Science.gov

Sample records for affecting embryonic development

  1. Cadmium affects retinogenesis during zebrafish embryonic development

    SciTech Connect

    Hen Chow, Elly Suk; Yu Hui, Michelle Nga; Cheng, Chi Wa; Cheng, Shuk Han

    2009-02-15

    Ocular malformations are commonly observed in embryos of aquatic species after exposure to toxicants. Using zebrafish embryos as the model organism, we showed that cadmium exposure from sphere stage (4 hpf) to end of segmentation stage (24 hpf) induced microphthalmia in cadmium-treated embryos. Embryos with eye defects were then assessed for visual abilities. Cadmium-exposed embryos were behaviorally blind, showing hyperpigmentation and loss of camouflage response to light. We investigated the cellular basis of the formation of the small eyes phenotype and the induction of blindness by studying retina development and retinotectal projections. Retinal progenitors were found in cadmium-treated embryos albeit in smaller numbers. The number of retinal ganglion cells (RGC), the first class of retinal cells to differentiate during retinogenesis, was reduced, while photoreceptor cells, the last batch of retinal neurons to differentiate, were absent. Cadmium also affected the propagation of neurons in neurogenic waves. The neurons remained in the ventronasal area and failed to spread across the retina. Drastically reduced RGC axons and disrupted optic stalk showed that the optic nerves did not extend from the retina beyond the chiasm into the tectum. Our data suggested that impairment in neuronal differentiation of the retina, disruption in RGC axon formation and absence of cone photoreceptors were the causes of microphthalmia and visual impairment in cadmium-treated embryos.

  2. Acute hypoxic exposure affects gamete quality and subsequent fertilization success and embryonic development in a serpulid polychaete.

    PubMed

    Shin, P K S; Leung, J Y S; Qiu, J W; Ang, P O; Chiu, J M Y; Thiyagarajan, V; Cheung, S G

    2014-08-30

    Hypoxia likely compromises the reproductive success of those marine organisms carrying out external fertilization because their gametes and embryos are inevitably exposed to the external environment. Hydroides elegans, a dominant serpulid polychaete in Hong Kong waters, can spawn throughout the year but the number of recruits drops during summer when hypoxia commonly occurs. This study attempted to explain such observation by investigating the gamete quality, including sperm motility, egg size, complexity and viability, after 1-h hypoxic exposure (1 mg O2 l(-1)). In addition, how gamete quality affects fertilization success and embryonic development was examined. After 1-h hypoxic exposure, sperm motility was significantly reduced, compromising fertilization success. Although the eggs remained viable, more malformed embryos and retarded embryonic development were observed. We interpreted that the harmful effect of hypoxia on embryonic development was attributed to the teratogenicity and induced oxidative stress, ultimately causing the reduction in recruitment during summer. PMID:24661460

  3. Does low gas permeability of rigid-shelled gekkotan eggs affect embryonic development?

    PubMed

    Andrews, Robin M; Thompson, Michael B; Greene, Virginia W

    2013-06-01

    Parchment-shelled eggs are characteristic of most squamates, including the basal clades of gekkotan lizards. The majority of gekkotan lizards, however, produce rigid-shelled eggs that are highly impermeable to gas exchange; eggs are laid in dry sites and experience a net loss of water during incubation. We tested the hypothesis that the 1,000-fold lower rate of oxygen diffusion through the shells of rigid- compared to parchment-shelled eggs imposes a physiological cost on development. To do this, we contrasted species with rigid and with parchment shells with regards to (1) rates of embryonic metabolism and (2) rates and patterns of development of the yolk sac and chorioallantois, the vascularized extra-embryonic membranes that transport oxygen to embryonic tissues. Metabolic rates of embryos from the rigid-shelled eggs of Gehyra variegata did not differ from those of the parchment-shelled eggs of Oedura lesueurii. Moreover, maximum metabolic rates of gekkotans with rigid shells did not differ from those of gekkotan or scincid lizards with parchment shells. In contrast, the yolk sac covered more of the surface area of the egg at oviposition, and the chorioallantois reached its full extent earlier for the species with rigid shelled eggs (Chondrodactylus turneri, G. variegata) than for the species with parchment-shelled eggs (Eublepharis macularius, O. lesueurii). Differences in the temporal patterns of yolk sac and chorioallantois development would thus serve to compensate for low rates of oxygen diffusion through rigid shells of gekkotans. PMID:23495191

  4. IVF affects embryonic development in a sex-biased manner in mice.

    PubMed

    Tan, Kun; Wang, Zhuqing; Zhang, Zhenni; An, Lei; Tian, Jianhui

    2016-04-01

    Increasing evidence indicates that IVF (IVF includes in vitro fertilization and culture) embryos and babies are associated with a series of health complications, and some of them show sex-dimorphic patterns. Therefore, we hypothesized that IVF procedures have sex-biased or even sex-specific effects on embryonic and fetal development. Here, we demonstrate that IVF-induced side effects show significant sexual dimorphic patterns from the pre-implantation to the prenatal stage. During the pre-implantation stage, female IVF embryos appear to be more vulnerable to IVF-induced effects, including an increased percentage of apoptosis (7.22 ± 1.94 vs 0.71 ± 0.76, P<0.01), and dysregulated expression of representative sex-dimorphic genes (Xist, Hprt, Pgk1 and Hsp70). During the mid-gestation stage, IVF males had a higher survival rate than IVF females at E13.5 (male:female=1.33:1), accompanied with a female-biased pregnancy loss. In addition, while both IVF males and females had reduced placental vasculogenesis/angiogenesis, the compensatory placental overgrowth was more evident in IVF males. During the late-gestation period, IVF fetuses had a higher sex ratio (male:female=1.48:1) at E19.5, and both male and female IVF placentas showed overgrowth. After birth, IVF males grew faster than their in vivo (IVO) counterparts, while IVF females showed a similar growth pattern with IVO females. The present study provides a new insight into understanding IVF-induced health complications during embryonic and fetal development. By understanding and minimizing these sex-biased effects of the IVF process, the health of IVF-conceived babies may be improved in the future. PMID:26825929

  5. Factors affecting the survival, fertilization, and embryonic development of mouse oocytes after vitrification using glass capillaries.

    PubMed

    Tan, Xiuwen; Song, Enliang; Liu, Xiaomu; You, Wei; Wan, Fachun

    2009-09-01

    Cryopreservation of mammalian oocytes is an important way to provide a steady source of materials for research and practice of parthenogenetic activation, in vitro fertilization, and nuclear transfer. However, oocytes cryopreservation has not been common used, as there still are some problems waiting to be solved on the repeatability, safety, and validity. Then, it is necessary to investigate the damage occurred from vitrification and find a way to avoid or repair it. In this study, mouse mature oocytes were firstly pretreated in different equilibrium media, such as 5% ethylene glycol (EG) + 5% dimethyl sulfoxide (DMSO), 10% EG + 10% DMSO, and 15% EG + 15% DMSO in TCM199 supplemented with 20% fetal calf serum (FCS), for 1, 3, and 5 min, respectively, and then oocytes were transferred into vitrification solution (20% EG, 20% DMSO, 0.3 M sucrose, and 20% FCS in TCM199, M2, Dulbecco's phosphate buffered saline, and 0.9% saline medium, respectively) and immediately loaded into glass capillaries to be plunged into liquid nitrogen. After storage from 1 h to 1 wk, they were diluted in stepwise sucrose solutions. The surviving oocytes were stained for cortical granule, meiotic spindles, and chromosomes. Oocytes without treatments were used as controls. The results showed that oocytes pretreated in 5% EG +5% DMSO group for 3-5 min or in 10% EG + 10% DMSO group for 1-3 min were better than other treatments. Oocytes vitrified in TCM199 as basic medium showed higher survival and better subsequent embryonic development than other groups. When the concentration of FCS in vitrification solution reduced below 15%, the rates of survival, fertilization, and developing to blastocyst declined dramatically. The inner diameter (0.6 mm) of glass capillaries and amount of vitrification solution (1-3 microl) achieved more rapid cooling and warming and so reduce the injury to oocytes. Cropreservation led to the exocytosis of cortical granule of oocytes (about 10%) and serious disturbance of

  6. Gravity and embryonic development

    NASA Technical Reports Server (NTRS)

    Young, R. S.

    1976-01-01

    The relationship between the developing embryo (both plant and animal) and a gravitational field has long been contemplated. The difficulty in designing critical experiments on the surface of the earth because of its background of 1 g, has been an obstacle to a resolution of the problem. Biological responses to gravity (particularly in plants) are obvious in many cases; however, the influence of gravity as an environmental input to the developing embryo is not as obvious and has proven to be extremely difficult to define. In spite of this, over the years numerous attempts have been made using a variety of embryonic materials to come to grips with the role of gravity in development. Three research tools are available: the centrifuge, the clinostat, and the orbiting spacecraft. Experimental results are now available from all three sources. Some tenuous conclusions are drawn, and an attempt at a unifying theory of gravitational influence on embryonic development is made.

  7. Embryonic development during chronic acceleration

    NASA Technical Reports Server (NTRS)

    Smith, A. H.; Abbott, U. K.

    1982-01-01

    Experiments carried out on chicken eggs indicate that the embryo is affected during very early development, especially over the first four days, and during hatching. In the first four days, the brain develops as well as the anlage for all other organs. In addition, the heart commences to function and the extraembryonic membranes that compartmentalize the egg contents form. The latter require an appreciable extension and folding of tissue which may be disrupted by the mechanical load. Observations of embryonic abnormalities that occur during chronic acceleration suggest an inhibition of development of the axial skeleton, which is rarely seen otherwise, a general retardation of embryonic growth, and circulatory problems. The final stages of development (after 18 days) involve the uptake of fluids, the transition to aerial respiration, and the reorientation of the embryo into a normal hatching position. At 4 G mortality is very high during this period, with a majority of embryos failing to reorient into the normal hatching position.

  8. Magnesium and Embryonic Development

    PubMed Central

    Komiya, Yuko; Su, Li-Ting; Chen, Hsiang-Chin; Habas, Raymond; Runnels, Loren W.

    2014-01-01

    Important for energy metabolism, neurotransmission, bone stability, and other cellular functions, Mg2+ has well-established and undisputedly critical roles in adult tissues. Its contributions to early embryonic development are less clearly understood. For decades it has been known that gestational Mg2+ deficiency in rodents produces teratogenic effects. More recent studies have linked deficiency in this vital cation to birth defects in humans, including spina bifida, a neural fold closure defect in humans that occurs at an average rate of 1 per 1000 pregnancies. The first suggestion that Mg2+ may be playing a more specific role in early development arose from studies of the TRPM7 and TRPM6 ion channels. TRPM7 and TRPM6 are divalent-selective ion channels in possession of their own kinase domains that have been implicated in the control of Mg2+ homeostasis in vertebrates. Disruption of the functions of these ion channels in mice as well as in frogs interferes with gastrulation, a pivotal process during early embryonic development that executes the emergence of the body plan and closure of the neural tube. Surprisingly, gastrulation defects produced by depletion of TRPM7 can be prevented by Mg2+ supplementation, indicating an essential role for Mg2+ in gastrulation and neural fold closure. The aim of this review is to summarize the data emerging from molecular genetic, biochemical and electrophysiological studies of TRPM6 and TRPM7 and provide a model of how Mg2+, through these unique channel-kinases, may be impacting early embryonic development. PMID:24721994

  9. P-Element Insertion Alleles of Essential Genes on the Third Chromosome of Drosophila Melanogaster: Mutations Affecting Embryonic Pns Development

    PubMed Central

    Salzberg, A.; Prokopenko, S. N.; He, Y.; Tsai, P.; Pal, M.; Maroy, P.; Glover, D. M.; Deak, P.; Bellen, H. J.

    1997-01-01

    To identify novel genes and to isolate tagged mutations in known genes that are required for the development of the peripheral nervous system (PNS), we have screened a novel collection of 2460 strains carrying lethal or semilethal P-element insertions on the third chromosome. Monoclonal antibody 22C10 was used as a marker to visualize the embryonic PNS. We identified 109 mutant strains that exhibited reproducible phenotypes in the PNS. Cytological and genetic analyses of these strains indicated that 87 mutations affect previously identified genes: tramtrack (n = 18 alleles), string (n = 15), cyclin A (n = 13), single-minded (n = 13), Delta (n = 9), neuralized (n = 4), pointed (n = 4), extra macrochaetae (n = 4), prospero (n = 3), tartan (n = 2), and pebble (n = 2). In addition, 13 mutations affect genes that we identified recently in a chemical mutagenesis screen designed to isolate similar mutants: hearty (n = 3), dorsotonals (n = 2), pavarotti (n = 2), sanpodo (n = 2), dalmatian (n = 1), missensed (n = 1), senseless (n = 1), and sticky ch1 (n = 1). The remaining nine mutations define seven novel complementation groups. The data presented here demonstrate that this collection of P elements will be useful for the identification and cloning of novel genes on the third chromosome, since >70% of mutations identified in the screen are caused by the insertion of a P element. A comparison between this screen and a chemical mutagenesis screen undertaken earlier highlights the complementarity of the two types of genetic screens. PMID:9409832

  10. Transient exposure to environmental estrogen affects embryonic development of brown trout (Salmo trutta fario).

    PubMed

    Schubert, Sara; Peter, Armin; Schönenberger, René; Suter, Marc J-F; Segner, Helmut; Burkhardt-Holm, Patricia

    2014-12-01

    Transient exposure of brown trout embryos from fertilization until hatch (70 days) to 17β-estradiol (E2) was investigated. Embryos were exposed to 3.8 and 38.0 ng/L E2 for 2h, respectively, under four scenarios: (A) exposure once at the day of fertilization (0 days post-fertilization, dpf), (B) once at eyeing stage (38 dpf), (C) weekly exposure until hatch or (D) bi-weekly exposure until hatch. Endpoints to assess estrogen impact on embryo development were fertilization success, chronological sequence of developmental events, hatching process, larval malformations, heart rate, body length and mortality. Concentration-dependent acceleration of development until median hatch was observed in all exposure scenarios with the strongest effect observed for embryos exposed once at 0 dpf. In addition, the hatching period was significantly prolonged by 4-5 days in groups receiving single estrogen exposures (scenarios A and B). Heart rate on hatching day was significantly depressed with increasing E2 concentrations, with the strongest effect observed for embryos exposed at eyeing stage. Estrogenic exposure at 0 dpf significantly reduced body length at hatch, not depending on whether this was a single exposure or the first of a series (scenarios A and D). The key finding is that even a single, transient E2 exposure during embryogenesis had significant effects on brown trout development. Median hatch, hatching period, heart rate and body length at hatch were found to be highly sensitive biomarkers responsive to estrogenic exposure during embryogenesis. Treatment effects were observable only at the post-hatch stage. PMID:25456228

  11. Endogenous and exogenous estrogens during embryonic development affect timing of hatch and growth in the American alligator (Alligator mississippiensis).

    PubMed

    Cruze, Lori; Roark, Alison M; Rolland, Gabrielle; Younas, Mona; Stacy, Nicole; Guillette, Louis J

    2015-06-01

    Prenatal exposure to estrogenic endocrine disrupting chemicals (EDCs) can affect length of gestation and body mass and size of offspring. However, the dose, timing, and duration of exposure as well as sex and strain of the experimental animals determine the direction and magnitude of these effects. In this study, we examined the effects of a one-time embryonic exposure to either 17 β-estradiol (E2) or bisphenol A (BPA) on rate of development and growth in American alligators (Alligator mississippiensis). Our results indicate that BPA and E2-treated alligators hatched approximately 1.4 days earlier than vehicle-treated (control) alligators, suggesting that estrogenic chemicals hasten hatching in these animals. We assessed growth rates, growth allometry, and body condition for 21 weeks after hatching and found that BPA-treated alligators grew more quickly shortly after hatching but more slowly thereafter compared to control alligators. Conversely, E2-treated alligators grew more slowly shortly after hatching but more quickly thereafter compared to control alligators. As a result of differences in growth rate, BPA-treated alligators were heavier, longer, and fatter than control alligators at age 5 weeks but were similar in size and leaner than control alligators at age 21 weeks. Biochemical analytes were examined at the end of the 21-week study to assess overall metabolic condition. We found that E2-treated alligators had significantly higher circulating plasma concentrations of cholesterol and triglycerides than control alligators while BPA-treated alligators had blood profiles comparable to control alligators. Our results provide important insights into the effects of exogenous estrogens on morphology and metabolism in an oviparous, semi-aquatic reptile. PMID:25687799

  12. Mechanotransduction in Embryonic Vascular Development

    PubMed Central

    Roman, Beth L.; Pekkan, Kerem

    2015-01-01

    A plethora of biochemical signals provides spatial and temporal cues that carefully orchestrate the complex process of vertebrate embryonic development. The embryonic vasculature develops not only in the context of these biochemical cues, but also in the context of the biomechanical forces imparted by blood flow. In the mature vasculature, different blood flow regimes induce distinct genetic programs, and significant progress has been made toward understanding how these forces are perceived by endothelial cells and transduced into biochemical signals. However, it cannot be assumed that paradigms that govern the mature vasculature are pertinent to the developing embryonic vasculature. The embryonic vasculature can respond to the mechanical forces of blood flow, and these responses are critical in vascular remodeling, certain aspects of sprouting angiogenesis, and maintenance of arterial-venous identity. Here, we review data regarding mechanistic aspects of endothelial cell mechanotransduction, with a focus on the response to shear stress, and elaborate upon the multifarious effects of shear stress on the embryonic vasculature. In addition, we discuss emerging predictive vascular growth models and highlight the prospect of combining signaling pathway information with computational modeling. We assert that correlation of precise measurements of hemodynamic parameters with effects on endothelial cell gene expression and cell behavior is required for fully understanding how blood flow-induced loading governs normal vascular development and shapes congenital cardiovascular abnormalities. PMID:22744845

  13. Seismic air gun exposure during early-stage embryonic development does not negatively affect spiny lobster Jasus edwardsii larvae (Decapoda: Palinuridae).

    PubMed

    Day, Ryan D; McCauley, Robert D; Fitzgibbon, Quinn P; Semmens, Jayson M

    2016-01-01

    Marine seismic surveys are used to explore for sub-seafloor oil and gas deposits. These surveys are conducted using air guns, which release compressed air to create intense sound impulses, which are repeated around every 8-12 seconds and can travel large distances in the water column. Considering the ubiquitous worldwide distribution of seismic surveys, the potential impact of exposure on marine invertebrates is poorly understood. In this study, egg-bearing female spiny lobsters (Jasus edwardsii) were exposed to signals from three air gun configurations, all of which exceeded sound exposure levels (SEL) of 185 dB re 1 μPa(2) · s. Lobsters were maintained until their eggs hatched and the larvae were then counted for fecundity, assessed for abnormal morphology using measurements of larval length and width, tested for larval competency using an established activity test and measured for energy content. Overall there were no differences in the quantity or quality of hatched larvae, indicating that the condition and development of spiny lobster embryos were not adversely affected by air gun exposure. These results suggest that embryonic spiny lobster are resilient to air gun signals and highlight the caution necessary in extrapolating results from the laboratory to real world scenarios or across life history stages. PMID:26947006

  14. Seismic air gun exposure during early-stage embryonic development does not negatively affect spiny lobster Jasus edwardsii larvae (Decapoda:Palinuridae)

    PubMed Central

    Day, Ryan D.; McCauley, Robert D.; Fitzgibbon, Quinn P.; Semmens, Jayson M.

    2016-01-01

    Marine seismic surveys are used to explore for sub-seafloor oil and gas deposits. These surveys are conducted using air guns, which release compressed air to create intense sound impulses, which are repeated around every 8–12 seconds and can travel large distances in the water column. Considering the ubiquitous worldwide distribution of seismic surveys, the potential impact of exposure on marine invertebrates is poorly understood. In this study, egg-bearing female spiny lobsters (Jasus edwardsii) were exposed to signals from three air gun configurations, all of which exceeded sound exposure levels (SEL) of 185 dB re 1 μPa2·s. Lobsters were maintained until their eggs hatched and the larvae were then counted for fecundity, assessed for abnormal morphology using measurements of larval length and width, tested for larval competency using an established activity test and measured for energy content. Overall there were no differences in the quantity or quality of hatched larvae, indicating that the condition and development of spiny lobster embryos were not adversely affected by air gun exposure. These results suggest that embryonic spiny lobster are resilient to air gun signals and highlight the caution necessary in extrapolating results from the laboratory to real world scenarios or across life history stages. PMID:26947006

  15. Measuring time during early embryonic development.

    PubMed

    Ferree, Patrick L; Deneke, Victoria E; Di Talia, Stefano

    2016-07-01

    In most metazoans, embryonic development is orchestrated by a precise series of cellular behaviors. Understanding how such events are regulated to achieve a stereotypical temporal progression is a fundamental problem in developmental biology. In this review, we argue that studying the regulation of the cell cycle in early embryonic development will reveal novel principles of how embryos accurately measure time. We will discuss the strategies that have emerged from studying early development of Drosophila embryos. By comparing the development of flies to that of other metazoans, we will highlight both conserved and alternative mechanisms to generate precision during embryonic development. PMID:26994526

  16. Avian embryonic development in hyperdynamic environments

    NASA Technical Reports Server (NTRS)

    Abbott, U. K.; Smith, A. H.

    1983-01-01

    Embryos which developed for 24 hours in the oviduct of hens maintained at 2 G and which were subsequently incubated at Earth gravity had a 14% reduction in hatchability. Increased mortality during the first 4 days, and an increase in embryonic abnormalities were of the types usually found during the first mortality peak (2-3 days). Embryos in eggs that were produced at Earth gravity and continued their development on the centrifuge at fields of 2 G or less did not appear to be greatly affected by the treatment. At 4 G, 91% of the embryos died, mostly on the first and second days of incubation. Abnormalities prominent in the centrifuged eggs include: (a) a failure of the primitive streak to develop; (b) interference with the development of the axial skeleton; (c) multiple hemorrhages, mostly petechial which is consistent with capillary fragility; and (d) retardation of embryo growth, possibly caused by an interference with gaseous diffusion, the result of an acceleration-induced increase in gas density in the centrifuging incubator.

  17. Endogenous microglia regulate development of embryonic cortical precursor cells.

    PubMed

    Antony, Joseph M; Paquin, Annie; Nutt, Stephen L; Kaplan, David R; Miller, Freda D

    2011-03-01

    Microglia play important roles in the damaged or degenerating adult nervous system. However, the role of microglia in embryonic brain development is still largely uncharacterized. Here we show that microglia are present in regions of the developing brain that contain neural precursors from E11 onward. To determine whether these microglia are important for neural precursor maintenance or self-renewal, we cultured embryonic neural precursors from the cortex of PU.1(-/-) mice, which we show lack resident microglia during embryogenesis. Cell survival and neurogenesis were similar in cultures from PU.1(-/-) vs. PU.1(+/+) mice, but precursor proliferation and astrogenesis were both reduced. Cortical precursors depleted of microglia also displayed decreased precursor proliferation and astrogenesis, and these deficits could be rescued when microglia were added back to the cultures. Moreover, when the number of microglia present in cortical precursor cultures was increased above normal levels, astrogenesis but not neurogenesis was increased. Together these results demonstrate that microglia present within the embryonic neural precursor niche can regulate neural precursor development and suggest that alterations in microglial number as a consequence of genetic or pathological events could perturb neural development by directly affecting embryonic neural precursors. PMID:21259316

  18. Embryonic development of Pelteobagrus fulvidraco (Richardson, 1846)

    NASA Astrophysics Data System (ADS)

    Wang, Weimin; Abbas, Khalid; Yan, Ansheng

    2006-12-01

    For production enhancement and procedure upgrade, the developmental phases of laboratory-reared eggs of catfish Pelteobagrus fulvidraco were investigated. Twenty mature females and 10 males were collected from Dadongmen wholesale fisheries market in Wuhan City on May 8, 2003. Zygotes were stripped from mature fish after hormone-induced ovulation, fertilized, and incubated through whole embryonic development. The fertilized eggs were stocked in density of 100 eggs/L in white square tanks of 10 L. Incubation water was dechlorinated tap water with continuous aeration. The tanks were lit directly with 60 W fluorescent bulbs with a 12 light: 12 dark photoperiod. Water temperature, dissolved oxygen and pH were 29.0±0.5°C, 6.7±0.4 mg/L and 7.4±2, respectively. The results showed that the eggs of P. fulvidraco were yellow, sticky and contained much yolk. The mean diameter of fertilized eggs was 2.03 mm. At the water temperature of 29.0±0.5°C, the ontogenesis spent about 33 h after fertilization. From fertilization to hatching, the embryonic development can be divided into 30 40 phases, which varies in the emphasis and direction of development. The detailed embryonic movement was also described.

  19. Gene expression dynamics during embryonic development in rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The supply of maternal RNAs in fertilized egg and activation of embryonic genome during maternal-zygotic transition (MZT) are important for normal embryonic development. In order to identify genes and gene products that are essential in the regulation of embryonic development in rainbow trout, RNA-S...

  20. Effects of embryonic cyclosporine exposures on brain development and behavior

    PubMed Central

    Clift, Danielle E.; Thorn, Robert J.; Passarelli, Emily A.; Kapoor, Mrinal; LoPiccolo, Mary K.; Richendrfer, Holly A.; Colwill, Ruth M.; Creton, Robbert

    2015-01-01

    Cyclosporine, a calcineurin inhibitor, is successfully used as an immunosuppressant in transplant medicine. However, the use of this pharmaceutical during pregnancy is concerning, since calcineurin is thought to play a role in neural development. The risk for human brain development is difficult to evaluate, because of a lack of basic information on the sensitive developmental times and the potentially pleiotropic effects on brain development and behavior. In the present study, we use zebrafish as a model system to examine the effects of embryonic cyclosporine exposures. Early embryonic exposures reduced the size of the eyes and brain. Late embryonic exposures did not affect the size of the eyes or brain, but did lead to substantial behavioral defects at the larval stages. The cyclosporine-exposed larvae displayed a reduced avoidance response to visual stimuli, low swim speeds, increased resting, an increase in thigmotaxis, and changes in the average distance between larvae. Similar results were obtained with the calcineurin inhibitor FK506, suggesting that most, but not all, effects on brain development and behavior are mediated by calcineurin inhibition. Overall, the results show that cyclosporine can induce either structural or functional brain defects, depending on the exposure window. The observed functional brain defects highlight the importance of quantitative behavioral assays when evaluating the risk of developmental exposures. PMID:25591474

  1. Effects of embryonic cyclosporine exposures on brain development and behavior.

    PubMed

    Clift, Danielle E; Thorn, Robert J; Passarelli, Emily A; Kapoor, Mrinal; LoPiccolo, Mary K; Richendrfer, Holly A; Colwill, Ruth M; Creton, Robbert

    2015-04-01

    Cyclosporine, a calcineurin inhibitor, is successfully used as an immunosuppressant in transplant medicine. However, the use of this pharmaceutical during pregnancy is concerning since calcineurin is thought to play a role in neural development. The risk for human brain development is difficult to evaluate because of a lack of basic information on the sensitive developmental times and the potentially pleiotropic effects on brain development and behavior. In the present study, we use zebrafish as a model system to examine the effects of embryonic cyclosporine exposures. Early embryonic exposures reduced the size of the eyes and brain. Late embryonic exposures did not affect the size of the eyes or brain, but did lead to substantial behavioral defects at the larval stages. The cyclosporine-exposed larvae displayed a reduced avoidance response to visual stimuli, low swim speeds, increased resting, an increase in thigmotaxis, and changes in the average distance between larvae. Similar results were obtained with the calcineurin inhibitor FK506, suggesting that most, but not all, effects on brain development and behavior are mediated by calcineurin inhibition. Overall, the results show that cyclosporine can induce either structural or functional brain defects, depending on the exposure window. The observed functional brain defects highlight the importance of quantitative behavioral assays when evaluating the risk of developmental exposures. PMID:25591474

  2. MiRNA-320 in the human follicular fluid is associated with embryo quality in vivo and affects mouse embryonic development in vitro.

    PubMed

    Feng, Ruizhi; Sang, Qing; Zhu, Yan; Fu, Wei; Liu, Miao; Xu, Yan; Shi, Huijuan; Xu, Yao; Qu, Ronggui; Chai, Renjie; Shao, Ruijin; Jin, Li; He, Lin; Sun, Xiaoxi; Wang, Lei

    2015-01-01

    Previous work from our laboratory demonstrated the existence of miRNAs in human follicular fluid. In the current study, we have sought to identify miRNAs that might affect oocyte/embryo quality in patients undergoing intracytoplasmic sperm injection and to investigate their roles in in vitro fertilization outcomes in mouse oocytes. 53 samples were classified as Group 1 (high quality) if the day-3 embryos had seven and more cells or as Group 2 (low quality) if the embryos had six and fewer cells. TaqMan Human microRNAs cards and qRT-PCR were performed to verify differently expressed miRNAs. The function of the corresponding miRNA was investigated in mouse oocytes by injecting them with miRNA-inhibitor oligonucleotides. We found that hsa-miR-320a and hsa-miR-197 had significantly higher expression levels in the Group 1 follicular fluids than in Group 2 (p = 0.0073 and p = 0.008, respectively). Knockdown of mmu-miR-320 in mouse oocytes strongly decreased the proportions of MII oocytes that developed into two-cell and blastocyst stage embryos (p = 0.0048 and p = 0.0069, respectively). Wnt signaling pathway components had abnormal expression level in miR-320 inhibitor-injected oocytes. This study provides the first evidence that miRNAs in human follicular fluid are indicative of and can influence embryo quality. PMID:25732513

  3. MiRNA-320 in the human follicular fluid is associated with embryo quality in vivo and affects mouse embryonic development in vitro

    PubMed Central

    Feng, Ruizhi; Sang, Qing; Zhu, Yan; Fu, Wei; Liu, Miao; Xu, Yan; Shi, Huijuan; Xu, Yao; Qu, Ronggui; Chai, Renjie; Shao, Ruijin; Jin, Li; He, Lin; Sun, Xiaoxi; Wang, Lei

    2015-01-01

    Previous work from our laboratory demonstrated the existence of miRNAs in human follicular fluid. In the current study, we have sought to identify miRNAs that might affect oocyte/embryo quality in patients undergoing intracytoplasmic sperm injection and to investigate their roles in in vitro fertilization outcomes in mouse oocytes. 53 samples were classified as Group 1 (high quality) if the day-3 embryos had seven and more cells or as Group 2 (low quality) if the embryos had six and fewer cells. TaqMan Human microRNAs cards and qRT-PCR were performed to verify differently expressed miRNAs. The function of the corresponding miRNA was investigated in mouse oocytes by injecting them with miRNA-inhibitor oligonucleotides. We found that hsa-miR-320a and hsa-miR-197 had significantly higher expression levels in the Group 1 follicular fluids than in Group 2 (p = 0.0073 and p = 0.008, respectively). Knockdown of mmu-miR-320 in mouse oocytes strongly decreased the proportions of MII oocytes that developed into two-cell and blastocyst stage embryos (p = 0.0048 and p = 0.0069, respectively). Wnt signaling pathway components had abnormal expression level in miR-320 inhibitor-injected oocytes. This study provides the first evidence that miRNAs in human follicular fluid are indicative of and can influence embryo quality. PMID:25732513

  4. Embryonic development of the cricket Gryllus bimaculatus.

    PubMed

    Donoughe, Seth; Extavour, Cassandra G

    2016-03-01

    Extensive research into Drosophila melanogaster embryogenesis has improved our understanding of insect developmental mechanisms. However, Drosophila development is thought to be highly divergent from that of the ancestral insect and arthropod in many respects. We therefore need alternative models for arthopod development that are likely to be more representative of basally-branching clades. The cricket Gryllus bimaculatus is such a model, and currently has the most sophisticated functional genetic toolkit of any hemimetabolous insect. The existing cricket embryonic staging system is fragmentary, and it is based on morphological landmarks that are not easily visible on a live, undissected egg. To address this problem, here we present a complementary set of "egg stages" that serve as a guide for identifying the developmental progress of a cricket embryo from fertilization to hatching, based solely on the external appearance of the egg. These stages were characterized using a combination of brightfield timelapse microscopy, timed brightfield micrographs, confocal microscopy, and measurements of egg dimensions. These egg stages are particularly useful in experiments that involve egg injection (including RNA interference, targeted genome modification, and transgenesis), as injection can alter the speed of development, even in control treatments. We also use 3D reconstructions of fixed embryo preparations to provide a comprehensive description of the morphogenesis and anatomy of the cricket embryo during embryonic rudiment assembly, germ band formation, elongation, segmentation, and appendage formation. Finally, we aggregate and schematize a variety of published developmental gene expression patterns. This work will facilitate further studies on G. bimaculatus development, and serve as a useful point of reference for other studies of wild type and experimentally manipulated insect development in fields from evo-devo to disease vector and pest management. PMID:25907229

  5. Characterization of mechanical and biochemical properties of developing embryonic tendon

    PubMed Central

    Marturano, Joseph E.; Arena, Jeffrey D.; Schiller, Zachary A.; Georgakoudi, Irene; Kuo, Catherine K.

    2013-01-01

    Tendons have uniquely high tensile strength, critical to their function to transfer force from muscle to bone. When injured, their innate healing response results in aberrant matrix organization and functional properties. Efforts to regenerate tendon are challenged by limited understanding of its normal development. Consequently, there are few known markers to assess tendon formation and parameters to design tissue engineering scaffolds. We profiled mechanical and biological properties of embryonic tendon and demonstrated functional properties of developing tendon are not wholly reflected by protein expression and tissue morphology. Using force volume-atomic force microscopy, we found that nano- and microscale tendon elastic moduli increase nonlinearly and become increasingly spatially heterogeneous during embryonic development. When we analyzed potential biochemical contributors to modulus, we found statistically significant but weak correlation between elastic modulus and collagen content, and no correlation with DNA or glycosaminoglycan content, indicating there are additional contributors to mechanical properties. To investigate collagen cross-linking as a potential contributor, we inhibited lysyl oxidase-mediated collagen cross-linking, which significantly reduced tendon elastic modulus without affecting collagen morphology or DNA, glycosaminoglycan, and collagen content. This suggests that lysyl oxidase-mediated cross-linking plays a significant role in the development of embryonic tendon functional properties and demonstrates that changes in cross-links alter mechanical properties without affecting matrix content and organization. Taken together, these data demonstrate the importance of functional markers to assess tendon development and provide a profile of tenogenic mechanical properties that may be implemented in tissue engineering scaffold design to mechanoregulate new tendon regeneration. PMID:23576745

  6. Angiogenesis is repressed by ethanol exposure during chick embryonic development.

    PubMed

    Wang, Guang; Zhong, Shan; Zhang, Shi-yao; Ma, Zheng-lai; Chen, Jian-long; Lu, Wen-hui; Cheng, Xin; Chuai, Manli; Lee, Kenneth Ka Ho; Lu, Da-xiang; Yang, Xuesong

    2016-05-01

    It is now known that excess alcohol consumption during pregnancy can cause fetal alcohol syndrome to develop. However, it is not known whether excess ethanol exposure could directly affect angiogenesis in the embryo or angiogenesis being indirectly affected because of ethanol-induced fetal alcohol syndrome. Using the chick yolk sac membrane (YSM) model, we demonstrated that ethanol exposure dramatically inhibited angiogenesis in the YSM of 9-day-old chick embryos, in a dose-dependent manner. Likewise, the anti-angiogenesis effect of ethanol could be seen in the developing vessel plexus (at the same extra-embryonic regions) during earlier stages of embryo development. The anti-angiogenic effect of ethanol was found associated with excess reactive oxygen species (ROS) production; as glutathione peroxidase activity increased while superoxide dismutase 1 and 2 activities decreased in the YSMs. We further validated this observation by exposing chick embryos to 2,2'-azobis-amidinopropane dihydrochloride (a ROS inducer) and obtained a similar anti-angiogenesis effect as ethanol treatment. Semiquantitative reverse transcription-polymerase chain reaction analysis of the experimental YSMs revealed that expression of angiogenesis-related genes, vascular endothelial growth factor and its receptor, fibroblast growth factor 2 and hypoxia-inducible factor, were all repressed following ethanol and 2,2'-azobis-amidinopropane dihydrochloride treatment. In summary, our results suggest that excess ethanol exposure inhibits embryonic angiogenesis through promoting superfluous ROS production during embryo development. PMID:26177723

  7. Embryonic development of the emu, Dromaius novaehollandiae.

    PubMed

    Nagai, Hiroki; Mak, Siu-Shan; Weng, Wei; Nakaya, Yukiko; Ladher, Raj; Sheng, Guojun

    2011-01-01

    The chick, Gallus gallus, is the traditional model in avian developmental studies. Data on other bird species are scarce. Here, we present a comparative study of the embryonic development of the chick and the emu Dromaius novaehollandiae, a member of Paleognathae, which also includes the ostrich, rhea, tinamou, kiwi, and cassowary. Emu embryos ranging from Hamburger and Hamilton (HH) equivalent stages 1 to 43 were collected and their gross morphology analyzed. Its early development was studied in detail with time-lapse imaging and molecular techniques. Emu embryos in general take 2-3 times longer incubation time to reach equivalent chicken stages, requiring 1 day for HH2, 2.5 days for HH4, 7 days for limb bud initiation, 23 days for feather germ appearance, and approximately 50-56 days for hatching. Chordin gene expression is similar in emu and chick embryos, and emu Brachyury is not expressed until HH3. Circulation is established at approximately the 27- to 30-somite stage. Forelimb buds are formed and patterned initially, but their growth is severely retarded. The size difference between an emu and a chick embryo only becomes apparent after limb bud formation. Overall, emu and chick embryogenesis proceeds through similar stages, but developmental heterochrony between these two species is widely observed. PMID:21181941

  8. The role of the pupal determinant broad during embryonic development of a direct-developing insect.

    PubMed

    Erezyilmaz, Deniz F; Rynerson, Melody R; Truman, James W; Riddiford, Lynn M

    2009-12-01

    Metamorphosis is one of the most common, yet dramatic of life history strategies. In insects, complete metamorphosis with morphologically distinct larval stages arose from hemimetabolous ancestors that were more direct developing. Over the past century, several ideas have emerged that suggest the holometabolous pupa is developmentally homologous to the embryonic stages of the hemimetabolous ancestor. Other theories consider the pupal stage to be a modification of a hemimetabolous nymph. To address this question, we have isolated an ortholog of the pupal determinant, broad (br), from the hemimetabolous milkweed bug and examined its role during embryonic development. We show that Oncopeltus fasciatus br (Of'br) is expressed in two phases. The first occurs during germ band invagination and segmentation when Of'br is expressed ubiquitously in the embryonic tissues. The second phase of Of'br expression appears during the pronymphal phase of embryogenesis and persists through nymphal differentiation to decline just before hatching. Knock-down of Of'br transcripts results in defects that range from posterior truncations in the least-affected phenotypes to completely fragmented embryonic tissues in the most severe cases. Analysis of the patterning genes engrailed and hunchback reveal loss of segments and a failure in neural differentiation after Of'br depletion. Finally, we show that br is constitutively expressed during embyrogenesis of the ametabolous firebrat, Thermobia domestica. This suggests that br expression is prominent during embryonic development of ametabolous and hemimetabolous insects but was lost with the emergence of the completely metamorphosing insects. PMID:20127251

  9. Toxic effect of palladium on embryonic development of zebrafish.

    PubMed

    Chen, Mingliang; Chen, Sangxia; Du, Mi; Tang, Shaoheng; Chen, Mei; Wang, Wei; Yang, Hui; Chen, Qiaoyu; Chen, Jianming

    2015-02-01

    Since palladium (Pd) is now increasingly used in modern industry, it progressively accumulates in the environment, especially in aquatic ecosystem. The potential toxicity of Pd has therefore caused extensive concern worldwidely. In the present study, we investigated the toxic effect of Pd on zebrafish development. Acute Pd exposure significantly decreased both the survival rate (LC50: 292.6 μg/L, viz. 2.75 μM) and hatching rate (IC50: 181.5 μg/L, viz. 1.71 μM) of zebrafish during embryonic development. The most common developmental defect observed in Pd treated embryos is pericardiac edema, which occurs in a dose-dependent manner. Whole mount immunostaining and histological studies revealed that Pd exposure would produce the elongated, string-like heart. The heartbeat rate of zebrafish embryos was also decreased after Pd exposure. Consistently, mRNA expression levels of several cardiac-related genes were affected by Pd, suggesting a potential molecular mechanism of Pd-induced cardiac malformation of zebrafish embryo. Moreover, similar to other metals, Pd exposure resulted in the elevated expression of general metal-inducible genes. It was also found that the expression of several antioxidant enzymes was significantly down-regulated in the presence of Pd. Taken together, our study investigated the effects of Pd on zebrafish embryonic development and its potential molecular mechanisms, paving the way for the full understanding of Pd toxicity. PMID:25550166

  10. A trade-off between embryonic development rate and immune function of avian offspring is concealed by embryonic temperature

    USGS Publications Warehouse

    Martin, Thomas E.; Arriero, Elena; Majewska, Ania

    2011-01-01

    Long embryonic periods are assumed to reflect slower intrinsic development that are thought to trade off to allow enhanced physiological systems, such as immune function. Yet, the relatively rare studies of this trade-off in avian offspring have not found the expected trade-off. Theory and tests have not taken into account the strong extrinsic effects of temperature on embryonic periods of birds. Here, we show that length of the embryonic period did not explain variation in two measures of immune function when temperature was ignored, based on studies of 34 Passerine species in tropical Venezuela (23 species) and north temperate Arizona (11 species). Variation in immune function was explained when embryonic periods were corrected for average embryonic temperature, in order to better estimate intrinsic rates of development. Immune function of offspring trades off with intrinsic rates of embryonic development once the extrinsic effects of embryonic temperatures are taken into account.

  11. Maternal embryonic leucine zipper kinase (MELK): a novel regulator in cell cycle control, embryonic development, and cancer.

    PubMed

    Jiang, Pengfei; Zhang, Deli

    2013-01-01

    Maternal embryonic leucine zipper kinase (MELK) functions as a modulator of intracellular signaling and affects various cellular and biological processes, including cell cycle, cell proliferation, apoptosis, spliceosome assembly, gene expression, embryonic development, hematopoiesis, and oncogenesis. In these cellular processes, MELK functions by binding to numerous proteins. In general, the effects of multiple protein interactions with MELK are oncogenic in nature, and the overexpression of MELK in kinds of cancer provides some evidence that it may be involved in tumorigenic process. In this review, our current knowledge of MELK function and recent discoveries in MELK signaling pathway were discussed. The regulation of MELK in cancers and its potential as a therapeutic target were also described. PMID:24185907

  12. Improved Oocyte Isolation and Embryonic Development of Outbred Deer Mice

    PubMed Central

    Kyu Choi, Jung; He, Xiaoming

    2015-01-01

    In this study, we improved the protocol for isolating cumulus-oocyte complexes (COCs) from the outbred deer mice by using only one hormone (instead of the widely used combination of two hormones) with reduced dose. Moreover, we identified that significantly more metaphase II (MII) oocytes could be obtained by supplementing epidermal growth factor (EGF) and leukemia inhibition factor (LIF) into the previously established medium for in vitro maturation (IVM) of the COCs. Furthermore, we overcame the major challenge of two-cell block during embryonic development of deer mice after either in vitro fertilization (IVF) or parthenogenetic activation (PA) of the MII oocytes, by culturing the two-cell stage embryos on the feeder layer of inactivated mouse embryonic fibroblasts (MEFs) in the medium of mouse embryonic stem cells. Collectively, this work represents a major step forward in using deer mice as an outbred animal model for biomedical research on reproduction and early embryonic development. PMID:26184014

  13. Citalopram and sertraline exposure compromises embryonic bone development.

    PubMed

    Fraher, D; Hodge, J M; Collier, F M; McMillan, J S; Kennedy, R L; Ellis, M; Nicholson, G C; Walder, K; Dodd, S; Berk, M; Pasco, J A; Williams, L J; Gibert, Y

    2016-05-01

    Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed treatments for depression and, as a class of drugs, are among the most used medications in the world. Concern regarding possible effects of SSRI treatment on fetal development has arisen recently as studies have suggested a link between maternal SSRI use and an increase in birth defects such as persistent pulmonary hypertension, seizures and craniosynostosis. Furthermore, SSRI exposure in adults is associated with decreased bone mineral density and increased fracture risk, and serotonin receptors are expressed in human osteoblasts and osteoclasts. To determine possible effects of SSRI exposure on developing bone, we treated both zebrafish, during embryonic development, and human mesenchymal stem cells (MSCs), during differentiation into osteoblasts, with the two most prescribed SSRIs, citalopram and sertraline. SSRI treatment in zebrafish decreased bone mineralization, visualized by alizarin red staining and decreased the expression of mature osteoblast-specific markers during embryogenesis. Furthermore, we showed that this inhibition was not associated with increased apoptosis. In differentiating human MSCs, we observed a decrease in osteoblast activity that was associated with a decrease in expression of the osteoblast-specific genes Runx2, Sparc and Spp1, measured with quantitative real-time PCR (qRT-PCR). Similar to the developing zebrafish, no increase in expression of the apoptotic marker Caspase 3 was observed. Therefore, we propose that SSRIs inhibit bone development by affecting osteoblast maturation during embryonic development and MSC differentiation. These results highlight the need to further investigate the risks of SSRI use during pregnancy in exposing unborn babies to potential skeletal abnormalities. PMID:26347317

  14. Histone demethylase JMJD5 is essential for embryonic development

    SciTech Connect

    Oh, Sangphil; Janknecht, Ralf

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Histone demethylase JMJD5 is essential for embryogenesis. Black-Right-Pointing-Pointer Transcription of tumor suppressor p53 is upregulated in JMJD5 knockout embryos. Black-Right-Pointing-Pointer JMJD5 may antagonize p53-dependent growth inhibition and apoptosis. Black-Right-Pointing-Pointer JMJD5 is overexpressed in leukemias and breast cancer. -- Abstract: Histone lysine methylation is pivotal in regulating chromatin structure and thus profoundly affects the transcriptome. JMJD5 (jumonji C domain-containing 5) is a histone demethylase that specifically removes methyl moieties from dimethylated lysine 36 on histone H3 and exerts a pro-proliferative effect on breast cancer cells. Here, we generated JMJD5 knockout mice in order to study the physiological significance of this enzyme. Whereas heterozygous knockout mice displayed no overt phenotype, homozygous JMJD5 knockouts died around day 10 of embryonal development. JMJD5{sup -/-} embryos showed delayed development already at E8.5 and were actively resorbed at E10.5. While strong JMJD5 expression was observed only in the yolk sac at E8.5, JMJD5 was robustly expressed in E10.5 embryos at several sites, including the heart and eye. Lack of JMJD5 resulted in transcriptional upregulation of the tumor suppressor p53. Concurrently, the cell cycle inhibitor p21 and the pro-apoptotic molecule Noxa, both of which are prominent p53 target genes, became strongly upregulated in JMJD5{sup -/-} embryos. Collectively, our data indicate that JMJD5 is essential during embryonal development and a repressor of p53 expression. The latter suggests that JMJD5 has oncogenic activity and accordingly JMJD5 is upregulated in leukemias and breast cancer.

  15. Transgenerational sex determination: the embryonic environment experienced by a male affects offspring sex ratio

    PubMed Central

    Warner, Daniel A.; Uller, Tobias; Shine, Richard

    2013-01-01

    Conditions experienced during embryonic development can have lasting effects, even carrying across generations. Most evidence for transgenerational effects comes from studies of female mammals, with much less known about egg-laying organisms or paternally-mediated effects. Here we show that offspring sex can be affected by the incubation temperature its father experiences years earlier. We incubated eggs of an Australian lizard with temperature-dependent sex determination under three thermal regimes; some eggs were given an aromatase inhibitor to produce sons at temperatures that usually produce only daughters. Offspring were raised to maturity and freely interbred within field enclosures. After incubating eggs of the subsequent generation and assigning parentage, we found that the developmental temperature experienced by a male significantly influences the sex of his future progeny. This transgenerational effect on sex ratio may reflect an epigenetic influence on paternally-inherited DNA. Clearly, sex determination in reptiles is far more complex than is currently envisaged. PMID:24048344

  16. Actin Cytoskeleton Contributes to the Elastic Modulus of Embryonic Tendon During Early Development

    PubMed Central

    Schiele, Nathan R.; von Flotow, Friedrich; Tochka, Zachary L.; Hockaday, Laura A.; Marturano, Joseph E.; Thibodeau, Jeffrey J.; Kuo, Catherine K.

    2016-01-01

    Tendon injuries are common and heal poorly. Strategies to regenerate or replace injured tendons are challenged by an incomplete understanding of normal tendon development. Our previous study showed that embryonic tendon elastic modulus increases as a function of developmental stage. Inhibition of enzymatic collagen crosslink formation abrogated increases in tendon elastic modulus at late developmental stages, but did not affect increases in elastic modulus of early stage embryonic tendons. Here, we aimed to identify potential contributors to the mechanical properties of these early stage embryonic tendons. We characterized tendon progenitor cells in early stage embryonic tendons, and the influence of actin cytoskeleton disruption on tissue elastic modulus. Cells were closely packed in embryonic tendons, and did not change in density during early development. We observed an organized network of actin filaments that seemed contiguous between adjacent cells. The actin filaments exhibited a crimp pattern with a period and amplitude that matched the crimp of collagen fibers at each developmental stage. Chemical disruption of the actin cytoskeleton decreased tendon tissue elastic modulus, measured by atomic force microscopy. Our results demonstrate that early developmental stage embryonic tendons possess a well organized actin cytoskeleton network that contributes significantly to tendon tissue mechanical properties. PMID:25721681

  17. Protein isolation from the developing embryonic mouse heart valve region.

    PubMed

    Dyer, Laura A; Wu, Yaxu; Patterson, Cam

    2014-01-01

    Western blot analysis is a commonly employed technique for detecting and quantifying protein levels. However, for small tissue samples, this analysis method may not be sufficiently sensitive to detect a protein of interest. To overcome these difficulties, we examined protocols for obtaining protein from adult human cardiac valves and modified these protocols for the developing early embryonic mouse counterparts. In brief, the mouse embryonic aortic valve regions, including the aortic valve and surrounding aortic wall, are collected in the minimal possible volume of a Tris-based lysis buffer with protease inhibitors. If required based on the breeding strategy, embryos are genotyped prior to pooling four embryonic aortic valve regions for homogenization. After homogenization, an SDS-based sample buffer is used to denature the sample for running on an SDS-PAGE gel and subsequent western blot analysis. Although the protein concentration remains too low to quantify using spectrophotometric protein quantification assays and have sample remaining for subsequent analyses, this technique can be used to successfully detect and semi-quantify phosphorylated proteins via western blot from pooled samples of four embryonic day 13.5 mouse aortic valve regions, each of which yields approximately 1 μg of protein. This technique will be of benefit for studying cell signaling pathway activation and protein expression levels during early embryonic mouse valve development. PMID:25285454

  18. Arrested embryonic development: a review of strategies to delay hatching in egg-laying reptiles

    PubMed Central

    Rafferty, Anthony R.; Reina, Richard D.

    2012-01-01

    Arrested embryonic development involves the downregulation or cessation of active cell division and metabolic activity, and the capability of an animal to arrest embryonic development results in temporal plasticity of the duration of embryonic period. Arrested embryonic development is an important reproductive strategy for egg-laying animals that provide no parental care after oviposition. In this review, we discuss each type of embryonic developmental arrest used by oviparous reptiles. Environmental pressures that might have directed the evolution of arrest are addressed and we present previously undiscussed environmentally dependent physiological processes that may occur in the egg to bring about arrest. Areas for future research are proposed to clarify how ecology affects the phenotype of developing embryos. We hypothesize that oviparous reptilian mothers are capable of providing their embryos with a level of phenotypic adaptation to local environmental conditions by incorporating maternal factors into the internal environment of the egg that result in different levels of developmental sensitivity to environmental conditions after they are laid. PMID:22438503

  19. DNA Methylation Variation Trends during the Embryonic Development of Chicken

    PubMed Central

    Li, Shizhao; Zhu, Yufei; Zhi, Lihui; Han, Xiaoying; Shen, Jing; Liu, Yanli; Yao, Junhu; Yang, Xiaojun

    2016-01-01

    The embryogenesis period is critical for epigenetic reprogramming and is thus of great significance in the research field of poultry epigenetics for elucidation of the trends in DNA methylation variations during the embryonic development of birds, particularly due to differences in embryogenesis between birds and mammals. Here, we first examined the variations in genomic DNA methylation during chicken embryogenesis through high-performance liquid chromatography using broilers as the model organism. We then identified the degree of DNA methylation of the promoters and gene bodies involved in two specific genes (IGF2 and TNF-α) using the bisulfite sequencing polymerase chain reaction method. In addition, we measured the expression levels of IGF2, TNF-α and DNA methyltransferase (DNMT) 1, 3a and 3b. Our results showed that the genomic DNA methylation levels in the liver, heart and muscle increased during embryonic development and that the methylation level of the liver was significantly higher in mid-anaphase. In both the muscle and liver, the promoter methylation levels of TNF-α first increased and then decreased, whereas the gene body methylation levels remained lower at embryonic ages E8, 11 and 14 before increasing notably at E17. The promoter methylation level of IGF2 decreased persistently, whereas the methylation levels in the gene body showed a continuous increase. No differences in the expression of TNF-α were found among E8, 11 and 14, whereas a significant increase was observed at E17. IGF2 showed increasing expression level during the examined embryonic stages. In addition, the mRNA and protein levels of DNMTs increased with increasing embryonic ages. These results suggest that chicken shows increasing genomic DNA methylation patterns during the embryonic period. Furthermore, the genomic DNA methylation levels in tissues are closely related to the genes expression levels, and gene expression may be simultaneously regulated by promoter hypomethylation

  20. In silico Testing of Environmental Impact on Embryonic Vascular Development

    EPA Science Inventory

    Understanding risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. EPA’s Virtual Embryo project is building in silico models of morphogenesis to tes...

  1. Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish

    EPA Science Inventory

    Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish Tamara Tal, Integrated Systems Toxicology Division, U.S. EPA Background: There are tens of thousands of chemicals that have yet to be fully evaluated for their toxicity by validated in vivo testing ...

  2. Elevated temperature enhances normal early embryonic development in the coral Platygyra acuta under low salinity conditions

    NASA Astrophysics Data System (ADS)

    Chui, Apple Pui Yi; Ang, Put

    2015-06-01

    To better understand the possible consequences of climate change on reef building scleractinian corals in a marginal environment, laboratory experiments were conducted to examine the interactive effects of changes in salinity and temperature on percent fertilization success and early embryonic development of the coral Platygyra acuta. In the present study, a salinity of 24 psu (ambient 32 psu) reduced fertilization success by 60 %. Normal embryonic development was reduced by >80 % at 26 psu (ambient 33 psu) with 100 % abnormal development at 22 psu under ambient temperature. Elevated temperature (+3 °C) above the ambient spawning temperature did not show any negative effects on fertilization success. However, there was a trend for more abnormal embryos to develop at elevated temperature in the 2 d of the spawning event. The interactive effects between salinity and temperature are statistically significant only on normal embryonic development of P. acuta, but not on its fertilization success. Salinity was revealed to be the main factor affecting both fertilization success and normal embryonic development. Interestingly, the much lower fertilization success (76 %) observed in the second day of spawning (Trial 2) under ambient temperature recovered to 99 % success under elevated (+3 °C) temperature conditions. Moreover, elevated temperature enhanced normal early embryonic development under lowered salinity (26 psu). This antagonistic interactive effect was consistently observed in two successive nights of spawning. Overall, our results indicate that, in terms of its fertilization success and embryonic development, P. acuta is the most tolerant coral species to reduced salinity thus far reported in the literature. Elevated temperature, at least that within the tolerable range of the corals, could apparently alleviate the potential negative effects from salinity stresses. This mitigating role of elevated temperature appears not to have been reported on corals before.

  3. NLRP9B protein is dispensable for oocyte maturation and early embryonic development in the mouse

    PubMed Central

    PENG, Hui; LIN, Xiujiao; LIU, Fang; WANG, Cheng; ZHANG, Wenchang

    2015-01-01

    Nlrp9a, Nlrp9b and Nlrp9c are preferentially expressed in oocytes and early embryos in the mouse. Simultaneous genetic ablation of Nlrp9a and Nlrp9c does not affect early embryonic development, but the function of Nlrp9b in the process of oocyte maturation and embryonic development has not been elucidated. Here we show that both Nlrp9b mRNA and its protein are expressed in ovaries and the small intestine. Moreover, the NLRP9B protein was restricted to oocytes in the ovary and declined with oocyte aging. After ovulation and fertilization, NLRP9B protein was found in preimplantation embryos. Confocal microscopy demonstrated that it was mainly localized in the cytoplasm in the oocytes and blastomeres. Thus, this protein might play a role in oocyte maturation and early embryonic development. However, knockdown of Nlrp9b expression in GV-stage oocytes using RNA interference did not affect oocyte maturation or subsequent parthenogenetic development after Nlrp9b-deficient oocytes were activated. Furthermore, Nlrp9b knockdown zygotes could reach the blastocyst stage after being cultured for 3.5 days in vitro. These results provide the first evidence that the NLRP9B protein is dispensable for oocyte maturation and early embryonic development in the mouse. PMID:26411641

  4. Quantitative In Vivo Imaging of Embryonic Development: Opportunities and Challenges

    PubMed Central

    Gregg, Chelsea L.; Butcher, Jonathan T.

    2013-01-01

    Animal models are critically important for mechanistic understanding of embryonic morphogenesis. For decades, visualizing these rapid and complex multidimensional events has relied on projection images and thin section reconstructions. While much insight has been gained, fixed tissue specimens offer limited information on dynamic processes that are essential for tissue assembly and organ patterning. Quantitative imaging is required to unlock the important basic science and clinically relevant secrets that remain hidden. Recent advances in live imaging technology have enabled quantitative longitudinal analysis of embryonic morphogenesis at multiple length and time scales. Four different imaging modalities are currently being used to monitor embryonic morphogenesis: optical, ultrasound, magnetic resonance imaging (MRI), and micro-computed tomography (micro-CT). Each has its advantages and limitations with respect to spatial resolution, depth of field, scanning speed, and tissue contrast. In addition, new processing tools have been developed to enhance live imaging capabilities. In this review, we analyze each type of imaging source and its use in quantitative study of embryonic morphogenesis in small animal models. We describe the physics behind their function, identify some examples in which the modality has revealed new quantitative insights, and then conclude with a discussion of new research directions with live imaging. PMID:22695188

  5. Quantitative in vivo imaging of embryonic development: opportunities and challenges.

    PubMed

    Gregg, Chelsea L; Butcher, Jonathan T

    2012-07-01

    Animal models are critically important for a mechanistic understanding of embryonic morphogenesis. For decades, visualizing these rapid and complex multidimensional events has relied on projection images and thin section reconstructions. While much insight has been gained, fixed tissue specimens offer limited information on dynamic processes that are essential for tissue assembly and organ patterning. Quantitative imaging is required to unlock the important basic science and clinically relevant secrets that remain hidden. Recent advances in live imaging technology have enabled quantitative longitudinal analysis of embryonic morphogenesis at multiple length and time scales. Four different imaging modalities are currently being used to monitor embryonic morphogenesis: optical, ultrasound, magnetic resonance imaging (MRI), and micro-computed tomography (micro-CT). Each has its advantages and limitations with respect to spatial resolution, depth of field, scanning speed, and tissue contrast. In addition, new processing tools have been developed to enhance live imaging capabilities. In this review, we analyze each type of imaging source and its use in quantitative study of embryonic morphogenesis in small animal models. We describe the physics behind their function, identify some examples in which the modality has revealed new quantitative insights, and then conclude with a discussion of new research directions with live imaging. PMID:22695188

  6. Imaging of mouse embryonic eye development using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Syed, Saba H.; Kasiraj, Alyssa; Larina, Irina V.; Dickinson, Mary E.; Larin, Kirill V.

    2010-02-01

    Congenital abnormalities are often caused by genetic disorders which alter the normal development of the eye. Embryonic eye imaging in mouse model is important for understanding of normal and abnormal eye development and can contribute to prevention and treatment of eye defects in humans. In this study, we used Swept Source Optical Coherence Tomography (SS-OCT) to image eye structure in mouse embryos at 12.5 to 17.5 days post coitus (dpc). The imaging depth of the OCT allowed us to visualize the whole eye globe at these stages. Different ocular tissues including lens, cornea, eyelids, and hyaloid vasculature were visualized. These results suggest that OCT imaging is a useful tool to study embryonic eye development in the mouse model.

  7. Potential roles for tumour necrosis factor alpha during embryonic development.

    PubMed

    Wride, M A; Sanders, E J

    1995-01-01

    This paper reviews the evidence indicating possible roles for tumour necrosis factor-alpha (TNF alpha) in development. It is proposed that TNF alpha may have essentially three major roles during embryonic development, which may be analogous to its roles in the immune system and during inflammation: a role in programmed cell death; a role as a cellular growth and differentiation factor; and also a role in the remodelling of extracellular matrix, and the regulation of cell adhesion molecules and integrins. The concept of the existence of a cytokine array during embryogenesis, analogous to that occurring in inflammation, is discussed, as well as potential roles for TNF alpha in the induction of ubiquitin; protective mechanisms embryonic cells may employ against TNF alpha-mediated cytotoxicity; and a consideration of the role TNF alpha may play in a "free radical theory of development". PMID:7717528

  8. Regional expression of ADAM19 during chicken embryonic development.

    PubMed

    Yan, Xin; Lin, Juntang; Markus, Annett; Rolfs, Arndt; Luo, Jiankai

    2011-04-01

    ADAM19 (also named meltrin β) is a member of the ADAM (a disintegrin and metalloprotease) family of metalloproteases and is involved in morphogenesis and tissue formation during embryonic development. In the present study, chicken ADAM19 is cloned by reverse transcription-polymerase chain reaction and identified by sequencing. Its expression patterns in different parts of the developing chicken embryo are investigated by Western blot analysis and immunohistochemistry. Results show that ADAM19 protein is widely expressed in chicken embryos. It is detectable in the central nervous system, including the brain, spinal cord, cochlea, and retina. Furthermore, ADAM19 protein is also found in other tissues and organs such as digestive organs, the thymus, the lung bud, the dorsal aorta, the kidney, the gonad, muscles, and in the feather buds. All these data suggest that ADAM19 plays an important role in the embryonic development of chicken. PMID:21492148

  9. Factors that regulate embryonic gustatory development.

    PubMed

    Krimm, Robin F

    2007-01-01

    Numerous molecular factors orchestrate the development of the peripheral taste system. The unique anatomy/function of the taste system makes this system ideal for understanding the mechanisms by which these factors function; yet the taste system is underutilized for this role. This review focuses on some of the many factors that are known to regulate gustatory development, and discusses a few topics where more work is needed. Some attention is given to factors that regulate epibranchial placode formation, since gustatory neurons are thought to be primarily derived from this region. Epibranchial placodes appear to arise from a pan-placodal region and a number of regulatory factors control the differentiation of individual placodes. Gustatory neuron differentiation is regulated by a series of transcription factors and perhaps bone morphongenic proteins (BMP). As neurons differentiate, they also proliferate such that their numbers exceed those in the adult, and this is followed by developmental death. Some of these cell-cycling events are regulated by neurotrophins. After gustatory neurons become post-mitotic, axon outgrowth occurs. Axons are guided by multiple chemoattractive and chemorepulsive factors, including semaphorins, to the tongue epithelium. Brain derived neurotrophic factor (BDNF), functions as a targeting factor in the final stages of axon guidance and is required for gustatory axons to find and innervate taste epithelium. Numerous factors are involved in the development of gustatory papillae including Sox-2, Sonic hedge hog and Wnt-beta-catenin signaling. It is likely that just as many factors regulate taste bud differentiation; however, these factors have not yet been identified. Studies examining the molecular factors that regulate terminal field formation in the nucleus of the solitary tract are also lacking. However, it is possible that some of the factors that regulate geniculate ganglion development, outgrowth, guidance and targeting of peripheral

  10. Bioenergetic Profiling of Zebrafish Embryonic Development

    PubMed Central

    Stackley, Krista D.; Beeson, Craig C.; Rahn, Jennifer J.; Chan, Sherine S. L.

    2011-01-01

    Many debilitating conditions are linked to bioenergetic defects. Developing screens to probe the genetic and/or chemical basis for such links has proved intractable. Furthermore, there is a need for a physiologically relevant assay of bioenergetics in whole organisms, especially for early stages in life where perturbations could increase disease susceptibility with aging. Thus, we asked whether we could screen bioenergetics and mitochondrial function in the developing zebrafish embryo. We present a multiplexed method to assay bioenergetics in zebrafish embryos from the blastula period (3 hours post-fertilization, hpf) through to hatching (48 hpf). In proof of principle experiments, we measured respiration and acid extrusion of developing zebrafish embryos. We quantified respiratory coupling to various bioenergetic functions by using specific pharmacological inhibitors of bioenergetic pathways. We demonstrate that changes in the coupling to ATP turnover and proton leak are correlated with developmental stage. The multiwell format of this assay enables the user to screen for the effects of drugs and environmental agents on bioenergetics in the zebrafish embryo with high sensitivity and reproducibility. PMID:21980518

  11. Differential Requirement for Pten Lipid and Protein Phosphatase Activity during Zebrafish Embryonic Development.

    PubMed

    Stumpf, Miriam; den Hertog, Jeroen

    2016-01-01

    The lipid- and protein phosphatase PTEN is one of the most frequently mutated tumor suppressor genes in human cancers and many mutations found in tumor samples directly affect PTEN phosphatase activity. In order to understand the functional consequences of these mutations in vivo, the aim of our study was to dissect the role of Pten phosphatase activities during zebrafish embryonic development. As in other model organisms, zebrafish mutants lacking functional Pten are embryonically lethal. Zebrafish have two pten genes and pten double homozygous zebrafish embryos develop a severe pleiotropic phenotype around 4 days post fertilization, which can be largely rescued by re-introduction of pten mRNA at the one-cell stage. We used this assay to characterize the rescue-capacity of Pten and variants with mutations that disrupt lipid, protein or both phosphatase activities. The pleiotropic phenotype at 4dpf could only be rescued by wild type Pten, indicating that both phosphatase activities are required for normal zebrafish embryonic development. An earlier aspect of the phenotype, hyperbranching of intersegmental vessels, however, was rescued by Pten that retained lipid phosphatase activity, independent of protein phosphatase activity. Lipid phosphatase activity was also required for moderating pAkt levels at 4 dpf. We propose that the role of Pten during angiogenesis mainly consists of suppressing PI3K signaling via its lipid phosphatase activity, whereas the complex process of embryonic development requires lipid and protein phosphatase of Pten. PMID:26848951

  12. Differential Requirement for Pten Lipid and Protein Phosphatase Activity during Zebrafish Embryonic Development

    PubMed Central

    Stumpf, Miriam; den Hertog, Jeroen

    2016-01-01

    The lipid- and protein phosphatase PTEN is one of the most frequently mutated tumor suppressor genes in human cancers and many mutations found in tumor samples directly affect PTEN phosphatase activity. In order to understand the functional consequences of these mutations in vivo, the aim of our study was to dissect the role of Pten phosphatase activities during zebrafish embryonic development. As in other model organisms, zebrafish mutants lacking functional Pten are embryonically lethal. Zebrafish have two pten genes and pten double homozygous zebrafish embryos develop a severe pleiotropic phenotype around 4 days post fertilization, which can be largely rescued by re-introduction of pten mRNA at the one-cell stage. We used this assay to characterize the rescue-capacity of Pten and variants with mutations that disrupt lipid, protein or both phosphatase activities. The pleiotropic phenotype at 4dpf could only be rescued by wild type Pten, indicating that both phosphatase activities are required for normal zebrafish embryonic development. An earlier aspect of the phenotype, hyperbranching of intersegmental vessels, however, was rescued by Pten that retained lipid phosphatase activity, independent of protein phosphatase activity. Lipid phosphatase activity was also required for moderating pAkt levels at 4 dpf. We propose that the role of Pten during angiogenesis mainly consists of suppressing PI3K signaling via its lipid phosphatase activity, whereas the complex process of embryonic development requires lipid and protein phosphatase of Pten. PMID:26848951

  13. Miz1 Is Required for Early Embryonic Development during Gastrulation

    PubMed Central

    Adhikary, Sovana; Peukert, Karen; Karsunky, Holger; Beuger, Vincent; Lutz, Werner; Elsässer, Hans-Peter; Möröy, Tarik; Eilers, Martin

    2003-01-01

    Miz1 is a member of the POZ domain/zinc finger transcription factor family. In vivo, Miz1 forms a complex with the Myc oncoprotein and recruits Myc to core promoter elements. Myc represses transcription through Miz1 binding sites. We now show that the Miz1 gene is ubiquitously expressed during mouse embryogenesis. In order to elucidate the physiological function of Miz1, we have deleted the mouse Miz1 gene by homologous recombination. Miz1+/− mice are indistinguishable from wild-type animals; in contrast, Miz1−/− embryos are not viable. They are severely retarded in early embryonic development and do not undergo normal gastrulation. Expression of Goosecoid and Brachyury is detectable in Miz1−/− embryos, suggesting that Miz1 is not required for signal transduction by Nodal. Expression of p21Cip1, a target gene of Miz1 is unaltered; in contrast, expression of p57Kip2, another target gene of Miz1 is absent in Miz1−/− embryos. Miz1−/− embryos succumb to massive apoptosis of ectodermal cells around day 7.5 of embryonic development. Our results show that Miz1 is required for early embryonic development during gastrulation. PMID:14560010

  14. Differential requirement for Dab2 in the development of embryonic and extra-embryonic tissues

    PubMed Central

    2013-01-01

    Background Disabled-2 (Dab2) is an endocytic adaptor protein involved in clathrin-mediated endocytosis and cargo trafficking. Since its expression is lost in several cancer types, Dab2 has been suggested to be a tumor suppressor. In vitro studies indicate that Dab2 establishes epithelial cell polarity and organization by directing endocytic trafficking of membrane glycoproteins. Dab2 also modulates cellular signaling pathways by mediating the endocytosis and recycling of surface receptors and associated signaling components. Previously, two independent gene knockout studies have been reported, with some discrepancies in the observed embryonic phenotypes. To further clarify the in vivo roles of Dab2 in development and physiology, we designed a new floxed allele to delete dab2 gene. Results The constitutive dab2 deleted embryos showed a spectrum in the degree of endoderm disorganization in E5.5 and no mutant embryos persisted at E9.5. However, the mice were grossly normal when dab2 deletion was restricted to the embryo proper and the gene was retained in extraembryonic tissues using Meox2-Cre and Sox2-Cre. Adult Dab2-deficient mice had a small but statistically significant increase in serum cholesterol levels. Conclusion The study of the new dab2 mutant allele in embryos and embryoid bodies confirms a role for Dab2 in extraembryonic endoderm development and epithelial organization. Experimental results with embryoid bodies suggest that additional endocytic adaptors such as Arh and Numb could partially compensate for Dab2 loss. Conditional deletion indicates that Dab2 is dispensable for organ development, when the vast majority of the embryonic cells are dab2 null. However, Dab2 has a physiological role in the endocytosis of lipoproteins and cholesterol metabolism. PMID:24168030

  15. Embryonic cerebrospinal fluid in brain development: neural progenitor control.

    PubMed

    Gato, Angel; Alonso, M Isabel; Martín, Cristina; Carnicero, Estela; Moro, José Antonio; De la Mano, Aníbal; Fernández, José M F; Lamus, Francisco; Desmond, Mary E

    2014-08-28

    Due to the effort of several research teams across the world, today we have a solid base of knowledge on the liquid contained in the brain cavities, its composition, and biological roles. Although the cerebrospinal fluid (CSF) is among the most relevant parts of the central nervous system from the physiological point of view, it seems that it is not a permanent and stable entity because its composition and biological properties evolve across life. So, we can talk about different CSFs during the vertebrate life span. In this review, we focus on the CSF in an interesting period, early in vertebrate development before the formation of the choroid plexus. This specific entity is called "embryonic CSF." Based on the structure of the compartment, CSF composition, origin and circulation, and its interaction with neuroepithelial precursor cells (the target cells) we can conclude that embryonic CSF is different from the CSF in later developmental stages and from the adult CSF. This article presents arguments that support the singularity of the embryonic CSF, mainly focusing on its influence on neural precursor behavior during development and in adult life. PMID:25165044

  16. Embryonic cerebrospinal fluid in brain development: neural progenitor control

    PubMed Central

    Gato, Angel; Alonso, M. Isabel; Martín, Cristina; Carnicero, Estela; Moro, José Antonio; De la Mano, Aníbal; Fernández, José M. F.; Lamus, Francisco; Desmond, Mary E.

    2014-01-01

    Due to the effort of several research teams across the world, today we have a solid base of knowledge on the liquid contained in the brain cavities, its composition, and biological roles. Although the cerebrospinal fluid (CSF) is among the most relevant parts of the central nervous system from the physiological point of view, it seems that it is not a permanent and stable entity because its composition and biological properties evolve across life. So, we can talk about different CSFs during the vertebrate life span. In this review, we focus on the CSF in an interesting period, early in vertebrate development before the formation of the choroid plexus. This specific entity is called “embryonic CSF.” Based on the structure of the compartment, CSF composition, origin and circulation, and its interaction with neuroepithelial precursor cells (the target cells) we can conclude that embryonic CSF is different from the CSF in later developmental stages and from the adult CSF. This article presents arguments that support the singularity of the embryonic CSF, mainly focusing on its influence on neural precursor behavior during development and in adult life. PMID:25165044

  17. Role of adiponectin in delayed embryonic development of the short-nosed fruit bat, Cynopterus sphinx.

    PubMed

    Anuradha; Krishna, Amitabh

    2014-12-01

    The aim of this study was to evaluate the role of adiponectin in the delayed embryonic development of Cynopterus sphinx. Adiponectin receptor (ADIPOR1) abundance was first observed to be lower during the delayed versus non-delayed periods of utero-embryonic unit development. The effects of adiponectin treatment on embryonic development were then evaluated during the period of delayed development. Exogenous treatment increased the in vivo rate of embryonic development, as indicated by an increase in weight, ADIPOR1 levels in the utero-embryonic unit, and histological changes in embryonic development. Treatment with adiponectin during embryonic diapause showed a significant increase in circulating progesterone and estradiol concentrations, and in production of their receptors in the utero-embryonic unit. The adiponectin-induced increase in estradiol synthesis was correlated with increased cell survival (BCL2 protein levels) and cell proliferation (PCNA protein levels) in the utero-embryonic unit, suggesting an indirect effect of adiponectin via estradiol synthesis by the ovary. An in vitro study further confirmed the in vivo findings that adiponectin treatment increases PCNA levels together with increased uptake of glucose by increasing the abundance of glucose transporter 8 (GLUT8) in the utero-embryonic unit. The in vitro study also revealed that adiponectin, together with estradiol but not alone, significantly increased ADIPOR1 protein levels. Thus, adiponectin works in concert with estradiol to increase glucose transport to the utero-embryonic unit and promote cell proliferation, which together accelerate embryonic development. PMID:25295970

  18. The 'ventral organs' of Pycnogonida (Arthropoda) are neurogenic niches of late embryonic and post-embryonic nervous system development.

    PubMed

    Brenneis, Georg; Scholtz, Gerhard

    2014-01-01

    Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i) immunolabeling, (ii) histology and (iii) scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida), the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions - traditionally designated as 'ventral organs' - detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult) replenishment of olfactory neurons - as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two transient posterior

  19. Can physics help to explain embryonic development? An overview.

    PubMed

    Fleury, V

    2013-10-01

    Recent technical advances including digital imaging and particle image velocimetry can be used to extract the full range of embryonic movements that constitute the instantaneous 'morphogenetic fields' of a developing animal. The final shape of the animal results from the sum over time (integral) of the movements that make up the velocity fields of all the tissue constituents. In vivo microscopy can be used to capture the details of vertebrate development at the earliest embryonic stages. The movements thus observed can be quantitatively compared to physical models that provide velocity fields based on simple hypotheses about the nature of living matter (a visco-elastic gel). This approach has cast new light on the interpretation of embryonic movement, folding, and organisation. It has established that several major discontinuities in development are simple physical changes in boundary conditions. In other words, with no change in biology, the physical consequences of collisions between folds largely explain the morphogenesis of the major structures (such as the head). Other discontinuities result from changes in physical conditions, such as bifurcations (changes in physical behaviour beyond specific yield points). For instance, beyond a certain level of stress, a tissue folds, without any new gene being involved. An understanding of the physical features of movement provides insights into the levers that drive evolution; the origin of animals is seen more clearly when viewed under the light of the fundamental physical laws (Newton's principle, action-reaction law, changes in symmetry breaking scale). This article describes the genesis of a vertebrate embryo from the shapeless stage (round mass of tissue) to the development of a small, elongated, bilaterally symmetric structure containing vertebral precursors, hip and shoulder enlarges, and a head. PMID:24029587

  20. Manipulation and In Vitro Maturation of Xenopus laevis Oocytes, Followed by Intracytoplasmic Sperm Injection, to Study Embryonic Development

    PubMed Central

    Miyamoto, Kei; Simpson, David; Gurdon, John B.

    2015-01-01

    Amphibian eggs have been widely used to study embryonic development. Early embryonic development is driven by maternally stored factors accumulated during oogenesis. In order to study roles of such maternal factors in early embryonic development, it is desirable to manipulate their functions from the very beginning of embryonic development. Conventional ways of gene interference are achieved by injection of antisense oligonucleotides (oligos) or mRNA into fertilized eggs, enabling under- or over-expression of specific proteins, respectively. However, these methods normally require more than several hours until protein expression is affected, and, hence, the interference of gene functions is not effective during early embryonic stages. Here, we introduce an experimental system in which expression levels of maternal proteins can be altered before fertilization. Xenopus laevis oocytes obtained from ovaries are defolliculated by incubating with enzymes. Antisense oligos or mRNAs are injected into defolliculated oocytes at the germinal vesicle (GV) stage. These oocytes are in vitro matured to eggs at the metaphase II (MII) stage, followed by intracytoplasmic sperm injection (ICSI). By this way, up to 10% of ICSI embryos can reach the swimming tadpole stage, thus allowing functional tests of specific gene knockdown or overexpression. This approach can be a useful way to study roles of maternally stored factors in early embryonic development. PMID:25742326

  1. Embryonic development of circadian clocks in the mammalian suprachiasmatic nuclei

    PubMed Central

    Landgraf, Dominic; Koch, Christiane E.; Oster, Henrik

    2014-01-01

    In most species, self-sustained molecular clocks regulate 24-h rhythms of behavior and physiology. In mammals, a circadian pacemaker residing in the hypothalamic suprachiasmatic nucleus (SCN) receives photic signals from the retina and synchronizes subordinate clocks in non-SCN tissues. The emergence of circadian rhythmicity during development has been extensively studied for many years. In mice, neuronal development in the presumptive SCN region of the embryonic hypothalamus occurs on days 12–15 of gestation. Intra-SCN circuits differentiate during the following days and retinal projections reach the SCN, and thus mediate photic entrainment, only after birth. In contrast the genetic components of the clock gene machinery are expressed much earlier and during midgestation SCN explants and isolated neurons are capable of generating molecular oscillations in culture. In vivo metabolic rhythms in the SCN, however, are observed not earlier than the 19th day of rat gestation, and rhythmic expression of clock genes is hardly detectable until after birth. Together these data indicate that cellular coupling and, thus, tissue-wide synchronization of single-cell rhythms, may only develop very late during embryogenesis. In this mini-review we describe the developmental origin of the SCN structure and summarize our current knowledge about the functional initiation and entrainment of the circadian pacemaker during embryonic development. PMID:25520627

  2. Embryonic and larval development of Brycon amazonicus (SPIX & AGASSIZ, 1829).

    PubMed

    Nakauth, A C S Sampaio; Villacorta-Correa, M A; Figueiredo, M R; Bernardino, G; França, J M

    2016-02-01

    The objective of this study was to describe the embryonic and larval development of Brycon amazonicus, featuring the main events up to 50 hours after fertilization (AF). The material was provided by the Aquaculture Training, Technology and Production Center, Presidente Figueiredo (AM). The characterization was based on stereomicroscopic examination of the morphology of eggs, embryos and larvae and comparison with the literature. Matrinxã eggs are free, transparent, and spherical, with a perivitelline space of 0.56 ± 0.3 mm. The successive divisions give rise to cells with 64 blastomeres during the first hour AF. The gastrula stage, beginning 02 h 40 min AF, was characterized by progressive regression cells and the formation of the embryonic axis, leading to differentiation of the head and tail 05 h 30 min AF. From 06 to 09 h AF the somites, notochord, otic and optic vesicles and otoliths were observed, in addition to heart rate and the release of the tail. The larvae hatched at 10 h 30 min AF (29.9 °C), with a total length of 3.56 ± 0.46 mm. Between 19 and 30 h AF, we observed 1) pigmentation and gut formation, 2) branchial arches, 3) pectoral fins, 4) a mouth opening and 5) teeth. Cannibalism was initiated earlier (34 h AF) which was associated with rapid yolk absorption (more than 90% until 50 h AF), signaling the need for an exogenous nutritional source. The environmental conditions (especially temperature) influenced the time course of some events throughout the embryonic and larval development, suggesting the need for further studies on this subject. PMID:26909629

  3. Embryonic development of the Drosophila brain: formation of commissural and descending pathways.

    PubMed

    Therianos, S; Leuzinger, S; Hirth, F; Goodman, C S; Reichert, H

    1995-11-01

    The establishment of initial axonal pathways in the embryonic brain of Drosophila melanogaster was investigated at the cellular and molecular level using antibody probes, enhancer detector strains and axonal pathfinding mutants. During embryogenesis, two bilaterally symmetrical cephalic neurogenic regions form, which are initially separated from each other and from the ventral nerve cord. The brain commissure that interconnects the two brain hemispheres is pioneered by axons that project towards the midline in close association with an interhemispheric cellular bridge. The descending longitudinal pathways that interconnect the brain to the ventral nerve cord are prefigured by a chain of longitudinal glial cells and a cellular bridge between brain and subesophageal ganglion; pioneering descending and ascending neurons grow in close association with these structures. The formation of the embryonic commissural and longitudinal pathways is dependent on cells of the CNS midline. Mutations in the commissureless gene, which affects growth cone guidance towards the midline, result in a marked reduction of the brain commissure. Mutations in the single-minded gene and in other spitz group genes, which affect the differentiation of CNS midline cells, result in the absence or aberrant projection of longitudinal pathways. The analysis of axon pathway formation presented here reveals remarkable similarities as well as distinct differences in the embryonic development of the brain and the segmental ganglia, and forms the basis for a comprehensive genetic and molecular genetic dissection of axonal pathfinding processes in the developing brain. PMID:8582294

  4. TRPM Channels and Magnesium in Early Embryonic Development

    PubMed Central

    Komiya, Yuko; Runnels, Loren W.

    2015-01-01

    Magnesium (Mg2+) is the second most abundant cellular cation and is essential for all stages of life, from the early embryo to adult. Mg2+ deficiency causes or contributes to many human diseases, including migraine headaches, Parkinson’s disease, Alzheimer’s disease, hypotension, type 2 diabetes mellitus and cardiac arrhythmias. Although the concentration of Mg2+ in the extracellular environment can vary significantly, the total intracellular Mg2+ concentration is actively maintained within a relatively narrow range (14 – 20 mM) via tight, yet poorly understood, regulation of intracellular Mg2+ by Mg2+ transporters and Mg2+-permeant ion channels. Recent studies have continued to add to the growing number of Mg2+ transporters and ion channels involved in Mg2+ homeostasis, including TRPM6 and TRPM7, members of the transient receptor potential (TRP) ion channel family. Mutations in TRPM6, including amino acid substitutions that prevent its heterooligomerization with TRPM7, occur in the rare autosomal-recessive disease hypomagnesemia with secondary hypocalcemia (HSH). However, is the fact that genetic ablation of either gene in mice results in early embryonic lethality that has raised the question of whether these channels’ capacity to mediate Mg2+ influx plays an important role in embryonic development. Here we review what is known of the function of Mg2+ in early development and summarize recent findings regarding the function of the TRPM6 and TRPM7 ion channels during embryogenesis. PMID:26679946

  5. Temperature dependent embryonic development of Trichuris suis eggs in a medicinal raw material.

    PubMed

    Vejzagić, Nermina; Kringel, Helene; Bruun, Johan Musaeus; Roepstorff, Allan; Thamsborg, Stig Milan; Grossi, Anette Blak; Kapel, Christian M O

    2016-01-15

    The therapeutic potential of infective pig whipworm eggs, Trichuris suis ova (TSO), is currently tested in several clinical trials on immune-mediated diseases. This paper studied the embryonic development of TSO in a medicinal raw product, where the parasite eggs were suspended in sulphuric acid (pH1). Unembryonated T. suis egg batches were stored at 5, 10, 15, 20, 25, 30, and 40°C (±1°C) and examined at 2, 4, 8, and 14 weeks. Subsequently, sub-batches from each temperature were allowed to embryonate for additional 14 weeks at 25°C, and selected samples were tested for infectivity in Göttingen minipigs. Both male and female pigs were used to evaluate eventual gender specific infectivity. Storage at 30°C up to 14 weeks and subsequent embryonation for 14 weeks at 25°C did not significantly reduce the overall larval establishment in minipigs, as compared to storage at 5°C and subsequent embryonation at 25°C. As marked impairment of egg development was observed during storage at 40°C, a second set of unembryonated egg batches were incubated at 30, 32, 34, 36, 38, and 40°C (±1°C) for 1-8 weeks. The development of the eggs was repeatedly examined by manual light microscopy, multispectral analysis (OvaSpec), and an egg hatching assay prior to the final testing in minipigs (Trial 1). These methods showed that the development started earlier at higher temperatures, but the long-term storage at higher temperature affected the egg development. The present study further documents tolerance of the TSO to storage at temperature 5-15°C, at which temperature development of larvae is not initiated. PMID:26790737

  6. The zinc finger transcription factor 191 is required for early embryonic development and cell proliferation

    SciTech Connect

    Li Jianzhong; Chen Xia; Yang Hua; Wang Shuiliang; Guo Baoyu; Yu Long; Wang Zhugang; Fu Jiliang . E-mail: fu825@mail.tongji.edu.cn

    2006-12-10

    Human zinc finger protein 191 (ZNF191/ZNF24) was cloned and characterized as a SCAN family member, which shows 94% identity to its mouse homologue zinc finger protein 191 (Zfp191). ZNF191 can specifically interact with an intronic polymorphic TCAT repeat (HUMTH01) in the tyrosine hydroxylase (TH) gene. Allelic variations of HUMTH01 have been stated to have a quantitative silencing effect on TH gene expression and to correlate with quantitative and qualitative changes in the binding by ZNF191. Zfp191 is widely expressed during embryonic development and in multiple tissues and organs in adult. To investigate the functions of Zfp191 in vivo, we have used homologous recombination to generate mice that are deficient in Zfp191. Heterozygous Zfp191 {sup +/-} mice are normal and fertile. Homozygous Zfp191 {sup -/-} embryos are severely retarded in development and die at approximately 7.5 days post-fertilization. Unexpectedly, in Zfp191 {sup -/-} and Zfp191 {sup +/-} embryos, TH gene expression is not affected. Blastocyst outgrowth experiments and the RNA interference-mediated knockdown of ZNF191 in cultured cells revealed an essential role for Zfp191 in cell proliferation. In further agreement with this function, no viable Zfp191 {sup -/-} cell lines were obtained by derivation of embryonic stem (ES) cells from blastocysts of Zfp191 {sup +/-} intercrosses or by forced homogenotization of heterozygous ES cells at high concentrations of G418. These data show that Zfp191 is indispensable for early embryonic development and cell proliferation.

  7. The physiological roles of vesicular GABA transporter during embryonic development: a study using knockout mice

    PubMed Central

    2010-01-01

    Background The vesicular GABA transporter (VGAT) loads GABA and glycine from the neuronal cytoplasm into synaptic vesicles. To address functional importance of VGAT during embryonic development, we generated global VGAT knockout mice and analyzed them. Results VGAT knockouts at embryonic day (E) 18.5 exhibited substantial increases in overall GABA and glycine, but not glutamate, contents in the forebrain. Electrophysiological recordings from E17.5-18.5 spinal cord motoneurons demonstrated that VGAT knockouts presented no spontaneous inhibitory postsynaptic currents mediated by GABA and glycine. Histological examination of E18.5 knockout fetuses revealed reductions in the trapezius muscle, hepatic congestion and little alveolar spaces in the lung, indicating that the development of skeletal muscle, liver and lung in these mice was severely affected. Conclusion VGAT is fundamental for the GABA- and/or glycine-mediated transmission that supports embryonic development. VGAT knockout mice will be useful for further investigating the roles of VGAT in normal physiology and pathophysiologic processes. PMID:21190592

  8. Dual effects of fluoxetine on mouse early embryonic development

    SciTech Connect

    Kim, Chang-Woon; Choe, Changyong; Kim, Eun-Jin; Lee, Jae-Ik; Yoon, Sook-Young; Cho, Young-Woo; Han, Sunkyu; Tak, Hyun-Min; Han, Jaehee; Kang, Dawon

    2012-11-15

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50 μM) for different durations. When late 2-cells were incubated with 5 μM fluoxetine for 6 h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetine (5 μM) over 24 h showed a reduction in blastocyst formation. The addition of fluoxetine (5 μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K{sup +} channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ∼ 30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Highlights: ► Short-term exposure of 2-cells to fluoxetine enhances mouse blastocyst formation. ► The enhancive effect of fluoxetine is resulted from Ca

  9. Simple Physics in Diseases and Embryonic Development of the Eye

    NASA Astrophysics Data System (ADS)

    Shirinifard, Abbas

    2011-03-01

    While molecular-level regulation within cells during embryonic development is highly complex, the physical mechanisms which translate this intracellular information into multicellular physical structure at the tissue level are often surprisingly simple. I will discuss an example where regulation of cell-cell contact energies is primarily responsible for robust and evolvable regular patterns, the organization of the ommatidia and supporting cells into the regular tiling characteristic of the Drosophila eye and another example where adhesion failures in the human retina result in choroidal neovascularization leading to blindness. In both cases, simulations based on materials-science techniques can help us understand the patterning mechanisms and the reasons for their robustness and failures. Such simulations are easy to extend to other developmental phenomena and to development-related diseases like cancer. EPA grant ``The Texas-Indiana Virtual STAR Center'' and NIH grants R01 GM76692 and R01 GM077138.

  10. Comparative Development of Embryonic Age by Organogenesis in Domestic Dogs and Cats.

    PubMed

    Pieri, Ncg; Souza, A F; Casals, J B; Roballo, Kcs; Ambrósio, C E; Martins, D S

    2015-08-01

    The precise determination of the embryonic chronology is very important in reproductive biotechnologies, especially in estimating embryonic age. Thus, there is a need for greater knowledge and standardization for determining the chronology of embryonic development and functional morphology. We describe aspects of embryonic development in two domestic carnivores to add knowledge about organ peculiarities and for application in veterinary practice, in prenatal development and in the biotechnology fields. We found that the development of differential characteristics of embryonic organs occurs in the first trimester of pregnancy for both species. Thus, using the combination of the crown-rump length, macroscopic analysis and optical microscopy, it is possible to predict gestational age more precisely in animals that lack a defined breed and establish an embryonic pattern. PMID:25990819

  11. NG2 glia are required for vessel network formation during embryonic development

    PubMed Central

    Minocha, Shilpi; Valloton, Delphine; Brunet, Isabelle; Eichmann, Anne

    2015-01-01

    The NG2+ glia, also known as polydendrocytes or oligodendrocyte precursor cells, represent a new entity among glial cell populations in the central nervous system. However, the complete repertoire of their roles is not yet identified. The embryonic NG2+ glia originate from the Nkx2.1+ progenitors of the ventral telencephalon. Our analysis unravels that, beginning from E12.5 until E16.5, the NG2+ glia populate the entire dorsal telencephalon. Interestingly, their appearance temporally coincides with the establishment of blood vessel network in the embryonic brain. NG2+ glia are closely apposed to developing cerebral vessels by being either positioned at the sprouting tip cells or tethered along the vessel walls. Absence of NG2+ glia drastically affects the vascular development leading to severe reduction of ramifications and connections by E18.5. By revealing a novel and fundamental role for NG2+ glia, our study brings new perspectives to mechanisms underlying proper vessels network formation in embryonic brains. DOI: http://dx.doi.org/10.7554/eLife.09102.001 PMID:26651999

  12. Reelin expression during embryonic brain development in Crocodylus niloticus.

    PubMed

    Tissir, F; Lambert De Rouvroit, C; Sire, J-Y; Meyer, G; Goffinet, A M

    2003-03-10

    The expression of reelin mRNA and protein was studied during embryonic brain development in the Nile crocodile Crocodylus niloticus, using in situ hybridization and immunohistochemistry. In the forebrain, reelin was highly expressed in the olfactory bulb, septal nuclei, and subpial neurons in the marginal zone of the cerebral cortex, dorsal ventricular ridge, and basal forebrain. At early stages, reelin mRNA was also detected in subventricular zones. In the diencephalon, the ventral lateral geniculate nuclei and reticular nuclei were strongly positive, with moderate expression in the habenula and focal expression in the hypothalamus. High expression levels were noted in the retina, the tectum, and the external granule cell layer of the cerebellum. In the brainstem, there was a high level of signal in cochleovestibular, sensory trigeminal, and some reticular nuclei. No expression was observed in the cortical plate or Purkinje cells. Comparison with reelin expression during brain development in mammals, birds, turtles, and lizards reveals evolutionarily conserved, homologous features that presumably define the expression profile in stem amniotes. The crocodilian cortex contains subpial reelin-positive cells that are also p73 positive, suggesting that they are homologous to mammalian Cajal-Retzius cells, although they express the reelin gene less intensely. Furthermore, the crocodilian cortex does not contain the subcortical reelin-positive cells that are typical of lizards but expresses reelin in subventricular zones at early stages. These observations confirm that reelin is prominently expressed in many structures of the embryonic brain in all amniotes and further emphasize the unique amplification of reelin expression in mammalian Cajal-Retzius cells and its putative role in the evolution of the cerebral cortex. PMID:12541309

  13. Regulation of bone morphogenetic proteins in early embryonic development

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yukiyo; Oelgeschläger, Michael

    2004-11-01

    Bone morphogenetic proteins (BMPs), a large subgroup of the TGF-β family of secreted growth factors, control fundamental events in early embryonic development, organogenesis and adult tissue homeostasis. The plethora of dose-dependent cellular processes regulated by BMP signalling demand a tight regulation of BMP activity. Over the last decade, a number of proteins have been identified that bind BMPs in the extracellular space and regulate the interaction of BMPs with their cognate receptors, including the secreted BMP antagonist Chordin. In the early vertebrate embryo, the localized secretion of BMP antagonists from the dorsal blastopore lip establishes a functional BMP signalling gradient that is required for the determination of the dorsoventral or back to belly body axis. In particular, inhibition of BMP activity is essential for the formation of neural tissue in the development of vertebrate and invertebrate embryos. Here we review recent studies that have provided new insight into the regulation of BMP signalling in the extracellular space. In particular, we discuss the recently identified Twisted gastrulation protein that modulates, in concert with metalloproteinases of the Tolloid family, the interaction of Chordin with BMP and a family of proteins that share structural similarities with Chordin in the respective BMP binding domains. In addition, genetic and functional studies in zebrafish and frog provide compelling evidence that the secreted protein Sizzled functionally interacts with the Chd BMP pathway, despite being expressed ventrally in the early gastrula-stage embryo. These intriguing discoveries may have important implications, not only for our current concept of early embryonic patterning, but also for the regulation of BMP activity at later developmental stages and tissue homeostasis in the adult.

  14. Effects of Hypergravity on Statocyst Development in Embryonic Aplysia californica

    NASA Technical Reports Server (NTRS)

    Pedrozo, Hugo A.; Wiederhold, Michael L.

    1994-01-01

    Aplysia californica is a marine gastropod mollusc with bilaterally paired statocysts as gravity-reccptor organs. Data from three experiments in which embryonic Aplysia californica were exposed to 2 x g arc discussed. The experimental groups were exposed to excess gravity until hatching (9-12 day), whereas control groups were maintained at normal gravity. Body diameter was measured before exposure to 2 x g. Statocyst, statolith and body diameter were each determined for samples of 20 embryos from each group on successive days. Exposure to excess gravity led to an increase in body size. Statocyst size was not affected by exposure to 2 x g. Statolith size decreased with treatment as indicated by smaller statolith-to-body ratios observed in the 2 x g group in all three experiments. Mean statolith diameter was significantly smaller for the 2 x g group in Experiment 1 but not in Experiments 2 and 3. Defective statocysts, characterized by very small or no statoliths, were found in the 2 x g group in Experiments 1 and 2.

  15. Analysis of Cardiomyocyte Development using Immunofluorescence in Embryonic Mouse Heart

    PubMed Central

    Wilsbacher, Lisa D.; Coughlin, Shaun R.

    2015-01-01

    During heart development, the generation of myocardial-specific structural and functional units including sarcomeres, contractile myofibrils, intercalated discs, and costameres requires the coordinated assembly of multiple components in time and space. Disruption in assembly of these components leads to developmental heart defects. Immunofluorescent staining techniques are used commonly in cultured cardiomyocytes to probe myofibril maturation, but this ex vivo approach is limited by the extent to which myocytes will fully differentiate in culture, lack of normal in vivo mechanical inputs, and absence of endocardial cues. Application of immunofluorescence techniques to the study of developing mouse heart is desirable but more technically challenging, and methods often lack sufficient sensitivity and resolution to visualize sarcomeres in the early stages of heart development. Here, we describe a robust and reproducible method to co-immunostain multiple proteins or to co-visualize a fluorescent protein with immunofluorescent staining in the embryonic mouse heart and use this method to analyze developing myofibrils, intercalated discs, and costameres. This method can be further applied to assess cardiomyocyte structural changes caused by mutations that lead to developmental heart defects. PMID:25866997

  16. Description of Embryonic Development of Spotted Green Pufferfish (Tetraodon nigroviridis)

    PubMed Central

    Zaucker, Andreas; Bodur, Türker; Roest Crollius, Hugues; Hadzhiev, Yavor; Gehrig, Jochen; Loosli, Felix; Watson, Craig

    2014-01-01

    Abstract Pufferfish species of the Tetraodontidae family carry the smallest genomes among vertebrates. Their compressed genomes are thought to be enriched for functional DNA compared to larger vertebrate genomes, and they are important models for comparative genomics. The significance of pufferfish as model organisms in comparative genomics is due to the availability of two sequenced genomes, that of spotted green pufferfish (Tetraodon nigroviridis) and fugu (Takifugu rubripes). However, there is only a very limited utilization of pufferfish as an experimental model organism, due to the lack of established husbandry and developmental genetics protocols. In this study, we provide the first description of the normal embryonic development of Tetraodon nigroviridis. Embryos were obtained by in vitro fertilization of eggs, and subsequent development was monitored by brightfield microscopy at constant temperature. Tetraodon development was divided into distinct stages based on diagnostic morphological features, which were adopted from published literature on normal development of other fish species like medaka (Oryzias latipes), zebrafish (Danio rerio), and fugu. Tetraodon embryos show more similar morphologies to medaka than to zebrafish, reflecting its phylogenetic position. The early developmental stage series described in this study forms the foundation for the utilization of tetraodon as an experimental model organism for comparative developmental studies. PMID:25243591

  17. Regulation of the Embryonic Cell Cycle During Mammalian Preimplantation Development.

    PubMed

    Palmer, N; Kaldis, P

    2016-01-01

    The preimplantation development stage of mammalian embryogenesis consists of a series of highly conserved, regulated, and predictable cell divisions. This process is essential to allow the rapid expansion and differentiation of a single-cell zygote into a multicellular blastocyst containing cells of multiple developmental lineages. This period of development, also known as the germinal stage, encompasses several important developmental transitions, which are accompanied by dramatic changes in cell cycle profiles and dynamics. These changes are driven primarily by differences in the establishment and enforcement of cell cycle checkpoints, which must be bypassed to facilitate the completion of essential cell cycle events. Much of the current knowledge in this area has been amassed through the study of knockout models in mice. These mouse models are powerful experimental tools, which have allowed us to dissect the relative dependence of the early embryonic cell cycles on various aspects of the cell cycle machinery and highlight the extent of functional redundancy between members of the same gene family. This chapter will explore the ways in which the cell cycle machinery, their accessory proteins, and their stimuli operate during mammalian preimplantation using mouse models as a reference and how this allows for the usually well-defined stages of the cell cycle to be shaped and transformed during this unique and critical stage of development. PMID:27475848

  18. Effect of radiation on mouse embryonic limb development

    SciTech Connect

    Meznarich, H.K.; Sikov, M.R. )

    1990-02-26

    Extracellular matrix and molecules on the cell surface may play a role in regulating differentiation during chondrogenesis. These regulatory mechanisms are not well understood. Perturbation of developing embryonic limb buds in organ culture may provide a system for the study of intercellular interactions and regulatory mechanism. In this study, organ cultures were used to define a range of radiation doses that would induce abnormal limb development. Histochemical stains were used to detect any cellular and molecular changes. Forelimb buds of mouse embryos were explanted at 11 and 12 days of gestation (dg). One of the limb buds was irradiated with 1, 2, or 3 Gy of gamma rays, and the contralateral bud was used as a control. Both groups were incubated for 1, 2, or 3 days in center-well dishes, using BJG6 medium with 25% fetal bovine serum. Subtle effects were detectable at 1 Gy, but irradiation with 2 or 3 Gy at 11 dg led to pyknosis of the majority of nuclei in the nonchondrocytic population. At 12 dg, there was a delay of mesenchymal differentiation, and a less-well organized arrangement of chondrocytes. The authors observations demonstrate that irradiation of such cultures with doses in the range of 1 Gy and below will provide an appropriate system for studies on the normal and abnormal regulatory mechanisms involved in prenatal limb development.

  19. Live Imaging of Mitosis in the Developing Mouse Embryonic Cortex

    PubMed Central

    Pilaz, Louis-Jan; Silver, Debra L.

    2014-01-01

    Although of short duration, mitosis is a complex and dynamic multi-step process fundamental for development of organs including the brain. In the developing cerebral cortex, abnormal mitosis of neural progenitors can cause defects in brain size and function. Hence, there is a critical need for tools to understand the mechanisms of neural progenitor mitosis. Cortical development in rodents is an outstanding model for studying this process. Neural progenitor mitosis is commonly examined in fixed brain sections. This protocol will describe in detail an approach for live imaging of mitosis in ex vivo embryonic brain slices. We will describe the critical steps for this procedure, which include: brain extraction, brain embedding, vibratome sectioning of brain slices, staining and culturing of slices, and time-lapse imaging. We will then demonstrate and describe in detail how to perform post-acquisition analysis of mitosis. We include representative results from this assay using the vital dye Syto11, transgenic mice (histone H2B-EGFP and centrin-EGFP), and in utero electroporation (mCherry-α-tubulin). We will discuss how this procedure can be best optimized and how it can be modified for study of genetic regulation of mitosis. Live imaging of mitosis in brain slices is a flexible approach to assess the impact of age, anatomy, and genetic perturbation in a controlled environment, and to generate a large amount of data with high temporal and spatial resolution. Hence this protocol will complement existing tools for analysis of neural progenitor mitosis. PMID:24961595

  20. The four reprogramming factors and embryonic development in mice.

    PubMed

    Yan, Xingrong; Yu, Shumin; Lei, Anmin; Hua, Jinlian; Chen, Fulin; Li, Liwen; Xie, Xin; Yang, Xueyi; Geng, Wenxin; Dou, Zhongying

    2010-10-01

    The transcription factors (Oct4, Sox2, c-Myc, and Klf4) play an important role in the generation of induced pluripotent stem cells. These factors are expressed in metaphase II oocytes and embryonic stem cells (ESCs). The mechanisms responsible for the reprogramming of ooplasm during nuclear transfer are expected to be associated with the four factors. Here, we show that different paternal genetic backgrounds are able to influence the in vitro development of parthenogenetic and cloned embryos. Using real- time polymerase chain reaction (PCR) we found that the expression level of Oct4 in oocytes was less than that of ESCs, whereas oocytes from KM x C3H females showed the highest expression level of Sox2 than the other strains tested or in G1 ESCs. c-Myc mRNA levels in oocytes from KM mice were greater than those found in ESCs or oocytes of KM x C3H mice. These data demonstrate that the expression of the four transcription factors was different among the oocytes, which may be a contributing factor for the different efficiencies of parthenogenesis and the development of cloned embryos in vitro. PMID:20936906

  1. The Embryonic Human Choriocapillaris Develops by Hemo-vasculogenesis

    PubMed Central

    Hasegawa, Takuya; McLeod, D. Scott; Bhutto, Imran A.; Prow, Tarl; Merges, Carol A.; Grebe, Rhonda; Lutty, Gerard A.

    2016-01-01

    The purpose of this study was to characterize normal human choroidal vascular development from 6–23 weeks gestation (WG). Markers of endothelial cells (EC) (CD34, CD31, vWf), angioblasts and EC (CD39), leukocytes (CD45), erythroblasts (epsilon chain of hemoglobin, Hb-e), proliferating cells (Ki67), and VEGFR-2 were employed. At 6–7 WG, many erythroblasts were observed within islands of precursor cells in the choriocapillaris layer and others were independent from the islands. Many erythroblasts (Hb-∈+) were also positive for EC markers and/or VEGFR-2. By 8–12 WG, most of the Hb-∈ cells had disappeared and vascular lumens became apparent. At 14–23 WG, some EC were proliferating on the scleral side of choriocapillaris in association with forming deeper vessels. In conclusion, embryonic choriocapillaris appears to form initially by hemo-vasculogenesis (blood vessels and blood cells form simultaneously from common precursors) while angiogenesis appears to be the mode of intermediate and large choroidal vessel development in the fetus. PMID:17654716

  2. Development of an invitro technique to use mouse embryonic stem cell in evaluating effects of xenobiotics

    EPA Science Inventory

    Our goal has been to develop a high-throughput, in vitro technique for evaluating the effects of xenobiotics using mouse embryonic stem cells (mESCs). We began with the Embryonic Stem Cell Test (EST), which is used to predict the embryotoxic potential of a test compound by combin...

  3. Embryonic development rates of northern grasshoppers (Orthoptera: Acrididae): implications for climate change and habitat management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature-dependent rates of embryonic development are a primary determinant of the life cycle of many species of grasshoppers which, in cold climates, spend two winters in the egg stage. Knowledge of embryonic developmental rates is important for an assessment of the effects of climate change and...

  4. Silica Nanoparticles Target a Wnt Signal Transducer for Degradation and Impair Embryonic Development in Zebrafish.

    PubMed

    Yi, Hongyang; Wang, Zhuyao; Li, Xiaojiao; Yin, Min; Wang, Lihua; Aldalbahi, Ali; El-Sayed, Nahed Nasser; Wang, Hui; Chen, Nan; Fan, Chunhai; Song, Haiyun

    2016-01-01

    Many types of biocompatible nanomaterials have proven of low cytotoxicity and hold great promise for various applications in nanomedicine. Whereas they generally do not cause apparent organ toxicity or tissue damage in adult animals, it is yet to determine their biological consequences in more general contexts. In this study, we investigate how silica nanoparticles (NPs) affect cellular activities and functions under several physiological or pathological conditions. Although silica NPs are generally regarded as "inert" nanocarriers and widely employed in biomedical studies, we find that they actively affect Wnt signaling in various types of cell lines, diminishing its anti-adipogenic effect in preadipocytes and pro-invasive effect in breast cancer cells, and more significantly, impair Wnt-regulated embryonic development in Zebrafish. We further demonstrate that intracellular silica NPs block Wnt signal transduction in a way resembling signaling molecules. Specifically, silica NPs target the Dvl protein, a key component of Wnt signaling cascade, for lysosomal degradation. As Wnt signaling play significant roles in embryonic development and adipogenesis, the observed physiological effects beyond toxicity imply potential risk of obesity, or developmental defects in somitogenesis and osteogenesis upon exposure to silica NPs. In addition, given the clinical implications of Wnt signaling in tumorigenesis and cancer metastasis, our work also establishes for the first time a molecular link between nanomaterials and the Wnt signaling pathway, which opens new door for novel applications of unmodified silica NPs in targeted therapy for cancers and other critical illness. PMID:27570552

  5. Defects During Mecp2 Null Embryonic Cortex Development Precede the Onset of Overt Neurological Symptoms.

    PubMed

    Bedogni, Francesco; Cobolli Gigli, Clementina; Pozzi, Davide; Rossi, Riccardo Lorenzo; Scaramuzza, Linda; Rossetti, Grazisa; Pagani, Massimiliano; Kilstrup-Nielsen, Charlotte; Matteoli, Michela; Landsberger, Nicoletta

    2016-06-01

    MeCP2 is associated with several neurological disorders; of which, Rett syndrome undoubtedly represents the most frequent. Its molecular roles, however, are still unclear, and data from animal models often describe adult, symptomatic stages, while MeCP2 functions during embryonic development remain elusive. We describe the pattern and timing of Mecp2 expression in the embryonic neocortex highlighting its low but consistent expression in virtually all cells and show the unexpected occurrence of transcriptional defects in the Mecp2 null samples at a stage largely preceding the onset of overt symptoms. Through the deregulated expression of ionic channels and glutamatergic receptors, the lack of Mecp2 during early neuronal maturation leads to the reduction in the neuronal responsiveness to stimuli. We suggest that such features concur to morphological alterations that begin affecting Mecp2 null neurons around the perinatal age and become evident later in adulthood. We indicate MeCP2 as a key modulator of the transcriptional mechanisms regulating cerebral cortex development. Neurological phenotypes of MECP2 patients could thus be the cumulative result of different adverse events that are already present at stages when no obvious signs of the pathology are evident and are worsened by later impairments affecting the central nervous system during maturation and maintenance of its functionality. PMID:25979088

  6. Silica Nanoparticles Target a Wnt Signal Transducer for Degradation and Impair Embryonic Development in Zebrafish

    PubMed Central

    Yi, Hongyang; Wang, Zhuyao; Li, Xiaojiao; Yin, Min; Wang, Lihua; Aldalbahi, Ali; El-Sayed, Nahed Nasser; Wang, Hui; Chen, Nan; Fan, Chunhai; Song, Haiyun

    2016-01-01

    Many types of biocompatible nanomaterials have proven of low cytotoxicity and hold great promise for various applications in nanomedicine. Whereas they generally do not cause apparent organ toxicity or tissue damage in adult animals, it is yet to determine their biological consequences in more general contexts. In this study, we investigate how silica nanoparticles (NPs) affect cellular activities and functions under several physiological or pathological conditions. Although silica NPs are generally regarded as “inert” nanocarriers and widely employed in biomedical studies, we find that they actively affect Wnt signaling in various types of cell lines, diminishing its anti-adipogenic effect in preadipocytes and pro-invasive effect in breast cancer cells, and more significantly, impair Wnt-regulated embryonic development in Zebrafish. We further demonstrate that intracellular silica NPs block Wnt signal transduction in a way resembling signaling molecules. Specifically, silica NPs target the Dvl protein, a key component of Wnt signaling cascade, for lysosomal degradation. As Wnt signaling play significant roles in embryonic development and adipogenesis, the observed physiological effects beyond toxicity imply potential risk of obesity, or developmental defects in somitogenesis and osteogenesis upon exposure to silica NPs. In addition, given the clinical implications of Wnt signaling in tumorigenesis and cancer metastasis, our work also establishes for the first time a molecular link between nanomaterials and the Wnt signaling pathway, which opens new door for novel applications of unmodified silica NPs in targeted therapy for cancers and other critical illness. PMID:27570552

  7. Rac1 modulates cardiomyocyte adhesion during mouse embryonic development

    SciTech Connect

    Abu-Issa, Radwan

    2015-01-24

    Highlights: • Conditional knockout of Rac1 using Nkx2.5 Cre line is lethal at E13.5. • The myocardium of the mutant is thin and disorganized. • The phenotype is not due to cardiomyocyte low proliferation or apoptosis. • The phenotype is due to specific defect in cardiomyocyte adhesion. - Abstract: Rac1, a member of the Rho subfamily of small GTPases, is involved in morphogenesis and differentiation of many cell types. Here we define a role of Rac1 in cardiac development by specifically deleting Rac1 in the pre-cardiac mesoderm using the Nkx2.5-Cre transgenic driver line. Rac1-conditional knockout embryos initiate heart development normally until embryonic day 11.5 (E11.5); their cardiac mesoderm is specified, and the heart tube is formed and looped. However, by E12.5-E13.5 the mutant hearts start failing and embryos develop edema and hemorrhage which is probably the cause for the lethality observed soon after. The hearts of Rac1-cKO embryos exhibit disorganized and thin myocardial walls and defects in outflow tract alignment. No significant differences of cardiomyocyte death or proliferation were found between developing control and mutant embryos. To uncover the role of Rac1 in the heart, E11.5 primary heart cells were cultured and analyzed in vitro. Rac1-deficient cardiomyocytes were less spread, round and loosely attached to the substrate and to each other implying that Rac1-mediated signaling is required for appropriate cell–cell and/or cellmatrix adhesion during cardiac development.

  8. Critical Timing without a Timer for Embryonic Development.

    PubMed

    Tufcea, Daniel E; François, Paul

    2015-10-20

    Timing of embryonic development is precisely controlled, but the mechanisms underlying biological timers are still unclear. Here, a validated model for timing under control of Sonic Hedgehog is revisited and generalized to an arbitrary number of genes. The developmental dynamics where a temporal sequence of gene expression recapitulates a steady-state spatial pattern can be realized through a simple network close to criticality, controlled by the duration of exposure to a morphogen. Criticality simultaneously accounts for many observed biological properties, such as timing, multistability, and canalization of genetic expression. This process can be parsimoniously generalized in many dimensions with a minimum number of genes, all repressing each other with asymmetrical strengths, which also explains sequential activation of different fates. Separation of timescales allows for a simple analytical interpretation. Finally, it is shown that even in the presence of noise, coupling between cells preserves criticality and robust patterning. The model offers a simple theoretical framework for the study of emergent developmental timers. PMID:26488664

  9. Early embryonic development and transplantation in tree shrews

    PubMed Central

    YAN, Lan-Zhen; SUN, Bin; LYU, Long-Bao; MA, Yu-Hua; CHEN, Jia-Qi; LIN, Qing; ZHENG, Ping; ZHAO, Xu-Dong

    2016-01-01

    As a novel experimental animal model, tree shrews have received increasing attention in recent years. Despite this, little is known in regards to the time phases of their embryonic development. In this study, surveillance systems were used to record the behavior and timing of copulations; embryos at different post-copulation stages were collected and cultured in vitro; and the developmental characteristics of both early-stage and in vitro cultured embryos were determined. A total of 163 females were collected following effective copulation, and 150 were used in either unilateral or bilateral oviduct embryo collections, with 307 embryos from 111 females obtained (conception rate=74%). Among them, 237 embryos were collected from 78 females, bilaterally, i.e., the average embryo number per female was 3.04; 172 fertilized eggs collected from 55 females, bilaterally, were cultured for 24-108 h in vitro for developmental observations; finally, 65 embryos from 23 bilateral cases and 70 embryos from 33 unilateral cases were used in embryo transplantation. PMID:27469257

  10. Nanoscale topography and chemistry affect embryonic stem cell self-renewal and early differentiation.

    PubMed

    Lapointe, Vanessa L S; Fernandes, Ana Tiago; Bell, Nia C; Stellacci, Francesco; Stevens, Molly M

    2013-12-01

    Adherent cells respond to a wide range of substrate cues, including chemistry, topography, hydrophobicity, and surface energy. The cell-substrate interface is therefore an important design parameter in regenerative medicine and tissue engineering applications, where substrate cues are used to influence cell behavior. Thin films comprising 4.5 nm (average diameter) gold nanoparticles coated with a mixture of two alkanethiols can confer hemispherical topography and specific chemistry to bulk substrates. The behavior of murine embryonic stem cells (ESCs) on the thin films can then be compared with their behavior on self-assembled monolayers of the same alkanethiols on vapor-deposited gold, which lack the topographical features. Cells cultured both with and without differentiation inhibitors are characterized by immunofluorescence for Oct4 and qPCR for Fgf5, Foxa2, Nanog, Pou5f1, and Sox2. Nanoscale chemistry and topography are found to influence stem cell differentiation, particularly the early differentiation markers, Fgf5 and Foxa2. Nanoscale topography also affects Oct4 localization, whereas the chemical composition of the substrate does not have an effect. It is demonstrated for the first time that ESCs can sense topographical features established by 4.5 nm particles, and these findings suggest that nanoscale chemistry and topography can act synergistically to influence stem cell differentiation. This study furthers the understanding of the effects of these substrate properties, improving our ability to design materials to control stem cell fate. PMID:23852884

  11. Nanog RNA-binding proteins YBX1 and ILF3 affect pluripotency of embryonic stem cells.

    PubMed

    Guo, Chuanliang; Xue, Yan; Yang, Guanheng; Yin, Shang; Shi, Wansheng; Cheng, Yan; Yan, Xiaoshuang; Fan, Shuyue; Zhang, Huijun; Zeng, Fanyi

    2016-08-01

    Nanog is a well-known transcription factor that plays a fundamental role in stem cell self-renewal and the maintenance of their pluripotent cell identity. There remains a large data gap with respect to the spectrum of the key pluripotency transcription factors' interaction partners. Limited information is available concerning Nanog-associated RNA-binding proteins (RBPs), and the intrinsic protein-RNA interactions characteristic of the regulatory activities of Nanog. Herein, we used an improved affinity protocol to purify Nanog-interacting RBPs from mouse embryonic stem cells (ESCs), and 49 RBPs of Nanog were identified. Among them, the interaction of YBX1 and ILF3 with Nanog mRNA was further confirmed by in vitro assays, such as Western blot, RNA immunoprecipitation (RIP), and ex vivo methods, such as immunofluorescence staining and fluorescent in situ hybridization (FISH), MS2 in vivo biotin-tagged RNA affinity purification (MS2-BioTRAP). Interestingly, RNAi studies revealed that YBX1 and ILF3 positively affected the expression of Nanog and other pluripotency-related genes. Particularly, downregulation of YBX1 or ILF3 resulted in high expression of mesoderm markers. Thus, a reduction in the expression of YBX1 and ILF3 controls the expression of pluripotency-related genes in ESCs, suggesting their roles in further regulation of the pluripotent state of ESCs. PMID:26289635

  12. Ethanol exposure affects gene expression in the embryonic organizer and reduces retinoic acid levels.

    PubMed

    Yelin, Ronit; Schyr, Racheli Ben-Haroush; Kot, Hadas; Zins, Sharon; Frumkin, Ayala; Pillemer, Graciela; Fainsod, Abraham

    2005-03-01

    Fetal Alcohol Spectrum Disorder (FASD) is a set of developmental malformations caused by alcohol consumption during pregnancy. Fetal Alcohol Syndrome (FAS), the strongest manifestation of FASD, results in short stature, microcephally and facial dysmorphogenesis including microphthalmia. Using Xenopus embryos as a model developmental system, we show that ethanol exposure recapitulates many aspects of FAS, including a shortened rostro-caudal axis, microcephally and microphthalmia. Temporal analysis revealed that Xenopus embryos are most sensitive to ethanol exposure between late blastula and early/mid gastrula stages. This window of sensitivity overlaps with the formation and early function of the embryonic organizer, Spemann's organizer. Molecular analysis revealed that ethanol exposure of embryos induces changes in the domains and levels of organizer-specific gene expression, identifying Spemann's organizer as an early target of ethanol. Ethanol also induces a defect in convergent extension movements that delays gastrulation movements and may affect the overall length. We show that mechanistically, ethanol is antagonistic to retinol (Vitamin A) and retinal conversion to retinoic acid, and that the organizer is active in retinoic acid signaling during early gastrulation. The model suggests that FASD is induced in part by an ethanol-dependent reduction in retinoic acid levels that are necessary for the normal function of Spemann's organizer. PMID:15708568

  13. Histone methyltransferase SMYD3 regulates the expression of transcriptional factors during bovine oocyte maturation and early embryonic development.

    PubMed

    Bai, Haidong; Li, Yan; Gao, Haixia; Dong, Yanhua; Han, Pengyong; Yu, Haiquan

    2016-08-01

    Mammalian early embryonic development is controlled by a unique program of gene expression, and involves epigenetic reprogramming of histone modifications and DNA methylation. SET and MYND domain-containing protein 3 (SMYD3) is a histone H3 lysine 4 methyltransferase that plays important roles in transcription regulation. The expression of SMYD3 has been studied in some cancer cell lines. However, its expression in oocytes and embryos has not previously been reported. Here, we detected the SMYD3 mRNA and found that it was expressed throughout bovine oocyte in vitro maturation and early embryonic development. Microinjection of SMYD3 siRNA at germinal vesicle stage decreased the transcription level of NANOG, and blocked the development of in vitro fertilization embryos at 4-8 cell stage. Conversely, Microinjection of SMYD3 siRNA at pronuclear stage did not affect early embryonic development. Our findings suggest that SMYD3 regulates the expression of NANOG, and plays an essential role in bovine early embryonic development. PMID:25563599

  14. Toxicological Effects of the Different Substances in Tobacco Smoke on Human Embryonic Development by a Systems Chemo-Biology Approach

    PubMed Central

    Feltes, Bruno César; Poloni, Joice de Faria; Notari, Daniel Luis; Bonatto, Diego

    2013-01-01

    The physiological and molecular effects of tobacco smoke in adult humans and the development of cancer have been well described. In contrast, how tobacco smoke affects embryonic development remains poorly understood. Morphological studies of the fetuses of smoking pregnant women have shown various physical deformities induced by constant fetal exposure to tobacco components, especially nicotine. In addition, nicotine exposure decreases fetal body weight and bone/cartilage growth in addition to decreasing cranial diameter and tibia length. Unfortunately, the molecular pathways leading to these morphological anomalies are not completely understood. In this study, we applied interactome data mining tools and small compound interaction networks to elucidate possible molecular pathways associated with the effects of tobacco smoke components during embryonic development in pregnant female smokers. Our analysis showed a relationship between nicotine and 50 additional harmful substances involved in a variety of biological process that can cause abnormal proliferation, impaired cell differentiation, and increased oxidative stress. We also describe how nicotine can negatively affect retinoic acid signaling and cell differentiation through inhibition of retinoic acid receptors. In addition, nicotine causes a stress reaction and/or a pro-inflammatory response that inhibits the agonistic action of retinoic acid. Moreover, we show that the effect of cigarette smoke on the developing fetus could represent systemic and aggressive impacts in the short term, causing malformations during certain stages of development. Our work provides the first approach describing how different tobacco constituents affect a broad range of biological process in human embryonic development. PMID:23637898

  15. Wnt-3a is critical for caudal embryonic development

    SciTech Connect

    Camper, S.A.; Greco, T.L.; Newhouse, M.M.

    1994-09-01

    Skeletal and neural tube defects represent an important class of birth defects. The majority of mouse mutants with neural tube defects also have malformations of the tail. Vestigial tail (vt) is an autosomal recessive mouse mutation characterized by reduction or absence of the tail, vertebral abnormalities, and reduced fertility. The phenotype has been described as the result of failure of cell migration through the primitive streak, causing abnormalities in the development of the neural tube and a reduction in the ventral ectodermal ridge. Wnt3a is an excellent candidate gene for vt because Wnt3a is expressed in the primitive streak and in the embryonic mesoderm, and it is thought to be involved in cell-to-cell communication and formation of the dorsal-ventral axis in the CNS. A lack of Wnt3a might be expected to result in overdorsalization of the neural tube and reduction of the ventral ectodermal ridge characteristic of vt/vt embryos. In a high resolution backcross segregating vt, we observed no recombination between vt and Wnt3a in 363 individuals analyzed. In vt/vt mice, Southern blot analysis revealed no abnormalities in the Wnt3a gene, and the Wnt3a cDNA sequence does not encode any amino acid changes. Whole mount in situ hybridization analysis demonstrated that Wnt3a expression is severely reduced in the developing tailbud of day 9.5 vt/vt embryos, suggestive of a lesion in the regulation on Wnt3a expression. An alleleism test, carried out by mating vt/vt males with Wnt3a +/Wnt3a- females, demonstrated that vt and Wnt3a are noncomplementing alleles. All of the compound heterozygotes exhibited severe tail defects, including occasional examples of hind limb parlaysis and spina bifida. The vertebral defects are intermediate between those of vt and Wnt3a homozygotes, suggesting that the concentration of Wnt3a correlates with the severity of the defect.

  16. Adverse Outcome Pathway for Embryonic Vascular Disruption and Alternative Methods to Identify Chemical Vascular Disruptors During Development

    EPA Science Inventory

    Chemically induced vascular toxicity during embryonic development can result in a wide range of adverse prenatal outcomes. We used information from genetic mouse models linked to phenotypic outcomes and a vascular toxicity knowledge base to construct an embryonic vascular disrupt...

  17. G-quadruplexes as novel cis-elements controlling transcription during embryonic development

    PubMed Central

    David, Aldana P.; Margarit, Ezequiel; Domizi, Pablo; Banchio, Claudia; Armas, Pablo; Calcaterra, Nora B.

    2016-01-01

    G-quadruplexes are dynamic structures folded in G-rich single-stranded DNA regions. These structures have been recognized as a potential nucleic acid based mechanism for regulating multiple cellular processes such as replication, transcription and genomic maintenance. So far, their transcriptional role in vivo during vertebrate embryonic development has not yet been addressed. Here, we performed an in silico search to find conserved putative G-quadruplex sequences (PQSs) within proximal promoter regions of human, mouse and zebrafish developmental genes. Among the PQSs able to fold in vitro as G-quadruplex, those present in nog3, col2a1 and fzd5 promoters were selected for further studies. In cellulo studies revealed that the selected G-quadruplexes affected the transcription of luciferase controlled by the SV40 nonrelated promoter. G-quadruplex disruption in vivo by microinjection in zebrafish embryos of either small ligands or DNA oligonucleotides complementary to the selected PQSs resulted in lower transcription of the targeted genes. Moreover, zebrafish embryos and larvae phenotypes caused by the presence of complementary oligonucleotides fully resembled those ones reported for nog3, col2a1 and fzd5 morphants. To our knowledge, this is the first work revealing in vivo the role of conserved G-quadruplexes in the embryonic development, one of the most regulated processes of the vertebrates biology. PMID:26773060

  18. G-quadruplexes as novel cis-elements controlling transcription during embryonic development.

    PubMed

    David, Aldana P; Margarit, Ezequiel; Domizi, Pablo; Banchio, Claudia; Armas, Pablo; Calcaterra, Nora B

    2016-05-19

    G-quadruplexes are dynamic structures folded in G-rich single-stranded DNA regions. These structures have been recognized as a potential nucleic acid based mechanism for regulating multiple cellular processes such as replication, transcription and genomic maintenance. So far, their transcriptional role in vivo during vertebrate embryonic development has not yet been addressed. Here, we performed an in silico search to find conserved putative G-quadruplex sequences (PQSs) within proximal promoter regions of human, mouse and zebrafish developmental genes. Among the PQSs able to fold in vitro as G-quadruplex, those present in nog3, col2a1 and fzd5 promoters were selected for further studies. In cellulo studies revealed that the selected G-quadruplexes affected the transcription of luciferase controlled by the SV40 nonrelated promoter. G-quadruplex disruption in vivo by microinjection in zebrafish embryos of either small ligands or DNA oligonucleotides complementary to the selected PQSs resulted in lower transcription of the targeted genes. Moreover, zebrafish embryos and larvae phenotypes caused by the presence of complementary oligonucleotides fully resembled those ones reported for nog3, col2a1 and fzd5 morphants. To our knowledge, this is the first work revealing in vivo the role of conserved G-quadruplexes in the embryonic development, one of the most regulated processes of the vertebrates biology. PMID:26773060

  19. Current Research in Affective Development.

    ERIC Educational Resources Information Center

    Strayer, Janet

    1985-01-01

    Current research concerning affective development in infants and children is selectively reviewed. The focus of findings and discussion is on three general and related topics: (1) expression of emotion and affective interaction in infancy; (2) socialization and regulation of emotion; (3) comprehension of emotions and empathy with others by…

  20. [Development of the affect system].

    PubMed

    Moser, U; Von Zeppelin, I

    1996-01-01

    The authors show that the development of the affect system commences with affects of an exclusively communicative nature. These regulate the relationship between subject and object. On a different plane they also provide information on the feeling of self deriving from the interaction. Affect is seen throughout as a special kind of information. One section of the article is given over to intensity regulation and early affect defenses. The development of cognitive processes leads to the integration of affect systems and cognitive structures. In the pre-conceptual concretistic phase, fantasies change the object relation in such a way as to make unpleasant affects disappear. Only at a later stage do fantasies acquire the capacity to deal with affects. Ultimately, the affect system is grounded on an invariant relationship feeling. On a variety of different levels it displays the features typical of situation theory and the theory of the representational world, thus making it possible to entertain complex object relations. In this process the various planes of the affect system are retained and practised. Finally, the authors discuss the consequences of their remarks for the understanding of psychic disturbances and the therapies brought to bear on them. PMID:8584745

  1. Development of sympathetic cardiovascular control in embryonic, hatchling, and yearling female American alligator (Alligator mississippiensis).

    PubMed

    Eme, John; Elsey, Ruth M; Crossley, Dane A

    2013-06-01

    We used arterial tyramine injections to study development of sympathetic actions on in vivo heart rate and blood pressure in embryonic, hatching and yearling female American alligators. Tyramine is a pharmacological tool for understanding comparative and developmental sympathetic regulation of cardiovascular function, and this indirect sympathomimetic agent causes endogenous neuronal catecholamine release, increasing blood pressure and heart rate. Arterial tyramine injection in hatchling and yearling alligators caused the typical vertebrate response - rise in heart rate and blood pressure. However, in embryonic alligators, tyramine caused a substantial and immediate bradycardia at both 70% and 90% of embryonic development. This embryonic bradycardia was accompanied by hypotension, followed by a sustained hypertension similar to the hatchling and juvenile responses. Pretreatment with atropine injection (cholinergic receptor blocker) eliminated the embryonic hypotensive bradycardia, and phentolamine pretreatment (α-adrenergic receptor blocker) eliminated the embryonic hypotensive and hypertensive responses but not the bradycardia. In addition, hexamethonium pretreatment (nicotinic receptor blocker) significantly blunted embryos' bradycardic tyramine response. However, pretreatment with 6-hydroxydopamine, a neurotoxin that destroys catecholaminergic terminals, did not eliminate the embryonic bradycardia. Tyramine likely stimulated a unique embryonic response - neurotransmitter release from preganglionic nerve terminals (blocked with hexamethonium) and an acetylcholine mediated bradycardia with a secondary norepinephrine-dependent sustained hypertension. In addition, tyramine appears to stimulate sympathetic nerve terminals directly, which contributed to the overall hypertension in the embryonic, hatchling and yearling animals. Data demonstrated that humoral catecholamine control of cardiovascular function was dominant over the immature parasympathetic nervous system

  2. Silkworm (Bombyx mori) cryopreservation: embryonic development as revealed by microscopic studies.

    PubMed

    Jingade, A H; Srinivasa Babu, G K; Lehka, G; Nair, C V; Ananda Rao, A; Manjula, A

    2013-01-01

    Embryo cryopreservation offers a way to safeguard against unwelcome mutations and inadvertent selection that can change its unique genetic makeup. Having a genetic repository of the silkworm genetic resources would ensure preservation of original genetic makeup and will permit to study what genes may have been lost in the selection process. For cryopreservation of eggs and embryos of silkworm, the determination of embryonic stages is a prerequisite. This study reports microscopic observations on embryonic development. The embryonic stages in the dechorionated eggs were determined in parallel comparison with the embryos isolated from intact eggs of different developmental ages. PMID:23435713

  3. Effects of temperature on embryonic development of lake herring (Coregonus artedii)

    USGS Publications Warehouse

    Colby, Peter J.; Brooke, L.T.

    1973-01-01

    Embryonic development of lake herring (Coregonus artedii) was observed in the laboratory at 13 constant temperatures from 0.0 to 12.1 C and in Pickerel Lake (Washtenaw County, Michigan) at natural temperature regimes. Rate of development during incubation was based on progression of the embryos through 20 identifiable stages. An equation was derived to predict development stage at constant temperatures, on the general assumption that development stage (DS) is a function of time (days, D) and temperature (T). The equation should also be useful in interpreting estimates from future regressions that include other environmental variables that affect egg development. A second regression model, derived primarily for fluctuating temperatures, related development rate for stage j (DRj), expressed as the reciprocal of time, to temperature (x). The generalized equation for a development stage is: DRj = abx cx2 dx3. In general, time required for embryos to reach each stage of development in Pickerel Lake agreed closely with the time predicted from this equation, derived from our laboratory observations. Hatching time was predicted within 1 day in 1969 and within 2 days in 1970. We used the equations derived with the second model to predict the effect of the superimposition of temperature increases of 1 and 2 C on the measured temperatures in Pickerel Lake. Conceivably, hatching dates could be affected sufficiently to jeopardize the first feeding of lake herring through loss of harmony between hatching date and seasonal food availability.

  4. Genome-wide nucleosome positioning during embryonic stem cell development.

    PubMed

    Teif, Vladimir B; Vainshtein, Yevhen; Caudron-Herger, Maïwen; Mallm, Jan-Philipp; Marth, Caroline; Höfer, Thomas; Rippe, Karsten

    2012-11-01

    We determined genome-wide nucleosome occupancies in mouse embryonic stem cells and their neural progenitor and embryonic fibroblast counterparts to assess features associated with nucleosome positioning during lineage commitment. Cell-type- and protein-specific binding preferences of transcription factors to sites with either low (Myc, Klf4 and Zfx) or high (Nanog, Oct4 and Sox2) nucleosome occupancy as well as complex patterns for CTCF were identified. Nucleosome-depleted regions around transcription start and transcription termination sites were broad and more pronounced for active genes, with distinct patterns for promoters classified according to CpG content or histone methylation marks. Throughout the genome, nucleosome occupancy was correlated with certain histone methylation or acetylation modifications. In addition, the average nucleosome repeat length increased during differentiation by 5-7 base pairs, with local variations for specific regions. Our results reveal regulatory mechanisms of cell differentiation that involve nucleosome repositioning. PMID:23085715

  5. NXT2 is required for embryonic heart development in zebrafish

    PubMed Central

    Huang, Haigen; Zhang, Bo; Hartenstein, Parvana A; Chen, Jau-nian; Lin, Shuo

    2005-01-01

    Background NXT2 is a member of NXT family proteins that are generally involved in exporting nuclear RNA in eukaryotic cells. It is not known if NXT2 has any function in specific biological processes. Results A zebrafish mutant exhibiting specific heart defects during embryogenesis was generated by animal cloning-mediated retroviral insertions. Molecular analysis indicated that the mutant phenotype was caused by a disruption of NXT2. Whole-mount RNA in situ hybridization showed that NXT2 transcripts were clearly detectable in embryonic heart as well as other tissues. Further analysis revealed that expression level of one form of alternative splicing NXT2 mRNA transcripts was significantly reduced, resulting in deficient myocardial cell differentiation and the malformation of cardiac valve at the atrioventricular boundary. The defects could be reproduced by morpholino anti-sense oligo knockdown of NXT2. Conclusion NXT2 has a critical role in maintaining morphogenetic integrity of embryonic heart in vertebrate species. PMID:15790397

  6. Phosphorylation of Connexin 43 by Cdk5 Modulates Neuronal Migration During Embryonic Brain Development.

    PubMed

    Qi, Guang-Jian; Chen, Qiang; Chen, Li-Jun; Shu, Yang; Bu, Lu-Lu; Shao, Xiao-Yun; Zhang, Pei; Jiao, Feng-Juan; Shi, Jin; Tian, Bo

    2016-07-01

    The gap junction protein, connexin 43 (Cx43), is only present and abundantly expressed in astrocytes but is absent in neurons in the mature brain tissues. However, both the expression and function of Cx43 in neurons during brain embryonic development remain largely unexplored. In the present study, we confirmed that Cx43 is expressed in the migrating neurons in the embryonic stage of the brain. Neuron-specific Cx43 conditional knockout (cKO) using Cre-loxP technique impairs neuronal migration and formation of laminar structure in cerebral cortex during brain embryonic development. The animal behavior tests demonstrated that, at the adult stage, neuronal Cx43 cKO mice exhibit normal learning and memory functions but increased anxiety-like behavior. We also found that during the embryonic development, the gradually decreased Cx43 expression in the cortex is closely correlated with the upregulation of cyclin-dependent kinase 5 (Cdk5) activity. Cdk5 directly phosphorylates Cx43 at Ser279 and Ser282, which, in consequence, inhibits the membrane targeting of Cx43 and promotes its proteasome-dependent degradation. In summary, our findings revealed that the embryonic expression of Cx43 in neurons regulates processes of neuronal migration and positioning in the developing brain by controlling astrocyte-neuron interactions during brain embryonic development, and Cdk5 directly phosphorylates Cx43, which regulates the membrane localization and degradation of Cx43 in neurons. PMID:25952543

  7. Mechanisms of thyroid development and dysgenesis: an analysis based on developmental stages and concurrent embryonic anatomy.

    PubMed

    Nilsson, Mikael; Fagman, Henrik

    2013-01-01

    Thyroid dysgenesis is the most common cause of congenital hypothyroidism that affects 1 in 3000 newborns. Although a number of pathogenetic mutations in thyroid developmental genes have been identified, the molecular mechanism of disease is unknown in most cases. This chapter summarizes the current knowledge of normal thyroid development and puts the different developmental stages in perspective, from the time of foregut endoderm patterning to the final shaping of pharyngeal anatomy, for understanding how specific malformations may arise. At the cellular level, we will also discuss fate determination of follicular and C-cell progenitors and their subsequent embryonic growth, migration, and differentiation as the different thyroid primordia evolve and merge to establish the final size and shape of the gland. PMID:24290349

  8. [Ultrastructural study of embryonic development in Grantia compressa F. (Porifera, Calcarea)].

    PubMed

    Gallissian, M F

    1983-01-01

    The embryonic development of Grantia compressa is studied by means of the electron microscope from the blastula inside the mesenchyme to the mature amphi-blastula released in the excurrent canals. The study of the different cellular categories of the embryon shows the distribution of the vitellin inclusions and their evolution. The ultrastructure of the "cellules en croix" is not in favour of a photoreceptor part. PMID:6639044

  9. GLUT3 Gene Expression is Critical for Embryonic Growth, Brain Development and Survival

    PubMed Central

    Carayannopoulos, Mary O.; Xiong, Fuxia; Jensen, Penny; Rios-Galdamez, Yesenia; Huang, Haigen; Lin, Shuo; Devaskar, Sherin U.

    2015-01-01

    Glucose is the primary energy source for eukaryotic cells and the predominant substrate for the brain. GLUT3 is essential for trans-placental glucose transport and highly expressed in the mammalian brain. To further elucidate the role of GLUT3 in embryonic development, we utilized the vertebrate whole animal model system of Danio rerio as a tractable system for defining the cellular and molecular mechanisms altered by impaired glucose transport and metabolism related to perturbed expression of GLUT3. The comparable orthologue of human GLUT3 was identified and the expression of this gene abrogated during early embryonic development. In a dose-dependent manner embryonic brain development was disrupted resulting in a phenotype of aberrant brain organogenesis, associated with embryonic growth restriction and increased cellular apoptosis. Rescue of the morphant phenotype was achieved by providing exogenous GLUT3 mRNA. We conclude that GLUT3 is critically important for brain organogenesis and embryonic growth. Disruption of GLUT3 is responsible for the phenotypic spectrum of embryonic growth restriction to demise and neural apoptosis with microcephaly. PMID:24529979

  10. Affective Development in University Education

    ERIC Educational Resources Information Center

    Grootenboer, Peter

    2010-01-01

    There seems to be an increasing requirement for university courses and programs to develop students' affective qualities (beliefs, values, dispositions and attitudes). This study explored the ways academics determined what the desirable qualities were for their particular disciplines and the pedagogical strategies and approaches they used to…

  11. Mouse embryo motion and embryonic development from the 2-cell to blastocyst stage using mechanical vibration systems.

    PubMed

    Asano, Yuka; Matsuura, Koji

    2014-06-01

    We investigated the effect of mechanical stimuli on mouse embryonic development from the 2-cell to blastocyst stage to evaluate physical factors affecting embryonic development. Shear stress (SS) applied to embryos using two mechanical vibration systems (MVSs) was calculated by observing microscopic images of moving embryos during mechanical vibration (MV). The MVSs did not induce any motion of the medium and the diffusion rate using MVSs was the same as that under static conditions. Three days of culture using MVS did not improve embryonic development. MVS transmitted MV power more efficiently to embryos than other systems and resulted in a significant decrease in development to the morula or blastocyst stage after 2 days. Comparison of the results of embryo culture using dynamic culture systems demonstrated that macroscopic diffusion of secreted materials contributes to improved development of mouse embryos to the blastocyst stage. These results also suggest that the threshold of SS and MV to induce negative effects for mouse embryos at stages earlier than the blastocyst may be lower than that for the blastocyst, and that mouse embryos are more sensitive to physical and chemical stimuli than human or pig embryos because of their thinner zona pellucida. PMID:23697534

  12. Variability of Gene Expression Identifies Transcriptional Regulators of Early Human Embryonic Development

    PubMed Central

    Hasegawa, Yu; Taylor, Deanne; Ovchinnikov, Dmitry A.; Wolvetang, Ernst J.; de Torrenté, Laurence; Mar, Jessica C.

    2015-01-01

    An analysis of gene expression variability can provide an insightful window into how regulatory control is distributed across the transcriptome. In a single cell analysis, the inter-cellular variability of gene expression measures the consistency of transcript copy numbers observed between cells in the same population. Application of these ideas to the study of early human embryonic development may reveal important insights into the transcriptional programs controlling this process, based on which components are most tightly regulated. Using a published single cell RNA-seq data set of human embryos collected at four-cell, eight-cell, morula and blastocyst stages, we identified genes with the most stable, invariant expression across all four developmental stages. Stably-expressed genes were found to be enriched for those sharing indispensable features, including essentiality, haploinsufficiency, and ubiquitous expression. The stable genes were less likely to be associated with loss-of-function variant genes or human recessive disease genes affected by a DNA copy number variant deletion, suggesting that stable genes have a functional impact on the regulation of some of the basic cellular processes. Genes with low expression variability at early stages of development are involved in regulation of DNA methylation, responses to hypoxia and telomerase activity, whereas by the blastocyst stage, low-variability genes are enriched for metabolic processes as well as telomerase signaling. Based on changes in expression variability, we identified a putative set of gene expression markers of morulae and blastocyst stages. Experimental validation of a blastocyst-expressed variability marker demonstrated that HDDC2 plays a role in the maintenance of pluripotency in human ES and iPS cells. Collectively our analyses identified new regulators involved in human embryonic development that would have otherwise been missed using methods that focus on assessment of the average expression

  13. Combined antisense knockdown of type 1 and type 2 iodothyronine deiodinases disrupts embryonic development in zebrafish (Danio rerio).

    PubMed

    Walpita, Chaminda N; Crawford, Alexander D; Darras, Veerle M

    2010-03-01

    Thyroid hormones (THs) are important regulators of gene expression during vertebrate development. In teleosts, early embryos rely on the maternal TH deposit in the egg yolk, consisting predominantly of T(4). Activation of T(4) to T(3) by iodothyronine deiodinases (Ds) may therefore be an important factor in determining T(3)-dependent development. In zebrafish, both Ds capable of T(3) production, D1 and D2, are first expressed very early during embryonic development. We sought to determine their relative importance for zebrafish embryonic development by inhibiting their expression via antisense oligonucleotides against D1 and D2, and by a combined knockdown of both deiodinases. The impact of these treatments on the rate of embryonic development was estimated via three morphological indices: otic vesicle length, head-trunk angle and pigmentation index. Knockdown of D1 alone seemed not to affect developmental progression. In contrast, D2 knockdown resulted in a clear developmental delay in all parameters scored, suggesting that D2 is the major contributor to TH activation in developing zebrafish embryos. Importantly, combined knockdown of D1 and D2 caused not only a more pronounced developmental delay than D2 knockdown alone but also the appearance of dysmorphologies in a substantial minority of treated embryos. This shows that although D1 may not be essential in euthyroid conditions, it may be crucial under depleted thyroid status as is the case when T(3) production by D2 is inhibited. These results indicate that zebrafish embryos are dependent on T(4) uptake and its subsequent activation to T(3), and suggest that substantial inhibition of embryonic T(4) to T(3) conversion reduces intracellular T(3) availability below the threshold level necessary for normal development. PMID:19800339

  14. Effect of temperature on embryonic development of Melanotaenia boesemani (Allen and Cross, 1982).

    PubMed

    Radael, Marcella Costa; Cardoso, Leonardo Demier; de Andrade, Dalcio Ricardo; Ferreira, André Veloso; da Cruz Mattos, Douglas; Vidal, Manuel Vazquez

    2016-04-01

    The present study aimed to provide data on the time required for Melanotaenia boesemani to complete embryonic development, and to investigate the influence that incubation at different temperatures caused in this species. The effects of temperature on the time and hatching rate are presented, as well as information related to embryonic development stages. After fertilization, the eggs were kept in incubators at 23, 26, 29 or 32°C and observed at predetermined times until the moment of hatching. Stages of development were identified and classified according to morphological and physiological characteristics. Oil droplets were visualized inside the eggs as well as filament adhesion present at the chorion. Embryonic development was similar to that observed in other species of the genus Melanotaenia with hatching and faster development in higher temperatures. PMID:26159547

  15. Embryonic exposures of lithium and homocysteine and folate protection affect lipid metabolism during mouse cardiogenesis and placentation.

    PubMed

    Han, Mingda; Evsikov, Alexei V; Zhang, Lifeng; Lastra-Vicente, Rosana; Linask, Kersti K

    2016-06-01

    Embryonic exposures can increase the risk of congenital cardiac birth defects and adult disease. The present study identifies the predominant pathways modulated by an acute embryonic mouse exposure during gastrulation to lithium or homocysteine that induces cardiac defects. High dose periconceptional folate supplementation normalized development. Microarray bioinformatic analysis of gene expression demonstrated that primarily lipid metabolism is altered after the acute exposures. The lipid-related modulation demonstrated a gender bias with male embryos showing greater number of lipid-related Gene Ontology biological processes altered than in female embryos. RT-PCR analysis demonstrated significant change of the fatty acid oxidation gene Acadm with homocysteine exposure primarily in male embryos than in female. The perturbations resulting from the exposures resulted in growth-restricted placentas with disorganized cellular lipid droplet distribution indicating lipids have a critical role in cardiac-placental abnormal development. High folate supplementation protected normal heart-placental function, gene expression and lipid localization. PMID:26993217

  16. Nogo-B receptor deficiency causes cerebral vasculature defects during embryonic development in mice.

    PubMed

    Rana, Ujala; Liu, Zhong; Kumar, Suresh N; Zhao, Baofeng; Hu, Wenquan; Bordas, Michelle; Cossette, Stephanie; Szabo, Sara; Foeckler, Jamie; Weiler, Hartmut; Chrzanowska-Wodnicka, Magdalena; Holtz, Mary L; Misra, Ravindra P; Salato, Valerie; North, Paula E; Ramchandran, Ramani; Miao, Qing Robert

    2016-02-15

    Nogo-B receptor (NgBR) was identified as a receptor specific for Nogo-B. Our previous work has shown that Nogo-B and its receptor (NgBR) are essential for chemotaxis and morphogenesis of endothelial cells in vitro and intersomitic vessel formation via Akt pathway in zebrafish. Here, we further demonstrated the roles of NgBR in regulating vasculature development in mouse embryo and primitive blood vessel formation in embryoid body culture systems, respectively. Our results showed that NgBR homozygous knockout mice are embryonically lethal at E7.5 or earlier, and Tie2Cre-mediated endothelial cell-specific NgBR knockout (NgBR ecKO) mice die at E11.5 and have severe blood vessel assembly defects in embryo. In addition, mutant embryos exhibit dilation of cerebral blood vessel, resulting in thin-walled endothelial caverns. The similar vascular defects also were detected in Cdh5(PAC)-CreERT2 NgBR inducible ecKO mice. Murine NgBR gene-targeting embryonic stem cells (ESC) were generated by homologous recombination approaches. Homozygous knockout of NgBR in ESC results in cell apoptosis. Heterozygous knockout of NgBR does not affect ESC cell survival, but reduces the formation and branching of primitive blood vessels in embryoid body culture systems. Mechanistically, NgBR knockdown not only decreases both Nogo-B and VEGF-stimulated endothelial cell migration by abolishing Akt phosphorylation, but also decreases the expression of CCM1 and CCM2 proteins. Furthermore, we performed immunofluorescence (IF) staining of NgBR in human cerebral cavernous malformation patient tissue sections. The quantitative analysis results showed that NgBR expression levels in CD31 positive endothelial cells is significantly decreased in patient tissue sections. These results suggest that NgBR may be one of important genes coordinating the cerebral vasculature development. PMID:26746789

  17. Interneurons from Embryonic Development to Cell-Based Therapy

    PubMed Central

    Southwell, Derek G.; Nicholas, Cory R.; Basbaum, Allan I.; Stryker, Michael P.; Kriegstein, Arnold R.; Rubenstein, John L.; Alvarez-Buylla, Arturo

    2014-01-01

    Many neurologic and psychiatric disorders are marked by imbalances between neural excitation and inhibition. In the cerebral cortex, inhibition is mediated largely by GABAergic (γ-aminobutyric acid–secreting) interneurons, a cell type that originates in the embryonic ventral telencephalon and populates the cortex through long-distance tangential migration. Remarkably, when transplanted from embryos or in vitro culture preparations, immature interneurons disperse and integrate into host brain circuits, both in the cerebral cortex and in other regions of the central nervous system. These features make interneuron transplantation a powerful tool for the study of neurodevelopmental processes such as cell specification, cell death, and cortical plasticity. Moreover, interneuron transplantation provides a novel strategy for modifying neural circuits in rodent models of epilepsy, Parkinson’s disease, mood disorders, and chronic pain. PMID:24723614

  18. Cdk12 is essential for embryonic development and the maintenance of genomic stability.

    PubMed

    Juan, H-C; Lin, Y; Chen, H-R; Fann, M-J

    2016-06-01

    The maintenance of genomic integrity during early embryonic development is important in order to ensure the proper development of the embryo. Studies from cultured cells have demonstrated that cyclin-dependent kinase 12 (Cdk12) is a multifunctional protein that maintains genomic stability and the pluripotency of embryonic stem cells. Perturbation of its functions is also known to be associated with pathogenesis and drug resistance in human cancers. However, the biological significance of Cdk12 in vivo is unclear. Here we bred mice that are deficient in Cdk12 and demonstrated that Cdk12 depletion leads to embryonic lethality shortly after implantation. We also used an in vitro culture system of blastocysts to examine the molecular mechanisms associated with the embryonic lethality of Cdk12-deficient embryos. Cdk12(-/-) blastocysts fail to undergo outgrowth of the inner cell mass because of an increase in the apoptosis of these cells. Spontaneous DNA damage was revealed by an increase in 53BP1 foci among cells cultured from Cdk12(-/-) embryos. Furthermore, the expression levels of various DNA damage response genes, namely Atr, Brca1, Fanci and Fancd2, are reduced in Cdk12(-/-) embryos. These findings indicate that Cdk12 is important for the correct expression of some DNA damage response genes and indirectly has an influence on the efficiency of DNA repair. Our report also highlights that DNA breaks occurring during DNA replication are frequent in mouse embryonic cells and repair of such damage is critical to the successful development of mouse embryos. PMID:26658019

  19. Biphasic influence of dexamethasone exposure on embryonic vertebrate skeleton development

    SciTech Connect

    Cheng, Xin; Chen, Jian-long; Ma, Zheng-lai; Zhang, Zhao-long; Lv, Shun; Mai, Dong-mei; Liu, Jia-jia; Chuai, Manli; Lee, Kenneth Ka Ho; Wan, Chao; Yang, Xuesong

    2014-11-15

    Dexamethasone (Dex) has anti-inflammatory and immunomodulatory properties against many conditions. There is a potential teratogenic risk, however, for pregnant women receiving Dex treatment. It has been claimed that Dex exposure during pregnancy could affect osteogenesis in the developing embryo, which still remains highly controversial. In this study, we employed chick embryos to investigate the effects of Dex exposure on skeletal development using combined in vivo and in vitro approach. First, we demonstrated that Dex (10{sup −8}–10{sup −6} μmol/egg) exposure resulted in a shortening of the developing long bones of chick embryos, and it accelerated the deposition of calcium salts. Secondly, histological analysis of chick embryo phalanxes exhibited Dex exposure inhibited the proliferation of chondrocytes, increased apoptosis of chondrocytes and osteocytes, and led to atypical arranged hypertrophic chondrocytes. The expression of genes related to skeletogenesis was also analyzed by semi-quantitative RT-PCR. The expression of ALP, Col1a2 and Col2a1 was decreased in the Dex treated phalanxes. A detectable increase was observed in Runx-2 and Mmp-13 expression. We next examined how Dex affected the different stages of skeletogenesis in vitro. Utilizing limb bud mesenchyme micromass cultures, we determined that Dex exposure exerted no effect on apoptosis but impaired chondrogenic cell proliferation. Interestingly, low dose of Dex moderately prompted nodule formation as revealed by alcian blue staining, but higher doses of Dex significantly inhibited similar chondrogenic differentiation. Dex exposure did not induce apoptosis when the chondrogenic precursors were still at the mesenchymal stage, however, cell viability was suppressed when the mesenchyme differentiated into chondrocytes. Alizarin red staining revealed that the capacity to form mineralized bone nodules was correspondingly enhanced as Dex concentrations increased. The mRNA level of Sox-9 was slightly

  20. Mechanistic Target of Rapamycin (Mtor) Is Essential for Murine Embryonic Heart Development and Growth

    PubMed Central

    Zhu, Yi; Pires, Karla M. P.; Whitehead, Kevin J.; Olsen, Curtis D.; Wayment, Benjamin; Zhang, Yi Cheng; Bugger, Heiko; Ilkun, Olesya; Litwin, Sheldon E.; Thomas, George; Kozma, Sara C.; Abel, E. Dale

    2013-01-01

    Mechanistic target of rapamycin (Mtor) is required for embryonic inner cell mass proliferation during early development. However, Mtor expression levels are very low in the mouse heart during embryogenesis. To determine if Mtor plays a role during mouse cardiac development, cardiomyocyte specific Mtor deletion was achieved using α myosin heavy chain (α-MHC) driven Cre recombinase. Initial mosaic expression of Cre between embryonic day (E) 10.5 and E11.5 eliminated a subset of cardiomyocytes with high Cre activity by apoptosis and reduced overall cardiac proliferative capacity. The remaining cardiomyocytes proliferated and expanded normally. However loss of 50% of cardiomyocytes defined a threshold that impairs the ability of the embryonic heart to sustain the embryo’s circulatory requirements. As a result 92% of embryos with cardiomyocyte Mtor deficiency died by the end of gestation. Thus Mtor is required for survival and proliferation of cardiomyocytes in the developing heart. PMID:23342106

  1. DNA methylation, an epigenetic mechanism connecting folate to healthy embryonic development and aging

    PubMed Central

    Kim, Kyong-chol; Friso, Simonetta; Choi, Sang-Woon

    2009-01-01

    Experimental studies demonstrated that maternal exposure to certain environmental and dietary factors during early embryonic development can influence the phenotype of offspring as well as the risk of disease development at the later life. DNA methylation, an epigenetic phenomenon, has been suggested as a mechanism by which maternal nutrients affect the phenotype of their offspring in both honeybee and agouti mouse models. Phenotypic changes through DNA methylation can be linked to folate metabolism by the knowledge that folate, a coenzyme of one-carbon metabolism, is directly involved in methyl group transfer for DNA methylation. During the fetal period, organ-specific DNA methylation patterns are established through epigenetic reprogramming. However, established DNA methylation patterns are not immutable and can be modified during our life time by the environment. Aberrant changes in DNA methylation with diet may lead to the development of age-associated diseases including cancer. It is also known that the aging process by itself is accompanied by alterations in DNA methylation. Diminished activity of DNA methyltransferases (Dnmts) can be a potential mechanism for the decreased genomic DNA methylation during aging, along with reduced folate intake and altered folate metabolism. Progressive hypermethylation in promoter regions of certain genes is observed throughout aging and repression of tumor suppressors induced by this epigenetic mechanism appears to be associated with cancer development. In this review we address the effect of folate on early development and aging through an epigenetic mechanism, DNA methylation. PMID:19733471

  2. Derivation of Huntington Disease affected Genea091 human embryonic stem cell line.

    PubMed

    Dumevska, Biljana; Schaft, Julia; McKernan, Robert; Hu, Jesselyn; Schmidt, Uli

    2016-03-01

    The Genea091 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Htt gene CAG expansion of 40 repeats, indicative of Huntington Disease. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 92% of cells expressed Nanog, 97% Oct4, 79% Tra1-60 and 98% SSEA4 and gave a Pluritest pluripotency score of 38.36, Novelty of 1.35. The cell line was negative for Mycoplasma and visible contamination. PMID:27346013

  3. Derivation of DM1 affected human embryonic stem cell line Genea067.

    PubMed

    Dumevska, Biljana; Main, Heather; McKernan, Robert; Goel, Divya; Schmidt, Uli

    2016-03-01

    The Genea067 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying expansion of CTG repeats in the DMPK gene, indicative of Myotonic Dystrophy Type 1 (DM1). Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XY and STR analysis demonstrated a male Allele pattern. The hESC line had pluripotent cell morphology, 85% of cells expressed Nanog, 97% Oct4, 73% Tra1-60 and 98% SSEA4 and gave a Pluritest Pluripotency score of 25.75, Novelty of 1.46. The cell line was negative for Mycoplasma and visible contamination. PMID:27346009

  4. Derivation of DM2 affected human embryonic stem cell line Genea066.

    PubMed

    Dumevska, Biljana; Schaft, Julia; McKernan, Robert; Goel, Divya; Schmidt, Uli

    2016-03-01

    The Genea066 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying expansion of CCTG repeats in exon 1 of the ZNF9 gene, indicative of Myotonic Dystrophy Type 2 (DM2). Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XY and STR analysis demonstrated a male Allele pattern. The hESC line had pluripotent cell morphology, 88% of cells expressed Nanog, 97% Oct4, 80% Tra1-60 and 99% SSEA4 and gave a Pluritest Pluripotency score of 31.3, Novelty of 1.22. The cell line was negative for Mycoplasma and visible contamination. PMID:27346023

  5. Derivation of Huntington Disease affected Genea046 human embryonic stem cell line.

    PubMed

    Dumevska, Biljana; Chami, Omar; McKernan, Robert; Goel, Divya; Schmidt, Uli

    2016-03-01

    The Genea046 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying HTT gene CAG expansion of 45 repeats, indicative of Huntington Disease. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 85% of cells expressed Nanog, 92% Oct4, 75% Tra1-60 and 99% SSEA4 and demonstrated Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and visible contamination. PMID:27346012

  6. Derivation of Huntington Disease affected Genea089 human embryonic stem cell line.

    PubMed

    Dumevska, Biljana; McKernan, Robert; Hu, Jesselyn; Schmidt, Uli

    2016-03-01

    The Genea089 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Htt gene CAG expansion of 41 repeats, indicative of Huntington Disease. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 91% of cells expressed Nanog, 95% Oct4, 90% Tra1-60 and 100% SSEA4 and gave a PluriTest Pluripotency score of 39.28, Novelty of 1.2. The cell line was negative for Mycoplasma and visible contamination. PMID:27346008

  7. Derivation of Huntington Disease affected Genea090 human embryonic stem cell line.

    PubMed

    Dumevska, Biljana; Schaft, Julia; McKernan, Robert; Hu, Jesselyn; Schmidt, Uli

    2016-03-01

    The Genea090 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Htt gene CAG expansion of 45 repeats, indicative of Huntington Disease. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female allele pattern. The hESC line had pluripotent cell morphology, 91% of cells expressed Nanog, 95% Oct4, 90% Tra1-60 and 100% SSEA4 and gave a pluritest pluripotency score of 30.91, novelty of 1.23. The cell line was negative for Mycoplasma and visible contamination. PMID:27346026

  8. Derivation of Huntington disease affected Genea020 human embryonic stem cell line.

    PubMed

    Dumevska, Biljana; Peura, Teija; McKernan, Robert; Goel, Divya; Schmidt, Uli

    2016-03-01

    The Genea020 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Htt gene CAG expansion of 48 repeats, indicative of Huntington disease. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female allele pattern. The hESC line had pluripotent cell morphology, 89% of cells expressed Nanog, 95% Oct4, 29% Tra1-60 and 99% SSEA4, gave a Pluritest pluripotency score of 27.51, novelty of 1.43 and demonstrated alkaline phosphatase activity. The cell line was negative for Mycoplasma and visible contamination. PMID:27346007

  9. Derivation of Trisomy 21 affected human embryonic stem cell line Genea053.

    PubMed

    Dumevska, Biljana; McKernan, Robert; Goel, Divya; Schmidt, Uli

    2016-03-01

    The Genea053 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Trisomy 21, indicative of Down Syndrome. Following ICM outgrowth on inactivated human feeders, CGH and STR analysis demonstrated a 47, XY, +21 karyotype and male allele pattern. The hESC line had pluripotent cell morphology and expressed pluripotent cell markers including 83% Nanog positive, 87% Oct4, 88% Tra1-60 and 98% SSEA4. The cell line was negative for Mycoplasma and visible contamination. PMID:27346024

  10. Derivation of Trisomy 21 affected human embryonic stem cell line Genea021.

    PubMed

    Dumevska, Biljana; Bosman, Alexis; McKernan, Robert; Main, Heather; Schmidt, Uli; Peura, Teija

    2016-03-01

    The Genea021 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Trisomy 21, indicative of Down Syndrome. Following ICM outgrowth on inactivated human feeders, CGH and STR analyses demonstrated a 47, XY, +21 karyotype and male allele pattern. The hESC line had pluripotent cell morphology, 71% of cells expressed Nanog, 84% Oct4, 23% Tra1-60 and 95% SSEA4, gave a Pluritest Pluripotency score of 21.85, Novelty of 1.42, demonstrated Alkaline Phosphatase activity and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and visible contamination. PMID:27346003

  11. The ‘Ventral Organs’ of Pycnogonida (Arthropoda) Are Neurogenic Niches of Late Embryonic and Post-Embryonic Nervous System Development

    PubMed Central

    Brenneis, Georg; Scholtz, Gerhard

    2014-01-01

    Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i) immunolabeling, (ii) histology and (iii) scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida), the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions – traditionally designated as ‘ventral organs’ – detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult) replenishment of olfactory neurons – as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two transient

  12. Effects of heavy ion radiation on the brain vascular system and embryonic development

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Tobias, C. A.

    1984-01-01

    The present investigation is concerned with the effects of heavy-ion radiation on the vascular system and the embryonic development, taking into account the results of experiments with neonatal rats and mouse embryos. It is found that heavy ions can be highly effective in producing brain hemorrhages and in causing body deformities. Attention is given to aspects of methodology, the induction of brain hemorrhages by X-rays and heavy ions, and the effect of iron particles on embryonic development. Reported results suggest that high linear energy transfer (LET) heavy ions can be very effective in producing developmental abnormalities.

  13. Epigenetic regulation by BAF (mSWI/SNF) chromatin remodeling complexes is indispensable for embryonic development.

    PubMed

    Nguyen, Huong; Sokpor, Godwin; Pham, Linh; Rosenbusch, Joachim; Stoykova, Anastassia; Staiger, Jochen F; Tuoc, Tran

    2016-05-18

    The multi-subunit chromatin-remodeling SWI/SNF (known as BAF for Brg/Brm-associated factor) complexes play essential roles in development. Studies have shown that the loss of individual BAF subunits often affects local chromatin structure and specific transcriptional programs. However, we do not fully understand how BAF complexes function in development because no animal mutant had been engineered to lack entire multi-subunit BAF complexes. Importantly, we recently reported that double conditional knock-out (dcKO) of the BAF155 and BAF170 core subunits in mice abolished the presence of the other BAF subunits in the developing cortex. The generated dcKO mutant provides a novel and powerful tool for investigating how entire BAF complexes affect cortical development. Using this model, we found that BAF complexes globally control the key heterochromatin marks, H3K27me2 and -3, by directly modulating the enzymatic activity of the H3K27 demethylases, Utx and Jmjd3. Here, we present further insights into how the scaffolding ability of the BAF155 and BAF170 core subunits maintains the stability of BAF complexes in the forebrain and throughout the embryo during development. Furthermore, we show that the loss of BAF complexes in the above-described model up-regulates H3K27me3 and impairs forebrain development and embryogenesis. These findings improve our understanding of epigenetic mechanisms and their modulation by the chromatin-remodeling SWI/SNF complexes that control embryonic development. PMID:26986003

  14. Effects of Microgravity on Embryonic Quail Eye Development

    NASA Technical Reports Server (NTRS)

    Barrett, Joyce E.; Wells, Diane C.; Paulsen, Avelina Q.; Conrad, Gary W.

    1997-01-01

    Immunohistochemical methods were used to stain neurofilament protein in corneal nerves of Embryonic Day 16 (E16) quail eyes that had been fixed in 4% paraformaldehyde at room temperature for several months. Fixation was according to the methods used by the Mir 21/NASA 2 Avian Developmental Biology Flight Experiments for quail embryos incubated on the Mir Space Station. After fixation, corneas were pretreated to improve immunohistochemical visualization of neurofilaments. A sequential combination of three pretreatments [microwave heating in saline G, followed by extraction with sodium dodecyl sulfate (SDS) at 37 C, followed by digestion with hyaluronidase at 37 C], produced increased antibody staining of corneal nerve neurofilament proteins, compared with corneas subjected to no prior pretreatments. Darker nerve staining and increased numbers of fine branches were observed, together with lower background staining after such pretreatments. In contrast, use of any single pretreatment or pair of pretreatments resulted in only slight and inconsistent enhancement of nerve staining. Only the sequential combination of all three pretreatments resulted in consistently better nerve staining.

  15. Embryonic mouse pre-metatarsal development in organ culture

    NASA Technical Reports Server (NTRS)

    Klement, B. J.; Spooner, B. S.

    1993-01-01

    Embryonic mouse pre-metatarsals were removed from embryos at 13 days of gestation and cultured in a defined, serum-free medium for up to 15 days. By histological analysis, we observe that the cultured pre-metatarsal tissue undergoes a similar developmental profile as pre-metatarsals growing normally in vivo. The initial mesenchyme condensation regions undergo differentiation and morphogenesis to form distinct rods made up of cartilage tissue. A marker of this differentiation step is the synthesis of type II collagen. Metabolic labelling, pepsin digestion, SDS-PAGE, and autoradiography were used to demonstrate this protein when cartilage tissue is present in the cultures. After additional culture time, terminal chondrocyte differentiation and morphogenesis take place in specific regions of the cartilage rods to form bands of hypertrophied chondrocytes. One marker of this differentiation step is the synthesis of the enzyme alkaline phosphatase. We have measured the activity of this enzyme throughout the culture period and see a substantial increase at the time of terminal chondrocyte differentiation. Another feature of hypertrophied chondrocytes is that the matrix around the cells becomes calcified. Calcified matrix in our cultured pre-metatarsals was visualized by staining with alizarin red. By supplementing the defined culture medium with ITS, we observed that terminal chondrocyte differentiation took place in a shorter culture time. Supplementation of the medium with serum results in a similar acceleration of terminal differentiation, and, with additional culture time, an osteoid-like matrix forms around the central region of the rods.

  16. Effects of petroleum creosote on selected stages of embryonic development

    SciTech Connect

    Iyer, P.R.

    1989-01-01

    The prenatal toxicity of petroleum creosote, a complex mixture of chemicals, was investigated via an in vivo study and an in vitro embryo culture system. Additionally, the prenatal toxicity of naphthalene, one chemical component of petroleum creosote, was determined in the in vitro system. The purpose of the study was to provide specific data on the prenatal toxicity of petroleum creosote and demonstrate the value of the two techniques. In the in vivo study, petroleum creosote was not embryotoxic or teratogenic in ICR mice when administered on gestation days 5-9, at a dose of 4000 mg/kg body weight. In vitro, petroleum creosote becomes embryotoxic to ICR mouse blastocysts at some exposure level between 22 and 33 {mu}g/ml of media. Bioactivation plays a major role in embryotoxicity of naphthalene. Naphthalene without rodent liver microsomal enzymes added to the media was not embryotoxic at levels as high as 100 {mu}g/ml media, whereas naphthalene became embryotoxic at some level between 10 and 50 {mu}g/ml of media in the presence of microsomes. The data indicate that naphthalene is one of the embryotoxic components of petroleum creosote, and that exposure to sufficient levels of petroleum creosote during early pregnancy could result in embryonic loss.

  17. Medical Student Retention of Embryonic Development: Impact of the Dimensions Added by Multimedia Tutorials

    ERIC Educational Resources Information Center

    Marsh, Karen R.; Giffin, Bruce F.; Lowrie, Donald J., Jr.

    2008-01-01

    The purpose of this project was to develop Web-based learning modules that combine (1) animated 3D graphics; (2) 3D models that a student can manipulate independently; (3) passage of time in embryonic development; and (4) animated 2D graphics, including 2D cross-sections that represent different "slices" of the embryo, and animate in parallel.…

  18. DNA methylation, an epigenetic mechanism connecting folate to healthy embryonic development and aging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experimental studies demonstrated that maternal environmental factors including diet during early embryonic development can influence the phenotype of offspring as well as the risk of disease development at the later life. DNA methylation, an epigenetic phenomenon, has been suggested as a mechanism ...

  19. Effects of dieldrin treatment on physiological and biochemical aspects of the toad embryonic development

    SciTech Connect

    Gauna, L.; Caballero de Castro, A.; Chifflet de Llamas, M.; Pechen de D'Angelo, A.M. )

    1991-04-01

    Dieldrin is a cylclodiene insecticide highly persistent in nature due to its chemical stability. The exposure of toad embryos to Dieldrin induces hyperactivity in the swimming larvae and inhibition of cholinesterases. However, the inhibition of these enzymes during early development is not life threatening. The present report provides a physiological and biochemical study of the noxious effect of Dieldrin on the toad embryonic development.

  20. Identification of Estrogen Target Genes during Zebrafish Embryonic Development through Transcriptomic Analysis

    EPA Science Inventory

    Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio) as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 μM 17β-estradiol (E2) or vehicle from 3 hours to 4 days post...

  1. The fungicide propiconazole interferes with embryonic development of the crustacean Daphnia magna.

    PubMed

    Kast-Hutcheson, K; Rider, C V; LeBlanc, G A

    2001-03-01

    Propiconazole is a fungicide used in a variety of agricultural applications. Preliminary studies had suggested that embryos of the crustacean Daphnia magna are particularly susceptible to the toxicity of this chemical. The goals of the present study were to define endpoints of daphnid embryonic development that could be routinely used to assess the embryo toxicity of chemicals and to characterize definitively the embryo toxicity of propiconazole to daphnids. Daphnid embryonic development was characterized into six readily distinguishable stages based on the degree of tissue differentiation. Embryonic development could be monitored either in the brood chamber of the maternal organism or using embryos removed from the brood chamber and incubated ex vivo. Standard toxicity assessment revealed that propiconazole elicited no significant adverse effects on daphnid survival or fecundity during a 21-d exposure to concentrations as high as 0.25 mg/L. Exposure to 0.25 mg/L propiconazole, however, caused a significant incidence of developmental abnormalities and embryonic death. Abnormalities were consistent with developmental arrest at later stages of embryonic maturation. Propiconazole elicited a steep concentration-response curve with respect to embryo toxicity, with a 10% and a 90% incidence of embryo toxicity measured at 0.50 and 0.82 mg/L, respectively. Direct exposure of embryos to propiconazole resulted in toxicity, though the incidence and characteristics of developmental abnormalities were not consistent with that observed during chronic exposures. However, maternal exposure to propiconazole followed by transfer of early embryos to propiconazole-free media resulted in embryo toxicity consistent with that observed during chronic exposure. These results indicate that propiconazole interferes with the later stages of daphnid embryonic development, and that this toxicity is manifested largely via maternal exposure to the fungicide. PMID:11349850

  2. The effect of silver nanoparticles on zebrafish embryonic development and toxicology.

    PubMed

    Xia, Guangqing; Liu, Tiantian; Wang, Zhenwei; Hou, Yi; Dong, Lihong; Zhu, Junyi; Qi, Jie

    2016-06-01

    The unique physical and chemical characteristics of nanomaterials, such as the effects of their small size, surface effects, very high rates of reaction, and quantum tunnel effect, have aroused great interest among scholars. However, improper usage has led to an increasing number of nanomaterials entering the environment through various channels, greatly threatening the security of the ecological environment and human health. The urgent need for a scientific assessment of their biosafety can enable nanomaterials to truly benefit humanity. However, the current research in this field is extremely limited with regard to safety standards and waste disposal. In this study, we used silver nanoparticles (nano-Ag) and zebrafish embryos as experimental subjects, and we have reported the deleterious effect on zebrafish embryos treated with different concentrations of nano-Ag, with respect to morphological features (mortality, deformity rate, and heartbeat) and the analysis of expression of relevant genes (sox17, gsc, ntl, otx2); we found a dose-dependent increase in mortality and hatching delay. The results of in situ hybridization indicated that nano-Ag causes a dose-dependent toxicity in embryonic development, and would affect their development and lead to deformity, delayed development, and even death. The safety limit for the concentration of nano-Ag was found to be less than 5 mg/L. PMID:25749278

  3. Changes in embryonic development and hatching in Chionoecetes opilio (snow crab) with variation in incubation temperature.

    PubMed

    Webb, Joel B; Eckert, Ginny L; Shirley, Thomas C; Tamone, Sherry L

    2007-08-01

    Water temperature affects the distribution, movement, and reproductive potential of female snow crab, Chionoecetes opilio. Ovigerous females of C. opilio from the eastern Bering Sea were held at five temperatures (-1, 0, 1, 3, and 6 degrees C) in the laboratory while their embryos developed from gastrula to hatching. The duration of incubation increased by 105 d (30%) with decreasing temperature; however, a switch to a 2-year duration of embryo incubation was not observed. For females held at 6, 3, and 1 degrees C, their embryos underwent a short period of diapause late in development; no diapause was observed for embryos of females held at 0 or -1 degrees C. Successful extrusion of a subsequent clutch and hatch timing comparable with that observed in the eastern Bering Sea indicated that temperatures of 0 to 3 degrees C may be optimal for multiparous female reproduction. We demonstrated that a switch from 1-year to 2-year reproduction cannot be triggered by changing the thermal regime after several months of embryonic development. The timing of female movement from colder to warmer waters may be important for maintaining population reproductive potential during the recent phase of warming and contraction of cold-water biomes in the Bering Sea. PMID:17679721

  4. CDK2 Is Required for the DNA Damage Response During Porcine Early Embryonic Development.

    PubMed

    Wang, HaiYang; Kim, Nam-Hyung

    2016-08-01

    Cyclin-dependent kinase (CDK) 2 inhibition plays a central role in DNA damage-induced cell cycle arrest and DNA repair. However, whether CDK2 also influences early porcine embryo development is unknown. In this study, we examined whether CDK2 is involved in the regulation of oocyte meiosis and early embryonic development of porcine embryos. We found that disrupting CDK2 activity with RNAi or an inhibitor did not affect meiotic resumption or meiosis II arrest. However, CDK2 inhibitor-treated embryos showed delayed cleavage and ceased development before the blastocyst stage. Disrupting CDK2 activity is able to induce sustained DNA damage, as demonstrated by the formation of distinct gammaH2AX foci in nuclei of Day-3 and Day-5 embryos. Inhibiting CDK2 triggers a DNA damage checkpoint by activation of the ataxia telangiectasia mutated (ATM)-P53-P21 pathway. However, the mRNA expression of genes involved in nonhomologous end joining or homologous recombination pathways for double-strand break repair were reduced after administering CDK2 inhibitor to 5-day-old embryos. Furthermore, CDK2 inhibition caused apoptosis in Day-7 blastocysts. Thus, our results indicate that an ATM-P53-P21 DNA damage checkpoint is intact in the absence of CDK2; however, CDK2 is important for proper repair of the damaged DNA by either directly or indirectly influencing DNA repair-related gene expression. PMID:27307074

  5. Derivation of NEM2 affected human embryonic stem cell line Genea080.

    PubMed

    Dumevska, Biljana; McKernan, Robert; Goel, Divya; Schmidt, Uli

    2016-03-01

    The Genea080 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying compound heterozygous mutations in the NEB gene, exon 55 deletion & c.15110dupA, indicative of Nemaline Myopathy Type 2 (NEM2). Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XY and STR analysis demonstrated a male allele pattern. The hESC line had pluripotent cell morphology, 90% of cells expressed Nanog, 95% Oct4, 54% Tra1-60 and 99% SSEA4 and gave a PluriTest Pluripotency score of 32.08, Novelty of 1.3. The cell line was negative for Mycoplasma and visible contamination. PMID:27346011

  6. Derivation of FSHD1 affected human embryonic stem cell line Genea049.

    PubMed

    Dumevska, Biljana; Chami, Omar; McKernan, Robert; Goel, Divya; Schmidt, Uli

    2016-03-01

    The Genea049 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying a deletion in 4q35 with only 5 D4Z4 repeats by PGD linkage analysis, indicative of FSHD1. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 90% of cells expressed Nanog, 96% Oct4, 80% Tra1-60 and 99% SSEA4, gave a Pluritest Pluripotency score of 23.16, Novelty of 1.43 and demonstrated Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and visible contamination. PMID:27346016

  7. Derivation of NEM2 affected human embryonic stem cell line Genea078.

    PubMed

    Dumevska, Biljana; Main, Heather; McKernan, Robert; Goel, Divya; Schmidt, Uli

    2016-03-01

    The Genea078 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying compound heterozygous mutations in the NEB gene, exon 55 deletion & c.15110dupA, indicative of Nemaline Myopathy Type 2 (NEM2). Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 76% of cells expressed Nanog, 93% Oct4, 67% Tra1-60 and 97% SSEA4 and gave a Pluritest Pluripotency score of 42.18, Novelty of 1.37. The cell line was negative for Mycoplasma and visible contamination. PMID:27346006

  8. Derivation of Huntington Disease affected Genea017 human embryonic stem cell line.

    PubMed

    Dumevska, Biljana; McKernan, Robert; Goel, Divya; Schmidt, Uli; Peura, Teija

    2016-03-01

    The Genea017 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Htt gene CAG expansion of 40 repeats, indicative of Huntington Disease. Following ICM outgrowth on inactivated human feeders, genetic analysis confirmed a 46, XY karyotype and male allele pattern through CGH and STR analysis. The hESC line had pluripotent cell morphology, 87% of cells expressed Nanog, 95% Oct4, 88% Tra1-60 and 99% SSEA4, gave a PluriTest pluripotency score of 34.74, novelty of 1.27, demonstrated alkaline phosphatase activity and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and visible contamination. PMID:27346022

  9. Derivation of FSHD1 affected human embryonic stem cell line Genea050.

    PubMed

    Dumevska, Biljana; Chami, Omar; Main, Heather; McKernan, Robert; Goel, Divya; Schmidt, Uli

    2016-03-01

    The Genea050 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying a deletion in 4q35 with only 5 D4Z4 repeats by PGD linkage analysis, indicative of FSHD1. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XY and STR analysis demonstrated a male Allele pattern. The hESC line had pluripotent cell morphology, 92% of cells expressed Nanog, 97% Oct4, 79% Tra1-60 and 99% SSEA4, gave a Pluritest Pluripotency score of 25.45, Novelty of 1.45 demonstrated Alkaline Phosphatase activity and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and visible contamination. PMID:27346025

  10. Derivation of FSHD1 affected human embryonic stem cell line Genea096.

    PubMed

    Dumevska, Biljana; Schaft, Julia; McKernan, Robert; Goel, Divya; Schmidt, Uli

    2016-03-01

    The Genea096 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying a deletion in 4q35 with only 6 D4Z4 repeats by PGD linkage analysis, indicative of FSHD1. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 64% of cells expressed Nanog, 93% Oct4, 58% Tra1-60 and 93% SSEA4 and a Pluritest Pluripotency score of 39.41, Novelty of 1.25. The cell line was negative for Mycoplasma and visible contamination. PMID:27346027

  11. Derivation of Huntington Disease affected Genea018 human embryonic stem cell line.

    PubMed

    Dumevska, Biljana; Main, Heather; McKernan, Robert; Goel, Divya; Schmidt, Uli; Peura, Teija

    2016-03-01

    The Genea018 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Htt gene CAG expansion of 46 repeats, indicative of Huntington Disease. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 75% of cells expressed Nanog, 91% Oct4, 73% Tra1-60 and 96% SSEA4, gave a Pluritest pluripotency score of 31.12, Novelty of 1.45, demonstrated Alkaline Phosphatase activity and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and visible contamination. PMID:27346005

  12. Derivation of NEM2 affected human embryonic stem cell line Genea079.

    PubMed

    Dumevska, Biljana; McKernan, Robert; Goel, Divya; Schmidt, Uli

    2016-03-01

    The Genea079 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying compound heterozygous mutations in the NEB gene, exon 55 deletion & c.15110dupA, indicative of Nemaline Myopathy Type 2 (NEM2). Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XY and STR analysis demonstrated a male Allele pattern. The hESC line had pluripotent cell morphology, 86% of cells expressed Nanog, 95% Oct4, 54% Tra1-60 and 98% SSEA4 and gave a PluriTest Pluripotency score of 30.25, Novelty of 1.21. The cell line was negative for Mycoplasma and visible contamination. PMID:27346010

  13. Phenotypic plasticity in the common snapping turtle (Chelydra serpentina): long-term physiological effects of chronic hypoxia during embryonic development.

    PubMed

    Wearing, Oliver H; Eme, John; Rhen, Turk; Crossley, Dane A

    2016-01-15

    Studies of embryonic and hatchling reptiles have revealed marked plasticity in morphology, metabolism, and cardiovascular function following chronic hypoxic incubation. However, the long-term effects of chronic hypoxia have not yet been investigated in these animals. The aim of this study was to determine growth and postprandial O2 consumption (V̇o2), heart rate (fH), and mean arterial pressure (Pm, in kPa) of common snapping turtles (Chelydra serpentina) that were incubated as embryos in chronic hypoxia (10% O2, H10) or normoxia (21% O2, N21). We hypothesized that hypoxic development would modify posthatching body mass, metabolic rate, and cardiovascular physiology in juvenile snapping turtles. Yearling H10 turtles were significantly smaller than yearling N21 turtles, both of which were raised posthatching in normoxic, common garden conditions. Measurement of postprandial cardiovascular parameters and O2 consumption were conducted in size-matched three-year-old H10 and N21 turtles. Both before and 12 h after feeding, H10 turtles had a significantly lower fH compared with N21 turtles. In addition, V̇o2 was significantly elevated in H10 animals compared with N21 animals 12 h after feeding, and peak postprandial V̇o2 occurred earlier in H10 animals. Pm of three-year-old turtles was not affected by feeding or hypoxic embryonic incubation. Our findings demonstrate that physiological impacts of developmental hypoxia on embryonic reptiles continue into juvenile life. PMID:26608655

  14. Alveolar flows of the developing lungs:from embryonic to early childhood airways

    NASA Astrophysics Data System (ADS)

    Tenenbaum-Katan, Janna; Hofemeier, Philipp; Fishler, Rami; Rothen-Rutishauser, Barbara; Sznitman, Josue

    2014-11-01

    At the onset of life in utero the respiratory system is simply a liquid-filled duct. With our first breath, alveoli are filled with air and become a significant port of entry for airborne particles. As such, alveolar lining is nearly fully functional at birth, though lung development continues during childhood as structural changes increase alveolar surface area to optimize ventilation. We hypothesize that such fluid dynamical changes potentially affect two phenomena occurring within alveoli: (i) flow patterns in airspaces at distinct stages of both in- and ex-utero life and (ii) fate of inhaled particles ex-utero. To investigate these phenomena, we combine experimental and numerical approaches where (i) microfluidic in vitro devices mimic liquid flows across the epithelium of fetal airspaces, and (ii) computational simulations are employed to examine particle transport and deposition in the deep alveolated regions of infants' lungs. Our approaches capture anatomically-inspired geometries based on morphometrical data, as well as physiological flows, including the convective-diffusive nature of submicron particle transport in alveolar regions.Overall, we investigate respiratory flows in alveolar regions of developing lungs, from early embryonic stages to late childhood

  15. Regulation of the retinal determination gene dachshund in the embryonic head and developing eye of Drosophila

    PubMed Central

    Anderson, Jason; Salzer, Claire L.; Kumar, Justin P.

    2009-01-01

    The retinal determination gene dachshund is distantly related to the family of Ski/Sno proto-oncogenes and influences the development of a wide range of tissues including the embryonic head, optic lobes, brain, central nervous system as well as the post-embryonic leg, wing, genital and eye-antennal discs. We were interested in the regulatory mechanisms that control the dynamic expression pattern of dachshund and in this report we set out to ascertain how the transcription of dachshund is modulated in the embryonic head and developing eye-antennal imaginal disc. We demonstrate that the TGFβ signaling cascade, the transcription factor zerknullt and several other patterning genes prevent dachshund from being expressed inappropriately within the embryonic head. Additionally, we show that several members of the eye specification cascade influence the transcription of dachshund during normal and ectopic eye development. Our results suggest that dachshund is regulated by a complex combinatorial code of transcription factors and signaling pathways. Unraveling this code may lead to an understanding of how dachshund regulates the development of many diverse tissue types including the eye. PMID:16780828

  16. Extraembryonic but not embryonic SUMO-specific protease 2 is required for heart development

    PubMed Central

    Maruyama, Eri O.; Lin, Heng; Chiu, Shang-Yi; Yu, H.-M. Ivy; Porter, George A.; Hsu, Wei

    2016-01-01

    SUMO-specific protease 2 (SENP2) activities to remove SUMO from its substrates is essential for development of trophoblast stem cells, niches and lineages. Global deletion of SENP2 leads to midgestation lethality, and causes severe defects in the placenta which is accompanied by embryonic brain and heart abnormalities. Because of the placental deficiencies, the role of SENP2 in development of the embryonic tissues has not been properly determined. The brain and heart abnormalities may be secondary to placental insufficiency. Here we have created a new mouse strain permitting conditional inactivation of SENP2. Mice homozygous for germline deletion of the conditional allele exhibit trophoblast defects and embryonic abnormalities resembling the global SENP2 knockout. However, tissue-specific disruptions of SENP2 demonstrate its dispensable role in embryogenesis. Placental expression of SENP2 is necessary and sufficient for embryonic heart and brain development. Using a protease deficient model, we further demonstrate the requirement of SENP2-dependent SUMO modification in development of all major trophoblast lineages. SENP2 regulates sumoylation of Mdm2 which controls p53 activities critical for G-S transition of mitotic division and endoreduplication in trophoblast proliferation and differentiation, respectively. The differentiation of trophoblasts is also dependent on SENP2-mediated activation of p57Kip2, a CDK-specific inhibitor required for endoreduplication. PMID:26883797

  17. ALTERNATE PATCHED SPLICE FORMS ARE EXPRESSED IN A TISSUE SPECIFIC MANNER DURING EARLY EMBRYONIC DEVELOPMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: The Hedgehog (Hh) pathway is critical for embryonic patterning of nearly every organ system in the developing fetus and is highly conserved across phylogeny. We have previously characterized three alternate splice forms of the Ptc gene, including a novel Exon 1C isoform in the mouse, but...

  18. Generation of the Dimensional Embryology Application (App) for Visualization of Early Chick and Frog Embryonic Development

    ERIC Educational Resources Information Center

    Webb, Rebecca L.; Bilitski, James; Zerbee, Alyssa; Symans, Alexandra; Chop, Alexandra; Seitz, Brianne; Tran, Cindy

    2015-01-01

    The study of embryonic development of multiple organisms, including model organisms such as frogs and chicks, is included in many undergraduate biology programs, as well as in a variety of graduate programs. As our knowledge of biological systems increases and the amount of material to be taught expands, the time spent instructing students about…

  19. Specific regions within the embryonic midbrain and cerebellum require different levels of FGF signaling during development

    PubMed Central

    Basson, M. Albert; Echevarria, Diego; Ahn, Christina Petersen; Sudarov, Anamaria; Joyner, Alexandra L.; Mason, Ivor J.; Martinez, Salvador; Martin, Gail R.

    2008-01-01

    SUMMARY Development of the prospective midbrain and cerebellum are coordinated by FGF ligands produced by the isthmic organizer. Previous studies have suggested that the midbrain and cerebellum require different levels of FGF signaling for their development. However, little is known about the extent to which specific regions within these two parts of the brain differ in their requirement for FGF signaling during embryogenesis. In this study, we have explored the effects of inhibiting FGF signaling within the embryonic midbrain (mesencephalon) and cerebellum (rhombomere 1) by misexpressing Sprouty2 (Spry2) specifically in the mouse mesencephalon and rhombomere 1 from an early stage. We show that such Spry2 misexpression moderately reduces FGF signaling, and that this reduction causes the death of cells in the anterior mesencephalon, the region furthest from the source of FGF ligands. Interestingly, the remaining cells in the posterior mesencephalon develop into anterior midbrain, indicating that a low level of FGF signaling is sufficient to promote only anterior midbrain development. Spry2 misexpression also affects development of the vermis, the medial part of the cerebellum that spans the midline. We found that whereas misexpression of Spry2 alone caused loss of the anterior vermis, reducing FGF signaling further, by decreasing Fgf8 gene dosage, resulted in loss of the entire vermis. We provide evidence that cell death is not responsible for this tissue loss. Instead, our data suggest that the vermis fails to develop because reducing FGF signaling perturbs the balance between vermis and roof plate development in rhombomere 1. We suggest a molecular explanation for this phenomenon by providing evidence that FGF signaling functions to inhibit the BMP signaling that promotes roof plate development. PMID:18216176

  20. Essential roles of zebrafish rtn4/Nogo paralogues in embryonic development

    PubMed Central

    2014-01-01

    Background As a consequence of gene/genome duplication, the RTN4/Nogo gene has two counterparts in zebrafish: rtn4a and rtn4b. The shared presence of four specific amino acid motifs—M1 to M4—in the N-terminal region of mammalian RTN4, and zebrafish Rtn4b suggests that Rtn4b is the closest homologue of mammalian Nogo-A. Results To explore their combined roles in zebrafish development, we characterized the expression patterns of rtn4a and rtn4b in a comparative manner and performed morpholino-mediated knockdowns. Although both genes were coexpressed in the neural tube and developing brain at early stages, they progressively acquired distinct expression domains such as the spinal cord (rtn4b) and somites (rtn4a). Downregulation of rtn4a and rtn4b caused severe brain abnormalities, with rtn4b knockdown severely affecting the spinal cord and leading to immobility. In addition, the retinotectal projection was severely affected in both morphants, as the retina and optic tectum appeared smaller and only few retinal axons reached the abnormally reduced tectal neuropil. The neuronal defects were more persistent in rtn4b morphants. Moreover, the latter often lacked pectoral fins and lower jaws and had malformed branchial arches. Notably, these defects led to larval death in rtn4b, but not in rtn4a morphants. Conclusions In contrast to mammalian Nogo-A, its zebrafish homologues, rtn4a and particularly rtn4b, are essential for embryonic development and patterning of the nervous system. PMID:24755266

  1. Imaging of murine embryonic cardiovascular development using optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Yongyang; Degenhardt, Karl R.; Astrof, Sophie; Zhou, Chao

    2016-03-01

    We have demonstrated the capability of spectral domain optical coherence tomography (SDOCT) system to image full development of mouse embryonic cardiovascular system. Monitoring morphological changes of mouse embryonic heart occurred in different embryonic stages helps identify structural or functional cardiac anomalies and understand how these anomalies lead to congenital heart diseases (CHD) present at birth. In this study, mouse embryo hearts ranging from E9.5 to E15.5 were prepared and imaged in vitro. A customized spectral domain OCT system was used for imaging, with a central wavelength of 1310nm, spectral bandwidth of ~100nm and imaging speed of 47kHz A-scans/s. Axial resolution of this system was 8.3µm in air, and transverse resolution was 6.2 µm with 5X objective. Key features of mouse embryonic cardiovascular development such as vasculature remodeling into circulatory system, separation of atria and ventricles and emergence of valves could be clearly seen in three-dimensional OCT images. Optical clearing was applied to overcome the penetration limit of OCT system. With high resolution, fast imaging speed, 3D imaging capability, OCT proves to be a promising biomedical imaging modality for developmental biology studies, rivaling histology and micro-CT.

  2. Cdk12 is essential for embryonic development and the maintenance of genomic stability

    PubMed Central

    Juan, H-C; Lin, Y; Chen, H-R; Fann, M-J

    2016-01-01

    The maintenance of genomic integrity during early embryonic development is important in order to ensure the proper development of the embryo. Studies from cultured cells have demonstrated that cyclin-dependent kinase 12 (Cdk12) is a multifunctional protein that maintains genomic stability and the pluripotency of embryonic stem cells. Perturbation of its functions is also known to be associated with pathogenesis and drug resistance in human cancers. However, the biological significance of Cdk12 in vivo is unclear. Here we bred mice that are deficient in Cdk12 and demonstrated that Cdk12 depletion leads to embryonic lethality shortly after implantation. We also used an in vitro culture system of blastocysts to examine the molecular mechanisms associated with the embryonic lethality of Cdk12-deficient embryos. Cdk12−/− blastocysts fail to undergo outgrowth of the inner cell mass because of an increase in the apoptosis of these cells. Spontaneous DNA damage was revealed by an increase in 53BP1 foci among cells cultured from Cdk12−/− embryos. Furthermore, the expression levels of various DNA damage response genes, namely Atr, Brca1, Fanci and Fancd2, are reduced in Cdk12−/− embryos. These findings indicate that Cdk12 is important for the correct expression of some DNA damage response genes and indirectly has an influence on the efficiency of DNA repair. Our report also highlights that DNA breaks occurring during DNA replication are frequent in mouse embryonic cells and repair of such damage is critical to the successful development of mouse embryos. PMID:26658019

  3. An F1 genetic screen for maternal-effect mutations affecting embryonic pattern formation in Drosophila melanogaster.

    PubMed Central

    Luschnig, Stefan; Moussian, Bernard; Krauss, Jana; Desjeux, Isabelle; Perkovic, Josip; Nüsslein-Volhard, Christiane

    2004-01-01

    Large-scale screens for female-sterile mutations have revealed genes required maternally for establishment of the body axes in the Drosophila embryo. Although it is likely that the majority of components involved in axis formation have been identified by this approach, certain genes have escaped detection. This may be due to (1) incomplete saturation of the screens for female-sterile mutations and (2) genes with essential functions in zygotic development that mutate to lethality, precluding their identification as female-sterile mutations. To overcome these limitations, we performed a genetic mosaic screen aimed at identifying new maternal genes required for early embryonic patterning, including zygotically required ones. Using the Flp-FRT technique and a visible germline clone marker, we developed a system that allows efficient screening for maternal-effect phenotypes after only one generation of breeding, rather than after the three generations required for classic female-sterile screens. We identified 232 mutants showing various defects in embryonic pattern or morphogenesis. The mutants were ordered into 10 different phenotypic classes. A total of 174 mutants were assigned to 86 complementation groups with two alleles on average. Mutations in 45 complementation groups represent most previously known maternal genes, while 41 complementation groups represent new loci, including several involved in dorsoventral, anterior-posterior, and terminal patterning. PMID:15166158

  4. Modulation of ovarian steroidogenesis by adiponectin during delayed embryonic development of Cynopterus sphinx.

    PubMed

    Anuradha; Krishna, Amitabh

    2014-09-01

    The aim of present study was to evaluate role of adiponectin in ovarian steroidogenesis during delayed embryonic development of Cynopterus sphinx. This study showed significantly low circulating adiponectin level and a decline in expression of adiponectin receptor 1 (AdipoR1) in the ovary during the period of delayed embryonic development as compared with the normal development. The adiponectin treatment in vivo during the period of delayed development caused significantly increased in circulating progesterone and estradiol levels together with increased expression of AdipoR1 in the ovary. The in vitro study confirmed the stimulatory effect of adiponectin on progesterone synthesis. Both in vivo and in vitro studies showed that the effects of adiponectin on ovarian steroidogenesis were mediated through increased expression of luteinizing hormone-receptor, steroidogenic acute regulatory protein and 3β-hydroxyl steroid dehydrogenase enzyme. The adiponectin treatment may also promote progesterone synthesis by modulating ovarian angiogenesis, cell survival and rate of apoptosis. PMID:24787661

  5. Maternal plasma and egg yolk testosterone concentrations during embryonic development in green anoles (Anolis carolinensis).

    PubMed

    Lovern, M B; Wade, J

    2001-11-01

    Sex steroids of presumably maternal origin have been found in avian, crocodilian, and chelonian egg yolks, and they can affect offspring morphology and behavior. The present study reports testosterone (T) levels to which embryos are potentially exposed in the green anole (Anolis carolinensis), a lizard with genotypic sex determination. We documented plasma and yolk T concentrations in adult females, in their developing follicles and eggs, and in freshly oviposited and incubating eggs. Plasma T was higher in reproductively active than in reproductively inactive females. Within reproductively active females, those with a single, large yolking follicle had higher plasma T than those that had one or more shelling, oviductal eggs. Individual females contributed different amounts of T to their yolks, but within females, more mature follicles or eggs consistently had higher yolk T concentrations than did less mature follicles or eggs. Similar to previous research, yolk T concentrations at oviposition were higher in male eggs than in female eggs. However, T levels during incubation did not differ by embryo sex, but rather increased in both male and female eggs. These results suggest that T plays a role in the reproductive physiology of females and potentially in the phenotypic development of their offspring. Furthermore, whereas the yolk T increase observed during follicular maturation is clearly a maternal influence, it remains unclear whether that observed during egg development (i.e., postfertilization) results from a lack of T uptake by the embryo as yolk is absorbed, from embryonic production of T that diffuses into the yolk, or from some combination of these processes. Because lizard embryos are comparatively well developed at oviposition, the assumption that yolk steroids are strictly of maternal origin may require modification, and the possibility that embryos are modulating their own steroid environment needs to be explored. PMID:11703087

  6. Stimulatory Effects of Coumestrol on Embryonic and Fetal Development Through AKT and ERK1/2 MAPK Signal Transduction.

    PubMed

    Lim, Whasun; Song, Gwonhwa

    2016-12-01

    Successful establishment of pregnancy is required for fetal-maternal interactions regulating implantation, embryonic development and placentation. A uterine environment with insufficient growth factors and nutrients increases the incidence of intrauterine growth restriction (IUGR) leading to an impaired uterine environment. In the present study, we demonstrated the effects of the phytoestrogen coumestrol on conceptus development in the pig that is regarded as an excellent biomedical animal model for research on IUGR. Results of this study indicated that coumestrol induced migration of porcine trophectoderm (pTr) cells in a concentration-dependent manner. In response to coumestrol, the phosphorylation of AKT, P70S6K, S6, ERK1/2 MAPK, and P90RSK proteins were activated in pTr cells and ERK1/2 MAPK and P90RSK phosphorylation was prolonged for a longer period than for the other proteins. To identify the signal transduction pathway induced by coumestrol, pharmacological inhibitors U0126 (an ERK1/2 inhibitor) and LY294002 (a PI3K inhibitor) were used to pretreat pTr cells. The results showed that coumestrol-induced phosphorylation of ERK1/2 MAPK and P90RSK was blocked by U0126. In addition, the increased phosphorylation in response to coumestrol was completely inhibited following pre-treatment incubation of pTr cells in the presence of LY294002 and U0126. Furthermore, these two inhibitors suppressed the ability of coumestrol to induce migration of pTr cells. Collectively, these findings suggest that coumestrol affects embryonic development through activation of the PI3K/AKT and ERK1/2 MAPK cell signal transduction pathways and improvement in the uterine environment through coumestrol supplementation may provide beneficial effects of enhancing embryonic and fetal survival and development. J. Cell. Physiol. 231: 2733-2740, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991852

  7. The embryonic development of the central American wandering spider Cupiennius salei

    PubMed Central

    2011-01-01

    Background The spider Cupiennius salei (Keyserling 1877) has become an important study organism in evolutionary and developmental biology. However, the available staging system for its embryonic development is difficult to apply to modern studies, with strong bias towards the earliest developmental stages. Furthermore, important embryonic events are poorly understood. We address these problems, providing a new description of the embryonic development of C. salei. The paper also discusses various observations that will improve our understanding of spider development. Results Conspicuous developmental events were used to define numbered stages 1 to 21. Stages 1 to 9 follow the existing staging system for the spider Achaearanea tepidariorum, and stages 10 to 21 provide a high-resolution description of later development. Live-embryo imaging shows cell movements during the earliest formation of embryonic tissue in C. salei. The imaging procedure also elucidates the encircling border between the cell-dense embryo hemisphere and the hemisphere with much lower cell density (a structure termed 'equator' in earlier studies). This border results from subsurface migration of primordial mesendodermal cells from their invagination site at the blastopore. Furthermore, our detailed successive sequence shows: 1) early differentiation of the precheliceral neuroectoderm; 2) the morphogenetic process of inversion and 3) initial invaginations of the opisthosomal epithelium for the respiratory system. Conclusions Our improved staging system of development in C. salei development should be of considerable value to future comparative studies of animal development. A dense germ disc is not evident during development in C. salei, but we show that the gastrulation process is similar to that in spider species that do have a dense germ disc. In the opisthosoma, the order of appearance of precursor epithelial invaginations provides evidence for the non-homology of the tracheal and book lung

  8. Secisbp2 Is Essential for Embryonic Development and Enhances Selenoprotein Expression

    PubMed Central

    Seeher, Sandra; Atassi, Tarik; Mahdi, Yassin; Carlson, Bradley A.; Braun, Doreen; Wirth, Eva K.; Klein, Marc O.; Reix, Nathalie; Miniard, Angela C.; Schomburg, Lutz; Hatfield, Dolph L.; Driscoll, Donna M.

    2014-01-01

    Abstract Aims: The selenocysteine insertion sequence (SECIS)-binding protein 2 (Secisbp2) binds to SECIS elements located in the 3′-untranslated region of eukaryotic selenoprotein mRNAs. Selenoproteins contain the rare amino acid selenocysteine (Sec). Mutations in SECISBP2 in humans lead to reduced selenoprotein expression thereby affecting thyroid hormone-dependent growth and differentiation processes. The most severe cases also display myopathy, hearing impairment, male infertility, increased photosensitivity, mental retardation, and ataxia. Mouse models are needed to understand selenoprotein-dependent processes underlying the patients' pleiotropic phenotypes. Results: Unlike tRNA[Ser]Sec-deficient embryos, homozygous Secisbp2-deleted embryos implant, but fail before gastrulation. Heterozygous inactivation of Secisbp2 reduced the amount of selenoprotein expressed, but did not affect the thyroid hormone axis or growth. Conditional deletion of Secisbp2 in hepatocytes significantly decreased selenoprotein expression. Unexpectedly, the loss of Secisbp2 reduced the abundance of many, but not all, selenoprotein mRNAs. Transcript-specific and gender-selective effects on selenoprotein mRNA abundance were greater in Secisbp2-deficient hepatocytes than in tRNA[Ser]Sec-deficient cells. Despite the massive reduction of Dio1 and Sepp1 mRNAs, significantly more corresponding protein was detected in primary hepatocytes lacking Secisbp2 than in cells lacking tRNA[Ser]Sec. Regarding selenoprotein expression, compensatory nuclear factor, erythroid-derived, like 2 (Nrf2)-dependent gene expression, or embryonic development, phenotypes were always milder in Secisbp2-deficient than in tRNA[Ser]Sec-deficient mice. Innovation: We report the first Secisbp2 mutant mouse models. The conditional mutants provide a model for analyzing Secisbp2 function in organs not accessible in patients. Conclusion: In hepatocyte-specific conditional mouse models, Secisbp2 gene inactivation is less

  9. Spatial expression of transcription factors in Drosophila embryonic organ development

    PubMed Central

    2013-01-01

    Background Site-specific transcription factors (TFs) bind DNA regulatory elements to control expression of target genes, forming the core of gene regulatory networks. Despite decades of research, most studies focus on only a small number of TFs and the roles of many remain unknown. Results We present a systematic characterization of spatiotemporal gene expression patterns for all known or predicted Drosophila TFs throughout embryogenesis, the first such comprehensive study for any metazoan animal. We generated RNA expression patterns for all 708 TFs by in situ hybridization, annotated the patterns using an anatomical controlled vocabulary, and analyzed TF expression in the context of organ system development. Nearly all TFs are expressed during embryogenesis and more than half are specifically expressed in the central nervous system. Compared to other genes, TFs are enriched early in the development of most organ systems, and throughout the development of the nervous system. Of the 535 TFs with spatially restricted expression, 79% are dynamically expressed in multiple organ systems while 21% show single-organ specificity. Of those expressed in multiple organ systems, 77 TFs are restricted to a single organ system either early or late in development. Expression patterns for 354 TFs are characterized for the first time in this study. Conclusions We produced a reference TF dataset for the investigation of gene regulatory networks in embryogenesis, and gained insight into the expression dynamics of the full complement of TFs controlling the development of each organ system. PMID:24359758

  10. Retinoic acid regulates embryonic development of mammalian submandibular salivary glands.

    PubMed

    Wright, Diana M; Buenger, Deanna E; Abashev, Timur M; Lindeman, Robert P; Ding, Jixiang; Sandell, Lisa L

    2015-11-01

    Organogenesis is orchestrated by cell and tissue interactions mediated by molecular signals. Identification of relevant signals, and the tissues that generate and receive them, are important goals of developmental research. Here, we demonstrate that Retinoic Acid (RA) is a critical signaling molecule important for morphogenesis of mammalian submandibular salivary glands (SMG). By examining late stage RA deficient embryos of Rdh10 mutant mice we show that SMG development requires RA in a dose-dependent manner. Additionally, we find that active RA signaling occurs in SMG tissues, arising earlier than any other known marker of SMG development and persisting throughout gland morphogenesis. At the initial bud stage of development, we find RA production occurs in SMG mesenchyme, while RA signaling occurs in epithelium. We also demonstrate active RA signaling occurs in glands cultured ex vivo, and treatment with an inhibitor of RA signaling blocks growth and branching. Together these data identify RA signaling as a direct regulator of SMG organogenesis. PMID:26278034

  11. Changes in the electrical properties of chick ciliary ganglion neurones during embryonic development.

    PubMed Central

    Dourado, M M; Dryer, S E

    1992-01-01

    1. Whole-cell recording techniques were used to examine the expression of ionic currents in chick ciliary ganglion neurones dissociated acutely at various stages of embryonic development. Currents were also examined in dissociated cells that had been maintained in vitro for several days. 2. Voltage-activated, tetrodotoxin (TTX)-sensitive Na+ currents (INa) could be detected in all cells tested between stage 25 and stage 40 (embryonic days 4.5-14). INa increased in both amplitude and density throughout development, but no obvious changes in kinetics or sensitivity to TTX were observed. 3. High-threshold Ca2+ currents (ICa) were also detectable between stage 25 and stage 40. ICa increased in both amplitude and density throughout this time. No obvious changes in kinetics or voltage dependence were observed. 4. Delayed rectifier K+ currents (IDR) and A-currents (IA) could be detected in Ca(2+)-free salines, and distinguished on the basis of differences in kinetics, voltage dependence, and sensitivity to tetraethylammonium (TEA). IA was either absent, or present at very low densities at stages 26-30, but showed a sharp increase in density thereafter. In contrast, IDR was detectable as early as stage 25, and did not display a significant increase in density during development. 5. Ca(2+)-activated K+ currents (IK(Ca)) were either undetectable or present at very low density between stage 26 and stage 30 (embryonic days 5-9) but showed a large increase in amplitude and density thereafter. 6. Ionic currents were examined in age-matched cells dissociated acutely on embryonic day 13, or isolated on embryonic day 9 and maintained in vitro for an additional 4 days. Most of the cells maintained in culture for 4 days did not express detectable IK(Ca), and had significantly reduced IA compared to acutely isolated controls. The cultured cells expressed normal densities of IDR, ICa and INa. 7. All ionic currents increased in amplitude during normal embryonic development, and all but

  12. Maternal dietary effects on embryonic ovarian development in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ovarian gametogenesis and folliculogenesis begins early in fetal development with peak numbers of follicles present in bovine fetal ovaries in the second trimester of gestation and may be altered by maternal nutrition. The objective was to determine whether maternal dietary energy intake by replacem...

  13. Final Report for Regulation of Embryonic Development in Higher Plants

    SciTech Connect

    Harada, John J.

    2013-10-22

    The overall goal of the project was to define the cellular processes that underlie embryo development in plants at a mechanistic level. Our studies focused on a critical transcriptional regulator, Arabidopsis LEAFY COTYLEDON (LEC1), that is necessary and sufficient to induce processes required for embryo development. Because LEC1 regulates lipid accumulation during the maturation phase of embryo development, information about LEC1 may be useful in designing approaches to enhance biofuel production in plants. During the tenure of this project, we determined the molecular mechanisms by which LEC1 acts as a transcription factor in embryos. We also identified genes directly regulated by LEC1 and showed that many of these genes are involved in maturation processes. This information has been useful in dissecting the gene regulatory networks controlling embryo development. Finally, LEC1 is a novel isoform of a transcription factor that is conserved among eukaryotes, and LEC1 is active primarily in seeds. Therefore, we determined that the LEC1-type transcription factors first appeared in lycophytes during land plant evolution. Together, this study provides basic information that has implications for biofuel production.

  14. Extracellular Ca2+ influx is crucial for the early embryonic development of the sea urchin Echinometra lucunter.

    PubMed

    de Araújo Leite, Jocelmo Cássio; Marques-Santos, Luis Fernando

    2012-03-01

    The involvement of Ca(2+) in the activation of eggs and in the first steps of the embryonic development of several species is a well-known phenomenon. An association between Ca(2+) sources with the fate of the blastopore during embryonic development has been investigated by several authors. Ca(2+) influx mediated by voltage-gated channels and Ca(2+) mobilization from intracellular stores are the major sources of Ca(2+) to egg activation and succeeding cell divisions. Studies on sea urchins embryonic development show that intracellular Ca(2+) stores are responsible for egg activation and early embryogenesis. In the present work we investigated the involvement of extracellular Ca(2+) in the first stages of the embryonic development of the sea urchin Echinometra lucunter. Divalent cation chelators EDTA and EGTA strongly blocked the early embryonic development. Adding to this, we demonstrated the involvement of voltage-gated Ca(2+) channels in E. lucunter embryogenesis since Ca(2+) channel blockers powerfully inhibited the early embryonic development. Our data also revealed that Ca(2+) influx is crucial for embryonic development during only the first 40 min postfertilization. However, intracellular Ca(2+) remains mandatory to embryonic development 40 min postfertilization, seen that both the intracellular Ca(2+) chelator BAPTA-AM and calmodulin antagonists trifluoperazine and chlorpromazine inhibited the first stages of development when added to embryos culture 50 min postfertilization. Our work highlights the crucial role of extracellular Ca(2+) influx through voltage-gated Ca(2+) channels for the early embryonic development of the sea urchin E. lucunter and characterizes an exception in the phylum Echinodermata. PMID:22532474

  15. Conducting the embryonic heart: orchestrating development of specialized cardiac tissues.

    PubMed

    Gourdie, R G; Kubalak, S; Mikawa, T

    1999-01-01

    The heterogeneous tissues of the pacemaking and conduction system comprise the "smart components" of the heart, responsible for setting, maintaining, and coordinating the rhythmic pumping of cardiac muscle. Over the last few years, a wealth of new information has been collected about the unique genetic and phenotypic characteristics expressed by these tissues during cardiac morphogenesis. More recently, genetically modified viruses, mutational analysis, and targeted transgenesis have enabled even more precise resolution of the relationships between cell fate, gene expression, and differentiation of specialized function within developing myocardium. While some information provided by these newer approaches has supported conventional wisdom, some fresh and unexpected perspectives have also emerged. In particular, there is mounting evidence that extracardiac populations of cells migrating into the tubular heart have important morphogenetic roles in the inductive pattering and functional integration of the developing conduction system. PMID:10189963

  16. Imaging neural development in embryonic and larval sea urchins.

    PubMed

    Krupke, Oliver; Yaguchi, Shunsuke; Yaguchi, Junko; Burke, Robert D

    2014-01-01

    Imaging is a critical tool in neuroscience, and our understanding of the structure and function of sea urchin nervous systems owes much to this approach. In particular, studies of neural development have been facilitated by methods that enable the accurate identification of specific types of neurons. Here we describe methods that have been successfully employed to study neural development in sea urchin embryos. Altering gene expression in part of an embryo is facilitated by injection of reagents into individual blastomeres, which enables studies of cell autonomous effects and single embryo rescue experiments. The simultaneous localization of an in situ RNA hybridization probe and a cell type specific antigen has enabled studies of gene expression in specific types of neurons. Fixatives and antibodies can be capricious; thus, we provide data on preservation of antigens with commonly used fixatives and buffers. PMID:24567212

  17. Bumps and Ridges: Trabeculation Effects in Embryonic Heart Development

    NASA Astrophysics Data System (ADS)

    Battista, Nicholas; Lane, Andrea; Miller, Laura

    2014-11-01

    Trabeculae form in developing zebrafish hearts for Re on the order of 0.1; effects of trabeculae in this flow is not well understood. Dynamic processes, such as vortex formation, are important in the generation of shear at the endothelial surface layer and strains at the epithelial layer, which aid in proper morphology and functionality. In this study, CFD is used to quantify the effects of Re and idealized trabeculae height on the resulting flows.

  18. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development.

    PubMed

    Isogai, S; Horiguchi, M; Weinstein, B M

    2001-02-15

    We have used confocal microangiography to examine and describe the vascular anatomy of the developing zebrafish, Danio rerio. This method and the profound optical clarity of zebrafish embryos make it possible to view the entire developing vasculature with unprecedented resolution. A staged series of three-dimensional images of the vascular system were collected beginning shortly after the onset of circulation at 1 day postfertilization through early- to midlarval stages at approximately 7 days postfertilization. Blood vessels in every region of the animal were imaged at each stage, and detailed "wiring patterns" were derived describing the interconnections between every major vessel. We present an overview of these data here in this paper and in an accompanying Web site "The interactive atlas of zebrafish vascular anatomy" online at (http://eclipse.nichd.nih.gov/nichd/lmg/redirect.html). We find a highly dynamic but also highly stereotypic pattern of vascular connections, with different sets of primitive embryonic vessels severing connections and rewiring in new configurations according to a reproducible plan. We also find that despite variation in the details of the vascular anatomy, the basic vascular plan of the developing zebrafish shows strong similarity to that of other vertebrates. This atlas will provide an invaluable foundation for future genetic and experimental studies of vascular development in the zebrafish. PMID:11161578

  19. Familial Dysautonomia (FD) Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation

    PubMed Central

    Kantor, Gal; Cheishvili, David; Even, Aviel; Birger, Anastasya; Turetsky, Tikva; Gil, Yaniv; Even-Ram, Sharona; Aizenman, Einat; Bashir, Nibal; Maayan, Channa; Razin, Aharon; Reubinoff, Benjamim E.; Weil, Miguel

    2015-01-01

    A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS lineage by using a novel and unique human embryonic stem cell (hESC) line homozygous to the FD mutation originated by pre implantation genetic diagnosis (PGD) analysis. We found that IKBKAP downregulation during PNS differentiation affects normal migration in FD-hESC derived neural crest cells (NCC) while at later stages the PNS neurons show reduced intracellular colocalization between vesicular proteins and IKAP. Comparative wide transcriptome analysis of FD and WT hESC-derived neurons together with the analysis of human brains from FD and WT 12 weeks old embryos and experimental validation of the results confirmed that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation in FD neurons. Moreover we show that kinetin (a drug that corrects IKBKAP alternative splicing) promotes the recovery of IKAP expression and these IKAP functional associated genes identified in the study. Altogether, these results support the view that IKAP might be a vesicular like protein that might be involved in neuronal transport in hESC derived PNS neurons. This function seems to be mostly affected in FD-hESC derived PNS neurons probably reflecting some PNS neuronal dysfunction observed in FD. PMID:26437462

  20. MicroRNA-140-5p impairs zebrafish embryonic bone development via targeting BMP-2.

    PubMed

    Gan, Shiquan; Huang, Zhaoqin; Liu, Ning; Su, Renxiang; Xie, Guie; Zhong, Beibei; Zhang, Kai; Wang, Shang; Hu, Xiang; Zhang, Jian; Xiang, Shuanglin

    2016-05-01

    MicroRNA-140-5p (miRNA-140-5p) is important for embryonic bone development. In this study, we found that miRNA-140-5p and its binding site in the 3'UTR of bone morphogenetic protein 2 (BMP-2) are highly conserved among vertebrates, and miRNA-140-5p negatively regulates both zebrafish and human BMP-2 genes. Microinjection of miRNA-140-5p or BMP-2b morpholino into zebrafish embryos led to a similar phenotype, including shortened tails, curved trunks, and defects in cranial cartilage. Moreover, miRNA-140-5p injection induced zebrafish embryo malformation that could be significantly rescued by microinjection of BMP-2 mRNA. In conclusion, our results indicated that miRNA-140-5p regulates zebrafish embryonic bone development via targeting BMP-2. PMID:27130837

  1. Transcriptional inhibition of etv2 expression is essential for embryonic cardiac development.

    PubMed

    Schupp, Marcus-Oliver; Waas, Matthew; Chun, Chang-Zoon; Ramchandran, Ramani

    2014-09-01

    E-twenty six variant 2 (Etv2) transcription factor participates in cardiac, vascular-endothelial and blood cell lineage specification decisions during embryonic development. Previous studies have identified genomic elements in the etv2 locus responsible for vascular endothelial cell specification. Using transgenic analysis in zebrafish, we report here an etv2 proximal promoter fragment that prevents transgene misexpression in myocardial progenitor cells. This inhibition of etv2 expression in the cardiac progenitor population is partly mediated by Scl and Nkx2.5, likely through direct binding to the etv2 promoter, and cis-regulatory elements located in the first and second introns. The results identify an etv2 cis-regulatory mechanism controlling cardiovascular fate choice implying that etv2 participates in a transcriptional network mediating developmental plasticity of endothelial progenitor cells during embryonic development. PMID:24984259

  2. Reciprocal regulation of miRNAs and piRNAs in embryonic development.

    PubMed

    Du, W W; Yang, W; Xuan, J; Gupta, S; Krylov, S N; Ma, X; Yang, Q; Yang, B B

    2016-09-01

    MicroRNAs (miRNAs) and piwi-interacting RNAs (piRNAs) are two classes of small noncoding RNAs, both of which play roles in regulating tissue development. It is unknown whether these distinct classes of noncoding RNAs can regulate one another. Here we show that ectopic expression of miR-17 inhibited mouse fertility and early embryonic development. Specifically, we found that the piRNA amplification loop was repressed by miR-17-5p, leading to increased levels of transposition mutagenesis. This occurred by suppressing the amplification loop of piRNAs with an identical 5' sequence and by targeting Mili/Miwi2, an essential component of the piRNA amplification loop, and the DNA methyltransferase, Dnmt3a. We also found that increased levels of piRNAs could compete with miRNAs for target binding, resulting in increased expression of Dnmt3a and Mili. Increased Dnmt3a levels could in turn block miR-17-5p expression, while increased Mili expression could accelerate piRNA amplification and inhibit transposon generation, favoring embryonic development. We report for the first time the reciprocal regulation between miRNAs and piRNAs in mouse embryonic development. PMID:26990662

  3. Possible effect of 30K proteins in embryonic development of silkworm Bombyx mori.

    PubMed

    Zhong, Bo-Xiong; Li, Jian-Ke; Lin, Jian-Rong; Liang, Jian-She; Su, Song-Kun; Xu, Hai-Sheng; Yan, Hai-Yan; Zhang, Ping-Bo; Fujii, Hiroshi

    2005-05-01

    The silkworm Bombyx mori possesses a 30K protein family of 3x10(4) Da, the biological functions of which have not been fully identified. The relationship between the 30K protein family and the embryonic development of temperature sensitive sex-linked mutant strain of silkworm was investigated by two dimensional polyacrylamide gel electrophoresis (2D-PAGE) and Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The results show that protein spots 1-5 of the 30K protein family, mainly existing in normal strain, are possibly related to embryonic development. The early consumption of a 30K protein named 6G1-30K-1 and the accumulation of 30K proteins named 6G1-30K-3 and 6G1-30K-4 are likely caused by the destruction of physiological balance in normal embryonic development, which may lead to lower hatchability of the temperature sensitive strain. The results suggest that reasonable metabolism of 30K proteins is a prerequisite for the embryo's normal development. PMID:15880265

  4. Embryonic Development of the Deer Mouse, Peromyscus maniculatus

    PubMed Central

    Davis, Shannon W.; Keisler, Jessica L.

    2016-01-01

    Deer mice, or Peromyscus maniculatus, are an emerging model system for use in biomedicine. P. maniculatus are similar in appearance to laboratory mice, Mus musculus, but are more closely related to hamsters than to Mus. The laboratory strains of Peromyscus have captured a high degree of the genetic variability observed in wild populations, and are more similar to the genetic variability observed in humans than are laboratory strains of Mus. The Peromyscus Genetic Stock Center at the University of South Carolina maintains several lines of Peromyscus harboring mutations that result in developmental defects. We present here a description of P. maniculatus development from gastrulation to late gestation to serve as a guide for researchers interested in pursuing developmental questions in Peromyscus. PMID:26930071

  5. The solid state environment orchestrates embryonic development and tissue remodeling

    NASA Technical Reports Server (NTRS)

    Damsky, C. H.; Moursi, A.; Zhou, Y.; Fisher, S. J.; Globus, R. K.

    1997-01-01

    Cell interactions with extracellular matrix and with other cells play critical roles in morphogenesis during development and in tissue homeostasis and remodeling throughout life. Extracellular matrix is information-rich, not only because it is comprised of multifunctional structural ligands for cell surface adhesion receptors, but also because it contains peptide signaling factors, and proteinases and their inhibitors. The functions of these groups of molecules are extensively interrelated. In this review, three primary cell culture models are described that focus on adhesion receptors and their roles in complex aspects of morphogenesis and remodeling: the regulation of proteinase expression by fibronectin and integrins in synovial fibroblasts; the regulation of osteoblast differentiation and survival by fibronectin, and the regulation of trophoblast differentiation and invasion by integrins, cadherins and immunoglobulin family adhesion receptors.

  6. DNA methylation and histone modification patterns during the late embryonic and early postnatal development of chickens.

    PubMed

    Li, Changwu; Guo, Shuangshuang; Zhang, Ming; Gao, Jing; Guo, Yuming

    2015-04-01

    Early mammalian embryonic cells have been proven to be essential for embryonic development and the health of neonates. A series of epigenetic reprogramming events, including DNA methylation and histone modifications, occur during early embryonic development. However, epigenetic marks in late embryos and neonates are not well understood, especially in avian species. To investigate the epigenetic patterns of developing embryos and posthatched chicks, embryos at embryonic day 5 (E5), E8, E11, E14, E17, and E20 and newly hatched chicks on day of life 1 (D1), D7, D14, D21 were collected. The levels of global DNA methylation and histone H3 at lysine 9 residue (H3K9) modifications were measured in samples of liver, jejunum, and breast skeletal muscles by Western blotting and immunofluorescence staining. According to our data, decreased levels of proliferating cell nuclear antigen expression were found in the liver and a V-shaped pattern of proliferating cell nuclear antigen expression was found in the jejunum. The level of proliferating cell nuclear antigen in muscle was relatively stable. Caspase 3 expression gradually decreased over time in liver, was stable in the jejunum, and increased in muscle. Levels of DNA methylation and H3K9 acetylation decreased in liver over time, while the pattern was N-shaped in jejunal tissue and W-shaped in pectoral muscles, and these changes were accompanied by dynamic changes of DNA methyltransferases, histone acetyltransferases 1, and histone deacetylase 2. Moreover, dimethylation, trimethylation, and acetylation of H3K9 were expressed in a time- and tissue-dependent manner. After birth, epigenetic marks were relatively stable and found at lower levels. These results indicate that spatiotemporal specific epigenetic alterations could be critical for the late development of chick embryos and neonates. PMID:25691759

  7. Morphological Markers for Cryopreservation in the Embryonic Development of Drosophila suzukii (Diptera: Drosophilidae).

    PubMed

    Landi, Silvia; Gargani, Elisabetta; Paoli, Francesco; Simoni, Sauro; Roversi, Pio Federico

    2015-08-01

    Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is an invasive pest recently reported in Europe whose spread into new areas has caused severe economic damage to many agricultural crops. There are serious concerns about the currently available chemical insecticides because of their low efficacy in controlling the species and their environmental impact; so, several studies have focused on environmentally safe strategies. The sterile insect technique (SIT), which requires colony maintenance in laboratory and production of large numbers of live animals, can be utilized in pest management programs and could be integrated with other control strategies if the potential risks associated with the rearing and maintenance of the insect line under laboratory conditions are given sufficient attention. In this regard, the ability to cryobiologically preserve such stocks would be of substantial value. Important prerequisites for long-term cryopreservation are determination of the embryonic stages, identification of specific embryonic stages, and knowledge of development time. This paper describes the main visible markers for the different stages of embryonic development and determines the timing of development at 25°C. D. suzukii embryogenesis lasts 23-25 h at 25°C and can be divided into 17 stages defined by specific morphological markers. The point at which 50% of embryos are at Stage 14 and 50% are at Stage 15, the most tolerant stages for cryopreservation treatment, as ascertained for Drosophila melanogaster Meigen in prior studies, is reached in 14-15 h. The efficiency of this procedure might be impaired by the retention of eggs in the oviducts, making it impossible to determine the stage of embryonic development for ∼25% of laid eggs. PMID:26470330

  8. Ultrastructural alterations during embryonic rats' lung development caused by ozone.

    PubMed

    López, Irma; Sánchez, Ivonne; Bizarro, Patricia; Acevedo, Sandra; Ustarroz, Martha; Fortoul, Teresa

    2008-01-01

    Ozone (O3) is an oxidizing agent that acts on phospholipids, proteins and sugars of cellular membranes producing free radicals, which cause oxidative damages. The O3 exposure has been used as a model to study oxidative stress, in which the respiratory airways represent the entrance to the organism. In this study, ultrastructural alterations were identified at the bronchiolar level during the intra-uterine lung development, using an O3 exposure model in pregnant rats during 18, 20 and 21 days of gestation. Twelve pregnant Wistar rats, six controls and six exposed to 1 ppm O3 inhalation during 12 h per day, were used. The rats were sacrificed at gestational days 18, 20 and 21; the fetuses were obtained and their lungs dissected. The ultrastructural analysis evidenced swollen mitochondria, cytoplasmic vacuolization of the epithelial cells and structural disorder caused by the oxidative stress. At gestation day 20, flake-off epithelial cells and laminar bodies in the bronchiolar lumen were observed. In the 21-gestation-day group, the mitochondria were edematous and their cristae were disrupted by the damage caused in mitochondrial membranes. PMID:18083976

  9. Embryonic development and metamorphosis of the scyphozoan Aurelia.

    PubMed

    Yuan, David; Nakanishi, Nagayasu; Jacobs, David K; Hartenstein, Volker

    2008-10-01

    We investigated the development of Aurelia (Cnidaria, Scyphozoa) during embryogenesis and metamorphosis into a polyp, using antibody markers combined with confocal and transmission electron microscopy. Early embryos form actively proliferating coeloblastulae. Invagination is observed during gastrulation. In the planula, (1) the ectoderm is pseudostratified with densely packed nuclei arranged in a superficial and a deep stratum, (2) the aboral pole consists of elongated ectodermal cells with basally located nuclei forming an apical organ, which is previously only known from anthozoan planulae, (3) endodermal cells are large and highly vacuolated, and (4) FMRFamide-immunoreactive nerve cells are found exclusively in the ectoderm of the aboral region. During metamorphosis into a polyp, cells in the planula endoderm, but not in the ectoderm, become strongly caspase 3 immunoreactive, suggesting that the planula endoderm, in part or in its entirety, undergoes apoptosis during metamorphosis. The polyp endoderm seems to be derived from the planula ectoderm in Aurelia, implicating the occurrence of "secondary" gastrulation during early metamorphosis. PMID:18850238

  10. The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice.

    PubMed Central

    Xanthoudakis, S; Smeyne, R J; Wallace, J D; Curran, T

    1996-01-01

    The DNA-binding activity of AP-1 proteins is modulated, in vitro, by a posttranslational mechanism involving reduction oxidation. This mode of regulation has been proposed to control both the transcriptional activity and the oncogenic potential of Fos and Jun. Previous studies revealed that reduction of oxidized Fos and Jun by a cellular protein, Ref-1, stimulates sequence-specific AP-1 DNA-binding activity. Ref-1, a bifunctional protein, is also capable of initiating the repair of apurinic/apyrymidinic sites in damaged DNA. The relationship between the redox and DNA repair activities of Ref-1 is intriguing; both activities have been suggested to play an important role in the cellular response to oxidative stress. To investigate the physiological function of Ref-1, we used a gene targeting strategy to generate mice lacking a functional ref-1 gene. We report here that heterozygous mutant mice develop into adulthood without any apparent abnormalities. In contrast, homozygous mutant mice, lacking a functional ref-1 gene, die during embryonic development. Detailed analysis indicates that death occurs following blastocyst formation, shortly after the time of implantation. Degeneration of the mutant embryos is clearly evident at embryonic day 5.5. These findings demonstrate that Ref-1 is essential for early embryonic development. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8799128

  11. Antimitotic activity of the pyrimidinone derivative py-09 on sea urchin embryonic development.

    PubMed

    Macedo, Dalliane; Mendonça Júnior, Francisco Jaime Bezerra; de Moura, Ricardo Olimpio; Marques-Santos, Luis Fernando

    2016-03-01

    Chemotherapy is the main cancer treatment and consists of drug administration that interferes with several metabolic pathways, leading to tumor cell death. Antimitotic drugs have a relevant role in chemotherapy. This study aimed to investigate the effect of a pyrimidinone derivative (6-(p-Anisyl)-2-(p-chlorophenyl)-4-oxo-3,4-dihydropyrimidine-5-carbonitrile, Py-09) on sea urchin embryonic development model. The effects of the compound were analyzed on fertilization, embryonic development, mitochondrial membrane potential (ΔΨm), production of reactive oxygen species (ROS) and ABC transporter activity. Py-09 inhibited the fertilization and the embryonic development in a time and dose-dependent pattern, with the maximum effect at 50 μM (EC50=12.5 μM). Py-09 induced the loss of ΔΨm without altering ROS intracellular levels. Morphological changes were observed in the pattern of embryo cleavage (unequal cleavage) and at larval stages (fissures of spicules and pigment cell leakage). We also demonstrated that Py-09 is not an ABC transporter substrate and the derivative does not circumvent the MXR phenomenon. Our study reports--for the first time--the antimitotic activity of Py-09 and stimulates new research on the potential of Py-09 as a pharmacological tool for in vitro studies, as well as its use as a new anticancer drug. PMID:26616279

  12. Environmental issues affecting CCT development

    SciTech Connect

    Reidy, M.

    1997-12-31

    While no final legislative schedule has been set for the new Congress, two issues with strong environmental ramifications which are likely to affect the coal industry seem to top the list of closely watched debates in Washington -- the Environmental Protection Agency`s proposed new ozone and particulate matter standards and utility restructuring. The paper discusses the background of the proposed standards, public comment, the Congressional review of regulations, other legislative options, and utility restructuring.

  13. Redeployment of germ layers related TFs shows regionalized expression during two non-embryonic developments.

    PubMed

    Ricci, Lorenzo; Cabrera, Fabien; Lotito, Sonia; Tiozzo, Stefano

    2016-08-01

    In all non-vertebrate metazoan phyla, species that evolved non-embryonic developmental pathways as means of propagation or regeneration can be found. In this context, new bodies arise through asexual reproduction processes (such as budding) or whole body regeneration, that lack the familiar temporal and spatial cues classically associated with embryogenesis, like maternal determinants, or gastrulation. The molecular mechanisms underlying those non-embryonic developments (i.e., regeneration and asexual reproduction), and their relationship to those deployed during embryogenesis are poorly understood. We have addressed this question in the colonial ascidian Botryllus schlosseri, which undergoes an asexual reproductive process via palleal budding (PB), as well as a whole body regeneration by vascular budding (VB). We identified early regenerative structures during VB and then followed the fate of differentiating tissues during both non-embryonic developments (PB and VB) by monitoring the expression of genes known to play key functions in germ layer specification with well conserved expression patterns in solitary ascidian embryogenesis. The expression patterns of FoxA1, GATAa, GATAb, Otx, Bra, Gsc and Tbx2/3 were analysed during both PB and VB. We found that the majority of these transcription factors were expressed during both non-embryonic developmental processes, revealing a regionalization of the palleal and vascular buds. Knockdown of GATAa by siRNA in palleal buds confirmed that preventing the correct development of one of these regions blocks further tissue specification. Our results indicate that during both normal and injury-induced budding, a similar alternative developmental program operates via early commitment of epithelial regions. PMID:27208394

  14. Mammalian COPII coat component SEC24C is required for embryonic development in mice.

    PubMed

    Adams, Elizabeth J; Chen, Xiao-Wei; O'Shea, K Sue; Ginsburg, David

    2014-07-25

    COPII-coated vesicles mediate the transport of newly synthesized proteins from the endoplasmic reticulum to the Golgi. SEC24 is the COPII component primarily responsible for recruitment of protein cargoes into nascent vesicles. There are four Sec24 paralogs in mammals, with mice deficient in SEC24A, -B, and -D exhibiting a wide range of phenotypes. We now report the characterization of mice with deficiency in the fourth Sec24 paralog, SEC24C. Although mice haploinsufficient for Sec24c exhibit no apparent abnormalities, homozygous deficiency results in embryonic lethality at approximately embryonic day 7. Tissue-specific deletion of Sec24c in hepatocytes, pancreatic cells, smooth muscle cells, and intestinal epithelial cells results in phenotypically normal mice. Thus, SEC24C is required in early mammalian development but is dispensable in a number of tissues, likely as a result of compensation by other Sec24 paralogs. The embryonic lethality resulting from loss of SEC24C occurs considerably later than the lethality previously observed in SEC24D deficiency; it is clearly distinct from the restricted neural tube phenotype of Sec24b null embryos and the mild hypocholesterolemic phenotype of adult Sec24a null mice. Taken together, these results demonstrate that the four Sec24 paralogs have developed unique functions over the course of vertebrate evolution. PMID:24876386

  15. Color Photographic Index of Fall Chinook Salmon Embryonic Development and Accumulated Thermal Units

    PubMed Central

    Boyd, James W.; Oldenburg, Eric W.; McMichael, Geoffrey A.

    2010-01-01

    Background Knowledge of the relationship between accumulated thermal units and developmental stages of Chinook salmon embryos can be used to determine the approximate date of egg fertilization in natural redds, thus providing insight into oviposition timing of wild salmonids. However, few studies have documented time to different developmental stages of embryonic Chinook salmon and no reference color photographs are available. The objectives of this study were to construct an index relating developmental stages of hatchery-reared fall Chinook salmon embryos to time and temperature (e.g., degree days) and provide high-quality color photographs of each identified developmental stage. Methodology/Principal Findings Fall Chinook salmon eggs were fertilized in a hatchery environment and sampled approximately every 72 h post-fertilization until 50% hatch. Known embryonic developmental features described for sockeye salmon were used to describe development of Chinook salmon embryos. A thermal sums model was used to describe the relationship between embryonic development rate and water temperature. Mean water temperature was 8.0°C (range; 3.9–11.7°C) during the study period. Nineteen stages of embryonic development were identified for fall Chinook salmon; two stages in the cleavage phase, one stage in the gastrulation phase, and sixteen stages in the organogenesis phase. The thermal sums model used in this study provided similar estimates of fall Chinook salmon embryonic development rate in water temperatures varying from 3.9–11.7°C (mean = 8°C) to those from several other studies rearing embryos in constant 8°C water temperature. Conclusions/Significance The developmental index provides a reasonable description of timing to known developmental stages of Chinook salmon embryos and was useful in determining developmental stages of wild fall Chinook salmon embryos excavated from redds in the Columbia River. This index should prove useful to other researchers who

  16. Glutathione reductase gsr-1 is an essential gene required for Caenorhabditis elegans early embryonic development.

    PubMed

    Mora-Lorca, José Antonio; Sáenz-Narciso, Beatriz; Gaffney, Christopher J; Naranjo-Galindo, Francisco José; Pedrajas, José Rafael; Guerrero-Gómez, David; Dobrzynska, Agnieszka; Askjaer, Peter; Szewczyk, Nathaniel J; Cabello, Juan; Miranda-Vizuete, Antonio

    2016-07-01

    Glutathione is the most abundant thiol in the vast majority of organisms and is maintained in its reduced form by the flavoenzyme glutathione reductase. In this work, we describe the genetic and functional analysis of the Caenorhabditis elegans gsr-1 gene that encodes the only glutathione reductase protein in this model organism. By using green fluorescent protein reporters we demonstrate that gsr-1 produces two GSR-1 isoforms, one located in the cytoplasm and one in the mitochondria. gsr-1 loss of function mutants display a fully penetrant embryonic lethal phenotype characterized by a progressive and robust cell division delay accompanied by an aberrant distribution of interphasic chromatin in the periphery of the cell nucleus. Maternally expressed GSR-1 is sufficient to support embryonic development but these animals are short-lived, sensitized to chemical stress, have increased mitochondrial fragmentation and lower mitochondrial DNA content. Furthermore, the embryonic lethality of gsr-1 worms is prevented by restoring GSR-1 activity in the cytoplasm but not in mitochondria. Given the fact that the thioredoxin redox systems are dispensable in C. elegans, our data support a prominent role of the glutathione reductase/glutathione pathway in maintaining redox homeostasis in the nematode. PMID:27117030

  17. Haemocyanin is essential for embryonic development and survival in the migratory locust.

    PubMed

    Chen, B; Ma, R; Ma, G; Guo, X; Tong, X; Tang, G; Kang, L

    2015-10-01

    Haemocyanins are commonly known as copper-containing oxygen carriers within the haemolymph of arthropods, and have been found in many orders of insects. However, it remains unresolved why haemocyanins persist in insects that possess elaborate tracheal systems for oxygen diffusion to cells. Here we identified haemocyanins in the migratory locust Locusta migratoria that consists of two distinct subunits, Hc1 and Hc2. Genomic sequence analysis indicated that Hc1 and Hc2 have four and three gene copies, respectively, which may have evolved via gene duplication followed by divergent evolution of introns. The two subunits exhibit abundant and embryonic-specific expression at the mRNA and protein level; their expression peaks in the mid-term embryo and is not detectable in the late nymphal and adult stages. A larger proportion of the haemocyanins is present in the yolk compared with that in the embryo. Immunostaining shows that haemocyanins in the embryo are mainly expressed in the epidermis. Knockdown of Hc1 and Hc2 results in significant embryonic developmental delay and abnormality as well as reduced egg hatchability, ie the proportion of hatched eggs. These results reveal a previously unappreciated and fundamental role for haemocyanins in embryonic development and survival in insects, probably involving the exchange of molecules (eg O2 ) between the embryo and its environment. PMID:26010377

  18. The Hemogenic Competence of Endothelial Progenitors Is Restricted by Runx1 Silencing during Embryonic Development.

    PubMed

    Eliades, Alexia; Wareing, Sarah; Marinopoulou, Elli; Fadlullah, Muhammad Z H; Patel, Rahima; Grabarek, Joanna B; Plusa, Berenika; Lacaud, Georges; Kouskoff, Valerie

    2016-06-01

    It is now well-established that hematopoietic stem cells (HSCs) and progenitor cells originate from a specialized subset of endothelium, termed hemogenic endothelium (HE), via an endothelial-to-hematopoietic transition. However, the molecular mechanisms determining which endothelial progenitors possess this hemogenic potential are currently unknown. Here, we investigated the changes in hemogenic potential in endothelial progenitors at the early stages of embryonic development. Using an ETV2::GFP reporter mouse to isolate emerging endothelial progenitors, we observed a dramatic decrease in hemogenic potential between embryonic day (E)7.5 and E8.5. At the molecular level, Runx1 is expressed at much lower levels in E8.5 intra-embryonic progenitors, while Bmi1 expression is increased. Remarkably, the ectopic expression of Runx1 in these progenitors fully restores their hemogenic potential, as does the suppression of BMI1 function. Altogether, our data demonstrate that hemogenic competency in recently specified endothelial progenitors is restrained through the active silencing of Runx1 expression. PMID:27239041

  19. Transcriptional Repression by the BRG1-SWI/SNF Complex Affects the Pluripotency of Human Embryonic Stem Cells

    PubMed Central

    Zhang, Xiaoli; Li, Bing; Li, Wenguo; Ma, Lijuan; Zheng, Dongyan; Li, Leping; Yang, Weijing; Chu, Min; Chen, Wei; Mailman, Richard B.; Zhu, Jun; Fan, Guoping; Archer, Trevor K.; Wang, Yuan

    2014-01-01

    Summary The SWI/SNF complex plays an important role in mouse embryonic stem cells (mESCs), but it remains to be determined whether this complex is required for the pluripotency of human ESCs (hESCs). Using RNAi, we demonstrated that depletion of BRG1, the catalytic subunit of the SWI/SNF complex, led to impaired self-renewing ability and dysregulated lineage specification of hESCs. A unique composition of the BRG1-SWI/SNF complex in hESCs was further defined by the presence of BRG1, BAF250A, BAF170, BAF155, BAF53A, and BAF47. Genome-wide expression analyses revealed that BRG1 participated in a broad range of biological processes in hESCs through pathways different from those in mESCs. In addition, chromatin immunoprecipitation sequencing (ChIP-seq) demonstrated that BRG1 played a repressive role in transcriptional regulation by modulating the acetylation levels of H3K27 at the enhancers of lineage-specific genes. Our data thus provide valuable insights into molecular mechanisms by which transcriptional repression affects the self-renewal and differentiation of hESCs. PMID:25241744

  20. Reading Enjoyment and Affective Development.

    ERIC Educational Resources Information Center

    Reporting on Reading, 1978

    1978-01-01

    The articles in this publication offer ideas for developing enjoyment of reading in children. Among the topics discussed are the following: the need for teachers and parents to build children's self-esteem through increasing their experiences of success, their expectations of success, and the value they place on reading; methods for increasing…

  1. Human Embryonic Stem Cells: A Model for the Study of Neural Development and Neurological Diseases

    PubMed Central

    Prajumwongs, Piya; Weeranantanapan, Oratai; Jaroonwitchawan, Thiranut; Noisa, Parinya

    2016-01-01

    Although the mechanism of neurogenesis has been well documented in other organisms, there might be fundamental differences between human and those species referring to species-specific context. Based on principles learned from other systems, it is found that the signaling pathways required for neural induction and specification of human embryonic stem cells (hESCs) recapitulated those in the early embryo development in vivo at certain degree. This underscores the usefulness of hESCs in understanding early human neural development and reinforces the need to integrate the principles of developmental biology and hESC biology for an efficient neural differentiation. PMID:27239201

  2. Information superhighway: Issues affecting development

    NASA Astrophysics Data System (ADS)

    1994-09-01

    Technological advances in the transmission of voice, video, and data are fostering fundamental changes in the telecommunications industry. For example, large local telephone companies plan to offer video services in competition with cable and broadcast television, while cable television companies plan to offer local telephone service over their wires in competition with the local telephone companies. The administration believes that these technological changes provide the opportunity to develop an 'Information Superhighway' that could provide every element of society with ready access to data, voice, and video communications. Concurrently, the Congress is considering sweeping changes to telecommunications regulations to keep pace with this dynamic industry. GAO prepared this report to serve as an overview of three key issues that decisionmakers may face as they deliberate telecommunications legislation; it focuses on three pivotal issues they face in formulating new telecommunications legislation: (1) managing the transition to a more competitive local telecommunications marketplace; (2) ensuring that all consumers have access to affordable telecommunications as competition develops; and (3) ensuring that the Information Superhighway provides adequate security, privacy, reliability, and interoperability.

  3. Antioxidant responses to azinphos methyl and carbaryl during the embryonic development of the toad Rhinella (Bufo) arenarum Hensel.

    PubMed

    Ferrari, Ana; Lascano, Cecilia I; Anguiano, Olga L; D'Angelo, Ana M Pechen de; Venturino, Andrés

    2009-06-01

    Amphibian embryos are naturally exposed to prooxidant conditions throughout their development. Environmental exposure to contaminants may affect their capacity to respond to challenging conditions, to progress in a normal ontogenesis, and finally to survive and succeed in completing metamorphosis. We studied the effects of the exposure to two anticholinesterase agents, the carbamate carbaryl and the organophosphate azinphos methyl, on the antioxidant defenses of developing embryos of the toad Rhinella (Bufo) arenarum. Reduced glutathione (GSH) levels were increased early by carbaryl, but were decreased by both pesticides at the end of embryonic development. The GSH-dependent enzymes glutathione reductase and glutathione peroxidases showed oscillating activity patterns that could be attributed to an induction of activity in response to oxidative stress and inactivation by excess of reactive oxygen species. Glutathione-S-transferases, which may participate in the conjugation of lipid peroxide products in addition to pesticide detoxification, showed an increase of activity at the beginning and at the end of development. Catalase also showed variations in the activity suggesting, successively, induction and inactivation in response to pesticide exposure-induced oxidative stress. Superoxide dismutase activity was increased by carbaryl and transiently decreased by azinphos methyl exposure. Judging from the depletion in GSH levels and glutathione reductase inhibition at the end of embryonic development, the oxidative stress caused by azinphos methyl seemed to be greater than that caused by carbaryl, which might be in turn related with a higher number of developmental alterations caused by the organophosphate. GSH content is a good biomarker of oxidative stress in the developing embryos exposed to pesticides. The antioxidant enzymes are in turn revealing the balance between their protective capacity and the oxidative damage to the enzyme molecules, decreasing their

  4. Gene expression of Hsps in normal and abnormal embryonic development of mouse hindlimbs.

    PubMed

    Yan, Zhengli; Wei, Huimiao; Ren, Chuanlu; Yuan, Shishan; Fu, Hu; Lv, Yuan; Zhu, Yongfei; Zhang, Tianbao

    2015-06-01

    Heat shock proteins (Hsps), which have important biological functions, are a class of highly conserved genetic molecules with the capacity of protecting and promoting cells to repair themselves from damage caused by various stimuli. Our previous studies found that Hsp25, HspB2, HspB3, HspB7, Hsp20, HspB9, HspB10, and Hsp40 may be related to all-trans retinoic acid (atRA)-induced phocomelic and other abnormalities, while HspA12B, HspA14, Trap1, and Hsp105 may be forelimb development-related genes; Grp78 may play an important role in forelimb development. In this study, the embryonic phocomelic, oligodactylic model of both forelimbs and hindlimbs was developed by atRA administered per os to the pregnant mice on gestational day 11, and the expression of 36 members of Hsps family in normal and abnormal development of embryonic hindlimbs was measured by real-time fluorescent quantitative polymerase chain reaction (qRT-PCR). It is found that HspA1L, Hsp22, Hsp10, Hsp60, Hsp47, HspB2, HspB10, HspA12A, Apg1, HspB4, Grp78, and HspB9 probably performs a major function in limb development, and HspA13, Grp94 and Hsp110 may be hindlimb development-related genes. PMID:25352652

  5. Embryonic and larval development in the caecilian Ichthyophis kohtaoensis (Amphibia, gymnophiona): a staging table.

    PubMed

    Dünker, N; Wake, M H; Olson, W M

    2000-01-01

    Little is known about the developmental biology of caecilians-tropical, elongate, limbless, mostly fossorial amphibians that are members of the Order Gymnophiona. Ichthyophis kohtaoensis (Family Ichthyophiidae; southeast Asia) is an oviparous species in which maternal care of the clutch is provided. The clutch is laid in a burrow on land, and the embryos develop in their egg membranes, curved around a large yolk mass. Larvae are aquatic and exhibit characteristic features that are not present in the terrestrial adults. Because accurate descriptions of ontogenies and the establishment of standardized stages of embryonic and larval development are useful for both experimental and comparative embryology, a staging table for I.kohtaoensis was developed based on external morphological features. Development from the end of neurulation to metamorphosis was divided into 20 stages. Principal diagnostic features include development of the lateral line organs, formation of three pairs of external gills, development of the eyes, changes in yolk structure, changes in the structure of the cloacal aperture and growth of the tail, including the formation and regression of the tail fin. This study provides a comparison with descriptions of embryonic stages of I.glutinosus and Hypogeophis rostratus and with a recent staging table for the aquatic, viviparous caecilian Typhlonectes compressicauda, the only other caecilians for which reasonably complete ontogenetic information exists in the literature. Comparisons with established staging tables for selected frogs and salamanders are also presented. PMID:10629095

  6. RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (Apis mellifera).

    PubMed

    Maleszka, J; Forêt, S; Saint, R; Maleszka, R

    2007-03-01

    Small chemosensory proteins (CSPs) belong to a conserved, but poorly understood, protein family found in insects and other arthropods. They exhibit both broad and restricted expression patterns during development. In this paper, we used a combination of genome annotation, transcriptional profiling and RNA interference to unravel the functional significance of a honeybee gene (csp5) belonging to the CSP family. We show that csp5 expression resembles the maternal-zygotic pattern that is characterized by the initiation of transcription in the ovary and the replacement of maternal mRNA with embryonic mRNA. Blocking the embryonic expression of csp5 with double-stranded RNA causes abnormalities in all body parts where csp5 is highly expressed. The treated embryos show a "diffuse", often grotesque morphology, and the head skeleton appears to be severely affected. They are 'unable-to-hatch' and cannot progress to the larval stages. Our findings reveal a novel, essential role for this gene family and suggest that csp5 (unable-to-hatch) is an ectodermal gene involved in embryonic integument formation. Our study confirms the utility of an RNAi approach to functional characterization of novel developmental genes uncovered by the honeybee genome project and provides a starting point for further studies on embryonic integument formation in this insect. PMID:17216269

  7. Ochratoxin a inhibits mouse embryonic development by activating a mitochondrion-dependent apoptotic signaling pathway.

    PubMed

    Hsuuw, Yan-Der; Chan, Wen-Hsiung; Yu, Jau-Song

    2013-01-01

    Ochratoxin A (OTA), a mycotoxin found in many foods worldwide, causes nephrotoxicity, hepatotoxicity, and immunotoxicity, both in vitro and in vivo. In the present study, we explored the cytotoxic effects exerted by OTA on the blastocyst stage of mouse embryos, on subsequent embryonic attachment, on outgrowth in vitro, and following in vivo implantation via embryo transfer. Mouse blastocysts were incubated with or without OTA (1, 5, or 10 μM) for 24 h. Cell proliferation and growth were investigated using dual differential staining; apoptosis was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay; and embryo implantation and post-implantation development were assessed by examination of in vitro growth and the outcome of in vivo embryo transfer, respectively. Blastocysts treated with 10 μM OTA displayed a significantly increased level of apoptosis and a reduction in total cell number. Interestingly, we observed no marked difference in implantation success rate between OTA-pretreated and control blastocysts either during in vitro embryonic development (following implantation in a fibronectin-coated culture dish) or after in vivo embryo transfer. However, in vitro treatment with 10 μM OTA was associated with increased resorption of post-implantation embryos by the mouse uterus, and decreased fetal weight upon embryo transfer. Our results collectively indicate that in vitro exposure to OTA triggers apoptosis and retards early post-implantation development after transfer of embryos to host mice. In addition, OTA induces apoptosis-mediated injury of mouse blastocysts, via reactive oxygen species (ROS) generation, and promotes mitochondrion-dependent apoptotic signaling processes that impair subsequent embryonic development. PMID:23296271

  8. Fe(III) Is Essential for Porcine Embryonic Development via Mitochondrial Function Maintenance

    PubMed Central

    Zhao, Ming-Hui; Liang, Shuang; Kim, Seon-Hyang; Cui, Xiang-Shun; Kim, Nam-Hyung

    2015-01-01

    Iron is an important trace element involved in several biological processes. The role of iron in porcine early embryonic development remains unknown. In the present study, we depleted iron (III, Fe3+) with deferoxamine (DFM), a specific Fe3+ chelator, in cultured porcine parthenotes and monitored embryonic development, apoptosis, mitochondrial membrane potential, and ATP production. Results showed biphasic function of Fe3+ in porcine embryo development. 0.5 μM DFM obviously increased blastocyst formation (57.49 ± 2.18% vs. control, 43.99 ± 1.72%, P < 0.05) via reduced (P < 0.05) production of reactive oxygen species (ROS), further increased mitochondrial membrane potential and ATP production in blastocysts (P < 0.05). 0.5 μM DFM decreased mRNA expression of Caspase 3 (Casp3) and increased Bcl-xL. However, results showed a significant reduction in blastocyst formation in the presence of 5.0 μM DFM compared with the control group (DFM, 21.62 ± 3.92% vs. control, 43.99 ± 1.73%, P < 0.05). Fe3+ depletion reduced the total (DFM, 21.10 ± 8.78 vs. control, 44.09 ± 13.65, P < 0.05) and increased apoptotic cell number (DFM, 11.10 ± 5.24 vs. control, 2.64 ± 1.43, P < 0.05) in the blastocyst. An obvious reduction in mitochondrial membrane potential and ATP level after 5.0 μM DFM treatment was observed. Co-localization between mitochondria and cytochrome c was reduced after high concentration of DFM treatment. In conclusion, Fe3+ is essential for porcine embryonic development via mitochondrial function maintenance, but redundant Fe3+ impairs the function of mitochondria. PMID:26161974

  9. Characterization of tweety gene (ttyh1-3) expression in Xenopus laevis during embryonic development

    PubMed Central

    Rabe, Brian A.; Huyck, Ryan W.; Williams, Cheyenne C.; Saha, Margaret S.

    2015-01-01

    The tweety family of genes encodes large-conductance chloride channels and has been implicated in a wide array of cellular processes including cell division, cell adhesion, regulation of calcium activity, and tumorigenesis, particularly in neuronal cells. However, their expression patterns during early development remain largely unknown. Here, we describe the spatial and temporal patterning of ttyh1, ttyh2, and ttyh3 in Xenopus laevis during early embryonic development. Ttyh1 and ttyh3 are initially expressed at the late neurula stage are and primarily localized to the developing nervous system; however ttyh1 and ttyh3 both show transient expression in the somites. By swimming tadpole stages, all three genes are expressed in the brain, spinal cord, eye, and cranial ganglia. While ttyh1 is restricted to proliferative, ventricular zones, ttyh3 is primarily localized to postmitotic regions of the developing nervous system. Ttyh2, however, is strongly expressed in cranial ganglia V, VII, IX and X. The differing temporal and spatial expression patterns of ttyh1, ttyh2, and ttyh3 suggest that they may play distinct roles throughout embryonic development. PMID:25541457

  10. Effects of bisphenol A on the embryonic development of sea urchin (Paracentrotus lividus).

    PubMed

    Ozlem, Cakal Arslan; Hatice, Parlak

    2008-06-01

    Bisphenol A (BPA), is one of the most important industrial chemicals synthesized for diverse applications. In this study, tests for embryotoxic and spermiotoxic effects of BPA were utilized in the sperms and embryos of the sea urchin Paracentrotus lividus. The sperm and eggs of sea urchins were exposed to increasing concentrations of BPA (300-3500 microg/L) under static conditions. The endpoints were successful sperm fertilization, larval malformations, developmental arrest, and embryonic/larval mortality. BPA concentration (300 microg/L) had spermiotoxic and embryotoxic effects on this species. A dose-response related reduction was observed in fertilization success and significant increases in the number of larvae with skeleton malformations at the pluteus stage when the sperms were exposed BPA. The embryotoxicity of BPA is concentration-dependent and significant growth reduction at the early life stages and an increase in larval malformations as skeleton deformities at the pluteus stage were observed. It can be concluded that BPA adversely affects the reproduction and embryonic developmental stages of the P. lividus and this is of great ecological importance due to the hazard at the population level. PMID:18214894

  11. Preliminary observations on the effects of selenate on the development of the embryonic skate, Raja eglanteria

    NASA Technical Reports Server (NTRS)

    Conrad, G. W.; Luer, C. A.; Paulsen, A. Q.; Funderburgh, J. L.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Morphogenesis of the clearnose skate, Raja eglanteria, was not significantly inhibited as a result of 7 days of exposure to 1-2 mM selenate in the sea water during Days 59-69 of embryonic development (hatching would normally have occurred at 82 +/- 4 days of incubation). Although corneal transparency appeared normal in the eye, preliminary measurements of the thickness of Bowman's layer of the cornea suggested that it was significantly thinner in the corneas of embryos exposed to 1-2 mM selenate. Selenate is an ion reported to inhibit sulfation of glycosaminoglycans in connective tissue.

  12. Essential role for Gα13 in endothelial cells during embryonic development

    PubMed Central

    Ruppel, Kathleen M.; Willison, David; Kataoka, Hiroshi; Wang, Alice; Zheng, Yao-Wu; Cornelissen, Ivo; Yin, Liya; Xu, Shan Mei; Coughlin, Shaun R.

    2005-01-01

    Toward identifying the roles of protease-activated receptor-1 (PAR1) and other G protein-coupled receptors important for vascular development, we investigated the role of Gα13 in endothelial cells in the mouse embryo. LacZ inserted into Gα13 exon 1 was highly expressed in endothelial cells at midgestation. Endothelial-specific Gα13 knockout embryos died at embryonic days 9.5–11.5 and resembled the PAR1 knockout. Restoration of Gα13 expression in endothelial cells by use of a Tie2 promoter-driven Gα13 transgene rescued development of endothelial-specific Gα13 knockout embryos as well the embryonic day 9.5 vascular phenotype in Gα13 conventional knockouts; transgene-positive Gα13-/- embryos developed for several days beyond their transgene-negative Gα13-/- littermates and then manifested a previously uncharacterized phenotype that included intracranial bleeding and exencephaly. Taken together, our results suggest a critical role for Gα13 in endothelial cells during vascular development, place Gα13 as a candidate mediator of PAR1 signaling in this process, and reveal roles for Gα13 in other cell types in the mammalian embryo. PMID:15919816

  13. Radiation hazards of radio frequency waves on the early embryonic development of Zebrafish

    NASA Astrophysics Data System (ADS)

    Harkless, Ryan; Al-Quraishi, Muntather; Vagula, Mary C.

    2014-06-01

    With the growing use of wireless devices in almost all day-to-day activities, exposure to radio-frequency radiation has become an immediate health concern. It is imperative that the effects of such radiation not only on humans, but also on other organisms be well understood. In particular, it is critical to understand if RF radiation has any bearing on the gene expression during embryonic development, as this is a crucial and delicate phase for any organism. Owing to possible effects that RF radiation may have on gene expression, it is essential to explore the carcinogenic or teratogenic properties that it may show. This study observed the effects of RF radiation emitted from a cellular telephone on the embryonic development of zebra fish. The expression of the gene shha plays a key role in the early development of the fish. This gene has homologs in humans as well as in other model organisms. Additionally, several biomarkers indicative of cell stress were examined: including lactate dehydrogenase (LDH), superoxide dismutase (SOD), and lipid peroxidation (LPO). Results show a significant decrease in the expression of shha, a significant decrease in LDH activity. There was no significant increase in SOD and LPO activity. No morphological abnormalities were observed in the developing embryos. At present, these results indicate that exposure to cell phone radiation may have a suppressive effect on expression of shha in D. rerio, though such exposure does not appear to cause morphological detriments. More trials are underway to corroborate these results.

  14. Indispensable role for mouse ELP3 in embryonic stem cell maintenance and early development.

    PubMed

    Yoo, Hyunjin; Son, Dabin; Jang, Young-Joo; Hong, Kwonho

    2016-09-16

    ELP3, a core component of Elongator, has been implicated in translational regulation via modification of tRNA at the wobble position. However, the precise biological function of ELP3 in early mouse development has not yet been defined. We here provide evidence that ELP3 plays crucial roles in mouse embryonic stem cell (ESC) maintenance and early development. ELP3 was detected ubiquitously in blastocysts and E10.5 embryos and shown to be increased during ESC differentiation. Depletion of ELP3 in ESC led to aberrant cell cycle progression, along with reduced expression of genes for pluripotency. Interestingly, our analyses revealed that, although the mRNA levels of the genes related to cell cycle were increased, protein levels were diminished in knockdown (KD) ESCs. The data, therefore, suggest that ELP3 function is critical for translational efficiency of the genes. Consistent with a proliferation defect in KD cells, Elp3 knockout (KO) embryos suffered from severe growth retardation and failed to develop beyond E12.5. In conclusion, we have demonstrated that ELP3 plays an indispensable role in ESC survival, differentiation and embryonic development in mouse. PMID:27476491

  15. Acute toxicity of nonylphenols and bisphenol A to the embryonic development of the abalone Haliotis diversicolor supertexta.

    PubMed

    Liu, Ying; Tam, Nora F Y; Guan, Yuntao; Yasojima, Makoto; Zhou, Jin; Gao, Baoyu

    2011-08-01

    Acute toxic effects and mechanisms of two typical endocrine disrupting chemicals, nonylphenols (NPs) and bisphenol A (BPA), to the embryonic development of the abalone Haliotis diversicolor supertexta, were investigated by the two-stage embryo toxicity test. The 12-h median effective concentrations (EC(50)) of NPs and BPA to the trochophore development were 1016.22 and 30.72 μg L(-1), respectively, and the respective 96-h EC(50) values based on the completion of metamorphosis (another experimental endpoint) were reduced to 11.65 and 1.02 μg L(-1). Longer exposure time and magnified exposure concentrations in the benthic diatom, that serves as both food source and settlement substrate during the metamorphosis, via bioaccumulation, led to the higher sensitivity of metamorphosis to target EDCs compared with the trochophore development. The hazard concentrations for 5% of the species (HC(5)) could be employed as the safety thresholds for the embryonic development of the abalone. The 12-h HC(5) values of NPs and BPA were 318.68 and 13.93 μg L(-1), respectively, and the respective 96-h HC(5) values were 0.99 and 0.18 μg L(-1), which were at environmentally relevant levels. Results of proteomic responses revealed that NPs and BPA altered various functional proteins in the abalone larvae with slight differences between each chemical and affected various physiological functions, such as energy and substance metabolism, cell signalling, formation of cytoskeleton and cilium, immune and stress responses at the same time, leading to the failure of metamorphosis. PMID:21479784

  16. Part II: morphological analysis of embryonic development following femtosecond laser manipulation

    NASA Astrophysics Data System (ADS)

    Kohli, V.; Elezzabi, A. Y.

    2008-02-01

    The zebrafish (Danio rerio) is an attractive model system that has received wide attention for its usefulness in the study of development and disease. This organism represents a closer analog to humans than the common invetebrates Drosophila melanogaster and Caenorhabditis elegans, making this species an ideal model for human health research. Non-invasive manipulation of the zebrafish has been challenging, owing to the outer proteinaceous membrane and multiple embryonic barriers. A novel tool capable of manipulating early cleavage stage embryonic cells would be important for future advancements in medial research and the aquaculture industry. Herein, we demonstrate the laser surgery of early cleavage stage (2-cell) blastomere cells using a range of average laser powers and beam dwell times. Since the novelty of this manipulation tool depends on its non-invasive application, we examined short- and long-term laser-induced developmental defects following embryonic surgery. Laser-manipulated embryos were reared to 2 and 7 days post-fertilization and compared to control embryos at the same developmental stages. Morphological analysis was performed using light microscopy and scanning electron microscopy. Developmental features that were examined included the antero- and dorsal-lateral whole body views of the larvae, the olfactory pit, dorsal, ventral and pectoral fins, notochord, pectoral fin buds, otic capsule, otic vesicle, neuromast patterning, and kinocilia of the olfactory pit rim and cristae of the lateral wall of the ear. Laser-manipulated embryos developed normally relative to the controls, with developmental patterning and morphology at 2 and 7 days indistinguishable from control larvae.

  17. Prednisolone impairs embryonic and posthatching development and shell formation of the freshwater snail, Physa acuta.

    PubMed

    Bal, Navdeep; Kumar, Anu; Du, Jun; Nugegoda, Dayanthi

    2016-09-01

    The aim of the present study was to investigate the lethal and sublethal effects of prednisolone exposure on the embryonic and posthatching stage of the freshwater snail, Physa acuta. The egg masses were exposed for 14 d to prednisolone concentrations ranging from 15.6 μg/L to 1000 μg/L. Treatment with prednisolone at 125 μg/L to 1000 μg/L resulted in significant decline in growth, survival, and heart rate, as well as notable abnormalities in embryonic development. Premature embryonic hatching was observed at lower concentrations of 31.25 μg/L and 62.5 μg/L, whereas delayed hatching was seen at concentrations from 125 μg/L to 1000 μg/L. To assess impacts of prednisolone exposure on the hatched juveniles, the drug exposure was extended for another 28 d. Impairment of shell development was noted in juveniles exposed to concentrations from 62.5 μg/L to 1000 μg/L at the end of 42 d, which resulted in thin and fragile shells. The thickness of shells in snails exposed to 1000 μg/L was significantly lower in comparison to those in the 15.6-μg/L and control treatments. In addition, lower calcium concentration in shells of the exposed juvenile snails at treatments of 62.5 μg/L to 1000 μg/L consequently reduced their growth. The present study confirms that continuous exposure to prednisolone can result in deleterious effects on calcium deposition, resulting in shell thinning in the freshwater snail P. acuta. Environ Toxicol Chem 2016;35:2339-2348. © 2016 SETAC. PMID:26887568

  18. Stage-dependent remodeling of the nuclear envelope and lamina during rabbit early embryonic development

    PubMed Central

    POPKEN, Jens; SCHMID, Volker J.; STRAUSS, Axel; GUENGOER, Tuna; WOLF, Eckhard; ZAKHARTCHENKO, Valeri

    2015-01-01

    Utilizing 3D structured illumination microscopy, we investigated the quality and quantity of nuclear invaginations and the distribution of nuclear pores during rabbit early embryonic development and identified the exact time point of nucleoporin 153 (NUP153) association with chromatin during mitosis. Contrary to bovine early embryonic nuclei, featuring almost exclusively nuclear invaginations containing a small volume of cytoplasm, nuclei in rabbit early embryonic stages show additionally numerous invaginations containing a large volume of cytoplasm. Small-volume invaginations frequently emanated from large-volume nuclear invaginations but not vice versa, indicating a different underlying mechanism. Large- and small-volume nuclear envelope invaginations required the presence of chromatin, as they were restricted to chromatin-positive areas. The chromatin-free contact areas between nucleolar precursor bodies (NPBs) and large-volume invaginations were free of nuclear pores. Small-volume invaginations were not in contact with NPBs. The number of invaginations and isolated intranuclear vesicles per nucleus peaked at the 4-cell stage. At this stage, the nuclear surface showed highly concentrated clusters of nuclear pores surrounded by areas free of nuclear pores. Isolated intranuclear lamina vesicles were usually NUP153 negative. Cytoplasmic, randomly distributed NUP153-positive clusters were highly abundant at the zygote stage and decreased in number until they were almost absent at the 8-cell stage and later. These large NUP153 clusters may represent a maternally provided NUP153 deposit, but they were not visible as clusters during mitosis. Major genome activation at the 8- to 16-cell stage may mark the switch from a necessity for a deposit to on-demand production. NUP153 association with chromatin is initiated during metaphase before the initiation of the regeneration of the lamina. To our knowledge, the present study demonstrates for the first time major remodeling

  19. Identification and Characterization of Long Non-Coding RNAs Related to Mouse Embryonic Brain Development from Available Transcriptomic Data

    PubMed Central

    He, Hongjuan; Xiu, Youcheng; Guo, Jing; Liu, Hui; Liu, Qi; Zeng, Tiebo; Chen, Yan; Zhang, Yan; Wu, Qiong

    2013-01-01

    Long non-coding RNAs (lncRNAs) as a key group of non-coding RNAs have gained widely attention. Though lncRNAs have been functionally annotated and systematic explored in higher mammals, few are under systematical identification and annotation. Owing to the expression specificity, known lncRNAs expressed in embryonic brain tissues remain still limited. Considering a large number of lncRNAs are only transcribed in brain tissues, studies of lncRNAs in developmental brain are therefore of special interest. Here, publicly available RNA-sequencing (RNA-seq) data in embryonic brain are integrated to identify thousands of embryonic brain lncRNAs by a customized pipeline. A significant proportion of novel transcripts have not been annotated by available genomic resources. The putative embryonic brain lncRNAs are shorter in length, less spliced and show less conservation than known genes. The expression of putative lncRNAs is in one tenth on average of known coding genes, while comparable with known lncRNAs. From chromatin data, putative embryonic brain lncRNAs are associated with active chromatin marks, comparable with known lncRNAs. Embryonic brain expressed lncRNAs are also indicated to have expression though not evident in adult brain. Gene Ontology analysis of putative embryonic brain lncRNAs suggests that they are associated with brain development. The putative lncRNAs are shown to be related to possible cis-regulatory roles in imprinting even themselves are deemed to be imprinted lncRNAs. Re-analysis of one knockdown data suggests that four regulators are associated with lncRNAs. Taken together, the identification and systematic analysis of putative lncRNAs would provide novel insights into uncharacterized mouse non-coding regions and the relationships with mammalian embryonic brain development. PMID:23967161

  20. Embryonic development and skeletogenesis of the pharyngeal jaw apparatus in the cichlid Nile tilapia (Oreochromis niloticus).

    PubMed

    le Pabic, Pierre; Stellwag, Edmund J; Scemama, Jean-Luc

    2009-11-01

    The evolution of a specialized pharyngeal jaw apparatus (PJA) has been argued to be the key evolutionary innovation that allowed the explosive adaptive radiation of cichlid fishes in East African lakes. Subsequent studies together with recent molecular phylogenies have shown that similar innovations evolved independently several times within the teleosts, which poses the questions: (1) how similar are the developmental mechanisms responsible for these changes in divergent taxa and (2) how did such complex features arise independently in evolution? A detailed knowledge of PJA development in cichlids and other teleosts is needed to address these questions. Here, we provide a detailed account of the development of the PJA in one species of cichlid, the Nile tilapia (Oreochromis niloticus), from the early segmentation and patterning of its embryonic precursors - pharyngeal arches 3 to 7 - to its ossification. We find that pharyngeal segmentation occurs sequentially from anterior to posterior during early segmentation stages through the mid-pharyngula period. We show a clear combinatorial code of Hox gene expression such that each posterior arch is defined by a distinctive Hox signature. Posterior arch chondrogenesis in tilapia is essentially complete by the end of the hatching period, and most elements become ossified over the next two days. Our results reveal that both the fusion of lower jaw bones and articulation between the neurocranium and upper jaws occur during post-embryonic development. PMID:19718717

  1. Embryonic development and inviability phenotype of chicken-Japanese quail F1 hybrids

    PubMed Central

    Ishishita, Satoshi; Kinoshita, Keiji; Nakano, Mikiharu; Matsuda, Yoichi

    2016-01-01

    Interspecific hybrid incompatibility, including inviability and sterility, is important in speciation; however, its genetic basis remains largely unknown in vertebrates. Crosses between male chickens and female Japanese quails using artificial insemination can generate intergeneric hybrids; however, the hatching rate is low, and hatched hybrids are only sterile males. Hybrid development is arrested frequently during the early embryonic stages, and the sex ratio of living embryos is male-biased. However, the development and sex ratio of hybrid embryos have not been comprehensively analyzed. In the present study, we observed delayed embryonic development of chicken-quail hybrids during the early stage, compared with that of chickens and quails. The survival rate of hybrids decreased markedly during the blastoderm-to-pre-circulation stage and then decreased gradually through the subsequent stages. Hybrid females were observed at more than 10 d of incubation; however, the sex ratio of hybrids became male-biased from 10 d of incubation. Severely malformed embryos were observed frequently in hybrids. These results suggest that developmental arrest occurs at various stages in hybrid embryos, including a sexually non-biased arrest during the early stage and a female-biased arrest during the late stage. We discuss the genetic basis for hybrid inviability and its sex bias. PMID:27199007

  2. Embryonic development and inviability phenotype of chicken-Japanese quail F1 hybrids.

    PubMed

    Ishishita, Satoshi; Kinoshita, Keiji; Nakano, Mikiharu; Matsuda, Yoichi

    2016-01-01

    Interspecific hybrid incompatibility, including inviability and sterility, is important in speciation; however, its genetic basis remains largely unknown in vertebrates. Crosses between male chickens and female Japanese quails using artificial insemination can generate intergeneric hybrids; however, the hatching rate is low, and hatched hybrids are only sterile males. Hybrid development is arrested frequently during the early embryonic stages, and the sex ratio of living embryos is male-biased. However, the development and sex ratio of hybrid embryos have not been comprehensively analyzed. In the present study, we observed delayed embryonic development of chicken-quail hybrids during the early stage, compared with that of chickens and quails. The survival rate of hybrids decreased markedly during the blastoderm-to-pre-circulation stage and then decreased gradually through the subsequent stages. Hybrid females were observed at more than 10 d of incubation; however, the sex ratio of hybrids became male-biased from 10 d of incubation. Severely malformed embryos were observed frequently in hybrids. These results suggest that developmental arrest occurs at various stages in hybrid embryos, including a sexually non-biased arrest during the early stage and a female-biased arrest during the late stage. We discuss the genetic basis for hybrid inviability and its sex bias. PMID:27199007

  3. Development of pacemaker properties and rhythmogenic mechanisms in the mouse embryonic respiratory network

    PubMed Central

    Chevalier, Marc; Toporikova, Natalia; Simmers, John; Thoby-Brisson, Muriel

    2016-01-01

    Breathing is a vital rhythmic behavior generated by hindbrain neuronal circuitry, including the preBötzinger complex network (preBötC) that controls inspiration. The emergence of preBötC network activity during prenatal development has been described, but little is known regarding inspiratory neurons expressing pacemaker properties at embryonic stages. Here, we combined calcium imaging and electrophysiological recordings in mouse embryo brainstem slices together with computational modeling to reveal the existence of heterogeneous pacemaker oscillatory properties relying on distinct combinations of burst-generating INaP and ICAN conductances. The respective proportion of the different inspiratory pacemaker subtypes changes during prenatal development. Concomitantly, network rhythmogenesis switches from a purely INaP/ICAN-dependent mechanism at E16.5 to a combined pacemaker/network-driven process at E18.5. Our results provide the first description of pacemaker bursting properties in embryonic preBötC neurons and indicate that network rhythmogenesis undergoes important changes during prenatal development through alterations in both circuit properties and the biophysical characteristics of pacemaker neurons. DOI: http://dx.doi.org/10.7554/eLife.16125.001 PMID:27434668

  4. Nitrogen excretion during embryonic development of the green iguana, Iguana iguana (Reptilia; Squamata).

    PubMed

    Sartori, M R; Taylor, E W; Abe, A S

    2012-10-01

    Development within the cleidoic egg of birds and reptiles presents the embryo with the problem of accumulation of wastes from nitrogen metabolism. Ammonia derived from protein catabolism is converted into the less toxic product urea or relatively insoluble uric acid. The pattern of nitrogen excretion of the green iguana, Iguana iguana, was determined during embryonic development using samples from allantoic fluid and from the whole homogenized egg, and in hatchlings and adults using samples of blood plasma. Urea was the major excretory product over the course of embryonic development. It was found in higher concentrations in the allantoic sac, suggesting that there is a mechanism present on the allantoic membrane enabling the concentration of urea. The newly hatched iguana still produced urea while adults produced uric acid. The time course of this shift in the type of nitrogen waste was not determined but the change is likely to be related to the water relations associated with the terrestrial habit of the adult. The green iguana produces parchment-shelled eggs that double in mass during incubation due to water absorption; the eggs also accumulate 0.02 mM of urea, representing 82% of the total measured nitrogenous residues that accumulate inside the allantois. The increase in egg mass and urea concentration became significant after 55 days of incubation then were unchanged until hatching. PMID:22710252

  5. Germ cells of the centipede Strigamia maritima are specified early in embryonic development.

    PubMed

    Green, Jack E; Akam, Michael

    2014-08-15

    We provide the first systematic description of germ cell development with molecular markers in a myriapod, the centipede Strigamia maritima. By examining the expression of Strigamia vasa and nanos orthologues, we find that the primordial germ cells are specified from at least the blastoderm stage. This is a much earlier embryonic stage than previously described for centipedes, or any other member of the Myriapoda. Using these genes as markers, and taking advantage of the developmental synchrony of Strigamia embryos within single clutches, we are able to track the development of the germ cells throughout embryogenesis. We find that the germ cells accumulate at the blastopore; that the cells do not internalize through the hindgut, but rather through the closing blastopore; and that the cells undergo a long-range migration to the embryonic gonad. This is the first evidence for primordial germ cells displaying these behaviours in any myriapod. The myriapods are a phylogenetically important group in the arthropod radiation for which relatively little developmental data is currently available. Our study provides valuable comparative data that complements the growing number of studies in insects, crustaceans and chelicerates, and is important for the correct reconstruction of ancestral states and a fuller understanding of how germ cell development has evolved in different arthropod lineages. PMID:24930702

  6. Identification of the blood-borne somatotroph-differentiating factor during chicken embryonic development.

    PubMed

    Morpurgo, B; Dean, C E; Porter, T E

    1997-11-01

    Somatotrophs become a significant population by day 16 of chicken embryonic development. We have previously demonstrated that an earlier induction of GH cell differentiation is possible with the addition of day 16 embryonic serum to cultures of day 12 pituitary cells, an age when somatotrophs are rare. The present study was designed to identify the blood-borne signal(s) responsible for the serum activity, using reverse hemolytic plaque assays to identify individual GH-secreting cells. The activity was found to be a heat-stable, ether-soluble compound(s) that is bound or inhibited by a trypsin-sensitive protein. The extent of GH cell differentiation was greater (P < 0.05; n = 3) in response to the ether phases of heated day 16 (14.1 +/- 0.4% of all cells) and day 12 sera (9.3 +/- 0.4%) than with untreated serum from days 16 and 12 (6.1 +/- 0.4% and 0.82 +/- 0.4%, respectively). Furthermore, ether-extracted day 16 serum was more effective than ether-extracted day 12 serum, which was also different from basal (0.85 +/- 0.4%; P < 0.05). Based on this biochemical profile, the abilities of various steroids to stimulate differentiation were tested. Three steroids were found to stimulate somatotroph differentiation in vitro: 17beta-estradiol, corticosterone, and progesterone. However, the estradiol receptor antagonist, tamoxifen, while abolishing the effect of estradiol, had no effect on the induction of differentiation by day 16 serum. In contrast, RU486, a specific glucocorticoid receptor antagonist in chickens, blocked the stimulatory effects of corticosterone, progesterone, and day 16 serum on somatotroph differentiation. We next tested whether the active compound in day 16 embryonic serum was corticosterone, the predominant glucocorticoid in chickens. Incubation of day 16 serum with corticosterone antiserum, but not control antiserum, suppressed day 16 serum-induced GH cell differentiation. Therefore, we conclude that corticosterone is the blood-borne signal capable

  7. PACT is a negative regulator of p53 and essential for cell growth and embryonic development.

    PubMed

    Li, Li; Deng, Binwei; Xing, Guichun; Teng, Yan; Tian, Chunyan; Cheng, Xuan; Yin, Xiushan; Yang, Juntao; Gao, Xue; Zhu, Yunping; Sun, Qihong; Zhang, Lingqiang; Yang, Xiao; He, Fuchu

    2007-05-01

    The tumor suppressor p53 regulates cell cycle progression and apoptosis in response to various types of stress, whereas excess p53 activity creates unwanted effects. Tight regulation of p53 is essential for maintaining normal cell growth. p53-associated cellular protein-testes derived (PACT, also known as P2P-R, RBBP6) is a 250-kDa Ring finger-containing protein that can directly bind to p53. PACT is highly up-regulated in esophageal cancer and may be a promising target for immunotherapy. However, the physiological role of the PACT-p53 interaction remains largely unclear. Here, we demonstrate that the disruption of PACT in mice leads to early embryonic lethality before embryonic day 7.5 (E7.5), accompanied by an accumulation of p53 and widespread apoptosis. p53-null mutation partially rescues the lethality phenotype and prolonged survival to E11.5. Endogenous PACT can interact with Hdm2 and enhance Hdm2-mediated ubiquitination and degradation of p53 as a result of the increase of the p53-Hdm2 affinity. Consequently, PACT represses p53-dependent gene transcription. Knockdown of PACT significantly attenuates the p53-Hdm2 interaction, reduces p53 polyubiquitination, and enhances p53 accumulation, leading to both apoptosis and cell growth retardation. Taken together, our data demonstrate that the PACT-p53 interaction plays a critical role in embryonic development and tumorigenesis and identify PACT as a member of negative regulators of p53. PMID:17470788

  8. A Possible Role for FRM-1, a C. elegans FERM Family Protein, in Embryonic Development

    PubMed Central

    Choi, Boram; Kang, Junsu; Park, Yang-Seo; Lee, Junho; Cho, Nam Jeong

    2011-01-01

    FRM-1 is a member of the FERM protein superfamily containing a FERM domain, which is a highly conserved protein- protein interaction module found in most eukaryotes. Although FRM-1 is thought to be involved in linking intracellular proteins to membrane proteins, the specific role for FRM-1 remains to be elucidated. In an effort to explore the biological function of FRM-1, we examined the phenotype of frm-1(tm4168) mutant worms. We observed that frm-1(tm4168) worms have a delayed hatching phenotype. Twelve hours after being laid, when virtually all wild-type eggs had hatched, only 64% of frm-1(tm4168) eggs had hatched. About 3% of frm-1(tm4168) eggs failed to hatch, even 3 days after they had been laid. We also found that frm-1(tm4168) mutants displayed a temperature-sensitive sterility phenotype. About 13% of frm-1(tm4168) worms were unable to produce eggs or produced nonviable eggs at 25℃. In contrast, less than 1% of wild-type animals were sterile at this temperature. At 20℃, neither the mutant nor wild type appeared to be sterile. Western blot analysis indicates that FRM-1 is expressed throughout the developmental stages with the strongest expression at the egg stage. Immunostaining experiments revealed that FRM-1 is mainly localized to the plasma membrane of most if not all cells at an early embryonic stage and to the plasma membrane of P cells during the late embryonic stages. GFP fusion experiments showed that FRM-1 can be expressed in the pharynx and intestine at the larval and adult stages. Our data suggest that FRM-1 may participate in diverse biological processes, including embryonic development. PMID:21448586

  9. Essential Roles of BCCIP in Mouse Embryonic Development and Structural Stability of Chromosomes

    PubMed Central

    Lu, Huimei; Huang, Yi-Yuan; Mehrotra, Sonam; Droz-Rosario, Roberto; Liu, Jingmei; Bhaumik, Mantu; White, Eileen; Shen, Zhiyuan

    2011-01-01

    BCCIP is a BRCA2- and CDKN1A(p21)-interacting protein that has been implicated in the maintenance of genomic integrity. To understand the in vivo functions of BCCIP, we generated a conditional BCCIP knockdown transgenic mouse model using Cre-LoxP mediated RNA interference. The BCCIP knockdown embryos displayed impaired cellular proliferation and apoptosis at day E7.5. Consistent with these results, the in vitro proliferation of blastocysts and mouse embryonic fibroblasts (MEFs) of BCCIP knockdown mice were impaired considerably. The BCCIP deficient mouse embryos die before E11.5 day. Deletion of the p53 gene could not rescue the embryonic lethality due to BCCIP deficiency, but partially rescues the growth delay of mouse embryonic fibroblasts in vitro. To further understand the cause of development and proliferation defects in BCCIP-deficient mice, MEFs were subjected to chromosome stability analysis. The BCCIP-deficient MEFs displayed significant spontaneous chromosome structural alterations associated with replication stress, including a 3.5-fold induction of chromatid breaks. Remarkably, the BCCIP-deficient MEFs had a ∼20-fold increase in sister chromatid union (SCU), yet the induction of sister chromatid exchanges (SCE) was modestly at 1.5 fold. SCU is a unique type of chromatid aberration that may give rise to chromatin bridges between daughter nuclei in anaphase. In addition, the BCCIP-deficient MEFs have reduced repair of irradiation-induced DNA damage and reductions of Rad51 protein and nuclear foci. Our data suggest a unique function of BCCIP, not only in repair of DNA damage, but also in resolving stalled replication forks and prevention of replication stress. In addition, BCCIP deficiency causes excessive spontaneous chromatin bridges via the formation of SCU, which can subsequently impair chromosome segregations in mitosis and cell division. PMID:21966279

  10. Chibby functions in Xenopus ciliary assembly, embryonic development, and the regulation of gene expression

    PubMed Central

    Shi, Jianli; Zhao, Ying; Galati, Domenico; Winey, Mark; Klymkowsky, Michael W.

    2015-01-01

    Wnt signaling and ciliogenesis are core features of embryonic development in a range of metazoans. Chibby (Cby), a basal-body associated protein, regulates β-catenin-mediated Wnt signaling in the mouse but not Drosophila. Here we present an analysis of Cby’s embryonic expression and morphant phenotypes in Xenopus laevis. Cby RNA is supplied maternally, negatively regulated by Snail2 but not Twist1, preferentially expressed in the neuroectoderm, and regulates β-catenin-mediated gene expression. Reducing Cby levels reduced the density of multiciliated cells, the number of basal bodies per multiciliated cell, and the numbers of neural tube primary cilia; it also led to abnormal development of the neural crest, central nervous system, and pronephros, all defects that were rescued by a Cby-GFP chimera. Reduction of Cby led to an increase in Wnt8a and decreases in Gli2, Gli3, and Shh RNA levels. Many, but not all, morphant phenotypes were significantly reversed by the Wnt inhibitor SFRP2. These observations extend our understanding of Cby’s role in mediating the network of interactions between ciliogenesis, signaling systems and tissue patterning. PMID:25220153

  11. Compensatory Cell Movements Confer Robustness to Mechanical Deformation during Embryonic Development.

    PubMed

    Jelier, Rob; Kruger, Angela; Swoger, Jim; Zimmermann, Timo; Lehner, Ben

    2016-08-01

    Embryonic development must proceed despite both internal molecular fluctuations and external perturbations. However, mechanisms that provide robustness to mechanical perturbation remain largely uncharacterized. Here, we use light-sheet microscopy, comprehensive single-cell tracking, and targeted cell ablation to study the response of Caenorhabditis elegans embryos to external compression. Compression changes the relative positions of many cells and causes severe distortions of the embryonic axes. A large-scale movement of cells then corrects this distortion. Only a few specific cells are required for these compensatory movements, and one cell, ABarppap, appears to generate force, dramatically changing as it moves to its correct local cellular environment. During these movements, we also observed "egressions", cells moving out onto the surface, and lineages that undergo both ingression and egression. In total, our work describes how the embryo responds to a major mechanical deformation that can occur during the early development in situ and puts forward a model to explain how the response is coordinated. PMID:27524104

  12. [On some features of embryonic development and metamorphosis of Aurelia aurita (Cindaria, Scyphozoa)].

    PubMed

    Maĭorova, T D; Kosevich, I A; Melekhova, O P

    2012-01-01

    Aurelia aurita is a cosmopolite species of scyphomedusae. Its major structural patterns and life cycle are well investigated. This work provides a detailed study on development and structure of the planula in A. aurita until it completes its metamorphosis. Lifetime observations and histological study performed during the settlement and metamorphosis of the planulae demonstrated that the inner manibrium linen of primary polyp (gastroderm) develops from the ectoderm of the planula posterior end. The spatial and temporal dynamics of serotonergic cells from the early embryonic stages until the formation of the primary polyp were studied for the first time. In addition, the distribution oftyrosinated tubulin and neuropeptide RFamide at different stages ofA. aurita development were studied. PMID:23101407

  13. The role of oxygen availability in embryonic development and stem cell function

    PubMed Central

    Simon, M. Celeste; Keith, Brian

    2010-01-01

    Low levels of oxygen (O2) occur naturally in developing embryos. Cells respond to their hypoxic microenvironment by stimulating several hypoxia-inducible factors (and other molecules that mediate O2 homeostasis), which then coordinate the development of the blood, vasculature, placenta, nervous system, and other organs. Furthermore, embryonic stem and progenitor cells frequently occupy hypoxic ‘niches’ and low O2 regulates their differentiation. Recent work has revealed an important link between factors involved in regulating stem/progenitor cell behaviour and hypoxia-inducible factors, which provides a molecular framework for hypoxic control of differentiation and cell fate. These findings have important implications for the development of therapies for tissue regeneration and disease. PMID:18285802

  14. Fliih, a Gelsolin-Related Cytoskeletal Regulator Essential for Early Mammalian Embryonic Development

    PubMed Central

    Campbell, Hugh D.; Fountain, Shelley; McLennan, Ian S.; Berven, Leise A.; Crouch, Michael F.; Davy, Deborah A.; Hooper, Jane A.; Waterford, Kynan; Chen, Ken-Shiung; Lupski, James R.; Ledermann, Birgit; Young, Ian G.; Matthaei, Klaus I.

    2002-01-01

    The Drosophila melanogaster flightless I gene is required for normal cellularization of the syncytial blastoderm. Highly conserved homologues of flightless I are present in Caenorhabditis elegans, mouse, and human. We have disrupted the mouse homologue Fliih by homologous recombination in embryonic stem cells. Heterozygous Fliih mutant mice develop normally, although the level of Fliih protein is reduced. Cultured homozygous Fliih mutant blastocysts hatch, attach, and form an outgrowing trophoblast cell layer, but egg cylinder formation fails and the embryos degenerate. Similarly, Fliih mutant embryos initiate implantation in vivo but then rapidly degenerate. We have constructed a transgenic mouse carrying the complete human FLII gene and shown that the FLII transgene is capable of rescuing the embryonic lethality of the homozygous targeted Fliih mutation. These results confirm the specific inactivation of the Fliih gene and establish that the human FLII gene and its gene product are functional in the mouse. The Fliih mouse mutant phenotype is much more severe than in the case of the related gelsolin family members gelsolin, villin, and CapG, where the homozygous mutant mice are viable and fertile but display alterations in cytoskeletal actin regulation. PMID:11971982

  15. Transcriptional repression of p27 is essential for murine embryonic development

    PubMed Central

    Teratake, Youichi; Kuga, Chisa; Hasegawa, Yuta; Sato, Yoshiharu; Kitahashi, Masayasu; Fujimura, Lisa; Watanabe-Takano, Haruko; Sakamoto, Akemi; Arima, Masafumi; Tokuhisa, Takeshi; Hatano, Masahiko

    2016-01-01

    The Nczf gene has been identified as one of Ncx target genes and encodes a novel KRAB zinc-finger protein, which functions as a sequence specific transcriptional repressor. In order to elucidate Nczf functions, we generated Nczf knockout (Nczf−/−) mice. Nczf−/− mice died around embryonic day 8.5 (E8.5) with small body size and impairment of axial rotation. Histopathological analysis revealed that the cell number decreased and pyknotic cells were occasionally observed. We examined the expression of cell cycle related genes in Nczf−/− mice. p27 expression was increased in E8.0 Nczf−/− mice compared to that of wild type mice. Nczf knockdown by siRNA resulted in increased expression of p27 in mouse embryonic fibroblasts (MEFs). Furthermore, p27 promoter luciferase reporter gene analysis confirmed the regulation of p27 mRNA expression by Nczf. Nczf−/−; p27−/− double knockout mice survived until E11.5 and the defect of axial rotation was restored. These data suggest that p27 repression by Nczf is essential in the developing embryo. PMID:27196371

  16. Transcriptional repression of p27 is essential for murine embryonic development.

    PubMed

    Teratake, Youichi; Kuga, Chisa; Hasegawa, Yuta; Sato, Yoshiharu; Kitahashi, Masayasu; Fujimura, Lisa; Watanabe-Takano, Haruko; Sakamoto, Akemi; Arima, Masafumi; Tokuhisa, Takeshi; Hatano, Masahiko

    2016-01-01

    The Nczf gene has been identified as one of Ncx target genes and encodes a novel KRAB zinc-finger protein, which functions as a sequence specific transcriptional repressor. In order to elucidate Nczf functions, we generated Nczf knockout (Nczf-/-) mice. Nczf-/- mice died around embryonic day 8.5 (E8.5) with small body size and impairment of axial rotation. Histopathological analysis revealed that the cell number decreased and pyknotic cells were occasionally observed. We examined the expression of cell cycle related genes in Nczf-/- mice. p27 expression was increased in E8.0 Nczf-/- mice compared to that of wild type mice. Nczf knockdown by siRNA resulted in increased expression of p27 in mouse embryonic fibroblasts (MEFs). Furthermore, p27 promoter luciferase reporter gene analysis confirmed the regulation of p27 mRNA expression by Nczf. Nczf-/-; p27-/- double knockout mice survived until E11.5 and the defect of axial rotation was restored. These data suggest that p27 repression by Nczf is essential in the developing embryo. PMID:27196371

  17. Overexpression of Leap2 impairs Xenopus embryonic development and modulates FGF and activin signals.

    PubMed

    Thiébaud, Pierre; Garbay, Bertrand; Auguste, Patrick; Sénéchal, Caroline Le; Maciejewska, Zuzanna; Fédou, Sandrine; Gauthereau, Xavier; Costaglioli, Patricia; Thézé, Nadine

    2016-09-01

    Besides its widely described function in the innate immune response, no other clear physiological function has been attributed so far to the Liver-Expressed-Antimicrobial-Peptide 2 (LEAP2). We used the Xenopus embryo model to investigate potentially new functions for this peptide. We identified the amphibian leap2 gene which is highly related to its mammalian orthologues at both structural and sequence levels. The gene is expressed in the embryo mostly in the endoderm-derived tissues. Accordingly it is induced in pluripotent animal cap cells by FGF, activin or a combination of vegT/β-catenin. Modulating leap2 expression level by gain-of-function strategy impaired normal embryonic development. When overexpressed in pluripotent embryonic cells derived from blastula animal cap explant, leap2 stimulated FGF while it reduced the activin response. Finally, we demonstrate that LEAP2 blocks FGF-induced migration of HUman Vascular Endothelial Cells (HUVEC). Altogether these findings suggest a model in which LEAP2 could act at the extracellular level as a modulator of FGF and activin signals, thus opening new avenues to explore it in relation with cellular processes such as cell differentiation and migration. PMID:27335344

  18. FGF, TGFβ and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells.

    PubMed

    Cleary, Mairéad A; van Osch, Gerjo J V M; Brama, Pieter A; Hellingman, Catharine A; Narcisi, Roberto

    2015-04-01

    Articular cartilage is easily damaged, yet difficult to repair. Cartilage tissue engineering seems a promising therapeutic solution to restore articular cartilage structure and function, with mesenchymal stem cells (MSCs) receiving increasing attention for their promise to promote cartilage repair. It is known from embryology that members of the fibroblast growth factor (FGF), transforming growth factor-β (TGFβ) and wingless-type (Wnt) protein families are involved in controlling different differentiation stages during chondrogenesis. Individually, these pathways have been extensively studied but so far attempts to recapitulate embryonic development in in vitro MSC chondrogenesis have failed to produce stable and functioning articular cartilage; instead, transient hypertrophic cartilage is obtained. We believe a better understanding of the simultaneous integration of these factors will improve how we relate embryonic chondrogenesis to in vitro MSC chondrogenesis. This narrative review attempts to define current knowledge on the crosstalk between the FGF, TGFβ and Wnt signalling pathways during different stages of mesenchymal chondrogenesis. Connecting embryogenesis and in vitro differentiation of human MSCs might provide insights into how to improve and progress cartilage tissue engineering for the future. PMID:23576364

  19. E4BP4 is a cardiac survival factor and essential for embryonic heart development.

    PubMed

    Weng, Yi-Jiun; Hsieh, Dennis Jine-Yuan; Kuo, Wei-Wen; Lai, Tung-Yuan; Hsu, Hsi-Hsien; Tsai, Chang-Hai; Tsai, Fuu-Jen; Lin, Ding-Yu; Lin, James A; Huang, Chih-Yang; Tung, Kwong-Chung

    2010-07-01

    The bZIP transcription factor E4BP4, has been demonstrated to be a survival factor in pro-B lymphocytes. GATA factors play important roles in transducing the IL-3 survival signal and transactivating the downstream survival gene, E4BP4. In heart, GATA sites are essential for proper transcription of several cardiac genes, and GATA-4 is a mediator of cardiomyocyte survival. However, the role E4BP4 plays in heart is still poorly understood. In this study, Dot-blot hybridization assays using Dig-labeled RNA probes revealed that the E4BP4 gene was expressed in cardiac tissue from several species including, monkey, dog, rabbit, and human. Western blot analysis showed that the E4BP4 protein was consistently present in all of these four species. Furthermore, immunohistochemistry revealed that the E4BP4 protein was overexpressed in diseased heart tissue in comparison with normal heart tissue. In addition, the overexpression of E4BP4 in vitro activated cell survival signaling pathway of cardiomyocytes. At last, siRNA-mediated knock down of E4BP4 in zebrafish resulted in malformed looping of the embryonic heart tube and decreased heart beating. Based on these results, we conclude that E4BP4 plays as a survival factor in heart and E4BP4 is essential for proper embryonic heart development. PMID:20186462

  20. The NF-κB family: Key players during embryonic development and HSC emergence.

    PubMed

    Espín-Palazón, Raquel; Traver, David

    2016-07-01

    The nuclear factor-κB (NF-κB) family is a crucial transcription factor group known mainly for its role in the regulation of the immune system and its response to infection in vertebrates. The signaling pathway leading to NF-κB activation and translocation to the nucleus to exert its function as a transcription factor is well conserved among Kingdom Animalia, which has helped to elucidate other roles that NF-κB plays in other biological contexts such as developmental biology. The manipulation of NF-κB members in a diverse range of animal models results in severe developmental defects during embryogenesis, very often leading to embryonic lethality. Defects include dorsal-ventral patterning and limb, liver, skin, lung, neural, notochord, muscle, skeletal, and hematopoietic defects. Here, we recapitulate the research that has been done to address the role that NF-κB plays during embryonic development, in particular to emphasize its recently discovered role in the specification of hematopoietic stem cells (HSCs), the foundation of the hematopoietic system in vertebrates. PMID:27132652

  1. Student Learning of Early Embryonic Development via the Utilization of Research Resources from the Nematode "Caenorhabditis elegans"

    ERIC Educational Resources Information Center

    Lu, Fong-Mei; Eliceiri, Kevin W.; Squirrell, Jayne M.; White, John G.; Stewart, James

    2008-01-01

    This study was undertaken to gain insights into undergraduate students' understanding of early embryonic development, specifically, how well they comprehend the concepts of volume constancy, cell lineages, body plan axes, and temporal and spatial dimensionality in development. To study student learning, a curriculum was developed incorporating…

  2. Three-Dimensional Visualization of Developing Neurovascular Architecture in the Craniofacial Region of Embryonic Mice.

    PubMed

    Sugimoto, Toshiaki; Taya, Yuji; Shimazu, Yoshihito; Soeno, Yuuichi; Sato, Kaori; Aoba, Takaaki

    2015-11-01

    Recent studies have highlighted the mechanism of vascular and axonal guidance to ensure proper morphogenesis and organogenesis. We aimed to perform global mapping of developing neurovascular networks during craniofacial development of embryonic mice. To this end, we developed histology-based three-dimensional (3D) reconstructions using paraffin-embedded serial sections obtained from mouse embryos. All serial sections were dual-immunolabeled with Pecam1 and Pgp9.5/Gap43 cocktail antibodies. All immunolabeled serial sections were digitized with virtual microscopy to acquire high spatial resolution images. The 3D reconstructs warranted superior positional accuracy to trace the long-range connectivity of blood vessels and individual cranial nerve axons. It was feasible to depict simultaneously the details of angiogenic sprouting and axon terminal arborization and to assess quantitatively the locoregional proximity between blood vessels and cranial nerve axons. Notably, 3D views of the craniofacial region revealed the following: Branchial arch arteries and blood capillary plexi were formed without accompanying nerves at embryonic day (E) 9.5. Cranial nerve axons began to grow into the branchial arches, developing a labyrinth of small blood vessels at E10.5. Vascular remodeling occurred, and axon terminals of the maxillary, mandibular, chorda tympani, and hypoglossal nerve axons had arborized around the lateral lingual swellings at E11.5. The diverged patterning of trigeminal nerves and the arterial branches from the carotid artery became congruent at E11.5. The overall results support the advantage of dual-immunolabeling and 3D reconstruction technology to document the architecture and wiring of the developing neurovascular networks in mouse embryos. PMID:26054056

  3. Effects of temperature on embryonic and early larval growth and development in the rough-skinned newt (Taricha granulosa).

    PubMed

    Smith, Geoffrey D; Hopkins, Gareth R; Mohammadi, Shabnam; M Skinner, Heather; Hansen, Tyler; Brodie, Edmund D; French, Susannah S

    2015-07-01

    We investigated the effects of temperature on the growth and development of embryonic and early larval stages of a western North American amphibian, the rough-skinned newt (Taricha granulosa). We assigned newt eggs to different temperatures (7, 14, or 21°C); after hatching, we re-assigned the newt larvae into the three different temperatures. Over the course of three to four weeks, we measured total length and developmental stage of the larvae. Our results indicated a strong positive relationship over time between temperature and both length and developmental stage. Importantly, individuals assigned to cooler embryonic temperatures did not achieve the larval sizes of individuals from the warmer embryonic treatments, regardless of larval temperature. Our investigation of growth and development at different temperatures demonstrates carry-over effects and provides a more comprehensive understanding of how organisms respond to temperature changes during early development. PMID:25965021

  4. A Cell Marker System and Mosaic Patterns during Early Embryonic Development in Drosophila melanogaster

    PubMed Central

    Zusman, Susan B.; Wieschaus, Eric

    1987-01-01

    An embryonic cell marker system has been developed in Drosophila melanogaster that has enabled us to identify the genotype of cells as early as the cellular blastoderm stage of development. This system allows unambiguous detection of embryos homozygous for most X-linked lethal mutations at stages prior to when their first defects become obvious. By examining gynandromorphs at this stage, we have observed that the number of nuclei per unit area in male regions is about half that in female regions. An examination of early cleavage stage embryos whose DNA has been stained with Hoechst 33258 and whose actin has been stained with phalloidin suggests that this difference is due to a cell cycle delay in cells losing the ring-X. These experiments also demonstrate the existence of a mechanism which controls the timing of nuclear divisions in cycle 10–14 embryos. PMID:3108074

  5. The Orphan Adhesion-GPCR GPR126 Is Required for Embryonic Development in the Mouse

    PubMed Central

    Waller-Evans, Helen; Prömel, Simone; Langenhan, Tobias; Dixon, John; Zahn, Dirk; Colledge, William H.; Doran, Joanne; Carlton, Mark B. L.; Davies, Ben; Aparicio, Samuel A. J. R.; Grosse, Johannes; Russ, Andreas P.

    2010-01-01

    Adhesion-GPCRs provide essential cell-cell and cell-matrix interactions in development, and have been implicated in inherited human diseases like Usher Syndrome and bilateral frontoparietal polymicrogyria. They are the second largest subfamily of seven-transmembrane spanning proteins in vertebrates, but the function of most of these receptors is still not understood. The orphan Adhesion-GPCR GPR126 has recently been shown to play an essential role in the myelination of peripheral nerves in zebrafish. In parallel, whole-genome association studies have implicated variation at the GPR126 locus as a determinant of body height in the human population. The physiological function of GPR126 in mammals is still unknown. We describe a targeted mutation of GPR126 in the mouse, and show that GPR126 is required for embryonic viability and cardiovascular development. PMID:21124978

  6. Post-embryonic Hourglass Patterns Mark Ontogenetic Transitions in Plant Development

    PubMed Central

    Drost, Hajk-Georg; Bellstädt, Julia; Ó'Maoiléidigh, Diarmuid S.; Silva, Anderson T.; Gabel, Alexander; Weinholdt, Claus; Ryan, Patrick T.; Dekkers, Bas J. W.; Bentsink, Leónie; Hilhorst, Henk W. M.; Ligterink, Wilco; Wellmer, Frank; Grosse, Ivo; Quint, Marcel

    2016-01-01

    The historic developmental hourglass concept depicts the convergence of animal embryos to a common form during the phylotypic period. Recently, it has been shown that a transcriptomic hourglass is associated with this morphological pattern, consistent with the idea of underlying selective constraints due to intense molecular interactions during body plan establishment. Although plants do not exhibit a morphological hourglass during embryogenesis, a transcriptomic hourglass has nevertheless been identified in the model plant Arabidopsis thaliana. Here, we investigated whether plant hourglass patterns are also found postembryonically. We found that the two main phase changes during the life cycle of Arabidopsis, from embryonic to vegetative and from vegetative to reproductive development, are associated with transcriptomic hourglass patterns. In contrast, flower development, a process dominated by organ formation, is not. This suggests that plant hourglass patterns are decoupled from organogenesis and body plan establishment. Instead, they may reflect general transitions through organizational checkpoints. PMID:26912813

  7. Development of a Xeno-Free Substrate for Human Embryonic Stem Cell Growth

    PubMed Central

    Zhu, Hailin; Yang, Jinliang; Wei, Yuquan; Chen, Harry Huimin

    2015-01-01

    Traditionally, human embryonic stem cells (hESCs) are cultured on inactivated live feeder cells. For clinical application using hESCs, there is a requirement to minimize the risk of contamination with animal components. Extracellular matrix (ECM) derived from feeder cells is the most natural way to provide xeno-free substrates for hESC growth. In this study, we optimized the step-by-step procedure for ECM processing to develop a xeno-free ECM that supports the growth of undifferentiated hESCs. In addition, this newly developed xeno-free substrate can be stored at 4°C and is ready to use upon request, which serves as an easier way to amplify hESCs for clinical applications. PMID:25861280

  8. Investment choices in post-embryonic development: quantifying interactions among growth, regeneration, and asexual reproduction in the annelid Pristina leidyi.

    PubMed

    Zattara, Eduardo E; Bely, Alexandra E

    2013-12-01

    Animals capable of multiple forms of post-embryonic development, such as growth, regeneration, and asexual reproduction, must make choices about which processes to invest in. What strategies guide post-embryonic resource allocation investments? We investigated this question in the annelid Pristina leidyi, which can grow continuously, regenerates well, and reproduces asexually by fission. We found that in this species growth is concentrated in three zones: a subterminal posterior zone (forming new segments), a mid-body zone (forming fission zones), and a previously undescribed subterminal anterior zone at the base of the prostomium (which we suggest continually builds the prostomium through a "conveyor-belt" like process). Body-wide counts of proliferating cells are greater under high food than low food conditions but proliferation patterns themselves are independent of feeding level. Proliferation patterns are strongly affected by amputation, however, with proliferation rapidly shutting-down throughout the body, except at the wound site, following injury. Relative investment to fission and regeneration is highly context-dependent, being sensitive to the position of the cut and the stage of fission. Outcomes range from fission acceleration and regeneration stalling (high fission:regeneration investment) to resorption of fission zones and progression of regeneration (low fission:regeneration investment). Our findings reveal strong interactions between growth, regeneration, and fission and demonstrate a particularly important effect of injury on resource allocation patterns. Patterns of resource investment in P. leidyi show similarities to those described in two other groups that evolved fission independently (naidine annelids and catenulid flatworms), suggesting that similar developmental and physiological contexts may drive convergent evolution of resource allocation strategies. PMID:23913524

  9. Parental RNA interference of genes involved in embryonic development of the western corn rootworm, Diabrotica virgifera virgifera LeConte.

    PubMed

    Khajuria, Chitvan; Vélez, Ana M; Rangasamy, Murugesan; Wang, Haichuan; Fishilevich, Elane; Frey, Meghan L F; Carneiro, Newton Portilho; Gandra, Premchand; Narva, Kenneth E; Siegfried, Blair D

    2015-08-01

    RNA interference (RNAi) is being developed as a potential tool for insect pest management and one of the most likely target pest species for transgenic plants that express double stranded RNA (dsRNA) is the western corn rootworm. Thus far, most genes proposed as targets for RNAi in rootworm cause lethality in the larval stage. In this study, we describe RNAi-mediated knockdown of two developmental genes, hunchback (hb) and brahma (brm), in the western corn rootworm delivered via dsRNA fed to adult females. dsRNA feeding caused a significant decrease in hb and brm transcripts in the adult females. Although total oviposition was not significantly affected, there was almost complete absence of hatching in the eggs collected from females exposed to dsRNA for either gene. These results confirm that RNAi is systemic in nature for western corn rootworms. These results also indicate that hunchback and brahma play important roles in rootworm embryonic development and could provide useful RNAi targets in adult rootworms to prevent crop injury by impacting the population of larval progeny of exposed adults. The ability to deliver dsRNA in a trans-generational manner by feeding to adult rootworms may offer an additional approach to utilizing RNAi for rootworm pest management. The potential to develop parental RNAi technology targeting progeny of adult rootworms in combination with Bt proteins or dsRNA lethal to larvae may increase opportunities to develop sustainable approaches to rootworm management involving RNAi technologies for rootworm control. PMID:26005118

  10. Effects of simulated-microgravity on zebrafish embryonic development and microRNA expression

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Sun, Yeqing; Zhang, Meng; Li, Hui

    2012-07-01

    Microgravity is a constant physical factor astronauts must meet during space flight. Therefore, the mechanism of microgravity-induced biological effects is one of the most important issues in space biological studies. In this research, zebrafish (Danio rerio) embryos at different development stages were exposed to simulated microgravity, respectively, using a rotary cell culture system (RCCS) designed by NASA. Biological effects of simulated microgravity on zebrafish embryos were investigated at the phenotypic and microRNA expression levels. Malformation rate and mortality rate were found increased after simulated microgravity exposure. Body length and heart rate were also increased during microgravity exposure and after a shot period of gravity recovery, but both returned to normal level after 10 days and 7 days of gravity recovery, respectively. Additionally, significant changes in microRNA expression profiles of zebrafish embryos were observed, depending on the development stages of embyos exposed to simulated microgravity and the exposure time. All together, nine miRNAs showed significant changes after three different microgravity exposures (8-72hpf, 24-72hpf and 24-48hpf). Four miRNAs, dre-miR-738, dre-miR-133a, dre-miR-133b and dre-miR-22a, were up-regulated. Two miRNAs, dre-miR-1 and dre-miR-16a, were down-regulated. The other three miRNAs, dre-miR-204, dre-miR-9* and dre-miR-429, were found up-regulated when microgravity exposures ended at 72hpf, but down-regulated when microgravity exposures ended at 48hpf. Above results demonstrated microRNA expression of zebrafish embryos could be induced by both embryonic development stage and simulated microgravity. Key Words: Danio rerio; Simulated-microgravity; embryonic devlopment; microRNA expression

  11. Variation in maternal effects and embryonic development rates among passerine species

    USGS Publications Warehouse

    Martin, T.E.; Schwabl, H.

    2008-01-01

    Embryonic development rates are reflected by the length of incubation period in birds, and these vary substantially among species within and among geographical regions. The incubation periods are consistently shorter in North America (Arizona study site) than in tropical (Venezuela) and subtropical (Argentina) South America based on the study of 83 passerine species in 17 clades. Parents, mothers in particular, may influence incubation periods and resulting offspring quality through proximate pathways, while variation in maternal strategies among species can result from selection by adult and offspring mortality. Parents of long-lived species, as is common in the tropics and subtropics, may be under selection to minimize costs to themselves during incubation. Indeed, time spent incubating is often lower in the tropical and subtropical species than the related north temperate species, causing cooler average egg temperatures in the southern regions. Decreased egg temperatures result in longer incubation periods and reflect a cost imposed on offspring by parents because energy cost to the embryo and risk of offspring predation are both increased. Mothers may adjust egg size and constituents as a means to partially offset such costs. For example, reduced androgen concentrations in egg yolks may slow development rates, but may enhance offspring quality through physiological trade-offs that may be particularly beneficial in longer-lived species, as in the tropics and subtropics. We provide initial data to show that yolks of tropical birds contain substantially lower concentrations of growth-promoting androgens than north temperate relatives. Thus, maternal (and parental) effects on embryonic development rates may include contrasting and complementary proximate influences on offspring quality and deserve further field study among species. ?? 2007 The Royal Society.

  12. Evidence for the involvement of fibroblast growth factor 10 in lipofibroblast formation during embryonic lung development.

    PubMed

    Al Alam, Denise; El Agha, Elie; Sakurai, Reiko; Kheirollahi, Vahid; Moiseenko, Alena; Danopoulos, Soula; Shrestha, Amit; Schmoldt, Carole; Quantius, Jennifer; Herold, Susanne; Chao, Cho-Ming; Tiozzo, Caterina; De Langhe, Stijn; Plikus, Maksim V; Thornton, Matthew; Grubbs, Brendan; Minoo, Parviz; Rehan, Virender K; Bellusci, Saverio

    2015-12-01

    Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10(+) progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development. PMID:26511927

  13. Single nucleotide polymorphisms in candidate genes associated with fertilizing ability of sperm and subsequent embryonic development in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fertilization and development of the preimplantation embryo is under genetic control. The goal of the current study was to test 434 single nucleotide polymorphisms (SNPs) for association with genetic variation in fertilization and early embryonic development. The approach was to produce embryos from...

  14. Freeze-dried somatic cells direct embryonic development after nuclear transfer.

    PubMed

    Loi, Pasqualino; Matsukawa, Kazutsugu; Ptak, Grazyna; Clinton, Michael; Fulka, Josef; Nathan, Yehudith; Arav, Amir

    2008-01-01

    The natural capacity of simple organisms to survive in a dehydrated state has long been exploited by man, with lyophylization the method of choice for the long term storage of bacterial and yeast cells. More recently, attempts have been made to apply this procedure to the long term storage of blood cells. However, despite significant progress, practical application in a clinical setting is still some way off. Conversely, to date there are no reports of attempts to lyophilize nucleated somatic cells for possible downstream applications. Here we demonstrate that lyophilised somatic cells stored for 3 years at room temperature are able to direct embryonic development following injection into enucleated oocytes. These remarkable results demonstrate that alternative systems for the long-term storage of cell lines are now possible, and open unprecedented opportunities in the fields of biomedicine and for conservation strategies. PMID:18714340

  15. Regulating developments in embryonic stem cell research in Africa: a third person's perspective.

    PubMed

    Amechi, Emeka Polycarp

    2008-02-01

    Among the many advances in modern biotechnology, embryonic stem (ES) cell research has raised perhaps the most intense debate over the ethical, legal and policy issues involved. This debate has centred inter alia on the lives and well-being of the donors or participants in clinical trials, the presumed lives of embryos, the possibility of reproductive cloning, and government funding, among others. These ethical, legal and policy issues tend to overlap and cut across all strata of society, with opponents of the research calling for prohibition and proponents calling for promotion. One important question is whether African countries should regulate to limit or promote developments in ES cell research. This article argues that, in view of the dynamism of modern biotechnology, African countries should regulate in such a way as to maximise the benefits while minimising the disadvantages associated with the research. PMID:18365523

  16. Organization versus activation: the role of endocrine-disrupting contaminants (EDCs) during embryonic development in wildlife.

    PubMed Central

    Guillette, L J; Crain, D A; Rooney, A A; Pickford, D B

    1995-01-01

    Many environmental contaminants disrupt the vertebrate endocrine system. Although they may be no more sensitive to endocrine-disrupting contaminants (EDCs) than other vertebrates, reptiles are good sentinels of exposure to EDCs due to the lability in their sex determination. This is exemplified by a study of alligators at Lake Apopka, Florida, showing that EDCs have altered the balance of reproductive hormones resulting in reproductive dysfunction. Such alterations may be activationally or organizationally induced. Much research emphasizes the former, but a complete understanding of the influence of EDCs in nature can be generated only after consideration of both activational and organizational alterations. The organizational model suggests that a small quantity of an EDC, administered during a specific period of embryonic development, can permanently modify the organization of the reproductive, immune, and nervous systems. Additionally, this model helps explain evolutionary adaptations to naturally occurring estrogenic compounds, such as phytoestrogens. PMID:8593864

  17. Epidermal Patterning and Induction of Different Hair Types during Mouse Embryonic Development

    PubMed Central

    Duverger, Olivier; Morasso, Maria I.

    2010-01-01

    An intriguing question is how epidermal pattern formation processes are established, and which are the molecular mechanisms involved in these events. The establishment of the pattern is concomitant with the formation of ectodermal appendages, which involves complex interactions between the epithelium and the underlying mesenchyme. Among ectodermal appendages, hair follicles are the ‘mini organs’ that produce hair shafts. Several developmental and structural features are common to all hair follicles and to the hair shaft they produce. However, many different hair types are produced in a single organism. Also, different characteristics can be observed depending on the part of the body where the hair follicle is formed. Here, we review the mechanisms involved in the patterning of different hair types during mouse embryonic development, as well as the influence of the body axes on hair patterning. PMID:19750518

  18. Epidermal patterning and induction of different hair types during mouse embryonic development.

    PubMed

    Duverger, Olivier; Morasso, Maria I

    2009-09-01

    An intriguing question in developmental biology is how epidermal pattern formation processes are established and what are the molecular mechanisms involved in these events. The establishment of the pattern is concomitant with the formation of ectodermal appendages, which involves complex interactions between the epithelium and the underlying mesenchyme. Among ectodermal appendages, hair follicles are the "mini organs" that produce hair shafts. Several developmental and structural features are common to all hair follicles and to the hair shaft they produce. However, many different hair types are produced in a single organism. Also, different characteristics can be observed depending on the part of the body where the hair follicle is formed. Here, we review the mechanisms involved in the patterning of different hair types during mouse embryonic development as well as the influence of the body axes on hair patterning. PMID:19750518

  19. Environmental Factors Affecting Preschoolers' Motor Development

    ERIC Educational Resources Information Center

    Venetsanou, Fotini; Kambas, Antonis

    2010-01-01

    The process of development occurs according to the pattern established by the genetic potential and also by the influence of environmental factors. The aim of the present study was to focus on the main environmental factors affecting motor development. The review of the literature revealed that family features, such as socioeconomic status,…

  20. NDR Kinases Are Essential for Somitogenesis and Cardiac Looping during Mouse Embryonic Development

    PubMed Central

    Schmitz-Rohmer, Debora; Probst, Simone; Yang, Zhong-Zhou; Laurent, Frédéric; Stadler, Michael B.; Zuniga, Aimée; Zeller, Rolf; Hynx, Debby; Hemmings, Brian A.; Hergovich, Alexander

    2015-01-01

    Studies of mammalian tissue culture cells indicate that the conserved and distinct NDR isoforms, NDR1 and NDR2, play essential cell biological roles. However, mice lacking either Ndr1 or Ndr2 alone develop normally. Here, we studied the physiological consequences of inactivating both NDR1 and NDR2 in mice, showing that the lack of both Ndr1/Ndr2 (called Ndr1/2-double null mutants) causes embryonic lethality. In support of compensatory roles for NDR1 and NDR2, total protein and activating phosphorylation levels of the remaining NDR isoform were elevated in mice lacking either Ndr1 or Ndr2. Mice retaining one single wild-type Ndr allele were viable and fertile. Ndr1/2-double null embryos displayed multiple phenotypes causing a developmental delay from embryonic day E8.5 onwards. While NDR kinases are not required for notochord formation, the somites of Ndr1/2-double null embryos were smaller, irregularly shaped and unevenly spaced along the anterior-posterior axis. Genes implicated in somitogenesis were down-regulated and the normally symmetric expression of Lunatic fringe, a component of the Notch pathway, showed a left-right bias in the last forming somite in 50% of all Ndr1/2-double null embryos. In addition, Ndr1/2-double null embryos developed a heart defect that manifests itself as pericardial edemas, obstructed heart tubes and arrest of cardiac looping. The resulting cardiac insufficiency is the likely cause of the lethality of Ndr1/2-double null embryos around E10. Taken together, we show that NDR kinases compensate for each other in vivo in mouse embryos, explaining why mice deficient for either Ndr1 or Ndr2 are viable. Ndr1/2-double null embryos show defects in somitogenesis and cardiac looping, which reveals their essential functions and shows that the NDR kinases are critically required during the early phase of organogenesis. PMID:26305214

  1. A Src-Tks5 Pathway Is Required for Neural Crest Cell Migration during Embryonic Development

    PubMed Central

    Murphy, Danielle A.; Tsai, Jeff H.; Kawakami, Yasuhiko; Maurer, Jochen; Stewart, Rodney A.; Izpisúa-Belmonte, Juan Carlos; Courtneidge, Sara A.

    2011-01-01

    In the adult organism, cell migration is required for physiological processes such as angiogenesis and immune surveillance, as well as pathological events such as tumor metastasis. The adaptor protein and Src substrate Tks5 is necessary for cancer cell migration through extracellular matrix in vitro and tumorigenicity in vivo. However, a role for Tks5 during embryonic development, where cell migration is essential, has not been examined. We used morpholinos to reduce Tks5 expression in zebrafish embryos, and observed developmental defects, most prominently in neural crest-derived tissues such as craniofacial structures and pigmentation. The Tks5 morphant phenotype was rescued by expression of mammalian Tks5, but not by a variant of Tks5 in which the Src phosphorylation sites have been mutated. We further evaluated the role of Tks5 in neural crest cells and neural crest-derived tissues and found that loss of Tks5 impaired their ventral migration. Inhibition of Src family kinases also led to abnormal ventral patterning of neural crest cells and their derivatives. We confirmed that these effects were likely to be cell autonomous by shRNA-mediated knockdown of Tks5 in a murine neural crest stem cell line. Tks5 was required for neural crest cell migration in vitro, and both Src and Tks5 were required for the formation of actin-rich structures with similarity to podosomes. Additionally, we observed that neural crest cells formed Src-Tks5-dependent cell protrusions in 3-D culture conditions and in vivo. These results reveal an important and novel role for the Src-Tks5 pathway in neural crest cell migration during embryonic development. Furthermore, our data suggests that this pathway regulates neural crest cell migration through the generation of actin-rich pro-migratory structures, implying that similar mechanisms are used to control cell migration during embryogenesis and cancer metastasis. PMID:21799874

  2. Prepatterning and patterning of the thalamus along embryonic development of Xenopus laevis

    PubMed Central

    Bandín, Sandra; Morona, Ruth; González, Agustín

    2015-01-01

    Previous developmental studies of the thalamus (alar part of the diencephalic prosomere p2) have defined the molecular basis for the acquisition of the thalamic competence (preparttening), the subsequent formation of the secondary organizer in the zona limitans intrathalamica, and the early specification of two anteroposterior domains (rostral and caudal progenitor domains) in response to inducing activities and that are shared in birds and mammals. In the present study we have analyzed the embryonic development of the thalamus in the anuran Xenopus laevis to determine conserved or specific features in the amphibian diencephalon. From early embryonic stages to the beginning of the larval period, the expression patterns of 22 markers were analyzed by means of combined In situ hybridization (ISH) and immunohistochemical techniques. The early genoarchitecture observed in the diencephalon allowed us to discern the boundaries of the thalamus with the prethalamus, pretectum, and epithalamus. Common molecular features were observed in the thalamic prepatterning among vertebrates in which Wnt3a, Fez, Pax6 and Xiro1 expression were of particular importance in Xenopus. The formation of the zona limitans intrathalamica was observed, as in other vertebrates, by the progressive expression of Shh. The largely conserved expressions of Nkx2.2 in the rostral thalamic domain vs. Gbx2 and Ngn2 (among others) in the caudal domain strongly suggest the role of Shh as morphogen in the amphibian thalamus. All these data showed that the molecular characteristics observed during preparttening and patterning in the thalamus of the anuran Xenopus (anamniote) share many features with those described during thalamic development in amniotes (common patterns in tetrapods) but also with zebrafish, strengthening the idea of a basic organization of this diencephalic region across vertebrates. PMID:26321920

  3. NDR Kinases Are Essential for Somitogenesis and Cardiac Looping during Mouse Embryonic Development.

    PubMed

    Schmitz-Rohmer, Debora; Probst, Simone; Yang, Zhong-Zhou; Laurent, Frédéric; Stadler, Michael B; Zuniga, Aimée; Zeller, Rolf; Hynx, Debby; Hemmings, Brian A; Hergovich, Alexander

    2015-01-01

    Studies of mammalian tissue culture cells indicate that the conserved and distinct NDR isoforms, NDR1 and NDR2, play essential cell biological roles. However, mice lacking either Ndr1 or Ndr2 alone develop normally. Here, we studied the physiological consequences of inactivating both NDR1 and NDR2 in mice, showing that the lack of both Ndr1/Ndr2 (called Ndr1/2-double null mutants) causes embryonic lethality. In support of compensatory roles for NDR1 and NDR2, total protein and activating phosphorylation levels of the remaining NDR isoform were elevated in mice lacking either Ndr1 or Ndr2. Mice retaining one single wild-type Ndr allele were viable and fertile. Ndr1/2-double null embryos displayed multiple phenotypes causing a developmental delay from embryonic day E8.5 onwards. While NDR kinases are not required for notochord formation, the somites of Ndr1/2-double null embryos were smaller, irregularly shaped and unevenly spaced along the anterior-posterior axis. Genes implicated in somitogenesis were down-regulated and the normally symmetric expression of Lunatic fringe, a component of the Notch pathway, showed a left-right bias in the last forming somite in 50% of all Ndr1/2-double null embryos. In addition, Ndr1/2-double null embryos developed a heart defect that manifests itself as pericardial edemas, obstructed heart tubes and arrest of cardiac looping. The resulting cardiac insufficiency is the likely cause of the lethality of Ndr1/2-double null embryos around E10. Taken together, we show that NDR kinases compensate for each other in vivo in mouse embryos, explaining why mice deficient for either Ndr1 or Ndr2 are viable. Ndr1/2-double null embryos show defects in somitogenesis and cardiac looping, which reveals their essential functions and shows that the NDR kinases are critically required during the early phase of organogenesis. PMID:26305214

  4. PHENOTYPE AND HEMATOPOIETIC POTENTIAL OF SIDE POPULATION CELLS THROUGHOUT EMBRYONIC DEVELOPMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult murine bone marrow hematopoietic stem cells (HSCs) can be purified by sorting Hoechst 33342-extruding side population (SP) cells. Herein we investigated whether SP cells reside within embryonic tissues and exhibit hematopoietic progenitor activity. We isolated yolk sac (YS) and embryonic tissu...

  5. Paternal H3K4 methylation is required for minor zygotic gene activation and early mouse embryonic development

    PubMed Central

    Aoshima, Keisuke; Inoue, Erina; Sawa, Hirofumi; Okada, Yuki

    2015-01-01

    Epigenetic modifications, such as DNA methylation and histone modifications, are dynamically altered predominantly in paternal pronuclei soon after fertilization. To identify which histone modifications are required for early embryonic development, we utilized histone K-M mutants, which prevent endogenous histone methylation at the mutated site. We prepared four single K-M mutants for histone H3.3, K4M, K9M, K27M, and K36M, and demonstrate that overexpression of H3.3 K4M in embryos before fertilization results in developmental arrest, whereas overexpression after fertilization does not affect the development. Furthermore, loss of H3K4 methylation decreases the level of minor zygotic gene activation (ZGA) predominantly in the paternal pronucleus, and we obtained similar results from knockdown of the H3K4 methyltransferase Mll3/4. We therefore conclude that H3K4 methylation, likely established by Mll3/4 at the early pronuclear stage, is essential for the onset of minor ZGA in the paternal pronucleus, which is necessary for subsequent preimplantation development in mice. PMID:25925669

  6. Paternal H3K4 methylation is required for minor zygotic gene activation and early mouse embryonic development.

    PubMed

    Aoshima, Keisuke; Inoue, Erina; Sawa, Hirofumi; Okada, Yuki

    2015-07-01

    Epigenetic modifications, such as DNA methylation and histone modifications, are dynamically altered predominantly in paternal pronuclei soon after fertilization. To identify which histone modifications are required for early embryonic development, we utilized histone K-M mutants, which prevent endogenous histone methylation at the mutated site. We prepared four single K-M mutants for histone H3.3, K4M, K9M, K27M, and K36M, and demonstrate that overexpression of H3.3 K4M in embryos before fertilization results in developmental arrest, whereas overexpression after fertilization does not affect the development. Furthermore, loss of H3K4 methylation decreases the level of minor zygotic gene activation (ZGA) predominantly in the paternal pronucleus, and we obtained similar results from knockdown of the H3K4 methyltransferase Mll3/4. We therefore conclude that H3K4 methylation, likely established by Mll3/4 at the early pronuclear stage, is essential for the onset of minor ZGA in the paternal pronucleus, which is necessary for subsequent preimplantation development in mice. PMID:25925669

  7. Factors affecting stress tolerance in recalcitrant embryonic axes from seeds of four Quercus (Fagaceae) species native to the USA or China

    PubMed Central

    Xia, Ke; Hill, Lisa M.; Li, De-Zhu; Walters, Christina

    2014-01-01

    Background and Aims Quercus species are often considered ‘foundation’ components of several temperate and/or subtropical forest ecosystems. However, the populations of some species are declining and there is considerable urgency to develop ex situ conservation strategies. In this study, the storage physiology of seeds within Quercus was explored in order to determine factors that affect survival during cryopreservation and to provide a quantitative assessment of seed recalcitrance to support future studies of this complex trait. Methods Water relations and survival of excised axes in response to water loss and cryo-exposure were compared for four Quercus species from subtropical China (Q. franchetii, Q. schottkyana) and temperate USA (Q. gambelii, Q. rubra). Key Results Seed tissues initially had high water contents and water potentials. Desiccation tolerance of the embryonic axis was not correlated with the post-shedding rainfall patterns where the samples originated. Instead, higher desiccation tolerance was observed in samples growing in areas with colder winters. Survival following cryo-exposure correlated with desiccation tolerance. Among species, plumule tissues were more sensitive than radicles to excision, desiccation and cryo-exposure, and this led to a higher proportion of abnormally developing embryos during recovery following stress. Conclusions Quercus species adapted to arid and semi-humid climates still produce recalcitrant seeds. The ability to avoid freezing rather than drought may be a more important selection factor to increase desiccation tolerance. Cryopreservation of recalcitrant germplasm from temperate species is currently feasible, whilst additional protective treatments are needed for ex situ conservation of Quercus from tropical and subtropical areas. PMID:25326139

  8. Embryonic development of goldfish (Carassius auratus): A model for the study of evolutionary change in developmental mechanisms by artificial selection

    PubMed Central

    Tsai, Hsin-Yuan; Chang, Mariann; Liu, Shih-Chieh; Abe, Gembu; Ota, Kinya G

    2013-01-01

    Background: Highly divergent morphology among the different goldfish strains (Carassius auratus) may make it a suitable model for investigating how artificial selection has altered developmental mechanisms. Here we describe the embryological development of the common goldfish (the single fin Wakin), which retains the ancestral morphology of this species. Results: We divided goldfish embryonic development into seven periods consisting of 34 stages, using previously reported developmental indices of zebrafish and goldfish. Although several differences were identified in terms of their yolk size, epiboly process, pigmentation patterns, and development rate, our results indicate that the embryonic features of these two teleost species are highly similar in their overall morphology from the zygote to hatching stage. Conclusions: These results provide an opportunity for further study of the evolutionary relationship between domestication and development, through applying well-established zebrafish molecular biological resources to goldfish embryos. Developmental Dynamics 242:1262–1283, 2013. © 2013 Wiley Periodicals, Inc. Key findings This study provides the first reliable descriptions of normal embryonic stages of wild-type goldfish. The embryonic features of goldfish and zebrafish are almost directly comparable. Goldfish embryos provide a novel model for the investigation of the evolutionary relationship between domestication and development. PMID:23913853

  9. Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo.

    PubMed

    Chen, Szu-Yu; Hsieh, Cho-Shuen; Chu, Shi-Wei; Lin, Cheng-Yung; Ko, Ching-Yi; Chen, Yi-Chung; Tsai, Huai-Jen; Hu, Chin-Hwa; Sun, Chi-Kuang

    2006-01-01

    Nervous system development is a complicated dynamic process, and many mechanisms remain unknown. By utilizing endogenous second-harmonic-generation as the contrast of polarized nerve fibers and third-harmonic-generation (THG) to reveal morphological changes, we have successfully observed the vertebrate embryonic nervous development from the very beginning based on a 1230-nm light source. The dynamic development of the nerve system within a live zebrafish embryo can be recorded continuously more than 20 hr without fluorescence markers. Since the THG process is not limited by the time of gene expression and differentiation as fluorescence-based techniques are, the observable stages can be advanced to the very beginning of the development process. The complete three-dimensional brain development from a neural plate to a neural tube can be uncovered with a submicron lateral resolution. We have, for the first time, also reported the generation of SHG from myelinated nerve fibers and the outer segment of the photoreceptors with a stacked membrane structure. Our study clearly indicates the fact that higher-harmonics-based optical microscopy has the strong potential to long-term in vivo study of the nervous system, including genetic disorders of the nervous system, axon pathfinding, neural regeneration, neural repair, and neural stem cell development. PMID:17092171

  10. SMARCE1 Promotes chicken embryonic gonad development by regulating ER α and AR expression.

    PubMed

    Gong, P; Yang, Y; Lei, W; Feng, Y; Li, S; Peng, X; Gong, Y

    2012-01-01

    SMARCE1 is one of some differentially expressed genes screened from a subtracted cDNA library between females and males during the period of sex differentiation. To understand the potential role of SMARCE1 in avian sex determination and differentiation, over-expression of SMARCE1 was performed in chicken embryos using the RCASBP.B retrovirus. Results showed that SMARCE1 expression was up-regulated in the infected embryonic gonads at the investigated stages (E6.5-E12.5) assessed by quantitative real-time RT-PCR, whole mount in situ hybridization and immunohistochemistry. With the over-expression of SMARCE1, CYP19A1, FOXL2, ERα, and SOX9 expression was significantly up-regulated while AR expression was significantly decreased in the male and/or female chicken gonad. Nevertheless, DMRT1 and AMH expression was not changed after the over-expression of SMARCE1. It is proposed that it might be via the SMARCE1-FOXL2 pathway that CYP19A1 expression was activated, and DMRT1 expression may be independent of the SMARCE1-SOX9 pathway. Meanwhile, the SMARCE1-AR pathway might be antagonized by up-regulated expression of ERα via estrogen-ER/androgen-AR signaling. The results of HE staining showed that the ovarian cortex was thickened and both testis seminiferous cord and interstitial cells were increased with the over-expression of SMARCE1. In conclusion, SMARCE1 can promote chicken embryonic gonad development by regulating the ERα and AR expression. PMID:22584849

  11. Lipid dynamics in zebrafish embryonic development observed by DESI-MS imaging and nanoelectrospray-MS.

    PubMed

    Pirro, V; Guffey, S C; Sepúlveda, M S; Mahapatra, C T; Ferreira, C R; Jarmusch, A K; Cooks, R G

    2016-06-01

    The zebrafish Danio rerio is a model vertebrate organism for understanding biological mechanisms. Recent studies have explored using zebrafish as a model for lipid-related diseases, for in vivo fish bioassays, and for embryonic toxicity experiments. Mass spectrometry (MS) and MS imaging are established tools for lipid profiling and spatial mapping of biomolecules and offer rapid, sensitive, and simple analytical protocols for zebrafish analysis. When ambient ionization techniques are used, ions are generated in native environmental conditions, requiring neither sample preparation nor separation of molecules prior to MS. We used two direct MS techniques to describe the dynamics of the lipid profile during zebrafish embryonic development from 0 to 96 hours post-fertilization and to explore these analytical approaches as molecular diagnostic assays. Desorption electrospray ionization (DESI) MS imaging followed by nanoelectrospray (nESI) MS and tandem MS (MS/MS) were used in positive and negative ion modes, allowing the detection of a large variety of phosphatidylglycerols, phosphatidylcholines, phosphatidylinositols, free fatty acids, triacylglycerols, ubiquinone, squalene, and other lipids, and revealed information on the spatial distributions of lipids within the embryo and on lipid molecular structure. Differences were observed in the relative ion abundances of free fatty acids, triacylglycerols, and ubiquinone - essentially localized to the yolk - across developmental stages, whereas no relevant differences were found in the distribution of complex membrane glycerophospholipids, indicating conserved lipid constitution. Embryos exposed to trichloroethylene for 72 hours exhibited an altered lipid profile, indicating the potential utility of this technique for testing the effects of environmental contaminants. PMID:27120110

  12. Mechanisms Involved in Glucocorticoid Induction of Pituitary GH Expression During Embryonic Development

    PubMed Central

    Ellestad, Laura E.; Puckett, Stefanie A.

    2015-01-01

    Glucocorticoid hormones are involved in functional differentiation of GH-producing somatotrophs. Glucocorticoid treatment prematurely induces GH expression in mammals and birds in a process requiring protein synthesis and Rat sarcoma (Ras) signaling. The objective of this study was to investigate mechanisms through which glucocorticoids initiate GH expression during embryogenesis, taking advantage of the unique properties of chicken embryos as a developmental model. We determined that stimulation of GH expression occurred through transcriptional activation of GH, rather than enhancement of mRNA stability, and this process requires histone deacetylase activity. Through pharmacological inhibition, we identified the ERK1/2 pathway as a likely downstream Ras effector necessary for glucocorticoid stimulation of GH. However, we also found that chronic activation of ERK1/2 activity with a constitutively active mutant or stimulatory ligand reduced initiation of GH expression by glucocorticoid treatment. Corticosterone treatment of cultured embryonic pituitary cells increased ERK1/2 activity in an apparent cyclical manner, with a rapid increase within 5 minutes, followed by a reduction to near-basal levels at 3 hours, and a subsequent increase again at 6 hours. Therefore, we conclude that ERK1/2 signaling must be strictly controlled for maximal glucocorticoid induction of GH to occur. These results are the first in any species to demonstrate that Ras- and ERK1/2-mediated transcriptional events requiring histone deacetylase activity are involved in glucocorticoid induction of pituitary GH during embryonic development. This report increases our understanding of the molecular mechanisms underlying glucocorticoid recruitment of somatotrophs during embryogenesis and should provide insight into glucocorticoid-induced developmental changes in other tissues and cell types. PMID:25560830

  13. Aspects of Embryonic and Larval Development in Bighead Carp Hypophthalmichthys nobilis and Silver Carp Hypophthalmichthys molitrix

    PubMed Central

    George, Amy E.; Chapman, Duane C.

    2013-01-01

    As bighead carp Hypophthalmichthysnobilis and silver carp H. molitrix (the bigheaded carps) are poised to enter the Laurentian Great Lakes and potentially damage the region’s economically important fishery, information on developmental rates and behaviors of carps is critical to assessing their ability to establish sustainable populations within the Great Lakes basin. In laboratory experiments, the embryonic and larval developmental rates, size, and behaviors of bigheaded carp were tracked at two temperature treatments, one “cold” and one “warm”. Developmental rates were computed using previously described stages of development and the cumulative thermal unit method. Both species have similar thermal requirements, with a minimum developmental temperature for embryonic stages of 12.1° C for silver carp and 12.9° C for bighead carp, and 13.3° C for silver carp larval stages and 13.4° C for bighead carp larval stages. Egg size differed among species and temperature treatments, as egg size was larger in bighead carp, and “warm" temperature treatments. The larvae started robust upwards vertical swimming immediately after hatching, interspersed with intervals of sinking. Vertical swimming tubes were used to measure water column distribution, and ascent and descent rates of vertically swimming fish. Water column distribution and ascent and descent rates changed with ontogeny. Water column distribution also showed some diel periodicity. Developmental rates, size, and behaviors contribute to the drift distance needed to fulfill the early life history requirements of bigheaded carps and can be used in conjunction with transport information to assess invasibility of a river. PMID:23967350

  14. A balance between TFPI and thrombin-mediated platelet activation is required for murine embryonic development

    PubMed Central

    Ellery, Paul E. R.; Maroney, Susan A.; Cooley, Brian C.; Luyendyk, James P.; Zogg, Mark; Weiler, Hartmut

    2015-01-01

    Tissue factor pathway inhibitor (TFPI) is a critical anticoagulant protein present in endothelium and platelets. Mice lacking TFPI (Tfpi−/−) die in utero from disseminated intravascular coagulation. They are rescued by concomitant tissue factor (TF) deficiency, demonstrating that TFPI modulates TF function in vivo. Recent studies have found TFPI inhibits prothrombinase activity during the initiation of coagulation and limits platelet accumulation during thrombus formation, implicating TFPI in modulating platelet procoagulant activity. To examine whether altered platelet function would compensate for the lack of TFPI and rescue TFPI-null embryonic lethality, Tfpi+/− mice lacking the platelet thrombin receptor, protease activated receptor 4 (PAR4; Par4−/−), or its coreceptor, PAR3, were mated. PAR3 deficiency did not rescue Tfpi−/− embryos, but >40% of expected Tfpi−/−:Par4−/− offspring survived to adulthood. Adult Tfpi−/−:Par4−/− mice did not exhibit overt thrombosis. However, they had focal sterile inflammation with fibrin(ogen) deposition in the liver and elevated plasma thrombin-antithrombin complexes, indicating activation of coagulation at baseline. Tfpi−/−:Par4−/− mice have platelet and fibrin accumulation similar to Par4−/− mice following venous electrolytic injury but were more susceptible than Par4−/− mice to TF-induced pulmonary embolism. In addition, ∼30% of the Tfpi−/−:Par4−/− mice were born with short tails. Tfpi−/−:Par4−/− mice are the first adult mice described that lack TFPI with unaltered TF. They demonstrate that TFPI physiologically modulates thrombin-dependent platelet activation in a manner that is required for successful embryonic development and identify a role for TFPI in dampening intravascular procoagulant stimuli that lead to thrombin generation, even in the absence of thrombin-mediated platelet activation. PMID:25954015

  15. Aspects of embryonic and larval development in bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix

    USGS Publications Warehouse

    George, Amy E.; Chapman, Duane C.

    2013-01-01

    As bighead carp Hypophthalmichthys nobilis and silver carp H. molitrix (the bigheaded carps) are poised to enter the Laurentian Great Lakes and potentially damage the region’s economically important fishery, information on developmental rates and behaviors of carps is critical to assessing their ability to establish sustainable populations within the Great Lakes basin. In laboratory experiments, the embryonic and larval developmental rates, size, and behaviors of bigheaded carp were tracked at two temperature treatments, one “cold” and one “warm”. Developmental rates were computed using previously described stages of development and the cumulative thermal unit method. Both species have similar thermal requirements, with a minimum developmental temperature for embryonic stages of 12.1° C for silver carp and 12.9° C for bighead carp, and 13.3° C for silver carp larval stages and 13.4° C for bighead carp larval stages. Egg size differed among species and temperature treatments, as egg size was larger in bighead carp, and “warm" temperature treatments. The larvae started robust upwards vertical swimming immediately after hatching, interspersed with intervals of sinking. Vertical swimming tubes were used to measure water column distribution, and ascent and descent rates of vertically swimming fish. Water column distribution and ascent and descent rates changed with ontogeny. Water column distribution also showed some diel periodicity. Developmental rates, size, and behaviors contribute to the drift distance needed to fulfill the early life history requirements of bigheaded carps and can be used in conjunction with transport information to assess invasibility of a river.

  16. Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer

    PubMed Central

    Kaiser, Sergio; Park, Young-Kyu; Franklin, Jeffrey L; Halberg, Richard B; Yu, Ming; Jessen, Walter J; Freudenberg, Johannes; Chen, Xiaodi; Haigis, Kevin; Jegga, Anil G; Kong, Sue; Sakthivel, Bhuvaneswari; Xu, Huan; Reichling, Timothy; Azhar, Mohammad; Boivin, Gregory P; Roberts, Reade B; Bissahoyo, Anika C; Gonzales, Fausto; Bloom, Greg C; Eschrich, Steven; Carter, Scott L; Aronow, Jeremy E; Kleimeyer, John; Kleimeyer, Michael; Ramaswamy, Vivek; Settle, Stephen H; Boone, Braden; Levy, Shawn; Graff, Jonathan M; Doetschman, Thomas; Groden, Joanna; Dove, William F; Threadgill, David W; Yeatman, Timothy J; Coffey, Robert J; Aronow, Bruce J

    2007-01-01

    Background The expression of carcino-embryonic antigen by colorectal cancer is an example of oncogenic activation of embryonic gene expression. Hypothesizing that oncogenesis-recapitulating-ontogenesis may represent a broad programmatic commitment, we compared gene expression patterns of human colorectal cancers (CRCs) and mouse colon tumor models to those of mouse colon development embryonic days 13.5-18.5. Results We report here that 39 colon tumors from four independent mouse models and 100 human CRCs encompassing all clinical stages shared a striking recapitulation of embryonic colon gene expression. Compared to normal adult colon, all mouse and human tumors over-expressed a large cluster of genes highly enriched for functional association to the control of cell cycle progression, proliferation, and migration, including those encoding MYC, AKT2, PLK1 and SPARC. Mouse tumors positive for nuclear β-catenin shifted the shared embryonic pattern to that of early development. Human and mouse tumors differed from normal embryonic colon by their loss of expression modules enriched for tumor suppressors (EDNRB, HSPE, KIT and LSP1). Human CRC adenocarcinomas lost an additional suppressor module (IGFBP4, MAP4K1, PDGFRA, STAB1 and WNT4). Many human tumor samples also gained expression of a coordinately regulated module associated with advanced malignancy (ABCC1, FOXO3A, LIF, PIK3R1, PRNP, TNC, TIMP3 and VEGF). Conclusion Cross-species, developmental, and multi-model gene expression patterning comparisons provide an integrated and versatile framework for definition of transcriptional programs associated with oncogenesis. This approach also provides a general method for identifying pattern-specific biomarkers and therapeutic targets. This delineation and categorization of developmental and non-developmental activator and suppressor gene modules can thus facilitate the formulation of sophisticated hypotheses to evaluate potential synergistic effects of targeting within- and

  17. Effects of catechins and low temperature on embryonic development and hatching in Heterodera glycines and Meloidogyne incognita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mimics of two natural influences, a chemical similar to one present in cyst nematodes and low temperature exposure of nematode eggs, were evaluated for their effects on quantitative and qualitative features of embryonic development and hatching. The polyphenol epigallocatechin gallate (EGCG), an ana...

  18. The embryonic development of ear-tufts and associated structural head and neck abnormalities of the Araucana fowl.

    PubMed

    Pabilonia, M S; Somes, R G

    1983-08-01

    Developing embryonic structural abnormalities of ear-tufted embryos of the Araucana fowl are described. These abnormal structures are peduncle, cleft, ear opening, tympanic membrane, and columella auris. The structural abnormalities are believed to be due to the early incomplete fusion of the hyoid and mandibular arches from the distal part of the ear opening to the neck area. PMID:6634592

  19. Repression of apical homeobox genes is required for embryonic root development in Arabidopsis.

    PubMed

    Grigg, Stephen P; Galinha, Carla; Kornet, Noortje; Canales, Claudia; Scheres, Ben; Tsiantis, Miltos

    2009-09-15

    Development of seed plant embryos is polarized along the apical-basal axis. This polarization occurs in the absence of cell migration and culminates in the establishment of two distinct pluripotent cell populations: the shoot apical meristem (SAM) and root meristem (RM), which postembryonically give rise to the entire shoot and root systems of the plant. The acquisition of genetic pathways that delimit root from shoot during embryogenesis must have played a pivotal role during land plant evolution because roots evolved after shoots in ancestral vascular plants and may be shoot-derived organs. However, such pathways are very poorly understood. Here we show that RM establishment in the model plant Arabidopsis thaliana requires apical confinement of the Class III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP III) proteins PHABULOSA (PHB) and PHAVOLUTA (PHV), which direct both SAM development and shoot lateral organ polarity. Failure to restrict PHB and PHV expression apically via a microRNA-dependent pathway prevents correct elaboration of the embryonic root development program and results in embryo lethality. As such, repression of a fundamental shoot development pathway is essential for correct root development. Additionally, our data suggest that a single patterning process, based on HD-ZIP III repression, mediates both apical-basal and radial polarity in the embryo and lateral organ polarity in the shoot. PMID:19646874

  20. Embryonic development of the skull of the Andean lizard Ptychoglossus bicolor (Squamata, Gymnophthalmidae)

    PubMed Central

    Hernández-Jaimes, Carlos; Jerez, Adriana; Ramírez-Pinilla, Martha Patricia

    2012-01-01

    The study of cranial design and development in Gymnophthalmidae is important to understand the ontogenetic processes behind the morphological diversity of the group and to examine the possible effects of microhabitat use and other ecological parameters, as well as phylogenetic constraints, on skull anatomy. Complete morphological descriptions of embryonic skull development within Gymnophthalmidae are non-existent. Likewise, very little is known about the complete chondrocranium of the family. Herein, the development of the skull of the semi-fossorial lizard Ptychoglossus bicolor is described along with an examination of the chondrocranium of other gymnophthalmid taxa and the teiid Cnemidophorus lemniscatus. Cranial chondrification begins with early condensations in the ethmoid, orbitotemporal and occipital regions of the chondrocranium as well as the viscerocranium. Ossification of the skull starts with elements of the dermatocranium (pterygoid, prefrontal, maxilla and jugal). The orbitosphenoid is the last chondral bone to appear. At birth, the skull is almost completely ossified and exhibits a large frontoparietal fontanelle. In general terms, the chondrocranium of the gymnophthalmids studied is characteristic of lacertiform terrestrial lizards, in spite of their life habits, and resembles the chondrocranium of C. lemniscatus in many aspects. However, the gymnophthalmids show great variation in the orbitosphenoid and a complex nasal capsule. The latter exhibits greater development of some nasal cartilages, which make it more complex than in C. lemniscatus. These characteristics might be related to microhabitat use and the well-developed olfactory and vomeronasal systems observed within this clade. PMID:22881276

  1. Perturbations of heart development and function in cardiomyocytes from human embryonic stem cells with trisomy 21.

    PubMed

    Bosman, Alexis; Letourneau, Audrey; Sartiani, Laura; Del Lungo, Martina; Ronzoni, Flavio; Kuziakiv, Rostyslav; Tohonen, Virpi; Zucchelli, Marco; Santoni, Federico; Guipponi, Michel; Dumevska, Biljana; Hovatta, Outi; Antonarakis, Stylianos E; Jaconi, Marisa E

    2015-05-01

    Congenital heart defects (CHD) occur in approximately 50% of patients with Down syndrome (DS); the mechanisms for this occurrence however remain unknown. In order to understand how these defects evolve in early development in DS, we focused on the earliest stages of cardiogenesis to ascertain perturbations in development leading to CHD. Using a trisomy 21 (T21) sibling human embryonic stem cell (hESC) model of DS, we show that T21-hESC display many significant differences in expression of genes and cell populations associated with mesodermal, and more notably, secondary heart field (SHF) development, in particular a reduced number of ISL1(+) progenitor cells. Furthermore, we provide evidence for two candidate genes located on chromosome 21, ETS2 and ERG, whose overexpression during cardiac commitment likely account for the disruption of SHF development, as revealed by downregulation or overexpression experiments. Additionally, we uncover an abnormal electrophysiological phenotype in functional T21 cardiomyocytes, a result further supported by mRNA expression data acquired using RNA-Seq. These data, in combination, revealed a cardiomyocyte-specific phenotype in T21 cardiomyocytes, likely due to the overexpression of genes such as RYR2, NCX, and L-type Ca(2+) channel. These results contribute to the understanding of the mechanisms involved in the development of CHD. Stem Cells 2015;33:1434-1446. PMID:25645121

  2. Factors Affecting the Quality of Staff Development.

    ERIC Educational Resources Information Center

    Purcell, Larry O.

    A review of the literature concerning the effectiveness and quality of staff development programs focuses on factors that affect the success of such programs. These factors include: individual concerns, training activities, applications, qualifications of consultants, scheduling, strategies, facilities, feedback, collaboration, and outcomes. It is…

  3. Affective Dimensions of Adult Literacy Development.

    ERIC Educational Resources Information Center

    Durgunoglu, Aydin Y.

    To investigate affective dimensions of adult literacy development more systematically, researchers conducted a qualitative comparative analysis of four women participating in an adult literacy program in Istanbul, Turkey. The contrastive study chose two participants who completed the course; each was matched with a participant who had dropped out.…

  4. How, when, and where in pattern formation: Spying on embryonic development one molecule at a time

    NASA Astrophysics Data System (ADS)

    Garcia, Hernan

    An abiding mystery in the study of living matter is how a single cell develops into a multicellular organism. As this cell divides, its progeny read the program encoded on their DNA and adopt different fates becoming familiar cell types such as those found in muscle, liver and our brains. We now know that the decisions that cells make during development are not so much based on which genes to express, but rather on when, where and how to express them. Despite advances in determining the identities of the molecules that mediate these decisions we are still incapable of predicting how simple physical parameters such as the number, position and affinity of binding sites for these molecules on the DNA determine developmental fates. Using the fruit fly, one of the classic model systems for embryonic development, I will show how a combination of new technologies, quantitative experiments, and statistical mechanics is providing new insights about cellular decision making during development. In particular, I will describe how the specification of macroscopic body parts in an organism is linked to the non-equilibrium molecular-scale processes inside single cells. The goal of this interdisciplinary research is to produce a predictive understanding of developmental programs which will enable the rational control of biological size, shape and function.

  5. AGGRECAN IS EXPRESSED BY EMBRYONIC BRAIN GLIA AND REGULATES ASTROCYTE DEVELOPMENT

    PubMed Central

    Domowicz, Miriam S.; Sanders, Timothy A.; Ragsdale, Clifton W.; Schwartz, Nancy B.

    2008-01-01

    Determination of the molecules that regulate astrocyte development has been hindered by the paucity of markers that identify astrocytic precursors in vivo. Here we report that the chondroitin sulfate proteoglycan aggrecan both regulates astrocyte development and is expressed by embryonic glial precursors. During chick brain development, the onset of aggrecan expression precedes that of the astrocytic marker GFAP and is concomitant with detection of the early glial markers GLAST and glutamine synthetase. In co-expression studies, we established that aggrecan-rich cells contain the radial glial markers nestin, BLBP and GLAST and later in embryogenesis, the astroglial marker GFAP. Parallel in vitro studies showed that ventricular zone cultures, enriched in aggrecan-expressing cells, could be directed to a GFAP -positive fate in G5-supplemented differentiation media. Analysis of the chick aggrecan mutant nanomelia revealed marked increases in expression of the astrocyte differentiation genes GFAP, GLAST and GS in the absence of extracellular aggrecan. These increases in astrocytic marker gene expression could not be accounted for by changes in precursor proliferation or cell death, suggesting that aggrecan regulates the rate of astrocyte differentiation. Taken together, these results indicate a major role for aggrecan in the control of glial cell maturation during brain development. PMID:18207138

  6. Spatial distributions of AQP5 and AQP0 in embryonic and postnatal mouse lens development

    PubMed Central

    Petrova, Rosica S.; Schey, Kevin L.; Donaldson, Paul J.; Grey, Angus C.

    2015-01-01

    The expression of the water channel protein aquaporin (AQP)-5 in adult rodent and human lenses was recently reported using immunohistochemistry, molecular biology, and mass spectrometry techniques, confirming a second transmembrane water channel that is present in lens fibre cells in addition to the abundant AQP0 protein. Interestingly, the sub-cellular distribution and level of post-translational modification of both proteins changes with fibre cell differentiation and location in the adult rodent lens. This study compares the sub-cellular distribution of AQP0 and AQP5 during embryonic and postnatal fibre cell development in the mouse lens to understand how the immunolabelling patterns for both AQPs observed in adult lens are first established. Immunohistochemistry was used to map the cellular and sub-cellular distribution of AQP5 and AQP0 throughout the lens in cryosections from adult (6 weeks to 8 months) and postnatal (0-2 weeks) mouse lenses and in sections from paraffin embedded mouse embryos (E10-E19). All sections were imaged by fluorescence confocal microscopy. Using antibodies directed against the C-terminus of each AQP, AQP5 was abundantly expressed early in development, being found in the cytoplasm of cells of the lens vesicle and surrounding tissues (E10), while AQP0 was detected later (E11), and only in the membranes of elongating primary fibre cells. During the course of subsequent embryonic and postnatal development the pattern of cytoplasmic AQP5 and membranous AQP0 labelling was maintained until postnatal day 6 (P6). From P6 AQP5 labelling became progressively more membranous initially in the lens nucleus and then later in all regions of the lens, while AQP0 labelling was abruptly lost in the lens nucleus due to C-terminal truncation. Our results show that the spatial distribution patterns of AQP0 and AQP5 observed in the adult lens are established during a narrow window of post natal development (P6-P15) that precedes eye opening and coincides

  7. Embryonic hematopoiesis.

    PubMed

    Golub, Rachel; Cumano, Ana

    2013-12-01

    Blood cells are continually produced from a pool of progenitors that derive from hematopoietic stem cells (HSCs). In vertebrates, the hematopoietic system develops from two distinct waves or generation of precursors. The first wave occurs in the yolk sac, in mammals or equivalent embryonic structure, and produces nucleated primitive erythrocytes that provide the embryo with the first oxygen transporter and are, therefore, essential for the viability of the embryo. The yolk sac also produces myeloid cells that migrate to the central nervous system and to the skin to form the microglia and skin specific macrophages, the Langerhans cells. The second wave occurs in the dorsal aorta and produces multipotential hematopoietic progenitors. These cells are generated once in the lifetime from mesoderm derivatives closely related to endothelial cells, during a short period of embryonic development. Newly generated cells do not reconstitute the hematopoietic compartment of conventional recipients; therefore, they are designated as immature or pre-HSCs. They undergo maturation into adult HSCs in the aorta or in the fetal liver accompanied by the expression of MHC class I, CD45, CD150, Sca-1 and the absence of CD48. Differentiation of HSCs first occurs in the fetal liver, giving rise to mature blood cells. HSCs also expand in the fetal liver, and in a short time period (four days in the mouse embryo), they increase over 40-fold. HSCs and progenitor cells exit the fetal liver and colonize the spleen, where differentiation to the myeloid lineage and particular lymphoid subsets is favored. PMID:24041595

  8. Greater rhea (Rhea americana) external morphology at different stages of embryonic and fetal development.

    PubMed

    de Almeida, Hatawa Melo; Sousa, Renata Patrícia; Bezerra, Dayseanny Oliveira; Olivindo, Rodrigo Fernando Gomes; das Neves Diniz, Anaemilia; de Oliveira, Sâmia Clara; Feitosa, Matheus Levi Tajra; de Moura Fortes, Eunice Anita; Ferraz, Maíra Soares; de Carvalho, Yulla Klinger Pereira; de Menezes, Danilo José Ayres; de Carvalho, Maria Acelina Martins

    2015-11-01

    Knowledge of wild species embryonic development is important for their maintenance in captivity or the wild. The objective of the present study was to characterize the external morphology and define the biometry of greater rhea embryos and fetuses at different stages of development. A total of 41 embryos and fetuses were analyzed to describe their external morphology using a stereoscopic microscope. The crown-rump (CR), total length (TL), cephalocaudal length (CCL), biparietal diameter (BPD), beak, humerus and tibio-tarsal lengths were measured by digital pachymeter, millimetric scale ruler and cotton thread. The weight of the embryos and fetuses was measured on digital scales. The greater rhea embryos at 5, 6 and 7 days incubation presented a "C" shape. At 9, 10 and 11 days the eyes were big and pigmented. At 11, 12 and 13 days the eyelid covered more than half the eye, resulting in an oval slit. In 14 and 15 day-old embryos, the skin was still thin and the ribs evident, but at 18 days this structure was thicker. In embryos at 21 and 27 days of development closed eyelids were observed forming an eyelid slit, and the eye ball was less pronounced at 27 days. Weight gain presented an exponential growth curve, while measurements such as TL, DBP, beak, humerus and tibio-tarsal length had linear growth over time. Thus it was possible to characterize the greater rhea embryos and fetuses at several incubation ages using their external morphology and morphometric analyses. PMID:26432389

  9. Caffeine interferes embryonic development through over-stimulating serotonergic system in chicken embryo.

    PubMed

    Li, Xiao-Di; He, Rong-Rong; Qin, Yang; Tsoi, Bun; Li, Yi-Fang; Ma, Zheng-Lai; Yang, Xuesong; Kurihara, Hiroshi

    2012-06-01

    The potential harmful effects of caffeine in pregnant women aroused public interests due to its possibility to jeopardize fetal development. Monoamine neurotransmitters are thought to regulate neural development processes through maternal-fetal interactions, which may have long term impact on mental and behavioral effects. The current study focuses on investigating the effects of caffeine on the monoamine neurotransmitter system using developmental chicken embryos. The ED(50) value of caffeine toxicity was 27.3 μmol/egg in chicken embryo. Administration of caffeine, with lower dosage than ED(50) (2.5, 5.0 and 10.0 μmol/egg), caused failure of neural tube closure. In addition, contents of 5-HT and its metabolite 5-HIAA were increased under dosage of 10.0 μmol/egg caffeine administration. Gene expression of TPH2 was also increased by caffeine treatment. Caffeine could result in defect of neural tube closure and induce disorder of serotonergic system development, which may increase teratogenic rate of embryos. Meanwhile, it is probably an underlying factor for inducing psychological and behavioral disorders in adult. Moreover, caffeine was found to be accumulated in the embryonic brain and not being metabolized, which may incur a magnification of adverse effects. This study may provide valuable data for further investigations on toxicology of caffeine during different stages of pregnancy. PMID:22449533

  10. Crim1 has cell-autonomous and paracrine roles during embryonic heart development

    PubMed Central

    Iyer, Swati; Chou, Fang Yu; Wang, Richard; Chiu, Han Sheng; Raju, Vinay K. Sundar; Little, Melissa H.; Thomas, Walter G.; Piper, Michael; Pennisi, David J.

    2016-01-01

    The epicardium has a critical role during embryonic development, contributing epicardium-derived lineages to the heart, as well as providing regulatory and trophic signals necessary for myocardial development. Crim1 is a unique trans-membrane protein expressed by epicardial and epicardially-derived cells but its role in cardiogenesis is unknown. Using knockout mouse models, we observe that loss of Crim1 leads to congenital heart defects including epicardial defects and hypoplastic ventricular compact myocardium. Epicardium-restricted deletion of Crim1 results in increased epithelial-to-mesenchymal transition and invasion of the myocardium in vivo, and an increased migration of primary epicardial cells. Furthermore, Crim1 appears to be necessary for the proliferation of epicardium-derived cells (EPDCs) and for their subsequent differentiation into cardiac fibroblasts. It is also required for normal levels of cardiomyocyte proliferation and apoptosis, consistent with a role in regulating epicardium-derived trophic factors that act on the myocardium. Mechanistically, Crim1 may also modulate key developmentally expressed growth factors such as TGFβs, as changes in the downstream effectors phospho-SMAD2 and phospho-ERK1/2 are observed in the absence of Crim1. Collectively, our data demonstrates that Crim1 is essential for cell-autonomous and paracrine aspects of heart development. PMID:26821812

  11. Crim1 has cell-autonomous and paracrine roles during embryonic heart development.

    PubMed

    Iyer, Swati; Chou, Fang Yu; Wang, Richard; Chiu, Han Sheng; Raju, Vinay K Sundar; Little, Melissa H; Thomas, Walter G; Piper, Michael; Pennisi, David J

    2016-01-01

    The epicardium has a critical role during embryonic development, contributing epicardium-derived lineages to the heart, as well as providing regulatory and trophic signals necessary for myocardial development. Crim1 is a unique trans-membrane protein expressed by epicardial and epicardially-derived cells but its role in cardiogenesis is unknown. Using knockout mouse models, we observe that loss of Crim1 leads to congenital heart defects including epicardial defects and hypoplastic ventricular compact myocardium. Epicardium-restricted deletion of Crim1 results in increased epithelial-to-mesenchymal transition and invasion of the myocardium in vivo, and an increased migration of primary epicardial cells. Furthermore, Crim1 appears to be necessary for the proliferation of epicardium-derived cells (EPDCs) and for their subsequent differentiation into cardiac fibroblasts. It is also required for normal levels of cardiomyocyte proliferation and apoptosis, consistent with a role in regulating epicardium-derived trophic factors that act on the myocardium. Mechanistically, Crim1 may also modulate key developmentally expressed growth factors such as TGFβs, as changes in the downstream effectors phospho-SMAD2 and phospho-ERK1/2 are observed in the absence of Crim1. Collectively, our data demonstrates that Crim1 is essential for cell-autonomous and paracrine aspects of heart development. PMID:26821812

  12. Effects of heavy ion radiation on the brain vascular system and embryonic development

    NASA Astrophysics Data System (ADS)

    Yang, T. C.; Tobias, C. A.

    Using neonatal rats as a model system, we investigated the response of the brain vascular system to ionizing radiation and found that distinct petechial hemorrages developed in the cerebral cortex within a few hours after irradiation, reached a maximum about 13 to 24 hours, and decreased exponentially with time. No brain hemorrhage was found in neonatal rats 12 days after irradiation. Our experimental results indicate that a dose of a few hundred rad of X rays can induce a significant number of hemorrhages in the brain, and the number of lesions increases exponentially with dose. Heavy ions induce more hemorrhages than X rays for a given dose, and the RBE for 670 MeV/u neon particles ranges from about 2.0 for low doses to about 1.4 for high doses. A histological study on the hemorrhages indicates that a large number of red blood cells leak from the blood vessels. The radiation-induced hemorrhages may be a result of some capillary membrane damages or reproductive death of some blood vessel epithelial cells. The fast onset of hemorrhage after irradiation suggests that some membrane damage may be involved. The effect of heavy-ion radiation on the embryonic development was studied with energetic iron particles. Pregnant mice were whole-body irradiated with 600 MeV/u iron particles on day 6 of gestation and were sacrificed 12 days after irradiation. Various physical abnormalities were observed, and embryos irradiated with 1 rad iron particles showed retardation of body development.

  13. The embryonic development of Xenopus laevis under a low frequency electric field.

    PubMed

    Boga, Ayper; Binokay, Secil; Emre, Mustafa; Sertdemir, Yasar

    2012-06-01

    The aim of this study was to determine the effects of a low frequency electric field on the early embryonic development of frogs. The embryos of African clawed toads, Xenopus laevis, were exposed to a 20-μA electric current during the cleavage stages. The developmental processes of embryos during and after electric field exposure were monitored for teratogenic effects. All the embryos continuously exposed to the electric field died without undergoing any developmental processes. However, when the embryos were exposed to the electric field for 20-min periods (four times/over 2 d), the embryos developed into both normal tadpoles (70 %) and malformed tadpoles with light edema, reduced pigmentation, or axial anomalies, such as crooked tails. After exposure, the control embryos were at development stage 35.5 (2 d 2 h), while the normal embryos of the assay group were at developmental stage 41(3 d 4 h). There was a 1 d 2 h difference between the two developmental stages, revealing the importance of that time period for embryogenesis. In conclusion, the effects of electric current on Xenopus embryos are dependent on the initial developmental stage and the duration of exposure. PMID:22723004

  14. Nonmyocytic androgen receptor regulates the sexually dimorphic development of the embryonic bulbocavernosus muscle.

    PubMed

    Ipulan, Lerrie Ann; Suzuki, Kentaro; Sakamoto, Yuki; Murashima, Aki; Imai, Yuuki; Omori, Akiko; Nakagata, Naomi; Nishinakamura, Ryuichi; Valasek, Petr; Yamada, Gen

    2014-07-01

    The bulbocavernosus (BC) is a sexually dimorphic muscle observed only in males. Androgen receptor knockout mouse studies show the loss of BC formation. This suggests that androgen signaling plays a vital role in its development. Androgen has been known to induce muscle hypertrophy through satellite cell activation and myonuclei accretion during muscle regeneration and growth. Whether the same mechanism is present during embryonic development is not yet elucidated. To identify the mechanism of sexual dimorphism during BC development, the timing of morphological differences was first established. It was revealed that the BC was morphologically different between male and female mice at embryonic day (E) 16.5. Differences in the myogenic process were detected at E15.5. The male BC possesses a higher number of proliferating undifferentiated myoblasts. To identify the role of androgen signaling in this process, muscle-specific androgen receptor (AR) mutation was introduced, which resulted in no observable phenotypes. Hence, the expression of AR in the BC was examined and found that the AR did not colocalize with any muscle markers such as Myogenic differentiation 1, Myogenin, and paired box transcription factor 7. It was revealed that the mesenchyme surrounding the BC expressed AR and the BC started to express AR at E15.5. AR mutation on the nonmyocytic cells using spalt-like transcription factor 1 (Sall1) Cre driver mouse was performed, which resulted in defective BC formation. It was revealed that the number of proliferating undifferentiated myoblasts was reduced in the Sall1 Cre:AR(L-/Y) mutant embryos, and the adult mutants were devoid of BC. The transition of myoblasts from proliferation to differentiation is mediated by cyclin-dependent kinase inhibitors. An increased expression of p21 was observed in the BC myoblast of the Sall1 Cre:AR(L-/Y) mutant and wild-type female. Altogether this study suggests that the nonmyocytic AR may paracrinely regulate the

  15. Evolutionary development of embryonic cerebrospinal fluid composition and regulation: an open research field with implications for brain development and function.

    PubMed

    Bueno, David; Garcia-Fernàndez, Jordi

    2016-01-01

    Within the consolidated field of evolutionary development, there is emerging research on evolutionary aspects of central nervous system development and its implications for adult brain structure and function, including behaviour. The central nervous system is one of the most intriguing systems in complex metazoans, as it controls all body and mind functions. Its failure is responsible for a number of severe and largely incurable diseases, including neurological and neurodegenerative ones. Moreover, the evolution of the nervous system is thought to be a critical step in the adaptive radiation of vertebrates. Brain formation is initiated early during development. Most embryological, genetic and evolutionary studies have focused on brain neurogenesis and regionalisation, including the formation and function of organising centres, and the comparison of homolog gene expression and function among model organisms from different taxa. The architecture of the vertebrate brain primordium also reveals the existence of connected internal cavities, the cephalic vesicles, which in fetuses and adults become the ventricular system of the brain. During embryonic and fetal development, brain cavities and ventricles are filled with a complex, protein-rich fluid called cerebrospinal fluid (CSF). However, CSF has not been widely analysed from either an embryological or evolutionary perspective. Recently, it has been demonstrated in higher vertebrates that embryonic cerebrospinal fluid has key functions in delivering diffusible signals and nutrients to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. Moreover, it has been shown that the composition and homeostasis of CSF are tightly controlled in a time-dependent manner from the closure of the anterior neuropore, just before the initiation of primary neurogenesis, up to the formation of functional choroid plexuses. In

  16. Formation of the hindgut cuticular lining during embryonic development of Porcellio scaber (Crustacea, Isopoda)

    PubMed Central

    Mrak, Polona; Bogataj, Urban; Štrus, Jasna; Žnidaršič, Nada

    2015-01-01

    Abstract The hindgut and foregut in terrestrial isopod crustaceans are ectodermal parts of the digestive system and are lined by cuticle, an apical extracellular matrix secreted by epithelial cells. Morphogenesis of the digestive system was reported in previous studies, but differentiation of the gut cuticle was not followed in detail. This study is focused on ultrastructural analyses of hindgut apical matrices and cuticle in selected intramarsupial developmental stages of the terrestrial isopod Porcellio scaber in comparison to adult animals to obtain data on the hindgut cuticular lining differentiation. Our results show that in late embryos of stages 16 and 18 the apical matrix in the hindgut consists of loose material overlaid by a thin intensely ruffled electron dense lamina facing the lumen. The ultrastructural resemblance to the embryonic epidermal matrices described in several arthropods suggests a common principle in chitinous matrix differentiation. The hindgut matrix in the prehatching embryo of stage 19 shows characteristics of the hindgut cuticle, specifically alignment to the apical epithelial surface and a prominent electron dense layer of epicuticle. In the preceding embryonic stage – stage 18 – an electron dense lamina, closely apposed to the apical cell membrane, is evident and is considered as the first epicuticle formation. In marsupial mancae the advanced features of the hindgut cuticle and epithelium are evident: a more prominent epicuticular layer, formation of cuticular spines and an extensive apical labyrinth. In comparison to the hindgut cuticle of adults, the hindgut cuticle of marsupial manca and in particular the electron dense epicuticular layer are much thinner and the difference between cuticle architecture in the anterior chamber and in the papillate region is not yet distinguishable. Differences from the hindgut cuticle in adults imply not fully developed structure and function of the hindgut cuticle in marsupial manca, possibly

  17. Neurotrophins are not required for normal embryonic development of olfactory neurons.

    PubMed

    Nef, S; Lush, M E; Shipman, T E; Parada, L F

    2001-06-01

    Neurons of the vertebrate olfactory epithelium (OE) regenerate continuously throughout life. The capacity of these neurons to regenerate and make new and precise synaptic connections in the olfactory bulb provides a useful model to study factors that may control or mediate neuronal regeneration. Expression and in vitro studies have suggested potential roles for the neurotrophins in the olfactory system. To directly examine whether neurotrophins are required for olfactory neuron development, we characterized in vivo the role of the neurotrophins in the primary olfactory system. For this, we generated mutant mice for TrkA, TrkB, TrkC, and also for BDNF and NT3 together with P2-IRES-tau-LacZ trangenic mice. Histochemical staining for beta-galactosidase at birth allowed in vivo analysis of the P2 subpopulation of olfactory neurons as well as their projections to the olfactory bulb. Our data indicate that Trk signaling is not required for normal embryonic development of the olfactory system. PMID:11356021

  18. Generation of Functional Thymic Epithelium from Human Embryonic Stem Cells that Supports Host T Cell Development

    PubMed Central

    Parent, Audrey V.; Russ, Holger A.; Khan, Imran S.; LaFlam, Taylor N.; Metzger, Todd C.; Anderson, Mark S.; Hebrok, Matthias

    2013-01-01

    SUMMARY Inducing immune tolerance to prevent rejection is a key step toward successful engraftment of stem-cell-derived tissue in a clinical setting. Using human pluripotent stem cells to generate thymic epithelial cells (TECs) capable of supporting T cell development represents a promising approach to reach this goal; however, progress toward generating functional TECs has been limited. Here, we describe a robust in vitro method to direct differentiation of human embryonic stem cells (hESCs) into thymic epithelial progenitors (TEPs) by precise regulation of TGFβ, BMP4, RA, Wnt, Shh, and FGF signaling. The hESC-derived TEPs further mature into functional TECs that support T cell development upon transplantation into thymus-deficient mice. Importantly, the engrafted TEPs produce T cells capable of in vitro proliferation as well as in vivo immune responses. Thus, hESC-derived TEP grafts may have broad applications for enhancing engraftment in cell-based therapies as well as restoring age-and stress-related thymic decline. PMID:23684540

  19. Development and Maturation of Embryonic Cortical Neurons Grafted into the Damaged Adult Motor Cortex

    PubMed Central

    Ballout, Nissrine; Frappé, Isabelle; Péron, Sophie; Jaber, Mohamed; Zibara, Kazem; Gaillard, Afsaneh

    2016-01-01

    Injury to the human central nervous system can lead to devastating consequences due to its poor ability to self-repair. Neural transplantation aimed at replacing lost neurons and restore functional circuitry has proven to be a promising therapeutical avenue. We previously reported in adult rodent animal models with cortical lesions that grafted fetal cortical neurons could effectively re-establish specific patterns of projections and synapses. The current study was designed to provide a detailed characterization of the spatio-temporal in vivo development of fetal cortical transplanted cells within the lesioned adult motor cortex and their corresponding axonal projections. We show here that as early as 2 weeks after grafting, cortical neuroblasts transplanted into damaged adult motor cortex developed appropriate projections to cortical and subcortical targets. Grafted cells initially exhibited characteristics of immature neurons, which then differentiated into mature neurons with appropriate cortical phenotypes where most were glutamatergic and few were GABAergic. All cortical subtypes identified with the specific markers CTIP2, Cux1, FOXP2, and Tbr1 were generated after grafting as evidenced with BrdU co-labeling. The set of data provided here is of interest as it sets biological standards for future studies aimed at replacing fetal cells with embryonic stem cells as a source of cortical neurons. PMID:27536221

  20. Requirement for highly efficient pre-mRNA splicing during Drosophila early embryonic development

    PubMed Central

    Guilgur, Leonardo Gastón; Prudêncio, Pedro; Sobral, Daniel; Liszekova, Denisa; Rosa, André; Martinho, Rui Gonçalo

    2014-01-01

    Drosophila syncytial nuclear divisions limit transcription unit size of early zygotic genes. As mitosis inhibits not only transcription, but also pre-mRNA splicing, we reasoned that constraints on splicing were likely to exist in the early embryo, being splicing avoidance a possible explanation why most early zygotic genes are intronless. We isolated two mutant alleles for a subunit of the NTC/Prp19 complexes, which specifically impaired pre-mRNA splicing of early zygotic but not maternally encoded transcripts. We hypothesized that the requirements for pre-mRNA splicing efficiency were likely to vary during development. Ectopic maternal expression of an early zygotic pre-mRNA was sufficient to suppress its splicing defects in the mutant background. Furthermore, a small early zygotic transcript with multiple introns was poorly spliced in wild-type embryos. Our findings demonstrate for the first time the existence of a developmental pre-requisite for highly efficient splicing during Drosophila early embryonic development and suggest in highly proliferative tissues a need for coordination between cell cycle and gene architecture to ensure correct gene expression and avoid abnormally processed transcripts. DOI: http://dx.doi.org/10.7554/eLife.02181.001 PMID:24755291

  1. The embryonic development of Stylops ovinae (Strepsiptera, Stylopidae) with emphasis on external morphology.

    PubMed

    Fraulob, Maximilian; Beutel, Rolf Georg; Machida, Ryuichiro; Pohl, Hans

    2015-01-01

    External features of the embryonic development of Stylops ovinae (Strepsiptera) were examined. Eighteen distinct embryological stages are suggested. Many embryological traits are closely correlated to the parasitic life style of the first instar larvae or to vivipary. The high number of eggs, their small size, the characteristic egg membrane, and the lack of micropyles are derived groundplan features of Strepsiptera. The development with a semi-long germ embryo is shared with several other groups of Holometabola. The reduction of the labrum and antennae are autapomorphies of Strepsiptera. The cephalic ventral plate of the first instar larva of S. ovinae is formed by parts of the head capsule and the anlagen of the maxillae and labium. It is involved in the formation of the specific entognathous condition, and the entire character complex is autapomorphic for Stylopidae. The trochanter is recognizable in the anlagen of all three legs. Its fusion with the femur in the later stages is an autapomorphy of Stylopidia. The extreme spiralization and compression of the abdomen during blastokinesis is a derived feature, like the reduction of the anlagen of the anterior abdominal appendages. The caudal bristles on segment XI are possibly re-activated cerci. The same is likely in the case of segment XI. PMID:25462667

  2. Melanosomes in pigmented epithelia maintain eye lens transparency during zebrafish embryonic development.

    PubMed

    Takamiya, Masanari; Xu, Feng; Suhonen, Heikki; Gourain, Victor; Yang, Lixin; Ho, Nga Yu; Helfen, Lukas; Schröck, Anne; Etard, Christelle; Grabher, Clemens; Rastegar, Sepand; Schlunck, Günther; Reinhard, Thomas; Baumbach, Tilo; Strähle, Uwe

    2016-01-01

    Altered levels of trace elements are associated with increased oxidative stress that is eventually responsible for pathologic conditions. Oxidative stress has been proposed to be involved in eye diseases, including cataract formation. We visualized the distribution of metals and other trace elements in the eye of zebrafish embryos by micro X-ray fluorescence (μ-XRF) imaging. Many elements showed highest accumulation in the retinal pigment epithelium (RPE) of the zebrafish embryo. Knockdown of the zebrafish brown locus homologues tyrp1a/b eliminated accumulation of these elements in the RPE, indicating that they are bound by mature melanosomes. Furthermore, albino (slc45a2) mutants, which completely lack melanosomes, developed abnormal lens reflections similar to the congenital cataract caused by mutation of the myosin chaperon Unc45b, and an in situ spin trapping assay revealed increased oxidative stress in the lens of albino mutants. Finally transplanting a wildtype lens into an albino mutant background resulted in cataract formation. These data suggest that melanosomes in pigment epithelial cells protect the lens from oxidative stress during embryonic development, likely by buffering trace elements. PMID:27141993

  3. Differential toxicity of copper, zinc, and lead during the embryonic development of Chasmagnathus granulatus (Brachyura, Varunidae).

    PubMed

    Lavolpe, Mariano; Greco, Laura López; Kesselman, Daniela; Rodríguez, Enrique

    2004-04-01

    Ovigerous females of the estuarine crab Chasmagnathus granulatus were exposed to copper (0.01 and 1 mg/L), zinc (0.05, 1, and 10 mg/L), or lead (0.01 and 1 mg/L) during early, late, or whole embryonic development. None of the assayed heavy metals produced a significant mortality of females, neither a decrease in the number of hatched larvae nor a decrease in the egg incubation time, but several morphological abnormalities were detected in hatched larvae. The abnormalities were classified in three categories: eye, body pigmentary, and body morphological abnormalities. Those larvae with eye and body pigmentary abnormalities, particularly those involving retinal pigments and chromatophores, showed the highest incidence by exposure to the assayed metals. In addition, embryos were more susceptible to copper and zinc during the late period of development, whereas the effect of lead was greater during the early period of embryogenesis. Some teratogenic effects observed in C. granulatus embryos exposed to heavy metals, particularly the hypertrophy and hypopigmentation of eyes observed in the laboratory at a lead concentration as low as that reported for the natural environment, could be considered as sensitive biomarkers for this kind of pollutant. PMID:15095892

  4. MicroRNA-10 modulates Hox genes expression during Nile tilapia embryonic development.

    PubMed

    Giusti, Juliana; Pinhal, Danillo; Moxon, Simon; Campos, Camila Lovaglio; Münsterberg, Andrea; Martins, Cesar

    2016-05-01

    Hox gene clusters encode a family of transcription factors that govern anterior-posterior axis patterning during embryogenesis in all bilaterian animals. The time and place of Hox gene expression are largely determined by the relative position of each gene within its cluster. Furthermore, Hox genes were shown to have their expression fine-tuned by regulatory microRNAs (miRNAs). However, the mechanisms of miRNA-mediated regulation of these transcription factors during fish early development remain largely unknown. Here we have profiled three highly expressed miR-10 family members of Nile tilapia at early embryonic development, determined their genomic organization as well as performed functional experiments for validation of target genes. Quantitative analysis during developmental stages showed miR-10 family expression negatively correlates with the expression of HoxA3a, HoxB3a and HoxD10a genes, as expected for bona fide miRNA-mRNA interactions. Moreover, luciferase assays demonstrated that HoxB3a and HoxD10a are targeted by miR-10b-5p. Overall, our data indicate that the miR-10 family directly regulates members of the Hox gene family during Nile tilapia embryogenesis. PMID:26980108

  5. Long-term time-lapse microscopy of C. elegans post-embryonic development.

    PubMed

    Gritti, Nicola; Kienle, Simone; Filina, Olga; van Zon, Jeroen Sebastiaan

    2016-01-01

    We present a microscopy technique that enables long-term time-lapse microscopy at single-cell resolution in moving and feeding Caenorhabditis elegans larvae. Time-lapse microscopy of C. elegans post-embryonic development is challenging, as larvae are highly motile. Moreover, immobilization generally leads to rapid developmental arrest. Instead, we confine larval movement to microchambers that contain bacteria as food, and use fast image acquisition and image analysis to follow the dynamics of cells inside individual larvae, as they move within each microchamber. This allows us to perform fluorescence microscopy of 10-20 animals in parallel with 20 min time resolution. We demonstrate the power of our approach by analysing the dynamics of cell division, cell migration and gene expression over the full ∼48 h of development from larva to adult. Our approach now makes it possible to study the behaviour of individual cells inside the body of a feeding and growing animal. PMID:27558523

  6. [Epigenetic modifications in human spermatozoon and its potential role in embryonic development].

    PubMed

    Shaoqin, Ge; Zhenghui, Zhao; Xueqian, Zhang; Yuan, Hao

    2014-05-01

    Spermatogenesis is a highly complex process involving mitotic cell division, meiosis and the process of spermiogenesis, during which unique and extensive chromatin and epigenetic modifications are remodeled to bring about specific epigenetic profiles for spermatozoa. Recent studies have shown that epigenetic modifications in mature spermatozoon play an important role in the developing embryo and its alterations in epigenetic patterns may increase the risk for fertilization failure, dysfunction of embryogenesis, preterm birth, low birthweight, congenital anomalies, perinatal mortality, and several other pregnancy-related complications seen at a higher frequency in babies conceived by in vitro fertilization (IVF). In this review, we assess the significance of epigenetic modifications (DNA methylation, histone retention and modification, RNAs and protamine) in mature spermatozoon and its potential role in embryonic development, and elucidate the relationship between altered epigenetic profile and associated diseases, providing basic information for preventing and treating male infertility, evaluating the epigenetic quality of sperm and reducing the risk of epigenetic diseases with babies conceived by assisted reproductive technology (ART). PMID:24846993

  7. Chemical genetic effects of Sargassum wightii during embryonic development in zebrafish

    PubMed Central

    Kannan, Rajaretinam Rajesh; Iniyan, Appadurai Muthamil; Vincent, Samuel Gnana Prakash

    2015-01-01

    Objective: Phenotype based small molecule discovery is a category of chemical genetic study. The aim of this study was to observe the phytochemical based genetic effects of Sargassum wightii during organogenesis in embryonic zebrafish. Materials and Methods: The phytomolecules from S. wightii were extracted using organic solvents and treated with the 24 h old developing zebrafish embryos. The active extract was partially purified by column chromatography, C18 Sep-Pak column and reversed-phase high-performance liquid chromatography. Results: Initially, cardiac bulging was found in 2 dpf to 3 dpf (days post fertilization), then bradycardia and tubular heart were observed in the next 8 h, which also showed the reduction in the heart beat rates. The phenotypic mutation effects of bre, has, dou yan, heg and you were observed in the 3 dpf and 4 dpf of the extract treated zebrafish embryos. Conclusions: This study demonstrated that the phytomolecules from S. wightii exhibited potential molecular switches on the developmental process, which might have significant role in understanding the development based chemical genetic studies in zebrafish. PMID:25878381

  8. Melanosomes in pigmented epithelia maintain eye lens transparency during zebrafish embryonic development

    PubMed Central

    Takamiya, Masanari; Xu, Feng; Suhonen, Heikki; Gourain, Victor; Yang, Lixin; Ho, Nga Yu; Helfen, Lukas; Schröck, Anne; Etard, Christelle; Grabher, Clemens; Rastegar, Sepand; Schlunck, Günther; Reinhard, Thomas; Baumbach, Tilo; Strähle, Uwe

    2016-01-01

    Altered levels of trace elements are associated with increased oxidative stress that is eventually responsible for pathologic conditions. Oxidative stress has been proposed to be involved in eye diseases, including cataract formation. We visualized the distribution of metals and other trace elements in the eye of zebrafish embryos by micro X-ray fluorescence (μ-XRF) imaging. Many elements showed highest accumulation in the retinal pigment epithelium (RPE) of the zebrafish embryo. Knockdown of the zebrafish brown locus homologues tyrp1a/b eliminated accumulation of these elements in the RPE, indicating that they are bound by mature melanosomes. Furthermore, albino (slc45a2) mutants, which completely lack melanosomes, developed abnormal lens reflections similar to the congenital cataract caused by mutation of the myosin chaperon Unc45b, and an in situ spin trapping assay revealed increased oxidative stress in the lens of albino mutants. Finally transplanting a wildtype lens into an albino mutant background resulted in cataract formation. These data suggest that melanosomes in pigment epithelial cells protect the lens from oxidative stress during embryonic development, likely by buffering trace elements. PMID:27141993

  9. Effects of estrogens during embryonal development on crowing in the domestic fowl.

    PubMed

    Marx, Gunther; Jurkevich, Aleksandr; Grossmann, Roland

    2004-09-30

    In the domestic fowl, crowing is typically a male-specific vocal behavior while the females normally do not crow. These sex differences in vocalization may result from organizational actions of estrogens during specific periods of embryonic development. To further investigate the role of estrogens in differentiation of crowing and development of the acoustic characteristics of crow calls, male domestic fowls were treated on Incubation Day 8 with estradiol benzoate (EB) or either oil or saline vehicles. On the same incubation day, the female fowls were treated with an aromatase inhibitor, fadrozole, or saline vehicle. An adulthood vocalization of cocks and hens was recorded during corresponding tests of sexual behavior. The exposure to EB or fadrozole had no effect on sexual differentiation of the gonads and all fadrozole-treated hens laid eggs at a rate similar to the control hens that received saline. While the levels of plasma testosterone at adulthood did not differ in treated and untreated cocks, the incidence of crowing rate was significantly lower in cocks that were exposed to estradiol. Acoustic analysis revealed a considerable reduction in duration and acoustic energy of calls while the main frequency characteristics were not changed. Four out of the seven tested fadrozole-treated hens demonstrated regularly crow-like vocalization with shorter duration and lower energy of calls in comparison to crows of the control males. These findings point out to a role for estradiol in organization of crowing behavior and a specific temporal pattern of the crowing call. PMID:15327911

  10. The Cre-Binding Protein Dcreb-a Is Required for Drosophila Embryonic Development

    PubMed Central

    Rose, R. E.; Gallaher, N. M.; Andrew, D. J.; Goodman, R. H.; Smolik, S. M.

    1997-01-01

    We have previously described the cloning of a cyclic AMP response-element (CRE)-binding protein, dCREB-A, in Drosophila melanogaster that is similar to the mammalian CRE-binding protein CREB. dCREB-A is a member of the bZIP family of transcription factors, shows specific binding to the (CRE), and can activate transcription in cell culture. In this report, we describe the gene structure for dCREB-A, protein expression patterns throughout development and the necessary role for this gene in embryogenesis. The 4.5-kb transcript is encoded in six exons that are distributed over 21 kb of DNA. There are seven start sites and no TATA consensus sequences upstream. The dCREB-A protein is expressed in the nuclei of the embryonic salivary gland, proventriculus and stomadeum. Late in embryogenesis, tracheal cell nuclei and specific nuclei within the segments show staining with anti-dCREB-A antibodies. In adult female ovaries, dCREB-A is expressed in the stage 9 through stage 11 follicle cell nuclei. Null mutations of the dCREB-A gene give rise to animals that no longer express dCREB-A protein and die late in embryogenesis before or at hatching. The absolute requirement of dCREB-A for embryogenesis demonstrates a nonredundant function for a CRE-binding protein that will be useful in studying the role of specific signal transduction cascades in development. PMID:9178009

  11. Expression patterns of prdm1 during chicken embryonic and germline development.

    PubMed

    Wan, Zhiyi; Rui, Lei; Li, Zandong

    2014-05-01

    PRDM1 (PR domain containing 1) is a transcriptional repressor that has been identified in various species and is crucial for cell growth, differentiation and development. However, the expression pattern and role of PRDM1 in development has not been sufficiently established in birds. We therefore investigate the spatio-temporal expression of PRDM1 in various tissues, especially in the germline, during chicken development, providing the basis for functional study. Our results show that prdm1 mRNA was expressed in blastodermal cells (BCs) at stage X and in various tissues including the liver, skin, lung, kidney, eye, bursa of fabricius, spleen, proventriculus, gizzard, intestine, testis, ovary, tongue, feathers and thymus but was not or was only sparcely present in the heart, brain and skeletal muscle. The level of prdm1 mRNA was highest in the BCs among all tissues tested and significantly changed during development in many tissues, such as the blastoderm, bursa of fabricius, spleen, feathers and germline. Furthermore, the expression of the PRDM1 protein generally paralleled the mRNA results, except for in the gizzard. Immunohistochemistry also revealed that PRDM1 was localized in the smooth muscle. In addition, during germline development, PRDM1 was found to be continuously expressed in the presumptive primordial germ cells (PGCs) at stage X, the circulating PGCs in blood and the germ cells in the gonads from embryonic day 6 to adult in both males and females. The expression pattern of PRDM1 in chicken thus suggests that this protein plays an important role during chicken development, such as in BC differentiation, feather formation and germ cell specification. PMID:24691770

  12. Cannabinoid Receptor-2 Regulates Embryonic Hematopoietic Stem Cell Development via Prostaglandin E2 and P-Selectin Activity.

    PubMed

    Esain, Virginie; Kwan, Wanda; Carroll, Kelli J; Cortes, Mauricio; Liu, Sarah Y; Frechette, Gregory M; Sheward, Lea M V; Nissim, Sahar; Goessling, Wolfram; North, Trista E

    2015-08-01

    Cannabinoids (CB) modulate adult hematopoietic stem and progenitor cell (HSPCs) function, however, impact on the production, expansion, or migration of embryonic HSCs is currently uncharacterized. Here, using chemical and genetic approaches targeting CB-signaling in zebrafish, we show that CB receptor (CNR) 2, but not CNR1, regulates embryonic HSC development. During HSC specification in the aorta-gonad-mesonephros (AGM) region, CNR2 stimulation by AM1241 increased runx1;cmyb(+) HSPCs, through heightened proliferation, whereas CNR2 antagonism decreased HSPC number; FACS analysis and absolute HSC counts confirmed and quantified these effects. Epistatic investigations showed AM1241 significantly upregulated PGE2 synthesis in a Ptgs2-dependent manner to increase AGM HSCs. During the phases of HSC production and colonization of secondary niches, AM1241 accelerated migration to the caudal hematopoietic tissue (CHT), the site of embryonic HSC expansion, and the thymus; however these effects occurred independently of PGE2. Using a candidate approach for HSC migration and retention factors, P-selectin was identified as the functional target of CNR2 regulation. Epistatic analyses confirmed migration of HSCs into the CHT and thymus was dependent on CNR2-regulated P-selectin activity. Together, these data suggest CNR2-signaling optimizes the production, expansion, and migration of embryonic HSCs by modulating multiple downstream signaling pathways. PMID:25931248

  13. Disruption of the Mouse mTOR Gene Leads to Early Postimplantation Lethality and Prohibits Embryonic Stem Cell Development

    PubMed Central

    Gangloff, Yann-Gaël; Mueller, Matthias; Dann, Stephen G.; Svoboda, Petr; Sticker, Melanie; Spetz, Jean-Francois; Um, Sung Hee; Brown, Eric J.; Cereghini, Silvia; Thomas, George; Kozma, Sara C.

    2004-01-01

    The mammalian target of rapamycin (mTOR) is a key component of a signaling pathway which integrates inputs from nutrients and growth factors to regulate cell growth. Recent studies demonstrated that mice harboring an ethylnitrosourea-induced mutation in the gene encoding mTOR die at embryonic day 12.5 (E12.5). However, others have shown that the treatment of E4.5 blastocysts with rapamycin blocks trophoblast outgrowth, suggesting that the absence of mTOR should lead to embryonic lethality at an earlier stage. To resolve this discrepancy, we set out to disrupt the mTOR gene and analyze the outcome in both heterozygous and homozygous settings. Heterozygous mTOR (mTOR+/−) mice do not display any overt phenotype, although mouse embryonic fibroblasts derived from these mice show a 50% reduction in mTOR protein levels and phosphorylation of S6 kinase 1 T389, a site whose phosphorylation is directly mediated by mTOR. However, S6 phosphorylation, raptor levels, cell size, and cell cycle transit times are not diminished in these cells. In contrast to the situation in mTOR+/− mice, embryonic development of homozygous mTOR−/− mice appears to be arrested at E5.5; such embryos are severely runted and display an aberrant developmental phenotype. The ability of these embryos to implant corresponds to a limited level of trophoblast outgrowth in vitro, reflecting a maternal mRNA contribution, which has been shown to persist during preimplantation development. Moreover, mTOR−/− embryos display a lesion in inner cell mass proliferation, consistent with the inability to establish embryonic stem cells from mTOR−/− embryos. PMID:15485918

  14. The role of Dichaete in transcriptional regulation during Drosophila embryonic development

    PubMed Central

    2013-01-01

    Background Group B Sox domain transcription factors play conserved roles in the specification and development of the nervous system in higher metazoans. However, we know comparatively little about how these transcription factors regulate gene expression, and the analysis of Sox gene function in vertebrates is confounded by functional compensation between three closely related family members. In Drosophila, only two group B Sox genes, Dichaete and SoxN, have been shown to function during embryonic CNS development, providing a simpler system for understanding the functions of this important class of regulators. Results Using a combination of transcriptional profiling and genome-wide binding analysis we conservatively identify over 1000 high confidence direct Dichaete target genes in the Drosophila genome. We show that Dichaete plays key roles in CNS development, regulating aspects of the temporal transcription factor sequence that confer neuroblast identity. Dichaete also shows a complex interaction with Prospero in the pathway controlling the switch from stem cell self-renewal to neural differentiation. Dichaete potentially regulates many more genes in the Drosophila genome and was found to be associated with over 2000 mapped regulatory elements. Conclusions Our analysis suggests that Dichaete acts as a transcriptional hub, controlling multiple regulatory pathways during CNS development. These include a set of core CNS expressed genes that are also bound by the related Sox2 gene during mammalian CNS development. Furthermore, we identify Dichaete as one of the transcription factors involved in the neural stem cell transcriptional network, with evidence supporting the view that Dichaete is involved in controlling the temporal series of divisions regulating neuroblast identity. PMID:24314314

  15. Comparative analysis of temporal gene expression patterns in the developing ovary of the embryonic chicken

    PubMed Central

    YU, Minli; XU, Yali; YU, Defu; YU, Debing; DU, Wenxing

    2015-01-01

    Many genes participate in the process of ovarian germ cell development, while the combined action mechanisms of these molecular regulators still need clarification. The present study was focused on determination of differentially expressed genes and gene functions at four critical time points in chicken ovarian development. Comparative transcriptional profiling of ovaries from embryonic day 5.5 (E5.5), E12.5, E15.5 and E18.5 was performed using an Affymetrix GeneChip chicken genome microarray. Differential expression patterns for genes specifically depleted and enriched in each stage were identified. The results showed that most of the up- and downregulated genes were involved in the metabolism of retinoic acid (RA) and synthesis of hormones. Among them, a higher number of up- and downregulated genes in the E15.5 ovary were identified as being involved in steroid biosynthesis and retinol metabolism, respectively. To validate gene changes, expressions of twelve candidate genes related to germ cell development were examined by real-time PCR and found to be consistent with the of GeneChip data. Moreover, the immunostaining results suggested that ovarian development during different stages was regulated by different genes. Furthermore, a Raldh2 knockdown chicken model was produced to investigate the fundamental role of Raldh2 in meiosis initiation. It was found that meiosis occurred abnormally in Raldh2 knockdown ovaries, but the inhibitory effect on meiosis was reversed by the addition of exogenous RA. This study offers insights into the profile of gene expression and mechanisms regulating ovarian development, especially the notable role of Raldh2 in meiosis initiation in the chicken. PMID:25736178

  16. Energy metabolism in developing chicken lymphocytes is altered during the embryonic to posthatch transition.

    PubMed

    Rudrappa, Shashidhara G; Humphrey, Brooke D

    2007-02-01

    Adequate energy status in lymphocytes is vital for their development. The ability of developing chicken lymphocytes to acquire and metabolize energy substrates was determined during embryonic days (e) and neonatal days (d) of life when primary-energy substrate metabolism is altered at the whole-animal level. In 3 experiments, bursacytes and thymocytes were isolated on e17, e20, d1, d3, d7, or d14 to analyze markers associated with glucose, glutamine, and lipid metabolism. Bursacyte glucose transporter-3 (Glut-3) mRNA abundance increased from d1 to d14 and hexokinase-1 (HK-1) mRNA abundance was maximum on e20 (P<0.05). Thymocyte Glut-1, Glut-3, and HK-1 mRNA abundance increased from e17 to d14 (P<0.05). HK enzyme activity increased from e20 to d3 in bursacytes and d3 to d7 in thymocytes (P<0.05). Glucose uptake by bursacytes and thymocytes was greater on d14 compared to d1 and d7 (P<0.05). Bursacyte and thymocyte sodium coupled neutral amino acid transporter-2 and glutaminase (GA) mRNA abundance increased from e20 to d7 (P<0.05). GA enzyme activity increased from e20 to d7 in bursacytes (P<0.05) and did not change in thymocytes. Carnitine palmitoyl transferase enzyme activity did not change over time in either cell type. These studies suggest that developing B and T lymphocytes adapt their metabolism during the first 2 wk after hatch. Developing lymphocytes increase glucose metabolism with no change in fatty acid metabolism and bursacytes, but not thymocytes, increase glutamine metabolism. Understanding the factors that regulate lymphocyte development in neonatal chicks may help promote their adaptive immune responses to pathogens in early life. PMID:17237322

  17. Development of a high-affinity GABA uptake system in embryonic amphibian spinal neurons.

    PubMed

    Lamborghini, J E; Iles, A

    1985-11-01

    High-affinity uptake systems for amino acid neurotransmitter precursors have been highly correlated with the use of the particular amino acid or its derivative as a transmitter. We have found interneurons in the Xenopus embryo spinal cord which accumulate GABA by a high-affinity uptake system. They originate near the end of gastrulation and their ability to accumulate GABA first appears at the early tail bud stage. By position and appearance they are comparable to some of the embryonic interneurons described by A. Roberts and J. D. W. Clarke (1982, Phil. Trans. R. Soc. London Ser. B 296, 195-212). GABA-accumulating neurons also develop in dissociated cell cultures made from the presumptive spinal cord of neural plate stage Xenopus embryos. GABA accumulation in cultured neurons, as in cells in vivo, occurs via a high-affinity uptake system; GABA-accumulating cells have the same time of origin as the cells in vivo, and the ability to accumulate GABA in the population of cultured neurons appears at a time equivalent to that observed in intact sibling embryos. Thus it seems likely that the population of GABA-accumulating neurons developing in cell culture corresponds to the GABA-accumulating interneurons in vivo. The development of these neurons in dissociated cell cultures permits perturbation experiments that would be difficult to perform in vivo. We have examined the development of high-affinity GABA uptake in conditions that permit no electrical impulse activity in the cultures. The onset and extent of development of GABA accumulation in the neuronal population are normal under these conditions. PMID:3932109

  18. Expression pattern of annelid Zic in embryonic development of the oligochaete Tubifex tubifex.

    PubMed

    Takahashi, Hirokazu; Shimizu, Takashi; Aruga, Jun

    2008-10-01

    Embryonic expression of a Zic homologue (Ttu-Zic) was examined in the oligochaete annelid Tubifex tubifex. The body plan of T. tubifex is characterized by obvious segmentation in the ectoderm and mesoderm. Ttu-Zic expression is detected in the mesodermal germ band and a subset of micromere descendants. Ttu-Zic is transiently expressed in primary m-blast cells (i.e., founder cells of mesodermal segments) as early as the time of their birth from M teloblasts. During its development, each mesodermal segment experiences two additional phases of Ttu-Zic expression. Ttu-Zic expression in micromere descendants is seen on the anterior surfaces of embryos undergoing teloblastogenesis; subsequently, these cells proliferate to form bilateral clusters, which then become internalized. Finally, clusters of Ttu-Zic-expressing cells are found in the center of the prostomium, corresponding to the cerebral ganglion. The Ttu-Zic expression profile in the early embryogenesis of T. tubifex may be homologous to those of evolutionarily distant animals. PMID:18810489

  19. Contrasting roles for MyoD in organizing myogenic promoter structures during embryonic skeletal muscle development

    PubMed Central

    Cho, Ok Hyun; Mallappa, Chandrashekara; Hernández-Hernández, J. Manuel; Rivera-Pérez, Jaime A.; Imbalzano, Anthony N.

    2014-01-01

    Background Among the complexities of skeletal muscle differentiation is a temporal distinction in the onset of expression of different lineage-specific genes. The lineage-determining factor MyoD is bound to myogenic genes at the onset of differentiation whether gene activation is immediate or delayed. How temporal regulation of differentiation-specific genes is established remains unclear. Results Using embryonic tissue, we addressed the molecular differences in the organization of the myogenin and muscle creatine kinase (MCK) gene promoters by examining regulatory factor binding as a function of both time and spatial organization during somitogenesis. At the myogenin promoter, binding of the homeodomain factor Pbx1 coincided with H3 hyperacetylation and was followed by binding of co-activators that modulate chromatin structure. MyoD and myogenin binding occurred subsequently, demonstrating that Pbx1 facilitates chromatin remodeling and modification prior to myogenic regulatory factor binding. At the same time, the MCK promoter was bound by HDAC2 and MyoD, and activating histone marks were largely absent. The association of HDAC2 and MyoD was confirmed by co-immunoprecipitation, proximity ligation assay (PLA), and sequential ChIP. Conclusion MyoD differentially promotes activated and repressed chromatin structures at myogenic genes early after the onset of skeletal muscle differentiation in the developing mouse embryo. PMID:25329411

  20. Changes in estrogen receptor expression in the chick thymus during late embryonic development.

    PubMed

    Katayama, Masafumi; Fukuda, Tomokazu; Hatabu, Toshimitsu; Narabara, Kiyoaki; Abe, Asaki; Kondo, Yasuhiro

    2014-03-01

    In chickens, although estrogen receptors (ER) are reported to be associated with the immunological processes, detailed information about the differences in ER expression in the tissues related to the development of lymphocytes is not fully known, especially during the developmental stage. To learn more about this immunological relationship, we used semi-quantitative polymerase chain reaction method to detect the ER expression levels in the thymus tissues of chicks during the developmental stage. Furthermore, ER-expressing cells were detected by immunohistochemistry. The results of this study show that the expression level of ER increased on embryonic day 16 and decreased on day 20. Furthermore, ER expression was significantly higher in male than in female chickens at day 16. The increased expression on day 16 and decreased level on day 20 were also reproduced in the incidence of immunoreactive cells, although there was a 1-day delay in the elevated incidence of the cells. This study revealed the changes in ER expression and the incidence of ER-positive cells in the thymus of chickens during the developmental stage. PMID:24000785

  1. Effects of salinity on embryonic development, survival, and growth of Crassostrea hongkongensis

    NASA Astrophysics Data System (ADS)

    Huo, Zhongming; Wang, Zhaoping; Liang, Jian; Zhang, Yuehuan; Shen, Jianping; Yao, Tuo; Su, Jiaqi; Yu, Ruihai

    2014-08-01

    This study examined the effects of salinity on embryonic development, survival, and growth of the Hong Kong oyster Crassostrea hongkongensis. The embryos, larvae, and juveniles of C. hongkongensis were held in artificial seawater at three different salinities (low, 15; medium, 23; and high, 30) to determine the optimum hatchery and nursery conditions for mass production of the seeds. Results showed that the percentage production of straight-hinged larvae from fertilized eggs was significantly lower at the high salinity than at the low- and medium-salinities ( P < 0.05). The survival rates of larvae and juveniles differed significantly among the three salinity trials, with the highest survival rate observed at the low salinity ( P < 0.05). The shell height of larvae was significantly larger at the low salinity than at the high and medium salinities from days 9 to 15 ( P < 0.05), whereas that of juveniles was significantly larger at the low salinity than at the high and medium salinities on day 70 ( P < 0.05). These results indicate that the larvae and juveniles of C. hongkongensis are tolerant to a wide range of salinities (15 to 30), but show better growth and survival at relatively low salinities. Thus, it is recommended to use relatively low salinities in hatchery and nursery systems for improved yields of C. hongkongensis.

  2. Prion protein function and the disturbance of early embryonic development in zebrafish

    PubMed Central

    Nourizadeh-Lillabadi, Rasoul; Press, Charles McL; Alestrøm, Peter

    2011-01-01

    Transmissible Spongiform Encephal-opathies (TSE) or prion diseases are a threat to food safety and to human and animal health. The molecular mechanisms responsible for prion diseases share similarities with a wider group of neurodegenerative disorders including Alzheimer disease and Parkinson disease and the central pathological event is a disturbance of protein folding of a normal cellular protein that is eventually accompanied by neuronal cell death and the death of the host. Prion protein (PrP) is a constituent of most normal mammalian cells and its presence is essential in the pathogenesis of TSE. However, the function of this normal cellular protein remains unclear. The prevention of PRNP gene expression in mammalian species has been undramatic, implying a functional redundancy. Yet PrP is conserved from mammals to fish. Recent studies of PrP in zebrafish have yielded novel findings showing that PrP has essential roles in early embryonic development. The amenability of zebrafish to global technologies has generated data indicating the existence of “anchorless” splice variants of PrP in the early embryo. This paper will discuss the possibility that the experimentalist's view of PrP functions might be clearer at a greater phylogenetic distance. PMID:21628994

  3. Spatio-temporal expression patterns of anterior Hox genes during Nile tilapia (Oreochromis niloticus) embryonic development.

    PubMed

    Lyon, R Stewart; Davis, Adam; Scemama, Jean-Luc

    2013-01-01

    Hox genes encode transcription factors that function to pattern regional tissue identities along the anterior-posterior axis during animal embryonic development. Divergent nested Hox gene expression patterns within the posterior pharyngeal arches may play an important role in patterning morphological variation in the pharyngeal jaw apparatus (PJA) between evolutionarily divergent teleost fishes. Recent gene expression studies have shown the expression patterns from all Hox paralog group (PG) 2-6 genes in the posterior pharyngeal arches (PAs) for the Japanese medaka (Oryzias latipes) and from most genes of these PGs for the Nile tilapia (Oreochromis niloticus). While several orthologous Hox genes exhibit divergent spatial and temporal expression patterns between these two teleost species in the posterior PAs, several tilapia Hox gene expression patterns from PG3-6 must be documented for a full comparative study. Here we present the spatio-temporal expression patterns of hoxb3b, c3a, b4a, a5a, b5a, b5b, b6a and b6b in the neural tube and posterior PAs of the Nile tilapia. We show that several of these tilapia Hox genes exhibit divergent expression patterns in the posterior PAs from their medaka orthologs. We also compare these gene expression patterns to orthologs in other gnathostome vertebrates, including the dogfish shark. PMID:23376031

  4. Lightsticks content toxicity: effects of the water soluble fraction on the oyster embryonic development.

    PubMed

    de Araujo, Milena Maria Sampaio; Menezes Filho, Adalberto; Nascimento, Iracema Andrade; Pereira, Pedro Afonso P

    2015-11-01

    Lightsticks are artifacts used as attractors in a type of commercial fishery, known as surface longline gear. Despite the excessive use, the contamination risks of these devices have not yet been properly investigated. This research aimed to fill up this gap by determining the chemical composition and the toxicity of lightsticks recently activated, compared to those one year after activation and to the ones collected on the beaches. The analyzes were carried out by Gas Chromatography coupled with Mass Spectrometry (GC-MS). Additionally, the variations in composition and the toxicity of their sea Water Soluble Fractions (WSF) were evaluated based on the WSF-effects of Crassostrea rhizophorae embryonic development. The GC-MS analysis made possible the identification of nineteen substances in the water soluble fraction of the lightsticks, such as dibutyl phthalate (DBP) and dimethyl phthalate (DMP). The value of the WSF-effective concentration (EC50) was in an average of 0.35%. After one year of the lightsticks activation, the toxicity was even higher (0.65%). Furthermore, other substances, also present in the lightsticks-WSF caused persistent toxicity even more dangerous to the environment than DBP and DMP. This essay discusses their toxicity effects and possible environment damages. PMID:26070145

  5. Metallic nickel nanoparticles and their effect on the embryonic development of the sea urchin Paracentrotus lividus.

    PubMed

    Kanold, Julia Maxi; Wang, Jiabin; Brümmer, Franz; Šiller, Lidija

    2016-05-01

    The presence of nanoparticles in many industrial applications and daily products is making it nowadays crucial to assess their impact when exposed to the environment. Metallic nickel nanoparticles (Ni NPs) are of high industrial interest due to their ability to catalyze the reversible hydration of CO2 to carbonic acid at ambient conditions. We characterized metallic Ni NPs by XRD, HRTEM and EDS and determined the solubility of free nickel ions from 3 mg/L metallic Ni NPs in seawater by ICP-MS over 96 h, which was below 3%. Further, embryonic development of the sea urchin Paracentrotus lividus was investigated for 48 h in the presence of metallic Ni NPs (0.03 mg/L to 3 mg/L), but no lethal effects were observed. However, 3 mg/L metallic Ni NPs caused a size reduction similar to 1.2 mg/L NiCl2*6 H2O. The obtained results contribute to current studies on metallic Ni NPs and point to their consequences for the marine ecosystem. PMID:26849528

  6. Macrophage recruitment during limb development and wound healing in the embryonic and foetal mouse.

    PubMed

    Hopkinson-Woolley, J; Hughes, D; Gordon, S; Martin, P

    1994-05-01

    Macrophages play a pivotal role in the adult inflammatory response to wounding. They are directly responsible for cellular debridement and, by providing a source of growth factors and cytokines, they recruit other inflammatory and fibroblastic cells and influence cell proliferation and tissue remodelling. In this paper we investigate the role of macrophages in clearing areas of programmed cell death in the developing embryo and also their role in embryonic and foetal wound healing. Immunocytochemistry using the monocyte/macrophage-specific monoclonal antibody, F4/80, reveals a close association between areas of programmed cell death in the remodelling interdigital regions of the mouse footplate and of F4/80-positive cells, suggesting that monocyte-derived macrophages, and not locally recruited fibroblastic cells, as previously believed, are responsible for phagocytosing and clearing areas of interdigital apoptosis. Our studies of wound healing reveal that macrophages are not recruited to, and therefore cannot be playing an active role in the healing of, excisional wounds made in the mouse embryo at any stage up until E14.5. Beyond this transition stage we see a significant recruitment of macrophages within 12 hours of wounding. We find that macrophages can be attracted to wounds in earlier embryos if the wound results in significant cell death such as after burning. PMID:7929625

  7. Septate Junction Proteins Play Essential Roles in Morphogenesis Throughout Embryonic Development in Drosophila

    PubMed Central

    Hall, Sonia; Ward, Robert E.

    2016-01-01

    The septate junction (SJ) is the occluding junction found in the ectodermal epithelia of invertebrate organisms, and is essential to maintain chemically distinct compartments in epithelial organs, to provide the blood–brain barrier in the nervous system, and to provide an important line of defense against invading pathogens. More than 20 genes have been identified to function in the establishment or maintenance of SJs in Drosophila melanogaster. Numerous studies have demonstrated the cell biological function of these proteins in establishing the occluding junction, whereas very few studies have examined further developmental roles for them. Here we examined embryos with mutations in nine different core SJ genes and found that all nine result in defects in embryonic development as early as germ band retraction, with the most penetrant defect observed in head involution. SJ genes are also required for cell shape changes and cell rearrangements that drive the elongation of the salivary gland during midembryogenesis. Interestingly, these developmental events occur at a time prior to the formation of the occluding junction, when SJ proteins localize along the lateral membrane and have not yet coalesced into the region of the SJ. Together, these observations reveal an underappreciated role for a large group of SJ genes in essential developmental events during embryogenesis, and suggest that the function of these proteins in facilitating cell shape changes and rearrangements is independent of their role in the occluding junction. PMID:27261004

  8. Effects of Krenite? brush control agent (fosamine ammonium) on embryonic development in mallards and bobwhite

    USGS Publications Warehouse

    Hoffman, D.J.

    1988-01-01

    Fosamine ammonium (Krenite) is a highly water-soluble carbamoylphosphonate herbicide used to control woody brush. It has been reported to be teratogenic to avian embryos following spray application of the eggs. The embryotoxic and teratogenic potential of Krenite was examined in mallards (Anas platyrhynchos) and bobwhite (Colinus virginianus). At 96 h of development, eggs were briefly immersed in distilled water or in Krenite formulation in distilled water at concentrations of 1.5, 6.5, or 30% fosamine ammonium. At 6.5% active ingredient (a.i.), Krenite reduced hatching success in bobwhite and mallards to 85 and 33% of that in the distilled-water controls. At 30% a.i., Krenite caused 95 to 100% mortality in both species by the time of hatching. Early embryonic growth was impaired by 30% Krenite in both species. There was no evidence of teratogenesis of the axial skeleton, as reported previously in chickens and Japanese quail (Coturnix japonica). Most abnormal embryos had severe edema and some stunting. Mallard hatchlings from the 1.5 and 6.5% Krenite groups weighed significantly less than controls and had lower plasma alanine aminotransferase and aspartate aminotransferase activities, with elevated plasma glucose and cholesterol concentrations. Brain acetylcholinesterase activity was unaffected by Krenite in embryos and hatchlings.

  9. Evaluating Effects of Hypomorphic Thoc1 Alleles on Embryonic Development in Rb1 Null Mice.

    PubMed

    Chinnam, Meenalakshmi; Wang, Xiaoling; Zhang, Xiaojing; Goodrich, David W

    2016-06-01

    The Rb1 tumor suppressor protein is a molecular adaptor that physically links transcription factors like E2f with various proteins acting on DNA or RNA to repress gene expression. Loss of Rb1 liberates E2f to activate the expression of genes mediating resulting phenotypes. Most Rb1 binding proteins, including E2f, interact through carboxyl-terminal protein interaction domains, but genetic evidence suggests that an amino-terminal protein interaction domain is also important. One protein that binds Rb1 through the amino-terminal domain is encoded by Thoc1, a required component of the THO ribonucleoprotein complex important for RNA processing and transport. The physiological relevance of this interaction is unknown. Here we tested whether Thoc1 mediates effects of Rb1 loss on mouse embryonic development. We found that Thoc1 deficiency delays embryo death, and this delay correlates with reduced apoptosis in the brain. E2f protein levels are reduced in Rb1:Thoc1-deficient brain tissue. Expression of apoptotic regulatory genes regulated by E2f, like Apaf1 and Bak1, is also reduced. These observations suggest that Thoc1 is required to support increased expression of E2f and apoptotic regulatory genes that trigger apoptosis upon Rb1 loss. These findings implicate Rb1 in the regulation of the THO ribonucleoprotein complex. PMID:27001308

  10. Septate Junction Proteins Play Essential Roles in Morphogenesis Throughout Embryonic Development in Drosophila.

    PubMed

    Hall, Sonia; Ward, Robert E

    2016-01-01

    The septate junction (SJ) is the occluding junction found in the ectodermal epithelia of invertebrate organisms, and is essential to maintain chemically distinct compartments in epithelial organs, to provide the blood-brain barrier in the nervous system, and to provide an important line of defense against invading pathogens. More than 20 genes have been identified to function in the establishment or maintenance of SJs in Drosophila melanogaster Numerous studies have demonstrated the cell biological function of these proteins in establishing the occluding junction, whereas very few studies have examined further developmental roles for them. Here we examined embryos with mutations in nine different core SJ genes and found that all nine result in defects in embryonic development as early as germ band retraction, with the most penetrant defect observed in head involution. SJ genes are also required for cell shape changes and cell rearrangements that drive the elongation of the salivary gland during midembryogenesis. Interestingly, these developmental events occur at a time prior to the formation of the occluding junction, when SJ proteins localize along the lateral membrane and have not yet coalesced into the region of the SJ. Together, these observations reveal an underappreciated role for a large group of SJ genes in essential developmental events during embryogenesis, and suggest that the function of these proteins in facilitating cell shape changes and rearrangements is independent of their role in the occluding junction. PMID:27261004

  11. Effects of exposure to four endocrine disrupting-chemicals on fertilization and embryonic development of Barbel chub ( Squaliobarbus curriculus)

    NASA Astrophysics Data System (ADS)

    Niu, Cuijuan; Wang, Wei; Gao, Ying; Li, Li

    2013-09-01

    The toxicities of 4 common endocrine-disrupting chemicals (EDCs), 17β-estradiol (E2), p,p'-dichlorodiphenyldichloro-ethylene (DDE), 4-nonylphenol (NP) and tributyltin (TBT), to sperm motility, fertilization rate, hatching rate and embryonic development of Barbel chub ( Squaliobarbus curriculus) were investigated in this study. The duration of sperm motility was significantly shortened by exposure to the EDCs at the threshold concentrations of 10 ng L-1 for E2 and TBT, 1 μg L-1 for NP and 100 μg L-1 for DDE, respectively. The fertilization rate was substantially reduced by the EDCs at the lowest observable effect concentrations (LOECs) of 10 ng L-1 for E2 and TBT and 10 μg L-1 for DDE and NP, respectively. Of the tested properties of S. curriculus, larval deformity rate was most sensitive to EDC exposure and was significantly increased by DDE at the lowest experimental level of 0.1 μg L-1. Other EDCs increased the larval deformity rate at the LOECs of 1 ng L-1 for E2, 10 ng L-1 for TBT and 1 μg L-1 for NP, respectively. Despite their decreases with the increasing EDC concentrations, the hatching rate and larval survival rate of S. curriculus were not significantly affected by the exposure to EDCs. The results indicated that all the 4 EDCs affected significantly and negatively the early life stages of the freshwater fish S. curriculus. Overall, E2 and TBT were more toxic than NP and DDE, while DDE might be more toxic to larval deformity rate than to other measured parameters. Thus, the 4 EDCs showed potential negative influences on natural population dynamics of S. curriculus. Our findings provided valuable basic data for the ecological risk assessment of E2, DDE, NP and TBT.

  12. Embryonic, Larval, and Early Juvenile Development of the Tropical Sea Urchin, Salmacis sphaeroides (Echinodermata: Echinoidea)

    PubMed Central

    Rahman, M. Aminur; Yusoff, Fatimah Md.; Arshad, A.; Shamsudin, Mariana Nor; Amin, S. M. N.

    2012-01-01

    Salmacis sphaeroides (Linnaeus, 1758) is one of the regular echinoids, occuring in the warm Indo-West Pacific, including Johor Straits, between Malaysia and Singapore. In order to investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of S. sphaeroides in laboratory condition. Gametes were obtained from adult individuals by 0.5 M KCl injection into the coelomic cavity. Fertilization rate at limited sperm concentration (10−5 dilution) was 96.6 ± 1.4% and the resulting embryos were reared at 24°C. First cleavage (2-cell), 4-cell, 8-cell, 16-cell, 32-cell, and multicell (Morulla) stages were achieved 01.12, 02.03, 02.28, 02.51, 03.12, and 03.32 h postfertilization. Ciliated blastulae with a mean length of 174.72 ± 4.43 μm hatched 08.45 h after sperm entry. The gastrulae formed 16.15 h postfertilization and the archenteron elongated constantly while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larva started to feed unicellular algae in 2 d, grew continuously, and finally attained metamorphic competence in 35 d after fertilization. Metamorphosis took approximately 1 h 30 min from attachment to the complete resorption of larval tissues and the development of complete juvenile structure with adult spines, extended tubefeet and well-developed pedicellaria, the whole event of which usually took place within 1 d postsettlement. This study represents the first successful investigation on embryonic, larval, and early juvenile development of S. sphaeroides. The findings would greatly be helpful towards the understanding of ontogeny and life-history strategies, which will facilitate us to develop the breeding, seed production, and culture techniques of sea urchins in captive condition. PMID:23055824

  13. Embryonic, larval, and early juvenile development of the tropical sea urchin, Salmacis sphaeroides (Echinodermata: Echinoidea).

    PubMed

    Rahman, M Aminur; Yusoff, Fatimah Md; Arshad, A; Shamsudin, Mariana Nor; Amin, S M N

    2012-01-01

    Salmacis sphaeroides (Linnaeus, 1758) is one of the regular echinoids, occuring in the warm Indo-West Pacific, including Johor Straits, between Malaysia and Singapore. In order to investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of S. sphaeroides in laboratory condition. Gametes were obtained from adult individuals by 0.5 M KCl injection into the coelomic cavity. Fertilization rate at limited sperm concentration (10(-5) dilution) was 96.6 ± 1.4% and the resulting embryos were reared at 24°C. First cleavage (2-cell), 4-cell, 8-cell, 16-cell, 32-cell, and multicell (Morulla) stages were achieved 01.12, 02.03, 02.28, 02.51, 03.12, and 03.32 h postfertilization. Ciliated blastulae with a mean length of 174.72 ± 4.43 μm hatched 08.45 h after sperm entry. The gastrulae formed 16.15 h postfertilization and the archenteron elongated constantly while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larva started to feed unicellular algae in 2 d, grew continuously, and finally attained metamorphic competence in 35 d after fertilization. Metamorphosis took approximately 1 h 30 min from attachment to the complete resorption of larval tissues and the development of complete juvenile structure with adult spines, extended tubefeet and well-developed pedicellaria, the whole event of which usually took place within 1 d postsettlement. This study represents the first successful investigation on embryonic, larval, and early juvenile development of S. sphaeroides. The findings would greatly be helpful towards the understanding of ontogeny and life-history strategies, which will facilitate us to develop the breeding, seed production, and culture techniques of sea urchins in captive condition. PMID:23055824

  14. Histology atlas of the developing mouse hepatobiliary system with emphasis on embryonic days 9.5-18.5.

    PubMed

    Crawford, Laura Wilding; Foley, Julie F; Elmore, Susan A

    2010-10-01

    Animal model phenotyping, in utero exposure toxicity studies, and investigation into causes of embryonic, fetal, or perinatal deaths have required pathologists to recognize and diagnose developmental disorders in spontaneous and engineered mouse models of disease. In mammals, the liver is the main site of hematopoiesis during fetal development, has endocrine and exocrine functions important for maintaining homeostasis in fetal and adult life; and performs other functions including waste detoxification, production and removal of glucose, glycogen storage, triglyceride and fatty acid processing, and serum protein production. Due to its role in many critical functions, alterations in the size, morphology, or function(s) of the liver often lead to embryonic lethality. Many publications and websites describe individual aspects of hepatobiliary development at defined stages. However, no single resource provides a detailed histological evaluation of H&E-stained sections of the developing murine liver and biliary systems using high-magnification and high-resolution color images. The work herein provides a histology atlas of hepatobiliary development between embryonic days 9.5-18.5. Although the focus of this work is normal hepatobiliary development, common defects in liver development are also described as a reference for pathologists who may be asked to phenotype mice with congenital, inherited, or treatment-related hepatobiliary defects. Authors' note: All digital images can be viewed online at https://niehsimagesepl-inc.com with the username "ToxPathLiver" and the password "embryolivers." PMID:20805319

  15. Perchlorate disrupts embryonic androgen synthesis and reproductive development in threespine stickleback without changing whole-body levels of thyroid hormone

    PubMed Central

    Petersen, Ann M.; Dillon, Danielle; Bernhardt, Richard A.; Torunsky, Roberta; Postlethwait, John H.; von Hippel, Frank A.; Buck, C. Loren; Cresko, William A.

    2014-01-01

    Perchlorate, an environmental contaminant, disrupts normal functioning of the thyroid. We previously showed that perchlorate disrupts behavior and gonad development, and induces external morphological changes in a vertebrate model organism, the threespine stickleback. Whether perchlorate alters these phenotypes via a thyroid-mediated mechanism, and the extent to which the effects depend on dose, are unknown. To address these questions, we chronically exposed stickleback to control conditions and to three concentrations of perchlorate (10, 30 and 100 ppm) at various developmental stages from fertilization to reproductive maturity. Adults chronically exposed to perchlorate had increased numbers of thyroid follicles and decreased numbers of thyrocytes. Surprisingly, T4 and T3 levels in larval, juvenile, and adult whole fish chronically exposed to perchlorate did not differ from controls, except at the lowest perchlorate dose, suggesting a non-monotonic dose response curve. We found no detectable abnormalities in external phenotype at any dose of perchlorate, indicating that the increased number of thyroid follicles compensated for the disruptive effects of these doses. In contrast to external morphology, gonadal development was altered substantially, with the highest dose of perchlorate causing the largest effects. Perchlorate increased the number both of early stage ovarian follicles in females and of advanced spermatogenic stages in males. Perchlorate also disrupted embryonic androgen levels. We conclude that chronic perchlorate exposure may not result in lasting adult gross morphological changes but can produce lasting modifications to gonads when compensation of T3 and T4 levels occurs by thyroid follicle hyperplasia. Perchlorate may therefore affect vertebrate development via both thyroidal and non-thyroidal mechanisms. PMID:25448260

  16. Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development.

    PubMed

    Gawecka, Joanna E; Marh, Joel; Ortega, Michael; Yamauchi, Yasuhiro; Ward, Monika A; Ward, W Steven

    2013-01-01

    Mouse zygotes do not activate apoptosis in response to DNA damage. We previously reported a unique form of inducible sperm DNA damage termed sperm chromatin fragmentation (SCF). SCF mirrors some aspects of somatic cell apoptosis in that the DNA degradation is mediated by reversible double strand breaks caused by topoisomerase 2B (TOP2B) followed by irreversible DNA degradation by a nuclease(s). Here, we created zygotes using spermatozoa induced to undergo SCF (SCF zygotes) and tested how they responded to moderate and severe paternal DNA damage during the first cell cycle. We found that the TUNEL assay was not sensitive enough to identify the breaks caused by SCF in zygotes in either case. However, paternal pronuclei in both groups stained positively for γH2AX, a marker for DNA damage, at 5 hrs after fertilization, just before DNA synthesis, while the maternal pronuclei were negative. We also found that both pronuclei in SCF zygotes with moderate DNA damage replicated normally, but paternal pronuclei in the SCF zygotes with severe DNA damage delayed the initiation of DNA replication by up to 12 hrs even though the maternal pronuclei had no discernable delay. Chromosomal analysis of both groups confirmed that the paternal DNA was degraded after S-phase while the maternal pronuclei formed normal chromosomes. The DNA replication delay caused a marked retardation in progression to the 2-cell stage, and a large portion of the embryos arrested at the G2/M border, suggesting that this is an important checkpoint in zygotic development. Those embryos that progressed through the G2/M border died at later stages and none developed to the blastocyst stage. Our data demonstrate that the zygote responds to sperm DNA damage through a non-apoptotic mechanism that acts by slowing paternal DNA replication and ultimately leads to arrest in embryonic development. PMID:23431372

  17. Loss of jab1 in osteochondral progenitor cells severely impairs embryonic limb development in mice.

    PubMed

    Bashur, Lindsay A; Chen, Dongxing; Chen, Zhijun; Liang, Bojian; Pardi, Ruggero; Murakami, Shunichi; Zhou, Guang

    2014-11-01

    The transcriptional cofactor Jab1 controls cell proliferation, apoptosis, and differentiation in diverse developmental processes by regulating the activity of various transcription factors. To determine the role of Jab1 during early limb development, we developed a novel Jab1(flox/flox) ; Prx1-Cre conditional Knockout (cKO) mutant mouse model in which Jab1 was deleted in the osteochondral progenitor cells of the limb buds. Jab1 cKO mutant mice displayed drastically shortened limbs at birth. The short-limb defect became apparent in Jab1 cKO mutants at E15.5 and increasingly worsened thereafter. By E18.5, Jab1 cKO mutant mice exhibited significantly shorter limbs with: very few hypertrophic chondrocytes, disorganized chondrocyte columns, much smaller primary ossification centers, and significantly increased apoptosis. Real-time RT-PCR analysis showed decreased expression of Sox9, Col2a1, Ihh, and Col10a1 in Jab1 cKO mutant long bones, indicating impaired chondrogenesis. Furthermore, in a micromass culture model of early limb mesenchyme cells, alcian blue staining showed a significant decrease in chondrogenesis in Jab1 cKO limb bud cells. The expression of Sox9 and its downstream targets Col2a1 and Aggrecan, as well as BMP signaling downstream targets, Noggin, Id1, and Ihh, were significantly decreased in Jab1 cKO micromass cultures. Moreover, over-expression of SOX9 in Jab1 cKO micromass cultures partially restored Col2a1and Aggrecan expression. Jab1-deficient micromass cultures also exhibited decreased BMP signaling response and reduced BMP-specific reporter activity ex vivo. In summary, our study demonstrates that Jab1 is an essential regulator of early embryonic limb development in vivo, likely in part by co-activating Sox9 and BMP signaling. PMID:24604556

  18. Dynamic expression of the vertebrate-specific protein Nucks during rodent embryonic development.

    PubMed

    Drosos, Yiannis; Kouloukoussa, Mirsini; Ostvold, Anne Carine; Havaki, Sophia; Katsantoni, Eleni; Marinos, Evangelos; Aleporou-Marinou, Vassiliki

    2014-01-01

    The nuclear casein kinase and cyclin-dependent kinase substrate 1 (NUCKS) is a highly phosphorylated nuclear protein that is overexpressed in many types of cancer. The flexibility of NUCKS and its extensive posttranslational modifications indicate that it is multifunctional, and its expression in most cell types suggests a housekeeping function. However, spatiotemporal expression of the Nucks protein during rodent development has not been reported. Thus, we investigated the expression of both the Nucks mRNA and protein during rat and mouse development by immunohistochemistry, in situ hybridization, Western immunoblotting, and reverse-transcription PCR analysis. We also used BLAST analysis against expressed sequence tag databases to determine whether a NUCKS homologue is expressed in invertebrate organisms. We found that Nucks expression increased during the initial stages of embryonic development, and then gradually decreased until birth in all tissues except the nervous tissue and muscle fibers. Interestingly, the expression of Nucks was very strong in migrating neural crest cells at E13.5 and ectoderm-derived tissues. In most tissues analyzed, the levels of Nucks correlated with the levels of Bax and activated caspase-3, which are indicative of apoptosis. Moreover, Nucks was upregulated very early during neuronal apoptosis in vitro. Expression analysis revealed that no transcript with close homology to the Nucks gene was present in invertebrates. The expression of Nucks in both proliferating and quiescent cells and its correlation with Bax levels and apoptosis strongly suggest that Nucks plays complex roles in cell homeostasis. Furthermore, the lack of homology in invertebrate organisms indicates a specific role for Nucks in vertebrate embryogenesis. PMID:24140890

  19. Embryonic stem cell-derived embryoid bodies development in collagen gels recapitulates sprouting angiogenesis.

    PubMed

    Feraud, O; Cao, Y; Vittet, D

    2001-12-01

    The formation of new blood vessels proceeds by both vasculogenesis and angiogenesis. The development of models, which fully recapitulate spatio-temporal events involved during these processes, are crucial to fully understand their mechanisms of regulation. In vitro differentiation of murine embryonic stem (ES) cells has been shown to be a useful tool to investigate factors and genes potentially involved in vasculogenesis (Hirashima et al, 1999; Risau et al, 1988; Vittet et al, 1996; Wang et al, 1992; Wartenberg et al, 1998). We asked here whether this model system can also recapitulate angiogenesis, which may offer new means to study mechanisms involved in this process. ES-derived embryoid bodies (EBs) obtained after 11 days of differentiation, in which a primitive vascular network had formed, were then subcultured into a type I collagen matrix. In the presence of angiogenic growth factors, EBs rapidly developed branching pseudopods. Whole mount immunostainings with a PECAM antibody revealed that more than 75% EBs displayed, within a few days, a large number of endothelial outgrowths that can give tube-like structures with concomitant differentiation of alpha-smooth muscle actin positive cells, thus evoking sprouting angiogenesis. High expression levels of flk1 (VEGFR2), flt1 (VEGFR1), tie-1, and tie-2 are also found, indicating that budding endothelial cells displayed an angiogenic phenotype. The endothelial sprouting response was specifically induced by angiogenic factors with a major contribution of vascular endothelial growth factor (VEGF). Known angiostatic agents, such as platelet factor 4 (PF4), angiostatin, and endostatin inhibited the formation of endothelial sprouts induced by angiogenic factors. Moreover, consistent with the in vivo phenotype, VE-cadherin deficient EBs failed to develop angiogenesis in this model. ES cell differentiation can then recapitulate, in addition to vasculogenesis, the early stages of sprouting angiogenesis. This model system

  20. Temperature during the last week of incubation. I. Effects on hatching pattern and broiler chicken embryonic organ development.

    PubMed

    Maatjens, C M; van Roovert-Reijrink, I A M; Engel, B; van der Pol, C W; Kemp, B; van den Brand, H

    2016-04-01

    We investigated the effects of an eggshell temperature (EST) of 35.6, 36.7, 37.8, and 38.9°C applied from d of incubation (E) 15, E17, and E19 on hatching pattern and embryonic organ development. A total of 2,850 first-grade eggs of a 43-week-old Ross 308 broiler breeder flock were incubated at an EST of 37.8°C until E15. From E15, E17, or E19 onward, eggs were incubated at an EST of 35.6, 36.7, 37.8, or 38.9°C. Moment of internal pipping (IP), external pipping (EP), and hatch was determined, and organ development was measured at E15, E17, E19, IP, EP, and hatch. A lower EST extended incubation duration compared to a higher EST. The lower incubation duration was mainly caused by the extended time until IP, whereas time between IP and hatch hardly varied between treatments. Relative heart weight was affected by EST already from 2 d after the start of EST treatment on E15, and effects became more pronounced at longer exposure time to various EST treatments. At hatch, the largest difference in relative heart weight was found between an EST of 35.6 and 38.9°C started at E15 (Δ=64.4%). From E17 onward, EST affected yolk-free body mass (YFBM) and relative stomach weight, where a lower EST resulted in a lower YFBM and relative stomach weight before IP and a higher YFBM and relative stomach weight after IP. From E19 onward, a lower EST resulted in a higher relative liver and spleen weight regardless of start time of treatment. Yolk weight and relative intestine weight were not affected by EST before and at E19, but a higher EST resulted in a higher yolk weight and lower relative intestine weight from IP onward. Based on the higher YFBM and higher relative organ growth found at hatch, we concluded that an EST lower than 37.8°C from E15 onward appears to be beneficial for optimal embryo development. PMID:26787926

  1. A Sall4 Mutant Mouse Model Useful for Studying the Role of Sall4 in Early Embryonic Development and Organogenesis

    PubMed Central

    Warren, Madhuri; Wang, Wei; Spiden, Sarah; Chen-Murchie, Dongrong; Tannahill, David; Steel, Karen P.; Bradley, Allan

    2008-01-01

    Summary SALL4 is a homologue of the Drosophila homeotic gene spalt, a zinc finger transcription factor, required for inner cell mass proliferation in early embryonic development. It also interacts with other transcription factors to control the development of the anorectal region, kidney, heart, limbs, and brain. Truncating mutations in SALL4 cause Okihiro syndrome, manifest as Duane anomaly, radial ray defects and sensorineural and conductive deafness. We report the characterization of a novel murine Sall4 null allele created by bacterial recombineering in ES cells. Homozygous mutant mice exhibit early embryonic lethality. Heterozygous mutant mice recapitulate phenotypic features of Okihiro syndrome including deafness, lower anogenital tract abnormalities, renal hypoplasia, anencephaly, Hirschprung’s disease, and skeletal defects. This phenotype shows important differences in cardiac and ear manifestations to previously characterized Sall4 mutant alleles and should prove useful for the investigation of the influence of modifier alleles and protein interactions on the transcriptional regulatory function of Sall4. PMID:17216607

  2. [Dynamics of fatty acid composition of total lipids during embryonic development of Atlantic salmon Salmo salar L].

    PubMed

    Murzina, S A; Nefedova, Z A; Ripatti, P O; Nemova, N N; Markova, L V

    2012-01-01

    Dynamics of fatty acid composition of total lipids was studied for freshwater salmon Salmo salar L. during its embryonic development from blastula (3 hours) up to hatching (108 days) as well as in unfertilized eggs. Stable amount of total and some saturated, monounsaturated and polyunsaturated fatty acids (PUFA) of total lipids was observed during embryonic development. Considerable changes in fatty acid composition were observed at the stage of prelarvae hatching, i.e., significant decrease of (n-6) PUFA (18:2(n-6) and 20:4(n-6)) and (n-3) PUFA and increase of total and some saturated and monounsaturated fatty acids was registered. Change in saturation ratio of membrane lipids justifies the presence of the biochemical mechanism forwarded on regulation of cell membrane enzymes in accordance with the changes of internal physiological processes taking place in the organism and fluctuations of external environmental conditions or the preparation period (as reproduction). Data on peculiarities of transformation and utilization of fatty acids during salmon embryonic development may be used for understanding of their functional role in the developing organism as well as for assessing the quality of the caviar. PMID:22650081

  3. Slow Stretching That Mimics Embryonic Growth Rate Stimulates Structural and Mechanical Development of Tendon-Like Tissue In Vitro

    PubMed Central

    Kalson, Nicholas S; Holmes, David F; Herchenhan, Andreas; Lu, Yinhui; Starborg, Toby; Kadler, Karl E

    2011-01-01

    A distinctive feature of embryonic tendon development is the steady increase in collagen fibril diameter and associated improvement of tissue mechanical properties. A potential mechanical stimulus for these changes is slow stretching of the tendon during limb growth. Testing this hypothesis in vivo is complicated by the presence of other developmental processes including muscle development and innervation. Here we used a cell culture tendon-like construct to determine if slow stretch can explain the increases in fibril diameter and mechanical properties that are observed in vivo. Non-stretched constructs had an ultrastructural appearance and mechanical properties similar to those of early embryonic tendon. However, slowly stretching during 4 days in culture increased collagen fibril diameter, fibril packing volume, and mechanical stiffness, and thereby mimicked embryonic development. 3D EM showed cells with improved longitudinal alignment and elongated nuclei, which raises the hypothesis that nuclear deformation could be a novel mechanism during tendon development. Developmental Dynamics 240:2520–2528, 2011. © 2011 Wiley Periodicals, Inc. PMID:22012594

  4. Ketamine NMDA receptor-independent toxicity during zebrafish (Danio rerio) embryonic development.

    PubMed

    Félix, Luís M; Antunes, Luís M; Coimbra, Ana M

    2014-01-01

    Concerns have been raised that the effect of anaesthetic drugs on the central nervous system may result in long-term impairment, namely when ketamine is used during embryogenesis. In addition, the cell and molecular basis of anaesthetics teratology and toxicity are still uncertain and its implications in the development remain to be clarified. More recently, the potential risks for human, and animal, exposure through environmental contamination also became an important question. In this study, the effects of sub- and over anaesthetic doses of ketamine were investigated during zebrafish (Danio rerio) embryonic development by exposing zebrafish embryos to ketamine concentrations (0.2, 0.4 and 0.8 mg mL(-1)) for a period of 20 min during the blastula stage. Ethanol 2% was used as a positive control. Morphological parameters, the overall pattern of cell death using acridine orange and overall degree of oxidative stress levels by 2,7-dichlorodihydrofluorescein-diacetate were determined. Lethality and/or developmental anomalies were measured based on specific time endpoints until 144 h post fertilisation. Results showed a concentration-dependent increase in anomalies and mortality. Cephalic disorders, enlarged organs and tail/spine anomalies were the most prominent deformities observed at 144 hpf. Acridine orange images revealed no differences in cellular death pattern in exposed embryos at 24 hpf. At the same time point, the cellular redox processes were found to be similar among groups. In summary, this study shows that ketamine is teratogen and toxic, interfering with the normal developmental pathways of embryogenesis, suggesting that ketamine exerts an independent NMDA receptor action during the zebrafish blastula stage. PMID:24287188

  5. Optical determination of impulse conduction velocity during development of embryonic chick cervical vagus nerve bundles.

    PubMed Central

    Sakai, T; Komuro, H; Katoh, Y; Sasaki, H; Momose-Sato, Y; Kamino, K

    1991-01-01

    1. Employing an optical method for multiple-site simultaneous recording of electrical activity, we have determined the conduction velocity in cervical vagus nerve bundles isolated from 5- to 21-day-old chick embryos, and investigated its developmental changes. 2. The preparations were stained with a voltage-sensitive merocyanine-rhodanine dye (NK2761), and action potential- (impulse-) related optical signals were elicited by brief stimuli applied to the end of the vagus nerve bundle with a suction electrode. Optical signals were recorded simultaneously from many contiguous regions using a 12 x 12-element photodiode array. 3. The optical signals spread with small delay from the site of stimulation. From the relationship between the delay and distance from the current-applying electrode, conduction velocities were estimated in each tested preparation: the conduction velocity was very small and increased monotonically from about 0.1 m s-1 at 5 days embryonic age to about 0.4 m s-1 by hatching. The increase in the conduction velocity was closely related to a developmental increase in the diameter of the vagus nerve bundle. 4. In addition, we have examined the spread of electrotonic potentials. The space constant was very small (200-450 microns) and increased as development proceeded. 5. Compound optical action signals having two distinct components were also recorded. They often appeared to be concentrated in the preparations from 8- to 12-day-old embryos. The conduction velocity of the second component was slower than that of the first. We suggest that appearance of the second component reflects degeneration of a subset of axons resulting from 'neural cell death' during the development of the vagus nerve. Images Fig. 1 Fig. 14 (cont.) Fig. 14 PMID:1895241

  6. Reproduction and embryonic development in two species of squaliform sharks, Centrophorus granulosus and Etmopterus princeps: Evidence of matrotrophy?

    NASA Astrophysics Data System (ADS)

    Cotton, Charles F.; Dean Grubbs, R.; Dyb, Jan E.; Fossen, Inge; Musick, John A.

    2015-05-01

    Modes of reproduction and embryonic development vary greatly among the elasmobranchs, and prior studies have suggested that the energetic toll of embryogenesis in lecithotrophic species depletes embryonic organic matter by 20% or more. Matrotrophic species experience a lesser reduction or an increase in organic matter during embryogenesis. To investigate the maternal-embryonic nutritional relationship, we measured changes in organic matter from fertilization to near-parturition in embryos of Centrophorus granulosus and Etmopterus princeps. Embryos of C. granulosus experienced a reduction of 19.5% in organic matter, while E. princeps embryos experienced a reduction of 7.7% in organic matter over the course of embryonic development, suggesting some level of matrotrophy occurs, particularly for the latter species. Uterine villi were present in both species and developed concurrently with the embryos, increasing in length and thickness while becoming progressively vascularized. Embryos of C. granulosus were dissected to track the partitioning of water, organic matter, and inorganic matter to the liver, external yolk sac, internal yolk sac, digestive tract, and evicerated body throughout development. Mating was aseasonal for both species and spatially-mediated segregation by sex and maturity stage was observed. Ovarian cycles were concurrent for C. granulosus and consecutive for E. princeps. Size at maturity for C. granulosus was determined to be 111 cm TL for males and 143 cm TL for females, with an average fecundity of 5.3 embryos (range=4-7). Size at maturity for E. princeps was determined to be 56.5 cm TL for males and 61 cm TL for females north of the Azores and 54 cm TL for males and 69 cm TL for females near the Charlie Gibbs Fracture Zone. Average fecundity was 11.2 embryos (range=7-18) for this species. This is the first reporting of reproductive parameters for these two species, and the information provided will be valuable for informing stock assessment

  7. Characterization of the Skeletal Fusion with Sterility (sks) Mouse Showing Axial Skeleton Abnormalities Caused by Defects of Embryonic Skeletal Development

    PubMed Central

    Akiyama, Kouyou; Katayama, Kentaro; Tsuji, Takehito; Kunieda, Tetsuo

    2014-01-01

    The development of the axial skeleton is a complex process, consisting of segmentation and differentiation of somites and ossification of the vertebrae. The autosomal recessive skeletal fusion with sterility (sks) mutation of the mouse causes skeletal malformations due to fusion of the vertebrae and ribs, but the underlying defects of vertebral formation during embryonic development have not yet been elucidated. For the present study, we examined the skeletal phenotypes of sks/sks mice during embryonic development and the chromosomal localization of the sks locus. Multiple defects of the axial skeleton, including fusion of vertebrae and fusion and bifurcation of ribs, were observed in adult and neonatal sks/sks mice. In addition, we also found polydactyly and delayed skull ossification in the sks/sks mice. Morphological defects, including disorganized vertebral arches and fusions and bifurcations of the axial skeletal elements, were observed during embryonic development at embryonic day 12.5 (E12.5) and E14.5. However, no morphological abnormality was observed at E11.5, indicating that defects of the axial skeleton are caused by malformation of the cartilaginous vertebra and ribs at an early developmental stage after formation and segmentation of the somites. By linkage analysis, the sks locus was mapped to an 8-Mb region of chromosome 4 between D4Mit331 and D4Mit199. Since no gene has already been identified as a cause of malformation of the vertebra and ribs in this region, the gene responsible for sks is suggested to be a novel gene essential for the cartilaginous vertebra and ribs. PMID:24521859

  8. Bone matrix calcification during embryonic and postembryonic rat calvarial development assessed by SEM-EDX spectroscopy, XRD, and FTIR spectroscopy.

    PubMed

    Henmi, Akiko; Okata, Hiroshi; Anada, Takahisa; Yoshinari, Mariko; Mikami, Yasuto; Suzuki, Osamu; Sasano, Yasuyuki

    2016-01-01

    Bone mineral is constituted of biological hydroxyapatite crystals. In developing bone, the mineral crystal matures and the Ca/P ratio increases. However, how an increase in the Ca/P ratio is involved in maturation of the crystal is not known. The relationships among organic components and mineral changes are also unclear. The study was designed to investigate the process of calcification during rat calvarial bone development. Calcification was evaluated by analyzing the atomic distribution and concentration of Ca, P, and C with scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX) spectroscopy and changes in the crystal structure with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Histological analysis showed that rat calvarial bone formation started around embryonic day 16. The areas of Ca and P expanded, matching the region of the developing bone matrix, whereas the area of C became localized around bone. X-ray diffraction and FTIR analysis showed that the amorphous-like structure of the minerals at embryonic day 16 gradually transformed into poorly crystalline hydroxyapatite, whereas the proportion of mineral to protein increased until postnatal week 6. FTIR analysis also showed that crystallization of hydroxyapatite started around embryonic day 20, by which time SEM-EDX spectroscopy showed that the Ca/P ratio had increased and the C/Ca and C/P ratios had decreased significantly. The study suggests that the Ca/P molar ratio increases and the proportion of organic components such as proteins of the bone matrix decreases during the early stage of calcification, whereas crystal maturation continues throughout embryonic and postembryonic bone development. PMID:25773047

  9. Effects of Cadmium and Zinc on the Gamete Viability, Fertilization, and Embryonic Development of Tripneustes gratilla (Linnaeus)

    PubMed Central

    Tualla, Ivan Patrick B.; Bitacura, Jayzon G.

    2016-01-01

    Heavy metals are frequently reported for their mutagenic and teratogenic effects on benthic organisms. Thus, this study aimed to determine the toxicity of cadmium (Cd) and zinc (Zn) in the gametes of T. gratilla and to compare its fertilization and embryonic development under the highest nongametotoxic concentrations of these heavy metals. Gamete viability of T. gratilla under CdCl2 and ZnSO4 treatments was assayed through resazurin reduction test (RRT) and was confirmed through gamete morphology assay. ZnSO4 was more toxic to T. gratilla gametes than CdCl2 and egg cells were more sensitive to both than the sperm cells. Higher concentrations of CdCl2 and ZnSO4 induced gamete apoptosis and necrosis while highest nongametotoxic concentrations were determined at 1 × 10−3 M and 1 × 10−4 M, respectively, and were used in an in vitro fertilization and embryonic development experiment. ZnSO4 treatment inhibited fertilization more than CdCl2 and yielded more deformed embryos, while both induced abnormalities and hindered further embryonic development. This study gives the first report on the specific concentrations of Cd and Zn that are toxic to T. gratilla gametes and has confirmed the teratogenic effects of these heavy metals. PMID:27200213

  10. Release of ecdysteroid-phosphates from egg yolk granules and their dephosphorylation during early embryonic development in silkworm, Bombyx mori.

    PubMed

    Yamada, Ryouichi; Yamahama, Yumi; Sonobe, Haruyuki

    2005-02-01

    Newly laid eggs of many insect species store maternal ecdysteroids as physiologically inactive phosphoric esters. In the silkworm Bombyx mori, we previously reported the presence of a specific enzyme, called ecdysteroid-phosphate phosphatase (EPPase), which catalyzes the dephosphorylation of ecdysteroid-phosphates to increase the amount of free ecdysteroids during early embryonic development. In this study, we demonstrated that (1) EPPase is found in the cytosol of yolk cells, (2) ecdysteroid-phosphates are localized in yolk granules, being bound to the yolk protein vitellin (Vn), and (3) Vn-bound ecdysteroid-phosphates are scarcely hydrolyzed by EPPase, although free ecdysteroid-phosphates are completely hydrolyzed by EPPase. Thus, we investigated the mechanism by which ecdysteroid-phosphates dissociate from the Vn-ecdysteroid-phosphate complex, and indicated that the acidification of yolk granules causes the dissociation of ecdysteroid-phosphates from the Vn-ecdysteroid-phosphate complex and thereby ecdysteroid-phosphates are released from yolk granules into the cytosol. Indeed, the presence of vacuolar-type proton-translocating ATPase in the membrane fraction of yolk granules was also verified by Western blot analysis. Our experiments revealed that Vn functions as a reservoir of maternal ovarian ecdysteroid-phosphates as well as a nutritional source during embryonic development. This is the first report showing the biochemical mechanism by which maternal Vn-bound ecdysteroid-phosphates function during early embryonic development. PMID:15738639

  11. Fatty acids dynamics during embryonic development in genus Uca (Brachyura: Ocypodidae), from the mangroves of Inhaca Island, Mozambique

    NASA Astrophysics Data System (ADS)

    Torres, Paulo; Penha-Lopes, Gil; Narciso, Luís; Macia, Adriano; Paula, José

    2008-11-01

    Variations in egg volume and fatty acid (FA) content through embryogenesis were evaluated in Uca species from Inhaca island, Mozambique. Egg volume increased 96.1%, 93.3%, 84.2%, 92.9%, 96.3%, respectively, in Uca annulipes, Uca inversa, Uca urvillei, Uca chlorophthalmus and Uca vocans ( p < 0.05). Fatty acid content decreased through embryogenesis, showing its importance as fuel during embryonic development. Major fatty acids were 16:0, 18:0, 16:1 n-7, 18:1 n-9, 18:1 n-7, 18:2 n-6, 20:5 n-3 and 20:4 n-3. Unsaturated fatty acids (UFA) and saturated fatty acids (SFA) were used up at a similar rate for U. annulipes and U. inversa contrarily to the other three species. Within the UFA, MUFA were more consumed than PUFA for all species except U. chlorophthalmus. The high values detected for fatty acid trophic markers (essential C 18 and C 20 PUFAs) and odd-numbered fatty acid suggest that Uca species occupy medium trophic level, primarily omnivores and scavengers/detritivores consuming algae common in the intertidal habitats. The fatty acid consumption pattern during embryonic development was essentially similar between species with some variation as expected, as FA content varies within species mainly due to female feeding ecology, nutritional and physiological conditions, differential demands on resource allocation and geographic and seasonal variations in embryonic development.

  12. Stepwise renal lineage differentiation of mouse embryonic stem cells tracing in vivo development

    SciTech Connect

    Nishikawa, Masaki; Yanagawa, Naomi; Kojima, Nobuhiko; Yuri, Shunsuke; Hauser, Peter V.; Jo, Oak D.; Yanagawa, Norimoto

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer We induced renal lineages from mESCs by following the in vivo developmental cues. Black-Right-Pointing-Pointer We induced nephrogenic intermediate mesoderm by stepwise addition of factors. Black-Right-Pointing-Pointer We induced two types of renal progenitor cells by reciprocal conditioned media. Black-Right-Pointing-Pointer We propose the potential role of CD24 for the enrichment of renal lineage cells. -- Abstract: The in vitro derivation of renal lineage progenitor cells is essential for renal cell therapy and regeneration. Despite extensive studies in the past, a protocol for renal lineage induction from embryonic stem cells remains unestablished. In this study, we aimed to induce renal lineages from mouse embryonic stem cells (mESC) by following in vivo developmental stages, i.e., the induction of mesoderm (Stage I), intermediate mesoderm (Stage II) and renal lineages (Stage III). For stage I induction, in accordance with known signaling pathways involved in mesoderm development in vivo, i.e., Nodal, bone morphogenic proteins (BMPs) and Wnt, we found that the sequential addition of three factors, i.e., Activin-A (A), a surrogate for Nodal signaling, during days 0-2, A plus BMP-4 (4) during days 2-4, and A4 plus lithium (L), a surrogate for Wnt signaling, during days 4-6, was most effective to induce the mesodermal marker, Brachyury. For stage II induction, the addition of retinoic acid (R) in the continuous presence of A4L during days 6-8 was most effective to induce nephrogenic intermediate mesodermal markers, such as Pax2 and Lim1. Under this condition, more than 30% of cells were stained positive for Pax2, and there was a concomitant decrease in the expression of non-mesodermal markers. For stage III induction, in resemblance to the reciprocal induction between ureteric bud (UB) and metanephric mesenchyme (MM) during kidney development, we found that the exposure to conditioned media derived from UB and MM cells was

  13. Effect of temperature on gene expression of the Gh/Igf system during embryonic development in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Gabillard, Jean-Charles; Rescan, Pierre-Yves; Fauconneau, Benoit; Weil, Claudine; Le Bail, Pierre-Yves

    2003-08-01

    In fish, the GH/IGF system installs very early during development suggesting that this system could promote embryonic growth and development. In contrast to mammals, the embryonic growth rate of poikilotherms depends considerably on the incubation temperature. Therefore, the aim of this study was to determine if variations of embryo growth in response to temperature could be associated with modifications in the gene expression of the GH/IGF system. In this study, using whole mount in situ hybridisation, we demonstrated that embryo incubation temperature (4, 8, and 12 degrees C) did not change the timing of GH-1 and GH-2 mRNA expression in somatotroph cells (stage 24). Similarly, at hatching (stage 30), we did not observe an obvious difference in GH protein and GH-1 and GH-2 transcript amounts in relation to the incubation temperature. Furthermore, from stage 22 to 25, the highest temperature led to a specific up-regulation of IGF-2 (2-fold between 4 and 12 degrees C), and both IGF-RIa and IGFRIb mRNA (1.5-fold between 4 and 12 degrees C), while no difference was observed for IGF-1 mRNA. Conversely, at hatching, the highest temperature specifically down-regulated IGF-2 (3-fold between 4 and 12 degrees C) and both IGF receptor mRNAs (2 fold between 4 and 12 degrees C) present in the head, while no difference was observed in the trunk. Our results demonstrated that different incubation temperatures during trout embryonic development did not change the stage of somatotroph cell appearance. Before hatching, IGF-2 and both IGF receptors, but not IGF-1 mRNA, were specifically up-regulated by high temperatures and could be related to the enhancement of embryonic growth rate. PMID:12884275

  14. Embryonic development of the Drosophila brain. II. Pattern of glial cells.

    PubMed

    Hartenstein, V; Nassif, C; Lekven, A

    1998-12-01

    Glial cells in Drosophila and other insects are organized in an outer layer that envelops the surface of the central and peripheral nervous system (subperineurial glia, peripheral glia), a middle layer associated with neuronal somata in the cortex (cell body glia), and an inner layer surrounding the neuropile (longitudinal glia, midline glia, nerve root glia). In the ventral nerve cord, most glial cells are formed by a relatively small number of neuro-glioblasts; subsequently, glial cell precursors migrate and spread out widely to reach their final destination. By using a glia-specific marker (antibody against the Repo protein) we have reconstructed the pattern of glial cell precursors at successive developmental stages, focusing on the glia of the supraesophageal ganglion and subesophageal ganglion which are not described in previous studies. Digitized images of consecutive optical sections were used to generate 3-D models that show the spatial pattern of glial cell precursors in relationship to the neuropile, brain surface, and peripheral nerves. Similar to their spatial organization in the ventral nerve cord, glial cells of the brain populate the brain nerves and outer surface, cortical cell body layer, and cortex-neuropile interface. Neuropile-associated glial cells arise from a cluster located at the base of the supraesophageal ganglion; from this position, they migrate dorsally along the developing axon tracts and by late embryonic stages form a sheath around all neuropile compartments, including the supraesophageal commissure. Surface and cell body glial cells derive from several discrete foci, notably two large clusters at the deuterocerebrum/protocerebrum boundary and the posterior protocerebrum. From these foci, glial cells then fan out to envelop the surface of the supraesophageal ganglion. PMID:9831044

  15. Oocyte adhesiveness and embryonic development of Astyanax bimaculatus (Linnaeus, 1758) (Pisces: Characidae).

    PubMed

    Weber, André Alberto; Arantes, Fábio Pereira; Sato, Yoshimi; Rizzo, Elizete; Bazzoli, Nilo

    2013-05-01

    This study shows for the first time the presence of a jelly coat on oocytes of neotropical Characiformes fish. This structure could be responsible for the adhesiveness of Astyanax bimaculatus oocytes, a species widely distributed in South America including in the São Francisco River basin in Brazil. Adult specimens of A. bimaculatus were submitted to artificial reproduction in order to analyse the egg morphology and embryonic development. The eggs were fertilised and kept in incubators with a water temperature of 24°C so that embryogenesis could be monitored. Ovulated and unfertilised oocytes were also collected and submitted to routine histological techniques. Astyanax bimaculatus oocytes were found to be spherical, yellowish, and covered by a thin jelly coat with a slightly adhesive surface. The mean oocyte diameter was 1.03 ± 0.03 mm, the perivitelline space was 0.21 ± 0.02 mm and the jelly coat's thickness was 0.04 ± 0.01 mm. Positive periodic acid-Schiff (PAS) stain and Alcian blue stain pH 2.5 indicated the presence of neutral glycoproteins, and carboxylated acid glycoconjugates on the jelly coat that formed mucosubstances that may be associated with egg adhesiveness. At a water temperature of 24°C, blastopore closure and hatching occurred at 5 h and 17 h after fertilisation, respectively. The results of this study provide essential information for phylogenetic studies and for a better understanding of the reproductive strategy of A. bimaculatus, currently included in the incertae sedis group of the Characidae family due to the lack of monophyly among the families of the group. PMID:22717095

  16. Involvement of Ras/Raf/AP-1 in BMP-4 signaling during Xenopus embryonic development.

    PubMed Central

    Xu, R H; Dong, Z; Maeno, M; Kim, J; Suzuki, A; Ueno, N; Sredni, D; Colburn, N H; Kung, H F

    1996-01-01

    Previously, we elucidated the role of bone morphogenetic protein 4 (BMP-4) in the dorsal-ventral patterning of the Xenopus embryo by using a dominant negative mutant of the BMP-4 receptor (DN-BR). The present paper describes the involvement of Ras, Raf, and activator protein 1 (AP-1) in BMP-4 signaling during Xenopus embryonic development. The AP-1 activity was determined by injecting an AP-1-dependent luciferase reporter gene into two-cell-stage Xenopus embryos and measuring the luciferase activity at various developmental stages. We found that injection of BMP-4 mRNA increased AP-1 activity, whereas injection of DN-BR mRNA inhibited AP-1 activity. Similar inhibitory effects were seen with injection of mRNAs encoding dominant negative mutants of c-Ha-Ras, c-Raf, or c-Jun. These results suggest that the endogenous AP-1 activity is regulated by BMP-4/Ras/Raf/Jun signals. We next investigated the effects of Ras/Raf/AP-1 signals on the biological functions of BMP-4. DN-BR-induced dorsalization of the embryo, revealed by the formation of a secondary body axis or dorsalization of the ventral mesoderm explant analyzed by histological and molecular criteria, was significantly reversed by coinjection of [Val12]Ha-Ras, c-Raf, or c-Jun mRNA. Furthermore, the BMP-4-stimulated erythroid differentiation in the ventral mesoderm was substantially inhibited by coinjection with the dominant negative c-Ha-Ras, c-Raf, or c-Jun mutant. Our results suggest the involvement of Ras/Raf/AP-1 in the BMP-4 signaling pathway. Images Fig. 2 Fig. 3 Fig. 4 PMID:8570644

  17. Real-time Visualization of Tissue Dynamics during Embryonic Development and Malignant Transformation

    NASA Astrophysics Data System (ADS)

    Yamada, Kenneth

    Tissues undergo dramatic changes in organization during embryonic development, as well as during cancer progression and invasion. Recent advances in microscopy now allow us to visualize and track directly the dynamic movements of tissues, their constituent cells, and cellular substructures. This behavior can now be visualized not only in regular tissue culture on flat surfaces (`2D' environments), but also in a variety of 3D environments that may provide physiological cues relevant to understanding dynamics within living organisms. Acquisition of imaging data using various microscopy modalities will provide rich opportunities for determining the roles of physical factors and for computational modeling of complex processes in living tissues. Direct visualization of real-time motility is providing insight into biology spanning multiple spatio-temporal scales. Many cells in our body are known to be in contact with connective tissue and other forms of extracellular matrix. They do so through microscopic cellular adhesions that bind to matrix proteins. In particular, fluorescence microscopy has revealed that cells dynamically probe and bend the matrix at the sites of cell adhesions, and that 3D matrix architecture, stiffness, and elasticity can each regulate migration of the cells. Conversely, cells remodel their local matrix as organs form or tumors invade. Cancer cells can invade tissues using microscopic protrusions that degrade the surrounding matrix; in this case, the local matrix protein concentration is more important for inducing the micro-invasive protrusions than stiffness. On the length scales of tissues, transiently high rates of individual cell movement appear to help establish organ architecture. In fact, isolated cells can self-organize to form tissue structures. In all of these cases, in-depth real-time visualization will ultimately provide the extensive data needed for computer modeling and for testing hypotheses in which physical forces interact

  18. Transcriptional control of Shh/Ptc1 signaling in embryonic development.

    PubMed

    Lin, Shi-Lung; Chang, Shin-Ju E; Ying, Shao-Yao

    2006-02-15

    In vivo profiling of signal-directed gene expression patterns is a major bottleneck in studying developmental biology. A signal molecule initiates its specific gene expression pattern through the activation of certain transcription factor (TF); however, tissue heterogeneity often masks this pattern due to intercellular complexity of other signal transduction pathways. To decipher the synergistic regulation of signal-directed gene expression in the tissue level, we report here a unique transcriptional responsive element (TRE) existing in the 5'-upstream promoter regions (5'-UPR) of the genes responding to the Shh/Ptc1 signal transduction pathway during feather placode development in chicken embryos. By locating the TRE homologue and its interactive TF, we were able to reveal the gene expression pattern of the Shh/Ptc1 signaling. We firstly demonstrated that homology profiling of the 5'-UPR of the genes, Gli1, TGF-beta2 and Msx2, responding to the Shh/Ptc1 signaling showed a more than 70% conserved region. Computer alignment of the consensus sequences in the conserved region revealed a 37-nucleotide TRE sequence, containing two regulatory elements homologous to human and mouse Gli-binding sites. Activation of this newly identified Shh/Ptc1-responsive TRE by active Smo signaling in chicken hepatoepithelial carcinoma cells elicited a strong synergistic expression of the Shh/Ptc1-downstream genes. Based on previous bioinformatics and the present experimental findings, we successfully established an in vivo signaling model for the Shh/Ptc1-directed embryonic feather morphogenesis. PMID:16330160

  19. Venous-derived angioblasts generate organ-specific vessels during zebrafish embryonic development

    PubMed Central

    Hen, Gideon; Nicenboim, Julian; Mayseless, Oded; Asaf, Lihee; Shin, Masahiro; Busolin, Giorgia; Hofi, Roy; Almog, Gabriella; Tiso, Natascia; Lawson, Nathan D.; Yaniv, Karina

    2015-01-01

    Formation and remodeling of vascular beds are complex processes orchestrated by multiple signaling pathways. Although it is well accepted that vessels of a particular organ display specific features that enable them to fulfill distinct functions, the embryonic origins of tissue-specific vessels and the molecular mechanisms regulating their formation are poorly understood. The subintestinal plexus of the zebrafish embryo comprises vessels that vascularize the gut, liver and pancreas and, as such, represents an ideal model in which to investigate the early steps of organ-specific vessel formation. Here, we show that both arterial and venous components of the subintestinal plexus originate from a pool of specialized angioblasts residing in the floor of the posterior cardinal vein (PCV). Using live imaging of zebrafish embryos, in combination with photoconvertable transgenic reporters, we demonstrate that these angioblasts undergo two phases of migration and differentiation. Initially, a subintestinal vein forms and expands ventrally through a Bone Morphogenetic Protein-dependent step of collective migration. Concomitantly, a Vascular Endothelial Growth Factor-dependent shift in the directionality of migration, coupled to the upregulation of arterial markers, is observed, which culminates with the generation of the supraintestinal artery. Together, our results establish the zebrafish subintestinal plexus as an advantageous model for the study of organ-specific vessel development and provide new insights into the molecular mechanisms controlling its formation. More broadly, our findings suggest that PCV-specialized angioblasts contribute not only to the formation of the early trunk vasculature, but also to the establishment of late-forming, tissue-specific vascular beds. PMID:26525671

  20. Embryo-endometrial interactions during early development after embryonic diapause in the marsupial tammar wallaby.

    PubMed

    Renfree, Marilyn B; Shaw, Geoff

    2014-01-01

    The marsupial tammar wallaby has the longest period of embryonic diapause of any mammal. Reproduction in the tammar is seasonal, regulated by photoperiod and also lactation. Reactivation is triggered by falling daylength after the austral summer solstice in December. Young are born late January and commence a 9-10-month lactation. Females mate immediately after birth. The resulting conceptus develops over 6- 7 days to form a unilaminar blastocyst of 80-100 cells and enters lactationally, and later seasonally, controlled diapause. The proximate endocrine signal for reactivation is an increase in progesterone which alters uterine secretions. Since the diapausing blastocyst is surrounded by the zona and 2 other acellular coats, the mucoid layer and shell coat, the uterine signals that maintain or terminate diapause must involve soluble factors in the secretions rather than any direct cellular interaction between uterus and embryo. Our studies suggest involvement of a number of cytokines in the regulation of diapause in tammars. The endometrium secretes platelet activating factor (PAF) and leukaemia inhibitory factor, which increase after reactivation. Receptors for PAF are low on the blastocyst during diapause but are upregulated at reactivation. Conversely, there is endometrial expression of the muscle segment homeobox gene MSX2 throughout diapause, but it is rapidly downregulated at reactivation. These patterns are consistent with those observed in diapausing mice and mink after reactivation, despite the very different patterns of endocrine control of diapause in these 3 divergent species. These common patterns suggest a similar underlying mechanism for diapause, perhaps common to all mammals, but which is activated in only a few. PMID:25023683

  1. The effects of henna (hair dye) on the embryonic development of zebrafish (Danio rerio).

    PubMed

    Manjunatha, Bangeppagari; Wei-bing, Peng; Ke-chun, Liu; Marigoudar, Shambanagouda R; Xi-qiang, Chen; Xi-min, Wang; Xue, Wang

    2014-09-01

    The powder of henna is extensively used as decorative skin paint for nail coloring and as a popular hair dye in Asian countries. Its human health risk is extensive, and it is frequently released as waste into the aquatic environment raising the concerns. Zebrafish (Danio rerio) embryos were employed to study the developmental effects of henna. Normal fertilized zebrafish embryos under standard water were selected for the control and test chambers. Three predetermined sublethal concentrations (100, 200, and 275 μM) of henna in 24-well cell culture plates were tested on 1-h postfertilized embryo (pfe) for 96 h. Observation for rates of survival and mortality was recorded; digital camera was used to image morphological anomalies of embryos with a stereomicroscope; and functional abnormalities at 24, 48, 72, and 96 h were performed. The hatching rates of embryos were reduced significantly when treated with 200 and 275 μM or higher concentrations of henna. Slow blood circulation in the whole body was observed with a median effect on hatching exposed to 200 and 275 μM of henna at 48-h pfe. At 72- and 96-h pfe, blood circulation was ceased in the whole body but still had a heartbeat. At 96-h pfe, pericardial sac edema, yolk sac edema, head deformation, spine crooked malformation, and tail malformation (bent tails or hook-like tails) were observed in the surviving larvae at 100 μM. In summary, exposure to henna at 100, 200, and 275 μM causes some altered morphological and physiological abnormalities including increased mortality, hatching delay, slow blood circulation, pericardial sac edema, yolk sac edema, abnormal body axes, twisted notochord, tail deformation, weak heartbeat, and growth retardation and was also detected in some treated embryos and groups having adverse effects on embryonic development of zebrafish provoking potential human developmental risk studies. PMID:24859694

  2. Interneurons Differentially Contribute to Spontaneous Network Activity in the Developing Hippocampus Dependent on Their Embryonic Lineage

    PubMed Central

    Wester, Jason C.

    2016-01-01

    Spontaneously generated network activity is a hallmark of developing neural circuits, and plays an important role in the formation of synaptic connections. In the rodent hippocampus, this activity is observed in vitro as giant depolarizing potentials (GDPs) during the first postnatal week. Interneurons importantly contribute to GDPs, due to the depolarizing actions of GABA early in development. While they are highly diverse, cortical interneurons can be segregated into two distinct groups based on their embryonic lineage from either the medial or caudal ganglionic eminences (MGE and CGE). There is evidence suggesting CGE-derived interneurons are important for GDP generation; however, their contribution relative to those from the MGE has never been directly tested. Here, we optogenetically inhibited either MGE- or CGE-derived interneurons in a region-specific manner in mouse neonatal hippocampus in vitro. In CA1, where interneurons are the primary source of recurrent excitation, we found that those from the MGE strongly and preferentially contributed to GDP generation. Furthermore, in dual whole-cell patch recordings in neonatal CA1, MGE interneurons formed synaptic connections to and from neighboring pyramidal cells at a much higher rate than those from the CGE. These MGE interneurons were commonly perisomatic targeting, in contrast to those from the CGE, which were dendrite targeting. Finally, inhibiting MGE interneurons in CA1 suppressed GDPs in CA3 and vice versa; conversely, they could also trigger GDPs in CA1 that propagated to CA3 and vice versa. Our data demonstrate a key role for MGE-derived interneurons in both generating and coordinating GDPs across the hippocampus. SIGNIFICANCE STATEMENT During nervous system development, immature circuits internally generate rhythmic patterns of electrical activity that promote the establishment of synaptic connections. Immature interneurons are excitatory rather than inhibitory and actively contribute to the generation

  3. Embryonic and post-embryonic development of the polyclad flatworm Maritigrella crozieri; implications for the evolution of spiralian life history traits

    PubMed Central

    2010-01-01

    Background Planktonic life history stages of spiralians share some muscular, nervous and ciliary system characters in common. The distribution of these characters is patchy and can be interpreted either as the result of convergent evolution, or as the retention of primitive spiralian larval features. To understand the evolution of these characters adequate taxon sampling across the Spiralia is necessary. Polyclad flatworms are the only free-living Platyhelminthes that exhibit a continuum of developmental modes, with direct development at one extreme, and indirect development via a trochophore-like larval stage at the other. Here I present embryological and larval anatomical data from the indirect developing polyclad Maritrigrella crozieri, and consider these data within a comparative spiralian context. Results After 196 h hours of embryonic development, M. crozieri hatches as a swimming, planktotrophic larva. Larval myoanatomy consists of an orthogonal grid of circular and longitudinal body wall muscles plus parenchymal muscles. Diagonal body wall muscles develop over the planktonic period. Larval neuroanatomy consists of an apical plate, neuropile, paired nerve cords, a peri-oral nerve ring, a medial nerve, a ciliary band nerve net and putative ciliary photoreceptors. Apical neural elements develop first followed by posterior perikarya and later pharyngeal neural elements. The ciliated larva is encircled by a continuous, pre-oral band of longer cilia, which follows the distal margins of the lobes; it also possesses distinct apical and caudal cilia. Conclusions Within polyclads heterochronic shifts in the development of diagonal bodywall and pharyngeal muscles are correlated with life history strategies and feeding requirements. In contrast to many spiralians, M. crozieri hatch with well developed nervous and muscular systems. Comparisons of the ciliary bands and apical organs amongst spiralian planktonic life-stages reveal differences; M. crozieri lack a distinct

  4. Prenatal arsenic exposure alters the programming of the glucocorticoid signaling system during embryonic development

    PubMed Central

    Caldwell, Katharine E.; Labrecque, Matthew T.; Solomon, Benjamin R.; Ali, Abdulmehdi; Allan, Andrea M.

    2015-01-01

    The glucocorticoid system, which plays a critical role in a host of cellular functions including mood disorders and learning and memory, has been reported to be disrupted by arsenic. In previous work we have developed and characterized a prenatal moderate arsenic exposure (50 ppb) model and identified several deficits in learning and memory and mood disorders, as well as alterations within the glucocorticoid receptor signaling system in the adolescent mouse. In these present studies we assessed the effects of arsenic on the glucocorticoid receptor (GR) pathway in both the placenta and the fetal brain in response at two critical periods, embryonic days 14 and 18. The focus of these studies was on the 11β-hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 11β-HSD2) which play a key role in glucorticoid synthesis, as well as the expression and set point of the GR negative feedback regulation. Negative feedback regulation is established early in development. At E14 we found arsenic exposure significantly decreased expression of both protein and message in brain of GR and the 11β-HSD1, while 11β-HSD2 enzyme protein levels were increased but mRNA levels were decreased in the brain. These changes in brain protein continued into the E18 time point, but mRNA levels were no longer significantly altered. Placental HSD11B2 mRNA was not altered by arsenic treatment but protein levels were elevated at E14. GR placental protein levels were decreased at E18 in the arsenic exposed condition. This suggests that arsenic exposure may alter GR expression levels as a consequence of a prolonged developmental imbalance between 11β-HSD1 and 11β-HSD2 protein expression despite decreased 11HSDB2 mRNA. The suppression of GR and the failure to turn down 11β-HSD2 protein expression during fetal development may lead to an altered set point for GR signaling throughout adulthood. To our knowledge, these studies are the first to demonstrate that gestational exposure to moderate levels of

  5. Prenatal arsenic exposure alters the programming of the glucocorticoid signaling system during embryonic development.

    PubMed

    Caldwell, Katharine E; Labrecque, Matthew T; Solomon, Benjamin R; Ali, Abdulmehdi; Allan, Andrea M

    2015-01-01

    The glucocorticoid system, which plays a critical role in a host of cellular functions including mood disorders and learning and memory, has been reported to be disrupted by arsenic. In previous work we have developed and characterized a prenatal moderate arsenic exposure (50ppb) model and identified several deficits in learning and memory and mood disorders, as well as alterations within the glucocorticoid receptor signaling system in the adolescent mouse. In these present studies we assessed the effects of arsenic on the glucocorticoid receptor (GR) pathway in both the placenta and the fetal brain in response at two critical periods, embryonic days 14 and 18. The focus of these studies was on the 11β-hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 11β-HSD2) which play a key role in glucorticoid synthesis, as well as the expression and set point of the GR negative feedback regulation. Negative feedback regulation is established early in development. At E14 we found arsenic exposure significantly decreased expression of both protein and message in brain of GR and the 11β-HSD1, while 11β-HSD2 enzyme protein levels were increased but mRNA levels were decreased in the brain. These changes in brain protein continued into the E18 time point, but mRNA levels were no longer significantly altered. Placental HSD11B2 mRNA was not altered by arsenic treatment but protein levels were elevated at E14. GR placental protein levels were decreased at E18 in the arsenic exposed condition. This suggests that arsenic exposure may alter GR expression levels as a consequence of a prolonged developmental imbalance between 11β-HSD1 and 11β-HSD2 protein expression despite decreased 11HSDB2 mRNA. The suppression of GR and the failure to turn down 11β-HSD2 protein expression during fetal development may lead to an altered set point for GR signaling throughout adulthood. To our knowledge, these studies are the first to demonstrate that gestational exposure to moderate levels of

  6. High pressure processing treatment prevents embryonation of eggs of Trichuris vulpis and Ascaris suum and induces delay in development of eggs.

    PubMed

    Rosypal, Alexa C; Zajac, Anne M; Flick, George J; Bowman, Dwight D; Lindsay, David S

    2011-09-27

    High hydrostatic pressure processing (HPP) is an effective non-thermal treatment used to inactivate pathogens from a variety of food and food products. It has been extensively examined using prokaryotic organisms and protozoan's but has had limited study on metazoans. Treatment using HPP has been shown to be effective in inactivating nematode larvae in food and preventing embryonation of Ascaris suum eggs. We conducted experiments using eggs of the canine whipworm Trichuris vulpis collected from naturally infected dogs and A. suum eggs from naturally infected pigs. We observed a delay in development of eggs of T. vulpis in a preliminary experiment and conducted 2 experiments to test the hypothesis that appropriate HPP levels can induce a delay in embryonation of nematode eggs. In experiment 1, nonembryonated T. vulpis eggs in tap water were packaged in sealable bags and exposed to 138-600 megapascals (MPa; 1 MPa=10 atm=147 psi) for 60s in a commercial HPP unit. In a second experiment, nonembryonated eggs of A. suum were exposed to 138-600 MPa and treated for 60s in the same commercial HPP unit. Embyronation of T. vulpis eggs was delayed by 4 and 5 days for eggs treated with 207 and 241 MPa but eventually eggs developed and the numbers of embryonated eggs was similar to controls on day 55. Embryonation of T. vulpis eggs treated with 345 or 350 MPa was delayed by 9 days and never reached more than 5% of eggs embryonated. On day 55 post treatment, 95% of control nontreated T. vulpis eggs were embryonated, 100-65% of eggs treated with 138-276 MPa were embryonated, a maximum of 5% of eggs treated with 345-350 MPa were embryonated, and 0% of eggs treated with ≥ 400 MPa were embryonated. T. vulpis eggs treated with ≥ 400 MPa did not undergo cell division. Embryrnation of A. suum eggs was delayed by 4, 10, and 16 days for eggs treated with 207, 241, and 250MPa, respectively, compared to nontreated control eggs. A. suum eggs treated with 207 MPa eventually embryonated

  7. Embryonic expression of murine 5T4 oncofoetal antigen is associated with morphogenetic events at implantation and in developing epithelia.

    PubMed

    Barrow, Katie M; Ward, Christopher M; Rutter, Jennifer; Ali, Sumia; Stern, Peter L

    2005-08-01

    Overexpression of 5T4 oncofoetal antigen, an early marker of ES cell differentiation, in vitro increases cellular motility and decreases adhesion, properties relevant to development and cancer. Embryonic expression of m5T4 antigen is first detected on trophectoderm at implantation and is restricted to extra-embryonic tissues to embryonic day (E) 11.5. In the embryo, significant m5T4 expression is detected at E12.5 in hindbrain roofplate and in various epithelia derived from all germ layers. In keratin 14-expressing epithelia, there is a congruent 5T4 expression pattern with many of these cells being Ki-67 positive. In brain, expression is observed in roofplate, ependymal layers, choroid plexus, and subventricular zones of lateral ventricles at E14.5. By E17.5, expression is decreased in the subventricular zone with further restriction to choroid plexus in adult brain. Our data demonstrate a limited 5T4 expression profile during embryogenesis associated with actively cycling, undifferentiated epithelial progenitor cells that may contribute to their migration. PMID:15977177

  8. Embryonic and larval development in barfin flounder Verasper moseri (Jordan and Gilbert)

    NASA Astrophysics Data System (ADS)

    Du, Rongbin; Wang, Yongqiang; Jiang, Haibin; Liu, Liming; Wang, Maojian; Li, Tianbao; Zhang, Shubao

    2010-01-01

    Broodstock of Verasper moseri (Jordan and Gilbert) aged 3-4 years old were selected, and reinforced cultivation was conducted to promote maturation under controlled water temperature and photoperiod conditions. Fertilized eggs were obtained by artificial fertilization, and the development of embryos, larvae and juveniles was observed continuously. The results showed that the fertilized eggs of V. moseri were spherical, with transparent yolk and homogeneous bioplasm, and had no oil globule inside. The average diameter of the eggs was 1.77±0.02 mm. The eggs of V. moseri were buoyant in water with salinity above 35. The cleavage type was typical discoidal. Young pigment cells appeared when olfactory plates began to form. Hatching occurred at 187 h after fertilization at a water temperature of 8.5°C. The newly hatched larvae, floating on the water surface, were transparent with an average total length of 4.69±0.15 mm. During the cultivation period, when the water temperature was raised from 9 to 14.5°C, 4-day old larvae showed more melanophores on the body surface, making the larvae gray in color. The pectoral fins began to develop, which enabled the larvae to swim horizontally and in a lively manner. On days 7-8, the digestive duct formed. The yolk sac was small and black. The yolk sac was absorbed on day 11. Larvae took food actively, and body length and body height clearly increased. The rudiments of dorsal and anal fin pterygiophores were discernible and caudal fin ray elements formed on day 19. On day 24, the larval notochord flexed upwards, and the rays of unpaired fins began to differentiate. Pigment cells converged on the dorsal and anal fin rays, and the mastoid teeth on the mandible appeared. On day 29, the left eyes of juveniles began to move upwards. Depigmentation began in some juveniles and they became sandy brown in color on day 37. Most juveniles began to settle on the bottom of the tank. The left eyes of juveniles migrated completely to the right

  9. Evidence for myoblast-extrinsic regulation of slow myosin heavy chain expression during muscle fiber formation in embryonic development.

    PubMed

    Cho, M; Webster, S G; Blau, H M

    1993-05-01

    Vertebrate muscles are composed of an array of diverse fast and slow fiber types with different contractile properties. Differences among fibers in fast and slow MyHC expression could be due to extrinsic factors that act on the differentiated myofibers. Alternatively, the mononucleate myoblasts that fuse to form multinucleated muscle fibers could differ intrinsically due to lineage. To distinguish between these possibilities, we determined whether the changes in proportion of slow fibers were attributable to inherent differences in myoblasts. The proportion of fibers expressing slow myosin heavy chain (MyHC) was found to change markedly with time during embryonic and fetal human limb development. During the first trimester, a maximum of 75% of fibers expressed slow MyHC. Thereafter, new fibers formed which did not express this MyHC, so that the proportion of fibers expressing slow MyHC dropped to approximately 3% of the total by midgestation. Several weeks later, a subset of the new fibers began to express slow MyHC and from week 30 of gestation through adulthood, approximately 50% of fibers were slow. However, each myoblast clone (n = 2,119) derived from muscle tissues at six stages of human development (weeks 7, 9, 16, and 22 of gestation, 2 mo after birth and adult) expressed slow MyHC upon differentiation. We conclude from these results that the control of slow MyHC expression in vivo during muscle fiber formation in embryonic development is largely extrinsic to the myoblast. By contrast, human myoblast clones from the same samples differed in their expression of embryonic and neonatal MyHCs, in agreement with studies in other species, and this difference was shown to be stably heritable. Even after 25 population doublings in tissue culture, embryonic stage myoblasts did not give rise to myoblasts capable of expressing MyHCs typical of neonatal stages, indicating that stage-specific differences are not under the control of a division dependent mechanism, or

  10. Evidence for myoblast-extrinsic regulation of slow myosin heavy chain expression during muscle fiber formation in embryonic development

    PubMed Central

    1993-01-01

    Vertebrate muscles are composed of an array of diverse fast and slow fiber types with different contractile properties. Differences among fibers in fast and slow MyHC expression could be due to extrinsic factors that act on the differentiated myofibers. Alternatively, the mononucleate myoblasts that fuse to form multinucleated muscle fibers could differ intrinsically due to lineage. To distinguish between these possibilities, we determined whether the changes in proportion of slow fibers were attributable to inherent differences in myoblasts. The proportion of fibers expressing slow myosin heavy chain (MyHC) was found to change markedly with time during embryonic and fetal human limb development. During the first trimester, a maximum of 75% of fibers expressed slow MyHC. Thereafter, new fibers formed which did not express this MyHC, so that the proportion of fibers expressing slow MyHC dropped to approximately 3% of the total by midgestation. Several weeks later, a subset of the new fibers began to express slow MyHC and from week 30 of gestation through adulthood, approximately 50% of fibers were slow. However, each myoblast clone (n = 2,119) derived from muscle tissues at six stages of human development (weeks 7, 9, 16, and 22 of gestation, 2 mo after birth and adult) expressed slow MyHC upon differentiation. We conclude from these results that the control of slow MyHC expression in vivo during muscle fiber formation in embryonic development is largely extrinsic to the myoblast. By contrast, human myoblast clones from the same samples differed in their expression of embryonic and neonatal MyHCs, in agreement with studies in other species, and this difference was shown to be stably heritable. Even after 25 population doublings in tissue culture, embryonic stage myoblasts did not give rise to myoblasts capable of expressing MyHCs typical of neonatal stages, indicating that stage-specific differences are not under the control of a division dependent mechanism, or

  11. An experimental model for studying the biomechanics of embryonic tendon: Evidence that the development of mechanical properties depends on the actinomyosin machinery

    PubMed Central

    Kalson, Nicholas S.; Holmes, David F.; Kapacee, Zoher; Otermin, Iker; Lu, Yinhui; Ennos, Roland A.; Canty-Laird, Elizabeth G.; Kadler, Karl E.

    2010-01-01

    Tendons attach muscles to bone and thereby transmit tensile forces during joint movement. However, a detailed understanding of the mechanisms that establish the mechanical properties of tendon has remained elusive because of the practical difficulties of studying tissue mechanics in vivo. Here we have performed a study of tendon-like constructs made by culturing embryonic tendon cells in fixed-length fibrin gels. The constructs display mechanical properties (toe–linear–fail stress–strain curve, stiffness, ultimate tensile strength, and failure strain) as well as collagen fibril volume fraction and extracellular matrix (ECM)/cell ratio that are statistically similar to those of embryonic chick metatarsal tendons. The development of mechanical properties during time in culture was abolished when the constructs were treated separately with Triton X-100 (to solubilise membranes), cytochalasin (to disassemble the actin cytoskeleton) and blebbistatin (a small molecule inhibitor of non-muscle myosin II). Importantly, these treatments had no effect on the mechanical properties of the constructs that existed prior to treatment. Live-cell imaging and 14C-proline metabolic labeling showed that blebbistatin inhibited the contraction of the constructs without affecting cell viability, procollagen synthesis, or conversion of procollagen to collagen. In conclusion, the mechanical properties per se of the tendon constructs are attributable to the ECM generated by the cells but the improvement of mechanical properties during time in culture was dependent on non-muscle myosin II-derived forces. PMID:20736063

  12. Random Walk of Single Gold Nanoparticles in Zebrafish Embryos Leading to Stochastic Toxic Effects on Embryonic Developments

    PubMed Central

    Browning, Lauren M.; Lee, Kerry J.; Huang, Tao; Nallathamby, Prakash D.; Lowman, Jill E.; Xu, Xiao-Hong Nancy

    2010-01-01

    We have synthesized and characterized stable (non-aggregation, non-photobleaching and non-blinking), nearly monodisperse and highly-purified Au nanoparticles, and used them to probe transport of cleavage-stage zebrafish embryos and to study their effects on embryonic development in real time. We found that single Au nanoparticles (11.6 ± 0.9 nm in diameter) passively diffused into chorionic space of the embryos via their chorionic-pore-canals and continued their random-walk through chorionic space and into inner mass of embryos. Diffusion coefficients of single nanoparticles vary dramatically (2.8×10-11 to 1.3×10-8 cm2/s) as nanoparticles diffuse through various parts of embryos, suggesting highly diverse transport barriers and viscosity gradients of embryos. The amount of Au nanoparticles accumulated in embryos increase with its concentration. Interestingly, their effects on embryonic development are not proportionally related to the concentration. Majority of embryos (74% on average) incubated chronically with 0.025-1.2 nM Au nanoparticles for 120 h developed to normal zebrafish, with some (24%) being dead and few (2%) deformed. We developed a new approach to image and characterize individual Au nanoparticles embedded in tissues using histology sample preparation methods and LSRP spectra of single nanoparticles. We found that Au nanoparticles in various parts of normally developed and deformed zebrafish, suggesting that random-walk of nanoparticles in embryos during their development might have led to stochastic effects on embryonic development. These results show that Au nanoparticles are much more biocompatible (less toxic) to the embryos than Ag nanoparticles that we reported previously, suggesting that they are better suited as biocompatible probes for imaging embryos in vivo. The results provide powerful evidences that biocompatibility and toxicity of nanoparticles highly depend on their chemical properties, and the embryos can serve as effective in

  13. Ozz-E3 ubiquitin ligase targets sarcomeric embryonic myosin heavy chain during muscle development.

    PubMed

    Campos, Yvan; Qiu, Xiaohui; Zanoteli, Edmar; Moshiach, Simon; Vergani, Naja; Bongiovanni, Antonella; Harris, A John; d'Azzo, Alessandra

    2010-01-01

    Muscle contractile proteins are expressed as a series of developmental isoforms that are in constant dynamic remodeling during embryogenesis, but how obsolete molecules are recognized and removed is not known. Ozz is a developmentally regulated protein that functions as the adaptor component of a RING-type ubiquitin ligase complex specific to striated muscle. Ozz(-/-) mutants exhibit defects in myofibrillogenesis and myofiber differentiation. Here we show that Ozz targets the rod portion of embryonic myosin heavy chain and preferentially recognizes the sarcomeric rather than the soluble pool of myosin. We present evidence that Ozz binding to the embryonic myosin isoform within sarcomeric thick filaments marks it for ubiquitination and proteolytic degradation, allowing its replacement with neonatal or adult isoforms. This unique function positions Ozz within a system that facilitates sarcomeric myosin remodeling during muscle maturation and regeneration. Our findings identify Ozz-E3 as the ubiquitin ligase complex that interacts with and regulates myosin within its fully assembled cytoskeletal structure. PMID:20352047

  14. Time-Series Interactions of Gene Expression, Vascular Growth and Hemodynamics during Early Embryonic Arterial Development.

    PubMed

    Goktas, Selda; Uslu, Fazil E; Kowalski, William J; Ermek, Erhan; Keller, Bradley B; Pekkan, Kerem

    2016-01-01

    The role of hemodynamic forces within the embryo as biomechanical regulators for cardiovascular morphogenesis, growth, and remodeling is well supported through the experimental studies. Furthermore, clinical experience suggests that perturbed flow disrupts the normal vascular growth process as one etiology for congenital heart diseases (CHD) and for fetal adaptation to CHD. However, the relationships between hemodynamics, gene expression and embryonic vascular growth are poorly defined due to the lack of concurrent, sequential in vivo data. In this study, a long-term, time-lapse optical coherence tomography (OCT) imaging campaign was conducted to acquire simultaneous blood velocity, pulsatile micro-pressure and morphometric data for 3 consecutive early embryonic stages in the chick embryo. In conjunction with the in vivo growth and hemodynamics data, in vitro reverse transcription polymerase chain reaction (RT-PCR) analysis was performed to track changes in transcript expression relevant to histogenesis and remodeling of the embryonic arterial wall. Our non-invasive extended OCT imaging technique for the microstructural data showed continuous vessel growth. OCT data coupled with the PIV technique revealed significant but intermitted increases in wall shear stress (WSS) between first and second assigned stages and a noticeable decrease afterwards. Growth rate, however, did not vary significantly throughout the embryonic period. Among all the genes studied, only the MMP-2 and CASP-3 expression levels remained unchanged during the time course. Concurrent relationships were obtained among the transcriptional modulation of the genes, vascular growth and hemodynamics-related changes. Further studies are indicated to determine cause and effect relationships and reversibility between mechanical and molecular regulation of vasculogenesis. PMID:27552150

  15. Time-Series Interactions of Gene Expression, Vascular Growth and Hemodynamics during Early Embryonic Arterial Development

    PubMed Central

    Goktas, Selda; Uslu, Fazil E.; Kowalski, William J.; Ermek, Erhan; Keller, Bradley B.

    2016-01-01

    The role of hemodynamic forces within the embryo as biomechanical regulators for cardiovascular morphogenesis, growth, and remodeling is well supported through the experimental studies. Furthermore, clinical experience suggests that perturbed flow disrupts the normal vascular growth process as one etiology for congenital heart diseases (CHD) and for fetal adaptation to CHD. However, the relationships between hemodynamics, gene expression and embryonic vascular growth are poorly defined due to the lack of concurrent, sequential in vivo data. In this study, a long-term, time-lapse optical coherence tomography (OCT) imaging campaign was conducted to acquire simultaneous blood velocity, pulsatile micro-pressure and morphometric data for 3 consecutive early embryonic stages in the chick embryo. In conjunction with the in vivo growth and hemodynamics data, in vitro reverse transcription polymerase chain reaction (RT-PCR) analysis was performed to track changes in transcript expression relevant to histogenesis and remodeling of the embryonic arterial wall. Our non-invasive extended OCT imaging technique for the microstructural data showed continuous vessel growth. OCT data coupled with the PIV technique revealed significant but intermitted increases in wall shear stress (WSS) between first and second assigned stages and a noticeable decrease afterwards. Growth rate, however, did not vary significantly throughout the embryonic period. Among all the genes studied, only the MMP-2 and CASP-3 expression levels remained unchanged during the time course. Concurrent relationships were obtained among the transcriptional modulation of the genes, vascular growth and hemodynamics-related changes. Further studies are indicated to determine cause and effect relationships and reversibility between mechanical and molecular regulation of vasculogenesis. PMID:27552150

  16. Actin Disorganization Plays a Vital Role in Impaired Embryonic Development of In Vitro-Produced Mouse Preimplantation Embryos

    PubMed Central

    Tan, Kun; An, Lei; Wang, Shu-Min; Wang, Xiao-Dong; Zhang, Zhen-Ni; Miao, Kai; Sui, Lin-Lin; He, Shu-Zhi; Nie, Jing-Zhou; Wu, Zhong-Hong; Tian, Jian-Hui

    2015-01-01

    Assisted reproductive technology (ART) is being increasingly applied to overcome infertility. However, the in vitro production process, the main procedure of ART, can lead to aberrant embryonic development and health-related problems in offspring. Understanding the mechanisms underlying the ART-induced side effects is important to improve the ART process. In this study, we carried out comparative transcriptome profiling between in vivo- (IVO) and in vitro- produced (IVP) mouse blastocysts. Our results suggested that aberrant actin organization might be a major factor contributing to the impaired development of IVP embryos. To test this, we examined the effect of actin disorganization on the development of IVP preimplantation embryos. Specific disruption of actin organization by cytochalasin B (CB) indicated that well-organized actin is essential for in vitro embryonic development. Supplementing the culture medium with 10–9 M melatonin, a cytoskeletal modulator in adult somatic cells, significantly reversed the disrupted expression patterns of genes related to actin organization, including Arhgef2, Bcl2, Coro2b, Flnc, and Palld. Immunofluorescence analysis showed that melatonin treatment of IVP embryos significantly improved the distribution and organization of actin filaments (F-actin) from the 8-cell stage onwards. More importantly, we found that melatonin alleviated the CB-mediated aberrant F-actin distribution and organization and rescued CB-induced impaired embryonic development. This is the first study to indicate that actin disorganization is implicated in impaired development of IVP embryos during the preimplantation stage. We also demonstrated that improving actin organization is a promising strategy to optimize existing IVP systems. PMID:26076347

  17. An Integrated Transcriptome Atlas of Embryonic Hair Follicle Progenitors, Their Niche, and the Developing Skin.

    PubMed

    Sennett, Rachel; Wang, Zichen; Rezza, Amélie; Grisanti, Laura; Roitershtein, Nataly; Sicchio, Cristina; Mok, Ka Wai; Heitman, Nicholas J; Clavel, Carlos; Ma'ayan, Avi; Rendl, Michael

    2015-09-14

    Defining the unique molecular features of progenitors and their niche requires a genome-wide, whole-tissue approach with cellular resolution. Here, we co-isolate embryonic hair follicle (HF) placode and dermal condensate cells, precursors of adult HF stem cells and the dermal papilla/sheath niche, along with lineage-related keratinocytes and fibroblasts, Schwann cells, melanocytes, and a population inclusive of all remaining skin cells. With next-generation RNA sequencing, we define gene expression patterns in the context of the entire embryonic skin, and through transcriptome cross-comparisons, we uncover hundreds of enriched genes in cell-type-specific signatures. Axon guidance signaling and many other pathway genes are enriched in multiple signatures, implicating these factors in driving the large-scale cellular rearrangements necessary for HF formation. Finally, we share all data in an interactive, searchable companion website. Our study provides an overarching view of signaling within the entire embryonic skin and captures a molecular snapshot of HF progenitors and their niche. PMID:26256211

  18. Overfeeding and underfeeding have detrimental effects on oocyte quality measured by in vitro fertilization and early embryonic development in sheep.

    PubMed

    Grazul-Bilska, A T; Borowczyk, E; Bilski, J J; Reynolds, L P; Redmer, D A; Caton, J S; Vonnahme, K A

    2012-11-01

    To determine effects of maternal diet on in vitro fertilization (IVF) and early embryonic development, ewes (n = 48) were divided into control, overfed (ad libitum feeding), and underfed (60% of control) nutritional planes for 8 wk before oocyte collection. Follicular development was induced by twice-daily injections of FSH on days 13 and 14 of the estrous cycle, and ovaries and blood samples were collected on day 15 of the estrous cycle. During the 8-wk experiment, for control ewes BW and BCS did not change, but for overfed ewes mean (± SEM) BW and BCS increased (11.8 ± 1.1 kg and 2.0 ± 0.1, respectively) and for underfed ewes decreased (14.2 ± 0.9 kg and 0.7 ± 0.1, respectively). The number of follicles was determined; oocytes were collected and subjected to in vitro maturation and fertilization. After IVF, developing embryos were evaluated throughout the 8-d culture period. The proportion of cleaved oocytes after IVF and developing morula and blastocyst were less (P < 0.0001) in overfed and underfed ewes than in control ewes. However, number of visible follicles, total number of oocytes, number of healthy oocytes, and percentage of healthy oocytes were similar for control, overfed, and underfed ewes. Serum insulin concentration was greater (P < 0.05) in overfed ewes than in underfed ewes, estradiol 17-β (E(2)) concentration was greater (P < 0.05) in underfed ewes than in overfed ewes, but triiodothyronine (T(3)) and thyroxine (T(4)) concentrations were similar in all treatment groups. These data show that inadequate feeding has a negative effect on oocyte quality which results in lower oocyte cleavage after IVF and morula and blastocyst formation; overfeeding increased serum insulin and underfeeding increased serum E(2) but not T(3) or T(4). These data emphasize the importance of diet for reproductive and metabolic functions. Furthermore, the mechanisms through which enhanced or decreased energy in diet affect oocyte quality and serum insulin and E(2

  19. Functional equivalence of Hox gene products in the specification of the tritocerebrum during embryonic brain development of Drosophila.

    PubMed

    Hirth, F; Loop, T; Egger, B; Miller, D F; Kaufman, T C; Reichert, H

    2001-12-01

    Hox genes encode evolutionarily conserved transcription factors involved in the specification of segmental identity during embryonic development. This specification of identity is thought to be directed by differential Hox gene action, based on differential spatiotemporal expression patterns, protein sequence differences, interactions with co-factors and regulation of specific downstream genes. During embryonic development of the Drosophila brain, the Hox gene labial is required for the regionalized specification of the tritocerebral neuromere; in the absence of labial, the cells in this brain region do not acquire a neuronal identity and major axonal pathfinding deficits result. We have used genetic rescue experiments to investigate the functional equivalence of the Drosophila Hox gene products in the specification of the tritocerebral neuromere. Using the Gal4-UAS system, we first demonstrate that the labial mutant brain phenotype can be rescued by targeted expression of the Labial protein under the control of CNS-specific labial regulatory elements. We then show that under the control of these CNS-specific regulatory elements, all other Drosophila Hox gene products, except Abdominal-B, are able to efficiently replace Labial in the specification of the tritocerebral neuromere. We also observe a correlation between the rescue efficiency of the Hox proteins and the chromosomal arrangement of their encoding loci. Our results indicate that, despite considerably diverged sequences, most Hox proteins are functionally equivalent in their ability to replace Labial in the specification of neuronal identity. This suggests that in embryonic brain development, differences in Hox gene action rely mainly on cis-acting regulatory elements and not on Hox protein specificity. PMID:11731458

  20. Conditional ablation of p63 indicates that it is essential for embryonic development of the central nervous system

    PubMed Central

    Cancino, Gonzalo I; Fatt, Michael P; Miller, Freda D; Kaplan, David R

    2015-01-01

    p63 is a member of the p53 family that regulates the survival of neural precursors in the adult brain. However, the relative importance of p63 in the developing brain is still unclear, since embryonic p63−/− mice display no apparent deficits in neural development. Here, we have used a more definitive conditional knockout mouse approach to address this issue, crossing p63fl/fl mice to mice carrying a nestin-CreERT2 transgene that drives inducible recombination in neural precursors following tamoxifen treatment. Inducible ablation of p63 following tamoxifen treatment of mice on embryonic day 12 resulted in highly perturbed forebrain morphology including a thinner cortex and enlarged lateral ventricles 3 d later. While the normal cortical layers were still present following acute p63 ablation, cortical precursors and neurons were both reduced in number due to widespread cellular apoptosis. This apoptosis was cell-autonomous, since it also occurred when p63 was inducibly ablated in primary cultured cortical precursors. Finally, we demonstrate increased expression of the mRNA encoding another p53 family member, ΔNp73, in cortical precursors of p63−/− but not tamoxifen-treated p63fl/fl;R26YFPfl/fl;nestin-CreERT2+/Ø embryos. Since ΔNp73 promotes cell survival, then this compensatory increase likely explains the lack of an embryonic brain phenotype in p63−/− mice. Thus, p63 plays a key prosurvival role in the developing mammalian brain. PMID:26359534

  1. Histology Atlas of the Developing Mouse Hepatobiliary Hemolymphatic Vascular System with Emphasis on Embryonic Days 11.5-18.5 and Early Postnatal Development.

    PubMed

    Swartley, Olivia M; Foley, Julie F; Livingston, David P; Cullen, John M; Elmore, Susan A

    2016-07-01

    A critical event in embryo development is the proper formation of the vascular system, of which the hepatobiliary system plays a pivotal role. This has led researchers to use transgenic mice to identify the critical steps involved in developmental disorders associated with the hepatobiliary vascular system. Vascular development is dependent upon normal vasculogenesis, angiogenesis, and the transformation of vessels into their adult counterparts. Any alteration in vascular development has the potential to cause deformities or embryonic death. Numerous publications describe specific stages of vascular development relating to various organs, but a single resource detailing the stage-by-stage development of the vasculature pertaining to the hepatobiliary system has not been available. This comprehensive histology atlas provides hematoxylin & eosin and immunohistochemical-stained sections of the developing mouse blood and lymphatic vasculature with emphasis on the hepatobiliary system between embryonic days (E) 11.5-18.5 and the early postnatal period. Additionally, this atlas includes a 3-dimensional video representation of the E18.5 mouse venous vasculature. One of the most noteworthy findings of this atlas is the identification of the portal sinus within the mouse, which has been erroneously misinterpreted as the ductus venosus in previous publications. Although the primary purpose of this atlas is to identify normal hepatobiliary vascular development, potential embryonic abnormalities are also described. PMID:26961180

  2. Ca2+ signaling and early embryonic patterning during the blastula and gastrula periods of zebrafish and Xenopus development.

    PubMed

    Webb, Sarah E; Miller, Andrew L

    2006-11-01

    It has been proposed that Ca(2+) signaling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern forming events during early vertebrate development [L.F. Jaffe, Organization of early development by calcium patterns, BioEssays 21 (1999) 657-667; M.J. Berridge, P. Lipp, M.D. Bootman, The versatility and universality of calcium signaling, Nat. Rev. Mol. Cell Biol. 1 (2000) 11-21; S.E. Webb, A.L. Miller, Calcium signalling during embryonic development, Nat. Rev. Mol. Cell Biol. 4 (2003) 539-551]. With reference to the embryos of zebrafish (Danio rerio) and the frog, Xenopus laevis, we review the Ca(2+) signals reported during the Blastula and Gastrula Periods. This developmental window encompasses the major pattern forming events of epiboly, involution, and convergent extension, which result in the establishment of the basic germ layers and body axes [C.B. Kimmel, W.W. Ballard, S.R. Kimmel, B. Ullmann, T.F. Schilling, Stages of embryonic development of the zebrafish, Dev. Dyn. 203 (1995) 253-310]. Data will be presented to support the suggestion that propagating waves (both long and short range) of Ca(2+) release, followed by sequestration, may play a crucial role in: (1) Coordinating cell movements during these pattern forming events and (2) Contributing to the establishment of the basic embryonic axes, as well as (3) Helping to define the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen [E. Gilland, A.L. Miller, E. Karplus, R. Baker, S.E. Webb, Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation, Proc. Natl. Acad. Sci. USA 96 (1999) 157-161; J.B. Wallingford, A.J. Ewald, R.M. Harland, S.E. Fraser, Calcium signaling during convergent extension in Xenopus, Curr. Biol. 11 (2001) 652-661]. The various potential targets of these Ca(2+) transients will also be discussed, as well as how they might integrate with other known pattern forming

  3. Development and characterization of a monoclonal antibody to human embryonal carcinoma

    SciTech Connect

    Khazaeli, M.B.; Beierwaltes, W.H.; Pitt, G.S.; Kabza, G.A.; Rogers, K.J.; LoBuglio, A.F.

    1987-06-01

    A monoclonal anti-testicular carcinoma antibody was obtained via the somatic cell fusion technique by immunization of BALB/c mice with freshly prepared single cell suspension from a patient with testicular embryonal carcinoma with choriocarcinoma components. The hybridoma supernates were screened against the testicular carcinoma cells used in the immunization as well as normal mononuclear white blood cells isolated from the same patient. An antibody (5F9) was selected which bound to fresh tumor cells from two patients with embryonal testicular carcinoma and failed to bind to fresh tumor cells from 24 patients (2 seminoma, 2 melanoma, 3 neck, 2 esophageal, 1 ovarian, 3 colon, 1 prostate, 2 breast, 1 liposarcoma, 3 endometrial, 1 kidney, 1 adrenal, 1 larynx and 1 bladder tumors) or cell suspensions prepared from normal liver, lung, spleen, ovary, testes, kidney, red blood cells or white blood cells. The antibody was tested for its binding to several well established cancer cell lines, and was found to bind to the BeWo human choriocarcinoma and two human embryonal carcinoma cell lines. The antibody did not react with 22 other cell lines or with hCG. The antibody was labeled with /sup 131/I and injected into nude mice bearing BeWo tumors and evaluated for tumor localization by performing whole body scans with a gamma camera 5 days later. Six mice injected with the antibody showed positive tumor localization without the need for background subtraction while six mice injected with MOPC-21, a murine myeloma immunoglobulin, demonstrated much less tumor localization. Tissue distribution studies performed after scanning showed specific tumor localization (8:1 tumor: muscle) for the monoclonal antibody and no specific localization for MOPC-21.

  4. Analysis of Drosophila melanogaster proteome dynamics during embryonic development by a combination of label-free proteomics approaches.

    PubMed

    Fabre, Bertrand; Korona, Dagmara; Groen, Arnoud; Vowinckel, Jakob; Gatto, Laurent; Deery, Michael J; Ralser, Markus; Russell, Steven; Lilley, Kathryn S

    2016-08-01

    During embryogenesis, organisms undergo considerable cellular remodelling requiring the combined action of thousands of proteins. In case of the well-studied model Drosophila melanogaster, transcriptomic studies, most notably from the modENCODE project, have described in detail changes in gene expression at the mRNA level across development. Although such data are clearly very useful to understand how the genome is regulated during embryogenesis, it is important to understand how changes in gene expression are reflected at the level of the proteome. In this study, we describe a combination of two quantitative label-free approaches, SWATH and data-dependent acquisition, to monitor changes in protein expression across a timecourse of D. melanogaster embryonic development. We demonstrate that both approaches provide robust and reproducible methods for the analysis of proteome changes. In a preliminary analysis of Drosophila embryogenesis, we identified several pathways, including the heat-shock response, nuclear protein import and energy production that are regulated during embryo development. In some cases changes in protein expression mirrored transcript levels across development, whereas other proteins showed signatures of post-transcriptional regulation. Taken together, our pilot study provides a solid platform for a more detailed exploration of the embryonic proteome. PMID:27029218

  5. Embryonic development of chicken (Gallus Gallus Domesticus) from 1st to 19th day-ectodermal structures.

    PubMed

    Toledo Fonseca, Erika; De Oliveira Silva, Fernanda Menezes; Alcântara, Dayane; Carvalho Cardoso, Rafael; Luís Franciolli, André; Sarmento, Carlos Alberto Palmeira; Fratini, Paula; José Piantino Ferreira, Antônio; Miglino, Maria Angélica

    2013-12-01

    Birds occupy a prominent place in the Brazilian economy not only in the poultry industry but also as an animal model in many areas of scientific research. Thus the aim of this study was to provide a description of macro and microscopic aspects of the ectoderm-derived structures in chicken embryos / fetuses poultry (Gallus gallus domesticus) from 1st to 19th day of incubation. 40 fertilized eggs, from a strain of domestic chickens, with an incubation period of 2-19 days were subjected to macroscopic description, biometrics, light, and scanning microscopy. All changes observed during the development were described. The nervous system, skin and appendages and organs related to vision and hearing began to be identified, both macro and microscopically, from the second day of incubation. The vesicles from the primitive central nervous system-forebrain, midbrain, and hindbrain-were identified on the third day of incubation. On the sixth day of incubation, there was a clear vascularization of the skin. The optic vesicle was first observed fourth day of development and on the fifth day there was the beginning of the lens formation. Although embryonic development is influenced by animal line as well as external factors such as incubation temperature, this paper provides a chronological description for chicken (Gallus gallus domesticus) during its embryonic development. PMID:24019213

  6. Early development of Xenopus embryos is affected by simulated gravity

    NASA Technical Reports Server (NTRS)

    Yokota, Hiroki; Neff, Anton W.; Malacinski, George M.

    1994-01-01

    Early amphibian (Xenopus laevis) development under clinostat-simulated weightlessness and centrifuge-simulated hypergravity was studied. The results revealed significant effects on (i) 'morphological patterning' such as the cleavage furrow pattern in the vegetal hemisphere at the eight-cell stage and the shape of the dorsal lip in early gastrulae and (ii) 'the timing of embryonic events' such as the third cleavage furrow completion and the dorsal lip appearance. Substantial variations in sensitivity to simulated force fields were observed, which should be considered in interpreting spaceflight data.

  7. Water pollution by Cu and Pb can adversely affect mallard embryonic development.

    PubMed

    Kertész, Virág; Bakonyi, Gábor; Farkas, Beáta

    2006-09-01

    The effects of heavy metal pollutants on aquatic birds have been widely studied in ecotoxicological investigations; however, the predominant focus has been on the postnatal period of life. Limited information on the adverse effects of metals to bird eggs is available. The possible toxic effects of lead and copper were studied in mallard eggs. After the accidental severe heavy metal pollution of the Tisa river (Hungary) in March 2000, these metals were detected in the highest concentration in both the water and the sediment, reaching far beyond acceptable concentrations. Pb treatment (2.9 mg/L) significantly increased the rate of mortality after a single immersion of the eggs into polluted water for 30 min. The rate of dead embryos significantly increased after the combined exposure to Cu and Pb (0.86 and 2.9 mg/L, respectively) both in the single- (once for 30 min) and in the multiple- (10s daily during first trimester of incubation) immersion groups. It was concluded that elevated metal concentrations similar to those found in the Tisa river after the tailing dam failure may cause toxic effects (mortality and teratogenicity) upon exposure of mallard eggs. PMID:16678261

  8. Promotion of hair follicle development and trichogenesis by Wnt-10b in cultured embryonic skin and in reconstituted skin

    SciTech Connect

    Ouji, Yukiteru . E-mail: oujix@naramed-u.ac.jp; Yoshikawa, Masahide; Shiroi, Akira; Ishizaka, Shigeaki

    2006-06-30

    We previously showed that Wnt-10b promoted the differentiation of primary skin epithelial cells (MPSEC) toward hair shaft and inner root sheath of the hair follicle (IRS) cells in vitro. In the present study, we found that Wnt-10b promotes the development of hair follicles using a culture of mouse embryonic skin tissue and trichogenesis using a reconstitution experiment with nude mice. Hair follicle development was observed in skin taken from mouse embryos on embryonic day 10.5 following a 2-day culture with recombinant Wnt-10b (rWnt-10b), however, not without rWnt-10b. Brown hair growth was observed at the site of reconstituted skin in Balb/c nude mice where dermal fibroblasts and keratinocytes, derived from C3H/HeN new born mice, were transplanted with Wnt-10b-producing COS cells (Wnt-COS). Without the co-transplantation of Wnt-COS, no hair growth was observed. Our results suggest an important role of Wnt-10b in the initiation of hair follicle development and following trichogenesis.

  9. Study of effects of radio-wave frequency radiation emitted from cellular telephones on embryonic development of danio rerio

    NASA Astrophysics Data System (ADS)

    Vagula, Mary; Harkless, Ryan

    2013-05-01

    Radio wave frequency (RF) radiation emitted from cellular telephones has become increasingly ubiquitous as a result of the popularity of these phones. With the increasing and unavoidable exposure to RF radiation a reality, it is imperative that the effects of such radiation on living tissue be well understood. In particular, it is critical to understand any effects that RF radiation may have as a carcinogen and on embryonic development, as pregnant women are not exempt from such exposure. As a model organism, zebrafish (Danio rerio) have been studied extensively, and their value in studies of gene expression cannot be overstated. This study observed the effects of RF radiation on the embryonic development of zebrafish. The expression of two genes, shha and hoxb9a, that are key to the early development of the fish was examined. Both genes have homologs in humans as well as in other model organisms. Preliminary results suggest that exposure to cell phone radiation might have an effect on the expression of shha in zebrafish embryos, causing under expression. More trials are necessary to validate these results.

  10. Bone scaffold architecture modulates the development of mineralized bone matrix by human embryonic stem cells

    PubMed Central

    Marcos-Campos, Ivan; Marolt, Darja; Petridis, Petros; Bhumiratana, Sarindr; Schmidt, Daniel; Vunjak-Novakovic, Gordana

    2012-01-01

    Decellularized bone has been widely used as a scaffold for bone formation, due to its similarity to the native bone matrix and excellent osteoinductive and biomechanical properties. We have previously shown that human mesenchymal and embryonic stem cells form functional bone matrix on such scaffolds, without the use of growth factors. In this study, we focused on differences in bone matrix that exist even among identical harvesting sites, and the effects of the matrix architecture and mineral content on bone formation by human embryonic stem cells (hESC). Mesenchymal progenitors derived from hESCs were cultured for 5 weeks in decellularized bone scaffolds with three different densities: low (0.281 ± 0.018 mg/mm3), medium (0.434 ± 0.015 mg/mm3) and high (0.618 ± 0.027 mg/mm3). The medium-density group yielded highest densities of cells and newly assembled bone matrix, presumably due to the best balance between the transport of nutrients and metabolites to and from the cells, space for cell infiltration, surface for cell attachment and the mechanical strength of the scaffolds, all of which depend on the scaffold density. Bone mineral was beneficial for the higher expression of bone markers in cultured cells and more robust accumulation of the new bone matrix. PMID:22901965

  11. Effects of Lipopolysaccharide and Progesterone Exposures on Embryonic Cerebral Cortex Development in Mice.

    PubMed

    Tronnes, Ashlie A; Koschnitzky, Jenna; Daza, Ray; Hitti, Jane; Ramirez, Jan Marino; Hevner, Robert

    2016-06-01

    Our objective was to determine if progesterone pretreatment could ameliorate the detrimental effects of lipopolysaccharide (LPS)-induced inflammation on cortical neurogenesis. Timed pregnant mouse dams (n = 8) were given intraperitoneal injections of progesterone (42 mg/kg) or vehicle on embryonic day 17.5. Two hours later, mice were given intraperitoneal LPS (140 μg/kg) or vehicle. Mice were sacrificed 16 hours later on embryonic day 18. Two-color immunofluorescence was performed with primary antibodies T-box transcription factor 2 (Tbr2), ionized calcium binding adapter molecule 1 (Iba1), cleaved caspase 3 (CC3), and 5-bromo-2'-deoxyuridine (BrdU). Cells were counted, and statistical analysis was determined using analysis of variance and Tukey-Kramer method. The Tbr2 intermediate neural progenitor cell density decreased after LPS exposure (P = .0022). Pre-exposure to progesterone statistically increased Tbr2 intermediate neural progenitors compared to LPS treatment alone and was similar to controls (P = .0022). After LPS exposure, microglia displayed an activated phenotype, and cell density was increased (P < .001). Cell death rates were low among study groups but was increased in LPS exposure groups compared to progesterone alone (P = .0015). Lipopolysaccharide-induced systemic inflammation reduces prenatal neurogenesis in mice. Pre-exposure with progesterone is associated with increased neurogenesis. Progesterone may protect the preterm brain from defects of neurogenesis induced by inflammation. PMID:26621965

  12. Factors affecting stress tolerance in recalcitrant embryonic axes from four Quercus (Fagaceae) species native to the US or China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recalcitrant-seeded Quercus species are often considered “keystone” components of the ecosystems. However, their populations are declining and there is a considerable urgency to develop ex situ conservation strategies. The storage physiology of seeds within Quercus was explored in order to determine...

  13. Development of anomalous rectification (Ih) and of a tetrodotoxin-resistant sodium current in embryonic quail neurones.

    PubMed Central

    Schlichter, R; Bader, C R; Bernheim, L

    1991-01-01

    1. The developmental expression of an inwardly rectifying current activated by membrane hyperpolarization (Ih) and of a tetrodotoxin (TTX)-resistant Na+ current (INa(TR)) was studied using freshly dissociated ganglionic quail neurones of various embryonic ages. This work was carried out on parasympathetic (ciliary) and sensory (trigeminal and dorsal root) ganglion neurones with the whole-cell configuration of the patch-clamp technique. 2. In sensory and parasympathetic neurones, Ih was activated at potentials more negative than -60 mV and displayed strong inward rectification. No sign of time- or voltage-dependent inactivation was apparent. Ih was carried by both Na+ and K+ ions and was selectively and reversibly blocked by extracellular Cs+. 3. During the development of sensory neurones, Ih was observed for the first time between embryonic day 10 (E10) and E11 and the percentage of neurones expressing the current increased subsequently, reaching a plateau level of about 80% at E14. In the parasympathetic neurones of the ciliary ganglion, Ih was already detected at E10 and the percentage of neurones possessing the current increased until E16, a stage at which all neurones were found to express Ih. 4. In the presence of TTX (1 microM), an inward Na+ current, INa(TR), was recorded in sensory neurones after E12. This current was activated at potentials more depolarized than -30 mV and its amplitude was maximal at +5 mV. INa(TR) showed time- and voltage-dependent inactivation. Half-maximal steady-state inactivation was observed at -40 mV. 5. INa(TR) was observed for the first time after E12 in sensory neurones and the percentage of neurones with INa(TR) increased until E14. Thereafter, 80% of the neurones had the current. In contrast, INa(TR) was never observed in the parasympathetic neurones of the ciliary ganglion during embryonic development. 6. Our results with parasympathetic and sensory neurones suggest that the expression of INa(TR) is linked to the phenotype

  14. Brca1 is required for embryonic development of the mouse cerebral cortex to normal size by preventing apoptosis of early neural progenitors.

    PubMed

    Pulvers, Jeremy N; Huttner, Wieland B

    2009-06-01

    The extent of apoptosis of neural progenitors is known to influence the size of the cerebral cortex. Mouse embryos lacking Brca1, the ortholog of the human breast cancer susceptibility gene BRCA1, show apoptosis in the neural tube, but the consequences of this for brain development have not been studied. Here we investigated the role of Brca1 during mouse embryonic cortical development by deleting floxed Brca1 using Emx1-Cre, which leads to conditional gene ablation specifically in the dorsal telencephalon after embryonic day (E) 9.5. The postnatal Brca1-ablated cerebral cortex was substantially reduced in size with regard to both cortical thickness and surface area. Remarkably, although the thickness of the cortical layers (except for the upper-most layer) was decreased, cortical layering as such was essentially unperturbed. High levels of apoptosis were found at E11.5 and E13.5, but dropped to near-control levels by E16.5. The apoptosis at the early stage of neurogenesis occurred in both BrdU pulse-labeled neural progenitors and the neurons derived therefrom. No changes were observed in the mitotic index of apical (neuroepithelial, radial glial) progenitors and basal (intermediate) progenitors, indicating that Brca1 ablation did not affect cell cycle progression. Brca1 ablation did, however, result in the nuclear translocation of p53 in neural progenitors, suggesting that their apoptosis involved activation of the p53 pathway. Our results show that Brca1 is required for the cerebral cortex to develop to normal size by preventing the apoptosis of early cortical progenitors and their immediate progeny. PMID:19403657

  15. 6-OHDA-Induced Changes in Parkinson's Disease-Related Gene Expression are not Affected by the Overexpression of PGAM5 in In Vitro Differentiated Embryonic Mesencephalic Cells.

    PubMed

    Stępkowski, Tomasz Maciej; Wasyk, Iwona; Grzelak, Agnieszka; Kruszewski, Marcin

    2015-11-01

    LUHMES cells, a recently established line of immortalized embryonic mesencephalic cells, are the novel in vitro model for studying Parkinson's disease (PD) and dopaminergic neuron biology. Phosphoglyceromutase 5 (PGAM5) is a mitochondrial protein involved in mitophagy, mitochondria dynamics, and other processes important for PD pathogenesis. We tested the impact of lentiviral overexpression of PGAM5 protein in LUHMES cells on their differentiation and expression of 84 PD-related genes. LUHMES cells were transduced with PGAM5 or mock and treated with 100 μM 6-hydroxydopamine (6-OHDA), a model PD neurotoxin. Real-Time PCR analysis revealed that the treatment with 6-OHDA-induced changes in expression of 44 PD-related genes. PGAM5 transduction alone did not cause alternations in PD-related genes expression, nor it affected changes in gene expression mediated by 6-OHDA. The 6-OHDA-induced PD-related gene expression profile of LUHMES cells is presented for the first time and widely discussed. PMID:25986246

  16. Embryonic development and metabolic costs in Gulf killifish Fundulus grandis exposed to varying environmental salinities.

    PubMed

    Brown, Charles A; Galvez, Fernando; Green, Christopher C

    2012-08-01

    The Gulf killifish (Fundulus grandis) is a euryhaline fish found in coastal marsh along the entire of Gulf of Mexico and southern Atlantic of coast of the United States. The objective of this study was to investigate the effects of salinity on embryogenesis in the Gulf killifish. Four recirculation systems at salinities of 0.4, 7, 15, and 30 g/L were maintained at a static temperature with flow-through trays, containing embryos (n = 39) placed in triplicate into each system. Throughout embryogenesis, the rate of development, ammonia and urea excretion, and heart rate were monitored. Percent hatch was recorded, and morphological parameters were measured for larvae at hatch. As salinity was increased, the rate of embryogenesis decreased. Salinity significantly affected percent hatch with an 80.0% ± 2.6% for 7 g/L and 39.1 ± 4.3, 45.4 ± 4.5, and 36.3% ± 12.0% for 0.4, 15, and 30 g/L, respectively. Salinity and stage of development significantly affected production of ammonia and urea. As salinity increased, the dominate metabolite end product changed from urea to ammonia. However, the 15 g/L salinity treatment had the two highest levels of urea recorded. Heart rate was unaffected by salinity but increased throughout embryogenesis and remained constant once embryos reached stages where hatching has been recorded. While mean total length was not affected by salinity, embryos incubated in 30 g/L produced larvae with significantly thicker body depth at hatch. The 0.4, 7, and 15 g/L salinity treatments all had similar mean hours to hatch. The 30 g/L treatment resulted in a significantly longer mean time to hatch and smaller body cavity area at hatch. PMID:22252334

  17. Environmental concentration of carbamazepine accelerates fish embryonic development and disturbs larvae behavior.

    PubMed

    Qiang, Liyuan; Cheng, Jinping; Yi, Jun; Rotchell, Jeanette M; Zhu, Xiaotong; Zhou, Junliang

    2016-09-01

    Environmental pollution caused by pharmaceuticals has been recognized as a major threat to the aquatic ecosystems. Carbamazepine, as the widely prescribed antiepileptic drug, has been frequently detected in the aquatic environment and has created concerns about its potential impacts in the aquatic organisms. The effects of carbamazepine on zebrafish embryos were studied by examining their phenotype, behavior and molecular responses. The results showed that carbamazepine disturbed the normal growth and development of exposed zebrafish embryos and larvae. Upon exposure to carbamazepine at 1 μg/L, the hatching rate, body length, swim bladder appearance and yolk sac absorption rate were significantly increased. Embryos in treatment groups were more sensitive to touch and light stimulation. At molecular level, exposure to an environmentally relevant concentration (1 μg/L) of carbamazepine disturbed the expression pattern of neural-related genes of zebrafish embryos and larvae. This study suggests that the exposure of fish embryo to antiepileptic drugs, at environmentally relevant concentrations, affects their early development and impairs their behavior. Such impacts may have future repercussions by affecting fish population structure. PMID:27386877

  18. Anthropogenic noise playback impairs embryonic development and increases mortality in a marine invertebrate

    NASA Astrophysics Data System (ADS)

    Nedelec, Sophie L.; Radford, Andrew N.; Simpson, Stephen D.; Nedelec, Brendan; Lecchini, David; Mills, Suzanne C.

    2014-07-01

    Human activities can create noise pollution and there is increasing international concern about how this may impact wildlife. There is evidence that anthropogenic noise may have detrimental effects on behaviour and physiology in many species but there are few examples of experiments showing how fitness may be directly affected. Here we use a split-brood, counterbalanced, field experiment to investigate the effect of repeated boat-noise playback during early life on the development and survival of a marine invertebrate, the sea hare Stylocheilus striatus at Moorea Island (French Polynesia). We found that exposure to boat-noise playback, compared to ambient-noise playback, reduced successful development of embryos by 21% and additionally increased mortality of recently hatched larvae by 22%. Our work, on an understudied but ecologically and socio-economically important taxon, demonstrates that anthropogenic noise can affect individual fitness. Fitness costs early in life have a fundamental influence on population dynamics and resilience, with potential implications for community structure and function.

  19. Anthropogenic noise playback impairs embryonic development and increases mortality in a marine invertebrate

    PubMed Central

    Nedelec, Sophie L.; Radford, Andrew N.; Simpson, Stephen D.; Nedelec, Brendan; Lecchini, David; Mills, Suzanne C.

    2014-01-01

    Human activities can create noise pollution and there is increasing international concern about how this may impact wildlife. There is evidence that anthropogenic noise may have detrimental effects on behaviour and physiology in many species but there are few examples of experiments showing how fitness may be directly affected. Here we use a split-brood, counterbalanced, field experiment to investigate the effect of repeated boat-noise playback during early life on the development and survival of a marine invertebrate, the sea hare Stylocheilus striatus at Moorea Island (French Polynesia). We found that exposure to boat-noise playback, compared to ambient-noise playback, reduced successful development of embryos by 21% and additionally increased mortality of recently hatched larvae by 22%. Our work, on an understudied but ecologically and socio-economically important taxon, demonstrates that anthropogenic noise can affect individual fitness. Fitness costs early in life have a fundamental influence on population dynamics and resilience, with potential implications for community structure and function. PMID:25080997

  20. Lack of Cul4b, an E3 Ubiquitin Ligase Component, Leads to Embryonic Lethality and Abnormal Placental Development

    PubMed Central

    Yuan, Jupeng; Qian, Yanyan; Sun, Wenjie; Zou, Yongxin; Guo, Chenhong; Chen, Bingxi; Shao, Changshun; Gong, Yaoqin

    2012-01-01

    Cullin-RING ligases (CRLs) complexes participate in the regulation of diverse cellular processes, including cell cycle progression, transcription, signal transduction and development. Serving as the scaffold protein, cullins are crucial for the assembly of ligase complexes, which recognize and target various substrates for proteosomal degradation. Mutations in human CUL4B, one of the eight members in cullin family, are one of the major causes of X-linked mental retardation. We here report the generation and characterization of Cul4b knockout mice, in which exons 3 to 5 were deleted. In contrast to the survival to adulthood of human hemizygous males with CUL4B null mutation, Cul4b null mouse embryos show severe developmental arrest and usually die before embryonic day 9.5 (E9.5). Accumulation of cyclin E, a CRL (CUL4B) substrate, was observed in Cul4b null embryos. Cul4b heterozygotes were recovered at a reduced ratio and exhibited a severe developmental delay. The placentas in Cul4b heterozygotes were disorganized and were impaired in vascularization, which may contribute to the developmental delay. As in human CUL4B heterozygotes, Cul4b null cells were selected against in Cul4b heterozygotes, leading to various degrees of skewed X-inactivation in different tissues. Together, our results showed that CUL4B is indispensable for embryonic development in the mouse. PMID:22606329

  1. A study of embryonic development in eriophyoid mites (Acariformes, Eriophyoidea) with the use of the fluorochrome DAPI and confocal microscopy.

    PubMed

    Chetverikov, Philipp E; Desnitskiy, Alexey G

    2016-01-01

    The embryonic development of four eriophyoid mite species, Cecidophyopsis ribis, Phytoptus avellanae, Oziella liroi and Loboquintus subsquamatus, has been studied with the use of fluorochrome DAPI and confocal microscopy. The first three nuclear divisions occur on the egg periphery (the groups of 2, 4, and 6 nuclei have been recorded), while the biggest part of yolk remains undivided. After four or five nuclear divisions all nuclei are situated only in one sector of the embryo, while other sectors contain only yolk suggesting possible meroblastic cleavage. Later, the formation of superficial blastoderm takes place. A few large yolk cells are situated inside the embryo. Germ band formation initiates as funnel-like cell invagination and leads to formation of a typical stage with four paired prosomal buds (chelicerae, palps, legs I and II). Each palp contains two lobes (anterior and posterior), the adult subcapitulum is presumably a fusion product of the anterior pair of the lobes. Neither rudiments of legs III and IV, traces of opisthosomal segments nor remnants of the prelarval exuvium under the egg shell were detected. Overall, the pattern of embryonic development in eriophyoids re-emphasizes the peculiarity of this ancient group of miniaturized phytoparasitic animals, and invites researches to pursue a deeper investigation of various fundamental aspects of this aberrant group of Acari. Further studies using various fluorescent dyes and transmission electron microscopy are needed to visualize plasma membranes and clarify the pattern of early cleavage of eriophyoids. PMID:26530993

  2. Forkhead Box M1 Transcriptional Factor is Required for Smooth Muscle Cells during Embryonic Development of Blood Vessels and Esophagus

    PubMed Central

    Ustiyan, Vladimir; Wang, I-Ching; Ren, Xiaomeng; Zhang, Yufang; Snyder, Jonathan; Xu, Yan; Wert, Susan E.; Lessard, James L.; Kalin, Tanya V.; Kalinichenko, Vladimir V.

    2009-01-01

    The Forkhead Box m1 (Foxm1 or Foxm1b) transcription factor (previously called HFH-11B, Trident, Win, or MPP2) is expressed in a variety of tissues during embryogenesis, including vascular, airway and intestinal smooth muscle cells (SMC). Although global deletion of Foxm1 in Foxm1−/− mice is lethal in the embryonic period due to multiple abnormalities in the liver, heart and lung, the specific role of Foxm1 in SMC remains unknown. In the present study, Foxm1 was deleted conditionally in the developing SMC (smFoxm1−/− mice). The majority of smFoxm1−/− mice died immediately after birth due to severe pulmonary hemorrhage, and structural defects in arterial wall and esophagus. Although Foxm1 deletion did not influence SMC differentiation, decreased proliferation of SMC was found in smFoxm1−/− blood vessels and esophagus. Depletion of Foxm1 in cultured SMC caused G2 arrest and decreased numbers of cells undergoing mitosis. Foxm1-deficiency in vitro and in vivo was associated with reduced expression of cell cycle regulatory genes, including cyclin B1, Cdk1-activator Cdc25b phosphatase, Polo-like 1 and JNK1 kinases, and cMyc transcription factor. Foxm1 is critical for proliferation of smooth muscle cells and is required for proper embryonic development of blood vessels and esophagus. PMID:19835856

  3. The Potential Role of As-sumo-1 in the Embryonic Diapause Process and Early Embryo Development of Artemia sinica

    PubMed Central

    Chu, Bing; Yao, Feng; Cheng, Cheng; Wu, Yang; Mei, Yanli; Li, Xuejie; Liu, Yan; Wang, Peisheng; Hou, Lin; Zou, Xiangyang

    2014-01-01

    During embryonic development of Artemia sinica, environmental stresses induce the embryo diapause phenomenon, required to resist apoptosis and regulate cell cycle activity. The small ubiquitin-related modifier-1 (SUMO), a reversible post-translational protein modifier, plays an important role in embryo development. SUMO regulates multiple cellular processes, including development and other biological processes. The molecular mechanism of diapause, diapause termination and the role of As-sumo-1 in this processes and in early embryo development of Artemia sinica still remains unknown. In this study, the complete cDNA sequences of the sumo-1 homolog, sumo ligase homolog, caspase-1 homolog and cyclin B homolog from Artemia sinica were cloned. The mRNA expression patterns of As-sumo-1, sumo ligase, caspase-1, cyclin B and the location of As-sumo-1 were investigated. SUMO-1, p53, Mdm2, Caspase-1, Cyclin B and Cyclin E proteins were analyzed during different developmental stages of the embryo of A. sinica. Small interfering RNA (siRNA) was used to verify the function of sumo-1 in A. sinica. The full-length cDNA of As-sumo-1 was 476 bp, encoding a 92 amino acid protein. The As-caspases-1 cDNA was 966 bp, encoding a 245 amino-acid protein. The As-sumo ligase cDNA was 1556 bp encoding, a 343 amino acid protein, and the cyclin B cDNA was 739 bp, encoding a 133 amino acid protein. The expressions of As-sumo-1, As-caspase-1 and As-cyclin B were highest at the 10 h stage of embryonic development, and As-sumo ligase showed its highest expression at 0 h. The expression of As-SUMO-1 showed no tissue or organ specificity. Western blotting showed high expression of As-SUMO-1, p53, Mdm2, Caspase-1, Cyclin B and Cyclin E at the 10 h stage. The siRNA caused abnormal development of the embryo, with increased malformation and mortality. As-SUMO-1 is a crucial regulation and modification protein resumption of embryonic diapause and early embryo development of A. sinica. PMID:24404204

  4. Variables Affecting Economic Development of Wind Energy

    SciTech Connect

    Lantz, E.; Tegen, S.

    2008-07-01

    NREL's JEDI Wind model performed an analysis of wind-power-related economic development drivers. Economic development benefits for wind and coal were estimated using NREL's JEDI Wind and JEDI Coal models.

  5. Cognition and Affect in Early Literacy Development.

    ERIC Educational Resources Information Center

    McNamee, Gillian D.; And Others

    1985-01-01

    Using Vygotsky's theory of development, explores the significance of storytelling and dramatization activities on the intellectual and emotional development of preschool children. Results indicate that dramatizing of children's stories enhances the storytelling of preschool children and, thus, influences their literacy development. (DST)

  6. Fertilization, syngamy, and early embryonic development in the cricket Gryllus bimaculatus (De Geer).

    PubMed

    Sato, Motoaki; Tanaka-Sato, Hikaru

    2002-12-01

    Fertilization and early embryonic mitoses of the cricket Gryllus bimaculatus were examined by fluorescence staining of whole-mount as well as squash preparations. Egg meiosis occurs near the ventral surface of the egg, while sperm transforms into a sperm pronucleus in the cytoplasmic island on the dorsal side. After meiosis, the egg pronucleus moves across the egg toward the sperm pronucleus in the island, where union of these nuclei occurs. The first cleavage mitosis is gonomeric, as in insects such as Pyrrhocoris, Drosophila, and Bombyx. After the third cleavage the synchrony of nuclear division is lost and the dividing nuclei are distributed all over the egg by 12 h after deposition. PMID:12386897

  7. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cryogenic technologies are required to preserve embryonic axes of recalcitrant seeds. Formation of potentially lethal intracellular ice limits successful cryopreservation; thus, it is important to understand the relationships among cryo-exposure techniques, water content and survival. In this pap...

  8. Tyrosine pathway regulation is host-mediated in the pea aphid symbiosis during late embryonic and early larval development

    PubMed Central

    2013-01-01

    Background Nutritional symbioses play a central role in insects’ adaptation to specialized diets and in their evolutionary success. The obligatory symbiosis between the pea aphid, Acyrthosiphon pisum, and the bacterium, Buchnera aphidicola, is no exception as it enables this important agricultural pest insect to develop on a diet exclusively based on plant phloem sap. The symbiotic bacteria provide the host with essential amino acids lacking in its diet but necessary for the rapid embryonic growth seen in the parthenogenetic viviparous reproduction of aphids. The aphid furnishes, in exchange, non-essential amino acids and other important metabolites. Understanding the regulations acting on this integrated metabolic system during the development of this insect is essential in elucidating aphid biology. Results We used a microarray-based approach to analyse gene expression in the late embryonic and the early larval stages of the pea aphid, characterizing, for the first time, the transcriptional profiles in these developmental phases. Our analyses allowed us to identify key genes in the phenylalanine, tyrosine and dopamine pathways and we identified ACYPI004243, one of the four genes encoding for the aspartate transaminase (E.C. 2.6.1.1), as specifically regulated during development. Indeed, the tyrosine biosynthetic pathway is crucial for the symbiotic metabolism as it is shared between the two partners, all the precursors being produced by B. aphidicola. Our microarray data are supported by HPLC amino acid analyses demonstrating an accumulation of tyrosine at the same developmental stages, with an up-regulation of the tyrosine biosynthetic genes. Tyrosine is also essential for the synthesis of cuticular proteins and it is an important precursor for cuticle maturation: together with the up-regulation of tyrosine biosynthesis, we observed an up-regulation of cuticular genes expression. We were also able to identify some amino acid transporter genes which are

  9. Changes in the levels, expression, and possible roles of serotonin and dopamine during embryonic development in the giant freshwater prawn, Macrobrachium rosenbergii.

    PubMed

    Tinikul, Yotsawan; Poljaroen, Jaruwan; Tinikul, Ruchanok; Sobhon, Prasert

    2016-01-01

    We investigated the changes in the levels of serotonin (5-HT) and dopamine (DA), and their possible roles during embryonic development of the freshwater prawn, Macrobrachium rosenbergii. The 5-HT and DA concentrations were quantified using high performance liquid chromatography with electrochemical detection (HPLC-ECD). The levels of 5-HT and DA gradually increased from early developing embryos to late developing embryos. The 5-HT concentrations gradually increased from the pale yellow egg to orange egg stages, and reaching a maximum at the black egg stage. DA concentrations were much lower in the early embryos than those of 5-HT (P<0.05), and gradually increased to reach the highest level at the black egg stage. Immunohistochemically, 5-HT was firstly detected in the early embryonic stages, whereas DA developed later than 5-HT. Functionally, 5-HT-treated female prawns at doses of 2.5×10(-5), 2.5×10(-6) and 2.5×10(-7)mol/prawn, produced embryos with significantly shortened lengths of early embryonic stages, whereas DA-treated prawns at all three doses, exerted its effects by significantly lengthening the period of mid-embryonic stage onwards. These results suggest significant involvement of 5-HT and DA in embryonic developmental processes of this species. PMID:26393313

  10. Looping circuit: a novel mechanism for prolonged spontaneous [Ca2+]i increases in developing embryonic mouse brainstem.

    PubMed

    Watari, Hirofumi; Tose, Amanda J; Bosma, Martha M

    2014-02-15

    Most cells maintain [Ca(2+)]i at extremely low levels; calcium entry usually occurs briefly, and within seconds it is cleared. However, at embryonic day 12.5 in the mouse brainstem, trains of spontaneous events occur with [Ca(2+)]i staying close to peak value, well above baseline, for minutes; we termed this 'bash bursts'. Here, we investigate the mechanism of this unusual activity using calcium imaging and electrophysiology. Bash bursts are triggered by an event originating at the mid-line of the rostral hindbrain and are usually the result of that event propagating repeatedly along a defined circular path. The looping circuit can either encompass both the midbrain and hindbrain or remain in the hindbrain only, and the type of loop determines the duration of a single lap time, 5 or 3 s, respectively. Bash bursts are supported by high membrane excitability of mid-line cells and are regulated by persistent inward 'window current' at rest, contributing to spontaneous activity. This looping circuit is an effective means for increasing [Ca(2+)]i at brief, regular intervals. Bash bursts disappear by embryonic day 13.5 via alteration of the looping circuit, curtailing the short epoch of bash bursts. The resulting sustained [Ca(2+)]i may influence development of raphe serotonergic and ventral tegmental dopaminergic neurons by modulating gene expression. PMID:24366258

  11. The impact of graft size on the development of dyskinesia following intrastriatal grafting of embryonic dopamine neurons in the rat.

    PubMed

    Lane, E L; Winkler, C; Brundin, P; Cenci, M A

    2006-05-01

    Intrastriatal transplants of embryonic ventral mesencephalon can cause dyskinesia in patients with Parkinson's disease (PD). We assessed the impact of transplant size on the development of graft-induced dyskinesia. Rats with unilateral 6-hydroxydopamine lesions were primed to exhibit L-DOPA-induced dyskinesia. They were then intrastriatally grafted with different quantities of embryonic ventral mesencephalic tissue to give small and large grafts. Without drug treatment, discrete dyskinetic-like movements were observed in most rats with large grafts 2-6 weeks after transplantation, but disappeared later. Amphetamine evoked severe abnormal involuntary movements (AIMs) in grafted animals, which were more striking with large grafts. The AIMs coincided with contralateral rotation, but displayed a different temporal profile and pharmacological properties. Thus, selective dopamine uptake blockade elicited rotational behavior, whereas coadministration of both dopamine and serotonin uptake blockers was required to evoke significant orolingual and limb AIMs. In conclusion, robust and reproducible AIMs were evoked in rats with large grafts by blockade of monoamine reuptake. These AIMs may provide a new tool for assessing dyskinetic effects of neural grafting. PMID:16406222

  12. Genomic and functional analysis of the toxic effect of tachyplesin I on the embryonic development of zebrafish.

    PubMed

    Zhao, Hongya; Dai, Jianguo; Jin, Gang

    2014-01-01

    Tachyplesin I (TP I) is an antimicrobial peptide isolated from the hemocytes of the horseshoe crab. With the developments of DNA microarray technology, the genetic analysis of the toxic effect of TP I on embryo was originally considered in our recent study. Based on our microarray data of the embryonic samples of zebrafish treated with the different doses of TP I, we performed a series of statistical data analyses to explore the toxic effect of TP I at the genomic level. In this paper, we first employed the hexaMplot to illustrate the continuous variation of the gene expressions of the embryonic cells treated with the different doses of TP I. The probabilistic model-based Hough transform was used to classify these differentially coexpressed genes of TP I on the zebrafish embryos. As a result, three line rays supported with the corresponding 174 genes were detected in our analysis. Some biological processes of the featured genes, such as antigen processing, nuclear chromatin, and structural constituent of eye lens, were significantly filtered with the smaller P values. PMID:24872839

  13. [Embryonic development of the sea urchin after low-temperature preservation].

    PubMed

    Gakhova, E N; Krasts, I V; Naĭdenko, T Kh; Savel'eva, N A; Bessonov, B I

    1988-01-01

    The sea urchin embryos were cooled to -196 degrees by two-step freezing with the use of 1-1.5 M dimethyl sulfoxide as a cryoprotectant. The embryos were equilibrated with the cryoprotectant for 20-30 min at 0 +/- 2 degrees. At -7 degrees ice crystallization was induced and the embryos were cooled to -38-42 degrees at a rate of 6-8 degrees /min. The embryos were then transferred into liquid nitrogen. The embryos were thawed in a water bath at 19 degrees. No less than 90% of the embryos frozen at the stages of blastula, gastrula, or pluteus were capable of recovery and normal development. The length of cryopreservation did not affect the survival of the embryos. PMID:3387042

  14. Alterations to embryonic serotonin change aggression and fearfulness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prenatal environment, including maternal hormones, affects the development of the serotonin (5-HT) system, with long-lasting effects on mood and behavioral exhibition in children and adults. The chicken provides a unique animal model to study the effects of embryonic development on childhood and ado...

  15. Infrared inhibition of embryonic hearts

    NASA Astrophysics Data System (ADS)

    Wang, Yves T.; Rollins, Andrew M.; Jenkins, Michael W.

    2016-06-01

    Infrared control is a new technique that uses pulsed infrared lasers to thermally alter electrical activity. Originally developed for nerves, we have applied this technology to embryonic hearts using a quail model, previously demonstrating infrared stimulation and, here, infrared inhibition. Infrared inhibition enables repeatable and reversible block, stopping cardiac contractions for several seconds. Normal beating resumes after the laser is turned off. The block can be spatially specific, affecting propagation on the ventricle or initiation on the atrium. Optical mapping showed that the block affects action potentials and not just calcium or contraction. Increased resting intracellular calcium was observed after a 30-s exposure to the inhibition laser, which likely resulted in reduced mechanical function. Further optimization of the laser illumination should reduce potential damage. Stopping cardiac contractions by disrupting electrical activity with infrared inhibition has the potential to be a powerful tool for studying the developing heart.

  16. Functional expression of A-currents in embryonic chick sympathetic neurones during development in situ and in vitro.

    PubMed Central

    Raucher, S; Dryer, S E

    1994-01-01

    1. The functional expression of transient voltage-activated K+ currents (IA) was examined using whole-cell recording techniques in embryonic chick sympathetic ganglion neurones that developed in situ and under various growth conditions in vitro. 2. The density of IA increased dramatically during development in sympathetic neurones isolated acutely between embryonic days 7 and 20 (E7-E20). The time course of IA inactivation became significantly faster between E7 and E13. With these protocols, neuronal differentiation and development occurred entirely in situ. 3. Sympathetic neurones isolated at E9 and maintained in vitro for 4 days did not express a normal IA compared to neurones isolated acutely at E13. Those neurones that were in physical contact with other neurones expressed normal densities of IA, but the resulting inactivation kinetics were abnormally slow. Sympathetic neurones that were cultured on the membrane fragments of lysed neurones expressed normal densities of IA even when they failed to make visible connections with other viable neurones, but the resulting inactivation kinetics were abnormally slow. Those cultured neurones that were not in physical contact with other cells or their membranes had markedly reduced densities of IA with abnormally slow inactivation kinetics. 4. Application of 5-100 ng ml-12.5 S nerve growth factor by itself did not promote normal A density of kinetics in E9 sympathetic neurones cultured for 4 days. 5. Sympathetic neurones that developed in vitro in physical contact with ventral spinal cord explants, cardiac myocytes or aortic smooth muscle cells expressed normal densities of IA, but the inactivation kinetics were abnormally slow. Cell culture media conditioned by these tissues failed to promote normal IA expression. Sympathetic neurones cultured as explants or maintained under depolarizing conditions did not express a normal IA. 6. Embryonic chick sympathetic neurones exhibit developmental changes in the density and

  17. Microtubule organisation, pronuclear formation and embryonic development of mouse oocytes after intracytoplasmic sperm injection or parthenogenetic activation and then slow-freezing with 1, 2-propanediol.

    PubMed

    Li, Dun-Gao; Zhu, Yan; Xing, Feng-Ying; Li, Shan-Gang; Chen, Xue-Jin; Jiang, Man-Xi

    2013-01-01

    The goal of this study was to investigate the effect of cryopreservation on oocytes at different times after intracytoplasmic sperm injection (ICSI) and parthenogenetic activation. The study was performed in mouse oocytes fertilised by ICSI, or in artificially-activated oocytes, which were cryopreserved immediately, one hour or five hours later through slow-freezing. After thawing, the rates of survival, fertilisation-activation, embryonic development of oocytes-zygotes and changes in the cytoskeleton and ploidy were observed. Our results reveal a significant difference in survival rates of 0-, 1- and 5-h cryopreserved oocytes following ICSI and artificial activation. Moreover, significant differences in two pronuclei (PN) development existed between the 0-, 1- and 5-h groups of oocytes frozen after ICSI, while the rates of two-PN development of activated oocytes were different between the 1-h and 5-h groups. Despite these initial differences, there was no difference in the rate of blastocyst formation from two-PN zygotes following ICSI or artificial activation. However, compared with ICSI or artificially-activated oocytes cryopreserved at 5h, many oocytes from the 0- and 1-h cryopreservation groups developed to zygotes with abnormal ploidy; this suggests that too little time before cryopreservation can result in some activated oocytes forming abnormal ploidy. However, our results also demonstrate that spermatozoa can maintain normal fertilisation capacity in frozen ICSI oocytes and the procedure of freeze-thawing did not affect the later development of zygotes. PMID:23594385

  18. Murine branched chain alpha-ketoacid dehydrogenase kinase; cDNA cloning, tissue distribution, and temporal expression during embryonic development.

    PubMed

    Doering, C B; Coursey, C; Spangler, W; Danner, D J

    1998-06-01

    These studies were designed to demonstrate the structural and functional similarity of murine branched chain alpha-ketoacid dehydrogenase and its regulation by the complex-specific kinase. Nucleotide sequence and deduced amino acid sequence for the kinase cDNA demonstrate a highly conserved coding sequence between mouse and human. Tissue-specific expression in adult mice parallels that reported in other mammals. Kinase expression in female liver is influenced by circadian rhythm. Of special interest is the fluctuating expression of this kinase during embryonic development against the continuing increase in the catalytic subunits of this mitochondrial complex during development. The need for regulation of the branched chain alpha-ketoacid dehydrogenase complex by kinase expression during embryogenesis is not understood. However, the similarity of murine branched chain alpha-ketoacid dehydrogenase and its kinase to the human enzyme supports the use of this animal as a model for the human system. PMID:9611264

  19. Failure of the subcallosal sling to develop after embryonic X-irradiation is correlated with absence of the cavum septi

    SciTech Connect

    Schneider, B.F.; Silver, J. )

    1990-09-22

    During embryonic development of the rodent forebrain, a cavity normally appears at the midline just below the corpus callosum. This cavity, the cavum septi, is present in mice by gestational day 18, but is subsequently obliterated by growth of the septal nuclei and neuropil. After x-irradiation of pregnant mice with 125r on gestational day 14.5, the cavum septi did not develop. This dramatic developmental abnormality was accompanied by delayed fusion of the septum, and a reduction in the population of subventricular cells that normally migrate to form a sling of cells extending from the medial aspect of the lateral ventricles to the midline. In normal animals formation of the cavum septi involves degeneration of this subcallosal sling of SV cells. Thus absence of the cavum after x-irradiation may be due to the premature killing of subventricular cells before their migration toward the midline.

  20. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos

    SciTech Connect

    Egloff, Caroline; Crump, Doug; Porter, Emily; Williams, Kim L.; Letcher, Robert J.; Gauthier, Lewis T.; Kennedy, Sean W.

    2014-09-15

    The organophosphate flame retardants tris(2-butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP) are used in a wide range of applications to suppress or delay the ignition and spread of fire. Both compounds have been detected in the environment and TBOEP was recently measured in free-living avian species. In this study, TBOEP and TEP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 45,400 ng/g and 0 to 241,500 ng/g egg, respectively. Pipping success, development, hepatic mRNA expression of 9 target genes, thyroid hormone levels, and circulating bile acid concentrations were determined. Exposure to the highest doses of TBOEP and TEP resulted in negligible detection of the parent compounds in embryonic contents at pipping indicating their complete metabolic degradation. TBOEP exposure had limited effects on chicken embryos, with the exception of hepatic CYP3A37 mRNA induction. TEP exposure decreased pipping success to 68%, altered growth, increased liver somatic index (LSI) and plasma bile acids, and modulated genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Plasma thyroxine levels were decreased at all TEP doses, including an environmentally-relevant concentration (8 ng/g), and gallbladder hypotrophy was evident at ≥ 43,200 ng/g. Tarsus length and circulating thyroxine concentration emerged as potential phenotypic anchors for the modulation of transthyretin mRNA. The increase in plasma bile acids and LSI, gallbladder hypotrophy, and discoloration of liver tissue represented potential phenotypic outcomes associated with modulation of hepatic genes involved with xenobiotic and lipid metabolism. - Highlights: • TBOEP is not embryolethal to chicken embryos. • TEP affected embryonic viability, morphometric endpoints, and thyroid hormone levels. • TEP altered mRNA levels of xenobiotic and lipid metabolism genes. • TEP increased plasma bile acids and caused gallbladder hypotrophy

  1. The appearance and development of neurotransmitter sensitivity in Xenopus embryonic spinal neurones in vitro.

    PubMed Central

    Bixby, J L; Spitzer, N C

    1984-01-01

    We have determined the time of onset and examined some of the properties of neurotransmitter sensitivity in Xenopus spinal neurones developing in dissociated cell culture. These cells are initially insensitive, but acquire responses to several agonists over a period of 6 h. Nearly one-third of the neurones were depolarized by gamma-aminobutyric acid (GABA) or by both GABA and glycine; these cells were not affected by glutamate. The reversal potential of the ionophoretic GABA response is -35 mV. These neurones are likely to be Rohon-Beard neurones. Roughly two-thirds of the neurones were depolarized by glutamate and hyperpolarized by GABA and by glycine. The reversal potential of the ionophoretic GABA response is -58 mV. These neurones are likely to include motoneurones. A quantitative measure of the sensitivity to a given GABA dose was obtained at early and intermediate stages of development. The mean 'sensitivity index' (ionophoretic sensitivity/input resistance) for both classes of neurones in vitro was initially the same as that seen in Rohon-Beard neurones in vivo. This sensitivity index did not increase with time in culture to attain the value at intermediate stages in vivo. The development of chemosensitivity in Rohon-Beard-like neurones in these cultures resembles that of Rohon-Beard neurones in the spinal cord with respect to the time of onset of responses to GABA, the reversal potential, pharmacology and desensitization of these responses, and the spectrum of agonists to which they are sensitive. It differs in the absence of a developmental increase in sensitivity to GABA. The development of chemosensitivity in motoneurone-like neurones in these cultures parallels that of Rohon-Beard-like neurones, with respect to the time of onset and level of sensitivity, as well as susceptibility to pharmacological blockers. Several features of normal neurotransmitter sensitivity, like features of the action potential, differentiate in culture in the absence of normal

  2. Are embryonic developing modes determinant in the acquisition and levels of photoprotective compounds in slipper limpets of the Crepipatella genus?

    PubMed

    Paredes-Molina, F J; Cubillos, V M; Montory, J A; Andrade-Villagrán, P A

    2016-09-01

    The type of embryonic development (mixed and direct) and its influence on the accumulation and translocation of photoprotective compounds from the mother to the encapsulated embryo was studied in the intertidal gastropods Crepipatella peruviana and Crepipatella dilatata during their reproductive peak. HPLC/MS was used to determine type and levels of sunscreen compounds (total carotenoids; TC/and mycosporine-like amino acid; MAA) in brooding females, capsule walls and early and pre-hatching embryos of both species. Photoprotective compounds were only quantified in nurse eggs of C. dilatata. Our results indicate that females of both species can accumulate TC and MAA at different levels, and they are able to transfer them selectively to capsule walls, embryos and nurse eggs. Palythine-serine (MW=244Da; λmax=320nm) and MAA-330 (MW=234Da; λmax=330nm) constitute total MAA pool in brooding females, whereas brooded embryos incorporate palythine (MW=244Da; λmax=320nm) to the MAA pool. Although TC was transferred from the mother to the embryo through the yolk in both species, MAA trespass showed differences. Females of C. peruviana transfer MAA to their embryos through the embryonic yolk; C. dilatata can transfer MAA only through their nurse eggs, which are consumed by embryos during the terminal stages of intracapsular development. Differences between mixed and direct embryonic development, as well as environmental UV-R levels, which the recently hatched larvae and juveniles of C. peruviana and C. dilatata are exposed to, would determine levels of sunscreen compounds in each species. Higher TC and MAA levels in pre-hatching larvae of C. peruviana compared to C. dilatata, indicate a necessity of C. peruviana for protection against UV-R radiation during approximately 15days when their veliger larvae remain in the water column before metamorphosis is complete. Conversely, low photoprotective levels in pre-hatching juveniles of C. dilatata could be related to low UV

  3. Stability of citrate-capped silver nanoparticles in exposure media and their effects on the development of embryonic zebrafish (Danio rerio)

    PubMed Central

    Park, Kwangsik; Tuttle, George; Sinche, Federico; Harper, Stace L.

    2014-01-01

    The stability of citrate-capped silver nanoparticles (AgNPs) and the embryonic developmental toxicity were evaluated in the fish test water. Serious aggregation of AgNPs was observed in undiluted fish water (DM-100) in which high concentration of ionic salts exist. However, AgNPs were found to be stable for 7 days in DM-10, prepared by diluting the original fish water (DM-100) with deionized water to 10%. The normal physiology of zebrafish embryos were evaluated in DM-10 to see if DM-10 can be used as a control vehicle for the embryonic fish toxicity test. As results, DM-10 without AgNPs did not induce any significant adverse effects on embryonic development of zebrafish determined by mortality, hatching, malformations and heart rate. When embryonic toxicity of AgNPs was tested in both DM-10 and in DM-100, AgNPs showed higher toxicity in DM-10 than in DM-100. This means that the big-sized aggregates of AgNPs were low toxic compared to the nano-sized AgNPs. AgNPs induced delayed hatching, decreased heart rate, pericardial edema, and embryo death. Accumulation of AgNPs in the embryo bodies was also observed. Based on this study, citrate-capped AgNPs are not aggregated in DM-10 and it can be used as a control vehicle in the toxicity test of fish embryonic development. PMID:23325492

  4. Loss of the Otx2-Binding Site in the Nanog Promoter Affects the Integrity of Embryonic Stem Cell Subtypes and Specification of Inner Cell Mass-Derived Epiblast.

    PubMed

    Acampora, Dario; Omodei, Daniela; Petrosino, Giuseppe; Garofalo, Arcomaria; Savarese, Marco; Nigro, Vincenzo; Di Giovannantonio, Luca Giovanni; Mercadante, Vincenzo; Simeone, Antonio

    2016-06-21

    Mouse embryonic stem cells (ESCs) and the inner cell mass (ICM)-derived epiblast exhibit naive pluripotency. ESC-derived epiblast stem cells (EpiSCs) and the postimplantation epiblast exhibit primed pluripotency. Although core pluripotency factors are well-characterized, additional regulators, including Otx2, recently have been shown to function during the transition from naive to primed pluripotency. Here we uncover a role for Otx2 in the control of the naive pluripotent state. We analyzed Otx2-binding activity in ESCs and EpiSCs and identified Nanog, Oct4, and Sox2 as direct targets. To unravel the Otx2 transcriptional network, we targeted the strongest Otx2-binding site in the Nanog promoter, finding that this site modulates the size of specific ESC-subtype compartments in cultured cells and promotes Nanog expression in vivo, predisposing ICM differentiation to epiblast. Otx2-mediated Nanog regulation thus contributes to the integrity of the ESC state and cell lineage specification in preimplantation development. PMID:27292645

  5. Temperature affects Aethina tumida (Coleoptera: Nitidulidae) Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of temperature on several life history parameters of small hive beetles (SHB),Aethina tumida, were investigated under laboratory conditions. Our results showed that the development, body size and weight of SHB were dependent on temperature. Exposure of beetles to a lower (room) temperatu...

  6. [Does childhood obesity affect sexual development?].

    PubMed

    Wagner, I V; Sergeyev, E; Dittrich, K; Gesing, J; Neef, M; Adler, M; Geserick, M; Pfäffle, R W; Körner, A; Kiess, W

    2013-04-01

    The process of pubertal development is only partly understood and is influenced by many different factors. During the twentieth century there was a general trend toward earlier pubertal development. Fat mass is thought to be a major inducer of puberty. Owing to the rising epidemic of childhood obesity, the relationship between body composition in children and the rate and timing of puberty needs to be investigated. Some studies suggest that central obesity is associated with an earlier onset of pubertal development. Rapid weight gain in early life is linked to advanced puberty in both sexes. A clear correlation exists between increasing body mass index (BMI) and earlier pubertal development in girls. In boys the data are controversial: The majority of studies propose that there is an earlier puberty and voice break in obese boys, but some studies show the opposite. There are several factors and mechanisms that seem to link obesity and puberty, for example, leptin, adipocytokines, and gut peptides. Important players include genetic variation and environmental factors (e.g., endocrine-disrupting chemicals). This article presents the latest studies and evidence on this topic, underlining the inconsistencies in the data and, therefore, the need for further research in this area. PMID:23529595

  7. Input and output constraints affecting irrigation development

    NASA Astrophysics Data System (ADS)

    Schramm, G.

    1981-05-01

    In many of the developing countries the expansion of irrigated agriculture is used as a major development tool for bringing about increases in agricultural output, rural economic growth and income distribution. Apart from constraints imposed by water availability, the major limitations considered to any acceleration of such programs are usually thought to be those of costs and financial resources. However, as is shown on the basis of empirical data drawn from Mexico, in reality the feasibility and effectiveness of such development programs is even more constrained by the lack of specialized physical and human factors on the input and market limitations on the output side. On the input side, the limited availability of complementary factors such as, for example, truly functioning credit systems for small-scale farmers or effective agricultural extension services impose long-term constraints on development. On the output side the limited availability, high risk, and relatively slow growth of markets for high-value crops sharply reduce the usually hoped-for and projected profitable crop mix that would warrant the frequently high costs of irrigation investments. Three conclusions are drawn: (1) Factors in limited supply have to be shadow-priced to reflect their high opportunity costs in alternative uses. (2) Re-allocation of financial resources from immediate construction of projects to longer-term increase in the supply of scarce, highly-trained manpower resources are necessary in order to optimize development over time. (3) Inclusion of high-value, high-income producing crops in the benefit-cost analysis of new projects is inappropriate if these crops could potentially be grown in already existing projects.

  8. Postnatal growth rates covary weakly with embryonic development rates and do not explain adult mortality probability among songbirds on four continents.

    PubMed

    Martin, Thomas E; Oteyza, Juan C; Mitchell, Adam E; Potticary, Ahva L; Lloyd, Penn

    2015-03-01

    Growth and development rates may result from genetic programming of intrinsic processes that yield correlated rates between life stages. These intrinsic rates are thought to affect adult mortality probability and longevity. However, if proximate extrinsic factors (e.g., temperature, food) influence development rates differently between stages and yield low covariance between stages, then development rates may not explain adult mortality probability. We examined these issues based on study of 90 songbird species on four continents to capture the diverse life-history strategies observed across geographic space. The length of the embryonic period explained little variation (ca. 13%) in nestling periods and growth rates among species. This low covariance suggests that the relative importance of intrinsic and extrinsic influences on growth and development rates differs between stages. Consequently, nestling period durations and nestling growth rates were not related to annual adult mortality probability among diverse songbird species within or among sites. The absence of a clear effect of faster growth on adult mortality when examined in an evolutionary framework across species may indicate that species that evolve faster growth also evolve physiological mechanisms for ameliorating costs on adult mortality. Instead, adult mortality rates of species in the wild may be determined more strongly by extrinsic environmental causes. PMID:25674692

  9. Postnatal growth rates covary weakly with embryonic development rates and do not explain adult mortality probability among songbirds on four continents

    USGS Publications Warehouse

    Martin, Thomas E.; Oteyza, Juan C.; Mitchell, Adam E.; Potticary, Ahva L.; Lloyd, P.

    2016-01-01

    Growth and development rates may result from genetic programming of intrinsic processes that yield correlated rates between life stages. These intrinsic rates are thought to affect adult mortality probability and longevity. However, if proximate extrinsic factors (e.g., temperature, food) influence development rates differently between stages and yield low covariance between stages, then development rates may not explain adult mortality probability. We examined these issues based on study of 90 songbird species on four continents to capture the diverse life-history strategies observed across geographic space. The length of the embryonic period explained little variation (ca. 13%) in nestling periods and growth rates among species. This low covariance suggests that the relative importance of intrinsic and extrinsic influences on growth and development rates differs between stages. Consequently, nestling period durations and nestling growth rates were not related to annual adult mortality probability among diverse songbird species within or among sites. The absence of a clear effect of faster growth on adult mortality when examined in an evolutionary framework across species may indicate that species that evolve faster growth also evolve physiological mechanisms for ameliorating costs on adult mortality. Instead, adult mortality rates of species in the wild may be determined more strongly by extrinsic environmental causes.

  10. Teratogenic potential in cultures optimized for oligodendrocyte development from mouse embryonic stem cells.

    PubMed

    Sadowski, Dorota; Kiel, Mary E; Apicella, Marisa; Arriola, Aileen G; Chen, Cui Ping; McKinnon, Randall D

    2010-09-01

    We describe a rapid and efficient 5-step program of defined factors for the genesis of brain myelin-forming oligodendrocytes (OLs) from embryonic stem cells (ESCs). The OLs emerge on the same time frame in vitro as seen in vivo. Factors promoting neural induction (retinoids, noggin) are required, while exogenous Sonic hedgehog is not. In contrast we were unable to generate OLs by trans-differentiation of ethically neutral mesenchymal stem cells, indicating a requirement for cis-differentiation via neural ectoderm for OL genesis. In the ESC-derived cultures, our optimized protocol generated a mixed population with 49% O4(+), Olig2(+) OL lineage cells. These cultures also retained pluripotential markers including Oct4, and an analysis of embryoid body formation in vitro, and allogeneic grafts in vivo, revealed that the ESC-derived cultures also retained teratogenic cells. The frequency of embryoid body formation from terminal differentiated OL cultures was 0.001%, 100-fold lower than that from ESCs. Our results provide the first quantitative measurement of teratogenicity in ESC-derived, exhaustively differentiated allogeneic grafts, and demonstrate the unequivocal need to purify ESC-derived cells in order to generate a safe population for regenerative therapy. PMID:20131970

  11. [Development of human embryonic stem cell platforms for human health-safety evaluation].

    PubMed

    Yu, Guang-yan; Cao, Tong; Zou, Xiao-hui; Zhang, Xue-hui; Fu, Xin; Peng, Shuang-qing; Deng, Xu-liang; Li, Sheng-lin; Liu, He; Xiao, Ran; Ouyang, Hong-wei; Peng, Hui; Chen, Xiao; Zhao, Zeng-ming; Wang, Xiao-ying; Fang, Hai-qin; Lu, Lu; Ren, Yu-lan; Xu, Ming-ming

    2016-02-18

    The human embryonic stem cells (hESCs) serve as a self-renewable, genetically-healthy, pluripotent and single source of all body cells, tissues and organs. Therefore, it is considered as the good standard for all human stem cells by US, Europe and international authorities. In this study, the standard and healthy human mesenchymal progenitors, ligament tissues, cardiomyocytes, keratinocytes, primary neurons, fibroblasts, and salivary serous cells were differentiated from hESCs. The human cellular health-safety of NaF, retinoic acid, 5-fluorouracil, dexamethasone, penicillin G, adriamycin, lead acetate PbAc, bisphenol A-biglycidyl methacrylate (Bis-GMA) were evaluated selectively on the standardized platforms of hESCs, hESCs-derived cardiomyocytes, keratinocytes, primary neurons, and fibroblasts. The evaluations were compared with those on the currently most adopted cellular platforms. Particularly, the sensitivity difference of PM2.5 toxicity on standardized and healthy hESCs derived fibroblasts, currently adopted immortalized human bronchial epithelial cells Beas-2B and human umbilical vein endothelial cells (HUVECs) were evaluated. The RESULTS showed that the standardized hESCs cellular platforms provided more sensitivity and accuracy for human cellular health-safety evaluation. PMID:26885900

  12. Development of a Multiplexed Microfluidic Platform for the Automated Cultivation of Embryonic Stem Cells

    PubMed Central

    Reichen, Marcel; Veraitch, Farlan Singh

    2013-01-01

    We present a multiplexed platform for a microfabricated stem cell culture device. The modular platform contains all the components to control stem cell culture conditions in an automated fashion. It does not require an incubator during perfusion culture and can be mounted on the stage of an inverted fluorescence microscope for high-frequency imaging of stem cell cultures. A pressure-driven pump provides control over the medium flow rate and offers switching of the flow rates. Flow rates of the pump are characterized for different pressure settings, and a linear correlation between the applied pressure and the flow rate in the cell culture devices is shown. In addition, the pump operates with two culture medium reservoirs, thus enabling the switching of the culture medium on-the-fly during a cell culture experiment. Also, with our platform, the culture medium reservoirs are cooled to prevent medium degradation during long-term experiments. Media temperature is then adjusted to a higher controlled temperature before entering the microfabricated cell culture device. Furthermore, the temperature is regulated in the microfabricated culture devices themselves. Preliminary culture experiments are demonstrated using mouse embryonic stem cells. PMID:23970473

  13. Antenatal Glucocorticoid Treatment Affects Hippocampal Development in Mice

    PubMed Central

    Noorlander, Cornelle W.; Tijsseling, Deodata; Hessel, Ellen V. S.; de Vries, Willem B.; Derks, Jan B.

    2014-01-01

    Synthetic glucocorticoids are administered to pregnant women at risk for preterm delivery, to enhance fetal lung maturation. The benefit of this treatment is well established, however caution is necessary because of possible unwanted side effects on development of different organ systems, including the brain. Actions of glucocorticoids are mediated by corticosteroid receptors, which are highly expressed in the hippocampus, a brain structure involved in cognitive functions. Therefore, we analyzed the effects of a single antenatal dexamethasone treatment on the development of the mouse hippocampus. A clinically relevant dose of dexamethasone (0.4 mg/kg) was administered to pregnant mice at embryonic day 15.5 and the hippocampus was analyzed from embryonic day 16 until adulthood. We investigated the effects of dexamethasone treatment on anatomical changes, apoptosis and proliferation in the hippocampus, hippocampal volume and on total body weight. Our results show that dexamethasone treatment reduced body weight and hippocampal volume transiently during development, but these effects were no longer detected at adulthood. Dexamethasone treatment increased the number of apoptotic cells in the hippocampus until birth, but postnatally no effects of dexamethasone treatment on apoptosis were found. During the phase with increased apoptosis, dexamethasone treatment reduced the number of proliferating cells in the subgranular zone of the dentate gyrus. The number of proliferative cells was increased at postnatal day 5 and 10, but was decreased again at the adult stage. This latter long-term and negative effect of antenatal dexamethasone treatment on the number of proliferative cells in the hippocampus may have important implications for hippocampal network function. PMID:24465645

  14. Embryonic develop-associated gene 1 is overexpressed and acts as a tumor promoter in thyroid carcinoma.

    PubMed

    Xu, Jinkai; Li, Zongyu; Su, Qinghua; Zhao, Jun; Ma, Jiancang

    2016-07-01

    Embryonic develop-associated gene 1 (EDAG-1), a hematopoietic tissue-specific protein, is usually highly expressed in the placenta, fetal liver, bone marrow and leukemia cells, but the expression status in normal or solid tumor tissues is rarely reported. In this study, we found that EDAG-1 was up-regulated in thyroid carcinoma tissues and cells. Knockdown of EDAG-1 suppressed proliferation and enhanced cisplatin-induced apoptosis of thyroid carcinoma cells. We also demonstrated that knockdown of EDAG-1 inactivated the phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway in vitro and in vivo. Moreover, knockdown of EDAG-1 suppressed tumorigenesis of thyroid carcinoma in vivo. Taken together, these results suggest that EDAG-1 regulates the proliferation and apoptosis of thyroid carcinoma via the PI3K/Akt signaling pathway. PMID:27261581

  15. Influence of mefloquine administration during early pregnancy on rat embryonic development.

    PubMed

    El-Dakdoky, Mai Helmy

    2015-02-01

    Mefloquine (MQ) is a potent effective antimalarial drug against multiple drug-resistant Plasmodium falciparum. It has been proved that MQ can be given safely during the second and third trimesters. However, there is very limited information on the drug safety during the first trimester. The aim of the present work was to investigate the embryotoxicity and teratogenicity of MQ during critical periods of early development. Wistar rats were orally administered with a single dose of MQ (45 mg/kg bwt or 187 mg/kg bwt) on the 1st, 6th or 13th days of pregnancy. Cyclophosphamide (CPA) was chosen as a positive control. On the 21st day of gestation, standard parameters of reproductive performance and fetal examination were estimated. Malondialdehyde (MDA) level, glutathione reductase activity and glutathione (GSH) content were evaluated in placenta and liver homogenates of mothers and fetuses. The results indicated that MQ did not adversely affect the number of implantation, resorption, litter size and fetal body weight and length. Only groups treated with MQ on the 1st day of gestation exhibited significant decrease in fetal body weight. Examination of fetuses for external, visceral and skeletal changes showed minimal variations involving extension of lateral brain ventricles and renal pelvis and signs of delayed ossification. These variations were accompanied with significant elevation of MDA level and reduction of GSH content of fetal liver. Prenatal exposure to MQ at early pregnancy did not cause any embryolethal or teratogenic effect. It could slightly exacerbate minor variations. PMID:25406758

  16. Effect of Carbonate Chemistry Alteration on the Early Embryonic Development of the Pacific Oyster (Crassostrea gigas)

    PubMed Central

    Gazeau, Frédéric; Gattuso, Jean-Pierre; Greaves, Mervyn; Elderfield, Henry; Peene, Jan; Heip, Carlo H. R.; Middelburg, Jack J.

    2011-01-01

    Ocean acidification, due to anthropogenic CO2 absorption by the ocean, may have profound impacts on marine biota. Calcareous organisms are expected to be particularly sensitive due to the decreasing availability of carbonate ions driven by decreasing pH levels. Recently, some studies focused on the early life stages of mollusks that are supposedly more sensitive to environmental disturbances than adult stages. Although these studies have shown decreased growth rates and increased proportions of abnormal development under low pH conditions, they did not allow attribution to pH induced changes in physiology or changes due to a decrease in aragonite saturation state. This study aims to assess the impact of several carbonate-system perturbations on the growth of Pacific oyster (Crassostrea gigas) larvae during the first 3 days of development (until shelled D-veliger larvae). Seawater with five different chemistries was obtained by separately manipulating pH, total alkalinity and aragonite saturation state (calcium addition). Results showed that the developmental success and growth rates were not directly affected by changes in pH or aragonite saturation state but were highly correlated with the availability of carbonate ions. In contrast to previous studies, both developmental success into viable D-shaped larvae and growth rates were not significantly altered as long as carbonate ion concentrations were above aragonite saturation levels, but they strongly decreased below saturation levels. These results suggest that the mechanisms used by these organisms to regulate calcification rates are not efficient enough to compensate for the low availability of carbonate ions under corrosive conditions. PMID:21860666

  17. Changes in the antioxidant metabolism in the embryonic development of the common South American toad Bufo arenarum: differential responses to pesticide in early embryos and autonomous-feeding larvae.

    PubMed

    Ferrari, Ana; Anguiano, Liliana; Lascano, Cecilia; Sotomayor, Verónica; Rosenbaum, Enrique; Venturino, Andrés

    2008-01-01

    Amphibians may be critically challenged by aquatic contaminants during their embryonic development. Many classes of compounds, including organophosphorus pesticides, are able to cause oxidative stress that affects the delicate cellular redox balance regulating tissue modeling. We determined the progression of antioxidant defenses during the embryonic development of the South American common toad, Bufo arenarum. Superoxide dismutase (SOD) and catalase (CAT) activities were high in the unfertilized eggs, and remained constant during the first stages of development. SOD showed a significant increase when the gills were completely active and opercular folds began to form. Reductase (GR) activity was low in the oocytes and increased significantly when gills and mouth were entirely developed and the embryos presented a higher exposure to pro-oxidant conditions suggesting an environmental control. Reduced glutathione (GSH) content was also initially low, and rose continuously pointing out an increasing participation of GSH-related enzymes in the control of oxidative stress. GSH peroxidases and GSH-S-transferases showed relatively high and constant activities, probably related to lipid peroxide control. B. arenarum embryos have plenty of yolk platelets containing lipids, which provide the energy and are actively transferred to the newly synthesized membranes during the early embryonic development. Exposure to the pro-oxidant pesticide malathion during 48 h did not significantly affect the activity of antioxidant enzymes in early embryos, but decreased the activities of CAT, GR, and the pool of GSH in larvae. Previous work indicated that lipid peroxide levels were kept low in malathion-exposed larvae, thus we conclude that oxidative stress is overcome by the antioxidant defenses. The increase in the antioxidant metabolism observed in the posthatching phase of development of B. arenarum embryo, thus constitutes a defense against natural and human-generated pro

  18. Embryonic vascular development: immunohistochemical identification of the origin and subsequent morphogenesis of the major vessel primordia in quail embryos.

    PubMed

    Coffin, J D; Poole, T J

    1988-04-01

    The development of the embryonic vasculature is examined here using a monoclonal antibody, QH-1, capable of labelling the presumptive endothelial cells of Japanese quail embryos. Antibody labelling is first seen within the embryo proper at the 1-somite stage. Scattered labelling of single cells appears ventral to the somites and at the lateral edges of the anterior intestinal portal. The dorsal aorta soon forms a continuous cord at the ventrolateral edge of the somites and continues into the head to fuse with the ventral aorta forming the first aortic arch by the 6-somite stage. The rudiments of the endocardium fuse at the midline above the anterior intestinal portal by the 3-somite stage and the ventral aorta extends craniad. Intersomitic arteries begin to sprout off of the dorsal aorta at the 7-somite stage. The posterior cardinal vein forms from single cells which segregate from somatic mesoderm at the 7-somite stage to form a loose plexus which moves mediad and wraps around the developing Wolffian duct in later stages. These studies suggest two modes of origin of embryonic blood vessels. The dorsal aortae and cardinal veins apparently arise in situ by the local segregation of presumptive endothelial cells from the mesoderm. The intersomitic arteries, vertebral arteries and cephalic vasculature arise by sprouts from these early vessel rudiments. There also seems to be some cell migration in the morphogenesis of endocardium, ventral aorta and aortic arches. The extent of presumptive endothelial migration in these cases, however, needs to be clarified by microsurgical intervention. PMID:3048971

  19. Wnt5a can both activate and repress Wnt/β-catenin signaling during mouse embryonic development

    PubMed Central

    van Amerongen, Renée; Fuerer, Christophe; Mizutani, Makiko; Nusse, Roel

    2012-01-01

    Embryonic development is controlled by a small set of signal transduction pathways, with vastly different phenotypic outcomes depending on the time and place of their recruitment. How the same molecular machinery can elicit such specific and distinct responses, remains one of the outstanding questions in developmental biology. Part of the answer may lie in the high inherent genetic complexity of these signaling cascades, as observed for the Wnt-pathway. The mammalian genome encodes multiple Wnt proteins and receptors, each of which show dynamic and tightly controlled expression patterns in the embryo. Yet how these components interact in the context of the whole organism remains unknown. Here we report the generation of a novel, inducible transgenic mouse model that allows spatiotemporal control over the expression of Wnt5a, a protein implicated in many developmental processes and multiple Wnt-signaling responses. We show that ectopic Wnt5a expression from E10.5 onwards results in a variety of developmental defects, including loss of hair follicles and reduced bone formation in the skull. Moreover, we find that Wnt5a can have dual signaling activities during mouse embryonic development. Specifically, Wnt5a is capable of both inducing and repressing β-catenin/TCF signaling in vivo, depending on the time and site of expression and the receptors expressed by receiving cells. These experiments show for the first time that a single mammalian Wnt protein can have multiple signaling activities in vivo, thereby furthering our understanding of how signaling specificity is achieved in a complex developmental context. PMID:22771246

  20. Development of ion channels and neurofilaments during neuronal differentiation of mouse embryonal carcinoma cell lines.

    PubMed Central

    Kubo, Y

    1989-01-01

    1. an embryonal carcinoma cell line, PCC4-Aza1-ECA2, was induced to differentiate to neurones by two different procedures: an addition of retinoic acid to the culture medium or a reduction of serum concentration. The changes in membrane currents during differentiation were studied by the whole-cell variation of the patch-clamp technique and the change in neurofilament expression was studied immunohistochemically. 2. Stem cells showed the outward K+ current which inactivated slightly, but no inward currents were observed. These cells did not express neurofilament. 3. Three days after an addition of 10(-7) M-retinoic acid, neurofilament-positive round cells without processes began to appear. The inward currents observed in these cells were the Na+ current and fast-inactivating Ca2+-channel current. Four days after an addition of 10(-7) M-retinoic acid, the cells began to extend processes and showed an intense neurofilament expression. The inward currents were the Na+ current and slow-inactivating Ca2+-channel current, while the fast-inactivating Ca2+-channel current observed previously had almost disappeared. The amplitude of the outward K+ current was larger than that in the stem cell and it did not show clear inactivation. 4. By reducing the serum concentration in the medium from 10 to 0.1%, cells with processes were observed after 6 days. They were neurofilament-positive and had the Na+ current, both fast- and slow-inactivating Ca2+-channel currents, and the outward K+ current which inactivated slightly. 5. The properties of these ionic currents observed in induced neurones were studied. The Na+ current was blocked by 0.1 microM-tetrodotoxin at any stage. The Na+ current was evoked by a depolarization pulse to a level above -40 mV with a maximum amplitude at around -10 mV. The fast-inactivating Ca2+-channel current was evoked by a depolarization to a level above -50 mV with a maximum amplitude at around -15 mV. It was resistant to 50 microM-Cd2+. The slow

  1. Characterization and toxicology evaluation of chitosan nanoparticles on the embryonic development of zebrafish, Danio rerio.

    PubMed

    Wang, Yanbo; Zhou, Jinru; Liu, Lin; Huang, Changjiang; Zhou, Deqing; Fu, Linglin

    2016-05-01

    In the present study, chitosan nanoparticles were prepared, characterized and used to evaluate the embryonic toxicology on zebrafish (Danio rerio). The average particle size of chitosan nanoparticles was 84.86nm. The increased mortality and decreased hatching rate was found in the zebrafish embryo exposure to normal chitosan particles and chitosan nanoparticles with the increased addition concentration. At 120h post-fertilization (hpf), the rate of mortality were 25.0 and 44.4% in the groups treated with chitosan nanoparticles and normal chitosan particles at 250mg/L, respectively. At 72hpf, the hatching rate in the groups treated with normal chitosan particles were lower (P<0.01) at 300 and 400mg/L than those of the corresponding control groups, respectively. However, there were no significant differences between the groups treated with chitosan nanoparticles and the control groups across all the addition concentrations. More abundant typical malformation of embryos was observed in the groups treated with normal chitosan particles compared with those treated with chitosan nanoparticles. The LC50 (medium lethal concentration) of chitosan nanoparticles was 280mg/L at 96hpf and 270mg/L at 120hpf. As for normal chitosan particles, the LC50 was 257mg/L at both 96hpf and 120hpf. The TC50 (medium teratogenic concentration) of the zebrafish treated with chitosan nanoparticles and normal chitosan particles were 257mg/L and 137mg/L, respectively. It indicated that the chitosan nanoparticles were relatively more secure compared with normal chitosan particles. PMID:26877014

  2. N-cadherin regulates primary motor axon growth and branching during zebrafish embryonic development.

    PubMed

    Brusés, Juan L

    2011-06-15

    N-cadherin is a classical type I cadherin that contributes to the formation of neural circuits by regulating growth cone migration and the formation of synaptic contacts. This study analyzed the role of N-cadherin in primary motor axons growth during development of the zebrafish (Danio rerio) embryo. After exiting the spinal cord, primary motor axons migrate ventrally through a common pathway and form the first neuromuscular junction with the muscle pioneer cells located at the horizontal myoseptum, which serves as a choice point for cell-type-specific pathway selection. Analysis of N-cadherin mutants (cdh2(hi3644Tg) ) and embryos injected with N-cadherin antisense morpholinos showed primary motor axons extending aberrant axonal branches at the choice point in ∼40% of the somitic hemisegments and an ∼150% increase in the number of branches per axon length within the ventral myotome. Analysis of individual axons trajectories showed that the caudal (CaP) and rostral (RoP) motor neurons axons formed aberrant branches at the choice point that abnormally extended in the rostrocaudal axis and ventrally to the horizontal myoseptum. Expression of a dominant-interfering N-cadherin cytoplasmic domain in primary motor neurons caused some axons to stall abnormally at the horizontal myoseptum and to impair their migration into the ventral myotome. However, in N-cadherin-depleted embryos, the majority of primary motor axons innervated their appropriate myotomal territories, indicating that N-cadherin regulates motor axon growth and branching without severely affecting the mechanisms that control axonal target selection. PMID:21452216

  3. N-cadherin regulates primary motor axons growth and branching during zebrafish embryonic development

    PubMed Central

    Brusés, Juan L

    2013-01-01

    N-cadherin is a classical type I cadherin that contributes to the formation of neural circuits by regulating growth cone migration and the formation of synaptic contacts. This study analyzed the role of N-cadherin in primary motor axons growth during development of the zebrafish (Danio rerio) embryo. After exiting the spinal cord, primary motor axons migrate ventrally through a common pathway and form the first neuromuscular junction with the muscle pioneer cells located at the horizontal myoseptum, which serves as a choice point for cell-type specific pathway selection. Analysis of N-cadherin mutants (cdh2hi3644Tg) and embryos injected with N-cadherin antisense morpholinos showed primary motor axons extending aberrant axonal branches at the choice point in ~40% of the somitic hemisegments, and an ~150% increase in the number of branches per axon length within the ventral myotome. Analysis of individual axons trajectories showed that the caudal (CaP) and rostral (RoP) motor neurons axons formed aberrant branches at the choice point which abnormally extended in the rostrocaudal axis and ventrally to the horizontal myoseptum. Expression of a dominant-interfering N-cadherin cytoplasmic domain in primary motor neurons caused some axons to abnormally stall at the horizontal myoseptum and to impair their migration into the ventral myotome. However, in N-cadherin depleted embryos the majority of primary motor axons innervated their appropriate myotomal territories indicating that N-cadherin regulates motor axon growth and branching without severely affecting the mechanisms that control axonal target selection. PMID:21452216

  4. Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure.

    PubMed

    Colleoni, Silvia; Galli, Cesare; Gaspar, John Antony; Meganathan, Kesavan; Jagtap, Smita; Hescheler, Jurgen; Sachinidis, Agapios; Lazzari, Giovanna

    2011-12-01

    The aim of this study was the development of an alternative testing method based on human embryonic stem cells for prenatal developmental toxicity with particular emphasis on early neural development. To this purpose, we designed an in vitro protocol based on the generation of neural rosettes, representing the in vitro counterpart of the developing neural plate and neural tube, and we challenged this complex cell model with retinoic acid (RA), a well-known teratogenic agent. The cells were exposed to different concentrations of RA during the process of rosettes formation. Morphological and molecular parameters were evaluated in treated as compared with untreated cells to detect both cytotoxicity and specific neural toxicity. Transcriptomic analysis was performed with microarray Affymetrix platform and validated by quantitative real-time PCR for genes relevant to early neural development such as HoxA1, HoxA3, HoxB1, HoxB4, FoxA2, FoxC1, Otx2, and Pax7. The results obtained demonstrated that neural rosette forming cells respond to RA with clear concentration-dependent morphological, and gene expression changes remarkably similar to those induced in vivo, in the developing neural tube, by RA exposure. This strict correspondence indicates that the neural rosette protocol described is capable of detecting specific teratogenic mechanisms causing perturbations of early neural development and therefore represents a promising alternative test for human prenatal developmental toxicity. PMID:21934132

  5. Divergent Palate Morphology in Turtles and Birds Correlates With Differences in Proliferation and BMP2 Expression During Embryonic Development

    PubMed Central

    ABRAMYAN, JOHN; JIA-MIEN LEUNG, KELVIN; RICHMAN, JOY MARION

    2014-01-01

    During embryonic development, amniotes typically form outgrowths from the medial sides of the maxillary prominences called palatal shelves or palatine processes. In mammals the shelves fuse in the midline and form a bony hard palate that completely separates the nasal and oral cavities. In birds and lizards, palatine processes develop but remain unfused, leaving a natural cleft. Adult turtles do not possess palatine processes and unlike other amniotes, the internal nares open into the oral cavity. Here we investigate craniofacial ontogeny in the turtle, Emydura subglobosa to determine whether vestigial palatine processes develop and subsequently regress, or whether development fails entirely. We found that the primary palate in turtles develops similarly to other amniotes, but secondary palate ontogeny diverges. Using histology, cellular dynamics and in situ hybridization we found no evidence of palatine process development at any time during ontogeny of the face in the turtle. Furthermore, detailed comparisons with chicken embryos (the model organism most closely related to turtles from a molecular phylogeny perspective), we identified differences in proliferation and gene expression patterns that correlate with the differences in palate morphology. We propose that, in turtles, palatine process outgrowth is never initiated due to a lack of mesenchymal bone morphogenetic protein 2 (BMP2) expression in the maxillary mesenchyme, which in turn fails to induce the relatively higher cellular proliferation required for medial tissue outgrowth. It is likely that these differences between turtles and birds arose after the divergence of the lineage leading to modern turtles. PMID:24323766

  6. Effect of selection for commercially productive traits on the plasticity of cardiovascular regulation in chicken breeds during embryonic development.

    PubMed

    Crossley, D A; Altimiras, J

    2012-10-01

    Domesticated animal breeds have experienced profound anatomical and physiological changes as a result of human-driven genetic selection. In poultry, this selection process has resulted in many distinct phenotypes from the ancestral bird, the Red Junglefowl. Growth rate and egg-laying capacity are 2 traits that have been commercially prioritized, and this has resulted in a fast-growth breed, the broiler, and a prolific egg layer, the White Leghorn. In this study, we investigated basic cardiovascular physiology in these 3 breeds at 90% of incubation. We aimed to identify breed-specific features of arterial blood pressure and heart rate as well as the physiological mechanisms regulating them. Specifically, we investigated mechanisms mediated by the autonomic nervous system by means of cholinergic and adrenergic receptors. Our overriding hypothesis was that selection for rapid growth would require an acceleration of heart rate and arterial pressure development in broilers compared with White Leghorns and the ancestral breed. The embryonic broiler is characterized by resting relative hypertensive bradycardia, whereas the White Leghorn is hypotensive. All 3 breeds maintained resting arterial pressure and heart rate via a similar β- and α-adrenergic receptor tone; however, cholinergic tone on heart rate was absent in the embryonic White Leghorn. Each breed responded differently to incubation in chronic hypoxic conditions (14% O(2)). White Leghorn relied on augmenting cholinergic heart rate tone, and broilers relied on reducing β-adrenergic tone on pressure. We concluded that selection for rapid growth shifts cardiovascular regulatory plasticity to emphasize mechanisms that modulate pressure, and that selection for egg-laying capacity emphasizes mechanisms that modulate heart rate. PMID:22991550

  7. Timing of human preimplantation embryonic development is confounded by embryo origin

    PubMed Central

    Kirkegaard, K.; Sundvall, L.; Erlandsen, M.; Hindkjær, J.J.; Knudsen, U.B.; Ingerslev, H.J.

    2016-01-01

    STUDY QUESTION To what extent do patient- and treatment-related factors explain the variation in morphokinetic parameters proposed as embryo viability markers? SUMMARY ANSWER Up to 31% of the observed variation in timing of embryo development can be explained by embryo origin, but no single factor elicits a systematic influence. WHAT IS KNOWN ALREADY Several studies report that culture conditions, patient characteristics and treatment influence timing of embryo development, which have promoted the perception that each clinic must develop individual models. Most of the studies have, however, treated embryos from one patient as independent observations, and only very few studies that evaluate the influence from patient- and treatment-related factors on timing of development or time-lapse parameters as predictors of viability have controlled for confounding, which implies a high risk of overestimating the statistical significance of potential correlations. STUDY DESIGN, SIZE, DURATION Infertile patients were prospectively recruited to a cohort study at a hospital fertility clinic from February 2011 to May 2013. Patients aged <38 years without endometriosis were eligible if ≥8 oocytes were retrieved. Patients were included only once. All embryos were monitored for 6 days in a time-lapse incubator. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 1507 embryos from 243 patients were included. The influence of fertilization method, BMI, maternal age, FSH dose and number of previous cycles on timing of t2-t5, duration of the 2- and 3-cell stage, and development of a blastocoel (tEB) and full blastocoel (tFB) was tested in multivariate, multilevel linear regression analysis. Predictive parameters for live birth were tested in a logistic regression analysis for 223 single transferred blastocysts, where time-lapse parameters were investigated along with patient and embryo characteristics. MAIN RESULTS AND THE ROLE OF CHANCE Moderate intra-class correlation coefficients

  8. Reproductive and Developmental Toxicity of Orally Administered Botanical Composition, UP446-Part III: Effects on Fertility and Early Embryonic Development to Implantation in Sprague Dawley Rats.

    PubMed

    Yimam, Mesfin; Lee, Young-Chul; Hyun, Eu-Jin; Jia, Qi

    2015-08-01

    In recent years, high prevalence of adverse effects associated to the use of traditional medicines during pregnancy is becoming alarming due to the self-medication of oral supplements by expecting mothers without supervision. Many expectant mothers use alternative and complementary medicines as a supplement to conventional pregnancy management with an inherent belief of considering herbal remedies as harmless. To the contrary, herbal remedies could incur a potential teratogenic risk both to the child bearing mother and the developing fetuses when consumed before or at the time of gestation. Here, we describe the potential adverse effects of orally administered UP446, a standardized bioflavonoid composition from the roots of Scutellaria baicalensis and the heartwoods of Acacia catechu, on fertility and early embryonic development to implantation in Sprague Dawley rats at doses of 250, 500, and 1000 mg/kg. Besides body weight and food consumption, reproductive functions, sperm motility and morphology, estrus cycle, and fertility rate were monitored. There were no statistically significant differences in reproductive function in all UP446 treated groups in both genders. Test substance impacts on reproductive parameters were very minimal. Neither sperm motility nor morphology was affected as a result of oral UP446 administrations in males. There were no treatment-related effects on estrus cycle stages in females. No significant changes in necropsy or histopathology were observed for all the groups. Therefore, the no observed adverse effect level (NOAEL) of UP446 was considered to be 1000 mg/kg, the highest dose tested, in both genders. PMID:26173630

  9. Potential for local adaptation in response to an anthropogenic agent of selection: effects of road deicing salts on amphibian embryonic survival and development.

    PubMed

    Hopkins, Gareth R; French, Susannah S; Brodie, Edmund D

    2013-02-01

    The application of millions of tons of road deicing salts every winter in North America presents significant survival challenges to amphibians inhabiting roadside habitats. While much is known of the effects of NaCl on anuran tadpoles, less is known of effects on amphibian eggs, or any caudate life stage. In addition, little is known of the effects of MgCl2, which is now the 2nd most commonly used road deicer. Most studies have considered amphibians to be helpless victims of deicing salts, and ignore the possibility of the evolution of local adaptation to this stressor. We attempt to address these knowledge gaps and explore this evolutionary potential by examining the effects of NaCl and MgCl2 on the survival and development of eggs from different female rough-skinned newts (Taricha granulosa) from the same population. We demonstrate that both salts, at environmentally relevant concentrations, severely affect the embryonic survival and development of this amphibian, but that the effects of the salt are dependent on the identity of the mother. This female × treatment interaction results in substantial variation in tolerance to road deicing salts among newt families, providing the raw material necessary for natural selection and the evolution of local adaptation in this amphibian. PMID:23467723

  10. Potential for local adaptation in response to an anthropogenic agent of selection: effects of road deicing salts on amphibian embryonic survival and development

    PubMed Central

    Hopkins, Gareth R; French, Susannah S; Brodie, Edmund D

    2013-01-01

    The application of millions of tons of road deicing salts every winter in North America presents significant survival challenges to amphibians inhabiting roadside habitats. While much is known of the effects of NaCl on anuran tadpoles, less is known of effects on amphibian eggs, or any caudate life stage. In addition, little is known of the effects of MgCl2, which is now the 2nd most commonly used road deicer. Most studies have considered amphibians to be helpless victims of deicing salts, and ignore the possibility of the evolution of local adaptation to this stressor. We attempt to address these knowledge gaps and explore this evolutionary potential by examining the effects of NaCl and MgCl2 on the survival and development of eggs from different female rough-skinned newts (Taricha granulosa) from the same population. We demonstrate that both salts, at environmentally relevant concentrations, severely affect the embryonic survival and development of this amphibian, but that the effects of the salt are dependent on the identity of the mother. This female × treatment interaction results in substantial variation in tolerance to road deicing salts among newt families, providing the raw material necessary for natural selection and the evolution of local adaptation in this amphibian. PMID:23467723

  11. THE EFFECT OF EMBRYONIC AGE AND BREEDER FLOCK AGE ON THE GASTROINTESTINAL MICROBIOME OF DEVELOPING BROILER CHICKEN: POTENTIAL IMPLICATIONS FOR FOOD SAFETY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: There are several food-safety issues related to broiler egg production, including the introduction/proliferation of zoonotic pathogens during embryonic gastrointestinal (GI) tract development. Little is known about the overall GI bacterial communities, how they change over time, or how ...

  12. The histone demethylase JMJD2C is stage-specifically expressed in preimplantation mouse embryos and is required for embryonic development.

    PubMed

    Wang, Jianle; Zhang, Miao; Zhang, Yu; Kou, Zhaohui; Han, Zhiming; Chen, Da-Yuan; Sun, Qing-Yuan; Gao, Shaorong

    2010-01-01

    Epigenetic modifications play a pivotal role in embryonic development by dynamically regulating DNA methylation and chromatin modifications. Although recent studies have shown that core histone methylation is reversible, very few studies have investigated the functions of the newly discovered histone demethylases during embryonic development. In the present study, we investigated the expression characteristics and function of JMJD2C, a histone demethylase that belongs to the JmjC-domain-containing histone demethylases, during preimplantation embryonic development of the mouse. We found that JMJD2C is stage-specifically expressed during preimplantation development, with the highest activity being observed from the two-cell to the eight-cell stage. Depletion of JMJD2C in metaphase II oocytes followed by parthenogenetic activation causes a developmental arrest before the blastocyst stage. Moreover, consistent with a previous finding in embryonic stem (ES) cells, depletion of JMJD2C causes a significant down-regulation of the pluripotency gene Nanog in embryos. However, contrary to a previous report in ES cells, we observed that other pluripotency genes, Pou5f1 and Sox2, are also significantly down-regulated in JMJD2C-depleted embryos. Furthermore, the depletion of JMJD2C in early embryos also caused significant down-regulation of the Myc and Klf4 genes, which are associated with cell proliferation. Our data suggest that the deregulation of these critical genes synergistically causes the developmental defects observed in JMJD2C-depleted embryos. PMID:19696013

  13. Misexpression of BRE gene in the developing chick neural tube affects neurulation and somitogenesis

    PubMed Central

    Wang, Guang; Li, Yan; Wang, Xiao-Yu; Chuai, Manli; Yeuk-Hon Chan, John; Lei, Jian; Münsterberg, Andrea; Lee, Kenneth Ka Ho; Yang, Xuesong

    2015-01-01

    The brain and reproductive expression (BRE) gene is expressed in numerous adult tissues and especially in the nervous and reproductive systems. However, little is known about BRE expression in the developing embryo or about its role in embryonic development. In this study, we used in situ hybridization to reveal the spatiotemporal expression pattern for BRE in chick embryo during development. To determine the importance of BRE in neurogenesis, we overexpressed BRE and also silenced BRE expression specifically in the neural tube. We established that overexpressing BRE in the neural tube indirectly accelerated Pax7+ somite development and directly increased HNK-1+ neural crest cell (NCC) migration and TuJ-1+ neurite outgrowth. These altered morphogenetic processes were associated with changes in the cell cycle of NCCs and neural tube cells. The inverse effect was obtained when BRE expression was silenced in the neural tube. We also determined that BMP4 and Shh expression in the neural tube was affected by misexpression of BRE. This provides a possible mechanism for how altering BRE expression was able to affect somitogenesis, neurogenesis, and NCC migration. In summary, our results demonstrate that BRE plays an important role in regulating neurogenesis and indirectly somite differentiation during early chick embryo development. PMID:25568339

  14. Affective Development in Advanced Old Age: Analyses of Terminal Change in Positive and Negative Affect

    ERIC Educational Resources Information Center

    Schilling, Oliver K.; Wahl, Hans-Werner; Wiegering, Sarah

    2013-01-01

    Late-life development of affect may unfold terminal changes that are driven more by end-of-life processes and not so much by time since birth. This study aimed to explore time-to-death-related effects in measures of affect in a sample of the very old. We used longitudinal data (2 measurement occasions: 2002 and 2003) from 140 deceased…

  15. Effects of Temperature on the Termination of Egg Diapause and Post-Diapause Embryonic Development of Galeruca daurica (Coleoptera: Chrysomelidae).

    PubMed

    Zhou, Xiao-Rong; Gao, Jing-Chun; Pang, Bao-Ping

    2016-08-01

    Galeruca daurica (Joannis) is a new pest on the grasslands of Inner Mongolia, China. It is univoltine and overwinters in the egg stage. Larvae and adults feed on the foliage of Allium plants. To assess the requirements to terminate egg diapause and subsequent effects on post-diapause development rate, eggs were held at different temperature regimes. Exposure to low temperatures was required to terminate egg diapause. Prolonged exposure (2 mo vs 1 mo) to 5°C and outside ambient conditions (mean temperature: 10.5°C; range: -7.1-21.6°C) enhanced the termination of egg diapause. Prolonged exposure also reduced the time to egg hatch; e.g., eggs held for 2 mo versus 1 mo at 5°C developed more quickly when subsequently placed at warmer temperatures. Egg hatch was observed at 17, 21, 25, and 29°C, but not at 15°C. Regression analysis identified 16.2°C as the minimum temperature for post-diapause development. The temperature requirement to complete embryonic development (from diapause termination to egg hatch) was calculated to be 103.1 to 140.9 degree-days. PMID:27330147

  16. Immunohistochemical localization of a approximately 66 kD glycosylated phosphoprotein during development of the embryonic chick tibia.

    PubMed

    Bruder, S P; Caplan, A I; Gotoh, Y; Gerstenfeld, L C; Glimcher, M J

    1991-06-01

    Localization of a approximately 66 kD glycosylated phosphoprotein during morphogenesis of the embryonic chick tibia has been accomplished using immunohistochemistry. Although initial expression of the tibial osteoblast phenotype is detected as early as stage 28.5, with the deposition of osteoid matrix beginning at stage 30, little or no immunoreactivity against the approximately 66 kD glycosylated phosphoprotein is observed in pre-osteoblasts, osteoblasts, osteocytes, or in the uncalcified osteoid matrix during the early events of tibia development. Immunoreactivity was first observed at stage 32 when mineralization of the osteoid matrix is initiated. At this and all later stages, the phosphoprotein is located almost exclusively in the extracellular matrix at the mineralization front with essentially no detectable staining in the adjacent unmineralized osteoid matrix. Similarly, no cellular staining is observed when even the lightly mineralized extracellular matrix is strongly immunoreactive. Only scant immunostaining is present over the heavily mineralized regions, although demineralization of these areas with EDTA exposes a low intensity, punctate staining pattern. Additionally, cryosections of developing calvaria stained with this antiserum only display reactivity in regions of bone matrix undergoing mineralization. These localization studies support the hypothesis that this phosphoprotein is intimately associated with the process of bone matrix mineralization in the developing chick long bone. PMID:2070278

  17. Targeted knock-down of a structurally atypical zebrafish 12S-lipoxygenase leads to severe impairment of embryonic development

    PubMed Central

    Haas, Ulrike; Raschperger, Elisabeth; Hamberg, Mats; Samuelsson, Bengt; Tryggvason, Karl; Haeggström, Jesper Z.

    2011-01-01

    Lipoxygenases (LO) are a class of dioxygenases, which form hydroperoxy, hydroxy, and epoxy derivatives of arachidonic acid with distinct positional and stereochemical configurations. In man, there are two known types of 12-LO that are distinguished by their expression patterns and catalytic properties. The platelet 12S-LO plays a role in platelet aggregation and 12R-LO seems to be important for normal skin function. Using BLAST searches of the zebrafish (zf) genome we identified one candidate zf12-LO gene with 43% identity with human 12R-LO at the mRNA level and the deduced primary sequence carried the so called “Coffa” structural determinant (Gly residue) for R stereoselectivity of LOs. However, incubations of recombinant, purified, zf12-LO with arachidonic acid revealed exclusive formation of 12(S)-hydroperoxy-eicosatetraenoic acid. Further studies with immunohistochemistry showed prominent expression of zf12-LO in the cell nuclei of skin epithelium, the epithelial lining of the stomodeum, and the pharyngeal pouches in zf embryos. To probe its function, zf12-LO was subjected to targeted knock-down in zf embryos, resulting in the development of a severe phenotype, characterized by abnormal development of the brain, the eyes, and the tail as well as pericardial and yolk sac edema. Hence, we have identified a unique vertebrate 12S-LO that breaks the current structure-function paradigms for S and R stereo-specificity and with critical roles in normal embryonic development. PMID:22143766

  18. Effects of an environmentally relevant polychlorinated biphenyl (PCB) mixture on embryonic survival and cardiac development in the domestic chicken.

    PubMed

    Carro, Tiffany; Dean, Karen; Ottinger, Mary Ann

    2013-06-01

    A 58-congener polychlorinated biphenyl (PCB) mixture based on contaminant analysis of spotted sandpiper eggs collected along the upper Hudson River, New York, USA, in 2004 was used to study in ovo PCB effects on cardiac development in the domestic chicken. Fertile eggs were injected prior to incubation with the following doses of the PCB mixture: untreated, sham, 0, 0.03, 0.08, 0.3, 0.5, 0.7, and 2.06 µg PCBs/g egg weight (toxic equivalent quotient [TEQ] range of 0.004-0.266 ng/g). In addition, there were untreated and sham-control groups. Embryonic development was monitored throughout incubation and chicks were necropsied at hatch. Hatchability followed a dose-dependent curve with significant (p < 0.05) mortality above the 0.5 µg PCBs/g egg weight treatment compared with controls. The median lethal dose (LD50) of this PCB mixture in hatchling chicks was estimated as 0.4 µg/g egg weight (0.052 ng TEQ/g egg wt) based on the lethality curve. Cardiac arrhythmia was observed at embryonic day 14 of development in embryos treated at concentrations of 0.5 µg/g egg weight and above. Histological analysis was utilized to characterize any cardiac abnormalities. Cardiomyopathies increased across treatments in a dose-dependent manner compared with control groups. Identified abnormalities included the absence of the trabeculated layer of the ventricular wall, ventricular dilation, thinning of the ventricular walls, malformation of the septal wall, and most commonly, absence of the compact layer of the ventricular wall. Chick heart width, depth, total area, compact layer depth, septal width, chamber area, and ventricular wall dimensions did not differ across treatments. The present study supports prior reports of adverse developmental effects of PCBs on cardiovascular systems in birds. Although the eggs hatched, measured cardiomyopathies suggest potential deleterious long-term impacts on individual health and fitness. PMID:23418095

  19. A Novel Functional Role for the Oocyte-Specific Transcription Factor Newborn Ovary Homeobox (NOBOX) during Early Embryonic Development in Cattle

    PubMed Central

    Tripurani, Swamy K.; Lee, Kyung-Bon; Wang, Lei; Wee, Gabbine; Smith, George W.; Lee, Young S.; Latham, Keith E.

    2011-01-01

    Newborn ovary homeobox (NOBOX) is an oocyte-specific transcription factor essential for folliculogenesis and expression of many germ cell-specific genes in mice. Here we report the characterization of the bovine NOBOX gene and its role in early embryogenesis. The cloned cDNA for bovine NOBOX contains an open reading frame encoding a protein of 500 amino acids with a conserved homeodomain. mRNA for NOBOX is preferentially expressed in ovaries and undetectable by RT-PCR in somatic tissues examined. NOBOX protein is present in oocytes throughout folliculogenesis. NOBOX is expressed in a stage-specific manner during oocyte maturation and early embryonic development and of maternal origin. Knockdown of NOBOX in early embryos using small interfering RNA demonstrated that NOBOX is required for embryonic development to the blastocyst stage. Depletion of NOBOX in early embryos caused significant down-regulation of genes associated with transcriptional regulation, signal transduction, and cell cycle regulation during embryonic genome activation. In addition, NOBOX depletion in early embryos reduced expression of pluripotency genes (POU5F1/OCT4 and NANOG) and number of inner cell mass cells in embryos that reached the blastocyst stage. This study demonstrates that NOBOX is an essential maternal-derived transcription factor during bovine early embryogenesis, which functions in regulation of embryonic genome activation, pluripotency gene expression, and blastocyst cell allocation. PMID:21193554

  20. A novel mouse model for inhibition of DOHH-mediated hypusine modification reveals a crucial function in embryonic development, proliferation and oncogenic transformation

    PubMed Central

    Sievert, Henning; Pällmann, Nora; Miller, Katharine K.; Hermans-Borgmeyer, Irm; Venz, Simone; Sendoel, Ataman; Preukschas, Michael; Schweizer, Michaela; Boettcher, Steffen; Janiesch, P. Christoph; Streichert, Thomas; Walther, Reinhard; Hengartner, Michael O.; Manz, Markus G.; Brümmendorf, Tim H.; Bokemeyer, Carsten; Braig, Melanie; Hauber, Joachim; Duncan, Kent E.; Balabanov, Stefan

    2014-01-01

    The central importance of translational control by post-translational modification has spurred major interest in regulatory pathways that control translation. One such pathway uniquely adds hypusine to eukaryotic initiation factor 5A (eIF5A), and thereby affects protein synthesis and, subsequently, cellular proliferation through an unknown mechanism. Using a novel conditional knockout mouse model and a Caenorhabditis elegans knockout model, we found an evolutionarily conserved role for the DOHH-mediated second step of hypusine synthesis in early embryonic development. At the cellular level, we observed reduced proliferation and induction of senescence in 3T3 Dohh−/− cells as well as reduced capability for malignant transformation. Furthermore, mass spectrometry showed that deletion of DOHH results in an unexpected complete loss of hypusine modification. Our results provide new biological insight into the physiological roles of the second step of the hypusination of eIF5A. Moreover, the conditional mouse model presented here provides a powerful tool for manipulating hypusine modification in a temporal and spatial manner, to analyse both how this unique modification normally functions in vivo as well as how it contributes to different pathological conditions. PMID:24832488

  1. Ongoing neural development of affective theory of mind in adolescence

    PubMed Central

    Weigelt, Sarah; Döhnel, Katrin; Smolka, Michael N.; Kliegel, Matthias

    2014-01-01

    Affective Theory of Mind (ToM), an important aspect of ToM, involves the understanding of affective mental states. This ability is critical in the developmental phase of adolescence, which is often related with socio-emotional problems. Using a developmentally sensitive behavioral task in combination with functional magnetic resonance imaging, the present study investigated the neural development of affective ToM throughout adolescence. Eighteen adolescent (ages 12–14 years) and 18 young adult women (aged 19–25 years) were scanned while evaluating complex affective mental states depicted by actors in video clips. The ventromedial prefrontal cortex (vmPFC) showed significantly stronger activation in adolescents in comparison to adults in the affective ToM condition. Current results indicate that the vmPFC might be involved in the development of affective ToM processing in adolescence. PMID:23716712

  2. Ongoing neural development of affective theory of mind in adolescence.

    PubMed

    Vetter, Nora C; Weigelt, Sarah; Döhnel, Katrin; Smolka, Michael N; Kliegel, Matthias

    2014-07-01

    Affective Theory of Mind (ToM), an important aspect of ToM, involves the understanding of affective mental states. This ability is critical in the developmental phase of adolescence, which is often related with socio-emotional problems. Using a developmentally sensitive behavioral task in combination with functional magnetic resonance imaging, the present study investigated the neural development of affective ToM throughout adolescence. Eighteen adolescent (ages 12-14 years) and 18 young adult women (aged 19-25 years) were scanned while evaluating complex affective mental states depicted by actors in video clips. The ventromedial prefrontal cortex (vmPFC) showed significantly stronger activation in adolescents in comparison to adults in the affective ToM condition. Current results indicate that the vmPFC might be involved in the development of affective ToM processing in adolescence. PMID:23716712

  3. Observing the development of the temporomandibular joint in embryonic and post-natal mice using various staining methods

    PubMed Central

    LIANG, WENNA; LI, XIHAI; GAO, BIZHEN; GAN, HUIJUAN; LIN, XUEJUAN; LIAO, LINGHONG; LI, CANDONG

    2016-01-01

    The temporomandibular joint (TMJ) is a specialized synovial joint that is essential for the movement and function of the mammalian jaw. The TMJ develops from two mesenchymal condensations, and is composed of the glenoid fossa that originates from the otic capsule by intramembranous ossification, the mandibular condyle of the temporal bone and a fibrocartilagenous articular disc derived from a secondary cartilaginous joint by endochondral ossification. However, the development of the TMJ remains unclear. In the present study, the formation and development of the mouse TMJ was investigated between embryonic day 13.5 and post-natal day 180 in order to elucidate the morphological and molecular alterations that occur during this period. TMJ formation appeared to proceed in three stages: Initiation or blastema stage; growth and cavitation stage; and the maturation or completion stage. In order to investigate the activity of certain transcription factors on TMJ formation and development, the expression of extracellular matrix (ECM), sex determining region Y-box 9, runt-related transcription factor 2, Indian hedgehog homolog, Osterix, collagen I, collagen II, aggrecan, total matrix metalloproteinase (MMP), MMP-9 and MMP-13 were detected in the TMJ using in situ and/or immunohistochemistry. The results indicate that the transcription factors, ECM and MMP serve critical functions in the formation and development of the mouse TMJ. In summary, the development of the mouse TMJ was investigated, and the molecular regulation of mouse TMJ formation was partially characterized. The results of the present study may aid the systematic understanding of the physiological processes underlying TMJ formation and development in mice. PMID:26893634

  4. Effects of Pulsed Electromagnetic Field on Differentiation of HUES-17 Human Embryonic Stem Cell Line

    PubMed Central

    Wu, Yi-Lin; Ma, Shi-Rong; Peng, Tao; Teng, Zeng-Hui; Liang, Xiang-Yan; Guo, Guo-Zhen; Zhang, Hai-Feng; Li, Kang-Chu

    2014-01-01

    Electromagnetic fields are considered to potentially affect embryonic development, but the mechanism is still unknown. In this study, human embryonic stem cell (hESC) line HUES-17 was applied to explore the mechanism of exposure on embryonic development to pulsed electromagnetic field (PEMF) for 400 pulses at different electric field intensities and the differentiation of HUES-17 cells was observed after PEMF exposure. The expression of alkaline phosphatase (AP), stage-specific embryonic antigen-3 (SSEA-3), SSEA-4 and the mRNA level and protein level of Oct4, Sox2 and Nanog in HUES-17 cells remained unchanged after PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m. Four hundred pulses PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m did not affect the differentiation of HUES-17 cells. The reason why electromagnetic fields affect embryonic development may be due to other mechanisms rather than affecting the differentiation of embryonic stem cells. PMID:25196518

  5. Effects of pulsed electromagnetic field on differentiation of HUES-17 human embryonic stem cell line.

    PubMed

    Wu, Yi-Lin; Ma, Shi-Rong; Peng, Tao; Teng, Zeng-Hui; Liang, Xiang-Yan; Guo, Guo-Zhen; Zhang, Hai-Feng; Li, Kang-Chu

    2014-01-01

    Electromagnetic fields are considered to potentially affect embryonic development, but the mechanism is still unknown. In this study, human embryonic stem cell (hESC) line HUES-17 was applied to explore the mechanism of exposure on embryonic development to pulsed electromagnetic field (PEMF) for 400 pulses at different electric field intensities and the differentiation of HUES-17 cells was observed after PEMF exposure. The expression of alkaline phosphatase (AP), stage-specific embryonic antigen-3 (SSEA-3), SSEA-4 and the mRNA level and protein level of Oct4, Sox2 and Nanog in HUES-17 cells remained unchanged after PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m. Four hundred pulses PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m did not affect the differentiation of HUES-17 cells. The reason why electromagnetic fields affect embryonic development may be due to other mechanisms rather than affecting the differentiation of embryonic stem cells. PMID:25196518

  6. High levels of inorganic nutrients affect fertilization kinetics, early development and settlement of the scleractinian coral Platygyra acuta

    NASA Astrophysics Data System (ADS)

    Lam, E. K. Y.; Chui, A. P. Y.; Kwok, C. K.; Ip, A. H. P.; Chan, S. W.; Leung, H. N.; Yeung, L. C.; Ang, P. O.

    2015-09-01

    Dose-response experiments were conducted to investigate the effects of ammonia nitrogen (NH3/NH4 +) and orthophosphate (PO4 3-) on four stages of larval development in Platygyra acuta, including fertilization, embryonic development and the survival, motility, and settlement of planula larvae. Fertilization success was reduced significantly under 200 μM NH3/NH4 + or PO4 3-. These high doses of NH3/NH4 + and PO4 - affected egg viability (or sperm viability and polyspermic block simultaneously) and polyspermic block, respectively. These results provide the first evidence to indicate the mechanisms of how inorganic nutrients might affect coral fertilization processes. For embryonic development, NH3/NH4 + at 25-200 μM caused delay in cell division after 2-h exposure and NH3/NH4 + at 100-200 μM resulted in larval death after 72 h. However, no significant differences were observed in the mobility and survivorship of either planula or competent larvae under different levels of NH3/NH4 + or PO4 3-. There was a significant (~30 %) drop in the settlement of competent larvae under the combined effect of 100 μM NH3/NH4 + and PO4 3-. The effects of elevated nutrients appeared to become more significant only on gametes or larvae undergoing active cellular activities at fertilization, early development, and settlement.

  7. Prep1 (pKnox1) regulates mouse embryonic HSC cycling and self-renewal affecting the Stat1-Sca1 IFN-dependent pathway.

    PubMed

    Modica, Livia; Iotti, Giorgio; D'Avola, Annalisa; Blasi, Francesco

    2014-01-01

    A hypomorphic Prep1 mutation results in embryonic lethality at late gestation with a pleiotropic embryonic phenotype that includes defects in all hematopoietic lineages. Reduced functionality of the hematopoietic stem cells (HSCs) compartment might be responsible for the hematopoietic phenotype observed at mid-gestation. In this paper we demonstrate that Prep1 regulates the number of HSCs in fetal livers (FLs), their clonogenic potential and their ability to de novo generate the hematopoietic system in ablated hosts. Furthermore, we show that Prep1 controls the self-renewal ability of the FL HSC compartment as demonstrated by serial transplantation experiments. The premature exhaustion of Prep1 mutant HSCs correlates with the reduced quiescent stem cell pool thus suggesting that Prep1 regulates the self-renewal ability by controlling the quiescence/proliferation balance. Finally, we show that in FL HSCs Prep1 absence induces the interferon signaling pathway leading to premature cycling and exhaustion of fetal HSCs. PMID:25233378

  8. Prep1 (pKnox1) Regulates Mouse Embryonic HSC Cycling and Self-Renewal Affecting the Stat1-Sca1 IFN-Dependent Pathway

    PubMed Central

    Modica, Livia; Iotti, Giorgio; D’Avola, Annalisa; Blasi, Francesco

    2014-01-01

    A hypomorphic Prep1 mutation results in embryonic lethality at late gestation with a pleiotropic embryonic phenotype that includes defects in all hematopoietic lineages. Reduced functionality of the hematopoietic stem cells (HSCs) compartment might be responsible for the hematopoietic phenotype observed at mid-gestation. In this paper we demonstrate that Prep1 regulates the number of HSCs in fetal livers (FLs), their clonogenic potential and their ability to de novo generate the hematopoietic system in ablated hosts. Furthermore, we show that Prep1 controls the self-renewal ability of the FL HSC compartment as demonstrated by serial transplantation experiments. The premature exhaustion of Prep1 mutant HSCs correlates with the reduced quiescent stem cell pool thus suggesting that Prep1 regulates the self-renewal ability by controlling the quiescence/proliferation balance. Finally, we show that in FL HSCs Prep1 absence induces the interferon signaling pathway leading to premature cycling and exhaustion of fetal HSCs. PMID:25233378