Science.gov

Sample records for affecting energy production

  1. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    SciTech Connect

    Muenster, M.; Meibom, P.

    2010-12-15

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO{sub 2} quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO{sub 2} quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected.

  2. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.

    PubMed

    Münster, M; Meibom, P

    2010-12-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO(2) quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO(2) quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected.

  3. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.

    PubMed

    Münster, M; Meibom, P

    2010-12-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO(2) quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO(2) quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected. PMID:20471819

  4. Sugars proportionately affect artemisinin production.

    PubMed

    Wang, Y; Weathers, P J

    2007-07-01

    Little is known about the effect of sugars in controlling secondary metabolism. In this study, sugars alone or in combination with their analogs were used to investigate their role in the production of the antimalarial drug, artemisinin, in Artemisia annua L. seedlings. Compared to sucrose, a 200% increase in artemisinin by glucose was observed. Different ratios of fructose to glucose yielded artemisinin levels directly proportional to increases in relative glucose concentration. When the glucose analog, 3-O-methylglucose, was added with glucose, artemisinin production was dramatically decreased, but hexokinase activity was significantly increased compared to glucose alone. In contrast, neither mannose nor mannitol had any significant effect on artemisinin yield. In comparison with 30 g/l sucrose, artemisinin levels were significantly reduced by 80% in the presence of 27 g/l sucrose + 3 g/l palatinose, which cannot be transported into cells through the sucrose transporter. Together these results suggest that both monosaccharide and disaccharide sugars are likely acting not only as carbon sources but also as signals to affect the downstream production of artemisinin, and that the mechanism of these effects appears to be complex. PMID:17221224

  5. Affective Productions of Mathematical Experience

    ERIC Educational Resources Information Center

    Walshaw, Margaret; Brown, Tony

    2012-01-01

    In underscoring the affective elements of mathematics experience, we work with contemporary readings of the work of Spinoza on the politics of affect, to understand what is included in the cognitive repertoire of the Subject. We draw on those resources to tell a pedagogical tale about the relation between cognition and affect in settings of…

  6. Temporary alterations to postpartum milking frequency affect whole-lactation milk production and the energy status of pasture-grazed dairy cows.

    PubMed

    Phyn, C V C; Kay, J K; Rius, A G; Morgan, S R; Roach, C G; Grala, T M; Roche, J R

    2014-11-01

    This study investigated the immediate and long-term effects of temporary alterations to postpartum milking frequency (MF) on milk production, body condition score (BCS), and indicators of energy status in pasture-grazed cows supplemented with concentrates. Multiparous Holstein-Friesian cows (n = 150) were randomly assigned to 1 of 5 groups at calving: milked twice daily (2 ×) throughout lactation (control), or milked either once daily (1 ×) or 3 times daily (3 ×) for 3 or 6 wk immediately postpartum, and then 2 × for the remainder of lactation. During wk 1 to 3 postpartum, cows milked 1 × produced 15% less milk and 17% less energy-corrected milk (ECM) than cows milked 2 ×. This immediate production loss increased to 20% less milk and 22% less ECM during wk 4 to 6 postpartum for cows that remained on 1 × milking; these animals also produced less than 1 × cows switched to 2 × milking after 3 wk. During wk 8 to 32, when all cows were milked 2 ×, those previously milked 1 × had sustained reductions in milk (-6%) and ECM (-8%) yields, which were not affected by the duration of reduced postpartum MF. In contrast, cows milked 3 × postpartum had 7% greater milk yields during wk 1 to 6 compared with 2 × controls, irrespective of the duration of increased MF. Milk yields also remained numerically greater (+5%) during wk 8 to 32 in cows previously milked 3 ×. Nevertheless, yields of ECM were not increased by 3 × milking, because of lower milk fat and protein contents that persisted for the rest of lactation. In addition, indicators of cow energy status reflected an increasing state of negative energy balance with increasing MF. Cows milked 1 × postpartum had greater plasma glucose and lower plasma nonesterified fatty acid concentrations during the reduced MF, and plasma glucose remained lower for 2 wk after cows had switched to 2 × milking. Moreover, BCS was improved relative to 2 × controls from wk 5 to 6. In contrast, cows milked 3 × had lower plasma

  7. The marketing implications of affective product design.

    PubMed

    Seva, Rosemary R; Duh, Henry Been-Lirn; Helander, Martin G

    2007-11-01

    Emotions are compelling human experiences and product designers can take advantage of this by conceptualizing emotion-engendering products that sell well in the market. This study hypothesized that product attributes influence users' emotions and that the relationship is moderated by the adherence of these product attributes to purchase criteria. It was further hypothesized that the emotional experience of the user influences purchase intention. A laboratory study was conducted to validate the hypotheses using mobile phones as test products. Sixty-two participants were asked to assess eight phones from a display of 10 phones and indicate their emotional experiences after assessment. Results suggest that some product attributes can cause intense emotional experience. The attributes relate to the phone's dimensions and the relationship between these dimensions. The study validated the notion of integrating affect in designing products that convey users' personalities. PMID:17303064

  8. Material and Energy Productivity

    PubMed Central

    2011-01-01

    Resource productivity, measured as GDP output per resource input, is a widespread sustainability indicator combining economic and environmental information. Resource productivity is ubiquitous, from the IPAT identity to the analysis of dematerialization trends and policy goals. High resource productivity is interpreted as the sign of a resource-efficient, and hence more sustainable, economy. Its inverse, resource intensity (resource per GDP) has the reverse behavior, with higher values indicating environmentally inefficient economies. In this study, we investigate the global systematic relationship between material, energy and carbon productivities, and economic activity. We demonstrate that different types of materials and energy exhibit fundamentally different behaviors, depending on their international income elasticities of consumption. Biomass is completely inelastic, whereas fossil fuels tend to scale proportionally with income. Total materials or energy, as aggregates, have intermediate behavior, depending on the share of fossil fuels and other elastic resources. We show that a small inelastic share is sufficient for the total resource productivity to be significantly correlated with income. Our analysis calls into question the interpretation of resource productivity as a sustainability indicator. We conclude with suggestions for potential alternatives. PMID:21210661

  9. Productive performance of brown-egg laying pullets from hatching to 5 weeks of age as affected by fiber inclusion, feed form, and energy concentration of the diet.

    PubMed

    Guzmán, P; Saldaña, B; Mandalawi, H A; Pérez-Bonilla, A; Lázaro, R; Mateos, G G

    2015-02-01

    The effects of fiber inclusion, feed form, and energy concentration of the diet on the growth performance of pullets from hatching to 5 wk age were studied in 2 experiments. In Experiment 1, there was a control diet based on cereals and soybean meal, and 6 extra diets that included 2 or 4% of cereal straw, sugar beet pulp (SBP), or sunflower hulls (SFHs) at the expense (wt/wt) of the whole control diet. From hatching to 5 wk age fiber inclusion increased (P<0.05) ADG and ADFI, and improved (P<0.05) energy efficiency (EnE; kcal AMEn/g ADG), but body weight (BW) uniformity was not affected. Pullets fed SFH tended to have higher ADG than pullets fed SBP (P=0.072) with pullets fed straw being intermediate. The feed conversion ratio (FCR) was better (P<0.05) with 2% than with 4% fiber inclusion. In Experiment 2, 10 diets were arranged as a 2×5 factorial with 2 feed forms (mash vs. crumbles) and 5 levels of AMEn (2,850, 2,900, 2,950, 3,000, and 3,050 kcal/kg). Pullets fed crumbles were heavier and had better FCR than pullets fed mash (P<0.001). An increase in the energy content of the crumble diets reduced ADFI and improved FCR linearly, but no effects were detected with the mash diets (P<0.01 and P<0.05 for the interactions). Feeding crumbles tended to improve BW uniformity at 5 wk age (P=0.077) but no effects were detected with increases in energy concentration of the diet. In summary, the inclusion of moderate amounts of fiber in the diet improves pullet performance from hatching to 5 wk age. The response of pullets to increases in energy content of the diet depends on feed form with a decrease in feed intake when fed crumbles but no changes when fed mash. Feeding crumbles might be preferred to feeding mash in pullets from hatching to 5 wk age. PMID:25602026

  10. Productive performance of brown-egg laying pullets from hatching to 5 weeks of age as affected by fiber inclusion, feed form, and energy concentration of the diet.

    PubMed

    Guzmán, P; Saldaña, B; Mandalawi, H A; Pérez-Bonilla, A; Lázaro, R; Mateos, G G

    2015-02-01

    The effects of fiber inclusion, feed form, and energy concentration of the diet on the growth performance of pullets from hatching to 5 wk age were studied in 2 experiments. In Experiment 1, there was a control diet based on cereals and soybean meal, and 6 extra diets that included 2 or 4% of cereal straw, sugar beet pulp (SBP), or sunflower hulls (SFHs) at the expense (wt/wt) of the whole control diet. From hatching to 5 wk age fiber inclusion increased (P<0.05) ADG and ADFI, and improved (P<0.05) energy efficiency (EnE; kcal AMEn/g ADG), but body weight (BW) uniformity was not affected. Pullets fed SFH tended to have higher ADG than pullets fed SBP (P=0.072) with pullets fed straw being intermediate. The feed conversion ratio (FCR) was better (P<0.05) with 2% than with 4% fiber inclusion. In Experiment 2, 10 diets were arranged as a 2×5 factorial with 2 feed forms (mash vs. crumbles) and 5 levels of AMEn (2,850, 2,900, 2,950, 3,000, and 3,050 kcal/kg). Pullets fed crumbles were heavier and had better FCR than pullets fed mash (P<0.001). An increase in the energy content of the crumble diets reduced ADFI and improved FCR linearly, but no effects were detected with the mash diets (P<0.01 and P<0.05 for the interactions). Feeding crumbles tended to improve BW uniformity at 5 wk age (P=0.077) but no effects were detected with increases in energy concentration of the diet. In summary, the inclusion of moderate amounts of fiber in the diet improves pullet performance from hatching to 5 wk age. The response of pullets to increases in energy content of the diet depends on feed form with a decrease in feed intake when fed crumbles but no changes when fed mash. Feeding crumbles might be preferred to feeding mash in pullets from hatching to 5 wk age.

  11. Parameters affecting solvent production by Clostridium pasteurianum

    SciTech Connect

    Dabrock, B.; Bahl, H.; Gottschalk, G. )

    1992-04-01

    The effect of pH, growth rate, phosphate and iron limitation, carbon monoxide, and carbon source on product formation by Clostridium pasteurianum was determined. Under phosphate limitation, glucose was fermented almost exclusively to acetate and butyrate independently of the pH and growth rate. Iron limitation caused lactate production (38 mol/100 mol) from glucose in batch and continuous culture. At 15% (vol/vol) carbon monoxide in the atmosphere, glucose was fermented to ethanol (24 mol/100 mol), lactate (32 mol/100 mol), and butanol (36 mol/100 mol) in addition to the usual products, acetate (38 mol/100 mol) and butyrate (17 mol/100 mol). During glycerol fermentation, a completely different product pattern was found. In continuous culture under phosphate limitation, acetate and butyrate were produced only in trace amounts, whereas ethanol (30 mol/10 mol), butanol (18 mol/100 mol), and 1,3-propanediol (18 mol/100 mol) were the major products. Under iron limitation, the ratio of these products could be changed in favor of 1,3-propanediol (34 mol/100 mol). In addition, lactate was produced in significant amounts (25 mol/100 mol). The tolerance of C. pasteurianum to glycerol was remarkably high; growth was not inhibited by glycerol concentrations up to 17% (wt/vol). Increasing glycerol concentrations favored the production of 1,3-propanediol.

  12. Factors affecting patulin production by Penicillium expansum.

    PubMed

    McCallum, J L; Tsao, R; Zhou, T

    2002-12-01

    Patulin, a mycotoxin produced by Penicillium spp. during fruit spoilage, is a major concern with regard to human health because exposure can result in severe acute and chronic toxicity, including carcinogenic, mutagenic, and teratogenic effects. In this study, we investigated the effects of Penicillium expansum isolate, apple cultivar, storage temperature and time, and pH on the production of patulin. Patulin was analyzed by a previously developed micellar electrokinetic capillary electrophoresis method. P. expansum isolates originating from across Ontario produced widely differing levels of patulin, ranging from 0 to >6 mg/g by dry mycelial weight. The highest patulin levels were those for isolates displaying aggressive growth (characterized by rapidly increasing acidity) accompanied by profuse mycelial development. Distinct patterns in fungal growth rates and patulin production were evident among isolates grown in McIntosh, Empire, and Mutsu ciders. Extensive fungal growth and higher patulin levels (538 to 1,822 microg/ml on day 14) in apple ciders were associated with incubation at room temperature (25 degrees C), although potentially toxic patulin levels (75 to 396 microg/ml on day 24) were also found in refrigerated ciders (4 degrees C) inoculated with P. expansum. PMID:12495013

  13. How Glassy States Affect Brown Carbon Production?

    NASA Astrophysics Data System (ADS)

    Liu, P.; Li, Y.; Wang, Y.; Bateman, A. P.; Zhang, Y.; Gong, Z.; Gilles, M. K.; Martin, S. T.

    2015-12-01

    Secondary organic material (SOM) can become light-absorbing (i.e. brown carbon) via multiphase reactions with nitrogen-containing species such as ammonia and amines. The physical states of SOM, however, potentially slow the diffusion of reactant molecules in organic matrix under conditions that semisolids or solids prevail, thus inhibiting the browning reaction pathways. In this study, the physical states and the in-particle diffusivity were investigated by measuring the evaporation kinetics of both water and organics from aromatic-derived SOMs using a quartz-crystal-microbalance (QCM). The results indicate that the SOMs derived from aromatic precursors toluene and m-xylene became solid (glassy) and the in particle diffusion was significantly impeded for sufficiently low relative humidity ( < 20% RH) at 293 K. Optical properties and the AMS spectra were measured for toluene-derived SOM after ammonia exposure at varied RHs. The results suggest that the production of light-absorbing nitrogen-containing compounds from multiphase reactions with ammonia was kinetically limited in the glassy organic matrix, which otherwise produce brown carbon. The results of this study have significant implications for production and optical properties of brown carbon in urban atmospheres that ultimately influence the climate and tropospheric photochemistry.

  14. Energy Production Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in energy production systems is one of 15 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  15. Energy Vs. Productivity: Diminishing Returns

    ERIC Educational Resources Information Center

    MOSAIC, 1975

    1975-01-01

    Energy invested in corn production is compared with food energy returned in calculations by David Pimentel at Cornell University. The rate of return is falling off sharply in this already energy-intensive agriculture. Increased energy input, in the form of fertilizer, would yield far greater returns where agriculture is less sophisticated.…

  16. Sustainable Energy Crop Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofuels currently supply a small portion of the world’s energy needs but this is increasing due to mandates intended to reduce use of fossil fuels and the associated environmental impacts. However, the potentials of plant based feedstocks to substitute for fossil fuels and mitigate environmental im...

  17. Metabolic differences in temperamental Brahman cattle can affect productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many factors may adversely affect the growth and productivity of livestock. These include stressors associated with management practices, such as weaning, handling relative to transportation, and vaccination, that can modulate growth through the production of stress-related hormones (i.e., cortisol,...

  18. How energy policies affect public health.

    PubMed

    Romm, J J; Ervin, C A

    1996-01-01

    The connection between energy policy and increased levels of respiratory and cardiopulmonary disease has become clearer in the past few years. People living in cities with high levels of pollution have a higher risk of mortality than those living in less polluted cities. The pollutants most directly linked to increased morbidity and mortality include ozone, particulates, carbon monoxide, sulfur dioxide, volatile organic compounds, and oxides of nitrogen. Energy-related emissions generate the vast majority of these polluting chemicals. Technologies to prevent pollution in the transportation, manufacturing, building, and utility sectors can significantly reduce these emissions while reducing the energy bills of consumers and businesses. In short, clean energy technologies represent a very cost-effective investment in public health. Some 72% of the Federal government's investment in the research, development, and demonstration of pollution prevention technologies is made by the Department of Energy, with the largest share provided by the Office of Energy Efficiency and Renewable Energy. This article will examine the connections between air pollution and health problems and will discuss what the Department of Energy is doing to prevent air pollution now and in the future.

  19. How energy policies affect public health.

    PubMed Central

    Romm, J J; Ervin, C A

    1996-01-01

    The connection between energy policy and increased levels of respiratory and cardiopulmonary disease has become clearer in the past few years. People living in cities with high levels of pollution have a higher risk of mortality than those living in less polluted cities. The pollutants most directly linked to increased morbidity and mortality include ozone, particulates, carbon monoxide, sulfur dioxide, volatile organic compounds, and oxides of nitrogen. Energy-related emissions generate the vast majority of these polluting chemicals. Technologies to prevent pollution in the transportation, manufacturing, building, and utility sectors can significantly reduce these emissions while reducing the energy bills of consumers and businesses. In short, clean energy technologies represent a very cost-effective investment in public health. Some 72% of the Federal government's investment in the research, development, and demonstration of pollution prevention technologies is made by the Department of Energy, with the largest share provided by the Office of Energy Efficiency and Renewable Energy. This article will examine the connections between air pollution and health problems and will discuss what the Department of Energy is doing to prevent air pollution now and in the future. Images p390-a p391-a p392-a p393-a p394-a p395-a p396-a p397-a PMID:8837627

  20. Behavioral factors affecting exposure potential for household cleaning products.

    PubMed

    Kovacs, D C; Small, M J; Davidson, C I; Fischhoff, B

    1997-01-01

    Behavioral experiments were performed on 342 subjects to determine whether behavior, which could affect the level of personal exposure, is exhibited in response to odors and labels which are commonly used for household chemicals. Potential for exposure was assessed by having subjects perform cleaning tasks presented as a product preference test, and noting the amount of cleaning product used, the time taken to complete the cleaning task, the product preference, and the exhibition of avoidance behavior. Product odor was found to affect product preference in the study with the pleasant odored product being preferred to the neutral and unpleasant products. Product odor was also found to influence the amount of product used; less of the odored products was used compared to the neutral product. The experiment also found that very few of the subjects in the study read the product labels, precluding analysis of the effect of such labels on product use. A postexperiment questionnaire on household cleaning product purchasing and use was administered to participants. The results indicate that significant gender differences exist. Women in the sample reported more frequent purchase and use of cleaning products resulting in an estimated potential exposure 40% greater than for the men in the sample. This finding is somewhat countered by the fact that women more frequently reported exposure avoidance behavior, such as using gloves. Additional significant gender differences were found in the stated importance of product qualities, such as odor and environmental quality. This study suggests the need for further research, in a more realistic use setting, on the impact of public education, labels, and product odor on preference, use, and exposure for different types of consumer products. PMID:9306234

  1. How clustering dark energy affects matter perturbations

    NASA Astrophysics Data System (ADS)

    Mehrabi, A.; Basilakos, S.; Pace, F.

    2015-09-01

    The rate of structure formation in the Universe is different in homogeneous and clustered dark energy models. The degree of dark energy clustering depends on the magnitude of its effective sound speed c2_eff and for c2_eff=0 dark energy clusters in a similar fashion to dark matter while for c2_eff=1 it stays (approximately) homogeneous. In this paper we consider two distinct equations of state for the dark energy component, wd = const and w_d=w_0+w_1(z/1+z) with c2_eff as a free parameter and we try to constrain the dark energy effective sound speed using current available data including Type Ia supernovae, baryon acoustic oscillation, cosmic microwave background shift parameter (Planck and WMAP), Hubble parameter, big bang nucleosynthesis and the growth rate of structures fσ8(z). At first we derive the most general form of the equations governing dark matter and dark energy clustering under the assumption that c2_eff=const. Finally, performing an overall likelihood analysis we find that the likelihood function peaks at c2_eff=0; however, the dark energy sound speed is degenerate with respect to the cosmological parameters, namely Ωm and wd.

  2. Renewable energy: Energy from agricultural products

    NASA Astrophysics Data System (ADS)

    1984-06-01

    Agricultural products, particularly sugarcane and corn, are currently meeting major energy needs in Florida. Recent figures indicate that about 10 percent of the gasoline sold in Florida is ethanol enriched. This gasohol contains a 10 percent mix of ethanol, which is generally produced from corn or sugarcane molasses. Sugarcane residues (bagasse) also supply most of the fuel to power Florida's large sugar processing industry. These products have the potential to play an expanded role in Florida's energy future. Neither ethanol nor methane appear able to compete in the free market for mass distribution at present, although studies indicate that genetic engineering and more efficient conversion processes may lower prices to cost effective levels. These fuels will be most cost effective in cases where waste products are utilized and the fuel is used close to the site of production. Wider applications will require either government incentives or genetic engineering of crops and improve efficiencies in conversion processes to lower costs.

  3. Energy: Production, Consumption, and Consequences.

    ERIC Educational Resources Information Center

    Helm, John L., Ed.

    Energy policy in the United States and much of the analysis behind those policies is largely incomplete according to many. Systems for energy production, distribution, and use have traditionally been analyzed by supply sector, yet such analyses cannot capture the complex interplay of technology, economics, public policy, and environmental concerns…

  4. Renewable energy: energy from agricultural products

    SciTech Connect

    Not Available

    1984-06-01

    This report discusses the major issues concerning fuels derived from agricultural products. Agricultural products, particularly sugarcane and corn, are currently meeting major energy needs in Florida. Recent figures indicate that about 10 percent of the gasoline sold in Florida is ethanol enriched. This gasohol contains a 10 percent mix of ethanol, which is generally produced from corn or sugarcane molasses. Sugarcane residues (bagasse) also supply most of the fuel to power Florida's large sugar processing industry. These products have the potential to play an expanded role in Florida's energy future. Principle areas of interest are: growing crops such as napier grass or harvesting water hyacinths to produce methane that can be substituted for natural gas; expanded use of sugar, starch, and industrial and agricultural wastes as raw materials for ethanol production; and improved efficiency in conversion processes such as anaerobic digestion and fermentation. The Institute of Food and Agricultural Sciences at the University of Florida plays a leading national role in energy crops research, while Walt Disney World is using a demonstration project to convert water hyacinths into methane. Increased use of fuels produced from agricultural products depends largely on their costs compared to other fuels. Ethanol is currently attractive because of federal and state tax incentives. The growth potential of ethanol and methane is enhanced by the ease with which they can be blended with fossil fuels and thereby utilize the current energy distribution system. Neither ethanol nor methane appear able to compete in the free market for mass distribution at present, although studies indicate that genetic engineering and more efficient conversion processes may lower prices to cost effective levels. These fuels will be most cost effective in cases where waste products are utilized and the fuel is used close to the site of production.

  5. Renewable energy: energy from agricultural products

    SciTech Connect

    Not Available

    1984-06-01

    This study discusses major issues concerning fuels derived from agricultural products. Agricultural products, particularly sugarcane and corn, are currently meeting major energy needs in Florida. Recent figures indicate that about 10% of the gasoline sold in Florida is ethanol enriched. This gasohol contains a 10% mix of ethanol, which is generally produced from corn or sugarcane molasses. Sugarcane residues (bagasse) also supply most of the fuel to power Florida's large sugar processing industry. These products have the potential to play an expanded role in Florida's energy future. Principle areas of interest are: Growing crops such as napier grass or harvesting water hyacinths to produce methane that can be substituted for natural gas; expanded use of sugar, starch, and industrial and agricultural wastes as raw materials for ethanol production; improved efficiency in conversion processes such as anaerobic digestion and fermentation. The Institute of Food and Agricultural Sciences at the University of Florida plays a leading national role in energy crops research, while Walt Disney World is using a demonstration project to convert water hyacinths into methane. Increased use of fuels produced from agricultural products depends largely on their costs compared to other fuels. Ethanol is currently attractive because of federal and state tax incentives. The growth potential of ethanol and methane is enhanced by the ease with which they can be blended with fossil fuels and thereby utilize the current energy distribution system. Neither ethanol nor methane appear able to compete in the free market for mass distribution at present, although studies indicate that genetic engineering and more efficient conversion processes may lower prices to cost effective levels. These fuels will be most cost effective in cases where waste products are utilized and the fuel is used close to the site of production.

  6. Total Energy CMR Production

    SciTech Connect

    Friedrich, S; Kolagani, R M

    2008-08-11

    The following outlines the optimized pulsed laser deposition (PLD) procedure used to prepare Nd{sub 0.67}Sr{sub 0.33}MnO{sub 3} (NSMO) temperature sensors at Towson University (Prof. Rajeswari Kolagani) for the LCLS XTOD Total Energy Monitor. The samples have a sharp metal/insulator transition at T {approx} 200 K and are optimized for operation at T {approx} 180 K, where their sensitivity is the highest. These samples are epitaxial multilayer structures of Si/YSZ/CeO/NSMO, where these abbreviations are defined in table 1. In this heterostructure, YSZ serves as a buffer layer to prevent deleterious chemical reactions, and also serves to de-oxygenate the amorphous SiO{sub 2} surface layer to generate a crystalline template for epitaxy. CeO and BTO serve as template layers to minimize the effects of thermal and lattice mismatch strains, respectively. More details on the buffer and template layer scheme are included in the attached manuscript accepted for publication in Sensor Letters (G. Yong et al., 2008).

  7. Relations between affective music and speech: evidence from dynamics of affective piano performance and speech production.

    PubMed

    Liu, Xiaoluan; Xu, Yi

    2015-01-01

    This study compares affective piano performance with speech production from the perspective of dynamics: unlike previous research, this study uses finger force and articulatory effort as indexes reflecting the dynamics of affective piano performance and speech production respectively. Moreover, for the first time physical constraints such as piano fingerings and speech articulatory constraints are included due to their potential contribution to different patterns of dynamics. A piano performance experiment and speech production experiment were conducted in four emotions: anger, fear, happiness and sadness. The results show that in both piano performance and speech production, anger and happiness generally have high dynamics while sadness has the lowest dynamics. Fingerings interact with fear in the piano experiment and articulatory constraints interact with anger in the speech experiment, i.e., large physical constraints produce significantly higher dynamics than small physical constraints in piano performance under the condition of fear and in speech production under the condition of anger. Using production experiments, this study firstly supports previous perception studies on relations between affective music and speech. Moreover, this is the first study to show quantitative evidence for the importance of considering motor aspects such as dynamics in comparing music performance and speech production in which motor mechanisms play a crucial role. PMID:26217252

  8. Relations between affective music and speech: evidence from dynamics of affective piano performance and speech production

    PubMed Central

    Liu, Xiaoluan; Xu, Yi

    2015-01-01

    This study compares affective piano performance with speech production from the perspective of dynamics: unlike previous research, this study uses finger force and articulatory effort as indexes reflecting the dynamics of affective piano performance and speech production respectively. Moreover, for the first time physical constraints such as piano fingerings and speech articulatory constraints are included due to their potential contribution to different patterns of dynamics. A piano performance experiment and speech production experiment were conducted in four emotions: anger, fear, happiness and sadness. The results show that in both piano performance and speech production, anger and happiness generally have high dynamics while sadness has the lowest dynamics. Fingerings interact with fear in the piano experiment and articulatory constraints interact with anger in the speech experiment, i.e., large physical constraints produce significantly higher dynamics than small physical constraints in piano performance under the condition of fear and in speech production under the condition of anger. Using production experiments, this study firstly supports previous perception studies on relations between affective music and speech. Moreover, this is the first study to show quantitative evidence for the importance of considering motor aspects such as dynamics in comparing music performance and speech production in which motor mechanisms play a crucial role. PMID:26217252

  9. Relations between affective music and speech: evidence from dynamics of affective piano performance and speech production.

    PubMed

    Liu, Xiaoluan; Xu, Yi

    2015-01-01

    This study compares affective piano performance with speech production from the perspective of dynamics: unlike previous research, this study uses finger force and articulatory effort as indexes reflecting the dynamics of affective piano performance and speech production respectively. Moreover, for the first time physical constraints such as piano fingerings and speech articulatory constraints are included due to their potential contribution to different patterns of dynamics. A piano performance experiment and speech production experiment were conducted in four emotions: anger, fear, happiness and sadness. The results show that in both piano performance and speech production, anger and happiness generally have high dynamics while sadness has the lowest dynamics. Fingerings interact with fear in the piano experiment and articulatory constraints interact with anger in the speech experiment, i.e., large physical constraints produce significantly higher dynamics than small physical constraints in piano performance under the condition of fear and in speech production under the condition of anger. Using production experiments, this study firstly supports previous perception studies on relations between affective music and speech. Moreover, this is the first study to show quantitative evidence for the importance of considering motor aspects such as dynamics in comparing music performance and speech production in which motor mechanisms play a crucial role.

  10. Energy implications of product leasing.

    PubMed

    Intlekofer, Koji; Bras, Bert; Ferguson, Mark

    2010-06-15

    A growing number of advocates have argued that leasing is a "greener" form of business transactions than selling. Leasing internalizes the costs of process wastes and product disposal, placing the burden on the OEMs, who gain from reducing these costs. Product leasing results in closed material loops, promotes remanufacturing or recycling, and sometimes leads to shorter life cycles. This paper provides two case studies to quantitatively test these claims for two distinct product categories. Life cycle optimization and scenario analysis are applied, respectively, to the household appliance and computer industries to determine the effect that life spans have on energy usage and to what extent leasing the product versus selling it may influence the usage life span. The results show that products with high use impacts and improving technology can benefit from reduced life cycles (achieved through product leases), whereas products with high manufacturing impacts and no improving technology do not.

  11. Hydrogen production from solar energy

    NASA Technical Reports Server (NTRS)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  12. Wave energy and intertidal productivity

    PubMed Central

    Leigh, Egbert G.; Paine, Robert T.; Quinn, James F.; Suchanek, Thomas H.

    1987-01-01

    In the northeastern Pacific, intertidal zones of the most wave-beaten shores receive more energy from breaking waves than from the sun. Despite severe mortality from winter storms, communities at some wave-beaten sites produce an extraordinary quantity of dry matter per unit area of shore per year. At wave-beaten sites of Tatoosh Island, WA, sea palms, Postelsia palmaeformis, can produce > 10 kg of dry matter, or 1.5 × 108 J, per m2 in a good year. Extraordinarily productive organisms such as Postelsia are restricted to wave-beaten sites. Intertidal organisms cannot transform wave energy into chemical energy, as photosynthetic plants transform solar energy, nor can intertidal organisms “harness” wave energy. Nonetheless, wave energy enhances the productivity of intertidal organisms. On exposed shores, waves increase the capacity of resident algae to acquire nutrients and use sunlight, augment the competitive ability of productive organisms, and protect intertidal residents by knocking away their enemies or preventing them from feeding. PMID:16593813

  13. Particle production at collider energies

    SciTech Connect

    Geich-Gimbel, C. )

    1989-01-01

    High energy particle physics, which has been trying to understand and to devise new laws governing nature at per particle energies far beyond everyday energies, has entered a new episode. Having surpassed the low energy regime, where (s channel) resonance production dominantly projects onto the final state, very interesting features of the strong interaction arose at c.m. energies in the tens of GEV range, as found at the CERN Intersecting Storage Rings (ISR). One recalls the onset of hard scattering processes, which was understood as a scattering between constituents of the nucleon, hence supporting the Quark Parton Model (QPM). Surprisingly enough the total cross section started to rise again, when it was initially believed to have reached a constant value, suggesting an asymptotia. Furthermore correlations among the final state particles produced were observed, and especially long range correlations, which must reflect dynamical laws.

  14. Energy production and the risk to human health and life

    SciTech Connect

    Hamilton, L.D.

    1981-01-01

    Current issues in health-risk assessment of energy production and factors in developing countries affecting risk analysis are discussed. Information is presented on the relative risks of coal and nuclear fuel cycles. (JGB)

  15. Grazing management as it affects nutrition, animal production and economics of beef production.

    PubMed

    Parsons, S D; Allison, C D

    1991-03-01

    Until recently, the nutritional fate of the grazing animal has been largely ignored by both animal and range scientists despite the economic dependence of the extensive livestock industry on nutrition from grass. Of the three factors that can be manipulated to improve profit gross margin per animal, is one that is directly affected by nutrition and, hence, grazing management. The relationship between economics and grazing management may be summarized as: Gross margin = f(Animal Performance); Animal Performance = f(nutrition); Nutrition = f(grazing). Economical beef production must consider the needs of the animal and the forage plant at the same time. The health of the sward must be maintained while improving individual animal performance and simultaneously increasing stocking rate. Generally, plants that have been defoliated require a period of recovery before again being grazed. A sward is kept in a vigorous state by preventing repetitive defoliation at the one extreme, and avoiding excessive shading (mature growth) of photosynthetic material at the other. This state is best achieved where livestock grazing is controlled. For any individual paddock, periods of grazing are followed by periods that allow adequate physiologic recovery of the plants. A grazing regimen that keeps the plant in a healthy state is fortuitously also well suited to the nutritional requirements of the animal. Animals on overgrazed pastures are likely to suffer from inadequate feed intake because of deficiencies in feed quantity. Conversely, on over-rested pastures, intake deficiency results from paucity in feed quality. On most unmanaged ranges, overgrazed and over-rested plants are likely to be found side by side. By controlling duration of the rest period as well as duration of the grazing period through pasture subdivision, requirements of both the plant and the animal can be met. With artificially high economic demands placed on animal production, some form of supplementation is

  16. Reassessing culture media and critical metabolites that affect adenovirus production.

    PubMed

    Shen, Chun Fang; Voyer, Robert; Tom, Roseanne; Kamen, Amine

    2010-01-01

    Adenovirus production is currently operated at low cell density because infection at high cell densities still results in reduced cell-specific productivity. To better understand nutrient limitation and inhibitory metabolites causing the reduction of specific yields at high cell densities, adenovirus production in HEK 293 cultures using NSFM 13 and CD 293 media were evaluated. For cultures using NSFM 13 medium, the cell-specific productivity decreased from 3,400 to 150 vp/cell (or 96% reduction) when the cell density at infection was increased from 1 to 3 x 10(6) cells/mL. In comparison, only 50% of reduction in the cell-specific productivity was observed under the same conditions for cultures using CD 293 medium. The effect of medium osmolality was found critical on viral production. Media were adjusted to an optimal osmolality of 290 mOsm/kg to facilitate comparison. Amino acids were not critical limiting factors. Potential limiting nutrients including vitamins, energy metabolites, bases and nucleotides, or inhibitory metabolites (lactate and ammonia) were supplemented to infected cultures to further investigate their effect on the adenovirus production. Accumulation of lactate and ammonia in a culture infected at 3 x 10(6) cells/mL contributed to about 20% reduction of the adenovirus production yield, whereas nutrient limitation appeared primarily responsible for the decline in the viral production when NSFM 13 medium was used. Overall, the results indicate that multiple factors contribute to limiting the specific production yield at cell densities beyond 1 x 10(6) cells/mL and underline the need to further investigate and develop media for better adenoviral vector productions.

  17. Parameters Affecting Ethyl Ester Production by Saccharomyces cerevisiae during Fermentation▿

    PubMed Central

    Saerens, S. M. G.; Delvaux, F.; Verstrepen, K. J.; Van Dijck, P.; Thevelein, J. M.; Delvaux, F. R.

    2008-01-01

    Volatile esters are responsible for the fruity character of fermented beverages and thus constitute a vital group of aromatic compounds in beer and wine. Many fermentation parameters are known to affect volatile ester production. In order to obtain insight into the production of ethyl esters during fermentation, we investigated the influence of several fermentation variables. A higher level of unsaturated fatty acids in the fermentation medium resulted in a general decrease in ethyl ester production. On the other hand, a higher fermentation temperature resulted in greater ethyl octanoate and decanoate production, while a higher carbon or nitrogen content of the fermentation medium resulted in only moderate changes in ethyl ester production. Analysis of the expression of the ethyl ester biosynthesis genes EEB1 and EHT1 after addition of medium-chain fatty acid precursors suggested that the expression level is not the limiting factor for ethyl ester production, as opposed to acetate ester production. Together with the previous demonstration that provision of medium-chain fatty acids, which are the substrates for ethyl ester formation, to the fermentation medium causes a strong increase in the formation of the corresponding ethyl esters, this result further supports the hypothesis that precursor availability has an important role in ethyl ester production. We concluded that, at least in our fermentation conditions and with our yeast strain, the fatty acid precursor level rather than the activity of the biosynthetic enzymes is the major limiting factor for ethyl ester production. The expression level and activity of the fatty acid biosynthetic enzymes therefore appear to be prime targets for flavor modification by alteration of process parameters or through strain selection. PMID:17993562

  18. Food Production and the Energy Crisis

    ERIC Educational Resources Information Center

    And Others; Pimentel, David

    1973-01-01

    Analyzes the energy inputs in United States and green revolution crop production techniques, using corn as a typical crop. Examines the energy needs for a world food supply that depends on modern energy intensive agriculture, and considers alternatives in crop production technology which might reduce energy inputs in food production. (CC)

  19. Legal and regulatory issues affecting aquifer thermal energy storage

    SciTech Connect

    Hendrickson, P.L.

    1981-10-01

    This document updates and expands the report with a similar title issued in October 1980. This document examines a number of legal and regulatory issues that potentially can affect implementation of the aquifer thermal energy storage (ATES) concept. This concept involves the storage of thermal energy in an underground aquifer until a later date when it can be effectively utilized. Either heat energy or chill can be stored. Potential end uses of the energy include district space heating and cooling, industrial process applications, and use in agriculture or aquaculture. Issues are examined in four categories: regulatory requirements, property rights, potential liability, and issues related to heat or chill delivery.

  20. Water, energy, and farm production

    SciTech Connect

    Ulibarri, C.A.; Seely, H.S.; Willis, D.B.; Anderson, D.M.

    1996-04-01

    Electric utility rate deregulation can have disproportionate impacts on water-intensive crops, which have historically relied upon pressurized irrigation technologies and surface water resources. Based on a case study of agricultural growers in southern California, the paper models the impacts of utility rates considered in the Western Area Power Administration`s Sierra Nevada Customer Service Region. The study was performed as part of the 2004 Power Marketing Program Draft Environmental Impact Statement. The empirical results reflect linear-programming estimates of the income transfers from growers to energy providers based on county-wide coverage of 13 junior and senior irrigation districts and short-run production possibilities of 11 irrigated crops. Transfers of income from growers to energy suppliers occur through their losses in producer surplus.

  1. Phonological overlap affects lexical selection during sentence production.

    PubMed

    Jaeger, T Florian; Furth, Katrina; Hilliard, Caitlin

    2012-09-01

    Theories of lexical production differ in whether they allow phonological processes to affect lexical selection directly. Whereas some accounts, such as interactive activation accounts, predict (weak) early effects of phonological processes during lexical selection via feedback connections, strictly serial architectures do not make this prediction. We present evidence from lexical selection during unscripted sentence production that lexical selection is affected by the phonological form of recently produced words. In a video description experiment, participants described scenes that were compatible with several near-meaning-equivalent verbs. We found that speakers were less likely than expected by chance to select a verb form that would result in phonological onset overlap with the subject of the sentence. Additional evidence from the distribution of disfluencies immediately preceding the verb argues that this effect is due to early effects on lexical selection, rather than later corrective processes, such as self-monitoring. Taken together, these findings support accounts that allow early feedback from phonological processes to word-level nodes, even during lexical selection. PMID:22468803

  2. Factors affecting the estimate of primary production from space

    NASA Technical Reports Server (NTRS)

    Balch, W. M.; Byrne, C. F.

    1994-01-01

    Remote sensing of primary production in the euphotic zone has been based mostly on visible-band and water-leaving radiance measured with the coastal zone color scanner. There are some robust, simple relationships for calculating integral production based on surface measurements, but they also require knowledge for photoadaptive parameters such as maximum photosynthesis which currently cannot be obtained from spave. A 17,000-station data set is used to show that space-based estimates of maximum photosynthesis could improve predictions of psi, the water column light utiliztion index, which is an important term in many primary productivity models. Temperature is also examined as a factor for predicting hydrographic structure and primary production. A simple model is used to relate temperature and maximum photosynthesis; the model incorporates (1) the positive relationship between maximum photosynthesis and temperature and (2) the strongly negative relationship between temperature and nitrate in the ocean (which directly affects maximum growth rates via nitrogen limitation). Since these two factors relate to carbon and nitrogen, 'balanced carbon/nitrogen assimilation' was calculated using the Redfield ratio, It is expected that the relationship between maximum balanced carbon assimilation versus temperature is concave-down, with the peak dependent on nitrate uptake kinetics, temperature-nitrate relationships,a nd the carbon chlorophyll ration. These predictions were compared with the sea truth data. The minimum turnover time for nitrate was also calculated using this approach. Lastly, sea surface temperature gradients were used to predict the slope of isotherms (a proxy for the slope of isopycnals in many waters). Sea truth data show that at size scales of several hundred kilometers, surface temperature gradients can provide information on the slope of isotherms in the top 200 m of the water column. This is directly relevant to the supply of nutrients into the surface

  3. Factors affecting the estimate of primary production from space

    NASA Astrophysics Data System (ADS)

    Balch, W. M.; Byrne, C. F.

    1994-04-01

    Remote sensing of primary production in the euphotic zone has been based mostly on visible-band water-leaving radiance measured with the coastal zone color scanner. There are some robust, simple relationships for calculating integral production based on surface measurements, but they also require knowledge of photoadaptive parameters such as maximum photosynthesis which currently cannot be obtained from space. A 17,000-station data set is used to show that space-based estimates of maximum photosynthesis could improve predictions of ψ, the water column light utilization index, which is an important term in many primary productivity models. Temperature is also examined as a factor for predicting hydrographic structure and primary production. A simple model is used to relate temperature and maximum photosynthesis; the model incorporates (1) the positive relationship between maximum photosynthesis and temperature and (2) the strongly negative relationship between temperature and nitrate in the ocean (which directly affects maximum growth rates via nitrogen limitation). Since these two factors relate to carbon and nitrogen, "balanced carbon/nitrogen assimilation" was calculated assuming the Redfield ratio. It is expected that the relationship between maximum balanced carbon assimilation versus temperature is concave-down, with the peak dependent on nitrate uptake kinetics, temperature-nitrate relationships, and the carbon/chlorophyll ratio. These predictions were compared with sea truth data. The minimum turnover time for nitrate was also calculated using this approach. Lastly, sea surface temperature gradients were used to predict the slope of isotherms (a proxy for the slope of isopycnals in many waters). Sea truth data show that at size scales of several hundred kilometers, surface temperature gradients can provide information on the slope of isotherms in the top 200 m of the water column. This is directly relevant to the supply of nutrients into the surface mixed

  4. Does word frequency affect lexical selection in speech production?

    PubMed

    Navarrete, Eduardo; Basagni, Benedetta; Alario, F-Xavier; Costa, Albert

    2006-10-01

    We evaluated whether lexical selection in speech production is affected by word frequency by means of two experiments. In Experiment 1 participants named pictures using utterances with the structure "pronoun + verb + adjective". In Experiment 2 participants had to perform a gender decision task on the same pictures. Access to the noun's grammatical gender is needed in both tasks, and therefore lexical selection (lemma retrieval) is required. However, retrieval of the phonological properties (lexeme retrieval) of the referent noun is not needed to perform the tasks. In both experiments we observed faster latencies for high-frequency pictures than for low-frequency pictures. This frequency effect was stable over four repetitions of the stimuli. Our results suggest that lexical selection (lemma retrieval) is sensitive to word frequency. This interpretation runs against the hypothesis that a word's frequency exerts its effects only at the level at which the phonological properties of words are retrieved.

  5. Initial pH of medium affects organic acids production but do not affect phosphate solubilization.

    PubMed

    Marra, Leandro M; de Oliveira-Longatti, Silvia M; Soares, Cláudio R F S; de Lima, José M; Olivares, Fabio L; Moreira, Fatima M S

    2015-06-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization.

  6. Initial pH of medium affects organic acids production but do not affect phosphate solubilization

    PubMed Central

    Marra, Leandro M.; de Oliveira-Longatti, Silvia M.; Soares, Cláudio R.F.S.; de Lima, José M.; Olivares, Fabio L.; Moreira, Fatima M.S.

    2015-01-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization. PMID:26273251

  7. Factors affecting production rates of cosmogenic nuclides in extraterrestrial matter

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.

    2015-10-01

    Good production rates are needed for cosmic-ray-produced nuclides to interpret their measurements. Rates depend on many factors, especially the pre-atmospheric object's size, the location of the sample in that object (such as near surface or deep inside), and the object's bulk composition. The bulk composition affects rates, especially in objects with very low and very high iron contents. Extraterrestrial materials with high iron contents usually have higher rates for making nuclides made by reactions with energetic particles and lower rates for the capture of thermal neutrons. In small objects and near the surface of objects, the cascade of secondary neutrons is being developed as primary particles are being removed. Deep in large objects, that secondary cascade is fully developed and the fluxes of primary particles are low. Recent work shows that even the shape of an object in space has a small but measureable effect. Work has been done and continues to be done on better understanding those and other factors. More good sets of measurements in meteorites with known exposure geometries in space are needed. With the use of modern Monte Carlo codes for the production and transport of particles, the nature of these effects have been and is being studied. Work needs to be done to improve the results of these calculations, especially the cross sections for making spallogenic nuclides.

  8. Political ideology affects energy-efficiency attitudes and choices

    PubMed Central

    Gromet, Dena M.; Kunreuther, Howard; Larrick, Richard P.

    2013-01-01

    This research demonstrates how promoting the environment can negatively affect adoption of energy efficiency in the United States because of the political polarization surrounding environmental issues. Study 1 demonstrated that more politically conservative individuals were less in favor of investment in energy-efficient technology than were those who were more politically liberal. This finding was driven primarily by the lessened psychological value that more conservative individuals placed on reducing carbon emissions. Study 2 showed that this difference has consequences: In a real-choice context, more conservative individuals were less likely to purchase a more expensive energy-efficient light bulb when it was labeled with an environmental message than when it was unlabeled. These results highlight the importance of taking into account psychological value-based considerations in the individual adoption of energy-efficient technology in the United States and beyond. PMID:23630266

  9. PRODUCING ENERGY AND RADIOACTIVE FISSION PRODUCTS

    DOEpatents

    Segre, E.; Kennedy, J.W.; Seaborg, G.T.

    1959-10-13

    This patent broadly discloses the production of plutonium by the neutron bombardment of uranium to produce neptunium which decays to plutonium, and the fissionability of plutonium by neutrons, both fast and thermal, to produce energy and fission products.

  10. Promoting greater Federal energy productivity [Final report

    SciTech Connect

    Hopkins, Mark; Dudich, Luther

    2003-03-05

    This document is a close-out report describing the work done under this DOE grant to improve Federal Energy Productivity. Over the four years covered in this document, the Alliance To Save Energy conducted liaison with the private sector through our Federal Energy Productivity Task Force. In this time, the Alliance held several successful workshops on the uses of metering in Federal facilities and other meetings. We also conducted significant research on energy efficiency, financing, facilitated studies of potential energy savings in energy intensive agencies, and undertook other tasks outlined in this report.

  11. Switchgrass: Production, Economics, and Net Energy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The critical questions for a biomass bioenergy production system are: • What are the economics? • Is energy from biomass net energy positive? • Is production system information available and verified? • Is the system sustainable? To address these questions, ten farmers in the mid-continental USA w...

  12. Energy conservation in ethylene production

    SciTech Connect

    Kobayashi, N.

    1983-10-01

    The petrochemical industry is one of the most important industries and is of critical importance to the steel industry, petroleum refining industry and other heavy-and-chemical industries. These heavy-andchemical industries are the basis of the driving and growing force of the Japanese economic progress. And these industries consume a large amount of material and energy. Last year, the Chiba Plant won a commendation for being an excellent energy-controlling plant by the Chief of Resources and Energy Office. It was the first commendation among the many ethylene units. In light of this, the authors have prepared a review of the efforts in the field of saving energy in ethylene unit.

  13. Discourse Goals Affect the Process and Product of Nominal Metaphor Production.

    PubMed

    Utsumi, Akira; Sakamoto, Maki

    2015-10-01

    Although a large number of studies have addressed metaphor comprehension, only a few attempts have so far been made at exploring the process of metaphor production. Therefore, in this paper, we address the problem of how people generate nominal metaphors or identify an apt vehicle for a given topic of nominal metaphors. Specifically, we examine how the process and product of metaphor production differ between two discourse goals of metaphor, namely an explanatory purpose (e.g., to clarify) and a literary purpose (e.g., to aesthetically pleasing). Experiment 1 analyzed the metaphors (or vehicles) generated in the metaphor production task, and demonstrated that people identified more prototypical exemplars of the property to be attributed to the topic as a vehicle for explanatory metaphors than for literary metaphors. In addition, it was found that metaphors generated for the explanatory purpose were more apt and conventional, and had high topic-vehicle similarity than those generated for the literary purpose, while metaphors generated for the literary purpose were more familiar and imageable than those for the explanatory purpose. Experiment 2 used a priming paradigm to assess the online availability of prototypical and less prototypical members of the topic property during metaphor production. The result was that both prototypical and less prototypical members were activated in producing literary metaphors, while neither members were activated in the production of explanatory metaphors. These findings indicate that the process of metaphor production is affected by discourse goals of metaphor; less prototypical members of the category are searched for a vehicle during the production of literary metaphors, and thus literary metaphors are generated with less prototypical vehicles than explanatory metaphors.

  14. Preprandial ghrelin is not affected by macronutrient intake, energy intake or energy expenditure

    PubMed Central

    Paul, David R; Kramer, Matthew; Rhodes, Donna G; Rumpler, William V

    2005-01-01

    Background Ghrelin, a peptide secreted by endocrine cells in the gastrointestinal tract, is a hormone purported to have a significant effect on food intake and energy balance in humans. The influence of factors related to energy balance on ghrelin, such as daily energy expenditure, energy intake, and macronutrient intake, have not been reported. Secondly, the effect of ghrelin on food intake has not been quantified under free-living conditions over a prolonged period of time. To investigate these effects, 12 men were provided with an ad libitum cafeteria-style diet for 16 weeks. The macronutrient composition of the diets were covertly modified with drinks containing 2.1 MJ of predominantly carbohydrate (Hi-CHO), protein (Hi-PRO), or fat (Hi-FAT). Total energy expenditure was measured for seven days on two separate occasions (doubly labeled water and physical activity logs). Results Preprandial ghrelin concentrations were not affected by macronutrient intake, energy expenditure or energy intake (all P > 0.05). In turn, daily energy intake was significantly influenced by energy expenditure, but not ghrelin. Conclusion Preprandial ghrelin does not appear to be influenced by macronutrient composition, energy intake, or energy expenditure. Similarly, ghrelin does not appear to affect acute or chronic energy intake under free-living conditions. PMID:15745452

  15. Worker productivity rises with energy efficiency

    SciTech Connect

    Romm, J.J. )

    1995-01-01

    Many American companies have found that saving energy and cutting pollution dramatically improves the bottom line. But beyond these gains, businesses that launch energy efficiency programs to save money are often astonished to discover unforeseen benefits: energy efficient lighting, heating, cooling, motors, and industrial processes can increase worker productivity, decrease absenteeism, and improve the quality of work performed. Profits created by the jump in worker productivity can exceed energy savings by a factor of ten. Energy efficiency and pollution prevention represent the next wave in manufacturing, following the quality revolution launched by the Japanese in the 1960s. Unless America leads the lean and clean revolution, economic health will be undermined as other countries develop clean processes and products and US companies suffer competitively. Also, developing countries will leapfrog their wasteful model and buy products and manufacturing processes from foreign firms already practicing lean and clean.

  16. Energy Recovery Linacs for Commercial Radioisotope Production

    SciTech Connect

    Sy, Amy; Krafft, Geoffrey A.; Johnson, Rolland; Roberts, Tom; Boulware, Chase; Hollister, Jerry

    2015-09-01

    Photonuclear reactions with bremsstrahlung photon beams from electron linacs can generate radioisotopes of critical interest. An SRF Energy Recovery Linac (ERL) provides a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes in a more compact footprint and at a lower cost than those produced by conventional reactor or ion accelerator methods. Use of an ERL enables increased energy efficiency of the complex through energy recovery of the waste electron beam, high electron currents for high production yields, and reduced neutron production and shielding activation at beam dump components. Simulation studies using G4Beamline/GEANT4 and MCNP6 through MuSim, as well as other simulation codes, will design an ERL-based isotope production facility utilizing bremsstrahlung photon beams from an electron linac. Balancing the isotope production parameters versus energy recovery requirements will inform a choice of isotope production target for future experiments.

  17. Mechanisms affecting kinetic energies of laser-ablated materials

    SciTech Connect

    Chen, K.R. |; Leboeuf, J.N.; Wood, R.F.; Geohegan, D.B.; Donato, J.M.; Liu, C.L.; Puretzky, A.A.

    1995-12-31

    Laser materials processing techniques are expected to have a dramatic impact on materials science and engineering in the near future and beyond. One of the main laser materials processing techniques is Pulsed Laser Deposition (PLD) for thin film growth. While experimentalists search for optimal approaches for thin film growth with pulsed laser deposition (PLD), a systematic effort in theory and modeling of various processes during PLD is needed. The quality of film deposited depends critically on the range and profile of the kinetic energy and density of the ablated plume. While it is to the advantage of pulsed laser deposition to have high kinetic energy, plumes that are too energetic causes film damage. A dynamic source effect was found to accelerate the plume expansion velocity much higher than that from a conventional free expansion model. A self-similar theory and a hydrodynamic model are developed to study this effect, which may help to explain experimentally observed high front expansion velocity. Background gas can also affect the kinetic energies. High background gas may cause the ablated materials to go backward. Experimentally observed plume splitting is also discussed.

  18. Chemical factors affecting fission product transport in severe LMFBR accidents

    SciTech Connect

    Wichner, R.P.; Jolley, R.L.; Gat, U.; Rodgers, B.R.

    1984-10-01

    This study was performed as a part of a larger evaluation effort on LMFBR accident, source-term estimation. Purpose was to provide basic chemical information regarding fission product, sodium coolant, and structural material interactions required to perform estimation of fission product transport under LMFBR accident conditions. Emphasis was placed on conditions within the reactor vessel; containment vessel conditions are discussed only briefly.

  19. Automatic control algorithm effects on energy production

    NASA Technical Reports Server (NTRS)

    Mcnerney, G. M.

    1981-01-01

    A computer model was developed using actual wind time series and turbine performance data to simulate the power produced by the Sandia 17-m VAWT operating in automatic control. The model was used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long term energy production. The results from local site and turbine characteristics were generalized to obtain general guidelines for control algorithm design.

  20. Production of a raw material for energy production in agriculture

    NASA Astrophysics Data System (ADS)

    Hellstroem, G.

    1980-04-01

    The total amount of energy in products produced by Swedish agriculture was estimated to 80 TWH: 30 TWh for cereals, 15 TWh for grass and leguminosae, and 35 TWh for straw and other agricultural wastes. Of this production a large part will be used as food even in the future. New plants that would produce more energy than the ones traditionally grown in Sweden are discussed. Also other types of energy from agriculture are discussed such as methane from manure, methanol from gasification processes, and ethanol from fermentative processes. Costs were estimated from different alternatives.

  1. Legal and regulatory issues affecting compressed air energy storage

    SciTech Connect

    Hendrickson, P.L.

    1981-07-01

    Several regulatory and legal issues that can potentially affect implementation of a compressed air energy storage (CAES) system are discussed. This technology involves the compression of air using base load electric power for storage in an underground storage medium. The air is subsequently released and allowed to pass through a turbine to generate electricity during periods of peak demand. The storage media considered most feasible are a mined hard rock cavern, a solution-mined cavern in a salt deposit, and a porous geologic formation (normally an aquifer) of suitable structure. The issues are discussed in four categories: regulatory issues common to most CAES facilities regardless of storage medium, regulatory issues applicable to particular CAES reservoir media, issues related to possible liability from CAES operations, and issues related to acquisition of appropriate property rights for CAES implementation. The focus is on selected federal regulation. Lesser attention is given to state and local regulation. (WHK)

  2. Productivity benefits of industrial energy efficiency measures

    SciTech Connect

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  3. Some factors affecting tannase production by Aspergillus niger Van Tieghem

    PubMed Central

    Aboubakr, Hamada A.; El-Sahn, Malak A.; El-Banna, Amr A.

    2013-01-01

    One variable at a time procedure was used to evaluate the effect of qualitative variables on the production of tannase from Aspergillus niger Van Tieghem. These variables including: fermentation technique, agitation condition, tannins source, adding carbohydrates incorporation with tannic acid, nitrogen source type and divalent cations. Submerged fermentation under intermittent shaking gave the highest total tannase activity. Maximum extracellular tannase activity (305 units/50 mL) was attained in medium containing tannic acid as tannins source and sodium nitrate as nitrogen source at 30 °C for 96 h. All added carbohydrates showed significant adverse effects on the production of tannase. All tested divalent cations significantly decreased tannase production. Moreover, split plot design was carried out to study the effect of fermentation temperature and fermentation time on tannase production. The results indicated maximum tannase production (312.7 units/50 mL) at 35 °C for 96 h. In other words, increasing fermentation temperature from 30 °C to 35 °C resulted in increasing tannase production. PMID:24294255

  4. Relighting for energy efficiency and productivity

    SciTech Connect

    Harris, L.; Purcell, C.W.

    1992-10-01

    This paper presents an overview of the process and approach of the Federal Relighting Initiative (FRI). It describes the major steps in relighting Federal buildings for energy efficiency and increased productivity.

  5. Relighting for energy efficiency and productivity

    SciTech Connect

    Harris, L. ); Purcell, C.W. )

    1992-01-01

    This paper presents an overview of the process and approach of the Federal Relighting Initiative (FRI). It describes the major steps in relighting Federal buildings for energy efficiency and increased productivity.

  6. Ethanol production: energy, economic, and environmental losses.

    PubMed

    Pimentel, David; Patzek, Tad; Cecil, Gerald

    2007-01-01

    The prime focus of ethanol production from corn is to replace the imported oil used in American vehicles, without expending more fossil energy in ethanol production than is produced as ethanol energy. In a thorough and up-to-date evaluation of all the fossil energy costs of ethanol production from corn, every step in the production and conversion process must be included. In this study, 14 energy inputs in average U.S. corn production are included. Then, in the fermentation/distillation operation, 9 more identified fossil fuel inputs are included. Some energy and economic credits are given for the by-products, including dried distillers grains (DDG). Based on all the fossil energy inputs, a total of 1.43 kcal fossil energy is expended to produced 1 kcal ethanol. When the energy value of the DDG, based on the feed value of the DDG as compared to that of soybean meal, is considered, the energy cost of ethanol production is reduced slightly, to 1.28 kcal fossil energy input per 1 kcal ethanol produced. Several proethanol investigators have overlooked various energy inputs in U.S. corn production, including farm machinery, processing machinery, and the use of hybrid corn. In other studies, unrealistic, low energy costs were attributed to such inputs as nitrogen fertilizer, insecticides, and herbicides. Controversy continues concerning the energy and economic credits that should be assigned to the by-products. The U.S. Department of Energy reports that 17.0 billion L ethanol was produced in 2005. This represents only less than 1% of total oil use in the U.S. These yields are based on using about 18% of total U.S. corn production and 18% of cornland. Because the production of ethanol requires large inputs of both oil and natural gas in production, the U.S. is importing both oil and natural gas to produce ethanol. Furthermore, the U.S. Government is spending about dollar 3 billion annually to subsidize ethanol production, a subsidy of dollar 0.79/L ethanol produced. With

  7. Sex of littermate twin affects lifetime ewe productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ewe productivity is synonymous with annual litter-weight weaned (LWW) per ewe exposed to rams for breeding, and LWW is largely a function of number of lambs born (NLB) and weaned (NLW). Selecting for LWW should increase litter size and numbers of ewe-ram co-twins. Thus, we used historical records to...

  8. How lingering representations of abandoned context words affect speech production.

    PubMed

    Tydgat, Ilse; Diependaele, Kevin; Hartsuiker, Robert J; Pickering, Martin J

    2012-07-01

    Four experiments tested whether and how initially planned but then abandoned speech can influence the production of a subsequent resumption. Participants named initial pictures, which were sometimes suddenly replaced by target pictures that were related in meaning or word form or were unrelated. They then had to stop and resume with the name of the target picture. Target picture naming latencies were measured separately for trials in which the initial speech was skipped, interrupted, or completed. Semantically related initial pictures helped the production of the target word, although the effect dissipated once the utterance of the initial picture name had been completed. In contrast, phonologically related initial pictures hindered the production of the target word, but only for trials in which the name of the initial picture had at least partly been uttered. This semantic facilitation and phonological interference did not depend on the time interval between the initial and target picture, which was either varied between 200 ms and 400 ms (Experiments 1-2) or was kept constant at 300 ms (Experiments 3-4). We discuss the implications of these results for models of speech self-monitoring and for models of problem-free word production.

  9. How lingering representations of abandoned context words affect speech production.

    PubMed

    Tydgat, Ilse; Diependaele, Kevin; Hartsuiker, Robert J; Pickering, Martin J

    2012-07-01

    Four experiments tested whether and how initially planned but then abandoned speech can influence the production of a subsequent resumption. Participants named initial pictures, which were sometimes suddenly replaced by target pictures that were related in meaning or word form or were unrelated. They then had to stop and resume with the name of the target picture. Target picture naming latencies were measured separately for trials in which the initial speech was skipped, interrupted, or completed. Semantically related initial pictures helped the production of the target word, although the effect dissipated once the utterance of the initial picture name had been completed. In contrast, phonologically related initial pictures hindered the production of the target word, but only for trials in which the name of the initial picture had at least partly been uttered. This semantic facilitation and phonological interference did not depend on the time interval between the initial and target picture, which was either varied between 200 ms and 400 ms (Experiments 1-2) or was kept constant at 300 ms (Experiments 3-4). We discuss the implications of these results for models of speech self-monitoring and for models of problem-free word production. PMID:22673067

  10. How Soil Roughness Affects Runoff and Sediment Production?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of soil surface roughness on runoff and sediment production have not been clearly quantified, mostly due to the lack of a logical separation between geometric (i.e., surface microtopography) and process (i.e., runoff generation, soil detachment by raindrop and runoff) scales. In this resea...

  11. Culture conditions affect cytotoxin production by Serratia marcescens.

    PubMed

    Carbonell, G V; Fonseca, B A; Figueiredo, L T; Darini, A L; Yanaguita, R M

    1996-12-31

    Cytotoxins have been implicated in the pathogenesis of bacterial infections. In this study, the influence of different culture conditions was evaluated on cytotoxin production of Serratia marcescens. Parameters such as culture media, incubation temperature, starting pH of culture medium, aeration, anaerobiosis, carbon sources, iron concentration in he culture media, and release of cell-bond toxin by polymyxin B were investigated. The data suggest that this cytotoxin is predominantly extracellular and is not induced by iron limitation. Aerobic culture with shaking resulted in higher cytotoxicity than static aerobic or anaerobic culture. Bacteria grown in glucose, sucrose or galactose were more cytotoxic than those grown in inositol or maltose. The culture conditions that were identified as optimal for cytotoxin production by Serratia marcescens were incubation temperature ranging from 30 to 37 degrees C, in medium adjusted pH 8.5, with shaking. This work will contribute to further studies on the identification of this cytotoxic activity.

  12. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect

    Selldorff, John; Atwell, Monte

    2014-09-23

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  13. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema

    Selldorff, John; Atwell, Monte

    2016-07-12

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  14. Environmental consequences of energy production: Proceedings

    SciTech Connect

    none,

    1989-01-01

    The Seventeenth Annual Illinois Energy conference entitled Environmental consequences of Energy Production was held in Chicago, Illinois on October 19-20, 1989. The purpose of the meeting was to provide a forum for exchange of information on the technical, economic and institutional issues surrounding energy production and related environmental problems. The conference program was developed by a planning committee which included Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. The conference included presentations on four major topic areas. The issue areas were: urban pollution: where are we now and what needs to be done in the future; the acid rain problem: implications of proposed federal legislation on the Midwest; global warming: an update on the scientific debate; and strategies to minimize environmental damage. Separate abstracts have been prepared for the individual presentations. (FL)

  15. Factors affecting the bioaccessibility of fluoride from seafood products.

    PubMed

    Rocha, R A; de la Fuente, B; Clemente, M J; Ruiz, A; Vélez, D; Devesa, V

    2013-09-01

    Fluoride is considered important for health because of its beneficial effect on the prevention of dental caries and on bone development in the child population. However, excessive intake has negative effects. The main pathway for exposure is oral, through consumption of drinking water, and some food products. Therefore its bioaccessibility (quantity of the element solubilized during the digestive process) is a parameter to be considered when estimating the risk/benefit associated with this element. The aim of the present study was to evaluate the influence of the digestion phase, gastrointestinal digestion factors (pH, pepsin and bile salt concentrations) and the presence of cations on the bioaccessibility of fluoride from seafood products. The results show that the solubilization of fluoride takes place entirely during the gastric phase. Its bioaccessibility is strongly influenced by conditions that favor the formation of insoluble complexes of fluoride with other elements present in the matrix. The factors that are most influential in reducing its bioaccessibility are the increase in pH in the gastric phase, the presence of cations, especially in the intestinal phase, and a low concentration of bile salts.

  16. Nuclear Energy Technologies for Hydrogen Production

    SciTech Connect

    Yildiz, Bilge; Kazimi, Mujid S.

    2004-07-01

    Nuclear energy can be used as the primary thermal energy source in centralized hydrogen production through several methods to address the expected demand for hydrogen. The hydrogen production technologies that the nuclear reactors can be coupled to are such as high temperature thermochemical and hybrid processes, water electrolysis, and high-temperature steam electrolysis. Energy efficiency and use of clean technologies is important to meet the increasing energy demand in a climate friendly manner. High operating temperatures are needed for more efficient thermochemical and electrochemical hydrogen production using nuclear energy. Therefore, high temperature reactors, such as the gas cooled, molten salt cooled and liquid metal cooled reactor technologies, are the candidates for use in hydrogen production. Among these alternatives, high temperature steam electrolysis (HTSE) coupled to an advanced gas reactor cooled by supercritical CO{sub 2} (S-CO{sub 2}) and a direct S-CO{sub 2} power conversion cycle has the potential to provide higher energy efficiency at lower temperature range than the other alternatives. (authors)

  17. Factors Affecting the Production of Vietnamese Tones: A Study of American Learners

    ERIC Educational Resources Information Center

    Nguyen, Hanh thi; Macken, Marlys A.

    2008-01-01

    This study investigates factors that affect the accuracy of tone production by American students of Vietnamese as a second language (L2). Nine hypotheses are examined, each of which isolates a factor expected to affect production accuracy: (a) task type, (b) the position of a tone in a clause, (c) discourse distance between a model provided by a…

  18. How hollow melanosomes affect iridescent colour production in birds.

    PubMed

    Eliason, Chad M; Bitton, Pierre-Paul; Shawkey, Matthew D

    2013-09-22

    Developmental constraints and trade-offs can limit diversity, but organisms have repeatedly evolved morphological innovations that overcome these limits by expanding the range and functionality of traits. Iridescent colours in birds are commonly produced by melanin-containing organelles (melanosomes) organized into nanostructured arrays within feather barbules. Variation in array type (e.g. multilayers and photonic crystals, PCs) is known to have remarkable effects on plumage colour, but the optical consequences of variation in melanosome shape remain poorly understood. Here, we used a combination of spectrophotometric, experimental and theoretical methods to test how melanosome hollowness--a morphological innovation largely restricted to birds--affects feather colour. Optical analyses of hexagonal close-packed arrays of hollow melanosomes in two species, wild turkeys (Meleagris gallopavo) and violet-backed starlings (Cinnyricinclus leucogaster), indicated that they function as two-dimensional PCs. Incorporation of a larger dataset and optical modelling showed that, compared with solid melanosomes, hollow melanosomes allow birds to produce distinct colours with the same energetically favourable, close-packed configurations. These data suggest that a morphological novelty has, at least in part, allowed birds to achieve their vast morphological and colour diversity. PMID:23902909

  19. How hollow melanosomes affect iridescent colour production in birds

    PubMed Central

    Eliason, Chad M.; Bitton, Pierre-Paul; Shawkey, Matthew D.

    2013-01-01

    Developmental constraints and trade-offs can limit diversity, but organisms have repeatedly evolved morphological innovations that overcome these limits by expanding the range and functionality of traits. Iridescent colours in birds are commonly produced by melanin-containing organelles (melanosomes) organized into nanostructured arrays within feather barbules. Variation in array type (e.g. multilayers and photonic crystals, PCs) is known to have remarkable effects on plumage colour, but the optical consequences of variation in melanosome shape remain poorly understood. Here, we used a combination of spectrophotometric, experimental and theoretical methods to test how melanosome hollowness—a morphological innovation largely restricted to birds—affects feather colour. Optical analyses of hexagonal close-packed arrays of hollow melanosomes in two species, wild turkeys (Meleagris gallopavo) and violet-backed starlings (Cinnyricinclus leucogaster), indicated that they function as two-dimensional PCs. Incorporation of a larger dataset and optical modelling showed that, compared with solid melanosomes, hollow melanosomes allow birds to produce distinct colours with the same energetically favourable, close-packed configurations. These data suggest that a morphological novelty has, at least in part, allowed birds to achieve their vast morphological and colour diversity. PMID:23902909

  20. How hollow melanosomes affect iridescent colour production in birds.

    PubMed

    Eliason, Chad M; Bitton, Pierre-Paul; Shawkey, Matthew D

    2013-09-22

    Developmental constraints and trade-offs can limit diversity, but organisms have repeatedly evolved morphological innovations that overcome these limits by expanding the range and functionality of traits. Iridescent colours in birds are commonly produced by melanin-containing organelles (melanosomes) organized into nanostructured arrays within feather barbules. Variation in array type (e.g. multilayers and photonic crystals, PCs) is known to have remarkable effects on plumage colour, but the optical consequences of variation in melanosome shape remain poorly understood. Here, we used a combination of spectrophotometric, experimental and theoretical methods to test how melanosome hollowness--a morphological innovation largely restricted to birds--affects feather colour. Optical analyses of hexagonal close-packed arrays of hollow melanosomes in two species, wild turkeys (Meleagris gallopavo) and violet-backed starlings (Cinnyricinclus leucogaster), indicated that they function as two-dimensional PCs. Incorporation of a larger dataset and optical modelling showed that, compared with solid melanosomes, hollow melanosomes allow birds to produce distinct colours with the same energetically favourable, close-packed configurations. These data suggest that a morphological novelty has, at least in part, allowed birds to achieve their vast morphological and colour diversity.

  1. Thermoradiation processes of energy-carrier production

    NASA Astrophysics Data System (ADS)

    Dzantiev, B. G.; Ermakov, A. N.; Zhitomirskii, V. M.; Popov, V. N.

    Thermoradiation processes in the production of hydrogen and carbon monoxide from water vapor and CO2 are discussed. An radiolysis experiment was conducted using a one-pass flow system and an electron accelerator (with energy of 3 Me V), according to parameters of dose rate, regent-radiation contact time, and temperature (700 deg). Steady-state concentrations of H2 and CO were found to correspond to 20 and 40 percent radiation energy-product and energy conversion, respectively. The results of the experiment permit an accurate determination of the optimal parameters of the conversion process and an estimate of the relative efficiencies of chemonuclear and electrochemical methods (plasmolysis and electrolysis) of H2 and CO production using nuclear piles.

  2. Clinorotation affects morphology and ethylene production in soybean seedlings

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Peterson, B. V.; Guikema, J. A.; Brown, C. S.; Sager, J. C. (Principal Investigator)

    1996-01-01

    The microgravity environment of spaceflight influences growth, morphology and metabolism in etiolated germinating soybean. To determine if clinorotation will similarly impact these processes, we conducted ground-based studies in conjunction with two space experiment opportunities. Soybean (Glycine max [L.] Merr.) seeds were planted within BRIC (Biological Research In Canister) canisters and grown for seven days at 20 degrees C under clinorotation (1 rpm) conditions or in a stationary upright mode. Gas samples were taken daily and plants were harvested after seven days for measurement of growth and morphology. Compared to the stationary upright controls, plants exposed to clinorotation exhibited increased root length (125% greater) and fresh weight (42% greater), whereas shoot length and fresh weight decreased by 33% and 16% respectively. Plants grown under clinorotation produced twice as much ethylene as the stationary controls. Seedlings treated with triiodo benzoic acid (TIBA), an auxin transport inhibitor, under clinorotation produced 50% less ethylene than the untreated control subjected to the same gravity treatment, whereas a treatment with 2,4-D increased ethylene by five-fold in the clinorotated plants. These data suggest that slow clinorotation influences biomass partitioning and ethylene production in etiolated soybean plants.

  3. Electrorheology for energy production and conservation

    NASA Astrophysics Data System (ADS)

    Huang, Ke

    Recently, based on the physics of viscosity, we developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. The method is universal and applicable to all complex fluids with suspended particles of nano-meter, submicrometer, or micrometer size. Completely different from the traditional viscosity reduction method, raising the temperature, this technology is energy-efficient, as it only requires small amount of energy to aggregate the suspended particles. In this thesis, we will first discuss this new technology in detail, both in theory and practice. Then, we will report applications of our technology to energy science research. Presently, 80% of all energy sources are liquid fuels. The viscosity of liquid fuels plays an important role in energy production and energy conservation. With an electric field, we can reduce the viscosity of asphalt-based crude oil. This is important and useful for heavy crude oil and off-shore crude oil production and transportation. Especially, since there is no practical way to raise the temperature of crude oil inside the deepwater pipelines, our technology may play a key role in future off-shore crude oil production. Electrorehology can also be used to reduce the viscosity of refinery fuels, such as diesel fuel and gasoline. When we apply this technology to fuel injection, the fuel droplets in the fuel atomization become smaller, leading to faster combustion in the engine chambers. As the fuel efficiency of internal combustion engines depends on the combustion speed and timing, the fast combustion produces much higher fuel efficiency. Therefore, adding our technology on existing engines improves the engine efficiency significantly. A theoretical model for the engine combustion, which explains how fast combustion improves the engine efficiency, is also presented in the thesis. As energy is the key to our national

  4. Material and energy intensity of fullerene production.

    PubMed

    Anctil, Annick; Babbitt, Callie W; Raffaelle, Ryne P; Landi, Brian J

    2011-03-15

    Fullerenes are increasingly being used in medical, environmental, and electronic applications due to their unique structural and electronic properties. However, the energy and environmental impacts associated with their commercial-scale production have not yet been fully investigated. In this work, the life cycle embodied energy of C(60) and C(70) fullerenes has been quantified from cradle-to-gate, including the relative contributions from synthesis, separation, purification, and functionalization processes, representing a more comprehensive scope than used in previous fullerene life cycle studies. Comparison of two prevalent production methods (plasma and pyrolysis) has shown that pyrolysis of 1,4-tetrahydronaphthalene emerges as the method with the lowest embodied energy (12.7 GJ/kg of C(60)). In comparison, plasma methods require a large amount of electricity, resulting in a factor of 7-10× higher embodied energy in the fullerene product. In many practical applications, fullerenes are required at a purity >98% by weight, which necessitates multiple purification steps and increases embodied energy by at least a factor of 5, depending on the desired purity. For applications such as organic solar cells, the purified fullerenes need to be chemically modified to [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM), thus increasing the embodied energy to 64.7 GJ/kg C(60)-PCBM for the specified pyrolysis, purification, and functionalization conditions. Such synthesis and processing effects are even more significant for the embodied energy of larger fullerenes, such as C(70), which are produced in smaller quantities and are more difficult to purify. Overall, the inventory analysis shows that the embodied energy of all fullerenes are an order of magnitude higher than most bulk chemicals, and, therefore, traditional cutoff rules by weight during life cycle assessment of fullerene-based products should be avoided.

  5. Energy Production Demonstrator for Megawatt Proton Beams

    SciTech Connect

    Pronskikh, Vitaly S.; Mokhov, Nikolai V.; Novitski, Igor; Tyutyunnikov, Sergey I.

    2014-07-16

    A preliminary study of the Energy Production Demonstrator (EPD) concept - a solid heavy metal target irradiated by GeV-range intense proton beams and producing more energy than consuming - is carried out. Neutron production, fission, energy deposition, energy gain, testing volume and helium production are simulated with the MARS15 code for tungsten, thorium, and natural uranium targets in the proton energy range 0.5 to 120 GeV. This study shows that the proton energy range of 2 to 4 GeV is optimal for both a natU EPD and the tungsten-based testing station that would be the most suitable for proton accelerator facilities. Conservative estimates, not including breeding and fission of plutonium, based on the simulations suggest that the proton beam current of 1 mA will be sufficient to produce 1 GW of thermal output power with the natU EPD while supplying < 8% of that power to operate the accelerator. The thermal analysis shows that the concept considered has a problem due to a possible core meltdown; however, a number of approaches (a beam rastering, in first place) are suggested to mitigate the issue. The efficiency of the considered EPD as a Materials Test Station (MTS) is also evaluated in this study.

  6. India's Fertilizer Industry: Productivity and Energy Efficiency

    SciTech Connect

    Schumacher, K.; Sathaye, J.

    1999-07-01

    Historical estimates of productivity growth in India's fertilizer sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Our analysis shows that in the twenty year period, 1973 to 1993, productivity in the fertilizer sector increased by 2.3% per annum. An econometric analysis reveals that technical progress in India's fertilizer sector has been biased towards the use of energy, while it has been capital and labor saving. The increase in productivity took place during the era of total control when a retention price system and distribution control was in effect. With liberalization of the fertilizer sector and reduction of subsidies productivity declined substantially since the early 1990s. Industrial policies and fiscal incentives still play a major role in the Indian fertilizer sect or. As substantial energy savings and carbon reduction potential exists, energy policies can help overcome barriers to the adoption of these measures in giving proper incentives and correcting distorted prices.

  7. Energy management analysis of lunar oxygen production

    NASA Technical Reports Server (NTRS)

    Fazzolari, R.; Wong-Swanson, B. G.

    1990-01-01

    Energy load models in the process of hydrogen reduction of ilmenite for lunar oxygen production are being developed. The load models will be used as a first step to ultimately determine the optimal energy system needed to supply the power requirements for the process. The goal is to determine the energy requirements in the process of hydrogen reduction of ilmenite to produce oxygen. The general approach is shown, and the objectives are to determine the energy loads of the processes in the system. Subsequent energy management studies will be made to minimize the system losses (irreversibilities) and to design optimal energy system power requirements. A number of processes are being proposed as possible candidates for lunar application and some detailed experimental efforts are being conducted within this project at the University of Arizona. Priorities are directed toward developing the energy models for each of the proposed processes being considered. The immediate goals are to identify the variables that would impact energy requirements and energy sources of supply.

  8. Reactors Save Energy, Costs for Hydrogen Production

    NASA Technical Reports Server (NTRS)

    2014-01-01

    While examining fuel-reforming technology for fuel cells onboard aircraft, Glenn Research Center partnered with Garrettsville, Ohio-based Catacel Corporation through the Glenn Alliance Technology Exchange program and a Space Act Agreement. Catacel developed a stackable structural reactor that is now employed for commercial hydrogen production and results in energy savings of about 20 percent.

  9. Implementing the Data Center Energy Productivity Metric

    SciTech Connect

    Sego, Landon H.; Marquez, Andres; Rawson, Andrew; Cader, Tahir; Fox, Kevin M.; Gustafson, William I.; Mundy, Christopher J.

    2012-10-01

    As data centers proliferate in both size and number, their energy efficiency is becoming increasingly important. We discuss the properties of a number of the proposed metrics of energy efficiency and productivity. In particular, we focus on the Data Center Energy Productivity (DCeP) metric, which is the ratio of useful work produced by the data center to the energy consumed performing that work. We describe our approach for using DCeP as the principal outcome of a designed experiment using a highly instrumented, high performance computing data center. We found that DCeP was successful in clearly distinguishing between different operational states in the data center, thereby validating its utility as a metric for identifying configurations of hardware and software that would improve (or even maximize) energy productivity. We also discuss some of the challenges and benefits associated with implementing the DCeP metric, and we examine the efficacy of the metric in making comparisons within a data center and among data centers.

  10. New Energy-efficient Snow production

    NASA Astrophysics Data System (ADS)

    Rhyner, H.

    2009-04-01

    Artificial snow making is widely used in the Alps, mainly to compensate for missing snow cover. Since snow production requires both water and energy, it is necessary to develop new technologies in this field that optimise the production process. In particular in terms of energy consumption, new technologies are developed to minimize the use of energy and costs. The aims of this paper are to model the process of artificial snow making in the Swiss Alps. Several field and laboratory campaigns will be presented. The actual process of snow produciton, as it exits the snow canons and snow hoses and acummulates on the ground is modelled and validated with field and laboratory experiments. Amongst other techniques, infra-red meausurements show detailed temperature distributions. Techniques are demonstrated on how snow-making can be optimised.

  11. Innovative energy production in fusion reactors

    NASA Astrophysics Data System (ADS)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are: (1) traveling wave direct energy conversion of 14.7 MeV protons; (2) cusp type direct energy conversion of charged particles; (3) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas; and (4) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising.

  12. Energy accounting in canning tomato products

    SciTech Connect

    Singh, R.P.; Carroad, P.A.; Chhinnan, M.S.; Rose, W.W.; Jacob, N.L.

    1980-01-01

    An energy accounting method was used to determine energy consumption in various unit operations in canning tomato juice, wholepeeled tomatoes, and tomato paste. Data on steam and electric consumption were obtained from a canning plant with the use of steam flow meters and electric transducers. Unit operations associated with the following equipment were investigated: crushers, hot-break heaters, pulpers, finishers, lye-bath peelers, evaporators, and retorts. The average thermal and electrical energy intensities of canning tomato products were 538 Btu and 0.0126 kWh per pound of tomatoes received, respectively. Energy intensive operations were identified as those associated with hot-break heaters, lye-bath peelers, evaporators, and retorts.

  13. CO2, nitrogen, and diversity differentially affect seed production of prairie plants.

    PubMed

    HilleRisLambers, J; Harpole, W S; Schnitzer, S; Tilman, D; Reich, P B

    2009-07-01

    Plant species composition and diversity is often influenced by early life history stages; thus, global change could dramatically affect plant community structure by altering seed production. Unfortunately, plant reproductive responses to global change are rarely studied in field settings, making it difficult to assess this possibility. To address this issue, we quantified the effects of elevated CO2, nitrogen deposition, and declining diversity on inflorescence production and inflorescence mass of 11 perennial grassland species in central Minnesota, U.S.A. We analyzed these data to ask whether (1) global change differentially affects seed production of co-occurring species; (2) seed production responses to global change are similar for species within the same functional group (defined by ecophysiology and growth form); and (3) seed production responses to global change match productivity responses: We found that, on average, allocation to seed production decreased under elevated CO2, although individual species responses were rarely significant due to low power (CO2 treatment df = 2). The effects of nitrogen deposition on seed production were similar within functional groups: C4 grasses tended to increase while C3 grasses tended to decrease allocation to seed production. Responses to nitrogen deposition were negatively correlated to productivity responses, suggesting a trade-off. Allocation to seed production of some species responded to a diversity gradient, but responses were uncorrelated to productivity responses and not similar within functional groups. Presumably, species richness has complex effects on the biotic and abiotic variables that influence seed production. In total, our results suggest that seed production of co-occurring species will be altered by global change, which may affect plant communities in unpredictable ways. Although functional groups could be used to generalize seed production responses to nitrogen deposition in Minnesota prairies, we

  14. Geothermal energy production with supercritical fluids

    DOEpatents

    Brown, Donald W.

    2003-12-30

    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  15. Production of Energy Efficient Preform Structures (PEEPS)

    SciTech Connect

    Dr. John A. Baumann

    2012-06-08

    Due to its low density, good structural characteristics, excellent fabrication properties, and attractive appearance, aluminum metal and its alloys continue to be widely utilized. The transportation industry continues to be the largest consumer of aluminum products, with aerospace as the principal driver for this use. Boeing has long been the largest single company consumer of heat-treated aluminum in the U.S. The extensive use of aluminum to build aircraft and launch vehicles has been sustained, despite the growing reliance on more structurally efficient carbon fiber reinforced composite materials. The trend in the aerospace industry over the past several decades has been to rely extensively on large, complex, thin-walled, monolithic machined structural components, which are fabricated from heavy billets and thick plate using high speed machining. The use of these high buy-to-fly ratio starting product forms, while currently cost effective, is energy inefficient, with a high environmental impact. The widespread implementation of Solid State Joining (SSJ) technologies, to produce lower buy-to-fly ratio starting forms, tailored to each specific application, offers the potential for a more sustainable manufacturing strategy, which would consume less energy, require less material, and reduce material and manufacturing costs. One objective of this project was to project the energy benefits of using SSJ techniques to produce high-performance aluminum structures if implemented in the production of the world fleet of commercial aircraft. A further objective was to produce an energy consumption prediction model, capable of calculating the total energy consumption, solid waste burden, acidification potential, and CO2 burden in producing a starting product form - whether by conventional or SSJ processes - and machining that to a final part configuration. The model needed to be capable of computing and comparing, on an individual part/geometry basis, multiple possible

  16. Efficiency in energy production and consumption

    NASA Astrophysics Data System (ADS)

    Kellogg, Ryan Mayer

    This dissertation deals with economic efficiency in the energy industry and consists of three parts. The first examines how joint experience between pairs of firms working together in oil and gas drilling improves productivity. Part two asks whether oil producers time their drilling optimally by taking real options effects into consideration. Finally, I investigate the efficiency with which energy is consumed, asking whether extending Daylight Saving Time (DST) reduces electricity use. The chapter "Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch" examines how oil production companies and the drilling rigs they hire improve drilling productivity by learning through joint experience. I find that the joint productivity of a lead firm and its drilling contractor is enhanced significantly as they accumulate experience working together. Moreover, this result is robust to other relationship specificities and standard firm-specific learning-by-doing effects. The second chapter, "Drill Now or Drill Later: The Effect of Expected Volatility on Investment," investigates the extent to which firms' drilling behavior accords with a key prescription of real options theory: irreversible investments such as drilling should be deferred when the expected volatility of the investments' payoffs increases. I combine detailed data on oil drilling with expectations of future oil price volatility that I derive from the NYMEX futures options market. Conditioning on expected price levels, I find that oil production companies significantly reduce the number of wells they drill when expected price volatility is high. I conclude with "Daylight Time and Energy: Evidence from an Australian Experiment," co-authored with Hendrik Wolff. This chapter assesses DST's impact on electricity demand using a quasi-experiment in which parts of Australia extended DST in 2000 to facilitate the Sydney Olympics. We show that the extension did not reduce overall

  17. Nanomaterials for renewable energy production and storage.

    PubMed

    Chen, Xiaobo; Li, Can; Grätzel, Michaël; Kostecki, Robert; Mao, Samuel S

    2012-12-01

    Over the past decades, there have been many projections on the future depletion of the fossil fuel reserves on earth as well as the rapid increase in green-house gas emissions. There is clearly an urgent need for the development of renewable energy technologies. On a different frontier, growth and manipulation of materials on the nanometer scale have progressed at a fast pace. Selected recent and significant advances in the development of nanomaterials for renewable energy applications are reviewed here, and special emphases are given to the studies of solar-driven photocatalytic hydrogen production, electricity generation with dye-sensitized solar cells, solid-state hydrogen storage, and electric energy storage with lithium ion rechargeable batteries.

  18. Low Energy Nuclear Reaction Products at Surfaces

    NASA Astrophysics Data System (ADS)

    Nagel, David J.

    2008-03-01

    This paper examines the evidence for LENR occurring on or very near to the surface of materials. Several types of experimental indications for LENR surface reactions have been reported and will be reviewed. LENR result in two types of products, energy and the appearance of new elements. The level of instantaneous power production can be written as the product of four factors: (1) the total area of the surface on which the reactions can occur, (2) the fraction of the area that is active at any time, (3) the reaction rate, that is, the number of reactions per unit active area per second, and (4) the energy produced per reaction. Each of these factors, and their limits, are reviewed. A graphical means of relating these four factors over their wide variations has been devised. The instantaneous generation of atoms of new elements can also be written as the product of the first three factors and the new elemental mass produced per reaction. Again, a graphical means of presenting the factors and their results over many orders of magnitude has been developed.

  19. Past and future climate patterns affecting temperate, sub-tropical and tropical horticultural crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial horticultural crop production will be impacted by climate change effects on temperature, water availability, solar radiation, air pollution, and carbon dioxide. Horticultural crop value is derived from both the quantity and the quality of the harvested product; both of which are affected ...

  20. Factors affecting the energy consumption of two refrigerator-freezers

    SciTech Connect

    Kao, J.Y.; Kelley, G.E.

    1996-12-31

    Two refrigerator-freezers, one with a top-mounted freezer and one with side-by-side doors, were tested in the laboratory to determine the sensitivity of their energy consumption to various operational factors. Room temperature, room humidity, door openings, and the setting of the anti-sweat heater switch were the factors examined. The results indicated that the room temperature and door openings had a significantly greater effect on energy consumption than the other two factors. More detailed tests were then performed under different room temperature and door-opening combinations. The relationship of door openings and the equivalent test room temperature was established. Finally, the effect on energy of different temperature settings was studied. Test results are presented and discussed.

  1. Food production and the energy crisis.

    PubMed

    Pimentel, D; Hurd, L E; Bellotti, A C; Forster, M J; Oka, I N; Sholes, O D; Whitman, R J

    1973-11-01

    The principal raw material of modern U.S. agriculture is fossil fuel, whereas the labor input is relatively small (about 9 hours per crop acre). As agriculture is dependent upon fossil energy, crop production costs will also soar when fuel costs increase two- to fivefold. A return of 2.8 kcal of corn per 1 kcal of fuel input may then be uneconomical. Green revolution agriculture also uses high energy crop production technology, especially with respect to fertilizers and pesticides. While one may not doubt the sincerity of the U.S. effort to share its agricultural technology so that the rest of the world can live and eat as it does, one must be realistic about the resources available to accomplish this mission. In the United States we are currently using an equivalent of 80 gallons of gasoline to produce an acre of corn. With fuel shortages and high prices to come, we wonder if many developing nations will be able to afford the technology of U.S. agriculture. Problems have already occurred with green revolution crops, particularly problems related to pests (57). More critical problems are expected when there is a world energy crisis. A careful assessment should be made of the benefits, costs, and risks of high energy-demand green revolution agriculture in order to be certain that this program will not aggravate the already serious world food situation (58). To reduce energy inputs, green revolution and U.S. agriculture might employ such alternatives as rotations and green manures to reduce the high energy demand of chemical fertilizers and pesticides. U.S. agriculture might also reduce energy expenditures by substituting some manpower currently displaced by mechanization. While no one knows for certain what changes will have to be made, we can be sure that when conventional energy resources become scarce and expensive, the impact on agriculture as an industry and a way of life will be significant. This analysis is but a preliminary investigation of a significant

  2. Global energy issues affecting aeronautics: a reasoned conjecture

    NASA Astrophysics Data System (ADS)

    Allen, John E.

    1999-07-01

    This paper is a reasoned conjecture of the future up to 2050 AD including estimates of energy supply and consumption, transport system developments and corresponding pollution effects. Results of the logistic substitution methods (Volterra-Lotka) are used in forecasting trends in innovation, transport and energy. Later work on normative forecasts is also included. The future of aeronautics cannot be isolated from events in other transport modes which together create the major problem of crude oil replacement during the next century. Natural gas will be the dominant energy source for the next 80 years and a major question is how best to use it for aviation. The work on which this paper is based was started in 1992 to answer the following questions: Is the future oil shortfall sufficient to restrict aviation traffic and growth in the next 50 years? If so, what is its substitute? Can a substitute be obtained cheaply enough to free aviation from future kerosine shortages? Is it paramount to change to liquid hydrogen fuel to avoid future fuel shortage in aeronautics, incidentally conferring possible environmental advantages? There was no adequate evidence available to answer these questions, hence a method was devised to bring together several sets of partial data that contributed to the solution. The essence is to use the mean annual growth rate of traffic or energy over a future period as a pseudo-independent variable. This allows the inclusion of alternative high and low estimates of all the important quantities involved.

  3. Socioeconomic Factors Affecting Household Energy Consumption in Qom, Iran

    NASA Astrophysics Data System (ADS)

    Mehrzad, Ebrahimi; Masoud, Alizadeh; Mansour, Ebrahimi

    Petrol is heavily subsidized in Iran which has led both to very high consumption levels and a big smuggling problem as petrol is transported out of Iran's border areas for re-sale in neighboring countries, where petrol prices are much higher. Also, a shortage of refineries combined with wasteful consumption means that Iran regularly imports petrol despite being one of the world's biggest oil producers. To look at the different variables contributing to wasteful consumption of fuel in Iran and the effect of governmental gradual increase of fuel prices, this study questioned 600 family warden views in Qom, Iran. The results showed that more than two third of samples have heard or read at least one news about energy saving and quoted TV as main source of their information while 55% mentioned all fossils resources would be finish in near future and urged optimum energy consumption as the best way to tackle energy crisis (82%), with 85% asked for more media propagation to change wrong cultural behaviors in Qom. Nearly half of the people said that governmental plan to increase domestic price of high octane and regular gasoline annually had little or no effect on fuel consumption and majority of them mentioned cultural changes as the best tools and nearly the same rate were worried about air pollution as the immediate result of uncontrolled fuel consumption in Qom. The results also showed that with increase in each year education of family warden, decreases fuel expenses 11.2% in hot seasons and 1240000 Iranian Rials (IR-R) in cold seasons while increase in family members' size adds 288660 (IR-R) per member to base family size (2) and for each member of family which works outside the house, family energy expenses increase 234470 IR-R. And finally the results showed fuel (or energy) expenses in cold months in Qom is higher than other months and family warden education showed more effect to reduce those expenses during mild months but less during hot months. Therefore it is

  4. Production of arabitol from glycerol: strain screening and study of factors affecting production yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycerol is a major byproduct from biodiesel production, and developing new uses for glycerol is imperative to overall economics and sustainability of the biodiesel industry. With the aim of producing xylitol and/or arabitol as the value-added products from glycerol, 214 yeast strains, many osmotole...

  5. Boosting CSP Production with Thermal Energy Storage

    SciTech Connect

    Denholm, P.; Mehos, M.

    2012-06-01

    Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PV electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high

  6. Drell-Yan production at collider energies

    SciTech Connect

    Neerven, W.L. Van

    1995-07-01

    We present some results of the Drell-Yan cross sections d{sigma}/dm and {sigma}{sub tot} which includes the O ({alpha}{sub s}{sup 2}) contribution to the coefficient function. In particular we study the total cross section {sigma}{sub tot} for vector boson production and d{sigma}/dm for low invariant masses m of the lepton pairs at large hadron collider energies. This study includes a detailed discussion of the dependence of the cross sections on the chosen scheme ({bar M}S versus DIS) and the factorization scale.

  7. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    SciTech Connect

    Vanderwende, Brian; Lundquist, Julie K.

    2015-11-07

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  8. Could Crop Height Affect the Wind Resource at Agriculturally Productive Wind Farm Sites?

    NASA Astrophysics Data System (ADS)

    Vanderwende, Brian; Lundquist, Julie K.

    2016-03-01

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. These considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  9. Plant Products Affect Growth and Digestive Efficiency of Cultured Florida Pompano (Trachinotus carolinus) Fed Compounded Diets

    PubMed Central

    Lech, Gregory P.; Reigh, Robert C.

    2012-01-01

    Costs of compounded diets containing fish meal as a primary protein source can be expected to rise as fish meal prices increase in response to static supply and growing demand. Alternatives to fish meal are needed to reduce production costs in many aquaculture enterprises. Some plant proteins are potential replacements for fish meal because of their amino acid composition, lower cost and wide availability. In this study, we measured utilization of soybean meal (SBM) and soy protein concentrate (SPC) by Florida pompano fed compounded diets, to determine the efficacy of these products as fish meal replacements. We also calculated apparent digestibility coefficients (ADCs) for canola meal (CM), corn gluten meal (CGM), and distillers dried grains with solubles (DDGS), following typical methods for digestibility trials. Juvenile Florida pompano were fed fish-meal-free diets containing graded levels of SBM and SPC, and weight gain was compared to a control diet that contained SBM, SPC, and fish meal. Fish fed diets that contained 25–30 percent SBM in combination with 43–39 percent SPC had weight gain equivalent to fish fed the control diet with fish meal, while weight gain of fish fed other soy combinations was significantly less than that of the control group. Apparent crude protein digestibility of CGM was significantly higher than that of DDGS but not significantly different from CM. Apparent energy digestibility of DDGS was significantly lower than CGM but significantly higher than CM. Findings suggested that composition of the reference diet used in a digestibility trial affects the values of calculated ADCs, in addition to the chemical and physical attributes of the test ingredient. PMID:22536344

  10. Plant products affect growth and digestive efficiency of cultured Florida pompano (Trachinotus carolinus) fed compounded diets.

    PubMed

    Lech, Gregory P; Reigh, Robert C

    2012-01-01

    Costs of compounded diets containing fish meal as a primary protein source can be expected to rise as fish meal prices increase in response to static supply and growing demand. Alternatives to fish meal are needed to reduce production costs in many aquaculture enterprises. Some plant proteins are potential replacements for fish meal because of their amino acid composition, lower cost and wide availability. In this study, we measured utilization of soybean meal (SBM) and soy protein concentrate (SPC) by Florida pompano fed compounded diets, to determine the efficacy of these products as fish meal replacements. We also calculated apparent digestibility coefficients (ADCs) for canola meal (CM), corn gluten meal (CGM), and distillers dried grains with solubles (DDGS), following typical methods for digestibility trials. Juvenile Florida pompano were fed fish-meal-free diets containing graded levels of SBM and SPC, and weight gain was compared to a control diet that contained SBM, SPC, and fish meal. Fish fed diets that contained 25-30 percent SBM in combination with 43-39 percent SPC had weight gain equivalent to fish fed the control diet with fish meal, while weight gain of fish fed other soy combinations was significantly less than that of the control group. Apparent crude protein digestibility of CGM was significantly higher than that of DDGS but not significantly different from CM. Apparent energy digestibility of DDGS was significantly lower than CGM but significantly higher than CM. Findings suggested that composition of the reference diet used in a digestibility trial affects the values of calculated ADCs, in addition to the chemical and physical attributes of the test ingredient.

  11. A guided search genetic algorithm using mined rules for optimal affective product design

    NASA Astrophysics Data System (ADS)

    Fung, Chris K. Y.; Kwong, C. K.; Chan, Kit Yan; Jiang, H.

    2014-08-01

    Affective design is an important aspect of new product development, especially for consumer products, to achieve a competitive edge in the marketplace. It can help companies to develop new products that can better satisfy the emotional needs of customers. However, product designers usually encounter difficulties in determining the optimal settings of the design attributes for affective design. In this article, a novel guided search genetic algorithm (GA) approach is proposed to determine the optimal design attribute settings for affective design. The optimization model formulated based on the proposed approach applied constraints and guided search operators, which were formulated based on mined rules, to guide the GA search and to achieve desirable solutions. A case study on the affective design of mobile phones was conducted to illustrate the proposed approach and validate its effectiveness. Validation tests were conducted, and the results show that the guided search GA approach outperforms the GA approach without the guided search strategy in terms of GA convergence and computational time. In addition, the guided search optimization model is capable of improving GA to generate good solutions for affective design.

  12. Metabolic stressors and signals differentially affect energy allocation between reproduction and immune function.

    PubMed

    Carlton, Elizabeth D; Cooper, Candace L; Demas, Gregory E

    2014-11-01

    Most free-living animals have finite energy stores that they must allocate to different physiological and behavioral processes. In times of energetic stress, trade-offs in energy allocation among these processes may occur. The manifestation of trade-offs may depend on the source (e.g., glucose, lipids) and severity of energy limitation. In this study, we investigated energetic trade-offs between the reproductive and immune systems by experimentally limiting energy availability to female Siberian hamsters (Phodopus sungorus) with 2-deoxy-d-glucose, a compound that disrupts cellular utilization of glucose. We observed how glucoprivation at two levels of severity affected allocation to reproduction and immunity. Additionally, we treated a subset of these hamsters with leptin, an adipose hormone that provides a direct signal of available fat stores, in order to determine how increasing this signal of fat stores influences glucoprivation-induced trade-offs. We observed trade-offs between the reproductive and immune systems and that these trade-offs depended on the severity of energy limitation and exogenous leptin signaling. The majority of the animals experiencing mild glucoprivation entered anestrus, whereas leptin treatment restored estrous cycling in these animals. Surprisingly, virtually all animals experiencing more severe glucoprivation maintained normal estrous cycling throughout the experiment; however, exogenous leptin resulted in lower antibody production in this group. These data suggest that variation in these trade-offs may be mediated by shifts between glucose and fatty acid utilization. Collectively, the results of the present study highlight the context-dependent nature of these trade-offs, as trade-offs induced by the same metabolic stressor can manifest differently depending on its intensity.

  13. Molten salts and nuclear energy production

    NASA Astrophysics Data System (ADS)

    Le Brun, Christian

    2007-01-01

    Molten salts (fluorides or chlorides) were considered near the beginning of research into nuclear energy production. This was initially due to their advantageous physical and chemical properties: good heat transfer capacity, radiation insensitivity, high boiling point, wide range solubility for actinides. In addition it was realised that molten salts could be used in numerous situations: high temperature heat transfer, core coolants with solid fuels, liquid fuel in a molten salt reactor, solvents for spent nuclear solid fuel in the case of pyro-reprocessing and coolant and tritium production in the case of fusion. Molten salt reactors, one of the six innovative concepts chosen by the Generation IV international forum, are particularly interesting for use as either waste incinerators or thorium cycle systems. As the neutron balance in the thorium cycle is very tight, the possibility to perform online extraction of some fission product poisons from the salt is very attractive. In this article the most important questions that must be addressed to demonstrate the feasibility of molten salt reactor will be reviewed.

  14. Metaphor priming in sentence production: concrete pictures affect abstract language production.

    PubMed

    Sato, Manami; Schafer, Amy J; Bergen, Benjamin K

    2015-03-01

    People speak metaphorically about abstract concepts-for instance, a person can be "full of love" or "have a lot of love to give." Over the past decade, research has begun to focus on how metaphors are processed during language comprehension. Much of this work suggests that understanding a metaphorical expression involves activating brain and body systems involved in perception and motor control. However, no research to date has asked whether the same is true while speakers produce language. We address this gap using a sentence production task. Its results demonstrate that visually activating a concrete source domain can trigger the use of metaphorical language drawn from that same concrete domain, even in sentences that are thematically unrelated to the primes, a metaphorical priming effect. This effect suggests that conceptual metaphors play a part in language production. It also shows that activation in the perceptual system that is not part of an intended message can nevertheless influence sentence formulation.

  15. 76 FR 13168 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency and Renewable Energy, Department... FURTHER INFORMATION CONTACT: Mohammed Khan, U.S. Department of Energy, Office of Energy Efficiency...

  16. 77 FR 38743 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Battery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ..., U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies... Edwards, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building... Part 430 RIN 1904-AB57 Energy Efficiency Program for Consumer Products: Energy Conservation...

  17. Factors that Affect Student Motivation in a Dairy Products Elective Course

    ERIC Educational Resources Information Center

    Ismail, Baraem; Hayes, Kirby

    2005-01-01

    Student motivation is influenced by instructional approach. Motivation is a function of initiating and sustaining goal-directed behavior. The objective of this study was to identify factors (positive and negative) that affect motivation in a junior-level dairy products elective course. Student attitudes were surveyed each year half-way through the…

  18. 40 CFR Table 2 to Subpart Xxxx of... - Emission Limits for Tire Cord Production Affected Sources

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... source Emissions must not exceed 280 grams HAP per megagram (0.56 pounds per ton) of fabric processed at... tire cord production affected source Emissions must not exceed 220 grams HAP per megagram (0.43 pounds... Table 16 to this subpart must not exceed 1,000 grams HAP per megagram (2 pounds per ton) of...

  19. 40 CFR Table 2 to Subpart Xxxx of... - Emission Limits for Tire Cord Production Affected Sources

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... source Emissions must not exceed 280 grams HAP per megagram (0.56 pounds per ton) of fabric processed at... tire cord production affected source Emissions must not exceed 220 grams HAP per megagram (0.43 pounds... Table 16 to this subpart must not exceed 1,000 grams HAP per megagram (2 pounds per ton) of...

  20. 75 FR 50033 - WTO Dispute Settlement Proceeding Regarding United States-Measures Affecting the Production and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... From the Federal Register Online via the Government Publishing Office OFFICE OF THE UNITED STATES TRADE REPRESENTATIVE WTO Dispute Settlement Proceeding Regarding United States-- Measures Affecting the Production and Sale of Clove Cigarettes AGENCY: Office of the United States Trade Representative....

  1. Demographic and Academic Factors Affecting Research Productivity at the University of KwaZulu-Natal

    ERIC Educational Resources Information Center

    North, D.; Zewotir, T.; Murray, M.

    2011-01-01

    Research output affects both the strength and funding of universities. Accordingly university academic staff members are under pressure to be active and productive in research. Though all academics have research interest, all are not producing research output which is accredited by the Department of Education (DOE). We analyzed the demographic and…

  2. Factors affecting pheromone production by the pepper weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae) and collection efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several factors which might affect pheromone production by male pepper weevils, Anthonomus eugenii Cano (Coleoptera: Curculionidae), were investigated. Included were a comparison of porous polymer adsorbents (Tenax versus Super Q), the effect of male age, the effect of time of day, the effect of mal...

  3. Renewable energy for productive uses in Mexico

    SciTech Connect

    Hanley, C.

    1997-12-01

    This paper describes a USAID/USDOE sponsored program to implement renewable energy in Mexico for productive uses. The objectives are to expand markets for US and Mexican industries, and to combat global climate change - primarily greenhouse gas emissions. The focus is on off-grid applications, with an emphasis on developing the institution structure to support the development of these industries within the country. Agricultural development is an example of the type of industry approached, where photovoltaic and wind power can be used for water pumping. There are hundreds of projects under review, and this interest has put renewables as a line item in Mexico`s rural development budget. Village power projects are being considered in the form of utility partnerships.

  4. Use of low-cost aluminum in electric energy production

    NASA Astrophysics Data System (ADS)

    Zhuk, Andrey Z.; Sheindlin, Alexander E.; Kleymenov, Boris V.; Shkolnikov, Eugene I.; Lopatin, Marat Yu.

    Suppression of the parasitic corrosion while maintaining the electrochemical activity of the anode metal is one of the serious problems that affects the energy efficiency of aluminum-air batteries. The need to use high-purity aluminum or special aluminum-based alloys results in a significant increase in the cost of the anode, and thus an increase in the total cost of energy generated by the aluminum-air battery, which narrows the range of possible applications for this type of power source. This study considers the process of parasitic corrosion as a method for hydrogen production. Hydrogen produced in an aluminum-air battery by this way may be further employed in a hydrogen-air fuel cell (Hy-air FC) or in a heat engine, or it may be burnt to generate heat. Therefore, anode materials may be provided by commercially pure aluminum, commercially produced aluminum alloys, and secondary aluminum. These materials are much cheaper and more readily available than special anode alloys of aluminum and high-purity aluminum. The aim of present study is to obtain experimental data for comparison of energy and cost parameters of some commercially produced aluminum alloys, of high-purity aluminum, and of a special Al-ln anode alloy in the context of using these materials as anodes for an Al-air battery and for combined production of electrical power and hydrogen.

  5. Analysis of extrinsic and intrinsic factors affecting event related desynchronization production.

    PubMed

    Takata, Yohei; Kondo, Toshiyuki; Saeki, Midori; Izawa, Jun; Takeda, Kotaro; Otaka, Yohei; It, Koji

    2012-01-01

    Recently there has been an increase in the number of stroke patients with motor paralysis. Appropriate re-afferent sensory feedback synchronized with a voluntary motor intention would be effective for promoting neural plasticity in the stroke rehabilitation. Therefore, BCI technology is considered to be a promising approach in the neuro-rehabilitation. To estimate human motor intention, an event-related desynchronization (ERD), a feature of electroencephalogram (EEG) evoked by motor execution or motor imagery is usually used. However, there exists various factors that affect ERD production, and its neural mechanism is still an open question. As a preliminary stage, we evaluate mutual effects of intrinsic (voluntary motor imagery) and extrinsic (visual and somatosensory stimuli) factors on the ERD production. Experimental results indicate that these three factors are not always additively interacting with each other and affecting the ERD production.

  6. NEXT GENERATION ENERGY EFFICIENT FLUORESCENT LIGHTING PRODUCT

    SciTech Connect

    Alok Srivastava; Anant Setlur

    2003-04-01

    This is the Final Report of the Next-Generation Energy Efficient Fluorescent Lighting Products program, Department of Energy (DOE). The overall goal of this three-year program was to develop novel phosphors to improve the color rendition and efficiency of compact and linear fluorescent lamps. The prime technical approach was the development of quantum-splitting phosphor (QSP) to further increase the efficiency of conventional linear fluorescent lamps and the development of new high color rendering phosphor blends for compact fluorescent lamps (CFLs) as potential replacements for the energy-hungry and short-lived incandescent lamps in market segments that demand high color rendering light sources. We determined early in the project that the previously developed oxide QSP, SrAl{sub 12}O{sub 19}:Pr{sup 3+}, did not exhibit an quantum efficiency higher than unity under excitation by 185 nm radiation, and we therefore worked to determine the physical reasons for this observation. From our investigations we concluded that the achievement of quantum efficiency exceeding unity in SrAl{sub 12}O{sub 19}:Pr{sup 3+} was not possible due to interaction of the Pr{sup 3+} 5d level with the conduction band of the solid. The interaction which gives rise to an additional nonradiative decay path for the excitation energy is responsible for the low quantum efficiency of the phosphor. Our work has led to the development of a novel spectroscopic method for determining photoionzation threshold of luminescent centers in solids. This has resulted in further quantification of the requirements for host phosphor lattice materials to optimize quantum efficiency. Because of the low quantum efficiency of the QSP, we were unable to demonstrate a linear fluorescent lamp with overall performance exceeding that of existing mercury-based fluorescent lamps. Our work on the high color rendering CFLs has been very successful. We have demonstrated CFLs that satisfies the EnergyStar requirement with color

  7. Factors that promote renewable energy production in U.S. states: A fixed effect estimation

    NASA Astrophysics Data System (ADS)

    Nwokeji, Ekwuniru Chika

    2011-12-01

    The unsustainability of conventional energy sources and its environmental destructions are well-known; the sustainability of renewable energy and its environmental benefits are also well-documented. The United States in common with many other countries is increasingly focused on developing renewable energy. At first, the pursuit of this strategy in U.S. was seen more as a way to reduce dependence on oil importation. With increased awareness of environmental challenges resulting from the consumption and production of conventional energy, an additional strategy for the continued interest in renewable energy development in the United States was as a result of its potential to ameliorate environmental problems. The U.S. government are utilizing policy measures and dedicating funding to encourage the development of renewable energy technologies. Beside government policies, there are contextual factors that also affect renewable energy production. These include, but not limited to population growth, energy demand, economic growth, and public acceptance. Given the pressing need to develop a sustainable energy, this study embarks on an outcome assessment of the nature of relationship of renewable energy policy incentives, and selected contextual factors on renewable energy production in the United States. The policy incentive evaluated in this study is the Renewable Energy Production Incentive program. The contextual factors evaluated in this study are energy consumption, population growth, employment, and poverty. Understanding the contextual factors within which policies are placed is essential to defining the most appropriate policy features. The methodological approach to the study is quantitative, using panel data from 1976 to 2007. The study tested two hypotheses using fixed effect estimation with robust standard error as a statistical model. Statistical analyses reveal several interesting results which lend support that besides policy incentives, contextual factors

  8. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203...

  9. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203...

  10. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203...

  11. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203...

  12. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Energy-efficient products... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203...

  13. Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance.

    PubMed

    Heeman, Bavo; Van den Haute, Chris; Aelvoet, Sarah-Ann; Valsecchi, Federica; Rodenburg, Richard J; Reumers, Veerle; Debyser, Zeger; Callewaert, Geert; Koopman, Werner J H; Willems, Peter H G M; Baekelandt, Veerle

    2011-04-01

    Loss-of-function mutations in the gene encoding the mitochondrial PTEN-induced putative kinase 1 (PINK1) are a major cause of early-onset familial Parkinson's disease (PD). Recent studies have highlighted an important function for PINK1 in clearing depolarized mitochondria by mitophagy. However, the role of PINK1 in mitochondrial and cellular functioning in physiological conditions is still incompletely understood. Here, we investigate mitochondrial and cellular calcium (Ca(2+)) homeostasis in PINK1-knockdown and PINK1-knockout mouse cells, both in basal metabolic conditions and after physiological stimulation, using unbiased automated live single-cell imaging in combination with organelle-specific fluorescent probes. Our data reveal that depletion of PINK1 induces moderate fragmentation of the mitochondrial network, mitochondrial membrane depolarization and increased production of reactive oxygen species. This results in reduced uptake of Ca(2+) by mitochondria after physiological stimulation. As a consequence, cells with knockdown or knockout of PINK1 display impaired mitochondrial ATP synthesis, which is exacerbated under conditions of increased ATP demand, thereby affecting cytosolic Ca(2+) extrusion. The impairment in energy maintenance was confirmed in the brain of PINK1-knockout mice by in vivo bioluminescence imaging. Our findings demonstrate a key role for PINK1 in the regulation of mitochondrial homeostasis and energy metabolism under physiological conditions. PMID:21385841

  14. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    DOE PAGES

    Vanderwende, Brian; Lundquist, Julie K.

    2015-11-07

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length inmore » a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.« less

  15. Net energy analysis of alcohol production from sugarcane

    NASA Astrophysics Data System (ADS)

    Hopkinson, C. S., Jr.; Day, J. W., Jr.

    1980-01-01

    Energy requirements were calculated for the agricultural and the industrial phase of ehtyl alcohol production from sugarcane grown in Louisiana. Agricultural energy requirements comprised 54 percent of all energy inputs, with machinery, fuel, and nitrogen fertilizer representing most of the energy subsidies. Overall net energy benefits (output:input) for alcohol production ranged from 1.8:1 to 0.9:1 depending on whether crop residues or fossil fuels were used for industrial processes.

  16. Net energy analysis of alcohol production from sugarcane

    SciTech Connect

    Hopkinson, C.S. Jr.; Day, J.W. Jr.

    1980-01-18

    Energy requirements were calculated for the agricultural and the industrial phase of ethyl alcohol production from sugarcane grown in Louisiana. Agricultural energy requirements comprised 54% of all energy inputs, with machinery, fuel, and nitrogen fertilizer representing most of the energy subsidies. Overall net energy benefits (output:input) for alcohol production ranged from 1.8:1 to 0.9:1 depending on whether crop residues or fossil fuels were used for industrial processes.

  17. Dietary inclusion of diallyl disulfide, yucca powder, calcium fumarate, an extruded linseed product, or medium-chain fatty acids does not affect methane production in lactating dairy cows.

    PubMed

    van Zijderveld, S M; Dijkstra, J; Perdok, H B; Newbold, J R; Gerrits, W J J

    2011-06-01

    Two similar experiments were conducted to assess the effect of diallyl disulfide (DADS), yucca powder (YP), calcium fumarate (CAFU), an extruded linseed product (UNSAT), or a mixture of capric and caprylic acid (MCFA) on methane production, energy balance, and dairy cow performance. In experiment 1, a control diet (CON1) and diets supplemented with 56 mg of DADS/kg of dry matter (DM), 3g of YP/kg of DM, or 25 g of CAFU/kg of DM were evaluated. In experiment 2, an inert saturated fat source in the control diet (CON2) was exchanged isolipidically for an extruded linseed source (100g/kg of DM; UNSAT) or a mixture of C8:0 and C10:0 (MCFA; 20.3g/kg of DM). In experiment 2, a higher inclusion level of DADS (200mg/kg of DM) was also tested. Both experiments were conducted using 40 lactating Holstein-Friesian dairy cows. Cows were adapted to the diet for 12 d and were subsequently kept in respiration chambers for 5 d to evaluate methane production, diet digestibility, energy balance, and animal performance. Feed intake was restricted to avoid confounding effects of possible differences in ad libitum feed intake on methane production. Feed intake was, on average, 17.5 and 16.6 kg of DM/d in experiments 1 and 2, respectively. None of the additives reduced methane production in vivo. Methane production in experiment 1 was 450, 453, 446, and 423 g/d for CON1 and the diets supplemented with DADS, YP, and CAFU, respectively. In experiment 2, methane production was 371, 394, 388, and 386 g/d for CON2 and the diets supplemented with UNSAT, MCFA, and DADS, respectively. No effects of the additives on energy balance or neutral detergent fiber digestibility were observed. The addition of MCFA increased milk fat content (5.38% vs. 4.82% for control) and fat digestibility (78.5% vs. 59.8% for control), but did not affect milk yield or other milk components. The other products did not affect milk yield or composition. Results from these experiments emphasize the need to confirm methane

  18. Phonological similarity affects production of gestures, even in the absence of overt speech.

    PubMed

    Nozari, Nazbanou; Göksun, Tilbe; Thompson-Schill, Sharon L; Chatterjee, Anjan

    2015-01-01

    Highlights Does phonological similarity affect gesture production in the absence of speech?Participants produced gestures from pictures with no words presented or spoken.Same pictures and gestures but different training labels were used.Phonologically similar labels led to more errors in subsequent gestures.Thus, phonological similarity affects gesture production in the absence of speech. Are manual gestures affected by inner speech? This study tested the hypothesis that phonological form influences gesture by investigating whether phonological similarity between words that describe motion gestures creates interference for production of those gestures in the absence of overt speech. Participants learned to respond to a picture of a bottle by gesturing to open the bottle's cap, and to a picture of long hair by gesturing to twirl the hair. In one condition, the gestures were introduced with phonologically-similar labels "twist" and "twirl" (similar condition), while in the other condition, they were introduced with phonologically-dissimilar labels "unscrew" and "twirl" (dissimilar condition). During the actual experiment, labels were not produced and participants only gestured by looking at pictures. In both conditions, participants also gestured to a control pair that was used as a baseline. Participants made significantly more errors on gestures in the similar than dissimilar condition after correction for baseline differences. This finding shows the influence of phonology on gesture production in the absence of overt speech and poses new constraints on the locus of the interaction between language and gesture systems. PMID:26441724

  19. Phonological similarity affects production of gestures, even in the absence of overt speech

    PubMed Central

    Nozari, Nazbanou; Göksun, Tilbe; Thompson-Schill, Sharon L.; Chatterjee, Anjan

    2015-01-01

    Highlights Does phonological similarity affect gesture production in the absence of speech?Participants produced gestures from pictures with no words presented or spoken.Same pictures and gestures but different training labels were used.Phonologically similar labels led to more errors in subsequent gestures.Thus, phonological similarity affects gesture production in the absence of speech. Are manual gestures affected by inner speech? This study tested the hypothesis that phonological form influences gesture by investigating whether phonological similarity between words that describe motion gestures creates interference for production of those gestures in the absence of overt speech. Participants learned to respond to a picture of a bottle by gesturing to open the bottle's cap, and to a picture of long hair by gesturing to twirl the hair. In one condition, the gestures were introduced with phonologically-similar labels “twist” and “twirl” (similar condition), while in the other condition, they were introduced with phonologically-dissimilar labels “unscrew” and “twirl” (dissimilar condition). During the actual experiment, labels were not produced and participants only gestured by looking at pictures. In both conditions, participants also gestured to a control pair that was used as a baseline. Participants made significantly more errors on gestures in the similar than dissimilar condition after correction for baseline differences. This finding shows the influence of phonology on gesture production in the absence of overt speech and poses new constraints on the locus of the interaction between language and gesture systems. PMID:26441724

  20. 78 FR 9631 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Residential...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J, 1000 Independence Avenue SW.... Brenda Edwards, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building... Part 430 RIN 1904-AC88 Energy Efficiency Program for Consumer Products: Energy Conservation......

  1. Energy balance affected by electrolyte recirculation and operating modes in microbial fuel cells.

    PubMed

    Jacobson, Kyle S; Kelly, Patrick T; He, Zhen

    2015-03-01

    Energy recovery and consumption in a microbial fuel cell (MFC) can be significantly affected by the operating conditions. This study investigated the effects of electrolyte recirculation and operation mode (continuous vs sequence batch reactor) on the energy balance in a tubular MFC. It was found that decreasing the anolyte recirculation also decreased the energy recovery. Because of the open environment of the cathode electrode, the catholyte recirculation consumed 10 to 50 times more energy than the anolyte recirculation, and resulted in negative energy balances despite the reduction of the anolyte recirculation. Reducing the catholyte recirculation to 20% led to a positive energy balance of 0.0288 kWh m(-3). The MFC operated as a sequence batch reactor generated less energy and had a lower energy balance than the one with continuous operation. Those results encourage the further development of MFC technology to achieve neutral or even positive energy output.

  2. 40 CFR Table 3 to Subpart III of... - Compliance Requirements for Slabstock Foam Production Affected Sources Complying With the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Foam Production Affected Sources Complying With the Emission Point Specific Limitations 3 Table 3 to... Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production Pt. 63, Subpt. III, Table 3 Table 3 to Subpart III of Part 63—Compliance Requirements for Slabstock Foam Production Affected...

  3. 40 CFR Table 3 to Subpart III of... - Compliance Requirements for Slabstock Foam Production Affected Sources Complying With the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Foam Production Affected Sources Complying With the Emission Point Specific Limitations 3 Table 3 to... Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production Pt. 63, Subpt. III, Table 3 Table 3 to Subpart III of Part 63—Compliance Requirements for Slabstock Foam Production Affected...

  4. 40 CFR Table 4 to Subpart III of... - Compliance Requirements for Slabstock Foam Production Affected Sources Complying With the Source...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Foam Production Affected Sources Complying With the Source-Wide Emission Limitation 4 Table 4 to... Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production Pt. 63, Subpt. III, Table 4 Table 4 to Subpart III of Part 63—Compliance Requirements for Slabstock Foam Production Affected...

  5. 40 CFR Table 4 to Subpart III of... - Compliance Requirements for Slabstock Foam Production Affected Sources Complying With the Source...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Foam Production Affected Sources Complying With the Source-Wide Emission Limitation 4 Table 4 to... Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production Pt. 63, Subpt. III, Table 4 Table 4 to Subpart III of Part 63—Compliance Requirements for Slabstock Foam Production Affected...

  6. 40 CFR Table 3 to Subpart III of... - Compliance Requirements for Slabstock Foam Production Affected Sources Complying With the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Foam Production Affected Sources Complying With the Emission Point Specific Limitations 3 Table 3 to... Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production Pt. 63, Subpt. III, Table 3 Table 3 to Subpart III of Part 63—Compliance Requirements for Slabstock Foam Production Affected...

  7. Does Dietary Mitigation of Enteric Methane Production Affect Rumen Function and Animal Productivity in Dairy Cows?

    PubMed Central

    Veneman, Jolien B.; Muetzel, Stefan; Hart, Kenton J.; Faulkner, Catherine L.; Moorby, Jon M.; Perdok, Hink B.; Newbold, Charles J.

    2015-01-01

    It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/ g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations. PMID:26509835

  8. Does Dietary Mitigation of Enteric Methane Production Affect Rumen Function and Animal Productivity in Dairy Cows?

    PubMed

    Veneman, Jolien B; Muetzel, Stefan; Hart, Kenton J; Faulkner, Catherine L; Moorby, Jon M; Perdok, Hink B; Newbold, Charles J

    2015-01-01

    It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations. PMID:26509835

  9. Does Dietary Mitigation of Enteric Methane Production Affect Rumen Function and Animal Productivity in Dairy Cows?

    PubMed

    Veneman, Jolien B; Muetzel, Stefan; Hart, Kenton J; Faulkner, Catherine L; Moorby, Jon M; Perdok, Hink B; Newbold, Charles J

    2015-01-01

    It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations.

  10. Comment on the Θ+-PRODUCTION at High Energy

    NASA Astrophysics Data System (ADS)

    Titov, A. I.; Hosaka, A.; Daté, S.; Ohashi, Y.

    2005-04-01

    We show that the cross sections of the Θ+-pentaquark production in different processes decrease with energy faster than the cross sections of production of the conventional three-quark hyperons. Therefore, the threshold region with the initial energy of a few GeV or less seems to be more favorable for the production and experimental study of Θ+-pentaquark.

  11. Quality and safety aspects of meat products as affected by various physical manipulations of packaging materials.

    PubMed

    Lee, Keun Taik

    2010-09-01

    This article explores the effects of physically manipulated packaging materials on the quality and safety of meat products. Recently, innovative measures for improving quality and extending the shelf-life of packaged meat products have been developed, utilizing technologies including barrier film, active packaging, nanotechnology, microperforation, irradiation, plasma and far-infrared ray (FIR) treatments. Despite these developments, each technology has peculiar drawbacks which will need to be addressed by meat scientists in the future. To develop successful meat packaging systems, key product characteristics affecting stability, environmental conditions during storage until consumption, and consumers' packaging expectations must all be taken into consideration. Furthermore, the safety issues related to packaging materials must also be taken into account when processing, packaging and storing meat products.

  12. Herbivore and Fungal Pathogen Exclusion Affects the Seed Production of Four Common Grassland Species

    PubMed Central

    Dickson, Timothy L.; Mitchell, Charles E.

    2010-01-01

    Insect herbivores and fungal pathogens can independently affect plant fitness, and may have interactive effects. However, few studies have experimentally quantified the joint effects of insects and fungal pathogens on seed production in non-agricultural populations. We examined the factorial effects of insect herbivore exclusion (via insecticide) and fungal pathogen exclusion (via fungicide) on the population-level seed production of four common graminoid species (Andropogon gerardii, Schizachyrium scoparium, Poa pratensis, and Carex siccata) over two growing seasons in Minnesota, USA. We detected no interactive effects of herbivores and pathogens on seed production. However, the seed production of all four species was affected by either insecticide or fungicide in at least one year of the study. Insecticide consistently doubled the seed production of the historically most common species in the North American tallgrass prairie, A. gerardii (big bluestem). This is the first report of insect removal increasing seed production in this species. Insecticide increased A. gerardii number of seeds per seed head in one year, and mass per seed in both years, suggesting that consumption of flowers and seed embryos contributed to the effect on seed production. One of the primary insect species consuming A. gerardii flowers and seed embryos was likely the Cecidomyiid midge, Contarinia wattsi. Effects on all other plant species varied among years. Herbivores and pathogens likely reduce the dispersal and colonization ability of plants when they reduce seed output. Therefore, impacts on seed production of competitive dominant species may help to explain their relatively poor colonization abilities. Reduced seed output by dominant graminoids may thereby promote coexistence with subdominant species through competition-colonization tradeoffs. PMID:20711408

  13. Factors affecting waterfowl breeding density and productivity estimates in the Northeast

    USGS Publications Warehouse

    Longcore, J.R.; Ringelman, J.K.

    1980-01-01

    During 1977-79, information useful for making breeding pair and brood surveys was obtained while studying black duck (Anas rubripes) habitat selection and productivity in south-central Maine. Surveys should be initiated in relation to sunrise and sunset time. Morning versus evening counts, familiarity with the survey area, wetland dynamics of the study area, wetland surface water area, and allotment of relative survey effort are discussed as they affect the conduct and results of brood surveys.

  14. Solar Energy - An Option for Future Energy Production

    ERIC Educational Resources Information Center

    Glaser, Peter E.

    1972-01-01

    Discusses the exponential growth of energy consumption and future consequences. Possible methods of converting solar energy to power such as direct energy conversion, focusing collectors, selective rediation absorbers, ocean thermal gradient, and space solar power are considered. (DF)

  15. Assessment, modeling and optimization of parameters affecting the formation of disinfection by-products in water.

    PubMed

    Gougoutsa, Chrysa; Christophoridis, Christophoros; Zacharis, Constantinos K; Fytianos, Konstantinos

    2016-08-01

    This study focused on (a) the development of a screening methodology, in order to determine the main experimental variables affecting chlorinated and brominated disinfection by-product (DBP) formation in water during chlorination experiments and (b) the application of a central composite design (CCD) using response surface methodology (RSM) for the mathematical description and optimization of DBP formation. Chlorine dose and total organic carbon (TOC) were proven to be the main factors affecting the formation of total chlorinated DBPs, while chlorine dose and bromide concentration were the main parameters affecting the total brominated THMs. Longer contact time promoted a rise in chlorinated DBPs' concentration even in the presence of a minimal amount of organic matter. A maximum production of chlorinated DBPs was observed under a medium TOC value and it reduced at high TOC concentrations, possibly due to the competitive production of brominated THMs. The highest concentrations of chlorinated THMs were observed at chlorine dose 10 mg L(-1) and TOC 5.5 mg L(-1). The formation of brominated DBPs is possible even with a minimum amount of NaOCl in the presence of high concentration of bromide ions. Brominated DBPs were observed in maximum concentrations using 8 mg L(-1) of chlorine in the presence of 300 μg L(-1) bromides. PMID:27178297

  16. 78 FR 73737 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for General...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ..., Office of Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J, 1000 Independence...; ] DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AD09 Energy Efficiency Program for Consumer Products: Energy Conservation Standards for General Service Lamps AGENCY: Office of Energy Efficiency and Renewable......

  17. Future U.S. water consumption : The role of energy production.

    SciTech Connect

    Elcock, D.; Environmental Science Division

    2010-06-01

    This study investigates how meeting domestic energy production targets for both fossil and renewable fuels may affect future water demand. It combines projections of energy production developed by the U.S. Department of Energy with estimates of water consumption on a per-unit basis (water-consumption coefficients) for coal, oil, gas, and biofuels production, to estimate and compare the domestic freshwater consumed. Although total domestic freshwater consumption is expected to increase by nearly 7% between 2005 and 2030, water consumed for energy production is expected to increase by nearly 70%, and water consumed for biofuels (biodiesel and ethanol) production is expected to increase by almost 250%. By 2030, water consumed in the production of biofuels is projected to account for nearly half of the total amount of water consumed in the production of all energy fuels. Most of this is for irrigation, and the West North Central Region is projected to consume most of this water in 2030. These findings identify an important potential future conflict between renewable energy production and water availability that warrants further investigation and action to ensure that future domestic energy demand can be met in an economically efficient and environmentally sustainable manner.

  18. Legal and regulatory issues affecting the aquifer thermal energy storage concept

    SciTech Connect

    Hendrickson, P.L.

    1980-10-01

    A number of legal and regulatory issus that potentially can affect implementation of the Aquifer Thermal Energy Storage (ATES) concept are examined. This concept involves the storage of thermal energy in an underground aquifer until a later date when it can be effectively utilized. Either heat energy or chill can be stored. Potential end uses of the energy include district space heating and cooling, industrial process applications, and use in agriculture or aquaculture. Issues are examined in four categories: regulatory requirements, property rights, potential liability, and issues related to heat or chill delivery.

  19. A review on factors affecting microcystins production by algae in aquatic environments.

    PubMed

    Dai, Ruihua; Wang, Pinfei; Jia, Peili; Zhang, Yi; Chu, Xincheng; Wang, Yifei

    2016-03-01

    Microcystins, a toxin produced by Microcystis aeruginosa have become a global environmental issue in recent years. As a consequence of eutrophication, microcystins have become widely disseminated in drinking water sources, seriously impairing drinking water quality. This review focuses on the relationship between microcystins synthesis and physical, chemical, and biological environmental factors that are significant in controlling their production. Light intensity and temperature are the more important physical factors, and in many cases, an optimum level for these two factors has been observed. Nitrogen and phosphorus are the key chemical factors causing frequent occurrence of harmful algal blooms and microcystins production. The absorption of nutrients and metabolic activities of algae are affected by different concentrations and forms of nitrogen and phosphorus, leading to variations in microcystins production Metal ions and emerging pollutants are other significant chemical factors, whose comprehensive impact is still being studied. Algae can also interact with biological agents like predators and competitors in aquatic environments, and such interactions are suggested to promote MCs production and release. This review further highlights areas that require further research in order to gain a better understanding of microcystins production. It provides a theoretical basis for the control of microcystins production and releasing into aquatic environments. PMID:26874538

  20. Proximity to forest edge does not affect crop production despite pollen limitation.

    PubMed

    Chacoff, Natacha P; Aizen, Marcelo A; Aschero, Valeria

    2008-04-22

    A decline in pollination function has been linked to agriculture expansion and intensification. In northwest Argentina, pollinator visits to grapefruit, a self-compatible but pollinator-dependent crop, decline by approximately 50% at 1km from forest edges. We evaluated whether this decrease in visitation also reduces the pollination service in this crop. We analysed the quantity and quality of pollen deposited on stigmas, and associated limitation of fruit production at increasing distances (edge: 10, 100, 500 and 1000m) from the remnants of Yungas forest. We also examined the quantitative and qualitative efficiency of honeybees as pollen vectors. Pollen receipt and pollen tubes in styles decreased with increasing distance from forest edge; however, this decline did not affect fruit production. Supplementation of natural pollen with self- and cross-pollen revealed that both pollen quantity and quality limited fruit production. Despite pollen limitation, honeybees cannot raise fruit production because they often do not deposit sufficient high-quality pollen per visit to elicit fruit development. However, declines in visitation frequency well below seven visits during a flower's lifespan could decrease production beyond current yields. In this context, the preservation of forest remnants, which act as pollinator sources, could contribute to resilience in crop production. Like wild plants, pollen limitation of the yield among animal-pollinated crops may be common and indicative not only of pollinator scarcity, but also of poor pollination quality, whereby pollinator efficiency, rather than just abundance, can play a broader role than previously appreciated.

  1. A review on factors affecting microcystins production by algae in aquatic environments.

    PubMed

    Dai, Ruihua; Wang, Pinfei; Jia, Peili; Zhang, Yi; Chu, Xincheng; Wang, Yifei

    2016-03-01

    Microcystins, a toxin produced by Microcystis aeruginosa have become a global environmental issue in recent years. As a consequence of eutrophication, microcystins have become widely disseminated in drinking water sources, seriously impairing drinking water quality. This review focuses on the relationship between microcystins synthesis and physical, chemical, and biological environmental factors that are significant in controlling their production. Light intensity and temperature are the more important physical factors, and in many cases, an optimum level for these two factors has been observed. Nitrogen and phosphorus are the key chemical factors causing frequent occurrence of harmful algal blooms and microcystins production. The absorption of nutrients and metabolic activities of algae are affected by different concentrations and forms of nitrogen and phosphorus, leading to variations in microcystins production Metal ions and emerging pollutants are other significant chemical factors, whose comprehensive impact is still being studied. Algae can also interact with biological agents like predators and competitors in aquatic environments, and such interactions are suggested to promote MCs production and release. This review further highlights areas that require further research in order to gain a better understanding of microcystins production. It provides a theoretical basis for the control of microcystins production and releasing into aquatic environments.

  2. Spatial pattern affects diversity-productivity relationships in experimental meadow communities

    NASA Astrophysics Data System (ADS)

    Lamošová, Tereza; Doležal, Jiří; Lanta, Vojtěch; Lepš, Jan

    2010-05-01

    Plant species create aggregations of conspecifics as a consequence of limited seed dispersal, clonal growth and heterogeneous environment. Such intraspecific aggregation increases the importance of intraspecific competition relative to interspecific competition which may slow down competitive exclusion and promote species coexistence. To examine how spatial aggregation impacts the functioning of experimental assemblages of varying species richness, eight perennial grassland species of different growth form were grown in random and aggregated patterns in monocultures, two-, four-, and eight-species mixtures. In mixtures with an aggregated pattern, monospecific clumps were interspecifically segregated. Mixed model ANOVA was used to test (i) how the total productivity and productivity of individual species is affected by the number of species in a mixture, and (ii) how these relationships are affected by spatial pattern of sown plants. The main patterns of productivity response to species richness conform to other studies: non-transgressive overyielding is omnipresent (the productivity of mixtures is higher than the average of its constituent species so that the net diversity, selection and complementarity effects are positive), whereas transgressive overyielding is found only in a minority of cases (average of log(overyielding) being close to zero or negative). The theoretical prediction that plants in a random pattern should produce more than in an aggregated pattern (the distances to neighbours are smaller and consequently the competition among neighbours stronger) was confirmed in monocultures of all the eight species. The situation is more complicated in mixtures, probably as a consequence of complicated interplay between interspecific and intraspecific competition. The most productive species ( Achillea, Holcus, Plantago) were competitively superior and increased their relative productivity with mixture richness. The intraspecific competition of these species is

  3. 48 CFR 52.223-15 - Energy Efficiency in Energy-Consuming Products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Energy Efficiency in Energy-Consuming Products. 52.223-15 Section 52.223-15 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.223-15 Energy Efficiency in Energy-Consuming Products. As prescribed in...

  4. 48 CFR 52.223-15 - Energy Efficiency in Energy-Consuming Products.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Energy Efficiency in Energy-Consuming Products. 52.223-15 Section 52.223-15 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.223-15 Energy Efficiency in Energy-Consuming Products. As prescribed in...

  5. 48 CFR 52.223-15 - Energy Efficiency in Energy-Consuming Products.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Energy Efficiency in Energy-Consuming Products. 52.223-15 Section 52.223-15 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.223-15 Energy Efficiency in Energy-Consuming Products. As prescribed in...

  6. 48 CFR 52.223-15 - Energy Efficiency in Energy-Consuming Products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Energy Efficiency in Energy-Consuming Products. 52.223-15 Section 52.223-15 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.223-15 Energy Efficiency in Energy-Consuming Products. As prescribed in...

  7. 48 CFR 52.223-15 - Energy Efficiency in Energy-Consuming Products.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Energy Efficiency in Energy-Consuming Products. 52.223-15 Section 52.223-15 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.223-15 Energy Efficiency in Energy-Consuming Products. As prescribed in...

  8. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review.

    PubMed

    Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus.

  9. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review.

    PubMed

    Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus. PMID:27148211

  10. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review

    PubMed Central

    Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus. PMID:27148211

  11. How can farming intensification affect the environmental impact of milk production?

    PubMed

    Bava, L; Sandrucci, A; Zucali, M; Guerci, M; Tamburini, A

    2014-07-01

    The intensification process of the livestock sector has been characterized in recent decades by increasing output of product per hectare, increasing stocking rate, including more concentrated feed in the diet, and improving the genetic merit of the breeds. In dairy farming, the effects of intensification on the environmental impact of milk production are not completely clarified. The aim of the current study was to assess the environmental impacts of dairy production by a life cycle approach and to identify relations between farming intensity and environmental performances expressed on milk and land units. A group of 28 dairy farms located in northern Italy was involved in the study; data collected during personal interviews of farmers were analyzed to estimate emissions (global warming potential, acidification, and eutrophication potentials) and nonrenewable source consumption (energy and land use). The environmental impacts of milk production obtained from the life cycle assessment were similar to those of other recent studies and showed high variability among the farms. From a cluster analysis, 3 groups of farms were identified, characterized by different levels of production intensity. Clusters of farms showed similar environmental performances on product basis, despite important differences in terms of intensification level, management, and structural characteristics. Our study pointed out that, from a product perspective, the most environmentally friendly way to produce milk is not clearly identifiable. However, the principal component analysis showed that some characteristics related to farming intensification, such as milk production per cow, dairy efficiency, and stocking density, were negatively related to the impacts per kilogram of product, suggesting a role of these factors in the mitigation strategy of environmental burden of milk production on a global scale. Considering the environmental burden on a local perspective, the impacts per hectare were

  12. How can farming intensification affect the environmental impact of milk production?

    PubMed

    Bava, L; Sandrucci, A; Zucali, M; Guerci, M; Tamburini, A

    2014-07-01

    The intensification process of the livestock sector has been characterized in recent decades by increasing output of product per hectare, increasing stocking rate, including more concentrated feed in the diet, and improving the genetic merit of the breeds. In dairy farming, the effects of intensification on the environmental impact of milk production are not completely clarified. The aim of the current study was to assess the environmental impacts of dairy production by a life cycle approach and to identify relations between farming intensity and environmental performances expressed on milk and land units. A group of 28 dairy farms located in northern Italy was involved in the study; data collected during personal interviews of farmers were analyzed to estimate emissions (global warming potential, acidification, and eutrophication potentials) and nonrenewable source consumption (energy and land use). The environmental impacts of milk production obtained from the life cycle assessment were similar to those of other recent studies and showed high variability among the farms. From a cluster analysis, 3 groups of farms were identified, characterized by different levels of production intensity. Clusters of farms showed similar environmental performances on product basis, despite important differences in terms of intensification level, management, and structural characteristics. Our study pointed out that, from a product perspective, the most environmentally friendly way to produce milk is not clearly identifiable. However, the principal component analysis showed that some characteristics related to farming intensification, such as milk production per cow, dairy efficiency, and stocking density, were negatively related to the impacts per kilogram of product, suggesting a role of these factors in the mitigation strategy of environmental burden of milk production on a global scale. Considering the environmental burden on a local perspective, the impacts per hectare were

  13. Ionic liquid-based green processes for energy production.

    PubMed

    Zhang, Suojiang; Sun, Jian; Zhang, Xiaochun; Xin, Jiayu; Miao, Qingqing; Wang, Jianji

    2014-11-21

    To mitigate the growing pressure on resource depletion and environment degradation, the development of green processes for the production of renewable energy is highly required. As a class of novel and promising media, ionic liquids (ILs) have shown infusive potential applications in energy production. Aiming to offer a critical overview regarding the new challenges and opportunities of ILs for developing green processes of renewable energy, this article emphasises the role of ILs as catalysts, solvents, or electrolytes in three broadly interesting energy production processes from renewable resources, such as CO2 conversion to fuels and fuel additives, biomass pretreatment and conversion to biofuels, as well as solar energy and energy storage. It is expected that this article will stimulate a generation of new ideas and new technologies in IL-based renewable energy production. PMID:24553494

  14. Ionic liquid-based green processes for energy production.

    PubMed

    Zhang, Suojiang; Sun, Jian; Zhang, Xiaochun; Xin, Jiayu; Miao, Qingqing; Wang, Jianji

    2014-11-21

    To mitigate the growing pressure on resource depletion and environment degradation, the development of green processes for the production of renewable energy is highly required. As a class of novel and promising media, ionic liquids (ILs) have shown infusive potential applications in energy production. Aiming to offer a critical overview regarding the new challenges and opportunities of ILs for developing green processes of renewable energy, this article emphasises the role of ILs as catalysts, solvents, or electrolytes in three broadly interesting energy production processes from renewable resources, such as CO2 conversion to fuels and fuel additives, biomass pretreatment and conversion to biofuels, as well as solar energy and energy storage. It is expected that this article will stimulate a generation of new ideas and new technologies in IL-based renewable energy production.

  15. Cytokinin affects nuclear- and plastome-encoded energy-converting plastid enzymes.

    PubMed

    Kasten, B; Buck, F; Nuske, J; Reski, R

    1997-01-01

    Cytokinins induce two specific morphological alterations in mosses: (i) the differentiation of a tip-growing cell into a three-faced apical cell (the so-called bud), and (ii) the division of chloroplasts. In a developmental mutant of the moss Physcomitrella patens (Hedw.) B.S.G. (mutant PC22) impeded in both cellular differentiation (bud production) and chloroplast division, addition of cytokinin (N6-delta 2-isopentenyladenine) led to bud production after 3 d in the wild type and after 7 d in the mutant. Hormone induced a division of the mutant macrochloroplasts starting within 24 h and ongoing for 72 h. During this period the abundances of several plastid proteins changed in both genotypes as judged by two-dimensional-protein gel electrophoresis, silver staining and subsequent quantification with novel computer software. Eight of these polypeptides were isolated independently, subjected to microsequencing and thus identified, resulting in the first protein sequence data from a moss. Three polypeptides (24 kDa, 22 kDa, 20 kDa) were found to be homologous to enhancer protein OEE2 of the oxygen-evolving complex, four to represent isoforms of phosphoglycerate kinase (EC 2.7.2.3), and one was identified as the beta-chain of chloroplast ATPase (EC 3.6.1.34). Possible involvement of these key enzymes of the chloroplast energy-conversion machinery in organelle division and in cellular differentiation is discussed. Further sequence information was obtained from both subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39). Amounts of these polypeptides were not appreciably affected by cytokinin in moss chloroplasts.

  16. Climate change induced rainfall patterns affect wheat productivity and agroecosystem functioning dependent on soil types

    NASA Astrophysics Data System (ADS)

    Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.

    2014-05-01

    Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.

  17. Liquid and solid meal replacement products differentially affect postprandial appetite and food intake in older adults.

    PubMed

    Stull, April J; Apolzan, John W; Thalacker-Mercer, Anna E; Iglay, Heidi B; Campbell, Wayne W

    2008-07-01

    Liquid and solid foods are documented to elicit differential appetitive and food intake responses. This study was designed to assess the influences of liquid vs solid meal replacement products on postprandial appetite ratings and subsequent food intake in healthy older adults. This study used a randomized and crossover design with two 1-day trials (1 week between trials), and 24 adults (12 men and 12 women) aged 50 to 80 years with body mass index (calculated as kg/m2) between 22 and 30 participated. After an overnight fast, the subjects consumed meal replacement products as either a beverage (liquid) or a bar (solid). The meal replacement products provided 25% of each subject's daily estimated energy needs with comparable macronutrient compositions. Subjects rated their appetite on a 100 mm quasilogarithmic visual analog scale before and 15, 30, 45, 60, 90, 120, and 150 minutes after consuming the meal replacement product. At minute 120, each subject consumed cooked oatmeal ad libitum to a "comfortable level of fullness." Postprandial composite (area under the curve from minute 15 to minute 120) hunger was higher (P=0.04) for the liquid vs solid meal replacement products and desire to eat (P=0.15), preoccupation with thoughts of food (P=0.07), and fullness (P=0.25) did not differ for the liquid vs solid meal replacement products. On average, the subjects consumed 13.4% more oatmeal after the liquid vs solid (P=0.006) meal replacement product. These results indicate that meal replacement products in liquid and solid form do not elicit comparable appetitive and ingestive behavior responses and that meal replacement products in liquid form blunt the postprandial decline in hunger and increase subsequent food intake in older adults.

  18. Hawaii Integrated Energy Assessment. Volume V. Rules, regulations, permits and policies affecting the development of alternate energy sources in Hawaii

    SciTech Connect

    Not Available

    1980-01-01

    A comprehensive presentaton of the major permits, regulations, rules, and controls which are likely to affect the development of alternate energy sources in Hawaii is presented. An overview of the permit process, showing the major categories and types of permits and controls for energy alternatives is presented. This is followed by a brief resume of current and projected changes designed to streamline the permit process. The permits, laws, regulations, and controls that are applicable to the development of energy alternatives in Hawaii are described. The alternate energy technologies affected, a description of the permit or control, and the requirements for conformance are presented for each applicable permit. Federal, state, and county permits and controls are covered. The individual energy technologies being considered as alternatives to the State's present dependence on imported fossil fuels are emphasized. The alternate energy sources covered are bioconversion, geothermal, ocean thermal, wind, solar (direct), and solid waste. For each energy alternative, the significant permits are summarized with a brief explanation of why they may be necessary. The framework of policy development at each of the levels of government with respect to the alternate energy sources is covered.

  19. Do non-native plant species affect the shape of productivity-diversity relationships?

    USGS Publications Warehouse

    Drake, J.M.; Cleland, E.E.; Horner-Devine, M. C.; Fleishman, E.; Bowles, C.; Smith, M.D.; Carney, K.; Emery, S.; Gramling, J.; Vandermast, D.B.; Grace, J.B.

    2008-01-01

    The relationship between ecosystem processes and species richness is an active area of research and speculation. Both theoretical and experimental studies have been conducted in numerous ecosystems. One finding of these studies is that the shape of the relationship between productivity and species richness varies considerably among ecosystems and at different spatial scales, though little is known about the relative importance of physical and biological mechanisms causing this variation. Moreover, despite widespread concern about changes in species' global distributions, it remains unclear if and how such large-scale changes may affect this relationship. We present a new conceptual model of how invasive species might modulate relationships between primary production and species richness. We tested this model using long-term data on relationships between aboveground net primary production and species richness in six North American terrestrial ecosystems. We show that primary production and abundance of non-native species are both significant predictors of species richness, though we fail to detect effects of invasion extent on the shapes of the relationship between species richness and primary production.

  20. Potential production of energy cane for fuel in the Caribbean

    SciTech Connect

    Samuels, G.

    1984-12-01

    Sugarcane presents a tremendous potential as a renewable energy source for the non-oil producing countries of the Caribbean. The energy cane concept is sugarcane managed for maximum dry matter (total fermentable solids for alcohol fuel and combustible solids for electricity) rather than sucrose. The use of sugarcane as a renewable energy source can provide a solution, either partial or total, to the Caribbean energy problem. Sugar cane production and the use of this crop as a renewable energy source are described.

  1. Nuclear DNA content affects the productivity of conifer forests by altering hydraulic architecture

    NASA Astrophysics Data System (ADS)

    Alday, Josu; Resco de Dios, Víctor

    2014-05-01

    Predictions of future global climate rely on feedbacks between terrestrial vegetation and the global carbon cycle, but the exact mechanisms underlying this relationship are still being discussed. One of the key knowledge gaps lies on the scaling of cellular processes to the ecosystem level. Here we examine whether an under-explored plant trait, inter-specific variation in the bulk amount of DNA in unreplicated somatic cells (2C DNA content), can explain inter-specific variation in the maximum productivity of conifer forests. We expected 2C DNA content to be negatively related to conifer productivity because: 1) it is positively correlated with cell volume (which, in turn, potentially affects structural features such as leaf mass area, a strong predictor of photosynthetic capacity); 2) it is positively correlated with stomatal size (with larger stomata leading to lower overall stomatal conductance and, by extension, lower CO2 uptake); and 3) larger genome sizes may reduce P availability in RNA (which has been hypothesized to slow growth). We present the results of regression and independent contrasts in different monospecific forests encompassing a 52º latitudinal gradient, each being dominated by 1 of 35 different conifer species. Contrary to expectations, we observed a positive correlation between genome size and maximum Gross Primary Productivity (R2 = 0.47) and also between genome size maximum tree height (R2 = 0.27). This correlation was apparently driven by the effects of genome size on stem hydraulics, since 2C DNA was positively correlated with wood density (R2 = 0.40) and also with resistance to cavitation (P50, R2 = 0.28). That is, increased genome sizes have a positive effect on the productivity of conifer forests by affecting the vascular tissues to increase their capacity for water transport. Our results shed a new light on the evolution of the vascular system of conifer forests and how they affect ecosystem productivity, and indicate the potential to

  2. Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products

    SciTech Connect

    Homan, GregoryK; Sanchez, Marla; Brown, RichardE; Lai, Judy

    2010-08-24

    This paper presents current and projected savings for ENERGY STAR labeled products, and details the status of the model as implemented in the September 2009 spreadsheets. ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates for ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2008, annual forecasts for 2009 and 2010, and cumulative savings estimates for the period 1993 through 2008 and cumulative forecasts for the period 2009 through 2015. Through 2008 the program saved 8.8 Quads of primary energy and avoided the equivalent of 158 metric tones carbon (MtC). The forecast for the period 2009-2015 is 18.1 Quads or primary energy saved and 316 MtC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 104 MtC and 213 MtC (1993 to 2008) and between 206 MtC and 444 MtC (2009 to 2015). In this report we address the following questions for ENERGY STAR labeled products: (1) How are ENERGY STAR impacts quantified; (2) What are the ENERGY STAR achievements; and (3) What are the limitations to our method?

  3. Coal production and energy fact in Turkey

    SciTech Connect

    Sensogut, C.; Oren, O.

    2009-07-01

    Energy is an important input for manufacturing plants and serves human beings to improve their level of development. However, as a person living in this society, each of us is getting anxious since the external dependence on the side of energy increases. In order to handle the deficiencies, which may occur in the near future, it is necessary to look into today's energy policies. In doing so, coal should be kept in mind as a respectful actor.

  4. Global energy consumption and production in 2000

    NASA Astrophysics Data System (ADS)

    Allen, E. L.; Davison, C.; Dougher, R.; Edmonds, J. A.; Reilly, J.

    1981-02-01

    This study anticipates that global energy demand will continue to expand through 2000, although at a slower pace than in 1965 to 1978. Growth of supply is expected to be largely in conventional, nonrenewable fuels - coal, oil, uranium, and natural gas. Energy growth is also expected to slow down in terms of energy consumption per unit of output as a consequence of continuing efficiency improvements, which, in turn, result from higher energy prices. Slower rates of economic growth are expected in all groups of countries, developed and underdeveloped.

  5. Intracolonial genetic variation affects reproductive skew and colony productivity during colony foundation in a parthenogenetic termite

    PubMed Central

    2014-01-01

    Background In insect societies, intracolonial genetic variation is predicted to affect both colony efficiency and reproductive skew. However, because the effects of genetic variation on these two colony characteristics have been tested independently, it remains unclear whether they are affected by genetic variation independently or in a related manner. Here we test the effect of genetic variation on colony efficiency and reproductive skew in a rhinotermitid termite, Reticulitermes speratus, a species in which female-female pairs can facultatively found colonies. We established colonies using two types of female-female pairs: colonies founded by sisters (i.e., sister-pair colonies) and those founded by females from different colonies (i.e., unrelated-pair colonies). Colony growth and reproductive skew were then compared between the two types of incipient colonies. Results At 15 months after colony foundation, unrelated-pair colonies were larger than sister-pair colonies, although the caste ratio between workers and nymphs, which were alternatively differentiated from young larvae, did not differ significantly. Microsatellite DNA analyses of both founders and their parthenogenetically produced offspring indicated that, in both sister-pair and unrelated-pair colonies, there was no significant skew in the production of eggs, larvae, workers and soldiers. Nymph production, however, was significantly more skewed in the sister-pair colonies than in unrelated-pair colonies. Because nymphs can develop into winged adults (alates) or nymphoid reproductives, they have a higher chance of direct reproduction than workers in this species. Conclusions Our results support the idea that higher genetic variation among colony members could provide an increase in colony productivity, as shown in hymenopteran social insects. Moreover, this study suggests that low genetic variation (high relatedness) between founding females increases reproductive skew via one female preferentially

  6. Condition-dependent ejaculate production affects male mating behavior in the common bedbug Cimex lectularius.

    PubMed

    Kaldun, Bettina; Otti, Oliver

    2016-04-01

    Food availability in the environment is often low and variable, constraining organisms in their resource allocation to different life-history traits. For example, variation in food availability is likely to induce condition-dependent investment in reproduction. Further, diet has been shown to affect ejaculate size, composition and quality. How these effects translate into male reproductive success or change male mating behavior is still largely unknown. Here, we concentrated on the effect of meal size on ejaculate production, male reproductive success and mating behavior in the common bedbug Cimex lectularius. We analyzed the production of sperm and seminal fluid within three different feeding regimes in six different populations. Males receiving large meals produced significantly more sperm and seminal fluid than males receiving small meals or no meals at all. While such condition-dependent ejaculate production did not affect the number of offspring produced after a single mating, food-restricted males could perform significantly fewer matings than fully fed males. Therefore, in a multiple mating context food-restricted males paid a fitness cost and might have to adjust their mating strategy according to the ejaculate available to them. Our results indicate that meal size has no direct effect on ejaculate quality, but food availability forces a condition-dependent mating rate on males. Environmental variation translating into variation in male reproductive traits reveals that natural selection can interact with sexual selection and shape reproductive traits. As males can modulate their ejaculate size depending on the mating situation, future studies are needed to elucidate whether environmental variation affecting the amount of ejaculate available might induce different mating strategies. PMID:27066237

  7. Phenotypes and gene expression profiles of Saccharopolyspora erythraea rifampicin-resistant (rif) mutants affected in erythromycin production

    PubMed Central

    Carata, Elisabetta; Peano, Clelia; Tredici, Salvatore M; Ferrari, Francesco; Talà, Adelfia; Corti, Giorgio; Bicciato, Silvio; De Bellis, Gianluca; Alifano, Pietro

    2009-01-01

    Background There is evidence from previous works that bacterial secondary metabolism may be stimulated by genetic manipulation of RNA polymerase (RNAP). In this study we have used rifampicin selection as a strategy to genetically improve the erythromycin producer Saccharopolyspora erythraea. Results Spontaneous rifampicin-resistant (rif) mutants were isolated from the parental strain NRRL2338 and two rif mutations mapping within rpoB, S444F and Q426R, were characterized. With respect to the parental strain, S444F mutants exhibited higher respiratory performance and up to four-fold higher final erythromycin yields; in contrast, Q426R mutants were slow-growing, developmental-defective and severely impaired in erythromycin production. DNA microarray analysis demonstrated that these rif mutations deeply changed the transcriptional profile of S. erythraea. The expression of genes coding for key enzymes of carbon (and energy) and nitrogen central metabolism was dramatically altered in turn affecting the flux of metabolites through erythromycin feeder pathways. In particular, the valine catabolic pathway that supplies propionyl-CoA for biosynthesis of the erythromycin precursor 6-deoxyerythronolide B was strongly up-regulated in the S444F mutants, while the expression of the biosynthetic gene cluster of erythromycin (ery) was not significantly affected. In contrast, the ery cluster was down-regulated (<2-fold) in the Q426R mutants. These strains also exhibited an impressive stimulation of the nitrogen regulon, which may contribute to lower erythromycin yields as erythromycin production was strongly inhibited by ammonium. Conclusion Rifampicin selection is a simple and reliable tool to investigate novel links between primary and secondary metabolism and morphological differentiation in S. erythraea and to improve erythromycin production. At the same time genome-wide analysis of expression profiles using DNA microarrays allowed information to be gained about the mechanisms

  8. Silvicultural systems for the energy efficient production of fuel biomass

    SciTech Connect

    Ledig, F.T.

    1981-01-01

    Production of biomass by forests is highly energy efficient. Purely exploitative schemes are more efficient than highly intensive silviculture. However, net energy yield increases with intensity of cultivation, so silvicultural systems approaching those of agricultural cropping should be favored from an energy production standpoint. Efficiency can be further increased by breeding, an area neglected in forestry for centuries after it had become a proven assist in agriculture. The rate of production of biomass can be increased by breeding for rapid growth. Simultaneously, it may be possible to reduce energy inputs by breeding for trees that do not require supplemental fertilization or by engineering new symbiotic relationships with nitrogen-fixing organisms.

  9. Technical analysis of the use of biomass for energy production

    NASA Astrophysics Data System (ADS)

    Spiewak, I.; Nichols, J. P.; Alvic, D.; Delene, J. G.; Fitzgerald, B. H.; Hightower, J. R.; Klepper, O. H.; Krummel, J. R.; Mills, J. B.

    1982-08-01

    Results of a technical and economic evaluation of the use of biomass for energy production are presented. Estimates are made of the current and projected production and uses of biomass in the forms of wood, crop residues, grass and herbage, special crops, and animal wastes in various sectors of the US energy market. These studies indicate that because of its higher-value uses, bulkiness, diffuseness, and high water content, biomass is generally not competitive with conventional energy sources and is expected to have only limited application for energy production in the major market sectors - including the commercial sector, manufacturing, transportation, and electric utilities. The use of biomass for energy production is increasing in the forest-products industry, in farm applications, and in home heating because it is readily available to those users.

  10. Does humor in radio advertising affect recognition of novel product brand names?

    PubMed

    Berg, E M; Lippman, L G

    2001-04-01

    The authors proposed that item selection during shopping is based on brand name recognition rather than recall. College students rated advertisements and news stories of a simulated radio program for level of amusement (orienting activity) before participating in a surprise recognition test. Humor level of the advertisements was varied systematically, and content was controlled. According to signal detection analysis, humor did not affect the strength of recognition memory for brand names (nonsense units). However, brand names and product types were significantly more likely to be associated when appearing in humorous advertisements than in nonhumorous advertisements. The results are compared with prior findings concerning humor and recall. PMID:11506048

  11. Does humor in radio advertising affect recognition of novel product brand names?

    PubMed

    Berg, E M; Lippman, L G

    2001-04-01

    The authors proposed that item selection during shopping is based on brand name recognition rather than recall. College students rated advertisements and news stories of a simulated radio program for level of amusement (orienting activity) before participating in a surprise recognition test. Humor level of the advertisements was varied systematically, and content was controlled. According to signal detection analysis, humor did not affect the strength of recognition memory for brand names (nonsense units). However, brand names and product types were significantly more likely to be associated when appearing in humorous advertisements than in nonhumorous advertisements. The results are compared with prior findings concerning humor and recall.

  12. Isolation and characterization of Rhizobium meliloti mutants affected in exopolysaccharide production.

    PubMed

    Rodríguez-Navarro, D N; Palomares, A J; Casadesús, J

    1991-06-01

    Rhizobium meliloti mutants affected in the production of exopolysaccharide (EPS) were isolated after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. The mutants were classified into three phenotypic classes: (I) Exo-, rough mutants lacking exopolysaccharide; (II) Exos (for "small") which form tiny, compact colonies and synthesize reduced amounts of EPS; and (III) Exoc (for "constitutive"), hypermucoid mutants which overproduce EPS. Hypermucoid strains showed increased resistance to desiccation. All the mutants were able to nodulate, although a significant decrease in infectivity degree and/or competitiveness was found in rough and compact strains. Two mutants proved to be deficient in nitrogen fixation. Complementation analysis with cloned R. meliloti exo genes could not be applied to the study of these Fix- mutants because introduction of plasmids derived from cosmid vector pLAFR1 caused loss of nodulating ability. However, complementation of calcofluor staining and EPS production was observed. Complementation with certain exo genes also caused a marked increase in motility.

  13. Phonological Neighborhood Competition Affects Spoken Word Production Irrespective of Sentential Context

    PubMed Central

    Fox, Neal P.; Reilly, Megan; Blumstein, Sheila E.

    2015-01-01

    Two experiments examined the influence of phonologically similar neighbors on articulation of words’ initial stop consonants in order to investigate the conditions under which lexically-conditioned phonetic variation arises. In Experiment 1, participants produced words in isolation. Results showed that the voice-onset time (VOT) of a target’s initial voiceless stop was predicted by its overall neighborhood density, but not by its having a voicing minimal pair. In Experiment 2, participants read aloud the same targets after semantically predictive sentence contexts and after neutral sentence contexts. Results showed that, although VOTs were shorter in words produced after predictive contexts, the neighborhood density effect on VOT production persisted irrespective of context. These findings suggest that global competition from a word’s neighborhood affects spoken word production independently of contextual modulation and support models in which activation cascades automatically and obligatorily among all of a selected target word’s phonological neighbors during acoustic-phonetic encoding. PMID:26124538

  14. Impaired mitochondrial energy production: the basis of pharmacoresistance in epilepsy.

    PubMed

    Yuen, Alan W C; Sander, Josemir W

    2011-10-01

    Twenty to thirty percent of people who develop epilepsy continue to have seizures despite antiepileptic drug (AED) treatment. The introduction of many new AEDs in the last two decades does not appear to have reduced substantially the proportion of people who are pharmacoresistant and continue to have seizures. Currently there are two main mechanisms suggested for pharmacoresistance in people with epilepsy: the transporter and target hypothesis. There are inadequacies in both these hypotheses and alternatives should be considered. There is accumulating evidence from animal studies, human physiological measurements and imaging studies that there is impaired mitochondrial energy production in the epileptogenic zone. Impaired mitochondrial function and lower bioenergetic state is associated with higher extracellular glutamate and increased neuronal hyperexcitability. Conversely, the ketogenic diet effective in reducing seizures, has been shown in animal studies to be associated with up-regulation of mitochondrial genes and increased mitochondrial biogenesis. A human imaging study has also shown improved cerebral energy metabolism in people on a ketogenic diet. Hence, the hypothesis is that the likelihood of seizures occurring results mainly from the interplay of three factors: the seizuregenic potential of the epileptic focus, the efficacy of AEDs and the efficiency of mitochondrial function. This hypothesis can be tested by comparing mitochondrial function in people with epilepsy who are pharmacoresistant with those who have become seizure free. The implication of the hypothesis is that the management of epilepsy should take account of the many drugs, toxins, nutrition and lifestyle factors that are known to affect mitochondrial function.

  15. Potential production of energy cane for fuel in the Caribbean

    SciTech Connect

    Samuels, G.

    1984-08-01

    Sugarcane grown as energy cane presents a new potential to the Caribbean countries to provide their own energy needs and to reduce or eliminate fuel oil imports. The use of proper agronomic techniques can convert conventional sugarcane growing to a crop capable of giving energy feedstocks in the form of fiber for boiler fuel for electricity and fermentable solids for alcohol for motor fuel. Sugarcane can still be obtained from the energy cane for domestic consumption and export if desired. The aerable land now devoted to sugarcane can utilized for energy-cane production without causing any serious imbalance in food crop production.

  16. Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products

    SciTech Connect

    Homan, Gregory K; Sanchez, Marla C.; Brown, Richard E.

    2010-11-15

    ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates from the use ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2009, annual forecasts for 2010 and 2011, and cumulative savings estimates for the period 1993 through 2009 and cumulative forecasts for the period 2010 through 2015. Through 2009 the program saved 9.5 Quads of primary energy and avoided the equivalent of 170 million metric tons carbon (MMTC). The forecast for the period 2009-2015 is 11.5 Quads or primary energy saved and 202 MMTC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 110 MMTC and 231 MMTC (1993 to 2009) and between 130 MMTC and 285 MMTC (2010 to 2015).

  17. The Energy Relationships of Corn Production and Alcohol Fermentation.

    ERIC Educational Resources Information Center

    Van Koevering, Thomas E.; And Others

    1987-01-01

    Proposes that the production of alcohol from corn be used as a practical application of scientific principles that deal with energy transformations. Discusses the solar energy available for growth, examining the utilization of solar energy by plants. Describes the conversion of corn to alcohol, with suggestions for classroom and laboratory study.…

  18. Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus grown in a chemically defined medium.

    PubMed

    Petry, S; Furlan, S; Crepeau, M J; Cerning, J; Desmazeaud, M

    2000-08-01

    We developed a chemically defined medium (CDM) containing lactose or glucose as the carbon source that supports growth and exopolysaccharide (EPS) production of two strains of Lactobacillus delbrueckii subsp. bulgaricus. The factors found to affect EPS production in this medium were oxygen, pH, temperature, and medium constituents, such as orotic acid and the carbon source. EPS production was greatest during the stationary phase. Composition analysis of EPS isolated at different growth phases and produced under different fermentation conditions (varying carbon source or pH) revealed that the component sugars were the same. The EPS from strain L. delbrueckii subsp. bulgaricus CNRZ 1187 contained galactose and glucose, and that of strain L. delbrueckii subsp. bulgaricus CNRZ 416 contained galactose, glucose, and rhamnose. However, the relative proportions of the individual monosaccharides differed, suggesting that repeating unit structures can vary according to specific medium alterations. Under pH-controlled fermentation conditions, L. delbrueckii subsp. bulgaricus strains produced as much EPS in the CDM as in milk. Furthermore, the relative proportions of individual monosaccharides of EPS produced in pH-controlled CDM or in milk were very similar. The CDM we developed may be a useful model and an alternative to milk in studies of EPS production.

  19. Factors Affecting Pheromone Production by the Pepper Weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae) and Collection Efficiency

    PubMed Central

    Eller, Fred J.; Palmquist, Debra E.

    2014-01-01

    Several factors affecting pheromone production by male pepper weevils, Anthonomus eugenii Cano (Coleoptera: Curculionidae) as well as collection efficiency were investigated. Factors studied included: porous polymer adsorbents (Tenax versus Super Q), male age, time of day, male density, and male diet. Super Q was found to be a superior adsorbent for the male-produced alcohols and geranic acid as well as the plant-produced E-β-ocimene. Pheromone production increased with male age up to about age 15 days old and then tapered off. Male pepper weevils produced the highest amount of pheromone between noon and 2 pm (i.e., 4 to 6 h after “lights on”) and were producing ca. 800 ng/h during this period. Thereafter, pheromone production decreased and was extremely low during the scotophase (i.e., ca. 12 ng/h). Male pepper weevil density had a significant effect on both release rate and pheromone composition. Pheromone production on a per male basis was highest for individual males and the percentage of geranic acid in the blend was lowest for individual males. Male pepper weevils produced only extremely low amounts of pheromone when feeding on artificial diet; however, they produced very high amounts when on fresh peppers. Together, this information will be useful in designing better attractant lures for pepper weevils. PMID:26462948

  20. Energy Star{reg{underscore}sign} label for roof products

    SciTech Connect

    Schmeltz, R.S.; Bretz, S.E.

    1998-07-01

    Home and buildings owners can save up to 40% of cooling energy costs by installing reflective roofs, especially in hot and sunny climates. The increase in exterior albedo and subsequent decrease in heat flow across the building envelope reduces the energy requirements to maintain air-conditioned space. Indirectly, the increase in overall albedo of a community as these roofs are installed in a large fraction of the buildings results in lower ambient air temperature and less need for air conditioning. Another indirect effect is a decrease in smog formation due to lower ambient air temperatures and less air pollution from power plants because of minimized electrical demand and use. The US Environmental Protection Agency and the US Department of Energy are currently developing the Energy Star Roof Products Program to create a vibrant market for energy-efficient, cost-effective roof materials through the widespread availability of products, clear recognition of the benefits by consumers, and active promotion of products by manufacturers. Several activities, including pilot procurements of room materials, and the development of outreach and training materials, will be performed to assist the transformation of the roofing market toward more energy-efficient products. Using the experiences gained in establishing the Energy Star Roof Products Program as an example, this paper will discuss the barriers to the development of energy-efficient roofing practices, program implementation, and program successes. This paper will further describe the specifics of the Energy Star Roof Products Program, its goals, benefits, activities, and timeframe.

  1. Factors affecting plasmid production in Escherichia coli from a resource allocation standpoint

    PubMed Central

    Cunningham, Drew S; Koepsel, Richard R; Ataai, Mohammad M; Domach, Michael M

    2009-01-01

    reduce acetate production would also be advantageous. The results further suggest that using some other means for plasmid selection than antibiotic resistance, or at least weakening the marker's expression, would be beneficial because it would allow more precursor metabolites, energy, and reducing power to be put toward plasmid production. Thus far, the impact of eliminating Pyk activity has been explored experimentally, with significantly higher plasmid yields resulting. PMID:19463175

  2. Mutations affecting extracellular protease production in the filamentous fungus Aspergillus nidulans.

    PubMed

    Katz, M E; Flynn, P K; vanKuyk, P A; Cheetham, B F

    1996-04-10

    The extracellular proteases of Aspergillus nidulans are known to be regulated by carbon, nitrogen and sulphur metabolite repression. In this study, a mutant with reduced levels of extracellular protease was isolated by screening for loss of halo production on milk plates. Genetic analysis of the mutant showed that it contains a single, recessive mutation, in a gene which we have designated xprE, located on chromosome VI. The xprE1 mutation affected the production of extracellular proteases in response to carbon, nitrogen and, to a lesser extent, sulphur limitation. Three reversion mutations, xprF1, xprF2 and xprG1, which suppress xprE1, were characterised. Both xprF and xprG map to chromosome VII but the two genes are unlinked. The xprF1, xprF2 and xprG1 mutants showed high levels of milk-clearing activity on medium containing milk as a carbon source but reduced growth on a number of nitrogen sources. Evidence is presented that the xprE1 and xprG1 mutations alter expression of more than one protease and affect levels of alkaline protease gene mRNA.

  3. Electrostatics in the environment: How they may affect health and productivity

    NASA Astrophysics Data System (ADS)

    Jamieson, K. S.; Simon, H. M. Ap; Bell, J. N. B.

    2008-12-01

    Lifestyles and the built environment have changed considerably during the past century and have greatly influenced the electric field, small air ion and charged submicron aerosol regimes to which individuals are often exposed. In particular the use of electrical items, synthetic materials/finishes and low humidity levels that can lead to the generation of high electrostatic charges, along with inadequate grounding protocols and building techniques which create 'Faraday cage'-like conditions, have all greatly altered the electromagnetic nature of the microclimates many people occupy for prolonged periods of time. It is suggested that the type, polarity and strengths of electric fields individuals are exposed to may affect their likelihood of succumbing to ill-health through influencing biological functioning, oxygen-uptake and retention rates of inhaled submicron contaminants to a far greater degree than previously realised. These factors can also influence the degree of local surface contamination and adhesion that occurs. It is further suggested that both health and work productivity can be affected by such factors, and that improved 'best practice' electro-hygiene/productivity protocols should be adopted wherever practical.

  4. TITER AND PRODUCT AFFECTS THE DISTRIBUTION OF GENE EXPRESSION AFTER INTRAPUTAMINAL CONVECTION-ENHANCED DELIVERY

    PubMed Central

    Emborg, Marina E.; Hurley, Samuel A.; Joers, Valerie; Tromp, Do P.M.; Swanson, Christine R.; Ohshima-Hosoyama, Sachiko; Bondarenko, Viktorya; Cummisford, Kyle; Sonnemans, Marc; Hermening, Stephan; Blits, Bas; Alexander, Andrew L.

    2014-01-01

    Background Efficacy and safety of intracerebral gene therapy for brain disorders, like Parkinson’s disease, depends on appropriate distribution of gene expression. Objectives To assess if the distribution of gene expression is affected by vector titer and protein type. Methods Four adult macaque monkeys seronegative for adeno-associated virus 5 (AAV5) received in the right and left ventral postcommisural putamen 30μl inoculation of a high or low titer suspension of AAV5 encoding glial derived neurotrophic factor (GDNF) or green fluorescent protein (GFP). Inoculations were performed using convection enhanced delivery and intraoperative MRI (IMRI). Results IMRI confirmed targeting and infusion cloud irradiating from the catheter tip into surrounding area. Postmortem analysis six weeks after surgery revealed GFP and GDNF expression ipsilateral to the injection side that had a titer-dependent distribution. GFP and GDNF expression was also observed in fibers in the Substantia Nigra (SN) pars reticulata (pr), demonstrating anterograde transport. Few GFP-positive neurons were present in the SN pars compacta (pc), possibly by direct retrograde transport of the vector. GDNF was present in many SNpc and SNpr neurons. Conclusions After controlling for target and infusate volume, intracerebral distribution of gene product is affected by vector titer and product biology. PMID:24943657

  5. Soil water repellency affects production and transport of CO2 and CH4 in soil

    NASA Astrophysics Data System (ADS)

    Urbanek, Emilia; Qassem, Khalid

    2016-04-01

    Soil moisture is known to be vital in controlling both the production and transport of C gases in soil. Water availability regulates the decomposition rates of soil organic matter by the microorganisms, while the proportion of water/air filled pores controls the transport of gases within the soil and at the soil-atmosphere interface. Many experimental studies and process models looking at soil C gas fluxes assume that soil water is uniformly distributed and soil is easily wettable. Most soils, however, exhibit some degree of soil water repellency (i.e. hydrophobicity) and do not wet spontaneously when dry or moderately moist. They have restricted infiltration and conductivity of water, which also results in extremely heterogeneous soil water distribution. This is a world-wide occurring phenomenon which is particularly common under permanent vegetation e.g. forest, grass and shrub vegetation. This study investigates the effect of soil water repellency on microbial respiration, CO2 transport within the soil and C gas fluxes between the soil and the atmosphere. The results from the field monitoring and laboratory experiments show that soil water repellency results in non-uniform water distribution in the soil which affects the CO2 and CH4 gas fluxes. The main conclusion from the study is that water repellency not only affects the water relations in the soil, but has also a great impact on greenhouse gas production and transport and therefore should be included as an important parameter during the sites monitoring and modelling of gas fluxes.

  6. Nocturnal Light Pulses Lower Carbon Dioxide Production Rate without Affecting Feed Intake in Geese.

    PubMed

    Huang, De-Jia; Yang, Shyi-Kuen

    2016-03-01

    This study was conducted to investigate the effect of nocturnal light pulses (NLPs) on the feed intake and metabolic rate in geese. Fourteen adult Chinese geese were penned individually, and randomly assigned to either the C (control) or NLP group. The C group was exposed to a 12L:12D photoperiod (12 h light and 12 h darkness per day), whereas the NLP group was exposed to a 12L:12D photoperiod inserted by 15-min lighting at 2-h intervals in the scotophase. The weight of the feed was automatically recorded at 1-min intervals for 1 wk. The fasting carbon dioxide production rate (CO2 PR) was recorded at 1-min intervals for 1 d. The results revealed that neither the daily feed intake nor the feed intakes during both the daytime and nighttime were affected by photoperiodic regimen, and the feed intake during the daytime did not differ from that during the nighttime. The photoperiodic treatment did not affect the time distribution of feed intake. However, NLPs lowered (p<0.05) the mean and minimal CO2 PR during both the daytime and nighttime. Both the mean and minimal CO2 PR during the daytime were significantly higher (p<0.05) than those during the nighttime. We concluded that NLPs lowered metabolic rate of the geese, but did not affect the feed intake; both the mean and minimal CO2 PR were higher during the daytime than during the nighttime. PMID:26950871

  7. Quantify the energy and environmental benefits of implementing energy-efficiency measures in China’s iron and steel production

    DOE PAGES

    Ma, Ding; Chen, Wenying; Xu, Tengfang

    2015-08-21

    As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits andmore » environmental benefits (i.e., CO2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.« less

  8. Quantify the energy and environmental benefits of implementing energy-efficiency measures in China’s iron and steel production

    SciTech Connect

    Ma, Ding; Chen, Wenying; Xu, Tengfang

    2015-08-21

    As one of the most energy-, emission- and pollution-intensive industries, iron and steel production is responsible for significant emissions of greenhouse gas (GHG) and air pollutants. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate GHG emissions and to improve air quality, lacking full understanding of the costs and benefits has created barriers against implementing these measures widely. This paper sets out to advance the understanding by addressing the knowledge gap in costs, benefits, and cost-effectiveness of energy-efficiency measures in iron and steel production. Specifically, we build a new evaluation framework to quantify energy benefits and environmental benefits (i.e., CO2 emission reduction, air-pollutants emission reduction and water savings) associated with 36 energy-efficiency measures. Results show that inclusion of benefits from CO2 and air-pollutants emission reduction affects the cost-effectiveness of energy-efficiency measures significantly, while impacts from water-savings benefits are moderate but notable when compared to the effects by considering energy benefits alone. The new information resulted from this study should be used to augment future programs and efforts in reducing energy use and environmental impacts associated with steel production.

  9. Docosahexaenoic diet supplementation, exercise and temperature affect cytokine production by lipopolysaccharide-stimulated mononuclear cells.

    PubMed

    Capó, Xavier; Martorell, Miquel; Sureda, Antoni; Batle, Juan Miguel; Tur, Josep Antoni; Pons, Antoni

    2016-09-01

    Acute exercise induces changes in peripheral mononuclear cells' (PBMCs) capabilities to produce cytokines. The aim was to investigate the effect of docosahexaenoic acid (DHA) diet supplementation on cytokine production, by lipopolysaccharide (LPS)-stimulated PBMCs after exercise, and the in vitro influence of temperature. Fifteen male soccer players were randomly assigned to a placebo or an experimental group. The experimental group consumed an almond-based beverage enriched with DHA (1.16 g DHA/day) for 8 weeks, whereas the placebo group consumed a similar non-enriched beverage. Blood samples were taken before and after the nutritional intervention in basal conditions and 2 h after acute exercise. Nutritional intervention significantly increased the DHA content in erythrocytes only in experimental group (from 34 ± 3.6 to 43 ± 3.6 nmols DHA/10(9) erythrocytes). Exercise significantly increased Toll-like receptor 4 (TLR4) in PBMCs but only in the placebo group (203 %). Exercise also significantly increased IL6, IL8, VEGF, INFγ, TNFα, IL1α, IL1β, MCP1, and EGG production rates by LPS-stimulated PBMCs, and this response was attenuated by DHA supplementation. Temperature but not DHA also affected the pattern of cytokine production increasing IL6, IL8, IL1β, and MCP1 synthesis. The higher change was evidenced in IL1β increasing the production rate at 39.5 °C from 3.19 ± 0.77 to 22.4 ± 6.1 pg/h 10(6) PBMC in placebo and from 2.36 ± 0.11 to 10.6 ± 0.38 pg/h 10(6) PBMC in the supplemented group. The profile of affected cytokines differs between temperature and exercise, suggesting a different PBMC activation pathway. DHA diet supplementation only attenuated cytokine production after exercise and not that induced by temperature. PMID:27139422

  10. Thermal stress and tropical cyclones affect economic production in Central America and Caribbean

    NASA Astrophysics Data System (ADS)

    Hsiang, S. M.

    2009-12-01

    Surface temperatures and tropical cyclones have large impacts on economic production. Local cyclone energy dissipation reduces output in agriculture and tourism, while stimulating output in construction. High surface temperatures reduce output in several labor-intensive industries; a 1° C increase for two consecutive years results in production losses of ˜13%. The response is greatest during the hottest season and is non-linear, with high temperature days contributing the most to production losses. The structure of this response matches results from a large ergonomics literature, supporting the hypothesis that thermal stress reduces human performance, driving macroeconomic fluctuations. This large response of non-agricultural sectors suggests that current estimates underestimate the scale and scope of economic vulnerabilities to climate change. Responses of each industry to surface temperature, tropical cyclones and rainfall. Estimates represent the change of value-added in the industry in response to each atmospheric variables during the year of production (L=0) and the years prior (L≥1). The responses to surface temperature are triangles, tropical cyclones are squares and rainfall are crosses. Estimates are grey if none of the annual responses are significant at the α = 0.1 level. Whiskers indicate 95% confidence intervals. Tourism receipts displays the five years prior (L=1-5) because of the long response of that industry to cyclones. Agriculture per worker is also plotted as circles when estimated a second time excluding mainland countries from the sample. Units are: temperature- percent change in output per 0.33°C; cyclones- percent changes in output per 1 standard deviation of tropical cyclone energy; rainfall- percent change in output per 2 cm/month.

  11. Greenhouse tomato limited cluster production systems: crop management practices affect yield

    NASA Technical Reports Server (NTRS)

    Logendra, L. S.; Gianfagna, T. J.; Specca, D. R.; Janes, H. W.

    2001-01-01

    Limited-cluster production systems may be a useful strategy to increase crop production and profitability for the greenhouse tomato (Lycopersicon esculentum Mill). In this study, using an ebb-and-flood hydroponics system, we modified plant architecture and spacing and determined the effects on fruit yield and harvest index at two light levels. Single-cluster plants pruned to allow two leaves above the cluster had 25% higher fruit yields than did plants pruned directly above the cluster; this was due to an increase in fruit weight, not fruit number. Both fruit yield and harvest index were greater for all single-cluster plants at the higher light level because of increases in both fruit weight and fruit number. Fruit yield for two-cluster plants was 30% to 40% higher than for single-cluster plants, and there was little difference in the dates or length of the harvest period. Fruit yield for three-cluster plants was not significantly different from that of two-cluster plants; moreover, the harvest period was delayed by 5 days. Plant density (5.5, 7.4, 9.2 plants/m2) affected fruit yield/plant, but not fruit yield/unit area. Given the higher costs for materials and labor associated with higher plant densities, a two-cluster crop at 5.5 plants/m2 with two leaves above the cluster was the best of the production system strategies tested.

  12. Agent-patient similarity affects sentence structure in language production: evidence from subject omissions in Mandarin.

    PubMed

    Hsiao, Yaling; Gao, Yannan; MacDonald, Maryellen C

    2014-01-01

    Interference effects from semantically similar items are well-known in studies of single word production, where the presence of semantically similar distractor words slows picture naming. This article examines the consequences of this interference in sentence production and tests the hypothesis that in situations of high similarity-based interference, producers are more likely to omit one of the interfering elements than when there is low semantic similarity and thus low interference. This work investigated language production in Mandarin, which allows subject noun phrases to be omitted in discourse contexts in which the subject entity has been previously mentioned in the discourse. We hypothesize that Mandarin speakers omit the subject more often when the subject and the object entities are conceptually similar. A corpus analysis of simple transitive sentences found higher rates of subject omission when both the subject and object were animate (potentially yielding similarity-based interference) than when the subject was animate and object was inanimate. A second study manipulated subject-object animacy in a picture description task and replicated this result: participants omitted the animate subject more often when the object was also animate than when it was inanimate. These results suggest that similarity-based interference affects sentence forms, particularly when the agent of the action is mentioned in the sentence. Alternatives and mechanisms for this effect are discussed.

  13. Identifying productive resources in secondary school students' discourse about energy

    NASA Astrophysics Data System (ADS)

    Harrer, Benedikt

    A growing program of research in science education acknowledges the beginnings of disciplinary reasoning in students' ideas and seeks to inform instruction that responds productively to these disciplinary progenitors in the moment to foster their development into sophisticated scientific practice. This dissertation examines secondary school students' ideas about energy for progenitors of disciplinary knowledge and practice. Previously, researchers argued that students' ideas about energy were constrained by stable and coherent conceptual structures that conflicted with an assumed unified scientific conception and therefore needed to be replaced. These researchers did not attend to the productive elements in students' ideas about energy. To analyze the disciplinary substance in students' ideas, a theoretical perspective was developed that extends Hammer and colleagues' resources framework. This elaboration allows for the identification of disciplinary productive resources---i.e., appropriately activated declarative and procedural pieces of knowledge---in individual students' utterances as well as in the interactions of multiple learners engaged in group learning activities. Using this framework, original interview transcripts from one of the most influential studies of students' ideas about energy (Watts, 1983. Some alternative views of energy. Physics Education, 18/5, 213-217) were analyzed. Disciplinary productive resources regarding the ontology of energy, indicators for energy, and mechanistic reasoning about energy were found to be activated by interviewed students. These valuable aspects were not recognized by the original author. An interpretive analysis of video recorded student-centered discourse in rural Maine middle schools was carried out to find cases of resource activation in classroom discussions. Several cases of disciplinary productive resources regarding the nature of energy and its forms as well as the construction of a mechanistic energy story

  14. Sustainable Production of Switchgrass for Biomass Energy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.) is a C4 grass native to the North American tallgrass prairies, which historically extended from Mexico to Canada. It is the model perennial warm-season grass for biomass energy. USDA-ARS in Lincoln, NE has studied switchgrass continuously since 1936. Plot-scale rese...

  15. Energy transfer of nucleic acid products

    NASA Astrophysics Data System (ADS)

    Jung, Paul M.; Hu, Hsiang-Yun; Khalil, Omar S.

    1995-04-01

    Fluorescence energy transfer was investigated as a homogeneous detection method for the gapped ligase chain reaction (G-LCR). Oligonucleotides of a Chlamydia trachomatic G-LCR probe set were labeled with fluorescein as the donor and Texas Red as the acceptor fluorophore. Amplification and detection of 10 molecules of synthetic target was demonstrated in spiked urine samples.

  16. A Framework to Assess Regional Environmental Impacts of Dedicated Energy Crop Production

    PubMed

    Graham; Downing; Walsh

    1996-07-01

    Numerous studies have evaluated air quality and greenhouse gas mitigation benefits of biomass energy systems, but the potential environmental impacts associated with large-scale changes in land-use patterns needed to produce energy crops have not been quantified. This paper presents a framework to assess the potential soil, water, and biodiversity impacts that may result from the large-scale production of dedicated energy crops. The framework incorporates producer economic decision models with environmental models to assess changes in land use patterns and to quantify the consequent environmental impacts. Economic and policy issues that will affect decisions to produce energy crops are discussed. The framework is used to evaluate erosion and chemical runoff in two Tennessee regions. The analysis shows that production of dedicated energy crops in place of conventional crops will significantly reduce erosion and chemical runoff.

  17. The receptor for advanced glycation end products (RAGE) affects T cell differentiation in OVA induced asthma.

    PubMed

    Akirav, Eitan M; Henegariu, Octavian; Preston-Hurlburt, Paula; Schmidt, Ann Marie; Clynes, Raphael; Herold, Kevan C

    2014-01-01

    The receptor for glycation end products (RAGE) has been previously implicated in shaping the adaptive immune response. RAGE is expressed in T cells after activation and constitutively in T cells from patients with diabetes. The effects of RAGE on adaptive immune responses are not clear: Previous reports show that RAGE blockade affects Th1 responses. To clarify the role of RAGE in adaptive immune responses and the mechanisms of its effects, we examined whether RAGE plays a role in T cell activation in a Th2 response involving ovalbumin (OVA)-induced asthma in mice. WT and RAGE deficient wild-type and OT-II mice, expressing a T cell receptor specific for OVA, were immunized intranasally with OVA. Lung cellular infiltration and T cell responses were analyzed by immunostaining, FACS, and multiplex bead analyses for cytokines. RAGE deficient mice showed reduced cellular infiltration in the bronchial alveolar lavage fluid and impaired T cell activation in the mediastinal lymph nodes when compared with WT mice. In addition, RAGE deficiency resulted in reduced OT-II T cell infiltration of the lung and impaired IFNγ and IL-5 production when compared with WT mice and reduced infiltration when transferred into WT hosts. When cultured under conditions favoring the differentiation of T cells subsets, RAGE deficient T cells showed reduced production of IFNγ but increased production of IL-17. Our data show a stimulatory role for RAGE in T activation in OVA-induced asthma. This role is largely mediated by the effects of RAGE on T cell proliferation and differentiation. These findings suggest that RAGE may play a regulatory role in T cell responses following immune activation.

  18. Development of Energy Models for Production Systems and Processes to Inform Environmentally Benign Decision-Making

    NASA Astrophysics Data System (ADS)

    Diaz-Elsayed, Nancy

    machining parameters --- these decisions affect how much energy is utilized during production. Therefore, at the facility level a methodology is presented for implementing priority queuing while accounting for a high product mix in a discrete event simulation environment. A baseline case is presented and alternative factory designs are suggested, which lead to energy savings of approximately 9%. At the industry level, the majority of energy consumption for manufacturing facilities is utilized for machine drive, process heating, and HVAC. Numerous studies have characterized the energy of manufacturing processes and HVAC equipment, but energy data is often limited for a facility in its entirety since manufacturing companies often lack the appropriate sensors to track it and are hesitant to release this information for confidentiality purposes. Without detailed information about the use of energy in manufacturing sites, the scope of factory studies cannot be adequately defined. Therefore, the breakdown of energy consumption of sectors with discrete production is presented, as well as a case study assessing the electrical energy consumption, greenhouse gas emissions, their associated costs, and labor costs for selected sites in the United States, Japan, Germany, China, and India. By presenting energy models and assessments of production equipment, factory operations, and industry, this dissertation provides a comprehensive assessment of energy trends in manufacturing and recommends methods that can be used beyond these case studies and industries to reduce consumption and contribute to an energy-efficient future.

  19. Incorporating the productivity benefits into the assessment of cost effective energy savings potential using conservation supply curves

    SciTech Connect

    Laitner, John A.; Ruth, Michael; Worrell, Ernst

    2001-07-24

    We review the relationship between energy efficiency improvement measures and productivity in industry. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The paper explores the implications of how this change in perspective might affect the evaluation of energy-efficient technologies for a study of the iron and steel industry in the U.S. It is found that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research for this important area.

  20. Environmental factors influencing trace house gas production in permafrost-affected soils

    NASA Astrophysics Data System (ADS)

    Walz, Josefine; Knoblauch, Christian; Böhme, Luisa; Pfeiffer, Eva-Maria

    2016-04-01

    The permafrost-carbon feedback has been identified as a major feedback mechanism to climate change. Soil organic matter (SOM) decomposition in the active layer and thawing permafrost is an important source of atmospheric carbon dioxide (CO2) and methane (CH4). Decomposability and potential CO2 and CH4 production are connected to the quality of SOM. SOM quality varies with vegetation composition, soil type, and soil depth. The regulating factors affecting SOM decomposition in permafrost landscapes are not well understood. Here, we incubated permafrost-affected soils from a polygonal tundra landscape in the Lena Delta, Northeast Siberia, to examine the influence of soil depth, oxygen availability, incubation temperature, and fresh organic matter addition on trace gas production. CO2 production was always highest in topsoil (0 - 10 cm). Subsoil (10 - 50 cm) and permafrost (50 - 90 cm) carbon did not differ significantly in their decomposability. Under anaerobic conditions, less SOM was decomposed than under aerobic conditions. However, in the absence of oxygen, CH4 can also be formed, which has a substantially higher warming potential than CO2. But, within the four-month incubation period (approximate period of thaw), methanogenesis played only a minor role with CH4 contributing 1-30% to the total anaerobic carbon release. Temperature and fresh organic matter addition had a positive effect on SOM decomposition. Across a temperature gradient (1, 4, 8°C) aerobic decomposition in topsoil was less sensitive to temperature than in subsoil or permafrost. The addition of labile plant organic matter (13C-labelled Carex aquatilis, a dominant species in the region) significantly increased overall CO2 production across different depths and temperatures. Partitioning the total amount of CO2 in samples amended with Carex material into SOM-derived CO2 and Carex-derived CO2, however, revealed that most of the additional CO2 could be assigned to the organic carbon from the amendment

  1. White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)

    SciTech Connect

    Zhou, Nan; Romankiewicz, John; Fridley, David

    2012-06-01

    This White Paper focuses on the areas and products involved in the above tasks, based on the White Paper - Energy Efficiency Status of Energy-Using Products in China (2010), here referred to as “White Paper 2010”, which analyzed the energy efficiency status of 21 typical energy-using products in five sectors: household appliances, office equipment, commercial equipment, industrial equipment, and lighting equipment. Table 1 illustrates the detailed product coverage for this year’s paper, noting the addition of three household appliance items (automatic electric rice cooker, AC electric fan, and household induction cooktop) and one industrial sector item (three-phase distribution transformer).

  2. Preparing for Rectal Microbicides: Sociocultural Factors Affecting Product Uptake Among Potential South American Users

    PubMed Central

    Kinsler, Janni J.; Imrie, John; Nureña, César R.; Ruiz, Lucía; Galarza, Luis Fernando; Sánchez, Jorge; Cunningham, William E.

    2014-01-01

    Objectives. We examined views on rectal microbicides (RMs), a potential HIV prevention option, among men who have sex with men and transgender women in 3 South American cities. Methods. During September 2009 to September 2010, we conducted 10 focus groups and 36 in-depth interviews (n = 140) in Lima and Iquitos, Peru, and Guayaquil, Ecuador, to examine 5 RM domains: knowledge, thoughts and opinions about RM as an HIV prevention tool, use, condoms, and social concerns. We coded emergent themes in recorded and transcribed data sets and extracted representative quotes. We collected sociodemographic information with a self-administered questionnaire. Results. RM issues identified included limited knowledge; concerns regarding plausibility, side effects, and efficacy; impact on condom use; target users (insertive vs receptive partners); and access concerns. Conclusions. Understanding the sociocultural issues affecting RMs is critical to their uptake and should be addressed prior to product launch. PMID:24825222

  3. Toxic organic compounds from energy production

    SciTech Connect

    Hites, R.A.

    1991-09-20

    The US Department of Energy's Office of Health and Environmental Research (OHER) has supported work in our laboratory since 1977. The general theme of this program has been the identification of potentially toxic organic compounds associated with various combustion effluents, following the fates of these compounds in the environment, and improving the analytical methodology for making these measurements. The projects currently investigation include: an improved sampler for semi-volatile compounds in the atmosphere; the wet and dry deposition of dioxins and furans from the atmosphere; the photodegradation and mobile sources of dioxins and furans; and the bioaccumulation of PAH by tree bark. These projects are all responsive to OHER's interest in the pathways and mechanisms by which energy-related agents move through and are modified by the atmosphere''. The projects on gas chromatographic and liquid chromatographic tandem mass spectrometry are both responsive to OHER's interest in new and more sensitive technologies for chemical measurements''. 35 refs., 9 figs.

  4. Water Efficient Energy Production for Geothermal Resources

    SciTech Connect

    GTO

    2015-06-01

    Water consumption in geothermal energy development occurs at several stages along the life cycle of the plant, during construction of the wells, piping, and plant; during hydroshearing and testing of the reservoir (for EGS); and during operation of the plant. These stages are highlighted in the illustration above. For more information about actual water use during these stages, please see the back of this sheet..

  5. Decreased summer drought affects plant productivity and soil carbon dynamics in a Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-09-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 58 % and 220 %, respectively, as compared to the control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction in precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodlands. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long-term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long-term soil C stocks.

  6. Decreased summer drought affects plant productivity and soil carbon dynamics in Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-06-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. The throughfall manipulation experiment started in 2004 and we report data up to the 2009 growing season. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 50 % and 220 %, respectively, as compared to control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction of precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodland. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long term soil C stocks.

  7. Net energy analysis of methanol and ethanol production

    NASA Astrophysics Data System (ADS)

    Perez-Blanco, H.; Hannon, B.

    1982-03-01

    Methanol (MeOH) and ethanol (EtOH) are industrial alcohols that can be used as liquid fuels. They may be obtained from renewable or non-renewable feedstocks. The production processes and end uses are analyzed in order to assess the potential energy savings introduced by alcohol production from renewable instead of nonrenewable feedstock. Whereas MeOH production from wood brings about energy savings, EtOH production from corn may or may not save energy depending on the end use of the alcohol. If the alcohol is used as a motor fuel, no overall energy savings are found. The economics and total labor requirements of each process are also considered.

  8. Quality of shrimp analogue product as affected by addition of modified potato starch.

    PubMed

    Remya, S; Basu, S; Venkateshwarlu, G; Mohan, C O

    2015-07-01

    The present study was aimed to investigate the effects of addition of modified potato starch on the biochemical and textural properties of shrimp analogue/imitation shrimp, a popular value-added product prepared from surimi. Three batches of shrimp analogues were prepared with 0 % (NPS), 50 % (CPS) and 100 % (MPS) of modified starch incorporation and various quality attributes were monitored at regular intervals during frozen storage (-20 °C). Loss of myofibrillar protein was least for the shrimp analogue sample added with 100 % modified potato starch. The expressible moisture content of MPS (2.48 %) was less affected by long term storage compared to CPS (3.38 %) and NPS (3.99 %). During extended low temperature storage, the textural quality of sea food analogue was highly influenced by the type of starch added to it. The percentage of modified potato starch added to shrimp analogue significantly (p ≤ 0.05) affected its hardness and fracturability. MPS samples did not show significant changes in hardness during storage as compared to other two samples. Springiness of shrimp analogue increased 2.57, 1.5 and 1.77 times with the storage period for samples with NPS, CPS and MPS, respectively. Addition of modified potato starch improved the sensory quality and textural properties of shrimp analogue and reduced the quality degradation during frozen storage as compared to NPS which contained only native potato starch.

  9. Exposure to gemfibrozil and atorvastatin affects cholesterol metabolism and steroid production in zebrafish (Danio rerio).

    PubMed

    Al-Habsi, Aziz A; Massarsky, Andrey; Moon, Thomas W

    2016-09-01

    The commonly used lipid-lowering pharmaceuticals gemfibrozil (GEM) and atorvastatin (ATV) are detected in the aquatic environment; however, their potential effects on non-target fish species are yet to be fully understood. This study examined the effects of GEM and/or ATV on female and male adult zebrafish after a 30d dietary exposure. The exposure led to changes in several biochemical parameters, including reduction in cholesterol, triglycerides, cortisol, testosterone, and estradiol. Changes in cholesterol and triglycerides were also associated with changes in transcript levels of key genes involved with cholesterol and lipid regulation, including SREBP2, HMGCR1, PPARα, and SREBP1. We also noted higher CYP3A65 and atrogin1 mRNA levels in drug-treated male fish. Sex differences were apparent in some of the examined parameters at both biochemical and molecular levels. This study supports these drugs affecting cholesterol metabolism and steroid production in adult zebrafish. We conclude that the reduction in cortisol may impair the ability of these fish to mount a suitable stress response, whereas the reduction of sex steroids may negatively affect reproduction. PMID:26627126

  10. Exposure to gemfibrozil and atorvastatin affects cholesterol metabolism and steroid production in zebrafish (Danio rerio).

    PubMed

    Al-Habsi, Aziz A; Massarsky, Andrey; Moon, Thomas W

    2016-09-01

    The commonly used lipid-lowering pharmaceuticals gemfibrozil (GEM) and atorvastatin (ATV) are detected in the aquatic environment; however, their potential effects on non-target fish species are yet to be fully understood. This study examined the effects of GEM and/or ATV on female and male adult zebrafish after a 30d dietary exposure. The exposure led to changes in several biochemical parameters, including reduction in cholesterol, triglycerides, cortisol, testosterone, and estradiol. Changes in cholesterol and triglycerides were also associated with changes in transcript levels of key genes involved with cholesterol and lipid regulation, including SREBP2, HMGCR1, PPARα, and SREBP1. We also noted higher CYP3A65 and atrogin1 mRNA levels in drug-treated male fish. Sex differences were apparent in some of the examined parameters at both biochemical and molecular levels. This study supports these drugs affecting cholesterol metabolism and steroid production in adult zebrafish. We conclude that the reduction in cortisol may impair the ability of these fish to mount a suitable stress response, whereas the reduction of sex steroids may negatively affect reproduction.

  11. The future of bioconversion in energy production

    SciTech Connect

    Walter, D.K.

    1993-12-31

    Man has used both thermal and bioconversion technologies for his purposes for the majority of recorded history. No doubt the first use of thermal technology was a fire to heat a cave while the first deliberate use of bioconversion occurred some time later when an discovered how to ferment sugar to make alcohol. While man used both the thermal and bioconversion technologies for his purposes, the majority of development was in the thermal technologies. Thermal reactions are quick (occur in fractions of seconds) occur in harsh conditions (elevated temperatures and pressures) and not precise (many products produced). Through history, biconversion was limited to natural plants and chemicals. These might be modified by natural selection, a long and imprecise process, but bioconversion processes while slow, occurred in mild conditions and were very precise. Not until 1948 when Watson defined DNA and life processes did mankind begin to understand and begin to use alter bioconversion technologies for his purpose. Bioconversion is on the brink of great expansion, from the production of drugs, vitamins, and food, to the production of bulk chemicals and fuels. The technology is at hand to speed up the reactions or to identify the active enzyme sites that will permit economic utilization of these emerging techniques.

  12. Biomass and energy productivity of Leucaena under humid subtropical conditions

    SciTech Connect

    Othman, A.B.; Prine, G.M.

    1984-01-01

    A table shows the amount and energy content of above-ground biomass produced in 1982 and 1983 by the 12 most productive of 62 accessions of Leucanena spp. established in 1979 at the University of Florida. Mean annual biomass production of the 12 accessions was 29.3 and 24.7 Mg/ha, with energy contents of 19,690 and 19,820 J/g, in 1982 and 1983 respectively.

  13. Leading trends in environmental regulation that affect energy development. Final report

    SciTech Connect

    Steele, R V; Attaway, L D; Christerson, J A; Kikel, D A; Kuebler, J D; Lupatkin, B M; Liu, C S; Meyer, R; Peyton, T O; Sussin, M H

    1980-01-01

    Major environmental issues that are likely to affect the implementation of energy technologies between now and the year 2000 are identified and assessed. The energy technologies specifically addressed are: oil recovery and processing; gas recovery and processing; coal liquefaction; coal gasification (surface); in situ coal gasification; direct coal combustion; advanced power systems; magnetohydrodynamics; surface oil shale retorting; true and modified in situ oil shale retorting; geothermal energy; biomass energy conversion; and nuclear power (fission). Environmental analyses of these technologies included, in addition to the main processing steps, the complete fuel cycle from resource extraction to end use. A comprehensive survey of the environmental community (including environmental groups, researchers, and regulatory agencies) was carried out in parallel with an analysis of the technologies to identify important future environmental issues. Each of the final 20 issues selected by the project staff has the following common attributes: consensus of the environmental community that the issue is important; it is a likely candidate for future regulatory action; it deals with a major environmental aspect of energy development. The analyses of the 20 major issues address their environmental problem areas, current regulatory status, and the impact of future regulations. These analyses are followed by a quantitative assessment of the impact on energy costs and nationwide pollutant emissions of possible future regulations. This is accomplished by employing the Strategic Environmental Assessment System (SEAS) for a subset of the 20 major issues. The report concludes with a more general discussion of the impact of environmental regulatory action on energy development.

  14. Energy distribution among reaction products. V.

    NASA Technical Reports Server (NTRS)

    Anlauf, K. G.; Horne, D. S.; Macdonald, R. G.; Polanyi, J. C.; Woodall, K. B.

    1972-01-01

    Discussion of three reactions, one point of theoretical interest being the predicted correlation between barrier height and barrier location. The H + Br 2 reaction having a lower activation barrier than H + Cl 2, should have an earlier barrier, and hence a greater percentage attractive energy release and higher efficiency of vibrational excitation. Information is developed concerning the effect of isotopic substitution in the pair of reactions H + Cl 2 and D + Cl 2. The 'arrested relaxation' method was used. Essentially, the method involves reacting two diffuse reagent beams in a reaction vessel with background pressure less than 0.001 torr, and with walls cooled by liquid nitrogen or liquid helium.

  15. Insecticide use in hybrid onion seed production affects pre- and postpollination processes.

    PubMed

    Gillespie, Sandra; Long, Rachael; Seitz, Nicola; Williams, Neal

    2014-02-01

    Research on threats to pollination service in agro-ecosystems has focused primarily on the negative impacts of land use change and agricultural practices such as insecticide use on pollinator populations. Insecticide use could also affect the pollination process, through nonlethal impacts on pollinator attraction and postpollination processes such as pollen viability or pollen tube growth. Hybrid onion seed (Allium cepa L., Alliaceae) is an important pollinator-dependent crop that has suffered yield declines in California, concurrent with increased insecticide use. Field studies suggest that insecticide use reduces pollination service in this system. We conducted a field experiment manipulating insecticide use to examine the impacts of insecticides on 1) pollinator attraction, 2) pollen/stigma interactions, and 3) seed set and seed quality. Select insecticides had negative impacts on pollinator attraction and pollen/stigma interactions, with certain products dramatically reducing pollen germination and pollen tube growth. Decreased pollen germination was not associated with reduced seed set; however, reduced pollinator attraction was associated with lower seed set and seed quality, for one of the two female lines examined. Our results highlight the importance of pesticide effects on the pollination process. Overuse may lead to yield reductions through impacts on pollinator behavior and postpollination processes. Overall, in hybrid onion seed production, moderation in insecticide use is advised when controlling onion thrips, Thrips tabaci, on commercial fields. PMID:24665681

  16. Tassel Removal Positively Affects Biomass Production Coupled with Significantly Increasing Stem Digestibility in Switchgrass

    PubMed Central

    Zhao, Chunqiao; Fan, Xifeng; Hou, Xincun; Zhu, Yi; Yue, Yuesen; Zhang, Shuang; Wu, Juying

    2015-01-01

    In this study, tassels of Cave-in-Rock (upland) and Alamo (lowland) were removed at or near tassel emergence to explore its effects on biomass production and quality. Tassel-removed (TR) Cave-in-Rock and Alamo both exhibited a significant (P<0.05) increase in plant heights (not including tassel length), tiller number, and aboveground biomass dry weight (10% and 12%, 30% and 13%, 13% and 18%, respectively by variety) compared to a control (CK) treatment. Notably, total sugar yields of TR Cave-in-Rock and Alamo stems increased significantly (P<0.05 or 0.01) by 19% and 19%, 21% and 14%, 52% and 18%, respectively by variety, compared to those of control switchgrass under 3 treatments by direct enzymatic hydrolysis (DEH), enzymatic hydrolysis after 1% NaOH pretreatment (EHAL) and enzymatic hydrolysis after 1% H2SO4 pretreatment (EHAC). These differences were mainly due to significantly (P<0.05 or 0.01) higher cellulose content, lower cellulose crystallinity indexes (CrI) caused by higher arabinose (Ara) substitution in xylans, and lower S/G ratio in lignin. However, the increases of nitrogen (N) and sulphur (S) concentration negatively affects the combustion quality of switchgrass aboveground biomass. This work provides information for increasing biomass production and quality in switchgrass and also facilitates the inhibition of gene dispersal of switchgrass in China. PMID:25849123

  17. [Environmental risk, health and justice: the protagonism of affected populations in the production of knowledge].

    PubMed

    Porto, Marcelo Firpo; Finamore, Renan

    2012-06-01

    This article discusses the role of populations affected by environmental injustice situations in the production of knowledge about environmental health stemming from inequalities and discrimination in the distribution of risks and benefits of economic development. Special attention is given to the epistemological and political limits to producing knowledge and alternatives that enable advances in building more just and sustainable societies are highlighted. Based on a broader view of health, the limits of scientific approaches are called into question by acknowledging the importance of local knowledge are discussed, either to analyze environmental risks or their effects on health, including epidemiological studies. These limits are linked primarily to the concealment of conflicts and uncertainties, the lack of contextualization of exposure to risk and effects on health, as well as the difficulties of dialogue with the communities. The article also presents contributions and advances presented by environmental justice movements. The conclusion is that a constructivist, procedural and democratic perspective of confronting forms of knowledge and practices can guide the scientific production to benefit of environmental justice.

  18. Developmental and communicative factors affecting VOT production in English and Arabic bilingual and monolingual speakers

    NASA Astrophysics Data System (ADS)

    Khattab, Ghada

    2001-05-01

    VOT patterns were investigated in the production of three Lebanese-English bilinguals' aged 5, 7, and 10, six aged-matched monolingual controls from the bilinguals' immediate communities, and the parents of bilinguals and monolinguals. The aim was to examine the extent to which children exposed to two languages acquire separate VOT patterns for each language and to determine the factors that affect such acquisition. Results showed that VOT patterns for each bilingual child differed significantly across the two languages. But while the contrast in English resembled a monolingual-like model, that for Arabic exhibited persisting developmental features; explanations were offered in terms of the relationship between input and complexity of voicing lead production. Evidence was used from developmental changes that were noted for two of the bilingual subjects over a period of 18 months. English code-switches produced by the bilinguals during Arabic sessions exhibited different VOT patterns from those produced during English sessions, which underlined the importance of taking the language context into consideration. Finally, results from monolinguals and bilinguals showed that the short lag categories for the two languages were different despite a degree of overlap. Such findings require finer divisions of the three universal VOT categories to account for language-specific patterns.

  19. Tassel removal positively affects biomass production coupled with significantly increasing stem digestibility in switchgrass.

    PubMed

    Zhao, Chunqiao; Fan, Xifeng; Hou, Xincun; Zhu, Yi; Yue, Yuesen; Zhang, Shuang; Wu, Juying

    2015-01-01

    In this study, tassels of Cave-in-Rock (upland) and Alamo (lowland) were removed at or near tassel emergence to explore its effects on biomass production and quality. Tassel-removed (TR) Cave-in-Rock and Alamo both exhibited a significant (P<0.05) increase in plant heights (not including tassel length), tiller number, and aboveground biomass dry weight (10% and 12%, 30% and 13%, 13% and 18%, respectively by variety) compared to a control (CK) treatment. Notably, total sugar yields of TR Cave-in-Rock and Alamo stems increased significantly (P<0.05 or 0.01) by 19% and 19%, 21% and 14%, 52% and 18%, respectively by variety, compared to those of control switchgrass under 3 treatments by direct enzymatic hydrolysis (DEH), enzymatic hydrolysis after 1% NaOH pretreatment (EHAL) and enzymatic hydrolysis after 1% H2SO4 pretreatment (EHAC). These differences were mainly due to significantly (P<0.05 or 0.01) higher cellulose content, lower cellulose crystallinity indexes (CrI) caused by higher arabinose (Ara) substitution in xylans, and lower S/G ratio in lignin. However, the increases of nitrogen (N) and sulphur (S) concentration negatively affects the combustion quality of switchgrass aboveground biomass. This work provides information for increasing biomass production and quality in switchgrass and also facilitates the inhibition of gene dispersal of switchgrass in China. PMID:25849123

  20. Hypernucleus Production at RHIC and HIRFL-CSR Energy

    SciTech Connect

    Zhang, S.; Xu, Z.; Chen, J.H., Ma, Y.G., Tang, Z.B.

    2010-09-01

    We calculated the hypertriton production at RHIC-STAR and HIRFL-CSR acceptance, with a multi-phase transport model (AMPT) and a relativistic transport model (ART), respectively. In specific, we calculated the Strangeness Population Factor S{sub 3} = {sub {Lambda}}{sup 3}H/({sup 3}H{sub e} x {Lambda}/p) at different beam energy. Our results from AGS to RHIC energy indicated that the collision system may change from hadronic phase at AGS energies to partonic phase at RHIC energies. Our calculation at HIRFL-CSR energy supports the proposal to measure hypertriton at HIRFL-CSR.

  1. Biomass energy crop production versus food crop production in the Caribbean

    SciTech Connect

    Sammuels, G.

    1983-12-01

    The Caribbean countries have traditionally grown sugar cane, coffee and bananas as major agriculture export crops. Food crop production was sufficient in most cases for domestic consumption. In recent years powerful social and economic changes of increasing population, industrial development and higher living standards have placed pressure on local governments to provide food, clothing, shelter and energy. Energy that is mainly supplied by imported oil. Biomass, primarily as sugar cane, can provide a solution, either partial or total, to the problem. Unfortunately, the arable land area for the majority of the countries is limited. Food crop production is needed for local consumption and export. Possible energy crop production to provide local needs will place an increasing demand on arable land. The objective of this paper is to present the scope of food versus energy crop production and a suggested renewable energy crop program to help achieve a balance within the limited land resources of the Caribbean.

  2. Industrial Assessment Centers - Small Manufacturers Reduce Energy & Increase Productivity

    SciTech Connect

    2015-11-06

    Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized manufacturers to provide no-cost assessments of energy use, process performance and waste and water flows. Under the direction of experienced professors, IAC engineering students analyze the manufacturer’s facilities, energy bills and energy, waste and water systems, including compressed air, motors/pumps, lighting, process heat and steam. The IACs then follow up with written energy-saving and productivity improvement recommendations, with estimates of related costs and payback periods.

  3. Wood Energy Production, Sustainable Farming Livelihood and Multifunctionality in Finland

    ERIC Educational Resources Information Center

    Huttunen, Suvi

    2012-01-01

    Climate change and the projected depletion of fossil energy resources pose multiple global challenges. Innovative technologies offer interesting possibilities to achieve more sustainable outcomes in the energy production sector. Local, decentralized alternatives have the potential to sustain livelihoods in rural areas. One example of such a…

  4. Hydrothermal energy: a source of energy for alcohol production

    SciTech Connect

    Stiger, R.R.

    1980-01-01

    A small scale (1 gal/hr) biomass-to-alcohol still was built at the Raft River Geothermal Site to investigate difficulties in geothermal assisted biomass conversion. The unit was successfully operated, producing 95% (190 proof) ethanol from sugar beet juice. The unit was designed and built in less than eight weeks from surplus equipment using commercially available design information. This small-scale still demonstrated that 95% ethanol can be produced from sugar beet beer containing 8 to 10% alcohol using geothermal energy and present commercial technology. The geothermal resource provided both an energy source and process water. Recently, Bechtel National, Incorporated, of San Francisco, California completed a study to analyze the economic feasibility of producing ethanol from potatoes, wheat, and sugar beets using geothermal resources available in the Raft River Region of Idaho. The study concluded that a 20 million gallon per year facility can be built that will supply alcohol at $1.78 per gallon using geothermal energy. (MHR)

  5. Trinitrotoluene and mandarin peels selectively affect lignin-modifying enzyme production in white-rot basidiomycetes.

    PubMed

    Kachlishvili, Eva; Asatiani, Mikheil; Kobakhidze, Aza; Elisashvili, Vladimir

    2016-01-01

    Five white-rot basidiomycetes (WRB) species have been evaluated for their potential to tolerate and to degrade 0.2 mM 2, 4, 6-trinitrotoluene (TNT) as well as to produce laccase and manganese peroxidase (MnP) in presence of this xenobiotic. The tested fungal strains produced laccase in both glycerol and mandarin peels-containing media, whereas in the glycerol-containing medium only Cerrena unicolor strains and Trametes versicolor BCC 775 secreted MnP. Replacement of glycerol by milled mandarin peels 3- to 45-fold increased laccase activity, promoted C. unicolor strains and T. versicolor MnP secretion and induced this enzyme production by Fomes fomentarius BCC 38 and Funalia trogii BCC 146. Differential response of the WRB strains to the TNT addition was observed. In particular, laccase activity of C. unicolor increased 2- to 3-fold in both media whereas no stimulation of the laccase production was revealed in cultivation of F. fomentarius. TNT practically did not affect the MnP activity. Two strains of C. unicolor followed by T. versicolor producing laccase and MnP almost completely removed 0.2 mM TNT from the synthetic medium. Increase of TNT concentration from 0 to 0.4 mM in the mandarin peels-based medium and from 0 to 0.3 mM in the glycerol-containing medium stimulated C. unicolor BCC 300 laccase production from 92.4 to 240.7 U/ml and from 17.1 to 48.6 U/ml, respectively. This strain has been resistant to the TNT high concentration and has ability to remove 85 % of initial 0.3 mM TNT content during 6 days of the submerged cultivation.

  6. Trinitrotoluene and mandarin peels selectively affect lignin-modifying enzyme production in white-rot basidiomycetes.

    PubMed

    Kachlishvili, Eva; Asatiani, Mikheil; Kobakhidze, Aza; Elisashvili, Vladimir

    2016-01-01

    Five white-rot basidiomycetes (WRB) species have been evaluated for their potential to tolerate and to degrade 0.2 mM 2, 4, 6-trinitrotoluene (TNT) as well as to produce laccase and manganese peroxidase (MnP) in presence of this xenobiotic. The tested fungal strains produced laccase in both glycerol and mandarin peels-containing media, whereas in the glycerol-containing medium only Cerrena unicolor strains and Trametes versicolor BCC 775 secreted MnP. Replacement of glycerol by milled mandarin peels 3- to 45-fold increased laccase activity, promoted C. unicolor strains and T. versicolor MnP secretion and induced this enzyme production by Fomes fomentarius BCC 38 and Funalia trogii BCC 146. Differential response of the WRB strains to the TNT addition was observed. In particular, laccase activity of C. unicolor increased 2- to 3-fold in both media whereas no stimulation of the laccase production was revealed in cultivation of F. fomentarius. TNT practically did not affect the MnP activity. Two strains of C. unicolor followed by T. versicolor producing laccase and MnP almost completely removed 0.2 mM TNT from the synthetic medium. Increase of TNT concentration from 0 to 0.4 mM in the mandarin peels-based medium and from 0 to 0.3 mM in the glycerol-containing medium stimulated C. unicolor BCC 300 laccase production from 92.4 to 240.7 U/ml and from 17.1 to 48.6 U/ml, respectively. This strain has been resistant to the TNT high concentration and has ability to remove 85 % of initial 0.3 mM TNT content during 6 days of the submerged cultivation. PMID:27026944

  7. The impact of energy prices on industrial energy efficiency and productivity

    SciTech Connect

    Boyd, G.A.

    1993-11-01

    Energy prices moved into the forefront of concern in the mid and late seventies when two oil price shocks drove up energy prices dramatically. The analysis of the subsequent increase in industrial energy efficiency, i.e., decline in energy use per unit of industrial output, has filled volumes of government and private studies. Despite the volumes of analysis, there remains no consensus on the magnitude of the effect of energy prices on industrial energy efficiency or the effect of the change in energy prices on productivity. This paper examines some sources of the controversy to initiate a dialog between policy makers, analysts, and the energy consumers and producers.

  8. Energy conservation of no-tillage production of corn

    SciTech Connect

    Frye, W.W.; Blevins, R.L.; Murdock, L.W.; Wells, K.L.

    1981-01-01

    The paper discusses the energy requirements for no-tillage production of corn as compared to conventional tillage. Emphasis is on energy conservation through nitrogen fertilizer management. Results with no-tillage research in Kentucky on differences in nitrogen efficiency with no-tillage compared to conventional tillage, use of legumes as cover crops for no-tillage, delayed application of nitrogen fertilizers, and use of a nitrification inhibitor are presented as potential energy conservation practices.

  9. Optimized Structure and Vibrational Properties by Error Affected Potential Energy Surfaces

    PubMed Central

    Zen, Andrea; Zhelyazov, Delyan; Guidoni, Leonardo

    2013-01-01

    The precise theoretical determination of the geometrical parameters of molecules at the minima of their potential energy surface and of the corresponding vibrational properties are of fundamental importance for the interpretation of vibrational spectroscopy experiments. Quantum Monte Carlo techniques are correlated electronic structure methods promising for large molecules, which are intrinsically affected by stochastic errors on both energy and force calculations, making the mentioned calculations more challenging with respect to other more traditional quantum chemistry tools. To circumvent this drawback in the present work, we formulate the general problem of evaluating the molecular equilibrium structures, the harmonic frequencies, and the anharmonic coefficients of an error affected potential energy surface. The proposed approach, based on a multidimensional fitting procedure, is illustrated together with a critical evaluation of systematic and statistical errors. We observe that the use of forces instead of energies in the fitting procedure reduces the statistical uncertainty of the vibrational parameters by 1 order of magnitude. Preliminary results based on variational Monte Carlo calculations on the water molecule demonstrate the possibility to evaluate geometrical parameters and harmonic and anharmonic coefficients at this level of theory with an affordable computational cost and a small stochastic uncertainty (<0.07% for geometries and <0.7% for vibrational properties). PMID:24093004

  10. Understanding Variability To Reduce the Energy and GHG Footprints of U.S. Ethylene Production.

    PubMed

    Yao, Yuan; Graziano, Diane J; Riddle, Matthew; Cresko, Joe; Masanet, Eric

    2015-12-15

    Recent growth in U.S. ethylene production due to the shale gas boom is affecting the U.S. chemical industry's energy and greenhouse gas (GHG) emissions footprints. To evaluate these effects, a systematic, first-principles model of the cradle-to-gate ethylene production system was developed and applied. The variances associated with estimating the energy consumption and GHG emission intensities of U.S. ethylene production, both from conventional natural gas and from shale gas, are explicitly analyzed. A sensitivity analysis illustrates that the large variances in energy intensity are due to process parameters (e.g., compressor efficiency), and that large variances in GHG emissions intensity are due to fugitive emissions from upstream natural gas production. On the basis of these results, the opportunities with the greatest leverage for reducing the energy and GHG footprints are presented. The model and analysis provide energy analysts and policy makers with a better understanding of the drivers of energy use and GHG emissions associated with U.S. ethylene production. They also constitute a rich data resource that can be used to evaluate options for managing the industry's footprints moving forward.

  11. Do specific dietary constituents and supplements affect mental energy? Review of the evidence.

    PubMed

    Gorby, Heather E; Brownawell, Amy M; Falk, Michael C

    2010-12-01

    The numbers of marketing claims and food, beverage, and drug products claiming to increase mental energy have risen rapidly, thus increasing the need for scientific specificity in marketing and food label claims. Mental energy is a three-dimensional construct consisting of mood (transient feelings about the presence of fatigue or energy), motivation (determination and enthusiasm), and cognition (sustained attention and vigilance). The present review focuses on four dietary constituents/supplements (Ginkgo biloba, ginseng, glucose, and omega-3 polyunsaturated fatty acids) to illustrate the current state of the literature on dietary constituents and mental energy. The strongest evidence suggests effects of Ginkgo biloba on certain aspects of mood and on attention in healthy subjects, as well as associations between omega-3 polyunsaturated fatty acids and reduced risk of age-related cognitive decline. Limitations of the current data and challenges for future research are discussed. PMID:21091914

  12. Do specific dietary constituents and supplements affect mental energy? Review of the evidence.

    PubMed

    Gorby, Heather E; Brownawell, Amy M; Falk, Michael C

    2010-12-01

    The numbers of marketing claims and food, beverage, and drug products claiming to increase mental energy have risen rapidly, thus increasing the need for scientific specificity in marketing and food label claims. Mental energy is a three-dimensional construct consisting of mood (transient feelings about the presence of fatigue or energy), motivation (determination and enthusiasm), and cognition (sustained attention and vigilance). The present review focuses on four dietary constituents/supplements (Ginkgo biloba, ginseng, glucose, and omega-3 polyunsaturated fatty acids) to illustrate the current state of the literature on dietary constituents and mental energy. The strongest evidence suggests effects of Ginkgo biloba on certain aspects of mood and on attention in healthy subjects, as well as associations between omega-3 polyunsaturated fatty acids and reduced risk of age-related cognitive decline. Limitations of the current data and challenges for future research are discussed.

  13. Energy Production from Zoo Animal Wastes

    SciTech Connect

    Klasson, KT

    2003-04-07

    Elephant and rhinoceros dung was used to investigate the feasibility of generating methane from the dung. The Knoxville Zoo produces 30 cubic yards (23 m{sup 3}) of herbivore dung per week and cost of disposal of this dung is $105/week. The majority of this dung originates from the Zoo's elephant and rhinoceros population. The estimated weight of the dung is 20 metric tons per week and the methane production potential determined in experiments was 0.033 L biogas/g dung (0.020 L CH{sub 4}/g dung), and the digestion of elephant dung was enhanced by the addition of ammonium nitrogen. Digestion was better overall at 37 C when compared to digestion at 50 C. Based on the amount of dung generated at the Knoxville Zoo, it is estimated that two standard garden grills could be operated 24 h per day using the gas from a digester treating 20 metric ton herbivore dung per week.

  14. Factors Affecting the Production of Aromatic Immonium Ions in MALDI 157 nm Photodissociation Studies

    NASA Astrophysics Data System (ADS)

    DeGraan-Weber, Nick; Ashley, Daniel C.; Keijzer, Karlijn; Baik, Mu-Hyun; Reilly, James P.

    2016-05-01

    Immonium ions are commonly observed in the high energy fragmentation of peptide ions. In a MALDI-TOF/TOF mass spectrometer, singly charged peptides photofragmented with 157 nm VUV light yield a copious abundance of immonium ions, especially those from aromatic residues. However, their intensities may vary from one peptide to another. In this work, the effect of varying amino acid position, peptide length, and peptide composition on immonium ion yield is investigated. Internal immonium ions are found to have the strongest intensity, whereas immonium ions arising from C-terminal residues are the weakest. Peptide length and competition among residues also strongly influence the immonium ion production. Quantum calculations provide insights about immonium ion structures and the fragment ion conformations that promote or inhibit immonium ion formation.

  15. Dietary fat affects heat production and other variables of equine performance, under hot and humid conditions.

    PubMed

    Kronfeld, D S

    1996-07-01

    Does dietary fat supplementation during conditioning improve athletic performance, especially in the heat? Fat adaptation has been used to increase energy density, decrease bowel bulk and faecal output and reduce health risks associated with hydrolysable carbohydrate overload. It may also reduce spontaneous activity and reactivity (excitability), increase fatty acid oxidation, reduce CO2 production and associated acidosis, enhance metabolic regulation of glycolysis, improve both aerobic and anaerobic performance and substantially reduce heat production. A thermochemical analysis of ATP generation showed the least heat release during the direct oxidation of long chain fatty acids, which have a 3% advantage over glucose and 20 to 30% over short chain fatty acids and amino acids. Indirect oxidation via storage as triglyceride increased heat loss during ATP generation by 3% for stearic acid, 65% for glucose and 174% for acetic acid. Meal feeding and nutrient storage, therefore, accentuates the advantage of dietary fat. A calorimetric model was based on initial estimates of net energy for competitive work (10.76 MJ for the Endurance Test of an Olympic level 3-day-event), other work (14.4 MJ/day) and maintenance (36 MJ), then applied estimates of efficiencies to derive associated heat productions for the utilisation of 3 diets, Diet A: hay (100), Diet B: hay and oats (50:50) and Diet C: hay, oats and vegetable oil (45:45:10), the difference between the last 2 diets representing fat adaptation. During a 90.5 min speed and stamina test, heat production was estimated as 37, 35.4 and 34.6 MJ for the 3 diets, respectively, an advantage 0.8 MJ less heat load for the fat adapted horse, which would reduce water needed for evaporation by 0.33 kg and reduce body temperature increase by about 0.07 degree C. Total estimated daily heat production was 105, 93 and 88 MJ for the 3 diets, respectively, suggesting a 5 MJ advantage for the fat adapted horse (Diet C vs. Diet B). Estimated

  16. Soil hydraulic properties affected by topsoil thickness in cultivated switchgrass and corn-soybean rotation production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Loss of productive topsoil by soil erosion over time can reduce the productive capacity of soil and can significantly affect soil hydraulic properties. This study evaluated the effects of reduced topsoil thickness and perennial switchgrass (Panicum virgatum L.) versus corn (Zea mays L.)/soybean [Gly...

  17. 40 CFR Table 3 to Subpart III of... - Compliance Requirements for Slabstock Foam Production Affected Sources Complying With the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Foam Production Affected Sources Complying With the Emission Point Specific Limitations 3 Table 3 to...) National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production Pt. 63, Subpt. III, Table 3 Table 3 to Subpart III of Part 63—Compliance Requirements for Slabstock...

  18. 40 CFR Table 3 to Subpart III of... - Compliance Requirements for Slabstock Foam Production Affected Sources Complying With the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Foam Production Affected Sources Complying With the Emission Point Specific Limitations 3 Table 3 to...) National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production Pt. 63, Subpt. III, Table 3 Table 3 to Subpart III of Part 63—Compliance Requirements for Slabstock...

  19. 40 CFR Table 4 to Subpart III of... - Compliance Requirements for Slabstock Foam Production Affected Sources Complying With the Source...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Foam Production Affected Sources Complying With the Source-Wide Emission Limitation 4 Table 4 to...) National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production Pt. 63, Subpt. III, Table 4 Table 4 to Subpart III of Part 63—Compliance Requirements for Slabstock...

  20. 40 CFR Table 4 to Subpart III of... - Compliance Requirements for Slabstock Foam Production Affected Sources Complying With the Source...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Foam Production Affected Sources Complying With the Source-Wide Emission Limitation 4 Table 4 to...) National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production Pt. 63, Subpt. III, Table 4 Table 4 to Subpart III of Part 63—Compliance Requirements for Slabstock...

  1. Options for Production Staging for a Low Energy Neutrino Factory

    SciTech Connect

    Berg J. S.

    2011-10-26

    A low energy neutrino factory (LENF) is defined, for the purpose of this report, to accelerate a muon beam to a total energy in the range of 10-14 GeV, and store it in a decay ring directing a resulting neutrino beam to a detector 2200-2300 km distant. The machine should be ultimately capable of producing 10{sup 21} decays toward that detector per year of 10{sup 7} s. We consider such a neutrino factory to be the accelerator defined in the Interim Design Report (IDR) of the International Design Study for the Neutrino Factory (IDS-NF), modified to remove the final stage of acceleration, possibly modifying the remaining acceleration stages to adjust the final energy, and replacing the decay ring with one designed for the lower energy and shorter baseline. We discuss modifications to that design which would reduce the cost of the machine at the price of a reduction in neutrino production, down to as low as 10{sup 20} decays per year. These modifications will not preclude eventually upgrading the machine to the full production of 10{sup 21} decays per year. The eventual cost of a machine which achieves the full production through a series of lower-production stages should not exceed the cost of a machine which is immediately capable of the full production by more than a small fraction of the cost difference between the full production machine and the lowest production stage.

  2. Factors affecting the efficiency of foal production in a commercial oocyte transfer program.

    PubMed

    Riera, Fernando L; Roldán, Jaime E; Gomez, José; Hinrichs, Katrin

    2016-04-01

    Transfer of donor oocytes to the oviducts of inseminated recipient mares (oocyte transfer, OT) presents a valuable method for production of foals from otherwise infertile mares. Little information is available, however, on factors affecting success of OT in a clinical setting. We report the findings over three breeding seasons in a commercial OT program developed at an equine embryo transfer center in Argentina. Overall, 25 mares were enrolled, and 197 follicle aspiration procedures were performed. The average mare age was 23 years. Follicle aspiration was performed with a needle placed through the flank; the oocyte recovery rate per follicle aspirated was 149 of 227 (66%). Induction of donor ovulation with deslorelin + hCG resulted in a significantly higher oocyte recovery rate than did induction with deslorelin alone (75% vs. 58%). There was no significant effect of mare age (17-20, 21-24, or 25-27 years) on oocyte recovery rate. Twelve oocytes were degenerating or lost during handling; transfer of the remaining 137 oocytes resulted in 42 pregnancies (31%) at 14 days. Of these, 32 (23% per transfer) went on to produce a foal or ongoing pregnancy. Transfer of oocytes recovered with a compact cumulus, without donor follicle induction, or less than 20 hours after induction was associated with a significantly reduced pregnancy rate (1/16, 6%), as was use of noncycling, hormone-treated recipients (2/22, 9%). To evaluate management factors affecting pregnancy rate, noncycling, hormone-treated recipients were disregarded, and only procedures using mature (expanded cumulus) oocytes recovered and transferred on the standard schedule (n = 99) were included. Mare age did not significantly affect rates of pregnancy or pregnancy loss. Similar pregnancy rates were obtained using recipients inseminated from 1 to 27 hours before transfer. Counterintuitively, insemination of recipients immediately (1-2 hours) after aspiration of the recipient follicle was associated with a high

  3. Dietary lipid and gross energy affect protein utilization in the rare minnow Gobiocypris rarus

    NASA Astrophysics Data System (ADS)

    Wu, Benli; Xiong, Xiaoqin; Xie, Shouqi; Wang, Jianwei

    2016-07-01

    An 8-week feeding trial was conducted to detect the optimal dietary protein and energy, as well as the effects of protein to energy ratio on growth, for the rare minnow ( Gobiocypris rarus), which are critical to nutrition standardization for model fish. Twenty-four diets were formulated to contain three gross energy (10, 12.5, 15 kJ/g), four protein (20%, 25%, 30%, 35%), and two lipid levels (3%, 6%). The results showed that optimal dietary E/P was 41.7-50 kJ/g for maximum growth in juvenile rare minnows at 6% dietary crude lipid. At 3% dietary lipid, specific growth rate (SGR) increased markedly when E/P decreased from 62.5 kJ/g to 35.7 kJ/g and gross energy was 12.5 kJ/g, and from 75 kJ/g to 42.9 kJ/g when gross energy was 15.0 kJ/g. The optimal gross energy was estimated at 12.5 kJ/g and excess energy decreased food intake and growth. Dietary lipid exhibited an apparent protein-sparing effect. Optimal protein decreased from 35% to 25%-30% with an increase in dietary lipid from 3% to 6% without adversely effecting growth. Dietary lipid level affects the optimal dietary E/P ratio. In conclusion, recommended dietary protein and energy for rare minnow are 20%-35% and 10-12.5 kJ/g, respectively.

  4. Follow the ATP: tumor energy production: a perspective.

    PubMed

    Oronsky, Bryan T; Oronsky, Neil; Fanger, Gary R; Parker, Christopher W; Caroen, Scott Z; Lybeck, Michelle; Scicinski, Jan J

    2014-01-01

    As early as the 1920s, the eminent physician and chemist, Otto Warburg, nominated for a second Nobel Prize for his work on fermentation, observed that the core metabolic signature of cancer cells is a high glycolytic flux. Warburg averred that the prime mover of cancer is defective mitochondrial respiration, which drives a switch to an alternative energy source, aerobic glycolysis in lieu of Oxidative Phosphorylation (OXPHOS), in an attempt to maintain cellular viability and support critical macromolecular needs. The cell, deprived of mitochondrial ATP production, must reprogram its metabolism as a secondary survival mechanism to maintain sufficient ATP and NADH levels for macromolecule production, membrane integrity and DNA synthesis as well as maintenance of membrane ionic gradients. A time-tested method to identify and disrupt criminal activity is to "follow the money" since the illicit proceeds from crime are required to underwrite it. By analogy, strategies to target cancer involve following and disrupting the flow of ATP and NADH, the energetic and redox "currencies" of the cell, respectively, since the tumor requires high levels of ATP and NADH, not only for metastasis and proliferation, but also, on a more basic level, for survival. Accordingly, four broad ATP reduction strategies to impact and potentially derail cancer energy production are highlighted herein: 1) small molecule energy-restriction mimetic agents (ERMAs) that target various aspects of energy metabolism, 2) reduction of energy 'subsidization' with autophagy inhibitors, 3) acceleration of ATP turnover to increase energy inefficiency, and 4) dietary energy restriction to limit the energy supply.

  5. Bio-based products from solar energy and carbon dioxide.

    PubMed

    Yu, Jian

    2014-01-01

    Producing bio-based products directly from CO₂ and solar energy is a desirable alternative to the conventional biorefining that relies on biomass feedstocks. The production paradigm is based on an artificial photosynthetic system that converts sunlight to electricity and H₂ via water electrolysis. An autotrophic H₂-oxidizing bacterium fixes CO₂ in dark conditions. The assimilated CO₂ is stored in bacterial cells as polyhydroxybutyrate (PHB), from which a range of products can be derived. Compared with natural photosynthesis of a fast-growing cyanobacterium, the artificial photosynthetic system has much higher energy efficiency and productivity of bio-based products. The new technology looks promising because of possible cost reduction in feedstock, equipment, and operation.

  6. Physical processes affecting availability of dissolved silicate for diatom production in the Arabian Sea

    NASA Technical Reports Server (NTRS)

    Young, David K.; Kindle, John C.

    1994-01-01

    A passive tracer to represent dissolved silicate concentrations, with biologically realistic uptake kinetics, is successfully incorporated into a three-dimensional, eddy-resolving, ocean circulation model of the Indian Ocean. Hypotheses are tested to evaluate physical processes which potentially affect the availability of silicate for diatom production in the Arabian Sea. An alternative mechanism is offered to the idea that open ocean upwelling is primarily responsible for the high, vertical nutrient flux and consequent large-scale phytoplankton bloom in the northwestern Arabian Sea during the southwest monsoon. Model results show that dissolved silicate in surface waters available for uptake by diatoms is primarily influenced by the intensity of nearshore upwelling from soutwest monsoonal wind forcing and by the offshore advective transport of surface waters. The upwelling, which in the model occurs within 200 +/- 50 km of the coast, appears to be a result of a combination of coastal upwelling, Elkman pumping, and divergence of the coastal flow as it turns offshore. Localized intensifications of silicate concentrations appear to be hydrodynamically driven and geographically correlated to coastal topographic features. The absence of diatoms in sediments of the eastern Arabian Basin is consistent with modeled distributional patterns of dissolved silicate resulting from limited westward advection of upwelled coastal waters from the western continental margin of India and rapid uptake of available silicate by diatoms. Concentrations of modeled silicate become sufficiently low to become unavailable for diatom production in the eastern Arabian Sea, a region between 61 deg E and 70 deg E at 8 deg N on the south, with the east and west boundaries converging on the north at approximately 67 deg E, 20 deg N.

  7. Denitrifying bacterial communities affect current production and nitrous oxide accumulation in a microbial fuel cell.

    PubMed

    Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M Dolors; Colprim, Jesús; Bañeras, Lluís

    2013-01-01

    The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A · m(-3) NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A · m(-3) NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation.

  8. Denitrifying Bacterial Communities Affect Current Production and Nitrous Oxide Accumulation in a Microbial Fuel Cell

    PubMed Central

    Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M. Dolors; Colprim, Jesús; Bañeras, Lluís

    2013-01-01

    The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A·m−3 NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A·m−3 NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation. PMID:23717427

  9. India's pulp and paper industry: Productivity and energy efficiency

    SciTech Connect

    Schumacher, Katja

    1999-07-01

    Historical estimates of productivity growth in India's pulp and paper sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both statistical and econometric estimates of productivity growth for this sector. Their results show that productivity declined over the observed period from 1973-74 to 1993-94 by 1.1% p.a. Using a translog specification the econometric analysis reveals that technical progress in India's pulp and paper sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protection afforded by high tariffs on imported paper products and other policies, which allowed inefficient, small plants to enter the market and flourish. Will these trends continue into the future, particularly where energy use is concerned? The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with liberalization of the sector, and tighter environmental controls, the industry is moving towards higher efficiency and productivity. However, the analysis also shows that because these improvements are being hampered by significant financial and other barriers the industry might have a long way to go.

  10. Energy production from biomass (Part 2): Conversion technologies.

    PubMed

    McKendry, Peter

    2002-05-01

    The use of biomass to provide energy has been fundamental to the development of civilisation. In recent times pressures on the global environment have led to calls for an increased use of renewable energy sources, in lieu of fossil fuels. Biomass is one potential source of renewable energy and the conversion of plant material into a suitable form of energy, usually electricity or as a fuel for an internal combustion engine, can be achieved using a number of different routes, each with specific pros and cons. A brief review of the main conversion processes is presented, with specific regard to the production of a fuel suitable for spark ignition gas engines.

  11. Factors affecting the energy cost of level running at submaximal speed.

    PubMed

    Lacour, Jean-René; Bourdin, Muriel

    2015-04-01

    Metabolic measurement is still the criterion for investigation of the efficiency of mechanical work and for analysis of endurance performance in running. Metabolic demand may be expressed either as the energy spent per unit distance (energy cost of running, C r) or as energy demand at a given running speed (running economy). Systematic studies showed a range of costs of about 20 % between runners. Factors affecting C r include body dimensions: body mass and leg architecture, mostly calcaneal tuberosity length, responsible for 60-80 % of the variability. Children show a higher C r than adults. Higher resting metabolism and lower leg length/stature ratio are the main putative factors responsible for the difference. Elastic energy storage and reuse also contribute to the variability of C r. The increase in C r with increasing running speed due to increase in mechanical work is blunted till 6-7 m s(-1) by the increase in vertical stiffness and the decrease in ground contact time. Fatigue induced by prolonged or intense running is associated with up to 10 % increased C r; the contribution of metabolic and biomechanical factors remains unclear. Women show a C r similar to men of similar body mass, despite differences in gait pattern. The superiority of black African runners is presumably related to their leg architecture and better elastic energy storage and reuse. PMID:25681108

  12. Factors affecting yield and safety of protein production from cassava by Cephalosporium eichhorniae

    SciTech Connect

    Mikami, Y.; Gregory, K.F.; Levadoux, W.L.; Balagopalan, C.; Whitwill, S.T.

    1982-01-01

    The properties of C. eichhorniae 152 (ATCC 38255) affecting protein production from cassava carbohydrate, for use as an animal feed, were studied. This strain is a true thermophile, showing optimum growth at 45-47 degrees, maximum protein yield at 45 degrees, and no growth at 25 degrees. It has an optimum pH of approximately 3.8 and is obligately acidophilic, being unable to sustain growth at pH of more than or equal to 6.0 in a liquid medium, or pH of more than or equal to 7.0 on solid media. The optimum growth conditions of pH 3.8 and 45 degrees were strongly inhibitive to potential contaminants. It rapidly hydrolyzed cassava starch. It did not utilize sucrose, but approximately 16% of the small sucrose component of cassava was chemically hydrolyzed during the process. Growth with cassava meal (50 g/l) was complete in approximately 20 h, yielding 22.5 g/l (dry biomass), containing 41% crude protein (48-50% crude protein in the mycelium) and 31% true protein (7.0 g/l). Resting and germinating spores (10 to the power of 6 - 10 to the power of 8 per animal) injected by various routes into normal and gamma-irradiated 6-week-old mice and 7-day-old chickens failed to initiate infections.

  13. Biotic and abiotic factors affect green ash volatile production and emerald ash borer adult feeding preference.

    PubMed

    Chen, Yigen; Poland, Therese M

    2009-12-01

    The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an exotic woodborer first detected in 2002 in Michigan and Ontario and is threatening the ash resource in North America. We examined the effects of light exposure and girdling on green ash (Fraxinus pennsylvanica Marsh) volatile production, and effects of light exposure, girdling, and leaf age on emerald ash borer adult feeding preferences and phototaxis. Green ash seedlings grown under higher light exposure had lower amounts of three individual volatile compounds, (Z)-3-hexenol, (E)-beta-ocimene, and (Z,E)-alpha-farnesene, as well as the total amount of six detected volatile compounds. Girdling did not affect the levels of these volatiles. Emerald ash borer females preferred mature leaves, leaves from girdled trees, and leaves grown in the sun over young leaves, leaves from nongirdled trees, and leaves grown in the shade, respectively. These emerald ash borer preferences were most likely because of physical, nutritional, or biochemical changes in leaves in response to the different treatments. Emerald ash borer females and males showed positive phototaxis in laboratory arenas, a response consistent with emerald ash borer preference for host trees growing in sunlight.

  14. Technologies that affect the weaning rate in beef cattle production systems.

    PubMed

    Dill, Matheus Dhein; Pereira, Gabriel Ribas; Costa, João Batista Gonçalves; Canellas, Leonardo Canali; Peripolli, Vanessa; Neto, José Braccini; Sant'Anna, Danilo Menezes; McManus, Concepta; Barcellos, Júlio Otávio Jardim

    2015-10-01

    We investigated the differences between weaning rates and technologies adopted by farmers in cow-calf production systems in Rio Grande do Sul State, Brazil. Interviews were carried out with 73 farmers about 48 technologies that could affect reproductive performance. Data were analyzed by multivariate analysis using a non-hierarchical cluster method. The level of significance was set at P < 0.05. Three distinct clusters of farmers were created (R (2) = 0.90), named as low (LWR), intermediate (IWR), and high (HWR) weaning rate, with 100, 91, and 96 % of the farmers identified within their respective groups and average weaning rates of 59, 72, and 83 %, respectively. IWR and HWR farmers used more improved natural pasture, fixed-time artificial insemination, selection for birth weight, and proteinated salt compared to LWR. HWR farmers used more stocking rate control, and IWR farmers used more ultrasound to evaluate reproductive performance compared to the LWR group. IWR and HWR adopted more technologies related to nutrition and reproductive aspects of the herd in comparison to LWR. We concluded that farmers with higher technology use on farm had higher weaning rates which could be used to benefit less efficient farmers.

  15. Efficiency of utilization of dietary energy for milk production in lactating crossbred cattle (Bos Indicus).

    PubMed

    Saha, Debashis; Gupta, Radhe Shyam; Singh Baghel, Ramesh Pratap; Khare, Ankur

    2012-01-01

    The present study was conducted on efficiency of utilization of dietary energy for milk production in lactating crossbred cattle. 18 lactating crossbred cattle of early to mid-lactation, approximate body weight (375.39±23.43 kg), milk yield, parity and stage of lactation were divided into three groups of six animals each and were fed 0, 50 and 100% diammonium phosphate (DAP) in the mineral mixture of concentrates for 120 days. The chaffed mixed roughage (berseem + wheat straw) and concentrate mixture was fed to supply about nearly 18:82 concentrate to roughage ratio on dry matter basis. Tap water was available to the animals twice daily. A metabolism trial of seven days was conducted at the end of experiment to study digestibility of organic nutrients and balances of energy. DAP did not affect the nutrient intake, body weight changes, digestibility of Dry matter (DM), Crude protein (CP), Ether extract (EE), Crude fiber (CF), Nitrogen free extract (NFE) and daily milk yield. It was concluded that the at 46.07 Mcal Gross energy intake level the losses in feces, urine, methane and heat production was 45.82%, 5.40%, 4.31% and 33.01%, respectively, and net energy retention for milk production was 11.43%. The gross efficiency of conversion of metabolic energy ME for milk production was 35.69% and the net efficiency of conversion of ME for milk production was 39.56%. PMID:25610572

  16. Efficiency of utilization of dietary energy for milk production in lactating crossbred cattle (Bos Indicus)

    PubMed Central

    Saha, Debashis; Gupta, Radhe Shyam; Singh Baghel, Ramesh Pratap; Khare, Ankur

    2012-01-01

    The present study was conducted on efficiency of utilization of dietary energy for milk production in lactating crossbred cattle. 18 lactating crossbred cattle of early to mid-lactation, approximate body weight (375.39±23.43 kg), milk yield, parity and stage of lactation were divided into three groups of six animals each and were fed 0, 50 and 100% diammonium phosphate (DAP) in the mineral mixture of concentrates for 120 days. The chaffed mixed roughage (berseem + wheat straw) and concentrate mixture was fed to supply about nearly 18:82 concentrate to roughage ratio on dry matter basis. Tap water was available to the animals twice daily. A metabolism trial of seven days was conducted at the end of experiment to study digestibility of organic nutrients and balances of energy. DAP did not affect the nutrient intake, body weight changes, digestibility of Dry matter (DM), Crude protein (CP), Ether extract (EE), Crude fiber (CF), Nitrogen free extract (NFE) and daily milk yield. It was concluded that the at 46.07 Mcal Gross energy intake level the losses in feces, urine, methane and heat production was 45.82%, 5.40%, 4.31% and 33.01%, respectively, and net energy retention for milk production was 11.43%. The gross efficiency of conversion of metabolic energy ME for milk production was 35.69% and the net efficiency of conversion of ME for milk production was 39.56%. PMID:25610572

  17. Marginal land-based biomass energy production in China.

    PubMed

    Tang, Ya; Xie, Jia-Sui; Geng, Shu

    2010-01-01

    Fast economic development in China has resulted in a significant increase in energy demand. Coal accounts for 70% of China's primary energy consumption and its combustion has caused many environmental and health problems. Energy security and environmental protection requirements are the main drivers for renewable energy development in China. Small farmland and food security make bioenergy derived from corn or sugarcane unacceptable to China: the focus should be on generating bioenergy from ligno-cellulosic feedstock sources. As China cannot afford biomass energy production from its croplands, marginal lands may play an important role in biomass energy production. Although on a small scale, marginal land has already been used for various purposes. It is estimated that some 45 million hm(2) of marginal land could be brought into high potential biomass energy production. For the success of such an initiative, it will likely be necessary to develop multipurpose plants. A case study, carried out on marginal land in Ningnan County, Sichuan Province with per capita cropland of 0.07 ha, indicated that some 380,000 tons of dry biomass could be produced each year from annual pruning of mulberry trees. This study supports the feasibility of producing large quantities of biomass from marginal land sources.

  18. Meson production in two-photon interactions at LHC energies

    SciTech Connect

    Da Silva, D. T.; Goncalves, V. P.; Sauter, W. K.

    2013-03-25

    The LHC opens a new kinematical regime at high energy, where several questions related to the description of the high-energy regime of the Quantum Chromodynamics (QCD) remain without satisfactory answers. Some open questions are the search for non-q-bar q resonances, the determination of the spectrum of q-bar q states and the identification of states with anomalous {gamma}{gamma} couplings. A possible way to study these problems is the study of meson production in two-photon interactions. In this contribution we calculate the meson production in two-photon interactions at LHC energies considering proton - proton collisions and estimate the total cross section for the production of the mesons {pi}, a, f, {eta} and {chi}.

  19. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    SciTech Connect

    Melaina, M.; Penev, M.; Heimiller, D.

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  20. Energy and nutrient cycling in pig production systems

    NASA Astrophysics Data System (ADS)

    Lammers, Peter J.

    United States pig production is centered in Iowa and is a major influence on the economic and ecological condition of that community. A pig production system includes buildings, equipment, production of feed ingredients, feed processing, and nutrient management. Although feed is the largest single input into a pig production system, nearly 30% of the non-solar energy use of a conventional--mechanically ventilated buildings with liquid manure handling--pig production system is associated with constructing and operating the pig facility. Using bedded hoop barns for gestating sows and grow-finish pigs reduces construction resource use and construction costs of pig production systems. The hoop based systems also requires approximately 40% less non-solar energy to operate as the conventional system although hoop barn-based systems may require more feed. The total non-solar energy input associated with one 136 kg pig produced in a conventional farrow-to-finish system in Iowa and fed a typical corn-soybean meal diet that includes synthetic lysine and exogenous phytase is 967.9 MJ. Consuming the non-solar energy results in emissions of 79.8 kg CO2 equivalents. Alternatively producing the same pig in a system using bedded hoop barns for gestating sows and grow-finish pigs requires 939.8 MJ/pig and results in emission of 70.2 kg CO2 equivalents, a reduction of 3 and 12% respectively. Hoop barn-based swine production systems can be managed to use similar or less resources than conventional confinement systems. As we strive to optimally allocate non-solar energy reserves and limited resources, support for examining and improving alternative systems is warranted.

  1. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    PubMed

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90 days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. PMID:26836846

  2. Environmental assessment. Energy efficiency standards for consumer products

    SciTech Connect

    McSwain, Berah

    1980-06-01

    The Energy Policy and Conservation Act of 1975 requires DOE to prescribe energy efficiency standards for 13 consumer products. The Consumer Products Efficiency Standards (CPES) program covers: refrigerators and refrigerator-freezers, freezers, clothes dryers, water heaters, room air conditioners, home heating equipment, kitchen ranges and ovens, central air conditioners (cooling and heat pumps), furnaces, dishwashers, television sets, clothes washers, and humidifiers and dehumidifiers. This Environmental Assessment evaluates the potential environmental and socioeconomic impacts expected as a result of setting efficiency standards for all of the consumer products covered by the CPES program. DOE has proposed standards for eight of the products covered by the Program in a Notice of Proposed Rulemaking (NOPR). DOE expects to propose standards for home heating equipment, central air conditioners (heat pumps only), dishwashers, television sets, clothes washers, and humidifiers and dehumidifiers in 1981. No significant adverse environmental or socioeconomic impacts have been found to result from instituting the CPES.

  3. Energy and rapidity dependence of beauty production at Tevatron

    SciTech Connect

    Ba, M.M.

    1997-09-01

    The CDF and D0 experiments have measured bb production in pp interactions at {radical}s = 1800 GeV and 630 GeV (the energy at which the previous measurement was performed by the UAl experiment). The Tevatron measurements are used to evaluate, for the first time, the center-of-mass energy and rapidity dependence of b-quark production cross section measured with the same detectors. Preliminary results from these measurements are presented and compared with the next-to-leading order QCD predictions.

  4. Strange particle production at low and intermediate energies

    SciTech Connect

    Alam, M. Rafi; Athar, M. Sajjad; Simo, I. Ruiz; Vacas, M. J. Vicente

    2011-11-23

    The weak kaon production off the nucleon induced by neutrinos and antineutrinos is studied at low and intermediate energies of interest for some ongoing and future neutrino oscillation experiments. We develop a microscopical model based on the SU(3) chiral Lagrangians. The studied mechanisms are the main source of kaon production for neutrino energies up to 2 GeV for the various channels and the cross sections are large enough to be amenable to be measured by experiments such as Minerva, T2K and NOvA.

  5. Theory of photoelectron production, transport and energy loss

    NASA Technical Reports Server (NTRS)

    Nagy, A. F.

    1974-01-01

    Current understanding of the theory of ionospheric photoelectron production, transport and energy loss is summarized. The various approaches used in the theoretical calculations of photoelectron fluxes appear to be self consistent and sound; improved values for a number of input parameters are needed now in order to achieve significant improvements and more confidence in the results. The major remaining problem in the present day theory of photoelectron transport and energy loss is centered around the calculations of photoelectron transit through the protonosphere.

  6. India's cement industry: Productivity, energy efficiency and carbon emissions

    SciTech Connect

    Schumacher, Katja; Sathaye, Jayant

    1999-07-01

    Historical estimates of productivity growth in India's cement sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Analysis shows that in the twenty year period, 1973 to 1993, productivity in the aluminum sector increased by 0.8% per annum. An econometric analysis reveals that technical progress in India's cement sector has been biased towards the use of energy and capital, while it has been material and labor saving. The increase in productivity was mainly driven by a period of progress between 1983 and 1991 following partial decontrol of the cement sector in 1982. The authors examine the current changes in structure and energy efficiency in the sector. Their analysis shows that the Indian cement sector is moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use. However, substantial further energy savings and carbon reduction potentials still exist.

  7. A High Protein Diet during Pregnancy Affects Hepatic Gene Expression of Energy Sensing Pathways along Ontogenesis in a Porcine Model

    PubMed Central

    Oster, Michael; Murani, Eduard; Metges, Cornelia C.; Ponsuksili, Siriluck; Wimmers, Klaus

    2011-01-01

    In rodent models and in humans the impact of gestational diets on the offspring's phenotype was shown experimentally and epidemiologically. The underlying programming of fetal development was shown to be associated with an increased risk of degenerative diseases in adulthood, including the metabolic syndrome. There are clues that diet-dependent modifications of the metabolism during fetal life can persist until adulthood. This leads to the hypothesis that the offspring's transcriptomes show short-term and long-term changes depending on the maternal diet. To this end pregnant German landrace gilts were fed either a high protein diet (HP, 30% CP) or an adequate protein diet (AP, 12% CP) throughout pregnancy. Hepatic transcriptome profiles of the offspring were analyzed at prenatal (94 dpc) and postnatal stages (1, 28, 188 dpn). Depending on the gestational dietary exposure, mRNA expression levels of genes related to energy metabolism, N-metabolism, growth factor signaling pathways, lipid metabolism, nucleic acid metabolism and stress/immune response were affected either in a short-term or in a long-term manner. Gene expression profiles at fetal stage 94 dpc were almost unchanged between the diets. The gestational HP diet affected the hepatic expression profiles at prenatal and postnatal stages. The effects encompassed a modulation of the genome in terms of an altered responsiveness of energy and nutrient sensing pathways. Differential expression of genes related to energy production and nutrient utilization contribute to the maintenance of development and growth performance within physiological norms, however the modulation of these pathways may be accompanied by a predisposition for metabolic disturbances up to adult stages. PMID:21789176

  8. Heavy Meson Production at a Low-Energy Photon Collider

    SciTech Connect

    Asztalos, S

    2004-04-15

    A low-energy {gamma}{gamma} collider has been discussed in the context of a testbed for a {gamma}{gamma} interaction region at the Next Linear Collider(NLC). We consider the production of heavy mesons at such a testbed using Compton-backscattered photons and demonstrate that their production rivals or exceeds those by BELLE, BABAR or LEP where they are produced indirectly via virtual {gamma}{gamma} luminosities.

  9. ALOX5 gene variants affect eicosanoid production and response to fish oil supplementation.

    PubMed

    Stephensen, Charles B; Armstrong, Patrice; Newman, John W; Pedersen, Theresa L; Legault, Jillian; Schuster, Gertrud U; Kelley, Darshan; Vikman, Susanna; Hartiala, Jaana; Nassir, Rami; Seldin, Michael F; Allayee, Hooman

    2011-05-01

    The objective of this study was to determine whether 5-lipoxygenase (ALOX5) gene variants associated with cardiovascular disease affect eicosanoid production by monocytes. The study was a randomized, double-masked, parallel intervention trial with fish oil (5.0 g of fish oil daily, containing 2.0 g of eicosapentaenoic acid [EPA] and 1.0 g of docosahexaenoic acid [DHA]) or placebo oil (5.0 g of corn/soy mixture). A total of 116 subjects (68% female, 20-59 years old) of African American ancestry enrolled, and 98 subjects completed the study. Neither ALOX5 protein nor arachidonic acid-derived LTB4, LTD4, and LTE4 varied by genotype, but 5-hydroxyeicosatetraenoate (5-HETE), 6-trans-LTB4, 5-oxo-ETE, 15-HETE, and 5,15-diHETE levels were higher in subjects homozygous for the ALOX5 promoter allele containing five Sp1 element tandem repeats ("55" genotype) than in subjects with one deletion (d) (three or four repeats) and one common ("d5" genotype) allele or with two deletion ("dd") alleles. The EPA-derived metabolites 5-HEPE and 15-HEPE and the DHA-derived metabolite 17-HDoHE had similar associations with genotype and increased with supplementation; 5-HEPE and 15-HEPE increased, and 5-oxo-ETE decreased to a greater degree in the 55 than in the other genotypes. This differential eicosanoid response is consistent with the previously observed interaction of these variants with dietary intake of omega-3 fatty acids in predicting cardiovascular disease risk.

  10. Bone Formation is Affected by Matrix Advanced Glycation End Products (AGEs) In Vivo.

    PubMed

    Yang, Xiao; Mostafa, Ahmed Jenan; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu

    2016-10-01

    Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Although previous evidence shows that the accumulation of AGEs in bone matrix may impose significant effects on bone cells, the effect of matrix AGEs on bone formation in vivo is still poorly understood. To address this issue, this study used a unique rat model with autograft implant to investigate the in vivo response of bone formation to matrix AGEs. Fluorochrome biomarkers were sequentially injected into rats to label the dynamic bone formation in the presence of elevated levels of matrix AGEs. After sacrificing animals, dynamic histomorphometry was performed to determine mineral apposition rate (MAR), mineralized surface per bone surface (MS/BS), and bone formation rate (BFR). Finally, nanoindentation tests were performed to assess mechanical properties of newly formed bone tissues. The results showed that MAR, MS/BS, and BFR were significantly reduced in the vicinity of implant cores with high concentration of matrix AGEs, suggesting that bone formation activities by osteoblasts were suppressed in the presence of elevated matrix AGEs. In addition, MAR and BFR were found to be dependent on the surrounding environment of implant cores (i.e., cortical or trabecular tissues). Moreover, MS/BS and BFR were also dependent on how far the implant cores were away from the growth plate. These observations suggest that the effect of matrix AGEs on bone formation is dependent on the biological milieu around the implants. Finally, nanoindentation test results indicated that the indentation modulus and hardness of newly formed bone tissues were not affected by the presence of elevated matrix AGEs. In summary, high concentration of matrix AGEs may slow down the bone formation process in vivo, while imposing little effects on bone mineralization.

  11. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    SciTech Connect

    Puddu, A.; Storace, D.; Odetti, P.; Viviani, G.L.

    2010-04-23

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic {beta}-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.

  12. Population dynamics of dechlorinators and factors affecting the level and products of PCB dechlorination in sediments

    SciTech Connect

    Kim, J.S.; Sokol, R.C.; Liu, X.; Bethoney, C.M.; Rhee, G.Y.

    1996-12-31

    Microbial dechlorination of polychlorinated biphenyls (PCBs) often stops although a significant number of removable chlorines remain. To determine the reason for the cessation, we investigated the limitation of organic carbon, PCB bioavailability, and inhibition by metabolic products. Enrichment with carbon sources did not induce additional chlorination, indicating the plateau was not due to depletion of organic carbon. The bioavailability was not limiting, since a subcritical micelle concentration of the surfactant, which enhanced desorption without inhibiting dechlorinating microorganisms, failed to lower the plateau. Neither was it due to accumulation of metabolites, since no additional dechlorination was detected when plateau sediments were incubated with fresh medium. Similarly, dechlorination was not inhibited in freshly spiked sediment slurries. Dechlorination ended up at the same level with nearly identical congener profiles, regardless of treatment. These results indicate that cessation of dechlorination was due to the accumulation of daughter congeners, which cannot be used as electron acceptors by microbes. To determine whether the decreasing availability affected the microorganisms, we determined the population dynamics of dechlorinators using the most probable number technique. The growth dynamics of the dechlorinators mirrored the time course of dechlorination. It started when the population increased by two orders of magnitude. Once dechlorination stopped the dechlorinating population also began to decrease. When dechlorinators were inoculated into PCB-free sediments, the population decreased over time. The decrease of the population as dechlorination ceased confirms that the diminishing availability of congeners was the reason for the incomplete dechlorination. Recent findings have shown that a second phase of dechlorination of certain congeners can occur after a long lag. 45 refs., 8 figs.

  13. Microalgae as sustainable renewable energy feedstock for biofuel production.

    PubMed

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  14. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    PubMed Central

    Yusoff, Fatimah Md.; Shariff, M.

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  15. Microalgae as sustainable renewable energy feedstock for biofuel production.

    PubMed

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  16. Evaluation of energy metabolism and calcium homeostasis in cells affected by Shwachman-Diamond syndrome.

    PubMed

    Ravera, Silvia; Dufour, Carlo; Cesaro, Simone; Bottega, Roberta; Faleschini, Michela; Cuccarolo, Paola; Corsolini, Fabio; Usai, Cesare; Columbaro, Marta; Cipolli, Marco; Savoia, Anna; Degan, Paolo; Cappelli, Enrico

    2016-01-01

    Isomorphic mutation of the SBDS gene causes Shwachman-Diamond syndrome (SDS). SDS is a rare genetic bone marrow failure and cancer predisposition syndrome. SDS cells have ribosome biogenesis and their protein synthesis altered, which are two high-energy consuming cellular processes. The reported changes in reactive oxygen species production, endoplasmic reticulum stress response and reduced mitochondrial functionality suggest an energy production defect in SDS cells. In our work, we have demonstrated that SDS cells display a Complex IV activity impairment, which causes an oxidative phosphorylation metabolism defect, with a consequent decrease in ATP production. These data were confirmed by an increased glycolytic rate, which compensated for the energetic stress. Moreover, the signalling pathways involved in glycolysis activation also appeared more activated; i.e. we reported AMP-activated protein kinase hyper-phosphorylation. Notably, we also observed an increase in a mammalian target of rapamycin phosphorylation and high intracellular calcium concentration levels ([Ca(2+)]i), which probably represent new biochemical equilibrium modulation in SDS cells. Finally, the SDS cell response to leucine (Leu) was investigated, suggesting its possible use as a therapeutic adjuvant to be tested in clinical trials. PMID:27146429

  17. Evaluation of energy metabolism and calcium homeostasis in cells affected by Shwachman-Diamond syndrome

    PubMed Central

    Ravera, Silvia; Dufour, Carlo; Cesaro, Simone; Bottega, Roberta; Faleschini, Michela; Cuccarolo, Paola; Corsolini, Fabio; Usai, Cesare; Columbaro, Marta; Cipolli, Marco; Savoia, Anna; Degan, Paolo; Cappelli, Enrico

    2016-01-01

    Isomorphic mutation of the SBDS gene causes Shwachman-Diamond syndrome (SDS). SDS is a rare genetic bone marrow failure and cancer predisposition syndrome. SDS cells have ribosome biogenesis and their protein synthesis altered, which are two high-energy consuming cellular processes. The reported changes in reactive oxygen species production, endoplasmic reticulum stress response and reduced mitochondrial functionality suggest an energy production defect in SDS cells. In our work, we have demonstrated that SDS cells display a Complex IV activity impairment, which causes an oxidative phosphorylation metabolism defect, with a consequent decrease in ATP production. These data were confirmed by an increased glycolytic rate, which compensated for the energetic stress. Moreover, the signalling pathways involved in glycolysis activation also appeared more activated; i.e. we reported AMP-activated protein kinase hyper-phosphorylation. Notably, we also observed an increase in a mammalian target of rapamycin phosphorylation and high intracellular calcium concentration levels ([Ca2+]i), which probably represent new biochemical equilibrium modulation in SDS cells. Finally, the SDS cell response to leucine (Leu) was investigated, suggesting its possible use as a therapeutic adjuvant to be tested in clinical trials. PMID:27146429

  18. Particle production and energy deposition studies for the neutrino factory target station

    NASA Astrophysics Data System (ADS)

    Back, John J.; Densham, Chris; Edgecock, Rob; Prior, Gersende

    2013-02-01

    We present FLUKA and MARS simulation studies of the pion production and energy deposition in the Neutrino Factory baseline target station, which consists of a 4 MW proton beam interacting with a liquid mercury jet target within a 20 T solenoidal magnetic field. We show that a substantial increase in the shielding is needed to protect the superconducting coils from too much energy deposition. Investigations reveal that it is possible to reduce the magnetic field in the solenoid capture system without adversely affecting the pion production efficiency. We show estimates of the amount of concrete shielding that will be required to protect the environment from the high radiation doses generated by the target station facility. We also present yield and energy deposition results for alternative targets: gallium liquid jet, tungsten powder jet, and solid tungsten bars.

  19. Airports offer unrealized potential for alternative energy production.

    PubMed

    DeVault, Travis L; Belant, Jerrold L; Blackwell, Bradley F; Martin, James A; Schmidt, Jason A; Wes Burger, L; Patterson, James W

    2012-03-01

    Scaling up for alternative energy such as solar, wind, and biofuel raises a number of environmental issues, notably changes in land use and adverse effects on wildlife. Airports offer one of the few land uses where reductions in wildlife abundance and habitat quality are necessary and socially acceptable, due to risk of wildlife collisions with aircraft. There are several uncertainties and limitations to establishing alternative energy production at airports, such as ensuring these facilities do not create wildlife attractants or other hazards. However, with careful planning, locating alternative energy projects at airports could help mitigate many of the challenges currently facing policy makers, developers, and conservationists.

  20. Airports Offer Unrealized Potential for Alternative Energy Production

    NASA Astrophysics Data System (ADS)

    Devault, Travis L.; Belant, Jerrold L.; Blackwell, Bradley F.; Martin, James A.; Schmidt, Jason A.; Wes Burger, L.; Patterson, James W.

    2012-03-01

    Scaling up for alternative energy such as solar, wind, and biofuel raises a number of environmental issues, notably changes in land use and adverse effects on wildlife. Airports offer one of the few land uses where reductions in wildlife abundance and habitat quality are necessary and socially acceptable, due to risk of wildlife collisions with aircraft. There are several uncertainties and limitations to establishing alternative energy production at airports, such as ensuring these facilities do not create wildlife attractants or other hazards. However, with careful planning, locating alternative energy projects at airports could help mitigate many of the challenges currently facing policy makers, developers, and conservationists.

  1. Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy

    SciTech Connect

    Zhiwei Zhou

    2006-07-01

    Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are

  2. Enhanced production of low energy electrons by alpha particle impact.

    PubMed

    Kim, Hong-Keun; Titze, Jasmin; Schöffler, Markus; Trinter, Florian; Waitz, Markus; Voigtsberger, Jörg; Sann, Hendrik; Meckel, Moritz; Stuck, Christian; Lenz, Ute; Odenweller, Matthias; Neumann, Nadine; Schössler, Sven; Ullmann-Pfleger, Klaus; Ulrich, Birte; Fraga, Rui Costa; Petridis, Nikos; Metz, Daniel; Jung, Annika; Grisenti, Robert; Czasch, Achim; Jagutzki, Ottmar; Schmidt, Lothar; Jahnke, Till; Schmidt-Böcking, Horst; Dörner, Reinhard

    2011-07-19

    Radiation damage to living tissue stems not only from primary ionizing particles but to a substantial fraction from the dissociative attachment of secondary electrons with energies below the ionization threshold. We show that the emission yield of those low energy electrons increases dramatically in ion-atom collisions depending on whether or not the target atoms are isolated or embedded in an environment. Only when the atom that has been ionized and excited by the primary particle impact is in immediate proximity of another atom is a fragmentation route known as interatomic Coulombic decay (ICD) enabled. This leads to the emission of a low energy electron. Over the past decade ICD was explored in several experiments following photoionization. Most recent results show its observation even in water clusters. Here we show the quantitative role of ICD for the production of low energy electrons by ion impact, thus approaching a scenario closer to that of radiation damage by alpha particles: We choose ion energies on the maximum of the Bragg peak where energy is most efficiently deposited in tissue. We compare the electron production after colliding He(+) ions on isolated Ne atoms and on Ne dimers (Ne(2)). In the latter case the Ne atom impacted is surrounded by a most simple environment already opening ICD as a deexcitation channel. As a consequence, we find a dramatically enhanced low energy electron yield. The results suggest that ICD may have a significant influence on cell survival after exposure to ionizing radiation.

  3. Energy recovery by production of fuel from citrus wastes

    SciTech Connect

    Wesley Clark, C.

    1982-05-01

    A study to determine how much energy can be recovered from a Florida citrus processing plant was conducted. The production of ethyl alcohol in particular was examined as it is thought to represent the greatest potential for immediate energy recovery. Three-fourths of the energy expended to produce, harvest, process and market a box of fruit was recoverable using existing technology, i.e. 78,500 Btu/ box of fruit recoverable from a total energy expenditure of 107,800 Btu/ box of fruit. Aside from the actual cost benefits of recovering energy in the form of ethanol, the food processor is also helping to reduce the foreign-oil imports by the blending of ethyl alcohol with unleaded gasoline to form gasohol.

  4. Trends and Implications of Stream Temperature for Energy and Fish Production

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Li, H. Y.; Liu, L.; Hejazi, M. I.; Leung, L. R.

    2015-12-01

    Stream temperature plays an important role in closing the energy balance at local, regional and global scales, and has significant impacts on fishery and energy production. It is therefore a critical parameter in the water-food-energy nexus. The stream temperature is affected by both climatic conditions and human activities such as reservoir and power plant operations. This study adopts a physically based stream temperature model within the Community Earth System Model (CESM) framework. The Model for Scale Adaptive River Transport (MOSART) has been developed to represent riverine water dynamics and incorporated into CESM by coupling with the Community Land Model (CLM). Here we build upon CLM-MOSART to represent the riverine transport of heat along with water flux and the energy exchanges between river water and the atmosphere. The impacts of reservoir and power plant operations are also explicitly incorporated with this stream temperature model. Scenarios of climate change effects as well as climate change combined with human activities are simulated. Trend in stream temperature, especially summer stream, will be systematically analyzed. Discussions of how future stream temperature affects energy production and food security will be presented.

  5. Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products

    SciTech Connect

    Sanchez, Marla Christine; Homan, Gregory; Brown, Richard

    2008-10-31

    ENERGY STAR is a voluntary energy efficiency-labeling program operated jointly by the United States Department of Energy and the United States Environmental Protection Agency (US EPA). Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products. ENERGY STAR's central role in the development of regional, national, and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with committed stakeholders. Through 2007, the program saved 7.1 Quads of primary energy and avoided 128 MtC equivalent. The forecast shows that the program is expected to save 21.2 Quads of primary energy and avoid 375 MtC equivalent over the period 2008-2015. The sensitivity analysis bounds the best estimate of carbon avoided between 84 MtC and 172 MtC (1993 to 2007) and between 243 MtC and 519 MtC (2008 to 2015).

  6. Mapping water consumption for energy production around the Pacific Rim

    NASA Astrophysics Data System (ADS)

    Tidwell, Vincent; Moreland, Barbie

    2016-09-01

    World energy demand is projected to increase by more than a third by 2035 and with it the use of water to extract and process fuels and generate electricity. Management of this energy-water nexus requires a clear understanding of the inter-related demands of these resources as well as their regional distribution. Toward this need the fresh water consumed for energy production was mapped for almost 12 000 watersheds distributed across the 21-economies comprising the Asia-Pacific Economic Cooperation. Fresh water consumption was estimated for ten different sectors including thermoelectric and hydroelectric power; energy extraction including coal, oil, natural gas, uranium and unconventional oil/gas; energy processing including oil and biofuels; and biofuel feedstock irrigation. These measures of water consumption were put in context by drawing comparison with published measures of water risk. In total 791 watersheds (32%) of the 2511 watersheds where energy related water consumption occurred were also characterized by high to extreme water risk, these watersheds were designated as being at energy-water risk. For six economies watersheds at energy-water risk represented half or more of all basins where energy related water consumption occurred, while four additional economies exceeded 30%.

  7. THE AFFECTIVE COMPONENTS OF PRODUCTIVE THINKING, STRATEGIES OF RESEARCH AND ASSESSMENT.

    ERIC Educational Resources Information Center

    COVINGTON, MARTIN V.

    NEW DIRECTIONS FOR RESEARCH MAY MORE CLEARLY REVEAL THE NATURE OF THE RELATIONSHIP BETWEEN AFFECTIVE VARIABLES AND INTELLECTUAL PERFORMANCE. ONE AFFECTIVE COMPONENT SHOULD NOT BE SINGLED OUT FOR MEASUREMENT. RATHER, A PATTERN OF DISPOSITIONS SHOULD BE DETERMINED AS A UNIT OF PREDICTION OF EFFECTIVE PERFORMANCE. VARIOUS COPING STYLES SHOULD BE…

  8. Latent heat thermal energy storage for lunar oxygen production

    SciTech Connect

    Solomon, A.D.; Alexiades, V.; Jacobs, G.; Naney, M.; Olszewski, M.

    1992-08-01

    A necessary component of a solar-based lunar oxygen production system is a thermal energy storage module. We discuss some of the heat transfer and phase change problems associated with the design and operation of such a module based on the latent heat of melting of lunar rock. 12 refs.

  9. Latent heat thermal energy storage for lunar oxygen production

    SciTech Connect

    Solomon, A.D. , Omer ); Alexiades, V.; Jacobs, G.; Naney, M.; Olszewski, M. )

    1992-01-01

    A necessary component of a solar-based lunar oxygen production system is a thermal energy storage module. We discuss some of the heat transfer and phase change problems associated with the design and operation of such a module based on the latent heat of melting of lunar rock. 12 refs.

  10. Material and Energy Requirement for Rare Earth Production

    NASA Astrophysics Data System (ADS)

    Talens Peiró, Laura; Villalba Méndez, Gara

    2013-10-01

    The use of rare earth metals (REMs) for new applications in renewable and communication technologies has increased concern about future supply as well as environmental burdens associated with the extraction, use, and disposal (losses) of these metals. Although there are several reports describing and quantifying the production and use of REM, there is still a lack of quantitative data about the material and energy requirements for their extraction and refining. Such information remains difficult to acquire as China is still supplying over 95% of the world REM supply. This article attempts to estimate the material and energy requirements for the production of REM based on the theoretical chemical reactions and thermodynamics. The results show the material and energy requirement varies greatly depending on the type of mineral ore, production facility, and beneficiation process selected. They also show that the greatest loss occurs during mining (25-50%) and beneficiation (10-30%) of RE minerals. We hope that the material and energy balances presented in this article will be of use in life cycle analysis, resource accounting, and other industrial ecology tools used to quantify the environmental consequences of meeting REM demand for new technology products.

  11. Green energy products in the United Kingdom, Germany and Finland

    NASA Astrophysics Data System (ADS)

    Hast, Aira; McDermott, Liisa; Järvelä, Marja; Syri, Sanna

    2014-12-01

    In liberalized electricity markets, suppliers are offering several kinds of voluntary green electricity products marketed as environmentally friendly. This paper focuses on the development of these voluntary markets at household level in the UK, Germany and Finland. Since there are already existing renewable energy policies regulating and encouraging the use of renewable energy, it is important to consider whether voluntary products offer real additional benefits above these policies. Problems such as double counting or re-marketing hydropower produced in existing plants are identified. According to our study, the demand varies between countries: in Germany the number of green electricity customers has increased and is also higher than in the UK or Finland. Typically the average additional cost to consumer from buying green electricity product instead of standard electricity product is in the range of 0-5% in all studied countries, although the level of price premium depends on several factors like electricity consumption. Case study of Finland and literature show that the impacts of green energy are not solely environmental. Renewable energy can benefit local public policy.

  12. Biological control of soilborne diseases in organic potato production as affected by varying environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soilborne diseases are persistent problems in potato production and alternative management practices are needed, particularly in organic production, where control options are limited. Selected biocontrol organisms, including two naturally-occurring hypovirulent strains of Rhizoctonia solani (Rhs1a1 ...

  13. Angular correlations in gluon production at high energy

    SciTech Connect

    Kovner, Alex; Lublinsky, Michael

    2011-02-01

    We present a general, model independent argument demonstrating that gluons produced in high energy hadronic collision are necessarily correlated in rapidity and also in the emission angle. The strength of the correlation depends on the process and on the structure/model of the colliding particles. In particular we argue that it is strongly affected (and underestimated) by factorized approximations frequently used to quantify the effect.

  14. ENTROPY PRODUCTION AT HIGH ENERGY AND mu B.

    SciTech Connect

    STEINBERG,P.

    2006-07-03

    The systematics of bulk entropy production in experimental data on Ai-A, p + y and e{sup +}e{sup -} interactions at high energies and large {mu}{sub B} is discussed. It is proposed that scenarios with very early thermalization, such as Landau's hydrodynamical model, capture several essential features of the experimental results. It is also pointed out that the dynamics of systems which reach the hydrodynamic regime give similar multiplicities and angular distributions as those calculated in weak-coupling approximations (e.g. pQCD) over a wide range of beam energies. Finally, it is shown that the dynamics of baryon stopping are relevant to the physics of total entropy production, explaining why A+A and e{sup +}e{sup -} multiplicities are different at low beam energies.

  15. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    NASA Astrophysics Data System (ADS)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  16. Determining production policies for crops to maximize net energy return

    SciTech Connect

    Ozkan, H.E.; Frisby, J.C.

    1981-01-01

    In this simulation study, energy consumption in production of corn, soybeans, wheat and alfalfa was evaluated under different levels of production constraints. A synthetic farm located in central Missouri was developed using data from previous studies. Only 150 hectares of the total cropland (350 ha) were irrigated using sprinkler irrigation. A linear programming model was used to select the crops and their respective areas. A first solution for a selected set of initial conditions resulted in partial utilization of total available cropland because of constraints reaching their upper limits. By a series of additional runs, suggested policies for full utilization of cropland and effects of policy changes on net energy return of the farm were determined. It was discovered that the initial conditions of the farm could be revised to increase the net energy return by 30 percent.

  17. Energy baseline and energy efficiency resource opportunities for the Forest Products Laboratory, Madison, Wisconsin

    SciTech Connect

    Mazzucchi, R.P.; Richman, E.E.; Parker, G.B.

    1993-08-01

    This report provides recommendations to improve the energy use efficiency at the Forest Products Laboratory in Madison, Wisconsin. The assessment focuses upon the four largest buildings and central heating plant at the facility comprising a total of approximately 287,000 square feet. The analysis is comprehensive in nature, intended primarily to determine what if any energy efficiency improvements are warranted based upon the potential for cost-effective energy savings. Because of this breadth, not all opportunities are developed in detail; however, baseline energy consumption data and energy savings concepts are described to provide a foundation for detailed investigation and project design where warranted.

  18. Wider stall space affects behavior, lesion scores, and productivity of gestating sows.

    PubMed

    Salak-Johnson, J L; DeDecker, A E; Levitin, H A; McGarry, B M

    2015-10-01

    Limited space allowance within the standard gestation stall is an important welfare concern because it restricts the ability of the sow to make postural adjustments and hinders her ability to perform natural behaviors. Therefore, we evaluated the impacts of increasing stall space and/or providing sows the freedom to access a small pen area on sow well-being using multiple welfare metrics. A total of 96 primi- and multiparous crossbred sows were randomly assigned in groups of 4 sows/treatment across 8 replicates to 1 of 3 stall treatments (TRT): standard stall (CTL; dimensions: 61 by 216 cm), width-adjustable stall (flex stall [FLX]; dimensions: adjustable width of 56 to 79 cm by 216 cm), or an individual walk-in/lock-in stall with access to a small communal open-pen area at the rear of the stall (free-access stall [FAS]; dimensions: 69 by 226 cm). Lesion scores, behavior, and immune and productivity traits were measured at various gestational days throughout the study. Total lesion scores were greatest for sows in FAS and least for sows in FLX ( < 0.001). Higher-parity sows in FAS had the most severe lesion scores (TRT × parity, < 0.0001) and scores were greatest at all gestational days (TRT × day, < 0.05). Regardless of parity, sows in FLX had the least severe scores ( < 0.0001). As pregnancy progressed, lesion scores increased among sows in CTL ( < 0.05). Sow BW and backfat (BF) were greater for sows in FLX and FAS ( < 0.05), and BCS and BF were greater for parity 1 and 2 sows in FAS than the same parity sows in CTL (TRT × parity, < 0.05). Duration and frequency of some postural behaviors and sham chew behavior were affected by TRT ( < 0.05) and time of day (TRT × day, < 0.05). These data indicate that adequate stall space, especially late in gestation, may improve the well-being of higher-parity and heavier-bodied gestating sows as assessed by changes in postural behaviors, lesion severity scores, and other sow traits. Moreover, compromised welfare measures

  19. Terroir et vignoble: how the farming management can affect the production of a quality wine

    NASA Astrophysics Data System (ADS)

    Gallo, Alba; Bini, Claudio

    2016-04-01

    Italian wine is one of the most exported wine in the world. The particular climate, the soil characteristics and other several factors have contributed to this success. Italy is located in the temperate belt, with a suitable climate for grapevine cultivation. For this reason, all regions in Italy produce wine, first of all the Veneto region, with 8.569.000 hl of wine in 2011. Wine quality derives from the perfect interaction among climate, morphology, soil and plant, i.e. the terroir. So, knowledge of the land characteristics, together with cultivation techniques and management, is essential to understand this interaction and the typicality of the wine. For example, large utilization of fertilizers and pesticides may determine accumulation of toxic substances in soil and possible translocation to the food chain. For this reason, metal contamination of soils and plants becomes a main issue in agricultural production. Therefore, our attention was focused on the determination of soil quality of the Prosecco DOCG (controlled and guaranteed denomination of origin) area, particularly in Conegliano. Conegliano is a town located in Veneto, in the province of Treviso, known for its wine. This wine variety is regulated by the Conegliano-Valdobbiadene production Consortium, to protect both consumers and producers. The goals of this research are: evaluation of trace metal content (Al ,Cd, Cr, Cu, Fe, Mg, Mn, Ni, P, Pb, V and Zn) in soils and possible uptake by grape leaves; estimation of biological soil quality (QBS-ar index); analysis of oxidative stress in dandelion (Taraxacum officinale) and grape leaves, by the Lipid peroxidation test (LPO test). Results concerning trace metal concentration show: i) a high content of Al, Mg and P in soils, and ii) high concentration of Al, Cu, Fe and Zn in grape leaves. High contents of Al in topsoil are consistent with the high concentration of organic matter. Instead, high Al contents in subsoil are related to clay. Mg and P are usually

  20. Thermodynamic laws, economic methods and the productive power of energy

    NASA Astrophysics Data System (ADS)

    Kümmel, Reiner; Ayres, Robert U.; Lindenberger, Dietmar

    2010-07-01

    Energy plays only a minor role in orthodox theories of economic growth, because standard economic equilibrium conditions say that the output elasticity of a production factor, which measures the factor's productive power, is equal to the factor's share in total factor cost. Having commanded only a tiny cost share of about 5 percent so far, energy is often neglected altogether. On the other hand, energy conversion in the machines of the capital stock has been the basis of industrial growth. How can the physically obvious economic importance of energy be reconciled with the conditions for economic equilibrium, which result from the maximization of profit or overall welfare? We show that these equilibrium conditions no longer yield the equality of cost shares and output elasticities, if the optimization calculus takes technological constraints on the combinations of capital, labor, and energy into account. New econometric analyses of economic growth in Germany, Japan, and the USA yield output elasticities that are for energy much larger and for labor much smaller than their cost shares. Social consequences are discussed.

  1. Metabolic responses to nocturnal eating in men are affected by sources of dietary energy.

    PubMed

    Holmbäck, Ulf; Forslund, Anders; Forslund, Jeanette; Hambraeus, Leif; Lennernäs, Maria; Lowden, Arne; Stridsberg, Mats; Akerstedt, Torbjörn

    2002-07-01

    Because night work is becoming more prevalent, we studied whether feeding at different times of a 24-h period would elicit different metabolic responses and whether dietary macronutrient composition would affect these responses. Seven men (26-43 y, 19.9-26.6 kg/m(2)) consumed two isocaloric diets, in a crossover design. The diets were a high carbohydrate (HC) diet [65 energy % (E%) carbohydrates, 20E% fat] and a high fat (HF) diet (40E% carbohydrates, 45E% fat). After a 6-d diet-adjustment period, the men were kept awake for 24 h and the food (continuation of respective diet) was provided as six isocaloric meals (i.e., every 4 h). Energy and substrate turnover, heart rate, mean arterial pressure (MAP), blood glucose, triacylglycerol (TAG), nonesterified fatty acid (NEFA) and glycerol were measured throughout the 24-h period. Significantly higher energy expenditure and NEFA concentration, and lower blood glucose and TAG concentrations were observed when the men consumed the HF diet than when they consumed the HC diet. Significant circadian patterns were seen in body and skin temperature (nadir, 0400-0500 h). When the men consumed the HF diet, significant circadian patterns were seen in fat oxidation (nadir, 0800-1200 h; plateau, 1200-0800 h), heat release (nadir, 0800-1200 h; plateau, 1600-0800 h), heart rate (nadir, 0000 h), blood glucose (nadir, 0800-1200 h; peak, 0000-0400 h), NEFA (nadir, 0800-1200 h; peak, 1200-2000 h) and TAG (nadir, 0800-1200 h; peak, 0400-0800 h) concentrations. Energy expenditure, carbohydrate oxidation, MAP and glycerol concentration did not display circadian patterns. Unequal variances eradicated most circadian effects in the HC-diet data. The increased TAG concentration in response to feeding at 0400 h might be involved in the higher TAG concentrations seen in shift workers. Distinct macronutrient/circadian-dependent postprandial responses were seen in most studied variables.

  2. Metabolic responses to nocturnal eating in men are affected by sources of dietary energy.

    PubMed

    Holmbäck, Ulf; Forslund, Anders; Forslund, Jeanette; Hambraeus, Leif; Lennernäs, Maria; Lowden, Arne; Stridsberg, Mats; Akerstedt, Torbjörn

    2002-07-01

    Because night work is becoming more prevalent, we studied whether feeding at different times of a 24-h period would elicit different metabolic responses and whether dietary macronutrient composition would affect these responses. Seven men (26-43 y, 19.9-26.6 kg/m(2)) consumed two isocaloric diets, in a crossover design. The diets were a high carbohydrate (HC) diet [65 energy % (E%) carbohydrates, 20E% fat] and a high fat (HF) diet (40E% carbohydrates, 45E% fat). After a 6-d diet-adjustment period, the men were kept awake for 24 h and the food (continuation of respective diet) was provided as six isocaloric meals (i.e., every 4 h). Energy and substrate turnover, heart rate, mean arterial pressure (MAP), blood glucose, triacylglycerol (TAG), nonesterified fatty acid (NEFA) and glycerol were measured throughout the 24-h period. Significantly higher energy expenditure and NEFA concentration, and lower blood glucose and TAG concentrations were observed when the men consumed the HF diet than when they consumed the HC diet. Significant circadian patterns were seen in body and skin temperature (nadir, 0400-0500 h). When the men consumed the HF diet, significant circadian patterns were seen in fat oxidation (nadir, 0800-1200 h; plateau, 1200-0800 h), heat release (nadir, 0800-1200 h; plateau, 1600-0800 h), heart rate (nadir, 0000 h), blood glucose (nadir, 0800-1200 h; peak, 0000-0400 h), NEFA (nadir, 0800-1200 h; peak, 1200-2000 h) and TAG (nadir, 0800-1200 h; peak, 0400-0800 h) concentrations. Energy expenditure, carbohydrate oxidation, MAP and glycerol concentration did not display circadian patterns. Unequal variances eradicated most circadian effects in the HC-diet data. The increased TAG concentration in response to feeding at 0400 h might be involved in the higher TAG concentrations seen in shift workers. Distinct macronutrient/circadian-dependent postprandial responses were seen in most studied variables. PMID:12097665

  3. 40 CFR Table 10 to Subpart Xxxx of... - Continuous Compliance With the Emission Limits for Tire Production Affected Sources

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Continuous Compliance With the Emission Limits for Tire Production Affected Sources 10 Table 10 to Subpart XXXX of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  4. 40 CFR Table 10 to Subpart Xxxx of... - Continuous Compliance With the Emission Limits for Tire Production Affected Sources

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Continuous Compliance With the Emission Limits for Tire Production Affected Sources 10 Table 10 to Subpart XXXX of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  5. 40 CFR Table 10 to Subpart Xxxx of... - Continuous Compliance With the Emission Limits for Tire Production Affected Sources

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Continuous Compliance With the Emission Limits for Tire Production Affected Sources 10 Table 10 to Subpart XXXX of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  6. 40 CFR Table 10 to Subpart Xxxx of... - Continuous Compliance With the Emission Limits for Tire Production Affected Sources

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Continuous Compliance With the Emission Limits for Tire Production Affected Sources 10 Table 10 to Subpart XXXX of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  7. 40 CFR Table 10 to Subpart Xxxx of... - Continuous Compliance With the Emission Limits for Tire Production Affected Sources

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continuous Compliance With the Emission Limits for Tire Production Affected Sources 10 Table 10 to Subpart XXXX of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  8. 40 CFR Table 4 to Subpart III of... - Compliance Requirements for Slabstock Foam Production Affected Sources Complying With the Source...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Compliance Requirements for Slabstock Foam Production Affected Sources Complying With the Source-Wide Emission Limitation 4 Table 4 to... Complying With the Source-Wide Emission Limitation Emission point Emission point compliance option...

  9. Negative energy balance affects imprint stability in oocytes recovered from postpartum dairy cows.

    PubMed

    O'Doherty, Alan M; O'Gorman, Aoife; al Naib, Abdullah; Brennan, Lorraine; Daly, Edward; Duffy, Pat; Fair, Trudee

    2014-09-01

    Ovarian follicle development in post-partum, high-producing dairy cows, occurs in a compromised endogenous metabolic environment (referred to as negative energy balance, NEB). Key events that occur during oocyte/follicle growth, such as the vital process of genomic imprinting, may be detrimentally affected by this altered ovarian environment. Imprinting is crucial for placental function and regulation of fetal growth, therefore failure to establish and maintain imprints during oocyte growth may contribute to early embryonic loss. Using ovum pick-up (OPU), oocytes and follicular fluid samples were recovered from cows between days 20 and 115 post-calving, encompassing the NEB period. In a complimentary study, cumulus oocyte complexes were in vitro matured under high non-esterified fatty acid (NEFA) concentrations and in the presence of the methyl-donor S-adenosylmethionine (SAM). Pyrosequencing revealed the loss of methylation at several imprinted loci in the OPU derived oocytes. The loss of DNA methylation was observed at the PLAGL1 locus in oocytes, following in vitro maturation (IVM) in the presence of elevated NEFAs and SAM. Finally, metabolomic analysis of postpartum follicular fluid samples revealed significant differences in several branched chain amino acids, with fatty acid profiles bearing similarities to those characteristic of lactating dairy cows. These results provide the first evidence that (1) the postpartum ovarian environment may affect maternal imprint acquisition and (2) elevated NEFAs during IVM can lead to the loss of imprinted gene methylation in bovine oocytes.

  10. Energy consumption evaluation of fuel bioethanol production from sweet potato.

    PubMed

    Ferrari, Mario Daniel; Guigou, Mairan; Lareo, Claudia

    2013-05-01

    The energy consumption for different operative conditions and configurations of the bioethanol production industrial process from an experimental variety of sweet potato (Ipomea batatas) K 9807.1 was evaluated. A process simulation model was developed using SuperPro Designer® software. The model was based on experimental data gathered from our laboratory experiments and technology and equipment suppliers. The effects of the dry matter ratio of sweet potato to water, the fermentation efficiency, and sweet potato sugar content, on the energy consumption (steam and electricity) were respectively evaluated. All factors were significant. The best ratio of dry matter to total water to work with fresh sweet potato was 0.2 kg dry sweet potato/kg water, as for greater ratios was not found a significant reduction in energy consumption. Also, the drying of the sweet potato previous its processing was studied. It presented an energy consumption greater than the energetic content of the bioethanol produced.

  11. Energy consumption evaluation of fuel bioethanol production from sweet potato.

    PubMed

    Ferrari, Mario Daniel; Guigou, Mairan; Lareo, Claudia

    2013-05-01

    The energy consumption for different operative conditions and configurations of the bioethanol production industrial process from an experimental variety of sweet potato (Ipomea batatas) K 9807.1 was evaluated. A process simulation model was developed using SuperPro Designer® software. The model was based on experimental data gathered from our laboratory experiments and technology and equipment suppliers. The effects of the dry matter ratio of sweet potato to water, the fermentation efficiency, and sweet potato sugar content, on the energy consumption (steam and electricity) were respectively evaluated. All factors were significant. The best ratio of dry matter to total water to work with fresh sweet potato was 0.2 kg dry sweet potato/kg water, as for greater ratios was not found a significant reduction in energy consumption. Also, the drying of the sweet potato previous its processing was studied. It presented an energy consumption greater than the energetic content of the bioethanol produced. PMID:23567705

  12. Technology diffusion of energy-related products in residential markets

    SciTech Connect

    Davis, L.J.; Bruneau, C.L.

    1987-05-01

    Acceptance of energy-related technologies by end residential consumers, manufacturers of energy-related products, and other influential intermediate markets such as builders will influence the potential for market penetration of innovative energy-related technologies developed by the Department of Energy, Office of Building and Community Systems (OBCS). In this report, Pacific Northwest Laboratory reviewed the available information on technology adoption, diffusion, and decision-making processes to provide OBCS with a background and understanding of the type of research that has previously been conducted on this topic. Insight was gained as to the potential decision-making criteria and motivating factors that influence the decision-maker(s) selection of new technologies, and some of the barriers to technology adoption faced by potential markets for OBCS technologies.

  13. Light element production by low energy nuclei from massive stars

    NASA Technical Reports Server (NTRS)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.

    1997-01-01

    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  14. Radiative neutralino production in low energy supersymmetric models

    SciTech Connect

    Basu, Rahul; Sharma, Chandradew; Pandita, P. N.

    2008-06-01

    We study the production of the lightest neutralinos in the radiative process e{sup +}e{sup -}{yields}{chi}-tilde{sub 1}{sup 0}{chi}-tilde{sub 1}{sup 0}{gamma} in low energy supersymmetric models for the International Linear Collider energies. This includes the minimal supersymmetric standard model as well as its extension with an additional chiral Higgs singlet superfield, the nonminimal supersymmetric standard model. We compare and contrast the dependence of the signal cross section on the parameters of the neutralino sector of the minimal and nonminimal supersymmetric standard model. We also consider the background to this process coming from the standard model process e{sup +}e{sup -}{yields}{nu}{nu}{gamma}, as well as from the radiative production of the scalar partners of the neutrinos (sneutrinos) e{sup +}e{sup -}{yields}{nu}-tilde{nu}-tilde*{gamma}, which can be a background to the radiative neutralino production when the sneutrinos decay invisibly. In low energy supersymmetric models radiative production of the lightest neutralinos may be the only channel to study supersymmetric partners of the standard model particles at the first stage of a linear collider, since heavier neutralinos, charginos, and sleptons may be too heavy to be pair produced at a e{sup +}e{sup -} machine with {radical}(s)=500 GeV.

  15. The unintended energy impacts of increased nitrate contamination from biofuels production.

    PubMed

    Twomey, Kelly M; Stillwell, Ashlynn S; Webber, Michael E

    2010-01-01

    Increases in corn cultivation for biofuels production, due to the Energy Independence and Security Act of 2007, are likely to lead to increases in nitrate concentrations in both surface and groundwater resources in the United States. These increases might trigger the requirement for additional energy consumption for water treatment to remove the nitrates. While these increasing concentrations of nitrate might pose a human health concern, most water resources were found to be within current maximum contaminant level (MCL) limits of 10 mg L(-1) NO(3)-N. When water resources exceed this MCL, energy-intensive drinking water treatment is required to reduce nitrate levels below 10 mg L(-1). Based on prior estimates of water supplies currently exceeding the nitrate MCL, we calculate that advanced drinking water treatment might require an additional 2360 million kWh annually (for nitrate affected areas only)--a 2100% increase in energy requirements for water treatment in those same areas--to mitigate nitrate contamination and meet the MCL requirement. We predict that projected increases in nitrate contamination in water may impact the energy consumed in the water treatment sector, because of the convergence of several related trends: (1) increasing cornstarch-based ethanol production, (2) increasing nutrient loading in surface water and groundwater resources as a consequence of increased corn-based ethanol production, (3) additional drinking water sources that exceed the MCL for nitrate, and (4) potentially more stringent drinking water standards for nitrate. PMID:20082016

  16. The unintended energy impacts of increased nitrate contamination from biofuels production.

    PubMed

    Twomey, Kelly M; Stillwell, Ashlynn S; Webber, Michael E

    2010-01-01

    Increases in corn cultivation for biofuels production, due to the Energy Independence and Security Act of 2007, are likely to lead to increases in nitrate concentrations in both surface and groundwater resources in the United States. These increases might trigger the requirement for additional energy consumption for water treatment to remove the nitrates. While these increasing concentrations of nitrate might pose a human health concern, most water resources were found to be within current maximum contaminant level (MCL) limits of 10 mg L(-1) NO(3)-N. When water resources exceed this MCL, energy-intensive drinking water treatment is required to reduce nitrate levels below 10 mg L(-1). Based on prior estimates of water supplies currently exceeding the nitrate MCL, we calculate that advanced drinking water treatment might require an additional 2360 million kWh annually (for nitrate affected areas only)--a 2100% increase in energy requirements for water treatment in those same areas--to mitigate nitrate contamination and meet the MCL requirement. We predict that projected increases in nitrate contamination in water may impact the energy consumed in the water treatment sector, because of the convergence of several related trends: (1) increasing cornstarch-based ethanol production, (2) increasing nutrient loading in surface water and groundwater resources as a consequence of increased corn-based ethanol production, (3) additional drinking water sources that exceed the MCL for nitrate, and (4) potentially more stringent drinking water standards for nitrate.

  17. DEPTOR in POMC neurons affects liver metabolism but is dispensable for the regulation of energy balance

    PubMed Central

    Caron, Alexandre; Labbé, Sébastien M.; Mouchiroud, Mathilde; Huard, Renaud; Richard, Denis

    2016-01-01

    We have recently demonstrated that specific overexpression of DEP-domain containing mTOR-interacting protein (DEPTOR) in the mediobasal hypothalamus (MBH) protects mice against high-fat diet-induced obesity, revealing DEPTOR as a significant contributor to energy balance regulation. On the basis of evidence that DEPTOR is expressed in the proopiomelanocortin (POMC) neurons of the MBH, the present study aimed to investigate whether these neurons mediate the metabolic effects of DEPTOR. Here, we report that specific DEPTOR overexpression in POMC neurons does not recapitulate any of the phenotypes observed when the protein was overexpressed in the MBH. Unlike the previous model, mice overexpressing DEPTOR only in POMC neurons 1) did not show differences in feeding behavior, 2) did not exhibit changes in locomotion activity and oxygen consumption, 3) did not show an improvement in systemic glucose metabolism, and 4) were not resistant to high-fat diet-induced obesity. These results support the idea that other neuronal populations are responsible for these phenotypes. Nonetheless, we observed a mild elevation in fasting blood glucose, insulin resistance, and alterations in liver glucose and lipid homeostasis in mice overexpressing DEPTOR in POMC neurons. Taken together, these results show that DEPTOR overexpression in POMC neurons does not affect energy balance regulation but could modulate metabolism through a brain-liver connection. PMID:27097662

  18. Dry period plane of energy: Effects on feed intake, energy balance, milk production, and composition in transition dairy cows.

    PubMed

    Mann, S; Yepes, F A Leal; Overton, T R; Wakshlag, J J; Lock, A L; Ryan, C M; Nydam, D V

    2015-05-01

    NEFA concentrations over time were highest in group H and lowest in group C, whereas milk production was not affected by prepartum plane of energy. Analysis of milk fatty acid composition showed a higher yield of preformed fatty acids in group H compared with group C, suggesting higher lipid mobilization for cows fed H. In this study, a 1-group, controlled-energy dry period approach decreased the degree of negative energy balance as well as the number of episodes and degree of hyperketonemia postpartum.

  19. Energy composition of diet affects muscle fiber recruitment, body composition, and growth trajectory in rainbow trout (Oncorhnychus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy composition of diet affects muscle fiber recruitment, body composition, and growth trajectory in rainbow trout (Oncorhnychus mykiss) The cost and scarcity of key ingredients for aquaculture feed formulation call for a wise use of resources, especially dietary proteins and energy. For years t...

  20. Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use

    SciTech Connect

    National Academies,; Lee, Russell

    2010-01-01

    Despite the many benefits of energy, most of which are reflected in energy market prices, the production, distribution, and use of energy causes negative effects. Many of these negative effects are not reflected in energy market prices. When market failures like this occur, there may be a case for government interventions in the form of regulations, taxes, fees, tradable permits, or other instruments that will motivate recognition of these external or hidden costs. The Hidden Costs of Energy defines and evaluates key external costs and benefits that are associated with the production, distribution, and use of energy, but are not reflected in market prices. The damage estimates presented are substantial and reflect damages from air pollution associated with electricity generation, motor vehicle transportation, and heat generation. The book also considers other effects not quantified in dollar amounts, such as damages from climate change, effects of some air pollutants such as mercury, and risks to national security. While not a comprehensive guide to policy, this analysis indicates that major initiatives to further reduce other emissions, improve energy efficiency, or shift to a cleaner electricity generating mix could substantially reduce the damages of external effects. A first step in minimizing the adverse consequences of new energy technologies is to better understand these external effects and damages. The Hidden Costs of Energy will therefore be a vital informational tool for government policy makers, scientists, and economists in even the earliest stages of research and development on energy technologies.

  1. Distribution and abundance of predators that affect duck production--prairie pothole region

    USGS Publications Warehouse

    Sargeant, A.B.; Greenwood, R.J.; Sovada, M.A.; Shaffer, T.L.

    1993-01-01

    During 1983-88, the relative abundance of 18 species and species-groups of mammalian and avian predators affecting duck production in the prairie pothole region was determined in 33 widely scattered study areas ranging in size from 23-26 km2. Accounts of each studied species and species-group include habitat and history, population structure and reported densities, and information on distribution and abundance from the present study. Index values of undetected, scarce, uncommon, common, or numerous were used to rate abundance of nearly all species in each study area. Principal survey methods were livetrapping of striped skunks (Mephitis mephitis) and Franklin's ground squirrels (Spermophilus franklinii), systematic searches for carnivore tracks in quarter sections (0.65 km2), daily records of sightings of individual predator species, and systematic searches for occupied nests of tree-nesting avian predators. Abundances of predators in individual areas were studied 1-3 years.The distribution and abundance of predator species throughout the prairie pothole region have undergone continual change since settlement of the region by Europeans in the late 1800's. Predator populations in areas we studied differed markedly from those of pristine times. The changes occurred from habitat alterations, human-inflicted mortality of predators, and interspecific relations among predator species. Indices from surveys of tracks revealed a decline in the abundance of red foxes (Vulpes vulpes) and an albeit less consistent decline in the abundance of raccoons (Procyon lotor) with an increase in the abundance of coyotes (Canis latrans). Records of locations of occupied nests revealed great horned owls (Bubo virginianus) and red-tailed hawks (Buteo jamaicensis) tended to nest 0.5 km apart, and American crows (Corvus brachyrhynchos) tended to avoid nesting 0.5 km of nests of red-tailed hawks. Excluding large gulls, for which no measurements of abundance were obtained, the number of

  2. QCD Resummation for Heavy Quarkonium Production in High Energy Collisions

    SciTech Connect

    Kang Zhongbo; Qiu Jianwei

    2008-10-13

    Using e{sup +}e{sup -}{yields}J/{psi}+X as a case study, we explicitly demonstrate that the perturbatively calculated cross section for heavy quarkonium production in terms of the NRQCD factorization formalism has large logarithms as the collision energy s>>M, the heavy quarkonium mass. We propose a modified factorization formalism for the cross section, which systematically resums the large logarithms of the perturbatively calculated coefficient functions. The modified factorization formalism is perturbatively more stable and reliable for a much wider range of collision energies.

  3. Product suitable for the storage and conveyance of thermal energy

    SciTech Connect

    Babin, L.; Clausse, D.

    1981-09-01

    This invention concerns the storage and conveyance of thermal energy at low temperature, by using the latent heat produced by a substance during changes of state. This substance consists of a salt producing considerable latent heat during change of state, such as NA/sub 2/SO/sub 4/, 10 H/sub 2/O, combined closely with a nucleating agent such as borax and dispersed in an oil to which an emulsifying agent has been added. This product is particularly suitable for storage of solar energy at low temperature and for heating of enclosed areas.

  4. 75 FR 27614 - WTO Dispute Settlement Proceeding Regarding United States-Measures Affecting the Production and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... Production and Sale of Clove Cigarettes AGENCY: Office of the United States Trade Representative. ACTION... clove. This ] request may be found at http://www.wto.org in a document designated as WT/DS406/1. USTR..., including clove, but would continue to permit the production and sale of other cigarettes,...

  5. Genetic, Physiological, and Environmental Factors Affecting Acrylamide Concentration in Fried Potato Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The discovery of acrylamide in processed potato products has brought increased interest in the controlling Maillard reaction precursors (reducing sugars and amino acids) in potato tubers. Because of their effects on nonenzymatic browning of fried potato products, reducing sugars and amino acids have...

  6. Dietary electrolyte balance affects the nutrient digestibility and maintenance energy expenditure of Nile tilapia.

    PubMed

    Saravanan, S; Geurden, I; Orozco, Z G A; Kaushik, S J; Verreth, J A J; Schrama, J W

    2013-12-14

    Acid-base disturbances caused by environmental factors and physiological events including feeding have been well documented in several fish species, but little is known about the impact of dietary electrolyte balance (dEB). In the present study, we investigated the effect of feeding diets differing in dEB (-100, 200, 500 or 800 mEq/kg diet) on the growth, nutrient digestibility and energy balance of Nile tilapia. After 5 weeks on the test diet, the growth of the fish was linearly affected by the dEB levels (P< 0·001), with the lowest growth being observed in the fish fed the 800 dEB diet. The apparent digestibility coefficient (ADC) of fat was unaffected by dEB, whereas the ADC of DM and protein were curvilinearly related to the dEB levels, being lowest and highest in the 200 and 800 dEB diets, respectively. Stomach chyme pH at 3 h after feeding was linearly related to the dEB levels (P< 0·05). At the same time, blood pH of the heart (P< 0·05) and caudal vein (P< 0·01) was curvilinearly related to the dEB levels, suggesting the influence of dEB on postprandial metabolic alkalosis. Consequently, maintenance energy expenditure (MEm) was curvilinearly related to the dEB levels (P< 0·001), being 54 % higher in the 800 dEB group (88 kJ/kg(0·8) per d) than in the 200 dEB group (57 kJ/kg(0·8) per d). These results suggest that varying dEB levels in a diet have both positive and negative effects on fish. On the one hand, they improve nutrient digestibility; on the other hand, they challenge the acid-base homeostasis (pH) of fish, causing an increase in MEm, and thereby reduce the energy required for growth.

  7. Equal velocity rule in heavy hadron production at high energy

    SciTech Connect

    Kitazoe, T. ); Inazawa, H.; Morii, T. )

    1989-01-01

    In this paper a production mechanism of heavy particles in e{sup +}e{sup {minus}} annihilations is studied on a field theoretical basis using the bound state wave functions. The requirement that wave functions of hadrons overlap maximally with each other leads to the conclusion that the model predicts a 2-jet structure in a one-loop diagram and heavy hadrons in a jet have an equal velocity. Heavy particle production cross sections and their characteristic energy distributions are calculated for some typical reactions.

  8. Reduction of environmental and energy footprint of microalgal biodiesel production through material and energy integration.

    PubMed

    Chowdhury, Raja; Viamajala, Sridhar; Gerlach, Robin

    2012-03-01

    The life cycle impacts were assessed for an integrated microalgal biodiesel production system that facilitates energy- and nutrient- recovery through anaerobic digestion, and utilizes glycerol generated within the facility for additional heterotrophic biodiesel production. Results show that when external fossil energy inputs are lowered through process integration, the energy demand, global warming potential (GWP), and process water demand decrease significantly and become less sensitive to algal lipid content. When substitution allocation is used to assign additional credit for avoidance of fossil energy use (through utilization of recycled nutrients and biogas), GWP and water demand can, in fact, increase with increase in lipid content. Relative to stand-alone algal biofuel facilities, energy demand can be lowered by 3-14 GJ per ton of biodiesel through process integration. GWP of biodiesel from the integrated system can be lowered by up to 71% compared to petroleum fuel. Evaporative water loss was the primary water demand driver.

  9. Galactoglucomannan oligosaccharide Supplementation affects Nutrient Digestibility, Fermentation End-product Production, and Large Bowel Microbiota of the Dog

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A galactoglucomannan oligosaccharide (GGMO) obtained from fiberboard production was evaluated as a dietary supplement for dogs. The GGMO substrate contained high concentrations of mannose, xylose, and glucose oligosaccharides. Adult dogs assigned to a 6x6 Latin square design were fed six diets, ea...

  10. Factors affecting water balance and percolate production for a landfill in operation.

    PubMed

    Poulsen, Tjalfe G; Møoldrup, Per

    2005-02-01

    Percolate production and precipitation data for a full-scale landfill in operation measured over a 13-year period were used to evaluate the impact and importance of the hydrological conditions of landfill sections on the percolate production rates. Both active (open) and closed landfill sections were included in the evaluation. A simple top cover model requiring a minimum of input data was used to simulate the percolate production as a function of precipitation and landfill section hydrology. The results showed that changes over time in the hydrology of individual landfill sections (such as section closure or plantation of trees on top of closed sections) can change total landfill percolate production by more than 100%; thus, percolate production at an active landfill can be very different from percolate production at the same landfill after closure. Furthermore, plantation of willow on top of closed sections can increase the evapotranspiration rate thereby reducing percolate production rates by up to 47% compared to a grass cover. This process, however, depends upon the availability of water in the top layer, and so the evaporation rate will be less than optimal during the summer where soil-water contents in the top cover are low.

  11. How body mass and lifestyle affect juvenile biomass production in placental mammals.

    PubMed

    Sibly, Richard M; Grady, John M; Venditti, Chris; Brown, James H

    2014-02-22

    In mammals, the mass-specific rate of biomass production during gestation and lactation, here called maternal productivity, has been shown to vary with body size and lifestyle. Metabolic theory predicts that post-weaning growth of offspring, here termed juvenile productivity, should be higher than maternal productivity, and juveniles of smaller species should be more productive than those of larger species. Furthermore because juveniles generally have similar lifestyles to their mothers, across species juvenile and maternal productivities should be correlated. We evaluated these predictions with data from 270 species of placental mammals in 14 taxonomic/lifestyle groups. All three predictions were supported. Lagomorphs, perissodactyls and artiodactyls were very productive both as juveniles and as mothers as expected from the abundance and reliability of their foods. Primates and bats were unproductive as juveniles and as mothers, as expected as an indirect consequence of their low predation risk and consequent low mortality. Our results point the way to a mechanistic explanation for the suite of correlated life-history traits that has been called the slow-fast continuum.

  12. Investigation of Rare Particle Production in High Energy Nuclear Collisions

    SciTech Connect

    1999-09-02

    Our program is an investigation of the hadronization process through measurement of rare particle production in high energy nuclear interactions. Such collisions of heavy nuclei provide an environment similar in energy density to the conditions in the Big Bang. We are currently involved in two major experiments to study this environment, E896 at the AGS and STAR at RHIC. We have completed our physics running of E896, a search for the H dibaryon and measurement of hyperon production in AuAu collisions, and are in the process of analyzing the data. We have produced the electronics and software for the STAR trigger and will begin to use these tools to search for anti-nuclei and strange hadrons when RHIC turns on later this year.

  13. Relevance of deep-subsurface microbiology for underground gas storage and geothermal energy production.

    PubMed

    Gniese, Claudia; Bombach, Petra; Rakoczy, Jana; Hoth, Nils; Schlömann, Michael; Richnow, Hans-Hermann; Krüger, Martin

    2014-01-01

    This chapter gives the reader an introduction into the microbiology of deep geological systems with a special focus on potential geobiotechnological applications and respective risk assessments. It has been known for decades that microbial activity is responsible for the degradation or conversion of hydrocarbons in oil, gas, and coal reservoirs. These processes occur in the absence of oxygen, a typical characteristic of such deep ecosystems. The understanding of the responsible microbial processes and their environmental regulation is not only of great scientific interest. It also has substantial economic and social relevance, inasmuch as these processes directly or indirectly affect the quantity and quality of the stored oil or gas. As outlined in the following chapter, in addition to the conventional hydrocarbons, new interest in such deep subsurface systems is rising for different technological developments. These are introduced together with related geomicrobiological topics. The capture and long-termed storage of large amounts of carbon dioxide, carbon capture and storage (CCS), for example, in depleted oil and gas reservoirs, is considered to be an important options to mitigate greenhouse gas emissions and global warming. On the other hand, the increasing contribution of energy from natural and renewable sources, such as wind, solar, geothermal energy, or biogas production leads to an increasing interest in underground storage of renewable energies. Energy carriers, that is, biogas, methane, or hydrogen, are often produced in a nonconstant manner and renewable energy may be produced at some distance from the place where it is needed. Therefore, storing the energy after its conversion to methane or hydrogen in porous reservoirs or salt caverns is extensively discussed. All these developments create new research fields and challenges for microbiologists and geobiotechnologists. As a basis for respective future work, we introduce the three major topics, that is

  14. Geothermal Energy Production With Innovative Methods Of Geothermal Heat Recovery

    SciTech Connect

    Swenson, Allen; Darlow, Rick; Sanchez, Angel; Pierce, Michael; Sellers, Blake

    2014-12-19

    The ThermalDrive™ Power System (“TDPS”) offers one of the most exciting technological advances in the geothermal power generation industry in the last 30 years. Using innovations in subsurface heat recovery methods, revolutionary advances in downhole pumping technology and a distributed approach to surface power production, GeoTek Energy, LLC’s TDPS offers an opportunity to change the geothermal power industry dynamics.

  15. National voluntary laboratory accreditation program: Energy efficient lighting products. Handbook

    SciTech Connect

    Galowin, L.S.; Hall, W.; Rossiter, W.J.

    1994-07-01

    The purpose of this handbook is to set out procedures and technical requirements for the National Voluntary Laboratory Accreditation Program (NVLAP) accreditation of laboratories which perform test methods covered by the Energy Efficient Lighting (EEL) Products program. It complements and supplements the NVLAP programmatic procedures and general requirements found in NIST Handbook 150 (PB94-178225). The interpretive comments and additional requirements contained in this handbook make the general NVLAP criteria specifically applicable to the EEL program.

  16. Graphical methods for determining the maximum energy product of magnets

    NASA Astrophysics Data System (ADS)

    Stadelmaier, H. H.; Henig, E.-Th.

    1990-08-01

    The graphical construction in which an optimum load line B = ( {B r}/{H o}) H , Hc < 0, defines the maximum energy product of a permanent magnet, is rigorously correct when B( H) in the second quadrant fits the branch of a single hyperbola. It fails as an approximation for some magnets with square ( B - μ0H) vs. H loops, and alternative procedures for dealing with such magnets are described.

  17. Number-ratio fluctuations in high-energy particle production

    NASA Astrophysics Data System (ADS)

    Christiansen, P.; Haslum, E.; Stenlund, E.

    2009-09-01

    In this article we will discuss the previously proposed quantity νdyn [C. Pruneau, S. Gavin, and S. Voloshin, Phys. Rev. C 66, 044904 (2002)], as a measure of the number-ratio fluctuations in high-energy particle production. We will show that νdyn has pleasing mathematical properties making it ideal for the purpose. We will demonstrate its relation to two-particle correlations and how this measure can be generalized to higher-order correlations.

  18. Number-ratio fluctuations in high-energy particle production

    SciTech Connect

    Christiansen, P.; Haslum, E.; Stenlund, E.

    2009-09-15

    In this article we will discuss the previously proposed quantity {nu}{sub dyn}[C. Pruneau, S. Gavin, and S. Voloshin, Phys. Rev. C 66, 044904 (2002)], as a measure of the number-ratio fluctuations in high-energy particle production. We will show that {nu}{sub dyn} has pleasing mathematical properties making it ideal for the purpose. We will demonstrate its relation to two-particle correlations and how this measure can be generalized to higher-order correlations.

  19. Product energy distributions and energy partitioning in O atom reactions on surfaces

    NASA Technical Reports Server (NTRS)

    Halpern, Bret; Kori, Moris

    1987-01-01

    Surface reactions involving O atoms are likely to be highly exoergic, with different consequences if energy is channeled mostly to product molecules or surface modes. Thus the surface may become a source of excited species which can react elsewhere, or a sink for localized heat deposition which may disrupt the surface. The vibrational energy distribution of the product molecule contains strong clues about the flow of released energy. Two instructive examples of energy partitioning at surfaces are the Pt catalyzed oxidations: (1) C(ads) + O(ads) yields CO* (T is greater than 1000 K); and (2) CO(ads) + O(gas) yields CO2* (T is approx. 300 K). The infrared emission spectra of the excited product molecules were recorded and the vibrational population distributions were determined. In reaction 1, energy appeared to be statistically partitioned between the product CO and several Pt atoms. In reaction 2, partitioning was non-statistical; the CO2 asymmetric stretch distribution was inverted. In gas reactions these results would indicate a long lived and short lived activated complex. The requirement that Pt be heated in O atoms to promote reaction of atomic O and CO at room temperature is specifically addressed. Finally, the fraction of released energy that is deposited in the catalyst is estimated.

  20. 40 CFR 63.5795 - How do I know if my reinforced plastic composites production facility is a new affected source or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Hazardous Air Pollutants: Reinforced Plastic Composites Production What This Subpart Covers § 63.5795 How do I know if my reinforced plastic composites production facility is a new affected source or an existing affected source? (a) A reinforced plastic composites production facility is a...

  1. 40 CFR 63.5795 - How do I know if my reinforced plastic composites production facility is a new affected source or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Emissions Standards for Hazardous Air Pollutants: Reinforced Plastic Composites Production What This Subpart Covers § 63.5795 How do I know if my reinforced plastic composites production facility is a new affected source or an existing affected source? (a) A reinforced plastic composites production facility is a...

  2. 40 CFR 63.5795 - How do I know if my reinforced plastic composites production facility is a new affected source or...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emissions Standards for Hazardous Air Pollutants: Reinforced Plastic Composites Production What This Subpart Covers § 63.5795 How do I know if my reinforced plastic composites production facility is a new affected source or an existing affected source? (a) A reinforced plastic composites production facility is a...

  3. 40 CFR 63.5795 - How do I know if my reinforced plastic composites production facility is a new affected source or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for Hazardous Air Pollutants: Reinforced Plastic Composites Production What This Subpart Covers § 63.5795 How do I know if my reinforced plastic composites production facility is a new affected source or an existing affected source? (a) A reinforced plastic composites production facility is a...

  4. 40 CFR 63.5795 - How do I know if my reinforced plastic composites production facility is a new affected source or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emissions Standards for Hazardous Air Pollutants: Reinforced Plastic Composites Production What This Subpart Covers § 63.5795 How do I know if my reinforced plastic composites production facility is a new affected source or an existing affected source? (a) A reinforced plastic composites production facility is a...

  5. 40 CFR Table 2 to Subpart Xxxx of... - Emission Limits for Tire Cord Production Affected Sources

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... must not exceed 280 grams HAP per megagram (0.56 pounds per ton) of fabric processed at the tire cord... affected source Emissions must not exceed 220 grams HAP per megagram (0.43 pounds per ton) of fabric... exceed 1,000 grams HAP per megagram (2 pounds per ton) of total coatings used at the tire cord...

  6. 40 CFR Table 2 to Subpart Xxxx of... - Emission Limits for Tire Cord Production Affected Sources

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must not exceed 280 grams HAP per megagram (0.56 pounds per ton) of fabric processed at the tire cord... affected source Emissions must not exceed 220 grams HAP per megagram (0.43 pounds per ton) of fabric... exceed 1,000 grams HAP per megagram (2 pounds per ton) of total coatings used at the tire cord...

  7. How Seasonal Drought Affect Carbon and Water Fluxes of Alternative Energy Crops in the US?

    NASA Astrophysics Data System (ADS)

    Joo, E.; Hussain, M. Z.; Zeri, M.; Masters, M.; Gomez-Casanovas, N.; DeLucia, E. H.; Bernacchi, C.

    2014-12-01

    The cellulosic biomass of Switchgrass (Panicum virgatum L.), Miscanthus (Miscanthus giganteus) and native prairie are considered candidate second-generation biofuels, potentially resulting in partial replacement annual row crops within the Midwestern US. There is an increasing focus to study the environmental impact of agricultural crops, however not much is known on the influence on the energy, carbon and water cycles of energy crops, especially under drought conditions. This study compares the impact of drought episodes (in 2011 and 2012) on evapotranspiration (ET), net ecosystem productivity (NEP) and water use efficiency (WUE; equals to NEP/ET) for Switchgrass (SW), Miscanthus (MXG), Maize (MZ) and native prairie (NP) grown in Central Illinois using the eddy covariance technique. Due to the prolonged drought and the rapid growth development with increasing ET of MXG in 2012, large water deficit (precipitation-ET) was observed for each species up to the highest deficit of -360 mm for this species. The gross primary production (GPP) of MZ was radically decreased by the drought in 2011 and 2012, while SW and NP were not influenced. MXG increased NEP throughout the typically wet and drought years, mainly due to the decrease in respiration and by the largest GPP upon the drought in 2012. Despite having the largest water deficit, MXG showed an enhanced WUE of 12.8 and 11.4 Kg C ha-1mm-1 in 2011 and 2012, respectively, in comparison to years typical to the region with WUE of 3.7-7.3 Kg C ha-1mm-1. Other species did not show a significant enhancement of WUE. Therefore we conclude that out of the studied species, MXG has more access to water, and uses this water the most efficiently to store carbon, under drought conditions.

  8. The production of herbaceous feedstocks for renewable energy

    SciTech Connect

    Not Available

    1986-09-01

    This document describes the use of a selected group of herbaceous plants as energy feedstocks. Twelve herbaceous crops were selected for study based on their above average yields; their composition, which can increase their value for fuel and other applications; and their ability to produce in a variety of soils and climates. Six of the twelve are carbohydrate crops (sugarcane, sweet sorghum, sweet-stemmed grain sorghum, Jerusalem artichoke, sugar beet, and fodder beet), and six are lignocellulosic crops (kenaf, napiergrass, alfalfa, reed canarygrass, common reed, and water hyacinth). The contribution that herbaceous crops can make to the total US energy supply is discussed. Each candidate crop is characterized in terms of chemical composition, storage, processing, products, and uses. Growth characteristics and production practices in terms of geographic range, yield potential, and cultural requirements are described. Barriers to private sector development of herbaceous energy crops are listed and how R and D programs could be directed to overcome these roadblocks. The areas considered are feedstock selection and production, harvesting and transport, and processing and conversion.

  9. Biomass and production of amphipods in low alkalinity lakes affected by acid precipitation.

    PubMed

    France, R L

    1996-01-01

    Population biomass and production of the amphipod Hyalella azteca (Saussure) were found to be related to alkalinity (ranging from 0.2 to 58.1 mg liter(-1)) in 10 Canadian Shield lakes in south-central Ontario. Biomass and production of amphipods in the two lakes characterized by spring depressions of pH below 5.0 were found to be lower than those for populations inhabiting lakes that did not experience such acid pulses. The proportional biomass of amphipods in relation to the total littoral zoobenthos community was lower in lakes of low alkalinity than in circumneutral or hardwater lakes. Because production in these amphipod populations is known to depend closely on population abundance, the labour-intensive derivation of production rates yields relatively little information for biomonitoring that cannot be obtained from abundance data alone. PMID:15093505

  10. Biomass and production of amphipods in low alkalinity lakes affected by acid precipitation.

    PubMed

    France, R L

    1996-01-01

    Population biomass and production of the amphipod Hyalella azteca (Saussure) were found to be related to alkalinity (ranging from 0.2 to 58.1 mg liter(-1)) in 10 Canadian Shield lakes in south-central Ontario. Biomass and production of amphipods in the two lakes characterized by spring depressions of pH below 5.0 were found to be lower than those for populations inhabiting lakes that did not experience such acid pulses. The proportional biomass of amphipods in relation to the total littoral zoobenthos community was lower in lakes of low alkalinity than in circumneutral or hardwater lakes. Because production in these amphipod populations is known to depend closely on population abundance, the labour-intensive derivation of production rates yields relatively little information for biomonitoring that cannot be obtained from abundance data alone.

  11. Space-time dependence between energy sources and climate related energy production

    NASA Astrophysics Data System (ADS)

    Engeland, Kolbjorn; Borga, Marco; Creutin, Jean-Dominique; Ramos, Maria-Helena; Tøfte, Lena; Warland, Geir

    2014-05-01

    The European Renewable Energy Directive adopted in 2009 focuses on achieving a 20% share of renewable energy in the EU overall energy mix by 2020. A major part of renewable energy production is related to climate, called "climate related energy" (CRE) production. CRE production systems (wind, solar, and hydropower) are characterized by a large degree of intermittency and variability on both short and long time scales due to the natural variability of climate variables. The main strategies to handle the variability of CRE production include energy-storage, -transport, -diversity and -information (smart grids). The three first strategies aim to smooth out the intermittency and variability of CRE production in time and space whereas the last strategy aims to provide a more optimal interaction between energy production and demand, i.e. to smooth out the residual load (the difference between demand and production). In order to increase the CRE share in the electricity system, it is essential to understand the space-time co-variability between the weather variables and CRE production under both current and future climates. This study presents a review of the literature that searches to tackle these problems. It reveals that the majority of studies deals with either a single CRE source or with the combination of two CREs, mostly wind and solar. This may be due to the fact that the most advanced countries in terms of wind equipment have also very little hydropower potential (Denmark, Ireland or UK, for instance). Hydropower is characterized by both a large storage capacity and flexibility in electricity production, and has therefore a large potential for both balancing and storing energy from wind- and solar-power. Several studies look at how to better connect regions with large share of hydropower (e.g., Scandinavia and the Alps) to regions with high shares of wind- and solar-power (e.g., green battery North-Sea net). Considering time scales, various studies consider wind

  12. Growth of and fumitremorgin production by Neosartorya fischeri as affected by temperature, light, and water activity.

    PubMed Central

    Nielsen, P V; Beuchat, L R; Frisvad, J C

    1988-01-01

    The effects of temperature, light, and water activity (aw) on the growth and fumitremorgin production of a heat-resistant mold, Neosartorya fischeri, cultured on Czapek Yeast Autolysate agar (CYA) were studied for incubation periods of up to 74 days. Colonies were examined visually, and extracts of mycelia and CYA on which the mold was cultured were analyzed for mycotoxin content by high-performance liquid chromatography. Growth always resulted in the production of the tremorgenic mycotoxins verruculogen and fumitremorgins A and C. The optimum temperatures for the production of verruculogen and fumitremorgins A and C on CYA at pH 7.0 were 25, 30, and 37 degrees C, respectively. The production of fumitremorgin C by N. fischeri has not been previously reported. Fumitremorgin production was retarded at 15 degrees C, but an extension of the incubation period resulted in concentrations approaching those observed at 25 degrees C. Light clearly enhanced fumitremorgin production on CYA (pH 7.0, 25 degrees C), but not as dramatically as did the addition of glucose, fructose, or sucrose to CYA growth medium (pH 3.5, 25 degrees C). Growth and fumitremorgin production was greatest at aw of 0.980 on CYA supplemented with glucose or fructose and at aw of 0.990 on CYA supplemented with sucrose. Growth and fumitremorgin production were observed at aw as low as 0.925 on glucose-supplemented CYA but not at aw lower than 0.970 on CYA supplemented with sucrose. Verruculogen was produced in the highest amount on all test media, followed by fumitremorgin A and fumitremorgin C. PMID:3415223

  13. Growth of and fumitremorgin production by Neosartorya fischeri as affected by temperature, light, and water activity.

    PubMed

    Nielsen, P V; Beuchat, L R; Frisvad, J C

    1988-06-01

    The effects of temperature, light, and water activity (aw) on the growth and fumitremorgin production of a heat-resistant mold, Neosartorya fischeri, cultured on Czapek Yeast Autolysate agar (CYA) were studied for incubation periods of up to 74 days. Colonies were examined visually, and extracts of mycelia and CYA on which the mold was cultured were analyzed for mycotoxin content by high-performance liquid chromatography. Growth always resulted in the production of the tremorgenic mycotoxins verruculogen and fumitremorgins A and C. The optimum temperatures for the production of verruculogen and fumitremorgins A and C on CYA at pH 7.0 were 25, 30, and 37 degrees C, respectively. The production of fumitremorgin C by N. fischeri has not been previously reported. Fumitremorgin production was retarded at 15 degrees C, but an extension of the incubation period resulted in concentrations approaching those observed at 25 degrees C. Light clearly enhanced fumitremorgin production on CYA (pH 7.0, 25 degrees C), but not as dramatically as did the addition of glucose, fructose, or sucrose to CYA growth medium (pH 3.5, 25 degrees C). Growth and fumitremorgin production was greatest at aw of 0.980 on CYA supplemented with glucose or fructose and at aw of 0.990 on CYA supplemented with sucrose. Growth and fumitremorgin production were observed at aw as low as 0.925 on glucose-supplemented CYA but not at aw lower than 0.970 on CYA supplemented with sucrose. Verruculogen was produced in the highest amount on all test media, followed by fumitremorgin A and fumitremorgin C. PMID:3415223

  14. Petunia × hybrida floral scent production is negatively affected by high-temperature growth conditions.

    PubMed

    Cna'ani, Alon; Mühlemann, Joelle K; Ravid, Jasmin; Masci, Tania; Klempien, Antje; Nguyen, Thuong T H; Dudareva, Natalia; Pichersky, Eran; Vainstein, Alexander

    2015-07-01

    Increasing temperatures due to changing global climate are interfering with plant-pollinator mutualism, an interaction facilitated mainly by floral colour and scent. Gas chromatography-mass spectroscopy analyses revealed that increasing ambient temperature leads to a decrease in phenylpropanoid-based floral scent production in two Petunia × hybrida varieties, P720 and Blue Spark, acclimated at 22/16 or 28/22 °C (day/night). This decrease could be attributed to down-regulation of scent-related structural gene expression from both phenylpropanoid and shikimate pathways, and up-regulation of a negative regulator of scent production, emission of benzenoids V (EOBV). To test whether the negative effect of increased temperature on scent production can be reduced in flowers with enhanced metabolic flow in the phenylpropanoid pathway, we analysed floral volatile production by transgenic 'Blue Spark' plants overexpressing CaMV 35S-driven Arabidopsis thaliana production of anthocyanin pigments 1 (PAP1) under elevated versus standard temperature conditions. Flowers of 35S:PAP1 transgenic plants produced the same or even higher levels of volatiles when exposed to a long-term high-temperature regime. This phenotype was also evident when analysing relevant gene expression as inferred from sequencing the transcriptome of 35S:PAP1 transgenic flowers under the two temperature regimes. Thus, up-regulation of transcription might negate the adverse effects of temperature on scent production.

  15. Diet/Energy Balance Affect Sleep and Wakefulness Independent of Body Weight

    PubMed Central

    Perron, Isaac J.; Pack, Allan I.; Veasey, Sigrid

    2015-01-01

    Study Objectives: Excessive daytime sleepiness commonly affects obese people, even in those without sleep apnea, yet its causes remain uncertain. We sought to determine whether acute dietary changes could induce or rescue wake impairments independent of body weight. Design: We implemented a novel feeding paradigm that generates two groups of mice with equal body weight but opposing energetic balance. Two subsets of mice consuming either regular chow (RC) or high-fat diet (HFD) for 8 w were switched to the opposite diet for 1 w. Sleep recordings were conducted at Week 0 (baseline), Week 8 (pre-diet switch), and Week 9 (post-diet switch) for all groups. Sleep homeostasis was measured at Week 8 and Week 9. Participants: Young adult, male C57BL/6J mice. Measurements and Results: Differences in total wake, nonrapid eye movement (NREM), and rapid eye movement (REM) time were quantified, in addition to changes in bout fragmentation/consolidation. At Week 9, the two diet switch groups had similar body weight. However, animals switched to HFD (and thus gaining weight) had decreased wake time, increased NREM sleep time, and worsened sleep/wake fragmentation compared to mice switched to RC (which were in weight loss). These effects were driven by significant sleep/wake changes induced by acute dietary manipulations (Week 8 → Week 9). Sleep homeostasis, as measured by delta power increase following sleep deprivation, was unaffected by our feeding paradigm. Conclusions: Acute dietary manipulations are sufficient to alter sleep and wakefulness independent of body weight and without effects on sleep homeostasis. Citation: Perron IJ, Pack AI, Veasey S. Diet/energy balance affect sleep and wakefulness independent of body weight. SLEEP 2015;38(12):1893–1903. PMID:26158893

  16. Anaerobic digestion for energy production and environmental protection

    SciTech Connect

    Lettinga, G.; Haandel, A.C. Vaan

    1993-12-31

    Anaerobic digestion is the decomposition of complex molecules into simpler substances by micro-organisms in the absence of oxygen. Anaerobic digestion processes can be employed for resource conservation, for the production of biogas and other useful end products from biomass, and for environmental protection through waste and wastewater treatment. Modern high-rate anaerobic wastewater-treatment processes can effectively remove organic pollutants from wastewater at a cost far below that of conventional aerobic processes. These anaerobic wastewater treatment processes can also be profitably applied for the generation of biogas from energy crops such as sugarcane. In fact, these methods might even be an attractive alternative for the alcohol fermentation extensively employed in Brazil for the production of fuel alcohol from sugarcane. The potential of modern anaerobic processes for this purpose has not yet been widely recognized. This paper describes the principles and use of these processes and demonstrates their prospects for producing energy from sugarcane (1) by treating vinasse, the wastewater generated during the production of ethanol from sugarcane, and (2) as a direct method for producing biogas from sugarcane juice.

  17. Apparatus for recovering energy and useful products from plantain wastes

    SciTech Connect

    Quame, B.A.

    1983-08-16

    Energy and useful products are recovered from plantain wastes in a self-contained waste treatment plant wherein the raw material waste is charged into a boiler where the same is combusted to produce flue gases containing several organic compounds and dry ash containing residue mineral salts. The flue gas heats water in a water reservoir to generate steam which drives a turbine generator to produce electricity, the flue gas then being collected and at least partially condensed to form a pyroligneous acid solution from which alcohols and the like can be recovered. The dry ash containing residue mineral salt is mixed with other minerals or reagents with the resulting mass being supplied into continuously stirred fusion furnace situated within the boiler to which heat is supplied by the flue gas to produce commercially useful products, such as zeolites, dolomite or other related products.

  18. Neutral strange particle production in high energy neutrino interactions

    SciTech Connect

    Wolin, E.J.

    1984-01-01

    In a high energy neutrino and anti-neutrino scattering experiment in the Fermilab 15-foot bubble chamber filled with a Neon-Hydrogen mixture, production of the neutral strange particles K, Lambda, and anti-Lambda is observed. Global rates of neutral strange particle production, rates versus event kinematical variables, and strange particle kinematical distributions are presented. Absorption, rescattering, etc. of Lambda particles by the Ne nucleus is shown to be negligible within the statistical significance of the data. Production of both charged states the strange resonance Sigma(1385) is observed. These results are extensively compared to the predictions of the Lund model. The Lund model is found to reproduce the data well in most instances. The transverse momentum distribution for neutral K particles has a tail at high transverse momentum, in disagreement with the exponential decrease predicted by the model. Lambda particles are produced with higher average momentum and anti-Lambda's with lower average momentum than is predicted.

  19. Charged hadron production in the upsilon energy region

    SciTech Connect

    Morrow, F.H.

    1985-01-01

    The author has examined the production of charged hadrons in e/sup +/e/sup -/ annihilation in the upsilon energy region and has attempted to use this information to study the similarities and differences in the fragementation of quark and gluon jets. Major differences in charged hadron production for continuum (q anti-q) and upsilon(1S) (ggg) events include charged particle multiplicities (higher for upsilon data) and greatly enhanced production of baryons on the resonance. Global event characteristics (e.g., event shape) have been studied in hopes of providing some insight as to the basis for these differences. Comparisons have been made between the data and Monte Carlo simulations of q anti-q and ggg events using the LUND model and the Field phase space parton model. Agreements and disagreements between the data and the model are discussed.

  20. High energy resummation in dihadron production at the LHC

    NASA Astrophysics Data System (ADS)

    Celiberto, Francesco G.; Ivanov, Dmitry Yu.; Murdaca, Beatrice; Papa, Alessandro

    2016-08-01

    We propose to study at the Large Hadron Collider (LHC) the inclusive production of a pair of hadrons (a "dihadron" system) in a kinematics where two detected hadrons with high transverse momenta are separated by a large interval of rapidity. This process has much in common with the widely discussed Mueller-Navelet jet production and can also be used to access the dynamics of hard proton-parton interactions in the Regge limit. For both processes large contributions enhanced by logarithms of energy can be resummed in perturbation theory within the Balitsky-Fadin-Kuraev-Lipatov (BFKL) formalism with next-to-leading logarithmic accuracy. The experimental study of dihadron production would provide an additional clear channel to test the BFKL dynamics. We present here the first theoretical predictions for cross sections and azimuthal angle correlations of the dihadrons produced with LHC kinematics.

  1. Improved product energy intensity benchmarking metrics for thermally concentrated food products.

    PubMed

    Walker, Michael E; Arnold, Craig S; Lettieri, David J; Hutchins, Margot J; Masanet, Eric

    2014-10-21

    Product energy intensity (PEI) metrics allow industry and policymakers to quantify manufacturing energy requirements on a product-output basis. However, complexities can arise for benchmarking of thermally concentrated products, particularly in the food processing industry, due to differences in outlet composition, feed material composition, and processing technology. This study analyzes tomato paste as a typical, high-volume concentrated product using a thermodynamics-based model. Results show that PEI for tomato pastes and purees varies from 1200 to 9700 kJ/kg over the range of 8%-40% outlet solids concentration for a 3-effect evaporator, and 980-7000 kJ/kg for a 5-effect evaporator. Further, the PEI for producing paste at 31% outlet solids concentration in a 3-effect evaporator varies from 13,000 kJ/kg at 3% feed solids concentration to 5900 kJ/kg at 6%; for a 5-effect evaporator, the variation is from 9200 kJ/kg at 3%, to 4300 kJ/kg at 6%. Methods to compare the PEI of different product concentrations on a standard basis are evaluated. This paper also presents methods to develop PEI benchmark values for multiple plants. These results focus on the case of a tomato paste processing facility, but can be extended to other products and industries that utilize thermal concentration.

  2. 75 FR 13217 - Energy Conservation Program for Consumer Products: Classifying Products as Covered Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... Consent Decree. In a memorandum for the Secretary of Energy, dated February 5, 2009 (74 FR 6537, Feb. 9... residential water heaters. 65 FR 59589, 59595, 59600 (October 5, 2000); 66 FR 4474, 4477, 4478 (January 17... Register on May 4, 2006. (71 FR 26275) ] IV. Procedural Requirements A. Review Under Executive Order...

  3. Electric utility capacity expansion and energy production models for energy policy analysis

    SciTech Connect

    Aronson, E.; Edenburn, M.

    1997-08-01

    This report describes electric utility capacity expansion and energy production models developed for energy policy analysis. The models use the same principles (life cycle cost minimization, least operating cost dispatching, and incorporation of outages and reserve margin) as comprehensive utility capacity planning tools, but are faster and simpler. The models were not designed for detailed utility capacity planning, but they can be used to accurately project trends on a regional level. Because they use the same principles as comprehensive utility capacity expansion planning tools, the models are more realistic than utility modules used in present policy analysis tools. They can be used to help forecast the effects energy policy options will have on future utility power generation capacity expansion trends and to help formulate a sound national energy strategy. The models make renewable energy source competition realistic by giving proper value to intermittent renewable and energy storage technologies, and by competing renewables against each other as well as against conventional technologies.

  4. White Paper on Energy Efficiency Status of Energy-Using Products in China (2012)

    SciTech Connect

    Zhou, Nan; Romankiewicz, John; Fridley, David

    2012-06-01

    2011 is the first year of the 12th Five-Year Plan and, as such, it is a crucial year to push forward the work of energy conservation and emissions reduction. Important large-scale energy conservation policies issued in 2011 include Outline of the 12th Five-year Plan for National Economic and Social Development of The People’s Republic of China (the “Plan”) and Notice of the State Council on Issuing the Comprehensive Work Proposal for Energy Conservation and Emission Reduction during the 12th Five-Year Plan Period (GF (2011) No. 26) (the “Proposal”). These two policies have established strategic objectives for energy conservation during the 12th Five-Year Plan in China, and they have also identified the key tasks and direction of energy efficiency programs for energy-using products.

  5. Experiences of a grid connected solar array energy production

    NASA Astrophysics Data System (ADS)

    Hagymássy, Zoltán; Vántus, András

    2015-04-01

    Solar energy possibilities of Hungary are higher than in Central Europe generally. The Institute for Land Utilisation, Technology and Regional Development of the University of Debrecen installed a photovoltaic (PV) system. The PV system is structured into 3 subsystems (fields). The first subsystem has 24 pieces of Kyocera KC 120 W type modules, the second subsystem has 72 pieces of Siemens ST 40W, and the remaining has 72 pieces of Dunasolar DS 40W In order to be operable independently of each other three inverter modules (SB 2500) had been installed. The recorder can be connected directly to a desktop PC. Operating and meteorological dates are recorded by MS Excel every 15 minutes. The power plant is connected to a weather station, which contents a PT 100 type temperature and humidity combined measuring instrument, a CM 11 pyranometer, and a wind speed measuring instrument. The produced DC, and AC power, together with the produced energy are as well, and the efficiency can be determined for each used PV technology. The measured operating and meteorological dates are collected by Sunny Boy Control, produced by the SMA. The energy productions of the subsystems are measured continually and the subsystems are measured separately. As an expected, the produced energy of polycrystalline -Si PV module and monocrystalline -Si PV was higher than amorphous-Si PV module. It is well known that energy analysis is more suitable for energy balance when we design a system. The air temperature and the temperature of the panels and the global irradiation conditions were measured. In summertime the panel temperature reaches 60-80 degrees in a sunny day. The panel temperatures are in a spring sunny day approximately 30-40 degrees. It can be concluded that the global irradiation is a major impact feature to influence the amount of energy produced. The efficiency depends on several parameters (spectral distribution of the incoming light, temperature values, etc.). The energy efficiency

  6. Contribution of activation products to occupational exposure following treatment using high-energy photons in radiotherapy.

    PubMed

    Petrović, Nina; Krestić-Vesović, Jelena; Stojanović, Darko; Ciraj-Bjelac, Olivera; Lazarević, Dorde; Kovacević, Milojko

    2011-01-01

    When high-energy photon beams are used for irradiation in radiotherapy, neutrons that are the result of photonuclear reactions create activation products that affect the occupational dose of radiotherapy staff. For the assessment of activation products in situ gamma spectroscopy was performed parallel to dose-rate measurements following irradiation, by using a high-energy photon beam from a linear accelerator Elekta Precise (Elekta, Stockholm, Sweden) used in radiotherapy. The major identified activation products were the following radioisotopes: (28)Al, (24)Na, (56)Mn, (54)Mn, (187)W, (64)Cu and (62)Cu. Based on the typical workload and dose-rate measurement, the assessed additional annual occupational dose ranged from 1.7 to 0.25 mSv. As the measured dose rate arising from the activation products rapidly decreases as a function of time, the assessed additional dose is negligible after 10 min following irradiation. To keep the occupational dose as low as reasonably achievable, it is recommended to delay entrance to the therapy room at least 2-4 min, when high-energy photons are used. This would reduce the effective dose by 30%.

  7. How polyamine synthesis inhibitors and cinnamic acid affect tropane alkaloid production.

    PubMed

    Marconi, Patricia L; Alvarez, María A; Pitta-Alvarez, Sandra I

    2007-01-01

    Hairy roots of Brugmansia candida produce the tropane alkaloids scopolamine and hyoscyamine. In an attempt to divert the carbon flux from competing pathways and thus enhance productivity, the polyamine biosynthesis inhibitors cyclohexylamine (CHA) and methylglyoxal-bis-guanylhydrazone (MGBG) and the phenylalanine-ammonia-lyase inhibitor cinnamic acid were used. CHA decreased the specific productivity of both alkaloids but increased significantly the release of scopolamine (approx 500%) when it was added in the mid-exponential phase. However, when CHA was added for only 48 h during the exponential phase, the specific productivity of both alkaloids increased (approx 200%), favoring scopolamine. Treatment with MGBG was detrimental to growth but promoted release into the medium of both alkaloids. However, when it was added for 48 h during the exponential phase, MGBG increased the specific productivity (approx 200%) and release (250- 1800%) of both alkaloids. Cinnamic acid alone also favored release but not specific productivity. When a combination of CHA or MGBG with cinnamic acid was used, the results obtained were approximately the same as with each polyamine biosynthesis inhibitor alone, although to a lesser extent. Regarding root morphology, CHA inhibited growth of primary roots and ramification. However, it had a positive effect on elongation of lateral roots. PMID:17416978

  8. Distinct promoters affect pyrroloquinoline quinone production in recombinant Escherichia coli and Klebsiella pneumoniae.

    PubMed

    Sun, Jiguo; Han, Zengye; Ge, Xizhen; Tian, Pingfang

    2014-10-01

    Pyrroloquinoline quinone (PQQ) is a versatile quinone cofactor participating in numerous biological processes. Klebsiella pneumoniae can naturally synthesize PQQ for harboring intact PQQ synthesis genes. Previous metabolic engineering of K. pneumoniae failed to overproduce PQQ due to the employment of strong promoter in expression vector. Here we report that a moderate rather than strong promoter is efficient for PQQ production. To screen an appropriate promoter, a total of four distinct promoters-lac promoter, pk promoter of glycerol dehydratase gene (dhaB1), promoter of kanamycin resistance gene, and T7 promoter (as the control)-were individually used for overexpressing the endogenous PQQ genes in K. pneumoniae along with heterologous expression in Escherichia coli. We found that all recombinant K. pneumoniae strains produced more PQQ than recombinant E. coli strains that carried corresponding vectors, indicating that K. pneumoniae is superior to E. coli for the production of PQQ. Particularly, the recombinant K. pneumoniae recruiting the promoter of kanamycin resistance gene produced the highest PQQ (1,700 nmol), revealing that a moderate rather than strong promoter is efficient for PQQ production. Furthermore, PQQ production was roughly proportional to glucose concentration increasing from 0.5 to 1.5 g/L, implying the synergism between PQQ biosynthesis and glucose utilization. This study not only provides a feasible strategy for production of PQQ in K. pneumoniae, but also reveals the exquisite synchronization among PQQ biosynthesis, glucose metabolism, and cell proliferation.

  9. Factors affecting recombinant Western equine encephalitis virus glycoprotein production in the baculovirus system.

    PubMed

    Toth, Ann M; Geisler, Christoph; Aumiller, Jared J; Jarvis, Donald L

    2011-12-01

    In an effort to produce processed, soluble Western equine encephalitis virus (WEEV) glycoproteins for subunit therapeutic vaccine studies, we isolated twelve recombinant baculoviruses designed to express four different WEEV glycoprotein constructs under the transcriptional control of three temporally distinct baculovirus promoters. The WEEV glycoprotein constructs encoded full-length E1, the E1 ectodomain, an E26KE1 polyprotein precursor, and an artificial, secretable E2E1 chimera. The three different promoters induced gene expression during the immediate early (ie1), late (p6.9), and very late (polh) phases of baculovirus infection. Protein expression studies showed that the nature of the WEEV construct and the timing of expression both influenced the quantity and quality of recombinant glycoprotein produced. The full-length E1 product was insoluble, irrespective of the timing of expression. Each of the other three constructs yielded soluble products and, in these cases, the timing of expression was important, as higher protein processing efficiencies were generally obtained at earlier times of infection. However, immediate early expression did not yield detectable levels of every WEEV product, and expression during the late (p6.9) or very late (polh) phases of infection provided equal or higher amounts of processed, soluble product. Thus, while earlier foreign gene expression can provide higher recombinant glycoprotein processing efficiencies in the baculovirus system, in the case of the WEEV glycoproteins, earlier expression did not provide larger amounts of high quality, soluble recombinant glycoprotein product.

  10. An experimental study on fermentative H₂ production from food waste as affected by pH.

    PubMed

    Cappai, G; De Gioannis, G; Friargiu, M; Massi, E; Muntoni, A; Polettini, A; Pomi, R; Spiga, D

    2014-08-01

    Batch dark fermentation experiments were performed on food waste and mixtures of food waste and wastewater activated sludge to evaluate the influence of pH on biological H2 production and compare the process performance with and without inoculum addition. The effect of a preliminary thermal shock treatment of the inoculum was also investigated as a means to harvest the hydrogenogenic biomass. The best performance in terms of both H2 generation potential and process kinetics was observed at pH=6.5 under all experimental conditions (no inoculum, and untreated or thermally treated inoculum added). H2 production from food waste was found to be feasible even without inoculum addition, although thermal pre-treatment of the inoculum notably increased the maximum production and reduced the lag phase duration. The analysis of the fermentation products indicated that the biological hydrogen production could be mainly ascribed to a mixed acetate/butyrate-type fermentation. However, the presence of additional metabolites in the digestate, including propionate and ethanol, also indicated that other metabolic pathways were active during the process, reducing substrate conversion into hydrogen. The plateau in H2 generation was found to mirror the condition at which soluble carbohydrates were depleted. Beyond this condition, homoacetogenesis probably started to play a role in the degradation process.

  11. Quality of dissolved organic matter affects planktonic but not biofilm bacterial production in streams.

    PubMed

    Kamjunke, Norbert; Herzsprung, Peter; Neu, Thomas R

    2015-02-15

    Streams and rivers are important sites of organic carbon mineralization which is dependent on the land use within river catchments. Here we tested whether planktonic and epilithic biofilm bacteria differ in their response to the quality of dissolved organic carbon (DOC). Thus, planktonic and biofilm bacterial production was compared with patterns of DOC along a land-use gradient in the Bode catchment area (Germany). The freshness index of DOC was positively related to the proportion of agricultural area in the catchment. The humification index correlated with the proportion of forest area. Abundance and production of planktonic bacteria were lower in headwaters than at downstream sites. Planktonic production was weakly correlated to the total concentration of DOC but more strongly to quality-measures as revealed by spectra indexes, i.e. positively to the freshness index and negatively to the humification index. In contrast to planktonic bacteria, abundance and production of biofilm bacteria were independent of DOC quality. This finding may be explained by the association of biofilm bacteria with benthic algae and an extracellular matrix which represent additional substrate sources. The data show that planktonic bacteria seem to be regulated at a landscape scale controlled by land use, whereas biofilm bacteria are regulated at a biofilm matrix scale controlled by autochthonous production. Thus, the effects of catchment-scale land use changes on ecosystem processes are likely lower in small streams dominated by biofilm bacteria than in larger streams dominated by planktonic bacteria. PMID:25460970

  12. Quality of dissolved organic matter affects planktonic but not biofilm bacterial production in streams.

    PubMed

    Kamjunke, Norbert; Herzsprung, Peter; Neu, Thomas R

    2015-02-15

    Streams and rivers are important sites of organic carbon mineralization which is dependent on the land use within river catchments. Here we tested whether planktonic and epilithic biofilm bacteria differ in their response to the quality of dissolved organic carbon (DOC). Thus, planktonic and biofilm bacterial production was compared with patterns of DOC along a land-use gradient in the Bode catchment area (Germany). The freshness index of DOC was positively related to the proportion of agricultural area in the catchment. The humification index correlated with the proportion of forest area. Abundance and production of planktonic bacteria were lower in headwaters than at downstream sites. Planktonic production was weakly correlated to the total concentration of DOC but more strongly to quality-measures as revealed by spectra indexes, i.e. positively to the freshness index and negatively to the humification index. In contrast to planktonic bacteria, abundance and production of biofilm bacteria were independent of DOC quality. This finding may be explained by the association of biofilm bacteria with benthic algae and an extracellular matrix which represent additional substrate sources. The data show that planktonic bacteria seem to be regulated at a landscape scale controlled by land use, whereas biofilm bacteria are regulated at a biofilm matrix scale controlled by autochthonous production. Thus, the effects of catchment-scale land use changes on ecosystem processes are likely lower in small streams dominated by biofilm bacteria than in larger streams dominated by planktonic bacteria.

  13. Particle Production by Tidal Forces, and the Energy - Tensor

    NASA Astrophysics Data System (ADS)

    Massacand, Christophe Maurice Jean-Baptiste

    The quantum production of spinless particles, < n_{k}(t)>, and of energy-momentum-stress, < T^{{a}{b}}(P) >, by the tidal forces of classical curved space-time are investigated in this thesis. In a first part we consider the test case of 1+1 dimensions. Our computations are finite step by step, the predicted evolution of the energy-momentum tensor < T^{ a b} > and of the spectral energy density e_{k}< n_{k }> are consistent with each other throughout curved space-time, < T^ { a b}> is covariantly conserved and has the standard trace anomaly R/24 pi for massless particles. The two chiralities, right-goers versus left-goers, are decoupled, the total < T^{{a} {b}}> is the sum of the chiral parts. We apply our methods to four problems: (1) The Rindler problem. (2) An inhomogeneous patch of curvature produces a burst of energy-momentum and of particles. (3) We compute the quantum production of energy density and pressure for a quantum field in external Friedmann-Robertson -Walker space-times in 1+1 dimensions. (4) We consider the gravitational field of a collapsing shell of classical matter in 3+1 dimensions, and we compute the production of Hawking radiation everywhere inside a linear wave guide in the radial direction. In a second part, we compute the energy density and pressures from a quantum scalar field propagating in the external field of a (3+1)-dimensional, spherically symmetric, static geometry with flat spatial sections. We consider only the (l = 0)-sector of the scalar field. The initial state of the quantum field is the gauge invariant vacuum on one of these hypersurface. Our computations are finite step by step. For the pressures we use the covariant conservation of T^{mu nu} and its four-dimensional trace. We apply our results to the case of the gravitational potential due to an homogeneous spherical body. At late times, i.e. when all switch-on effects are far away from the body, the results are that a static cloud of energy and pressure is formed inside

  14. Nuclear effects in Drell-Yan pair production in high-energy p A collisions

    NASA Astrophysics Data System (ADS)

    Basso, Eduardo; Goncalves, Victor P.; Krelina, Michal; Nemchik, Jan; Pasechnik, Roman

    2016-05-01

    The Drell-Yan (DY) process of dilepton pair production off nuclei is not affected by final state interactions, energy loss, or absorption. A detailed phenomenological study of this process is thus convenient for investigation of the onset of initial-state effects in proton-nucleus (p A ) collisions. In this paper, we present a comprehensive analysis of the DY process in p A interactions at RHIC and LHC energies in the color dipole framework. We analyze several effects affecting the nuclear suppression, Rp A<1 , of dilepton pairs, such as the saturation effects, restrictions imposed by energy conservation (the initial-state effective energy loss), and the gluon shadowing, as a function of the rapidity, the invariant mass of the dileptons, and their transverse momenta pT. In this analysis, we take into account not only the γ* but also the Z0 contribution to the production cross section, thus extending the predictions to large dilepton invariant masses. Besides the nuclear attenuation of produced dileptons at large energies and forward rapidities emerging due to the onset of shadowing effects, we predict a strong suppression at large pT, dilepton invariant masses, and Feynman variable xF caused by the initial-state interaction effects in kinematic regions where no shadowing is expected. The manifestations of nuclear effects are also investigated in terms of the correlation function in the azimuthal angle between the dilepton pair and a forward pion Δ ϕ for different energies, dilepton rapidities, and invariant dilepton masses. We predict that the characteristic double-peak structure of the correlation function around Δ ϕ ≃π arises for very forward pions and large-mass dilepton pairs.

  15. Utilisation of biomass gasification by-products for onsite energy production.

    PubMed

    Vakalis, S; Sotiropoulos, A; Moustakas, K; Malamis, D; Baratieri, M

    2016-06-01

    Small scale biomass gasification is a sector with growth and increasing applications owing to the environmental goals of the European Union and the incentivised policies of most European countries. This study addresses two aspects, which are at the centre of attention concerning the operation and development of small scale gasifiers; reuse of waste and increase of energy efficiency. Several authors have denoted that the low electrical efficiency of these systems is the main barrier for further commercial development. In addition, gasification has several by-products that have no further use and are discarded as waste. In the framework of this manuscript, a secondary reactor is introduced and modelled. The main operating principle is the utilisation of char and flue gases for further energy production. These by-products are reformed into secondary producer gas by means of a secondary reactor. In addition, a set of heat exchangers capture the waste heat and optimise the process. This case study is modelled in a MATLAB-Cantera environment. The model is non-stoichiometric and applies the Gibbs minimisation principle. The simulations show that some of the thermal energy is depleted during the process owing to the preheating of flue gases. Nonetheless, the addition of a secondary reactor results in an increase of the electrical power production efficiency and the combined heat and power (CHP) efficiency. PMID:27118736

  16. Utilisation of biomass gasification by-products for onsite energy production.

    PubMed

    Vakalis, S; Sotiropoulos, A; Moustakas, K; Malamis, D; Baratieri, M

    2016-06-01

    Small scale biomass gasification is a sector with growth and increasing applications owing to the environmental goals of the European Union and the incentivised policies of most European countries. This study addresses two aspects, which are at the centre of attention concerning the operation and development of small scale gasifiers; reuse of waste and increase of energy efficiency. Several authors have denoted that the low electrical efficiency of these systems is the main barrier for further commercial development. In addition, gasification has several by-products that have no further use and are discarded as waste. In the framework of this manuscript, a secondary reactor is introduced and modelled. The main operating principle is the utilisation of char and flue gases for further energy production. These by-products are reformed into secondary producer gas by means of a secondary reactor. In addition, a set of heat exchangers capture the waste heat and optimise the process. This case study is modelled in a MATLAB-Cantera environment. The model is non-stoichiometric and applies the Gibbs minimisation principle. The simulations show that some of the thermal energy is depleted during the process owing to the preheating of flue gases. Nonetheless, the addition of a secondary reactor results in an increase of the electrical power production efficiency and the combined heat and power (CHP) efficiency.

  17. Environmental and Nutritional Factors Affecting the Production of Rubratoxin B by Penicillium rubrum Stoll 1

    PubMed Central

    Hayes, A. Wallace; Wyatt, Elwanda P.; King, Patricia A.

    1970-01-01

    Rubratoxin B can be produced in a semisynthetic medium by Penicillium rubrum under varying environmental and nutritional conditions. Maximum production (552.0 mg/500 ml) was obtained with P. rubrum NRRL A-11785 grown in stationary cultures of Mosseray's simplified Raulin solution supplemented with 2.5% malt extract broth at ambient temperature. Zinc is required at levels of at least 0.4 mg per liter. In the absence of iron sulfate, there was a 50-fold reduction in rubratoxin B production but not in growth. No toxin was produced by this isolate in 5- or 7-liter fermentors. PMID:5485727

  18. Detection of genetic variants affecting cattle behaviour and their impact on milk production: a genome-wide association study.

    PubMed

    Friedrich, Juliane; Brand, Bodo; Ponsuksili, Siriluck; Graunke, Katharina L; Langbein, Jan; Knaust, Jacqueline; Kühn, Christa; Schwerin, Manfred

    2016-02-01

    Behaviour traits of cattle have been reported to affect important production traits, such as meat quality and milk performance as well as reproduction and health. Genetic predisposition is, together with environmental stimuli, undoubtedly involved in the development of behaviour phenotypes. Underlying molecular mechanisms affecting behaviour in general and behaviour and productions traits in particular still have to be studied in detail. Therefore, we performed a genome-wide association study in an F2 Charolais × German Holstein cross-breed population to identify genetic variants that affect behaviour-related traits assessed in an open-field and novel-object test and analysed their putative impact on milk performance. Of 37,201 tested single nucleotide polymorphism (SNPs), four showed a genome-wide and 37 a chromosome-wide significant association with behaviour traits assessed in both tests. Nine of the SNPs that were associated with behaviour traits likewise showed a nominal significant association with milk performance traits. On chromosomes 14 and 29, six SNPs were identified to be associated with exploratory behaviour and inactivity during the novel-object test as well as with milk yield traits. Least squares means for behaviour and milk performance traits for these SNPs revealed that genotypes associated with higher inactivity and less exploratory behaviour promote higher milk yields. Whether these results are due to molecular mechanisms simultaneously affecting behaviour and milk performance or due to a behaviour predisposition, which causes indirect effects on milk performance by influencing individual reactivity, needs further investigation. PMID:26515756

  19. Detection of genetic variants affecting cattle behaviour and their impact on milk production: a genome-wide association study.

    PubMed

    Friedrich, Juliane; Brand, Bodo; Ponsuksili, Siriluck; Graunke, Katharina L; Langbein, Jan; Knaust, Jacqueline; Kühn, Christa; Schwerin, Manfred

    2016-02-01

    Behaviour traits of cattle have been reported to affect important production traits, such as meat quality and milk performance as well as reproduction and health. Genetic predisposition is, together with environmental stimuli, undoubtedly involved in the development of behaviour phenotypes. Underlying molecular mechanisms affecting behaviour in general and behaviour and productions traits in particular still have to be studied in detail. Therefore, we performed a genome-wide association study in an F2 Charolais × German Holstein cross-breed population to identify genetic variants that affect behaviour-related traits assessed in an open-field and novel-object test and analysed their putative impact on milk performance. Of 37,201 tested single nucleotide polymorphism (SNPs), four showed a genome-wide and 37 a chromosome-wide significant association with behaviour traits assessed in both tests. Nine of the SNPs that were associated with behaviour traits likewise showed a nominal significant association with milk performance traits. On chromosomes 14 and 29, six SNPs were identified to be associated with exploratory behaviour and inactivity during the novel-object test as well as with milk yield traits. Least squares means for behaviour and milk performance traits for these SNPs revealed that genotypes associated with higher inactivity and less exploratory behaviour promote higher milk yields. Whether these results are due to molecular mechanisms simultaneously affecting behaviour and milk performance or due to a behaviour predisposition, which causes indirect effects on milk performance by influencing individual reactivity, needs further investigation.

  20. Energy Production from Solar Power Satellites - The Hydrogen Option

    NASA Astrophysics Data System (ADS)

    Schmidt, P.; Weindorf, W.; Zerta, M.

    2004-12-01

    It is the purpose of this paper to give an overview on the concept of a hydrogen economy, in which hydrogen (H2) is envisaged as energy carrier for power, heat and transportation purposes. The motivations for a transition to a hydrogen economy are discussed. Furthermore, the potential role of solar power satellites (SPS) for the production of renewable hydrogen is presented. SPS-to-H2 systems are discussed alongside with other hydrogen production vectors regarding the parameters cost, efficiency and specific CO2 emissions. From the discussions therein, it can be concluded that hydrogen and fuel cells are promising technologies which offer economical opportunities, customer benefits and which are environmentally sound provided that they are based on renewable hydrogen in the mid to long- term future. Solar power satellite systems could generate renewable hydrogen at potentially high capacity factors ('firm power') provided that cost and performance targets are met. In terms of production costs, SPS systems could then be competitive. However, the major hurdle to economic viability is space transportation. Regarding the specific energy effort to generate hydrogen for transportation purposes including grey energies, SPS could be in the lower range of other renewable and fossil primary energies. Here, results are sensitive towards the system architecture as well as space transportation. Life-cycle emissions attributed to SPS-to-H2 systems could not be derived. The certainty of the result would be low as details in the system design remain subject to further in-depth investigations. Not discussed are general important issues such as economic, political and environmental risks which certainly influence further development of SPS.

  1. Coastal eutrophication in Europe caused by production of energy crops.

    PubMed

    van Wijnen, Jikke; Ivens, Wilfried P M F; Kroeze, Carolien; Löhr, Ansje J

    2015-04-01

    In Europe, the use of biodiesel may increase rapidly in the coming decades as a result of policies aiming to increase the use of renewable fuels. Therefore, the production of biofuels from energy crops is expected to increase as well as the use of fertilisers to grow these crops. Since fertilisers are an important cause of eutrophication, the use of biodiesel may have an effect on the water quality in rivers and coastal seas. In this study we explored the possible effects of increased biodiesel use on coastal eutrophication in European seas in the year 2050. To this end, we defined a number of illustrative scenarios in which the biodiesel production increases to about 10-30% of the current diesel use. The scenarios differ with respect to the assumptions on where the energy crops are cultivated: either on land that is currently used for agriculture, or on land used for other purposes. We analysed these scenarios with the Global NEWS (Nutrient Export from WaterSheds) model. We used an existing Millennium Ecosystem Assessment Scenario for 2050, Global Orchestration (GO2050), as a baseline. In this baseline scenario the amount of nitrogen (N) and phosphorus (P) exported by European rivers to coastal seas decreases between 2000 and 2050 as a result of environmental and agricultural policies. In our scenarios with increased biodiesel production the river export of N and P increases between 2000 and 2050, indicating that energy crop production may more than counterbalance this decrease. Largest increases in nutrient export were calculated for the Mediterranean Sea and the Black Sea. Differences in nutrient export among river basins are large. PMID:25536176

  2. Coastal eutrophication in Europe caused by production of energy crops.

    PubMed

    van Wijnen, Jikke; Ivens, Wilfried P M F; Kroeze, Carolien; Löhr, Ansje J

    2015-04-01

    In Europe, the use of biodiesel may increase rapidly in the coming decades as a result of policies aiming to increase the use of renewable fuels. Therefore, the production of biofuels from energy crops is expected to increase as well as the use of fertilisers to grow these crops. Since fertilisers are an important cause of eutrophication, the use of biodiesel may have an effect on the water quality in rivers and coastal seas. In this study we explored the possible effects of increased biodiesel use on coastal eutrophication in European seas in the year 2050. To this end, we defined a number of illustrative scenarios in which the biodiesel production increases to about 10-30% of the current diesel use. The scenarios differ with respect to the assumptions on where the energy crops are cultivated: either on land that is currently used for agriculture, or on land used for other purposes. We analysed these scenarios with the Global NEWS (Nutrient Export from WaterSheds) model. We used an existing Millennium Ecosystem Assessment Scenario for 2050, Global Orchestration (GO2050), as a baseline. In this baseline scenario the amount of nitrogen (N) and phosphorus (P) exported by European rivers to coastal seas decreases between 2000 and 2050 as a result of environmental and agricultural policies. In our scenarios with increased biodiesel production the river export of N and P increases between 2000 and 2050, indicating that energy crop production may more than counterbalance this decrease. Largest increases in nutrient export were calculated for the Mediterranean Sea and the Black Sea. Differences in nutrient export among river basins are large.

  3. Production and Transfer of Energy and Information in Hamiltonian Systems

    PubMed Central

    Antonopoulos, Chris G.; Bianco-Martinez, Ezequiel; Baptista, Murilo S.

    2014-01-01

    We present novel results that relate energy and information transfer with sensitivity to initial conditions in chaotic multi-dimensional Hamiltonian systems. We show the relation among Kolmogorov-Sinai entropy, Lyapunov exponents, and upper bounds for the Mutual Information Rate calculated in the Hamiltonian phase space and on bi-dimensional subspaces. Our main result is that the net amount of transfer from kinetic to potential energy per unit of time is a power-law of the upper bound for the Mutual Information Rate between kinetic and potential energies, and also a power-law of the Kolmogorov-Sinai entropy. Therefore, transfer of energy is related with both transfer and production of information. However, the power-law nature of this relation means that a small increment of energy transferred leads to a relatively much larger increase of the information exchanged. Then, we propose an “experimental” implementation of a 1-dimensional communication channel based on a Hamiltonian system, and calculate the actual rate with which information is exchanged between the first and last particle of the channel. Finally, a relation between our results and important quantities of thermodynamics is presented. PMID:24586891

  4. Impact of technical and technological changes on energy efficiency of production company - case study

    NASA Astrophysics Data System (ADS)

    Szwedzka, K.; Gruszka, J.; Szafer, P.

    2016-08-01

    Improving energy efficiency is one of the strategic objectives of the European Union for rational energy economy. To make efforts to improve energy efficiency have been obliged both small and large end-users. This article aims to show the possibilities of improving energy efficiency by introducing technical and technological process changes of pine lumber drying. The object of the research is process of drying lumber implemented in a production company, which is a key supplier of large furniture manufacturer. Pine lumber drying chamber consume about 45% of total electricity in sawmill. According to various sources, drying of 1m3 of lumber uses about 3060kWh and is dependent of inter alia: the drying process itself, the factors affecting the processing time and the desired output moisture content of the timber. The article proposals for changes in the process of drying lumber pine have been positively validated in the company, and as a result their energy consumption per 1 m3 of product declined by 18%.

  5. Willingness to Use Microbicides Is Affected by the Importance of Product Characteristics, Use Parameters, and Protective Properties

    PubMed Central

    Morrow, Kathleen M.; Fava, Joseph L.; Rosen, Rochelle K.; Vargas, Sara; Barroso, Candelaria; Christensen, Anna L.; Woodsong, Cynthia; Severy, Lawrence

    2008-01-01

    Background Along with efficacy, a microbicide’s acceptability will be integral to its impact on the pandemic. Understanding Product Characteristics that users find most acceptable and determining who will use which type of product are key to optimizing use effectiveness. Objectives To evaluate psychometrically the Important Microbicide Characteristics (IMC) instrument and examine its relationship to willingness to use microbicides. Results Exploratory and confirmatory factor analyses revealed 2 IMC subscales (Cronbach’s coefficient α: Product Characteristics subscale (α = 0.84) and Protective Properties subscale (α = 0.89)). Significant differences on Product Characteristics subscale scores were found for history of douching (P = 0.002) and employment status (P = 0.001). Whether a woman used a method to prevent pregnancy or sexually transmitted disease (STD) in the last 3 months (P < 0.001) and whether she used a condom during the last vaginal sex episode (P < 0.001) were significantly related to her rating of the importance of microbicides being contraceptive. Product Characteristics (r = 0.21) and Protective Properties (r = 0.27) subscale scores and whether a microbicide had contraceptive properties (r = 0.24) were all significantly associated (P < 0.001) with willingness to use microbicides. Conclusions Formulation and use characteristics and product function(s) affect willingness to use microbicides and should continue to be addressed in product development. The IMC instrument serves as a template for future studies of candidate microbicides. PMID:17325607

  6. Restoring a landscape to reduce erosion-induced variability in soil properties affecting productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In hilly landscapes, tillage and water erosion can combine to induce large variability in soil productivity at the field scale. Approaches to manage this variability have been proposed, including restoring the landscape by physically moving soil from areas of net deposition to areas of net soil loss...

  7. Restoration of eroded landscapes to reduce variability in soil properties affecting productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In hilly landscapes, tillage and water erosion combine to induce large variability in soil productivity at the field scale. Approaches to manage this variability have been proposed, including restoring the landscape by physically moving soil from areas of net deposition to areas of net soil loss. We...

  8. Soil water infiltration affected by topsoil thickness in row crop and switchgrass production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conversion of annual grain crop systems to biofuel production systems can restore soil hydrologic function; however, information on these effects is limited. Hence, the objective of this study was to evaluate the influence of topsoil thickness on water infiltration in claypan soils for grain and swi...

  9. Soil water infiltration affected by biofuel and grain crop production systems in claypan landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of soil management systems on water infiltration is very crucial within claypan landscapes to maximize production as well as minimize environmental risks. The objective of this study was to assess the effect of topsoil thickness on water infiltration in claypan soils for grain and biofuel...

  10. Intestinal microbial affects of yeast products on weaned and transport stressed pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Study objectives were to determine effects of a commercially available yeast product (XPC, Diamond-V Mills) and stress of transportation on total Enterobacteriaceae, Escherichia coli, coliforms, and Lactobacilli populations in the intestine of weaning pigs. In a RCB design with a 2 x 2 factorial ar...

  11. Phosphoribosyl pyrophosphate synthetase activity affects growth and riboflavin production in Ashbya gossypii

    PubMed Central

    Jiménez, Alberto; Santos, María A; Revuelta, José L

    2008-01-01

    Background Phosphoribosyl pyrophosphate (PRPP) is a central compound for cellular metabolism and may be considered as a link between carbon and nitrogen metabolism. PRPP is directly involved in the de novo and salvage biosynthesis of GTP, which is the immediate precursor of riboflavin. The industrial production of this vitamin using the fungus Ashbya gossypii is an important biotechnological process that is strongly influenced by substrate availability. Results Here we describe the characterization and manipulation of two genes of A. gossypii encoding PRPP synthetase (AGR371C and AGL080C). We show that the AGR371C and AGL080C gene products participate in PRPP synthesis and exhibit inhibition by ADP. We also observed a major contribution of AGL080C to total PRPP synthetase activity, which was confirmed by an evident growth defect of the Δagl080c strain. Moreover, we report the overexpression of wild-type and mutant deregulated isoforms of Agr371cp and Agl080cp that significantly enhanced the production of riboflavin in the engineered A. gossypii strains. Conclusion It is shown that alterations in PRPP synthetase activity have pleiotropic effects on the fungal growth pattern and that an increase in PRPP synthetase enzymatic activity can be used to enhance riboflavin production in A. gossypii. PMID:18782443

  12. Moving beyond Frontiers: How Institutional Context Affects Degree Production and Student Aspirations in STEM

    ERIC Educational Resources Information Center

    Eagan, Mark Kevin, Jr.

    2010-01-01

    Colleges and universities in the U.S. face increasing pressure from policymakers and corporate leaders to increase their production of undergraduate degrees in science, technology, engineering, and mathematics (STEM). These pressures stem from a need to maintain the country's global economic competitiveness in science and engineering innovation.…

  13. Milk production traits of beef cows as affected by horn fly count and sire breed type

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Horn fly infestations on beef cattle results in decreased productivity and challenges enterprise sustainability. Objective of this experiment was to determine the relationships among, cattle breed, heat shock protein 70 (Hsp70) genotype, and horn fly density. Angus (n = 20), Brahman (n = 17), and ...

  14. Agronomic factors affecting dryland grain sorghum maturity and production in northeast Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain sorghum [Sorghum bicolor (L.) Moench] is an important dryland crop in southeast Colorado, but expansion into northeast Colorado is thought to be limited due to the shorter growing season. The study examined whether sorghum production could be expanded into northeast Colorado. A 2-year study ...

  15. Milk production traits of beef cows as affected by horn fly numbers and breed type

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pesticide resistance in horn flies indicates the need for more sustainable production systems. Cows sired by Bonsmara (BONS;n=7), Brangus (BRAN;n=13), Charolais (CHAR;n=8), Gelbvieh (GELV;n=5), Hereford (HERF;n=12), and Romosinuano (ROMO;n=8) from Brangus dams were used to determine breed difference...

  16. 29 CFR 784.138 - Perishable state of the aquatic product as affecting exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... such nonperishable products as fish oil and fish meal, or canned seafood, are not within the exemption... exemption. 784.138 Section 784.138 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION... PROVISIONS OF THE FAIR LABOR STANDARDS ACT APPLICABLE TO FISHING AND OPERATIONS ON AQUATIC...

  17. HYDROLOGIC CONDITIONS AFFECTING THE TROPOSPHERIC FLUX OF VINCLOZOLIN AND ITS DEGRADATION PRODUCTS

    EPA Science Inventory

    A laboratory chamber was used to determine hydrologic conditions that lead to the tropospheric flux of a suspected anti-androgenic dicarboximide fungicide, vinclozolin (3-(3,5-dichlorophenyl)-5-methyl-5-vinyl-oxzoli-dine-2,4-dione) and three degradation products from sterilized...

  18. 76 FR 40285 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    ..., U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies... Product AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of.... Department of Energy, Building Technologies Program, Mailstop EE-2J, 1000 Independence Avenue,...

  19. Thraustochytrids can be grown in low-salt media without affecting PUFA production.

    PubMed

    Shabala, Lana; McMeekin, Tom; Shabala, Sergey

    2013-08-01

    Marine microheterotrophs thraustochytrids are emerging as a potential source for commercial production of polyunsaturated fatty acids (PUFA) that have nutritional and pharmacological values. With prospective demand for PUFAs increasing, biotechnological companies are looking for potential increases in those valuable products. However, high levels of NaCl in the culture media required for optimal thraustochytrid growth and PUFA production poses a significant problem to the biotechnological industry due to corrosion of fermenters calling for a need to reduce the amount of NaCl in the culture media, without imposing penalties on growth and yield of cultured organisms. Earlier, as reported by Shabala et al. (Environ Microbiol 11:1835-1843, 2009), we have shown that thraustochytrids use sodium predominantly for osmotic adjustment purposes and, as such, can be grown in low-salt environment without growth penalties, providing the media osmolality is adjusted. In this study, we verify if that conclusion, made for one specific strain and osmolyte only, is applicable to the larger number of strains and organic osmotica, as well as address the issue of yield quality (e.g., PUFA production in low-saline media). Using mannitol and sucrose for osmotic adjustment of the growth media enabled us to reduce NaCl concentration down to 1 mM; this is 15-100-fold lower than any method proposed so far. At the same time, the yield of essential PUFAs was increased by 15 to 20 %. Taken together, these results suggest that the proposed method can be used in industrial fermenters for commercial PUFA production.

  20. Thraustochytrids can be grown in low-salt media without affecting PUFA production.

    PubMed

    Shabala, Lana; McMeekin, Tom; Shabala, Sergey

    2013-08-01

    Marine microheterotrophs thraustochytrids are emerging as a potential source for commercial production of polyunsaturated fatty acids (PUFA) that have nutritional and pharmacological values. With prospective demand for PUFAs increasing, biotechnological companies are looking for potential increases in those valuable products. However, high levels of NaCl in the culture media required for optimal thraustochytrid growth and PUFA production poses a significant problem to the biotechnological industry due to corrosion of fermenters calling for a need to reduce the amount of NaCl in the culture media, without imposing penalties on growth and yield of cultured organisms. Earlier, as reported by Shabala et al. (Environ Microbiol 11:1835-1843, 2009), we have shown that thraustochytrids use sodium predominantly for osmotic adjustment purposes and, as such, can be grown in low-salt environment without growth penalties, providing the media osmolality is adjusted. In this study, we verify if that conclusion, made for one specific strain and osmolyte only, is applicable to the larger number of strains and organic osmotica, as well as address the issue of yield quality (e.g., PUFA production in low-saline media). Using mannitol and sucrose for osmotic adjustment of the growth media enabled us to reduce NaCl concentration down to 1 mM; this is 15-100-fold lower than any method proposed so far. At the same time, the yield of essential PUFAs was increased by 15 to 20 %. Taken together, these results suggest that the proposed method can be used in industrial fermenters for commercial PUFA production. PMID:23568670

  1. Production efficiencies of U.S. electric generation plants: Effects of data aggregation and greenhouse gas and renewable energy policy

    NASA Astrophysics Data System (ADS)

    Lynes, Melissa Kate

    Over the last few decades there has been a shift in electricity production in the U.S. Renewable energy sources are becoming more widely used. In addition, electric generation plants that use coal inputs are more heavily regulated than a couple decades ago. This shift in electricity production was brought on by changes in federal policy -- a desire for electricity produced in the U.S. which led to policies being adopted that encourage the use of renewable energy. The change in production practices due to policies may have led to changes in the productivity of electric generation plants. Multiple studies have examined the most efficient electric generation plants using the data envelopment analysis (DEA) approach. This study builds on past research to answer three questions: 1) Does the level of aggregation of fuel input variables affect the plant efficiency scores and how does the efficiency of renewable energy input compare to nonrenewable energy inputs; 2) Are policies geared toward directly or indirectly reducing greenhouse gas emissions affecting the production efficiencies of greenhouse gas emitting electric generation plants; and 3) Do renewable energy policies and the use of intermittent energy sources (i.e. wind and solar) affect the productivity growth of electric generation plants. All three analysis, presented in three essays, use U.S. plant level data obtained from the Energy Information Administration to answer these questions. The first two essays use DEA to determine the pure technical, overall technical, and scale efficiencies of electric generation plants. The third essay uses DEA within the Malmquist index to assess the change in productivity over time. Results indicate that the level of aggregation does matter particularly for scale efficiency. This implies that valuable information is likely lost when fuel inputs are aggregated together. Policies directly focused on reducing greenhouse gas emissions may improve the production efficiencies of

  2. ENSO's Effects on the Wind Energy Production of South Dakota

    NASA Astrophysics Data System (ADS)

    Harper, B. R.

    2005-12-01

    An aging infrastructure, environmental concerns, and growing demand threaten to undermine the reliability and long-term sustainability of the current fossil fuel electricity supply and transmission system. It is widely agreed that renewable energy sources will become increasingly important in the evolution to a next generation electric grid. In this study we investigated the use and value of climate information in determining the location and performance of wind power turbines in the Northern Great Plains of the United States. Fifty years of hourly wind speed data were used to evaluate the possible influence of seasonal and interannual climate variability on wind power production at four location in South Dakota. The El Nino Southern Oscillation is a documented source of climate variability in the Northern Great Plains. Our results documented a dominant El Nino influence on the probability of a lull in wind speed, with a stronger influence in the eastern half of the state. Information on wind speed lulls in important to the wind energy industry because these are periods when no energy is being produced. All of the locaitons also showed a slight decrease in power production potential during El Nino events. Our preliminary results confirmed that information on climate variability and change can be of significant use and value to future wind power planning, siting, and performance.

  3. Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering.

    PubMed

    Quintana, Naira; Van der Kooy, Frank; Van de Rhee, Miranda D; Voshol, Gerben P; Verpoorte, Robert

    2011-08-01

    The need to develop and improve sustainable energy resources is of eminent importance due to the finite nature of our fossil fuels. This review paper deals with a third generation renewable energy resource which does not compete with our food resources, cyanobacteria. We discuss the current state of the art in developing different types of bioenergy (ethanol, biodiesel, hydrogen, etc.) from cyanobacteria. The major important biochemical pathways in cyanobacteria are highlighted, and the possibility to influence these pathways to improve the production of specific types of energy forms the major part of this review.

  4. Fuel cell systems for a sustainable energy production

    SciTech Connect

    Kivisaari, T.

    1996-12-31

    When talking about fuel cell systems for stationary applications, two of the advantages are claimed to be a high inherent efficiency and environmentally favourable characteristics. It should, however, be obvious to everybody that in order to call an energy production route environmentally benign, it is not enough that just the energy production step itself has a low negative environmental impact, but that all steps involved (e.g. fuel pre-treatment, fuel processing etc.) should be subjected to the same constraints if the overall production process is to be considered environmentally friendly. In order to evaluate the technical possibilities of a biomass fuelled MCFC unit for stationary applications a system study of a 40 MWe biomass-fired MCFC system is currently carried out at The Royal Institute of Technology, as part of the international co-operation within the IEA Advanced Fuel Cell Programme Annex 1, Balance of Plant of MCFC Systems. In addition to the present work, other recent studies involving biomass and fuel cells can be found in literature.

  5. Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota.

    PubMed

    Trinchese, Giovanna; Cavaliere, Gina; Canani, Roberto Berni; Matamoros, Sebastien; Bergamo, Paolo; De Filippo, Chiara; Aceto, Serena; Gaita, Marcello; Cerino, Pellegrino; Negri, Rossella; Greco, Luigi; Cani, Patrice D; Mollica, Maria Pina

    2015-11-01

    Different nutritional components are able, by modulating mitochondrial function and gut microbiota composition, to influence body composition, metabolic homeostasis and inflammatory state. In this study, we aimed to evaluate the effects produced by the supplementation of different milks on energy balance, inflammatory state, oxidative stress and antioxidant/detoxifying enzyme activities and to investigate the role of the mitochondrial efficiency and the gut microbiota in the regulation of metabolic functions in an animal model. We compared the intake of human milk, gold standard for infant nutrition, with equicaloric supplementation of donkey milk, the best substitute for newborns due to its nutritional properties, and cow milk, the primary marketed product. The results showed a hypolipidemic effect produced by donkey and human milk intake in parallel with enhanced mitochondrial activity/proton leakage. Reduced mitochondrial energy efficiency and proinflammatory signals (tumor necrosis factor α, interleukin-1 and lipopolysaccharide levels) were associated with a significant increase of antioxidants (total thiols) and detoxifying enzyme activities (glutathione-S-transferase, NADH quinone oxidoreductase) in donkey- and human milk-treated animals. The beneficial effects were attributable, at least in part, to the activation of the nuclear factor erythroid-2-related factor-2 pathway. Moreover, the metabolic benefits induced by human and donkey milk may be related to the modulation of gut microbiota. In fact, milk treatments uniquely affected the proportions of bacterial phyla and genera, and we hypothesized that the increased concentration of fecal butyrate in human and donkey milk-treated rats was related to the improved lipid and glucose metabolism and detoxifying activities.

  6. Biomass production and nutrient removal by Chlorella sp. as affected by sludge liquor concentration.

    PubMed

    Åkerström, Anette M; Mortensen, Leiv M; Rusten, Bjørn; Gislerød, Hans Ragnar

    2014-11-01

    The use of microalgae for biomass production and nutrient removal from the reject water produced in the dewatering process of anaerobically digested sludge, sludge liquor, was investigated. The sludge liquor was characterized by a high content of total suspended solids (1590 mg L(-1)), a high nitrogen concentration (1210 mg L(-1)), and a low phosphorus concentration (28 mg L(-1)). Chlorella sp. was grown in sludge liquor diluted with wastewater treatment plant effluent water to different concentrations (12, 25, 40, 50, 70, and 100%) using batch mode. The environmental conditions were 25 °C, a continuous lightning of 115 μmol m(-2) s(-1), and a CO2 concentration of 3.0%. The highest biomass production (0.42-0.45 g dry weight L(-1) Day(-1)) was achieved at 40-50% sludge liquor, which was comparable to the production of the control culture grown with an artificial fertilizer. The biomass production was 0.12 and 0.26 g dry weight L(-1) Day(-1) at 12% and 100% sludge liquor, respectively. The percentage of nitrogen in the algal biomass increased from 3.6% in 12% sludge liquor and reached a saturation of ∼10% in concentrations with 50% sludge liquor and higher. The phosphorus content in the biomass increased linearly from 0.2 to 1.5% with increasing sludge liquor concentrations. The highest nitrogen removal rates by algal biosynthesis were 33.6-42.6 mg TN L(-1) Day(-1) at 40-70% sludge liquor, while the highest phosphorus removal rates were 3.1-4.1 mg TP L(-1) Day(-1) at 50-100% sludge liquor. PMID:24935023

  7. Repeated nitrogen starvation doesn't affect lipid productivity of Chlorococcum littorale.

    PubMed

    Cabanelas, Iago Teles Dominguez; Kleinegris, Dorinde M M; Wijffels, René H; Barbosa, Maria J

    2016-11-01

    In the present work we wanted to know what happens during time to biomass and lipid productivities of Chlorococcum littorale repeatedly subjected to N-starvation. Experiments were done using repeated cycles of batch-wise N run-out (after 2days N=0). Two different cycles were used: repeated short-starvation (6days of N=0) over a total period of 72days and repeated long-starvation (13days of N=0) over a total period of 75days. Batches (using fresh inocula) were done separately as control. Shorter and longer periods of starvation showed no differences in biomass productivities and PSII quantum yield evolution. The repeated short-starvation-batches showed the same lipid productivities as the control short-starvation batches. Most importantly, the biomass lipid content was the same between control and repeated-batches. Altogether, the results point to C. littorale as a resilient and stable strain, with potential to be used under semi continuous cultivation. PMID:27540634

  8. The interactive effects of affect and shopping goal on information search and product evaluations.

    PubMed

    Chen, Fangyuan; Wyer, Robert S; Shen, Hao

    2015-12-01

    Although shoppers often want to evaluate products to make a purchase decision, they can also shop for enjoyment. In each case, the amount of time they spend on shopping and the number of options they consider can depend on the mood they happen to be in. We predicted that mood can signal whether the goal has been attained and when people should stop processing information. When people are primarily motivated to purchase a particular type of product, positive mood signals that they have done enough. Thus, they consider less information if they are happy than if they are unhappy. When people shop for enjoyment, however, positive mood signals that they are still having fun. Thus, they consider more information when they are happy than when they are not. Four experiments among university students (N = 827) examined these possibilities. Experiment 1 provided initial evidence for the interactive effects of mood and goals on search behavior and product evaluation. Other studies examined the implications of this conceptualization for different domains: (a) the relative impact of brand and attribute information on judgments (Experiment 2), (b) gender differences in shopping behavior (Experiment 3), and (c) the number of options that people review in an actual online shopping website (Experiment 4).

  9. Mutations Affecting Hyphal Colonization and Pyoverdine Production in Pseudomonads Antagonistic toward Phytophthora parasitica.

    PubMed

    Yang, C H; Menge, J A; Cooksey, D A

    1994-02-01

    In previous studies, Pseudomonas putida 06909 and Pseudomonas fluorescens 09906 suppressed populations of Phytophthora parasitica in the citrus rhizosphere, suggesting that these bacteria may be useful in biological control of citrus root rot. In this study we investigated the mechanisms of antagonism between the bacteria and the fungus. Both bacteria colonized Phytophthora hyphae and inhibited the fungus on agar media. A hyphal column assay was developed to measure the colonization of bacteria on fungal hyphae and to enrich for colonization-deficient mutants. In this way we identified Tn5 mutants of each pseudomonad that were not able to colonize the hyphae and inhibit fungal growth in vitro. Colonization-deficient mutants were nonmotile and lacked flagella. Survival of nonmotile mutants in a citrus soil was similar to survival of a random Tn5 mutant over a 52-day period. Additional screening of random Tn5 mutants of both pseudomonads for loss of fungal inhibition in vitro yielded two distinct types of mutants. Mutants of the first type were deficient in production of pyoverdines and in inhibition of the fungus in vitro, although they still colonized fungal hyphae. Mutants of the second type lacked flagella and were not able to colonize the hyphae or inhibit fungal growth. No role was found for antibiotic production by the two bacteria in the inhibition of the fungus. Our results suggest that both hyphal colonization and pyoverdine production are important in the inhibition of Phytophthora parasitica by P. fluorescens and P. putida in vitro. PMID:16349177

  10. The interactive effects of affect and shopping goal on information search and product evaluations.

    PubMed

    Chen, Fangyuan; Wyer, Robert S; Shen, Hao

    2015-12-01

    Although shoppers often want to evaluate products to make a purchase decision, they can also shop for enjoyment. In each case, the amount of time they spend on shopping and the number of options they consider can depend on the mood they happen to be in. We predicted that mood can signal whether the goal has been attained and when people should stop processing information. When people are primarily motivated to purchase a particular type of product, positive mood signals that they have done enough. Thus, they consider less information if they are happy than if they are unhappy. When people shop for enjoyment, however, positive mood signals that they are still having fun. Thus, they consider more information when they are happy than when they are not. Four experiments among university students (N = 827) examined these possibilities. Experiment 1 provided initial evidence for the interactive effects of mood and goals on search behavior and product evaluation. Other studies examined the implications of this conceptualization for different domains: (a) the relative impact of brand and attribute information on judgments (Experiment 2), (b) gender differences in shopping behavior (Experiment 3), and (c) the number of options that people review in an actual online shopping website (Experiment 4). PMID:26460676

  11. A mutation in the Xanthomonas oryzae pv. oryzae wxoD gene affects xanthan production and chemotaxis.

    PubMed

    Nam, Jae-Young; Kim, Hong-Il; Lee, Chang-Soo; Park, Young-Jin

    2013-11-01

    Xanthomonas oryzae pv. oryzae causes bacterial blight in rice (Oryza sativa L.). The effect of a mutation in the wxoD gene, that encodes a putative O-antigen acetylase, on xanthan production as well as bacterial chemotaxis was investigated. The mutation increased xanthan production by 52 %. The mutant strain was non-motile on semi-solid agar swarm plates. In addition, several genes involved in chemotaxis, including the cheW, cheV, cheR, and cheD genes, were down-regulated by a mutation in the wxoD gene. Thus, the mutation in the wxoD gene affects xanthan production as well as bacterial chemotaxis. However, the wxoD gene is not essential for the virulence of X. oryzae.

  12. Low Energy Technology. A Unit of Instruction on Energy Conservation in Field Crop Production.

    ERIC Educational Resources Information Center

    Davis, George; Scanlon, Dennis C.

    This unit of instruction on energy conservation in field crop production was designed for use by agribusiness and natural resources teachers in Florida high schools and by agricultural extension agents as they work with adults and students. It is one of a series of 11 instructional units (see note) written to help teachers and agents to educate…

  13. Future electricity production methods. Part 1: Nuclear energy

    NASA Astrophysics Data System (ADS)

    Nifenecker, Hervé

    2011-02-01

    The global warming challenge aims at stabilizing the concentrations of Green House Gas (GHG) in the atmosphere. Carbon dioxide is the most effective of the anthropogenic GHG and is essentially produced by consumption of fossil fuels. Electricity production is the dominant cause of CO2 emissions. It is, therefore, crucial that the share of 'carbon less' electricity production techniques increases at a fast pace. This is the more so, that 'clean' electricity would be useful to displace 'dirty' techniques in other fields such as heat production and transportation. Here we examine the extent to which nuclear energy could be operational in providing 'clean' electricity. A nuclear intensive scenario is shown to give the possibility to divide CO2 emissions by a factor of 2 worldwide, within 50 years. However, the corresponding sharp increase in nuclear power will put a heavy burden on uranium reserves and will necessitate the development of breeding reactors as soon as possible. A review of present and future reactors is given with special attention to the safety issues. The delicate question of nuclear fuel cycle is discussed concerning uranium reserves and management of used fuels. It is shown that dealing with nuclear wastes is more a socio-political problem than a technical one. The third difficult question associated with the development of nuclear energy is the proliferation risk. It is advocated that, while this is, indeed, a very important question, it is only weakly related to nuclear power development. Finally, the possibilities of nuclear fusion are discussed and it is asserted that, under no circumstances, could nuclear fusion give a significant contribution to the solution of the energy problem before 50 years, too late for dealing with the global warming challenge.

  14. Dietary energy sources affect the partition of body lipids and the hierarchy of energy metabolic pathways in growing pigs differing in feed efficiency.

    PubMed

    Gondret, F; Louveau, I; Mourot, J; Duclos, M J; Lagarrigue, S; Gilbert, H; van Milgen, J

    2014-11-01

    The use and partition of feed energy are key elements in productive efficiency of pigs. This study aimed to determine whether dietary energy sources affect the partition of body lipids and tissue biochemical pathways of energy use between pigs differing in feed efficiency. Forty-eight barrows (pure Large White) from two divergent lines selected for residual feed intake (RFI), a measure of feed efficiency, were compared. From 74 d to 132 ± 0.5 d of age, pigs (n = 12 by line and by diet) were offered diets with equal protein and ME contents. A low fat, low fiber diet (LF) based on cereals and a high fat, high fiber diet (HF) where vegetal oils and wheat straw were used to partially substitute cereals, were compared. Irrespective of diet, gain to feed was 10% better (P < 0.001), and carcass yield was greater (+2.3%; P < 0.001) in the low RFI compared with the high RFI line; the most-efficient line was also leaner (+3.2% for loin proportion in the carcass, P < 0.001). In both lines, ADFI and ADG were lower when pigs were fed the HF diet (-12.3% and -15%, respectively, relatively to LF diet; P < 0.001). Feeding the HF diet reduced the perirenal fat weight and backfat proportion in the carcass to the same extent in both lines (-27% on average; P < 0.05). Lipid contents in backfat and LM also declined (-5% and -19%, respectively; P < 0.05) in pigs offered the HF diet. The proportion of saturated fatty acids (FA) was lower, but the percentage of PUFA, especially the EFA C18:2 and C18:3, was greater (P < 0.001) in backfat of HF-fed pigs. In both lines, these changes were associated with a marked decrease (P < 0.001) in the activities of two lipogenic enzymes, the fatty acid synthase (FASN) and the malic enzyme, in backfat. For the high RFI line, the hepatic lipid content was greater (P < 0.05) in pigs fed the HF diet than in pigs fed the LF diet, despite a reduced FASN activity (-32%; P < 0.001). In both lines, the HF diet also led to lower glycogen content (-70%) and

  15. Hypertriton and light nuclei production at Lambda-production subthreshold energy in heavy-ion collisions

    SciTech Connect

    Zhang, S.; Zu, Z.; Chen, J.H., Ma, Y.G., Cai, X-Z, Ma, G.L., Zhong, C.

    2011-08-01

    High-energy heavy-ion collisions produce abundant hyperons and nucleons. A dynamical coalescence model coupled with the ART model is employed to study the production probabilities of light clusters, deuteron (d), triton (t), helion ({sup 3}He), and hypertriton ({sub {Lambda}}{sup 3}H) at subthreshold energy of Aproduction ({approx} 1 GeV per nucleon). We study the dependence on the reaction system size of the coalescence penalty factor per additional nucleon and entropy per nucleon. The Strangeness Population Factor (S{sub 3} = {sup 3}{sub {Lambda}}H/({sup 3}He x {Lambda}/p)) shows an extra suppression of hypertriton comparing to light clusters of the same mass number. This model predicts a hypertriton production cross-section of a few {mu}b in {sup 36}Ar+{sup 36}Ar, {sup 40}Ca+{sup 40}Ca and {sup 56}Ni+{sup 56}Ni in 1 A GeV reactions. The production rate is as high as a few hypertritons per million collisions, which shows that the fixed-target heavy-ion collisions at CSR (Lanzhou/China) at {Lambda} subthreshold energy are suitable for breaking new ground in hypernuclear physics.

  16. Status of photoelectrochemical production of hydrogen and electrical energy

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Walker, G. H.

    1976-01-01

    The efficiency for conversion of electromagnetic energy to chemical and electrical energy utilizing semiconductor single crystals as photoanodes in electrochemical cells was investigated. Efficiencies as high as 20 percent were achieved for the conversion of 330 nm radiation to chemical energy in the form of hydrogen by the photoelectrolysis of water in a SrTiO3 based cell. The SrTiO3 photoanodes were shown to be stable in 9.5 M NaOH solutions for periods up to 48 hours. Efficiencies of 9 percent were measured for the conversion of broadband visible radiation to hydrogen using n-type GaAs crystals as photoanodes. Crystals of GaAs coated with 500 nm of gold, silver, or tin for surface passivation show no significant change in efficiency. By suppressing the production of hydrogen in a CdSe-based photogalvanic cell, an efficiency of 9 percent was obtained in conversion of 633 nm light to electrical energy. A CdS-based photogalvanic cell produced a conversion efficiency of 5 percent for 500 nm radiation.

  17. Identification of significant medium components that affect docosahexaenoic acid production by Schizochytrium sp. SW1

    NASA Astrophysics Data System (ADS)

    Manikan, Vidyah; Hamid, Aidil A.

    2013-11-01

    Central composite design (CCD) was employed to investigate the significance of glucose, yeast extract, MSG and sea salt in affecting the amount of docosahexaenoic acid (DHA) accumulated by a locally isolated strain of Schizochytrium. Design Expert software was used to construct a set of experiments where each medium component mentioned above was varied over three levels. Cultivation was carried out in 250mL flasks containing 50mL of medium, incubated at 30°C with 200 rpm agitation for 96 hours. ANOVA was conducted to identify the influential factors and the level of their significance where factors that scored a probability value of less than 0.05 were considered significant. The level of influence for each independent variable was also interpreted using perturbation whereas pattern of interaction between the factors were interpreted using interaction plots. This experiment revealed that yeast extract and monosodium glutamate have significant influence on DHA accumulation process by Schizochytrium sp. SW1.

  18. Epoetin alfa increases frataxin production in Friedreich's ataxia without affecting hematocrit.

    PubMed

    Saccà, Francesco; Piro, Raffaele; De Michele, Giuseppe; Acquaviva, Fabio; Antenora, Antonella; Carlomagno, Guido; Cocozza, Sergio; Denaro, Alessandra; Guacci, Anna; Marsili, Angela; Perrotta, Gaetano; Puorro, Giorgia; Cittadini, Antonio; Filla, Alessandro

    2011-03-01

    Objective of the study was to test the efficacy, safety, and tolerability of two single doses of Epoetin alfa in patients with Friedreich's ataxia. Ten patients were treated subcutaneously with 600 IU/kg for the first dose, and 3 months later with 1200 IU/kg. Epoetin alfa had no acute effect on frataxin, whereas a delayed and sustained increase in frataxin was evident at 3 months after the first dose (+35%; P < 0.05), and up to 6 months after the second dose (+54%; P < 0.001). The treatment was well tolerated and did not affect hematocrit, cardiac function, and neurological scale. Single high dose of Epoetin alfa can produce a considerably larger and sustained effect when compared with low doses and repeated administration schemes previously adopted. In addition, no hemoglobin increase was observed, and none of our patients required phlebotomy, indicating lack of erythropoietic effect of single high dose of erythropoietin.

  19. Heavy quarkonium production at collider energies: Factorization and evolution

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Ma, Yan-Qing; Qiu, Jian-Wei; Sterman, George

    2014-08-01

    We present a perturbative QCD factorization formalism for inclusive production of heavy quarkonia of large transverse momentum, pT at collider energies, including both leading power (LP) and next-to-leading power (NLP) behavior in pT. We demonstrate that both LP and NLP contributions can be factorized in terms of perturbatively calculable short-distance partonic coefficient functions and universal nonperturbative fragmentation functions, and derive the evolution equations that are implied by the factorization. We identify projection operators for all channels of the factorized LP and NLP infrared safe short-distance partonic hard parts, and corresponding operator definitions of fragmentation functions. For the NLP, we focus on the contributions involving the production of a heavy quark pair, a necessary condition for producing a heavy quarkonium. We evaluate the first nontrivial order of evolution kernels for all relevant fragmentation functions, and discuss the role of NLP contributions.

  20. Comparison of Module Performance Characterization Methods for Energy Production

    SciTech Connect

    Kroposki, B.; Marion, W.; King, D.; Boyson, W.; Kratochvil, J.

    2000-12-04

    This report compares the two methods of determining the performance of PV modules. The methods translate module performance characterized in a laboratory to actual or reference conditions using slightly different approaches. The accuracy of both methods is compared for both hourly and daily energy production over a year of data recorded at NREL in Golden, CO. The comparison of the two methods will be presented for five different PV module technologies: multicrystalline silicon (mc-Si), dual-junction amorphous silicon (a-Si/a-Si:Ge), triple-junction amorphous silicon (a-Si/a-Si/a-Si:Ge), cadmium telluride (CdTe), and copper indium diselenide (CIGSS).

  1. Irrigating poplar energy crops with landfill leachate negatively affects soil micro- and meso-fauna.

    PubMed

    Coyle, David R; Zalesny, Jill A; Zalesny, Ronald S; Wiese, Adam H

    2011-10-01

    Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization. Populus selections are ideal for such systems given their fast growth, extensive root systems, and high water usage rates. Maintaining ecological sustainability (i.e., the capacity for an ecosystem to maintain its function and retain its biodiversity over time) during tree establishment and development is an important component of plantation success, especially for belowground faunal populations. To determine the impact of solid waste leachate on soil micro- and meso-fauna, we compared soilfrom eight different Populus clones receiving municipal solid waste landfill leachate irrigation with clones receiving fertilized (N, P K) well water irrigation. Microfauna (i.e., nematodes) communities were more diverse in control soils. Mesofauna (i.e., insects) were associated with all clones; however, they were four times more abundant around trees found within the control plot than those that received leachate treatments. Nematode and insect abundance varied among Populus clones yet insect diversity was greater in the leachate-treated soils. Phytotechnologies must allow for soil faunal sustainability, as upsetting this balance could lead to great reductions in phytotechnology efficacy. PMID:21972508

  2. Irrigating poplar energy crops with landfill leachate negatively affects soil micro- and meso-fauna.

    PubMed

    Coyle, David R; Zalesny, Jill A; Zalesny, Ronald S; Wiese, Adam H

    2011-10-01

    Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization. Populus selections are ideal for such systems given their fast growth, extensive root systems, and high water usage rates. Maintaining ecological sustainability (i.e., the capacity for an ecosystem to maintain its function and retain its biodiversity over time) during tree establishment and development is an important component of plantation success, especially for belowground faunal populations. To determine the impact of solid waste leachate on soil micro- and meso-fauna, we compared soilfrom eight different Populus clones receiving municipal solid waste landfill leachate irrigation with clones receiving fertilized (N, P K) well water irrigation. Microfauna (i.e., nematodes) communities were more diverse in control soils. Mesofauna (i.e., insects) were associated with all clones; however, they were four times more abundant around trees found within the control plot than those that received leachate treatments. Nematode and insect abundance varied among Populus clones yet insect diversity was greater in the leachate-treated soils. Phytotechnologies must allow for soil faunal sustainability, as upsetting this balance could lead to great reductions in phytotechnology efficacy.

  3. Researchers fine-tune production of energy crops

    SciTech Connect

    Parish, D.J. )

    1990-04-01

    Renewable energy sources, plant materials that can be processed into liquid fuels, are becoming increasingly important as fossil fuel sources dwindle and environmental impacts of releasing fossilized carbon into the atmosphere become more evident. But which plant species provide the most material and can be grown on land not used to produce food, feed, and fiber Switchgrass exceeds all other herbaceous species we have tested in production of biomass on marginal sites in the Virginia Piedmont reports David J. Parrish, Virginia Tech (Blacksburg, VA) professor of crop and soil environmental sciences. In a study sponsored by the U.S. Department of Energy (DOE) at Virginia Tech, graduate student Steven Nagle, Parrish, professor Dale Wolf, and associate professor W.L. Daniels are comparing the biomass productivity of switchgrass, weeping lovegrass, and tall fescue. Since 1985, the crops - selected for their marginal crop value - have been grown on 12 sites in the Virginia Piedmont. Planting was done using no-till procedures that slice but do not turn the soil, because the sites are subject to erosion. The two warm-season grasses are harvested once a year, the fescue twice. Switchgrass has been the most productive on clay soils, and lovegrass on sandy soil. In a second DOE-sponsored study - this one by graduate student Preston Sullivan, Parish, Wolf, Daniels, and Nagle - the Virginia Tech researchers have begun to investigate planting winter-annual legumes in with switchgrass as a source of nitrogen to reduce cost of production, and as a means to increase biomass. In the fall of 1988, crimson clover, arrowleaf clover, and hairy vetch were planted into the switchgrass stubble. Other plots of switchgrass are being provided with various levels of nitrogen fertilizer to compare those yields with legume-planted plots. Crimson clover had provided the most fall growth, but by mid-May 1989, the hairy vetch had produced a dense webbing of biomass over the new switchgrass.

  4. Energy cane as a multiple-products alternative

    SciTech Connect

    Alexander, A.G.

    1984-01-01

    CANE SUGAR planting as it was formerly known is in serious and essentially irreversible trouble. Diversification of sugarcane to alternative farm crops is indicated in some instances. Yet, for the most part, the more logical alternative is an internal diversification to a multiple-products biomass commodity. Sometimes termed the energy cane approach, its keystones are the management of sugarcane as a quantitative rather than qualitative entity, and the inclusion of certain tropical-grass relatives to assist cane in its year-round supply of biomass to industrial consumers. Managed in this way, absolute tonnages of whole cane are increased materially beyond what is possible from sugar-crop management. Juice quality declines but sugar yields are significant as a function of high biomass tonnages per acre. Usage of the lignocellulose can range from low-quality humid boiler fuel in furnaces designed for refuse incineration, to higher-quality fuels in more efficient boilers, to proprietary fuels and chemical products, and to lignocellulose supply as the feedstock for primary chemicals production. The latter might include, for example, synthesis gas and petrochemicals in tropical regions lacking natural gas, naphtha, or coal as starting materials. Diversification of sugarcane to completely new farm commodities is opposed in favor of internal diversification to a high-growth, multiple-products commodity. Decisive issues here are as much educational as they are technical. The energy cane concept maintains that sugarcane is a future resource of enormous national and international value. It should develop accordingly where decision-taking is by persons who respect the cane plant and who have done their homework on its alternative-use potentials. 35 references, 5 figures, 6 tables.

  5. Effects of rutin and buckwheat seeds on energy metabolism and methane production in dairy cows.

    PubMed

    Stoldt, Ann-Kathrin; Derno, Michael; Das, Gürbüz; Weitzel, Joachim M; Wolffram, Siegfried; Metges, Cornelia C

    2016-03-01

    Flavonoids are secondary plant metabolites with several health promoting effects. As dairy cows often suffer from metabolic imbalance and health problems, interest is growing in health improvements by plant substances such as flavonoids. Our group has recently shown that the flavonoids quercetin and rutin (a glucorhamnoside of quercetin) are bioavailable in cows when given via a duodenal fistula or orally, respectively, affect glucose metabolism, and have beneficial effects on liver health. Furthermore, flavonoids may reduce rumen methane production in vitro through their antibacterial properties. To test the hypothesis that rutin has effects on energy metabolism, methane production, and production performance in dairy cows, we fed rutin trihydrate at a dose of 100mg/kg of body weight to a group of 7 lactating dairy cows for 2 wk in a crossover design. In a second experiment, 2 cows were fed the same ration but were supplemented with buckwheat seeds (Fagopyrum tartaricum), providing rutin at a dose comparable to the first experiment. Two other cows receiving barley supplements were used as controls in a change-over mode. Blood samples were taken weekly and respiration measurements were performed at the end of each treatment. Supplementation of pure rutin, but not of rutin contained in buckwheat seeds, increased the plasma quercetin content. Methane production and milk yield and composition were not affected by rutin treatment in either form. Plasma glucose, β-hydroxybutyrate, and albumin were increased by pure rutin treatment, indicating a possible metabolic effect of rutin on energy metabolism of dairy cows. In addition, we did not show that in vivo ruminal methane production was reduced by rutin. In conclusion, we could not confirm earlier reports on in vitro methane reduction by rutin supplementation in dairy cows in established lactation.

  6. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production?

    PubMed

    Cannella, David; Jørgensen, Henning

    2014-01-01

    Production of ethanol from lignocellulosic materials has a promising market potential, but the process is still only at pilot/demonstration scale due to the technical and economical difficulties of the process. Operating the process at very high solids concentrations (above 20% dry matter-DM) has proven essential for economic feasibility at industrial scale. Historically, simultaneous saccharification and fermentation (SSF) was found to give better ethanol yields compared to separate hydrolysis and fermentation (SHF), but data in literature are typically based on operating the process at low dry matter conditions. In this work the impact of selected enzyme preparation and processing strategy (SHF, presaccharification and simultaneous saccharification and fermentation-PSSF, and SSF) on final ethanol yield and overall performance was investigated with pretreated wheat straw up to 30% DM. The experiments revealed that an SSF strategy was indeed better than SHF when applying an older generation enzyme cocktail (Celluclast-Novozym 188). In case of the newer product Cellic CTec 2, SHF resulted in 20% higher final ethanol yield compared to SSF. It was possible to close the mass balance around cellulose to around 94%, revealing that the most relevant products could be accounted for. One observation was the presence of oxidized sugar (gluconic acid) upon enzymatic hydrolysis with the latest enzyme preparation. Experiments showed gluconic acid formation by recently discovered enzymatic class of lytic polysaccharides monoxygenases (LPMO's) to be depending on the processing strategy. The lowest concentration was achieved in SSF, which could be correlated with less available oxygen due to simultaneous oxygen consumption by the yeast. Quantity of glycerol and cell mass was also depending on the selected processing strategy.

  7. Transfer from long to short photoperiods affects production efficiency of day-neutral rice

    NASA Technical Reports Server (NTRS)

    Goldman, K. R.; Mitchell, C. A.

    1999-01-01

    The day-neutral, semidwarf rice (Oryza sativa L.) cultivar Ai-Nan-Tsao was grown in a greenhouse under summer conditions using high-pressure sodium lamps to extend the natural photoperiod. After allowing 2 weeks for germination, stand establishment, and thinning to a consistent planting density of 212 plants/m2, stands were maintained under continuous lighting for 35 or 49 days before shifting to 8- or 12-h photoperiods until harvest 76 days after planting. Non-shifted control treatments consisting of 8-, 12-, or 24-h photoperiods also were maintained throughout production. Tiller number increased as duration of exposure to continuous light increased before shifting to shorter photoperiods. However, shoot harvest index and yield efficiency rate were lower for all plants receiving continuous light than for those under the 8- or 12-h photoperiods. Stands receiving 12-h photoperiods throughout production had the highest grain yield per plant and equaled the 8-h-photoperiod control plants for the lowest tiller number per plant. As long as stands were exposed to continuous light, tiller formation continued. Shifting to shorter photoperiods late in the cropping cycle resulted in newly formed tillers that were either sterile or unable to mature grain before harvest. Late-forming tillers also suppressed yield of grain in early-forming tillers, presumably by competing for photosynthate or for remobilized assimilate during senescence. Stands receiving 12-h photoperiods throughout production not only produced the highest grain yield at harvest but had the highest shoot harvest index, which is important for resource-recovery strategies in advanced life-support systems proposed for space.

  8. Nutrient availability affects pigment production but not growth in lichens of biological soil crusts

    USGS Publications Warehouse

    Bowker, M.A.; Koch, G.W.; Belnap, J.; Johnson, N.C.

    2008-01-01

    Recent research suggests that micronutrients such as Mn may limit growth of slow-growing biological soil crusts (BSCs) in some of the drylands of the world. These soil surface communities contribute strongly to arid ecosystem function and are easily degraded, creating a need for new restoration tools. The possibility that Mn fertilization could be used as a restoration tool for BSCs has not been tested previously. We used microcosms in a controlled greenhouse setting to investigate the hypothesis that Mn may limit photosynthesis and consequently growth in Collema tenax, a dominant N-fixing lichen found in BSCs worldwide. We found no evidence to support our hypothesis; furthermore, addition of other nutrients (primarily P, K, and Zn) had a suppressive effect on gross photosynthesis (P = 0.05). We also monitored the growth and physiological status of our microcosms and found that other nutrients increased the production of scytonemin, an important sunscreen pigment, but only when not added with Mn (P = 0.01). A structural equation model indicated that this effect was independent of any photosynthesis-related variable. We propose two alternative hypotheses to account for this pattern: (1) Mn suppresses processes needed to produce scytonemin; and (2) Mn is required to suppress scytonemin production at low light, when it is an unnecessary photosynthate sink. Although Mn fertilization does not appear likely to increase photosynthesis or growth of Collema, it could have a role in survivorship during environmentally stressful periods due to modification of scytonemin production. Thus, Mn enrichment should be studied further for its potential to facilitate BSC rehabilitation. ?? 2008 Elsevier Ltd.

  9. Abiotic and biotic factors affect efficacy of chlorfenapyr for control of stored-product insect pests.

    PubMed

    Kavallieratos, Nickolas G; Athanassiou, Christos G; Hatzikonstantinou, Ann N; Kavallieratou, Helen N

    2011-08-01

    Laboratory bioassays were conducted to assess pyrole chlorfenapyr as a potential grain protectant against adults of Rhyzopertha dominica, Sitophilus oryzae, Prostephanus truncatus, Tribolium confusum, and Liposcelis bostrychophila. Factors such as dose (0.01, 0.1, 0.5, 1, 5, and 10 ppm), exposure interval (7 and 14 days), temperature (20, 25, and 30°C), relative humidity (RH; 55 and 75%), and commodity (wheat, maize, barley, and paddy rice) were evaluated. Progeny production was assessed after 74 days of exposure. For L. bostrychophila and T. confusum the increase of dose increased mortality. After 7 or 14 days of exposure, mortality was low at doses of ≤ 1 ppm and did not exceed 23 or 36%, respectively, for L. bostrychophila or 13 or 58%, respectively, for T. confusum. After 14 days of exposure, mortality of S. oryzae at 30°C and 75% RH was 82.2%. Mortality of P. truncatus was considerably higher than that of the other species. At 0.5 ppm, mortality exceeded 81% after 7 days of exposure and 91% after 14 days of exposure. Progeny production of L. bostrychophila was extremely high. Very few progeny were found for T. confusum. For S. oryzae, offspring emergence was high, except at 20°C and 55% RH. For P. truncatus, progeny production in the treated maize was not avoided, even at 10 ppm. In the case of S. oryzae, at 0.1 ppm and after 14 days of exposure, mortality in wheat was higher than in the other three commodities. For R. dominica, mortality was low at 0.1 and 1 ppm for paddy rice but reached 74.4% in barley after 14 days of exposure. For T. confusum, mortality was low at 0.1 and 1 ppm in all commodities. For progeny production counts, for S. oryzae or R. dominica, adult emergence was higher in paddy rice than in the other three commodities. Finally, overall T. confusum progeny was low. Chlorfenapyr efficacy varied remarkably among the combinations tested, and it may be a viable grain protectant in combination with other insecticides.

  10. TNT transformation products are affected by the growth conditions of Raoultella terrigena.

    PubMed

    Claus, Harald; Perret, Nina; Bausinger, Tobias; Fels, Gregor; Preuss, Johannes; König, Helmut

    2007-03-01

    High concentrations of 2,4,6-trinitrotoluene (TNT) and related nitroaromatic compounds are commonly found in soil and groundwater at former explosive plants. The bacterium, Raoultella terrigena strain HB, isolated from a contaminated site, converts TNT into the corresponding amino products. Radio-HPLC analysis with [(14)C]TNT identified aminodinitrotoluene, diaminonitrotoluene and azoxy-dimers as the main metabolites. Transformation rate and the type of metabolites that predominated in the culture medium and within the cells were significantly influenced by the culture conditions. The NAD(P)H-dependent enzymatic reduction of nitro-substituted compounds by cell-free extracts of R. terrigena was evaluated in vitro.

  11. Proliferation Risks of Magneetic Fusion Energy: Clandestine Production, Covert Production and Breakout

    SciTech Connect

    A. Glaser and R.J. Goldston

    2012-03-13

    Nuclear proliferation risks from magnetic fusion energy associated with access to weapon-usable materials can be divided into three main categories: (1) clandestine production of weapon-usable material in an undeclared facility, (2) covert production of such material inn a declared facility, and (3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper we address each of these categories of risks from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if the fusion system is designed to accommodate appropriate safeguards.

  12. Proliferation risks of magnetic fusion energy: clandestine production, covert production and breakout

    NASA Astrophysics Data System (ADS)

    Glaser, A.; Goldston, R. J.

    2012-04-01

    Nuclear proliferation risks from magnetic fusion energy associated with access to weapon-usable materials can be divided into three main categories: (1) clandestine production of weapon-usable material in an undeclared facility, (2) covert production of such material in a declared facility and (3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper, we address each of these categories of risks from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if the fusion system is designed to accommodate appropriate safeguards.

  13. Weight and season affects androstenone and skatole occurrence in entire male pigs in organic pig production.

    PubMed

    Thomsen, R; Edwards, S A; Jensen, B B; Rousing, T; Sørensen, J T

    2015-09-01

    To investigate the extent to which the level of androstenone and skatole decreases with a decrease in live weight and/or age at slaughter of entire male pigs produced under organic standards, 1174 entire male pigs were raised in parallel in five organic herds, distributed across four batches in summer and winter. The median androstenone level was high for organic entire male pigs (1.9 µg/g), but varied greatly both within and between herds. Median skatole level was 0.05 µg/g, also with a wide range both within and between herds. Decreasing live weight over the range of 110 ± 15.6 kg s.d. was found to decrease androstenone as well as skatole concentration, however, with different patterns of association. Age did not have significant direct effect on either androstenone or skatole levels. Androstenone levels were higher during winter than summer (P<0.0001), but no difference in skatole was found between seasons. The study concludes that decreasing live weight at slaughter could be an applicable management tool to reduce risk of boar taint and the level of tainted carcasses for a future production of entire male pigs within the organic pig production system, although further studies are needed as great variation in boar taint was found also for low weight animals.

  14. Pancreatic β-Cell Adaptive Plasticity in Obesity Increases Insulin Production but Adversely Affects Secretory Function.

    PubMed

    Alarcon, Cristina; Boland, Brandon B; Uchizono, Yuji; Moore, Patrick C; Peterson, Bryan; Rajan, Suryalekha; Rhodes, Olivia S; Noske, Andrew B; Haataja, Leena; Arvan, Peter; Marsh, Bradly J; Austin, Jotham; Rhodes, Christopher J

    2016-02-01

    Pancreatic β-cells normally produce adequate insulin to control glucose homeostasis, but in obesity-related diabetes, there is a presumed deficit in insulin production and secretory capacity. In this study, insulin production was assessed directly in obese diabetic mouse models, and proinsulin biosynthesis was found to be contrastingly increased, coupled with a significant expansion of the rough endoplasmic reticulum (without endoplasmic reticulum stress) and Golgi apparatus, increased vesicular trafficking, and a depletion of mature β-granules. As such, β-cells have a remarkable capacity to produce substantial quantities of insulin in obesity, which are then made available for immediate secretion to meet increased metabolic demand, but this comes at the price of insulin secretory dysfunction. Notwithstanding, it can be restored. Upon exposing isolated pancreatic islets of obese mice to normal glucose concentrations, β-cells revert back to their typical morphology with restoration of regulated insulin secretion. These data demonstrate an unrealized dynamic adaptive plasticity of pancreatic β-cells and underscore the rationale for transient β-cell rest as a treatment strategy for obesity-linked diabetes. PMID:26307586

  15. Do interactions of land use and climate affect productivity of waterbirds and prairie-pothole wetlands?

    USGS Publications Warehouse

    Anteau, Michael J.

    2012-01-01

    Availability of aquatic invertebrates on migration and breeding areas influences recruitment of ducks and shorebirds. In wetlands of Prairie Pothole Region (PPR), aquatic invertebrate production primarily is driven by interannual fluctuations of water levels in response to wet-dry cycles in climate. However, this understanding comes from studying basins that are minimally impacted by agricultural landscape modifications. In the past 100–150 years, a large proportion of wetlands within the PPR have been altered; often water was drained from smaller to larger wetlands at lower elevations creating consolidated, interconnected basins. Here I present a case study and I hypothesize that large basins receiving inflow from consolidation drainage have reduced water-level fluctuations in response to climate cycles than those in undrained landscapes, resulting in relatively stable wetlands that have lower densities of invertebrate forage for ducks and shorebirds and also less foraging habitat, especially for shorebirds. Furthermore, stable water-levels and interconnected basins may favor introduced or invasive species (e.g., cattail [Typha spp.] or fish) because native communities "evolved" in a dynamic and isolated system. Accordingly, understanding interactions between water-level fluctuations and landscape modifications is a prerequisite step to modeling effects of climate change on wetland hydrology and productivity and concomitant recruitment of waterbirds.

  16. Factors affecting catalysis of copper corrosion products in NDMA formation from DMA in simulated premise plumbing.

    PubMed

    Zhang, Hong; Andrews, Susan A

    2013-11-01

    This study investigated the effects of corrosion products of copper, a metal commonly employed in household plumbing systems, on N-nitrosodimethylamine (NDMA) formation from a known NDMA precursor, dimethylamine (DMA). Copper-catalyzed NDMA formation increased with increasing copper concentrations, DMA concentrations, alkalinity and hardness, but decreased with increasing natural organic matter (NOM) concentration. pH influenced the speciation of chloramine and the interactions of copper with DMA. The transformation of monochloramine (NH2Cl) to dichloramine and complexation of copper with DMA were involved in elevating the formation of NDMA by copper at pH 7.0. The inhibiting effect of NOM on copper catalysis was attributed to the rapid consumption of NH2Cl by NOM and/or the competitive complexation of NOM with copper to limit the formation of DMA-copper complexes. Hardness ions, as represented by Ca(2+), also competed with copper for binding sites on NOM, thereby weakening the inhibitory effect of NOM on NDMA formation. Common copper corrosion products also participated in these reactions but in different ways. Aqueous copper released from malachite [Cu2CO3(OH)2] was shown to promote NDMA formation while NDMA formation decreased in the presence of CuO, most likely due to the adsorption of DMA.

  17. Weight and season affects androstenone and skatole occurrence in entire male pigs in organic pig production.

    PubMed

    Thomsen, R; Edwards, S A; Jensen, B B; Rousing, T; Sørensen, J T

    2015-09-01

    To investigate the extent to which the level of androstenone and skatole decreases with a decrease in live weight and/or age at slaughter of entire male pigs produced under organic standards, 1174 entire male pigs were raised in parallel in five organic herds, distributed across four batches in summer and winter. The median androstenone level was high for organic entire male pigs (1.9 µg/g), but varied greatly both within and between herds. Median skatole level was 0.05 µg/g, also with a wide range both within and between herds. Decreasing live weight over the range of 110 ± 15.6 kg s.d. was found to decrease androstenone as well as skatole concentration, however, with different patterns of association. Age did not have significant direct effect on either androstenone or skatole levels. Androstenone levels were higher during winter than summer (P<0.0001), but no difference in skatole was found between seasons. The study concludes that decreasing live weight at slaughter could be an applicable management tool to reduce risk of boar taint and the level of tainted carcasses for a future production of entire male pigs within the organic pig production system, although further studies are needed as great variation in boar taint was found also for low weight animals. PMID:25990807

  18. A review: factors affecting excess sludge anaerobic digestion for volatile fatty acids production.

    PubMed

    Zhang, Dong; Li, Xiaoshuai; Jia, Shuting; Dai, Lingling; Zhao, Jianfu; Chen, Yinguang; Dai, Xiaohu

    2015-01-01

    This paper presents a review of methods that improve the production of volatile fatty acids (VFA) from excess sludge during the anaerobic digestion process. These methods are mainly divided into two approaches. The first approach is located in the pre-treatment methods, which change the properties of the substrates, such as thermal pre-treatment, alkaline pre-treatment, microwave pre-treatment and ultrasonic pre-treatment. The other approach is found in the fermentation process control methods, which influence the environment of anaerobic digestion for the production of VFA, such as pH, temperature, mixing, additives and solids retention time control. In the text recent research studies of each method are listed and analyzed in detail. Comparably, microwave and ultrasonic pre-treatment methods are considered emerging and promising technologies due to their efficiency and environmentally friendly characteristics. However, the microwave pre-treatment has high electricity demand, which might make the process economically unfeasible. In order to calculate optimal operation, further studies still need to be done. PMID:26287825

  19. Seed Production Affects Maternal Growth and Senescence in Arabidopsis1[OPEN

    PubMed Central

    Philipp, Matthias Anton; Guthörl, Daniela

    2016-01-01

    Correlative control (influence of one organ over another organ) of seeds over maternal growth is one of the most obvious phenotypic expressions of the trade-off between growth and reproduction. However, the underlying molecular mechanisms are largely unknown. Here, we characterize the physiological and molecular effects of correlative inhibition by seeds on Arabidopsis (Arabidopsis thaliana) inflorescences, i.e. global proliferative arrest (GPA) during which all maternal growth ceases upon the production of a given number of seeds. We observed transcriptional responses to growth- and branching-inhibitory hormones, and low mitotic activity in meristems upon GPA, but found that meristems retain their identity and proliferative potential. In shoot tissues, we detected the induction of stress- and senescence-related gene expression upon fruit production and GPA, and a drop in chlorophyll levels, suggestive of altered source-sink relationships between vegetative shoot and reproductive tissues. Levels of shoot reactive oxygen species, however, strongly decreased upon GPA, a phenomenon that is associated with bud dormancy in some perennials. Indeed, gene expression changes in arrested apical inflorescences after fruit removal resembled changes observed in axillary buds following release from apical dominance. This suggests that GPA represents a form of bud dormancy, and that dominance is gradually transferred from growing inflorescences to maturing seeds, allowing offspring control over maternal resources, simultaneously restricting offspring number. This would provide a mechanistic explanation for the constraint between offspring quality and quantity. PMID:27009281

  20. A review: factors affecting excess sludge anaerobic digestion for volatile fatty acids production.

    PubMed

    Zhang, Dong; Li, Xiaoshuai; Jia, Shuting; Dai, Lingling; Zhao, Jianfu; Chen, Yinguang; Dai, Xiaohu

    2015-01-01

    This paper presents a review of methods that improve the production of volatile fatty acids (VFA) from excess sludge during the anaerobic digestion process. These methods are mainly divided into two approaches. The first approach is located in the pre-treatment methods, which change the properties of the substrates, such as thermal pre-treatment, alkaline pre-treatment, microwave pre-treatment and ultrasonic pre-treatment. The other approach is found in the fermentation process control methods, which influence the environment of anaerobic digestion for the production of VFA, such as pH, temperature, mixing, additives and solids retention time control. In the text recent research studies of each method are listed and analyzed in detail. Comparably, microwave and ultrasonic pre-treatment methods are considered emerging and promising technologies due to their efficiency and environmentally friendly characteristics. However, the microwave pre-treatment has high electricity demand, which might make the process economically unfeasible. In order to calculate optimal operation, further studies still need to be done.

  1. Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles.

    PubMed

    Martin, Katherine R; Kantari-Mimoun, Chahrazade; Yin, Min; Pederzoli-Ribeil, Magali; Angelot-Delettre, Fanny; Ceroi, Adam; Grauffel, Cédric; Benhamou, Marc; Reuter, Nathalie; Saas, Philippe; Frachet, Philippe; Boulanger, Chantal M; Witko-Sarsat, Véronique

    2016-05-13

    Proteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease. PMID:26961880

  2. Microbiological and physicochemical factors affecting Aspergillus section Flavi incidence in Cavendish banana (Musa cavendishii) chips production in Southern Philippines.

    PubMed

    Sales, A C; Azanza, P V; Yoshizawa, T

    2005-01-01

    Microbiological and physicochemical factors affecting the incidence of Aspergillus section Flavi in dried Cavendish banana (Musa cavendishii) chips production in Southern Philippines were examined. The average counts of Aspergillus section Flavi (AFC) in fresh and dried Cavendish bananas from 10 production batches of the Philippine Agro-Industrial Development Cooperative in Davao del Norte, Southern Philippines were 1.2 x 10(2) and 1.6 x 10(2) cfu/g, respectively. Isolates from both samples were identified to be Aspergillus flavus based on spore type and conidial structure of isolates. An increasing trend in the AFC of Cavendish bananas was observed during dried banana chips processing. Variability in the AFC between production batches was attributed to differences in aerobic and fungal populations and physicochemical characteristics of the fruits, peel damage of the raw materials, concentration of AFC in the air and food-contact surfaces of the production area, and temperature and relative humidity (RH) conditions of the environment during production and storage. Physicochemical characteristics of Cavendish bananas from the receipt of raw materials up to the first day of drying were within the reported range of values allowing growth and toxin production by aflatoxigenic fungi. Air-borne AFC varied depending on the section of the production area examined. The close proximity of the waste disposal area from the production operation to the preparation, drying and storage areas suggests that cross-contamination, probably air-borne or insect-borne was a likely occurrence. The hands of workers were also identified as AFC sources. Results of this study highlight the need for the development of strategies to control aflatoxigenic fungi and aflatoxin contamination in Philippine dried Cavendish bananas.

  3. A coupled biogeochemical-Dynamic Energy Budget model as a tool for managing fish production ponds.

    PubMed

    Serpa, Dalila; Pousão-Ferreira, Pedro; Caetano, Miguel; Cancela da Fonseca, Luís; Dinis, Maria Teresa; Duarte, Pedro

    2013-10-01

    The sustainability of semi-intensive aquaculture relies on management practices that simultaneously improve production efficiency and minimize the environmental impacts of this activity. The purpose of the present work was to develop a mathematical model that reproduced the dynamics of a semi-intensive fish earth pond, to simulate different management scenarios for optimizing fish production. The modeling approach consisted of coupling a biogeochemical model that simulated the dynamics of the elements that are more likely to affect fish production and cause undesirable environmental impacts (nitrogen, phosphorus and oxygen) to a fish growth model based on the Dynamic Energy Budget approach. The biogeochemical sub-model successfully simulated most water column and sediment variables. A good model fit was also found between predicted and observed white seabream (Diplodus sargus) growth data over a production cycle. In order to optimize fish production, different management scenarios were analysed with the model (e.g. increase stocking densities, decrease/increase water exchange rates, decrease/increase feeding rates, decrease phosphorus content in fish feeds, increase food assimilation efficiency and decrease pellets sinking velocity) to test their effects on the pond environment as well as on fish yields and effluent nutrient discharges. Scenarios were quantitatively evaluated and compared using the Analytical Hierarchical Process (AHP) methodology. The best management options that allow the maximization of fish production while maintaining a good pond environment and minimum impacts on the adjacent coastal system were to double standard stocking densities and to improve food assimilation efficiency.

  4. Productivity and energy partition of late lactation dairy cows during heat exposure.

    PubMed

    Kim, Kyoung Hoon; Kim, Do-Hyung; Oh, Young-Kyoon; Lee, Sung-Sill; Lee, Hyun-Jeong; Kim, Dong-Woon; Seol, Yong-Joo; Kimura, Nobuhiro

    2010-02-01

    Three late-lactation Holstein cows were used to determine the effects of environmental temperature on performance and energy partitioning. Each cow was housed in a respiratory chamber for 30 consecutive days and exposed to three different conditions of environmental temperature: (i) 20 degrees C and 20 degrees C (20 degrees C), (ii) 25 degrees C and 20 degrees C (25 degrees C), (iii) 30 degrees C and 25 degrees C (30 degrees C) during the day and night, respectively. The temperature was switched in an interval of 10 days. Humidity in the chamber was maintained at 55-65% through the entire experimental period. The daily mean as well as morning and evening rectal temperatures of Holstein cows increased linearly (P < 0.05) as chamber temperature increased. There was a significant linear reduction in dry matter (DM) intake (P < 0.05) and an increase in DM digestibility (P < 0.05). The response in milk yield, however, was not affected by heat stress. There were no significant differences among treatments for intake energy, heat production, net energy for lactation and net energy for gain. This results of this study disagreed with the assumption that late lactation cows gave priority to increasing body tissue at the expense of milk production under thermal stress.

  5. UV-B affects photosynthesis, ROS production and motility of the freshwater flagellate, Euglena agilis Carter.

    PubMed

    Kottuparambil, Sreejith; Shin, Woongghi; Brown, Murray T; Han, Taejun

    2012-10-15

    The effects of ultraviolet B (UV-B; 295-320 nm) radiation on certain vital physiological (photosynthesis), biochemical (production of reactive oxygen species - ROS) and behavioral (motility and orientation) characteristics were investigated in the unicellular photoautotroph, Euglena agilis Carter. The photosynthetic performance of E. agilis was recorded after exposure of between 15 and 60 min followed by a period of recovery lasting 6-24h under dim light (5-10 μmol photons m(-2) s(-1)). The maximum quantum yield of PS II (F(v)/F(m)) was reduced to 65% and 14% of initial values immediately following 15 and 30 min UV-B exposure, but recovered to 100 and 86% of the initials, respectively. Values of rETR(max) in E. agilis exposed to 15 min UV-B were similar to those of the initials, but a 30 min UV exposure resulted in 75% reduction of rETR(max) with only a 43% recovery as compared with the initial after 24h recovery. After a 60 min UV-B exposure, there were no Chl a fluorescence signals, and hence no F(v)/F(m) or rETR(max). A UV dose-dependent increase in DCFH-DA fluorescence was found in E. agilis cells, reflecting an increase in ROS production. After exposures to UV-B for between 15 and 60 min, the percentages of motile cells in the population decreased to 76, 39 and 15%, respectively. Following 24h in dim light, the percentage of motile cells increased to between 66% and 95% of the initial value. The velocity of non-irradiated cells was 60 μm s(-1), which decreased to 16-35 μm s(-1) immediately following exposure for 15-60 min. After periods of time in dim light (6, 12 and 24h) velocities had recovered to between 44 and 81% of the initial value. In untreated controls, the r-value was 0.23, indicating random movement of E. agilis, but it increased to 0.35 and 0.72 after exposure to UV-B for 30 and 60 min, respectively. There was a tendency towards vertical downward movement of cells proportional to the duration of exposure. The compactness of E. agilis decreased

  6. Potato Production as Affected by Crop Parameters and Meteoro Logical Elements

    NASA Astrophysics Data System (ADS)

    Pereira, André B.; Villa Nova, Nilson A.; Pereira, Antonio R.

    Meteorological elements directly influence crop potential productivity, regulating its transpiration, photosynthesis, and respiration processes in such a way as to control the growth and development of the plants throughout their physiological mechanisms at a given site. The interaction of the meteorological factors with crop responses is complex and has been the target of attention of many researchers from all over the world. There is currently a great deal of interest in estimating crop productivity as a function of climate by means of different crop weather models in order to help growers choose planting locations and timing to produce high yields with good tuber quality under site-specific atmospheric conditions. In this manuscript an agrometeorological model based on maximum carbon dioxide assimilation rates for C3 plants, fraction of photosynthetically active radiation, air temperature, photoperiod duration, and crop parameters is assessed as to its performance under tropical conditions. Crop parameters include leaf areaand harvest indexes, dry matter content of potato tubers, and crop cycles to estimate potato potential yields. Productivity obtained with the cultivar Itararé, grown with adequate soil water supply conditions at four different sites in the State of São Paulo (Itararé, Piracicaba, TatuÍ, and São Manuel), Brazil, were used to test the model. The results showed thatthe agrometeorological model tested under the climatic conditions of the State of São Paulo in general underestimated irrigated potato yield by less than 10%.This justifies the recommendation to test the performance of the model in study in other climaticregions for different crops and genotypes under optimal irrigationconditions in further scientific investigations. We reached the conclusion that the agrometeorological model taking into account information on leaf area index, photoperiod duration, photosynthetically active radiation and air temperature is feasible to estimate

  7. How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing.

    PubMed

    Bahlman, Joseph W; Swartz, Sharon M; Breuer, Kenneth S

    2014-06-01

    Bats display a wide variety of behaviors that require different amounts of aerodynamic force. To control and modulate aerodynamic force, bats change wing kinematics, which, in turn, may change the power required for wing motion. There are many kinematic mechanisms that bats, and other flapping animals, can use to increase aerodynamic force, e.g. increasing wingbeat frequency or amplitude. However, we do not know if there is a difference in energetic cost between these different kinematic mechanisms. To assess the relationship between mechanical power input and aerodynamic force output across different isolated kinematic parameters, we programmed a robotic bat wing to flap over a range of kinematic parameters and measured aerodynamic force and mechanical power. We systematically varied five kinematic parameters: wingbeat frequency, wingbeat amplitude, stroke plane angle, downstroke ratio, and wing folding. Kinematic values were based on observed values from free flying Cynopterus brachyotis, the species on which the robot was based. We describe how lift, thrust, and power change with increases in each kinematic variable. We compare the power costs associated with generating additional force through the four kinematic mechanisms controlled at the shoulder, and show that all four mechanisms require approximately the same power to generate a given force. This result suggests that no single parameter offers an energetic advantage over the others. Finally, we show that retracting the wing during upstroke reduces power requirements for flapping and increases net lift production, but decreases net thrust production. These results compare well with studies performed on C. brachyotis, offering insight into natural flight kinematics.

  8. How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing.

    PubMed

    Bahlman, Joseph W; Swartz, Sharon M; Breuer, Kenneth S

    2014-06-01

    Bats display a wide variety of behaviors that require different amounts of aerodynamic force. To control and modulate aerodynamic force, bats change wing kinematics, which, in turn, may change the power required for wing motion. There are many kinematic mechanisms that bats, and other flapping animals, can use to increase aerodynamic force, e.g. increasing wingbeat frequency or amplitude. However, we do not know if there is a difference in energetic cost between these different kinematic mechanisms. To assess the relationship between mechanical power input and aerodynamic force output across different isolated kinematic parameters, we programmed a robotic bat wing to flap over a range of kinematic parameters and measured aerodynamic force and mechanical power. We systematically varied five kinematic parameters: wingbeat frequency, wingbeat amplitude, stroke plane angle, downstroke ratio, and wing folding. Kinematic values were based on observed values from free flying Cynopterus brachyotis, the species on which the robot was based. We describe how lift, thrust, and power change with increases in each kinematic variable. We compare the power costs associated with generating additional force through the four kinematic mechanisms controlled at the shoulder, and show that all four mechanisms require approximately the same power to generate a given force. This result suggests that no single parameter offers an energetic advantage over the others. Finally, we show that retracting the wing during upstroke reduces power requirements for flapping and increases net lift production, but decreases net thrust production. These results compare well with studies performed on C. brachyotis, offering insight into natural flight kinematics. PMID:24851830

  9. Lipid hydrolysis products affect the composition of infant gut microbial communities in vitro.

    PubMed

    Nejrup, Rikke G; Bahl, Martin I; Vigsnæs, Louise K; Heerup, Christine; Licht, Tine R; Hellgren, Lars I

    2015-07-14

    Some lipid hydrolysis products such as medium-chained NEFA (MC-NEFA), sphingosine and monoacylglycerols (MAG) possess antibacterial activity, while others, including oleic acid, are essential for the optimal growth of Lactobacillus species. Thus, changes in the concentrations of NEFA and MAG in the distal ileum and colon can potentially selectively modulate the composition of the gut microbiota, especially in early life when lipid absorption efficacy is reduced. As medium-chained fatty acids are enriched in mothers' milk, such effects may be highly relevant during gut colonisation. In the present study, we examined the effect of selected NEFA, MAG and sphingosine on the composition of faecal microbial communities derived from infants aged 2-5 months during a 24 h anaerobic in vitro fermentation. We tested lipid mixtures in the concentration range of 0-200 μm, either based on MC-NEFA (10 : 0 to 14 : 0 and MAG 12 : 0) or long-chained NEFA (LC-NEFA; 16 : 0 to 18 : 1 and MAG 16 : 0) with and without sphingosine, representing lipid hydrolysis products characteristic for intestinal hydrolysis of breast milk lipids. Ion Torrent sequencing of the bacterial 16S ribosomal RNA gene revealed that the relative abundance of lactic acid-producing genera, including Lactobacillus and Bifidobacterium, was generally increased in the presence of 50 μm or higher concentrations of MC-NEFA. For Bifidobacterium, the same effect was also observed in the presence of a mixture containing LC-NEFA with sphingosine. On the contrary, the relative abundance of Enterobacteriaceae was significantly decreased in the presence of both lipid mixtures. Our findings suggest that the high concentration of medium-chained fatty acids in breast milk might have functional effects on the establishment of the gut microbiota in early life.

  10. Wind turbine power production and annual energy production depend on atmospheric stability and turbulence

    DOE PAGES

    St. Martin, Clara M.; Lundquist, Julie K.; Clifton, Andrew; Poulos, Gregory S.; Schreck, Scott J.

    2016-06-17

    Here, by using detailed upwind and nacelle-based measurements from a General Electric [GE] 1.5 sle model with a 77 m rotor diameter, we calculated power curves and annual energy production (AEP) and explored their sensitivity to different atmospheric parameters. This work provides guidelines for the use of stability and turbulence filters in segregating power curves to gain a clearer picture of the power performance of a turbine. The wind measurements upwind of the turbine include anemometers mounted on a 135 m meteorological tower and lidar vertical profiles. We calculated power curves for different regimes based on turbulence parameters such as turbulence intensity (TI)more » and turbulence kinetic energy (TKE), as well as atmospheric stability parameters such as Bulk Richardson number (RB). AEP was also calculated with and without these atmospheric filters and differences between these calculations are highlighted in this article. The power curves for different TI and TKE regimes revealed that, at the U.S. Department of Energy (DOE) National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL), increased TI and TKE undermined power production at wind speeds near rated, but increased power production at lower wind speeds. Similarly, power curves for different RB regimes revealed that periods of stable conditions produced more power at wind speeds near rated and periods of unstable conditions produced more power at lower wind speeds. AEP results suggest that calculations done without filtering for these atmospheric regimes may be overestimating the AEP. Because of statistically significant differences between power curves and AEP calculated with these turbulence and stability filters for this turbine at this site, we suggest implementing an additional step in analyzing power performance data to take atmospheric stability and turbulence across the rotor disk into account.« less

  11. 76 FR 13169 - Energy Conservation Program for Consumer Products: Decision and Order Granting a Waiver to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products: Decision... Residential Clothes Washer Test Procedure AGENCY: Office of Energy Efficiency and Renewable Energy, Department... FURTHER INFORMATION CONTACT: Dr. Michael G. Raymond, U.S. Department of Energy, Building...

  12. Energy Product Options for Eucalyptus Species Grown as Short Rotation Woody Crops

    PubMed Central

    Rockwood, Donald L.; Rudie, Alan W.; Ralph, Sally A.; Zhu, J.Y.; Winandy, Jerrold E.

    2008-01-01

    Eucalyptus species are native to Australia but grown extensively worldwide as short rotation hardwoods for a variety of products and as ornamentals. We describe their general importance with specific emphasis on existing and emerging markets as energy products and the potential to maximize their productivity as short rotation woody crops. Using experience in Florida USA and similar locations, we document their current energy applications and assess their productivity as short-term and likely long-term energy and related products. PMID:19325808

  13. Prepartal dietary energy level affects peripartal bovine blood neutrophil metabolic, antioxidant, and inflammatory gene expression.

    PubMed

    Zhou, Z; Bu, D P; Vailati Riboni, M; Khan, M J; Graugnard, D E; Luo, J; Cardoso, F C; Loor, J J

    2015-08-01

    During the dry period, cows can easily overconsume higher-grain diets, a scenario that could impair immune function during the peripartal period. Objectives were to investigate the effects of energy overfeeding on expression profile of genes associated with inflammation, lipid metabolism, and neutrophil function, in 12 multiparous Holstein cows (n=6/dietary group) fed control [CON, 1.34 Mcal/kg of dry matter (DM)] or higher-energy (HE, 1.62 Mcal/kg of DM) diets during the last 45 d of pregnancy. Blood was collected to evaluate 43 genes in polymorphonuclear neutrophil leukocytes (PMNL) isolated at -14, 7, and 14 d relative to parturition. We detected greater expression of inflammatory-related cytokines (IL1B, STAT3, NFKB1) and eicosanoid synthesis (ALOX5AP and PLA2G4A) in HE cows than in CON cows. Around parturition, all cows had a close balance in mRNA expression of the pro-inflammatory IL1B and the anti-inflammatory IL10, with greater expression of both in cows fed HE than CON. The expression of CCL2, LEPR, TLR4, IL6, and LTC4S was undetectable. Cows in the HE group had greater expression of genes involved in PMNL adhesion, motility, migration, and phagocytosis, which was similar to expression of genes related to the pro-inflammatory cytokine. This response suggests that HE cows experienced a chronic state of inflammation. The greater expression of G6PD in HE cows could have been associated with the greater plasma insulin, which would have diverted glucose to other tissues. Cows fed the HE diet also had greater expression of transcription factors involved in metabolism of long-chain fatty acids (PPARD, RXRA), suggesting that immune cells might be predisposed to use endogenous ligands such as nonesterified fatty acids available in the circulation when glucose is in high demand for milk synthesis. The lower overall expression of SLC2A1 postpartum than prepartum supports this suggestion. Targeting interleukin-1β signaling might be of value in terms of controlling

  14. Energy efficiency, low-carbon energy production, and economic growth in CIS countries

    NASA Astrophysics Data System (ADS)

    Vazim, A.; Kochetkova, O.; Azimzhamov, I.; Shvagrukova, E.; Dmitrieva, N.

    2016-09-01

    The paper studies the peculiarities of energy efficiency increase in national economy and decrease of carbon dioxide emission for CIS countries. The conditions that allow achieving parameters of sustainable development are determined according to indexes of GDP energy intensity and carbon intensity. Focusing on the indexes of GDP energy intensity and carbon intensity dynamics as well as on carbon intensity of energy production, a real movement towards implementation of program conditions presented by international organizations is analyzed, namely, economic conversion to the model of sustainable development. The examples demonstrate both the presence of significant differences between 12 countries and the lack of fatality in these differences. At determining dependencies linear models are preferred to non-linear ones, with the explanation of reasons in each particular case. Attention to success of these countries may help to understand the advantages of conversion to the model of sustainable development and also it helps to decrease demands in terms of costs for this conversion.

  15. Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use

    NASA Astrophysics Data System (ADS)

    National Research Council

    2011-11-01

    The U.S. Congress directed the U.S. Department of the Treasury to arrange for a review by the National Academy of Sciences to define and evaluate the health, environmental, security, and infrastructural external costs and benefits associated with the production and consumption of energy--costs and benefits that are not or may not be fully incorporated into the market price of energy, into the federal tax or fee, or into other applicable revenue measures related to production and consumption of energy. In response, the National Research Council established the Committee on Health, Environmental, and Other External Costs and Benefits of Energy Production and Consumption, which prepared the report summarized in this chapter. The report estimates dollar values for several major components of these costs. The damages the committee was able to quantify were an estimated $120 billion in the U.S. in 2005, a number that reflects primarily health damages from air pollution associated with electricity generation and motor vehicle transportation. The figure does not include damages from climate change, harm to ecosystems, effects of some air pollutants such as mercury, and risks to national security, which the report examines but does not monetize.

  16. Resource Evaluation and Energy Production Estimate for a Tidal Energy Conversion Installation using Acoustic Flow Measurements

    NASA Astrophysics Data System (ADS)

    Gagnon, Ian; Baldwin, Ken; Wosnik, Martin

    2015-11-01

    The ``Living Bridge'' project plans to install a tidal turbine at Memorial Bridge in the Piscataqua River at Portsmouth, NH. A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers ADCP. Two locations were evaluated: at the planned deployment location and mid-channel. The goal was to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Differences in the tidal characteristics between the two measurement locations are highlighted. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP ``bin'' vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin sizes affect the standard deviation of measurements, and measurement uncertainties are evaluated. Supported by NSF-IIP grant 1430260.

  17. Bacillus cereus and Bacillus thuringiensis spores in Korean rice: prevalence and toxin production as affected by production area and degree of milling.

    PubMed

    Kim, Booyoung; Bang, Jihyun; Kim, Hoikyung; Kim, Yoonsook; Kim, Byeong-Sam; Beuchat, Larry R; Ryu, Jee-Hoon

    2014-09-01

    We determined the prevalence of and toxin production by Bacillus cereus and Bacillus thuringiensis in Korean rice as affected by production area and degree of milling. Rough rice was collected from 64 farms in 22 agricultural areas and polished to produce brown and white rice. In total, rice samples were broadly contaminated with B. cereus spores, with no effect of production area. The prevalence and counts of B. cereus spores declined as milling progressed. Frequencies of hemolysin BL (HBL) production by isolates were significantly (P ≤ 0.01) reduced as milling progressed. This pattern corresponded with the presence of genes encoding the diarrheal enterotoxins. The frequency of B. cereus isolates positive for hblC, hblD, or nheB genes decreased as milling progressed. Because most B. cereus isolates from rice samples contained six enterotoxin genes, we concluded that B. cereus in rice produced in Korea is predominantly of the diarrheagenic type. The prevalence of B. thuringiensis in rice was significantly lower than that of B. cereus and not correlated with production area. All B. thuringiensis isolates were of the diarrheagenic type. This study provides information useful for predicting safety risks associated with B. cereus and B. thuringiensis in rough and processed Korean rice.

  18. Energy production from biosolids: A cattle feedlot demonstration system

    SciTech Connect

    Fedler, C.B.; Parker, N.C.

    1996-12-31

    About 5 million head of cattle are produced annually from about 200 feedlots in the Texas High Plains with about 3.5 million head standing. Annually, the 3.5 million head of cattle produce about 28 millions metric tons of were manure (88% water). If anaerobically digested, the manure would yield about 1.4 million m{sup 3} of biogas, or about 4.4 million kWh daily. With cogeneration and nutrient recovery, the sum of the revenue sources in over $500 million annually and does no include the value of water or other byproducts such as fish and plants that could be produced from an integrated system. A demonstration unit to treat the waste from a 1000-head cattle and a 280 sow farrow-to-finish swine operation is constructed. This system employs a 6 m deep anaerobic pit for production and capture of biogas integrated with a facultative pond, a shallow pond for production of aquatic plants, and a pond for production of fish or other aquatic species. The resulting related agribusinesses would not only produce additional revenues, but would also produce energy, improve the environment though extraction of nitrogen compounds, capture of gaseous emissions, reduction of odor, and creation of wildlife habitat in consturcted wetlants.

  19. How technology and price affect US tight gas potential. Part 1. Technology of tight gas production

    SciTech Connect

    Veatch, R.W. Jr.; Baker, O.

    1983-01-01

    The tight gas resource in the US currently is estimated at 900 tcf, of which 600 tcf is considered technically recoverable. This gas is found in basins that cover a prospective area of one million square miles (one million sections). Of these, ca 120,000 sections are potentially productive. The tight gas picture is composed of many different and often complex reservoirs, ranging from the shallow horizons of the Northern Great Plains to the deep formations of the Rocky Mountains. These reservoirs range from the blanket-like formations that cover wide geographical areas to the highly lenticular zones such as those common to the Mesa Verde. The one thing they have in common is microdarcy permeabilities. A good perspective of the challenge is obvious when such permeability values are realized to be similar to that of cement normally used for oil and gas well casing strings. The advanced technology presumes improved exploration knowledge, longer fractures, higher fracture conductivity, and a higher density of well development. Advanced technology is particularly necessary for lenticular reservoirs which contain ca 40% of the recoverable gas.

  20. How Dutch drinking water production is affected by the use of herbicides on pavements.

    PubMed

    Bannink, A D

    2004-01-01

    About forty per cent of drinking water in The Netherlands is produced from surface water. Dutch water companies, that have to rely on this source, are dealing with major water quality problems due to the use of herbicides on pavements. Voluntary measures and bans have had only limited effect on the reduction of emissions of herbicides that runoff from pavements into surface water in The Netherlands. The effects on the production of drinking water from surface water should play a role in the authorisation of pesticides. Stricter regulations, including mandatory emission reduction measures and certification, are necessary. The enforcement of existing Dutch surface water pollution laws should solve part of the problem. Due to the international nature of most of the surface water used for drinking water supply, it is necessary that other countries take measures as well. European legislation brings a solution closer if implemented well and seriously enforced. The threat of strict legislation keeps pressure on the transition towards decreasing the dependence on chemicals for weed control on pavements.

  1. Radio-transmitters do not affect seasonal productivity of female Golden-winged Warblers

    USGS Publications Warehouse

    Streby, Henry M.; Peterson, Sean M.; Gesmundo, Callie; Johnson, Michael K.; Fish, Alexander C.; Lehman, Justin A.; Andersen, David E.

    2013-01-01

    Investigating the potential effects of handling and marking techniques on study animals is important for correct interpretation of research results and to effect progress in data-collection methods. Few investigators have compared the reproductive output of radio-tagged and non-radio-tagged songbirds, and no one to date has examined the possible effect of radio-tagging adult songbirds on the survival of their fledglings. In 2011 and 2012, we compared several parameters of reproductive output of two groups of female Golden-winged Warblers (Vermivora chrysoptera) breeding in Minnesota, including 45 females with radio-transmitters and 73 females we did not capture, handle, or mark. We found no difference between groups in clutch sizes, hatching success, brood sizes, length of incubation and nestling stages, fledging success, number of fledglings, or survival of fledglings to independence. Thus, radio-tags had no measurable impact on the productivity of female Golden-winged Warblers. Our results build upon previous studies where investigators have reported no effects of radio-tagging on the breeding parameters of songbirds by also demonstrating no effect of radio-tagging through the post-fledging period and, therefore, the entire breeding season.

  2. A mutation in the aroE gene affects pigment production, virulence, and chemotaxis in Xanthomonas oryzae pv. oryzae.

    PubMed

    Kim, Hong-Il; Noh, Tae-Hwan; Lee, Chang-Soo; Park, Young-Jin

    2015-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight (BB) in rice. To study its function, a random insertion mutation library of Xoo was constructed using the Tn5 transposon. A mutant strain with decreased virulence against the susceptible rice cultivar IR24 was isolated from the library (aroE mutant), which also had extremely low pigment production. Thermal asymmetric interlaced-polymerase chain reaction (TAIL-PCR) and sequence analysis of the mutant revealed that the transposon was inserted into the aroE gene (encoding shikimate dehydrogenase). To investigate gene expression changes in the pigment- and virulence-deficient mutant, DNA microarray analysis was performed, which showed downregulation of 20 genes involved in the chemotaxis of Xoo. Our findings reveal that mutation of the aroE gene affects virulence and pigment production, as well as expression of genes involved in Xoo chemotaxis.

  3. Alcohol-to-acid ratio and substrate concentration affect product structure in chain elongation reactions initiated by unacclimatized inoculum.

    PubMed

    Liu, Yuhao; Lü, Fan; Shao, Liming; He, Pinjing

    2016-10-01

    The objective of the study was to investigate whether the ratio of ethanol to acetate affects yield and product structure in chain elongation initiated by unacclimatized mixed cultures. The effect of varying the substrate concentration, while maintaining the same ratio of alcohol to acid, was also investigated. With a high substrate concentration, an alcohol to acid ratio >2:1 provided sufficient electron donor capacity for the chain elongation reaction. With an ethanol to acetate ratio of 3:1 (300mM total carbon), the highest n-caproate concentration (3033±98mg/L) was achieved during the stable phase of the reaction. A lower substrate concentration (150mM total carbon) gave a lower yield of products and led to reduced carbon transformation efficiency compared with other reaction conditions. The use of unacclimatized inoculum in chain elongation can produce significant amounts of odd-carbon-number carboxylates as a result of protein hydrolysis. PMID:27469095

  4. Alcohol-to-acid ratio and substrate concentration affect product structure in chain elongation reactions initiated by unacclimatized inoculum.

    PubMed

    Liu, Yuhao; Lü, Fan; Shao, Liming; He, Pinjing

    2016-10-01

    The objective of the study was to investigate whether the ratio of ethanol to acetate affects yield and product structure in chain elongation initiated by unacclimatized mixed cultures. The effect of varying the substrate concentration, while maintaining the same ratio of alcohol to acid, was also investigated. With a high substrate concentration, an alcohol to acid ratio >2:1 provided sufficient electron donor capacity for the chain elongation reaction. With an ethanol to acetate ratio of 3:1 (300mM total carbon), the highest n-caproate concentration (3033±98mg/L) was achieved during the stable phase of the reaction. A lower substrate concentration (150mM total carbon) gave a lower yield of products and led to reduced carbon transformation efficiency compared with other reaction conditions. The use of unacclimatized inoculum in chain elongation can produce significant amounts of odd-carbon-number carboxylates as a result of protein hydrolysis.

  5. Nitrate leaching to subsurface drains as affected by drain spacing and changes in crop production system.

    PubMed

    Kladivko, E J; Frankenberger, J R; Jaynes, D B; Meek, D W; Jenkinson, B J; Fausey, N R

    2004-01-01

    Subsurface drainage is a beneficial water management practice in poorly drained soils but may also contribute substantial nitrate N loads to surface waters. This paper summarizes results from a 15-yr drainage study in Indiana that includes three drain spacings (5, 10, and 20 m) managed for 10 yr with chisel tillage in monoculture corn (Zea mays L.) and currently managed under a no-till corn-soybean [Glycine max (L.) Merr.] rotation. In general, drainflow and nitrate N losses per unit area were greater for narrower drain spacings. Drainflow removed between 8 and 26% of annual rainfall, depending on year and drain spacing. Nitrate N concentrations in drainflow did not vary with spacing, but concentrations have significantly decreased from the beginning to the end of the experiment. Flow-weighted mean concentrations decreased from 28 mg L(-1) in the 1986-1988 period to 8 mg L(-1) in the 1997-1999 period. The reduction in concentration was due to both a reduction in fertilizer N rates over the study period and to the addition of a winter cover crop as a "trap crop" after corn in the corn-soybean rotation. Annual nitrate N loads decreased from 38 kg ha(-1) in the 1986-1988 period to 15 kg ha(-1) in the 1997-1999 period. Most of the nitrate N losses occurred during the fallow season, when most of the drainage occurred. Results of this study underscore the necessity of long-term research on different soil types and in different climatic zones, to develop appropriate management strategies for both economic crop production and protection of environmental quality.

  6. A geostatistical synthesis study of factors affecting gross primary productivity in various ecosystems of North America

    NASA Astrophysics Data System (ADS)

    Yadav, V.; Mueller, K. L.; Dragoni, D.; Michalak, A. M.

    2010-09-01

    A coupled Bayesian model selection and geostatistical regression modeling approach is adopted for empirical analysis of gross primary productivity (GPP) at six AmeriFlux sites, including the Kennedy Space Center Scrub Oak, Vaira Ranch, Tonzi Ranch, Blodgett Forest, Morgan Monroe State Forest, and Harvard Forest sites. The analysis is performed at a continuum of temporal scales ranging from daily to monthly, for a period of seven years. A total of 10 covariates representing environmental stimuli and indices of plant physiology are considered in explaining variations in GPP. Similarly to other statistical methods, the presented approach estimates regression coefficients and uncertainties associated with the covariates in a selected regression model. Unlike traditional regression methods, however, the approach also estimates the uncertainty associated with the selection of a single "best" model of GPP. In addition, the approach provides an enhanced understanding of how the importance of specific covariates changes with the examined timescale (i.e. temporal resolution). An examination of changes in the importance of specific covariates across timescales reveals thresholds above or below which covariates become important in explaining GPP. Results indicate that most sites (especially those with a stronger seasonal cycle) exhibit at least one prominent scaling threshold between the daily and 20-day temporal scales. This demonstrates that environmental variables that explain GPP at synoptic scales are different from those that capture its seasonality. At shorter time scales, radiation, temperature, and vapor pressure deficit exert the most significant influence on GPP at most examined sites. At coarser time scales, however, the importance of these covariates in explaining GPP declines. Overall, unique best models are identified at most sites at the daily scale, whereas multiple competing models are identified at longer time scales.

  7. Oxidation of dimethylselenide by δMnO2: oxidation product and factors affecting oxidation rate

    USGS Publications Warehouse

    Wang, Bronwen; Burau, Richard G.

    1995-01-01

    Volatile dimethylselenide (DMSe) was transformed to a nonvolatile Se compound in a ??-MnO2 suspension. The nonvolatile product was a single compound identified as dimethylselenoxide based on its mass spectra pattern. After 24 h, 100% of the DMSe added to a ??-MnO2 suspension was converted to nonpurgable Se as opposed to 20%, 18%, and 4% conversion for chromate, permanganate, and the filtrate from the suspension, respectively. Manganese was found in solution after reaction. These results imply that the reaction between manganese oxide and DMSe was a heterogeneous redox reaction involving solid phase ??-MnO2 and solution phase DMSe. Oxidation of DMSe to dimethylselenoxide [OSe(CH3)2] by a ??-MnO2 suspension appears to be first order with respect to ??-MnO2, to DMSe, and to hydrogen ion with an overall rate law of d[OSe(CH3)2 ]/dt = 95 M-2 min-1 [MnO2]1[DMSe]1[H+]1 for the MnO2 concentration range of 0.89 ?? 10-3 - 2.46 ?? 10-3 M, the DMSe concentration range of 3.9 ?? 10-7 - 15.5 ?? 10-7 M Se, and a hydrogen ion concentation range of 7.4 ?? 10-6 -9.5 ?? 10-8 M. A general surface site adsorption model is consistent with this rate equation if the uncharged |OMnOH is the surface adsorption site. DMSe acts as a Lewis base, and the manganese oxide surface acts as a Lewis acid. DMSe adsorption to |OMnOH can be viewed as a Lewis acid/ base complex between the largely p orbitals of the DMSe lone pair and the unoccupied eg orbitals on manganese oxide. For such a complex, frontier molecular orbital theory predicts electron transfer to occur via an inner-sphere complex between the DMSe and the manganese oxide. ?? 1995 American Chemical Society.

  8. Ab initio simulations reveal that reaction dynamics strongly affect product selectivity for the cracking of alkanes over H-MFI.

    PubMed

    Zimmerman, Paul M; Tranca, Diana C; Gomes, Joseph; Lambrecht, Daniel S; Head-Gordon, Martin; Bell, Alexis T

    2012-11-28

    Product selectivity of alkane cracking catalysis in the H-MFI zeolite is investigated using both static and dynamic first-principles quantum mechanics/molecular mechanics simulations. These simulations account for the electrostatic- and shape-selective interactions in the zeolite and provide enthalpic barriers that are closely comparable to experiment. Cracking transition states for n-pentane lead to a metastable intermediate (a local minimum with relatively small barriers to escape to deeper minima) where the proton is shared between two hydrocarbon fragments. The zeolite strongly stabilizes these carbocations compared to the gas phase, and the conversion of this intermediate to more stable species determines the product selectivity. Static reaction pathways on the potential energy surface starting from the metastable intermediate include a variety of possible conversions into more stable products. One-picosecond quasiclassical trajectory simulations performed at 773 K indicate that dynamic paths are substantially more diverse than the potential energy paths. Vibrational motion that is dynamically sampled after the cracking transition state causes spilling of the metastable intermediate into a variety of different products. A nearly 10-fold change in the branching ratio between C2/C3 cracking channels is found upon inclusion of post-transition-state dynamics, relative to static electronic structure calculations. Agreement with experiment is improved by the same factor. Because dynamical effects occur soon after passing through the rate-limiting transition state, it is the dynamics, and not only the potential energy barriers, that determine the catalytic selectivity. This study suggests that selectivity in zeolite catalysis is determined by high temperature pathways that differ significantly from 0 K potential surfaces.

  9. Recommended Ventilation Strategies for Energy-Efficient Production Homes

    SciTech Connect

    Roberson, J.; Brown, R.; Koomey, J.; Warner, J.; Greenberg, S.

    1998-12-01

    This report evaluates residential ventilation systems for the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR{reg_sign} Homes program and recommends mechanical ventilation strategies for new, low-infiltration, energy-efficient, single-family, ENERGY STAR production (site-built tract) homes in four climates: cold, mixed (cold and hot), hot humid, and hot arid. Our group in the Energy Analysis Department at Lawrence Berkeley National Lab compared residential ventilation strategies in four climates according to three criteria: total annualized costs (the sum of annualized capital cost and annual operating cost), predominant indoor pressure induced by the ventilation system, and distribution of ventilation air within the home. The mechanical ventilation systems modeled deliver 0.35 air changes per hour continuously, regardless of actual infiltration or occupant window-opening behavior. Based on the assumptions and analysis described in this report, we recommend independently ducted multi-port supply ventilation in all climates except cold because this strategy provides the safety and health benefits of positive indoor pressure as well as the ability to dehumidify and filter ventilation air. In cold climates, we recommend that multi-port supply ventilation be balanced by a single-port exhaust ventilation fan, and that builders offer balanced heat-recovery ventilation to buyers as an optional upgrade. For builders who continue to install forced-air integrated supply ventilation, we recommend ensuring ducts are airtight or in conditioned space, installing a control that automatically operates the forced-air fan 15-20 minutes during each hour that the fan does not operate for heating or cooling, and offering ICM forced-air fans to home buyers as an upgrade.

  10. Dissipated energy and entropy production for an unconventional heat engine: the stepwise `circular cycle'

    NASA Astrophysics Data System (ADS)

    di Liberto, Francesco; Pastore, Raffaele; Peruggi, Fulvio

    2011-05-01

    When some entropy is transferred, by means of a reversible engine, from a hot heat source to a colder one, the maximum efficiency occurs, i.e. the maximum available work is obtained. Similarly, a reversible heat pumps transfer entropy from a cold heat source to a hotter one with the minimum expense of energy. In contrast, if we are faced with non-reversible devices, there is some lost work for heat engines, and some extra work for heat pumps. These quantities are both related to entropy production. The lost work, i.e. ? , is also called 'degraded energy' or 'energy unavailable to do work'. The extra work, i.e. ? , is the excess of work performed on the system in the irreversible process with respect to the reversible one (or the excess of heat given to the hotter source in the irreversible process). Both quantities are analysed in detail and are evaluated for a complex process, i.e. the stepwise circular cycle, which is similar to the stepwise Carnot cycle. The stepwise circular cycle is a cycle performed by means of N small weights, dw, which are first added and then removed from the piston of the vessel containing the gas or vice versa. The work performed by the gas can be found as the increase of the potential energy of the dw's. Each single dw is identified and its increase, i.e. its increase in potential energy, evaluated. In such a way it is found how the energy output of the cycle is distributed among the dw's. The size of the dw's affects entropy production and therefore the lost and extra work. The distribution of increases depends on the chosen removal process.

  11. Factors Affecting Process Temperature and Biogas Production in Small-scale Rural Biogas Digesters in Winter in Northern Vietnam.

    PubMed

    Pham, C H; Vu, C C; Sommer, S G; Bruun, S

    2014-07-01

    This study investigated the main factors influencing digester temperature and methods to reduce heat losses during the cold season in the subtropics. Four composite digesters (two insulated and two uninsulated) were buried underground to measure their internal temperature (°C) at a depth of 140 cm and 180 cm, biogas production and methane (CH4) concentration in biogas from August to February. In parallel the temperature of the air (100 cm above ground), in the slurry mixing tank and in the soil (10, 100, 140, and 180 cm depth) was measured by thermocouple. The influent amount was measured daily and the influent chemical composition was measured monthly during the whole experimental period. Seasonal variations in air temperature significantly affected the temperature in the soil, mixing tank and digester. Consequently, biogas production, which is temperature dependent, was influenced by the season. The main factors determining the internal temperature in the digesters were insulation with Styrofoam, air temperature and temperature of slurry in the mixing tank. Biogas production is low due to the cold climate conditions in winter in Northern Vietnam, but the study proved that storing slurry in the mixing tank until its temperature peak at around 14:00 h will increase the temperature in the digester and thus increase potential biogas production. Algorithms are provided linking digester temperature to the temperature of slurry in the mixing tank.

  12. Factors Affecting Process Temperature and Biogas Production in Small-scale Rural Biogas Digesters in Winter in Northern Vietnam.

    PubMed

    Pham, C H; Vu, C C; Sommer, S G; Bruun, S

    2014-07-01

    This study investigated the main factors influencing digester temperature and methods to reduce heat losses during the cold season in the subtropics. Four composite digesters (two insulated and two uninsulated) were buried underground to measure their internal temperature (°C) at a depth of 140 cm and 180 cm, biogas production and methane (CH4) concentration in biogas from August to February. In parallel the temperature of the air (100 cm above ground), in the slurry mixing tank and in the soil (10, 100, 140, and 180 cm depth) was measured by thermocouple. The influent amount was measured daily and the influent chemical composition was measured monthly during the whole experimental period. Seasonal variations in air temperature significantly affected the temperature in the soil, mixing tank and digester. Consequently, biogas production, which is temperature dependent, was influenced by the season. The main factors determining the internal temperature in the digesters were insulation with Styrofoam, air temperature and temperature of slurry in the mixing tank. Biogas production is low due to the cold climate conditions in winter in Northern Vietnam, but the study proved that storing slurry in the mixing tank until its temperature peak at around 14:00 h will increase the temperature in the digester and thus increase potential biogas production. Algorithms are provided linking digester temperature to the temperature of slurry in the mixing tank. PMID:25050049

  13. Factors Affecting Process Temperature and Biogas Production in Small-scale Rural Biogas Digesters in Winter in Northern Vietnam

    PubMed Central

    Pham, C. H.; Vu, C. C.; Sommer, S. G.; Bruun, S.

    2014-01-01

    This study investigated the main factors influencing digester temperature and methods to reduce heat losses during the cold season in the subtropics. Four composite digesters (two insulated and two uninsulated) were buried underground to measure their internal temperature (°C) at a depth of 140 cm and 180 cm, biogas production and methane (CH4) concentration in biogas from August to February. In parallel the temperature of the air (100 cm above ground), in the slurry mixing tank and in the soil (10, 100, 140, and 180 cm depth) was measured by thermocouple. The influent amount was measured daily and the influent chemical composition was measured monthly during the whole experimental period. Seasonal variations in air temperature significantly affected the temperature in the soil, mixing tank and digester. Consequently, biogas production, which is temperature dependent, was influenced by the season. The main factors determining the internal temperature in the digesters were insulation with Styrofoam, air temperature and temperature of slurry in the mixing tank. Biogas production is low due to the cold climate conditions in winter in Northern Vietnam, but the study proved that storing slurry in the mixing tank until its temperature peak at around 14:00 h will increase the temperature in the digester and thus increase potential biogas production. Algorithms are provided linking digester temperature to the temperature of slurry in the mixing tank. PMID:25050049

  14. Changing nutrient stoichiometry affects phytoplankton production, DOP accumulation and dinitrogen fixation - a mesocosm experiment in the eastern tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Löscher, C. R.; Neulinger, S. C.; Reichel, A. F.; Loginova, A.; Borchard, C.; Schmitz, R. A.; Hauss, H.; Kiko, R.; Riebesell, U.

    2016-02-01

    Ocean deoxygenation due to climate change may alter redox-sensitive nutrient cycles in the marine environment. The productive eastern tropical North Atlantic (ETNA) upwelling region may be particularly affected when the relatively moderate oxygen minimum zone (OMZ) deoxygenates further and microbially driven nitrogen (N) loss processes are promoted. Consequently, water masses with a low nitrogen to phosphorus (N : P) ratio could reach the euphotic layer, possibly influencing primary production in those waters. Previous mesocosm studies in the oligotrophic Atlantic Ocean identified nitrate availability as a control of primary production, while a possible co-limitation of nitrate and phosphate could not be ruled out. To better understand the impact of changing N : P ratios on primary production and N2 fixation in the ETNA surface ocean, we conducted land-based mesocosm experiments with natural plankton communities and applied a broad range of N : P ratios (2.67-48). Silicic acid was supplied at 15 µmol L-1 in all mesocosms. We monitored nutrient drawdown, biomass accumulation and nitrogen fixation in response to variable nutrient stoichiometry. Our results confirmed nitrate to be the key factor determining primary production. We found that excess phosphate was channeled through particulate organic matter (POP) into the dissolved organic matter (DOP) pool. In mesocosms with low inorganic phosphate availability, DOP was utilized while N2 fixation increased, suggesting a link between those two processes. Interestingly this observation was most pronounced in mesocosms where nitrate was still available, indicating that bioavailable N does not necessarily suppress N2 fixation. We observed a shift from a mixed cyanobacteria-proteobacteria dominated active diazotrophic community towards a diatom-diazotrophic association of the Richelia-Rhizosolenia symbiosis. We hypothesize that a potential change in nutrient stoichiometry in the ETNA might lead to a general shift within

  15. Energy efficiency and environmental performance of bioethanol production from sweet sorghum stem based on life cycle analysis.

    PubMed

    Wang, Mingxin; Chen, Yahui; Xia, Xunfeng; Li, Jun; Liu, Jianguo

    2014-07-01

    Life cycle analysis method was used to evaluate the energy efficiency and environmental performance of bioethanol production from sweet sorghum stem in China. The scope covers three units, including plant cultivation, feedstock transport, and bioethanol conversion. Results show that the net energy ratio was 1.56 and the net energy gain was 8.37 MJ/L. Human toxicity was identified as the most significant negative environmental impact, followed by eutrophication and acidification. Steam generation in the bioethanol conversion unit contributed 82.28% and 48.26% to total human toxicity and acidification potential, respectively. Fertilizers loss from farmland represented 67.23% of total eutrophication potential. The results were significantly affected by the inventory allocation methods, vinasse reusing approaches, and feedstock yields. Reusing vinasse as fuel for steam generation and better cultivation practice to control fertilizer loss could significantly contribute to enhance the energy efficiency and environmental performance of bioethanol production from sweet sorghum stem. PMID:24787319

  16. Energy efficiency and environmental performance of bioethanol production from sweet sorghum stem based on life cycle analysis.

    PubMed

    Wang, Mingxin; Chen, Yahui; Xia, Xunfeng; Li, Jun; Liu, Jianguo

    2014-07-01

    Life cycle analysis method was used to evaluate the energy efficiency and environmental performance of bioethanol production from sweet sorghum stem in China. The scope covers three units, including plant cultivation, feedstock transport, and bioethanol conversion. Results show that the net energy ratio was 1.56 and the net energy gain was 8.37 MJ/L. Human toxicity was identified as the most significant negative environmental impact, followed by eutrophication and acidification. Steam generation in the bioethanol conversion unit contributed 82.28% and 48.26% to total human toxicity and acidification potential, respectively. Fertilizers loss from farmland represented 67.23% of total eutrophication potential. The results were significantly affected by the inventory allocation methods, vinasse reusing approaches, and feedstock yields. Reusing vinasse as fuel for steam generation and better cultivation practice to control fertilizer loss could significantly contribute to enhance the energy efficiency and environmental performance of bioethanol production from sweet sorghum stem.

  17. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    SciTech Connect

    Gabriel Miller

    2009-03-25

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report

  18. A random-key encoded harmony search approach for energy-efficient production scheduling with shared resources

    NASA Astrophysics Data System (ADS)

    Garcia-Santiago, C. A.; Del Ser, J.; Upton, C.; Quilligan, F.; Gil-Lopez, S.; Salcedo-Sanz, S.

    2015-11-01

    When seeking near-optimal solutions for complex scheduling problems, meta-heuristics demonstrate good performance with affordable computational effort. This has resulted in a gravitation towards these approaches when researching industrial use-cases such as energy-efficient production planning. However, much of the previous research makes assumptions about softer constraints that affect planning strategies and about how human planners interact with the algorithm in a live production environment. This article describes a job-shop problem that focuses on minimizing energy consumption across a production facility of shared resources. The application scenario is based on real facilities made available by the Irish Center for Manufacturing Research. The formulated problem is tackled via harmony search heuristics with random keys encoding. Simulation results are compared to a genetic algorithm, a simulated annealing approach and a first-come-first-served scheduling. The superior performance obtained by the proposed scheduler paves the way towards its practical implementation over industrial production chains.

  19. Milk production traits of beef cows as affected by horn fly count and sire breed type.

    PubMed

    Mays, A R; Brown, M A; von Tunglen, D L; Rosenkrans, C F

    2014-03-01

    reduced 0.72, 0.68, and 0.71 kg/d per unit increase in log horn fly count. Our results indicate that horn fly infestations reduce milk yield and quality of spring-calving beef cows depending on sire breed and month of lactation. Development of sustainable beef production systems may include selecting breed types whose milk yield and quality is less influenced by horn flies, allowing for better expression of genetic potential for milk yield in nutritionally challenging environments. PMID:24492544

  20. Milk production traits of beef cows as affected by horn fly count and sire breed type.

    PubMed

    Mays, A R; Brown, M A; von Tunglen, D L; Rosenkrans, C F

    2014-03-01

    reduced 0.72, 0.68, and 0.71 kg/d per unit increase in log horn fly count. Our results indicate that horn fly infestations reduce milk yield and quality of spring-calving beef cows depending on sire breed and month of lactation. Development of sustainable beef production systems may include selecting breed types whose milk yield and quality is less influenced by horn flies, allowing for better expression of genetic potential for milk yield in nutritionally challenging environments.