease in background level of 53BP1 signaling was observed upon these exposures as well as after heat shock treatments. This decrease correlated with the AVTD data and may indicate decrease in accessibility of 53BP1 to antibodies because of stress-induced chromatin condensation. Apoptosis was determined by morphological changes and by apoptotic fragmentation of DNA as analyzed by pulsed-field gel electrophoresis (PFGE). No apoptosis was induced by exposure to 50 Hz and 915 MHz microwaves. In conclusion, 50 Hz magnetic field and 915 MHz microwaves under specified conditions of exposure induced comparable responses in lymphocytes from healthy and hypersensitive donors that were similar but not identical to stress response induced by heat shock.

  4. Effect of hyperthermia on replicating chromatin

    SciTech Connect

    Warters, R.L.; Roti Roti, J.L.

    1981-10-01

    The extent of heat-induced structural alterations in chromatin containing nascent (pulse-labeled) DNA was assayed using the enzyme micrococcal nuclease. The basic nucleosome structure in nascent and mature chromatin of S-phase cells appeared unaltered for up to 16 hr after exposure to hyperthermic temperatures as high as 48/sup 0/C for 15 min. However, the rate of nuclease digestion of DNA in both nascent and mature chromatin is inhibited following exposure to hyperthermic temperatures. In unheated cells, pulse-labeled nascent DNA matured into mature chromatin structure with a half-time of 2.5 min. The half-time for the maturation of pulse-labeled DNA from nascent into mature chromatin increased in a linear manner as a function of increasing temperature of exposure with constant heating time at temperatures above 43/sup 0/C. Both the reduced nuclease digestibility of nascent DNA and the increased time for chromatin structural changes could be due to the increased protein mass of chromatin following hyperthermia.

  5. TOPICAL REVIEW: The physics of chromatin

    NASA Astrophysics Data System (ADS)

    Schiessel, Helmut

    2003-05-01

    Recent progress has been made in the understanding of the physical properties of chromatin - the dense complex of DNA and histone proteins that occupies the nuclei of plant and animal cells. Here I will focus on the two lowest levels of the hierarchy of DNA folding into the chromatin complex. (i) The nucleosome, the chromatin repeating unit consisting of a globular aggregate of eight histone proteins with the DNA wrapped around it: its overcharging, the DNA unwrapping transition, the 'sliding' of the octamer along the DNA. (ii) The 30 nm chromatin fibre, the necklace-like structure of nucleosomes connected via linker DNA: its geometry, its mechanical properties under stretching and its response to changing ionic conditions. I will stress that chromatin combines two seemingly contradictory features: (1) high compaction of DNA within the nuclear envelope and, at the same time, (2) accessibility to genes, promoter regions and gene regulatory sequences.

  6. Chromatin structure determines accessibility of a hairpin polyamide-chlorambucil conjugate at histone H4 genes in pancreatic cancer cells.

    PubMed

    Jespersen, Christine; Soragni, Elisabetta; James Chou, C; Arora, Paramjit S; Dervan, Peter B; Gottesfeld, Joel M

    2012-06-15

    We have shown that a specific pyrrole-imidazole polyamide-DNA alkylator (chlorambucil) conjugate, 1R-Chl, alters the growth characteristics of various cancer cell lines in culture, and causes these cells to arrest in the G2/M stage of the cell cycle, without apparent cytotoxicity. This molecule has also shown efficacy in several mouse xenograft models, preventing tumor growth. Previous microarray studies have suggested that members of the histone H4 gene family, H4c and H4j/k, are the primary targets of this molecule, leading to reduced histone mRNA synthesis and growth arrest in cancer cells. In the present study, we examine the effects of 1R-Chl on transcription of other members of the H4 gene family, with the result that mRNA transcription of most genomic copies of H4 are down-regulated by 1R-Chl in a human pancreatic cancer cell line (MIA PaCa-2), but not in a cell line of non-cancerous origin (HEK293 cells). The basis for this differential effect is likely an open chromatin conformation within the H4 genes in cancer cells. Chromatin immunoprecipitation experiments show increased histone acetylation on the histone H4 genes in cancer cells, compared to HEK293 cells, explaining the differential activity of this molecule in cancer versus non-cancer cells.

  7. reSETting chromatin during transcription elongation

    PubMed Central

    Smolle, Michaela; Workman, Jerry L.; Venkatesh, Swaminathan

    2013-01-01

    Maintenance of ordered chromatin structure over the body of genes is vital for the regulation of transcription. Increased access to the underlying DNA sequence results in the recruitment of RNA polymerase II to inappropriate, promoter-like sites within genes, resulting in unfettered transcription. Two new papers show how the Set2-mediated methylation of histone H3 on Lys36 (H3K36me) maintains chromatin structure by limiting histone dynamics over gene bodies, either by recruiting chromatin remodelers that preserve ordered nucleosomal distribution or by lowering the binding affinity of histone chaperones for histones, preventing their removal. PMID:23257840

  8. B23/nucleophosmin is involved in regulation of adenovirus chromatin structure at late infection stages, but not in virus replication and transcription.

    PubMed

    Samad, Mohammad Abdus; Komatsu, Tetsuro; Okuwaki, Mitsuru; Nagata, Kyosuke

    2012-06-01

    B23/nucleophosmin has been identified in vitro as a stimulatory factor for replication of adenovirus DNA complexed with viral basic core proteins. In the present study, the in vivo function of B23 in the adenovirus life cycle was studied. It was found that both the expression of a decoy mutant derived from adenovirus core protein V that tightly associates with B23 and small interfering RNA-mediated depletion of B23 impeded the production of progeny virions. However, B23 depletion did not significantly affect the replication and transcription of the virus genome. Chromatin immunoprecipitation analyses revealed that B23 depletion significantly increased the association of viral DNA with viral core proteins and cellular histones. These results suggest that B23 is involved in the regulation of association and/or dissociation of core proteins and cellular histones with the virus genome. In addition, these results suggest that proper viral chromatin assembly, regulated in part by B23, is crucial for the maturation of infectious virus particles.

  9. Extracellular Matrix, Nuclear and Chromatin Structure and GeneExpression in Normal Tissues and Malignant Tumors: A Work inProgress

    SciTech Connect

    Spencer, Virginia A.; Xu, Ren; Bissell, Mina J.

    2006-08-01

    Almost three decades ago, we presented a model where theextracellular matrix (ECM) was postulated to influence gene expressionand tissue-specificity through the action of ECM receptors and thecytoskeleton. This hypothesis implied that ECM molecules could signal tothe nucleus and that the unit of function in higher organisms was not thecell alone, but the cell plus its microenvironment. We now know that ECMinvokes changes in tissue and organ architecture and that tissue, cell,nuclear, and chromatin structure are changed profoundly as a result ofand during malignant progression. Whereas some evidence has beengenerated for a link between ECM-induced alterations in tissuearchitecture and changes in both nuclear and chromatin organization, themanner by which these changes actively induce or repress gene expressionin normal and malignant cells is a topic in need of further attention.Here, we will discuss some key findings that may provide insights intomechanisms through which ECM could influence gene transcription and howtumor cells acquire the ability to overcome these levels ofcontrol.

  10. Chromatin Fiber Dynamics under Tension and Torsion

    PubMed Central

    Lavelle, Christophe; Victor, Jean-Marc; Zlatanova, Jordanka

    2010-01-01

    Genetic and epigenetic information in eukaryotic cells is carried on chromosomes, basically consisting of large compact supercoiled chromatin fibers. Micromanipulations have recently led to great advances in the knowledge of the complex mechanisms underlying the regulation of DNA transaction events by nucleosome and chromatin structural changes. Indeed, magnetic and optical tweezers have allowed opportunities to handle single nucleosomal particles or nucleosomal arrays and measure their response to forces and torques, mimicking the molecular constraints imposed in vivo by various molecular motors acting on the DNA. These challenging technical approaches provide us with deeper understanding of the way chromatin dynamically packages our genome and participates in the regulation of cellular metabolism. PMID:20480035

  11. Physical properties of unacetylated chromatin as examined by magnetic tweezers

    NASA Astrophysics Data System (ADS)

    McGill, Kerry; Dunlap, David; Lucchesi, John

    2011-10-01

    As the source of genetic material, DNA is involved in a variety of biological processes like transcription, cell replication, and more. In these processes, DNA is manipulated into different structures and is subjected to different levels of physical force on a molecular scale. When tension is applied to one hierarchical structure called chromatin, it appears to behave like a Hookian spring. The base component of chromatin is a nucleosome, which is constructed when DNA coils around octamers of histone proteins. The histones can become acetylated---a chemical process in which an acetyl functional group attaches to amino acids of the histones, often lysines. Acetylation may loosen chromatin's coils and therefore lower the amount of tension required to stretch the chromatin. Comparing the levels of tension required to stretch acetylated chromatin could reveal, directly, physical differences in the chromatin fiber that bear ion the function of the DNA molecule. Work presented will be the investigation of unacetylated chromatin.

  12. Chromatin Topological Transitions

    NASA Astrophysics Data System (ADS)

    Lavelle, C.; Bancaud, A.; Recouvreux, P.; Barbi, M.; Victor, J.; Viovy, J.

    DNA transaction events occurring during a cell cycle (transcription,repair, replication) are always associated with severe topological constraints on the double helix. However, since nuclear DNA is bound to various proteins (including histones) that control its accessibility and 3D organization, these topological constraints propagate or accumulate on a chromatin substrate. This paper focuses on chromatin fiber response to physiological mechanical constraints expected to occur during transcription elongation. We will show in particular how recent single molecule techniques help us to understand how chromatin conformational dynamics could manage harsh DNA supercoiling changes.

  13. Chromatin fiber functional organization: Some plausible models

    NASA Astrophysics Data System (ADS)

    Lesne, A.; Victor, J.-M.

    2006-03-01

    We here present a modeling study of the chromatin fiber functional organization. Multi-scale modeling is required to unravel the complex interplay between the fiber and the DNA levels. It suggests plausible scenarios, including both physical and biological aspects, for fiber condensation, its targeted decompaction, and transcription regulation. We conclude that a major role of the chromatin fiber structure might be to endow DNA with allosteric potentialities and to control DNA transactions by an epigenetic tuning of its mechanical and topological constraints.

  14. The viscoelastic properties of chromatin and the nucleoplasm revealed by scale-dependent protein mobility

    NASA Astrophysics Data System (ADS)

    Erdel, Fabian; Baum, Michael; Rippe, Karsten

    2015-02-01

    The eukaryotic cell nucleus harbours the DNA genome that is organized in a dynamic chromatin network and embedded in a viscous crowded fluid. This environment directly affects enzymatic reactions and target search processes that access the DNA sequence information. However, its physical properties as a reaction medium are poorly understood. Here, we exploit mobility measurements of differently sized inert green fluorescent tracer proteins to characterize the viscoelastic properties of the nuclear interior of a living human cell. We find that it resembles a viscous fluid on small and large scales but appears viscoelastic on intermediate scales that change with protein size. Our results are consistent with simulations of diffusion through polymers and suggest that chromatin forms a random obstacle network rather than a self-similar structure with fixed fractal dimensions. By calculating how long molecules remember their previous position in dependence on their size, we evaluate how the nuclear environment affects search processes of chromatin targets.

  15. An Overview of Chromatin-Regulating Proteins in Cells

    PubMed Central

    Zhang, Pingyu; Torres, Keila; Liu, Xiuping; Liu, Chang-gong; Pollock, Raphael E.

    2016-01-01

    In eukaryotic cells, gene expressions on chromosome DNA are orchestrated by a dynamic chromosome structure state that is largely controlled by chromatin-regulating proteins, which regulate chromatin structures, release DNA from the nucleosome, and activate or suppress gene expression by modifying nucleosome histones or mobilizing DNA-histone structure. The two classes of chromatin- regulating proteins are 1) enzymes that modify histones through methylation, acetylation, phosphorylation, adenosine diphosphate–ribosylation, glycosylation, sumoylation, or ubiquitylation and 2) enzymes that remodel DNA-histone structure with energy from ATP hydrolysis. Chromatin-regulating proteins, which modulate DNA-histone interaction, change chromatin conformation, and increase or decrease the binding of functional DNA-regulating protein complexes, have major functions in nuclear processes, including gene transcription and DNA replication, repair, and recombination. This review provides a general overview of chromatin-regulating proteins, including their classification, molecular functions, and interactions with the nucleosome in eukaryotic cells. PMID:26796306

  16. Structural Factors Affecting Health Examination Behavioral Intention.

    PubMed

    Huang, Hui-Ting; Kuo, Yu-Ming; Wang, Shiang-Ru; Wang, Chia-Fen; Tsai, Chung-Hung

    2016-04-01

    Disease screening instruments used for secondary prevention can facilitate early determination and treatment of pathogenic factors, effectively reducing disease incidence, mortality rates, and health complications. Therefore, people should be encouraged to receive health examinations for discovering potential pathogenic factors before symptoms occur. Here, we used the health belief model as a foundation and integrated social psychological factors and investigated the factors influencing health examination behavioral intention among the public in Taiwan. In total, 388 effective questionnaires were analyzed through structural model analysis. Consequently, this study yielded four crucial findings: (1) The established extended health belief model could effectively predict health examination behavioral intention; (2) Self-efficacy was the factor that most strongly influenced health examination behavioral intention, followed by health knowledge; (3) Self-efficacy substantially influenced perceived benefits and perceived barriers; (4) Health knowledge and social support indirectly influenced health examination behavioral intention. The preceding results can effectively increase the acceptance and use of health examination services among the public, thereby facilitating early diagnosis and treatment and ultimately reducing disease and mortality rates.

  17. Structural Factors Affecting Health Examination Behavioral Intention

    PubMed Central

    Huang, Hui-Ting; Kuo, Yu-Ming; Wang, Shiang-Ru; Wang, Chia-Fen; Tsai, Chung-Hung

    2016-01-01

    Disease screening instruments used for secondary prevention can facilitate early determination and treatment of pathogenic factors, effectively reducing disease incidence, mortality rates, and health complications. Therefore, people should be encouraged to receive health examinations for discovering potential pathogenic factors before symptoms occur. Here, we used the health belief model as a foundation and integrated social psychological factors and investigated the factors influencing health examination behavioral intention among the public in Taiwan. In total, 388 effective questionnaires were analyzed through structural model analysis. Consequently, this study yielded four crucial findings: (1) The established extended health belief model could effectively predict health examination behavioral intention; (2) Self-efficacy was the factor that most strongly influenced health examination behavioral intention, followed by health knowledge; (3) Self-efficacy substantially influenced perceived benefits and perceived barriers; (4) Health knowledge and social support indirectly influenced health examination behavioral intention. The preceding results can effectively increase the acceptance and use of health examination services among the public, thereby facilitating early diagnosis and treatment and ultimately reducing disease and mortality rates. PMID:27043606

  18. How hydrophobic buckminsterfullerene affects surrounding water structure.

    PubMed

    Weiss, Dahlia R; Raschke, Tanya M; Levitt, Michael

    2008-03-13

    The hydrophobic hydration of fullerenes in water is of significant interest as the most common Buckminsterfullerene (C60) is a mesoscale sphere; C60 also has potential in pharmaceutical and nanomaterial applications. We use an all-atom molecular dynamics simulation lasting hundreds of nanoseconds to determine the behavior of a single molecule of C60 in a periodic box of water, and compare this to methane. A C60 molecule does not induce drying at the surface; however, unlike a hard sphere methane, a hard sphere C60 solute does. This is due to a larger number of attractive Lennard-Jones interactions between the carbon atom centers in C60 and the surrounding waters. In these simulations, water is not uniformly arranged but rather adopts a range of orientations in the first hydration shell despite the spherical symmetry of both solutes. There is a clear effect of solute size on the orientation of the first hydration shell waters. There is a large increase in hydrogen-bonding contacts between waters in the C60 first hydration shell. There is also a disruption of hydrogen bonds between waters in the first and second hydration shells. Water molecules in the first hydration shell preferentially create triangular structures that minimize the net water dipole near the surface near both the methane and C60 surface, reducing the total energy of the system. Additionally, in the first and second hydration shells, the water dipoles are ordered to a distance of 8 A from the solute surface. We conclude that, with a diameter of approximately 1 nm, C60 behaves as a large hydrophobic solute.

  19. Elucidate Chromatin Folding at the Mesoscale

    NASA Astrophysics Data System (ADS)

    Qiu, Xiangyun

    Knowledge of the three-dimensional structure of chromatin, an active participant of all gene-directed processes, is required to decode its (epi)genetics-structure-function relationships. Albeit often simplified as ``beads-on-a-string'', chromatin possesses daunting complexity in its intricate intra- and inter-nucleosome interactions, as well as the myriad types of molecules acting on it. On the other hand, the folding of chromatin from an extended chain of nucleosomes is highly constrained, e.g., by rather bulky nucleosomes and semi-rigid linker dsDNAs. Further given the well-defined nucleosome and dsDNA structures at the nanometer scale, this creates an opportunity for low-resolution structural methods such as small angle scattering to obtain mesoscale structures of chromatin, which can be further refined computationally to yield atomistic structures of chromatin. Here we present results from our recent studies of recombinant nucleosome arrays with solution small angle x-ray scattering (SAXS) and ensemble structure modeling.

  20. Aging by epigenetics-A consequence of chromatin damage?

    SciTech Connect

    Sedivy, John M. Banumathy, Gowrishankar; Adams, Peter D.

    2008-06-10

    Chromatin structure is not fixed. Instead, chromatin is dynamic and is subject to extensive developmental and age-associated remodeling. In some cases, this remodeling appears to counter the aging and age-associated diseases, such as cancer, and extend organismal lifespan. However, stochastic non-deterministic changes in chromatin structure might, over time, also contribute to the break down of nuclear, cell and tissue function, and consequently aging and age-associated diseases.

  1. Predictive Computational Modeling of Chromatin Folding

    NASA Astrophysics Data System (ADS)

    di Pierro, Miichele; Zhang, Bin; Wolynes, Peter J.; Onuchic, Jose N.

    In vivo, the human genome folds into well-determined and conserved three-dimensional structures. The mechanism driving the folding process remains unknown. We report a theoretical model (MiChroM) for chromatin derived by using the maximum entropy principle. The proposed model allows Molecular Dynamics simulations of the genome using as input the classification of loci into chromatin types and the presence of binding sites of loop forming protein CTCF. The model was trained to reproduce the Hi-C map of chromosome 10 of human lymphoblastoid cells. With no additional tuning the model was able to predict accurately the Hi-C maps of chromosomes 1-22 for the same cell line. Simulations show unknotted chromosomes, phase separation of chromatin types and a preference of chromatin of type A to sit at the periphery of the chromosomes.

  2. The Chromatin Assembly Factor Complex 1 (CAF1) and 5-Azacytidine (5-AzaC) Affect Cell Motility in Src-transformed Human Epithelial Cells*

    PubMed Central

    Endo, Akinori; Ly, Tony; Pippa, Raffaella; Bensaddek, Dalila; Nicolas, Armel; Lamond, Angus I.

    2017-01-01

    Tumor invasion into surrounding stromal tissue is a hallmark of high grade, metastatic cancers. Oncogenic transformation of human epithelial cells in culture can be triggered by activation of v-Src kinase, resulting in increased cell motility, invasiveness, and tumorigenicity and provides a valuable model for studying how changes in gene expression cause cancer phenotypes. Here, we show that epithelial cells transformed by activated Src show increased levels of DNA methylation and that the methylation inhibitor 5-azacytidine (5-AzaC) potently blocks the increased cell motility and invasiveness induced by Src activation. A proteomic screen for chromatin regulators acting downstream of activated Src identified the replication-dependent histone chaperone CAF1 as an important factor for Src-mediated increased cell motility and invasion. We show that Src causes a 5-AzaC-sensitive decrease in both mRNA and protein levels of the p150 (CHAF1A) and p60 (CHAF1B), subunits of CAF1. Depletion of CAF1 in untransformed epithelial cells using siRNA was sufficient to recapitulate the increased motility and invasive phenotypes characteristic of transformed cells without activation of Src. Maintaining high levels of CAF1 by exogenous expression suppressed the increased cell motility and invasiveness phenotypes when Src was activated. These data identify a critical role of CAF1 in the dysregulation of cell invasion and motility phenotypes seen in transformed cells and also highlight an important role for epigenetic remodeling through DNA methylation for Src-mediated induction of cancer phenotypes. PMID:27872192

  3. Links between genome replication and chromatin landscapes.

    PubMed

    Sequeira-Mendes, Joana; Gutierrez, Crisanto

    2015-07-01

    Post-embryonic organogenesis in plants requires the continuous production of cells in the organ primordia, their expansion and a coordinated exit to differentiation. Genome replication is one of the most important processes that occur during the cell cycle, as the maintenance of genomic integrity is of primary relevance for development. As it is chromatin that must be duplicated, a strict coordination occurs between DNA replication, the deposition of new histones, and the introduction of histone modifications and variants. In turn, the chromatin landscape affects several stages during genome replication. Thus, chromatin accessibility is crucial for the initial stages and to specify the location of DNA replication origins with different chromatin signatures. The chromatin landscape also determines the timing of activation during the S phase. Genome replication must occur fully, but only once during each cell cycle. The re-replication avoidance mechanisms rely primarily on restricting the availability of certain replication factors; however, the presence of specific histone modifications are also revealed as contributing to the mechanisms that avoid re-replication, in particular for heterochromatin replication. We provide here an update of genome replication mostly focused on data from Arabidopsis, and the advances that genomic approaches are likely to provide in the coming years. The data available, both in plants and animals, point to the relevance of the chromatin landscape in genome replication, and require a critical evaluation of the existing views about the nature of replication origins, the mechanisms of origin specification and the relevance of epigenetic modifications for genome replication.

  4. Affect networks: a structural analysis of the relationship between work ties and job-related affect.

    PubMed

    Totterdell, Peter; Wall, Toby; Holman, David; Diamond, Holly; Epitropaki, Olga

    2004-10-01

    The relationship between organizational networks and employees' affect was examined in 2 organizations. In Study 1, social network analysis of work ties and job-related affect for 259 employees showed that affect converged within work interaction groups. Similarity of affect between employees depended on the presence of work ties and structural equivalence. Affect was also related to the size and density of employees' work networks. Study 2 used a 10-week diary study of 31 employees to examine a merger of 2 organizational divisions and found that negative changes in employees' affect were related to having fewer cross-divisional ties and to experiencing greater reductions in network density. The findings suggest that affect permeates through and is shaped by organizational networks.

  5. HDACi--targets beyond chromatin.

    PubMed

    Buchwald, Marc; Krämer, Oliver H; Heinzel, Thorsten

    2009-08-08

    Histone deacetylases (HDACs) play an important role in gene regulation. Inhibitors of HDACs (HDACi) are novel anti-cancer drugs, which induce histone (hyper-) acetylation and counteract aberrant gene repression. On the other hand, HDACi treatment can also result in decreased gene expression, and targeting HDACs affects more than chromatin. Recently, HDACi were shown to evoke non-histone protein acetylation, which can alter signaling networks relevant for tumorgenesis. Furthermore, HDACi can promote the degradation of (proto-) oncoproteins. Here, we summarize these findings and discuss how these substances could be beneficial for the treatment and prevention of human ailments, such as cancer and unbalanced immune functions.

  6. Allele-specific chromatin immunoprecipitation studies show genetic influence on chromatin state in human genome.

    PubMed

    Kadota, Mitsutaka; Yang, Howard H; Hu, Nan; Wang, Chaoyu; Hu, Ying; Taylor, Philip R; Buetow, Kenneth H; Lee, Maxwell P

    2007-05-18

    Several recent studies have shown a genetic influence on gene expression variation, including variation between the two chromosomes within an individual and variation between individuals at the population level. We hypothesized that genetic inheritance may also affect variation in chromatin states. To test this hypothesis, we analyzed chromatin states in 12 lymphoblastoid cells derived from two Centre d'Etude du Polymorphisme Humain families using an allele-specific chromatin immunoprecipitation (ChIP-on-chip) assay with Affymetrix 10K SNP chip. We performed the allele-specific ChIP-on-chip assays for the 12 lymphoblastoid cells using antibodies targeting at RNA polymerase II and five post-translation modified forms of the histone H3 protein. The use of multiple cell lines from the Centre d'Etude du Polymorphisme Humain families allowed us to evaluate variation of chromatin states across pedigrees. These studies demonstrated that chromatin state clustered by family. Our results support the idea that genetic inheritance can determine the epigenetic state of the chromatin as shown previously in model organisms. To our knowledge, this is the first demonstration in humans that genetics may be an important factor that influences global chromatin state mediated by histone modification, the hallmark of the epigenetic phenomena.

  7. Formaldehyde Crosslinking: A Tool for the Study of Chromatin Complexes*

    PubMed Central

    Hoffman, Elizabeth A.; Frey, Brian L.; Smith, Lloyd M.; Auble, David T.

    2015-01-01

    Formaldehyde has been used for decades to probe macromolecular structure and function and to trap complexes, cells, and tissues for further analysis. Formaldehyde crosslinking is routinely employed for detection and quantification of protein-DNA interactions, interactions between chromatin proteins, and interactions between distal segments of the chromatin fiber. Despite widespread use and a rich biochemical literature, important aspects of formaldehyde behavior in cells have not been well described. Here, we highlight features of formaldehyde chemistry relevant to its use in analyses of chromatin complexes, focusing on how its properties may influence studies of chromatin structure and function. PMID:26354429

  8. A Structural Basis for BRD2/4-Mediated Host Chromatin Interaction and Oligomer Assembly of Kaposi Sarcoma-Associated Herpesvirus and Murine Gammaherpesvirus LANA Proteins

    PubMed Central

    Krausze, Joern; Richter, Ulrike; Adler, Heiko; Fedorov, Roman; Pietrek, Marcel; Rückert, Jessica; Ritter, Christiane; Schulz, Thomas F.; Lührs, Thorsten

    2013-01-01

    Kaposi sarcoma-associated herpesvirus (KSHV) establishes a lifelong latent infection and causes several malignancies in humans. Murine herpesvirus 68 (MHV-68) is a related γ2-herpesvirus frequently used as a model to study the biology of γ-herpesviruses in vivo. The KSHV latency-associated nuclear antigen (kLANA) and the MHV68 mLANA (orf73) protein are required for latent viral replication and persistence. Latent episomal KSHV genomes and kLANA form nuclear microdomains, termed ‘LANA speckles’, which also contain cellular chromatin proteins, including BRD2 and BRD4, members of the BRD/BET family of chromatin modulators. We solved the X-ray crystal structure of the C-terminal DNA binding domains (CTD) of kLANA and MHV-68 mLANA. While these structures share the overall fold with the EBNA1 protein of Epstein-Barr virus, they differ substantially in their surface characteristics. Opposite to the DNA binding site, both kLANA and mLANA CTD contain a characteristic lysine-rich positively charged surface patch, which appears to be a unique feature of γ2-herpesviral LANA proteins. Importantly, kLANA and mLANA CTD dimers undergo higher order oligomerization. Using NMR spectroscopy we identified a specific binding site for the ET domains of BRD2/4 on kLANA. Functional studies employing multiple kLANA mutants indicate that the oligomerization of native kLANA CTD dimers, the characteristic basic patch and the ET binding site on the kLANA surface are required for the formation of kLANA ‘nuclear speckles’ and latent replication. Similarly, the basic patch on mLANA contributes to the establishment of MHV-68 latency in spleen cells in vivo. In summary, our data provide a structural basis for the formation of higher order LANA oligomers, which is required for nuclear speckle formation, latent replication and viral persistence. PMID:24146614

  9. In vitro Chromatin Assembly - Strategies and Quality Control

    PubMed Central

    Muthurajan, Uma; Mattiroli, Francesca; Bergeron, Serge; Zhou, Keda; Gu, Yajie; Chakravarthy, Srinivas; Dyer, Pamela; Irving, Thomas; Luger, Karolin

    2016-01-01

    Chromatin accessibility is modulated by structural transitions that provide timely access to the genetic and epigenetic information during many essential nuclear processes. These transitions are orchestrated by regulatory proteins that coordinate intricate structural modifications and signalling pathways. In vitro reconstituted chromatin samples from defined components are instrumental in defining the mechanistic details of such processes. The bottleneck to appropriate in vitro analysis is the production of high quality, and quality-controlled, chromatin substrates. In this chapter we describe methods for in vitro chromatin reconstitution and quality control. We highlight the strengths and weaknesses of various approaches, and emphasize quality control steps that ensure reconstitution of a bona fide homogenous chromatin preparation. This is essential for optimal reproducibility and reliability of ensuing experiments using chromatin substrates. PMID:27372747

  10. Chromatin organization and dynamics in double-strand break repair.

    PubMed

    Seeber, Andrew; Gasser, Susan M

    2016-10-31

    Chromatin is organized and segmented into a landscape of domains that serve multiple purposes. In contrast to transcription, which is controlled by defined sequences at distinct sites, DNA damage can occur anywhere. Repair accordingly must occur everywhere, yet it is inevitably affected by its chromatin environment. In this review, we summarize recent work investigating how changes in chromatin organization facilitate and/or guide DNA double-strand break repair. In addition, we examine new live cell studies on the dynamics of chromatin and the mechanisms that regulate its movement.

  11. Nucleosome dynamics during chromatin remodeling in vivo.

    PubMed

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation.

  12. Dietary control of chromatin

    PubMed Central

    Huang, Zhiguang; Cai, Ling; Tu, Benjamin P

    2015-01-01

    Organisms must be able to rapidly alter gene expression in response to changes in their nutrient environment. This review summarizes evidence that epigenetic modifications of chromatin depend on particular metabolites of intermediary metabolism, enabling the facile regulation of gene expression in tune with metabolic state. Nutritional or dietary control of chromatin is an often-overlooked, yet fundamental regulatory mechanism directly linked to human physiology. Nutrient-sensitive epigenetic marks are dynamic, suggesting rapid turnover, and may have functions beyond the regulation of gene transcription, including pH regulation and as carbon sources in cancer cells. PMID:26094239

  13. Chromatin Ring Formation at Plant Centromeres

    PubMed Central

    Schubert, Veit; Ruban, Alevtina; Houben, Andreas

    2016-01-01

    We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution) was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants. PMID:26913037

  14. Chromatin Proteins: Key Responders to Stress

    PubMed Central

    Smith, Karen T.; Workman, Jerry L.

    2012-01-01

    Environments can be ever-changing and stresses are commonplace. In order for organisms to survive, they need to be able to respond to change and adapt to new conditions. Fortunately, many organisms have systems in place that enable dynamic adaptation to immediate stresses and changes within the environment. Much of this cellular response is coordinated by modulating the structure and accessibility of the genome. In eukaryotic cells, the genome is packaged and rolled up by histone proteins to create a series of DNA/histone core structures known as nucleosomes; these are further condensed into chromatin. The degree and nature of the condensation can in turn determine which genes are transcribed. Histones can be modified chemically by a large number of proteins that are thereby responsible for dynamic changes in gene expression. In this Primer we discuss findings from a study published in this issue of PLoS Biology by Weiner et al. that highlight how chromatin structure and chromatin binding proteins alter transcription in response to environmental changes and stresses. Their study reveals the importance of chromatin in mediating the speed and amplitude of stress responses in cells and suggests that chromatin is a critically important component of the cellular response to stress. PMID:22859908

  15. The great repression: chromatin and cryptic transcription.

    PubMed

    Hennig, Bianca P; Fischer, Tamás

    2013-01-01

    The eukaryotic chromatin structure is essential in correctly defining transcription units. Impairing this structure can activate cryptic promoters, and lead to the accumulation of aberrant RNA transcripts. Here we discuss critical pathways that are responsible for the repression of cryptic transcription and the maintenance of genome integrity.

  16. Dynamics of Histone Tails within Chromatin

    NASA Astrophysics Data System (ADS)

    Bernier, Morgan; North, Justin; Page, Michael; Jaroniec, Christopher; Hammel, Christopher; Poirier, Michael

    2012-02-01

    Genetic information in humans is encoded within DNA molecules that is wrapped around histone octamer proteins and compacted into a highly conserved structural polymer, chromatin. The physical and material properties of chromatin appear to influence gene expression by altering the accessibility of proteins to the DNA. The tails of the histones are flexible domains that are thought to play a role in regulating DNA accessibility and compaction; however the molecular mechanisms for these phenomena are not understood. I will present CW-EPR studies on site directed spin labeled nucleosomes that probe the structure and dynamics of these histone tails within nucleosomes.

  17. Low-frequency magnetic field effect on cytoskeleton and chromatin.

    PubMed

    Kroupová, Jana; Bártová, Eva; Fojt, Lukás; Strasák, Ludek; Kozubek, Stanislav; Vetterl, Vladimír

    2007-01-01

    The effect of magnetic fields on the living systems is studied in vivo or in vitro in very broad spectrum of organisms, cells and tissues. The mechanism of their acting is not known until now. We studied low-frequency magnetic field effect on cytoskeleton and on the structure of chromatin in human cells. We used cell line of small lung carcinoma (A549) and the effects of magnetic field on cytoskeleton and higher-order chromatin structure were analyzed 96 h of magnetic field exposure. Magnetic field generated by the cylindrical soil was homogenous and the cells were cultivated at 37 degrees C in humidified atmosphere containing 5% CO(2). Magnetic field induction was B(m)=2 mT and the net frequency f=50 Hz. In such affected and control cells the F-actin was estimated using FITC-conjugated Phalloidin and mitochondria were studied using MitoTracker (Molecular Probes). Images of cytoskeleton and genetic loci were acquired using confocal microscopy and analysis was performed by FISH 2.0 software. Slight morphological changes of F-actin filaments and mitochondria were observed in affected cells and nuclear condensation was found. These effects could be related to the process of cell death apoptosis probably induced by magnetic field. The studies aimed at centromeric heterochromatin (9cen) did not show statistically significant changes. Therefore, we suggest that magnetic field has no influence on higher order chromatin structure but certain changes could be observed on the level of cytoskeleton. However, these statements need a thorough verification. Our preliminary experiments will be extended and the effect of magnetic field on another structures of cytoskeleton and cell nuclei will be further studied.

  18. Analysis of Chromatin Organisation

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    Terms to be familiar with before you start to solve the test: chromatin, nucleases, sucrose density gradient centrifugation, melting point, gel electrophoresis, ethidium bromide, autoradiography, Southern blotting, Northern blotting, Sanger sequencing, restriction endonucleases, exonucleases, linker DNA, chloroform extraction, nucleosomes,…

  19. Nuclear Proteomics Reveals the Role of Protein Synthesis and Chromatin Structure in Root Tip of Soybean during the Initial Stage of Flooding Stress.

    PubMed

    Yin, Xiaojian; Komatsu, Setsuko

    2016-07-01

    To identify the upstream events controlling the regulation of flooding-responsive proteins in soybean, proteomic analysis of nuclear proteins in root tip was performed. By using nuclear fractions, which were highly enriched, a total of 365 nuclear proteins were changed in soybean root tip at initial stage of flooding stress. Four exon-junction complex-related proteins and NOP1/NOP56, which function in upstream of 60S preribosome biogenesis, were decreased in flooded soybean. Furthermore, proteomic analysis of crude protein extract revealed that the protein translation was suppressed by continuous flooding stress. Seventeen chromatin structure-related nuclear proteins were decreased in response to flooding stress. Out of them, histone H3 was clearly decreased with protein abundance and mRNA expression levels at the initial flooding stress. Additionally, a number of protein synthesis-, RNA-, and DNA-related nuclear proteins were decreased in a time-dependent manner. mRNA expressions of genes encoding the significantly changed flooding-responsive nuclear proteins were inhibited by the transcriptional inhibitor, actinomycin D. These results suggest that protein translation is suppressed through inhibition of preribosome biogenesis- and mRNA processing-related proteins in nuclei of soybean root tip at initial flooding stress. In addition, flooding stress may regulate histone variants with gene expression in root tip.

  20. Hormonal regulation of phosphoenolpyruvate carboxykinase gene expression is mediated through modulation of an already disrupted chromatin structure

    SciTech Connect

    Ip, Y.T.; Granner, D.K.; Chalkley, R. . School of Medicine)

    1989-03-01

    The authors used indirect end labeling to identify a series of five hypersensitive (HS) sites in the phosphoenolpyruvate carboxykinase (PEPCK) gene in H4IIE rat hepatoma cells. These sites were found at -4800 base pairs (bp) (site A), at -1300 bp (site B), over a broad domain between -400 and -30 bp (site C), at +4650 bp (site D), and at +6200 bp (site E). Sites A to D were detected only in cells capable of expressing the PEPCK gene, whereas site E was present in all of the cells examined thus far. The HS sites were present in H4IIE cells even when transcriptional activity was reduced to a minimum by treatment with insulin. Stimulation of transcription by a cyclic AMP analog to a 40-fold increase over the insulin-repressed level did not affect the main features of the HS sites. Furthermore, increased transcription did not disrupt the nucleosomal arrangement of the coding region of the gene, nor did it affect the immediate 5' region (site C), which is always nucleosome-free. In HTC cells, a rat hepatoma line that is hormonally responsive but unable to synthesize PEPCK mRNA, the four expression-specific HS sites were totally absent. The authors experimental results also showed that, although there is a general correlation between lack of DNA methylation and transcriptional competence of the PEPCK gene, the role, if any, of methylation in the regulation of PEPCK gene activity is likely to be exerted at very specific sites.

  1. The poly(ADP-ribose)-dependent chromatin remodeler Alc1 induces local chromatin relaxation upon DNA damage

    PubMed Central

    Sellou, Hafida; Lebeaupin, Théo; Chapuis, Catherine; Smith, Rebecca; Hegele, Anna; Singh, Hari R.; Kozlowski, Marek; Bultmann, Sebastian; Ladurner, Andreas G.; Timinszky, Gyula; Huet, Sébastien

    2016-01-01

    Chromatin relaxation is one of the earliest cellular responses to DNA damage. However, what determines these structural changes, including their ATP requirement, is not well understood. Using live-cell imaging and laser microirradiation to induce DNA lesions, we show that the local chromatin relaxation at DNA damage sites is regulated by PARP1 enzymatic activity. We also report that H1 is mobilized at DNA damage sites, but, since this mobilization is largely independent of poly(ADP-ribosyl)ation, it cannot solely explain the chromatin relaxation. Finally, we demonstrate the involvement of Alc1, a poly(ADP-ribose)- and ATP-dependent remodeler, in the chromatin-relaxation process. Deletion of Alc1 impairs chromatin relaxation after DNA damage, while its overexpression strongly enhances relaxation. Altogether our results identify Alc1 as an important player in the fast kinetics of the NAD+- and ATP-dependent chromatin relaxation upon DNA damage in vivo. PMID:27733626

  2. Changing chromatin fiber conformation by nucleosome repositioning.

    PubMed

    Müller, Oliver; Kepper, Nick; Schöpflin, Robert; Ettig, Ramona; Rippe, Karsten; Wedemann, Gero

    2014-11-04

    Chromatin conformation is dynamic and heterogeneous with respect to nucleosome positions, which can be changed by chromatin remodeling complexes in the cell. These molecular machines hydrolyze ATP to translocate or evict nucleosomes, and establish loci with regularly and more irregularly spaced nucleosomes as well as nucleosome-depleted regions. The impact of nucleosome repositioning on the three-dimensional chromatin structure is only poorly understood. Here, we address this issue by using a coarse-grained computer model of arrays of 101 nucleosomes considering several chromatin fiber models with and without linker histones, respectively. We investigated the folding of the chain in dependence of the position of the central nucleosome by changing the length of the adjacent linker DNA in basepair steps. We found in our simulations that these translocations had a strong effect on the shape and properties of chromatin fibers: i), Fiber curvature and flexibility at the center were largely increased and long-range contacts between distant nucleosomes on the chain were promoted. ii), The highest destabilization of the fiber conformation occurred for a nucleosome shifted by two basepairs from regular spacing, whereas effects of linker DNA changes of ?10 bp in phase with the helical twist of DNA were minimal. iii), A fiber conformation can stabilize a regular spacing of nucleosomes inasmuch as favorable stacking interactions between nucleosomes are facilitated. This can oppose nucleosome translocations and increase the energetic costs for chromatin remodeling. Our computational modeling framework makes it possible to describe the conformational heterogeneity of chromatin in terms of nucleosome positions, and thus advances theoretical models toward a better understanding of how genome compaction and access are regulated within the cell.

  3. Changing Chromatin Fiber Conformation by Nucleosome Repositioning

    PubMed Central

    Müller, Oliver; Kepper, Nick; Schöpflin, Robert; Ettig, Ramona; Rippe, Karsten; Wedemann, Gero

    2014-01-01

    Chromatin conformation is dynamic and heterogeneous with respect to nucleosome positions, which can be changed by chromatin remodeling complexes in the cell. These molecular machines hydrolyze ATP to translocate or evict nucleosomes, and establish loci with regularly and more irregularly spaced nucleosomes as well as nucleosome-depleted regions. The impact of nucleosome repositioning on the three-dimensional chromatin structure is only poorly understood. Here, we address this issue by using a coarse-grained computer model of arrays of 101 nucleosomes considering several chromatin fiber models with and without linker histones, respectively. We investigated the folding of the chain in dependence of the position of the central nucleosome by changing the length of the adjacent linker DNA in basepair steps. We found in our simulations that these translocations had a strong effect on the shape and properties of chromatin fibers: i), Fiber curvature and flexibility at the center were largely increased and long-range contacts between distant nucleosomes on the chain were promoted. ii), The highest destabilization of the fiber conformation occurred for a nucleosome shifted by two basepairs from regular spacing, whereas effects of linker DNA changes of ∼10 bp in phase with the helical twist of DNA were minimal. iii), A fiber conformation can stabilize a regular spacing of nucleosomes inasmuch as favorable stacking interactions between nucleosomes are facilitated. This can oppose nucleosome translocations and increase the energetic costs for chromatin remodeling. Our computational modeling framework makes it possible to describe the conformational heterogeneity of chromatin in terms of nucleosome positions, and thus advances theoretical models toward a better understanding of how genome compaction and access are regulated within the cell. PMID:25418099

  4. Global chromatin fibre compaction in response to DNA damage

    SciTech Connect

    Hamilton, Charlotte; Hayward, Richard L.; Gilbert, Nick

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Robust KAP1 phosphorylation in response to DNA damage in HCT116 cells. Black-Right-Pointing-Pointer DNA repair foci are found in soluble chromatin. Black-Right-Pointing-Pointer Biophysical analysis reveals global chromatin fibre compaction after DNA damage. Black-Right-Pointing-Pointer DNA damage is accompanied by rapid linker histone dephosphorylation. -- Abstract: DNA is protected by packaging it into higher order chromatin fibres, but this can impede nuclear processes like DNA repair. Despite considerable research into the factors required for signalling and repairing DNA damage, it is unclear if there are concomitant changes in global chromatin fibre structure. In human cells DNA double strand break (DSB) formation triggers a signalling cascade resulting in H2AX phosphorylation ({gamma}H2AX), the rapid recruitment of chromatin associated proteins and the subsequent repair of damaged sites. KAP1 is a transcriptional corepressor and in HCT116 cells we found that after DSB formation by chemicals or ionising radiation there was a wave of, predominantly ATM dependent, KAP1 phosphorylation. Both KAP1 and phosphorylated KAP1 were readily extracted from cells indicating they do not have a structural role and {gamma}H2AX was extracted in soluble chromatin indicating that sites of damage are not attached to an underlying structural matrix. After DSB formation we did not find a concomitant change in the sensitivity of chromatin fibres to micrococcal nuclease digestion. Therefore to directly investigate higher order chromatin fibre structures we used a biophysical sedimentation technique based on sucrose gradient centrifugation to compare the conformation of chromatin fibres isolated from cells before and after DNA DSB formation. After damage we found global chromatin fibre compaction, accompanied by rapid linker histone dephosphorylation, consistent with fibres being more regularly folded or fibre deformation being stabilized by

  5. Structure and Affect: The Influence of Social Structure on Affective Meaning in American Kinship

    ERIC Educational Resources Information Center

    Malone, Martin J.

    2004-01-01

    Structural variables differentiating kinship identities, such as sex, generation, and type of relationship (lineal, collateral, conjugal), are reflected in sentiments about family identities. In particular, componential variations in kinship terms predict Evaluation, Potency, and Activity ratings of the terms fairly accurately. Between 44 and 92…

  6. Neutron scatter studies of chromatin structure related to functions. Progress report, July 1, 1988--June 30, 1989

    SciTech Connect

    Bradbury, E.M.

    1989-12-31

    Neutron scatter studies have been performed at LANSCE, LANL and at the Institute Laue Langevin, Grenoble, France. In the previous progress report (April 1, 1988--July 1, 1988) the following objectives were listed: shape of the histone octamer; location of the N-terminal domains of histone in the nucleosome core particle (specific aim 1 of original grant proposal); effect of acetylation on nucleosome structure (specific aim 2); location of the globular domain of histone H1 (specific aim 6); and complexes of the transcription factor 3A with its DNA binding site. Progress is briefly discussed.

  7. Predictive chromatin signatures in the mammalian genome

    PubMed Central

    Hon, Gary C.; Hawkins, R. David; Ren, Bing

    2009-01-01

    The DNA sequence of an organism is a blueprint of life: it harbors not only the information about proteins and other molecules produced in each cell, but also instructions on when and where such molecules are made. Chromatin, the structure of histone and DNA that has co-evolved with eukaryotic genome, also contains information that indicates the function and activity of the underlying DNA sequences. Such information exists in the form of covalent modifications to the histone proteins that comprise the nucleosome. Thanks to the development of high throughput technologies such as DNA microarrays and next generation DNA sequencing, we have begun to associate the various combinations of chromatin modification patterns with functional sequences in the human genome. Here, we review the rapid progress from descriptive observations of histone modification profiles to highly predictive models enabling use of chromatin signatures to enumerate novel functional sequences in mammalian genomes that have escaped previous detection. PMID:19808796

  8. Open chromatin reveals the functional maize genome

    PubMed Central

    Rodgers-Melnick, Eli; Vera, Daniel L.; Bass, Hank W.

    2016-01-01

    Cellular processes mediated through nuclear DNA must contend with chromatin. Chromatin structural assays can efficiently integrate information across diverse regulatory elements, revealing the functional noncoding genome. In this study, we use a differential nuclease sensitivity assay based on micrococcal nuclease (MNase) digestion to discover open chromatin regions in the maize genome. We find that maize MNase-hypersensitive (MNase HS) regions localize around active genes and within recombination hotspots, focusing biased gene conversion at their flanks. Although MNase HS regions map to less than 1% of the genome, they consistently explain a remarkably large amount (∼40%) of heritable phenotypic variance in diverse complex traits. MNase HS regions are therefore on par with coding sequences as annotations that demarcate the functional parts of the maize genome. These results imply that less than 3% of the maize genome (coding and MNase HS regions) may give rise to the overwhelming majority of phenotypic variation, greatly narrowing the scope of the functional genome. PMID:27185945

  9. A Quantitative Proteomic Analysis of In Vitro Assembled Chromatin*

    PubMed Central

    Völker-Albert, Moritz Carl; Pusch, Miriam Caroline; Fedisch, Andreas; Schilcher, Pierre; Schmidt, Andreas; Imhof, Axel

    2016-01-01

    The structure of chromatin is critical for many aspects of cellular physiology and is considered to be the primary medium to store epigenetic information. It is defined by the histone molecules that constitute the nucleosome, the positioning of the nucleosomes along the DNA and the non-histone proteins that associate with it. These factors help to establish and maintain a largely DNA sequence-independent but surprisingly stable structure. Chromatin is extensively disassembled and reassembled during DNA replication, repair, recombination or transcription in order to allow the necessary factors to gain access to their substrate. Despite such constant interference with chromatin structure, the epigenetic information is generally well maintained. Surprisingly, the mechanisms that coordinate chromatin assembly and ensure proper assembly are not particularly well understood. Here, we use label free quantitative mass spectrometry to describe the kinetics of in vitro assembled chromatin supported by an embryo extract prepared from preblastoderm Drosophila melanogaster embryos. The use of a data independent acquisition method for proteome wide quantitation allows a time resolved comparison of in vitro chromatin assembly. A comparison of our in vitro data with proteomic studies of replicative chromatin assembly in vivo reveals an extensive overlap showing that the in vitro system can be used for investigating the kinetics of chromatin assembly in a proteome-wide manner. PMID:26811354

  10. Chromatin dynamics during herpes simplex virus-1 lytic infection.

    PubMed

    Placek, Brandon J; Berger, Shelley L

    2010-01-01

    Herpes simplex virus type 1 is a DNA virus that can establish lytic infections in epithelial cells and latent infections in sensory neurons. Upon entry into the nucleus the genome of HSV-1 rapidly associates with histone proteins. Similar to the genomes of the cellular host, HSV-1 is subject to chromatin-based regulation of transcription and replication. However, unlike the host genome, nucleosomes appear to be underrepresented on the HSV genome. During lytic infection, when the genome is transcribed, the HSV-1 chromatin structure appears to be disorganized, and characterized by histone variant sub-types and post-translational modifications representative of active chromatin. In contrast, during latency, when the majority of the viral genome is transcriptionally silent, the chromatin is compacted into a regularly repeating, compact heterochromatic structure. Here we discuss recent studies that underscore the importance of chromatin regulation during the lytic phase of the HSV-1 life-cycle.

  11. Silencing of the Epstein-Barr Virus Latent Membrane Protein 1 Gene by the Max-Mad1-mSin3A Modulator of Chromatin Structure

    PubMed Central

    Sjöblom-Hallén, Anna; Yang, Weiwen; Jansson, Ann; Rymo, Lars

    1999-01-01

    The tumor-associated latent membrane protein 1 (LMP1) gene in the Epstein-Barr virus (EBV) genome is activated by EBV-encoded proteins and cellular factors that are part of general signal transduction pathways. As previously demonstrated, the proximal region of the LMP1 promoter regulatory sequence (LRS) contains a negative cis element with a major role in EBNA2-mediated regulation of LMP1 gene expression in B cells. Here, we show that this silencing activity overlaps with a transcriptional enhancer in an LRS sequence that contains an E-box-homologous motif. Mutation of the putative repressor binding site relieved the repression both in a promoter-proximal context and in a complete LRS context, indicating a functional role of the repressor. Gel retardation assays showed that members of the basic helix-loop-helix transcription factor family, including Max, Mad1, USF, E12, and E47, and the corepressor mSin3A bound to the E-box-containing sequence. The enhancer activity correlated with the binding of USF. Moreover, the activity of the LMP1 promoter in reporter constructs was upregulated by overexpression of USF1 and USF2a, and the transactivation was inhibited by the concurrent expression of Max and Mad1. This suggests that Max-Mad1-mediated anchorage of a multiprotein complex including mSin3A and histone deacetylases to the E-box site constitutes the basis for the repression. Removal of acetyl moieties from histones H3 and H4 should result in a chromatin structure that is inaccessible to transcription factors. Accordingly, inhibition of deacetylase activity with trichostatin A induced expression of the endogenous LMP1 gene in EBV-transformed cells. PMID:10074148

  12. Diverse lamin-dependent mechanisms interact to control chromatin dynamics

    PubMed Central

    Camozzi, Daria; Capanni, Cristina; Cenni, Vittoria; Mattioli, Elisabetta; Columbaro, Marta; Squarzoni, Stefano; Lattanzi, Giovanna

    2014-01-01

    Interconnected functional strategies govern chromatin dynamics in eukaryotic cells. In this context, A and B type lamins, the nuclear intermediate filaments, act on diverse platforms involved in tissue homeostasis. On the nuclear side, lamins elicit large scale or fine chromatin conformational changes, affect DNA damage response factors and transcription factor shuttling. On the cytoplasmic side, bridging-molecules, the LINC complex, associate with lamins to coordinate chromatin dynamics with cytoskeleton and extra-cellular signals.   Consistent with such a fine tuning, lamin mutations and/or defects in their expression or post-translational processing, as well as mutations in lamin partner genes, cause a heterogeneous group of diseases known as laminopathies. They include muscular dystrophies, cardiomyopathy, lipodystrophies, neuropathies, and progeroid syndromes. The study of chromatin dynamics under pathological conditions, which is summarized in this review, is shedding light on the complex and fascinating role of the nuclear lamina in chromatin regulation. PMID:25482195

  13. Structural damages in adsorbed vaccines affected by freezing.

    PubMed

    Kurzątkowski, Wiesław; Kartoğlu, Ümit; Staniszewska, Monika; Górska, Paulina; Krause, Aleksandra; Wysocki, Mirosław Jan

    2013-03-01

    This study was planned to evaluate structural damages in adsorbed vaccines affected by freezing using scanning electron microscopy and X-ray analysis of the elements. Randomly selected 42 vials of eight different types of WHO pre-qualified adsorbed freeze-sensitive vaccines from 10 manufacturers were included in the study. Vaccines were kept at 5 °C. Selected numbers of vials from each type were then exposed to -25 °C for 24 h periods. All samples were evaluated for their structure using scanning electron microscopy, X-ray analysis of the elements and precipitation time. Scanning electron microscopy of vaccines affected by freezing showed either smooth or rough surfaced conglomerates associated with phosphate content of the precipitate. These vaccines precipitated 2-15 times faster compared to non-frozen samples. Non-frozen samples showed uniform flocculent structure either dense or dispersed. X-ray analysis of precipitates in frozen samples confirmed that the precipitate is mainly aluminium clutters. Scanning electron microscopy confirmed that the lattice structure of bonds between adsorbent and the antigen is broken and aluminium forms conglomerates that grow in size and weight. The precipitation time of vaccines affected by freezing is 4.5 times faster on average compared to non-frozen samples. These facts form the basis of the "shake test".

  14. Multiple modes of chromatin remodeling by Forkhead box proteins.

    PubMed

    Lalmansingh, Avin S; Karmakar, Sudipan; Jin, Yetao; Nagaich, Akhilesh K

    2012-07-01

    Forkhead box (FOX) proteins represent a large family of transcriptional regulators unified by their DNA binding domain (DBD) known as a 'forkhead' or 'winged helix' domain. Over 40 FOX genes have been identified in the mammalian genome. FOX proteins share significant sequence similarities in the DBD which allow them to bind to a consensus DNA response element. However, their modes of action are quite diverse as they regulate gene expression by acting as pioneer factors, transcription factors, or both. This review focuses on the mechanisms of chromatin remodeling with an emphasis on three sub-classes-FOXA, FOXO, and FOXP members. FOXA proteins serve as pioneer factors to open up local chromatin structure and thereby increase accessibility of chromatin to factors regulating transcription. FOXP proteins, in contrast, function as classic transcription factors to recruit a variety of chromatin modifying enzymes to regulate gene expression. FOXO proteins represent a hybrid subclass having dual roles as pioneering factors and transcription factors. A subset of FOX proteins interacts with condensed mitotic chromatin and may function as 'bookmarking' agents to maintain transcriptional competence at specific genomic sites. The overall diversity in chromatin remodeling function by FOX proteins is related to unique structural motifs present within the DBD flanking regions that govern selective interactions with core histones and/or chromatin coregulatory proteins. This article is part of a Special Issue entitled: Chromatin in time and space.

  15. A Broad Set of Chromatin Factors Influences Splicing

    PubMed Central

    Allemand, Eric; Myers, Michael P.; Garcia-Bernardo, Jose; Harel-Bellan, Annick; Krainer, Adrian R.; Muchardt, Christian

    2016-01-01

    Several studies propose an influence of chromatin on pre-mRNA splicing, but it is still unclear how widespread and how direct this phenomenon is. We find here that when assembled in vivo, the U2 snRNP co-purifies with a subset of chromatin-proteins, including histones and remodeling complexes like SWI/SNF. Yet, an unbiased RNAi screen revealed that the outcome of splicing is influenced by a much larger variety of chromatin factors not all associating with the spliceosome. The availability of this broad range of chromatin factors impacting splicing further unveiled their very context specific effect, resulting in either inclusion or skipping, depending on the exon under scrutiny. Finally, a direct assessment of the impact of chromatin on splicing using an in vitro co-transcriptional splicing assay with pre-mRNAs transcribed from a nucleosomal template, demonstrated that chromatin impacts nascent pre-mRNP in their competence for splicing. Altogether, our data show that numerous chromatin factors associated or not with the spliceosome can affect the outcome of splicing, possibly as a function of the local chromatin environment that by default interferes with the efficiency of splicing. PMID:27662573

  16. Fractal Characterization of Chromatin Decompaction in Live Cells

    PubMed Central

    Yi, Ji; Stypula-Cyrus, Yolanda; Blaha, Catherine S.; Roy, Hemant K.; Backman, Vadim

    2015-01-01

    Chromatin organization has a fundamental impact on the whole spectrum of genomic functions. Quantitative characterization of the chromatin structure, particularly at submicron length scales where chromatin fractal globules are formed, is critical to understanding this structure-function relationship. Such analysis is currently challenging due to the diffraction-limited resolution of conventional light microscopy. We herein present an optical approach termed inverse spectroscopic optical coherence tomography to characterize the mass density fractality of chromatin, and we apply the technique to observe chromatin decompaction in live cells. The technique makes it possible for the first time, to our knowledge, to sense intracellular morphology with length-scale sensitivity from ∼30 to 450 nm, thus primarily probing the higher-order chromatin structure, without resolving the actual structures. We used chromatin decompaction due to inhibition of histone deacytelases and measured the subsequent changes in the fractal dimension of the intracellular structure. The results were confirmed by transmission electron microscopy and confocal fluorescence microscopy. PMID:26636933

  17. Sperm chromatin structure assay (SCSA®).

    PubMed

    Evenson, Donald P

    2013-01-01

    The SCSA(®) is the pioneering assay for the detection of damaged sperm DNA and altered proteins in sperm nuclei via flow cytometry of acridine orange (AO) stained sperm. The SCSA(®) is considered to be the most precise and repeatable test providing very unique, dual parameter data (red vs. green fluorescence) on a 1,024 × 1,024 channel scale, not only on DNA fragmentation but also on abnormal sperm characterized by lack of normal exchange of histones to protamines. Raw semen/sperm aliquots or purified sperm can be flash frozen, placed in a box with dry ice and shipped by overnight courier to an experienced SCSA(®) lab. The samples are individually thawed, prepared, and analyzed in ∼10 min. Of significance, data on 5,000 individual sperm are recorded on a 1,024 × 1,024 dot plot of green (native DNA) and red (broken DNA) fluorescence. Repeat measurements have virtually identical dot plot patterns demonstrating that the low pH treatment that opens up the DNA strands at the sites of breaks and staining by acridine orange (AO) are highly precise and repeatable (CVs of 1-3%) and the same between fresh and frozen samples. SCSAsoft(®) software transforms the X-Y data to total DNA stainability versus red/red + green fluoresence (DFI) providing a more accurate determination of % DFI as well as the more sensitive value of standard deviation of DFI (SD DFI) as demonstrated by animal fertility and dose-response toxicology studies. The current established clinical threshold is 25% DFI for placing a man into a statistical probability of the following: (a) longer time to natural pregnancy, (b) low odds of IUI pregnancy, (c) more miscarriages, or (d) no pregnancy. Changes in lifestyle as well as medical intervention can lower the %DFI to increase the probability of natural pregnancy. Couples of men with >25% DFI are counseled to try ICSI and when in the >50% range may consider TESE/ICSI. The SCSA(®) simultaneously determines the % of sperm with high DNA stainability (%HDS) related to retained nuclear histones consistent with immature sperm; high HDS values are predictive of pregnancy failure.The SCSA(®) is considered to be the most technician friendly, time- and cost-efficient, precise and repeatable DNA fragmentation assay, with the most data and the only fragmentation assay with an accepted clinical threshold for placing a man at risk for infertility. SCSA(®) data are more predictive of male factor infertility than classical semen analyses.

  18. Ice cream structural elements that affect melting rate and hardness.

    PubMed

    Muse, M R; Hartel, R W

    2004-01-01

    Statistical models were developed to reveal which structural elements of ice cream affect melting rate and hardness. Ice creams were frozen in a batch freezer with three types of sweetener, three levels of the emulsifier polysorbate 80, and two different draw temperatures to produce ice creams with a range of microstructures. Ice cream mixes were analyzed for viscosity, and finished ice creams were analyzed for air cell and ice crystal size, overrun, and fat destabilization. The ice phase volume of each ice cream were calculated based on the freezing point of the mix. Melting rate and hardness of each hardened ice cream was measured and correlated with the structural attributes by using analysis of variance and multiple linear regression. Fat destabilization, ice crystal size, and the consistency coefficient of the mix were found to affect the melting rate of ice cream, whereas hardness was influenced by ice phase volume, ice crystal size, overrun, fat destabilization, and the rheological properties of the mix.

  19. Cas9 Functionally Opens Chromatin

    PubMed Central

    Barkal, Amira A.; Srinivasan, Sharanya; Hashimoto, Tatsunori; Gifford, David K.; Sherwood, Richard I.

    2016-01-01

    Using a nuclease-dead Cas9 mutant, we show that Cas9 reproducibly induces chromatin accessibility at previously inaccessible genomic loci. Cas9 chromatin opening is sufficient to enable adjacent binding and transcriptional activation by the settler transcription factor retinoic acid receptor at previously unbound motifs. Thus, we demonstrate a new use for Cas9 in increasing surrounding chromatin accessibility to alter local transcription factor binding. PMID:27031353

  20. Molecular Toxicology of Chromatin

    DTIC Science & Technology

    1992-01-01

    FINAL 01 Jan 89 TO 31 Dec 91 4. ITL ANO SUS Y, L RE %UMAS MOLECULAR TOXICOLOGY OF CHROMATIN AFOSR-89-0231 PE - 61102F AUT PR - 2312 TA - A5 Dr Ernest Kun...Waterbury, CT), 2-mercaptoethanol, NAD+, NADPH, nucleo- tides, sodium tungstate , hydrogen peroxide, Tris and MES buffers from Sigma (St. Louis, MO...ml) with sodium tungstate (5.93 g, in 20 ml H20) for 1.5 h followed by extraction of the green product into ethyl acetate, washing with 0.1 N HCl, and

  1. The chromatin regulatory code: Beyond a histone code

    NASA Astrophysics Data System (ADS)

    Lesne, A.

    2006-03-01

    In this commentary on the contribution by Arndt Benecke in this issue, I discuss why the notion of “chromatin code” introduced and elaborated in this paper is to be preferred to that of “histone code”. Speaking of a code as regards nucleosome conformation and histone tail post-translational modifications only makes sense within the chromatin fiber, where their physico-chemical features can be translated into regulatory programs at the genome level, by means of a complex, multi-level interplay with the fiber architecture and dynamics settled in the course of Evolution. In particular, this chromatin code presumably exploits allosteric transitions of the chromatin fiber. The chromatin structure dependence of its translation suggests two alternative modes of transcription initiation regulation, also proposed in the paper by A. Benecke in this issue for interpreting strikingly bimodal micro-array data.

  2. ATP dependent chromatin remodeling enzymes in embryonic stem cells.

    PubMed

    Saladi, Srinivas Vinod; de la Serna, Ivana L

    2010-03-01

    Embryonic stem (ES) cells are pluripotent cells that can self renew or be induced to differentiate into multiple cell lineages, and thus have the potential to be utilized in regenerative medicine. Key pluripotency specific factors (Oct 4/Sox2/Nanog/Klf4) maintain the pluripotent state by activating expression of pluripotency specific genes and by inhibiting the expression of developmental regulators. Pluripotent ES cells are distinguished from differentiated cells by a specialized chromatin state that is required to epigenetically regulate the ES cell phenotype. Recent studies show that in addition to pluripotency specific factors, chromatin remodeling enzymes play an important role in regulating ES cell chromatin and the capacity to self-renew and to differentiate. Here we review recent studies that delineate the role of ATP dependent chromatin remodeling enzymes in regulating ES cell chromatin structure.

  3. HAMLET interacts with histones and chromatin in tumor cell nuclei.

    PubMed

    Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina

    2003-10-24

    HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.

  4. Distinct Cellular Assembly Stoichiometry of Polycomb Complexes on Chromatin Revealed by Single-molecule Chromatin Immunoprecipitation Imaging.

    PubMed

    Tatavosian, Roubina; Zhen, Chao Yu; Duc, Huy Nguyen; Balas, Maggie M; Johnson, Aaron M; Ren, Xiaojun

    2015-11-20

    Epigenetic complexes play an essential role in regulating chromatin structure, but information about their assembly stoichiometry on chromatin within cells is poorly understood. The cellular assembly stoichiometry is critical for appreciating the initiation, propagation, and maintenance of epigenetic inheritance during normal development and in cancer. By combining genetic engineering, chromatin biochemistry, and single-molecule fluorescence imaging, we developed a novel and sensitive approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) to enable investigation of the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was validated by using chromatin complexes with known stoichiometry. The stoichiometry of subunits within a polycomb complex and the assembly stoichiometry of polycomb complexes on chromatin have been extensively studied but reached divergent views. Moreover, the cellular assembly stoichiometry of polycomb complexes on chromatin remains unexplored. Using Sm-ChIPi, we demonstrated that within mouse embryonic stem cells, one polycomb repressive complex (PRC) 1 associates with multiple nucleosomes, whereas two PRC2s can bind to a single nucleosome. Furthermore, we obtained direct physical evidence that the nucleoplasmic PRC1 is monomeric, whereas PRC2 can dimerize in the nucleoplasm. We showed that ES cell differentiation induces selective alteration of the assembly stoichiometry of Cbx2 on chromatin but not other PRC1 components. We additionally showed that the PRC2-mediated trimethylation of H3K27 is not required for the assembly stoichiometry of PRC1 on chromatin. Thus, these findings uncover that PRC1 and PRC2 employ distinct mechanisms to assemble on chromatin, and the novel Sm-ChIPi technique could provide single-molecule insight into other epigenetic complexes.

  5. Solenoidal model for superstructure in chromatin.

    PubMed Central

    Finch, J T; Klug, A

    1976-01-01

    Chromatin prepared by brief digestion of nuclei with micrococcal nuclease, and extracted in 0.2 mM EDTA, appears in the electron microscope as filaments of about 100 A diameter which coil loosely. In 0.2 mM Mg++ these "nucleofilaments" condense into a supercoil or solenoidal structure of pitch about 110 A corresponding to the diameter of a nucleofilament. It is proposed that the x-ray reflections at orders of 110 A observed in chromatin originate in the spacing between turns of the solenoid rather than that between nucleosomes along the nucleofilament. The solenoidal structure appears to need histone H1 for its stabilization. Under certain conditions, isolated nucleosomes can also aggregate into a similar structure. The solenoidal structure can be correlated with the "thread" of diameter about 300 A observed by other workers in nuclei. Images PMID:1064861

  6. Mechanobiology of Chromatin and the Nuclear Interior.

    PubMed

    Spagnol, Stephen T; Armiger, Travis J; Dahl, Kris Noel

    2016-06-01

    The view of the cell nucleus has evolved from an isolated, static organelle to a dynamic structure integrated with other mechanical elements of the cell. Both dynamics and integration appear to contribute to a mechanical regulation of genome expression. Here, we review physical structures inside the nucleus at different length scales and the dynamic reorganization modulated by cellular forces. First, we discuss nuclear organization focusing on self-assembly and disassembly of DNA structures and various nuclear bodies. We then discuss the importance of connections from the chromatin fiber through the nuclear envelope to the rest of the cell as they relate to mechanobiology. Finally, we discuss how cell stimulation, both chemical and physical, can alter nuclear structures and ultimately cellular function in healthy cells and in some model diseases. The view of chromatin and nuclear bodies as mechanical entities integrated with force generation from the cytoskeleton combines polymer physics with cell biology and medicine.

  7. Mapping chromatin modifications in nanochannels

    NASA Astrophysics Data System (ADS)

    Lim, Shuang Fang; Karpusenko, Alena; Riehn, Robert

    2013-03-01

    DNA and chromatin are elongated to a fixed fraction of their contour length when introduced into quasi-1d nanochannels. Because single molecules are analyzed, their hold great potential for the analysis for the genetic analysis of material from single cells. In this study, we have reconstituted chromatin with histones from a variety of sources, and mapped the modification profile of the chromatin. We monitored methylation and acetylation patterns of the histone tail protein residues using fluorescently labelled antibodies. Using those, we distinguished chromatin reconstituted from chicken erythrocytes, calf thymus, and HeLa cells. We discuss prospects for profiling histone modifications for whole chromosomes from single cells.

  8. Silicified structures affect leaf optical properties in grasses and sedge.

    PubMed

    Klančnik, Katja; Vogel-Mikuš, Katarina; Gaberščik, Alenka

    2014-01-05

    Silicon (Si) is an important structural element that can accumulate at high concentrations in grasses and sedges, and therefore Si structures might affect the optical properties of the leaves. To better understand the role of Si in light/leaf interactions in species rich in Si, we examined the total Si and silica phytoliths, the biochemical and morphological leaf properties, and the reflectance and transmittance spectra in grasses (Phragmites australis, Phalaris arundinacea, Molinia caerulea, Deschampsia cespitosa) and sedge (Carex elata). We show that these grasses contain >1% phytoliths per dry mass, while the sedge contains only 0.4%. The data reveal the variable leaf structures of these species and significant differences in the amount of Si and phytoliths between developing and mature leaves within each species and between grasses and sedge, with little difference seen among the grass species. Redundancy analysis shows the significant roles of the different near-surface silicified leaf structures (e.g., prickle hairs, cuticle, epidermis), phytoliths and Si contents, which explain the majority of the reflectance and transmittance spectra variability. The amount of explained variance differs between mature and developing leaves. The transmittance spectra are also significantly affected by chlorophyll a content and calcium levels in the leaf tissue.

  9. Chromatin dynamics: Interplay between remodeling enzymes and histone modifications

    PubMed Central

    Swygert, Sarah G.; Peterson, Craig L.

    2014-01-01

    Chromatin dynamics play an essential role in regulating the accessibility of genomic DNA for a variety of nuclear processes, including gene transcription and DNA repair. The posttranslational modification of the core histones and the action of ATP-dependent chromatin remodeling enzymes represent two primary mechanisms by which chromatin dynamics are controlled and linked to nuclear events. Although there are examples in which a histone modification or a remodeling enzyme may be sufficient to drive a chromatin transition, these mechanisms typically work in concert to integrate regulatory inputs, leading to a coordinated alteration in chromatin structure and function. Indeed, site-specific histone modifications can facilitate the recruitment of chromatin remodeling enzymes to particular genomic regions, or they can regulate the efficiency or the outcome of a chromatin remodeling reaction. Conversely, chromatin remodeling enzymes can also influence, and sometimes directly modulate, the modification state of histones. These functional interactions are generally complex, frequently transient, and often require the association of myriad additional factors. PMID:24583555

  10. The nucleosome: orchestrating DNA damage signaling and repair within chromatin.

    PubMed

    Agarwal, Poonam; Miller, Kyle M

    2016-10-01

    DNA damage occurs within the chromatin environment, which ultimately participates in regulating DNA damage response (DDR) pathways and repair of the lesion. DNA damage activates a cascade of signaling events that extensively modulates chromatin structure and organization to coordinate DDR factor recruitment to the break and repair, whilst also promoting the maintenance of normal chromatin functions within the damaged region. For example, DDR pathways must avoid conflicts between other DNA-based processes that function within the context of chromatin, including transcription and replication. The molecular mechanisms governing the recognition, target specificity, and recruitment of DDR factors and enzymes to the fundamental repeating unit of chromatin, i.e., the nucleosome, are poorly understood. Here we present our current view of how chromatin recognition by DDR factors is achieved at the level of the nucleosome. Emerging evidence suggests that the nucleosome surface, including the nucleosome acidic patch, promotes the binding and activity of several DNA damage factors on chromatin. Thus, in addition to interactions with damaged DNA and histone modifications, nucleosome recognition by DDR factors plays a key role in orchestrating the requisite chromatin response to maintain both genome and epigenome integrity.

  11. [The biological aspects of chromatin diminution].

    PubMed

    Akif'ev, A P; Grishanin, A K

    1993-01-01

    The chromatine diminution (CD), first discovered by Boveri (1887) in ascarids, represents programmed elimination of a part of genetic material in the nuclei of the somatic cells in cyclops and ascarids, and in the protist macronuclei. The CD can be considered as a macromutation sharply changing chromosomal structure, though minimally effecting the phenotype. The analysis of CD is of significance for discussing mechanisms of origin of chromosomal organization, transformation of genome molecular structure in eucaryote evolution, role of the extra DNA.

  12. Influence of chromatin structure, antibiotics, and endogenous histone methylation on phosphorylation of histones H1 and H3 in the presence of protein kinase A in rat liver nuclei in vitro.

    PubMed

    Prusov, A N; Smirnova, T A; Kolomijtseva, G Ya

    2013-02-01

    In vitro phosphorylation of histones H1 and H3 by cAMP-dependent protein kinase A and endogenous phosphokinases in the presence of [γ-³²P]ATP was studied in isolated rat liver nuclei with different variants of chromatin structural organization: condensed (diameter of fibrils 100-200 nm; N-1) and partly decondensed (diameter of fibrils ~30 nm; N-2). In the N-1 state histone, H1 is phosphorylated approximately twice as much than histone H3. Upon the decondensation of the chromatin in the N-2 state, 1.5-fold decrease of total phosphorylation of H1 is observed, while that of H3 does not change, although the endogenous phosphorylation of both histones is reduced by half. Changes in histone phosphorylation in the presence of low or high concentrations of distamycin and chromomycin differ for H1 and H3 in N-1 and N-2. It was found that distamycin (DM) stimulates the phosphorylation of tightly bound H1 fraction, which is not extractable by polyglutamic acid (PG), especially in N-1. Chromomycin (CM) increases the phosphorylation of both histones in PG extracts and in the nuclear pellets, particularly in N-2. At the same time, in N-1 one can detect phosphorylation of a tightly bound fraction of histones H1 whose N-termini are located on AT-rich sites that become inaccessible for protein kinase in the process of chromatin decondensation in N-2. At the same time, in N-2 the accessibility for protein kinase A of tightly bound H1 fractions, whose N-termini are located on GC-rich sites, increases dramatically. High concentrations of both CM and DM in N-1 and N-2 stimulated phosphorylation of the non-extractable by PG fraction of H1 whose N-termini are located on sites where AT ≈ GC. CM at high concentration stimulated 4-7 times the phosphorylation of a small fraction of H3, which is extracted by PG from both types of nuclei. We detected an effect of endogenous methylation of histones H1 and H3 in the nuclei on their subsequent phosphorylation depending on the chromatin

  13. Affective journeys: the emotional structuring of medical tourism in India.

    PubMed

    Solomon, Harris

    2011-04-01

    This paper examines the grid of sentiment that structures medical travel to India. In contrast to studies that render emotion as ancillary, the paper argues that affect is fundamental to medical travel's ability to ease the linked somatic, emotional, financial, and political injuries of being ill 'back home'. The ethnographic approach follows the scenes of medical travel within the Indian corporate hospital room, based on observations and interviews among foreign patients, caregivers, and hospital staff in Mumbai, New Delhi, Chennai, and Bangalore. Foreign patients conveyed diverse sentiments about their journey to India ranging from betrayal to gratitude, and their expressions of risk, healthcare costs, and cultural difference help sustain India's popularity as a medical travel destination. However, although the affective dimensions of medical travel promise a remedy for foreign patients, they also reveal the fault lines of market medicine in India.

  14. How spatio-temporal habitat connectivity affects amphibian genetic structure

    PubMed Central

    Watts, Alexander G.; Schlichting, Peter E.; Billerman, Shawn M.; Jesmer, Brett R.; Micheletti, Steven; Fortin, Marie-Josée; Funk, W. Chris; Hapeman, Paul; Muths, Erin; Murphy, Melanie A.

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations. PMID:26442094

  15. How spatio-temporal habitat connectivity affects amphibian genetic structure

    USGS Publications Warehouse

    Watts, Alexander G.; Schlichting, P; Billerman, S; Jesmer, B; Micheletti, S; Fortin, M.-J.; Funk, W.C.; Hapeman, P; Muths, Erin L.; Murphy, M.A.

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations.

  16. Arboreal habitat structure affects route choice by rat snakes.

    PubMed

    Mansfield, Rachel H; Jayne, Bruce C

    2011-01-01

    In arboreal habitats gaps between branches and branch structure profoundly affect the ability of animals to move; hence, an ability to perceive such attributes could facilitate choosing routes that enhance the speed and ease of locomotion. Although many snakes are arboreal, no previous study has determined whether they can perceive structural variation of branches that is mechanically relevant to their locomotion. We tested whether the gap distance, location, and attributes of two destination perches on the far side of a crossable gap affected the route travelled by North American rat snakes (Pantherophis), which are proficient climbers. Snakes usually chose routes with shorter gaps. Within a horizontal plane, the snakes usually went straight rather than crossing an equal distance gap with a 90° turn, which was consistent with our finding that crossing a straight gap was easier. However, decreasing the distance of the gap with a 90° turn eliminated the preference for going straight. Additional factors, such as the width of the landing surface and the complexity of branching of the destination perches, resulted in non-random route choice. Thus, many of the observed biases in route choice suggested abilities to perceive structural variation and select routes that are mechanically beneficial.

  17. Recognition of chromatin by the plant alkaloid, ellipticine as a dual binder

    SciTech Connect

    Banerjee, Amrita; Sanyal, Sulagna; Majumder, Parijat; Chakraborty, Payal; Jana, Kuladip; Dasgupta, Dipak

    2015-07-10

    Recognition of core histone components of chromatin along with chromosomal DNA by a class of small molecule modulators is worth examining to evaluate their intracellular mode of action. A plant alkaloid ellipticine (ELP) which is a putative anticancer agent has so far been reported to function via DNA intercalation, association with topoisomerase II and binding to telomere region. However, its effect upon the potential intracellular target, chromatin is hitherto unreported. Here we have characterized the biomolecular recognition between ELP and different hierarchical levels of chromatin. The significant result is that in addition to DNA, it binds to core histone(s) and can be categorized as a ‘dual binder’. As a sequel to binding with histone(s) and core octamer, it alters post-translational histone acetylation marks. We have further demonstrated that it has the potential to modulate gene expression thereby regulating several key biological processes such as nuclear organization, transcription, translation and histone modifications. - Highlights: • Ellipticine acts a dual binder binding to both DNA and core histone(s). • It induces structural perturbations in chromatin, chromatosome and histone octamer. • It alters histones acetylation and affects global gene expression.

  18. New insights into protamine-like component organization in Mytilus galloprovincialis' sperm chromatin.

    PubMed

    Vassalli, Quirino Attilio; Caccavale, Filomena; Avagnano, Stefano; Murolo, Alessandra; Guerriero, Giulia; Fucci, Laura; Ausió, Juan; Piscopo, Marina

    2015-03-01

    We have analyzed Mytilus galloprovincialis' sperm chromatin, which consists of three protamine-like proteins, PL-II, PL-III, and PL-IV, in addition to a residual amount of the four core histones. We have probed the structure of this sperm chromatin through digestion with micrococcal nuclease (MNase) in combination with salt fractionation. Furthermore, we used the electrophoretic mobility shift assay to define DNA-binding mode of PL-II and PL-III and turbidimetric assays to determine their self-association ability in the presence of sodium phosphate. Although in literature it is reported that M. galloprovincialis' sperm chromatin lacks nucleosomal organization, our results obtained by MNase digestion suggest the existence of a likely unusual organization, in which there would be a more accessible location of PL-II/PL-IV when compared with PL-III and core histones. So, we hypothesize that in M. galloprovincialis' sperm chromatin organization DNA is wrapped around a PL-III protein core and core histones and PL-II and PL-IV are bound to the flanking DNA regions (similarly to somatic histone H1). Furthermore, we propose that PL's K/R ratio affects their DNA-binding mode and self-association ability as reported previously for somatic and sperm H1 histones.

  19. Histone variants and chromatin assembly in plant abiotic stress responses.

    PubMed

    Zhu, Yan; Dong, Aiwu; Shen, Wen-Hui

    2013-01-01

    Genome organization into nucleosomes and higher-order chromatin structures has profound implications for the regulation of gene expression, DNA replication and repair. The structure of chromatin can be remodeled by several mechanisms; among others, nucleosome assembly/disassembly and replacement of canonical histones with histone variants constitute important ones. In this review, we provide a brief description on the current knowledge about histone chaperones involved in nucleosome assembly/disassembly and histone variants in Arabidopsis thaliana. We discuss recent advances in revealing crucial functions of histone chaperones, nucleosome assembly/disassembly and histone variants in plant response to abiotic stresses. It appears that chromatin structure remodeling may provide a flexible, global and stable means for the regulation of gene transcription to help plants more effectively cope with environmental stresses. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.

  20. Community structure affects trophic ontogeny in a predatory fish.

    PubMed

    Sánchez-Hernández, Javier; Eloranta, Antti P; Finstad, Anders G; Amundsen, Per-Arne

    2017-01-01

    While most studies have focused on the timing and nature of ontogenetic niche shifts, information is scarce about the effects of community structure on trophic ontogeny of top predators. We investigated how community structure affects ontogenetic niche shifts (i.e., relationships between body length, trophic position, and individual dietary specialization) of a predatory fish, brown trout (Salmo trutta). We used stable isotope and stomach content analyses to test how functional characteristics of lake fish community compositions (competition and prey availability) modulate niche shifts in terms of (i) piscivorous behavior, (ii) trophic position, and (iii) individual dietary specialization. Northern Scandinavian freshwater fish communities were used as a study system, including nine subarctic lakes with contrasting fish community configurations: (i) trout-only systems, (ii) two-species systems (brown trout and Arctic charr [Salvelinus alpinus] coexisting), and (iii) three-species systems (brown trout, Arctic charr, and three-spined sticklebacks [Gasterosteus aculeatus] coexisting). We expected that the presence of profitable small prey (stickleback) and mixed competitor-prey fish species (charr) supports early piscivory and high individual dietary specialization among trout in multispecies communities, whereas minor ontogenetic shifts were expected in trout-only systems. From logistic regression models, the presence of a suitable prey fish species (stickleback) emerged as the principal variable determining the size at ontogenetic niche shifts. Generalized additive mixed models indicated that fish community structure shaped ontogenetic niche shifts in trout, with the strongest positive relationships between body length, trophic position, and individual dietary specialization being observed in three-species communities. Our findings revealed that the presence of a small-sized prey fish species (stickleback) rather than a mixed competitor-prey fish species (charr) was

  1. Chromatin condensation during terminal erythropoiesis.

    PubMed

    Zhao, Baobing; Yang, Jing; Ji, Peng

    2016-09-02

    Mammalian terminal erythropoiesis involves gradual but dramatic chromatin condensation steps that are essential for cell differentiation. Chromatin and nuclear condensation is followed by a unique enucleation process, which is believed to liberate more spaces for hemoglobin enrichment and enable the generation of a physically flexible mature red blood cell. Although these processes have been known for decades, the mechanisms are still unclear. Our recent study reveals an unexpected nuclear opening formation during mouse terminal erythropoiesis that requires caspase-3 activity. Major histones, except H2AZ, are partially released from the opening, which is important for chromatin condensation. Block of the nuclear opening through caspase inhibitor or knockdown of caspase-3 inhibits chromatin condensation and enucleation. We also demonstrate that nuclear opening and histone release are cell cycle regulated. These studies reveal a novel mechanism for chromatin condensation in mammalia terminal erythropoiesis.

  2. How motivation affects academic performance: a structural equation modelling analysis.

    PubMed

    Kusurkar, R A; Ten Cate, Th J; Vos, C M P; Westers, P; Croiset, G

    2013-03-01

    Few studies in medical education have studied effect of quality of motivation on performance. Self-Determination Theory based on quality of motivation differentiates between Autonomous Motivation (AM) that originates within an individual and Controlled Motivation (CM) that originates from external sources. To determine whether Relative Autonomous Motivation (RAM, a measure of the balance between AM and CM) affects academic performance through good study strategy and higher study effort and compare this model between subgroups: males and females; students selected via two different systems namely qualitative and weighted lottery selection. Data on motivation, study strategy and effort was collected from 383 medical students of VU University Medical Center Amsterdam and their academic performance results were obtained from the student administration. Structural Equation Modelling analysis technique was used to test a hypothesized model in which high RAM would positively affect Good Study Strategy (GSS) and study effort, which in turn would positively affect academic performance in the form of grade point averages. This model fit well with the data, Chi square = 1.095, df = 3, p = 0.778, RMSEA model fit = 0.000. This model also fitted well for all tested subgroups of students. Differences were found in the strength of relationships between the variables for the different subgroups as expected. In conclusion, RAM positively correlated with academic performance through deep strategy towards study and higher study effort. This model seems valid in medical education in subgroups such as males, females, students selected by qualitative and weighted lottery selection.

  3. Genome-Wide Association between Transcription Factor Expression and Chromatin Accessibility Reveals Regulators of Chromatin Accessibility

    PubMed Central

    Rueedi, Rico

    2017-01-01

    To better understand genome regulation, it is important to uncover the role of transcription factors in the process of chromatin structure establishment and maintenance. Here we present a data-driven approach to systematically characterise transcription factors that are relevant for this process. Our method uses a linear mixed modelling approach to combine datasets of transcription factor binding motif enrichments in open chromatin and gene expression across the same set of cell lines. Applying this approach to the ENCODE dataset, we confirm already known and imply numerous novel transcription factors that play a role in the establishment or maintenance of open chromatin. In particular, our approach rediscovers many factors that have been annotated as pioneer factors. PMID:28118358

  4. Genome-Wide Association between Transcription Factor Expression and Chromatin Accessibility Reveals Regulators of Chromatin Accessibility.

    PubMed

    Lamparter, David; Marbach, Daniel; Rueedi, Rico; Bergmann, Sven; Kutalik, Zoltán

    2017-01-01

    To better understand genome regulation, it is important to uncover the role of transcription factors in the process of chromatin structure establishment and maintenance. Here we present a data-driven approach to systematically characterise transcription factors that are relevant for this process. Our method uses a linear mixed modelling approach to combine datasets of transcription factor binding motif enrichments in open chromatin and gene expression across the same set of cell lines. Applying this approach to the ENCODE dataset, we confirm already known and imply numerous novel transcription factors that play a role in the establishment or maintenance of open chromatin. In particular, our approach rediscovers many factors that have been annotated as pioneer factors.

  5. CCSI: a database providing chromatin-chromatin spatial interaction information.

    PubMed

    Xie, Xiaowei; Ma, Wenbin; Songyang, Zhou; Luo, Zhenhua; Huang, Junfeng; Dai, Zhiming; Xiong, Yuanyan

    2016-01-01

    Distal regulatory elements have been shown to regulate gene transcription through spatial interactions, and single nucleotide polymorphisms (SNPs) are linked with distal gene expression by spatial proximity, which helps to explain the causal role of disease-associated SNPs in non-coding region. Therefore, studies on spatial interactions between chromatin have created a new avenue for elucidating the mechanism of transcriptional regulation in disease pathogenesis. Recently, a growing number of chromatin interactions have been revealed by means of 3C, 4C, 5C, ChIA-PET and Hi-C technologies. To interpret and utilize these interactions, we constructed chromatin-chromatin spatial interaction (CCSI) database by integrating and annotating 91 sets of chromatin interaction data derived from published literature, UCSC database and NCBI GEO database, resulting in a total of 3,017,962 pairwise interactions (false discovery rate < 0.05), covering human, mouse and yeast. A web interface has been designed to provide access to the chromatin interactions. The main features of CCSI are (i) showing chromatin interactions and corresponding genes, enhancers and SNPs within the regions in the search page; (ii) offering complete interaction datasets, enhancer and SNP information in the download page; and (iii) providing analysis pipeline for the annotation of interaction data. In conclusion, CCSI will facilitate exploring transcriptional regulatory mechanism in disease pathogenesis associated with spatial interactions among genes, regulatory regions and SNPs. Database URL: http://songyanglab.sysu.edu.cn/ccsi.

  6. How differentiated do children experience affect? An investigation of the within- and between-person structure of children's affect.

    PubMed

    Leonhardt, Anja; Könen, Tanja; Dirk, Judith; Schmiedek, Florian

    2016-05-01

    Research on the structure of children's affect is limited. It is possible that children's perception of their own affect might be less differentiated than that of adults. Support for the 2-factor model of positive and negative affect and the pleasure-arousal model suggests that children in middle childhood can distinguish positive and negative affect as well as valence and arousal. Whether children are able to differentiate further aspects of affect, as proposed by the 3-dimensional model of affect (good-bad mood, alertness-tiredness, calmness-tension), is an unresolved issue. The aim of our study was the comparison of these 3 affect models to establish how differentiated children experience their affect and which model best describes affect in children. We examined affect structures on the between- and within-person level, acknowledging that affect varies across time and that no valid interpretation of either level is feasible if both are confounded. For this purpose, 214 children (age 8-11 years) answered affect items once a day for 5 consecutive days on smartphones. We tested all affect models by means of 2-level confirmatory factor analysis. Although all affect models had an acceptable fit, the 3-dimensional model best described affect in children on both the within- and between-person level. Thus, children in middle childhood can already describe affect in a differentiated way. Also, affect structures were similar on the within- and between-person level. We conclude that in order to acquire a thorough picture of children's affect, measures for children should include items of all 3 affect dimensions. (PsycINFO Database Record

  7. Nucleosome positioning and composition modulate in silico chromatin flexibility.

    PubMed

    Clauvelin, N; Lo, P; Kulaeva, O I; Nizovtseva, E V; Diaz-Montes, J; Zola, J; Parashar, M; Studitsky, V M; Olson, W K

    2015-02-18

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes-the familiar assemblies of ∼150 DNA base pairs and eight histone proteins-found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the 'local' inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome positioning, and

  8. Nucleosome positioning and composition modulate in silico chromatin flexibility

    NASA Astrophysics Data System (ADS)

    Clauvelin, N.; Lo, P.; Kulaeva, O. I.; Nizovtseva, E. V.; Diaz-Montes, J.; Zola, J.; Parashar, M.; Studitsky, V. M.; Olson, W. K.

    2015-02-01

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes—the familiar assemblies of ˜150 DNA base pairs and eight histone proteins—found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the ‘local’ inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome

  9. Chromatin structure of recombinant Moloney murine leukemia virus proviral DNAs that contain tax-responsive sequences from human T-cell lymphotropic virus type II in the presence and absence of tax.

    PubMed Central

    Kitado, H; Fan, H

    1989-01-01

    Human T-cell lymphotropic virus types I and II (HTLV-I and HTLV-II) are replication-competent retroviruses which contain two additional regulatory proteins, tax and rex. tax is a transcriptional transactivator of the HTLV-I or HTLV-II long terminal repeat (LTR) and also of some heterologous promoters. To investigate the mechanism of tax transactivation, we used chimeric Moloney murine leukemia viruses (M-MuLVs) with LTRs containing tax-responsive sequences from the HTLV-II LTR (nucleotides -273 to -32). Mo+HTLV-II+ M-MuLV contained the HTLV II sequences inserted into the wild-type M-MuLV LTR at nucleotide -150, whereas delta Mo+HTLV-II+ M-MuLV contained the same sequences inserted into an M-MuLV LTR lacking its own enhancer region. HTLV-II tax (tax II)-positive mouse cells (15S-5a) infected with Mo+HTLV-II+ M-MuLV or delta Mo+HTLV-II+ M-MuLV showed higher rates of viral transcription in nuclear run-on assays than did infected tax-negative NIH 3T3 cells. The chromatin structure of these viruses was investigated by high-resolution mapping of DNase I-hypersensitive (HS) sites. Three prominent HS sites were associated with HTLV-II sequences in proviral chromatin both in tax-positive and in tax-negative cells. The spacing resembled that of the 21-base-pair (bp) repeats, but the HS sites were displaced approximately 50 bp upstream of the 21-bp repeats. This suggested that cellular proteins bound to the HTLV-II sequences in the presence or absence of tax. No direct effect of tax on chromatin structure was found. These in vivo results were consistent with results of in vitro DNase footprinting studies performed by other investigators. Images PMID:2786092

  10. The polymorphisms of the chromatin fiber

    NASA Astrophysics Data System (ADS)

    Boulé, Jean-Baptiste; Mozziconacci, Julien; Lavelle, Christophe

    2015-01-01

    In eukaryotes, the genome is packed into chromosomes, each consisting of large polymeric fibers made of DNA bound with proteins (mainly histones) and RNA molecules. The nature and precise 3D organization of this fiber has been a matter of intense speculations and debates. In the emerging picture, the local chromatin state plays a critical role in all fundamental DNA transactions, such as transcriptional control, DNA replication or repair. However, the molecular and structural mechanisms involved remain elusive. The purpose of this review is to give an overview of the tremendous efforts that have been made for almost 40 years to build physiologically relevant models of chromatin structure. The motivation behind building such models was to shift our representation and understanding of DNA transactions from a too simplistic ‘naked DNA’ view to a more realistic ‘coated DNA’ view, as a step towards a better framework in which to interpret mechanistically the control of genetic expression and other DNA metabolic processes. The field has evolved from a speculative point of view towards in vitro biochemistry and in silico modeling, but is still longing for experimental in vivo validations of the proposed structures or even proof of concept experiments demonstrating a clear role of a given structure in a metabolic transaction. The mere existence of a chromatin fiber as a relevant biological entity in vivo has been put into serious questioning. Current research is suggesting a possible reconciliation between theoretical studies and experiments, pointing towards a view where the polymorphic and dynamic nature of the chromatin fiber is essential to support its function in genome metabolism.

  11. Does Question Structure Affect Exam Performance in the Geosciences?

    NASA Astrophysics Data System (ADS)

    Day, E. A.; D'Arcy, M. K.; Craig, L.; Streule, M. J.; Passmore, E.; Irving, J. C. E.

    2015-12-01

    The jump to university level exams can be challenging for some students, often resulting in poor marks, which may be detrimental to their confidence and ultimately affect their overall degree class. Previous studies have found that question structure can have a strong impact on the performance of students in college level exams (see Gibson et al., 2015, for a discussion of its impact on physics undergraduates). Here, we investigate the effect of question structure on the exam results of geology and geophysics undergraduate students. Specifically, we analyse the performance of students in questions that have a 'scaffolded' framework and compare them to their performance in open-ended questions and coursework. We also investigate if observed differences in exam performance are correlated with the educational background and gender of students, amongst other factors. It is important for all students to be able to access their degree courses, no matter what their backgrounds may be. Broadening participation in the geosciences relies on removing systematic barriers to achievement. Therefore we recommend that exams are either structured with scaffolding in questions at lower levels, or students are explicitly prepared for this transition. We also recommend that longitudinal studies of exam performance are conducted within individual departments, and this work outlines one approach to analysing performance data.

  12. MiRNA-Mediated Regulation of the SWI/SNF Chromatin Remodeling Complex Controls Pluripotency and Endodermal Differentiation in Human ESCs.

    PubMed

    Wade, Staton L; Langer, Lee F; Ward, James M; Archer, Trevor K

    2015-10-01

    MicroRNAs and chromatin remodeling complexes represent powerful epigenetic mechanisms that regulate the pluripotent state. miR-302 is a strong inducer of pluripotency, which is characterized by a distinct chromatin architecture. This suggests that miR-302 regulates global chromatin structure; however, a direct relationship between miR-302 and chromatin remodelers has not been established. Here, we provide data to show that miR-302 regulates Brg1 chromatin remodeling complex composition in human embryonic stem cells (hESCs) through direct repression of the BAF53a and BAF170 subunits. With the subsequent overexpression of BAF170 in hESCs, we show that miR-302's inhibition of BAF170 protein levels can affect the expression of genes involved in cell proliferation. Furthermore, miR-302-mediated repression of BAF170 regulates pluripotency by positively influencing mesendodermal differentiation. Overexpression of BAF170 in hESCs led to biased differentiation toward the ectoderm lineage during EB formation and severely hindered directed definitive endoderm differentiation. Taken together, these data uncover a direct regulatory relationship between miR-302 and the Brg1 chromatin remodeling complex that controls gene expression and cell fate decisions in hESCs and suggests that similar mechanisms are at play during early human development.

  13. Cohesin organizes chromatin loops at DNA replication factories

    PubMed Central

    Guillou, Emmanuelle; Ibarra, Arkaitz; Coulon, Vincent; Casado-Vela, Juan; Rico, Daniel; Casal, Ignacio; Schwob, Etienne; Losada, Ana; Méndez, Juan

    2010-01-01

    Genomic DNA is packed in chromatin fibers organized in higher-order structures within the interphase nucleus. One level of organization involves the formation of chromatin loops that may provide a favorable environment to processes such as DNA replication, transcription, and repair. However, little is known about the mechanistic basis of this structuration. Here we demonstrate that cohesin participates in the spatial organization of DNA replication factories in human cells. Cohesin is enriched at replication origins and interacts with prereplication complex proteins. Down-regulation of cohesin slows down S-phase progression by limiting the number of active origins and increasing the length of chromatin loops that correspond with replicon units. These results give a new dimension to the role of cohesin in the architectural organization of interphase chromatin, by showing its participation in DNA replication. PMID:21159821

  14. Chromatinization of the KSHV Genome During the KSHV Life Cycle

    PubMed Central

    Uppal, Timsy; Jha, Hem C.; Verma, Subhash C.; Robertson, Erle S.

    2015-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family and is the causative agent of various lymphoproliferative diseases in humans. KSHV, like other herpesviruses, establishes life-long latent infection with the expression of a limited number of viral genes. Expression of these genes is tightly regulated by both the viral and cellular factors. Recent advancements in identifying the expression profiles of viral transcripts, using tilling arrays and next generation sequencing have identified additional coding and non-coding transcripts in the KSHV genome. Determining the functions of these transcripts will provide a better understanding of the mechanisms utilized by KSHV in altering cellular pathways involved in promoting cell growth and tumorigenesis. Replication of the viral genome is critical in maintaining the existing copies of the viral episomes during both latent and lytic phases of the viral life cycle. The replication of the viral episome is facilitated by viral components responsible for recruiting chromatin modifying enzymes and replication factors for altering the chromatin complexity and replication initiation functions, respectively. Importantly, chromatin modification of the viral genome plays a crucial role in determining whether the viral genome will persist as latent episome or undergo lytic reactivation. Additionally, chromatinization of the incoming virion DNA, which lacks chromatin structure, in the target cells during primary infection, helps in establishing latent infection. Here, we discuss the recent advancements on our understating of KSHV genome chromatinization and the consequences of chromatin modifications on viral life cycle. PMID:25594667

  15. HACking the centromere chromatin code: insights from human artificial chromosomes.

    PubMed

    Bergmann, Jan H; Martins, Nuno M C; Larionov, Vladimir; Masumoto, Hiroshi; Earnshaw, William C

    2012-07-01

    The centromere is a specialized chromosomal region that serves as the assembly site of the kinetochore. At the centromere, CENP-A nucleosomes form part of a chromatin landscape termed centrochromatin. This chromatin environment conveys epigenetic marks regulating kinetochore formation. Recent work sheds light on the intricate relationship between centrochromatin state, the CENP-A assembly pathway and the maintenance of centromere function. Here, we review the emerging picture of how chromatin affects mammalian kinetochore formation. We place particular emphasis on data obtained from Human Artificial Chromosome (HAC) biology and the targeted engineering of centrochromatin using synthetic HACs. We discuss implications of these findings, which indicate that a delicate balance of histone modifications and chromatin state dictates both de novo centromere formation and the maintenance of centromere identity in dividing cell populations.

  16. Alginate Overproduction Affects Pseudomonas aeruginosa Biofilm Structure and Function

    PubMed Central

    Hentzer, Morten; Teitzel, Gail M.; Balzer, Grant J.; Heydorn, Arne; Molin, Søren; Givskov, Michael; Parsek, Matthew R.

    2001-01-01

    During the course of chronic cystic fibrosis (CF) infections, Pseudomonas aeruginosa undergoes a conversion to a mucoid phenotype, which is characterized by overproduction of the exopolysaccharide alginate. Chronic P. aeruginosa infections involve surface-attached, highly antibiotic-resistant communities of microorganisms organized in biofilms. Although biofilm formation and the conversion to mucoidy are both important aspects of CF pathogenesis, the relationship between them is at the present unclear. In this study, we report that the overproduction of alginate affects biofilm development on an abiotic surface. Biofilms formed by an alginate-overproducing strain exhibit a highly structured architecture and are significantly more resistant to the antibiotic tobramycin than a biofilm formed by an isogenic nonmucoid strain. These results suggest that an important consequence of the conversion to mucoidy is an altered biofilm architecture that shows increasing resistance to antimicrobial treatments. PMID:11514525

  17. Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information.

    PubMed

    Corpet, Armelle; Almouzni, Geneviève

    2009-01-01

    Understanding the basic mechanisms underlying chromatin dynamics during DNA replication in eukaryotic cells is of fundamental importance. Beyond DNA compaction, chromatin organization represents a means to regulate genome function. Thus, the inheritance and maintenance of the DNA sequence, along with its organization into chromatin, is central for eukaryotic life. To orchestrate DNA replication in the context of chromatin is a challenge, both in terms of accessibility to the compact structures and maintenance of chromatin organization. To meet the challenge of maintenance, cells have evolved efficient nucleosome dynamics involving assembly pathways and chromatin maturation mechanisms that restore chromatin organization in the wake of DNA replication. In this review, we describe our current knowledge concerning how these pathways operate at the nucleosomal level and highlight the key players, such as histone chaperones, chromatin remodelers or modifiers, involved in the process of chromatin duplication. Major advances have been made recently concerning de novo nucleosome assembly and our understanding of its coordination with recycling of parental histones is progressing. Insights into the transmission of chromatin-based information during replication have important implications in the field of epigenetics to fully comprehend how the epigenetic landscape might, or at times might not, be stably maintained in the face of dramatic changes in chromatin structure.

  18. Combined Effects of High-Dose Bisphenol A and Oxidizing Agent (KBrO3) on Cellular Microenvironment, Gene Expression, and Chromatin Structure of Ku70-deficient Mouse Embryonic Fibroblasts

    PubMed Central

    Gassman, Natalie R.; Coskun, Erdem; Jaruga, Pawel; Dizdaroglu, Miral; Wilson, Samuel H.

    2016-01-01

    Background: Exposure to bisphenol A (BPA) has been reported to alter global gene expression, induce epigenetic modifications, and interfere with complex regulatory networks of cells. In addition to these reprogramming events, we have demonstrated that BPA exposure generates reactive oxygen species and promotes cellular survival when co-exposed with the oxidizing agent potassium bromate (KBrO3). Objectives: We determined the cellular microenvironment changes induced by co-exposure of BPA and KBrO3 versus either agent alone. Methods: Ku70-deficient cells were exposed to 150 μM BPA, 20 mM KBrO3, or co-exposed to both agents. Four and 24 hr post-damage initiation by KBrO3, with BPA-only samples timed to coincide with these designated time points, we performed whole-genome microarray analysis and evaluated chromatin structure, DNA lesion load, glutathione content, and intracellular pH. Results: We found that 4 hr post-damage initiation, BPA exposure and co-exposure transiently condensed chromatin compared with untreated and KBrO3-only treated cells; the transcription of DNA repair proteins was also reduced. At this time point, BPA exposure and co-exposure also reduced the change in intracellular pH observed after treatment with KBrO3 alone. Twenty-four hours post-damage initiation, BPA-exposed cells showed less condensed chromatin than cells treated with KBrO3 alone; the intracellular pH of the co-exposed cells was significantly reduced compared with untreated and KBrO3-treated cells; and significant up-regulation of DNA repair proteins was observed after co-exposure. Conclusion: These results support the induction of an adaptive response by BPA co-exposure that alters the microcellular environment and modulates DNA repair. Further work is required to determine whether BPA induces similar DNA lesions in vivo at environmentally relevant doses; however, in the Ku70-deficient mouse embryonic fibroblasts, exposure to a high dose of BPA was associated with changes in the

  19. Time-resolved spectroscopy and fluorescence resonance energy transfer in the study of excimer laser damage of chromatin

    NASA Astrophysics Data System (ADS)

    Radu, L.; Mihailescu, I.; Radu, S.; Gazdaru, D.

    2007-09-01

    The analysis of chromatin damage produced by a 248 nm excimer laser radiation, for doses of 0.3-3 MJ/m 2 was carried out by time-resolved spectroscopy and fluorescence resonance energy transfer (FRET). The chromatin was extracted from a normal and a tumoral tissue of Wistar rats. The decrease with laser dose of the relative contribution of the excited state lifetimes of ethidium bromide (EtBr) bounded to chromatin constitutes an evidence of the reduction of chromatin deoxyribonucleic acid (DNA) double-strand structure. FRET was performed from dansyl chloride to acridine orange, both coupled to chromatin. The increase of the average distance between these ligands, under the action of laser radiation, reflects a loosening of the chromatin structure. The radiosensitivity of tumor tissue chromatin is higher than that of a normal tissue. The determination of the chromatin structure modification in an excimer laser field can be of interest in laser therapy.

  20. Inactive allele-specific methylation and chromatin structure of the imprinted gene U2af1-rs1 on mouse chromosome 11

    SciTech Connect

    Shibata, Hideo; Yoshino, Kiyoshi; Kamiya, Mamoru

    1996-07-01

    The imprinted U2Af1-rs1 gene that maps to mouse chromosome 11 is predominately expressed from the paternal allele. We examined the methylation of genomic sequences in and around the U2af1-rs1 locus to establish the extent of sequence modifications that accompanied the silencing of the maternal allele. The analysis of HapII or HhaI sites showed that the silent maternal allele was hypermethylated in a block of CpG sequences that covered more than 10 kb. By comparison, the expressed paternal allele was unmethylated from a CpG island upstream of the transcribed region through 2 kb. An analysis of DNaseI hypersensitivity of a putative promoter of U2af1-rs1 showed an open chromatin conformation only on the unmethylated, expressed paternal allele. These results suggest that allele-specific hypermethylation covering the gene and its upstream CpG island plays a role in maternal allele repression of U2af1-rs1, which is reflected in altered chromatin conformation of DNaseI hypersensitive sites. 9 refs., 2 figs.

  1. Comparison of the effect of UV laser radiation and of a radiomimetic substance on chromatin

    NASA Astrophysics Data System (ADS)

    Radulescu, Irina; Radu, Liliana; Serbanescu, Ruxandra; Nelea, V. D.; Martin, C.; Mihailescu, Ion N.

    1998-07-01

    The damages of the complex of deoxyribonucleic acid (DNA) and proteins from chromatin, produced by the UV laser radiation and/or by treatment with a radiomimetic substance, bleomycin, were compared. The laser radiation and bleomycin effects on chromatin structure were determined by the static and dynamic fluorimetry of chromatin complexes with the DNA specific ligand-- proflavine and by the analysis of tryptophan chromatin intrinsic fluorescence. Time resolved spectroscopy is a sensitive technique which allows to determine the excited state lifetimes of chromatin--proflavine complexes. Also, the percentage contributions to the fluorescence of proflavine, bound and unbound to chromatin DNA, were evaluated. The damages produced by the UV laser radiation on chromatin are similar with those of radiomimetic substance action and consists in DNA and proteins destruction. The DNA damage degree has been determined. The obtained results may constitute some indications in the laser utilization in radiochimiotherapy.

  2. Chromatin remodelling during male gametophyte development.

    PubMed

    Borg, Michael; Berger, Frédéric

    2015-07-01

    The plant life cycle alternates between a diploid sporophytic phase and haploid gametophytic phase, with the latter giving rise to the gametes. Male gametophyte development encompasses two mitotic divisions that results in a simple three-celled structure knows as the pollen grain, in which two sperm cells are encased within a larger vegetative cell. Both cell types exhibit a very different type of chromatin organization - highly condensed in sperm cell nuclei and highly diffuse in the vegetative cell. Distinct classes of histone variants have dynamic and differential expression in the two cell lineages of the male gametophyte. Here we review how the dynamics of histone variants are linked to reprogramming of chromatin activities in the male gametophyte, compaction of the sperm cell genome and zygotic transitions post-fertilization.

  3. Chromatin fiber allostery and the epigenetic code

    NASA Astrophysics Data System (ADS)

    Lesne, Annick; Foray, Nicolas; Cathala, Guy; Forné, Thierry; Wong, Hua; Victor, Jean-Marc

    2015-02-01

    The notion of allostery introduced for proteins about fifty years ago has been extended since then to DNA allostery, where a locally triggered DNA structural transition remotely controls other DNA-binding events. We further extend this notion and propose that chromatin fiber allosteric transitions, induced by histone-tail covalent modifications, may play a key role in transcriptional regulation. We present an integrated scenario articulating allosteric mechanisms at different scales: allosteric transitions of the condensed chromatin fiber induced by histone-tail acetylation modify the mechanical constraints experienced by the embedded DNA, thus possibly controlling DNA-binding of allosteric transcription factors or further allosteric mechanisms at the linker DNA level. At a higher scale, different epigenetic constraints delineate different statistically dominant subsets of accessible chromatin fiber conformations, which each favors the assembly of dedicated regulatory complexes, as detailed on the emblematic example of the mouse Igf2-H19 gene locus and its parental imprinting. This physical view offers a mechanistic and spatially structured explanation of the observed correlation between transcriptional activity and histone modifications. The evolutionary origin of allosteric control supports to speak of an ‘epigenetic code’, by which events involved in transcriptional regulation are encoded in histone modifications in a context-dependent way.

  4. Titration and hysteresis in epigenetic chromatin silencing

    NASA Astrophysics Data System (ADS)

    Dayarian, Adel; Sengupta, Anirvan M.

    2013-06-01

    Epigenetic mechanisms of silencing via heritable chromatin modifications play a major role in gene regulation and cell fate specification. We consider a model of epigenetic chromatin silencing in budding yeast and study the bifurcation diagram and characterize the bistable and the monostable regimes. The main focus of this paper is to examine how the perturbations altering the activity of histone modifying enzymes affect the epigenetic states. We analyze the implications of having the total number of silencing proteins, given by the sum of proteins bound to the nucleosomes and the ones available in the ambient, to be constant. This constraint couples different regions of chromatin through the shared reservoir of ambient silencing proteins. We show that the response of the system to perturbations depends dramatically on the titration effect caused by the above constraint. In particular, for a certain range of overall abundance of silencing proteins, the hysteresis loop changes qualitatively with certain jump replaced by continuous merger of different states. In addition, we find a nonmonotonic dependence of gene expression on the rate of histone deacetylation activity of Sir2. We discuss how these qualitative predictions of our model could be compared with experimental studies of the yeast system under anti-silencing drugs.

  5. Chromatin and beyond: the multitasking roles for SIRT6

    PubMed Central

    Kugel, Sita; Mostoslavsky, Raul

    2014-01-01

    In recent years there has been a large expansion in our understanding of SIRT6 biology, including its structure, regulation, biochemical activity and biological roles. SIRT6 functions as an ADP-ribosylase and NAD+-dependent deacylase of both acetyl groups and long-chain fatty acyl groups. Through these functions SIRT6 impacts cellular homeostasis by regulating DNA repair, telomere maintenance and glucose and lipid metabolism, thus affecting diseases such diabetes, obesity, heart disease, and cancer. Such roles may contribute to overall longevity and health of the organism. Until recently, much of the known functions of SIRT6 were restricted to the chromatin. In this article, we seek to describe and expand this knowledge with recent advances in understanding the mechanisms of SIRT6 action and their implications for human biology and disease. PMID:24438746

  6. Reproducibility of 3D chromatin configuration reconstructions

    PubMed Central

    Segal, Mark R.; Xiong, Hao; Capurso, Daniel; Vazquez, Mariel; Arsuaga, Javier

    2014-01-01

    It is widely recognized that the three-dimensional (3D) architecture of eukaryotic chromatin plays an important role in processes such as gene regulation and cancer-driving gene fusions. Observing or inferring this 3D structure at even modest resolutions had been problematic, since genomes are highly condensed and traditional assays are coarse. However, recently devised high-throughput molecular techniques have changed this situation. Notably, the development of a suite of chromatin conformation capture (CCC) assays has enabled elicitation of contacts—spatially close chromosomal loci—which have provided insights into chromatin architecture. Most analysis of CCC data has focused on the contact level, with less effort directed toward obtaining 3D reconstructions and evaluating the accuracy and reproducibility thereof. While questions of accuracy must be addressed experimentally, questions of reproducibility can be addressed statistically—the purpose of this paper. We use a constrained optimization technique to reconstruct chromatin configurations for a number of closely related yeast datasets and assess reproducibility using four metrics that measure the distance between 3D configurations. The first of these, Procrustes fitting, measures configuration closeness after applying reflection, rotation, translation, and scaling-based alignment of the structures. The others base comparisons on the within-configuration inter-point distance matrix. Inferential results for these metrics rely on suitable permutation approaches. Results indicate that distance matrix-based approaches are preferable to Procrustes analysis, not because of the metrics per se but rather on account of the ability to customize permutation schemes to handle within-chromosome contiguity. It has recently been emphasized that the use of constrained optimization approaches to 3D architecture reconstruction are prone to being trapped in local minima. Our methods of reproducibility assessment provide a

  7. H2A.Z and H3.3 histone variants affect nucleosome structure: biochemical and biophysical studies.

    PubMed

    Thakar, Amit; Gupta, Pooja; Ishibashi, Toyotaka; Finn, Ron; Silva-Moreno, Begonia; Uchiyama, Susumu; Fukui, Kiichi; Tomschik, Miroslav; Ausio, Juan; Zlatanova, Jordanka

    2009-11-24

    Histone variants play important roles in regulation of chromatin structure and function. To understand the structural role played by histone variants H2A.Z and H3.3, both of which are implicated in transcription regulation, we conducted extensive biochemical and biophysical analysis on mononucleosomes reconstituted from either random-sequence DNA derived from native nucleosomes or a defined DNA nucleosome positioning sequence and recombinant human histones. Using established electrophoretic and sedimentation analysis methods, we compared the properties of nucleosomes containing canonical histones and histone variants H2A.Z and H3.3 (in isolation or in combination). We find only subtle differences in the compaction and stability of the particles. Interestingly, both H2A.Z and H3.3 affect nucleosome positioning, either creating new positions or altering the relative occupancy of the existing nucleosome position space. On the other hand, only H2A.Z-containing nucleosomes exhibit altered linker histone binding. These properties could be physiologically significant as nucleosome positions and linker histone binding partly determine factor binding accessibility.

  8. Centromeric chromatin in fission yeast.

    PubMed

    Partridge, Janet F

    2008-05-01

    A fundamental requirement for life is the ability of cells to divide properly and to pass on to their daughters a full complement of genetic material. The centromere of the chromosome is essential for this process, as it provides the DNA sequences on which the kinetochore (the proteinaceous structure that links centromeric DNA to the spindle microtubules) assembles to allow segregation of the chromosomes during mitosis. It has long been recognized that kinetochore assembly is subject to epigenetic control, and deciphering how centromeres promote faithful chromosome segregation provides a fascinating intellectual challenge. This challenge is made more difficult by the scale and complexity of DNA sequences in metazoan centromeres, thus much research has focused on dissecting centromere function in the single celled eukaryotic yeasts. Interestingly, in spite of similarities in the genome size of budding and fission yeasts, they seem to have adopted some striking differences in their strategy for passing on their chromosomes. Budding yeast have "point" centromeres, where a 125 base sequence is sufficient for mitotic propagation, whereas fission yeast centromeres are more reminiscent of the large repetitive centromeres of metazoans. In addition, the centromeric heterochromatin which coats centromeric domains of fission yeast and metazoan centromeres and is critical for their function, is largely absent from budding yeast centromeres. This review focuses on the assembly and maintenance of centromeric chromatin in the fission yeast.

  9. Landscape structure affects the provision of multiple ecosystem services

    NASA Astrophysics Data System (ADS)

    Lamy, T.; Liss, K. N.; Gonzalez, A.; Bennett, E. M.

    2016-12-01

    Understanding how landscape structure, the composition and configuration of land use/land cover (LULC) types, affects the relative supply of ecosystem services (ES), is critical to improving landscape management. While there is a long history of studies on landscape composition, the importance of landscape configuration has only recently become apparent. To understand the role of landscape structure in the provision of multiple ES, we must understand how ES respond to different measures of both composition and configuration of LULC. We used a multivariate framework to quantify the role of landscape configuration and composition in the provision of ten ES in 130 municipalities in an agricultural region in Southern Québec. We identified the relative influence of composition and configuration in the provision of these ES using multiple regression, and on bundles of ES using canonical redundancy analysis. We found that both configuration and composition play a role in explaining variation in the supply of ES, but the relative contribution of composition and configuration varies significantly among ES. We also identified three distinct ES bundles (sets of ES that regularly appear together on the landscape) and found that each bundle was associated with a unique area in the landscape, that mapped to a gradient in the composition and configuration of forest and agricultural LULC. These results show that the distribution of ES on the landscape depends upon both the overall composition of LULC types and their configuration on the landscape. As ES become more widely used to steer land use decision-making, quantifying the roles of configuration and composition in the provision of ES bundles can improve landscape management by helping us understand when and where the spatial pattern of land cover is important for multiple services.

  10. Structural features affecting variant surface glycoprotein expression in Trypanosoma brucei.

    PubMed

    Wang, Jun; Böhme, Ulrike; Cross, George A M

    2003-05-01

    The glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG) of Trypanosoma brucei is the most abundant GPI-anchored protein expressed on any cell, and is an essential virulence factor. To determine what structural features affect efficient expression of VSG, we made a series of mutations in two VSGs. Inserting 18 amino acids, between the amino- and carboxy-terminal domains, reduced the expression of VSG 221 to about 3% of the wild-type level. When this insertion was combined with deletion of the single carboxy-terminal subdomain, expression was reduced a further three-fold. In VSG 117, which contains two carboxy-terminal subdomains, point mutation of the intervening N-glycosylation site reduced expression about 15-fold. Deleting the most carboxy-terminal subdomain and intervening region, including the N-glycosylation site, reduced expression to 15-20% of wild type VSG, and deletion of both subdomains reduced expression to <1%. Despite their low abundance, all VSG mutants were GPI anchored on the cell surface. Our results suggest that, for a protein to be efficiently displayed on the surface of bloodstream-form T. brucei, it is essential that it contains the conserved structural motifs of a T. brucei VSG. Serum resistance-associated protein (SRA), which confers human infectivity on T. brucei, strongly resembles a VSG deletion mutant. Expression of three epitope-tagged versions of SRA in T. brucei conferred total resistance to human serum. SRA possesses a canonical GPI signal sequence, but we were unable to obtain unequivocal evidence for the presence of a GPI anchor. SRA was not released during osmotic lysis, indicating that it is not GPI anchored on the cell surface.

  11. The preRC protein ORCA organizes heterochromatin by assembling histone H3 lysine 9 methyltransferases on chromatin

    PubMed Central

    Giri, Sumanprava; Aggarwal, Vasudha; Pontis, Julien; Shen, Zhen; Chakraborty, Arindam; Khan, Abid; Mizzen, Craig; Prasanth, Kannanganattu V; Ait-Si-Ali, Slimane; Ha, Taekjip; Prasanth, Supriya G

    2015-01-01

    Heterochromatic domains are enriched with repressive histone marks, including histone H3 lysine 9 methylation, written by lysine methyltransferases (KMTs). The pre-replication complex protein, origin recognition complex-associated (ORCA/LRWD1), preferentially localizes to heterochromatic regions in post-replicated cells. Its role in heterochromatin organization remained elusive. ORCA recognizes methylated H3K9 marks and interacts with repressive KMTs, including G9a/GLP and Suv39H1 in a chromatin context-dependent manner. Single-molecule pull-down assays demonstrate that ORCA-ORC (Origin Recognition Complex) and multiple H3K9 KMTs exist in a single complex and that ORCA stabilizes H3K9 KMT complex. Cells lacking ORCA show alterations in chromatin architecture, with significantly reduced H3K9 di- and tri-methylation at specific chromatin sites. Changes in heterochromatin structure due to loss of ORCA affect replication timing, preferentially at the late-replicating regions. We demonstrate that ORCA acts as a scaffold for the establishment of H3K9 KMT complex and its association and activity at specific chromatin sites is crucial for the organization of heterochromatin structure. DOI: http://dx.doi.org/10.7554/eLife.06496.001 PMID:25922909

  12. Mechanisms of ATP Dependent Chromatin Remodeling

    PubMed Central

    Gangaraju, Vamsi K.; Bartholomew, Blaine

    2007-01-01

    The inter-relationship between DNA repair and ATP dependent chromatin remodeling has begun to become very apparent with recent discoveries. ATP dependent remodeling complexes mobilize nucleosomes along DNA, promote the exchange of histones, or completely displace nucleosomes from DNA. These remodeling complexes are often categorized based on the domain organization of their catalytic subunit. The biochemical properties and structural information of several of these remodeling complexes are reviewed. The different models for how these complexes are able to mobilize nucleosomes and alter nucleosome structure are presented incorporating several recent findings. Finally the role of histone tails and their respective modifications in ATP-dependent remodeling are discussed. PMID:17306844

  13. Identification of small molecules that inhibit the histone chaperone Asf1 and its chromatin function

    PubMed Central

    Seol, Ja-Hwan; Song, Tae-Yang; Oh, Se Eun; Jo, Chanhee; Choi, Ahreum; Kim, Byungho; Park, Jinyoung; Hong, Suji; Song, Ilrang; Jung, Kwan Young; Yang, Jae-Hyun; Park, Hwangseo; Ahn, Jin-Hyun; Han, Jeung-Whan; Cho, Eun-Jung

    2015-01-01

    The eukaryotic genome is packed into chromatin, which is important for the genomic integrity and gene regulation. Chromatin structures are maintained through assembly and disassembly of nucleosomes catalyzed by histone chaperones. Asf1 (anti-silencing function 1) is a highly conserved histone chaperone that mediates histone transfer on/off DNA and promotes histone H3 lysine 56 acetylation at globular core domain of histone H3. To elucidate the role of Asf1 in the modulation of chromatin structure, we screened and identified small molecules that inhibit Asf1 and H3K56 acetylation without affecting other histone modifications. These pyrimidine-2,4,6-trione derivative molecules inhibited the nucleosome assembly mediated by Asf1 in vitro, and reduced the H3K56 acetylation in HeLa cells. Furthermore, production of HSV viral particles was reduced by these compounds. As Asf1 is implicated in genome integrity, cell proliferation, and cancer, current Asf1 inhibitor molecules may offer an opportunity for the therapeutic development for treatment of diseases. [BMB Reports 2015; 48(12): 685-690] PMID:26058396

  14. CTCF-mediated Chromatin Loop for the Posterior Hoxc Gene Expression in MEF Cells.

    PubMed

    Min, Hyehyun; Kong, Kyoung-Ah; Lee, Ji-Yeon; Hong, Chang-Pyo; Seo, Seong-Hye; Roh, Tae-Young; Bae, Sun Sik; Kim, Myoung Hee

    2016-06-01

    Modulation of chromatin structure has been proposed as a molecular mechanism underlying the spatiotemporal collinear expression of Hox genes during development. CCCTC-binding factor (CTCF)-mediated chromatin organization is now recognized as a crucial epigenetic mechanism for transcriptional regulation. Thus, we examined whether CTCF-mediated chromosomal conformation is involved in Hoxc gene expression by comparing wild-type mouse embryonic fibroblast (MEF) cells expressing anterior Hoxc genes with Akt1 null MEFs expressing anterior as well as posterior Hoxc genes. We found that CTCF binding between Hoxc11 and -c12 is important for CTCF-mediated chromosomal loop formation and concomitant posterior Hoxc gene expression. Hypomethylation at this site increased CTCF binding and recapitulated the chromosomal conformation and posterior Hoxc gene expression patterns observed in Akt1 null MEFs. From this work we found that CTCF at the C12|11 does not function as a barrier/boundary, instead let the posterior Hoxc genes switch their interaction from inactive centromeric to active telomeric genomic niche, and concomitant posterior Hoxc gene expression. Although it is not clear whether CTCF affects Hoxc gene expression solely through its looping activity, CTCF-mediated chromatin structural modulation could be an another tier of Hox gene regulation during development. © 2016 IUBMB Life, 68(6):436-444, 2016.

  15. On the physical and chemical dynamics of chromatin

    NASA Astrophysics Data System (ADS)

    Apratim, Manjul

    The research performed leading to this dissertation is an endeavor to explore two broad classes of developmental phenomena in the chromatin complex in eukaryotic cells---physical, for instance, long range interactions between enhancers and promoters, and chemical, such as epigenetic chromatin silencing. I begin by introducing the reader to both types of phenomena, and then set the stage for our strategy in the exploration of the physical side of these processes by creating a new machinery from existing pieces of polymer physics. I then make a brief foray into theoretical realms in an attempt to answer the question of what kinds of conformations of polymers dominate in what regimes. Subsequently, I proceed to consider the problem of analyzing and interpreting data from a major technique of probing the behavior of the chromatin complex in vivo --- Chromosome Conformation Capture --- towards which end we have developed and implemented a new and robust algorithm called 'G.R.O.M.A.T.I.N.'. Subsequently, I explore how similar ideas may be invoked in the analysis of direct microscopic observations of native chromatin structure via Fluorescence in situ Hybridization. Following this, I look at the problems of epigenetic chromatin silencing domain formation and stability in the presence of titration feedback and of stochastic noise, and demonstrate how the widely accepted polymerization model of silencing is consistent with Chromatin Immunoprecipitation data from silencing domains in budding yeast. I finally conclude with musings on recent evidence pinpointing the need to unify the physical and chemical pictures into one grand formulation.

  16. Ectopically tethered CP190 induces large-scale chromatin decondensation

    NASA Astrophysics Data System (ADS)

    Ahanger, Sajad H.; Günther, Katharina; Weth, Oliver; Bartkuhn, Marek; Bhonde, Ramesh R.; Shouche, Yogesh S.; Renkawitz, Rainer

    2014-01-01

    Insulator mediated alteration in higher-order chromatin and/or nucleosome organization is an important aspect of epigenetic gene regulation. Recent studies have suggested a key role for CP190 in such processes. In this study, we analysed the effects of ectopically tethered insulator factors on chromatin structure and found that CP190 induces large-scale decondensation when targeted to a condensed lacO array in mammalian and Drosophila cells. In contrast, dCTCF alone, is unable to cause such a decondensation, however, when CP190 is present, dCTCF recruits it to the lacO array and mediates chromatin unfolding. The CP190 induced opening of chromatin may not be correlated with transcriptional activation, as binding of CP190 does not enhance luciferase activity in reporter assays. We propose that CP190 may mediate histone modification and chromatin remodelling activity to induce an open chromatin state by its direct recruitment or targeting by a DNA binding factor such as dCTCF.

  17. Chromatin topology is coupled to Polycomb group protein subnuclear organization

    PubMed Central

    Wani, Ajazul H.; Boettiger, Alistair N.; Schorderet, Patrick; Ergun, Ayla; Münger, Christine; Sadreyev, Ruslan I.; Zhuang, Xiaowei; Kingston, Robert E.; Francis, Nicole J.

    2016-01-01

    The genomes of metazoa are organized at multiple scales. Many proteins that regulate genome architecture, including Polycomb group (PcG) proteins, form subnuclear structures. Deciphering mechanistic links between protein organization and chromatin architecture requires precise description and mechanistic perturbations of both. Using super-resolution microscopy, here we show that PcG proteins are organized into hundreds of nanoscale protein clusters. We manipulated PcG clusters by disrupting the polymerization activity of the sterile alpha motif (SAM) of the PcG protein Polyhomeotic (Ph) or by increasing Ph levels. Ph with mutant SAM disrupts clustering of endogenous PcG complexes and chromatin interactions while elevating Ph level increases cluster number and chromatin interactions. These effects can be captured by molecular simulations based on a previously described chromatin polymer model. Both perturbations also alter gene expression. Organization of PcG proteins into small, abundant clusters on chromatin through Ph SAM polymerization activity may shape genome architecture through chromatin interactions. PMID:26759081

  18. Chd5 orchestrates chromatin remodeling during sperm development

    PubMed Central

    Li, Wangzhi; Wu, Jie; Kim, Sang-Yong; Zhao, Ming; Hearn, Stephen A.; Zhang, Michael Q.; Meistrich, Marvin L.

    2014-01-01

    One of the most remarkable chromatin remodeling processes occurs during spermiogenesis, the post-meiotic phase of sperm development during which histones are replaced with sperm-specific protamines to repackage the genome into the highly compact chromatin structure of mature sperm. Here we identify Chromodomain helicase DNA binding protein 5 (Chd5) as a master regulator of the histone-to-protamine chromatin remodeling process. Chd5 deficiency leads to defective sperm chromatin compaction and male infertility in mice, mirroring the observation of low CHD5 expression in testes of infertile men. Chd5 orchestrates a cascade of molecular events required for histone removal and replacement, including histone 4 (H4) hyperacetylation, histone variant expression, nucleosome eviction, and DNA damage repair. Chd5 deficiency also perturbs expression of transition proteins (Tnp1/Tnp2) and protamines (Prm1/2). These findings define Chd5 as a multi-faceted mediator of histone-to-protamine replacement and depict the cascade of molecular events underlying chromatin remodeling during this process of extensive chromatin remodeling. PMID:24818823

  19. Chromatin modification in zebrafish development.

    PubMed

    Cayuso Mas, Jordi; Noël, Emily S; Ober, Elke A

    2011-01-01

    The generation of complex organisms requires that an initial population of cells with identical gene expression profiles can adopt different cell fates during development by progressively diverging transcriptional programs. These programs depend on the binding of transcritional regulators to specific genomic sites, which in turn is controlled by modifications of the chromatin. Chromatin modifications may occur directly upon DNA by methylation of specific nucleotides, or may involve post-translational modification of histones. Local regulation of histone post-translational modifications regionalizes the genome into euchromatic regions, which are more accessible to DNA-binding factors, and condensed heterochromatic regions, inhibiting the binding of such factors. In addition, these modifications may be required in a genome-wide fashion for processes such as DNA replication or chromosome condensation. From an embryologist's point of view chromatin modifications are intensively studied in the context of imprinting and have more recently received increasing attention in understanding the basis of pluripotency and cellular differentiation. Here, we describe recently uncovered roles of chromatin modifications in zebrafish development and regeneration, as well as available resources and commonly used techniques. We provide a general introduction into chromatin modifications and their respective functions with a focus on gene transcription, as well as key aspects of their roles in the early zebrafish embryo, neural development, formation of the digestive system and tissue regeneration.

  20. The murine homologue of HIRA, a DiGeorge syndrome candidate gene, is expressed in embryonic structures affected in human CATCH22 patients.

    PubMed

    Wilming, L G; Snoeren, C A; van Rijswijk, A; Grosveld, F; Meijers, C

    1997-02-01

    A wide spectrum of birth defects is caused by deletions of the DiGeorge syndrome chromosomal region at 22q11. Characteristic features include cranio-facial, cardiac and thymic malformations, which are thought to arise form disturbances in the interactions between hindbrain neural crest cells and the endoderm of the pharyngeal pouches. Several genes have been identified in the shortest region of deletion overlap at 22q11, but nothing is known about the expression of these genes in mammalian embryos. We report here the isolation of several murine embryonic cDNAs of the DiGeorge syndrome candidate gene HIRA. We identified several alternatively spliced transcripts. Sequence analysis reveals that Hira bears homology to the p60 subunit of the human Chromatin Assembly Factor I and yeast hir1p and Hir2p, suggesting that Hira might have some role in chromatin assembly and/or histone regulation. Whole mount in situ hybridization of mouse embryos at various stages of development show that Hira is ubiquitously expressed. However, higher levels of transcripts are detected in the cranial neural folds, frontonasal mass, first two pharyngeal arches, circumpharyngeal neural crest and the limb buds. Since many of the structures affected in DiGeorge syndrome derive from these Hira expressing cell populations we propose that haploinsufficiency of HIRA contributes to at least some of the features of the DiGeorge phenotype.

  1. Chromatin Remodeling and Plant Immunity.

    PubMed

    Chen, W; Zhu, Q; Liu, Y; Zhang, Q

    2017-01-01

    Chromatin remodeling, an important facet of the regulation of gene expression in eukaryotes, is performed by two major types of multisubunit complexes, covalent histone- or DNA-modifying complexes, and ATP-dependent chromosome remodeling complexes. Snf2 family DNA-dependent ATPases constitute the catalytic subunits of ATP-dependent chromosome remodeling complexes, which accounts for energy supply during chromatin remodeling. Increasing evidence indicates a critical role of chromatin remodeling in the establishment of long-lasting, even transgenerational immune memory in plants, which is supported by the findings that DNA methylation, histone deacetylation, and histone methylation can prime the promoters of immune-related genes required for disease defense. So what are the links between Snf2-mediated ATP-dependent chromosome remodeling and plant immunity, and what mechanisms might support its involvement in disease resistance?

  2. Interphase Chromosome Conformation and Chromatin-Chromatin Interactions in Human Epithelial Cells Cultured Under Different Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Wong, Michael; Hada, Megumi; Wu, Honglu

    2015-01-01

    Microgravity has been shown to alter global gene expression patterns and protein levels both in cultured cells and animal models. It has been suggested that the packaging of chromatin fibers in the interphase nucleus is closely related to genome function, and the changes in transcriptional activity are tightly correlated with changes in chromatin folding. This study explores the changes of chromatin conformation and chromatin-chromatin interactions in the simulated microgravity environment, and investigates their correlation to the expression of genes located at different regions of the chromosome. To investigate the folding of chromatin in interphase under various culture conditions, human epithelial cells, fibroblasts, and lymphocytes were fixed in the G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome as separate colors. After images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multi-mega base pair scale. In order to determine the effects of microgravity on chromosome conformation and orientation, measures such as distance between homologous pairs, relative orientation of chromosome arms about a shared midpoint, and orientation of arms within individual chromosomes were all considered as potentially impacted by simulated microgravity conditions. The studies revealed non-random folding of chromatin in interphase, and suggested an association of interphase chromatin folding with radiation-induced chromosome aberration hotspots. Interestingly, the distributions of genes with expression changes over chromosome 3 in cells cultured under microgravity environment are apparently clustered on specific loci and chromosomes. This data provides important insights into how mammalian cells respond to microgravity at molecular level.

  3. Extinction of Oct-3/4 gene expression in embryonal carcinoma [times] fibroblast somatic cell hybrids is accompanied by changes in the methylation status, chromatin structure, and transcriptional activity of the Oct-3/4 upstream region

    SciTech Connect

    Ben-Shushan, E.; Pikarsky, E.; Klar, A.; Bergman, Y. )

    1993-02-01

    The OCT-3/4 gene provides an excellent model system with which to study the extinction phenomenon in somatic cell hybrids. The molecular mechanism that underlies the extinction of a tissue-specific transcription factor in somatic cell hybrides is evaluated and compared with its down-regulation in retinoic acid treated embryonal carcinoma cells. This study draws a connection between the shutdown of OCT-3/4 expression in retinoic acid (RA)-differentiated embryonal carcinoma (EC) cells and its extinction in hybrid cells. This repression of OCT-3/4 expression is achieved through changes in the methylation status, chromatin structure, and transcriptional activity of the OCT-3/4 upstream regulatory region. 59 refs.

  4. Structural basis of a nucleosome containing histone H2A.B/H2A.Bbd that transiently associates with reorganized chromatin

    NASA Astrophysics Data System (ADS)

    Arimura, Yasuhiro; Kimura, Hiroshi; Oda, Takashi; Sato, Koichi; Osakabe, Akihisa; Tachiwana, Hiroaki; Sato, Yuko; Kinugasa, Yasuha; Ikura, Tsuyoshi; Sugiyama, Masaaki; Sato, Mamoru; Kurumizaka, Hitoshi

    2013-12-01

    Human histone H2A.B (formerly H2A.Bbd), a non-allelic H2A variant, exchanges rapidly as compared to canonical H2A, and preferentially associates with actively transcribed genes. We found that H2A.B transiently accumulated at DNA replication and repair foci in living cells. To explore the biochemical function of H2A.B, we performed nucleosome reconstitution analyses using various lengths of DNA. Two types of H2A.B nucleosomes, octasome and hexasome, were formed with 116, 124, or 130 base pairs (bp) of DNA, and only the octasome was formed with 136 or 146 bp DNA. In contrast, only hexasome formation was observed by canonical H2A with 116 or 124 bp DNA. A small-angle X-ray scattering analysis revealed that the H2A.B octasome is more extended, due to the flexible detachment of the DNA regions at the entry/exit sites from the histone surface. These results suggested that H2A.B rapidly and transiently forms nucleosomes with short DNA segments during chromatin reorganization.

  5. Association of a change in chromatin structure with a tissue-specific switch in transcription start sites in the alpha 2(I) collagen gene.

    PubMed Central

    Beck, K M; Seekamp, A H; Askew, G R; Mei, Z; Farrell, C M; Wang, S; Lukens, L N

    1991-01-01

    Chick embryonic sternal chondrocytes do not synthesize alpha 2(I) collagen until they are shifted by treatment with 5-bromo-2'-deoxyuridine (BrdUrd) to a fibroblastic phenotype, yet they transcribe this gene as rapidly as BrdUrd-treated cells. To examine further this transcription, the DNase I hypersensitive sites were mapped in the 5' region of this gene in chondrocytes, BrdUrd-treated chondrocytes, fibroblasts and three types of non-transcribing cells. A DNase I hypersensitive site at -200 bp, previously shown to be associated with the active transcription of this gene in fibroblasts, is not present in chondrocyte chromatin. The chondrocyte alpha 2(I) gene contains, however, a novel major hypersensitive site in the DNA region corresponding to the fibroblast intron 2, near the chondrocyte-specific transcription initiation site of this gene. This novel hypersensitive site is associated with the use of this alternate start site by chondrocytes, since it is lost when BrdUrd treatment causes these chondrocytes to switch to the initiation of transcription at the fibroblast start site. The BrdUrd-treated chondrocytes contain the same alpha 2(I) hypersensitive sites as fibroblasts, except that fibroblasts have an additional, previously unreported, site at -1000 bp. Images PMID:1717939

  6. [Effects of low-intensity extremely high frequency electromagnetic radiation on chromatin structure of lymphoid cells in vivo and in vitro].

    PubMed

    Gapeev, A B; Lushnikov, K V; Shumilina, Iu V; Sirota, N P; Sadovnikov, V B; Chemeris, N K

    2003-01-01

    Using a comet assay technique, it was shown for the first time that low-intensity extremely high-frequency electromagnetic radiation (EHF EMR) in vivo causes oppositely directed effects on spatial organization of chromatin in cells of lymphoid organs. In 3 hrs after single whole-body exposure of NMRI mice for 20 min at 42.0 GHz and 0.15 mW/cm2, an increase by 16% (p < 0.03 as compared with control) and a decrease by 16% (p < 0.001) in fluorescence intensity of nucleoids stained with ethidium bromide were found in thymocytes and splenocytes, respectively. The fluorescence intensity of stained nucleoids in peripheral blood leukocytes was not changed after the exposure. The exposure of cells of Raji hunan lymphoid line and peripheral blood leukocytes to the EHF EMR in vitro induced a decrease in fluorescence intensity by 23% (p < 0.001) and 18% (p < 0.05), respectively. These effects can be determined by changes in a number of physiological alkali-labile sites in DNA of exposed cells. We suggested that the effects of low-intensity EHF EMR on the immune system cells are realized with the participation of neuroendocrine and central nervous systems.

  7. Micronucleus formation during chromatin condensation and under apoptotic conditions.

    PubMed

    Kiraly, Gabor; Simonyi, Athene S; Turani, Melinda; Juhasz, Istvan; Nagy, Gabor; Banfalvi, Gaspar

    2017-02-01

    In early S phase the newly replicated DNA is folded back to increasingly compact structures. The process of chromatin condensation inside the nucleus starts with the formation of a micronucleus observed in five established cell lines (K562, CHO, Indian muntjac, murine preB and SCC). Supercoiling of chromatin generates a polarized end-plate region extruded from the nucleus. The extruded chromatin is turned around itself forming the head portion (micronucleus) visible by fluorescence microscopy until the middle of S phase when chromatin structures are succeeded by distinguishable early forms of chromosomes. The generation of micronuclei upon apoptotic treatment was achieved by the methotrexate (MTX) treatment of cells. A close correlation was found between the frequency of micronucleus and MTX concentration, with low frequency at low (0.1 µM) and increasingly higher frequency between 1 and 100 µM concentrations. Characteristic deformation and shrinkage of nuclei indicated apoptosis. High MTX concentration (100 µM) caused the enlargement and necrotic disruption of nuclei. Inhibition of DNA synthesis during replicative DNA synthesis by biotinylated nucleotide prevented the formation of metaphase chromosomes and elevated the frequency of early intermediates of chromosome condensation including micronucleus formation. Based on these observations the micronucleus is regarded as: (a) a regularly occuring element of early chromatin condensation and (b) a typical sign of nuclear membrane damage under toxic conditions. Explanation is given why the micronucleus is hidden in nuclei under normal chromatin condensation and why chromatin motifs including micronuclei become visible upon cellular damage.

  8. Studies on the binding affinity of anticancer drug mitoxantrone to chromatin, DNA and histone proteins

    PubMed Central

    Hajihassan, Zahra; Rabbani-Chadegani, Azra

    2009-01-01

    Mitoxantrone is a potent antitumor drug, widely used in the treatment of various cancers. In the present study, we have investigated and compared the affinity of anticancer drug, mitoxantrone, to EDTA-soluble chromatin (SE-chromatin), DNA and histones employing UV/Vis, fluorescence, CD spectroscopy, gel electrophoresis and equilibrium dialysis techniques. The results showed that the interaction of mitoxantrone with SE-chromatin proceeds into compaction/aggregation as revealed by reduction in the absorbencies at 608 and 260 nm (hypochromicity) and disappearance of both histones and DNA on the gels. Mitoxantrone interacts strongly with histone proteins in solution making structural changes in the molecule as shown by CD and fluorescence analysis. The binding isotherms demonstrate a positive cooperative binding pattern for the chromatin- mitoxantrone interaction. It is suggested higher binding affinity of mitoxantrone to chromatin compared to DNA implying that the histone proteins may play an important role in the chromatin- mitoxantrone interaction process. PMID:19284573

  9. A quantitative investigation of linker histone interactions with nucleosomes and chromatin.

    PubMed

    White, Alison E; Hieb, Aaron R; Luger, Karolin

    2016-01-11

    Linker histones such as H1 are abundant basic proteins that bind tightly to nucleosomes, thereby acting as key organizers of chromatin structure. The molecular details of linker histone interactions with the nucleosome, and in particular the contributions of linker DNA and of the basic C-terminal tail of H1, are controversial. Here we combine rigorous solution-state binding assays with native gel electrophoresis and Atomic Force Microscopy, to quantify the interaction of H1 with chromatin. We find that H1 binds nucleosomes and nucleosomal arrays with very tight affinity by recognizing a specific DNA geometry minimally consisting of a solitary nucleosome with a single ~18 base pair DNA linker arm. The association of H1 alters the conformation of trinucleosomes so that only one H1 can bind to the two available linker DNA regions. Neither incorporation of the histone variant H2A.Z, nor the presence of neighboring nucleosomes affects H1 affinity. Our data provide a comprehensive thermodynamic framework for this ubiquitous chromatin architectural protein.

  10. Polyamine analogs modulate gene expression by inhibiting lysine-specific demethylase 1 (LSD1) and altering chromatin structure in human breast cancer cells.

    PubMed

    Zhu, Qingsong; Huang, Yi; Marton, Laurence J; Woster, Patrick M; Davidson, Nancy E; Casero, Robert A

    2012-02-01

    Aberrant epigenetic repression of gene expression has been implicated in most cancers, including breast cancer. The nuclear amine oxidase, lysine-specific demethylase 1 (LSD1) has the ability to broadly repress gene expression by removing the activating mono- and di-methylation marks at the lysine 4 residue of histone 3 (H3K4me1 and me2). Additionally, LSD1 is highly expressed in estrogen receptor α negative (ER-) breast cancer cells. Since epigenetic marks are reversible, they make attractive therapeutic targets. Here we examine the effects of polyamine analog inhibitors of LSD1 on gene expression, with the goal of targeting LSD1 as a therapeutic modality in the treatment of breast cancer. Exposure of the ER-negative human breast cancer cells, MDA-MB-231 to the LSD1 inhibitors, 2d or PG11144, significantly increases global H3K4me1 and H3K4me2, and alters gene expression. Array analysis indicated that 98 (75 up and 23 down) and 477 (237 up and 240 down) genes changed expression by at least 1.5-fold or greater after treatment with 2d and PG11144, respectively. The expression of 12 up-regulated genes by 2d and 14 up-regulated genes by PG11144 was validated by quantitative RT-PCR. Quantitative chromatin immunoprecipitation (ChIP) analysis demonstrated that up-regulated gene expression by polyamine analogs is associated with increase of the active histone marks H3K4me1, H3K4me2 and H3K9act, and decrease of the repressive histone marks H3K9me2 and H3K27me3, in the promoter regions of the relevant target genes. These data indicate that the pharmacologic inhibition of LSD1 can effectively alter gene expression and that this therapeutic strategy has potential.

  11. Referent Predictability Is Affected by Syntactic Structure: Evidence from Chinese

    ERIC Educational Resources Information Center

    Cheng, Wei; Almor, Amit

    2017-01-01

    This paper examines the effect of syntactic structures on referent predictability. Focusing on stimulus-experiencer (SE) verbs, we conducted two sentence-completion experiments in Chinese by contrasting SE verbs in three structures (active canonical, active "ba," and passive). The results showed that although verb semantics and discourse…

  12. How Knowledge Management Is Affected by Organizational Structure

    ERIC Educational Resources Information Center

    Mahmoudsalehi, Mehdi; Moradkhannejad, Roya; Safari, Khalil

    2012-01-01

    Purpose: Identifying the impact of organizational structure on knowledge management (KM) is the aim of this study, as well as recognizing the importance of each variable indicator in creating, sharing and utility of knowledge. Design/methodology/approach: For understanding relationships between the main variables (organizational structure-KM), the…

  13. Remodeling of chromatin under low intensity diffuse ultrasound.

    PubMed

    Noriega, Sandra; Budhiraja, Gaurav; Subramanian, Anuradha

    2012-08-01

    A variety of mechanotransduction pathways mediate the response of fibroblasts or chondrocytes to ultrasound stimulation. In addition, regulatory pathways that co-ordinate stimulus-specific cellular responses are likely to exist. In this study, analysis was confined to the hypothesis that ultrasound stimulation (US) influences the chromatin structure, and that these changes may reflect a regulatory pathway that connects nuclear architecture, chromatin structure and gene expression. Murine fibroblasts seeded on tissue culture plates were stimulated with US (5.0 MHz (14 kPa), 51-s per application) and the thermal denaturation profiles of nuclei isolated from fibroblasts were assessed by dynamic scanning calorimetry (DSC). When compared to the thermal profiles obtained from the nuclei of non-stimulated cells, the nuclei obtained from stimulated cells showed a change in peak profiles and peak areas, which is indicative of chromatin remodeling. Independently, US was also observed to impact the histone (H1):chromatin association as measured indirectly by DAPI staining. Based on our work, it appears plausible that US can produce a remodeling of chromatin, thus triggering signal cascade and other intracellular mechanisms.

  14. Spatial organization of chromatin domains and compartments in single chromosomes.

    PubMed

    Wang, Siyuan; Su, Jun-Han; Beliveau, Brian J; Bintu, Bogdan; Moffitt, Jeffrey R; Wu, Chao-ting; Zhuang, Xiaowei

    2016-08-05

    The spatial organization of chromatin critically affects genome function. Recent chromosome-conformation-capture studies have revealed topologically associating domains (TADs) as a conserved feature of chromatin organization, but how TADs are spatially organized in individual chromosomes remains unknown. Here, we developed an imaging method for mapping the spatial positions of numerous genomic regions along individual chromosomes and traced the positions of TADs in human interphase autosomes and X chromosomes. We observed that chromosome folding deviates from the ideal fractal-globule model at large length scales and that TADs are largely organized into two compartments spatially arranged in a polarized manner in individual chromosomes. Active and inactive X chromosomes adopt different folding and compartmentalization configurations. These results suggest that the spatial organization of chromatin domains can change in response to regulation.

  15. Conformational study of the binding of a high mobility group protein with chromatin

    SciTech Connect

    Sasi, R.; Huvoes, P.E.; Fasman, G.D.

    1982-10-10

    The nature of the binding of a high mobility group protein (HMG 17) to native and H1-H5-depleted chicken erythrocyte chromatin was studied, as a function of ionic strength, using circular dichroism and thermal denaturation techniques. The circular dichroism properties of the HMG 17-reconstituted whole chromatin and H1-H5-depleted chromatin structure occurred upon HMG 17 binding at low ionic strength. Thermal denaturation profiles confirmed this change in the structure of chromatin induced by HMG 17. Thermal denaturation profiles were resolved into three-component transitions. These results indicate that the binding sites of HMG 17 are situated in the linker regions immediately adjacent to the core. The nature of the interaction of HMG 17 at higher ionic strength with whole chromatin and H1-H5-depleted chromatin was found to be different. These observations suggest that HMG 17 does not loosen chromatin structure but produces an overall stabilization and condensation of structure. The implications of these results to the currently accepted models of transcriptionally active chromatin are discussed.

  16. Multiple modes of chromatin configuration at natural meiotic recombination hot spots in fission yeast.

    PubMed

    Hirota, Kouji; Steiner, Walter W; Shibata, Takehiko; Ohta, Kunihiro

    2007-11-01

    The ade6-M26 meiotic recombination hot spot of fission yeast is defined by a cyclic AMP-responsive element (CRE)-like heptanucleotide sequence, 5'-ATGACGT-3', which acts as a binding site for the Atf1/Pcr1 heterodimeric transcription factor required for hot spot activation. We previously demonstrated that the local chromatin around the M26 sequence motif alters to exhibit higher sensitivity to micrococcal nuclease before the initiation of meiotic recombination. In this study, we have examined whether or not such alterations in chromatin occur at natural meiotic DNA double-strand break (DSB) sites in Schizosaccharomyces pombe. At one of the most prominent DSB sites, mbs1 (meiotic break site 1), the chromatin structure has a constitutively accessible configuration at or near the DSB sites. The establishment of the open chromatin state and DSB formation are independent of the CRE-binding transcription factor, Atf1. Analysis of the chromatin configuration at CRE-dependent DSB sites revealed both differences from and similarities to mbs1. For example, the tdh1+ locus, which harbors a CRE consensus sequence near the DSB site, shows a meiotically induced open chromatin configuration, similar to ade6-M26. In contrast, the cds1+ locus is similar to mbs1 in that it exhibits a constitutive open configuration. Importantly, Atf1 is required for the open chromatin formation in both tdh1+ and cds1+. These results suggest that CRE-dependent meiotic chromatin changes are intrinsic processes related to DSB formation in fission yeast meiosis. In addition, the results suggest that the chromatin configuration in natural meiotic recombination hot spots can be classified into at least three distinct categories: (i) an Atf1-CRE-independent constitutively open chromatin configuration, (ii) an Atf1-CRE-dependent meiotically induced open chromatin configuration, and (iii) an Atf1-CRE-dependent constitutively open chromatin configuration.

  17. Can microcystins affect zooplankton structure community in tropical eutrophic reservoirs?

    PubMed

    Paes, T A S V; Costa, I A S; Silva, A P C; Eskinazi-Sant'Anna, E M

    2016-06-01

    The aim of our study was to assess whether cyanotoxins (microcystins) can affect the composition of the zooplankton community, leading to domination of microzooplankton forms (protozoans and rotifers). Temporal variations in concentrations of microcystins and zooplankton biomass were analyzed in three eutrophic reservoirs in the semi-arid northeast region of Brazil. The concentration of microcystins in water proved to be correlated with the cyanobacterial biovolume, indicating the contributions from colonial forms such as Microcystis in the production of cyanotoxins. At the community level, the total biomass of zooplankton was not correlated with the concentration of microcystin (r2 = 0.00; P > 0.001), but in a population-level analysis, the biomass of rotifers and cladocerans showed a weak positive correlation. Cyclopoid copepods, which are considered to be relatively inefficient in ingesting cyanobacteria, were negatively correlated (r2 = - 0.01; P > 0.01) with the concentration of cyanotoxins. Surprisingly, the biomass of calanoid copepods was positively correlated with the microcystin concentration (r2 = 0.44; P > 0.001). The results indicate that allelopathic control mechanisms (negative effects of microcystin on zooplankton biomass) do not seem to substantially affect the composition of mesozooplankton, which showed a constant and high biomass compared to the microzooplankton (rotifers). These results may be important to better understand the trophic interactions between zooplankton and cyanobacteria and the potential effects of allelopathic compounds on zooplankton.

  18. Affecting non-Markovian behaviour by changing bath structures

    NASA Astrophysics Data System (ADS)

    Venkataraman, V.; Plato, A. D. K.; Tufarelli, Tommaso; Kim, M. S.

    2014-01-01

    For many open quantum systems, a master equation approach employing the Markov approximation cannot reliably describe the dynamical behaviour. This is the case, for example, in a number of solid state or biological systems, and it has motivated a line of research aimed at quantifying the amount of non-Markovian behaviour (NMB) in a given model. Within this framework, we investigate the dynamics of a quantum harmonic oscillator linearly coupled to a bosonic bath. We focus on Gaussian states, which are suitably treated using a covariance matrix approach. Concentrating on an entanglement based NMB quantifier (NMBQ) proposed by Rivas et al (2010 Phys. Rev. Lett. 105 050403), we consider the role that near resonant and off-resonant modes play in affecting the NMBQ. By using a large but finite bath of oscillators for both Ohmic and super Ohmic spectral densities we find, by systematically increasing the coupling strength, initially the near resonant modes provide the most significant non-Markovian effects, while after a certain threshold of coupling strength the off-resonant modes play the dominant role. We also consider the NMBQ for two other models where we add a single strongly coupled oscillator to the model in extra bath mode and ‘buffer’ configurations, which affects the modes that determine NMB.

  19. The Circadian NAD+ Metabolism: Impact on Chromatin Remodeling and Aging

    PubMed Central

    Bessho, Yasumasa

    2016-01-01

    Gene expression is known to be a stochastic phenomenon. The stochastic gene expression rate is thought to be altered by topological change of chromosome and/or by chromatin modifications such as acetylation and methylation. Changes in mechanical properties of chromosome/chromatin by soluble factors, mechanical stresses from the environment, or metabolites determine cell fate, regulate cellular functions, or maintain cellular homeostasis. Circadian clock, which drives the expression of thousands of genes with 24-hour rhythmicity, has been known to be indispensable for maintaining cellular functions/homeostasis. During the last decade, it has been demonstrated that chromatin also undergoes modifications with 24-hour rhythmicity and facilitates the fine-tuning of circadian gene expression patterns. In this review, we cover data which suggests that chromatin structure changes in a circadian manner and that NAD+ is the key metabolite for circadian chromatin remodeling. Furthermore, we discuss the relationship among circadian clock, NAD+ metabolism, and aging/age-related diseases. In addition, the interventions of NAD+ metabolism for the prevention and treatment of aging and age-related diseases are also discussed. PMID:28050554

  20. Extended chromatin fibers: evidence from scanning force microscopy studies

    NASA Astrophysics Data System (ADS)

    Leuba, Sanford S.; Yang, Guoliang; Robert, Charles; van Holde, Kensal; Zlatanova, Jordanka; Bustamante, Carlos J.

    1995-03-01

    Unfixed chicken erythrocyte fibers in very low salt have been imaged using the scanning force microscope (SFM) operating in the tapping mode in air at ambient humidity. These images reveal a 3D organization of the fibers. The planar 'zig-zag' conformation is rare, and extended 'beads- on-a-string' fibers are seen only in chromatin depleted of H1 and H5. Glutaraldehyde fixation reveals very similar structures. Fibers fixed in 10 mM salt appear somewhat more compacted. These results, when compared with modeling studies indicate that chromatin fibers may exist as irregular 3D arrays of nucleosomes even at low ionic strength. The basic subunit of chromatin, the nucleosome, is composed of a core particle of 146 bp of DNA wrapping 1.75 left-handed superhelical turns around an octamer of core histones and of DNA connecting consecutive core particles. The linker of lysine-rich histones (H1 family) bind the DNA entering and exiting the nucleosome core particle. We suggest that by binding the entry/exit DNA, histone H1 may fix the entry/exit DNA angle. The fixed entry/exit angle, the rigidity of the linker DNA at low ionic strength, and the natural variability of the linker DNA length determine an irregular 3D fiber of chromatin. Our results emphasize the role of H1 in determining the entry/exit DNA angle, which further helps determine the mutual disposition of adjacent nucleosomes an the packing of the chromatin fiber.

  1. Micron-scale coherence in interphase chromatin dynamics

    PubMed Central

    Zidovska, Alexandra; Weitz, David A.; Mitchison, Timothy J.

    2013-01-01

    Chromatin structure and dynamics control all aspects of DNA biology yet are poorly understood, especially at large length scales. We developed an approach, displacement correlation spectroscopy based on time-resolved image correlation analysis, to map chromatin dynamics simultaneously across the whole nucleus in cultured human cells. This method revealed that chromatin movement was coherent across large regions (4–5 µm) for several seconds. Regions of coherent motion extended beyond the boundaries of single-chromosome territories, suggesting elastic coupling of motion over length scales much larger than those of genes. These large-scale, coupled motions were ATP dependent and unidirectional for several seconds, perhaps accounting for ATP-dependent directed movement of single genes. Perturbation of major nuclear ATPases such as DNA polymerase, RNA polymerase II, and topoisomerase II eliminated micron-scale coherence, while causing rapid, local movement to increase; i.e., local motions accelerated but became uncoupled from their neighbors. We observe similar trends in chromatin dynamics upon inducing a direct DNA damage; thus we hypothesize that this may be due to DNA damage responses that physically relax chromatin and block long-distance communication of forces. PMID:24019504

  2. The role of noncoding RNAs in chromatin regulation during differentiation.

    PubMed

    Nahkuri, Satu; Paro, Renato

    2012-01-01

    A myriad of nuclear noncoding RNAs (ncRNAs) have been discovered since the paradigm of RNAs as plain conveyors of protein translation was discarded. There is increasing evidence that at vital intersections of developmental pathways, ncRNAs target the chromatin modulating machinery to its site of action. However, the mechanistic details of processes involved are still largely unclear, and well-characterized metazoan ncRNA species implicated in chromatin regulation during differentiation remain few. Nevertheless, four major categories are slowly emerging: cis-acting antisense ncRNAs that flag the neighboring genes for the propagation of chromatin marks; allele-specific ncRNAs that perform similar tasks, but target larger loci that typically vary in size from hundreds of thousands of base pairs to a whole chromosome; structural ncRNAs proposed to act as scaffolds that couple chromatin shaping complexes of distinct functionalities; and cofactor ncRNAs with a capacity to inhibit or activate essential components of the intertwined chromatin and transcription apparatuses.

  3. Chromatin is an ancient innovation conserved between Archaea and Eukarya

    PubMed Central

    Ammar, Ron; Torti, Dax; Tsui, Kyle; Gebbia, Marinella; Durbic, Tanja; Bader, Gary D; Giaever, Guri; Nislow, Corey

    2012-01-01

    The eukaryotic nucleosome is the fundamental unit of chromatin, comprising a protein octamer that wraps ∼147 bp of DNA and has essential roles in DNA compaction, replication and gene expression. Nucleosomes and chromatin have historically been considered to be unique to eukaryotes, yet studies of select archaea have identified homologs of histone proteins that assemble into tetrameric nucleosomes. Here we report the first archaeal genome-wide nucleosome occupancy map, as observed in the halophile Haloferax volcanii. Nucleosome occupancy was compared with gene expression by compiling a comprehensive transcriptome of Hfx. volcanii. We found that archaeal transcripts possess hallmarks of eukaryotic chromatin structure: nucleosome-depleted regions at transcriptional start sites and conserved −1 and +1 promoter nucleosomes. Our observations demonstrate that histones and chromatin architecture evolved before the divergence of Archaea and Eukarya, suggesting that the fundamental role of chromatin in the regulation of gene expression is ancient. DOI: http://dx.doi.org/10.7554/eLife.00078.001 PMID:23240084

  4. Maternal chromatin remodeling during maturation and after fertilization in mouse oocytes.

    PubMed

    Spinaci, Marcella; Seren, Eraldo; Mattioli, Mauro

    2004-10-01

    Immunofluorescence staining with antibodies against acetylated histone H4 and 5-methylcytosine was carried out to investigate female chromatin remodeling throughout oocyte maturation and chromatin rearrangement involving both male and female genomes after fertilization. Oocyte cytoplasm remodels female chromatin in preparation of the fertilizing event and the subsequent chromatin rearrangement. Histone H4 are in fact progressively deacetylated whereas demethylating enzymes do not seem to be active over this period. The acetylase/deacetylase balance seems to be cell cycle dependent as female chromatin is deacetylated during maturation and reacetylated at telophase II stage both after fertilization and activation. On the contrary, DNA demethylation seems to be strictly selective. It is in fact confined to the remodeling of paternal genome after fertilization of mature oocytes as the ooplasm is not effective in demethylating either paternal chromatin in germinal vesicle breakdown (GVBD) fertilized oocytes or maternal genome of partenogenetically activated oocytes. Surprisingly, we induced maternal chromatin demethylation after fertilization by treating oocytes with a combination of a methyltransferase inhibitor, 5-azacytidine (5-AzaC), and a reversible and specific inhibitor of histone deacetylase, trichostatin A (TSA). This treatment likely induces a hyperacetylation of histones (thus favoring the access to demethylating enzymes by opening female chromatin structure) associated with a block of reparative methylation by inhibiting methytransferases. This manipulation of chromatin remodeling may have applications regarding the biological significance of aberrant DNA methylation.

  5. The Proteomic Investigation of Chromatin Functional Domains Reveals Novel Synergisms among Distinct Heterochromatin Components*

    PubMed Central

    Soldi, Monica; Bonaldi, Tiziana

    2013-01-01

    Chromatin is a highly dynamic, well-structured nucleoprotein complex of DNA and proteins that controls virtually all DNA transactions. Chromatin dynamicity is regulated at specific loci by the presence of various associated proteins, histones, post-translational modifications, histone variants, and DNA methylation. Until now the characterization of the proteomic component of chromatin domains has been held back by the challenge of enriching distinguishable, homogeneous regions for subsequent mass spectrometry analysis. Here we describe a modified protocol for chromatin immunoprecipitation combined with quantitative proteomics based on stable isotope labeling by amino acids in cell culture to identify known and novel histone modifications, variants, and complexes that specifically associate with silent and active chromatin domains. Our chromatin proteomics strategy revealed unique functional interactions among various chromatin modifiers, suggesting new regulatory pathways, such as a heterochromatin-specific modulation of DNA damage response involving H2A.X and WICH, both enriched in silent domains. Chromatin proteomics expands the arsenal of tools for deciphering how all the distinct protein components act together to enforce a given region-specific chromatin status. PMID:23319141

  6. Sequence-targeted nucleosome sliding in vivo by a hybrid Chd1 chromatin remodeler

    PubMed Central

    Bowman, Gregory D.

    2016-01-01

    ATP-dependent chromatin remodelers regulate chromatin dynamics by modifying nucleosome positions and occupancy. DNA-dependent processes such as replication and transcription rely on chromatin to faithfully regulate DNA accessibility, yet how chromatin remodelers achieve well-defined nucleosome positioning in vivo is poorly understood. Here, we report a simple method for site-specifically altering nucleosome positions in live cells. By fusing the Chd1 remodeler to the DNA binding domain of the Saccharomyces cerevisiae Ume6 repressor, we have engineered a fusion remodeler that selectively positions nucleosomes on top of adjacent Ume6 binding motifs in a highly predictable and reproducible manner. Positioning of nucleosomes by the fusion remodeler recapitulates closed chromatin structure at Ume6-sensitive genes analogous to the endogenous Isw2 remodeler. Strikingly, highly precise positioning of single founder nucleosomes by either chimeric Chd1-Ume6 or endogenous Isw2 shifts phased chromatin arrays in cooperation with endogenous chromatin remodelers. Our results demonstrate feasibility of engineering precise nucleosome rearrangements through sequence-targeted chromatin remodeling and provide insight into targeted action and cooperation of endogenous chromatin remodelers in vivo. PMID:26993344

  7. Evolution and genetic architecture of chromatin accessibility and function in yeast.

    PubMed

    Connelly, Caitlin F; Wakefield, Jon; Akey, Joshua M

    2014-07-01

    Chromatin accessibility is an important functional genomics phenotype that influences transcription factor binding and gene expression. Genome-scale technologies allow chromatin accessibility to be mapped with high-resolution, facilitating detailed analyses into the genetic architecture and evolution of chromatin structure within and between species. We performed Formaldehyde-Assisted Isolation of Regulatory Elements sequencing (FAIRE-Seq) to map chromatin accessibility in two parental haploid yeast species, Saccharomyces cerevisiae and Saccharomyces paradoxus and their diploid hybrid. We show that although broad-scale characteristics of the chromatin landscape are well conserved between these species, accessibility is significantly different for 947 regions upstream of genes that are enriched for GO terms such as intracellular transport and protein localization exhibit. We also develop new statistical methods to investigate the genetic architecture of variation in chromatin accessibility between species, and find that cis effects are more common and of greater magnitude than trans effects. Interestingly, we find that cis and trans effects at individual genes are often negatively correlated, suggesting widespread compensatory evolution to stabilize levels of chromatin accessibility. Finally, we demonstrate that the relationship between chromatin accessibility and gene expression levels is complex, and a significant proportion of differences in chromatin accessibility might be functionally benign.

  8. Chromatin remodelling: the industrial revolution of DNA around histones.

    PubMed

    Saha, Anjanabha; Wittmeyer, Jacqueline; Cairns, Bradley R

    2006-06-01

    Chromatin remodellers are specialized multi-protein machines that enable access to nucleosomal DNA by altering the structure, composition and positioning of nucleosomes. All remodellers have a catalytic ATPase subunit that is similar to known DNA-translocating motor proteins, suggesting DNA translocation as a unifying aspect of their mechanism. Here, we explore the diversity and specialization of chromatin remodellers, discuss how nucleosome modifications regulate remodeller activity and consider a model for the exposure of nucleosomal DNA that involves the use of directional DNA translocation to pump 'DNA waves' around the nucleosome.

  9. Chromatin modification and epigenetic reprogramming in mammalian development.

    PubMed

    Li, En

    2002-09-01

    The developmental programme of embryogenesis is controlled by both genetic and epigenetic mechanisms. An emerging theme from recent studies is that the regulation of higher-order chromatin structures by DNA methylation and histone modification is crucial for genome reprogramming during early embryogenesis and gametogenesis, and for tissue-specific gene expression and global gene silencing. Disruptions to chromatin modification can lead to the dysregulation of developmental processes, such as X-chromosome inactivation and genomic imprinting, and to various diseases. Understanding the process of epigenetic reprogramming in development is important for studies of cloning and the clinical application of stem-cell therapy.

  10. Structural and leakage integrity of tubes affected by circumferential cracking

    SciTech Connect

    Hernalsteen, P.

    1997-02-01

    In this paper the author deals with the notion that circumferential cracks are generally considered unacceptable. He argues for the need to differentiate two facets of such cracks: the issue of the size and growth rate of a crack; and the issue of the structural strength and leakage potential of the tube in the presence of the crack. In this paper the author tries to show that the second point is not a major concern for such cracks. The paper presents data on the structural strength or burst pressure characteristics of steam generator tubes derived from models and data bases of experimental work. He also presents a leak rate model, and compares the performance of circumferential and axial cracks as far as burst strength and leak rate. The final conclusion is that subject to improvement in NDE capabilities (sizing, detection, growth), that Steam Generator Defect Specific Management can be used to allow circumferentially degraded tubes to remain in service.

  11. Dynamical DNA accessibility induced by chromatin remodeling and protein binding

    NASA Astrophysics Data System (ADS)

    Montel, F.; Faivre-Moskalenko, C.; Castelnovo, M.

    2014-11-01

    Chromatin remodeling factors are enzymes being able to alter locally chromatin structure at the nucleosomal level and they actively participate in the regulation of gene expression. Using simple rules for individual nucleosome motion induced by a remodeling factor, we designed simulations of the remodeling of oligomeric chromatin, in order to address quantitatively collective effects in DNA accessibility upon nucleosome mobilization. Our results suggest that accessibility profiles are inhomogeneous thanks to borders effects like protein binding. Remarkably, we show that the accessibility lifetime of DNA sequence is roughly doubled in the vicinity of borders as compared to its value in bulk regions far from the borders. These results are quantitatively interpreted as resulting from the confined diffusion of a large nucleosome depleted region.

  12. [Resolution of spatial constraints during replication of peripheral chromatin].

    PubMed

    Zhironkina, O A; Kurchashova, S Yu; Bratseva, A L; Cherepanynets, V D; Strelkova, O S; Belmont, A S; Kireev, I I

    2014-01-01

    Tight association of peripheral chromatin with nuclear lamina unavoidably creates topological constraints during replication. Additional complications are associated with high stability of lamina meshwork, which may hinder an access of replication factors to the sites of DNA synthesis in highly condensed template with limited mobility. In the current work we studied structural organization and dynamics of lamina as a function of replicative status of associated peripheral heterochromatin. The studies of molecular mobility of laminas at various stages of S-phase in vivo and using super-resolution microscopy showed no correlation between lamina dynamics and replicative status of attached heterochromatin. These data support the hypothesis that lamina-chromatin interactions during S-phase are regulated at the level of adapter proteins. Ultrastructural studies have demonstrated that temporal break of lamina-chromatin connections during replication does not cause noticeable spatial separation of replicating domains from nuclear periphery.

  13. Balancing chromatin remodeling and histone modifications in transcription

    PubMed Central

    Petty, Emily; Pillus, Lorraine

    2013-01-01

    Chromatin remodelers use the energy of ATP hydrolysis to reposition or evict nucleosomes or to replace canonical histones with histone variants. By regulating nucleosome dynamics, remodelers gate access to the underlying DNA for replication, repair, and transcription. Nucleosomes are subject to extensive post-translational modifications that can recruit regulatory proteins or alter the local chromatin structure. Just as extensive cross-talk has been observed between different histone post-translational modifications, there is growing evidence for both coordinated and antagonistic functional relationships between nucleosome remodeling and modifying machineries. Defining the combined functions of the complexes that alter nucleosome interactions, position, and stability is key to understanding processes that require access to DNA, particularly with growing appreciation of their contributions to human health and disease. Here, we highlight recent advances in the interactions between histone modifications and the ISWI and CHD1 chromatin remodelers from studies in budding yeast, fission yeast, flies, and mammalian cells, with a focus on yeast. PMID:23870137

  14. H4K44 Acetylation Facilitates Chromatin Accessibility during Meiosis.

    PubMed

    Hu, Jialei; Donahue, Greg; Dorsey, Jean; Govin, Jérôme; Yuan, Zuofei; Garcia, Benjamin A; Shah, Parisha P; Berger, Shelley L

    2015-12-01

    Meiotic recombination hotspots are associated with histone post-translational modifications and open chromatin. However, it remains unclear how histone modifications and chromatin structure regulate meiotic recombination. Here, we identify acetylation of histone H4 at Lys44 (H4K44ac) occurring on the nucleosomal lateral surface. We show that H4K44 is acetylated at pre-meiosis and meiosis and displays genome-wide enrichment at recombination hotspots in meiosis. Acetylation at H4K44 is required for normal meiotic recombination, normal levels of double-strand breaks (DSBs) during meiosis, and optimal sporulation. Non-modifiable H4K44R results in increased nucleosomal occupancy around DSB hotspots. Our results indicate that H4K44ac functions to facilitate chromatin accessibility favorable for normal DSB formation and meiotic recombination.

  15. Identifying different types of chromatin using Giemsa staining.

    PubMed

    Stockert, Juan C; Blázquez-Castro, Alfonso; Horobin, Richard W

    2014-01-01

    Mixtures of polychrome methylene blue-eosin Y (i.e., Giemsa stain) are widely used in biological staining. They induce a striking purple coloration of chromatin DNA (the Romanowsky-Giemsa effect), which contrasts with the blue-stained RNA-containing cytoplasm and nucleoli. After specific prestaining treatments that induce chromatin disorganization (giving banded or harlequin chromosomes), Giemsa staining produces a differential coloration, with C- and G-bands appearing in purple whereas remaining chromosome regions are blue. Unsubstituted (TT) and bromo-substituted (BT) DNAs also appear purple and blue, respectively. The same occurs in the case of BT and BB chromatids.In addition to discussing the use of Giemsa stain as a suitable method to reveal specific features of chromosome structure, some molecular processes and models are also described to explain Giemsa staining mechanisms of chromatin.

  16. Temporal Structure and Complexity Affect Audio-Visual Correspondence Detection

    PubMed Central

    Denison, Rachel N.; Driver, Jon; Ruff, Christian C.

    2013-01-01

    Synchrony between events in different senses has long been considered the critical temporal cue for multisensory integration. Here, using rapid streams of auditory and visual events, we demonstrate how humans can use temporal structure (rather than mere temporal coincidence) to detect multisensory relatedness. We find psychophysically that participants can detect matching auditory and visual streams via shared temporal structure for crossmodal lags of up to 200 ms. Performance on this task reproduced features of past findings based on explicit timing judgments but did not show any special advantage for perfectly synchronous streams. Importantly, the complexity of temporal patterns influences sensitivity to correspondence. Stochastic, irregular streams – with richer temporal pattern information – led to higher audio-visual matching sensitivity than predictable, rhythmic streams. Our results reveal that temporal structure and its complexity are key determinants for human detection of audio-visual correspondence. The distinctive emphasis of our new paradigms on temporal patterning could be useful for studying special populations with suspected abnormalities in audio-visual temporal perception and multisensory integration. PMID:23346067

  17. Stage structure alters how complexity affects stability of ecological networks

    USGS Publications Warehouse

    Rudolf, V.H.W.; Lafferty, Kevin D.

    2011-01-01

    Resolving how complexity affects stability of natural communities is of key importance for predicting the consequences of biodiversity loss. Central to previous stability analysis has been the assumption that the resources of a consumer are substitutable. However, during their development, most species change diets; for instance, adults often use different resources than larvae or juveniles. Here, we show that such ontogenetic niche shifts are common in real ecological networks and that consideration of these shifts can alter which species are predicted to be at risk of extinction. Furthermore, niche shifts reduce and can even reverse the otherwise stabilizing effect of complexity. This pattern arises because species with several specialized life stages appear to be generalists at the species level but act as sequential specialists that are hypersensitive to resource loss. These results suggest that natural communities are more vulnerable to biodiversity loss than indicated by previous analyses.

  18. Chromatin as active matter

    NASA Astrophysics Data System (ADS)

    Agrawal, Ankit; Ganai, Nirmalendu; Sengupta, Surajit; Menon, Gautam I.

    2017-01-01

    Active matter models describe a number of biophysical phenomena at the cell and tissue scale. Such models explore the macroscopic consequences of driving specific soft condensed matter systems of biological relevance out of equilibrium through ‘active’ processes. Here, we describe how active matter models can be used to study the large-scale properties of chromosomes contained within the nuclei of human cells in interphase. We show that polymer models for chromosomes that incorporate inhomogeneous activity reproduce many general, yet little understood, features of large-scale nuclear architecture. These include: (i) the spatial separation of gene-rich, low-density euchromatin, predominantly found towards the centre of the nucleus, vis a vis. gene-poor, denser heterochromatin, typically enriched in proximity to the nuclear periphery, (ii) the differential positioning of individual gene-rich and gene-poor chromosomes, (iii) the formation of chromosome territories, as well as (iv), the weak size-dependence of the positions of individual chromosome centres-of-mass relative to the nuclear centre that is seen in some cell types. Such structuring is induced purely by the combination of activity and confinement and is absent in thermal equilibrium. We systematically explore active matter models for chromosomes, discussing how our model can be generalized to study variations in chromosome positioning across different cell types. The approach and model we outline here represent a preliminary attempt towards a quantitative, first-principles description of the large-scale architecture of the cell nucleus.

  19. Chromatin dynamics during interphase explored by single particle tracking

    PubMed Central

    Levi, Valeria; Gratton, Enrico

    2009-01-01

    Our view of the structure and function of the interphase nucleus has drastically changed in the last years. It is now widely accepted that the nucleus is a well organized and highly compartmentalized organelle and that this organization is intimately related to nuclear function. In this context, chromatin -initially considered a randomly entangled polymer- has also been shown to be structurally organized in interphase and its organization was found to be very important to gene regulation. Relevant and not completely answered questions are how chromatin organization is achieved and what mechanisms are responsible for changes in the positions of chromatin loci in the nucleus. A significant advance in the field resulted from tagging chromosome sites with bacterial operator sequences, and visualizing these tags using green fluorescent protein fused with the appropriate repressor protein. Simultaneously, fluorescence imaging techniques significantly evolved during the last years allowing the observation of the time evolution of processes in living specimens. In this context, the motion of the tagged locus was observed and analyzed to extract quantitative information regarding its dynamics. This review focuses on recent advances in our understanding of chromatin dynamics in interphase with the emphasis placed on the information obtained from single particle tracking (SPT) experiments. We introduce the basis of SPT methods and trajectories analysis, and summarize what has been learnt by using this new technology in the context of chromatin dynamics. Finally, we briefly describe a method of SPT in a two-photon excitation microscope that has several advantages over methods based on conventional microscopy and review the information obtained by using this novel approach to study chromatin dynamics. PMID:18461483

  20. Chromatin dynamics during interphase explored by single-particle tracking.

    PubMed

    Levi, Valeria; Gratton, Enrico

    2008-01-01

    Our view of the structure and function of the interphase nucleus has changed drastically in recent years. It is now widely accepted that the nucleus is a well organized and highly compartmentalized organelle and that this organization is intimately related to nuclear function. In this context, chromatin-initially considered a randomly entangled polymer-has also been shown to be structurally organized in interphase and its organization was found to be very important to gene regulation. Relevant and not completely answered questions are how chromatin organization is achieved and what mechanisms are responsible for changes in the positions of chromatin loci in the nucleus. A significant advance in the field resulted from tagging chromosome sites with bacterial operator sequences, and visualizing these tags using green fluorescent protein fused with the appropriate repressor protein. Simultaneously, fluorescence imaging techniques evolved significantly during recent years, allowing observation of the time evolution of processes in living specimens. In this context, the motion of the tagged locus was observed and analyzed to extract quantitative information regarding its dynamics. This review focuses on recent advances in our understanding of chromatin dynamics in interphase with the emphasis placed on the information obtained from single-particle tracking (SPT) experiments. We introduce the basis of SPT methods and trajectory analysis, and summarize what has been learnt by using this new technology in the context of chromatin dynamics. Finally, we briefly describe a method of SPT in a two-photon excitation microscope that has several advantages over methods based on conventional microscopy and review the information obtained using this novel approach to study chromatin dynamics.

  1. Genome-wide chromatin remodeling modulates the Alu heat shock response.

    PubMed

    Kim, C; Rubin, C M; Schmid, C W

    2001-10-03

    During heat shock recovery in Hela cells, the level of Alu RNA transiently increases with kinetics that approximately parallel the transient expression of heat shock protein mRNAs. Coincidentally, there is a transient increase in the accessibility of Alu chromatin to restriction enzyme cleavage suggesting that an opening and re-closing of chromatin regulates the Alu stress response. Similar changes occur in alpha satellite and LINE1 chromatin showing that heat shock induces a genome-wide remodeling of chromatin structure which is independent of transcription. The increased accessibility of restriction sites within these repetitive sequences is inconsistent with a simple lengthening of the nucleosome linker region but instead suggests a scrambling of nucleosome positions. Chromatin structure and its dynamics account for many of the principal features of SINE transcriptional regulation potentially providing a functional rationale for the dispersion and high copy number of SINEs.

  2. On the mechanochemical machinery underlying chromatin remodeling

    NASA Astrophysics Data System (ADS)

    Yusufaly, Tahir I.

    This dissertation discuss two recent efforts, via a unique combination of structural bioinformatics and density functional theory, to unravel some of the details concerning how molecular machinery within the eukaryotic cell nucleus controls chromatin architecture. The first, a study of the 5-methylation of cytosine in 5'-CG-3' : 5'-CG-3' base-pair steps, reveals that the methyl groups roughen the local elastic energy landscape of the DNA. This enhances the probability of the canonical B-DNA structure transitioning into the undertwisted A-like and overtwisted C-like forms seen in nucleosomes, or looped segments of DNA bound to histones. The second part focuses on the formation of salt bridges between arginine residues in histones and phosphate groups on the DNA backbone. The arginine residues are ob- served to apply a tunable mechanical load to the backbone, enabling precision-controlled activation of DNA deformations.

  3. Zinc-silicon interactions influencing sperm chromatin integrity and testicular cell development in the rat as measured by flow cytometry.

    PubMed

    Evenson, D P; Emerick, R J; Jost, L K; Kayongo-Male, H; Stewart, S R

    1993-04-01

    Flow-cytometric procedures were used to determine effects of dietary Zn and Si variations on rat testicular cell development, including integrity of caudal epididymal sperm chromatin structure defined as the susceptibility of DNA to denaturation in situ. Concentrations of 4 (deficient), 12 (adequate), and 500 (excessive) mg of Zn/kg of diet were used with Si concentrations of 0 (low), 540 (medium), and 2,700 (high) mg/kg of diet in a 3 x 3 factorial arrangement. Three-week-old Sprague-Dawley male rats were fed the experimental diets for 8 wk. Rats fed the Zn-deficient/Si-low diet demonstrated significant deviations in the ratio of testicular cell types present, including a reduction of S phase and total haploid cells. Furthermore, approximately 50% of epididymal sperm had a significant decrease in resistance to DNA denaturation in situ. In the Zn-deficient/Si-medium treatment, the effects of Si on animal and testicular growth, distribution of testicular cell types, and sperm chromatin structure integrity were quite similar to the effects of the Zn-adequate diets. A toxic effect of Zn on sperm chromatin structure integrity observed in the Zn-excess/Si-medium treatment seemed to be counteracted by Si in the Zn-excess/Si-high treatment. Silicon at medium and high levels seems to affect Zn metabolism through potentiation and antagonistic reactions, respectively. Zinc deficiency likely disrupts the normal sperm chromatin quaternary structure in which Zn plays a role by providing stability and resistance to DNA denaturation in situ.

  4. Dehydration affects brain structure and function in healthy adolescents.

    PubMed

    Kempton, Matthew J; Ettinger, Ulrich; Foster, Russell; Williams, Steven C R; Calvert, Gemma A; Hampshire, Adam; Zelaya, Fernando O; O'Gorman, Ruth L; McMorris, Terry; Owen, Adrian M; Smith, Marcus S

    2011-01-01

    It was recently observed that dehydration causes shrinkage of brain tissue and an associated increase in ventricular volume. Negative effects of dehydration on cognitive performance have been shown in some but not all studies, and it has also been reported that an increased perceived effort may be required following dehydration. However, the effects of dehydration on brain function are unknown. We investigated this question using functional magnetic resonance imaging (fMRI) in 10 healthy adolescents (mean age = 16.8, five females). Each subject completed a thermal exercise protocol and nonthermal exercise control condition in a cross-over repeated measures design. Subjects lost more weight via perspiration in the thermal exercise versus the control condition (P < 0.0001), and lateral ventricle enlargement correlated with the reduction in body mass (r = 0.77, P = 0.01). Dehydration following the thermal exercise protocol led to a significantly stronger increase in fronto-parietal blood-oxygen-level-dependent (BOLD) response during an executive function task (Tower of London) than the control condition, whereas cerebral perfusion during rest was not affected. The increase in BOLD response after dehydration was not paralleled by a change in cognitive performance, suggesting an inefficient use of brain metabolic activity following dehydration. This pattern indicates that participants exerted a higher level of neuronal activity in order to achieve the same performance level. Given the limited availability of brain metabolic resources, these findings suggest that prolonged states of reduced water intake may adversely impact executive functions such as planning and visuo-spatial processing.

  5. Chromatin signatures of the Drosophila replication program.

    PubMed

    Eaton, Matthew L; Prinz, Joseph A; MacAlpine, Heather K; Tretyakov, George; Kharchenko, Peter V; MacAlpine, David M

    2011-02-01

    DNA replication initiates from thousands of start sites throughout the Drosophila genome and must be coordinated with other ongoing nuclear processes such as transcription to ensure genetic and epigenetic inheritance. Considerable progress has been made toward understanding how chromatin modifications regulate the transcription program; in contrast, we know relatively little about the role of the chromatin landscape in defining how start sites of DNA replication are selected and regulated. Here, we describe the Drosophila replication program in the context of the chromatin and transcription landscape for multiple cell lines using data generated by the modENCODE consortium. We find that while the cell lines exhibit similar replication programs, there are numerous cell line-specific differences that correlate with changes in the chromatin architecture. We identify chromatin features that are associated with replication timing, early origin usage, and ORC binding. Primary sequence, activating chromatin marks, and DNA-binding proteins (including chromatin remodelers) contribute in an additive manner to specify ORC-binding sites. We also generate accurate and predictive models from the chromatin data to describe origin usage and strength between cell lines. Multiple activating chromatin modifications contribute to the function and relative strength of replication origins, suggesting that the chromatin environment does not regulate origins of replication as a simple binary switch, but rather acts as a tunable rheostat to regulate replication initiation events.

  6. Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation

    SciTech Connect

    Persson, Jenna; Ekwall, Karl

    2010-05-01

    Eukaryotic DNA is packaged around octamers of histone proteins into nucleosomes, the basic unit of chromatin. In addition to enabling meters of DNA to fit within the confines of a nucleus, the structure of chromatin has functional implications for cell identity. Covalent chemical modifications to the DNA and to histones, histone variants, ATP-dependent chromatin remodelers, small noncoding RNAs and the level of chromatin compaction all contribute to chromosomal structure and to the activity or silencing of genes. These chromatin-level alterations are defined as epigenetic when they are heritable from mother to daughter cell. The great diversity of epigenomes that can arise from a single genome permits a single, totipotent cell to generate the hundreds of distinct cell types found in humans. Two recent studies in mouse and in fly have highlighted the importance of Chd1 chromatin remodelers for maintaining an open, active chromatin state. Based on evidence from fission yeast as a model system, we speculate that Chd1 remodelers are involved in the disassembly of nucleosomes at promoter regions, thus promoting active transcription and open chromatin. It is likely that these nucleosomes are specifically marked for disassembly by the histone variant H2A.Z.

  7. Insulation of the Chicken β-Globin Chromosomal Domain from a Chromatin-Condensing Protein, MENT

    PubMed Central

    Istomina, Natalia E.; Shushanov, Sain S.; Springhetti, Evelyn M.; Karpov, Vadim L.; A. Krasheninnikov, Igor; Stevens, Kimberly; Zaret, Kenneth S.; Singh, Prim B.; Grigoryev, Sergei A.

    2003-01-01

    Active genes are insulated from developmentally regulated chromatin condensation in terminally differentiated cells. We mapped the topography of a terminal stage-specific chromatin-condensing protein, MENT, across the active chicken β-globin domain. We observed two sharp transitions of MENT concentration coinciding with the β-globin boundary elements. The MENT distribution profile was opposite to that of acetylated core histones but correlated with that of histone H3 dimethylated at lysine 9 (H3me2K9). Ectopic MENT expression in NIH 3T3 cells caused a large-scale and specific remodeling of chromatin marked by H3me2K9. MENT colocalized with H3me2K9 both in chicken erythrocytes and NIH 3T3 cells. Mutational analysis of MENT and experiments with deacetylase inhibitors revealed the essential role of the reaction center loop domain and an inhibitory affect of histone hyperacetylation on the MENT-induced chromatin remodeling in vivo. In vitro, the elimination of the histone H3 N-terminal peptide containing lysine 9 by trypsin blocked chromatin self-association by MENT, while reconstitution with dimethylated but not acetylated N-terminal domain of histone H3 specifically restored chromatin self-association by MENT. We suggest that histone H3 modification at lysine 9 directly regulates chromatin condensation by recruiting MENT to chromatin in a fashion that is spatially constrained from active genes by gene boundary elements and histone hyperacetylation. PMID:12944473

  8. Insulation of the chicken beta-globin chromosomal domain from a chromatin-condensing protein, MENT.

    PubMed

    Istomina, Natalia E; Shushanov, Sain S; Springhetti, Evelyn M; Karpov, Vadim L; Krasheninnikov, Igor A; Stevens, Kimberly; Zaret, Kenneth S; Singh, Prim B; Grigoryev, Sergei A

    2003-09-01

    Active genes are insulated from developmentally regulated chromatin condensation in terminally differentiated cells. We mapped the topography of a terminal stage-specific chromatin-condensing protein, MENT, across the active chicken beta-globin domain. We observed two sharp transitions of MENT concentration coinciding with the beta-globin boundary elements. The MENT distribution profile was opposite to that of acetylated core histones but correlated with that of histone H3 dimethylated at lysine 9 (H3me2K9). Ectopic MENT expression in NIH 3T3 cells caused a large-scale and specific remodeling of chromatin marked by H3me2K9. MENT colocalized with H3me2K9 both in chicken erythrocytes and NIH 3T3 cells. Mutational analysis of MENT and experiments with deacetylase inhibitors revealed the essential role of the reaction center loop domain and an inhibitory affect of histone hyperacetylation on the MENT-induced chromatin remodeling in vivo. In vitro, the elimination of the histone H3 N-terminal peptide containing lysine 9 by trypsin blocked chromatin self-association by MENT, while reconstitution with dimethylated but not acetylated N-terminal domain of histone H3 specifically restored chromatin self-association by MENT. We suggest that histone H3 modification at lysine 9 directly regulates chromatin condensation by recruiting MENT to chromatin in a fashion that is spatially constrained from active genes by gene boundary elements and histone hyperacetylation.

  9. Functional characterization of open chromatin in bidirectional promoters of rice

    PubMed Central

    Fang, Yuan; Wang, Ximeng; Wang, Lei; Pan, Xiucai; Xiao, Jin; Wang, Xiu-e; Wu, Yufeng; Zhang, Wenli

    2016-01-01

    Bidirectional gene pairs tend to be highly coregulated and function in similar biological processes in eukaryotic genomes. Structural features and functional consequences of bidirectional promoters (BDPs) have received considerable attention among diverse species. However, the underlying mechanisms responsible for the bidirectional transcription and coexpression of BDPs remain poorly understood in plants. In this study, we integrated DNase-seq, RNA-seq, ChIP-seq and MNase-seq data and investigated the effect of physical DNase I hypersensitive site (DHS) positions on the transcription of rice BDPs. We found that the physical position of a DHS relative to the TSS of bidirectional gene pairs can affect the expression of the corresponding genes: the closer a DHS is to the TSS, the higher is the expression level of the genes. Most importantly, we observed that the distribution of DHSs plays a significant role in the regulation of transcription and the coexpression of gene pairs, which are possibly mediated by orchestrating the positioning of histone marks and canonical nucleosomes around BDPs. Our results demonstrate that the combined actions of chromatin structures with DHSs, which contain functional cis-elements for interaction with transcriptional machinery, may play an important role in the regulation of the bidirectional transcription or coexpression in rice BDPs. Our findings may help to enhance the understanding of DHSs in the regulation of bidirectional gene pairs. PMID:27558448

  10. Conformational change in the chromatin remodelling protein MENT.

    PubMed

    Ong, Poh Chee; Golding, Sarah J; Pearce, Mary C; Irving, James A; Grigoryev, Sergei A; Pike, Debbie; Langendorf, Christopher G; Bashtannyk-Puhalovich, Tanya A; Bottomley, Stephen P; Whisstock, James C; Pike, Robert N; McGowan, Sheena

    2009-01-01

    Chromatin condensation to heterochromatin is a mechanism essential for widespread suppression of gene transcription, and the means by which a chromatin-associated protein, MENT, induces a terminally differentiated state in cells. MENT, a protease inhibitor of the serpin superfamily, is able to undergo conformational change in order to effect enzyme inhibition. Here, we sought to investigate whether conformational change in MENT is 'fine-tuned' in the presence of a bound ligand in an analogous manner to other serpins, such as antithrombin where such movements are reflected by a change in intrinsic tryptophan fluorescence. Using this technique, MENT was found to undergo structural shifts in the presence of DNA packaged into nucleosomes, but not naked DNA. The contribution of the four Trp residues of MENT to the fluorescence change was mapped using deconvolution analysis of variants containing single Trp to Phe mutations. The analysis indicated that the overall emission spectra is dominated by a helix-H tryptophan, but this residue did not dominate the conformational change in the presence of chromatin, suggesting that other Trp residues contained in the A-sheet and RCL regions contribute to the conformational change. Mutagenesis revealed that the conformational change requires the presence of the DNA-binding 'M-loop' and D-helix of MENT, but is independent of the protease specificity determining 'reactive centre loop'. The D-helix mutant of MENT, which is unable to condense chromatin, does not undergo a conformational change, despite being able to bind chromatin, indicating that the conformational change may contribute to chromatin condensation by the serpin.

  11. Proteomics of a fuzzy organelle: interphase chromatin

    PubMed Central

    Kustatscher, Georg; Hégarat, Nadia; Wills, Karen L H; Furlan, Cristina; Bukowski-Wills, Jimi-Carlo; Hochegger, Helfrid; Rappsilber, Juri

    2014-01-01

    Chromatin proteins mediate replication, regulate expression, and ensure integrity of the genome. So far, a comprehensive inventory of interphase chromatin has not been determined. This is largely due to its heterogeneous and dynamic composition, which makes conclusive biochemical purification difficult, if not impossible. As a fuzzy organelle, it defies classical organellar proteomics and cannot be described by a single and ultimate list of protein components. Instead, we propose a new approach that provides a quantitative assessment of a protein's probability to function in chromatin. We integrate chromatin composition over a range of different biochemical and biological conditions. This resulted in interphase chromatin probabilities for 7635 human proteins, including 1840 previously uncharacterized proteins. We demonstrate the power of our large-scale data-driven annotation during the analysis of cyclin-dependent kinase (CDK) regulation in chromatin. Quantitative protein ontologies may provide a general alternative to list-based investigations of organelles and complement Gene Ontology. PMID:24534090

  12. Epigenetic regulation and chromatin remodeling in learning and memory

    PubMed Central

    Kim, Somi; Kaang, Bong-Kiun

    2017-01-01

    Understanding the underlying mechanisms of memory formation and maintenance has been a major goal in the field of neuroscience. Memory formation and maintenance are tightly controlled complex processes. Among the various processes occurring at different levels, gene expression regulation is especially crucial for proper memory processing, as some genes need to be activated while some genes must be suppressed. Epigenetic regulation of the genome involves processes such as DNA methylation and histone post-translational modifications. These processes edit genomic properties or the interactions between the genome and histone cores. They then induce structural changes in the chromatin and lead to transcriptional changes of different genes. Recent studies have focused on the concept of chromatin remodeling, which consists of 3D structural changes in chromatin in relation to gene regulation, and is an important process in learning and memory. In this review, we will introduce three major epigenetic processes involved in memory regulation: DNA methylation, histone methylation and histone acetylation. We will also discuss general mechanisms of long-term memory storage and relate the epigenetic control of learning and memory to chromatin remodeling. Finally, we will discuss how epigenetic mechanisms can contribute to the pathologies of neurological disorders and cause memory-related symptoms. PMID:28082740

  13. Chromatin Dynamics during DNA Repair Revealed by Pair Correlation Analysis of Molecular Flow in the Nucleus

    PubMed Central

    Hinde, Elizabeth; Kong, Xiangduo; Yokomori, Kyoko; Gratton, Enrico

    2014-01-01

    Chromatin dynamics modulate DNA repair factor accessibility throughout the DNA damage response. The spatiotemporal scale upon which these dynamics occur render them invisible to live cell imaging. Here we present a believed novel assay to monitor the in vivo structural rearrangements of chromatin during DNA repair. By pair correlation analysis of EGFP molecular flow into chromatin before and after damage, this assay measures millisecond variations in chromatin compaction with submicron resolution. Combined with laser microirradiation we employ this assay to monitor the real-time accessibility of DNA at the damage site. We find from comparison of EGFP molecular flow with a molecule that has an affinity toward double-strand breaks (Ku-EGFP) that DNA damage induces a transient decrease in chromatin compaction at the damage site and an increase in compaction to adjacent regions, which together facilitate DNA repair factor recruitment to the lesion with high spatiotemporal control. PMID:24988341

  14. A Temporal Chromatin Signature in Human Embryonic Stem Cells Identifies Regulators of Cardiac Development

    PubMed Central

    Paige, Sharon L.; Thomas, Sean; Stoick-Cooper, Cristi L.; Wang, Hao; Maves, Lisa; Sandstrom, Richard; Pabon, Lil; Reinecke, Hans; Pratt, Gabriel; Keller, Gordon; Moon, Randall T.; Stamatoyannopoulos, John; Murry, Charles E.

    2012-01-01

    Summary Directed differentiation of human embryonic stem cells (ESCs) into cardiovascular cells provides a model for studying molecular mechanisms of human cardiovascular development. Though it is known that chromatin modification patterns in ESCs differ markedly from those in lineage-committed progenitors and differentiated cells, the temporal dynamics of chromatin alterations during differentiation along a defined lineage have not been studied. We show that differentiation of human ESCs into cardiovascular cells is accompanied by programmed temporal alterations in chromatin structure that distinguish key regulators of cardiovascular development from other genes. We used this temporal chromatin signature to identify regulators of cardiac development, including the homeobox gene MEIS2. We demonstrate using the zebrafish model that MEIS2 is critical for proper heart tube formation and subsequent cardiac looping. Temporal chromatin signatures should be broadly applicable to other models of stem cell differentiation to identify regulators and provide key insights into major developmental decisions. PMID:22981225

  15. Gene activation and cell fate control in plants: a chromatin perspective.

    PubMed

    Engelhorn, Julia; Blanvillain, Robert; Carles, Cristel C

    2014-08-01

    In plants, environment-adaptable organogenesis extends throughout the lifespan, and iterative development requires repetitive rounds of activation and repression of several sets of genes. Eukaryotic genome compaction into chromatin forms a physical barrier for transcription; therefore, induction of gene expression requires alteration in chromatin structure. One of the present great challenges in molecular and developmental biology is to understand how chromatin is brought from a repressive to permissive state on specific loci and in a very specific cluster of cells, as well as how this state is further maintained and propagated through time and cell division in a cell lineage. In this review, we report recent discoveries implementing our knowledge on chromatin dynamics that modulate developmental gene expression. We also discuss how new data sets highlight plant specificities, likely reflecting requirement for a highly dynamic chromatin.

  16. Chromatin: Its history, current research, and the seminal researchers and their philosophy.

    PubMed

    Deichmann, Ute

    2015-01-01

    The concept of chromatin as a complex of nucleic acid and proteins in the cell nucleus was developed by cytologists and biochemists in the late 19th century. It was the starting point for biochemical research on DNA and nuclear proteins. Although interest in chromatin declined rapidly at the beginning of the 20th century, a few decades later a new focus on chromatin emerged, which was not only related to its structure, but also to its function in gene regulatory processes in the development of higher organisms. Since the late 20th century, research on chromatin modifications has also been conducted under the label of epigenetics. This article highlights the major phases of chromatin research until the present time and introduces major investigators and their scientific and philosophical outlooks.

  17. Binding of microtubule protein to DNA and chromatin: possibility of simultaneous linkage of microtubule to nucleic and assembly of the microtubule structure.

    PubMed Central

    Villasante, A; Corces, V G; Manso-Martínez, R; Avila, J

    1981-01-01

    Microtubule protein binds to DNA through microtubule associated polypeptides (MAPs). Among MAPs there is one high molecular weight polypeptide (MAP2) which interacts with DNA fundamentally through certain polynucleotide sequences. This interaction is not affected by the presence of histones and other chromosomal proteins. DNA can associate to assembled microtubules and when a determinate DNA/protein ratio is reached the nucleic acid behaves as a microtubule associated molecule. The nucleic acid fragments which preferentially bind to microtubules have been isolated and characterized. These fragments contain DNA regions enriched in repetitive sequences that hybridizes preferentially to the pericentromeric zone of metaphase chromosomes. These results give further support to the model of interaction microtubule-chromosome based upon the mediator function of the microtubule associated proteins. Images PMID:7232207

  18. Chromatin dynamics in kidney development and function.

    PubMed

    Bechtel-Walz, Wibke; Huber, Tobias B

    2014-06-01

    Epigenetic mechanisms are fundamental key features of developing cells connecting developmental regulatory factors to chromatin modification. Changes in the environment during renal development can have long-lasting effects on the permanent tissue structure and the level of expression of important functional genes. These changes are believed to contribute to kidney disease occurrence and progression. Although the mechanisms of early patterning and cell fate have been well described for renal development, little is known about associated epigenetic modifications and their impact on how genes interact to specify the renal epithelial cells of nephrons and how this specification is relevant to maintaining normal renal function. A better understanding of the renal cell-specific epigenetic modifications and the interaction of different cell types to form this highly complex organ will not only help to better understand developmental defects and early loss of kidney function in children, but also help to understand and improve chronic disease progression, cell regeneration and renal aging.

  19. Chromatin remodeling: from transcription to cancer.

    PubMed

    Yaniv, Moshe

    2014-09-01

    In this short review article, I have tried to trace the path that led my laboratory from the early studies of the structure of papova minichromosomes and transcription control to the investigation of chromatin remodeling complexes of the SWI/SNF family. I discuss briefly the genetic and biochemical studies that lead to the discovery of the SWI/SNF complex in yeast and drosophila and summarize some of the studies on the developmental role of the murine complex. The discovery of the tumor suppressor function of the SNF5/INI1/SMARCB1 gene in humans and the identification of frequent mutations in other subunits of this complex in different human tumors opened a fascinating field of research on this epigenetic regulator. The hope is to better understand tumor development and to develop novel treatments.

  20. Mechanism of the Interaction of Plant Alkaloid Vincristine with DNA and Chromatin: Spectroscopic Study

    PubMed Central

    Mohammadgholi, Azadeh; Fallah, Sodabeh

    2013-01-01

    Chromatin has been successfully used as a tool for the study of genome function in cancers. Vincristine as a vinca alkaloid anticancer drug exerts its action by binding to tubulins. In this study the effect of vincristine on DNA and chromatin was investigated employing various spectroscopy techniques as well as thermal denaturation, equilibrium dialysis and DNA–cellulose affinity. The results showed that the binding of vincristine to DNA and chromatin reduced absorbance at both 260 and 210 nm with different extent. Chromopheres of chromatin quenched with the drug and fluorescence emission intensity decreased in a dose-dependent manner. Chromatin exhibited higher emission intensity changes compared to DNA. Upon addition of vincristine, Tm of DNA and chromatin exhibited hypochromicity without any shift in Tm. The binding of the drug induced structural changes in both positive and negative extremes of circular dichroism spectra and exhibited a cooperative binding pattern as illustrated by a positive slope observed in low r values of the binding isotherm. Vincristine showed higher binding affinity to double stranded DNA compared to single stranded one. The results suggest that vincristine binds with higher affinity to chromatin compared to DNA. The interaction is through intercalation along with binding to phosphate sugar backbone and histone proteins play fundamental role in this process. The binding of the drug to chromatin opens a new insight into vincristine action in the cell nucleus. PMID:23590199

  1. Mechanism of the interaction of plant alkaloid vincristine with DNA and chromatin: spectroscopic study.

    PubMed

    Mohammadgholi, Azadeh; Rabbani-Chadegani, Azra; Fallah, Sodabeh

    2013-05-01

    Chromatin has been successfully used as a tool for the study of genome function in cancers. Vincristine as a vinca alkaloid anticancer drug exerts its action by binding to tubulins. In this study the effect of vincristine on DNA and chromatin was investigated employing various spectroscopy techniques as well as thermal denaturation, equilibrium dialysis and DNA-cellulose affinity. The results showed that the binding of vincristine to DNA and chromatin reduced absorbance at both 260 and 210 nm with different extent. Chromopheres of chromatin quenched with the drug and fluorescence emission intensity decreased in a dose-dependent manner. Chromatin exhibited higher emission intensity changes compared to DNA. Upon addition of vincristine, Tm of DNA and chromatin exhibited hypochromicity without any shift in Tm. The binding of the drug induced structural changes in both positive and negative extremes of circular dichroism spectra and exhibited a cooperative binding pattern as illustrated by a positive slope observed in low r values of the binding isotherm. Vincristine showed higher binding affinity to double stranded DNA compared to single stranded one. The results suggest that vincristine binds with higher affinity to chromatin compared to DNA. The interaction is through intercalation along with binding to phosphate sugar backbone and histone proteins play fundamental role in this process. The binding of the drug to chromatin opens a new insight into vincristine action in the cell nucleus.

  2. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing

    NASA Astrophysics Data System (ADS)

    Lesne, Annick; Bécavin, Christophe; Victor, Jean–Marc

    2012-02-01

    Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity.

  3. Chromatin conformation in living cells: support for a zig-zag model of the 30 nm chromatin fiber

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Holley, W. R.; Mian, I. S.; Chatterjee, A.

    1998-01-01

    A new method was used to probe the conformation of chromatin in living mammalian cells. The method employs ionizing radiation and is based on the concept that such radiation induces correlated breaks in DNA strands that are in spatial proximity. Human dermal fibroblasts in G0 phase of the cell cycle and Chinese hamster ovary cells in mitosis were irradiated by X-rays or accelerated ions. Following lysis of the cells, DNA fragments induced by correlated breaks were end-labeled and separated according to size on denaturing polyacrylamide gels. A characteristic peak was obtained for a fragment size of 78 bases, which is the size that corresponds to one turn of DNA around the nucleosome. Additional peaks between 175 and 450 bases reflect the relative position of nearest-neighbor nucleosomes. Theoretical calculations that simulate the indirect and direct effect of radiation on DNA demonstrate that the fragment size distributions are closely related to the chromatin structure model used. Comparison of the experimental data with theoretical results support a zig-zag model of the chromatin fiber rather than a simple helical model. Thus, radiation-induced damage analysis can provide information on chromatin structure in the living cell. Copyright 1998 Academic Press.

  4. Nuclear Phosphoinositide Regulation of Chromatin.

    PubMed

    Hamann, Bree L; Blind, Raymond D

    2017-03-03

    Phospholipid signaling has clear connections to a wide array of cellular processes, particularly in gene expression and in controlling the chromatin biology of cells. However, most of the work elucidating how phospholipid signaling pathways contribute to cellular physiology have studied cytoplasmic membranes, while relatively little attention has been paid to the role of phospholipid signaling in the nucleus. Recent work from several labs has shown that nuclear phospholipid signaling can have important roles that are specific to this cellular compartment. This review focuses on the nuclear phospholipid functions and the activities of phospholipid signaling enzymes that regulate metazoan chromatin and gene expression. In particular, we highlight the roles that nuclear phosphoinositides play in several nuclear-driven physiological processes, such as differentiation, proliferation, and gene expression. Taken together, the recent discovery of several specifically nuclear phospholipid functions could have dramatic impact on our understanding of the fundamental mechanisms that enable tight control of cellular physiology. This article is protected by copyright. All rights reserved.

  5. Monitoring of an hydraulic structure affected by ASR: A case study

    SciTech Connect

    Rivard, Patrice; Ballivy, Gerard; Gravel, Clermont; Saint-Pierre, Francois

    2010-04-15

    Relevant and effective instruments and techniques must be selected for monitoring hydraulic structures affected by Alkali-Silica Reaction ('ASR'). A program aiming at assessing the condition of a hydraulic structure affected by ASR is presented in this paper. The structure has been exhibiting signs of ASR for more than 30 years and shows various levels of damage. The program encompassed different components, consisting of: (1) stress measurement, (2) evaluation of concrete condition by nondestructive methods without drilling (seismic tomography), (3) the evaluation of the mechanical, physical and petrographic properties of the concrete determined from cores recovered from full-length boreholes. The results of this case study suggest that ASR may generate relatively little damage in structures and that the concrete mechanical properties do not seem to be significantly affected despite high expansion levels measured in this structure. A major crack was localized with the seismic tomography. The monitoring program will be used to follow the development of ASR in the structure.

  6. Loss of Tau protein affects the structure, transcription and repair of neuronal pericentromeric heterochromatin

    PubMed Central

    Mansuroglu, Zeyni; Benhelli-Mokrani, Houda; Marcato, Vasco; Sultan, Audrey; Violet, Marie; Chauderlier, Alban; Delattre, Lucie; Loyens, Anne; Talahari, Smail; Bégard, Séverine; Nesslany, Fabrice; Colin, Morvane; Souès, Sylvie; Lefebvre, Bruno; Buée, Luc; Galas, Marie-Christine; Bonnefoy, Eliette

    2016-01-01

    Pericentromeric heterochromatin (PCH) gives rise to highly dense chromatin sub-structures rich in the epigenetic mark corresponding to the trimethylated form of lysine 9 of histone H3 (H3K9me3) and in heterochromatin protein 1α (HP1α), which regulate genome expression and stability. We demonstrate that Tau, a protein involved in a number of neurodegenerative diseases including Alzheimer’s disease (AD), binds to and localizes within or next to neuronal PCH in primary neuronal cultures from wild-type mice. Concomitantly, we show that the clustered distribution of H3K9me3 and HP1α, two hallmarks of PCH, is disrupted in neurons from Tau-deficient mice (KOTau). Such altered distribution of H3K9me3 that could be rescued by overexpressing nuclear Tau protein was also observed in neurons from AD brains. Moreover, the expression of PCH non-coding RNAs, involved in PCH organization, was disrupted in KOTau neurons that displayed an abnormal accumulation of stress-induced PCH DNA breaks. Altogether, our results demonstrate a new physiological function of Tau in directly regulating neuronal PCH integrity that appears disrupted in AD neurons. PMID:27605042

  7. Chromatin Remodeling Mediated by Drosophila GAGA Factor and ISWI Activates fushi tarazu Gene Transcription In Vitro

    PubMed Central

    Okada, Masahiro; Hirose, Susumu

    1998-01-01

    GAGA factor is known to remodel the chromatin structure in concert with nucleosome-remodeling factor NURF in a Drosophila embryonic S150 extract. The promoter region of the Drosophila fushi tarazu (ftz) gene carries several binding sites for GAGA factor. Both the GAGA factor-binding sites and GAGA factor per se are necessary for the proper expression of ftz in vivo. We observed transcriptional activation of the ftz gene when a preassembled chromatin template was incubated with GAGA factor and the S150 extract. The chromatin structure within the ftz promoter was specifically disrupted by incubation of the preassembled chromatin with GAGA factor and the S150 extract. Both transcriptional activation and chromatin disruption were blocked by an antiserum raised against ISWI or by base substitutions in the GAGA factor-binding sites in the ftz promoter region. These results demonstrate that GAGA factor- and ISWI-mediated disruption of the chromatin structure within the promoter region of ftz activates transcription on the chromatin template. PMID:9566866

  8. Validation of Temperature Histories for Structural Steel Welds Using Estimated Heat-Affected-Zone Edges

    DTIC Science & Technology

    2016-10-12

    Estimated Heat -Affected-Zone Edges October 12, 2016 Approved for public release; distribution is unlimited. S.G. LambrakoS Center for Computational Materials...PAGES 17. LIMITATION OF ABSTRACT Validation of Temperature Histories for Structural Steel Welds Using Estimated Heat -Affected-Zone Edges S.G. Lambrakos...experimentally measured estimates of the heat -affected-zone edge to examine the consistency of calculated temperature histories for steel welds. 12-10-2016 NRL

  9. The Internal Structure of Positive and Negative Affect: A Confirmatory Factor Analysis of the PANAS

    ERIC Educational Resources Information Center

    Tuccitto, Daniel E.; Giacobbi, Peter R., Jr.; Leite, Walter L.

    2010-01-01

    This study tested five confirmatory factor analytic (CFA) models of the Positive Affect Negative Affect Schedule (PANAS) to provide validity evidence based on its internal structure. A sample of 223 club sport athletes indicated their emotions during the past week. Results revealed that an orthogonal two-factor CFA model, specifying error…

  10. Lysosome-mediated processing of chromatin in senescence.

    PubMed

    Ivanov, Andre; Pawlikowski, Jeff; Manoharan, Indrani; van Tuyn, John; Nelson, David M; Rai, Taranjit Singh; Shah, Parisha P; Hewitt, Graeme; Korolchuk, Viktor I; Passos, Joao F; Wu, Hong; Berger, Shelley L; Adams, Peter D

    2013-07-08

    Cellular senescence is a stable proliferation arrest, a potent tumor suppressor mechanism, and a likely contributor to tissue aging. Cellular senescence involves extensive cellular remodeling, including of chromatin structure. Autophagy and lysosomes are important for recycling of cellular constituents and cell remodeling. Here we show that an autophagy/lysosomal pathway processes chromatin in senescent cells. In senescent cells, lamin A/C-negative, but strongly γ-H2AX-positive and H3K27me3-positive, cytoplasmic chromatin fragments (CCFs) budded off nuclei, and this was associated with lamin B1 down-regulation and the loss of nuclear envelope integrity. In the cytoplasm, CCFs were targeted by the autophagy machinery. Senescent cells exhibited markers of lysosomal-mediated proteolytic processing of histones and were progressively depleted of total histone content in a lysosome-dependent manner. In vivo, depletion of histones correlated with nevus maturation, an established histopathologic parameter associated with proliferation arrest and clinical benignancy. We conclude that senescent cells process their chromatin via an autophagy/lysosomal pathway and that this might contribute to stability of senescence and tumor suppression.

  11. Crenarchaeal chromatin proteins Cren7 and Sul7 compact DNA by inducing rigid bends.

    PubMed

    Driessen, Rosalie P C; Meng, He; Suresh, Gorle; Shahapure, Rajesh; Lanzani, Giovanni; Priyakumar, U Deva; White, Malcolm F; Schiessel, Helmut; van Noort, John; Dame, Remus Th

    2013-01-07

    Archaeal chromatin proteins share molecular and functional similarities with both bacterial and eukaryotic chromatin proteins. These proteins play an important role in functionally organizing the genomic DNA into a compact nucleoid. Cren7 and Sul7 are two crenarchaeal nucleoid-associated proteins, which are structurally homologous, but not conserved at the sequence level. Co-crystal structures have shown that these two proteins induce a sharp bend on binding to DNA. In this study, we have investigated the architectural properties of these proteins using atomic force microscopy, molecular dynamics simulations and magnetic tweezers. We demonstrate that Cren7 and Sul7 both compact DNA molecules to a similar extent. Using a theoretical model, we quantify the number of individual proteins bound to the DNA as a function of protein concentration and show that forces up to 3.5 pN do not affect this binding. Moreover, we investigate the flexibility of the bending angle induced by Cren7 and Sul7 and show that the protein-DNA complexes differ in flexibility from analogous bacterial and eukaryotic DNA-bending proteins.

  12. The Core Subunit of A Chromatin-Remodeling Complex, ZmCHB101, Plays Essential Roles in Maize Growth and Development

    PubMed Central

    Yu, Xiaoming; Jiang, Lili; Wu, Rui; Meng, Xinchao; Zhang, Ai; Li, Ning; Xia, Qiong; Qi, Xin; Pang, Jinsong; Xu, Zheng-Yi; Liu, Bao

    2016-01-01

    ATP-dependent chromatin remodeling complexes play essential roles in the regulation of diverse biological processes by formulating a DNA template that is accessible to the general transcription apparatus. Although the function of chromatin remodelers in plant development has been studied in A. thaliana, how it affects growth and development of major crops (e.g., maize) remains uninvestigated. Combining genetic, genomic and bioinformatic analyses, we show here that the maize core subunit of chromatin remodeling complex, ZmCHB101, plays essential roles in growth and development of maize at both vegetative and reproductive stages. Independent ZmCHB101 RNA interference plant lines displayed abaxially curling leaf phenotype due to increase of bulliform cell numbers, and showed impaired development of tassel and cob. RNA-seq-based transcriptome profiling revealed that ZmCHB101 dictated transcriptional reprogramming of a significant set of genes involved in plant development, photosynthesis, metabolic regulation, stress response and gene expressional regulation. Intriguingly, we found that ZmCHB101 was required for maintaining normal nucleosome density and 45 S rDNA compaction. Our findings suggest that the SWI3 protein, ZmCHB101, plays pivotal roles in maize normal growth and development via regulation of chromatin structure. PMID:27917953

  13. The Core Subunit of A Chromatin-Remodeling Complex, ZmCHB101, Plays Essential Roles in Maize Growth and Development.

    PubMed

    Yu, Xiaoming; Jiang, Lili; Wu, Rui; Meng, Xinchao; Zhang, Ai; Li, Ning; Xia, Qiong; Qi, Xin; Pang, Jinsong; Xu, Zheng-Yi; Liu, Bao

    2016-12-05

    ATP-dependent chromatin remodeling complexes play essential roles in the regulation of diverse biological processes by formulating a DNA template that is accessible to the general transcription apparatus. Although the function of chromatin remodelers in plant development has been studied in A. thaliana, how it affects growth and development of major crops (e.g., maize) remains uninvestigated. Combining genetic, genomic and bioinformatic analyses, we show here that the maize core subunit of chromatin remodeling complex, ZmCHB101, plays essential roles in growth and development of maize at both vegetative and reproductive stages. Independent ZmCHB101 RNA interference plant lines displayed abaxially curling leaf phenotype due to increase of bulliform cell numbers, and showed impaired development of tassel and cob. RNA-seq-based transcriptome profiling revealed that ZmCHB101 dictated transcriptional reprogramming of a significant set of genes involved in plant development, photosynthesis, metabolic regulation, stress response and gene expressional regulation. Intriguingly, we found that ZmCHB101 was required for maintaining normal nucleosome density and 45 S rDNA compaction. Our findings suggest that the SWI3 protein, ZmCHB101, plays pivotal roles in maize normal growth and development via regulation of chromatin structure.

  14. Open chromatin reveals the functional maize genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Every cellular process mediated through nuclear DNA must contend with chromatin. As results from ENCODE show, open chromatin assays can efficiently integrate across diverse regulatory elements, revealing functional non-coding genome. In this study, we use a MNase hypersensitivity assay to discover o...

  15. Chromatin remodeling: nucleosomes bulging at the seams.

    PubMed

    Peterson, Craig L

    2002-04-02

    ATP-dependent chromatin remodeling enzymes, such as SWI/SNF, hydrolyze thousands of ATPs to regulate gene expression on chromatin fibers. Recent mechanistic studies suggest that these enzymes generate localized changes in DNA topology that drive formation of multiple, remodeled nucleosomal states.

  16. Chromatin roadblocks to reprogramming 50 years on.

    PubMed

    Skene, Peter J; Henikoff, Steven

    2012-10-29

    A half century after John Gurdon demonstrated nuclear reprogramming, for which he was awarded the 2012 Nobel Prize in Physiology or Medicine, his group provides insights into the molecular mechanisms whereby chromatin remodeling is required for nuclear reprogramming. Among the issues addressed in Gurdon's latest work are the chromatin impediments to artificially induced reprogramming, discovered by Shinya Yamanaka, who shared the award with Gurdon.

  17. High-resolution RNA allelotyping along the inactive X chromosome: evidence of RNA polymerase III in regulating chromatin configuration

    PubMed Central

    Hong, Ru; Lin, Bingqing; Lu, Xinyi; Lai, Lan-Tian; Chen, Xin; Sanyal, Amartya; Ng, Huck-Hui; Zhang, Kun; Zhang, Li-Feng

    2017-01-01

    We carried out padlock capture, a high-resolution RNA allelotyping method, to study X chromosome inactivation (XCI). We examined the gene reactivation pattern along the inactive X (Xi), after Xist (X-inactive specific transcript), a prototype long non-coding RNA essential for establishing X chromosome inactivation (XCI) in early embryos, is conditionally deleted from Xi in somatic cells (Xi∆Xist). We also monitored the behaviors of X-linked non-coding transcripts before and after XCI. In each mutant cell line, gene reactivation occurs to ~6% genes along Xi∆Xist in a recognizable pattern. Genes with upstream regions enriched for SINEs are prone to be reactivated. SINE is a class of retrotransposon transcribed by RNA polymerase III (Pol III). Intriguingly, a significant fraction of Pol III transcription from non-coding regions is not subjected to Xist-mediated transcriptional silencing. Pol III inhibition affects gene reactivation status along Xi∆Xist, alters chromatin configuration and interferes with the establishment XCI during in vitro differentiation of ES cells. These results suggest that Pol III transcription is involved in chromatin structure re-organization during the onset of XCI and functions as a general mechanism regulating chromatin configuration in mammalian cells. PMID:28368037

  18. High-resolution RNA allelotyping along the inactive X chromosome: evidence of RNA polymerase III in regulating chromatin configuration.

    PubMed

    Hong, Ru; Lin, Bingqing; Lu, Xinyi; Lai, Lan-Tian; Chen, Xin; Sanyal, Amartya; Ng, Huck-Hui; Zhang, Kun; Zhang, Li-Feng

    2017-04-03

    We carried out padlock capture, a high-resolution RNA allelotyping method, to study X chromosome inactivation (XCI). We examined the gene reactivation pattern along the inactive X (Xi), after Xist (X-inactive specific transcript), a prototype long non-coding RNA essential for establishing X chromosome inactivation (XCI) in early embryos, is conditionally deleted from Xi in somatic cells (Xi(∆Xist)). We also monitored the behaviors of X-linked non-coding transcripts before and after XCI. In each mutant cell line, gene reactivation occurs to ~6% genes along Xi(∆Xist) in a recognizable pattern. Genes with upstream regions enriched for SINEs are prone to be reactivated. SINE is a class of retrotransposon transcribed by RNA polymerase III (Pol III). Intriguingly, a significant fraction of Pol III transcription from non-coding regions is not subjected to Xist-mediated transcriptional silencing. Pol III inhibition affects gene reactivation status along Xi(∆Xist), alters chromatin configuration and interferes with the establishment XCI during in vitro differentiation of ES cells. These results suggest that Pol III transcription is involved in chromatin structure re-organization during the onset of XCI and functions as a general mechanism regulating chromatin configuration in mammalian cells.

  19. [Chromatin morphology and cytokinesis in pleurocapsalean cyanobacteria].

    PubMed

    Pinevich, A V; Gavrilova, O V; Averina, S G

    2007-01-01

    By means of differential interference contrast (DIC) and fluorescence microscopy, chromatin morphology and cytokinesis have been described in the cyanobacterium Pleurocapsa sp. CALU 1126 capable of multiple fission (multiple reproduction of the mother cell, the macrocyte, with formation of unique reproductive cells, the baeocytes). Two kinds of chromatin behavior have been revealed in the cell cycle: 1) the formation of numerous chromatin areas before their compartmentalization by multiple fission; 2) chromatin condensation in the phase of binary fission, and chromatin decondensation in growth period. The cytokinetic essence of multiple fission has been shown to consist of successive binary fissions of the macrocyte, while in between the mother cells (pre-baeocytes) do not grow.

  20. Interactions of transcription factors with chromatin.

    PubMed

    van Bakel, Harm

    2011-01-01

    Sequence-specific transcription factors (TFs) play a central role in regulating transcription initiation by directing the recruitment and activity of the general transcription machinery and accessory factors. It is now well established that many of the effects exerted by TFs in eukaryotes are mediated through interactions with a host of coregulators that modify the chromatin state, resulting in a more open (in case of activation) or closed conformation (in case of repression). The relationship between TFs and chromatin is a two-way street, however, as chromatin can in turn influence the recognition and binding of target sequences by TFs. The aim of this chapter is to highlight how this dynamic interplay between TF-directed remodelling of chromatin and chromatin-adjusted targeting of TF binding determines where and how transcription is initiated, and to what degree it is productive.

  1. In vivo dynamical behavior of yeast chromatin modeled as an entangled polymer network with constraint release

    NASA Astrophysics Data System (ADS)

    Wang, Chenxi; Kilfoil, Maria L.

    2013-03-01

    The high fidelity segregation of chromatin is the central problem in cell mitosis. The role of mechanics underlying this, however, is undetermined. Work in this area has largely focused on cytoskeletal elements of the process. Preliminary work in our lab suggests the mechanical properties of chromatin are fundamental in this process. Nevertheless, the mechanical properties of chromatin in the cellular context are not well-characterized. For better understanding of the role of mechanics in this cellular process, and of the chromatin mechanics in vivo generally, a systematic dynamical description of chromatin in vivo is required. Accordingly, we label specific sites on chromatin with fluorescent proteins of different wave lengths, enabling us to detect multiple spots separately in 3D and track their displacements in time inside living yeast cells. We analyze the pairwise cross-correlated motion between spots as a function of relative distance along the DNA contour. Comparison between the reptation model and our data serves to test our conjecture that chromatin in the cell is basically an entangled polymer network under constraints to thermal motion, and removal of constraints by non-thermal cellular processes is expected to affect its dynamic behavior.

  2. Role of A-type lamins in signaling, transcription, and chromatin organization

    PubMed Central

    González, José M.

    2009-01-01

    A-type lamins (lamins A and C), encoded by the LMNA gene, are m