Direct numerical simulation of solidification microstructures affected by fluid flow
Juric, D.
1997-12-01
The effects of fluid flow on the solidification morphology of pure materials and solute microsegregation patterns of binary alloys are studied using a computational methodology based on a front tracking/finite difference method. A general single field formulation is presented for the full coupling of phase change, fluid flow, heat and solute transport. This formulation accounts for interfacial rejection/absorption of latent heat and solute, interfacial anisotropies, discontinuities in material properties between the liquid and solid phases, shrinkage/expansion upon solidification and motion and deformation of the solid. Numerical results are presented for the two dimensional dendritic solidification of pure succinonitrile and the solidification of globulitic grains of a plutonium-gallium alloy. For both problems, comparisons are made between solidification without fluid flow and solidification within a shear flow.
Moller, Nancy; Weare J. H.
2008-05-29
/or injected fluids is critical to predict important chemical behaviors affecting fluid flow, such as mineral precipitation/dissolution reactions. We successfully achieved the project goal and objectives by demonstrating the ability of our modeling technology to correctly predict the complex pH dependent solution chemistry of the Al3+ cation and its hydrolysis species: Al(OH)2+, Al(OH)2+, Al(OH)30, and Al(OH)4- as well as the solubility of common aluminum hydroxide and aluminosilicate minerals in aqueous brines containing components (Na, K, Cl) commonly dominating hydrothermal fluids. In the sodium chloride system, where experimental data for model parameterization are most plentiful, the model extends to 300°C. Determining the stability fields of aluminum species that control the solubility of aluminum-containing minerals as a function of temperature and composition has been a major objective of research in hydrothermal chemistry.
Fluid Flow Phenomena during Welding
Zhang, Wei
2011-01-01
MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction and speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.
Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.
1976-01-01
A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.
Geophysical fluid flow experiment
NASA Technical Reports Server (NTRS)
Broome, B. G.; Fichtl, G.; Fowlis, W.
1979-01-01
The essential fluid flow processes associated with the solar and Jovian atmospheres will be examined in a laboratory experiment scheduled for performance on Spacelab Missions One and Three. The experimental instrumentation required to generate and to record convective fluid flow is described. Details of the optical system configuration, the lens design, and the optical coatings are described. Measurement of thermal gradient fields by schlieren techniques and measurement of fluid flow velocity fields by photochromic dye tracers is achieved with a common optical system which utilizes photographic film for data recording. Generation of the photochromic dye tracers is described, and data annotation of experimental parameters on the film record is discussed.
Magnetically stimulated fluid flow patterns
Martin, Jim; Solis, Kyle
2014-08-06
Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.
Magnetically stimulated fluid flow patterns
Martin, Jim; Solis, Kyle
2014-03-06
Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.
McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.
1993-11-30
A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.
McKay, Mark D.; Sweeney, Chad E.; Spangler, Jr., B. Samuel
1993-01-01
A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.
Acoustic concentration of particles in fluid flow
Ward, Michael D.; Kaduchak, Gregory
2010-11-23
An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.
Geophysical Fluid Flow Cell Simulation
NASA Technical Reports Server (NTRS)
1998-01-01
Computer simulation of atmospheric flow corresponds well to imges taken during the second Geophysical Fluid Flow Cell (BFFC) mission. The top shows a view from the pole, while the bottom shows a view from the equator. Red corresponds to hot fluid rising while blue shows cold fluid falling. This simulation was developed by Anil Deane of the University of Maryland, College Park and Paul Fischer of Argorne National Laboratory. Credit: NASA/Goddard Space Flight Center
Programming fluid flow with microstructures
NASA Astrophysics Data System (ADS)
Amini, Hamed; Masaeli, Mahdokht; di Carlo, Dino
2011-11-01
Flow control and fluid interface manipulation in microfluidic platforms are of great importance in a variety of applications. Current approaches to manipulate fluids generally rely on complex designs, difficult-to-fabricate 3D platforms or use of active methods. Here we show that in the presence of simple cylindrical obstacles (i.e. pillars) in a microchannel, at moderate to high flow rates, streamlines tend to turn and stretch in a manner that, unlike intuition for Stokes flow, does not precisely reverse after passing the pillar. The asymmetric flow behavior up- and down-stream of the pillar due to fluid inertia manifests itself as a total deformation of the topology of streamlines that effectively creates a net secondary flow which resembles the recirculating Dean flow in curving channels. Confocal images were taken to investigate the secondary flow for a variety of microstructure settings. We also developed a numerical technique to map the fluid motion in the channel which is utilized to characterize the secondary flow as well as to engineer the fluid patterns within the channel. This passive method creates the possibility of exceptional control of the 3D structure of the fluid within a microfluidic platform which can significantly advance applications requiring fluid interface control (e.g. optofluidics), ultrafast mixing and solution control around cells.
Relaminarization of fluid flows
NASA Technical Reports Server (NTRS)
Narasimha, R.; Sreenivasan, K. R.
1979-01-01
The mechanisms of the relaminarization of turbulent flows are investigated with a view to establishing any general principles that might govern them. Three basic archetypes of reverting flows are considered: the dissipative type, the absorptive type, and the Richardson type exemplified by a turbulent boundary layer subjected to severe acceleration. A number of other different reverting flows are then considered in the light of the analysis of these archetypes, including radial Poiseuille flow, convex boundary layers, flows reverting by rotation, injection, and suction, as well as heated horizontal and vertical gas flows. Magnetohydrodynamic duct flows are also examined. Applications of flow reversion for turbulence control are discussed.
Insertable fluid flow passage bridgepiece and method
Jones, Daniel O.
2000-01-01
A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.
Rotational fluid flow experiment
NASA Technical Reports Server (NTRS)
1991-01-01
This project which began in 1986 as part of the Worcester Polytechnic Institute (WPI) Advanced Space Design Program focuses on the design and implementation of an electromechanical system for studying vortex behavior in a microgravity environment. Most of the existing equipment was revised and redesigned by this project team, as necessary. Emphasis was placed on documentation and integration of the electrical and mechanical subsystems. Project results include reconfiguration and thorough testing of all hardware subsystems, implementation of an infrared gas entrainment detector, new signal processing circuitry for the ultrasonic fluid circulation device, improved prototype interface circuits, and software for overall control of experiment operation.
Fluid Flow in An Evaporating Droplet
NASA Technical Reports Server (NTRS)
Hu, H.; Larson, R.
1999-01-01
Droplet evaporation is a common phenomenon in everyday life. For example, when a droplet of coffee or salt solution is dropped onto a surface and the droplet dries out, a ring of coffee or salt particles is left on the surface. This phenomenon exists not only in everyday life, but also in many practical industrial processes and scientific research and could also be used to assist in DNA sequence analysis, if the flow field in the droplet produced by the evaporation could be understood and predicted in detail. In order to measure the fluid flow in a droplet, small particles can be suspended into the fluid as tracers. From the ratio of gravitational force to Brownian force a(exp 4)(delta rho)(g)/k(sub B)T, we find that particle's tendency to settle is proportional to a(exp 4) (a is particle radius). So, to keep the particles from settling, the droplet size should be chosen to be in a range 0.1 -1.0 microns in experiments. For such small particles, the Brownian force will affect the motion of the particle preventing accurate measurement of the flow field. This problem could be overcome by using larger particles as tracers to measure fluid flow under microgravity since the gravitational acceleration g is then very small. For larger particles, Brownian force would hardly affect the motion of the particles. Therefore, accurate flow field could be determined from experiments in microgravity. In this paper, we will investigate the fluid flow in an evaporating droplet under normal gravity, and compare experiments to theories. Then, we will present our ideas about the experimental measurement of fluid flow in an evaporating droplet under microgravity.
Fluid flow electrophoresis in space
NASA Technical Reports Server (NTRS)
Griffin, R. N.
1975-01-01
Four areas relating to free-flow electrophoresis in space were investigated. The first was the degree of improvement over earthbound operations that might be expected. The second area of investigation covered the problems in developing a flowing buffer electrophoresis apparatus. The third area of investigation was the problem of testing on the ground equipment designed for use in space. The fourth area of investigation was the improvement to be expected in space for purification of biologicals. The results of some ground-based experiments are described. Other studies included cooling requirements in space, fluid sealing techniques, and measurement of voltage drop across membranes.
Ferroelectric Fluid Flow Control Valve
NASA Technical Reports Server (NTRS)
Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)
1999-01-01
An active valve is controlled and driven by external electrical actuation of a ferroelectric actuator to provide for improved passage of the fluid during certain time periods and to provide positive closure of the valve during other time periods. The valve provides improved passage in the direction of flow and positive closure in the direction against the flow. The actuator is a dome shaped internally prestressed ferroelectric actuator having a curvature, said dome shaped actuator having a rim and an apex. and a dome height measured from a plane through said rim said apex that varies with an electric voltage applied between an inside and an outside surface of said dome shaped actuator.
General Transient Fluid Flow Algorithm
1992-03-12
SALE2D calculates two-dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude resultsmore » from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a two-dimensional network of quadrilateral cells for either cylindrical or Cartesian coordinates, and a variety of user-selectable boundary conditions are provided in the program.« less
Cerebrospinal fluid flow in adults.
Bradley, William G; Haughton, Victor; Mardal, Kent-Andre
2016-01-01
This chapter uses magnetic resonance imaging phase-contrast cerebrospinal fluid (CSF) flow measurements to predict which clinical normal-pressure hydrocephalus (NPH) patients will respond to shunting as well as which patients with Chiari I are likely to develop symptoms of syringomyelia. Symptomatic NPH patients with CSF flow (measured as the aqueductal CSF stroke volume) which is shown to be hyperdynamic (defined as twice normal) are quite likely to respond to ventriculoperitoneal shunting. The hyperdynamic CSF flow results from normal systolic brain expansion compressing the enlarged ventricles. When atrophy occurs, there is less brain expansion, decreased aqueductal CSF flow, and less likelihood of responding to shunting. It appears that NPH is a "two-hit" disease, starting as benign external hydrocephalus in infancy, followed by deep white-matter ischemia in late adulthood, which causes increased resistance to CSF outflow through the extracellular space of the brain. Using computational flow dynamics (CFD), CSF flow can be modeled at the foramen magnum and in the upper cervical spine. As in the case of NPH, hyperdynamic CSF flow appears to cause the signs and symptoms in Chiari I and can provide an additional indication for surgical decompression. CFD can also predict CSF pressures over the cardiac cycle. It has been hypothesized that elevated pressure pulses may be a significant etiologic factor in some cases of syringomyelia. PMID:27432684
Messinian Salinity Crisis and basin fluid flow
NASA Astrophysics Data System (ADS)
Bertoni, Claudia; Cartwight, Joe
2014-05-01
Syn- and post-depositional movement of fluids through sediments is one of the least understood aspects in the evolution of a basin. The conventional hydrostratigraphic view on marine sedimentary basins assumes that compactional and meteoric groundwater fluid circulation drives fluid movement and defines its timing. However, in the past few years, several examples of instantaneous and catastrophic release of fluids have been observed even through low-permeability sediments. A particularly complex case-study involves the presence of giant salt bodies in the depocentres of marine basins. Evaporites dramatically change the hydrostratigraphy and fluid-dynamics of the basin, and influence the P/T regimes, e.g. through changes in the geothermal gradient and in the compaction of underlying sediments. Our paper reviews the impact of the Messinian Salinity Crisis (MSC) and evaporites on fluid flow in the Mediterranean sub-basins. The analysis of geological and geophysical sub-surface data provides examples from this basin, and the comparison with analogues in other well-known evaporitic provinces. During the MSC, massive sea-level changes occurred in a relatively limited time interval, and affected the balance of fluid dynamics, e.g. with sudden release or unusual trapping of fluids. Fluid expulsion events are here analysed and classified in relation to the long and short-term effects of the MSC. Our main aim is to build a framework for the correct identification of the fluid flow-related events, and their genetic mechanisms. On basin margins, where evaporites are thin or absent, the sea-level changes associated with the MSC force a rapid basinward shift of the mixing zone of meteoric/gravity flow and saline/compactional flow, 100s-km away from its pre-MSC position. This phenomenon changes the geometry of converging flows, creates hydraulic traps for fluids, and triggers specific diagenetic reactions in pre-MSC deep marine sediments. In basin-centre settings, unloading and
Transient Wellbore Fluid Flow Model
1982-04-06
WELBORE is a code to solve transient, one-dimensional two-phase or single-phase non-isothermal fluid flow in a wellbore. The primary thermodynamic variables used in solving the equations are the pressure and specific energy. An equation of state subroutine provides the density, quality, and temperature. The heat loss out of the wellbore is calculated by solving a radial diffusion equation for the temperature changes outside the bore. The calculation is done at each node point in themore » wellbore.« less
Monotectic composite growth with fluid flow
NASA Astrophysics Data System (ADS)
Stöcker, C.; Ratke, L.
It is a well-known fluid-mechanical phenomenon that thermocapillary forces induce surface convection on a fluid-fluid interface. This so-called Marangoni convection depends on the variation of the surface energy along the interface. In our present work we focus our attention on the evolution of a fibrous monotectic microstructure with liquid L 2 fibers. We will show, that the Marangoni convection has a strong influence on the transport of solute in front of the solidification front, despite the flow induced by density differences. The resulting flow field affects the constitutional undercooling and therefore the mean undercooling of a monotectic solidification front. In a previous paper we discussed qualitatively the influence of fluid flow on the microstructure evolution of composite monotetic growth (C. Stöcker, L. Ratke, J. Crystal Growth 203 (1999) 582). We introduced an analytical model that takes the density differences of the phases and the surface convection on the L 1-L 2 surface into consideration. With this extended Jackson and Hunt theory for composite monotectic growth we derived a characteristic equation for the inter-rod distance depending on solidification velocity and temperature gradient. In this paper we develop a more accurate model. We solve numerically the diffusion equation coupled with the Navier-Stokes equation in the L 1 phase to find the minimal undercooling for a given velocity and temperature gradient. We derive a Jackson and Hunt diagram and show that the fluid flow leads to a strong dependence of the inter-rod distance on the temperature gradient opposite to eutectic solidification.
PROCESSES AFFECTING SUBSURFACE TRANSPORT OF LEAKING UNDERGROUND STORAGE TANK FLUIDS
The document focuses solely on the process affecting migration of fluids from a leaking tank and their effects on monitoring methodologies. Based upon the reviews presented, soil heterogeneities and the potential for multiphase flow will lead to high monitoring uncertainties if l...
Fluid flows around nanoelectromechanical resonators
NASA Astrophysics Data System (ADS)
Svitelskiy, O.; Sauer, V.; Liu, N.; Vick, D.; Cheng, K. M.; Freeman, M. R.; Hiebert, W. K.
2012-02-01
To explore properties of fluids on a nanosize scale, we fabricated by a standard top down technique a series of nanoelectromechanical resonators (cantilevers and bridges) with widths w and thicknesses t from 100 to 500 nm; lengths l from 0.5 to 12 micron; and resonant frequencies f from 10 to 400 MHz. For the sake of purity of the experiment, the undercut in the widest (w=500 nm) devices was eliminated using the focused ion beam. To model the fluidic environment the devices were placed in the atmosphere of compressed gases (He, N2, CO2, Ar, H2) at pressures from vacuum up to 20 MPa, and in liquid CO2; their properties were studied by the real time stroboscopic optical interferometry. Thus, we fully explored the Newtonian and non-Newtonian flow damping models. Observing free molecular flow extending above atmospheric pressure, we find the fluid relaxation time model to be the best approximation throughout, but not beyond, the non-Newtonian regime, and both, vibrating spheres model and the model based on Knudsen number, to be valid in the viscous limit.
Fluid Flow Experiment for Undergraduate Laboratory.
ERIC Educational Resources Information Center
Vilimpochapornkul, Viroj; Obot, Nsima T.
1986-01-01
The undergraduate fluid mechanics laboratory at Clarkson University consists of three experiments: mixing; drag measurements; and fluid flow and pressure drop measurements. The latter experiment is described, considering equipment needed, procedures used, and typical results obtained. (JN)
Fluid flow, mineral reactions, and metasomatism
Ferry, J.M.; Dipple, G.M. )
1991-03-01
A general model that relates fluid flow along a temnperature gradient to chemical reaction in rocks can be used to quantitatively interpret petrologic and geochemical data on metasomatism from ancient flow systems in terms of flow direction and time-integrated fluid flux. The model is applied to regional metamorphism, quartz veins, and a metasomatized ductile fault zone.
Sefidgar, Mostafa; Soltani, M.; Bazmara, Hossein
2015-01-01
A solid tumor is investigated as porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multiscale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. The mathematical method involves processes such as blood flow through vessels and solute and fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model predicts. PMID:25960764
Fluid dynamics and vibration of tube banks in fluid flow
Zukauskas, A.; Ulinskas, R.; Katinas, V.
1988-01-01
This work presents results derived in fluid dynamics, hydraulic drag and flow-induced vibrations within transverse and yawed tube banks. The studies encompass banks of smooth, rough and finned tubes at Reynolds numbers from 1 to 2x10/sup 6/. Highlighted in the text are fluid dynamic parameters of tube banks measured at inter-tube spaces and tube surfaces.
Value for controlling flow of cryogenic fluid
Knapp, Philip A.
1996-01-01
A valve is provided for accurately controlling the flow of cryogenic fluids such as liquid nitrogen. The valve comprises a combination of disc and needle valves affixed to a valve stem in such a manner that the disc and needle are free to rotate about the stem, but are constrained in lateral and vertical movements. This arrangement provides accurate and precise fluid flow control and positive fluid isolation.
Fluid Flow Control with Transformation Media
NASA Astrophysics Data System (ADS)
Urzhumov, Yaroslav A.; Smith, David R.
2011-08-01
We introduce a new concept for the manipulation of fluid flow around three-dimensional bodies. Inspired by transformation optics, the concept is based on a mathematical idea of coordinate transformations and physically implemented with anisotropic porous media permeable to the flow of fluids. In two situations—for an impermeable object placed either in a free-flowing fluid or in a fluid-filled porous medium—we show that the object can be coated with an inhomogeneous, anisotropic permeable medium, such as to preserve the flow that would have existed in the absence of the object. The proposed fluid flow cloak eliminates downstream wake and compensates viscous drag, hinting at the possibility of novel propulsion techniques.
VISCOPLASTIC FLUID MODEL FOR DEBRIS FLOW ROUTING.
Chen, Cheng-lung
1986-01-01
This paper describes how a generalized viscoplastic fluid model, which was developed based on non-Newtonian fluid mechanics, can be successfully applied to routing a debris flow down a channel. The one-dimensional dynamic equations developed for unsteady clear-water flow can be used for debris flow routing if the flow parameters, such as the momentum (or energy) correction factor and the resistance coefficient, can be accurately evaluated. The writer's generalized viscoplastic fluid model can be used to express such flow parameters in terms of the rheological parameters for debris flow in wide channels. A preliminary analysis of the theoretical solutions reveals the importance of the flow behavior index and the so-called modified Froude number for uniformly progressive flow in snout profile modeling.
Frictional flow characteristics of microconvective flow for variable fluid properties
NASA Astrophysics Data System (ADS)
Kumar, Rajan; Mahulikar, Shripad P.
2015-12-01
The present work investigates the frictional flow characteristics of water flowing through a circular microchannel with variable fluid properties. The computational analysis reveals the importance of physical mechanisms due to variations in thermophysical fluid properties such as viscosity μ(T), thermal conductivity k(T) and density ρ(T) and also their contribution in the characteristics of frictional flow. Various combinations of thermophysical fluid properties have been used to find their effects on fluid friction. It is observed that the fluid friction attains the maximum value in the vicinity of the inlet and diminishes along the flow. The main reasons are attributed to this, (1) near the inlet, there is a flow undevelopment (the reverse process of flow development) due to μ(T) variation. (2) The viscosity of the water decreases with increasing temperature, which reduces fluid friction along the flow. It is noted that the skin friction coefficient (cf) reduces with increasing fluid mean velocity for a same value of constant wall heat flux ({q}{{w}}\\prime\\prime ). In the vicinity of the inlet, the deviation of Poiseuille number (Po) from 64 (constant properties solution) is also investigated in this paper. Additionally, the relationship between Reynolds number (Re) and cf, Po and Re have been proposed for different combinations of thermophysical fluid properties. This investigation also shows that the effect of fluid property variations on pressure drop is highly significant for microconvective water flow.
Measurement of Diffusion in Flowing Complex Fluids
Leonard, Edward F.; Aucoin, Christian P.; Nanne, Edgar E.
2006-01-01
A microfluidic device for the measurement of solute diffusion as well as particle diffusion and migration in flowing complex fluids is described. The device is particularly suited to obtaining diffusivities in such fluids, which require a desired flow state to be maintained during measurement. A method based on the Loschmidt diffusion theory and short times of exposure is presented to allow calculation of diffusivities from concentration differences in the flow streams leaving the cell. PMID:18560469
Visualizing vector field topology in fluid flows
NASA Technical Reports Server (NTRS)
Helman, James L.; Hesselink, Lambertus
1991-01-01
Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.
Method and Apparatus for Measuring Fluid Flow
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1997-01-01
Method and apparatus for making measurements on fluids related to their complex permeability are disclosed. A microwave probe is provided for exposure to the fluids. The probe can be non-intrusive or can also be positioned at the location where measurements are to be made. The impedance of the probe is determined. in part. by the complex dielectric constant of the fluids at the probe. A radio frequency signal is transmitted to the probe and the reflected signal is phase and amplitude detected at a rapid rate for the purpose of identifying the fluids. Multiple probes may be selectively positioned to monitor the behavior of the fluids including their flow rate. Fluids may be identified as between two or more different fluids as well as multiple phases of the same fluid based on differences between their complex permittivities.
Numerical modeling of fluid flow with rafts: An application to lava flows
NASA Astrophysics Data System (ADS)
Tsepelev, Igor; Ismail-Zadeh, Alik; Melnik, Oleg; Korotkii, Alexander
2016-07-01
Although volcanic lava flows do not significantly affect the life of people, its hazard is not negligible as hot lava kills vegetation, destroys infrastructure, and may trigger a flood due to melting of snow/ice. The lava flow hazard can be reduced if the flow patterns are known, and the complexity of the flow with debris is analyzed to assist in disaster risk mitigation. In this paper we develop three-dimensional numerical models of a gravitational flow of multi-phase fluid with rafts (mimicking rigid lava-crust fragments) on a horizontal and topographic surfaces to explore the dynamics and the interaction of lava flows. We have obtained various flow patterns and spatial distribution of rafts depending on conditions at the surface of fluid spreading, obstacles on the way of a fluid flow, raft landing scenarios, and the size of rafts. Furthermore, we analyze two numerical models related to specific lava flows: (i) a model of fluid flow with rafts inside an inclined channel, and (ii) a model of fluid flow from a single vent on an artificial topography, when the fluid density, its viscosity, and the effusion rate vary with time. Although the studied models do not account for lava solidification, crust formation, and its rupture, the results of the modeling may be used for understanding of flows with breccias before a significant lava cooling.
Viscoelastic fluid flow in inhomogeneous porous media
Siginer, D.A.; Bakhtiyarov, S.I.
1996-09-01
The flow of inelastic and viscoelastic fluids in two porous media of different permeabilities and same priority arranged in series has been investigated both theoretically and experimentally. The fluids are an oil field spacer fluid and aqueous solutions of polyacrylamide. The porous medium is represented by a cylindrical tube randomly packed with glass spheres. Expressions for the friction factor and the resistance coefficient as a function of the Reynolds number have been developed both for shear thinning and viscoelastic fluids based on the linear fluidity and eight constant Oldroyd models, respectively. The authors show that the energy loss is higher if the viscoelastic fluid flows first through the porous medium with the smaller permeability rather than through the section of the cylinder with the larger permeability. This effect is not observed for Newtonian and shear thinning fluids flowing through the same configuration. Energy requirements for the same volume flow rate are much higher than a Newtonian fluid of the same zero shear viscosity as the polymeric solution. Energy loss increases with increasing Reynolds number at a fixed concentration. At a fixed Reynolds number, the loss is a strong function of the concentration and increases with increasing concentration. The behavior of all fluids is predicted qualitatively except the difference in energy requirements.
Method and device for measuring fluid flow
Atherton, Richard; Marinkovich, Phillip S.; Spadaro, Peter R.; Stout, J. Wilson
1976-11-23
This invention is a fluid flow measuring device for determining the coolant flow at the entrance to a specific nuclear reactor fuel region. The device comprises a plurality of venturis having the upstream inlet and throat pressure of each respectively manifolded together to provide one static pressure signal for each region monitored. The device provides accurate flow measurement with low pressure losses and uniform entrance and discharge flow distribution.
Engineering fluid flow using sequenced microstructures
NASA Astrophysics Data System (ADS)
Amini, Hamed; Sollier, Elodie; Masaeli, Mahdokht; Xie, Yu; Ganapathysubramanian, Baskar; Stone, Howard A.; di Carlo, Dino
2013-05-01
Controlling the shape of fluid streams is important across scales: from industrial processing to control of biomolecular interactions. Previous approaches to control fluid streams have focused mainly on creating chaotic flows to enhance mixing. Here we develop an approach to apply order using sequences of fluid transformations rather than enhancing chaos. We investigate the inertial flow deformations around a library of single cylindrical pillars within a microfluidic channel and assemble these net fluid transformations to engineer fluid streams. As these transformations provide a deterministic mapping of fluid elements from upstream to downstream of a pillar, we can sequentially arrange pillars to apply the associated nested maps and, therefore, create complex fluid structures without additional numerical simulation. To show the range of capabilities, we present sequences that sculpt the cross-sectional shape of a stream into complex geometries, move and split a fluid stream, perform solution exchange and achieve particle separation. A general strategy to engineer fluid streams into a broad class of defined configurations in which the complexity of the nonlinear equations of fluid motion are abstracted from the user is a first step to programming streams of any desired shape, which would be useful for biological, chemical and materials automation.
Fluid/structure interactions. Internal flows
NASA Astrophysics Data System (ADS)
Weaver, D. S.
1991-05-01
Flow-induced vibrations are found wherever structures are exposed to high velocity fluid flows. Internal flows are usually characterized by the close proximity of solid boundaries. There are surfaces against which separated flows may reattach, or from which pressure disturbances may be reflected resulting in acoustic resonance. When the fluid is a liquid, the close proximity of solid boundaries to a vibrating component can produce very high added mass effects. This paper presents three different experimental studies of flow-induced vibration problems associated with internal flows. The emphasis was on experimental techniques developed for understanding excitation mechanisms. In difficult flow-induced vibration problems, a useful experimental technique is flow visualization using a large scale model and strobe light triggered by the phenomenon being observed. This should be supported by point measurements of velocity and frequency spectra. When the flow excitation is associated with acoustic resonance, the sound can be fed back to enhance or eliminate the instability. This is potentially a very useful tool for studying and controlling fluid-structure interaction problems. Some flow-induced vibration problems involve a number of different excitation mechanisms and care must be taken to ensure that the mechanisms are properly identified. Artificially imposing structural vibrations or acoustic fields may induce flow structures not naturally present in the system.
Apparatus for measuring fluid flow
Smith, J.E.; Thomas, D.G.
Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.
Apparatus for measuring fluid flow
Smith, Jack E.; Thomas, David G.
1984-01-01
Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.
Directed flow fluid rinse trough
Kempka, Steven N.; Walters, Robert N.
1996-01-01
Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.
Directed flow fluid rinse trough
Kempka, S.N.; Walters, R.N.
1996-07-02
Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.
Fluid Flow Within Fractured Porous Media
Crandall, D.M.; Ahmadi, G.; Smith, D.H.; Bromhal, G.S.
2006-10-01
Fractures provide preferential flow paths to subterranean fluid flows. In reservoir scale modeling of geologic flows fractures must be approximated by fairly simple formulations. Often this is accomplished by assuming fractures are parallel plates subjected to an applied pressure gradient. This is known as the cubic law. An induced fracture in Berea sandstone has been digitized to perform numerical flow simulations. A commercially available computational fluid dynamics software package has been used to solve the flow through this model. Single phase flows have been compared to experimental works in the literature to evaluate the accuracy with which this model can be applied. Common methods of fracture geometry classification are also calculated and compared to experimentally obtained values. Flow through regions of the fracture where the upper and lower fracture walls meet (zero aperture) are shown to induce a strong channeling effect on the flow. This model is expanded to include a domain of surrounding porous media through which the flow can travel. The inclusion of a realistic permeability in this media shows that the regions of small and zero apertures contribute to the greatest pressure losses over the fracture length and flow through the porous media is most prevalent in these regions. The flow through the fracture is shown to be the largest contributor to the net flow through the media. From this work, a novel flow relationship is proposed for flow through fractured media.
Pattern formation in flowing electrorheological fluids.
von Pfeil, Karl; Graham, Michael D; Klingenberg, Daniel J; Morris, Jeffrey F
2002-05-01
A two-fluid continuum model is developed to describe mass transport in electro- and magnetorheological suspensions. The particle flux is related to the field-induced stresses. Solutions of the resulting mass balance show column formation in the absence of flow, and stripe formation when a suspension is subjected simultaneously to an applied electric field and shear flow. PMID:12005727
Instrument continuously measures density of flowing fluids
NASA Technical Reports Server (NTRS)
Jacobs, R. B.; Macinko, J.; Miller, C. E.
1967-01-01
Electromechanical densitometer continuously measures the densities of either single-phase or two-phase flowing cryogenic fluids. Measurement is made on actual flow. The instrument operates on the principle that the mass of any vibrating system is a primary factor in determining the dynamic characteristics of the system.
Electromagnetic probe technique for fluid flow measurements
NASA Technical Reports Server (NTRS)
Arndt, G. D.; Carl, J. R.
1994-01-01
The probes described herein, in various configurations, permit the measurement of the volume fraction of two or more fluids flowing through a pipe. Each probe measures the instantaneous relative dielectric constant of the fluid in immediate proximity. As long as separation of the relative dielectric constant of the fluid is possible, several or even many fluids can be measured in the same flow stream. By using multiple probes, the velocity of each fluid can generally be determined as well as the distribution of each constituent in the pipe. The values are determined by statistical computation. There are many potential applications for probes of this type in industry and government. Possible NASA applications include measurements of helium/hydrazine flow during rocket tests at White Sands, liquid/gas flow in hydrogen or oxygen lines in Orbiter engines, and liquid/gaseous Freon flow in zero gravity tests with the KS135 aircraft at JSC. Much interest has been shown recently by the oil industry. In this a good method is needed to measure the fractions of oil, water, and natural gas flowing in a pipeline and the velocity of each. This particular problem involves an extension of what has been developed to date and our plans to solve this problem will be discussed herein.
Fluid migration in the subduction zone: a coupled fluid flow approach
NASA Astrophysics Data System (ADS)
Wang, Hongliang; Huismans, Ritske; Rondenay, Stéphane
2016-04-01
Subduction zone are the main entry point of water into earth's mantle and play an important role in the global water cycle. The progressive release of water by metamorphic dehydration induce important physical-chemical process in the subduction zone, such as hydrous melting, hydration and weakening of the mantle wedge, creation of pore fluid pressures that may weaken the subduction interface and induce earthquakes. Most previous studies on the role of fluids in subduction zones assume vertical migration or migration according to the dynamic pressure in the solid matrix without considering the pore fluid pressure effect on the deformation of the solid matrix. Here we investigate this interaction by explicitly modeling two-phase coupled poro-plastic flow during subduction. In this approach, the fluid migrates by compaction and decompaction of the solid matrix and affects the subduction dynamics through pore fluid pressure dependent frictional-plastic yield. Our preliminary results indicate that: 1) the rate of fluid migration depends strongly on the permeability and the bulk viscosity of the solid matrix, 2) fluid transfer occurs preferentially along the slab and then propagates into the mantle wedge by viscous compaction driven fluid flow, 3) fluid transport from the surface to depth is a prerequisite for producing high fluid pore pressures and associated hydration induced weakening of the subduction zone interface.
Fundamental Processes of Atomization in Fluid-Fluid Flows
NASA Technical Reports Server (NTRS)
McCready, M. J.; Chang, H.-C.; Leighton, D. T.
2001-01-01
This report outlines the major results of the grant "Fundamental Processes of Atomization in Fluid-Fluid Flows." These include: 1) the demonstration that atomization in liquid/liquid shear flow is driven by a viscous shear instability that triggers the formation of a long thin sheet; 2) discovery of a new mode of interfacial instability for oscillatory two-layer systems whereby a mode that originates within the less viscous liquid phase causes interfacial deformation as the oscillation proceeds; 3) the demonstration that rivulet formation from gravity front occurs because the local front shape specified by gravity and surface tension changes from a nose to a wedge geometry, thus triggering a large increase in viscous resistance; and 4) extension of the studies on nonlinear wave evolution on falling films and in stratified flow, particularly the evolution towards large-amplitude solitary waves that tend to generate drops.
Fluid flow nozzle energy harvesters
NASA Astrophysics Data System (ADS)
Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Winn, Tyler; Tosi, Luis Phillipe; Colonius, Tim
2015-04-01
Power generation schemes that could be used downhole in an oil well to produce about 1 Watt average power with long-life (decades) are actively being developed. A variety of proposed energy harvesting schemes could be used to extract energy from this environment but each of these has their own limitations that limit their practical use. Since vibrating piezoelectric structures are solid state and can be driven below their fatigue limit, harvesters based on these structures are capable of operating for very long lifetimes (decades); thereby, possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. An initial survey [1] identified that spline nozzle configurations can be used to excite a vibrating piezoelectric structure in such a way as to convert the abundant flow energy into useful amounts of electrical power. This paper presents current flow energy harvesting designs and experimental results of specific spline nozzle/ bimorph design configurations which have generated suitable power per nozzle at or above well production analogous flow rates. Theoretical models for non-dimensional analysis and constitutive electromechanical model are also presented in this paper to optimize the flow harvesting system.
MEANS FOR VISUALIZING FLUID FLOW PATTERNS
Lynch, F.E.; Palmer, L.D.; Poppendick, H.F.; Winn, G.M.
1961-05-16
An apparatus is given for determining both the absolute and relative velocities of a phosphorescent fluid flowing through a transparent conduit. The apparatus includes a source for exciting a narrow trsnsverse band of the fluid to phosphorescence, detecting means such as a camera located downstream from the exciting source to record the shape of the phosphorescent band as it passes, and a timer to measure the time elapsed between operation of the exciting source and operation of the camera.
Two-fluid equilibrium with flow: FLOW2
Guazzotto, L.; Betti, R.
2015-09-15
The effects of finite macroscopic velocities on axisymmetric ideal equilibria are examined using the two-fluid (ions and electrons) model. A new equilibrium solver, the code FLOW2, is introduced for the two-fluid model and used to investigate the importance of various flow patterns on the equilibrium of tight aspect ratio (NSTX) and regular tokamak (DIII-D) configurations. Several improvements to the understanding and calculation of two-fluid equilibria are presented, including an analytical and numerical proof of the single-fluid and static limits of the two-fluid model, a discussion of boundary conditions, a user-friendly free-function formulation, and the explicit evaluation of velocity components normal to magnetic surfaces.
Electro-osmotic flow in bicomponent fluids
NASA Astrophysics Data System (ADS)
Bazarenko, Andrei; Sega, Marcello
The electroosmotic flow (EOF) is a widely used technique that uses the action of external electric fields on solvated ions to move fluids around in microfluidics devices. For homogeneous fluids, the characteristics of the flow can be well approximated by simple analytical models, but in multicomponent systems such as oil-in-water droplets one has to rely to numerical simulations. The purpose of this study is to investigate physical properties of the EOF in a bicomponent fluid by solving the coupled equations of motions of explicit ions in interaction with a continuous model of the flow. To do so we couple the hydrodynamics equations as solved by a Shan-Chen Lattice-Boltzmann method to the molecular dynamics of the ions. The presence of explicit ions allows us to go beyond the simple Poisson-Boltzmann approximations, and investigate a variety of EOF regimes. ETN-COLLDENSE (H2020-MCSA-ITN-2014, Grant No. 642774).
Tomographic reconstruction of stratified fluid flow.
Winters, K B; Rouseff, D
1993-01-01
A method for imaging a moving fluid is proposed and evaluated by numerical simulation. A cross-section of a three-dimensional fluid is probed by high-frequency acoustic waves from several different directions. Assuming straight-ray geometric acoustics, the time of flight depends on both the scaler sound speed and the vector fluid velocity. By appropriately combining travel times, projections of both the sound speed and the velocity are isolated. The sound speed is reconstructed using the standard filtered backprojection algorithm. Though complete inversion of velocity is not possible, sufficient information is available to recover the component of fluid vorticity transverse to the plane of insonification. A new filtered backprojection algorithm for vorticity is developed and implemented. To demonstrate the inversion procedure, a 3-D stratified fluid is simulated and travel time data are calculated by path integration. These data are then inverted to recover both the scaler sound speed and the vorticity of the evolving flow. PMID:18263153
Method and Apparatus for Measuring Fluid Flow
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Than X. (Inventor); Carl, James R. (Inventor)
1995-01-01
The invention is a method and apparatus for monitoring the presence, concentration, and the movement of fluids. It is based on utilizing electromagnetic measurements of the complex permittivity of the fluids for detecting and monitoring the fluid. More particularly the apparatus uses one or more microwave probes which are placed at the locations where the measurements are to be made. A radio frequency signal is transmitted to the probe and the reflected signal is phase and amplitude detected at a rapid rate for the purpose of identifying the fluids, based on their dielectric constant at the probe. The apparatus can be used for multiple purposes including measures of flow rates, turbulence, dispersion, fluid identification, and changes in flow conditions of multiple fluids or multiple states of a single fluid in a flowline or a holding container. The apparatus includes a probe consisting of two electrical conductors separated by an insulator. A radio frequency signal is communicated to the probe and is reflected back from the portion of the probe exposed to the fluid. The radio frequency signal also provides a reference signal. An oscillator generates a second signal which combined with each of the reference signal and the reflected signal to produce signals of lower frequencies to facilitate filtering and amplifying those signals. The two signals are then mixed in a detector to produce an output signal that is representative of the phase and amplitude change caused by the reflection of the signal at the probe exposed to the fluid. The detector may be a dual phase detector that provides two such output signals that are in phase quadrature. A phase shifter may be provided for selectively changing the phase of the reference signal to improve the sensitivity of at least one of the output signals for more accurate readings and/or for calibration purposes. The two outputs that are in quadrature with respect to each other may be simultaneously monitored to account for
Numerical computational of fluid flow through a detached retina
NASA Astrophysics Data System (ADS)
Jiann, Lim Yeou; Ismail, Zuhaila; Shafie, Sharidan; Fitt, Alistair
2015-02-01
In this paper, a phenomenon of fluid flow through a detached retina is studied. Rhegmatogeneous retinal detachment happens when vitreous humour flow through a detached retina. The exact mechanism of Rhegmatogeneous retinal detachment is complex and remains incomplete. To understand the fluid flow, a paradigm mathematical model is developed and is approximated by the lubrication theory. The numerical results of the velocity profile and pressure distribution are computed by using Finite Element Method. The effects of fluid mechanical on the retinal detachment is discussed and analyzed. Based on the analysis, it is found that the retinal detachment deformation affects the pressure distribution. It is important to comprehend the development of the retinal detachment so that a new treatment method can be developed.
Fluid dynamics following flow shut-off in bottle filling
NASA Astrophysics Data System (ADS)
Thete, Sumeet; Appathurai, Santosh; Gao, Haijing; Basaran, Osman
2012-11-01
Bottle filling is ubiquitous in industry. Examples include filling of bottles with shampoos and cleaners, engine oil and pharmaceuticals. In these examples, fluid flows out of a nozzle to fill bottles in an assembly line. Once the required volume of fluid has flowed out of the nozzle, the flow is shut off. However, an evolving fluid thread or string may remain suspended from the nozzle following flow shut-off and persist. This stringing phenomenon can be detrimental to a bottle filling operation because it can adversely affect line speed and filling accuracy by causing uncertainty in fill volume, product loss and undesirable marring of the bottles' exterior surfaces. The dynamics of stringing are studied numerically primarily by using the 1D, slender-jet approximation of the flow equations. A novel feature entails development and use of a new boundary condition downstream of the nozzle exit to expedite the computations. While the emphasis is on stringing of Newtonian fluids and use of 1D approximations, results will also be presented for situations where (a) the fluids are non-Newtonian and (b) the full set of equations are solved without invoking the 1D approximation. Phase diagrams will be presented that identify conditions for which stringing can be problematic.
Fluid flow meter for measuring the rate of fluid flow in a conduit
NASA Technical Reports Server (NTRS)
White, P. R. (Inventor)
1986-01-01
A tube fluid flow rate meter consists of a reservoir divided by flexible diaphragm into two separate isolated compartments. The incoming and outgoing tubes open into the compartments. The orifice is sized to allow maximum tube fluid flow. Opposing compression springs are secured within the two compartments on opposite sides of the orifice to maintain orifice position when the tube fluid pressure is zero. A tapered element is centered in, and extends through the orifice into the compartment, leaving an annular opening between the element and the perimeter of the oriface. The size varies as the diaphragm flexes with changes in the tube fluid pressure to change the fluid flow through the opening. The light source directs light upon the element which in turn scatters the light through the opening into the compartment. The light detector in the compartment senses the scattered light to generate a signal indicating the amount of fluid.
Method and apparatus for controlling fluid flow
Miller, J.R.
1980-06-27
A method and apparatus for precisely controlling the rate (and hence amount) of fluid flow are given. The controlled flow rate is finely adjustable, can be extremely small (on the order of microliter-atmospheres per second), can be adjusted to zero (flow stopped), and is stable to better than 1% with time. The dead volume of the valve can be made arbitrarily small, in fact essentially zero. The valve employs no wearing mechanical parts (including springs, stems, or seals). The valve is finely adjustable, has a flow rate dynamic range of many decades, can be made compatible with any fluid, and is suitable for incorporation into an open or closed loop servo-control system.
Fluid flow along faults in carbonate rocks
NASA Astrophysics Data System (ADS)
Romano, Valentina; Battaglia, Maurizio; Bigi, Sabina
2015-04-01
The study of fluid flow in fractured rocks plays a key role in reservoir management, including CO2 sequestration and waste isolation. We present a mathematical model of fluid flow in a fault zone, based on field data acquired in Majella Mountain, in the Central Apennines (Italy). The Majella is a thrust related, asymmetric, box shaped anticline. The mountain carbonate outcrops are part of a lower Cretaceous-Miocene succession, covered by a siliciclastic sequence of lower Pliocene age. We study a fault zone located in the Bolognano Formation (Oligo-Miocene age) and exposed in the Roman Valley Quarry near the town of Lettomanoppello, in the northern sector of the Majella Mountain. This is one of the best places in the Apennines to investigate a fault zone and has been the subject of numerous field studies. Faults are mechanical and permeability heterogeneities in the upper crust, so they strongly influence fluid flow. The distribution of the main components (core, damage zone) can lead a fault zone to act as a conduit, a barrier or a combined conduit-barrier system. We integrated existing and our own structural surveys of the area to better identify the major fault features (e.g., kind of fractures, statistical properties, geometry and pertrophysical characteristics). Our analytical model describe the Bolognano Formation using a dual porosity/dual permeability model: global flow occurs through the fracture network only, while rock matrix contain the majority of fluid storage and provide fluid drainage to the fractures. Pressure behavior is analyzed by examining the pressure drawdown curves, the derivative plots and the effects of the characteristic parameters. The analytical model has been calibrated against published data on fluid flow and pressure distribution in the Bolognano Formation.
NASA Astrophysics Data System (ADS)
Fairman, Stephen J.; Johnson, Joseph A.; Walkiewicz, Thomas A.
2003-09-01
Graphical analysis of experimental data that exhibit exponential behavior is typically postponed at many institutions until students are able to understand the theory underlying the concept of radioactive decay or of RC time constants in ac circuits. In 1960 Smithson and Pinkston described a laboratory exercise that uses the flow of water from a vertical column through a long horizontal capillary tube as a source of data that models radioactive decay. Many institutions have used this experiment simply as an early introduction to exponential behavior without reference to radioactive decay or ac circuits. Greenslade2 recently described a modification of this experiment to demonstrate the concept of secular equilibrium in radioactive decay. This paper presents results of similar experiments, but visual measurements are replaced in this work by data obtained with modern sensors interfaced to a computer. Experiments are described from simple exponential decay to an analogue of the complex interactions of three nuclides in a radioactive-series decay chain.
NASA Astrophysics Data System (ADS)
Zavolzhenskii, M. V.
1982-09-01
Boussinesq equations are used in studying the spectral problem of the stability loss in the equilibrium state of a rotating layer of viscous fluid subjected to temperature inversion. It is shown that this loss can take the form of eddy flows localized around the axis of rotation. It is noted that flows of this type have properties similar to those of waterspouts, tornados, and other vortices.
Automated analysis for fluid flow topology
NASA Technical Reports Server (NTRS)
Helman, James; Hesselink, Lambertus
1989-01-01
A new approach for visualizing vector data sets was developed by reducing the original vector field to a set of critical points and their connections, and was applied to fluid flow data sets. The critical point representation allows for considerable reduction in the data complexity. The representations are displayed as surfaces which are much simpler than the original data set, yet retain all the pertinent flow topology information. It is suggested that topological representations may be useful for database comparison.
Maximal mixing by incompressible fluid flows
NASA Astrophysics Data System (ADS)
Seis, Christian
2013-12-01
We consider a model for mixing binary viscous fluids under an incompressible flow. We prove the impossibility of perfect mixing in finite time for flows with finite viscous dissipation. As measures of mixedness we consider a Monge-Kantorovich-Rubinstein transportation distance and, more classically, the H-1 norm. We derive rigorous a priori lower bounds on these mixing norms which show that mixing cannot proceed faster than exponentially in time. The rate of the exponential decay is uniform in the initial data.
Advanced designs for fluid flow visualization
NASA Technical Reports Server (NTRS)
1978-01-01
Research was carried out on existing and new designs for minimally intrusive measurement of flow fields in the Geophysical Fluid Flow Cell and the proposed Atmospheric General Circulation Experiment. The following topics are discussed: (1) identification and removal of foreign particles, (2) search for higher dielectric photochromic solutions, (3) selection of uv light source, (4) analysis of refractive techniques and (5) examination of fresnel lens applicability.
Geophysical Fluid Flow Cell (GFFC) Simulation
NASA Technical Reports Server (NTRS)
1999-01-01
These simulations of atmospheric flow use the same experimental parameters but started with slightly different initial conditions in the model. The simulations were part of data analysis for the Geophysical Fluid Flow Cell (GFFC), a planet in a test tube apparatus flown on Spacelab to mimic the atmospheres on gas giant planets and stars. (Credit: Dr. Tim Miller of Global Hydrology and Climate Center at the Marshall Space Flight Center)
Finite scale equations for compressible fluid flow
Margolin, Len G
2008-01-01
Finite-scale equations (FSE) describe the evolution of finite volumes of fluid over time. We discuss the FSE for a one-dimensional compressible fluid, whose every point is governed by the Navier-Stokes equations. The FSE contain new momentum and internal energy transport terms. These are similar to terms added in numerical simulation for high-speed flows (e.g. artificial viscosity) and for turbulent flows (e.g. subgrid scale models). These similarities suggest that the FSE may provide new insight as a basis for computational fluid dynamics. Our analysis of the FS continuity equation leads to a physical interpretation of the new transport terms, and indicates the need to carefully distinguish between volume-averaged and mass-averaged velocities in numerical simulation. We make preliminary connections to the other recent work reformulating Navier-Stokes equations.
The Geophysical Fluid Flow Cell Experiment
NASA Technical Reports Server (NTRS)
Hart, J. E.; Ohlsen, D.; Kittleman, S.; Borhani, N.; Leslie, F.; Miller, T.
1999-01-01
The Geophysical Fluid Flow Cell (GFFC) experiment performed visualizations of thermal convection in a rotating differentially heated spherical shell of fluid. In these experiments dielectric polarization forces are used to generate a radially directed buoyancy force. This enables the laboratory simulation of a number of geophysically and astrophysically important situations in which sphericity and rotation both impose strong constraints on global scale fluid motions. During USML-2 a large set of experiments with spherically symmetric heating were carried out. These enabled the determination of critical points for the transition to various forms of nonaxisymmetric convection and, for highly turbulent flows, the transition latitudes separating the different modes of motion. This paper presents a first analysis of these experiments as well as data on the general performance of the instrument during the USML-2 flight.
Cryogenic fluid flow instabilities in heat exchangers
NASA Technical Reports Server (NTRS)
Fleming, R. B.; Staub, F. W.
1969-01-01
Analytical and experimental investigation determines the nature of oscillations and instabilities that occur in the flow of two-phase cryogenic fluids at both subcritical and supercritical pressures in heat exchangers. Test results with varying system parameters suggest certain design approaches with regard to heat exchanger geometry.
Volcanic termor: Nonlinear excitation by fluid flow
NASA Astrophysics Data System (ADS)
Julian, Bruce R.
1994-06-01
A nonlinear process analogous to the excitation mechanism of musical wind instruments and human vocal cords can explain many characteristics of volcanic tremor, including (1) periodic and 'chaotic' oscillations, with peaked and irregular spectra respectively, (2) rapid pulsations in eruptions occurring at the same frequency as tremor, (3) systematic changes in tremor amplitude as channel geometry evolves during an eruption, (4) the period doubling reported for Hawaiian deep tremor, and (5) the fact that the onset of termor can be either gradual or abrupt. Volcanic 'long-period' earthquakes can be explained as oscillations excited by transient disturbances produced by nearby earthquakes, fluid heterogeneity, or changes in channel geometry, when the magma flow rate is too low to excite continuous tremor. A simple lumped-parameter tremor model involving the flow of an incompressible viscous fluid through a channel with movable elastic walls leads to a third-order system of nonlinear ordinary differential equations. For different driving fluid pressures, numerical solutions exhibit steady flow, simple limit-cycle oscillations, a cascade of period-doubling subharmonic bifurcations, and chaotic oscillations controlled by a strange attractor of Rossler type. In this model, tremor occurs most easily at local constrictions, and fluid discharge is lower than would occur in unstable steady flow.
14 CFR 23.1095 - Carburetor deicing fluid flow rate.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...
14 CFR 23.1095 - Carburetor deicing fluid flow rate.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...
14 CFR 23.1095 - Carburetor deicing fluid flow rate.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...
14 CFR 23.1095 - Carburetor deicing fluid flow rate.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...
14 CFR 23.1095 - Carburetor deicing fluid flow rate.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...
Enhanced fluid flow through nanoscale carbon pipes.
Whitby, Max; Cagnon, Laurent; Thanou, Maya; Quirke, Nick
2008-09-01
Recent experimental and theoretical studies demonstrate that pressure driven flow of fluids through nanoscale ( d < 10 nm) carbon pores occurs 4 to 5 orders of magnitude faster than predicted by extrapolation from conventional theory. Here, we report experimental results for flow of water, ethanol, and decane through carbon nanopipes with larger inner diameters (43 +/- 3 nm) than previously investigated. We find enhanced transport up to 45 times theoretical predictions. In contrast to previous work, in our systems, decane flows faster than water. These nanopipes were composed of amorphous carbon deposited from ethylene vapor in alumina templates using a single step fabrication process. PMID:18680352
Granular Material Flows with Interstitial Fluid Effects
NASA Technical Reports Server (NTRS)
Hunt, Melany L.; Brennen, Christopher E.
2004-01-01
The research focused on experimental measurements of the rheological properties of liquid-solid and granular flows. In these flows, the viscous effects of the interstitial fluid, the inertia of the fluid and particles, and the collisional interactions of the particles may all contribute to the flow mechanics. These multiphase flows include industrial problems such as coal slurry pipelines, hydraulic fracturing processes, fluidized beds, mining and milling operation, abrasive water jet machining, and polishing and surface erosion technologies. In addition, there are a wide range of geophysical flows such as debris flows, landslides and sediment transport. In extraterrestrial applications, the study of transport of particulate materials is fundamental to the mining and processing of lunar and Martian soils and the transport of atmospheric dust (National Research Council 2000). The recent images from Mars Global Surveyor spacecraft dramatically depict the complex sand and dust flows on Mars, including dune formation and dust avalanches on the slip-face of dune surfaces. These Aeolian features involve a complex interaction of the prevailing winds and deposition or erosion of the sediment layer; these features make a good test bed for the verification of global circulation models of the Martian atmosphere.
Flow behaviour of extremely bidisperse magnetizable fluids
NASA Astrophysics Data System (ADS)
Susan-Resiga, Daniela; Bica, Doina; Vékás, L.
2010-10-01
In this paper we investigated the rheological and magnetorheological behaviours of an extremely bidisperse (nano-micro) magnetizable fluid (sample D1) for comparison of a commercial magnetorheological fluid (MRF-140CG; LORD Co. (USA)) with the same magnetic solid volume fraction, using the Physica MCR-300 rheometer with a 20 mm diameter plate-plate magnetorheological cell (MRD180). D1 sample is a suspension of micrometer range Fe particles in a transformer oil based magnetic fluid as carrier. For both types of samples, the experimental data for zero and non-zero magnetic field conditions were fitted to equations derived from the Newtonian and Cross type flow equations, as well as the Herschel-Bulkley model. The main advantage of both rheological equations for the quantitative description of the magnetic field behaviour of samples is that they can be used in regular CFD codes to compute the flow properties of the magnetorheological fluid and of the bidisperse magnetizable fluid for practical applications.
Ultrasonic fluid flow measurement method and apparatus
Kronberg, J.W.
1993-10-12
An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible. 3 figures.
Ultrasonic fluid flow measurement method and apparatus
Kronberg, James W.
1993-01-01
An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible.
The origin of massive hydrothermal alterations: what drives fluid flow?
NASA Astrophysics Data System (ADS)
Gomez-Rivas, Enrique; Bons, Paul D.; Martín-Martín, Juan-Diego; Corbella, Mercè; Stafford, Sherry L.; Griera, Albert; Teixell, Antonio; Salas, Ramón; Travé, Anna
2014-05-01
Hydrothermal alterations form when fluids warmer than the host rocks flow through them dissolving and precipitating minerals. These fluids typically flow upwards from deeper geologic units using faults as major conduits. In some cases, hydrothermal alterations affect large (km-scale) rock volumes. One example of such process is the massive high-temperature dolostones that crop out at the Benicàssim outcrop analogue (Maestrat Basin, E Spain). In this area, seismic-scale fault-controlled stratabound dolostone bodies extend over several kilometres away from large-scale faults, replacing Lower Cretaceous limestones. The fluid responsible for such alteration is a seawater-derived brine that interacted with underlying Permian-Triassic and Paleozoic basement rocks. The estimated volume of fluid required to produce the Benicàssim dolomitization is huge, with fluid-rock ratios in the order of several tens to a few hundreds, depending on composition and reaction temperature (Gomez-Rivas et al., 2014). An open key question is what brought this warm fluid (80 - 150 ºC) upwards to a depth of less than 1 km, where the dolomitization reaction took place. The driving forces should have been able not only to provide sufficient fluid volumes at shallow depths but also to heat up the whole host rock, including the non-replaced limestones. There are two hyphoteses for driving a warm fluid upwards in the Maestrat Basin: (a) rapid release through faults of overpressured solutions in recurrent pulses and (b) thermal convection. We present a series of heat and fluid flow numerical simulations to constrain the dolomitization conditions under these two end-member cases. The results indicate that in a pulsating model the fluid must flow upwards at velocities higher than cm/s to keep their elevated temperature. Otherwise they cool down quickly, and the host rocks cannot be heated. Such velocities can be reached if the fluid flow velocity equals that of fracture propagation, as in mobile
2-Phase Fluid Flow & Heat Transport
1993-03-13
GEOTHER is a three-dimensional, geothermal reservoir simulation code. The model describes heat transport and flow of a single component, two-phase fluid in porous media. It is based on the continuity equations for steam and water, which are reduced to two nonlinear partial differential equations in which the dependent variables are fluid pressure and enthalpy. GEOTHER can be used to simulate the fluid-thermal interaction in rock that can be approximated by a porous media representation. Itmore » can simulate heat transport and the flow of compressed water, two-phase mixtures, and superheated steam in porous media over a temperature range of 10 to 300 degrees C. In addition, it can treat the conversion from single to two-phase flow, and vice versa. It can be used for evaluation of a near repository spatial scale and a time scale of a few years to thousands of years. The model can be used to investigate temperature and fluid pressure changes in response to thermal loading by waste materials.« less
Modeling Tools Predict Flow in Fluid Dynamics
NASA Technical Reports Server (NTRS)
2010-01-01
"Because rocket engines operate under extreme temperature and pressure, they present a unique challenge to designers who must test and simulate the technology. To this end, CRAFT Tech Inc., of Pipersville, Pennsylvania, won Small Business Innovation Research (SBIR) contracts from Marshall Space Flight Center to develop software to simulate cryogenic fluid flows and related phenomena. CRAFT Tech enhanced its CRUNCH CFD (computational fluid dynamics) software to simulate phenomena in various liquid propulsion components and systems. Today, both government and industry clients in the aerospace, utilities, and petrochemical industries use the software for analyzing existing systems as well as designing new ones."
Slip mechanisms in complex fluid flows.
Hatzikiriakos, Savvas G
2015-10-28
The classical no-slip boundary condition of fluid mechanics is not always a valid assumption for the flow of several classes of complex fluids including polymer melts, their blends, polymer solutions, microgels, glasses, suspensions and pastes. In fact, it appears that slip effect in these systems is the rule and not the exemption. The occurrence of slip complicates the analysis of rheological data, although it provides new opportunities to understand their behavior in restricted environments delineating additional molecular mechanisms i.e. entropic restrictions due to limitations in the number of molecular conformations. This article discusses these complexities and provides future research opportunities. PMID:26345121
Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems
1994-06-20
FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors,more » gasifiers, and FCC (Fluid Catalytic Cracker) reactors.« less
Analysis of Fluid Flow over a Surface
NASA Technical Reports Server (NTRS)
McCloud, Peter L. (Inventor)
2013-01-01
A method, apparatus, and computer program product for modeling heat radiated by a structure. The flow of a fluid over a surface of a model of the structure is simulated. The surface has a plurality of surface elements. Heat radiated by the plurality of surface elements in response to the fluid flowing over the surface of the model of the structure is identified. An effect of heat radiated by at least a portion of the plurality of surface elements on each other is identified. A model of the heat radiated by the structure is created using the heat radiated by the plurality of surface elements and the effect of the heat radiated by at least a portion of the plurality of surface elements on each other.
Geometrodynamical Fluid Theory Applied to Dynamo Flows in Planetary Interiors
NASA Astrophysics Data System (ADS)
Lewis, Kayla; Miramontes, Diego; Scofield, Dillon
2015-11-01
Due to their reliance on a Newtonian viscous stress model, the traditional Navier-Stokes equations are of parabolic type; this in turn leads to acausal behavior of solutions to these equations, e.g., a localized disturbance at any point instantaneously affects the solution arbitrarily far away. Geometrodynamical fluid theory (GFT) avoids this problem through a relativistically covariant formulation of the flow equations. Using GFT, we derive the magnetohydrodynamic equations describing the balance of energy-momentum appropriate for dynamo flows in planetary interiors. These equations include interactions between magnetic and fluid vortex fields. We derive scaling laws from these equations and compare them with scaling laws derived from the traditional approach. Finally, we discuss implications of these scalings for flows in planetary dynamos.
Visualization of working fluid flow in gravity assisted heat pipe
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Malcho, Milan
2015-05-01
Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapor and vice versa help heat pipe to transport high heat flux. The article deal about construction and processes casing in heat pipe during operation. Experiment visualization of working fluid flow is performed with glass heat pipe filed with ethanol. The visualization of working fluid flow explains the phenomena as working fluid boiling, nucleation of bubbles, vapor flow, vapor condensation on the wall, vapor and condensate flow interaction, flow down condensate film thickness on the wall, occurred during the heat pipe operation.
Bernoulli theorem generalized to rheologically complex viscous fluid flow
NASA Astrophysics Data System (ADS)
Brutyan, M. A.; Krapivskii, P. L.
1992-08-01
The Bernoulli theorem is generalized to two-dimensional and axisymmetric micropolar incompressible fluid flows. It is shown that the approach developed is also applicable to magnetohydrodynamic flows of a viscous Newtonian fluid.
Piezoelectric energy harvesting in internal fluid flow.
Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim
2015-01-01
We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph's clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well. PMID:26473879
Piezoelectric Energy Harvesting in Internal Fluid Flow
Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim
2015-01-01
We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph’s clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well. PMID:26473879
Application of IR thermography for unsteady fluid-flow research
NASA Astrophysics Data System (ADS)
Koppel, Tiit; Lahdeniemi, Matti; Ekholm, Ari
1998-03-01
In the recent years the IR thermography technique has been sued successfully as a new contactless instrument for gas and fluid flow research in pipes and on the surface of a flat plate. It is well known that most energy changes in the flow take place in the boundary layer. This is in turn important for the intensity of convective heat transfer in pipe flows and enables to measure processes connected with energy changes in the flow from outside the pipe. Series of measurements of suddenly accelerated and pulsating pipe flow were made at Satakunta Polytechnic, Technology Pori, Finland. The theoretical criterion describing the transition from laminar to turbulent regime is found depending on the critical thickness of the boundary layer of suddenly accelerated flow. At the moment of transition of the 'plug' type flow into turbulent flow, the velocities in the wall region diminish and this can be detected using the IR thermography from the wall temperature changes. the experimental results of the mean velocity development and transition criteria correspond to the theoretical calculations. The changes of the internal structure of the flow affect the convective heat transfer and this in turn influences the pipe wall temperature. IR thermography measures pipe wall temperature changes and consequently we can detect flow structure changes in the boundary layer in the accelerated and decelerated phase of the pulsating pipe flow.
Physical aspects of computing the flow of a viscous fluid
NASA Technical Reports Server (NTRS)
Mehta, U. B.
1984-01-01
One of the main themes in fluid dynamics at present and in the future is going to be computational fluid dynamics with the primary focus on the determination of drag, flow separation, vortex flows, and unsteady flows. A computation of the flow of a viscous fluid requires an understanding and consideration of the physical aspects of the flow. This is done by identifying the flow regimes and the scales of fluid motion, and the sources of vorticity. Discussions of flow regimes deal with conditions of incompressibility, transitional and turbulent flows, Navier-Stokes and non-Navier-Stokes regimes, shock waves, and strain fields. Discussions of the scales of fluid motion consider transitional and turbulent flows, thin- and slender-shear layers, triple- and four-deck regions, viscous-inviscid interactions, shock waves, strain rates, and temporal scales. In addition, the significance and generation of vorticity are discussed. These physical aspects mainly guide computations of the flow of a viscous fluid.
Fluid flow in solidifying monotectic alloys
NASA Technical Reports Server (NTRS)
Ecker, A.; Frazier, D. O.; Alexander, J. Iwan D.
1989-01-01
Use of a two-wavelength holographic technique results in a simultaneous determination of temperature and composition profiles during directional solidification in a system with a miscibility gap. The relationships among fluid flow, phase separation, and mass transport during the solidification of the monotectic alloy are discussed. The primary sources of fluid motion in this system are buoyancy and thermocapillary forces. These forces act together when phase separation results in the formation of droplets (this occurs at the solid-liquid interface and in the bulk melt). In the absence of phase separation, buoyancy results from density gradients related to temperature and compositional gradients in the single-phase bulk melt. The effects of buoyancy are especially evident in association with water- or ethanol-rich volumes created at the solid-liquid growth interface.
Testing the Markov hypothesis in fluid flows
NASA Astrophysics Data System (ADS)
Meyer, Daniel W.; Saggini, Frédéric
2016-05-01
Stochastic Markov processes are used very frequently to model, for example, processes in turbulence and subsurface flow and transport. Based on the weak Chapman-Kolmogorov equation and the strong Markov condition, we present methods to test the Markov hypothesis that is at the heart of these models. We demonstrate the capabilities of our methodology by testing the Markov hypothesis for fluid and inertial particles in turbulence, and fluid particles in the heterogeneous subsurface. In the context of subsurface macrodispersion, we find that depending on the heterogeneity level, Markov models work well above a certain scale of interest for media with different log-conductivity correlation structures. Moreover, we find surprising similarities in the velocity dynamics of the different media considered.
Fluid flow in solidifying monotectic alloys
NASA Astrophysics Data System (ADS)
Ecker, A.; Frazier, D. O.; Alexander, J. Iwan D.
1989-11-01
Use of a two-wavelength holographic technique results in a simultaneous determination of temperature and composition profiles during directional solidification in a system with a miscibility gap. A shadowgraph technique is employed for flow visualization. By these methods, flow regimes are identified and related to particular melt compositions. We discuss the relationships among fluid flow, phase separation, and mass transport during the solidification of the monotectic alloy. The primary sources of fluid motion in this system are buoyancy and thermocapillary forces. These forces act together when phase separation results in the formation of droplets (this occurs at the solid-liquid interface and in the bulk melt). While buoyancy forces arise due to density differences between the droplet and the host phase, thermocapillary forces (associated with temperature gradients in the droplet surface) may predominate. In the absence of phase separation, buoyancy results from density gradients related to temperature and compositional gradients in the single-phase bulk melt. The effects of buoyancy are especially evident in association with water- or ethanol-rich volumes created at the solid-liquid growth interface.
Fluid flow through packings of rotating obstacles
NASA Astrophysics Data System (ADS)
Oliveira, Rafael S.; Andrade, José S.; Andrade, Roberto F. S.
2015-03-01
We investigate through numerical simulation the nonstationary flow of a Newtonian fluid through a two-dimensional channel filled with an array of circular obstacles of distinct sizes. The disks may rotate around their respective centers, modeling a nonstationary, inhomogeneous porous medium. Obstacle sizes and positions are defined by the geometry of an Apollonian packing (AP). To allow for fluid flow, the radii of the disks are uniformly reduced by a factor 0.6 ≤s ≤0.8 for assemblies corresponding to the four first AP generations. The investigation is targeted to elucidate the main features of the rotating regime as compared to the fixed disk condition. It comprises the evaluation of the region of validity of Darcy's law as well as the study of the nonlinear hydraulic resistance as a function of the channel Reynolds number, the reduction factor s , and the AP generation. Depending on a combination of these factors, the resistance of rotating disks may be larger or smaller than that of the corresponding static case. We also analyze the flow redistribution in the interdisk channels as a result of the rotation pattern and characterize the angular velocity of the disks. Here, the striking feature is the emergence of a stable oscillatory behavior of the angular velocity for almost all disks that are inserted into the assemblies after the second generation.
Fluid flow dynamics in MAS systems
NASA Astrophysics Data System (ADS)
Wilhelm, Dirk; Purea, Armin; Engelke, Frank
2015-08-01
The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.
Fluid flow dynamics in MAS systems.
Wilhelm, Dirk; Purea, Armin; Engelke, Frank
2015-08-01
The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor. PMID:26073599
Fluid Physics of Foam Evolution and Flow
NASA Technical Reports Server (NTRS)
Aref, H.; Thoroddsen, S. T.; Sullivan, J. M.
2003-01-01
The grant supported theoretical, numerical and experimental work focused on the elucidation of the fluid physics of foam structure, evolution and flow. The experimental work concentrated on these subject areas: (a) Measurements of the speed of reconnections within a foam; (b) statistics of bubble rearrangements; and (c) three-dimensional reconstruction of the foam structure. On the numerical simulation and theory side our efforts concentrated on the subjects: (a) simulation techniques for 2D and 3D foams; (b) phase transition in a compressible foam; and (c) TCP structures.
Two Dimensional Fluid Flow Models Offshore Southwestern Taiwan
NASA Astrophysics Data System (ADS)
Chen, L. W.; Wu, S. K.; Chi, W. C.; Liu, C. S.; Shyu, C. T.; Wang, Y. S.
2012-04-01
Fluid migration rates are important parameters for understanding the structural characteristics and evolution of the crustal tectonics and hydrocarbon exploration. However, they are difficult to measure on the seafloor. Dense distribution of bottom-simulating reflectors (BSRs) as the index of fluid existence to shed light on our study of the fluid migration. In this study, We acquired 2D fluid flow patterns in two potential gas hydrate prospect sites offshore southwestern Taiwan, and respectively modeled across Yung-An and Formosa ridge in N-S and E-W direction southwestern Taiwan. Temperature field in the shallow crust is used as a tracer to examine the fluid flow patterns. We use thermal information directly measured by thermal probes and topography data to develop the theoretical 2D temperature field using a thermal conduction model, which was derived from a finite element method. The discrepancy between the observed temperature data and the conductive model is attributed to advection heat transfer due to fluid migration. For Yung-An Ridge, we found the BSR-based temperatures are about 2oC higher than the conduction model in the following zones: (1) near a fault zone, (2) on the eastern flank where there are strong seismic reflectors in a pseudo 3D seismic dataset, (3) a seismic chimney zone. We interpret that there is possible active dewatering inside the accretionary prism to allow fluid to migrate upward here. For Formosa Ridge in the passive margin, the BSR-based temperatures are about 2oC colder than the theoretical model, especially on the flanks. We interpret that cold seawater is moving into the ridge from the flanks, cooling the ridge, and then some of the fluid is expelled at the ridge top. The shallow temperature fields are strongly affected by 2D or even 3D bathymetry effects. But we can still gain much information regarding fluid flow patterns through modeling. In the near future, we will extend such study into 3D. Keywords: fluid migration
Flow Diode and Method for Controlling Fluid Flow Origin of the Invention
NASA Technical Reports Server (NTRS)
Dyson, Rodger W (Inventor)
2015-01-01
A flow diode configured to permit fluid flow in a first direction while preventing fluid flow in a second direction opposite the first direction is disclosed. The flow diode prevents fluid flow without use of mechanical closures or moving parts. The flow diode utilizes a bypass flowline whereby all fluid flow in the second direction moves into the bypass flowline having a plurality of tortuous portions providing high fluidic resistance. The portions decrease in diameter such that debris in the fluid is trapped. As fluid only travels in one direction through the portions, the debris remains trapped in the portions.
Modelling fluid flow in a reciprocating compressor
NASA Astrophysics Data System (ADS)
Tuhovcak, Jan; Hejčík, Jiří; Jícha, Miroslav
2015-05-01
Efficiency of reciprocating compressor is strongly dependent on the valves characteristics, which affects the flow through the suction and discharge line. Understanding the phenomenon inside the compressor is necessary step in development process. Commercial CFD tools offer wide capabilities to simulate the flow inside the reciprocating compressor, however they are too complicated in terms of computational time and mesh creation. Several parameters describing compressor could be therefore examined without the CFD analysis, such is valve characteristic, flow through the cycle and heat transfer. The aim of this paper is to show a numerical tool for reciprocating compressor based on the energy balance through the cycle, which provides valve characteristics, flow through the cycle and heat losses from the cylinder. Spring-damping-mass model was used for the valve description. Boundary conditions were extracted from the performance test of 4-cylinder semihermetic compressor and numerical tool validation was performed with indicated p-V diagram comparison.
Flow rate measurement in aggressive conductive fluids
NASA Astrophysics Data System (ADS)
Dubovikova, Nataliia; Kolesnikov, Yuri; Karcher, Christian
2014-03-01
Two non-contact experimental methods of flow rate measurements for aggressive conductive liquids are described. The techniques are based on electromagnetic forces and Faraday's law: Lorentz force is induced inside moving conductive liquid under influence of variable magnetic field of permanent magnets. They are mounted along a liquid metal channel or (in case of the second method) inserted into rotated metal wheels. The force acts in the opposite of fluids' velocity direction and hence it is possible to measure reaction force of it that takes place according to Newton's law on magnetic field source - permanent magnets. And by knowing the force, which linearly depends on velocity, one can calculate mean flow rate of liquid. In addition experimental "dry" calibration and its results are described for one of the measurements' techniques.
Geophysical Fluid Flow Cell (GFFC) Cross Section
NASA Technical Reports Server (NTRS)
1995-01-01
This drawing shows a cross-section view of the test cell at the heart of the Geophysical Fluid Flow Cell (GFFC) that flew on two Spacelab missions. The middle and lower drawings depict the volume of the silicone oil layer that served as the atmosphere as the steel ball rotated and an electrostatic field pulled the oil inward to mimic gravity's effects during the experiments. The GFFC thus produced flow patterns that simulated conditions inside the atmospheres of Jupiter and the Sun and other stars. The principal investigator was John Hart of the University of Colorado at Boulder. It was managed by NASA's Marshall Space Flight Center (MSFC). An Acrobat PDF copy of this drawing is available at http://microgravity.nasa.gov/gallery. (Credit: NASA/Marshall Space Flight Center)
Interstitial fluid flow: simulation of mechanical environment of cells in the interosseous membrane
NASA Astrophysics Data System (ADS)
Yao, Wei; Ding, Guang-Hong
2011-08-01
In vitro experiments have shown that subtle fluid flow environment plays a significant role in living biological tissues, while there is no in vivo practical dynamical measurement of the interstitial fluid flow velocity. On the basis of a new finding that capillaries and collagen fibrils in the interosseous membrane form a parallel array, we set up a porous media model simulating the flow field with FLUENT software, studied the shear stress on interstitial cells' surface due to the interstitial fluid flow, and analyzed the effect of flow on protein space distribution around the cells. The numerical simulation results show that the parallel nature of capillaries could lead to directional interstitial fluid flow in the direction of capillaries. Interstitial fluid flow would induce shear stress on the membrane of interstitial cells, up to 30 Pa or so, which reaches or exceeds the threshold values of cells' biological response observed in vitro. Interstitial fluid flow would induce nonuniform spacial distribution of secretion protein of mast cells. Shear tress on cells could be affected by capillary parameters such as the distance between the adjacent capillaries, blood pressure and the permeability coefficient of capillary's wall. The interstitial pressure and the interstitial porosity could also affect the shear stress on cells. In conclusion, numerical simulation provides an effective way for in vivo dynamic interstitial velocity research, helps to set up the vivid subtle interstitial flow environment of cells, and is beneficial to understanding the physiological functions of interstitial fluid flow.
Microscale imaging of cilia-driven fluid flow
Huang, Brendan K.; Choma, Michael A.
2015-01-01
Cilia-driven fluid flow is important for multiple processes in the body, including respiratory mucus clearance, gamete transport in the oviduct, right-left patterning in the embryonic node, and cerebrospinal fluid circulation. Multiple imaging techniques have been applied towards quantifying ciliary flow. Here we review common velocimetry methods of quantifying fluid flow. We then discuss four important optical modalities, including light microscopy, epifluorescence, confocal microscopy, and optical coherence tomography, that have been used to investigate cilia-driven flow. PMID:25417211
Template Matching Using a Fluid Flow Model
NASA Astrophysics Data System (ADS)
Newman, William Curtis
Template matching is successfully used in machine recognition of isolated spoken words. In these systems a word is broken into frames (20 millisecond time slices) and the spectral characteristics of each frame are found. Thus, each word is represented as a 2-dimensional (2-D) function of spectral characteristic and frame number. An unknown word is recognized by matching its 2-D representation to previously stored example words, or templates, also in this 2-D form. A new model for this matching step will be introduced. The 2-D representations of the template and unknown are used to determine the shape of a volume of viscous fluid. This volume is broken up into many small elements. The unknown is changed into the template by allowing flows between the element boundaries. Finally the match between the template and unknown is determined by calculating a weighted squared sum of the flow values. The model also allows the relative flow resistance between the element boundaries to be changed. This is useful for characterizing the important features of a given template. The flow resistances are changed according to the gradient of a simple performance function. This performance function is evaluated using a set of training samples provided by the user. The model is applied to isolated word and single character recognition tasks. Results indicate the applications where this model works best.
Unified slip boundary condition for fluid flows.
Thalakkottor, Joseph John; Mohseni, Kamran
2016-08-01
Determining the correct matching boundary condition is fundamental to our understanding of several everyday problems. Despite over a century of scientific work, existing velocity boundary conditions are unable to consistently explain and capture the complete physics associated with certain common but complex problems, such as moving contact lines and corner flows. The widely used Maxwell and Navier slip boundary conditions make an implicit assumption that velocity varies only in the wall normal direction. This makes their boundary condition inapplicable in the vicinity of contact lines and corner points, where velocity gradient exists both in the wall normal and wall tangential directions. In this paper, by identifying this implicit assumption we are able to extend Maxwell's slip model. Here, we present a generalized velocity boundary condition that shows that slip velocity is a function of not only the shear rate but also the linear strain rate. In addition, we present a universal relation for slip length, which shows that, for a general flow, slip length is a function of the principal strain rate. The universal relation for slip length along with the generalized velocity boundary condition provides a unified slip boundary condition to model a wide range of steady Newtonian fluid flows. We validate the unified slip boundary for simple Newtonian liquids by using molecular dynamics simulations and studying both the moving contact line and corner flow problems. PMID:27627398
Soil properties affecting wheat yields following drilling-fluid application.
Bauder, T A; Barbarick, K A; Ippolito, J A; Shanahan, J F; Ayers, P D
2005-01-01
Oil and gas drilling operations use drilling fluids (mud) to lubricate the drill bit and stem, transport formation cuttings to the surface, and seal off porous geologic formations. Following completion of the well, waste drilling fluid is often applied to cropland. We studied potential changes in soil compaction as indicated by cone penetration resistance, pH, electrical conductivity (EC(e)), sodium adsorption ratio (SAR), extractable soil and total straw and grain trace metal and nutrient concentrations, and winter wheat (Triticum aestivum L. 'TAM 107') grain yield following water-based, bentonitic drilling-fluid application (0-94 Mg ha(-1)) to field test plots. Three methods of application (normal, splash-plate, and spreader-bar) were used to study compaction effects. We measured increasing SAR, EC(e), and pH with drilling-fluid rates, but not to levels detrimental to crop production. Field measurements revealed significantly higher compaction within areas affected by truck travel, but also not enough to affect crop yield. In three of four site years, neither drilling-fluid rate nor application method affected grain yield. Extractions representing plant availability and plant analyses results indicated that drilling fluid did not significantly increase most trace elements or nutrient concentrations. These results support land application of water-based bentonitic drilling fluids as an acceptable practice on well-drained soils using controlled rates. PMID:16091622
Space Coffee Cup: Capillary Flow Driven Fluids in Space
Interested in learning more about how fluids react in Space? In this video, Professor Mark Weislogel, and Dr. Marshall Porterfield will discuss the Space Coffee Cup and Capillary Flow Driven Fluids...
Thermal and Fluid Flow Brazing Simulations
HOSKING, FLOYD MICHAEL; GIANOULAKIS,STEVEN E.; GIVLER,RICHARD C.; SCHUNK,P. RANDALL
1999-12-15
The thermal response of fixtured parts in a batch-type brazing furnace can require numerous, time-consuming development runs before an acceptable furnace schedule or joint design is established. Powerful computational simulation tools are being developed to minimize the required number of verification experiments, improve furnace throughput, and increase product yields. Typical furnace simulations are based on thermal, fluid flow, and structural codes that incorporate the fundamental physics of the brazing process. The use of massively parallel computing to predict furnace and joint-level responses is presented. Measured and computed data are compared. Temperature values are within 1-270 of the expected peak brazing temperature for different loading conditions. Sensitivity studies reveal that the thermal response is more sensitive to the thermal boundary conditions of the heating enclosure than variability y in the materials data. Braze flow simulations predict fillet geometry and free surface joint defects. Dynamic wetting conditions, interfacial reactions, and solidification structure add a high degree of uncertainty to the flow results.
Fluid flow measurements by means of vibration monitoring
NASA Astrophysics Data System (ADS)
Campagna, Mauro M.; Dinardo, Giuseppe; Fabbiano, Laura; Vacca, Gaetano
2015-11-01
The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology.
On stability and turbulence of fluid flows
NASA Technical Reports Server (NTRS)
Heisenberg, Werner
1951-01-01
This investigation is divided into two parts, the treatment of the stability problem of fluid flows on the one hand, and that of the turbulent motion on the other. The first part summarizes all previous investigations under a unified point of view, that is, sets up as generally as possible the conditions under which a profile possesses unstable or stable characteristics, and indicates the methods for solution of the stability equation for any arbitrary velocity profile and for calculation of the critical Reynolds number for unstable profiles. In the second part, under certain greatly idealizing assumptions, differential equations for the turbulent motions are derived and from them qualitative information about several properties of the turbulent velocity distribution is obtained.
Saffer, D.M.; Bekins, B.A.
1998-01-01
Down-hole geochemical anomalies encountered in active accretionary systems can be used to constrain the timing, rates, and localization of fluid flow. Here we combine a coupled flow and solute transport model with a kinetic model for smectite dehydration to better understand and quantify fluid flow in the Nankai accretionary complex offshore of Japan. Compaction of sediments and clay dehydration provide fluid sources which drive the model flow system. We explicitly include the consolidation rate of underthrust sediments in our calculations to evaluate the impact that variations in this unknown quantity have on pressure and chloride distribution. Sensitivity analysis of steady state pressure solutions constrains bulk and flow conduit permeabilities. Steady state simulations with 30% smectite in the incoming sedimentary sequence result in minimum chloride concentrations at site 808 of 550 mM, but measured chlorinity is as low as 447 mM. We simulate the transient effects of hydrofracture or a strain event by assuming an instantaneous permeability increase of 3-4 orders of magnitude along a flow conduit (in this case the de??collement), using steady state results as initial conditions. Transient results with an increase in de??collement permeability from 10-16 m2 to 10-13 m2 and 20% smectite reproduce the observed chloride profile at site 808 after 80-160 kyr. Modeled chloride concentrations are highly sensitive to the consolidation rate of underthrust sediments, such that rapid compaction of underthrust material leads to increased freshening. Pressures within the de??collement during transient simulations rise rapidly to a significant fraction of lithostatic and remain high for at least 160 kyr, providing a mechanism for maintaining high permeability. Flow rates at the deformation front for transient simulations are in good agreement with direct measurements, but steady state flow rates are 2-3 orders of magnitude smaller than observed. Fluid budget calculations
Fluid flow dynamics under location uncertainty
NASA Astrophysics Data System (ADS)
Mémin, Etienne
2014-03-01
We present a derivation of a stochastic model of Navier Stokes equations that relies on a decomposition of the velocity fields into a differentiable drift component and a time uncorrelated uncertainty random term. This type of decomposition is reminiscent in spirit to the classical Reynolds decomposition. However, the random velocity fluctuations considered here are not differentiable with respect to time, and they must be handled through stochastic calculus. The dynamics associated with the differentiable drift component is derived from a stochastic version of the Reynolds transport theorem. It includes in its general form an uncertainty dependent "subgrid" bulk formula that cannot be immediately related to the usual Boussinesq eddy viscosity assumption constructed from thermal molecular agitation analogy. This formulation, emerging from uncertainties on the fluid parcels location, explains with another viewpoint some subgrid eddy diffusion models currently used in computational fluid dynamics or in geophysical sciences and paves the way for new large-scales flow modelling. We finally describe an applications of our formalism to the derivation of stochastic versions of the Shallow water equations or to the definition of reduced order dynamical systems.
A coupled model of fluid flow in jointed rock
Swenson, Daniel; Martineau, Rick; James, Mark; Brown, Don
1991-01-01
We present a fully coupled model of fluid flow in jointed rock, where the fluid flow depends on the joint openings and the joint openings depend on the fluid pressure. The joints and rock blocks are modeled discretely using the finite element method. Solutions for the fluid and rock are obtained and iteration is performed until both solutions converge. Example applications include an examination of the effects of back-pressure on flow in a geothermal reservoir and transient fluid injection into a reservoir.
Measuring fluid flow and heat output in seafloor hydrothermal environments
NASA Astrophysics Data System (ADS)
Germanovich, Leonid N.; Hurt, Robert S.; Smith, Joshua E.; Genc, Gence; Lowell, Robert P.
2015-12-01
We review techniques for measuring fluid flow and advective heat output from seafloor hydrothermal systems and describe new anemometer and turbine flowmeter devices we have designed, built, calibrated, and tested. These devices allow measuring fluid velocity at high- and low-temperature focused and diffuse discharge sites at oceanic spreading centers. The devices perform at ocean floor depths and black smoker temperatures and can be used to measure flow rates ranging over 2 orders of magnitude. Flow velocity is determined from the rotation rate of the rotor blades or paddle assembly. These devices have an open bearing design that eliminates clogging by particles or chemical precipitates as the fluid passes by the rotors. The devices are compact and lightweight enough for deployment from either an occupied or remotely operated submersible. The measured flow rates can be used in conjunction with vent temperature or geochemical measurements to obtain heat outputs or geochemical fluxes from both vent chimneys and diffuse flow regions. The devices have been tested on 30 Alvin dives on the Juan de Fuca Ridge and 3 Jason dives on the East Pacific Rise (EPR). We measured an anomalously low entrainment coefficient (0.064) and report 104 new measurements over a wide range of discharge temperatures (5°-363°C), velocities (2-199 cm/s), and depths (1517-2511 m). These include the first advective heat output measurements at the High Rise vent field and the first direct fluid flow measurement at Middle Valley. Our data suggest that black smoker heat output at the Main Endeavour vent field may have declined since 1994 and that after the 2005-2006 eruption, the high-temperature advective flow at the EPR 9°50'N field may have become more channelized, predominately discharging through the Bio 9 structure. We also report 16 measurements on 10 Alvin dives and 2 Jason dives with flow meters that predate devices described in this work and were used in the process of their development
Mineralogical controls on metamorphic fluid flow in metabasaltic sills from Islay, Scotland
NASA Astrophysics Data System (ADS)
Kleine, Barbara I.; Pitcairn, Iain K.; Skelton, Alasdair D. L.
2016-04-01
In this study we show that mineralogy was the primary control of metamorphic fluid flow in the well-studied metabasaltic sills in the SW Scottish Highlands. Here, basaltic sills have been partially carbonated by H2O-CO2 fluids at greenschist facies conditions. This has led to mineral zonation with carbonate-poor sill interiors separated from carbonate-rich sill margins by reaction fronts. Although deformation set the stage for metamorphic fluid flow in the SW Scottish Highlands by causing the preferred alignment of mineral grains, metamorphic fluid flow was not coupled with active deformation but occurred later utilizing the pre-existing mineral alignment as a means of accessing the sill interiors. The sills which were studied were partially carbonated with well-preserved reaction fronts. They were selected because (atypically for the SW Scottish Highlands) they are mineralogically heterogeneous making them ideal for a study of mineralogical controls of metamorphic fluid flow. Their mineralogical heterogeneity reflects chemical heterogeneity arising from magmatic flow differentiation and spilitization, which occurred before greenschist facies metamorphism. Magmatic flow differentiation resulted in parts of the sill containing large crystals with no preferred alignment. Large (up to 3 cm) plagioclase phenocrysts were concentrated in the sill interior whereas large (up to 1 cm) amphibole (after pyroxene) grains formed cumulate layers close to the sill margins. These large randomly oriented crystals were replaced by an interface-coupled dissolution-precipitation mechanism. Replacement is constant volume and with hydration and carbonation affecting the cores of these minerals while the rims are remained intact and unaltered. This finding points to intra-granular metamorphic fluid flow. In contrast inter-granular metamorphic fluid flow was facilitated by mineral alignment on different scales. Pre-metamorphic spilitization, produced layers of epidote called segregations
Monitoring Fluid Flow in Fractured Carbonate Rocks Using Seismic Measurements
NASA Astrophysics Data System (ADS)
Li, W.; Pyrak-Nolte, L. J.
2008-12-01
across the layers. However, for AC5, the water flowed quickly along the layers and crossed the entire sample in one and a half hours. From the seismic data on fractured sample AC1, the water initially took more than 15 hours to transverse the sample though portions of the fracture were invaded after two hours. No water was produced at the outlet over a 15 hour period. Upon inspection, chemical precipitation was observed along the fracture plane and fracture- matrix interaction controlled the saturation of the matrix. Seismic monitoring of the fluid-front during saturation indicates that fine bedding affects the hydraulic properties of the sample while geochemical interactions in fractures affect fracture-matrix communication. Acknowledgments: The authors wish to acknowledge support of this work by the Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy (DEFG02-97ER14785 08) and by Exxon Mobil Upstream Research Company.
Aoki, Shigehisa; Ikeda, Satoshi; Takezawa, Toshiaki; Kishi, Tomoya; Makino, Junichi; Uchihashi, Kazuyoshi; Matsunobu, Aki; Noguchi, Mitsuru; Sugihara, Hajime; Toda, Shuji
2011-12-16
Highlights: Black-Right-Pointing-Pointer Late-onset peritoneal fibrosis leading to EPS remains to be elucidated. Black-Right-Pointing-Pointer Fluid streaming is a potent factor for peritoneal fibrosis in PD. Black-Right-Pointing-Pointer We focused on the prolonged effect of fluid streaming on mesothelial cell kinetics. Black-Right-Pointing-Pointer A history of fluid streaming exposure promoted mesothelial proliferative activity. Black-Right-Pointing-Pointer We have thus identified a potent new factor for late-onset peritoneal fibrosis. -- Abstract: Encapsulating peritoneal sclerosis (EPS) often develops after transfer to hemodialysis and transplantation. Both termination of peritoneal dialysis (PD) and transplantation-related factors are risks implicated in post-PD development of EPS, but the precise mechanism of this late-onset peritoneal fibrosis remains to be elucidated. We previously demonstrated that fluid flow stress induced mesothelial proliferation and epithelial-mesenchymal transition via mitogen-activated protein kinase (MAPK) signaling. Therefore, we speculated that the prolonged bioactive effect of fluid flow stress may affect mesothelial cell kinetics after cessation of fluid streaming. To investigate how long mesothelial cells stay under the bioactive effect brought on by fluid flow stress after removal of the stress, we initially cultured mesothelial cells under fluid flow stress and then cultured the cells under static conditions. Mesothelial cells exposed to fluid flow stress for a certain time showed significantly high proliferative activity compared with static conditions after stoppage of fluid streaming. The expression levels of protein phosphatase 2A, which dephosphorylates MAPK, in mesothelial cells changed with time and showed a biphasic pattern that was dependent on the duration of exposure to fluid flow stress. There were no differences in the fluid flow stress-related bioactive effects on mesothelial cells once a certain time had passed
Fluid flow plate for decreased density of fuel cell assembly
Vitale, Nicholas G.
1999-01-01
A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.
Fluid flow and particle transport in mechanically ventilated airways. Part I. Fluid flow structures.
Van Rhein, Timothy; Alzahrany, Mohammed; Banerjee, Arindam; Salzman, Gary
2016-07-01
A large eddy simulation-based computational study of fluid flow and particle transport in upper tracheobronchial airways is carried out to investigate the effect of ventilation parameters on pulmonary fluid flow. Respiratory waveforms commonly used by commercial mechanical ventilators are used to study the effect of ventilation parameters and ventilation circuit on pulmonary fluid dynamics. A companion paper (Alzahrany et al. in Med Biol Eng Comput, 2014) reports our findings on the effect of the ventilation parameters and circuit on particle transport and aerosolized drug delivery. The endotracheal tube (ETT) was found to be an important geometric feature and resulted in a fluid jet that caused an increase in turbulence and created a recirculation zone with high wall shear stress in the main bronchi. Stronger turbulence was found in lower airways than would be found under normal breathing conditions due to the presence of the jet caused by the ETT. The pressure-controlled sinusoidal waveform induced the lowest wall shear stress on the airways wall. PMID:26563199
On the coupling between fluid flow and mesh motion in the modelling of fluid structure interaction
NASA Astrophysics Data System (ADS)
Dettmer, Wulf G.; Perić, Djordje
2008-12-01
Partitioned Newton type solution strategies for the strongly coupled system of equations arising in the computational modelling of fluid solid interaction require the evaluation of various coupling terms. An essential part of all ALE type solution strategies is the fluid mesh motion. In this paper, we investigate the effect of the terms which couple the fluid flow with the fluid mesh motion on the convergence behaviour of the overall solution procedure. We show that the computational efficiency of the simulation of many fluid solid interaction processes, including fluid flow through flexible pipes, can be increased significantly if some of these coupling terms are calculated exactly.
NASA Technical Reports Server (NTRS)
Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)
2013-01-01
Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.
Thermohydrodynamic Analysis of Cryogenic Liquid Turbulent Flow Fluid Film Bearings
NASA Technical Reports Server (NTRS)
SanAndres, Luis
1996-01-01
Computational programs developed for the thermal analysis of tilting and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings are described. The motion of a cryogenic liquid on the thin film annular region of a fluid film bearing is described by a set of mass and momentum conservation, and energy transport equations for the turbulent bulk-flow velocities and pressure, and accompanied by thermophysical state equations for evaluation of the fluid material properties. Zeroth-order equations describe the fluid flow field for a journal static equilibrium position, while first-order (linear) equations govern the fluid flow for small amplitude-journal center translational motions. Solution to the zeroth-order flow field equations provides the bearing flow rate, load capacity, drag torque and temperature rise. Solution to the first-order equations determines the rotordynamic force coefficients due to journal radial motions.
Flow of an electrorheological fluid between eccentric rotating cylinders
NASA Astrophysics Data System (ADS)
Průša, Vít; Rajagopal, K. R.
2012-01-01
Electrorheological fluids have numerous potential applications in vibration dampers, brakes, valves, clutches, exercise equipment, etc. The flows in such applications are complex three-dimensional flows. Most models that have been developed to describe the flows of electrorheological fluids are one-dimensional models. Here, we discuss the behavior of two fully three-dimensional models for electrorheological fluids. The models are such that they reduce, in the case of simple shear flows with the intensity of the electric field perpendicular to the streamlines, to the same constitutive relation, but they would not be identical in more complicated three-dimensional settings. In order to show the difference between the two models, we study the flow of these fluids between eccentrically placed rotating cylinders kept at different potentials, in the setting that corresponds to technologically relevant problem of flow of electrorheological fluid in journal bearing. Even though the two models have quite a different constitutive structure, due to the assumed forms for the velocity and pressure fields, the models lead to the same velocity field but to different pressure fields. This finding illustrates the need for considering the flows of fluids described by three-dimensional constitutive models in complex geometries, and not restricting ourselves to flows of fluids described by one-dimensional models or simple shear flows of fluids characterized by three-dimensional models.
Two-phase fluid flow in geometric packing.
Paiva, Aureliano Sancho S; Oliveira, Rafael S; Andrade, Roberto F S
2015-12-13
We investigate how a plug of obstacles inside a two-dimensional channel affects the drainage of high viscous fluid (oil) when the channel is invaded by a less viscous fluid (water). The plug consists of an Apollonian packing with, at most, 17 circles of different sizes, which is intended to model an inhomogeneous porous region. The work aims to quantify the amount of retained oil in the region where the flow is influenced by the packing. The investigation, carried out with the help of the computational fluid dynamics package ANSYS-FLUENT, is based on the integration of the complete set of equations of motion. The study considers the effect of both the injection speed and the number and size of obstacles, which directly affects the porosity of the system. The results indicate a complex dependence in the fraction of retained oil on the velocity and geometric parameters. The regions where the oil remains trapped is very sensitive to the number of circles and their size, which influence in different ways the porosity of the system. Nevertheless, at low values of Reynolds and capillary numbers Re<4 and n(c)≃10(-5), the overall expected result that the volume fraction of oil retained decreases with increasing porosity is recovered. A direct relationship between the injection speed and the fraction of oil is also obtained. PMID:26527816
Pore fluid pressure and shear behavior in debris flows of different compositions
NASA Astrophysics Data System (ADS)
Kaitna, Roland; Palucis, Marisa; Yohannes, Bereket; Hill, Kimberly; Dietrich, William
2016-04-01
Debris flows are mixtures of sediment and water that can have a wide range of different grain size distributions and water contents. The composition of the material is expected to have a strong effect on the development of pore fluid pressures in excess to hydrostatic, which in turn might affect the internal deformation behavior. We present a set of large scale experiments with debris flow mixtures of different compositions in a 4-m diameter rotating drum. Longitudinal profiles of basal fluid pressure and normal stress were measured and a probe to determine fluid pressure at different depths within the flow was developed and tested. Additionally we determined vertical profiles of mean particle velocities in the flow interior by measuring small variations of conductivity of the passing material and calculating the time lag between signals from two independent measurements at a small, known distance apart. Mean values of basal pore fluid pressure range from hydrostatic pressure for gravel-water flows to nearly complete liquefaction for muddy mixtures having a wide grain size distribution. The data indicate that the presence of fines dampens fluctuations of normalized fluid pressure and normal stress and concentrates shear at the base. The mobility of grain-fluid flows is strongly enhanced by a combination of fines in suspension as part of the interstitial fluid and a wide grain size distribution. Excess fluid pressure may arise from fluid displacement by converging grains at the front of the flow and the slow settling of grains through a highly viscous non-Newtonian fluid. Our findings support the need for pore pressure evolution and diffusion equations in debris flow models as they depend on particle size distributions. This study contributes to the understanding of the production of excess fluid pressure in grain fluid mixtures and may guide the development of constitutive models that describe natural events.
Mapping flow distortion on oceanographic platforms using computational fluid dynamics
NASA Astrophysics Data System (ADS)
O'Sullivan, N.; Landwehr, S.; Ward, B.
2013-10-01
Wind speed measurements over the ocean on ships or buoys are affected by flow distortion from the platform and by the anemometer itself. This can lead to errors in direct measurements and the derived parametrisations. Here we computational fluid dynamics (CFD) to simulate the errors in wind speed measurements caused by flow distortion on the RV Celtic Explorer. Numerical measurements were obtained from the finite-volume CFD code OpenFOAM, which was used to simulate the velocity fields. This was done over a range of orientations in the test domain from -60 to +60° in increments of 10°. The simulation was also set up for a range of velocities, ranging from 5 to 25 m s-1 in increments of 0.5 m s-1. The numerical analysis showed close agreement to experimental measurements.
Some specific features of the NMR study of fluid flows
NASA Astrophysics Data System (ADS)
Davydov, V. V.
2016-07-01
Some specific features of studying fluid flows with a NMR spectrometer are considered. The consideration of these features in the NMR spectrometer design makes it possible to determine the relative concentrations of paramagnetic ions and measure the longitudinal and transverse relaxation times ( T 1 and T 2, respectively) in fluid flows with an error no larger than 0.5%. This approach allows one to completely avoid errors in determining the state of a fluid from measured relaxation constants T 1 and T 2, which is especially urgent when working with medical suspensions and biological solutions. The results of an experimental study of fluid flows are presented.
Device for deriving energy from a flow of fluid
van Holten, T.
1982-12-07
Improved process and device for extracting energy present in a flowing fluid medium wherein a supported hub with propellers or blades is placed in said medium and the blades are provided with a wing or vane at the tip. The wing is of such a form that it generates a ''venturi effect'' in the flowing medium by which a part of the fluid which should normally pass outside the propeller disc area, is drawn into the propeller. The improvement consists of mixing of fluid which normally should pass outside the venturi with fluid which has flowed through the blades by provisions on blades and/or wing or vanes.
Fluid flow into vertical fractures from a point source
Clark, P.E.; Zhu, Q.
1995-03-01
Flow into a fracture from a point source recently has been the focus of attention in the petroleum industry. The suggestion has been made that, in this flow configuration, convection (gravity-driven flow) would dominate Stokes`-type settling for determining final proppant distribution. The theory is that when a dense fluid flows into a fracture filled with a less dense fluid from a point source, the density of the fluid will force it to the bottom of the fracture. This clearly happens when the two fluids have low viscosity. However, viscosity of both the fluid in the fracture and the displacing fluid and nonuniformities in the fracture influence displacement process significantly. Results presented in this study clearly show the effects of viscosity and fracture nonuniformity on the convective settling mechanism.
Working fluid flow visualization in gravity heat pipe
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Malcho, Milan
2016-03-01
Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapour and vice versa help heat pipe to transport high heat flux. The article deal about gravity heat pipe construction and processes casing inside during heat pipe operation. Experiment working fluid flow visualization is performed with two glass heat pipes with different inner diameter (13 mm and 22 mm) and filled with water. The working fluid flow visualization explains the phenomena as a working fluid boiling, nucleation of bubbles, and vapour condensation on the wall, vapour and condensate flow interaction, flow down condensate film thickness on the wall occurred during the heat pipe operation.
Method and apparatus for chemically altering fluids in continuous flow
Heath, W.O.; Virden, J.W. Jr.; Richardson, R.L.; Bergsman, T.M.
1993-10-19
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation. 4 figures.
Method and apparatus for chemically altering fluids in continuous flow
Heath, William O.; Virden, Jr., Judson W.; Richardson, R. L.; Bergsman, Theresa M.
1993-01-01
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation.
MHD Flow of the Micropolar Fluid between Eccentrically Rotating Disks.
Srivastava, Neetu
2014-01-01
This analytical investigation examines the magnetohydrodynamic flow problem of an incompressible micropolar fluid between the two eccentrically placed disks. Employing suitable transformations, the flow governing partial differential equations is reduced to ordinary differential equations. An exact solution representing the different flow characteristic of micropolar fluid has been derived by solving the ordinary differential equations. Analysis of the flow characteristics of the micropolar fluid has been done graphically by varying the Reynolds number and the Hartmann number. This analysis has been carried out for the weak and strong interactions. PMID:27355040
MHD Flow of the Micropolar Fluid between Eccentrically Rotating Disks
Srivastava, Neetu
2014-01-01
This analytical investigation examines the magnetohydrodynamic flow problem of an incompressible micropolar fluid between the two eccentrically placed disks. Employing suitable transformations, the flow governing partial differential equations is reduced to ordinary differential equations. An exact solution representing the different flow characteristic of micropolar fluid has been derived by solving the ordinary differential equations. Analysis of the flow characteristics of the micropolar fluid has been done graphically by varying the Reynolds number and the Hartmann number. This analysis has been carried out for the weak and strong interactions.
Alkaline phosphatase in osteoblasts is down-regulated by pulsatile fluid flow
NASA Technical Reports Server (NTRS)
Hillsley, M. V.; Frangos, J. A.
1997-01-01
It is our hypothesis that interstitial fluid flow plays a role in the bone remodeling response to mechanical loading. The fluid flow-induced expression of three proteins (collagen, osteopontin, and alkaline phosphatase) involved in bone remodeling was investigated. Rat calvarial osteoblasts subjected to pulsatile fluid flow at an average shear stress of 5 dyne/cm2 showed decreased alkaline phosphatase (AP) mRNA expression after only 1 hour of flow. After 3 hours of flow, AP mRNA levels had decreased to 30% of stationary control levels and remained at this level for an additional 5 hours of flow. Steady flow (4 dyne/cm2 fluid shear stress), in contrast, resulted in a delayed and less dramatic decrease in AP mRNA expression to 63% of control levels after 8 hours of flow. The reduced AP mRNA expression under pulsatile flow conditions was followed by reduced AP enzyme activity after 24 hours. No changes in collagen or osteopontin mRNA expression were detected over 8 hours of pulsatile flow. This is the first time fluid flow has been shown to affect gene expression in osteoblasts.
Microfluidic flow switching design using volume of fluid model.
Chein, Reiyu; Tsai, S H
2004-03-01
In this study, a volume of fluid (VOF) model was employed for microfluidic switch design. The VOF model validity in predicting the interface between fluid streams with different viscosities co-flowing in a microchannel was first verified by experimental observation. It was then extended to microfluidic flow switch design. Two specific flow switches, one with a guided fluid to one of five desired outlet ports, and another with a guided fluid flows into one, two, or three outlet ports equally distributed along the outlet channel of a Y-shaped channel. The flow switching was achieved by controlling the flow rate ratios between tested and buffer fluids. The numerical results showed that the VOF model could successfully predict the flow switching phenomena in these flow switches. The numerical results also showed that the flow rate ratio required for flow switching depends on the viscosity ratio between the tested and buffer fluids. The numerical simulation was verified by experimental study and the agreement was good. PMID:15307449
Thermodynamics and flow-frames for dissipative relativistic fluids
Ván, P.; Biró, T. S.
2014-01-14
A general thermodynamic treatment of dissipative relativistic fluids is introduced, where the temperature four vector is not parallel to the velocity field of the fluid. Generic stability and kinetic equilibrium points out a particular thermodynamics, where the temperature vector is parallel to the enthalpy flow vector and the choice of the flow fixes the constitutive functions for viscous stress and heat. The linear stability of the homogeneous equilibrium is proved in a mixed particle-energy flow-frame.
Fundamental Processes of Atomization in Fluid-Fluid Flows
NASA Technical Reports Server (NTRS)
Gallagher, Christopher; Leighton, David T.; Chang, Hsueh-Chia; McCready, Mark J.
1996-01-01
This paper discusses our proposed experimental and theoretical study of atomization in gas-liquid and liquid-liquid flows. While atomization is a very important process in these flows, the fundamental mechanism is not understood and there is no predictive theory. Previous photographic studies in (turbulent) gas-liquid flows have shown that liquid is atomized when it is removed by the gas flow from the crest of large solitary or roll waves. Our preliminary studies in liquid-liquid laminar flows exhibit the same mechanism. The two-liquid system is easier to study than gas-liquid systems because the time scales are much slower, the length scales much larger, and there is no turbulence. The proposed work is intended to obtain information about the mechanism of formation, rate of occurrence and the evolving shape of solitary waves; and quantitative aspects of the detailed events of the liquid removal process that can be used to verify a general predictive theory.
Vibration of a Flexible Pipe Conveying Viscous Pulsating Fluid Flow
NASA Astrophysics Data System (ADS)
GORMAN, D. G.; REESE, J. M.; ZHANG, Y. L.
2000-02-01
The non-linear equations of motion of a flexible pipe conveying unsteadily flowing fluid are derived from the continuity and momentum equations of unsteady flow. These partial differential equations are fully coupled through equilibrium of contact forces, the normal compatibility of velocity at the fluid- pipe interfaces, and the conservation of mass and momentum of the transient fluid. Poisson coupling between the pipe wall and fluid is also incorporated in the model. A combination of the finite difference method and the method of characteristics is employed to extract displacements, hydrodynamic pressure and flow velocities from the equations. A numerical example of a pipeline conveying fluid with a pulsating flow is given and discussed.
Study of the crevicular fluid flow rate in smokers.
Rosa, G M; Lucas, G Q; Lucas, O N
2000-01-01
The purpose of this study was to investigate if smoking--a risk factor in periodontal disease-affects the crevicular fluid (CF) flow rate. Twenty-nine dental students were included in the control group--non-smokers- (NS) and 34 in the experimental group--smokers- (S). All subjects were enrolled in a rigorous dental hygiene program (RDHP). The Greene-Vermillion plaque index, and Löe-Silness gingival index (GI) were recorded. CF was obtained and measured with the Periotron 8000. These recordings were made before and after the RDHP. The results show that the CF mean flow rate was slightly lower in the S group than in the NS group, for both recordings. The analysis of the relation between the CF flow rate and the GI recorded in the dental surfaces, revealed a significantly lower flow rate in the S group for GI 1 (p < 0.01) and GI 3 (p < 0.05). The difference observed between the S and NS groups, may be due to the vasoconstrictor action of the cigarette components (nicotine and/or metabolites) on the gingival vasculature. PMID:11885468
Applying uncertainty quantification to multiphase flow computational fluid dynamics
Gel, A; Garg, R; Tong, C; Shahnam, M; Guenther, C
2013-07-01
Multiphase computational fluid dynamics plays a major role in design and optimization of fossil fuel based reactors. There is a growing interest in accounting for the influence of uncertainties associated with physical systems to increase the reliability of computational simulation based engineering analysis. The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has recently undertaken an initiative to characterize uncertainties associated with computer simulation of reacting multiphase flows encountered in energy producing systems such as a coal gasifier. The current work presents the preliminary results in applying non-intrusive parametric uncertainty quantification and propagation techniques with NETL's open-source multiphase computational fluid dynamics software MFIX. For this purpose an open-source uncertainty quantification toolkit, PSUADE developed at the Lawrence Livermore National Laboratory (LLNL) has been interfaced with MFIX software. In this study, the sources of uncertainty associated with numerical approximation and model form have been neglected, and only the model input parametric uncertainty with forward propagation has been investigated by constructing a surrogate model based on data-fitted response surface for a multiphase flow demonstration problem. Monte Carlo simulation was employed for forward propagation of the aleatory type input uncertainties. Several insights gained based on the outcome of these simulations are presented such as how inadequate characterization of uncertainties can affect the reliability of the prediction results. Also a global sensitivity study using Sobol' indices was performed to better understand the contribution of input parameters to the variability observed in response variable.
Swarming in viscous fluids: Three-dimensional patterns in swimmer- and force-induced flows.
Chuang, Yao-Li; Chou, Tom; D'Orsogna, Maria R
2016-04-01
We derive a three-dimensional theory of self-propelled particle swarming in a viscous fluid environment. Our model predicts emergent collective behavior that depends critically on fluid opacity, mechanism of self-propulsion, and type of particle-particle interaction. In "clear fluids" swimmers have full knowledge of their surroundings and can adjust their velocities with respect to the lab frame, while in "opaque fluids" they control their velocities only in relation to the local fluid flow. We also show that "social" interactions that affect only a particle's propensity to swim towards or away from neighbors induces a flow field that is qualitatively different from the long-ranged flow fields generated by direct "physical" interactions. The latter can be short-ranged but lead to much longer-ranged fluid-mediated hydrodynamic forces, effectively amplifying the range over which particles interact. These different fluid flows conspire to profoundly affect swarm morphology, kinetically stabilizing or destabilizing swarm configurations that would arise in the absence of fluid. Depending upon the overall interaction potential, the mechanism of swimming ( e.g., pushers or pullers), and the degree of fluid opaqueness, we discover a number of new collective three-dimensional patterns including flocks with prolate or oblate shapes, recirculating pelotonlike structures, and jetlike fluid flows that entrain particles mediating their escape from the center of mill-like structures. Our results reveal how the interplay among general physical elements influence fluid-mediated interactions and the self-organization, mobility, and stability of new three-dimensional swarms and suggest how they might be used to kinetically control their collective behavior. PMID:27176395
Swarming in viscous fluids: Three-dimensional patterns in swimmer- and force-induced flows
NASA Astrophysics Data System (ADS)
Chuang, Yao-Li; Chou, Tom; D'Orsogna, Maria R.
2016-04-01
We derive a three-dimensional theory of self-propelled particle swarming in a viscous fluid environment. Our model predicts emergent collective behavior that depends critically on fluid opacity, mechanism of self-propulsion, and type of particle-particle interaction. In "clear fluids" swimmers have full knowledge of their surroundings and can adjust their velocities with respect to the lab frame, while in "opaque fluids" they control their velocities only in relation to the local fluid flow. We also show that "social" interactions that affect only a particle's propensity to swim towards or away from neighbors induces a flow field that is qualitatively different from the long-ranged flow fields generated by direct "physical" interactions. The latter can be short-ranged but lead to much longer-ranged fluid-mediated hydrodynamic forces, effectively amplifying the range over which particles interact. These different fluid flows conspire to profoundly affect swarm morphology, kinetically stabilizing or destabilizing swarm configurations that would arise in the absence of fluid. Depending upon the overall interaction potential, the mechanism of swimming ( e.g., pushers or pullers), and the degree of fluid opaqueness, we discover a number of new collective three-dimensional patterns including flocks with prolate or oblate shapes, recirculating pelotonlike structures, and jetlike fluid flows that entrain particles mediating their escape from the center of mill-like structures. Our results reveal how the interplay among general physical elements influence fluid-mediated interactions and the self-organization, mobility, and stability of new three-dimensional swarms and suggest how they might be used to kinetically control their collective behavior.
Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings
NASA Technical Reports Server (NTRS)
Andres, Luis San
1993-01-01
A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.
Conjugate Compressible Fluid Flow and Heat Transfer in Ducts
NASA Technical Reports Server (NTRS)
Cross, M. F.
2011-01-01
A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.
A framework for estimating potential fluid flow from digital imagery.
Luttman, Aaron; Bollt, Erik M; Basnayake, Ranil; Kramer, Sean; Tufillaro, Nicholas B
2013-09-01
Given image data of a fluid flow, the flow field, , governing the evolution of the system can be estimated using a variational approach to optical flow. Assuming that the flow field governing the advection is the symplectic gradient of a stream function or the gradient of a potential function-both falling under the category of a potential flow-it is natural to re-frame the optical flow problem to reconstruct the stream or potential function directly rather than the components of the flow individually. There are several advantages to this framework. Minimizing a functional based on the stream or potential function rather than based on the components of the flow will ensure that the computed flow is a potential flow. Next, this approach allows a more natural method for imposing scientific priors on the computed flow, via regularization of the optical flow functional. Also, this paradigm shift gives a framework--rather than an algorithm--and can be applied to nearly any existing variational optical flow technique. In this work, we develop the mathematical formulation of the potential optical flow framework and demonstrate the technique on synthetic flows that represent important dynamics for mass transport in fluid flows, as well as a flow generated by a satellite data-verified ocean model of temperature transport. PMID:24089970
Unbalanced-flow, fluid-mixing plug with metering capabilities
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Van Buskirk, Paul D. (Inventor)
2009-01-01
A fluid mixer plug has holes formed therethrough such that a remaining portion is closed to fluid flow. The plug's inlet face defines a central circuit region and a ring-shaped region with the ring-shaped region including at least some of the plug's remaining portion so-closed to fluid flow. This remaining portion or closed region at each radius R of the ring shaped region satisfies a radius independent, flow-based relationship. Entry openings are defined in the plug's inlet face in correspondence with the holes. The entry openings define an open flow area at each radius of the ring-shaped region. The open flow area at each such radius satisfies the inverse of the flow-based relationship defining the closed regions of the plug.
Flow networks: A characterization of geophysical fluid transport
NASA Astrophysics Data System (ADS)
Ser-Giacomi, Enrico; Rossi, Vincent; López, Cristóbal; Hernández-García, Emilio
2015-03-01
We represent transport between different regions of a fluid domain by flow networks, constructed from the discrete representation of the Perron-Frobenius or transfer operator associated to the fluid advection dynamics. The procedure is useful to analyze fluid dynamics in geophysical contexts, as illustrated by the construction of a flow network associated to the surface circulation in the Mediterranean sea. We use network-theory tools to analyze the flow network and gain insights into transport processes. In particular, we quantitatively relate dispersion and mixing characteristics, classically quantified by Lyapunov exponents, to the degree of the network nodes. A family of network entropies is defined from the network adjacency matrix and related to the statistics of stretching in the fluid, in particular, to the Lyapunov exponent field. Finally, we use a network community detection algorithm, Infomap, to partition the Mediterranean network into coherent regions, i.e., areas internally well mixed, but with little fluid interchange between them.
Feedback regulated induction heater for a flowing fluid
Migliori, Albert; Swift, Gregory W.
1985-01-01
A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable proportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005.degree. C. at a flow rate of 50 cm.sup.3 /second with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.
Feedback regulated induction heater for a flowing fluid
Migliori, A.; Swift, G.W.
1984-06-13
A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable porportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005/sup 0/C at a flow rate of 50 cm/sup 3//sec with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.
Apparatus for irradiating a continuously flowing stream of fluid
Speir, Leslie G.; Adams, Edwin L.
1984-01-01
An apparatus for irradiating a continuously flowing stream of fluid is diosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4.pi. radiation geometry. The irradiation source, for example a .sup.252 CF neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.
Superconfinement tailors fluid flow at microscales
Setu, Siti Aminah; Dullens, Roel P.A.; Hernández-Machado, Aurora; Pagonabarraga, Ignacio; Aarts, Dirk G.A.L.; Ledesma-Aguilar, Rodrigo
2015-01-01
Understanding fluid dynamics under extreme confinement, where device and intrinsic fluid length scales become comparable, is essential to successfully develop the coming generations of fluidic devices. Here we report measurements of advancing fluid fronts in such a regime, which we dub superconfinement. We find that the strong coupling between contact-line friction and geometric confinement gives rise to a new stability regime where the maximum speed for a stable moving front exhibits a distinctive response to changes in the bounding geometry. Unstable fronts develop into drop-emitting jets controlled by thermal fluctuations. Numerical simulations reveal that the dynamics in superconfined systems is dominated by interfacial forces. Henceforth, we present a theory that quantifies our experiments in terms of the relevant interfacial length scale, which in our system is the intrinsic contact-line slip length. Our findings show that length-scale overlap can be used as a new fluid-control mechanism in strongly confined systems. PMID:26073752
Destabilization of confined granular packings due to fluid flow
NASA Astrophysics Data System (ADS)
Monloubou, Martin; Sandnes, Bjørnar
2016-04-01
Fluid flow through granular materials can cause fluidization when fluid drag exceeds the frictional stress within the packing. Fluid driven failure of granular packings is observed in both natural and engineered settings, e.g. soil liquefaction and flowback of proppants during hydraulic fracturing operations. We study experimentally the destabilization and flow of an unconsolidated granular packing subjected to a point source fluid withdrawal using a model system consisting of a vertical Hele-Shaw cell containing a water-grain mixture. The fluid is withdrawn from the cell at a constant rate, and the emerging flow patterns are imaged in time-lapse mode. Using Particle Image Velocimetry (PIV), we show that the granular flow gets localized in a narrow channel down the center of the cell, and adopts a Gaussian velocity profile similar to those observed in dry grain flows in silos. We investigate the effects of the experimental parameters (flow rate, grain size, grain shape, fluid viscosity) on the packing destabilization, and identify the physical mechanisms responsible for the observed complex flow behaviour.
Laminar flow of two miscible fluids in a simple network
NASA Astrophysics Data System (ADS)
Karst, Casey M.; Storey, Brian D.; Geddes, John B.
2013-03-01
When a fluid comprised of multiple phases or constituents flows through a network, nonlinear phenomena such as multiple stable equilibrium states and spontaneous oscillations can occur. Such behavior has been observed or predicted in a number of networks including the flow of blood through the microcirculation, the flow of picoliter droplets through microfluidic devices, the flow of magma through lava tubes, and two-phase flow in refrigeration systems. While the existence of nonlinear phenomena in a network with many inter-connections containing fluids with complex rheology may seem unsurprising, this paper demonstrates that even simple networks containing Newtonian fluids in laminar flow can demonstrate multiple equilibria. The paper describes a theoretical and experimental investigation of the laminar flow of two miscible Newtonian fluids of different density and viscosity through a simple network. The fluids stratify due to gravity and remain as nearly distinct phases with some mixing occurring only by diffusion. This fluid system has the advantage that it is easily controlled and modeled, yet contains the key ingredients for network nonlinearities. Experiments and 3D simulations are first used to explore how phases distribute at a single T-junction. Once the phase separation at a single junction is known, a network model is developed which predicts multiple equilibria in the simplest of networks. The existence of multiple stable equilibria is confirmed experimentally and a criterion for existence is developed. The network results are generic and could be applied to or found in different physical systems.
Performance of Magnetorheological Fluids Flowing Through Metal Foams
NASA Astrophysics Data System (ADS)
Liu, X. h.; Fu, Z. m.; Yao, X. y.; Li, F.
2011-01-01
If magnetorheological (MR) fluids are stored in porous materials, when excited by the external magnetic field, MR fluid will be drawn out and produce MR effect, which could be used to solve the following problems of the MR damper, such as the seal, volume and the cost of MR fluid damper. In this paper, the effect of structure of metal foams on the performance of MR fluid is investigated; the relationship between the penetrability and the porosity of the metal foams is measured, the change of MR fluid performance flowing though the metal foams is obtained. It shows that, after flowing through metal foams, the change of performance of MR fluid is about 2.5%. Compared to the sponge, the porous metal foams have the obvious advantages in high porosity and rigidity, which provide a convenient and low-cost way to design the MR damper.
Collapsible sheath fluid reservoirs for flow cytometers
Mark, Graham A.
2000-01-01
The present invention is a container in the form of a single housing for holding fluid, including a first collapsible reservoir having a first valve. The first reservoir initially contains a volume of fluid. The container also includes a second reservoir, initially empty (or substantially empty), expandable to a second volume. The second reservoir has a second valve. As the volume of said first reservoir decreases, the volume of the second reservoir proportionally increases.
NASA Astrophysics Data System (ADS)
Hunt, J. C. R.
1981-05-01
The ways in which advances in fluid mechanics have led to improvements in engineering design are discussed, with attention to the stimulation of fluid mechanics research by industrial and environmental problems. The development of many practical uses of fluid flow without the benefit of scientific study is also emphasized. Among the topics discussed are vortices and coherent structures in turbulent flows, lubrication, jet and multiphase flows, the control and exploitation of waves, the effect of unsteady forces on structures, and dispersion phenomena. Among the practical achievements covered are the use of bluff shields to control separated flow over truck bodies and reduce aerodynamic drag, ink-jet printing, hovercraft stability, fluidized-bed combustion, the fluid/solid instabilities caused by air flow around a computer memory floppy disc, and various wind turbines.
Centrifuge in space fluid flow visualization experiment
NASA Technical Reports Server (NTRS)
Arnold, William A.; Wilcox, William R.; Regel, Liya L.; Dunbar, Bonnie J.
1993-01-01
A prototype flow visualization system is constructed to examine buoyancy driven flows during centrifugation in space. An axial density gradient is formed by imposing a thermal gradient between the two ends of the test cell. Numerical computations for this geometry showed that the Prandtl number plays a limited part in determining the flow.
Rémond, Agnès; Naïli, Salah; Lemaire, Thibault
2008-12-01
Bone remodelling is the process that maintains bone structure and strength through adaptation of bone tissue mechanical properties to applied loads. Bone can be modelled as a porous deformable material whose pores are filled with cells, organic material and interstitial fluid. Fluid flow is believed to play a role in the mechanotransduction of signals for bone remodelling. In this work, an osteon, the elementary unit of cortical bone, is idealized as a hollow cylinder made of a deformable porous matrix saturated with an interstitial fluid. We use Biot's poroelasticity theory to model the mechanical behaviour of bone tissue taking into account transverse isotropic mechanical properties. A finite element poroelastic model is developed in the COMSOL Multiphysics software. Elasticity equations and Darcy's law are implemented in this software; they are coupled through the introduction of an interaction term to obtain poroelasticity equations. Using numerical simulations, the investigation of the effect of spatial gradients of permeability or Poisson's ratio is performed. Results are discussed for their implication on fluid flow in osteons: (i) a permeability gradient affects more the fluid pressure than the velocity profile; (ii) focusing on the fluid flow, the key element of loading is the strain rate; (iii) a Poisson's ratio gradient affects both fluid pressure and fluid velocity. The influence of textural and mechanical properties of bone on mechanotransduction signals for bone remodelling is also discussed. PMID:17990014
Effect of asynchrony on numerical simulations of fluid flow phenomena
NASA Astrophysics Data System (ADS)
Konduri, Aditya; Mahoney, Bryan; Donzis, Diego
2015-11-01
Designing scalable CFD codes on massively parallel computers is a challenge. This is mainly due to the large number of communications between processing elements (PEs) and their synchronization, leading to idling of PEs. Indeed, communication will likely be the bottleneck in the scalability of codes on Exascale machines. Our recent work on asynchronous computing for PDEs based on finite-differences has shown that it is possible to relax synchronization between PEs at a mathematical level. Computations then proceed regardless of the status of communication, reducing the idle time of PEs and improving the scalability. However, accuracy of the schemes is greatly affected. We have proposed asynchrony-tolerant (AT) schemes to address this issue. In this work, we study the effect of asynchrony on the solution of fluid flow problems using standard and AT schemes. We show that asynchrony creates additional scales with low energy content. The specific wavenumbers affected can be shown to be due to two distinct effects: the randomness in the arrival of messages and the corresponding switching between schemes. Understanding these errors allow us to effectively control them, rendering the method's feasibility in solving turbulent flows at realistic conditions on future computing systems.
Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins
Major, J.J.; Iverson, R.M.
1999-01-01
Measurements of pore-fluid pressure and total bed-normal stress at the base of several ???10 m3 experimental debris flows provide new insight into the process of debris-flow deposition. Pore-fluid pressures nearly sufficient to cause liquefaction were developed and maintained during flow mobilization and acceleration, persisted in debris-flow interiors during flow deceleration and deposition, and dissipated significantly only during postdepositional sediment consolidation. In contrast, leading edges of debris flows exhibited little or no positive pore-fluid pressure. Deposition therefore resulted from grain-contact friction and bed friction concentrated at flow margins. This finding contradicts models that invoke widespread decay of excess pore-fluid pressure, uniform viscoplastic yield strength, or pervasive grain-collision stresses to explain debris-flow deposition. Furthermore, the finding demonstrates that deposit thickness cannot be used to infer the strength of flowing debris.
A two-fluid model for avalanche and debris flows.
Pitman, E Bruce; Le, Long
2005-07-15
Geophysical mass flows--debris flows, avalanches, landslides--can contain O(10(6)-10(10)) m(3) or more of material, often a mixture of soil and rocks with a significant quantity of interstitial fluid. These flows can be tens of meters in depth and hundreds of meters in length. The range of scales and the rheology of this mixture presents significant modelling and computational challenges. This paper describes a depth-averaged 'thin layer' model of geophysical mass flows containing a mixture of solid material and fluid. The model is derived from a 'two-phase' or 'two-fluid' system of equations commonly used in engineering research. Phenomenological modelling and depth averaging combine to yield a tractable set of equations, a hyperbolic system that describes the motion of the two constituent phases. If the fluid inertia is small, a reduced model system that is easier to solve may be derived. PMID:16011934
Thermal analysis of turbulent flow of a supercritical fluid
NASA Technical Reports Server (NTRS)
Yamane, E.
1979-01-01
The influence of the large variation of thermodynamics and transport properties near the pseudocritical temperature on the heat transfer coefficient of supercritical fluid in turbulent flow was studied. The formation of the characteristics peak in the heat transfer coefficient vs. bulk temperature curve is described, and the necessity of the fluid element at pseudocritical temperature located in the buffer layer is discussed.
Flow of Magnetohydrodynamic Micropolar Fluid Induced by Radially Stretching Sheets
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Nawaz, Muhammad; Hendi, Awatif A.
2011-02-01
We investigate the flow of a micropolar fluid between radial stretching sheets. The magnetohydrodynamic (MHD) nonlinear problem is treated using the homotopy analysis method (HAM) and the velocity profiles are predicted for the pertinent parameters. The values of skin friction and couple shear stress coefficients are obtained for various values of Reynolds number, Hartman number, and micropolar fluid parameter.
Nanoscale Fluid Flows in the Vicinity of Patterned Surfaces
NASA Astrophysics Data System (ADS)
Cieplak, Marek; Koplik, Joel; Banavar, Jayanth R.
2006-03-01
Molecular dynamics simulations of dense and rarefied fluids comprising small chain molecules in chemically patterned nanochannels predict a novel switching from Poiseuille to plug flow along the channel. We also demonstrate behavior akin to the lotus effect for a nanodrop on a chemically patterned substrate. Our results show that one can control and exploit the behavior of fluids at the nanoscale using chemical patterning.
A discrete simulation of 2-D fluid flow on TERASYS
Mullins, P.G.; Krolak, P.D.
1995-12-01
A discrete simulation of two-dimensional (2-D) fluid flow, on a recently designed novel architecture called TERASYS is presented. The simulation uses a cellular automaton approach, implemented in a new language called data-parallel bit C (dbC). A performance comparison between our implementation on TERASYS and an implementation on the Connection Machine is discussed. We comment briefly on the suitability of the TERASYS system for modeling fluid flow using cellular automata.
Large-eddy simulation of supercritical fluid flow and combustion
NASA Astrophysics Data System (ADS)
Huo, Hongfa
The present study focuses on the modeling and simulation of injection, mixing, and combustion of real fluids at supercritical conditions. The objectives of the study are: (1) to establish a unified theoretical framework that can be used to study the turbulent combustion of real fluids; (2) to implement the theoretical framework and conduct numerical studies with the aim of improving the understanding of the flow and combustion dynamics at conditions representative of contemporary liquid-propellant rocket engine operation; (3) to identify the key design parameters and the flow variables which dictate the dynamics characteristics of swirl- and shear- coaxial injectors. The theoretical and numerical framework is validated by simulating the Sandia Flame D. The calculated axial and radial profiles of velocity, temperature, and mass fractions of major species are in reasonably good agreement with the experimental measurements. The conditionally averaged mass fraction profiles agree very well with the experimental results at different axial locations. The validated model is first employed to examine the flow dynamics of liquid oxygen in a pressure swirl injector at supercritical conditions. Emphasis is placed on analyzing the effects of external excitations on the dynamic response of the injector. The high-frequency fluctuations do not significantly affect the flow field as they are dissipated shortly after being introduced into the flow. However, the lower-frequency fluctuations are amplified by the flow. As a result, the film thickness and the spreading angle at the nozzle exit fluctuate strongly for low-frequency external excitations. The combustion of gaseous oxygen/gaseous hydrogen in a high-pressure combustion chamber for a shear coaxial injector is simulated to assess the accuracy and the credibility of the computer program when applied to a sub-scale model of a combustor. The predicted heat flux profile is compared with the experimental and numerical studies. The
Occurrence of turbulent flow conditions in supercritical fluid chromatography.
De Pauw, Ruben; Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken
2014-09-26
Having similar densities as liquids but with viscosities up to 20 times lower (higher diffusion coefficients), supercritical CO2 is the ideal (co-)solvent for fast and/or highly efficient separations without mass-transfer limitations or excessive column pressure drops. Whereas in liquid chromatography the flow remains laminar in both the packed bed and tubing, except in extreme cases (e.g. in a 75 μm tubing, pure acetonitrile at 5 ml/min), a supercritical fluid can experience a transition from laminar to turbulent flow in more typical operation modes. Due to the significant lower viscosity, this transition for example already occurs at 1.3 ml/min for neat CO2 when using connection tubing with an ID of 127 μm. By calculating the Darcy friction factor, which can be plotted versus the Reynolds number in a so-called Moody chart, typically used in fluid dynamics, higher values are found for stainless steel than PEEK tubing, in agreement with their expected higher surface roughness. As a result turbulent effects are more pronounced when using stainless steel tubing. The higher than expected extra-column pressure drop limits the kinetic performance of supercritical fluid chromatography and complicates the optimization of tubing ID, which is based on a trade-off between extra-column band broadening and pressure drop. One of the most important practical consequences is the non-linear increase in extra-column pressure drop over the tubing downstream of the column which leads to an unexpected increase in average column pressure and mobile phase density, and thus decrease in retention. For close eluting components with a significantly different dependence of retention on density, the selectivity can significantly be affected by this increase in average pressure. In addition, the occurrence of turbulent flow is also observed in the detector cell and connection tubing. This results in a noise-increase by a factor of four when going from laminar to turbulent flow (e.g. going
Fluid pressure and flow as a cause of bone resorption
Fahlgren, Anna
2010-01-01
Background Unstable implants in bone become surrounded by an osteolytic zone. This is seen around loose screws, for example, but may also contribute to prosthetic loosening. Previous animal studies have shown that such zones can be induced by fluctuations in fluid pressure or flow, caused by implant instability. Method To understand the roles of pressure and flow, we describe the 3-dimensional distribution of osteolytic lesions in response to fluid pressure and flow in a previously reported rat model of aseptic loosening. 50 rats had a piston inserted in the proximal tibia, designed to produce 20 local spikes in fluid pressure of a clinically relevant magnitude (700 mmHg) twice a day. The spikes lasted for about 0.3 seconds. After 2 weeks, the pressure was measured in vivo, and the osteolytic lesions induced were studied using micro-CT scans. Results Most bone resorption occurred at pre-existing cavities within the bone in the periphery around the pressurized region, and not under the piston. This region is likely to have a higher fluid flow and less pressure than the area just beneath the piston. The velocity of fluid flow was estimated to be very high (roughly 20 mm/s). Interpretation The localization of the resorptive lesions suggests that high-velocity fluid flow is important for bone resorption induced by instability. PMID:20718695
Flow regimes for fluid injection into a confined porous medium
Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.
2015-02-24
We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governing equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.
Flow regimes for fluid injection into a confined porous medium
Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.
2015-02-24
We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less
Calcium response in osteocytic networks under steady and oscillatory fluid flow.
Lu, X Lucas; Huo, Bo; Park, Miri; Guo, X Edward
2012-09-01
The fluid flow in the lacunar-canalicular system of bone is an essential mechanical stimulation on the osteocyte networks. Due to the complexity of human physical activities, the fluid shear stress on osteocyte bodies and processes consists of both steady and oscillatory components. In this study, we investigated and compared the intracellular calcium ([Ca(2+)](i)) responses of osteocytic networks under steady and oscillatory fluid flows. An in vitro osteocytic network was built with MLO-Y4 osteocyte-like cells using micro-patterning techniques to simulate the in vivo orderly organization of osteocyte networks. Sinusoidal oscillating fluid flow or unidirectional steady flow was applied on the cell surface with 2Pa peak shear stress. It was found that the osteocytic networks were significantly more responsive to steady flow than to oscillatory flow. The osteocytes can release more calcium peaks with higher magnitudes at a faster speed under steady flow stimulation. The [Ca(2+)](i) signaling transients under the steady and oscillatory flows have significantly different spatiotemporal characters, but a similar responsive percentage of cells. Further signaling pathway studies using inhibitors showed that endoplasmic reticulum (ER) calcium store, extracellular calcium source, ATP, PGE(2) and NO related pathways play similar roles in the [Ca(2+)](i) signaling of osteocytes under either steady or oscillating flow. The spatiotemporal characteristics of [Ca(2+)](i) transients under oscillating fluid flow are affected more profoundly by pharmacological treatments than under the steady flow. Our findings support the hypothesis that the [Ca(2+)](i) responses of osteocytic networks are significantly dependent on the profiles of fluid flow. PMID:22750013
Maxwell, electromagnetism, and fluid flow in resistive media
NASA Astrophysics Data System (ADS)
Narasimhan, T. N.
Common wisdom has it that Darcy [1856] founded the modern field of fluid flow through porous media with his celebrated 1856 experiment on the steady flow of water through a sand column. For considerable time, Darcy's empirical observation, in conjunction with Fourier's [1807] heat equation, was used to analyze fluid flow in porous media simply by mathematical analogy. Hubbert [1940] is credited with placing Darcy's work on sound hydrodynamic foundations. Among other things, he defined an energy potential, interpreted permeability in the context of balancing impelling and resistive forces, and derived an expression for the refraction of flow lines. In 1856, James Clerk Maxwell constructed a theory for the flow of an incompressible fluid in a resistive medium as a metaphor for comprehending the emerging field of electromagnetism [Maxwell, 1890].
Deployable Emergency Shutoff Device Blocks High-Velocity Fluid Flows
NASA Technical Reports Server (NTRS)
Nabors, Sammy A.
2015-01-01
NASA's Marshall Space Flight Center has developed a device and method for blocking the flow of fluid from an open pipe. Motivated by the sea-bed oil-drilling catastrophe in the Gulf of Mexico in 2010, NASA innovators designed the device to plug, control, and meter the flow of gases and liquids. Anchored with friction fittings, spikes, or explosively activated fasteners, the device is well-suited for harsh environments and high fluid velocities and pressures. With the addition of instrumentation, it can also be used as a variable area flow metering valve that can be set based upon flow conditions. With robotic additions, this patent-pending innovation can be configured to crawl into a pipe then anchor and activate itself to block or control fluid flow.
Bone tissue engineering: the role of interstitial fluid flow
NASA Technical Reports Server (NTRS)
Hillsley, M. V.; Frangos, J. A.
1994-01-01
It is well established that vascularization is required for effective bone healing. This implies that blood flow and interstitial fluid (ISF) flow are required for healing and maintenance of bone. The fact that changes in bone blood flow and ISF flow are associated with changes in bone remodeling and formation support this theory. ISF flow in bone results from transcortical pressure gradients produced by vascular and hydrostatic pressure, and mechanical loading. Conditions observed to alter flow rates include increases in venous pressure in hypertension, fluid shifts occurring in bedrest and microgravity, increases in vascularization during the injury-healing response, and mechanical compression and bending of bone during exercise. These conditions also induce changes in bone remodeling. Previously, we hypothesized that interstitial fluid flow in bone, and in particular fluid shear stress, serves to mediate signal transduction in mechanical loading- and injury-induced remodeling. In addition, we proposed that a lack or decrease of ISF flow results in the bone loss observed in disuse and microgravity. The purpose of this article is to review ISF flow in bone and its role in osteogenesis.
Capacitance probe for fluid flow and volume measurements
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1995-01-01
Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a microgravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
Capacitance Probe for Fluid Flow and Volume Measurements
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1997-01-01
Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a micro-gravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
Axisymmetric flows from fluid injection into a confined porous medium
NASA Astrophysics Data System (ADS)
Guo, Bo; Zheng, Zhong; Celia, Michael A.; Stone, Howard A.
2016-02-01
We study the axisymmetric flows generated from fluid injection into a horizontal confined porous medium that is originally saturated with another fluid of different density and viscosity. Neglecting the effects of surface tension and fluid mixing, we use the lubrication approximation to obtain a nonlinear advection-diffusion equation that describes the time evolution of the sharp fluid-fluid interface. The flow behaviors are controlled by two dimensionless groups: M, the viscosity ratio of displaced fluid relative to injected fluid, and Γ, which measures the relative importance of buoyancy and fluid injection. For this axisymmetric geometry, the similarity solution involving R2/T (where R is the dimensionless radial coordinate and T is the dimensionless time) is an exact solution to the nonlinear governing equation for all times. Four analytical expressions are identified as asymptotic approximations (two of which are new solutions): (i) injection-driven flow with the injected fluid being more viscous than the displaced fluid (Γ ≪ 1 and M < 1) where we identify a self-similar solution that indicates a parabolic interface shape; (ii) injection-driven flow with injected and displaced fluids of equal viscosity (Γ ≪ 1 and M = 1), where we find a self-similar solution that predicts a distinct parabolic interface shape; (iii) injection-driven flow with a less viscous injected fluid (Γ ≪ 1 and M > 1) for which there is a rarefaction wave solution, assuming that the Saffman-Taylor instability does not occur at the reservoir scale; and (iv) buoyancy-driven flow (Γ ≫ 1) for which there is a well-known self-similar solution corresponding to gravity currents in an unconfined porous medium [S. Lyle et al. "Axisymmetric gravity currents in a porous medium," J. Fluid Mech. 543, 293-302 (2005)]. The various axisymmetric flows are summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime
Numerical study of subcritical flow with fluid injection
NASA Technical Reports Server (NTRS)
Balasubramanian, R.
1990-01-01
It is suggested that the study of synthetic flows, where controlled experiments can be performed, is useful in understanding turbulent flow structures. The early states of formation of hairpin structures in shear flows and the subsequent evolution of these structures is studied in shear flows and the subsequent evolution of these structures is studied through numerical simulations, by developing full-time dependent three-dimensional flow solution of an initially laminar (subcritical) flow in which injection of fluid through a narrow streamwise slot from the bottom wall of a plate is carried out. Details of the numerical approach and significance of the present findings are reported in this work.
Surface tension driven flow in glass melts and model fluids
NASA Technical Reports Server (NTRS)
Mcneil, T. J.; Cole, R.; Subramanian, R. S.
1982-01-01
Surface tension driven flow has been investigated analytically and experimentally using an apparatus where a free column of molten glass or model fluids was supported at its top and bottom faces by solid surfaces. The glass used in the experiments was sodium diborate, and the model fluids were silicone oils. In both the model fluid and glass melt experiments, conclusive evidence was obtained to prove that the observed flow was driven primarily by surface tension forces. The experimental observations are in qualitative agreement with predictions from the theoretical model.
Exploring Online Game Players' Flow Experiences and Positive Affect
ERIC Educational Resources Information Center
Chiang, Yu-Tzu; Lin, Sunny S. J.; Cheng, Chao-Yang; Liu, Eric Zhi-Feng
2011-01-01
The authors conducted two studies to explore online game players' flow experiences and positive affect. Our findings indicated that online game are capable of evoking flow experiences and positive affect, and games of violent or nonviolent type may not arouse players' aggression. The players could be placed into four flow conditions: flow,…
Pulmonary fluid flow challenges for experimental and mathematical modeling.
Levy, Rachel; Hill, David B; Forest, M Gregory; Grotberg, James B
2014-12-01
Modeling the flow of fluid in the lungs, even under baseline healthy conditions, presents many challenges. The complex rheology of the fluids, interaction between fluids and structures, and complicated multi-scale geometry all add to the complexity of the problem. We provide a brief overview of approaches used to model three aspects of pulmonary fluid and flow: the surfactant layer in the deep branches of the lung, the mucus layer in the upper airway branches, and closure/reopening of the airway. We discuss models of each aspect, the potential to capture biological and therapeutic information, and open questions worthy of further investigation. We hope to promote multi-disciplinary collaboration by providing insights into mathematical descriptions of fluid-mechanics in the lung and the kinds of predictions these models can make. PMID:25096289
Pulmonary Fluid Flow Challenges for Experimental and Mathematical Modeling
Levy, Rachel; Hill, David B.; Forest, M. Gregory; Grotberg, James B.
2014-01-01
Modeling the flow of fluid in the lungs, even under baseline healthy conditions, presents many challenges. The complex rheology of the fluids, interaction between fluids and structures, and complicated multi-scale geometry all add to the complexity of the problem. We provide a brief overview of approaches used to model three aspects of pulmonary fluid and flow: the surfactant layer in the deep branches of the lung, the mucus layer in the upper airway branches, and closure/reopening of the airway. We discuss models of each aspect, the potential to capture biological and therapeutic information, and open questions worthy of further investigation. We hope to promote multi-disciplinary collaboration by providing insights into mathematical descriptions of fluid-mechanics in the lung and the kinds of predictions these models can make. PMID:25096289
System and method measuring fluid flow in a conduit
Ortiz, M.G.; Kidd, T.G.
1999-05-18
A system is described for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements. 3 figs.
System and method measuring fluid flow in a conduit
Ortiz, Marcos German; Kidd, Terrel G.
1999-01-01
A system for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements.
Transonic Flows of Bethe-Zel'dovich-Thompson Fluids
NASA Astrophysics Data System (ADS)
Cramer, Mark; Andreyev, Aleksandr
2013-11-01
We examine steady transonic flows of Bethe-Zel'dovich-Thompson (BZT) fluids over thin turbine blades or airfoils. BZT fluids are ordinary fluids having a region of negative fundamental derivative over a finite range of pressures and temperatures in the single phase regime. We present the transonic small disturbance equation, shock jump conditions, and shock existence conditions capable of capturing the qualitative behavior of BZT fluids. The flux function is seen to be quartic in the pressure or density perturbation rather than the quadratic (convex) flux function of the perfect gas theory. We show how this nonconvex flux function can be used to predict and explain the complex flows possible. Numerical solutions using a successive line relaxation (SLR) scheme are presented. New results of interest include shock-splitting, collisions between expansion and compression shocks, two compressive bow shocks in supersonic flows, and the observation of as many as three normal stern shocks following an oblique trailing edge shock.
An Iterative CT Reconstruction Algorithm for Fast Fluid Flow Imaging.
Van Eyndhoven, Geert; Batenburg, K Joost; Kazantsev, Daniil; Van Nieuwenhove, Vincent; Lee, Peter D; Dobson, Katherine J; Sijbers, Jan
2015-11-01
The study of fluid flow through solid matter by computed tomography (CT) imaging has many applications, ranging from petroleum and aquifer engineering to biomedical, manufacturing, and environmental research. To avoid motion artifacts, current experiments are often limited to slow fluid flow dynamics. This severely limits the applicability of the technique. In this paper, a new iterative CT reconstruction algorithm for improved a temporal/spatial resolution in the imaging of fluid flow through solid matter is introduced. The proposed algorithm exploits prior knowledge in two ways. First, the time-varying object is assumed to consist of stationary (the solid matter) and dynamic regions (the fluid flow). Second, the attenuation curve of a particular voxel in the dynamic region is modeled by a piecewise constant function over time, which is in accordance with the actual advancing fluid/air boundary. Quantitative and qualitative results on different simulation experiments and a real neutron tomography data set show that, in comparison with the state-of-the-art algorithms, the proposed algorithm allows reconstruction from substantially fewer projections per rotation without image quality loss. Therefore, the temporal resolution can be substantially increased, and thus fluid flow experiments with faster dynamics can be performed. PMID:26259219
System proportions fluid-flow in response to demand signals
NASA Technical Reports Server (NTRS)
1966-01-01
Control system provides proportioned fluid flow rates in response to demand signals. It compares a digital signal, representing a flow demand, with a reference signal to yield a control voltage to one or more solenoid valves connected to orifices of a predetermined size.
Hydromechanical Modeling of Fluid Flow in the Lower Crust
NASA Astrophysics Data System (ADS)
Connolly, J.
2011-12-01
The lower crust lies within an ambiguous rheological regime between the brittle upper crust and ductile sub-lithospheric mantle. This ambiguity has allowed two schools of thought to develop concerning the nature of fluid flow in the lower crust. The classical school holds that lower crustal rocks are inviscid and that any fluid generated by metamorphic devolatilization is squeezed out of rocks as rapidly as it is produced. According to this school, permeability is a dynamic property and fluid flow is upward. In contrast, the modern school uses concepts from upper crustal hydrology that presume implicitly, if not explicitly, that rocks are rigid or, at most, brittle. For the modern school, the details of crustal permeability determine fluid flow and as these details are poorly known almost anything is possible. Reality, to the extent that it is reflected by inference from field studies, offers some support to both schools. In particular, evidence of significant lateral and channelized fluid flow are consistent with flow in rigid media, while evidence for short (104 - 105 y) grain-scale fluid-rock interaction during much longer metamorphic events, suggests that reaction-generated grain-scale permeability is sealed rapidly by compaction; a phenomenon that is also essential to prevent extensive retrograde metamorphism. These observations provide a compelling argument for recognizing in conceptual models of lower crustal fluid flow that rocks are neither inviscid nor rigid, but compact by viscous mechanisms on a finite time-scale. This presentation will review the principle consequences of, and obstacles to, incorporating compaction in such models. The role of viscous compaction in the lower crust is extraordinarily uncertain, but ignoring this uncertainty in models of lower crustal fluid flow does not make the models any more certain. Models inevitably invoke an initial steady state hydraulic regime. This initial steady state is critical to model outcomes because it
A preliminary study to Assess Model Uncertainties in Fluid Flows
Marc Oliver Delchini; Jean C. Ragusa
2009-09-01
The goal of this study is to assess the impact of various flow models for a simplified primary coolant loop of a light water nuclear reactor. The various fluid flow models are based on the Euler equations with an additional friction term, gravity term, momentum source, and energy source. The geometric model is purposefully chosen simple and consists of a one-dimensional (1D) loop system in order to focus the study on the validity of various fluid flow approximations. The 1D loop system is represented by a rectangle; the fluid is heated up along one of the vertical legs and cooled down along the opposite leg. A pressurizer and a pump are included in the horizontal legs. The amount of energy transferred and removed from the system is equal in absolute value along the two vertical legs. The various fluid flow approximations are compressible vs. incompressible, and complete momentum equation vs. Darcy’s approximation. The ultimate goal is to compute the fluid flow models’ uncertainties and, if possible, to generate validity ranges for these models when applied to reactor analysis. We also limit this study to single phase flows with low-Mach numbers. As a result, sound waves carry a very small amount of energy in this particular case. A standard finite volume method is used for the spatial discretization of the system.
Flow over a membrane-covered, fluid-filled cavity
Mongeau, Luc; Frankel, Steven H.
2014-01-01
The flow-induced response of a membrane covering a fluid-filled cavity located in a section of a rigid-walled channel was explored using finite element analysis. The membrane was initially aligned with the channel wall and separated the channel fluid from the cavity fluid. As fluid flowed over the membrane-covered cavity, a streamwise-dependent transmural pressure gradient caused membrane deformation. This model has application to synthetic models of the vocal fold cover layer used in voice production research. In this paper, the model is introduced and responses of the channel flow, the membrane, and the cavity flow are summarized for a range of flow and membrane parameters. It is shown that for high values of cavity fluid viscosity, the intracavity pressure and the beam deflection both reached steady values. For combinations of low cavity viscosity and sufficiently large upstream pressures, large-amplitude membrane vibrations resulted. Asymmetric conditions were introduced by creating cavities on opposing sides of the channel and assigning different stiffness values to the two membranes. The asymmetry resulted in reduction in or cessation of vibration amplitude, depending on the degree of asymmetry, and in significant skewing of the downstream flow field. PMID:24723738
Flow over a membrane-covered, fluid-filled cavity.
Thomson, Scott L; Mongeau, Luc; Frankel, Steven H
2007-01-01
The flow-induced response of a membrane covering a fluid-filled cavity located in a section of a rigid-walled channel was explored using finite element analysis. The membrane was initially aligned with the channel wall and separated the channel fluid from the cavity fluid. As fluid flowed over the membrane-covered cavity, a streamwise-dependent transmural pressure gradient caused membrane deformation. This model has application to synthetic models of the vocal fold cover layer used in voice production research. In this paper, the model is introduced and responses of the channel flow, the membrane, and the cavity flow are summarized for a range of flow and membrane parameters. It is shown that for high values of cavity fluid viscosity, the intracavity pressure and the beam deflection both reached steady values. For combinations of low cavity viscosity and sufficiently large upstream pressures, large-amplitude membrane vibrations resulted. Asymmetric conditions were introduced by creating cavities on opposing sides of the channel and assigning different stiffness values to the two membranes. The asymmetry resulted in reduction in or cessation of vibration amplitude, depending on the degree of asymmetry, and in significant skewing of the downstream flow field. PMID:24723738
A numerical model for dynamic crustal-scale fluid flow
NASA Astrophysics Data System (ADS)
Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel
2015-04-01
Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude
Advances in modelling of biomimetic fluid flow at different scales
2011-01-01
The biomimetic flow at different scales has been discussed at length. The need of looking into the biological surfaces and morphologies and both geometrical and physical similarities to imitate the technological products and processes has been emphasized. The complex fluid flow and heat transfer problems, the fluid-interface and the physics involved at multiscale and macro-, meso-, micro- and nano-scales have been discussed. The flow and heat transfer simulation is done by various CFD solvers including Navier-Stokes and energy equations, lattice Boltzmann method and molecular dynamics method. Combined continuum-molecular dynamics method is also reviewed. PMID:21711847
Fluid Flow Technology that Measures Up
NASA Technical Reports Server (NTRS)
2004-01-01
From 1994 to 1996, NASA s Marshall Space Flight Center conducted a Center Director's Discretionary Fund research effort to apply artificial intelligence technologies to the health management of plant equipment and space propulsion systems. Through this effort, NASA established a business relationship with Quality Monitoring and Control (QMC), of Kingwood, Texas, to provide hardware modeling and artificial intelligence tools. Very detailed and accurate Space Shuttle Main Engine (SSME) analysis and algorithms were jointly created, which identified several missing, critical instrumentation needs for adequately evaluating the engine health status. One of the missing instruments was a liquid oxygen (LOX) flow measurement. This instrument was missing since the original SSME included a LOX turbine flow meter that failed during a ground test, resulting in considerable damage for NASA. New balanced flow meter technology addresses this need with robust, safe, and accurate flow metering hardware.
NASA Astrophysics Data System (ADS)
Zhang, Wen-Ming; Yan, Han; Jiang, Hui-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang
2016-04-01
In this paper, the dynamics of suspended microchannel resonators which convey internal flows with opposite directions are investigated. The fluid-structure interactions between the laminar fluid flow and oscillating cantilever are analyzed by comprehensively considering the effects of velocity profile, flow viscosity and added flowing particle. A new model is developed to characterize the dynamic behavior of suspended microchannel resonators with the fluid-structure interactions. The stability, frequency shift and energy dissipation of suspended microchannel resonators are analyzed and discussed. The results demonstrate that the frequency shifts induced by the added flowing particle which are obtained from the new model have a good agreement with the experimental data. The steady mean flow can cause the frequency shift and influence the stability of the dynamic system. As the flow velocity reaches the critical value, the coupled-mode flutter occurs via a Hamiltonian Hopf bifurcation. The perturbation flow resulted from the vibration of the microcantilever leads to energy dissipation, while the steady flow does not directly cause the damping which increases with the increasing of the flow velocity predicted by the classical model. It can also be found that the steady flow firstly changes the mode shape of the cantilever and consequently affects the energy dissipation.
A Causal, Covariant Theory of Dissipative Fluid Flow
NASA Astrophysics Data System (ADS)
Scofield, Dillon; Huq, Pablo
2015-04-01
The use of newtonian viscous dissipation theory in covariant fluid flow theories is known to lead to predictions that are inconsistent with the second law of thermodynamics and to predictions that are acausal. For instance, these problems effectively limit the covariant form of the Navier-Stokes theory (NST) to time-independent flow regimes. Thus the NST, the work horse of fluid dynamical theory, is limited in its ability to model time-dependent turbulent, stellar or thermonuclear flows. We show how such problems are avoided by a new geometrodynamical theory of fluids. This theory is based on a recent result of geometrodynamics showing current conservation implies gauge field creation, called the vortex field lemma and classification of flows by their Pfaff dimension. Experimental confirmation of the theory is reviewed.
Benchmarking computational fluid dynamics models for lava flow simulation
NASA Astrophysics Data System (ADS)
Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi
2016-04-01
Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, and COMSOL. Using the new benchmark scenarios defined in Cordonnier et al. (Geol Soc SP, 2015) as a guide, we model viscous, cooling, and solidifying flows over horizontal and sloping surfaces, topographic obstacles, and digital elevation models of natural topography. We compare model results to analytical theory, analogue and molten basalt experiments, and measurements from natural lava flows. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We can apply these models to reconstruct past lava flows in Hawai'i and Saudi Arabia using parameters assembled from morphology, textural analysis, and eruption observations as natural test cases. Our study highlights the strengths and weaknesses of each code, including accuracy and computational costs, and provides insights regarding code selection.
An Image-Based Model of Fluid Flow Through Lymph Nodes.
Cooper, Laura J; Heppell, James P; Clough, Geraldine F; Ganapathisubramani, Bharathram; Roose, Tiina
2016-01-01
The lymphatic system returns fluid to the bloodstream from the tissues to maintain tissue fluid homeostasis. Lymph nodes distributed throughout the system filter the lymphatic fluid. The afferent and efferent lymph flow conditions of lymph nodes can be measured in experiments; however, it is difficult to measure the flow within the nodes. In this paper, we present an image-based modelling approach to investigating how the internal structure of the node affects the fluid flow pathways within the node. Selective plane illumination microscopy images of murine lymph nodes are used to identify the geometry and structure of the tissue within the node and to determine the permeability of the lymph node interstitium to lymphatic fluid. Experimental data are used to determine boundary conditions and optimise the parameters for the model. The numerical simulations conducted within the model are implemented in COMSOL Multiphysics, a commercial finite element analysis software. The parameter fitting resulted in the estimate that the average permeability for lymph node tissue is of the order of magnitude of [Formula: see text]. Our modelling shows that the flow predominantly takes a direct path between the afferent and efferent lymphatics and that fluid is both filtered and absorbed across the blood vessel boundaries. The amount that is absorbed or extravasated in the model is dependent on the efferent lymphatic lumen fluid pressure. PMID:26690921
The fluid mechanics of continuous flow electrophoresis
NASA Technical Reports Server (NTRS)
Saville, D. A.
1990-01-01
The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.
Active Learning in Fluid Mechanics: Youtube Tube Flow and Puzzling Fluids Questions
ERIC Educational Resources Information Center
Hrenya, Christine M.
2011-01-01
Active-learning exercises appropriate for a course in undergraduate fluid mechanics are presented. The first exercise involves an experiment in gravity-driven tube flow, with small groups of students partaking in a contest to predict the experimental flow rates using the mechanical energy balance. The second exercise takes the form of an…
Particle Deposition in a Two-Fluid Flow Environment
NASA Astrophysics Data System (ADS)
Yap, Yit Fatt; Goharzadeh, Afshin; Vargas, Francisco M.; John Chai, Chee Kiong
2014-11-01
The formation of particle deposit on surfaces occurs in many applications. For example, in the oil and gas industry, deposition of wax, hydrates and asphaltene reduces flows and clogs pipelines eventually if left untreated. Removal of the deposits is costly as it disrupts production. To further complicate the problem, the main flow carrying the depositing particles is often of a multi-phase nature. Successful mitigation effort requires good understanding and eventual prediction of the deposition process interacting within a multiphase flow environment. This work presents a model for prediction of particle deposition in a two-fluid flow environment. Modeling of the process is challenging as there are two unknown evolving interfaces, i.e. the fluid-fluid interface and the depositing front. Both interfaces are captured via the level-set method. The deposition at the depositing front is modeled as a first order reaction. The two immiscible fluids are modeled using the incompressible Navier-Stokes equations. Solution of the equations is implemented using a finite volume method. The model is then verified against known solutions. Preliminary results on deposition process in a two-fluid flow environment are presented. ADNOC R&D Oil-Sub Committee.
Flow Visualization of Low Prandtl Number Fluids using Electrochemical Measurements
NASA Technical Reports Server (NTRS)
Crunkleton, D.; Anderson, T.; Narayanan, R.; Labrosse, G.
2003-01-01
It is well established that residual flows exist in contained liquid metal processes. In 1-g processing, buoyancy forces often drive these flows and their magnitudes can be substantial. It is also known that residual flows can exist during microgravity processing, and although greatly reduced in magnitude, they can influence the properties of the processed materials. Unfortunately, there are very few techniques to visualize flows in opaque, high temperature liquid metals, and those available are not easily adapted to flight investigation. In this study, a novel technique is developed that uses liquid tin as the model fluid and solid-state electrochemical cells constructed from Yttria-Stabilized Zirconia (YSZ) to establish and measure dissolved oxygen boundary conditions. The melt serves as a common electrode for each of the electrochemical cells in this design, while independent reference electrodes are maintained at the outside surfaces of the electrolyte. By constructing isolated electrochemical cells at various locations along the container walls, oxygen is introduced or extracted by imposing a known electrical potential or passing a given current between the melt and the reference electrode. This programmed titration then establishes a known oxygen concentration boundary condition at the selected electrolyte-melt interface. Using the other cells, the concentration of oxygen at the electrolyte-melt interface is also monitored by measuring the open-circuit potentials developed between the melt and reference electrodes. Thus the electrochemical cells serve to both establish boundary conditions for the passive tracer and sense its path. Rayleigh-Benard convection was used to validate the electrochemical approach to flow visualization. Thus, a numerical characterization of the second critical Rayleigh numbers in liquid tin was conducted for a variety of Cartesian aspect ratios. The extremely low Prandtl number of tin represents the lowest value studied numerically
Method, apparatus and system for controlling fluid flow
McMurtrey, Ryan D.; Ginosar, Daniel M.; Burch, Joesph V.
2007-10-30
A system, apparatus and method of controlling the flow of a fluid are provided. In accordance with one embodiment of the present invention, a flow control device includes a valve having a flow path defined therethrough and a valve seat in communication with the flow path with a valve stem disposed in the valve seat. The valve stem and valve seat are cooperatively configured to cause mutual relative linear displacement thereof in response to rotation of the valve stem. A gear member is coupled with the rotary stem and a linear positioning member includes a portion which complementarily engages the gear member. Upon displacement of the linear positioning member along a first axis, the gear member and rotary valve stem are rotated about a second axis and the valve stem and valve seat are mutually linearly displaced to alter the flow of fluid through the valve.
Regulation of tumor invasion by interstitial fluid flow
NASA Astrophysics Data System (ADS)
Shieh, Adrian C.; Swartz, Melody A.
2011-02-01
The importance of the tumor microenvironment in cancer progression is undisputed, yet the significance of biophysical forces in the microenvironment remains poorly understood. Interstitial fluid flow is a nearly ubiquitous and physiologically relevant biophysical force that is elevated in tumors because of tumor-associated angiogenesis and lymphangiogenesis, as well as changes in the tumor stroma. Not only does it apply physical forces to cells directly, but interstitial flow also creates gradients of soluble signals in the tumor microenvironment, thus influencing cell behavior and modulating cell-cell interactions. In this paper, we highlight our current understanding of interstitial fluid flow in the context of the tumor, focusing on the physical changes that lead to elevated interstitial flow, how cells sense flow and how they respond to changes in interstitial flow. In particular, we emphasize that interstitial flow can directly promote tumor cell invasion through a mechanism known as autologous chemotaxis, and indirectly support tumor invasion via both biophysical and biochemical cues generated by stromal cells. Thus, interstitial fluid flow demonstrates how important biophysical factors are in cancer, both by modulating cell behavior and coupling biophysical and biochemical signals.
Computerized tomographic analysis of fluid flow in fractured tuff
Felice, C.W.; Sharer, J.C. ); Springer, E.P. )
1992-01-01
The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix imbibition in a sample of Bandelier tuff. This was accomplished by using a tuff sample 152.4 mm long and 50.8 mm in diameter. A longitudinal fracture was created by cutting the core with a wire saw. The fractured piece was then coupled to its adjacent section to that the fracture was not expected. Water was injected into a dry sample at five flow rates and CT scanning performed at set intervals during the flow. Cross sectional images and longitudinal reconstructions were built and saturation profiles calculated for the sample at each time interval at each flow rate. The results showed that for the test conditions, the fracture was not a primary pathway of fluid flow down the sample. At a slow fluid injection rate into the dry sample, the fluid was imbibed into the rock uniformly down the length of the core. With increasing injection rates, the flow remained uniform over the core cross section through complete saturation.
Flow lasers. [fluid mechanics of high power continuous output operations
NASA Technical Reports Server (NTRS)
Christiansen, W. H.; Russell, D. A.; Hertzberg, A.
1975-01-01
The present work reviews the fluid-mechanical aspects of high-power continuous-wave (CW) lasers. The flow characteristics of these devices appear as classical fluid-mechanical phenomena recast in a complicated interactive environment. The fundamentals of high-power lasers are reviewed, followed by a discussion of the N2-CO2 gas dynamic laser. Next, the HF/DF supersonic diffusion laser is described, and finally the CO electrical-discharge laser is discussed.
Studies of fluid flow indicators, Pacific margin of Costa Rica
Silver, E.; McAdoo, B.; Langseth, M.; Orange, D.
1996-12-31
Seismic reflection profiles off Costa Rica image a decrease in thickness of the underthrust sedimentary section from the Middle America Trench, implying a significant reduction of porosity in the outer 3-5 km from the trench and a source of vent water through the wedge. We encountered no evidence of discrete fluid venting over the outer 3-5 km of this margin from dives using the ALVIN submersible or from heat flow measurements (based on absence of chemosynthetic vent communities and heat flow anomalies in this zone). Vent communities occur farther upslope, associated with a series of out-of-sequence thrusts, with two mud diapirs, and a mid-slope canyon. We infer that fracture permeability dominates in the out-of-sequence thrusts, upflow of fluid-rich muds in the diapir, and focusing of fluid flow in the canyon. Over 100 heat flow observations on the wedge and incoming COCOS plate showed a broad area of anomalously low heat flow (13 mW/m{sup 2}) seaward of the frontal thrust, whereas the expected heat flow for ocean crust of early Miocene age is seven times greater. The very low regional heat flow may reflect refrigeration by vigorous sea water flow through the upper crust pillow basalts. Heat flow increases to about 30 mW/m{sup 2} throughout the lower slope to mid-slope, implying a combination of widespread fluid venting, reheating of the cooled crust and frictional heating at the base of the wedge. The lack of discrete vents over the outer 3-5 km of the margin indicates diffuse flow and likely temporal episodicity, as this region has been aseismic since 1950.
Studies of fluid flow indicators, Pacific margin of Costa Rica
Silver, E.; McAdoo, B. ); Langseth, M. ); Orange, D. )
1996-01-01
Seismic reflection profiles off Costa Rica image a decrease in thickness of the underthrust sedimentary section from the Middle America Trench, implying a significant reduction of porosity in the outer 3-5 km from the trench and a source of vent water through the wedge. We encountered no evidence of discrete fluid venting over the outer 3-5 km of this margin from dives using the ALVIN submersible or from heat flow measurements (based on absence of chemosynthetic vent communities and heat flow anomalies in this zone). Vent communities occur farther upslope, associated with a series of out-of-sequence thrusts, with two mud diapirs, and a mid-slope canyon. We infer that fracture permeability dominates in the out-of-sequence thrusts, upflow of fluid-rich muds in the diapir, and focusing of fluid flow in the canyon. Over 100 heat flow observations on the wedge and incoming COCOS plate showed a broad area of anomalously low heat flow (13 mW/m[sup 2]) seaward of the frontal thrust, whereas the expected heat flow for ocean crust of early Miocene age is seven times greater. The very low regional heat flow may reflect refrigeration by vigorous sea water flow through the upper crust pillow basalts. Heat flow increases to about 30 mW/m[sup 2] throughout the lower slope to mid-slope, implying a combination of widespread fluid venting, reheating of the cooled crust and frictional heating at the base of the wedge. The lack of discrete vents over the outer 3-5 km of the margin indicates diffuse flow and likely temporal episodicity, as this region has been aseismic since 1950.
Triangular spectral elements for incompressible fluid flow
NASA Technical Reports Server (NTRS)
Mavriplis, C.; Vanrosendale, John
1993-01-01
We discuss the use of triangular elements in the spectral element method for direct simulation of incompressible flow. Triangles provide much greater geometric flexibility than quadrilateral elements and are better conditioned and more accurate when small angles arise. We employ a family of tensor product algorithms for triangles, allowing triangular elements to be handled with comparable arithmetic complexity to quadrilateral elements. The triangular discretizations are applied and validated on the Poisson equation. These discretizations are then applied to the incompressible Navier-Stokes equations and a laminar channel flow solution is given. These new triangular spectral elements can be combined with standard quadrilateral elements, yielding a general and flexible high order method for complex geometries in two dimensions.
Fluid flow and chemical reaction kinetics in metamorphic systems
Lasaga, A.C.; Rye, D.M. )
1993-05-01
The treatment and effects of chemical reaction kinetics during metamorphism are developed along with the incorporation of fluid flow, diffusion, and thermal evolution. The interplay of fluid flow and surface reaction rates, the distinction between steady state and equilibrium, and the possible overstepping of metamorphic reactions are discussed using a simple analytic model. This model serves as an introduction to the second part of the paper, which develops a reaction model that solves the coupled temperature-fluid flow-chemical composition differential equations relevant to metamorphic processes. Consideration of stable isotopic evidence requires that such a kinetic model be considered for the chemical evolution of a metamorphic aureole. A general numerical scheme is discussed to handle the solution of the model. The results of this kinetic model allow us to reach several important conclusions regarding the factors controlling the chemical evolution of mineral assemblages during a metamorphic event. 41 refs., 19 figs., 5 tabs.
Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes
NASA Astrophysics Data System (ADS)
Sokhan, Vladimir P.; Nicholson, David; Quirke, Nicholas
2002-11-01
Steady-state Poiseuille flow of a simple fluid in carbon nanopores under a gravitylike force is simulated using a realistic empirical many-body potential model for carbon. Building on our previous study of slit carbon nanopores we show that fluid flow in a nanotube is also characterized by a large slip length. By analyzing temporal profiles of the velocity components of particles colliding with the wall we obtain values of the Maxwell coefficient defining the fraction of molecules thermalized by the wall and, for the first time, propose slip boundary conditions for smooth continuum surfaces such that they are equivalent in adsorption, diffusion, and fluid flow properties to fully dynamic atomistic models.
Modeling of fluid and heat flow in fractured geothermal reservoirs
Pruess, K.
1988-08-01
In most geothermal reservoirs large-scale permeability is dominated by fractures, while most of the heat and fluid reserves are stored in the rock matrix. Early-time fluid production comes mostly from the readily accessible fracture volume, while reservoir behavior at later time depends upon the ease with which fluid and heat can be transferred from the rock matrix to the fractures. Methods for modeling flow in fractured porous media must be able to deal with this matrix-fracture exchange, the so-called interporosity flow. This paper reviews recent work at Lawrence Berkeley Laboratory on numerical modeling of nonisothermal multiphase flow in fractured porous media. We also give a brief summary of simulation applications to problems in geothermal production and reinjection. 29 refs., 1 fig.
NASA Astrophysics Data System (ADS)
Cartwright, Ian
Advection-dispersion fluid flow models implicitly assume that the infiltrating fluid flows through an already fluid-saturated medium. However, whether rocks contain a fluid depends on their reaction history, and whether any initial fluid escapes. The behaviour of different rocks may be illustrated using hypothetical marble compositions. Marbles with diverse chemistries (e.g. calcite + dolomite + quartz) are relatively reactive, and will generally produce a fluid during heating. By contrast, marbles with more restricted chemistries (e.g. calcite + quartz or calcite-only) may not. If the rock is not fluid bearing when fluid infiltration commences, mineralogical reactions may produce a reaction-enhanced permeability in calcite + dolomite + quartz or calcite + quartz, but not in calcite-only marbles. The permeability production controls the pattern of mineralogical, isotopic, and geochemical resetting during fluid flow. Tracers retarded behind the mineralogical fronts will probably be reset as predicted by the advection-dispersion models; however, tracers that are expected to be reset ahead of the mineralogical fronts cannot progress beyond the permeability generating reaction. In the case of very unreactive lithologies (e.g. pure calcite marbles, cherts, and quartzites), the first reaction to affect the rocks may be a metasomatic one ahead of which there is little pervasive resetting of any tracer. Centimetre-scale layering may lead to the formation of self-perpetuating fluid channels in rocks that are not fluid saturated due to the juxtaposition of reactants. Such layered rocks may show patterns of mineralogical resetting that are not predicted by advection-dispersion models. Patterns of mineralogical and isotopic resetting in marbles from a number of terrains, for example: Chillagoe, Marulan South, Reynolds Range (Australia); Adirondack Mountains, Old Woman Mountains, Notch Peak (USA); and Stephen Cross Quarry (Canada) vary as predicted by these models.
Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes.
Misztal, Marek K; Erleben, Kenny; Bargteil, Adam; Fursund, Jens; Christensen, Brian Bunch; Bærentzen, J Andreas; Bridson, Robert
2013-07-01
In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization operations improve element quality and avoid element inversion. In the context of multiphase flow, we guarantee that every element is occupied by a single fluid and, consequently, the interface between fluids is represented by a set of faces in the simplicial complex. This approach ensures that the underlying discretization matches the physics and avoids the additional book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume approaches adopted by a majority of fluid simulation techniques that use tetrahedral meshes. We characterize fluid simulation as an optimization problem allowing for full coupling of the pressure and velocity fields and the incorporation of a second-order surface energy. We introduce a preconditioner based on the diagonal Schur complement and solve our optimization on the GPU. We provide the results of parameter studies as well as a performance analysis of our method, together with suggestions for performance optimization. PMID:23836703
Multiphase flow of immiscible fluids on unstructured moving meshes.
Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam; Fursund, Jens; Christensen, Brian Bunch; Bærentzen, Jakob Andreas; Bridson, Robert
2014-01-01
In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization operations improve element quality and avoid element inversion. In the context of multiphase flow, we guarantee that every element is occupied by a single fluid and, consequently, the interface between fluids is represented by a set of faces in the simplicial complex. This approach ensures that the underlying discretization matches the physics and avoids the additional book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume approaches adopted by a majority of fluid simulation techniques that use tetrahedral meshes. We characterize fluid simulation as an optimization problem allowing for full coupling of the pressure and velocity fields and the incorporation of a second-order surface energy. We introduce a preconditioner based on the diagonal Schur complement and solve our optimization on the GPU. We provide the results of parameter studies as well as a performance analysis of our method, together with suggestions for performance optimization. PMID:24201322
Analysis for flow of Jeffrey fluid with nanoparticles
NASA Astrophysics Data System (ADS)
Hayat, T.; Asad, Sadia; Alsaedi, A.
2015-04-01
An analysis of the boundary layer flow and heat transfer in a Jeffrey fluid containing nanoparticles is presented in this paper. Here, fluid motion is due to a stretchable cylinder. The thermal conductivity of the fluid is taken to be temperature-dependent. The partial differential equations of velocity, temperature, and concentration fields are transformed to a dimensionless system of ordinary differential equations. Nonlinear governing analysis is computed for the homotopy solutions. The behaviors of Brownian motion and thermophoresis diffusion of nanoparticles have been examined graphically. Numerical values of the local Nusselt number are computed and analyzed.
Apparatus for controlling fluid flow in a conduit wall
Glass, S. Jill; Nicolaysen, Scott D.; Beauchamp, Edwin K.
2003-05-13
A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.
Effect of acetazolamide on aquaporin-1 and fluid flow in cultured choroid plexus.
Ameli, Pouya A; Madan, Meenu; Chigurupati, Srinivasulu; Yu, Amin; Chan, Sic L; Pattisapu, Jogi V
2012-01-01
Acetazolamide (AZA), used in treatment of early or infantile hydrocephalus, is effective in some cases, while its effect on the choroid plexus (CP) remains ill-defined. The drug reversibly inhibits aquaporin-4 (AQP4), the most ubiquitous "water pore" in the brain, and perhaps modulation of AQP1 (located apically on CP cells) by AZA may reduce cerebrospinal fluid (CSF) production. We sought to elucidate the effect of AZA on AQP1 and fluid flow in CP cell cultures.CP tissue culture from 10-day Sprague-Dawley rats and a TRCSF-B cell line were grown on Transwell permeable supports and treated with 100 μM AZA. Fluid assays to assess direction and extent of fluid flow, and AQP1 expression patterns by immunoblot, Immuncytochemistry (ICC), and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) were performed.Immunoblots and ICC analyses showed a decrease in AQP1 protein shortly after AZA treatment (lowest at 12 h), with transient AQP1 reduction mediated by mRNA expression (lowest at 6 h). Transwell fluid assays indicated a fluid shift at 2 h, before significant changes in AQP1 mRNA or protein levels.Timing of AZA effect on AQP1 suggests the drug alters protein transcription, while affecting fluid flow by a concomitant method. It is plausible that other mechanisms account for these phenomena, as the processes may occur independently. PMID:22116425
Fluid flow from a low to a higher density liquid
NASA Astrophysics Data System (ADS)
Weinberg, F.
1984-12-01
The penetration of liquid from a low density brine solution into a higher density solution below it has been measured as a function of vertical flow velocity and the density difference of the two solutions. The flow velocity was produced by a horizontal disc rotating in the low density liquid. The results show the penetration distance and penetration rate are dependent on flow velocity and in particular are very sensitive to small changes in the density difference between the two liquids. The observations are considered in relation to liquid penetration into dendritic arrays, and fluid flow in the pool of ingots and continuously cast steel billets, during solidification.
Rotation of a rod system containing inertial fluid flow
NASA Astrophysics Data System (ADS)
Sergeev, A. D.
2012-11-01
This paper considers a rod system for which it is possible to correctly formulate and solve the problem of three-dimensional motion in the physical space of an elastic pipeline area containing inertial incompressible fluid flow. The precession of the axis of an elastic pipeline along which inertial incompressible fluid flows is described, a physical phenomenon which has not been previously studied. With the use of rigid body dynamics, it was theoretically established that a three-dimensional dynamic process is possible in an open (exchanging mass with the environment) elastic-inertial rod system.
Using artificial intelligence to control fluid flow computations
NASA Technical Reports Server (NTRS)
Gelsey, Andrew
1992-01-01
Computational simulation is an essential tool for the prediction of fluid flow. Many powerful simulation programs exist today. However, using these programs to reliably analyze fluid flow and other physical situations requires considerable human effort and expertise to set up a simulation, determine whether the output makes sense, and repeatedly run the simulation with different inputs until a satisfactory result is achieved. Automating this process is not only of considerable practical importance but will also significantly advance basic artificial intelligence (AI) research in reasoning about the physical world.
Balanced Flow Metering and Conditioning: Technology for Fluid Systems
NASA Technical Reports Server (NTRS)
Kelley, Anthony R.
2006-01-01
Revolutionary new technology that creates balanced conditions across the face of a multi-hole orifice plate has been developed, patented and exclusively licensed for commercialization. This balanced flow technology simultaneously measures mass flow rate, volumetric flow rate, and fluid density with little or no straight pipe run requirements. Initially, the balanced plate was a drop in replacement for a traditional orifice plate, but testing revealed substantially better performance as compared to the orifice plate such as, 10 times better accuracy, 2 times faster (shorter distance) pressure recovery, 15 times less acoustic noise energy generation, and 2.5 times less permanent pressure loss. During 2004 testing at MSFC, testing revealed several configurations of the balanced flow meter that match the accuracy of Venturi meters while having only slightly more permanent pressure loss. However, the balanced meter only requires a 0.25 inch plate and has no upstream or downstream straight pipe requirements. As a fluid conditioning device, the fluid usually reaches fully developed flow within 1 pipe diameter of the balanced conditioning plate. This paper will describe the basic balanced flow metering technology, provide performance details generated by testing to date and provide implementation details along with calculations required for differing degrees of flow metering accuracy.
A thermal stack structure for measurement of fluid flow
NASA Astrophysics Data System (ADS)
Zhao, Hao; Mitchell, S. J. N.; Campbell, D. H.; Gamble, Harold S.
2003-03-01
A stacked thermal structure for fluid flow sensing has been designed, fabricated, and tested. A double-layer polysilicon process was employed in the fabrication. Flow measurement is based on the transfer of heat from a temperature sensor element to the moving fluid. The undoped or lightly doped polysilicon temperature sensor is located on top of a heavily doped polysilicon heater element. A dielectric layer between the heater and the sensor elements provides both thermal coupling and electrical isolation. In comparison to a hot-wire flow sensor, the heating and sensing functions are separated, allowing the electrical characteristics of each to be optimized. Undoped polysilicon has a large temperature coefficient of resistance (TCR) up to 7 %/K and is thus a preferred material for the sensor. However, heavily doped polysilicon is preferred for the heater due to its lower resistance. The stacked flow sensor structure offers a high thermal sensitivity making it especially suitable for medical applications where the working temperatures are restricted. Flow rates of various fluids can be measured over a wide range. The fabricated flow sensors were used to measure the flow rate of water in the range μl - ml/min and gas (Helium) in the range 10 - 100ml/min.
Beyond poiseuille: preservation fluid flow in an experimental model.
Singh, Saurabh; Randle, Lucy V; Callaghan, Paul T; Watson, Christopher J E; Callaghan, Chris J
2013-01-01
Poiseuille's equation describes the relationship between fluid viscosity, pressure, tubing diameter, and flow, yet it is not known if cold organ perfusion systems follow this equation. We investigated these relationships in an ex vivo model and aimed to offer some rationale for equipment selection. Increasing the cannula size from 14 to 20 Fr increased flow rate by a mean (SD) of 13 (12)%. Marshall's hyperosmolar citrate was three times less viscous than UW solution, but flows were only 45% faster. Doubling the bag pressure led to a mean (SD) flow rate increase of only 19 (13)%, not twice the rate. When external pressure devices were used, 100 mmHg of continuous pressure increased flow by a mean (SD) of 43 (17)% when compared to the same pressure applied initially only. Poiseuille's equation was not followed; this is most likely due to "slipping" of preservation fluid within the plastic tubing. Cannula size made little difference over the ranges examined; flows are primarily determined by bag pressure and fluid viscosity. External infusor devices require continuous pressurisation to deliver high flow. Future studies examining the impact of perfusion variables on graft outcomes should include detailed equipment descriptions. PMID:24062943
Beyond Poiseuille: Preservation Fluid Flow in an Experimental Model
Singh, Saurabh; Randle, Lucy V.; Callaghan, Paul T.; Watson, Christopher J. E.; Callaghan, Chris J.
2013-01-01
Poiseuille's equation describes the relationship between fluid viscosity, pressure, tubing diameter, and flow, yet it is not known if cold organ perfusion systems follow this equation. We investigated these relationships in an ex vivo model and aimed to offer some rationale for equipment selection. Increasing the cannula size from 14 to 20 Fr increased flow rate by a mean (SD) of 13 (12)%. Marshall's hyperosmolar citrate was three times less viscous than UW solution, but flows were only 45% faster. Doubling the bag pressure led to a mean (SD) flow rate increase of only 19 (13)%, not twice the rate. When external pressure devices were used, 100 mmHg of continuous pressure increased flow by a mean (SD) of 43 (17)% when compared to the same pressure applied initially only. Poiseuille's equation was not followed; this is most likely due to “slipping” of preservation fluid within the plastic tubing. Cannula size made little difference over the ranges examined; flows are primarily determined by bag pressure and fluid viscosity. External infusor devices require continuous pressurisation to deliver high flow. Future studies examining the impact of perfusion variables on graft outcomes should include detailed equipment descriptions. PMID:24062943
Entropy generation during fluid flow in a channel under the effect of transverse magnetic field
NASA Astrophysics Data System (ADS)
Damseh, R. A.; Al-Odat, M. Q.; Al-Nimr, M. A.
2008-06-01
Entropy generation due to fluid flow and heat transfer inside a horizontal channel made of two parallel plates under the effect of transverse magnetic field is numerically investigated. The flow is assumed to be steady, laminar, hydro-dynamically and thermally fully developed of electrically conducting fluid. Both horizontal walls are maintained at constant temperatures higher than that of the fluid. The governing equations in Cartesian coordinate are solved by an implicit finite difference technique. After the flow field and the temperature distributions are obtained, the entropy generation profiles are computed and presented graphically. The factors, which were found to affect the problem under consideration are the magnetic parameter, Eckert number, Prandtl number, and the temperature parameter (θ∞). It was found that, entropy generation increased as all parameters involved in the present problem increased.
On two-dimensional flows of compressible fluids
NASA Technical Reports Server (NTRS)
Bergman, Stefan
1945-01-01
This report is devoted to the study of two-dimensional steady motion of a compressible fluid. It is shown that the complete flow pattern around a closed obstacle cannot be obtained by the method of Chaplygin. In order to overcome this difficulty, a formula for the stream-function of a two-dimensional subsonic flow is derived. The formula involves an arbitrary function of a complex variable and yields all possible subsonic flow patterns of certain types. Conditions are given so that the flow pattern in the physical plane will represent a flow around a closed curve. The formula obtained can be employed for the approximate determination of a subsonic flow around an obstacle. The method can be extended to partially supersonic flows.
Dynamics of a fluid flow on Mars: lava or mud?
NASA Astrophysics Data System (ADS)
Wilson, L.; Mouginis-Mark, P. J.
2013-12-01
We have identified an enigmatic flow in S.W. Cerberus Fossae, Mars. The flow originates from an almost circular pit within a remnant of a yardang at 0.58 degrees N, 155.28 degrees E, within the lower unit of the Medusae Fossae Formation. The flow is ~42 km long and 0.5 to 2.0 km wide. The surface textures of the resulting deposit show that the material flowed in such a way that the various deformation patterns on its surface were generally preserved as it moved, only being distorted or disrupted when the flow encountered major topographic obstacles or was forced to make rapid changes of direction. This observation of a stiff, generally undeformed surface layer overlying a relatively mobile base suggests that, while it was moving, the fluid material flowed in a laminar, and possibly non-Newtonian, fashion. The least-complicated non-Newtonian fluids are Bingham plastics. On this basis we use measurements of flow width, length, thickness and substrate slope obtained from images, a DEM constructed from stereo pairs of Context Camera (CTX) images, and Mars Orbiter Laser Altimeter (MOLA) altimetry points to deduce the rheological properties of the fluid, treating it as both a Newtonian and a Bingham material for comparison. The Newtonian option requires the fluid to have a viscosity close to 100 Pa s and to have flowed everywhere in a turbulent fashion. The Bingham option requires laminar flow, a plastic viscosity close to 1 Pa s, and a yield strength of ~185 Pa. We compare these parameters values with those of various environmental fluids on Earth in an attempt to narrow the range of possible materials forming the martian flow. A mafic to ultramafic lava would fit the Newtonian option but the required turbulence does not seem consistent with the surface textures. The Bingham option satisfies the morphological constraint of laminar motion if the material is a mud flow consisting of ~40% water and ~60% silt-sized silicate solids. Elsewhere on Mars, deposits with similar
Squeeze Flow of Yield Stress Fluids
NASA Astrophysics Data System (ADS)
Pelot, David; Yarin, Alexander
2014-03-01
The squeeze flow of yield stress materials are investigated using a non-invasive optical technique. In the experiments, cylindrically-shaped samples of Carbopol solutions and Bentonite dispersions are rapidly compressed between two transparent plates using a constant force and the instantaneous cross-sectional area is recorded as a function of time using a high speed CCD camera. Furthermore, visualization of the boundary reveals that the no-slip condition holds. In addition, shear experiments are conducted using parallel-plate and vane viscometers. The material exhibits first a fast stage of squeezing in which the normal stresses dominate and viscosity plays the main role. Then, the second (slow) stage sets in where the material exhibits a slow deformation dominated by yield stress. At the end, the deformation process is arrested by yield stress. The material response is attributed to the Bingham-like or Herschel-Bulkley-like rheological behavior. Squeeze flow is developed into a convenient and simple tool for studying yield stress materials. This work is supported by the United States Gypsum Corp.
Cerebrospinal Fluid Flow Studies and Recent Advancements.
Kelly, Erin J; Yamada, Shinya
2016-04-01
This article provides an overview of magnetic resonance imaging (MRI) techniques used to assess cerebrospinal fluid (CSF) movement in the central nervous system (CNS), including Phase-Contrast (PC), Time-Spatial Labeling Inversion Pulse, and simultaneous multi slice echo planar phase contrast imaging. These techniques have been used to assess CSF movement in the CNS under normal and pathophysiological situations. PC can quantitatively measure stroke volume in selected regions, particularly the aqueduct of Sylvius, as synchronized to the heartbeat. The PC is frequently used to investigate those patients with suspected normal pressure hydrocephalus and a Chiari I malformation. Time-Spatial Labeling Inversion Pulse, with high signal-to-noise ratio, captures motion of CSF anywhere in the CNS over a time period of up to 5 seconds. Variations of PC-MRI improved temporal resolution and included contributions from respiration. With non-invasive imaging such as these, more can be understood about CSF dynamics, especially with respect to the relative effects of cardiac and respiratory changes on CSF movement. PMID:27063659
Chronic Fluid Flow Is an Environmental Modifier of Renal Epithelial Function
Resnick, Andrew
2011-01-01
Although solitary or sensory cilia are present in most cells of the body and their existence has been known since the sixties, very little is been known about their functions. One suspected function is fluid flow sensing- physical bending of cilia produces an influx of Ca++, which can then result in a variety of activated signaling pathways. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a progressive disease, typically appearing in the 5th decade of life and is one of the most common monogenetic inherited human diseases, affecting approximately 600,000 people in the United States. Because ADPKD is a slowly progressing disease, I asked how fluid flow may act, via the primary cilium, to alter epithelial physiology during the course of cell turnover. I performed an experiment to determine under what conditions fluid flow can result in a change of function of renal epithelial tissue. A wildtype epithelial cell line derived the cortical collecting duct of a heterozygous offspring of the Immortomouse (Charles River Laboratory) was selected as our model system. Gentle orbital shaking was used to induce physiologically relevant fluid flow, and periodic measurements of the transepithelial Sodium current were performed. At the conclusion of the experiment, mechanosensitive proteins of interest were visualized by immunostaining. I found that fluid flow, in itself, modifies the transepithelial sodium current, cell proliferation, and the actin cytoskeleton. These results significantly impact the understanding of both the mechanosensation function of primary cilia as well as the understanding of ADPKD disease progression. PMID:22046444
Flow in left atrium using MR fluid motion estimation
NASA Astrophysics Data System (ADS)
Wong, Kelvin K. L.; Kelso, Richard M.; Worthley, Steve M.; Sanders, Prash; Mazumdar, Jagannath; Abbott, Derek
2007-12-01
A recent development based on optical flow applied onto Fast Imaging in Steady State Free Precession (TrueFISP) magnetic resonance imaging is able to deliver good estimation of the flow profile in the human heart chamber. The examination of cardiac flow based on tracking of MR signals emitted by moving blood is able to give medical doctors insight into the flow patterns within the human heart using standard MRI procedure without specifically subjecting the patient to longer scan times using more dedicated scan protocols such as phase contrast MRI. Although MR fluid motion estimation has its limitations in terms of accurate flow mapping, the use of a comparatively quick scan procedure and computational post-processing gives satisfactory flow quantification and can assist in management of cardiac patients. In this study, we present flow in the left atria of five human subjects using MR fluid motion tracking. The measured flow shows that vortices exist within the atrium of heart. Although the scan is two-dimensional, we have produced multiple slices of flow maps in a spatial direction to show that the vortex exist in a three-dimensional space.
Seals/Secondary Fluid Flows Workshop 1997; Volume I
NASA Technical Reports Server (NTRS)
Hendricks, Robert C. (Editor)
2006-01-01
The 1997 Conference provided discussions and data on (a) program overviews, (b) developments in seals and secondary air management systems, (c) interactive seals flows with secondary air or fluid flows and powerstream flows, (d) views of engine externals and limitations, (e) high speed engine research sealing needs and demands, and (f) a short course on engine design development margins. Sealing concepts discussed include, mechanical rim and cavity seals, leaf, finger, air/oil, rope, floating-brush, floating-T-buffer, and brush seals. Engine externals include all components of engine fluid systems, sensors and their support structures that lie within or project through the nacelle. The clean features of the nacelle belie the minefield of challenges and opportunities that lie within. Seals; Secondary air flows; Rotordynamics; Gas turbine; Aircraft; CFD; Testing; Turbomachinery
Fluid-flow-induced flutter of a flag
Argentina, Médéric; Mahadevan, L.
2005-01-01
We give an explanation for the onset of fluid-flow-induced flutter in a flag. Our theory accounts for the various physical mechanisms at work: the finite length and the small but finite bending stiffness of the flag, the unsteadiness of the flow, the added mass effect, and vortex shedding from the trailing edge. Our analysis allows us to predict a critical speed for the onset of flapping as well as the frequency of flapping. We find that in a particular limit corresponding to a low-density fluid flowing over a soft high-density flag, the flapping instability is akin to a resonance between the mode of oscillation of a rigid pivoted airfoil in a flow and a hinged-free elastic plate vibrating in its lowest mode. PMID:15684057
The flow of a compressible fluid past a curved surface
NASA Technical Reports Server (NTRS)
Kaplan, Carl
1943-01-01
An iteration method is employed to obtain the flow of a compressible fluid past a curved surface. The first approximation which leads to the Prandtl-Glauert rule, is based on the assumption that the flow differs but little from a pure translation. The iteration process then consists in improving this first approximation in order that it will apply to a flow differing from pure translatory motion to a greater degree. The method fails when the Mach number of the undisturbed stream reaches unity but permits a transition from subsonic to supersonic conditions without the appearance of a compression shock. The limiting value at which potential flow no longer exits is indicated by the apparent divergence of the power series representing the velocity of the fluid at the surface of the solid boundary.
Fluid-flow-induced flutter of a flag.
Argentina, Médéric; Mahadevan, L
2005-02-01
We give an explanation for the onset of fluid-flow-induced flutter in a flag. Our theory accounts for the various physical mechanisms at work: the finite length and the small but finite bending stiffness of the flag, the unsteadiness of the flow, the added mass effect, and vortex shedding from the trailing edge. Our analysis allows us to predict a critical speed for the onset of flapping as well as the frequency of flapping. We find that in a particular limit corresponding to a low-density fluid flowing over a soft high-density flag, the flapping instability is akin to a resonance between the mode of oscillation of a rigid pivoted airfoil in a flow and a hinged-free elastic plate vibrating in its lowest mode. PMID:15684057
Fluid flow near the surface of earth's outer core
NASA Technical Reports Server (NTRS)
Bloxham, Jeremy; Jackson, Andrew
1991-01-01
This review examines the recent attempts at extracting information on the pattern of fluid flow near the surface of the outer core from the geomagnetic secular variation. Maps of the fluid flow at the core surface are important as they may provide some insight into the process of the geodynamo and may place useful constraints on geodynamo models. In contrast to the case of mantle convection, only very small lateral variations in core density are necessary to drive the flow; these density variations are, by several orders of magnitude, too small to be imaged seismically; therefore, the geomagnetic secular variation is utilized to infer the flow. As substantial differences exist between maps developed by different researchers, the possible underlying reasons for these differences are examined with particular attention given to the inherent problems of nonuniqueness.
Experimental analysis on MR fluid channel flow dynamics with complex fluid-wall interactions
NASA Astrophysics Data System (ADS)
Nishiyama, Hideya; Takana, Hidemasa; Shinohara, Keisuke; Mizuki, Kotoe; Katagiri, Kazunari; Ohta, Makoto
2011-05-01
MR fluid plugging performance by aggregation of magnetized particles in MR fluid is recently expected to be one of the most promising applications in medical or safety devices, such as blood flow control, steam issuing shut-down valve and fuel supply control for automobile. In this study, dynamic response of MR fluid plugging and its breakdown in a pressure mode with complex fluid-wall interactions was experimentally investigated, considering the effects of magnetic flux density, wall surface structure, wall permeability and wall elasticity of tube. Higher endurance pressure is obtained for wall surface groove structure and for steel wall due to a strong anchoring effect by rigid cluster formation in a concave region and strong MR fluid column formation in a channel core region, respectively. Furthermore, MR fluid plugging performance and the fluid storage characteristic of PVA tube as a bio-material was clarified. Because of the large radial expansion of the tube at the applied magnetic region in a pressure mode, PVA tube shows unique characteristics, such as storing MR fluid under magnetic field and MR fluid jet issuing under releasing magnetic field.
Fluid flow systems analysis to save energy
Parekh, P.S.
1999-07-01
Industrial processes use rotating equipment (e.g.; pump, fan, blower, centrifugal compressor, positive displacement compressor) and pipe (or duct) to move fluid from point A to B, with many processes using electric motors as the prime mover. Most of the systems in the industry are over-designed to meet a peak load demand which might occur over a small fraction of the time or to satisfy a higher pressure demanded by a much smaller user in the same process. The system over-design will result in a selection of larger but inefficient rotating equipment and electric motor system. A careful life cycle cost and economic evaluation must be undertaken to ensure that the process audit, reengineering and equipment selections are not impacting the industrial process goals, but result in a least optimal cost over the life of the project. The paper will define, discuss, and present various process systems in chemical, hydrocarbon and pulp and paper industries. It will discuss the interactive impact of the changes in the mechanical system configuration and the changes in the process variables to better redesign the system and reduce the cost of operation. it will also present a check list of energy conservation measures (ECM) or opportunities. Such ECMs will be related to hydraulics, system components, process modifications, and system efficiency. Two or three case studies will be presented focusing on various conservation measures that improve electrical operating efficiency of a distillation column system. An incremental cost and payback analysis will be presented to assist the investment in process optimization and energy savings' measures.
Using a genetic algorithm to solve fluid-flow problems
Pryor, R.J. )
1990-06-01
Genetic algorithms are based on the mechanics of the natural selection and natural genetics processes. These algorithms are finding increasing application to a wide variety of engineering optimization and machine learning problems. In this paper, the authors demonstrate the use of a genetic algorithm to solve fluid flow problems. Specifically, the authors use the algorithm to solve the one-dimensional flow equations for a pipe.
Understanding heat and fluid flow in linear GTA welds
Zacharia, T.; David, S.A.; Vitek, J.M.
1992-12-31
A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.
Understanding heat and fluid flow in linear GTA welds
Zacharia, T.; David, S.A.; Vitek, J.M.
1992-01-01
A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.
Stability of axisymmetric swirl flows of viscous incompressible fluid
NASA Astrophysics Data System (ADS)
Aktershev, S. P.; Kuibin, P. A.
2013-09-01
A new method of solution to the problem of stability of the swirl flow of viscous incompressible fluid is developed. The method based on expansion of the required function into power series of radial coordinate allows an avoidance of difficulties related to numerical integration of the system of differential equations with a singular point. Stability of the Poiseuille flow in a rotating pipe is considered as an example.
A Generalized Fluid System Simulation Program to Model Flow Distribution in Fluid Networks
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Bailey, John W.; Schallhorn, Paul; Steadman, Todd
1998-01-01
This paper describes a general purpose computer program for analyzing steady state and transient flow in a complex network. The program is capable of modeling phase changes, compressibility, mixture thermodynamics and external body forces such as gravity and centrifugal. The program's preprocessor allows the user to interactively develop a fluid network simulation consisting of nodes and branches. Mass, energy and specie conservation equations are solved at the nodes; the momentum conservation equations are solved in the branches. The program contains subroutines for computing "real fluid" thermodynamic and thermophysical properties for 33 fluids. The fluids are: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutane, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride and ammonia. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. Seventeen different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include: pipe flow, flow through a restriction, non-circular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct, labyrinth seal, parallel plates, common fittings and valves, pump characteristics, pump power, valve with a given loss coefficient, and a Joule-Thompson device. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. This paper also illustrates the application and verification of the code by comparison with Hardy Cross method for steady state flow and analytical solution for unsteady flow.
Aging and free surface flow of a thixotropic fluid
NASA Astrophysics Data System (ADS)
Huynh, H. T.; Roussel, N.; Coussot, P.
2005-03-01
Free surface flows of thixotropic fluids such as paints, self-compacting concrete, or natural mudflows are of noticeable practical interest. Here we study the basic characteristics of the uniform flow of a layer of thixotropic fluid under gravity. A theoretical approach relying on a simple thixotropy constitutive equation shows that after some time at rest over a small slope angle the fluid layer should start to flow rather abruptly beyond a new, larger, critical slope angle. The theory also predicts that the critical time at which the layer velocity should significantly increase is proportional to the duration of the preliminary rest and tends to infinity when the new slope approaches the critical slope. Experiments carried out with different suspensions show that the qualitative trends of the flows are in very good agreement with the theoretical predictions, except that the critical time for flow start appears to be proportional to a power 0.6 of the time of rest whereas the theory predicts a linear dependence. We show that this indicates a restructuration process at rest differing from the restructuration process under flow.
Fluid and particulate suspension flows at fracture junctions
NASA Astrophysics Data System (ADS)
Lo, Tak S.; Koplik, Joel
2015-03-01
Suspended particles can be a serious problem in geological contexts such as fluid recovery from reservoirs because they alter the rheology of the flowing liquids and may obstruct transport by narrowing flow channels due to deposition or gravitational sedimentation. In particular, the irregular geometry of the fracture walls can trap particles, induce jamming and cause unwanted channeling effects. We have investigated particle suspension flows in tight geological fractures using lattice Boltzmann method in the past. In this work we extend these studies to flows at a junction where two fractures intersect, an essential step towards a complete understanding of flows in fracture networks. The fracture walls are modeled as realistic self-affine fractal surfaces, and we focus on the case of tight fractures, where the wall roughness, the aperture and the particle size are all comparable. The simulations provide complete detail on the particle configurations and the fluid flow field, from which the stresses in the fluid and the forces acting on the bounding walls can be computed. With these information, phenomena such as particle mixing and dispersion, mechanical responses of the solid walls, possible jamming and release at junctions, and other situations of interest can be investigated. Work supported by NERSC and DOE.
Tracing fluid flow in geothermal reservoirs
Rose, P.E.; Adams, M.C.
1997-12-31
A family of fluorescent compounds, the polycyclic aromatic sulfonates, were evaluated for application in intermediate- and high-temperature geothermal reservoirs. Whereas the naphthalene sulfonates were found to be very thermally stable and reasonably detectable, the amino-substituted naphthalene sulfonates were found to be somewhat less thermally stable, but much more detectable. A tracer test was conducted at the Dixie Valley, Nevada, geothermal reservoir using one of the substituted naphthalene sulfonates, amino G, and fluorescein. Four of 9 production wells showed tracer breakthrough during the first 200 days of the test. Reconstructed tracer return curves are presented that correct for the thermal decay of tracer assuming an average reservoir temperature of 227{degrees}C. In order to examine the feasibility of using numerical simulation to model tracer flow, we developed simple, two-dimensional models of the geothermal reservoir using the numerical simulation programs TETRAD and TOUGH2. By fitting model outputs to measured return curves, we show that numerical reservoir simulations can be calibrated with the tracer data. Both models predict the same order of elution, approximate tracer concentrations, and return curve shapes. Using these results, we propose a method for using numerical models to design a tracer test.
Alternative experiments using the geophysical fluid flow cell
NASA Technical Reports Server (NTRS)
Hart, J. E.
1984-01-01
This study addresses the possibility of doing large scale dynamics experiments using the Geophysical Fluid Flow Cell. In particular, cases where the forcing generates a statically stable stratification almost everywhere in the spherical shell are evaluated. This situation is typical of the Earth's atmosphere and oceans. By calculating the strongest meridional circulation expected in the spacelab experiments, and testing its stability using quasi-geostrophic stability theory, it is shown that strongly nonlinear baroclinic waves on a zonally symmetric modified thermal wind will not occur. The Geophysical Fluid Flow Cell does not have a deep enough fluid layer to permit useful studies of large scale planetary wave processes arising from instability. It is argued, however, that by introducing suitable meridional barriers, a significant contribution to the understanding of the oceanic thermocline problem could be made.
Global Optimization Techniques for Fluid Flow and Propulsion Devices
NASA Technical Reports Server (NTRS)
Shyy, Wei; Papila, Nilay; Vaidyanathan, Raj; Tucker, Kevin; Griffin, Lisa; Dorney, Dan; Huber, Frank; Tran, Ken; Turner, James E. (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of global optimization techniques for fluid flow and propulsion devices. Details are given on the need, characteristics, and techniques for global optimization. The techniques include response surface methodology (RSM), neural networks and back-propagation neural networks, design of experiments, face centered composite design (FCCD), orthogonal arrays, outlier analysis, and design optimization.
Design of vortex fluid amplifiers with asymmetrical flow fields.
NASA Technical Reports Server (NTRS)
Lawley, T. J.; Price, D. C.
1972-01-01
Variation of geometric parameters, including supply area, control area, chamber length, and outlet diameter, of a large scale, modular design vortex fluid amplifier with single supply and control jets, has confirmed and extended a previously published design method, developed for vortex amplifiers with symmetric flow fields. This allows application of the method to devices which are more representative of practical, production type components.
DEVELOPMENT OF COMPUTER PROGRAM FOR FIRE SUPPRESSANT FLUID FLOW.
The objective of the project is to develop a computer code capable of predicting single and two phase hydrodynamic behavior of fire suppressant fluids during transport through piping systems. This new code will be able to predict pressure losses and flow rates for a wide variety ...
Flow Curve Determination for Non-Newtonian Fluids.
ERIC Educational Resources Information Center
Tjahjadi, Mahari; Gupta, Santosh K.
1986-01-01
Describes an experimental program to examine flow curve determination for non-Newtonian fluids. Includes apparatus used (a modification of Walawender and Chen's set-up, but using a 50cc buret connected to a glass capillary through a Tygon tube), theoretical information, procedures, and typical results obtained. (JN)
Computational Study of Fluid Flow in a Rotational Chemical Vapor Deposition (CVD) Reactor
NASA Astrophysics Data System (ADS)
Wong, Sun; Jaluria, Yogesh
2015-11-01
In a typical Chemical Vapor Deposition (CVD) reactor, the flow of the reacting gases is one of the most important considerations that must be precisely controlled in order to obtain desired film quality. In general, the fluids enter the reactor chamber, travel over to the heated substrate area, where chemical reactions lead to deposition, and then exit the chamber. However, the flow inside the reactor chamber is not that simple. It would often develop recirculation at various locations inside the reactor due to reactor geometry, flow conditions, buoyancy effects from temperature differences and rotational effects cause by the rotating substrate. This recirculation causes hot spots and affects the overall performance of the reactor. A recirculation fluid packet experiences a longer residence time inside the reactor and, thus, it heats up to higher temperatures causing unwanted chemical reactions and decomposition. It decreases the grow rate and uniformity on the substrate. A mathematical and computational model has been developed to help identify these unwanted hot spots occurring inside the CVD reactor. The model can help identify the user parameters needed to reduce the recirculation effects and better control the flow. Flow rates, pressures, rotational speeds and temperatures can all affect the severity of the recirculation within the reactor. The model can also help assist future designs as the geometry plays a big role in controlling fluid flow. The model and the results obtained are discussed in detail.
Review of coaxial flow gas core nuclear rocket fluid mechanics
NASA Technical Reports Server (NTRS)
Weinstein, H.
1976-01-01
Almost all of the fluid mechanics research associated with the coaxial flow gas core reactor ended abruptly with the interruption of NASA's space nuclear program because of policy and budgetary considerations in 1973. An overview of program accomplishments is presented through a review of the experiments conducted and the analyses performed. Areas are indicated where additional research is required for a fuller understanding of cavity flow and of the factors which influence cold and hot flow containment. A bibliography is included with graphic material.
Instability of fluid flow over saturated porous medium
NASA Astrophysics Data System (ADS)
Lyubimova, Tatyana; Kolchanova, Ekaterina; Lyubimov, Dmitry
2013-04-01
We investigate the stability of a fluid flow over a saturated porous medium. The problem is of importance due to the applications to washing out of contaminants from the bottom layer of vegetation, whose properties are similar to the properties of porous medium. In the case of porous medium with the relatively high permeability and porosity the flow involves a part of the fluid saturating the porous medium, with the tangential fluid velocity drop occurring because of the resistance of the solid matrix. The drop leads to the instability analogous to Kelvin-Helmholtz one accompanied by the formation of travelling waves. In the present paper we consider a two-layer system consisting of a pure fluid layer and a porous layer saturated by the fluid located underneath. The system is bounded by a rigid surface at the bottom and a non-deformable free surface at the top. It is under the gravity and inclined at a slight angle to the horizontal axis. The boundary conditions at the interface between the fluid and porous layers are the continuity of fluid velocities and the balance of normal and tangential stresses taking into account the resistance of the solid matrix with respect to the fluid flow near the interface [1-2]. The problem is solved in the framework of the Brinkman model applying the classical shooting algorithm with orthogonalization. The stability boundaries of the stationary fluid flow over the saturated porous medium with respect to the small oscillatory perturbations are obtained for the various values of the Darcy number and the ratio of the porous layer thickness to the full thickness of the system d. It was shown that at the d > 0.5 with increasing the porous layer thickness (or with decreasing of the fluid layer thickness) the stability threshold rises. This is because of the fact that the instability is primarily caused by perturbations located in the fluid layer. At the d < 0.5 the reduction of the porous layer thickness leads to the stability threshold
Vestibular stimulation affects optic-flow sensitivity.
Edwards, Mark; O'Mahony, Simon; Ibbotson, Michael R; Kohlhagen, Stuart
2010-01-01
Typically, multiple cues can be used to generate a particular percept. Our area of interest is the extent to which humans are able to synergistically combine cues that are generated when moving through an environment. For example, movement through the environment leads to both visual (optic-flow) and vestibular stimulation, and studies have shown that non-human primates are able to combine these cues to generate a more accurate perception of heading than can be obtained with either cue in isolation. Here we investigate whether humans show a similar ability to synergistically combine optic-flow and vestibular cues. This was achieved by determining the sensitivity to optic-flow stimuli while physically moving the observer, and hence producing a vestibular signal, that was either consistent with the optic-flow signal, eg a radially expanding pattern coupled with forward motion, or inconsistent with it, eg a radially expanding pattern with backward motion. Results indicate that humans are more sensitive to motion-in-depth optic-flow stimuli when they are combined with complementary vestibular signals than when they are combined with conflicting vestibular signals. These results indicate that in humans, like in nonhuman primates, there is perceptual integration of visual and vestibular signals. PMID:21180352
High frequency flow-structural interaction in dense subsonic fluids
NASA Technical Reports Server (NTRS)
Liu, Baw-Lin; Ofarrell, J. M.
1995-01-01
Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.
ANFIS modeling for prediction of particle motions in fluid flows
NASA Astrophysics Data System (ADS)
Safdari, Arman; Kim, Kyung Chun
2015-11-01
Accurate dynamic analysis of parcel of solid particles driven in fluid flow system is of interest for many natural and industrial applications such as sedimentation process, study of cloud particles in atmosphere, etc. In this paper, numerical modeling of solid particles in incompressible flow using Eulerian-Lagrangian approach is carried out to investigate the dynamic behavior of particles in different flow conditions; channel and cavity flow. Although modern computers have been well developed, the high computational time and costs for this kind of problems are still demanded. The Lattice Boltzmann Method (LBM) is used to simulate fluid flows and combined with the Lagrangian approach to predict the motion of particles in the range of masses. Some particles are selected, and subjected to Adaptive-network-based fuzzy inference system (ANFIS) to predict the trajectory of moving solid particles. Using a hybrid learning procedure from computational particle movement, the ANFIS can construct an input-output mapping based on fuzzy if-then rules and stipulated computational fluid dynamics prediction pairs. The obtained results from ANFIS algorithm is validated and compared with the set of benchmark data provided based on point-like approach coupled with the LBM method.
Squeeze flow of a Carreau fluid during sphere impact
NASA Astrophysics Data System (ADS)
Uddin, J.; Marston, J. O.; Thoroddsen, S. T.
2012-07-01
We present results from a combined numerical and experimental investigation into the squeeze flow induced when a solid sphere impacts onto a thin, ultra-viscous film of non-Newtonian fluid. We examine both the sphere motion through the liquid as well as the fluid flow field in the region directly beneath the sphere during approach to a solid plate. In the experiments we use silicone oil as the model fluid, which is well-described by the Carreau model. We use high-speed imaging and particle tracking to achieve flow visualisation within the film itself and derive the corresponding velocity fields. We show that the radial velocity either diverges as the gap between the sphere and the wall diminishes (Ztip → 0) or that it reaches a maximum value and then decays rapidly to zero as the sphere comes to rest at a non-zero distance (Ztip = Zmin) away from the wall. The horizontal shear rate is calculated and is responsible for significant viscosity reduction during the approach of the sphere. Our model of this flow, based on lubrication theory, is solved numerically and compared to experimental trials. We show that our model is able to correctly describe the physical features of the flow observed in the experiments.
Map of fluid flow in fractal porous medium into fractal continuum flow.
Balankin, Alexander S; Elizarraraz, Benjamin Espinoza
2012-05-01
This paper is devoted to fractal continuum hydrodynamics and its application to model fluid flows in fractally permeable reservoirs. Hydrodynamics of fractal continuum flow is developed on the basis of a self-consistent model of fractal continuum employing vector local fractional differential operators allied with the Hausdorff derivative. The generalized forms of Green-Gauss and Kelvin-Stokes theorems for fractional calculus are proved. The Hausdorff material derivative is defined and the form of Reynolds transport theorem for fractal continuum flow is obtained. The fundamental conservation laws for a fractal continuum flow are established. The Stokes law and the analog of Darcy's law for fractal continuum flow are suggested. The pressure-transient equation accounting the fractal metric of fractal continuum flow is derived. The generalization of the pressure-transient equation accounting the fractal topology of fractal continuum flow is proposed. The mapping of fluid flow in a fractally permeable medium into a fractal continuum flow is discussed. It is stated that the spectral dimension of the fractal continuum flow d(s) is equal to its mass fractal dimension D, even when the spectral dimension of the fractally porous or fissured medium is less than D. A comparison of the fractal continuum flow approach with other models of fluid flow in fractally permeable media and the experimental field data for reservoir tests are provided. PMID:23004869
Map of fluid flow in fractal porous medium into fractal continuum flow
NASA Astrophysics Data System (ADS)
Balankin, Alexander S.; Elizarraraz, Benjamin Espinoza
2012-05-01
This paper is devoted to fractal continuum hydrodynamics and its application to model fluid flows in fractally permeable reservoirs. Hydrodynamics of fractal continuum flow is developed on the basis of a self-consistent model of fractal continuum employing vector local fractional differential operators allied with the Hausdorff derivative. The generalized forms of Green-Gauss and Kelvin-Stokes theorems for fractional calculus are proved. The Hausdorff material derivative is defined and the form of Reynolds transport theorem for fractal continuum flow is obtained. The fundamental conservation laws for a fractal continuum flow are established. The Stokes law and the analog of Darcy's law for fractal continuum flow are suggested. The pressure-transient equation accounting the fractal metric of fractal continuum flow is derived. The generalization of the pressure-transient equation accounting the fractal topology of fractal continuum flow is proposed. The mapping of fluid flow in a fractally permeable medium into a fractal continuum flow is discussed. It is stated that the spectral dimension of the fractal continuum flow ds is equal to its mass fractal dimension D, even when the spectral dimension of the fractally porous or fissured medium is less than D. A comparison of the fractal continuum flow approach with other models of fluid flow in fractally permeable media and the experimental field data for reservoir tests are provided.
Neutron Radiography of Fluid Flow for Geothermal Energy Research
NASA Astrophysics Data System (ADS)
Bingham, P.; Polsky, Y.; Anovitz, L.; Carmichael, J.; Bilheux, H.; Jacobsen, D.; Hussey, D.
Enhanced geothermal systems seek to expand the potential for geothermal energy by engineering heat exchange systems within the earth. A neutron radiography imaging method has been developed for the study of fluid flow through rock under environmental conditions found in enhanced geothermal energy systems. For this method, a pressure vessel suitable for neutron radiography was designed and fabricated, modifications to imaging instrument setups were tested, multiple contrast agents were tested, and algorithms developed for tracking of flow. The method has shown success for tracking of single phase flow through a manufactured crack in a 3.81 cm (1.5 inch) diameter core within a pressure vessel capable of confinement up to 69 MPa (10,000 psi) using a particle tracking approach with bubbles of fluorocarbon-based fluid as the "particles" and imaging with 10 ms exposures.
Neutron radigoraphy of fluid flow for geothermal energy research
Bingham, Philip R.; Polsky, Yarom; Anovitz, L.; Carmichael, Justin R.; Bilheux, Hassina Z; Jacobson, David; Hussey, Dan
2015-01-01
Enhanced geothermal systems seek to expand the potential for geothermal energy by engineering heat exchange systems within the earth. A neutron radiography imaging method has been developed for the study of fluid flow through rock under environmental conditions found in enhanced geothermal energy systems. For this method, a pressure vessel suitable for neutron radiography was designed and fabricated, modifications to imaging instrument setups were tested, multiple contrast agents were tested, and algorithms developed for tracking of flow. The method has shown success for tracking of single phase flow through a manufactured crack in a 3.81 cm (1.5 inch) diameter core within a pressure vessel capable of confinement up to 69 MPa (10,000 psi) using a particle tracking approach with bubbles of fluorocarbon-based fluid as the “particles” and imaging with 10 ms exposures.
Visualization of two-fluid flows of superfluid helium-4
NASA Astrophysics Data System (ADS)
Guo, Wei; La Mantia, Marco; Lathrop, Daniel P.; Van Sciver, Steven W.
2014-03-01
Cryogenic flow visualization techniques have been proved in recent years to be a very powerful experimental method to study superfluid turbulence. Micron-sized solid particles and metastable helium molecules are specifically being used to investigate in detail the dynamics of quantum flows. These studies belong to a well-established, interdisciplinary line of inquiry that focuses on the deeper understanding of turbulence, one of the open problem of modern physics, relevant to many research fields, ranging from fluid mechanics to cosmology. Progress made to date is discussed, to highlight its relevance to a wider scientific community, and future directions are outlined. The latter include, e.g., detailed studies of normal-fluid turbulence, dissipative mechanisms, and unsteady/oscillatory flows.
Visualization of two-fluid flows of superfluid helium-4
Guo, Wei; La Mantia, Marco; Lathrop, Daniel P.; Van Sciver, Steven W.
2014-01-01
Cryogenic flow visualization techniques have been proved in recent years to be a very powerful experimental method to study superfluid turbulence. Micron-sized solid particles and metastable helium molecules are specifically being used to investigate in detail the dynamics of quantum flows. These studies belong to a well-established, interdisciplinary line of inquiry that focuses on the deeper understanding of turbulence, one of the open problem of modern physics, relevant to many research fields, ranging from fluid mechanics to cosmology. Progress made to date is discussed, to highlight its relevance to a wider scientific community, and future directions are outlined. The latter include, e.g., detailed studies of normal-fluid turbulence, dissipative mechanisms, and unsteady/oscillatory flows. PMID:24704871
Numerical Simulation of Flow-Induced Structure in Complex Fluids
NASA Astrophysics Data System (ADS)
Yamamoto, Takehiro
2007-04-01
It is important to investigate the flow-induced structure for the analysis of the mechanism of flow behavior of complex fluids. The present paper includes two topics in which the flow-induced structure is numerically investigated. The first topic treats the suspensions of disc-like particles under simple shear flows. Disc-like particles were modeled by oblate spheroid particles, and the Brownian dynamics simulation was performed for suspensions of the particles interacting via the Gay-Berne potential. This simulation confirmed that this model system was applicable to the analysis of flow of suspension of disc-like particles. The second one is the numerical simulation of the deformation behavior of a droplet in shear flows. The present simulation is the first step for the numerical simulation of the flow-induced structure in emulsions. This simulation can demonstrate the deformation behavior of droplet observed in experiments and predict effects of non-Newtonian property of fluids on the droplet deformation.
Fluid mechanics of dynamic stall. I - Unsteady flow concepts
NASA Technical Reports Server (NTRS)
Ericsson, L. E.; Reding, J. P.
1988-01-01
Advanced military aircraft 'supermaneuverability' requirements entail the sustained operation of airfoils at stalled flow conditions. The present work addresses the effects of separated flow on vehicle dynamics; an analytic method is presented which employs static experimental data to predict the separated flow effect on incompressible unsteady aerodynamics. The key parameters in the analytic relationship between steady and nonsteady aerodynamics are the time-lag before a change of flow conditions can affect the separation-induced aerodynamic loads, the accelerated flow effect, and the moving wall effect.
3D topographic correction of the BSR heat flow and detection of focused fluid flow
NASA Astrophysics Data System (ADS)
He, Tao; Li, Hong-Lin; Zou, Chang-Chun
2014-06-01
The bottom-simulating reflector (BSR) is a seismic indicator of the bottom of a gas hydrate stability zone. Its depth can be used to calculate the seafloor surface heat flow. The calculated BSR heat flow variations include disturbances from two important factors: (1) seafloor topography, which focuses the heat flow over regions of concave topography and defocuses it over regions of convex topography, and (2) the focused warm fluid flow within the accretionary prism coming from depths deeper than BSR. The focused fluid flow can be detected if the contribution of the topography to the BSR heat flow is removed. However, the analytical equation cannot solve the topographic effect at complex seafloor regions. We prove that 3D finite element method can model the topographic effect on the regional background heat flow with high accuracy, which can then be used to correct the topographic effect and obtain the BSR heat flow under the condition of perfectly flat topography. By comparing the corrected BSR heat flow with the regional background heat flow, focused fluid flow regions can be detected that are originally too small and cannot be detected using present-day equipment. This method was successfully applied to the midslope region of northern Cascadia subducting margin. The results suggest that the Cucumber Ridge and its neighboring area are positive heat flow anomalies, about 10%-20% higher than the background heat flow after 3D topographic correction. Moreover, the seismic imaging associated the positive heat flow anomaly areas with seabed fracture-cavity systems. This suggests flow of warm gas-carrying fluids along these high-permeability pathways, which could result in higher gas hydrate concentrations.
NASA Astrophysics Data System (ADS)
Huang, Yu-Ning
In this work, we derive necessary and sufficient conditions for turbulent secondary flows of a Newtonian fluid and necessary and sufficient conditions for laminar steady secondary flows of a Non-Newtonian fluid in a straight tube. It is found that there is a striking similarity between them. This similarity motivates the assumption used in developing a generalized non-linear K- epsilon model. Based on an analogy that exists between the constitutive relations for turbulent mean flows of a Newtonian fluid and that for laminar flows of a Non -Newtonian fluid, and making use of the constitutive framework of extended thermodynamics, we develop a generalized non -linear K-epsilon model with the same relaxation time as that which appears in the turbulence model proposed by Yakhot, Orszag, Thangam, Gatski and Speziale in 1992. We show that the non-linear K-epsilon model developed by Speziale in 1987 is unable to predict the relaxation phenomena of the Reynolds stresses because of involving no K and dotepsilon , and a coefficient of which leads to a negative relaxation time for the Reynolds stresses. To correct this deficiency, we resort to making use of the relaxation time in the model of Yakhot et al.. The approximate form of our generalized non-linear K-epsilon model, which can predict the relaxation phenomena of the Reynolds stresses and is frame indifferent, is an extension of the standard K-epsilon model and the non-linear K-epsilon model of Speziale.
Multi-size Scaling of Fluid Flow and Seismic Fracture Stiffness (Invited)
NASA Astrophysics Data System (ADS)
Pyrak-Nolte, L. J.; Petrovitch, C.; Nolte, D. D.
2013-12-01
Remote monitoring of any natural or anthropogenic process in the subsurface seeks to gain knowledge of the local fracture network geometry and the local fluid flow patterns. From the study of single fractures at laboratory scales, a clear understanding has emerged on how to interpret fracture specific stiffness from seismic data and how time-dependent processes (e.g., stress, geochemical interactions, fluid saturation) affect interpretation. However, an open challenge remains to determine if fracture specific stiffness is related to the hydraulic properties of a fracture and if this relationship holds across a broad range of scales. A finite-size scaling analysis was performed on fractures numerically simulated with weakly correlated random aperture distributions to explore whether a fundamental scaling relationship exists between fracture seismic stiffness and fracture flow behavior. Computational models were used to analyze fluid flow through a fracture undergoing deformation. The numerical methods included a stratified percolation approach to generate pore-scale fracture void geometry for fractures, a combined conjugate-gradient method and fast-multipole method for determining fracture deformation, and a flow network model for simulating fluid flow, fluid velocity and fluid pressures within a fracture. From the numerical simulations, fracture specific stiffness was determined to be a surrogate for fracture void area (traditionally used in percolation studies). Fracture specific stiffness captures the deformation of the fracture void geometry that includes both changes in contact area and aperture. This enabled a collapse of the numerical flow-stiffness data, simulated at multiple length scales, to a single scaling function. The scaling function displays two exponential regions above and below the transition into the critical regime. The transition point is governed by the multi-fractal spectrum of stress dependent flow paths. This spectrum reveals that the flow
NASA Astrophysics Data System (ADS)
Cerroni, D.; Fancellu, L.; Manservisi, S.; Menghini, F.
2016-06-01
In this work we propose to study the behavior of a solid elastic object that interacts with a multiphase flow. Fluid structure interaction and multiphase problems are of great interest in engineering and science because of many potential applications. The study of this interaction by coupling a fluid structure interaction (FSI) solver with a multiphase problem could open a large range of possibilities in the investigation of realistic problems. We use a FSI solver based on a monolithic approach, while the two-phase interface advection and reconstruction is computed in the framework of a Volume of Fluid method which is one of the more popular algorithms for two-phase flow problems. The coupling between the FSI and VOF algorithm is efficiently handled with the use of MEDMEM libraries implemented in the computational platform Salome. The numerical results of a dam break problem over a deformable solid are reported in order to show the robustness and stability of this numerical approach.
Fluid dynamics aspects of miniaturized axial-flow blood pump.
Kang, Can; Huang, Qifeng; Li, Yunxiao
2014-01-01
Rotary blood pump (RBP) is a kind of crucial ventricular assist device (VAD) and its advantages have been evidenced and acknowledged in recent years. Among the factors that influence the operation performance and the durability of various rotary blood pumps, medium property and the flow features in pump's flow passages are conceivably significant. The major concern in this paper is the fluid dynamics aspects of such a kind of miniaturized pump. More specifically, the structural features of axial-flow blood pump and corresponding flow features are analyzed in detail. The narrow flow passage between blade tips and pump casing and the rotor-stator interaction (RSI) zone may exert a negative effect on the shear stress distribution in the blood flow. Numerical techniques are briefly introduced in view of their contribution to facilitating the optimal design of blood pump and the visualization of shear stress distribution and multiphase flow analysis. Additionally, with the development of flow measurement techniques, the high-resolution, effective and non-intrusive flow measurement techniques catering to the measurement of the flows inside rotary blood pumps are highly anticipated. PMID:24211957
Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry
Sinha, Dipen N.
2003-11-11
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Noninvasive Characterization Of A Flowing Multiphase Fluid Using Ultrasonic Interferometry
Sinha, Dipen N.
2005-05-10
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry
Sinha, Dipen N.
2007-06-12
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Changes in rabbit lacrimal gland fluid osmolarity with flow rate.
Gilbard, J P; Dartt, D A
1982-12-01
To determine whether the osmolarity of rabbit lacrimal gland fluid (LGF) changes with flow rate, microvolumes (approximately 0.2 microliters) were collected directly from he cannulated glandular excretory duct of anesthetized rabbits. Low flow rates were obtained by collection of LGF 5 min after instillation of proparacaine: higher flow rates were obtained by stimulation with 0.45, 0.9, 3.8, or 15 micrograms of acetylcholine administered by local arterial injection. At low flow rates (less than 0.11 microliters/min), LGF osmolarity was 334 +/- 4 mOsm/L (n = 19). As flow rate increased to maximal rates (13.0 to 19.1 microliters/min), LGF osmolarity decreased to a value of 299 +/- 2 mOsm/L (n = 7). In keratoconjunctivitis sicca, increase in LGF osmolarity, as well as tear film evaporation, may contribute to elevated tear film osmolarity. PMID:7141824
A numerical model of deformation and fluid-flow in an evolving thrust wedge
NASA Astrophysics Data System (ADS)
Strayer, Luther M.; Hudleston, Peter J.; Lorig, Loren J.
2001-06-01
To investigate deformation and fluid-flow in an actively deforming tectonic wedge, we model the evolution of a large, two-dimensional (100 km long, 5 km thick), mechanically and hydrologically homogeneous and isotropic pile of sedimentary strata that is deformed to become a thrust wedge. We compare both 'dry' and 'wet' cases, in order to illustrate: (1) the relative importance of fluids on wedge evolution, and (2) the effect of brittle deformation on fluid-flow. We use an elastic-plastic constitutive relation, including a Mohr-Coulomb failure criterion and a non-associated flow rule, and coupled fluid flow, with bulk rock properties that approximate typical foreland sedimentary strata. Simulations are made both with and without dilation. The model is fully dynamic, but inertial forces remain small. Results show that deformation within the wedge is accommodated by reverse-slip movement on shear bands, which migrate in both directions through the wedge as both fore- and back-thrusts. The model has features predicted by the critical-taper theory: (1) overall wedge geometry; (2) crudely self-similar growth during evolution; (3) more intense deformation toward the rear of the wedge. The models show strong overall in-sequence faulting behavior with major thrusts isolating relatively undeformed packages, which are moved in a piggyback manner upon the active thrusts. Intermittent out-of-sequence faulting does however occur, in order to maintain the wedge taper. Fluid-flow in the deforming wedge is dominated by topography, but is also strongly affected by dilational plastic deformation. In all simulations, there is focused fluid flow within fault zones. When mechanical time-stepping is shut off (uncoupled), flow systems evolve to steady-state where inflow equals outflow. By subtracting the two 'states' we isolate the mechanical fluid response from the total coupled system response. The mechanical fluid response is manifest as contours of head and pressure difference and
Flow in the well: computational fluid dynamics is essential in flow chamber construction
Franke, Jörg; Frank, Wolfram; Schroten, Horst
2007-01-01
A perfusion system was developed to generate well defined flow conditions within a well of a standard multidish. Human vein endothelial cells were cultured under flow conditions and cell response was analyzed by microscopy. Endothelial cells became elongated and spindle shaped. As demonstrated by computational fluid dynamics (CFD), cells were cultured under well defined but time varying shear stress conditions. A damper system was introduced which reduced pulsatile flow when using volumetric pumps. The flow and the wall shear stress distribution were analyzed by CFD for the steady and unsteady flow field. Usage of the volumetric pump caused variations of the wall shear stresses despite the controlled fluid environment and introduction of a damper system. Therefore the use of CFD analysis and experimental validation is critical in developing flow chambers and studying cell response to shear stress. The system presented gives an effortless flow chamber setup within a 6-well standard multidish. PMID:19002993
Gravity-Driven Thin Film Flow of an Ellis Fluid.
Kheyfets, Vitaly O; Kieweg, Sarah L
2013-12-01
The thin film lubrication approximation has been studied extensively for moving contact lines of Newtonian fluids. However, many industrial and biological applications of the thin film equation involve shear-thinning fluids, which often also exhibit a Newtonian plateau at low shear. This study presents new numerical simulations of the three-dimensional (i.e. two-dimensional spreading), constant-volume, gravity-driven, free surface flow of an Ellis fluid. The numerical solution was validated with a new similarity solution, compared to previous experiments, and then used in a parametric study. The parametric study centered around rheological data for an example biological application of thin film flow: topical drug delivery of anti-HIV microbicide formulations, e.g. hydroxyethylcellulose (HEC) polymer solutions. The parametric study evaluated how spreading length and front velocity saturation depend on Ellis parameters. A lower concentration polymer solution with smaller zero shear viscosity (η 0), τ 1/2, and λ values spread further. However, when comparing any two fluids with any possible combinations of Ellis parameters, the impact of changing one parameter on spreading length depends on the direction and magnitude of changes in the other two parameters. In addition, the isolated effect of the shear-thinning parameter, λ, on the front velocity saturation depended on τ 1/2. This study highlighted the relative effects of the individual Ellis parameters, and showed that the shear rates in this flow were in both the shear-thinning and plateau regions of rheological behavior, emphasizing the importance of characterizing the full range of shear-rates in rheological measurements. The validated numerical model and parametric study provides a useful tool for future steps to optimize flow of a fluid with rheological behavior well-described by the Ellis constitutive model, in a range of industrial and biological applications. PMID:25309029
Gravity-Driven Thin Film Flow of an Ellis Fluid
Kheyfets, Vitaly O.
2014-01-01
The thin film lubrication approximation has been studied extensively for moving contact lines of Newtonian fluids. However, many industrial and biological applications of the thin film equation involve shear-thinning fluids, which often also exhibit a Newtonian plateau at low shear. This study presents new numerical simulations of the three-dimensional (i.e. two-dimensional spreading), constant-volume, gravity-driven, free surface flow of an Ellis fluid. The numerical solution was validated with a new similarity solution, compared to previous experiments, and then used in a parametric study. The parametric study centered around rheological data for an example biological application of thin film flow: topical drug delivery of anti-HIV microbicide formulations, e.g. hydroxyethylcellulose (HEC) polymer solutions. The parametric study evaluated how spreading length and front velocity saturation depend on Ellis parameters. A lower concentration polymer solution with smaller zero shear viscosity (η0), τ1/2, and λ values spread further. However, when comparing any two fluids with any possible combinations of Ellis parameters, the impact of changing one parameter on spreading length depends on the direction and magnitude of changes in the other two parameters. In addition, the isolated effect of the shear-thinning parameter, λ, on the front velocity saturation depended on τ1/2. This study highlighted the relative effects of the individual Ellis parameters, and showed that the shear rates in this flow were in both the shear-thinning and plateau regions of rheological behavior, emphasizing the importance of characterizing the full range of shear-rates in rheological measurements. The validated numerical model and parametric study provides a useful tool for future steps to optimize flow of a fluid with rheological behavior well-described by the Ellis constitutive model, in a range of industrial and biological applications. PMID:25309029
Steady and oscillatory fluid flows produce a similar osteogenic phenotype.
Case, N; Sen, B; Thomas, J A; Styner, M; Xie, Z; Jacobs, C R; Rubin, J
2011-03-01
Mechanical loading induces positive changes in the skeleton due to direct effects on bone cells, which may include regulation of transcription factors that support osteoblast differentiation and function. Flow effects on osteoblast transcription factors have generally been evaluated after short exposures. In this work, we assayed flow effects on osteogenic genes at early and late time points in a preosteoblast (CIMC-4) cell line and evaluated both steady and oscillatory flows. Four hours of steady unidirectional flow decreased the level of RANKL mRNA 53 ± 7% below that of nonflowed cells, but increases in Runx2 and osterix mRNA (44 ± 22% and 129 ± 12%, respectively) were significant only after 12-19 h of continuous flow. Late flow effects on RANKL and osterix were also induced by an intermittent flow-rest protocol (four cycles of 1 h on/1 h off + overnight rest). Four hours of oscillatory flow decreased RANKL mRNA at this early time point (63 ± 2%) but did not alter either osterix or Runx2. When oscillatory flow was delivered using the intermittent flow-rest protocol, Runx2 and osterix mRNA increased significantly (85 ± 19% and 161 ± 22%, respectively). Both β-catenin and ERK1/2, known to be involved in RANKL regulation, were rapidly activated by steady flow. Inhibition of flow-activated ERK1/2 prevented the increase in osterix mRNA but not Runx2; Runx2 phosphorylation was increased by flow, an effect which likely contributes to osterix induction. This work shows that both steady and oscillatory fluid flows can support enhancement of an osteogenic phenotype. PMID:21165611
Preconditioning methods for ideal and multiphase fluid flows
NASA Astrophysics Data System (ADS)
Gupta, Ashish
The objective of this study is to develop a preconditioning method for ideal and multiphase multispecies compressible fluid flow solver using homogeneous equilibrium mixture model. The mathematical model for fluid flow going through phase change uses density and temperature in the formulation, where the density represents the multiphase mixture density. The change of phase of the fluid is then explicitly determined using the equation of state of the fluid, which only requires temperature and mixture density. The method developed is based on a finite-volume framework in which the numerical fluxes are computed using Roe's approximate Riemann solver and the modified Harten, Lax and Van-leer scheme (HLLC). All speed Roe and HLLC flux based schemes have been developed either by using preconditioning or by directly modifying dissipation to reduce the effect of acoustic speed in its numerical dissipation when Mach number decreases. Preconditioning proposed by Briley, Taylor and Whitfield, Eriksson and Turkel are studied in this research, where as low dissipation schemes proposed by Rieper and Thornber, Mosedale, Drikakis, Youngs and Williams are also considered. Various preconditioners are evaluated in terms of development, performance, accuracy and limitations in simulations at various Mach numbers. A generalized preconditioner is derived which possesses well conditioned eigensystem for multiphase multispecies flow simulations. Validation and verification of the solution procedure are carried out on several small model problems with comparison to experimental, theoretical, and other numerical results. Preconditioning methods are evaluated using three basic geometries; 1) bump in a channel 2) flow over a NACA0012 airfoil and 3) flow over a cylinder, which are then compared with theoretical and numerical results. Multiphase capabilities of the solver are evaluated in cryogenic and non-cryogenic conditions. For cryogenic conditions the solver is evaluated by predicting
Rheological control in subduction zones: slab dynamics, fluid flow and seismic anisotropy
NASA Astrophysics Data System (ADS)
Van Keken, P. E.; Spiegelman, M.; Wilson, C. R.
2011-12-01
The strong temperature, strain-rate and compositional gradients in subduction zones provide extreme challenges to the modeling of their dynamics. Major questions remain regarding the state of stress in the slab, the nature of the downdip transition of the seismogenic zone, the rheological control on the release of fluids and the role of fluids in magma generation, earthquake source processes and the formation of seismic anisotropy. We use high resolution finite element models of convergent margins to address some of these topics. First, we explore the role of fluids on wedge rheology and how the presence or absence of fluids changes the dynamics of the wedge. The presence of fluids in the cold fore-arc may be the cause of trench-parallel anisotropy due to B-type olivine fabric or due to shape preferred orientation by the alignment of serpentinite filled cracks. Second, The cold fore-arc generally extends to where the slab is at ~80 km depth. This depth has a strong sensitivity to the depth where the overriding wedge couples with the slab. Weak phases such as chlorite, serpentinite and talc may play a critical control on the region where the slab remains decoupled, but the strong non-linearities involved make it difficult to determine a single process for all subduction zones. Finally, the increasing metamorphic grade of rocks in the subducting slab cause progressive fluid production, which has been linked to intermediate depth seismicity. The fluids also are considered the primary cause for arc volcanism, but it is not yet clear how the fluids escape from the slab and travel to the zones of arc magmatism. We use a new set of coupled solid state and porous flow models to determine how fluids affect the shear and bulk viscosity of these rocks and how this in turn controls the flow of fluids from the slab.
The "limiting line" in mixed subsonic and supersonic flow of compressible fluids
NASA Technical Reports Server (NTRS)
Tsien, Hsue-Shen
1944-01-01
It is well known that the vorticity for any fluid element is constant if the fluid is non-viscous and the change of state of the fluid is isentropic. When a solid body is placed in a uniform stream, the flow far ahead of the body is irrotational. Then if the flow is further assumed to be isentropic, the vorticity will be zero over the whole filed of flow. In other words, the flow is irrotational. For such flow over a solid body, it is shown by Theodorsen that the solid body experiences no resistance. If the fluid has a small viscosity, its effect will be limited in the boundary layer over the solid body and the body will have a drag due to the skin friction. This type of essentially isentropic irrotational flow is generally observed for a streamlined body placed in a uniform stream, if the velocity of the stream is kept below the so-called "critical speed." At the critical speed or rather at a certain value of the ratio of the velocity of the undisturbed flow and the corresponding velocity of sound, shock waves appear. This phenomenon is called the "compressibility bubble." Along a shock wave, the change of state of the fluid is no longer isentropic, although still adiabatic. This results in an increase in entropy of the fluid and generally introduces vorticity in an originally irrotational flow. The increase in entropy of the fluid is, of course, the consequence of changing part of the mechanical energy into heat energy. In other words, the part of fluid affected by the shock wave has a reduced mechanical energy. Therefore, with the appearance of shock waves, the wake of the streamline body is very much widened, and the drag increases drastically. Furthermore, the accompanying change in the pressure distribution over the body changes the aerodynamic moment acting on it and in the case of an airfoil decreases the lift force. All these consequences of the breakdown of isentropic irrotational flow are generally undesirable in applied aerodynamics. Its occurrence
Channelized fluid flow in oceanic crust reconciles heat-flow and permeability data
Fisher; Becker
2000-01-01
Hydrothermal fluid circulation within the sea floor profoundly influences the physical, chemical and biological state of the crust and the oceans. Circulation within ridge flanks (in crust more than 1 Myr old) results in greater heat loss and fluid flux than that at ridge crests and persists for millions of years, thereby altering the composition of the crust and overlying ocean. Fluid flow in oceanic crust is, however, limited by the extent and nature of the rock's permeability. Here we demonstrate that the global data set of borehole permeability measurements in uppermost oceanic crust defines a trend with age that is consistent with changes in seismic velocity. This trend-which indicates that fluid flow should be greatly reduced in crust older than a few million years-would appear to be inconsistent with heat-flow observations, which on average indicate significant advective heat loss in crust up to 65 Myr old. But our calculations, based on a lateral flow model, suggest that regional-scale permeabilities are much higher than have been measured in boreholes. These results can be reconciled if most of the fluid flow in the upper crust is channelized through a small volume of rock, influencing the geometry of convection and the nature of fluid-rock interaction. PMID:10638753
Particle hopping vs. fluid-dynamical models for traffic flow
Nagel, K.
1995-12-31
Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.
Yuan, Dan; Zhang, Jun; Yan, Sheng; Peng, Gangrou; Zhao, Qianbin; Alici, Gursel; Du, Hejun; Li, Weihua
2016-08-01
In this work, particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid was experimentally investigated. The 4.8-μm micro-particles were dispersed in a polyethylene oxide (PEO) viscoelastic solution, and then the solution was injected into a straight rectangular channel with a deionised (DI) water Newtonian sheath flow. Micro-particles suspended in PEO solution migrated laterally to a DI water stream, but migration in the opposite direction from a DI water stream to a PEO solution stream or from one DI water stream to another DI water stream could not be achieved. The lateral migration of particles depends on the viscoelastic properties of the sample fluids. Furthermore, the effects of channel length, flow rate, and PEO concentration were studied. By using viscoelastic sample flow and Newtonian sheath flow, a selective particle lateral migration can be achieved in a simple straight channel, without any external force fields. This particle lateral migration technique could be potentially used in solution exchange fields such as automated cell staining and washing in microfluidic platforms, and holds numerous biomedical applications. PMID:27140330
Modeling Fluid Flow and Microbial Reactions in the Peru Accretionary Complex
NASA Astrophysics Data System (ADS)
Bekins, B. A.; Matmon, D.
2002-12-01
Accretionary complexes are sites where sediment compaction and deeper reactions drive large-scale flow systems that can affect global solute budgets. Extensive modeling and drilling studies have elucidated the origin of the fluids, pore pressures, duration of flow, and major flow paths in these settings. An important research goal is to quantify the effect of these flow systems on global chemical budgets of reactive solutes such as carbon. The Peru margin represents an end member setting that can serve as a basis to extend the results to other margins. The sediments are relatively high in organic carbon with an average value of 2.6%. The subduction rate at ~9 cm/yr and taper angle at 14-17° are among the largest in the world. Recent microbial studies on Ocean Drilling Program Leg 201 at the Peru accretionary margin provide many key elements needed to quantify the processes affecting organic carbon in an accretionary complex. Pore water chemistry data from Site 1230 located in the Peru accretionary prism indicate that sulfate reduction is important in the top 8 mbsf. Below this depth, methanogenesis is the dominant process and methane concentrations are among the highest measured at any site on Leg 201. The presence of high methane concentrations at shallow depths suggests that methane is transported upward in the prism by fluid flow. Measurements of in-situ pore pressures and temperatures also support the presence of upward fluid flow. A single in-situ pressure measurement at ~100 mbsf indicated an overpressure of 0.14 MPa. For a reasonable formation permeability of ~ 10-16 m2, the measured overpressure is adequate to produce flow at a rate of ~5 mm/yr. This rate is comparable to previous model estimates for flow rates in the Peru accretionary prism. In addition, curvature in the downhole temperature profile can best be explained by upward fluid flow of 1-10 mm/yr. These data are used to constrain a two-dimensional coupled fluid flow and reactive transport model
Flow regime classification in air magnetic fluid two-phase flow
NASA Astrophysics Data System (ADS)
Kuwahara, T.; DeVuyst, F.; Yamaguchi, H.
2008-05-01
A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.
Flow regime classification in air-magnetic fluid two-phase flow.
Kuwahara, T; De Vuyst, F; Yamaguchi, H
2008-05-21
A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors. PMID:21694270
Magneto-polar fluid flow through a porous medium of variable permeability in slip flow regime
NASA Astrophysics Data System (ADS)
Gaur, P. K.; Jha, A. K.; Sharma, R.
2016-05-01
A theoretical study is carried out to obtain an analytical solution of free convective heat transfer for the flow of a polar fluid through a porous medium with variable permeability bounded by a semi-infinite vertical plate in a slip flow regime. A uniform magnetic field acts perpendicular to the porous surface. The free stream velocity follows an exponentially decreasing small perturbation law. Using the approximate method the expressions for the velocity, microrotation, and temperature are obtained. Further, the results of the skin friction coefficient, the couple stress coefficient and the rate of heat transfer at the wall are presented with various values of fluid properties and flow conditions.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, Marcos G.; Boucher, Timothy J.
1997-01-01
A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, M.G.; Boucher, T.J.
1997-06-24
A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.
Governing equations for electro-conjugate fluid flow
NASA Astrophysics Data System (ADS)
Hosoda, K.; Takemura, K.; Fukagata, K.; Yokota, S.; Edamura, K.
2013-12-01
An electro-conjugation fluid (ECF) is a kind of dielectric liquid, which generates a powerful flow when high DC voltage is applied with tiny electrodes. This study deals with the derivation of the governing equations for electro-conjugate fluid flow based on the Korteweg-Helmholtz (KH) equation which represents the force in dielectric liquid subjected to high DC voltage. The governing equations consist of the Gauss's law, charge conservation with charge recombination, the KH equation, the continuity equation and the incompressible Navier-Stokes equations. The KH equation consists of coulomb force, dielectric constant gradient force and electrostriction force. The governing equation gives the distribution of electric field, charge density and flow velocity. In this study, direct numerical simulation (DNS) is used in order to get these distribution at arbitrary time. Successive over-relaxation (SOR) method is used in analyzing Gauss's law and constrained interpolation pseudo-particle (CIP) method is used in analyzing charge conservation with charge recombination. The third order Runge-Kutta method and conservative second-order-accurate finite difference method is used in analyzing the Navier-Stokes equations with the KH equation. This study also deals with the measurement of ECF ow generated with a symmetrical pole electrodes pair which are made of 0.3 mm diameter piano wire. Working fluid is FF-1EHA2 which is an ECF family. The flow is observed from the both electrodes, i.e., the flow collides in between the electrodes. The governing equation successfully calculates mean flow velocity in between the collector pole electrode and the colliding region by the numerical simulation.
NASA Astrophysics Data System (ADS)
Renardy, M.
1986-02-01
Steady flows of viscoelastic fluids can not be uniquely determined by imposing boundary conditions only for the velocities as in the Newtonian case. The reason for this is that the fluids have memory, and therefore the flow inside the domain is affected by what happened before the fluid entered the domain. This leads to the need for extra boundary conditions at an inflow boundary. The nature of these inflow boundary conditions has not been analyzed previously, and it is certainly dependent on the constitutive law. In this paper, we look at the special case of differential constitutive relations with a single relaxation mode. We consider steady transverse flows across a strip which are small perturbations of a flow with constant velocity. It turns out that in this case two extra inflow boundary conditions are required in two dimensions, and four in three dimensions. This is what would be expected from an analysis of characteristics, but it contradicts the belief of many rheologists that it is possible to prescribe the extra stress at an inflow boundary. The problem studied here is of potential relevance for numerical simulations of steady flows. Many of the flows currently simulated are on infinite domains. Numerically, these domains are truncated, and on the inflow boundary of the truncated domain people usually prescribe the extra stress. According to the analysis in this paper, this is an overdetermined problem, and therefore errors must be expected from this procedure.
Lagrangian analysis of fluid transport in empirical vortex ring flows
NASA Astrophysics Data System (ADS)
Shadden, Shawn C.; Dabiri, John O.; Marsden, Jerrold E.
2006-04-01
In this paper we apply dynamical systems analyses and computational tools to fluid transport in empirically measured vortex ring flows. Measurements of quasisteadily propagating vortex rings generated by a mechanical piston-cylinder apparatus reveal lobe dynamics during entrainment and detrainment that are consistent with previous theoretical and numerical studies. In addition, the vortex ring wake of a free-swimming Aurelia aurita jellyfish is measured and analyzed in the framework of dynamical systems to elucidate similar lobe dynamics in a naturally occurring biological flow. For the mechanically generated rings, a comparison of the net entrainment rate based on the present methods with a previous Eulerian analysis shows good correspondence. However, the current Lagrangian framework is more effective than previous analyses in capturing the transport geometry, especially when the flow becomes more unsteady, as in the case of the free-swimming jellyfish. Extensions of these results to more complex flow geometries is suggested.
A stochastic filtering technique for fluid flow velocity fields tracking.
Cuzol, Anne; Mémin, Etienne
2009-07-01
In this paper, we present a method for the temporal tracking of fluid flow velocity fields. The technique we propose is formalized within a sequential Bayesian filtering framework. The filtering model combines an Itô diffusion process coming from a stochastic formulation of the vorticity-velocity form of the Navier-Stokes equation and discrete measurements extracted from the image sequence. In order to handle a state space of reasonable dimension, the motion field is represented as a combination of adapted basis functions, derived from a discretization of the vorticity map of the fluid flow velocity field. The resulting nonlinear filtering problem is solved with the particle filter algorithm in continuous time. An adaptive dimensional reduction method is applied to the filtering technique, relying on dynamical systems theory. The efficiency of the tracking method is demonstrated on synthetic and real-world sequences. PMID:19443925
Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control
Cary, Robert E.
2015-12-08
Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.
NASA Astrophysics Data System (ADS)
Ciriello, Valentina; Di Federico, Vittorio
2012-07-01
We analyze the transient motion of a non-Newtonian power-law fluid in a porous medium of infinite extent and given geometry (plane, cylindrical or spherical). The flow in the domain, initially at constant ambient pressure, is induced by fluid withdrawal or injection in the domain origin at prescribed pressure or injection rate. Previous literature work is generalized and expanded, providing a dimensionless formulation suitable for any geometry, and deriving similarity solutions to the nonlinear governing equations valid for pseudoplastic, Newtonian and dilatant fluids. A pressure front propagating with finite velocity is generated when the fluid is pseudoplastic; no such front exists for Newtonian or dilatant fluids. The front rate of advance depends directly on fluid flow behavior index and inversely on medium porosity and domain dimensionality. The effects and relative importance of uncertain input parameters on the model outputs are investigated via Global Sensitivity Analysis by calculating the Sobol' indices of (a) pressure front position and (b) domain pressure, by adopting the Polynomial Chaos Expansion technique. For the selected case study, the permeability is the most influential factor affecting the system responses.
Communications: Mechanical Deformation of Dendrites by Fluid Flow
NASA Technical Reports Server (NTRS)
Pilling, J.; Hellawell, A.
1996-01-01
It is generally accepted that liquid agitation during alloy solidification assists in crystal multiplication, as in dendrite fragmentation and the detachment of side arms in the mushy region of a casting. Even without deliberate stirring by electromagnetic or mechanical means, there is often vigorous interdendritic fluid flow promoted by natural thermosolutal convection. In this analysis, we shall estimate the stress at the root of a secondary dendrite arm of aluminum arising from the action of a flow of molten metal past the dendrite arm.
Simulation of flow past a sphere in a stratified fluid
NASA Astrophysics Data System (ADS)
de Stadler, Matthew; Sarkar, Sutanu
2011-11-01
Direct numerical simulation is used to simulate spatially-evolving flow past a sphere in a stratified fluid. The immersed boundary method is used to treat the sphere inside the domain. The main objective of this study is to characterize the near wake region. Statistics of interest include the drag coefficient, separation angle, Strouhal number, and the spatial evolution of the velocity fluctuations and the defect velocity. In addition to quantitative statistics, visualizations of the vortex structures in the wake will also be provided and discussed. Results are compared and contrasted with previous experimental and numerical data for unstratified and stratified flow past a sphere.
Fluid flow in fractured rock: Theory and application
Long, J.C.S.; Hestir, K.; Karasaki, K.; Davey, A.; Peterson, J.; Kemeny, J.; Landsfeld, M.
1989-07-01
The phenomena of fluid flow in fractured rock is dominated by the fact that is not all parts of the domain are in hydraulic communication. In theory, it is possible to determine connectivity and permeability from stochastic parameters that describe the fracture geometry. When this approach is applied to the field we find it very difficult to sufficiently determine the geometry which controls the flow. Simulated annealing, an inverse technique which focus on finding the pattern of conductors may provide a better way to characterize these systems. 30 refs., 20 figs., 6 tabs.
ICEd-ALE Treatment of 3-D Fluid Flow.
1999-09-13
Version: 00 SALE3D calculates three-dimensional fluid flow at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitudemore » results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a three-dimensional network of arbitrarily shaped, six-sided deformable cells, and a variety of user-selectable boundary conditions are provided in the program.« less
Microbubbles reveal chiral fluid flows in bacterial swarms
Wu, Yilin; Hosu, Basarab G.; Berg, Howard C.
2011-01-01
Flagellated bacteria can swim within a thin film of fluid that coats a solid surface, such as agar; this is a means for colony expansion known as swarming. We found that micrometer-sized bubbles make excellent tracers for the motion of this fluid. The microbubbles form explosively when small aliquots of an aqueous suspension of droplets of a water-insoluble surfactant (Span 83) are placed on the agar ahead of a swarm, as the water is absorbed by the agar and the droplets are exposed to air. Using these bubbles, we discovered an extensive stream (or river) of swarm fluid flowing clockwise along the leading edge of an Escherichia coli swarm, at speeds of order 10 μm/s, about three times faster than the swarm expansion. The flow is generated by the action of counterclockwise rotating flagella of cells stuck to the substratum, which drives fluid clockwise around isolated cells (when viewed from above), counterclockwise between cells in dilute arrays, and clockwise in front of cells at the swarm edge. The river provides an avenue for long-range communication in the swarming colony, ideally suited for secretory vesicles that diffuse poorly. These findings broaden our understanding of swarming dynamics and have implications for the engineering of bacterial-driven microfluidic devices. PMID:21300887
Cytoskeletal Dynamics and Fluid Flow in Drosophila Oocytes
NASA Astrophysics Data System (ADS)
de Canio, Gabriele; Goldstein, Raymond; Lauga, Eric
2015-11-01
The biological world includes a broad range of phenomena in which transport in a fluid plays a central role. Among these is the fundamental issue of cell polarity arising during development, studied historically using the model organism Drosophila melanogaster. The polarity of the oocyte is known to be induced by the translocation of mRNAs by kinesin motor proteins along a dense microtubule cytoskeleton, a process which also induces cytoplasmic streaming. Recent experimental observations have revealed the remarkable fluid-structure interactions that occur as the streaming flows back-react on the microtubules. In this work we use a combination of theory and simulations to address the interplay between the fluid flow and the configuration of cytoskeletal filaments leading to the directed motion inside the oocyte. We show in particular that the mechanical coupling between the fluid motion and the orientation of the microtubules can lead to a transition to coherent motion within the oocyte, as observed. Supported by EPSRC and ERC Advanced Investigator Grant 247333.
Optimization of micropillar sequences for fluid flow sculpting
NASA Astrophysics Data System (ADS)
Stoecklein, Daniel; Wu, Chueh-Yu; Kim, Donghyuk; Di Carlo, Dino; Ganapathysubramanian, Baskar
2016-01-01
Inertial fluid flow deformation around pillars in a microchannel is a new method for controlling fluid flow. Sequences of pillars have been shown to produce a rich phase space with a wide variety of flow transformations. Previous work has successfully demonstrated manual design of pillar sequences to achieve desired transformations of the flow cross section, with experimental validation. However, such a method is not ideal for seeking out complex sculpted shapes as the search space quickly becomes too large for efficient manual discovery. We explore fast, automated optimization methods to solve this problem. We formulate the inertial flow physics in microchannels with different micropillar configurations as a set of state transition matrix operations. These state transition matrices are constructed from experimentally validated streamtraces for a fixed channel length per pillar. This facilitates modeling the effect of a sequence of micropillars as nested matrix-matrix products, which have very efficient numerical implementations. With this new forward model, arbitrary micropillar sequences can be rapidly simulated with various inlet configurations, allowing optimization routines quick access to a large search space. We integrate this framework with the genetic algorithm and showcase its applicability by designing micropillar sequences for various useful transformations. We computationally discover micropillar sequences for complex transformations that are substantially shorter than manually designed sequences. We also determine sequences for novel transformations that were difficult to manually design. Finally, we experimentally validate these computational designs by fabricating devices and comparing predictions with the results from confocal microscopy.
Yield Hardening of Electrorheological Fluids in Channel Flow
NASA Astrophysics Data System (ADS)
Helal, Ahmed; Qian, Bian; McKinley, Gareth H.; Hosoi, A. E.
2016-06-01
Electrorheological fluids offer potential for developing rapidly actuated hydraulic devices where shear forces or pressure-driven flow are present. In this study, the Bingham yield stress of electrorheological fluids with different particle volume fractions is investigated experimentally in wall-driven and pressure-driven flow modes using measurements in a parallel-plate rheometer and a microfluidic channel, respectively. A modified Krieger-Dougherty model can be used to describe the effects of the particle volume fraction on the yield stress and is in good agreement with the viscometric data. However, significant yield hardening in pressure-driven channel flow is observed and attributed to an increase and eventual saturation of the particle volume fraction in the channel. A phenomenological physical model linking the densification and consequent microstructure to the ratio of the particle aggregation time scale compared to the convective time scale is presented and used to predict the enhancement in yield stress in channel flow, enabling us to reconcile discrepancies in the literature between wall-driven and pressure-driven flows.
Experimental study of fluid flows in a precessing cylindrical annulus
NASA Astrophysics Data System (ADS)
Lin, Yufeng; Noir, Jerome; Jackson, Andrew
2014-04-01
The flow inside a precessing fluid cavity has been given particular attention since the end of the 19th century in geophysical and industrial contexts. The present study aims at shedding light on the underlying mechanism by which the flow inside a precessing cylindrical annulus transitions from laminar to multiple scale complex structures. We address this problem experimentally using ultrasonic Doppler velocimetry to diagnose the fluid velocity in a rotating and precessing cylindrical annulus. When precession is weak, the flow can be described as a superposition of forced inertial modes. Above a critical value of the precession rate, the forced flow couples with two free inertial modes satisfying triadic resonance conditions, leading to the classical growth and collapse. Using a Bayesian approach, we extract the wavenumber, frequency, growth rate, and amplitude of each mode involved in the instability. In some cases, we observe for the first time ever experimentally two pairs of free modes coexisting with the forced flow. At larger precession rates, we do not observe triadic resonance any more, instead we observe several harmonics whose frequencies are integer multiples of the rotation frequency.
GEOSIM: A numerical model for geophysical fluid flow simulation
NASA Technical Reports Server (NTRS)
Butler, Karen A.; Miller, Timothy L.; Lu, Huei-Iin
1991-01-01
A numerical model which simulates geophysical fluid flow in a wide range of problems is described in detail, and comparisons of some of the model's results are made with previous experimental and numerical studies. The model is based upon the Boussinesq Navier-Stokes equations in spherical coordinates, which can be reduced to a cylindrical system when latitudinal walls are used near the pole and the ratio of latitudinal length to the radius of the sphere is small. The equations are approximated by finite differences in the meridional plane and spectral decomposition in the azimuthal direction. The user can specify a variety of boundary and initial conditions, and there are five different spectral truncation options. The results of five validation cases are presented: (1) the transition between axisymmetric flow and baroclinic wave flow in the side heated annulus; (2) the steady baroclinic wave of the side heated annulus; (3) the wave amplitude vacillation of the side heated annulus; (4) transition to baroclinic wave flow in a bottom heated annulus; and (5) the Spacelab Geophysical Fluid Flow Cell (spherical) experiment.
Using heteroclinic orbits to quantify topological entropy in fluid flows
NASA Astrophysics Data System (ADS)
Sattari, Sulimon; Chen, Qianting; Mitchell, Kevin A.
2016-03-01
Topological approaches to mixing are important tools to understand chaotic fluid flows, ranging from oceanic transport to the design of micro-mixers. Typically, topological entropy, the exponential growth rate of material lines, is used to quantify topological mixing. Computing topological entropy from the direct stretching rate is computationally expensive and sheds little light on the source of the mixing. Earlier approaches emphasized that topological entropy could be viewed as generated by the braiding of virtual, or "ghost," rods stirring the fluid in a periodic manner. Here, we demonstrate that topological entropy can also be viewed as generated by the braiding of ghost rods following heteroclinic orbits instead. We use the machinery of homotopic lobe dynamics, which extracts symbolic dynamics from finite-length pieces of stable and unstable manifolds attached to fixed points of the fluid flow. As an example, we focus on the topological entropy of a bounded, chaotic, two-dimensional, double-vortex cavity flow. Over a certain parameter range, the topological entropy is primarily due to the braiding of a period-three orbit. However, this orbit does not explain the topological entropy for parameter values where it does not exist, nor does it explain the excess of topological entropy for the entire range of its existence. We show that braiding by heteroclinic orbits provides an accurate computation of topological entropy when the period-three orbit does not exist, and that it provides an explanation for some of the excess topological entropy when the period-three orbit does exist. Furthermore, the computation of symbolic dynamics using heteroclinic orbits has been automated and can be used to compute topological entropy for a general 2D fluid flow.
Using heteroclinic orbits to quantify topological entropy in fluid flows.
Sattari, Sulimon; Chen, Qianting; Mitchell, Kevin A
2016-03-01
Topological approaches to mixing are important tools to understand chaotic fluid flows, ranging from oceanic transport to the design of micro-mixers. Typically, topological entropy, the exponential growth rate of material lines, is used to quantify topological mixing. Computing topological entropy from the direct stretching rate is computationally expensive and sheds little light on the source of the mixing. Earlier approaches emphasized that topological entropy could be viewed as generated by the braiding of virtual, or "ghost," rods stirring the fluid in a periodic manner. Here, we demonstrate that topological entropy can also be viewed as generated by the braiding of ghost rods following heteroclinic orbits instead. We use the machinery of homotopic lobe dynamics, which extracts symbolic dynamics from finite-length pieces of stable and unstable manifolds attached to fixed points of the fluid flow. As an example, we focus on the topological entropy of a bounded, chaotic, two-dimensional, double-vortex cavity flow. Over a certain parameter range, the topological entropy is primarily due to the braiding of a period-three orbit. However, this orbit does not explain the topological entropy for parameter values where it does not exist, nor does it explain the excess of topological entropy for the entire range of its existence. We show that braiding by heteroclinic orbits provides an accurate computation of topological entropy when the period-three orbit does not exist, and that it provides an explanation for some of the excess topological entropy when the period-three orbit does exist. Furthermore, the computation of symbolic dynamics using heteroclinic orbits has been automated and can be used to compute topological entropy for a general 2D fluid flow. PMID:27036190
Draft: Modeling Two-Phase Flow in Porous Media Including Fluid-Fluid Interfacial Area
Crandall, Dustin; Niessner, Jennifer; Hassanizadeh, S Majid
2008-01-01
We present a new numerical model for macro-scale twophase flow in porous media which is based on a physically consistent theory of multi-phase flow.The standard approach for modeling the flow of two fluid phases in a porous medium consists of a continuity equation for each phase, an extended form of Darcy’s law as well as constitutive relationships for relative permeability and capillary pressure. This approach is known to have a number of important shortcomings and, in particular, it does not account for the presence and role of fluid - fluid interfaces. An alternative is to use an extended model which is founded on thermodynamic principles and is physically consistent. In addition to the standard equations, the model uses a balance equation for specific interfacial area. The constitutive relationship for capillary pressure involves not only saturation, but also specific interfacial area. We show how parameters can be obtained for the alternative model using experimental data from a new kind of flow cell and present results of a numerical modeling study
NASA Astrophysics Data System (ADS)
Antonellini, Marco; Nella Mollema, Pauline
2016-04-01
Surface outcrops provide natural analogs for aquifers and they offer an opportunity to study the geometry of geologic heterogeneities in three dimensions over a range of scales. We show photographs, maps, quantitative field data of rock fractures and sedimentary features in outcrops exposed in a unique collection of many different settings. These include small-scale sedimentary structures, carbonate nodules, faults, and other fractures as documented in outcrops of porous sandstone (Utah, USA and Italy), tight sandstones (Bolivia), dolomite (Northern Italy), and carbonates (Central Italy). We simulate the geometries observed in outcrops with simple conceptual and numerical models of flow to show how important it is to recognize the appropriate attributes for the description and the process responsible for the formation of geologic heterogeneities. For example, knowing the type of structural heterogeneities (fault, joint, compaction band, stylolite, and vein) and their development mechanics helps to predict the distribution and preferential orientation of these features within an aquifer. This knowledge is particularly important for modeling of fluid flow where geophysical or borehole data are lacking. Geologic heterogeneities of sedimentary, structural or diagenetic (chemical) nature influence the fluid flow properties in many aquifers and reservoirs at scales varying over several orders of magnitude and with a spatial variability ranging from mm to tens of meters. Heterogeneities may enhance or degrade porosity and permeability, they impart anisotropy to permeability and dispersion and affect mass transport-related processes in groundwater. Furthermore, aquifer heterogeneities control aquifer continuity and compartmentalization. In fractured aquifers, geologic and diagenetic heterogeneities may affect connectivity, aperture of the flow channels or the distribution of permeability buffers, barriers and seals. Also variations in layer thickness and lithology within a
Numerical investigation of three-dimensional transonic flows of Bethe-Zel'dovich-Thompson fluids
NASA Astrophysics Data System (ADS)
Cinnella, Paola; Corre, Christophe
2006-11-01
Bethe-Zel'dovich-Thompson (BZT) fluids are fluids of the retrograde type (i.e. that superheat when expanded), which exhibit a region of negative values of the Fundamental Derivative of Gasdynamics γ. As a consequence, they display, in the transonic and supersonic regime, nonclassical gasdynamic behaviours, such as rarefaction shock waves and mixed shock/fan waves. The peculiar properties of BZT fluids have received increased interest in recent years because of the possibility of enhancing turbine efficiency in Organic Rankine Cycles (ORCs). The present research provides for the first time a detailed investigation of transonic BZT flows past a 3D configuration, representative of an isolated turbine blade with infinite tip leakage, namely, the ONERA M-6 wing. Since BZT phenomena mainly affect the inviscid flow behavior, the analysis is restricted to the Euler equations, completed by the realistic Martin-Hou equation of state. The governing equations are solved numerically using a structured flow-solver based on a third-order accurate centred scheme. The results are validated through systematic comparisons with an unstructured multidimensional upwind solver. An investigation of the flow patterns for several choices of the upstream thermodynamic conditions is provided, showing the complexity of the 3D aerodynamics of BZT fluids, and confirming the advantages in terms of improved aerodynamic performance already demonstrated for 2D configurations.
An experimental study of recirculating flow through fluid sediment interfaces
NASA Astrophysics Data System (ADS)
Khalili, A.; Basu, A. J.; Pietrzyk, U.; Raffel, M.
1999-03-01
We report here visualizations and quantitative measurements of scalar transport, under the influence of rotation, through permeable sediments with an overlying fluid layer. The experimental set-up considered here is a stationary cylinder containing a fluid-saturated porous medium up to its midheight, with supernatant water on top. A rotating lid generates, in the upper fluid region, a flow that partially percolates into the porous layer below. The velocity field in the fluid layer is obtained using particle image velocimetry (PIV). Further, dye transport from the sediment is studied using two different techniques. The first one is positron emission tomography (PET), a non-invasive method which allowed us to ‘see’ through the opaque solid matrix, and to obtain full three-dimensional pictures of dye transport through the sediment. The second one is digital photographic visualization from outside, and subsequent image processing in order to obtain the near-wall dye-washout depth. The experimental data suggest that the temporal evolution of washout depth for different sediments follows near-logarithmic behaviour. This finding is of importance for the a priori estimation of the transport of fluid and other solute substances in sandy aquatic sediments.
Diagnosis at a glance of biological non-Newtonian fluids with Film Interference Flow Imaging (FIFI)
NASA Astrophysics Data System (ADS)
Hidema, R.; Yamada, N.; Furukawa, H.
2012-04-01
In the human body, full of biological non-Newtonian fluids exist. For example, synovial fluids exist in our joints, which contain full of biopolymers, such as hyaluronan and mucin. It is thought that these polymers play critical roles on the smooth motion of the joint. Indeed, luck of biopolymers in synovial fluid cause joint pain. Here we study the effects of polymer in thin liquid layer by using an original experimental method called Film Interference Flow Imaging (FIFI). A vertically flowing soap film containing polymers is made as two-dimensional flow to observe turbulence. The thickness of water layer is about 4 μm sandwiched between surfactant mono-layers. The interference pattern of the soap film is linearly related to the flow velocity in the water layer through the change in the thickness of the film. Thus the flow velocity is possibly analyzed by the single image analysis of the interference pattern, that is, FIFI. The grid turbulence was made in the flowing soap films containing the long flexible polymer polyethyleneoxide (PEO, Mw=3.5x106), and rigid polymer hydroxypropyl cellulose (HPC, Mw > 1.0 x106). The decaying process of the turbulence is affected by PEO and HPC at several concentrations. The effects of PEO are sharply seen even at low concentrations, while the effects of HPC are gradually occurred at much higher concentration compared to the PEO. It is assumed that such a difference between PEO and HPC is due to the polymer stretching or polymer orientation under turbulence, which is observed and analyzed by FIFI. We believe the FIFI will be applied in the future to examine biological fluids such as synovial fluids quickly and quantitatively.
Nanoscale transient porosity controls large-scale metamorphic fluid flow
NASA Astrophysics Data System (ADS)
Plümper, Oliver; Botan, Alexandru; Los, Catharina; Malthe-Sørenssen, Anders; Jamtveit, Bjørn
2016-04-01
The reaction of fluids with rocks is fundamental for Earth's dynamics as they facilitate heat/mass transfer and induce volume changes, weaknesses and instabilities in rock masses that localize deformation enabling tectonic responses to plate motion. During these fluid-rock interactions it is the ability of a rock to transmit fluid, its permeability, that controls the rates of metamorphic reactions. However, although some geological environments (e.g., sediments) are open to fluids, the majority of solid rocks (e.g., granites, elcogites, peridotites, etc.) are nearly impermeable. Surprisingly though, even in rocks that are nominally impermeable widespread fluid-rock interactions are observed leading to the question: How can fluids migrate through vast amounts of nominally impermeable rocks? Here we investigate one of the most wide-spread fluid-mediated metamorphic processes in the Earth's crust, the albitization of feldspatic rocks. We show that fluid flow and element mobilization during albitization is controlled by an interaction between grain boundary diffusion and reaction front migration through an interface-coupled dissolution-precipitation process. Using a combination of focused ion beam scanning electron microscopy (FIB-SEM)-assisted nanotomography combined with transmission electron microscopy (TEM) reveals that the porosity is dictated by pore channels with a pore diameter ranging between 10 to 100 nm. Three-dimensional visualization of the feldspar pore network reveals that the pore channels must have been connected during the replacement reaction. Analysis of the pore aspect ratios suggests that a Rayleigh-Taylor-type instability associated to surface energy minimization caused the disconnection of the pore channels. Fluid transport in nanometer-sized objects with at least one characteristic dimension below 100 nm enables the occurrence of physical phenomena that are impossible at bigger length scales. Thus, on the basis of our microstructural
Parallel Plate Flow of a Third-Grade Fluid and a Newtonian Fluid With Variable Viscosity
NASA Astrophysics Data System (ADS)
Yıldız, Volkan; Pakdemirli, Mehmet; Aksoy, Yiğit
2016-07-01
Steady-state parallel plate flow of a third-grade fluid and a Newtonian fluid with temperature-dependent viscosity is considered. Approximate analytical solutions are constructed using the newly developed perturbation-iteration algorithms. Two different perturbation-iteration algorithms are used. The velocity and temperature profiles obtained by the iteration algorithms are contrasted with the numerical solutions as well as with the regular perturbation solutions. It is found that the perturbation-iteration solutions converge better to the numerical solutions than the regular perturbation solutions, in particular when the validity criteria of the regular perturbation solution are not satisfied. The new analytical approach produces promising results in solving complex fluid problems.
Traveling hairpin-shaped fluid vortices in plane Couette flow
NASA Astrophysics Data System (ADS)
Deguchi, K.; Nagata, M.
2010-11-01
Traveling-wave solutions are discovered in plane Couette flow. They are obtained when the so-called steady hairpin vortex state found recently by Gibson [J. Fluid Mech. 638, 243 (2009)]10.1017/S0022112009990863 and Itano and Generalis [Phys. Rev. Lett. 102, 114501 (2009)]10.1103/PhysRevLett.102.114501 is continued to sliding Couette flow geometry between two concentric cylinders by using the radius ratio as a homotopy parameter. It turns out that in the plane Couette flow geometry two traveling waves having the phase velocities with opposite signs are associated with their appearance from the steady hairpin vortex state, where the amplitude of the phase velocities increases gradually from zero as the Reynolds number is increased. The solutions obviously inherit the streaky structure of the hairpin vortex state, but shape preserving flow patterns propagate in the streamwise direction. Other striking features of the solution are asymmetric mean flow profiles and strong quasistreamwise vortices which occupy the vicinity of only the top or bottom moving boundary, depending on the sign of the phase velocity. Furthermore, we find that the pitchfork bifurcation associated with the appearance of the solution becomes imperfect when the flow is perturbed by a Poiseuille flow component.
Fluid Dynamical Instabilities in a Partially Ionized Flow
NASA Astrophysics Data System (ADS)
Kamaya, Hideyuki; Nishi, Ryoichi
2000-05-01
In this paper, we reveal that there are two fluid dynamical instabilities for a partially ionized flow with quasi-static contraction: the instability of the Alfvén wave and the two-fluid instability. We find them by means of linear perturbation analysis, adopting the following unperturbed state; the magnetic field has a gradient against the terminal flow of neutrals, which are accelerated because of gravity. The terminal velocity is determined by the balance between the gravity and the friction force, which originates from the ion-neutral collisions. The instability of the Alfvén wave occurs because of the imbalance of the restoring force, which is generated by the unperturbed background magnetic field if a wavelength is longer than a critical wavelength. Indeed, this critical wavelength is obtained from the comparison between the local restoring efficiency and that of the background unperturbed field. It is estimated as of the order of ~0.01 pc when the grains are the dominant charged particles. Thus, we speculate that this instability is responsible for the formation of the observed small-scale structure in the molecular clouds. If the relative speed between the ions and the neutrals is larger than the thermal speed of the neutrals, there is another instability, i.e., the so-called two-fluid instability. Fortunately, although the two-fluid instability coexists with the instability of the Alfvén wave, structure formation via the instability of the Alfvén wave is possible since its growth rate is larger than that of the two-fluid instability.
Lymphatic vessel development: fluid flow and valve-forming cells.
Kume, Tsutomu
2015-08-01
Hemodynamic forces regulate many aspects of blood vessel disease and development, including susceptibility to atherosclerosis and remodeling of primary blood vessels into a mature vascular network. Vessels of the lymphatic circulatory system are also subjected to fluid flow-associated forces, but the molecular and cellular mechanisms by which these forces regulate the formation and maintenance of lymphatic vessels remain largely uncharacterized. This issue of the JCI includes two articles that begin to address how fluid flow influences lymphatic vessel development and function. Sweet et al. demonstrate that lymph flow is essential for the remodeling of primary lymphatic vessels, for ensuring the proper distribution of smooth muscle cells (SMCs), and for the development and maturation of lymphatic valves. Kazenwadel et al. show that flow-induced lymphatic valve development is initiated by the upregulation of GATA2, which has been linked to lymphedema in patients with Emberger syndrome. Together, these observations and future studies inspired by these results have potential to lead to the development of strategies for the treatment of lymphatic disorders. PMID:26214518
Pressure of Newtonian fluid flow through curved pipes and elbows
NASA Astrophysics Data System (ADS)
Zhang, Hao; Zhang, Xinxin; Sun, Haosen; Chen, Mingjiu; Lu, Xiaoyang; Wang, Yuancheng; Liu, Xueting
2013-08-01
Under conditions of high temperature and high pressure, the non-uniformity of pressure loads has intensified the stress concentration which impacts the safety of curved pipes and elbows. This paper focuses on the pressure distribution and flow characteristic in a curved 90° bend pipe with circular cross-sections, which are widely used in industrial applications. These flow and pressure characteristics in curved bend pipes have been researched by employing numerical simulation and theoretical analysis. Based on the dimensionless analysis method a formula for the pressure of Newtonian fluid flow through the elbow pipes is deduced. Also the pressure distributions of several elbows with different curvature ratio R/D are obtained by numerical methods. The influence of these non-dimensional parameters such as non-dimensional curvature ratio, Reynolds number and non-dimensional axial angle α and circumferential angle β on the pressure distribution in elbow pipes is discussed in detail. A number of important results have been achieved. This paper provides theoretical and numerical methods to understand the mechanical property of fluid flow in elbow pipes, to analyze the stress and to design the wall thickness of elbow pipes.
Fluid and Cell Transport Through a Microfabricated Flow Chamber.
NASA Astrophysics Data System (ADS)
Brody, James Patrick
We use silicon processing techniques to construct microfabricated fluid flow chambers. Custom designed silicon wafers with feature sizes of 1-10 μm and etch depths from 0.5-5 μm are anodically bonded to Pyrex glass to create a hermetically sealed chamber. A pressure gradient is placed across the chamber to induce bulk fluid flow. Properties of fluid flow and red blood cells are recorded using video microscopy. The human red blood cell is ideal for studying cellular membranes. It is an 8 μm diameter biconcave disc containing a membrane and associated cytoskeleton which surrounds a thick solution of hemoglobin. The material properties of individual red blood cells have been extensively studied in the past using micropipettes. However, we can get statistics on hundreds of red blood cells by fabricating an array of narrow channels 4 mu m x 4 μm in cross-section (the diameter of the smallest capillaries in the human body) and 13 μm long. These narrow channels are followed by an open space. This geometry forces red cells to repeatedly fold and unfold. Using these arrays, we show that the shear modulus of the membrane does not have a unique value, but has a distribution that ranges from 3-12 times 10 ^{-6} N/m. The surprisingly wide distribution is not due to cell size or cell age. It does seem to be correlated with intracellular Ca^ {2+}<=vels, leading us to believe that cell rigidity is controlled by some active process. We also report observations on red blood cells changing their rigidity by factors of fifty over tens of seconds. These microfabricated flow chambers are ideal for studying fluid flow through porous media. We construct custom designed two-dimensional environments with micron size features. These environments can be described by simple analytical theories which also attempt to describe flow through rock. For example, we image viscous imbibition of water into a percolation grid with 5 mu m edges in real time, and measure the permeability as a function
Numerical Modeling on Two phase Fluid flow in a Coupled Fracture-Skin-Matrix System
NASA Astrophysics Data System (ADS)
Valsala Kumari, R.; G, S. K.
2015-12-01
Multiphase flow modeling studies below the ground surface is very essential for designing suitable remediation strategies for contaminated aquifers and for the development of petroleum and geothermal reservoirs. Presence of fractured bedrock beneath the ground surface will make multiphase flow process more complex due to its highly heterogeneous nature. A major challenge in modeling flow within a fractured rock is to capture the interaction between the high permeability fracture and the low permeability rock-matrix. In some instances, weathering and mineral depositions will lead to formation of an additional layer named fracture-skin at the fracture-matrix interface. Porosity and permeability of fracture-skin may significantly vary from the adjacent rock matrix and this variation will result in different flow and transport behavior within the fracture-skin. In the present study, an attempt has been made to model simultaneous flow of two immiscible phases (water and LNAPL) in a saturated coupled fracture-skin-matrix system. A fully-implicit finite difference model has been developed to simulate the variation of pressure and saturation of fluid phases along the fracture and within the rock-matrix. Sensitivity studies have been done to analyze the effect of change of various fracture-skin parameters such as porosity, diffusion coefficient and thickness on pressure and saturation distribution of both wetting and non-wetting fluid phases. It can be concluded from the study that the presence of fracture-skin is significantly affecting the fluid flow at the fracture-matrix interface and it can also be seen from the study that the flow behavior of both fluid phases is sensitive to fracture-skin parameters.
Particle-fluid two-phase flow modeling
NASA Astrophysics Data System (ADS)
Mortensen, G. A.; Trapp, J. A.
This paper describes a numerical scheme and computer program, DISCON, for the calculation of two-phase flows that does not require the use of flow regime maps. This model is intermediate between-thermal instantaneous and the averaged two-fluid model. It solves the Eulerian continuity, momentum, and energy equations for each liquid control volume, and the Lagrangian mass, momentum, energy, and position equations for each bubble. The bubbles are modeled individually using a large representative number of bubbles, thus, avoiding the numerical diffusion associated with Eulerian models. DISCON has been used to calculate the bubbling of air through a column of water and the subcooled boiling of water in a flow channel. The results of these calculations are presented.
Local mesh refinement for incompressible fluid flow with free surfaces
Terasaka, H.; Kajiwara, H.; Ogura, K.
1995-09-01
A new local mesh refinement (LMR) technique has been developed and applied to incompressible fluid flows with free surface boundaries. The LMR method embeds patches of fine grid in arbitrary regions of interest. Hence, more accurate solutions can be obtained with a lower number of computational cells. This method is very suitable for the simulation of free surface movements because free surface flow problems generally require a finer computational grid to obtain adequate results. By using this technique, one can place finer grids only near the surfaces, and therefore greatly reduce the total number of cells and computational costs. This paper introduces LMR3D, a three-dimensional incompressible flow analysis code. Numerical examples calculated with the code demonstrate well the advantages of the LMR method.
Advanced numerics for multi-dimensional fluid flow calculations
NASA Technical Reports Server (NTRS)
Vanka, S. P.
1984-01-01
In recent years, there has been a growing interest in the development and use of mathematical models for the simulation of fluid flow, heat transfer and combustion processes in engineering equipment. The equations representing the multi-dimensional transport of mass, momenta and species are numerically solved by finite-difference or finite-element techniques. However despite the multiude of differencing schemes and solution algorithms, and the advancement of computing power, the calculation of multi-dimensional flows, especially three-dimensional flows, remains a mammoth task. The following discussion is concerned with the author's recent work on the construction of accurate discretization schemes for the partial derivatives, and the efficient solution of the set of nonlinear algebraic equations resulting after discretization. The present work has been jointly supported by the Ramjet Engine Division of the Wright Patterson Air Force Base, Ohio, and the NASA Lewis Research Center.
Particle-fluid two-phase flow modeling
Mortensen, G.A. ); Trapp, J.A. Idaho National Engineering Lab., Idaho Falls, ID )
1992-01-01
This paper describes a numerical scheme and computer program, DISCON, for the calculation of two-phase flows that does not require the use of flow regime maps. This model is intermediate between-thermal instantaneous and the averaged two-fluid model. It solves the Eulerian continuity, momentum, and energy equations for each liquid control volume, and the Lagrangian mass, momentum, energy, and position equations for each bubble. The bubbles are modeled individually using a large representative number of bubbles thus avoiding the numerical diffusion associated with Eulerian models. DISCON has been used to calculate the bubbling of air through a column of water and the subcooled boiling of water in a flow channel. The results of these calculations are presented.
Flow behaviour of negatively buoyant jets in immiscible ambient fluid
NASA Astrophysics Data System (ADS)
Geyer, A.; Phillips, J. C.; Mier-Torrecilla, M.; Idelsohn, S. R.; Oñate, E.
2012-01-01
In this paper we investigate experimentally the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid. Experiments are carried out by injecting a jet of dyed fresh water through a nozzle in the base of a cylindrical tank containing rapeseed oil. The fountain inlet flow rate and nozzle diameter were varied to cover a wide range of Richardson Ri (8 × 10-4 < Ri < 1.98), Reynolds Re (467 < Re < 5,928) and Weber We (2.40 < We < 308.56) numbers. Based on the Re, Ri and We values for the experiments, we have determined a regime map to define how these values may control the occurrence of the observed flow types. Whereas Ri plays a stronger role when determining the maximum penetration height, the effect of the Reynolds number is stronger predicting the flow behaviour for a specific nozzle diameter and injection velocity.
Particle-fluid two-phase flow modeling
Mortensen, G.A.; Trapp, J.A. |
1992-09-01
This paper describes a numerical scheme and computer program, DISCON, for the calculation of two-phase flows that does not require the use of flow regime maps. This model is intermediate between-thermal instantaneous and the averaged two-fluid model. It solves the Eulerian continuity, momentum, and energy equations for each liquid control volume, and the Lagrangian mass, momentum, energy, and position equations for each bubble. The bubbles are modeled individually using a large representative number of bubbles thus avoiding the numerical diffusion associated with Eulerian models. DISCON has been used to calculate the bubbling of air through a column of water and the subcooled boiling of water in a flow channel. The results of these calculations are presented.
Using Nonlinearity and Contact Lines to Control Fluid Flow in Microgravity
NASA Technical Reports Server (NTRS)
Perlin, M.; Schultz, W. W.; Bian, X.; Agarwal, M.
2002-01-01
Slug flows in a tube are affected by surface tension and contact lines, especially under microgravity. Numerical analyses and experiments are conducted of slug flows in small-diameter tubes with horizontal, inclined and vertical orientations. A PID-controlled, meter-long platform capable of following specified motions is used. An improved understanding of the contact line boundary condition for steady and unsteady contact-line motion is expected. Lastly, a direct fluid-handling method using nonlinear oscillatory motion of a tube is presented.
Xiang, Yaolei; Xue, Yahui; Lv, Pengyu; Li, Dandan; Duan, Huiling
2016-05-14
Superhydrophobic surfaces have attracted great attention for drag reduction application. However, these surfaces are subject to instabilities, especially under fluid flow. In this work, we in situ examine the stability and wetting transition of underwater superhydrophobicity under laminar flow conditions by confocal microscopy. The absolute liquid pressure in the flow channel is regulated to acquire the pinned Cassie-Baxter and depinned metastable states. The subsequent dynamic evolution of the meniscus morphology in the two states under shear flow is monitored. It is revealed that fluid flow does not affect the pressure-mediated equilibrium states but accelerates the air exchange between entrapped air cavities and bulk water. A diffusion-based model with varying effective diffusion lengths is used to interpret the experimental data, which show a good agreement. The Sherwood number representing the convection-enhanced mass transfer coefficient is extracted from the data, and is found to follow a classic 1/3-power-law relation with the Reynolds number as has been discovered in channel flows with diffusive boundary conditions. The current work paves the way for designing durable superhydrophobic surfaces under flow conditions. PMID:27071538
Visualization periodic flows in a continuously stratified fluid.
NASA Astrophysics Data System (ADS)
Bardakov, R.; Vasiliev, A.
2012-04-01
To visualize the flow pattern of viscous continuously stratified fluid both experimental and computational methods were developed. Computational procedures were based on exact solutions of set of the fundamental equations. Solutions of the problems of flows producing by periodically oscillating disk (linear and torsion oscillations) were visualized with a high resolutions to distinguish small-scale the singular components on the background of strong internal waves. Numerical algorithm of visualization allows to represent both the scalar and vector fields, such as velocity, density, pressure, vorticity, stream function. The size of the source, buoyancy and oscillation frequency, kinematic viscosity of the medium effects were traced in 2D an 3D posing problems. Precision schlieren instrument was used to visualize the flow pattern produced by linear and torsion oscillations of strip and disk in a continuously stratified fluid. Uniform stratification was created by the continuous displacement method. The buoyancy period ranged from 7.5 to 14 s. In the experiments disks with diameters from 9 to 30 cm and a thickness of 1 mm to 10 mm were used. Different schlieren methods that are conventional vertical slit - Foucault knife, vertical slit - filament (Maksoutov's method) and horizontal slit - horizontal grating (natural "rainbow" schlieren method) help to produce supplementing flow patterns. Both internal wave beams and fine flow components were visualized in vicinity and far from the source. Intensity of high gradient envelopes increased proportionally the amplitude of the source. In domains of envelopes convergence isolated small scale vortices and extended mushroom like jets were formed. Experiments have shown that in the case of torsion oscillations pattern of currents is more complicated than in case of forced linear oscillations. Comparison with known theoretical model shows that nonlinear interactions between the regular and singular flow components must be taken
Fluid Flow Prediction with Development System Interwell Connectivity Influence
NASA Astrophysics Data System (ADS)
Bolshakov, M.; Deeva, T.; Pustovskikh, A.
2016-03-01
In this paper interwell connectivity has been studied. First of all, literature review of existing methods was made which is divided into three groups: Statistically-Based Methods, Material (fluid) Propagation-Based Methods and Potential (pressure) Change Propagation-Based Method. The disadvantages of the first and second groups are as follows: methods do not involve fluid flow through porous media, ignore any changes of well conditions (BHP, skin factor, etc.). The last group considers changes of well conditions and fluid flow through porous media. In this work Capacitance method (CM) has been chosen for research. This method is based on material balance and uses weight coefficients lambdas to assess well influence. In the next step synthetic model was created for examining CM. This model consists of an injection well and a production well. CM gave good results, it means that flow rates which were calculated by analytical method (CM) show matching with flow rate in model. Further new synthetic model was created which includes six production and one injection wells. This model represents seven-spot pattern. To obtain lambdas weight coefficients, the delta function was entered using by minimization algorithm. Also synthetic model which has three injectors and thirteen producer wells was created. This model simulates seven-spot pattern production system. Finally Capacitance method (CM) has been adjusted on real data of oil Field Ω. In this case CM does not give enough satisfying results in terms of field data liquid rate. In conclusion, recommendations to simplify CM calculations were given. Field Ω is assumed to have one injection and one production wells. In this case, satisfying results for production rates and cumulative production were obtained.
Capillary Corner Flows With Partial and Nonwetting Fluids
NASA Technical Reports Server (NTRS)
Bolleddula, D. A.; Weislogel, M. M.
2009-01-01
Capillary flow in containers or conduits with interior corners are common place in nature and industry. The majority of investigations addressing such flows solve the problem numerically in terms of a friction factor for flows along corners with contact angles below the Concus-Finn critical wetting condition for the particular conduit geometry of interest. This research effort provides missing numerical data for the flow resistance function F(sub i) for partially and nonwetting systems above the Concus-Finn condition. In such cases the fluid spontaneously de-wets the interior corner and often retracts into corner-bound drops. A banded numerical coefficient is desirable for further analysis and is achieved by careful selection of length scales x(sub s) and y(sub s) to nondimensionalize the problem. The optimal scaling is found to be identical to the wetting scaling, namely x(sub s) = H and y(sub s) = Htan (alpha), where H is the height from the corner to the free surface and a is the corner half-angle. Employing this scaling produces a relatively weakly varying flow resistance F(sub i) and for subsequent analyses is treated as a constant. Example solutions to steady and transient flow problems are provided that illustrate applications of this result.
Fluid flow in nanopores: An examination of hydrodynamic boundary conditions
NASA Astrophysics Data System (ADS)
Sokhan, V. P.; Nicholson, D.; Quirke, N.
2001-08-01
Steady-state Poiseuille flow of a simple fluid in carbon slit pores under a gravity-like force is simulated using a realistic empirical many-body potential model for carbon. In this work we focus on the small Knudsen number regime, where the macroscopic equations are applicable, and simulate different wetting conditions by varying the strength of fluid-wall interactions. We show that fluid flow in a carbon pore is characterized by a large slip length even in the strongly wetting case, contrary to the predictions of Tolstoi's theory. When the surface density of wall atoms is reduced to values typical of a van der Waals solid, the streaming velocity profile vanishes at the wall, in accordance with earlier findings. From the velocity profiles we have calculated the slip length and by analyzing temporal profiles of the velocity components of particles colliding with the wall we obtained values of the Maxwell coefficient defining the fraction of molecules thermalized by the wall.
Constructive interference in arrays of energy harvesters in fluid flows
NASA Astrophysics Data System (ADS)
Azadeh Ranjbar, Vahid; Goushcha, Oleg; Elvin, Niell; Andreopoulos, Yiannis
2014-11-01
In the present work we demonstrate some unique opportunities which exist to increase the power harvested with fluidic piezoelectric generators by almost two orders of magnitude higher than existing methods by exploiting dynamic non-linearities and deploying multi-element arrays in carefully selected positions in a fluid flow field. These ac-coupled generators convert fluid kinetic energy, which otherwise would be wasted, into electrical energy. The available power in a flowing fluid is proportional to the cube of its velocity and if it is properly harvested can be used for continuously powering very small electronic devices or can be rectified and stored for intermittent use. Additional experimental work has shown that non-linear arrays of such energy harvesters can produce high output voltages in a very broadband range of frequencies. In our work, we investigate the effect of geometric parameters such as spatial arrangement and the mutual interference between the elements of a non-linear array on their overall performance and efficiency characteristics. Analytical tools based on the non-linear van der Pol oscillator have been also developed and verified with experimental data. Work supported by National Science Foundation under Grant No. CBET #1033117.
New Methods for Sensitivity Analysis in Chaotic, Turbulent Fluid Flows
NASA Astrophysics Data System (ADS)
Blonigan, Patrick; Wang, Qiqi
2012-11-01
Computational methods for sensitivity analysis are invaluable tools for fluid mechanics research and engineering design. These methods are used in many applications, including aerodynamic shape optimization and adaptive grid refinement. However, traditional sensitivity analysis methods break down when applied to long-time averaged quantities in chaotic fluid flowfields, such as those obtained using high-fidelity turbulence simulations. Also, a number of dynamical properties of chaotic fluid flows, most notably the ``Butterfly Effect,'' make the formulation of new sensitivity analysis methods difficult. This talk will outline two chaotic sensitivity analysis methods. The first method, the Fokker-Planck adjoint method, forms a probability density function on the strange attractor associated with the system and uses its adjoint to find gradients. The second method, the Least Squares Sensitivity method, finds some ``shadow trajectory'' in phase space for which perturbations do not grow exponentially. This method is formulated as a quadratic programing problem with linear constraints. This talk is concluded with demonstrations of these new methods on some example problems, including the Lorenz attractor and flow around an airfoil at a high angle of attack.
Stability of layered channel flow of magnetic fluids
NASA Astrophysics Data System (ADS)
Yecko, Philip
2009-03-01
The stability of a sheared interface separating a viscous magnetic fluid (ferrofluid) and an ordinary viscous fluid is examined for arbitrary wavelength disturbances using three dimensional linear perturbation theory. The unperturbed state corresponds to a two-layer Poiseuille profile in which a uniform magnetic field of arbitrary orientation is imposed. Coupling between the field and fluid occurs via the magnetic Maxwell stress tensor, formulated here for nonlinear magnetic material, expanding the scope of previous studies of linear media. Neutral curves and stability characteristics at low Reynolds number are presented and analyzed, and are found to depend sensitively on the linear and nonlinear magnetic properties of the material. The stability properties of the flow are shaped by a small set of the least stable modes of the spectrum, a result that evades single mode or potential flow analyses. The gravest modes can be of different character, resembling either interfacial or shear modes, modified by magnetic effects. The commonly cited ferrofluid interface properties of "stabilization by a tangential field" and "destabilization by a normal field" are shown to be invalid here, although the origins of these features can be identified within this problem.
Compressible flow of a multiphase fluid between two vessels:
Chenoweth, D.R. ); Paolucci, S. . Dept. of Aerospace and Mechanical Engineering)
1990-06-01
The transfer of a multiphase fluid from a high pressure vessel to one initially at lower pressure is investigated. The fluid is composed of two phases which do not undergo any change. The phases consist of an ideal gas, and solid particles (or liquid droplets) having constant density. The mixture is assumed to be stagnant and always perfectly mixed as well as at thermal equilibrium in each constant volume vessel. The fluid also remains homogeneous and at equilibrium while flowing between vessels. The transport properties of the mixture are taken to be zero. One important finding is that the expanding mixture or pseduo-fluid behaves similar to a polytropic Abel-Noble gas. The mixture thermodymanic properties, the end state in each vessel at pressure equilibrium, the critical parameters, and time dependent results are given for the adiabatic and isothermal limiting cases. The results include both initially sonic and initially subsonic transfer. No mathematical restriction is placed on the particle concentration, although some limiting results are given for small particle volume fraction. The mass transferred at adiabatic pressure equilibrium can be significantly less than that when thermal equilibrium is also reached. Furthermore, the adiabatic pressure equilibrium level may not be the same as that obtained at thermal equilibrium, even when all initial temperatures are the same. Finally, it is shown that the transfer times can be very slow compared to those of a pure gas due to the large reduction possible in the mixture sound speed. 18 refs.
Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs
Maria Cecilia Bravo
2006-06-30
This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.
Effect of Non-Uniform Inlet Temperature on Flow Stagnation in a Pumped Fluid Tube Radiator
NASA Astrophysics Data System (ADS)
Reavis, Gretchen
2008-01-01
The effect of a non-uniform inlet temperature on the panel fluid tube flow stagnation point is examined using a spacecraft radiator panel model with 20 fluid tubes constructed in Thermal Desktop®. Fluid temperature variations due to panel edge effect and localized hot and cold spots in the flow path were simulated by varying the fluid inlet temperature on one or more tubes. Results show that a large fluid inlet temperature difference between tubes can decrease the fluid system stability and increase the possibility of fluid stagnation with the coldest fluid tube initiating stagnation. Conversely, a small fluid inlet temperature difference between tubes can, in some cases, increase the fluid system stability and decrease the possibility of fluid stagnation. A uniform fluid inlet temperature provides for a near optimization of the stagnation point as compared to fluid temperature gradients across the panel.
Simulation Study of Micro Particles Behavior in Fluid Flow Using Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Miyoshi, T.; Yamada, Y.; Matsuoka, T.
2004-12-01
Evaluation of underground hydraulic characteristics has been a key issue not only for hydrogeology but for various fields of geo-engineering. We have been investigating hydraulic properties, such as permeability, of fractures and porous rocks using a 3D lattice Boltzmann method (LBM) for recent several years. In this paper, we propose a coupling method of LBM and DEM (distinct element method) to incorporate dynamic interaction of fluid flow and particles. This coupling technique brings new insights into the effect of micro particles in the hydraulic properties, such that migration and sedimentation of solid particles remarkably decreases permeability. We present two simulation examples; I) sedimentation of micro particles by the gravity in dead water, II) behaviour of micro particles in fluid flow through a porous media. In the simulation-I, surface geometry of the particle assembly shows a gentle 'sag' with a subtle subsidence at its center, suggesting that the upward fluid expulsion causes slightly uplifted geometry. Such geometry of particles can be commonly seen in natural sedimentary rocks that deformed due to fluid expulsion at its unconsolidated stages. The simulation-II clearly showed some conditions of pore throat plugging by the micro particles. The fluid flow pattern should be significantly affected by the moving particles, as well as the pressure difference (an input parameter). The percolation distance of solid particles was well controlled with the pressure difference and throat geometries. We concluded that the coupling simulation of LBM and DEM has extremely high potential to investigate the behavior of solid and fluid interactions. The technique can simulate permeability changes precisely, that are affected by dynamic or physical factors such as compaction. Fluid flow simulations with the technique can be directly applied for plugging of solid particles within a reservoir, which is significant for petroleum production and drill-hole completion. The
Turbulence and turbulence spectra in complex fluid flows
Clark, T.T.; Chen, Shi-Yi; Turner, L.; Zemach, C.
1997-11-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Our objective was to develop a theoretical model of fluid turbulence in parallel with a series of direct numerical simulations of increasingly complex test environments to establish limits of error and regimes of applicability, and to guide improvements. The aim is to produce methods of tested accuracy, with tractable numerical approximations, for turbulent fluids of constant density, and then for variable densities and multimaterial flows. We proceed from a recent spectral model that describes turbulent energy and stress densities in terms of a range of length scales. This should lead not only to improved engineering models, but also to a basic conceptual improvement because the spectral approach accounts for the variation of evolution rates with turbulence length scales.
Electrochemically actuated mercury pump for fluid flow and delivery
NASA Technical Reports Server (NTRS)
Ni, J.; Zhong, C. J.; Coldiron, S. J.; Porter, M. D.
2001-01-01
This paper describes the development of a prototype pumping system with the potential for incorporation into miniaturized, fluid-based analytical instruments. The approach exploits the well-established electrocapillarity phenomena at a mercury/electrolyte interface as the mechanism for pump actuation. That is, electrochemically induced changes in the surface tension of mercury result in the pistonlike movement of a mercury column confined within a capillary. We present herein theoretical and experimental assessments of pump performance. The design and construction of the pump are detailed, and the potential attributes of this design, including the generated pumping pressure, flow rate, and power consumption, are discussed. The possible miniaturization of the pump for use as a field-deployable, fluid-delivery device is also briefly examined.
Homogenization of two fluid flow in porous media
Daly, K. R.; Roose, T.
2015-01-01
The macroscopic behaviour of air and water in porous media is often approximated using Richards' equation for the fluid saturation and pressure. This equation is parametrized by the hydraulic conductivity and water release curve. In this paper, we use homogenization to derive a general model for saturation and pressure in porous media based on an underlying periodic porous structure. Under an appropriate set of assumptions, i.e. constant gas pressure, this model is shown to reduce to the simpler form of Richards' equation. The starting point for this derivation is the Cahn–Hilliard phase field equation coupled with Stokes equations for fluid flow. This approach allows us, for the first time, to rigorously derive the water release curve and hydraulic conductivities through a series of cell problems. The method captures the hysteresis in the water release curve and ties the macroscopic properties of the porous media with the underlying geometrical and material properties.
Echo-acoustic flow affects flight in bats.
Kugler, Kathrin; Greiter, Wolfgang; Luksch, Harald; Firzlaff, Uwe; Wiegrebe, Lutz
2016-06-15
Flying animals need to react fast to rapid changes in their environment. Visually guided animals use optic flow, generated by their movement through structured environments. Nocturnal bats cannot make use of optic flow, but rely mostly on echolocation. Here, we show that bats exploit echo-acoustic flow to negotiate flight through narrow passages. Specifically, bats' flight between lateral structures is significantly affected by the echo-acoustic salience of those structures, independent of their physical distance. This is true even though echolocation, unlike vision, provides explicit distance cues. Moreover, the bats reduced the echolocation sound levels in stronger flow, probably to compensate for the increased summary target strength of the lateral reflectors. However, bats did not reduce flight velocity under stronger echo-acoustic flow. Our results demonstrate that sensory flow is a ubiquitous principle for flight guidance, independent of the fundamentally different peripheral representation of flow across the senses of vision and echolocation. PMID:27045094
SPH numerical simulation of fluid flow through a porous media
NASA Astrophysics Data System (ADS)
Klapp-Escribano, Jaime; Mayoral-Villa, Estela; Rodriguez-Meza, Mario Alberto; de La Cruz-Sanchez, Eduardo; di G Sigalotti, Leonardo; Inin-Abacus Collaboration; Ivic Collaboration
2013-11-01
We have tested an improved a method for 3D SPH simulations of fluid flow through a porous media using an implementation of this method with the Dual-Physics code. This improvement makes it possible to simulate many particles (of the order of several million) in reasonable computer times because its execution on GPUs processors makes it possible to reduce considerably the simulation cost for large systems. Modifications in the initial configuration have been implemented in order to simulate different arrays and geometries for the porous media. The basic tests were reproduced and the performance was analyzed. Our 3D simulations of fluid flow through a saturated homogeneous porous media shows a discharge velocity proportional to the hydraulic gradient reproducing Darcy's law at small body forces. The results are comparable with values obtained in previous work and published in the literature for simulations of flow through periodic porous media. Our simulations for a non saturated porous media produce adequate qualitative results showing that a non steady state is generated. The relaxation time for these systems were obtained. Work partially supported by Cinvestav-ABACUS, CONACyT grant EDOMEX-2011-C01-165873.
Characterization of fluid flow in naturally fractured reservoirs. Final report
Evans, R.D.
1981-08-01
This report summarizes the results of a four month study of the characteristics of multiphase flow in naturally fractured porous media. An assessment and evaluation of the literature was carried out and a comprehensive list of references compiled on the subject. Mathematical models presented in the various references cited were evaluated along with the stated assumptions or those inherent in the equations. Particular attention was focused upon identifying unique approaches which would lead to the formulation of a general mathematical model of multiphase/multi-component flow in fractured porous media. A model is presented which may be used to more accurately predict the movement of multi-phase fluids through such type formations. Equations of motion are derived for a multiphase/multicomponent fluid which is flowing through a double porosity, double permeability medium consisting of isotropic primary rock matrix blocks and an anisotropic fracture matrix system. The fractures are assumed to have a general statistical distribution in space and orientation. A general distribution function, called the fracture matrix function is introduced to represent the statistical nature of the fractures.
Gauge principle for flows of an ideal fluid
NASA Astrophysics Data System (ADS)
Kambe, Tsutomu
2003-05-01
A gauge principle is applied to flows of a compressible ideal fluid. First, a free-field Lagrangian is defined with a constraint condition of continuity equation. The Lagrangian is invariant with respect to global SO(3) gauge transformations as well as Galilei transformation. From the variational principle, we obtain the equation of motion for a potential flow. Next, in order to satisfy local SO(3) gauge invariance, we define a gauge field and a gauge-covariant derivative. Requiring the covariant derivative to be Galilei-invariant, it is found that the gauge field coincides with the vorticity and the covariant derivative is the material derivative for the velocity. Based on the gauge principle and the gauge-covariant derivative, the Euler's equation of motion is derived for a homentropic rotational flow. Noether's law associated with global SO(3) gauge invariance leads to the conservation of total angular momentum. This provides a gauge-theoretical ground for analogy between acoustic-wave and vortex interaction in fluid dynamics and the electron-wave and magnetic-field interaction in quantum electrodynamics.
Microfluidic-SANS: flow processing of complex fluids
NASA Astrophysics Data System (ADS)
Lopez, Carlos G.; Watanabe, Takaichi; Martel, Anne; Porcar, Lionel; Cabral, João T.
2015-01-01
Understanding and engineering the flow-response of complex and non-Newtonian fluids at a molecular level is a key challenge for their practical utilisation. Here we demonstrate the coupling of microfluidics with small angle neutron scattering (SANS). Microdevices with high neutron transmission (up to 98%), low scattering background (), broad solvent compatibility and high pressure tolerance (~3-15 bar) are rapidly prototyped via frontal photo polymerisation. Scattering from single microchannels of widths down to 60 μm, with beam footprint of 500 μm diameter, was successfully obtained in the scattering vector range 0.01-0.3 Å-1, corresponding to real space dimensions of . We demonstrate our approach by investigating the molecular re-orientation and alignment underpinning the flow response of two model complex fluids, namely cetyl trimethylammonium chloride/pentanol/D2O and sodium lauryl sulfate/octanol/brine lamellar systems. Finally, we assess the applicability and outlook of microfluidic-SANS for high-throughput and flow processing studies, with emphasis of soft matter.
Microfluidic-SANS: flow processing of complex fluids.
Lopez, Carlos G; Watanabe, Takaichi; Martel, Anne; Porcar, Lionel; Cabral, João T
2015-01-01
Understanding and engineering the flow-response of complex and non-Newtonian fluids at a molecular level is a key challenge for their practical utilisation. Here we demonstrate the coupling of microfluidics with small angle neutron scattering (SANS). Microdevices with high neutron transmission (up to 98%), low scattering background (≲10⁻² cm⁻¹), broad solvent compatibility and high pressure tolerance (≈3-15 bar) are rapidly prototyped via frontal photo polymerisation. Scattering from single microchannels of widths down to 60 μm, with beam footprint of 500 μm diameter, was successfully obtained in the scattering vector range 0.01-0.3 Å(-1), corresponding to real space dimensions of ≃10-600 Å. We demonstrate our approach by investigating the molecular re-orientation and alignment underpinning the flow response of two model complex fluids, namely cetyl trimethylammonium chloride/pentanol/D₂O and sodium lauryl sulfate/octanol/brine lamellar systems. Finally, we assess the applicability and outlook of microfluidic-SANS for high-throughput and flow processing studies, with emphasis of soft matter. PMID:25578326
Microfluidic-SANS: flow processing of complex fluids
Lopez, Carlos G.; Watanabe, Takaichi; Martel, Anne; Porcar, Lionel; Cabral, João T.
2015-01-01
Understanding and engineering the flow-response of complex and non-Newtonian fluids at a molecular level is a key challenge for their practical utilisation. Here we demonstrate the coupling of microfluidics with small angle neutron scattering (SANS). Microdevices with high neutron transmission (up to 98%), low scattering background (), broad solvent compatibility and high pressure tolerance (≈3–15 bar) are rapidly prototyped via frontal photo polymerisation. Scattering from single microchannels of widths down to 60 μm, with beam footprint of 500 μm diameter, was successfully obtained in the scattering vector range 0.01–0.3 Å−1, corresponding to real space dimensions of . We demonstrate our approach by investigating the molecular re-orientation and alignment underpinning the flow response of two model complex fluids, namely cetyl trimethylammonium chloride/pentanol/D2O and sodium lauryl sulfate/octanol/brine lamellar systems. Finally, we assess the applicability and outlook of microfluidic-SANS for high-throughput and flow processing studies, with emphasis of soft matter. PMID:25578326
A hydrodynamic analysis of fluid flow between meshing spur gear teeth
NASA Astrophysics Data System (ADS)
Wittbrodt, M. J.; Pechersky, M. J.
1987-10-01
A one dimensional analysis of the fluid pumping action resulting from the meshing of spur gears was performed by writing a computer algorithm. Two separate analyses were conducted; one using incompressible and the other using compressible flow theory. The incompressible flow calculations correspond to heavily lubricated gears whereas the compressible flow calculations are representative of lightly lubricated gears. The analysis demonstrated that the velocity of the discharged fluid reached high velocities for both cases. The high meshing rate of the teeth along with the small discharge area is the cause for the high fluid velocities. Certain geometric design variables of the gears were seen to affect the peak velocities for each case. The variables most significantly affecting the peak velocity appear to be the drive ratio and the face width. The high velocities may contribute to the noise generated during meshing of gear teeth due to the jet noise as a result of the high velocity jets impinging on the enclosures surrounding the gears and the formation of shock waves at the exit plane of the teeth.
Modelling couplings between reaction, fluid flow and deformation: Kinetics
NASA Astrophysics Data System (ADS)
Malvoisin, Benjamin; Podladchikov, Yury Y.; Connolly, James A. D.
2016-04-01
Mineral assemblages out of equilibrium are commonly found in metamorphic rocks testifying of the critical role of kinetics for metamorphic reactions. As experimentally determined reaction rates in fluid-saturated systems generally indicate complete reaction in less than several years, i.e. several orders of magnitude faster than field-based estimates, metamorphic reaction kinetics are generally thought to be controlled by transport rather than by processes at the mineral surface. However, some geological processes like earthquakes or slow-slip events have shorter characteristic timescales, and transport processes can be intimately related to mineral surface processes. Therefore, it is important to take into account the kinetics of mineral surface processes for modelling fluid/rock interactions. Here, a model coupling reaction, fluid flow and deformation was improved by introducing a delay in the achievement of equilibrium. The classical formalism for dissolution/precipitation reactions was used to consider the influence of the distance from equilibrium and of temperature on the reaction rate, and a dependence on porosity was introduced to model evolution of reacting surface area during reaction. The fitting of experimental data for three reactions typically occurring in metamorphic systems (serpentine dehydration, muscovite dehydration and calcite decarbonation) indicates a systematic faster kinetics close from equilibrium on the dehydration side than on the hydration side. This effect is amplified through the porosity term in the reaction rate since porosity is formed during dehydration. Numerical modelling indicates that this difference in reaction rate close from equilibrium plays a key role in microtextures formation. The developed model can be used in a wide variety of geological systems where couplings between reaction, deformation and fluid flow have to be considered.
Two-fluid model for two-phase flow
NASA Astrophysics Data System (ADS)
Ishii, M.
1987-06-01
The two-fluid model formulation is discussed in detail. The emphasis of the paper is on the three-dimensional formulation and the closure issues. The origin of the interfacial and turbulent transfer terms in the averaged formulation is explained and their original mathematical forms are examined. The interfacial transfer of mass, momentum, and energy is proportional to the interfacial area and driving force. This is not a postulate but a result of the careful examination of the mathematical form of the exact interfacial terms. These two effects are considered separately. Since all the interfacial transfer terms involve the interfacial area concentration, the accurate modeling of the local interfacial area concentration is the first step to be taken for a development of a reliable two-fluid model closure relations. The interfacial momentum interaction has been studied in terms of the standard-drag, lift, virtual mass, and Basset forces. Available analytical and semi-empirical correlations and closure relations are reviewed and existing shortcomings are pointed out. The other major area of importance is the modeling of turbulent transfer in two-phase flow. The two-phase flow turbulence problem is coupled with the phase separation problem even in a steady-state fully developed flow. Thus the two-phase turbulence cannot be understood without understanding the interfacial drag and lift forces accurately. There are some indications that the mixing length type model may not be sufficient to describe the three-dimensional turbulent and flow structures. Although it is a very difficult challenge, the two-phase flow turbulence should be investigated both experimentally and analytically with long time-scale research.
NASA Astrophysics Data System (ADS)
Hsu, S. Y.; Tsai, J. P.; Chang, L. C.
2014-12-01
The flow of three immiscible fluids - water, NAPL, air - in porous media is important in many subsurface processes. To model the three-fluid flow, the relation of relative permeability-saturation-capillary pressure (k-S-P) of three fluids is of central importance. In this experimental study, we directly measure the k-S-P of the water (wetting phase) when three fluids are coexist in a micromodel during the water drainage and imbibition. The results show that the sequence of the non-wetting fluids (air and NAPL) entering into the micromodel affects the fluid distributions as well as the relative permeability of water. During the drainage process, the relative permeability of water dropped drastically when the pathway of water from inlet to outlet of the micromodel was visually blocked by the non-wetting fluids. At this stage, the relative permeability of water was low but not down to zero. The water was still able to move via corner flows or thin-film flows. During the imbibition process, the water displaced two non-wetting liquids via both "snap-off" and "piston-type" motions. The relative permeability of water jumped when the water pathway was formed again. In addition, we found that the well-known scaling format proposed by Parker et al. [1] might fail when the interfaces between the most non-wetting (air) and the most wetting (water) fluids occurs in the three-fluids system. References[1] J. C. Parker, R. J. Lenhard, and T. Kuppusamy, Water Resources Research, 23, 4, 618-624 (1987)
Oscillatory Fluid Flow Influences Primary Cilia and Microtubule Mechanics
Espinha, Lina C.; Hoey, David A.; Fernandes, Paulo R.; Rodrigues, Hélder C.; Jacobs, Christopher R.
2014-01-01
Many tissues are sensitive to mechanical stimuli; however, the mechanotransduction mechanism used by cells remains unknown in many cases. The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell which extends from the basal body. The cilium is a mechanosensitive organelle and has been shown to transduce fluid flow-induced shear stress in tissues such as the kidney and bone. The majority of microtubules assemble from the mother centriole (basal body), contributing significantly to the anchoring of the primary cilium. Several studies have attempted to quantify the number of microtubules emanating from the basal body and the results vary depending on the cell type. It has also been shown that cellular response to shear stress depends on microtubular integrity. This study hypothesizes that changing the microtubule attachment of primary cilia in response to a mechanical stimulus could change primary cilia mechanics and, possibly, mechanosensitivity. Oscillatory fluid flow was applied to two different cell types and the microtubule attachment to the ciliary base was quantified. For the first time, an increase in microtubules around primary cilia both with time and shear rate in response to oscillatory fluid flow stimulation was demonstrated. Moreover, it is presented that the primary cilium is required for this loading-induced cellular response. This study has demonstrated a new role for the cilium in regulating alterations in the cytoplasmic microtubule network in response to mechanical stimulation, and therefore provides a new insight into how cilia may regulate its mechanics and thus the cells mechanosensitivity. PMID:25044764
Numerical investigation of fluid flow in a chandler loop.
Touma, Hisham; Sahin, Iskender; Gaamangwe, Tidimogo; Gorbet, Maud B; Peterson, Sean D
2014-07-01
The Chandler loop is an artificial circulatory platform for in vitro hemodynamic experiments. In most experiments, the working fluid is subjected to a strain rate field via rotation of the Chandler loop, which, in turn, induces biochemical responses of the suspended cells. For low rotation rates, the strain rate field can be approximated using laminar flow in a straight tube. However, as the rotation rate increases, the effect of the tube curvature causes significant deviation from the laminar straight tube approximation. In this manuscript, we investigate the flow and associated strain rate field of an incompressible Newtonian fluid in a Chandler loop as a function of the governing nondimensional parameters. Analytical estimates of the strain rate from a perturbation solution for pressure driven steady flow in a curved tube suggest that the strain rate should increase with Dean number, which is proportional to the tangential velocity of the rotating tube, and the radius to radius of curvature ratio of the loop. Parametrically varying the rotation rate, tube geometry, and fill ratio of the loop show that strain rate can actually decrease with Dean number. We show that this is due to the nonlinear relationship between the tube rotation rate and height difference between the two menisci in the rotating tube, which provides the driving pressure gradient. An alternative Dean number is presented to naturally incorporate the fill ratio and collapse the numerical data. Using this modified Dean number, we propose an empirical formula for predicting the average fluid strain rate magnitude that is valid over a much wider parameter range than the more restrictive straight tube-based prediction. PMID:24686927
Mechanics of fluid flow over compliant wrinkled polymeric surfaces
NASA Astrophysics Data System (ADS)
Raayai, Shabnam; McKinley, Gareth; Boyce, Mary
2014-03-01
Skin friction coefficients (based on frontal area) of sharks and dolphins are lower than birds, fish and swimming beetles. By either exploiting flow-induced changes in their flexible skin or microscale textures, dolphins and sharks can change the structure of the fluid flow around them and thus reduce viscous drag forces on their bodies. Inspired by this ability, investigators have tried using compliant walls and riblet-like textures as drag reduction methods in aircraft and marine industries and have been able to achieve reductions up to 19%. Here we investigate flow-structure interaction and wrinkling of soft polymer surfaces that can emulate shark riblets and dolphin's flexible skin. Wrinkling arises spontaneously as the result of mismatched deformation of a thin stiff coating bound to a thick soft elastic substrate. Wrinkles can be fabricated by controlling the ratio of the stiffness of the coating and substrate, the applied displacement and the thickness of the coating. In this work we will examine the evolution in the kinematic structures associated with steady viscous flow over the polymer wrinkled surfaces and in particular compare the skin friction with corresponding results for flow over non-textured and rigid surfaces.
Reducing or stopping the uncontrolled flow of fluid such as oil from a well
Hermes, Robert E
2014-02-18
The uncontrolled flow of fluid from an oil or gas well may be reduced or stopped by injecting a composition including 2-cyanoacrylate ester monomer into the fluid stream. Injection of the monomer results in a rapid, perhaps instantaneous, polymerization of the monomer within the flow stream of the fluid. This polymerization results in formation of a solid plug that reduces or stops the flow of additional fluid from the well.
Thermicity and fluid flow related to the evolution of the South Pyrenean Foreland Basin (SPFB)
NASA Astrophysics Data System (ADS)
Crognier, Nemo; Hoareau, Guilhem; Lacroix, Brice; Aubourg, Charles; Dubois, Michel; Lahfid, Abdeltif; Labaume, Pierre; Suarez-Ruiz, Isabel
2015-04-01
The East-West trending South Pyrenean Foreland Basin (SPFB), formed during the upper Cretaceous and the early Miocene due to the collision between Iberian and European plates, is filled by marine to continental deposits affected by a set of successive southvergent thrusts. In the western part of the SPFB (Jaca basin, Spain), from the North to the South the basin is subdivided into four parts: the internal Sierras, the turbiditic basin, the molassic basin and the external Sierras. In order to better constrain the fluid flow dynamic and the thermal regime of the basin during its tectonic evolution, we propose to estimate the temperatures and the O and C isotopic signatures of fluids, as well as the maximum temperatures recorded by pre- to syn-tectonic sediments of the Jaca basin. The C and O isotopic composition has been measured on ~100 veins and host sediment samples. The peak temperatures have also been estimated on 80 bulk rocks and calcite/quartz veins using a combination of several techniques, including Raman Spectroscopy of Carbonaceous Material, vitrinite reflectance, fluid inclusion microthermometry and mass-47 clumped isotopes. We show that in most tectonic fractures, primary fluid inclusions are characterized by moderate salinities (~2.5 wt%) compatible with connate or evolved meteoric waters, with increasing meteoric signature in the south of the basin. As suggested by temperature determinations and stable isotopes, involved fluids were generally in thermal and isotopic equilibrium with the host sediments, suggesting a low fluid-rock ratio (i.e., no significant fluid flow). These results support previous speculations of moderate fluid-flow through thrust faults and the hydrological compartmentalization of the Jaca basin during deformation (Lacroix et al., 2014). In addition we demonstrate that measured peak temperatures rapidly decrease southward, from ~240°C±30°C in Cretaceous to Eocene sediments located in the North of the basin close to the axial
Direction of fluid flow and the properties of fibrous filters
Pich, J.; Spurny, K.
1991-01-01
The influence of the fluid flow direction (downflow and upflow) on the filtration properties of filters that have a fibrous structure is investigated. It is concluded that selectivity of these filters (dependence of the filter efficiency on the particle size) in the case of upflow is changed - in comparison with the case of downflow - in three ways: the position of the minimum of this dependence is shifted to larger particle sizes, and the whole selectivity is decreased and simultaneously deformed. Corresponding equations for this shift and changes are derived and analyzed. Theoretical predictions are compared with available experimental data. In all cases qualitative agreement and in some cases quantitative agreement is found.
An annotation system for 3D fluid flow visualization
NASA Technical Reports Server (NTRS)
Loughlin, Maria M.; Hughes, John F.
1995-01-01
Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.
Numerical simulation of fluid flow around a scramaccelerator projectile
NASA Technical Reports Server (NTRS)
Pepper, Darrell W.; Humphrey, Joseph W.; Sobota, Thomas H.
1991-01-01
Numerical simulations of the fluid motion and temperature distribution around a 'scramaccelerator' projectile are obtained for Mach numbers in the 5-10 range. A finite element method is used to solve the equations of motion for inviscid and viscous two-dimensional or axisymmetric compressible flow. The time-dependent equations are solved explicitly, using bilinear isoparametric quadrilateral elements, mass lumping, and a shock-capturing Petrov-Galerkin formulation. Computed results indicate that maintaining on-design performance for controlling and stabilizing oblique detonation waves is critically dependent on projectile shape and Mach number.
Flow field characteristics study of a flapping airfoil using computational fluid dynamics
NASA Astrophysics Data System (ADS)
Amiralaei, M. R.; Alighanbari, H.; Hashemi, S. M.
2011-10-01
The flow field of a flapping airfoil in Low Reynolds Number (LRN) flow regime is associated with complex nonlinear vortex shedding and viscous phenomena. The respective fluid dynamics of such a flow is investigated here through Computational Fluid Dynamics (CFD) based on the Finite Volume Method (FVM). The governing equations are the unsteady, incompressible two-dimensional Navier-Stokes (N-S) equations. The airfoil is a thin ellipsoidal geometry performing a modified figure-of-eight-like flapping pattern. The flow field and vortical patterns around the airfoil are examined in detail, and the effects of several unsteady flow and system parameters on the flow characteristics are explored. The investigated parameters are the amplitude of pitching oscillations, phase angle between pitching and plunging motions, mean angle of attack, Reynolds number (Re), Strouhal number (St) based on the translational amplitudes of oscillations, and the pitching axis location ( x / c ). It is shown that these parameters change the instantaneous force coefficients quantitatively and qualitatively. It is also observed that the strength, interaction, and convection of the vortical structures surrounding the airfoil are significantly affected by the variations of these parameters.
Crandall, Dustin; Bromhal, Grant; Karpyn, Zuleima T.
2010-07-01
Understanding how fracture wall-roughness affects fluid flow is important when modeling many subsurface transport problems. Computed tomography scanning provides a unique view of rock fractures, allowing the measurement of fracture wall-roughness, without destroying the initial rock sample. For this computational fluid dynamics study, we used several different methods to obtain three-dimensional meshes of a computed tomography scanned fracture in Berea sandstone. These volumetric meshes had different wall-roughnesses, which we characterized using the Joint Roughness Coefficient and the fractal dimension of the fracture profiles. We then related these macroscopic roughness parameters to the effective flow through the fractures, as determined from Navier-Stokes numerical models. Thus, we used our fracture meshes to develop relationships between the observed roughness properties of the fracture geometries and flow parameters that are of importance for modeling flow through fractures in field scale models. Fractures with high Joint Roughness Coefficients and fractal dimensions were shown to exhibit tortuous flow paths, be poorly characterized by the mean geometric aperture, and have a fracture transmissivity 35 times smaller than the smoother modeled fracture flows.
Three dimensional simulation of fluid flow in X-ray CT images of porous media
NASA Astrophysics Data System (ADS)
Al-Omari, A.; Masad, E.
2004-11-01
A numerical scheme is developed in order to simulate fluid flow in three dimensional (3-D) microstructures. The governing equations for steady incompressible flow are solved using the semi-implicit method for pressure-linked equations (SIMPLE) finite difference scheme within a non-staggered grid system that represents the 3-D microstructure. This system allows solving the governing equations using only one computational cell. The numerical scheme is verified through simulating fluid flow in idealized 3-D microstructures with known closed form solutions for permeability. The numerical factors affecting the solution in terms of convergence and accuracy are also discussed. These factors include the resolution of the analysed microstructure and the truncation criterion. Fluid flow in 2-D X-ray computed tomography (CT) images of real porous media microstructure is also simulated using this numerical model. These real microstructures include field cores of asphalt mixes, laboratory linear kneading compactor (LKC) specimens, and laboratory Superpave gyratory compactor (SGC) specimens. The numerical results for the permeability of the real microstructures are compared with the results from closed form solutions. Copyright
Complex fluid flow modeling with SPH on GPU
NASA Astrophysics Data System (ADS)
Bilotta, Giuseppe; Hérault, Alexis; Del Negro, Ciro; Russo, Giovanni; Vicari, Annamaria
2010-05-01
We describe an implementation of the Smoothed Particle Hydrodynamics (SPH) method for the simulation of complex fluid flows. The algorithm is entirely executed on Graphic Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) developed by NVIDIA and fully exploiting their computational power. An increase of one to two orders of magnitude in simulation speed over equivalent CPU code is achieved. A complete modeling of the flow of a complex fluid such as lava is challenging from the modelistic, numerical and computational points of view. The natural topography irregularities, the dynamic free boundaries and phenomena such as solidification, presence of floating solid bodies or other obstacles and their eventual fragmentation make the problem difficult to solve using traditional numerical methods (finite volumes, finite elements): the need to refine the discretization grid in correspondence of high gradients, when possible, is computationally expensive and with an often inadequate control of the error; for real-world applications, moreover, the information needed by the grid refinement may not be available (e.g. because the Digital Elevation Models are too coarse); boundary tracking is also problematic with Eulerian discretizations, more so with complex fluids due to the presence of internal boundaries given by fluid inhomogeneity and presence of solidification fronts. An alternative approach is offered by mesh-free particle methods, that solve most of the problems connected to the dynamics of complex fluids in a natural way. Particle methods discretize the fluid using nodes which are not forced on a given topological structure: boundary treatment is therefore implicit and automatic; the movement freedom of the particles also permits the treatment of deformations without incurring in any significant penalty; finally, the accuracy is easily controlled by the insertion of new particles where needed. Our team has developed a new model based on the
Porous media flow problems: natural convection and one-dimensional flow of a non-Newtonian fluid
Walker, K.L.
1980-01-01
Two fluid problems in porous media are studied: natural convection of a Newtonian fluid and one-dimensional flow of a non-Newtonian fluid. Convection in a rectangular porous cavity driven by heating in the horizontal is analyzed by a number of different techniques which yield a fairly complete description of the 2-dimensional solutions. The solutions are governed by 2 dimensionless parameters: the Darcy-Rayleigh number R and cavity aspect ratio A. The flow behavior of a dilute solution of polyacrylamide in corn syrup flowing through porous media also is studied. Measurements of the pressure drop and flow rate are made for the solution flowing through a packed bed of glass beads. At low velocities the pressure drop as a function of velocity is the same as that for a Newtonian fluid of equal viscosity. At higher flow rates the non-Newtonian fluid exhibited significantly higher pressure drops than a Newtonian fluid.
Fluid flow vorticity measurement using laser beams with orbital angular momentum.
Ryabtsev, A; Pouya, S; Safaripour, A; Koochesfahani, M; Dantus, M
2016-05-30
Vorticity is one of the most important dynamic flow variables and is fundamental to the basic flow physics of many areas of fluid dynamics, including aerodynamics, turbulent flows and chaotic motion. We report on the direct measurements of fluid flow vorticity using a beam with orbital angular momentum that takes advantage of the rotational Doppler shift from microparticles intersecting the beam focus. Experiments are carried out on fluid flows with well-characterized vorticity and the experimental results are found to be in excellent agreement with the expected values. This method allows for localized real-time determination of vorticity in a fluid flow with three-dimensional resolution. PMID:27410101
NASA Technical Reports Server (NTRS)
Sturdza, Peter (Inventor); Martins-Rivas, Herve (Inventor); Suzuki, Yoshifumi (Inventor)
2014-01-01
A fluid-flow simulation over a computer-generated surface is generated using a quasi-simultaneous technique. The simulation includes a fluid-flow mesh of inviscid and boundary-layer fluid cells. An initial fluid property for an inviscid fluid cell is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. An initial boundary-layer fluid property a boundary-layer fluid cell is determined using the initial fluid property and a viscous fluid simulation that simulates fluid viscous effects. An updated boundary-layer fluid property is determined for the boundary-layer fluid cell using the initial fluid property, initial boundary-layer fluid property, and an interaction law. The interaction law approximates the inviscid fluid simulation using a matrix of aerodynamic influence coefficients computed using a two-dimensional surface panel technique and a fluid-property vector. An updated fluid property is determined for the inviscid fluid cell using the updated boundary-layer fluid property.
Generalized Newtonian fluid flow through fibrous porous media
NASA Astrophysics Data System (ADS)
Mierzwiczak, Magdalena; Kołodziej, Jan Adam; Grabski, Jakub Krzysztof
2016-06-01
The numerical calculations of the velocity field and the component of transverse permeability in the filtration equation for steady, incompressible flow of the generalized Newtonian fluid through the assemblages of cylindrical fibers are presented in this paper. The fibers are arranged regularly in arrays. Flow is transverse with respect to the fibers. The non-linear governing equation in the repeated element of the array is solved using iteration method. At each iteration step the method of fundamental solutions and the method of particular solutions are used. The bundle of fibers is treated as a porous media and on the base of velocity field the permeability coefficients are calculated as a function of porosity.
Onset of turbulence from the receptivity stage of fluid flows.
Sengupta, T K; Bhaumik, S
2011-10-01
The traditional viewpoint of fluid flow considers the transition to turbulence to occur by the secondary and nonlinear instability of wave packets, which have been created experimentally by localized harmonic excitation. The boundary layer has been shown theoretically to support spatiotemporal growing wave fronts by Sengupta, Rao, and Venkatasubbaiah [Phys. Rev. Lett. 96, 224504 (2006)] by a linear mechanism, which is shown here to grow continuously, causing the transition to turbulence. Here, we track spatiotemporal wave fronts to a nonlinear turbulent state by solving the full 2D Navier-Stokes equation, without any limiting assumptions. Thus, this is the only demonstration of deterministic disturbances evolving from a receptivity stage to the full turbulent flow. This is despite the prevalent competing conjectures of the event being three-dimensional and/or stochastic in nature. PMID:22107294
Fluid flow over arbitrary bottom topography in a channel
NASA Astrophysics Data System (ADS)
Panda, Srikumar
2016-05-01
In this paper, two-dimensional free surface potential flow over an arbitrary bottom in a channel is considered to analyze the behavior of the free surface profile using linear theory. It is assumed that the fluid is inviscid, incompressible and flow is irrotational. Perturbation analysis in conjunction with Fourier transform technique is employed to determine the first order corrections of some important physical quantities such as free surface profile, velocity potential, etc. From the practical point of view, one arbitrary bottom topography is considered to determine the free surface profile since the free surface profile depends on the bottom topography. It is found that the free surface profile is oscillatory in nature, representing a wave propagating downstream and no wave upstream.
Modeling of unsteady-state flows of viscoelastic plastic fluids
Shulman, Z.P.; Dornyak, O.R.; Khusid, B.M.; Ryklina, I.L.; Zal'tsgendler, E.A.
1989-04-01
Unsteady-state flows of media that possess a complex of rheological properties such as elasticity, viscosity and plasticity are studied. The fluid is assumed to exhibit elastic properties at stresses below the fluidity limit. A Trikomi-type boundary-value problem for describing the unsteady-state forced flows in these media is formulated. A difference scheme for the unobstructed calculation is constructed, and the conditions of its efficiency are investigated. The numerical results obtained illustrate the essential effect of elastic properties in the region where the stress is below the fluidity limit; in particular, those cases are studied wherein the period of the elastic shear wave is commensurable with the characteristic hydrodynamic time of the process.
Fluid mechanics experiments in oscillatory flow. Volume 1
Seume, J.; Friedman, G.; Simon, T.W.
1992-03-01
Results of a fluid mechanics measurement program is oscillating flow within a circular duct are present. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re{sub max}, Re{sub W}, and A{sub R}, embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA`s Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radical components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and in reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. The following is presented in two-volumes. Volume I contains the text of the report including figures and supporting appendices. Volume II contains data reduction program listings and tabulated data (including its graphical presentation).
Extensional bundle waveguide techniques for measuring flow of hot fluids.
Lynnworth, Lawrence C; Liu, Yi; Umina, John A
2005-04-01
A bundle of acoustically slender metal rods, each thin compared to wavelength, tightly packed within a sheath, and welded closed at each end, provides a dispersion-free waveguide assembly that acts as a thermal buffer between a transducer and the hot fluid medium the flow of which is to be measured. Gas and steam flow applications have ranged up to 600 degrees C. Liquid applications have ranged from cryogenic (-160 degrees C) to 500 degrees C and include intermittent two-phase flows. The individual rods comprising the bundle usually are approximately one millimeter in diameter. The sheath, made of a pipe or tube, typically has an outside diameter of 12.7 to about 33 mm and usually is about 300 mm long. Materials for the sheath and bundle are selected to satisfy requirements of compatibility with the fluid as well as for acoustic properties. Corrosion-resistant alloys such as 316SS and titanium are commonly used. The buffers are used with transducers that are metal-encapsulated and certified for use in hazardous areas. They operate at a frequency in the range of 0.1 to 1 MHz. The radiating end of the buffer is usually flat and perpendicular to the buffer's main axis. In some cases the end of the buffer is stepped or angled. Angling the radiating faces at approximately 2 degrees to overcome beam drift at Mach 0.1 recently contributed to solving a high-temperature high-velocity flow measurement problem. The temperature in this situation was 300 degrees C, and the gas molecular weight was about 95, with pressure 0.9 to 1.1 bar. PMID:16060500
Fluid mechanics experiments in oscillatory flow. Volume 1: Report
NASA Technical Reports Server (NTRS)
Seume, J.; Friedman, G.; Simon, T. W.
1992-01-01
Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re(sub max), Re(sub w), and A(sub R), embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. Volume 1 contains the text of the report including figures and supporting appendices. Volume 2 contains data reduction program listings and tabulated data (including its graphical presentation).
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, J.R.
1982-05-04
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, James R.
1982-01-01
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.
NASA Astrophysics Data System (ADS)
Horiuchi, Shun-suke; Iwamori, Hikaru
2016-05-01
Water plays crucial roles in the subduction zone dynamics affecting the thermal-flow structure through the fluid processes. We aim to understand what controls the dynamics and construct a model to solve consistently fluid generation, fluid transport, its reaction with the solid and resultant viscosity, and thermal-flow structure. We highlight the effect of mechanical weakening of rocks associated with hydration. The viscosity of serpentinite (ηserp) in subduction zones critically controls the flow-thermal structure via extent of mechanical coupling between the subducting slab and overlying mantle wedge. When ηserp is greater than 1021 Pa s, the thermal-flow structure reaches a steady state beneath the volcanic zone, and the melting region expands until Cin (initial water content in the subducting oceanic crust) reaches 3 wt %, and it does not expand from 3 wt %. On the other hand, when ηserp is less than 1019 Pa s, the greater water dependence of viscosity (expressed by a larger fv) confines a hot material to a narrower channel intruding into the wedge corner from a deeper part of the back-arc region. Consequently, the overall heat flux becomes less for a larger fv. When ageba (age of back-arc basin as a rifted lithosphere) = 7.5 Ma, the increase in fv weakens but shifts the melting region toward the trench side because of the narrow channel flow intruding into the wedge corner, where as it shuts down melting when ageba=20 Ma. Several model cases (particularly those with ηserp=1020 to 1021 Pa s and a relatively large fv for Cin=2 to 3 wt %) broadly account for the observations in the Northeast Japan arc (i.e., location and width of volcanic chain, extent of serpentinite, surface heat flow, and seismic tomography), although the large variability of surface heat flow and seismic tomographic images does not allow us to constrain the parameter range tightly.
Hamiltonian description of ideal fluids and MHD flows
NASA Astrophysics Data System (ADS)
Kuznetsov, E. A.
2002-11-01
Vortex line and magnetic line representations are introduced for description of flows in ideal hydrodynamics and MHD, respectively. For incompressible fluids it is shown that the equations of motion for vorticity Ω and magnetic field with the help of this transformation follow from the variational principle. By means of this representation it is possible to integrate the system of hydrodynamic type with the Hamiltonian lH=int |Ω| dr. It is also demonstrated that these representations allow to remove from the noncanonical Poisson brackets, defined on the space of divergence-free vector fields, degeneracy connected with the vorticity frozenness for the Euler equation and with magnetic field frozenness for ideal MHD. For MHD a new Weber type transformation is found. It is shown how this transformation can be obtained from the two-fluid model when electrons and ions can be considered as two independent fluids. The Weber type transformation for ideal MHD gives the whole Lagrangian vector invariant. When this invariant is absent this transformation coincides with the Clebsch representation analog introduced in (V.E.Zakharov and E.A.Kuznetsov, Doklady USSR Ac. Nauk. (Soviet Doklady), 194), 1288 (1970).
NASA Astrophysics Data System (ADS)
Bose, Sayan; Banerjee, Moloy
2015-07-01
Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the basic principle behind the Magnetic Drug Targeting (MDT). It is essential to couple the ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD) principles when magnetic fields are applied to blood as a biomagnetic fluid. The present study is devoted to study on MDT technique by particle tracking in the presence of a non uniform magnetic field in a stenosed aortic bifurcation. The present numerical model of biomagnetic fluid dynamics (BFD) takes into accounts both magnetization and electrical conductivity of blood. The blood flow in the bifurcation is considered to be incompressible and Newtonian. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT two way particle-fluid coupling. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Results concerning the velocity and temperature field indicate that the presence of the magnetic field influences the flow field considerably and the disturbances increase as the magnetic field strength increases. The insert position is also varied to observe the variation in flow as well as temperature field. Parametric investigation is conducted and the influence of the particle size (dp), flow Reynolds number (Re) and external magnetic field strength (B0) on the "capture efficiency" (CE) is reported. The difference in CE is also studied for different particle loading condition. According to the results, the magnetic field increased the particle concentration in the target region
Monteith, Corey E; Brunner, Matthew E; Djagaeva, Inna; Bielecki, Anthony M; Deutsch, Joshua M; Saxton, William M
2016-05-10
The transport of cytoplasmic components can be profoundly affected by hydrodynamics. Cytoplasmic streaming in Drosophila oocytes offers a striking example. Forces on fluid from kinesin-1 are initially directed by a disordered meshwork of microtubules, generating minor slow cytoplasmic flows. Subsequently, to mix incoming nurse cell cytoplasm with ooplasm, a subcortical layer of microtubules forms parallel arrays that support long-range, fast flows. To analyze the streaming mechanism, we combined observations of microtubule and organelle motions with detailed mathematical modeling. In the fast state, microtubules tethered to the cortex form a thin subcortical layer and undergo correlated sinusoidal bending. Organelles moving in flows along the arrays show velocities that are slow near the cortex and fast on the inward side of the subcortical microtubule layer. Starting with fundamental physical principles suggested by qualitative hypotheses, and with published values for microtubule stiffness, kinesin velocity, and cytoplasmic viscosity, we developed a quantitative coupled hydrodynamic model for streaming. The fully detailed mathematical model and its simulations identify key variables that can shift the system between disordered (slow) and ordered (fast) states. Measurements of array curvature, wave period, and the effects of diminished kinesin velocity on flow rates, as well as prior observations on f-actin perturbation, support the model. This establishes a concrete mechanistic framework for the ooplasmic streaming process. The self-organizing fast phase is a result of viscous drag on kinesin-driven cargoes that mediates equal and opposite forces on cytoplasmic fluid and on microtubules whose minus ends are tethered to the cortex. Fluid moves toward plus ends and microtubules are forced backward toward their minus ends, resulting in buckling. Under certain conditions, the buckling microtubules self-organize into parallel bending arrays, guiding varying directions
PArallel Reacting Multiphase FLOw Computational Fluid Dynamic Analysis
2002-06-01
PARMFLO is a parallel multiphase reacting flow computational fluid dynamics (CFD) code. It can perform steady or unsteady simulations in three space dimensions. It is intended for use in engineering CFD analysis of industrial flow system components. Its parallel processing capabilities allow it to be applied to problems that use at least an order of magnitude more computational cells than the number that can be used on a typical single processor workstation (about 106 cellsmore » in parallel processing mode versus about io cells in serial processing mode). Alternately, by spreading the work of a CFD problem that could be run on a single workstation over a group of computers on a network, it can bring the runtime down by an order of magnitude or more (typically from many days to less than one day). The software was implemented using the industry standard Message-Passing Interface (MPI) and domain decomposition in one spatial direction. The phases of a flow problem may include an ideal gas mixture with an arbitrary number of chemical species, and dispersed droplet and particle phases. Regions of porous media may also be included within the domain. The porous media may be packed beds, foams, or monolith catalyst supports. With these features, the code is especially suited to analysis of mixing of reactants in the inlet chamber of catalytic reactors coupled to computation of product yields that result from the flow of the mixture through the catalyst coaled support structure.« less
PArallel Reacting Multiphase FLOw Computational Fluid Dynamic Analysis
Lottes, Steven A.
2002-06-01
PARMFLO is a parallel multiphase reacting flow computational fluid dynamics (CFD) code. It can perform steady or unsteady simulations in three space dimensions. It is intended for use in engineering CFD analysis of industrial flow system components. Its parallel processing capabilities allow it to be applied to problems that use at least an order of magnitude more computational cells than the number that can be used on a typical single processor workstation (about 106 cells in parallel processing mode versus about io cells in serial processing mode). Alternately, by spreading the work of a CFD problem that could be run on a single workstation over a group of computers on a network, it can bring the runtime down by an order of magnitude or more (typically from many days to less than one day). The software was implemented using the industry standard Message-Passing Interface (MPI) and domain decomposition in one spatial direction. The phases of a flow problem may include an ideal gas mixture with an arbitrary number of chemical species, and dispersed droplet and particle phases. Regions of porous media may also be included within the domain. The porous media may be packed beds, foams, or monolith catalyst supports. With these features, the code is especially suited to analysis of mixing of reactants in the inlet chamber of catalytic reactors coupled to computation of product yields that result from the flow of the mixture through the catalyst coaled support structure.
[Numerical methods for multi-fluid flows]. Final progress report
Pozrikidis, C.
1998-07-21
The central objective of this research has been to develop efficient numerical methods for computing multi-fluid flows with large interfacial deformations, and apply these methods to study the rheology of suspensions of deformable particles with viscous and non-Newtonian interfacial behavior. The mathematical formulation employs boundary-integral, immersed-boundary, and related numerical methods. Particles of interest include liquid drops with constant surface tension and capsules whose interfaces exhibit viscoelastic and incompressible characteristics. In one family of problems, the author has considered the shear-driven and pressure-driven flow of a suspension of two-dimensional liquid drops with ordered and random structure. In a second series of investigations, the author carried out dynamic simulations of two-dimensional, unbounded, doubly-periodic shear flows with random structure. Another family of problems addresses the deformation of three-dimensional capsules whose interfaces exhibit isotropic surface tension, viscous, elastic, or incompressible behavior, in simple shear flow. The numerical results extend previous asymptotic theories for small deformations and illuminate the mechanism of membrane rupture.
Sensor for Boundary Shear Stress in Fluid Flow
NASA Technical Reports Server (NTRS)
Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Chang, Zensheu; Trease, Brian P.; Kerenyi, Kornel; Widholm, Scott E.; Ostlund, Patrick N.
2012-01-01
The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex and lead to low-fidelity results. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear stress, normal stress, and their fluctuations are attractive alternatives. However, most direct-measurement shear sensors are bulky in size or not compatible to fluid flow. A sensor has been developed that consists of a floating plate with folded beam support and an optical grid on the back, combined with a high-resolution optical position probe. The folded beam support makes the floating plate more flexible in the sensing direction within a small footprint, while maintaining high stiffness in the other directions. The floating plate converts the shear force to displacement, and the optical probe detects the plate s position with nanometer resolution by sensing the pattern of the diffraction field of the grid through a glass window. This configuration makes the sensor compatible with liquid flow applications.
Biomagnetic fluid flow in an aneurysm using ferrohydrodynamics principles
NASA Astrophysics Data System (ADS)
Tzirtzilakis, E. E.
2015-06-01
In this study, the fundamental problem of biomagnetic fluid flow in an aneurysmal geometry under the influence of a steady localized magnetic field is numerically investigated. The mathematical model used to formulate the problem is consistent with the principles of ferrohydrodynamics. Blood is considered to be an electrically non-conducting, homogeneous, non-isothermal Newtonian magnetic fluid. For the numerical solution of the problem, which is described by a coupled, non-linear system of Partial Differential Equations (PDEs), with appropriate boundary conditions, the stream function-vorticity formulation is adopted. The solution is obtained by applying an efficient pseudotransient numerical methodology using finite differences. This methodology is based on the application of a semi-implicit numerical technique, transformations, stretching of the grid, and construction of the boundary conditions for the vorticity. The results regarding the velocity and temperature field, skin friction, and rate of heat transfer indicate that the presence of a magnetic field considerably influences the flow field, particularly in the region of the aneurysm.
Fluid mechanics experiments in oscillatory flow. Volume 2: Tabulated data
NASA Technical Reports Server (NTRS)
Seume, J.; Friedman, G.; Simon, T. W.
1992-01-01
Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re sub max, Re sub w, and A sub R, embody the velocity amplitude, frequency of oscillation, and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Volume 2 contains data reduction program listings and tabulated data (including its graphics).
A review of interaction mechanisms in fluid-solid flows
Johnson, G.; Rajagopal, K.R. . Dept. of Mechanical Engineering); Massoudi, M. )
1990-09-01
Multiphase flows have become the subject of considerable attention because of their importance in many industrial applications, such as fluidized beds, pneumatic transport of solids, coal combustion, etc. Fundamental research into the nature of pneumatic transport has made significant progress in identifying key parameters controlling the characteristics of these processes. The emphasis of this study is on a mixture composed of spherical particles of uniform size and a linearly viscous fluid. Section 1 introduces our approach and the importance of this study. In Section 2, the dynamics of a single particle as studied in classical hydrodynamics and fluid dynamics is presented. This has been a subject of study for more than 200 years. In Section 3, we review the literature for the constitutive relations as given in multiphase studies, i.e., generalization of single particle and as given in literature concerning the continuum theories of mixtures or multicomponent systems. In Section 4, a comparison between these representations and the earlier approach, i.e., forces acting on a single particle will be made. The importance of flow regimes, particle concentration, particle size and shape, rotation of the particle, effect of solid walls, etc. are discussed. 141 refs.
Protein Crystal Movements and Fluid Flows During Microgravity Growth
NASA Technical Reports Server (NTRS)
Boggon, Titus J.; Chayen, Naomi E.; Snell, Edward H.; Dong, Jun; Lautenschlager, Peter; Potthast, Lothar; Siddons, D. Peter; Stojanoff, Vivian; Gordon, Elspeth; Thompson, Andrew W.; Zagalsky, Peter F.; Bi, Ru-Chang; Helliwell, John R.
1998-01-01
The growth of protein crystals suitable for x-ray crystal structure analysis is an important topic. The quality (perfection) of protein crystals is now being evaluated by mosaicity analysis (rocking curves) and x-ray topographic images as well as the diffraction resolution limit and overall data quality. In yet another study, use of hanging drop vapour diffusion geometry on the IML-2 shuttle mission showed, again via CCD video monitoring, growing apocrustacyanin C(sub 1) protein crystal executing near cyclic movement, reminiscent of Marangoni convection flow of fluid, the crystals serving as "markers" of the fluid flow. A review is given here of existing results and experience over several microgravity missions. Some comment is given on gel protein crystal growth in attempts to 'mimic' the benefits of microgravity on Earth. Finally, the recent new results from our experiments on the shuttle mission LMS are described. These results include CCD video as well as interferometry during the mission, followed, on return to Earth, by reciprocal space mapping at the NSLS, Brookhaven, and full X-ray data collection on LMS and Earth control lysozyme crystals. Diffraction data recorded from LMS and ground control apocrustacyanin C(sub 1) crystals are also described.
Bachok, Norfifah; Ishak, Anuar; Pop, Ioan
2013-01-01
The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity) differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface. PMID:23577156
Breakup modes of fluid drops in confined shear flows
NASA Astrophysics Data System (ADS)
Barai, Nilkamal; Mandal, Nibir
2016-07-01
Using a conservative level set method we investigate the deformation behavior of isolated spherical fluid drops in a fluid channel subjected to simple shear flows, accounting the following three non-dimensional parameters: (1) degree of confinement (Wc = 2a/h, where a is the drop radius and h is the channel thickness); (2) viscosity ratio between the two fluids (λ = μd/μm, where μd is the drop viscosity and μm is the matrix viscosity); and (3) capillary number (Ca). For a given Wc, a drop steadily deforms to attain a stable geometry (Taylor number and inclination of its long axis to the shear direction) when Ca < 0.3. For Ca > 0.3, the deformation behavior turns to be unsteady, leading to oscillatory variations of both its shape and orientation with progressive shear. This kind of unsteady deformation also occurs in a condition of high viscosity ratios (λ > 2). Here we present a detailed parametric analysis of the drop geometry with increasing shear as a function of Wc, Ca, and λ. Under a threshold condition, deforming drops become unstable, resulting in their breakup into smaller droplets. We recognize three principal modes of breakup: Mode I (mid-point pinching), Mode II (edge breakup), and Mode III (homogeneous breakup). Each of these modes is shown to be most effective in the specific field defined by Ca and λ. Our study also demonstrates the role of channel confinement (Wc) in controlling the transition of Mode I to III. Finally, we discuss implications of the three modes in determining characteristic drop size distributions in multiphase flows.
NASA Astrophysics Data System (ADS)
Fraggedakis, D.; Kouris, Ch.; Dimakopoulos, Y.; Tsamopoulos, J.
2015-08-01
We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our volume-of-fluid algorithm is used to solve the governing equations. First, the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then, it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow, or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray, and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results [I. Cohen et al., "Two fluid drop snap-off problem: Experiments and theory," Phys. Rev. Lett. 83, 1147-1150 (1999)]. Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our result provides deeper insights into the mechanism of the pattern transitions and is in agreement with previous studies on core-annular flow [Ch. Kouris and J. Tsamopoulos, "Core-annular flow in a periodically constricted circular tube, I. Steady state, linear stability and energy analysis," J. Fluid Mech. 432, 31-68 (2001) and Ch. Kouris et al., "Comparison of spectral and finite element methods applied to the study of interfacial instabilities of the core-annular flow in an undulating tube," Int. J. Numer. Methods Fluids 39(1), 41-73 (2002)], segmented flow [E. Lac and J. D. Sherwood, "Motion of a drop along the centreline of a capillary in a pressure-driven flow," J. Fluid Mech. 640, 27-54 (2009)], and churn flow [R. Y. Bai et al., "Lubricated pipelining—Stability of core annular-flow. 5. Experiments and comparison with theory," J. Fluid Mech. 240, 97-132 (1992)].
Scaling of Fluid Flow and Seismic Stiffness of Fractures
NASA Astrophysics Data System (ADS)
Petrovitch, C.; Nolte, D.; Pyrak-Nolte, L. J.
2011-12-01
A firm understanding of the relationship between the hydraulic and mechanical properties of fractures has been long sought. Seismic techniques probe the mechanical properties of fractures, e.g. fracture specific stiffness. Providing a connection between fluid flow and fracture stiffness would enable remote estimation of the flow properties in the subsurface. Linking theses two properties would improve society's ability to assess the risk related to the extraction of drinkable water, oil production, and the storage of CO2 in subsurface reservoirs. This relationship is complicated because the subsurface is composed of a hierarchy of structures and processes that span a large range of length and time scales. A scaling approach enables researchers to translate laboratory measurements towards the field scale and vise a versa. We performed a computational study of the scaling of the flow-stiffness relationship for planar fractures with uncorrelated aperture distributions. Three numerical models were required to study the scaling properties of the flow-stiffness relationship for single fractures. Firstly, the fracture topologies where constructed using a stratified continuum percolation method. Only uncorrelated fracture geometries were considered to provide a baseline of understanding for the different interacting critical thresholds occurring in the hydraulic and mechanical properties. Secondly, fracture stiffness was calculated by modeling the deformation of asperities and a deformable half space. This model computed the displacement-stress curves for a given fracture, from which the stiffness was extracted. Thirdly, due to the sensitive nature of the critical phenomena associated with fluid flow through fractures, two network flow models were used for verification. The fractures were first modeled as a network of elliptical pipes and the corresponding linear system of equations was solved. The second method consisted of using a lattice grid network, where the flow is
Computational fluid dynamics analysis of salivary flow and its effect on sialolithogenesis
Zhu, P; Lin, Y; Lin, H; Xu, Y; Zheng, QY; Han, Y
2014-01-01
OBJECTIVE Sialolithiasis is a common disease caused by intraductal stones, formed by reduction in salivary flow, salivary stagnation, and metabolic events. We used computational fluid dynamics to investigate changes in salivary flow field around parotid stones of different shapes. MATERIALS AND METHODS Three-dimensional configurations of the Stensen’s duct were reconstructed from computed tomography sialographic images. Fluid dynamics modeling was used to analyze the salivary flow field around stones under unstimulated and stimulated conditions. RESULTS The majority of sialoliths were oval-shaped (59/98), followed by irregular (24/98) and round (15/98). Salivary velocity was significantly higher around streamlined stones, compared with round (P = 0.013) and oval (P = 0.025) types. Changes in salivary flow field around sialoliths were found to affect the pattern of mineral deposition in saliva. The area of low velocity around the round stone was double the size observed around the streamlined stone during the unstimulated state, whereas in the stimulated state, local vortexes were formed on the downstream side of round and oval stones. CONCLUSIONS Salivary flow field around sialoliths plays an important role in the progression of multicentric stones, and analysis of the salivary dynamics during sialolithiasis may provide deeper understandings of the condition and aid in developing successful treatment strategies. PMID:24164693
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, J.R.
1980-05-02
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.
NASA Astrophysics Data System (ADS)
Jawitz, James W.; Annable, Michael D.; Rao, P. S. C.
1998-06-01
In situ flushing groundwater remediation technologies, such as cosolvent flushing, rely on the stability of the interface between the resident and displacing fluids for efficient removal of contaminants. Contrasts in density and viscosity between the resident and displacing fluids can adversely affect the stability of the displacement front. Petroleum engineers have developed techniques to describe these types of processes; however, their findings do not necessarily translate directly to aquifer remediation. The purpose of this laboratory study was to investigate how density and viscosity contrasts affected cosolvent displacements in unconfined porous media characterized by the presence of a capillary fringe. Two-dimensional flow laboratory experiments, which were partially scaled to a cosolvent flushing field experiment, were conducted to determine potential implications of flow instabilities in homogeneous sand packs. Numerical simulations were also conducted to investigate the differential impact of fluid property contrasts in unconfined and confined systems. The results from these experiments and simulations indicated that the presence of a capillary fringe was an important factor in the displacement efficiency. Buoyant forces can act to carry a lighter-than-water cosolvent preferentially into the capillary fringe during displacement of the resident groundwater. During subsequent water flooding, buoyancy forces can act to effectively trap the cosolvent in the capillary fringe, contributing to the inefficient removal of cosolvent from the aquifer.
SINDA/SINFLO computer routine, volume 1, revision A. [for fluid flow system analysis
NASA Technical Reports Server (NTRS)
Oren, J. A.; Williams, D. R.
1975-01-01
The SINFLO package was developed to modify the SINDA preprocessor to accept and store the input data for fluid flow systems analysis and adding the FLOSOL user subroutine to perform the flow solution. This reduced and simplified the user input required for analysis of flow problems. A temperature calculation method, the flow-hybrid method which was developed in previous VSD thermal simulator routines, was incorporated for calculating fluid temperatures. The calculation method accuracy was improved by using fluid enthalpy rather than specific heat for the convective term of the fluid temperature equation. Subroutines and data input requirements are described along with user subroutines, flow data storage, and usage of the plot program.
Metamorphic fluid flow - a question of scale, crustal depth and bulk rock composition
Tracy, R.J.; Rye, D.M.
1985-01-01
Recent studies have indicated that certain metamorphic rocks interacted with significant volumes of aqueous fluid during their time-integrated mineral reaction history. Rather than demonstrating that pervasive fluid flow is general in metamorphic rocks, these documented cases instead suggest the likelihood of pronounced to extreme channelization of through-going in fluids in deep-seated metamorphic terranes (P>3 kbar). In rocks more shallowly buried, and therefore under low lithostatic stress, pervasive flow along grain boundaries and open microfractures probably occurred, as at Skye and the Skaergaard Complex. In higher pressure metamorphic environments, documented cases of high fluid/rock ratio make a strong case for flow channelized in veins or in impure marble aquifers where pore space and permeability were created by decarbonation reactions driven by infiltration of aqueous fluid. The source of this fluid may commonly be traced to a nearby wet granitic intrusion or quartz vein. As long as the pressurized source of aqueous fluid continued, outward flow was possible as fluid held open the intergranular pore space which was created only at the infiltration/reaction front where a reduction in solid volume accompanied reaction. Cessation or interruption of fluid flow would allow the pore space to close due to porous-rock strength being exceeded by lithostatic stress. Pervasive flow or aqueous fluid in deepseated metamorphic terranes is therefore probably limited to carbonate-bearing lithologies adjacent to sources of major volumes of fluid; otherwise, fluid flow is likely to be localized in fractures or veins.
Advanced tomographic flow diagnostics for opaque multiphase fluids
Torczynski, J.R.; O`Hern, T.J.; Adkins, D.R.; Jackson, N.B.; Shollenberger, K.A.
1997-05-01
This report documents the work performed for the ``Advanced Tomographic Flow Diagnostics for Opaque Multiphase Fluids`` LDRD (Laboratory-Directed Research and Development) project and is presented as the fulfillment of the LDRD reporting requirement. Dispersed multiphase flows, particularly gas-liquid flows, are industrially important to the chemical and applied-energy industries, where bubble-column reactors are employed for chemical synthesis and waste treatment. Due to the large range of length scales (10{sup {minus}6}-10{sup 1}m) inherent in real systems, direct numerical simulation is not possible at present, so computational simulations are forced to use models of subgrid-scale processes, the accuracy of which strongly impacts simulation fidelity. The development and validation of such subgrid-scale models requires data sets at representative conditions. The ideal measurement techniques would provide spatially and temporally resolved full-field measurements of the distributions of all phases, their velocity fields, and additional associated quantities such as pressure and temperature. No technique or set of techniques is known that satisfies this requirement. In this study, efforts are focused on characterizing the spatial distribution of the phases in two-phase gas-liquid flow and in three-phase gas-liquid-solid flow. Due to its industrial importance, the bubble-column geometry is selected for diagnostics development and assessment. Two bubble-column testbeds are utilized: one at laboratory scale and one close to industrial scale. Several techniques for measuring the phase distributions at conditions of industrial interest are examined: level-rise measurements, differential-pressure measurements, bulk electrical impedance measurements, electrical bubble probes, x-ray tomography, gamma-densitometry tomography, and electrical impedance tomography.
Complexity analysis of the turbulent environmental fluid flow time series
NASA Astrophysics Data System (ADS)
Mihailović, D. T.; Nikolić-Đorić, E.; Drešković, N.; Mimić, G.
2014-02-01
We have used the Kolmogorov complexities, sample and permutation entropies to quantify the randomness degree in river flow time series of two mountain rivers in Bosnia and Herzegovina, representing the turbulent environmental fluid, for the period 1926-1990. In particular, we have examined the monthly river flow time series from two rivers (the Miljacka and the Bosnia) in the mountain part of their flow and then calculated the Kolmogorov complexity (KL) based on the Lempel-Ziv Algorithm (LZA) (lower-KLL and upper-KLU), sample entropy (SE) and permutation entropy (PE) values for each time series. The results indicate that the KLL, KLU, SE and PE values in two rivers are close to each other regardless of the amplitude differences in their monthly flow rates. We have illustrated the changes in mountain river flow complexity by experiments using (i) the data set for the Bosnia River and (ii) anticipated human activities and projected climate changes. We have explored the sensitivity of considered measures in dependence on the length of time series. In addition, we have divided the period 1926-1990 into three subintervals: (a) 1926-1945, (b) 1946-1965, (c) 1966-1990, and calculated the KLL, KLU, SE, PE values for the various time series in these subintervals. It is found that during the period 1946-1965, there is a decrease in their complexities, and corresponding changes in the SE and PE, in comparison to the period 1926-1990. This complexity loss may be primarily attributed to (i) human interventions, after the Second World War, on these two rivers because of their use for water consumption and (ii) climate change in recent times.
NASA Astrophysics Data System (ADS)
Reusch, Anna; Moernaut, Jasper; Anselmetti, Flavio S.; Strasser, Michael
2016-04-01
Subsurface fluid flow can be affected by earthquakes: increased spring activity, mud volcano eruptions, groundwater fluctuations, changes in geyser frequency and other forms of altered subsurface fluid flow have been documented during, after, or even prior to earthquakes. Recently discovered giant pockmarks on the bottom of Lake Neuchâtel, Switzerland, are the lake-floor expression of subsurface fluid flow. They discharge karstic groundwater from the Jura Mountains and experience episodically increased subsurface fluid flow documented by subsurface sediment mobilization deposits at the levees of the pockmarks. In this study, we present the spatio-temporal distribution of event deposits from phases of sediment expulsion and their time correlative multiple mass-transport deposits. We report striking evidence for five events of concurrent multiple subsurface sediment deposits and multiple mass-transport deposits since Late Glacial times, for which we propose past earthquakes as trigger. Comparison of this new event catalogue with historic earthquakes and other independent paleoseismic records suggests that initiation of sediment expulsion requires a minimum macroseismic intensity of VII. Thus, our study presents for the first time sedimentary deposits resulting from increased subsurface fluid flow as new paleoseismic proxy. Comparable processes must also be relevant for other mountain front ranges and coastal mountain ranges, where groundwater flow triggers subsurface sediment mobilization and discharges into lacustrine and marine settings.
Wu, Binxin
2010-12-01
In this paper, 12 turbulence models for single-phase non-newtonian fluid flow in a pipe are evaluated by comparing the frictional pressure drops obtained from computational fluid dynamics (CFD) with those from three friction factor correlations. The turbulence models studied are (1) three high-Reynolds-number k-ε models, (2) six low-Reynolds-number k-ε models, (3) two k-ω models, and (4) the Reynolds stress model. The simulation results indicate that the Chang-Hsieh-Chen version of the low-Reynolds-number k-ε model performs better than the other models in predicting the frictional pressure drops while the standard k-ω model has an acceptable accuracy and a low computing cost. In the model applications, CFD simulation of mixing in a full-scale anaerobic digester with pumped circulation is performed to propose an improvement in the effective mixing standards recommended by the U.S. EPA based on the effect of rheology on the flow fields. Characterization of the velocity gradient is conducted to quantify the growth or breakage of an assumed floc size. Placement of two discharge nozzles in the digester is analyzed to show that spacing two nozzles 180° apart with each one discharging at an angle of 45° off the wall is the most efficient. Moreover, the similarity rules of geometry and mixing energy are checked for scaling up the digester. PMID:21047058
An approximate single fluid 3-dimensional magnetohydrodynamic equilibrium model with toroidal flow
NASA Astrophysics Data System (ADS)
Cooper, W. A.; Hirshman, S. P.; Chapman, I. T.; Brunetti, D.; Faustin, J. M.; Graves, J. P.; Pfefferlé, D.; Raghunathan, M.; Sauter, O.; Tran, T. M.; Aiba, N.
2014-09-01
An approximate model for a single fluid three-dimensional (3D) magnetohydrodynamic (MHD) equilibrium with pure isothermal toroidal flow with imposed nested magnetic flux surfaces is proposed. It recovers the rigorous toroidal rotation equilibrium description in the axisymmetric limit. The approximation is valid under conditions of nearly rigid or vanishing toroidal rotation in regions with significant 3D deformation of the equilibrium flux surfaces. Bifurcated helical core equilibrium simulations of long-lived modes in the MAST device demonstrate that the magnetic structure is only weakly affected by the flow but that the 3D pressure distortion is important. The pressure is displaced away from the major axis and therefore is not as noticeably helically deformed as the toroidal magnetic flux under the subsonic flow conditions measured in the experiment. The model invoked fails to predict any significant screening by toroidal plasma rotation of resonant magnetic perturbations in MAST free boundary computations.
Stem cells and fluid flow drive cyst formation in an invertebrate excretory organ.
Thi-Kim Vu, Hanh; Rink, Jochen C; McKinney, Sean A; McClain, Melainia; Lakshmanaperumal, Naharajan; Alexander, Richard; Sánchez Alvarado, Alejandro
2015-01-01
Cystic kidney diseases (CKDs) affect millions of people worldwide. The defining pathological features are fluid-filled cysts developing from nephric tubules due to defective flow sensing, cell proliferation and differentiation. The underlying molecular mechanisms, however, remain poorly understood, and the derived excretory systems of established invertebrate models (Caenorhabditis elegans and Drosophila melanogaster) are unsuitable to model CKDs. Systematic structure/function comparisons revealed that the combination of ultrafiltration and flow-associated filtrate modification that is central to CKD etiology is remarkably conserved between the planarian excretory system and the vertebrate nephron. Consistently, both RNA-mediated genetic interference (RNAi) of planarian orthologues of human CKD genes and inhibition of tubule flow led to tubular cystogenesis that share many features with vertebrate CKDs, suggesting deep mechanistic conservation. Our results demonstrate a common evolutionary origin of animal excretory systems and establish planarians as a novel and experimentally accessible invertebrate model for the study of human kidney pathologies. PMID:26057828
Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature.
Grimes, D T; Boswell, C W; Morante, N F C; Henkelman, R M; Burdine, R D; Ciruna, B
2016-06-10
Idiopathic scoliosis (IS) affects 3% of children worldwide, yet the mechanisms underlying this spinal deformity remain unknown. Here we show that ptk7 mutant zebrafish, a faithful developmental model of IS, exhibit defects in ependymal cell cilia development and cerebrospinal fluid (CSF) flow. Transgenic reintroduction of Ptk7 in motile ciliated lineages prevents scoliosis in ptk7 mutants, and mutation of multiple independent cilia motility genes yields IS phenotypes. We define a finite developmental window for motile cilia in zebrafish spine morphogenesis. Notably, restoration of cilia motility after the onset of scoliosis blocks spinal curve progression. Together, our results indicate a critical role for cilia-driven CSF flow in spine development, implicate irregularities in CSF flow as an underlying biological cause of IS, and suggest that noninvasive therapeutic intervention may prevent severe scoliosis. PMID:27284198
Modelling of fluid flow and heat transfer in a reciprocating compressor
NASA Astrophysics Data System (ADS)
Tuhovcak, J.; Hejcik, J.; Jicha, M.
2015-08-01
Efficiency of reciprocating compressor is strongly dependent on several parameters. The most important are valve behaviour and heat transfer. Valves affect the flow through the suction and discharge line. Heat flow from the walls to working fluid increases the work of the cycle. Understanding of these phenomena inside the compressor is a necessary step in the development process. Commercial CFD tools offer wide range of opportunities how to simulate the flow inside the reciprocating compressor nowadays, however they are too demanding in terms of computational time and mesh creation. Several approaches using various correlation equation exist to describe the heat transfer inside the cylinder, however none of them was validated by measurements due to the complicated settings. The goal of this paper is to show a comparison between these correlations using in-house code based on energy balance through the cycle.
Spatial and temporal resolution of fluid flows: LDRD final report
Tieszen, S.R.; O`Hern, T.J.; Schefer, R.W.; Perea, L.D.
1998-02-01
This report describes a Laboratory Directed Research and Development (LDRD) activity to develop a diagnostic technique for simultaneous temporal and spatial resolution of fluid flows. The goal is to obtain two orders of magnitude resolution in two spatial dimensions and time simultaneously. The approach used in this study is to scale up Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) to acquire meter-size images at up to 200 frames/sec. Experiments were conducted in buoyant, fully turbulent, non-reacting and reacting plumes with a base diameter of one meter. The PIV results were successful in the ambient gas for all flows, and in the plume for non-reacting helium and reacting methane, but not reacting hydrogen. No PIV was obtained in the hot combustion product region as the seed particles chosen vaporized. Weak signals prevented PLIF in the helium. However, in reacting methane flows, PLIF images speculated to be from Poly-Aromatic-Hydrocarbons were obtained which mark the flame sheets. The results were unexpected and very insightful. A natural fluorescence from the seed particle vapor was also noted in the hydrogen tests.
NASA Astrophysics Data System (ADS)
Dewever, B.; Swennen, R.; Breesch, L.
2013-04-01
The fluid flow history in the frontal part of the Sicilian fold and thrust belt (FTB) has been reconstructed using an integrated structural, petrographic, geochemical and microthermometric approach. The study focused on comparing fluid flow during progressive deformation along major thrust horizons and in pelagic sediments occurring in the associated thrust sheets (foot- and hanging wall). A fluid flow model is constructed for the frontal part of the Sicilian FTB. Syn-deformational quartz and calcite have been precipitated along décollement horizons in the Iudica-Scalpello study area. The microthermometric analysis of fluid inclusions in the quartz and calcite indicated migration of low saline high temperature aqueous fluids (- 1.5 < Tm < - 0.2 °C and 80 < Th < 200 °C) and hydrocarbons along the main thrusts. Geochemical and petrographic analysis showed the presence of high manganese (2500-25,000 ppm) and iron (300-7000 ppm) contents in certain calcite phases, suggesting that the migrating fluids originate from clay dewatering and clay-water interactions. The fluid flow history in the thrust sheets can be subdivided into two stages. Calcite of types 1 and 2 has identical light orange cathodoluminescence as the surrounding mudstone. Furthermore, its isotope signature (2 < δ13C < 3‰ and - 6 < δ18O < - 2‰) and minor element content are also in line with closed, host rock buffered fluid flow during the initial stages of the fluid flow history. Type 3 calcite is volumetrically by far the most important calcite phase. It occurs in (hydro-)fractures that are limited to the hanging wall of major thrusts and within major strike-slip faults that are interpreted as transfer faults as a result of thrust development. The presence of associated fluorite suggests more open fluid flow conditions during the final stages of the fluid flow history. Fluorite is characterized by low salinity fluid inclusions (- 2.6 < Tm < - 1.6 °C) with Th between 80 and 140 °C. Type 3
The role of fault zone in affecting multiphase flow at Yucca Mountain
Tsang, Y.W.; Pruess, K.; Wang, J.S.Y.
1993-12-31
Within Yucca Mountain, the potential High Level Nuclear-Waste Repository site, there are large scale fault zones, most notably the Ghost Dance Fault. The effect of such high-permeability, large-scale discontinuities on the flow and transport is a question of concern in assessing the ability of the site to isolate radio-nuclides from the biosphere. In this paper, we present a numerical study to investigate the role of the fault in affecting both the liquid and gas phase flows in the natural state at Yucca Mountain prior to waste emplacement, as well as after the waste emplacement when the fluid flow is strongly heat-driven. Our study shows that if the characteristic curves of the Ghost Dance Fault obey the same relationship between saturated permeability and capillary scaling parameter, is as observed from the measured data of Yucca Mountain welded and nonwelded tuffs, Apache Leap tuffs, and Las Cruces soil, then a large saturated permeability of the Ghost Dance Fault will play little role in channeling water into the fault, or in enhancing the flow of water down the fault. However, the Fault may greatly enhance the upward gas flow after emplacement of waste. This may have implications on the transport of gaseous radio-nuclides such as C{sup 14}. The results of this study also focus attention on the need for field measurements of fluid flow in the fault zones.
The role of fault zones in affecting multiphase flow at Yucca Mountain
Tsang, Y.W.; Pruess, K.; Wang, J.S.Y.
1993-01-01
Within Yucca Mountain, the potential High Level Nuclear-Waste Repository site, there are large scale fault zones, most notably the Ghost Dance Fault. The effect of such high-permeability, large scale discontinuities on the flow and transport is a question of concern in assessing the ability of the site to isolate radio-nuclides from the biosphere. In this paper, we present a numerical study to investigate the role of the fault in affecting both the liquid and gas phase flows in the natural state at Yucca Mountain prior to waste emplacement, as well as after the waste emplacement when the fluid flow is strongly heat-driven. Our study shows that if the characteristic curves of the Ghost Dance Fault obey the same relationship between saturated permeability and capillary scaling parameter, as is observed from the measured data of Yucca Mountain welded and nonwelded tuffs. Apache Leap tuffs, and Las Cruces soil, then a large saturated permeability of the Ghost Dance Fault will play little role in channeling water into the fault, or inenhancing the flow of water down the fault. However, the Fault may greatly enhance the upward gas flow after emplacement of waste. This may have implications on the transport of gaseous radio-nuclides such as C{sup 14}. The results of this study also focus attention on the need for field measurements of fluid flow in the fault zones.
Effect of laminar unsteady fluid flows on mass transfer in electrochemical systems
NASA Astrophysics Data System (ADS)
Shehata, Ahmed Kamal
1999-11-01
A numerical study of mass transfer in steady as well as unsteady two-dimensional laminar channel flows is investigated. When a circular cylinder is suspended in a steady flow stream, the flow becomes unsteady and oscillates periodically for Reynolds numbers, Re, between 200 and 800 (where Re is based on the channel height) due to the formation of the Karman vortex street. This well- characterized unsteady periodic flow is utilized to study mass transfer rates at different positions downstream of the blocking cylinder. The study consisted of mass transfer to a channel wall and mass transfer to the bottom surface of rectangular cavities, of different depth/width ratios. All investigated positions, including cavity position, are located downstream of the blocking cylinder. The study also included the mass transfer to a channel wall in a steady fully-developed flow when a hemi-cylindrical bump is located at the lower wall. The results of the numerical simulations are then compared to the experimental data. The numerical and experimental results are found to be generally in good agreement. Structured multi-block grids are utilized for the fluid flow simulations. It is shown that grids can be created differently with different block topologies. Solution accuracy is shown to be strongly affected by the shape as well as the densities of the resulting grids. The finite element method is used to simulate the fluid flow while for the concentration field a procedure based on the finite volume method is used. The strength of the flow at the cavity mouth was found to scale linearly with wall shear in the absence of the cavity for steady channel flow. The flow at the cavity mouth was also found to be independent of the cavity depth for both steady and unsteady flows. Based on these observations it is possible to predict cavity flows and cavity mass transfer without computing the flow in the entire channel plus cavity domain when studying different cavity aspect ratios. A
Stockman, Harlan Wheelock
2005-01-01
The lattice Boltzmann method is used to model oscillatory flow in the spinal subarachnoid space. The effect of obstacles such as trabeculae, nerve bundles, and ligaments on fluid velocity profiles appears to be small, when the flow is averaged over the length of a vertebra. Averaged fluid flow in complex models is little different from flow in corresponding elliptical annular cavities. However, the obstacles stir the flow locally and may be more significant in studies of tracer dispersion.
Magnetic resonance measurement of fluid dynamics and transport in tube flow of a near-critical fluid
NASA Astrophysics Data System (ADS)
Bray, Joshua M.; Rassi, Erik M.; Seymour, Joseph D.; Codd, Sarah L.
2014-07-01
An ability to predict fluid dynamics and transport in supercritical fluids is essential for optimization of applications such as carbon sequestration, enhanced oil recovery, "green" solvents, and supercritical coolant systems. While much has been done to model supercritical velocity distributions, experimental characterization is sparse, owing in part to a high sensitivity to perturbation by measurement probes. Magnetic resonance (MR) techniques, however, detect signal noninvasively from the fluid molecules and thereby overcome this obstacle to measurement. MR velocity maps and propagators (i.e., probability density functions of displacement) were acquired of a flowing fluid in several regimes about the critical point, providing quantitative data on the transport and fluid dynamics in the system. Hexafluoroethane (C2F6) was pumped at 0.5 ml/min in a cylindrical tube through an MR system, and propagators as well as velocity maps were measured at temperatures and pressures below, near, and above the critical values. It was observed that flow of C2F6 with thermodynamic properties far above or below the critical point had the Poiseuille flow distribution of an incompressible Newtonian fluid. Flows with thermodynamic properties near the critical point exhibit complex flow distributions impacted by buoyancy and viscous forces. The approach to steady state was also observed and found to take the longest near the critical point, but once it was reached, the dynamics were stable and reproducible. These data provide insight into the interplay between the critical phase transition thermodynamics and the fluid dynamics, which control transport processes.
Batt, Rachel L; Kelsey, Adrian
2014-03-01
The Health and Safety Executive's (HSE's) COSHH Essentials (HSE, 2002, COSHH Essentials: easy steps to control chemicals HSG193. 2nd edn. ISBN 0 71762737 3. Available at http://www.coshh-essentials.org.uk. Accessed 30 October 2013) provides guidance on identifying the approaches required to control exposure to chemicals in the workplace. The control strategies proposed in COSHH Essentials are grouped into four control approaches: general ventilation, engineering control, containment, or to seek specialist advice. We report the use of experimental measurements and computational fluid dynamics (CFD) modelling to examine the performance of an engineering control approach and a containment control approach. The engineering control approach simulated was an extracted partial enclosure, based on the COSHH Essentials G200, for which simulations were compared with data from experiments. The containment approach simulated was of drum filling (in an extracted partial enclosure), based on the COSHH Essentials G305. The influence of the following factors on containment was examined: face velocity, size and location of face opening, and movement and ventilation flows. CFD predictions of the engineering control approach agreed well with the majority of the experimental measurements demonstrating confidence in the modelling approach used. The results show that the velocity distribution at the face of the enclosure is not uniform and the location and size of the opening are significant factors affecting the flow field and hence the containment performance. The simulations of drum filling show the effect on containment of the movement of a drum through the face of an enclosure. Analysis of containment performance, using a tracer, showed that containment was affected by the interaction between the ventilation flow direction and drum movement and spacing. Validated CFD simulations are shown to be a useful tool for gaining insight into the flows in control strategies for exposure
Convective Flow of Sisko Fluid over a Bidirectional Stretching Surface.
Munir, Asif; Shahzad, Azeem; Khan, Masood
2015-01-01
The present investigation focuses the flow and heat transfer characteristics of the steady three-dimensional Sisko fluid driven by a bidirectional stretching sheet. The modeled partial differential equations are reduced to coupled ordinary differential equations by a suitable transformation. The resulting equations are solved numerically by the shooting method using adaptive Runge Kutta algorithm in combination with Newton's method in the domain [0,∞). The numerical results for the velocity and temperature fields are graphically presented and effects of the relevant parameters are discussed in detail. Moreover, the skin-friction coefficient and local Nusselt number for different values of the power-law index and stretching ratio parameter are presented through tabulated data. The numerical results are also verified with the results obtained analytically by the homotopy analysis method (HAM). Additionally, the results are validated with previously published pertinent literature as a limiting case of the problem. PMID:26110873
Magneto-fluid-mechanics free convection turbulent flow
NASA Technical Reports Server (NTRS)
Papailiou, D. D.; Lykoudis, P. S.
1974-01-01
The present work is an experimental study of the influence of a uniform magnetic field on the structure of a free convection turbulent boundary layer in a conducting fluid. The boundary layer was formed along the heated vertical wall of a cell. The applied magnetic field was normal to the wall. The measured mean temperature profiles, temperature turbulent intensity distributions, and temperature spectra along the wall, indicated that transition from turbulent to laminar flow occurs at a constant value of the ratio (Rayleigh number)/(Hartmann number). The study of the recorded spectra indicated that the presence of the magnetic field enhances the mechanism of turbulent suppression due to the buoyancy forces. Finally, a possible mechanism by which turbulence is suppressed by the presence of a magnetic field is discussed.
Convective Flow of Sisko Fluid over a Bidirectional Stretching Surface
Munir, Asif; Shahzad, Azeem; Khan, Masood
2015-01-01
The present investigation focuses the flow and heat transfer characteristics of the steady three-dimensional Sisko fluid driven by a bidirectional stretching sheet. The modeled partial differential equations are reduced to coupled ordinary differential equations by a suitable transformation. The resulting equations are solved numerically by the shooting method using adaptive Runge Kutta algorithm in combination with Newton's method in the domain [0,∞). The numerical results for the velocity and temperature fields are graphically presented and effects of the relevant parameters are discussed in detail. Moreover, the skin-friction coefficient and local Nusselt number for different values of the power-law index and stretching ratio parameter are presented through tabulated data. The numerical results are also verified with the results obtained analytically by the homotopy analysis method (HAM). Additionally, the results are validated with previously published pertinent literature as a limiting case of the problem. PMID:26110873
Viscous boundary layers in rotating fluids driven by periodic flows
NASA Technical Reports Server (NTRS)
Bergstrom, R. W.; Cogley, A. C.
1976-01-01
The paper analyzes the boundary layers formed in a rotating fluid by an oscillating flow over an infinite half plate, with particular attention paid to the effects of unsteadiness, the critical latitude effect and the structure of the solution to the boundary layer equations at resonance. The Navier-Stokes boundary layer equations are obtained through an asymptotic expansion with the incorporation of the Rossby and Ekman numbers and are analyzed as the sum of a nonlinear steady solution and a linearized unsteady solution. The solution is predominantly composed of two inertial wave vector components, one circularly polarized to the left and the other circularly polarized to the right. The problem considered here has relevance in oceanography and meteorology, with special reference to the unsteady atmospheric boundary layer.
A central difference type approximation of convection in fluid flow
NASA Astrophysics Data System (ADS)
Tzanos, Constantine P.
In fluid flow and heat transfer problems, to eliminate instability and oscillations resulting from the numerical approximation of the convection term, it is common practice to use first order upwind differencing. For example, first order upwind differencing is used in codes like COMMIX and PHOENICS. However, in problems characterized by high Peclet numbers, this approach is highly inaccurate unless an excessive number of nodes is used. To eliminate this difficulty, a method of grid adaptation using central differencing in one-dimensional problems was presented. In the effort to extend this approach to 2-D and 3-D problems a new method was developed for multidimensional problems that is superior to first order upwind differencing even for a few non-adaptive grid points. This method is presented in this work.
Grid-Based Hydrodynamics in Astrophysical Fluid Flows
NASA Astrophysics Data System (ADS)
Teyssier, Romain
2015-08-01
In this review, the equations of hydrodynamics, magnetohydrodynamics, and radiation hydrodynamics are presented, together with their corresponding nonideal source terms. I overview the current landscape of modern grid-based numerical techniques with an emphasis on numerical diffusion, which plays a fundamental role in stabilizing the solution but is also the main source of errors associated with these numerical techniques. I discuss in great detail the inclusion of additional important source terms, such as cooling and gravity. I also show how to modify classic operator-splitting techniques to avoid undesirable numerical errors associated with these additional source terms, in particular in the presence of highly supersonic flows. I finally present various mesh adaptation strategies that can be used to minimize these numerical errors. To conclude, I review existing astrophysical software that is publicly available to perform simulations for such astrophysical fluids.
Fluid flow effects in evaporation from liquid-vapor meniscus
Khrustalev, D.; Faghri, A.
1996-12-31
A mathematical model of the evaporating liquid-vapor meniscus in a capillary slot has been developed. The model includes two-dimensional steady-state momentum conservation and energy equations for both the vapor and liquid phases, and incorporates the existing simplified one-dimensional model of the evaporating microfilm. The numerical results, obtained for water, demonstrate the importance of accounting for the fluid flow in calculating the effective evaporative heat transfer coefficient and the superheat of the vapor over the liquid-vapor meniscus due to the heat transfer from the heated wall. With higher heat fluxes, a recirculation zone appears in the vapor near the heated wall due to the extensive evaporation in the thin-film region of the liquid-vapor meniscus.
On fluid flow in a heterogeneous medium under nonisothermal conditions
D.W., Vasco
2010-11-01
An asymptotic technique, valid in the presence of smoothly-varying heterogeneity, provides explicit expressions for the velocity of a propagating pressure and temperature disturbance. The governing equations contain nonlinear terms due to the presence of temperature-dependent coefficients and due to the advection of fluids with differing temperatures. Two cases give well-defined expressions in terms of the parameters of the porous medium: the uncoupled propagation of a pressure disturbance and the propagation of a fully coupled temperature and pressure disturbance. The velocity of the coupled disturbance or front, depends upon the medium parameters and upon the change in temperature and pressure across the front. For uncoupled flow, the semi-analytic expression for the front velocity reduces to that associated with a linear diffusion equation. A comparison of the asymptotic travel time estimates with calculations from a numerical simulator indicates reasonably good agreement for both uncoupled and coupled disturbances.
Network Flow Simulation of Fluid Transients in Rocket Propulsion Systems
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Alak; Hamill, Brian; Ramachandran, Narayanan; Majumdar, Alok
2011-01-01
Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicle propulsion systems. These transients often occur at system activation and shutdown. The pressure rise due to sudden opening and closing of valves of propulsion feed lines can cause serious damage during activation and shutdown of propulsion systems. During activation (valve opening) and shutdown (valve closing), pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. In the current work, a network flow simulation software (Generalized Fluid System Simulation Program) based on Finite Volume Method has been used to predict the pressure surges in the feed line due to both valve closing and valve opening using two separate geometrical configurations. The valve opening pressure surge results are compared with experimental data available in the literature and the numerical results compared very well within reasonable accuracy (< 5%) for a wide range of inlet-to-initial pressure ratios. A Fast Fourier Transform is preformed on the pressure oscillations to predict the various modal frequencies of the pressure wave. The shutdown problem, i.e. valve closing problem, the simulation results are compared with the results of Method of Characteristics. Most rocket engines experience a longitudinal acceleration, known as "pogo" during the later stage of engine burn. In the shutdown example problem, an accumulator has been used in the feed system to demonstrate the "pogo" mitigation effects in the feed system of propellant. The simulation results using GFSSP compared very well with the results of Method of Characteristics.
Liquid-liquid extraction based on a new flow pattern: Two-fluid Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Baier, Gretchen
The exploitation of flow instabilities that can occur in rotating flows is investigated as a new approach to liquid extraction. Two immiscible liquids are radially stratified by centrifugal force in the annulus between corotating coaxial cylinders. The inner cylinder is rotated above a critical speed to form Taylor vortices in one or both of the fluids. This flow pattern produces a relatively small amount interfacial surface area that is of highly active for interphase mass transfer. Continuous processing is also possible with the addition of countercurrent axial flow. The present study includes: (1)A review of aqueous- aqueous and reversed micelle extraction techniques, the commercially available centrifugal extractors, and one fluid Taylor-Couette flow and its variations. (2)A theoretical analysis to predict the onset of the two- fluid Taylor-Couette instability in the presence of countercurrent axial flow. (3)Theoretical predictions for interphase mass transfer using penetration theory and computational fluid dynamics. (4)The demonstration of two-fluid Taylor-Couette flow with countercurrent axial flow in the laboratory, including: (1) fluid mechanics studies to determine the onset of vortices, and (2) mass transfer studies to characterize intraphase and interphase mass transfer. The agreement between the experiments and theory is good for both the fluid mechanics and the mass transfer. Furthermore, the extraction performance is quite promising with the mass transfer coefficient approximately proportional to the vortex strength. Even higher extraction efficiencies should be obtainable with even larger relative rotation rates or cylinder modification to promote vortex formation. Besides two-fluid Taylor-Couette flow, other instabilities can also occur. With low viscosity fluids at low rotation rates, the ``barber pole'' pattern is observed experimentally and is believed to be a lingering gravitational effect. At high countercurrent axial flowrates, the linear
Fluid Structural Analysis of Urine Flow in a Stented Ureter
Gómez-Blanco, J. Carlos; Martínez-Reina, F. Javier; Cruz, Domingo; Pagador, J. Blas; Sánchez-Margallo, Francisco M.; Soria, Federico
2016-01-01
Many urologists are currently studying new designs of ureteral stents to improve the quality of their operations and the subsequent recovery of the patient. In order to help during this design process, many computational models have been developed to simulate the behaviour of different biological tissues and provide a realistic computational environment to evaluate the stents. However, due to the high complexity of the involved tissues, they usually introduce simplifications to make these models less computationally demanding. In this study, the interaction between urine flow and a double-J stented ureter with a simplified geometry has been analysed. The Fluid-Structure Interaction (FSI) of urine and the ureteral wall was studied using three models for the solid domain: Mooney-Rivlin, Yeoh, and Ogden. The ureter was assumed to be quasi-incompressible and isotropic. Data obtained in previous studies from ex vivo and in vivo mechanical characterization of different ureters were used to fit the mentioned models. The results show that the interaction between the stented ureter and urine is negligible. Therefore, we can conclude that this type of models does not need to include the FSI and could be solved quite accurately assuming that the ureter is a rigid body and, thus, using the more simple Computational Fluid Dynamics (CFD) approach. PMID:27127535
The Properties of Confined Water and Fluid Flow at the Nanoscale
Schwegler, E; Reed, J; Lau, E; Prendergast, D; Galli, G; Grossman, J C; Cicero, G
2009-03-09
This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membrane flow, materials properties in confined media and nanofluidic devices.
System and method for bidirectional flow and controlling fluid flow in a conduit
Ortiz, Marcos German
1999-01-01
A system for measuring bidirectional flow, including backflow, of fluid in a conduit. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit.
System and method for bidirectional flow and controlling fluid flow in a conduit
Ortiz, M.G.
1999-03-23
A system for measuring bidirectional flow, including backflow, of fluid in a conduit is disclosed. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit. 3 figs.
Fluid flow and scalar transport through porous fins
NASA Astrophysics Data System (ADS)
Coletti, F.; Muramatsu, K.; Schiavazzi, D.; Elkins, C. J.; Eaton, J. K.
2014-05-01
Lotus-type porous metals are a promising alternative for compact heat transfer applications. In lotus-type porous fins, jet impingement and transverse mixing play important roles for heat transfer: jets emerging from the pores impinge on the following fin and enhance heat transfer performance, while the transverse fluid motion advects heat away from the fin surface. By means of magnetic resonance imaging we have performed mean flow and scalar transport measurements through scaled-up replicas of two kinds of lotus-type porous fins: one with a deterministic hole pattern and staggered alignment, and one with a random hole pattern, but the same porosity and mean pore diameter. The choice of geometric parameters (fin spacing, thickness, porosity, and hole diameter) is based on previous thermal studies. The Reynolds number based on the mean pore diameter and inner velocity ranges from 80 to 3800. The measurements show that in the random hole pattern the jet characteristic length scale is substantially larger with respect to the staggered hole pattern. The random geometry also produces long coherent vortices aligned with the streamwise direction, which improves the transverse mixing. The random hole distribution causes the time mean streamlines to meander in a random-walk manner, and the diffusivity coefficient associated to the mechanical dispersion (which is nominally zero in the staggered hole configuration) is several times larger than the fluid molecular diffusivity at the higher Reynolds numbers. From the trends in maximum streamwise velocity, streamwise vorticity, and mechanical diffusivity, it is inferred that the flow undergoes a transition to an unsteady/turbulent regime around Reynolds number 300. This is supported by the measurements of concentration of an isokinetic non-buoyant plume of scalar injected upstream of the stack of fins. The total scalar diffusivity for the fully turbulent regime is found to be 22 times larger than the molecular diffusivity, but
The developing heat transfer and fluid flow in micro-channel heat sink with viscous heating effect
NASA Astrophysics Data System (ADS)
Lelea, Dorin; Cioabla, Adrian Eugen
2011-07-01
The numerical modeling of the conjugate heat transfer and fluid flow through the micro-heat sink was presented in the paper, considering the viscous dissipation effect. Three different fluids with temperature dependent fluid viscosity are considered: water, dielectric fluid HFE-7600 and isopropanol. The square shape of the cross-section is considered with D h = 50 μm with a channel length L = 50 mm. As most of the reported researches dealt with fully developed fluid flow and constant fluid properties in this paper the thermal and hydro-dynamic developing laminar fluid flow is analyzed. Two different heat transfer conditions are considered: heating and cooling at various Br. The influence of the viscous heating on local Nu and Po is analyzed. It was shown that for a given geometry the local Po and Nu numbers are strongly affected by the viscous heating. Moreover the Po number attains the fully developed value as the external heating is equal with the internal viscous heating.
Mathematical modeling of slope flows with entrainment as flows of non-Newtonian fluids
NASA Astrophysics Data System (ADS)
Zayko, Julia; Eglit, Margarita
2015-04-01
Non-Newtonian fluids in which the shear stresses are nonlinear functions of the shear strain rates are used to model slope flows such as snow avalanches, mudflows, debris flows. The entrainment of bottom material is included into the model basing on the assumption that in entraining flows the bed friction is equal to the shear stress of the bottom material (Issler et al, 2011). Unsteady motion down long homogeneous slopes with constant inclines is studied numerically for different flow rheologies and different slope angles. Variation of the velocity profile, increase of the flow depth and velocity due to entrainment as well as the value of the entrainment rate is calculated. Asymptotic formulae for the entrainment rate are derived for unsteady flows of different rheological properties. REFERENCES Chowdhury M., Testik F., 2011. Laboratory testing of mathematical models for high-concentration fluid mud turbidity currents. Ocean Engineering 38, 256-270. Eglit, M.E., Demidov, K.S., 2005. Mathematical modeling of snow entrainment in avalanche motion. Cold Reg. Sci. Technol. 43 (1-2), 10-23. Eglit M. E., Yakubenko A. E., 2012, Mathematical Modeling of slope flows entraining bottom material. Eglit M. E., Yakubenko A. E., 2014, Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci. Technol. 108, 139-148. Issler D, M. Pastor Peréz. 2011. Interplay of entrainment and rheology in snow avalanches; a numerical study. Annals of Glaciology, 52(58), pp.143-147 Kern M. A., Tiefenbacher F., McElwaine J., N., 2004. The rheology of snow in large chute flows. Cold Regions Science and Technology, 39, 181 -192. Naaim, M., Faug, T., Naaim-Bouvet, F., 2003. Dry granular flow modelling including erosion and deposition. Surv. Geophys. 24, 569-585. Naaim, M., Naaim-Bouvet, F., Faug, T., Bouchet, A., 2004. Dense snow avalanche modeling: flow, erosion, deposition and obstacle effects. Cold Reg. Sci. Technol. 39, 193-204. Rougier, J & Kern, M 2010, 'Predicting snow
Some aspects of fluid flow and heat transfer in porous media
Masuoka, Takashi
1999-07-01
Flows in porous media can exhibit time-dependent, chaotic, and turbulent behaviors, despite the highly dissipative effects of viscosity and thermal conductivity. Since the complicated flow paths in porous media cannot be directly followed in general, the description of the phenomena depends on certain simplifications based on proper averaging techniques, taking the characteristic spatial and time scales specifying the phenomena into consideration. This paper discusses some basic effects of the porous structures on fluid flow and heat transfer, including the examination of the chaotic behaviors in porous media. The presence of the porous matrix brings about both the macroscopic and microscopic (particle-diameter level) effects on fluid flow and heat transfer characteristics basically through the short-distance interaction of fluid with the adjacent inner walls, which exist everywhere in porous media. It is shown that even the concentrated inhomogeneities of permeability and of thermal conductivity modify the action of the buoyant force and the flow resistance, which yields the various modes of convection and the nonlinear stabilities of three-dimensional flow modes, much less for convection with distributed inhomogeneities. Next, the basic aspects of chaotic behaviors of thermal convection in porous media are discussed, concentrating on the finite Prandtl-number effect. The inertia force causes the flow against the action of buoyant force, which will introduce the flow-reversal mechanism and brings about the instability of the flow direction in large-scale convective motions, while the instability of the thermal boundary layers dominates in the limit of Pr {r_arrow} {infinity}. That is, for thermal convection in porous media or in Hele-Shaw cells, if the condition of 1/pr = 0 is relaxed, the chaotic behaviors of different nature are produced. It is also seen that the chaotic behaviors can affect the entropy generation rate through the mechanism of the instabilities
Pennell, Thomas; Yi, Juneyoung L; Kaufman, Bruce A; Krishnamurthy, Satish
2016-03-01
OBJECT Mechanical failure-which is the primary cause of CSF shunt malfunction-is not readily diagnosed, and the specific reasons for mechanical failure are not easily discerned. Prior attempts to measure CSF flow noninvasively have lacked the ability to either quantitatively or qualitatively obtain data. To address these needs, this preliminary study evaluates an ultrasonic transit time flow sensor in pediatric and adult patients with external ventricular drains (EVDs). One goal was to confirm the stated accuracy of the sensor in a clinical setting. A second goal was to observe the sensor's capability to record real-time continuous CSF flow. The final goal was to observe recordings during instances of flow blockage or lack of flow in order to determine the sensor's ability to identify these changes. METHODS A total of 5 pediatric and 11 adult patients who had received EVDs for the treatment of hydrocephalus were studied in a hospital setting. The primary EVD was connected to a secondary study EVD that contained a fluid-filled pressure transducer and an in-line transit time flow sensor. Comparisons were made between the weight of the drainage bag and the flow measured via the sensor in order to confirm its accuracy. Data from the pressure transducer and the flow sensor were recorded continuously at 100 Hz for a period of 24 hours by a data acquisition system, while the hourly CSF flow into the drip chamber was recorded manually. Changes in the patient's neurological status and their time points were noted. RESULTS The flow sensor demonstrated a proven accuracy of ± 15% or ± 2 ml/hr. The flow sensor allowed real-time continuous flow waveform data recordings. Dynamic analysis of CSF flow waveforms allowed the calculation of the pressure-volume index. Lastly, the sensor was able to diagnose a blocked catheter and distinguish between the blockage and lack of flow. CONCLUSIONS The Transonic flow sensor accurately measures CSF output within ± 15% or ± 2 ml
NASA Astrophysics Data System (ADS)
Fiantini, Rosalina; Umar, Efrizon
2010-06-01
Common energy crisis has modified the national energy policy which is in the beginning based on natural resources becoming based on technology, therefore the capability to understanding the basic and applied science is needed to supporting those policies. National energy policy which aims at new energy exploitation, such as nuclear energy is including many efforts to increase the safety reactor core condition and optimize the related aspects and the ability to build new research reactor with properly design. The previous analysis of the modification TRIGA 2000 Reactor design indicates that forced convection of the primary coolant system put on an effect to the flow characteristic in the reactor core, but relatively insignificant effect to the flow velocity in the reactor core. In this analysis, the lid of reactor core is closed. However the forced convection effect is still presented. This analysis shows the fluid flow velocity vector in the model area without exception. Result of this analysis indicates that in the original design of TRIGA 2000 reactor, there is still forced convection effects occur but less than in the modified TRIGA 2000 design.
Fiantini, Rosalina; Umar, Efrizon
2010-06-22
Common energy crisis has modified the national energy policy which is in the beginning based on natural resources becoming based on technology, therefore the capability to understanding the basic and applied science is needed to supporting those policies. National energy policy which aims at new energy exploitation, such as nuclear energy is including many efforts to increase the safety reactor core condition and optimize the related aspects and the ability to build new research reactor with properly design. The previous analysis of the modification TRIGA 2000 Reactor design indicates that forced convection of the primary coolant system put on an effect to the flow characteristic in the reactor core, but relatively insignificant effect to the flow velocity in the reactor core. In this analysis, the lid of reactor core is closed. However the forced convection effect is still presented. This analysis shows the fluid flow velocity vector in the model area without exception. Result of this analysis indicates that in the original design of TRIGA 2000 reactor, there is still forced convection effects occur but less than in the modified TRIGA 2000 design.
Winters, W.S.
1984-01-01
An overview of the computer code TOPAZ (Transient-One-Dimensional Pipe Flow Analyzer) is presented. TOPAZ models the flow of compressible and incompressible fluids through complex and arbitrary arrangements of pipes, valves, flow branches and vessels. Heat transfer to and from the fluid containment structures (i.e. vessel and pipe walls) can also be modeled. This document includes discussions of the fluid flow equations and containment heat conduction equations. The modeling philosophy, numerical integration technique, code architecture, and methods for generating the computational mesh are also discussed.
NASA Astrophysics Data System (ADS)
Grabski, Jakub Krzysztof; Kołodziej, Jan Adam
2016-06-01
In the paper an analysis of fluid flow and heat transfer of a power-law fluid in an internally finned tube with different fin length is conducted. Nonlinear momentum equation of a power-law fluid flow and nonlinear energy equation are solved using the Picard iteration method. Then on each iteration step the solution of inhomogeneous equation consists of two parts: the general solution and the particular solution. Firstly the particular solution is obtained by interpolation of the inhomogeneous term by means of the radial basis functions and monomials. Then the general solution is obtained using the method of fundamental solutions and by fulfilling boundary conditions.
López, Dina L.; Smith, Leslie; Storey, Michael L.
1994-01-01
The hydrothermal systems of the Basin and Range Province are often located at or near major range bounding normal faults. The flow of fluid and energy at these faults is affected by the advective transfer of heat and fluid from an to the adjacent mountain ranges and valleys, This paper addresses the effect of the exchange of fluid and energy between the country rock, the valley fill sediments, and the fault zone, on the fluid and heat flow regimes at the fault plane. For comparative purposes, the conditions simulated are patterned on Leach Hot Springs in southern Grass Valley, Nevada. Our simulations indicated that convection can exist at the fault plane even when the fault is exchanging significant heat and fluid with the surrounding country rock and valley fill sediments. The temperature at the base of the fault decreased with increasing permeability of the country rock. Higher groundwater discharge from the fault and lower temperatures at the base of the fault are favored by high country rock permabilities and fault transmissivities. Preliminary results suggest that basal temperatures and flow rates for Leach Hot Springs can not be simulated with a fault 3 km deep and an average regional heat flow of 150 mW/m2 because the basal temperature and mass discharge rates are too low. A fault permeable to greater depths or a higher regional heat flow may be indicated for these springs.
Interstitial fluid flow of alveolar primary septa after pneumonectomy.
Haber, Shimon; Weisbord, Michal; Mishima, Michiaki; Mentzer, Steve J; Tsuda, Akira
2016-07-01
Neoalveolation is known to occur in the remaining lung after pneumonectomy. While compensatory lung growth is a complex process, stretching of the lung tissue appears to be crucial for tissue remodeling. Even a minute shear stress exerted on fibroblasts in the interstitial space is known to trigger cell differentiation into myofibroblast that are essential to building new tissues. We hypothesize that the non-uniform motion of the primary septa due to their heterogeneous mechanical properties under tidal breathing induces a spatially unique interstitial flow and shear stress distribution in the interstitial space. This may in turn trigger pulmonary fibroblast differentiation and neoalveolation. In this study, we developed a theoretical basis for how cyclic motion of the primary septal walls with heterogeneous mechanical properties affects the interstitial flow and shear stress distribution. The velocity field of the interstitial flow was expressed by a Fourier (complex) series and its leading term was considered to induce the basic structure of stress distribution as long as the dominant length scale of heterogeneity is the size of collapsed alveoli. We conclude that the alteration of mechanical properties of the primary septa caused by pneumonectomy can develop a new interstitial flow field, which alters the shear stress distribution. This may trigger the differentiation of resident fibroblasts, which may in turn induce spatially unique neoalveolation in the remaining lung. Our example illustrates that the initial forming of new alveoli about half the size of the original ones. PMID:27049045
NASA Astrophysics Data System (ADS)
Bartzke, Gerhard; Rogers, Benedict D.; Fourtakas, Georgios; Mokos, Athanasios; Huhn, Katrin
2016-04-01
The processes that cause the creation of a variety of sediment morphological features, e.g. laminated beds, ripples, or dunes, are based on the initial motion of individual sediment grains. However, with experimental techniques it is difficult to measure the flow characteristics, i.e., the velocity of the pore water flow in sediments, at a sufficient resolution and in a non-intrusive way. As a result, the role of fluid infiltration at the surface and in the interior affecting the initiation of motion of a sediment bed is not yet fully understood. Consequently, there is a strong need for numerical models, since these are capable of quantifying fluid driven sediment transport processes of complex sediment beds composed of irregular shapes. The numerical method Smoothed Particle Hydrodynamics (SPH) satisfies this need. As a meshless and Lagrangian technique, SPH is ideally suited to simulating flows in sediment beds composed of various grain shapes, but also flow around single grains at a high temporal and spatial resolution. The solver chosen is DualSPHysics (www.dual.sphysics.org) since this is validated for a range of flow conditions. For the present investigation a 3-D numerical flume model was generated using SPH with a length of 4.0 cm, a width of 0.05 cm and a height of 0.2 cm where mobile sediment particles were deposited in a recess. An experimental setup was designed to test sediment configurations composed of irregular grain shapes (grain diameter, D50=1000 μm). Each bed consisted of 3500 mobile objects. After the bed generation process, the entire domain was flooded with 18 million fluid particles. To drive the flow, an oscillating motion perpendicular to the bed was applied to the fluid, reaching a peak value of 0.3 cm/s, simulating 4 seconds of real time. The model results showed that flow speeds decreased logarithmically from the top of the domain towards the surface of the beds, indicating a fully developed boundary layer. Analysis of the fluid
Numerical Simulation of non-Newtonian Fluid Flows through Fracture Network
NASA Astrophysics Data System (ADS)
Dharmawan, I. A.; Ulhag, R. Z.; Endyana, C.; Aufaristama, M.
2016-01-01
We present a numerical simulation of non-Newtonian fluid flow in a twodimensional fracture network. The fracture is having constant mean aperture and bounded with Hurst exponent surfaces. The non-Newtonian rheology behaviour of the fluid is described using the Power-Law model. The lattice Boltzmann method is employed to calculate the solutions for non-Newtonian flow in finite Reynolds number. We use a constant force to drive the fluid within the fracture, while the bounceback rules and periodic boundary conditions are applied for the fluid-solid interaction and inflow outlflow boundary conditions, respectively. The validation study of the simulation is done via parallel plate flow simulation and the results demonstrated good agreement with the analytical solution. In addition, the fluid flow properties within the fracture network follow the relationships of power law fluid while the errors are becoming larger if the fluid more shear thinning.
Fluid Flow Simulation and Energetic Analysis of Anomalocarididae Locomotion
NASA Astrophysics Data System (ADS)
Mikel-Stites, Maxwell; Staples, Anne
2014-11-01
While an abundance of animal locomotion simulations have been performed modeling the motions of living arthropods and aquatic animals, little quantitative simulation and reconstruction of gait parameters has been done to model the locomotion of extinct animals, many of which bear little physical resemblance to their modern descendants. To that end, this project seeks to analyze potential swimming patterns used by the anomalocaridid family, (specifically Anomalocaris canadensis, a Cambrian Era aquatic predator), and determine the most probable modes of movement. This will serve to either verify or cast into question the current assumed movement patterns and properties of these animals and create a bridge between similar flexible-bodied swimmers and their robotic counterparts. This will be accomplished by particle-based fluid flow simulations of the flow around the fins of the animal, as well as an energy analysis of a variety of sample gaits. The energy analysis will then be compared to the extant information regarding speed/energy use curves in an attempt to determine which modes of swimming were most energy efficient for a given range of speeds. These results will provide a better understanding of how these long-extinct animals moved, possibly allowing an improved understanding of their behavioral patterns, and may also lead to a novel potential platform for bio-inspired underwater autonomous vehicles (UAVs).
Response time correlations for platinum resistance thermometers in flowing fluids
NASA Technical Reports Server (NTRS)
Pandey, D. K.; Ash, R. L.
1985-01-01
The thermal response of two types of Platinum Resistance Thermometers (PRT's), which are being considered for use in the National Transonic Wind Tunnel Facility, were studied. Response time correlations for each PRT, in flowing water, oil and air, were established separately. A universal correlation, tau WOA = 2.0 + 1264, 9/h, for a Hy-Cal Sensor (with a reference resistance of 100 ohm) within an error of 20% was established while the universal correlation for the Rosemount Sensor (with a reference resistance of 1000 ohm), tau OA = 0.122 + 1105.6/h, was found with a maximum percentage error of 30%. The correlation for the Rosemount Sensor was based on air and oil data only which is certainly not sufficient to make a correlation applicable to every condition. Therefore, the correlation needs more data to be gathered in different fluids. Also, it is necessary to state that the calculation of the parameter, h, was based on the available heat transfer correlations, whose accuracies are already reported in literature uncertain within 20-30%. Therefore, the universal response constant correlations established here for the Hy-Cal and Rosemount sensors are consistent with the uncertainty in the input data and are recommended for future use in flowing liquids and gases.
Characterization of fracture networks for fluid flow analysis
Long, J.C.S.; Billaux, D.; Hestir, K.; Majer, E.L.; Peterson, J.; Karasaki, K.; Nihei, K.; Gentier, S.; Cox, L.
1989-06-01
The analysis of fluid flow through fractured rocks is difficult because the only way to assign hydraulic parameters to fractures is to perform hydraulic tests. However, the interpretation of such tests, or ''inversion'' of the data, requires at least that we know the geometric pattern formed by the fractures. Combining a statistical approach with geophysical data may be extremely helpful in defining the fracture geometry. Cross-hole geophysics, either seismic or radar, can provide tomograms which are pixel maps of the velocity or attenuation anomalies in the rock. These anomalies are often due to fracture zones. Therefore, tomograms can be used to identify fracture zones and provide information about the structure within the fracture zones. This structural information can be used as the basis for simulating the degree of fracturing within the zones. Well tests can then be used to further refine the model. Because the fracture network is only partially connected, the resulting geometry of the flow paths may have fractal properties. We are studying the behavior of well tests under such geometry. Through understanding of this behavior, it may be possible to use inverse techniques to refine the a priori assignment of fractures and their conductances such that we obtain the best fit to a series of well test results simultaneously. The methodology described here is under development and currently being applied to several field sites. 4 refs., 14 figs.
Computational Fluid Dynamic Analysis of Core Bypass Flow Phenomena in a Prismatic VHTR
Hiroyuki Sato; Richard W. Johnson; Richard R. Schultz
2010-09-01
The core bypass flow in a prismatic very high temperature gas-cooled reactor (VHTR) is one of the important design considerations which impacts considerably on the integrity of reactor core internals including operating fuels. The interstitial gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The occurrence of hot spots in the core and lower plenum and hot streaking in the lower plenum (regions of very hot gas flow) will be affected by the bypass flow. In the present study, three-dimensional computational fluid dynamic (CFD) calculations of a typical prismatic VHTR are conducted to understand better the bypass flow phenomenon and establish the evaluation method in the reactor core using commercial CFD code FLUENT. Parametric calculations changing several factors in a on-twelfth sector of a fuel column are performed. The simulations show the impact of each factor on bypass flow and the flow and temperature distributions in the prismatic core. The factors inlcude inter-column gap-width, turbulence model, axial heat generation profile and geometry change from irradiation-induced shrinkage in the graphite block region. It is shown that bypass flow provides a significant cooling effect on the prismatic block and that the maximum fuel and coolant channel outlet temperatures increase with an increase in gap-width, especially when a peak radial factor is applied to the total heat generation rate. Also, the presence of bypass flow causes a large lateral temperature gradient in the block that may have repurcussions on the structural integrity of the block and on the neutronics. These results indicate that bypass flow has a significant effect on hot spots in the core and on the temperature of jets flowing from the core into the lower plenum.
Time-Dependent Thermally-Driven Interfacial Flows in Multilayered Fluid Structures
NASA Technical Reports Server (NTRS)
Haj-Hariri, Hossein; Borhan, A.
1996-01-01
A computational study of thermally-driven convection in multilayered fluid structures will be performed to examine the effect of interactions among deformable fluid-fluid interfaces on the structure of time-dependent flow in these systems. Multilayered fluid structures in two models configurations will be considered: the differentially heated rectangular cavity with a free surface, and the encapsulated cylindrical liquid bridge. An extension of a numerical method developed as part of our recent NASA Fluid Physics grant will be used to account for finite deformations of fluid-fluid interfaces.
Modelling Fault Zone Evolution: Implications for fluid flow.
NASA Astrophysics Data System (ADS)
Moir, H.; Lunn, R. J.; Shipton, Z. K.
2009-04-01
Flow simulation models are of major interest to many industries including hydrocarbon, nuclear waste, sequestering of carbon dioxide and mining. One of the major uncertainties in these models is in predicting the permeability of faults, principally in the detailed structure of the fault zone. Studying the detailed structure of a fault zone is difficult because of the inaccessible nature of sub-surface faults and also because of their highly complex nature; fault zones show a high degree of spatial and temporal heterogeneity i.e. the properties of the fault change as you move along the fault, they also change with time. It is well understood that faults influence fluid flow characteristics. They may act as a conduit or a barrier or even as both by blocking flow across the fault while promoting flow along it. Controls on fault hydraulic properties include cementation, stress field orientation, fault zone components and fault zone geometry. Within brittle rocks, such as granite, fracture networks are limited but provide the dominant pathway for flow within this rock type. Research at the EU's Soultz-sous-Forệt Hot Dry Rock test site [Evans et al., 2005] showed that 95% of flow into the borehole was associated with a single fault zone at 3490m depth, and that 10 open fractures account for the majority of flow within the zone. These data underline the critical role of faults in deep flow systems and the importance of achieving a predictive understanding of fault hydraulic properties. To improve estimates of fault zone permeability, it is important to understand the underlying hydro-mechanical processes of fault zone formation. In this research, we explore the spatial and temporal evolution of fault zones in brittle rock through development and application of a 2D hydro-mechanical finite element model, MOPEDZ. The authors have previously presented numerical simulations of the development of fault linkage structures from two or three pre-existing joints, the results of
Noise, anti-noise and fluid flow control.
Williams, J E Ffowcs
2002-05-15
This paper celebrates Thomas Young's discovery that wave interference was responsible for much that is known about light and colour. A substantial programme of work has been aimed at controlling the noise of aerodynamic flows. Much of that field can be explained in terms of interference and it is argued in this paper that the theoretical techniques for analysing noise can also be seen to rest on interference effects. Interference can change the character of wave fields to produce, out of well-ordered fields, wave systems quite different from the interfering wave elements. Lighthill's acoustic analogy is described as an example of this effect, an example in which the exact model of turbulence-generated noise is seen to consist of elementary interfering sound waves; waves that are sometimes heard in advance of their sources. The paper goes on to describe an emerging field of technology where sound is suppressed by superimposing on it a destructively interfering secondary sound; one designed and manufactured specifically for interference. That sound is known as anti-sound, or anti-noise when the sound is chaotic enough. Examples are then referred to where the noisy effect to be controlled is actually a disturbance of a linearly unstable system; a disturbance that is destroyed by destructive interference with a deliberately constructed antidote. The practical benefits of this kind of instability control are much greater and can even change the whole character of flows. It is argued that completely unnatural unstable conditions can be held with active controllers generating destructively interfering elements. Examples are given in which gravitational instability of stratified fluids can be prevented. The Kelvin-Helmholtz instability of shear flows can also be avoided by simple controls. Those are speculative examples of what might be possible in future developments of an interference effect, which has made anti-noise a useful technology. PMID:12804281
Computational Fluid Dynamic simulations of pipe elbow flow.
Homicz, Gregory Francis
2004-08-01
One problem facing today's nuclear power industry is flow-accelerated corrosion and erosion in pipe elbows. The Korean Atomic Energy Research Institute (KAERI) is performing experiments in their Flow-Accelerated Corrosion (FAC) test loop to better characterize these phenomena, and develop advanced sensor technologies for the condition monitoring of critical elbows on a continuous basis. In parallel with these experiments, Sandia National Laboratories is performing Computational Fluid Dynamic (CFD) simulations of the flow in one elbow of the FAC test loop. The simulations are being performed using the FLUENT commercial software developed and marketed by Fluent, Inc. The model geometry and mesh were created using the GAMBIT software, also from Fluent, Inc. This report documents the results of the simulations that have been made to date; baseline results employing the RNG k-e turbulence model are presented. The predicted value for the diametrical pressure coefficient is in reasonably good agreement with published correlations. Plots of the velocities, pressure field, wall shear stress, and turbulent kinetic energy adjacent to the wall are shown within the elbow section. Somewhat to our surprise, these indicate that the maximum values of both wall shear stress and turbulent kinetic energy occur near the elbow entrance, on the inner radius of the bend. Additional simulations were performed for the same conditions, but with the RNG k-e model replaced by either the standard k-{var_epsilon}, or the realizable k-{var_epsilon} turbulence model. The predictions using the standard k-{var_epsilon} model are quite similar to those obtained in the baseline simulation. However, with the realizable k-{var_epsilon} model, more significant differences are evident. The maximums in both wall shear stress and turbulent kinetic energy now appear on the outer radius, near the elbow exit, and are {approx}11% and 14% greater, respectively, than those predicted in the baseline calculation
Flow imaging of fluids in porous media by magnetization prepared centric-scan SPRITE.
Li, Linqing; Chen, Quan; Marble, Andrew E; Romero-Zerón, Laura; Newling, Benedict; Balcom, Bruce J
2009-03-01
MRI has considerable potential as a non-destructive probe of porous media, permitting rapid quantification of local fluid content and the possibility of local flow visualization and quantification. In this work we explore a general approach to flow velocity measurement in porous media by combining Cotts pulsed field gradient flow encoding with SPRITE MRI. This technique permits facile and accurate flow and dispersion coefficient mapping of fluids in porous media. This new approach has proven to be robust in characterizing fluid behavior. This method is illustrated through measurements of flow in pipes, flow in sand packs and flow in porous reservoir rocks. Spatially resolved flow maps and local fluid velocity distribution were acquired. PMID:19121591
Rabbit tendon cells produce MMP-3 in response to fluid flow without significant calcium transients.
Archambault, Joanne M; Elfervig-Wall, Michelle K; Tsuzaki, Mari; Herzog, Walter; Banes, Albert J
2002-03-01
Forces applied to tendon during movement cause cellular deformation, as well as fluid movement. The goal of this study was to test the hypothesis that rabbit tendon fibroblasts detect and respond to fluid-induced shear stress. Cells were isolated from the paratenon of the rabbit Achilles tendon and then subjected to fluid flow at 1 dyn/cm(2) for 6h in a specially designed multi-slide flow device. The application of fluid flow led to an increased expression of the collagenase-1 (MMP-1), stromelysin-1 (MMP-3), cyclooxygenase II (COX-2) and interleukin-1beta (IL-1beta) genes. The release of proMMP-3 into the medium exhibited a dose-response with the level of fluid shear stress. However, not all cells aligned in the direction of flow. In other experiments, the same cells were incubated with the calcium-reactive dye FURA-2 AM, then subjected to laminar fluid flow in a parallel plate flow chamber. The cells did not significantly increase intracellular calcium concentration when exposed to fluid shear stress levels of up to 25 dyn/cm(2). These results show that gene expression in rabbit tendon cells is sensitive to fluid flow, but that signal transduction is not dependent on intracellular calcium transients. The upregulation of the MMP-1, MMP-3 and COX-2 genes shows that fluid flow could be an important mechanical stimulus for tendon remodelling or injury. PMID:11858805
Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models
NASA Technical Reports Server (NTRS)
Parke, F. I.
1981-01-01
Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.
How does ice sheet loading affect ocean flow around Antarctica?
NASA Astrophysics Data System (ADS)
Dijkstra, H. A.; Rugenstein, M. A.; Stocchi, P.; von der Heydt, A. S.
2012-12-01
Interactions and dynamical feedbacks between ocean circulation, heat and atmospheric moisture transport, ice sheet evolution, and Glacial Isostatic Adjustment (GIA) are overlooked issues in paleoclimatology. Here we will present first results on how ocean flows were possibly affected by the glaciation of Antarctica across the Eocene-Oligocene Transition (~ 34 Ma) through GIA and bathymetry variations. GIA-induced gravitationally self-consistent bathymetry variations are determined by solving the Sea Level Equation (SLE), which describes the time dependent shape of (i) the solid Earth and (ii) the equipotential surface of gravity. Since the ocean circulation equations are defined relative to the equipotential surface of gravity, only bathymetry variations can influence ocean flows, although the sea surface slope will also change through time due to gravitational attraction. We use the Hallberg Isopycnal Model under late Eocene conditions to calculate equilibrium ocean flows in a domain in which the bathymetry evolves under ice loading according to the SLE. The bathymetric effects of the glaciation of Antarctica lead to substantial spatial changes in ocean flows, and close to the coast, the flow even reverses direction. Volume transports through the Drake Passage and Tasman Seaway adjust to the new bathymetry. The results indicate that GIA-induced ocean flow variations alone may have had an impact on sedimentation and erosion patterns, the repositioning of fronts, ocean heat transport and grounding line and ice sheet stability.
Fluid Mechanics of Inertial Particle-Laden Flow
NASA Astrophysics Data System (ADS)
Gharaghieh, Hamed Haddadi
This work addresses the role of particle scale inertia on the motion of hard spherical particles suspended in a Newtonian fluid. We have utilized lattice-Boltzmann method to solve for the motion of particles in the fluid. The particles in the suspension are neutrally buoyant; therefore, a same level of inertia is carried by solid and liquid phase. In the first phase, the microstructure and rheological properties of suspensions are studied. The suspensions are subjected to simple shear flow and the properties are studied as a function of Reynolds number. The flow-induced microstructure is studied using the pair distribution function. Different stress mechanisms, including those due to surface tractions (stresslet), acceleration, and the Reynolds stress due to velocity fluctuations are computed and their influence on the first and second normal stress differences, the particle pressure and the viscosity of the suspensions are detailed. The probability density functions of linear and angular accelerations are also presented. Next, we present our results on the topology of particle pair trajectories. The pair relative trajectory is studied both for pairs which are isolated and for pairs in suspension of large solid fractions. For the suspension, the average trajectory and aspects of its dispersion are considered. The pair trajectories in a dilute inertial suspension have the same basic features as the streamlines around an isolated particle at similar Re, with reversing, in-plane and off-plane spiraling, and open but fore-aft asymmetric trajectories. The origin of the off-plane spirals is examined in detail, and the zone of these spirals is found to become smaller with increasing Re. The average pair trajectory space in a suspension of finite volume fraction is found to be qualitatively similar to the dilute suspension pair trajectories, as the spiraling and reversing zones are retained; the influence of volume fraction and Re on the extension of the different zones is
Fluid flow induced calcium response in osteoblasts: mathematical modeling.
Su, J H; Xu, F; Lu, X L; Lu, T J
2011-07-28
Fluid flow in the bone lacuno-canalicular network can induce dynamic fluctuation of intracellular calcium concentration ([Ca(2+)](i)) in osteoblasts, which plays an important role in bone remodeling. There has been limited progress in the mathematical modeling of this process probably due to its complexity, which is controlled by various factors such as Ca(2+) channels and extracellular messengers. In this study we developed a mathematical model to describe [Ca(2+)](i) response induced by fluid shear stress (SS) by integrating the major factors involved and analyzed the effects of different experimental setups (e.g. [Ca(2+)](i) baseline, pretreatment with ATP). In this model we considered the ATP release process and the activities of multiple ion channels and purinergic receptors. The model was further verified quantitatively by comparing the simulation results with experimental data reported in literature. The results showed that: (i) extracellular ATP concentration has more significant effect on [Ca(2+)](i) baseline (73% increase in [Ca(2+)](i) with extracellular ATP concentration varying between 0 and 10 μM), as compared to that induced by SS (25% variation in [Ca(2+)](i) with SS varying from 0 to 3.5 Pa); (ii) Pretreatment with ATP-medium results in different [Ca(2+)](i) response as compared to the control group (ATP-free medium) under SS; (iii) Relative [Ca(2+)](i) fluctuation over baseline is more reliable to show the [Ca(2+)](i) response process than the absolute [Ca(2+)](i) response peak. The developed model may improve the experimental design and facilitate our understanding of the mechanotransduction process in osteoblasts. PMID:21665208
Intravenous fluids: should we go with the flow?
2015-01-01
Sensitive monitoring should be used when prescribing intravenous fluids for volume resuscitation. The extent and duration of tissue hypoperfusion determine the severity of cellular damage, which should be kept to a minimum with timely volume substitution. Optimizing the filling status to normovolaemia may boost the resuscitation success. Macrocirculatory pressure values are not sensitive in this indication. While the Surviving Sepsis Campaign guidelines focus on these conventional pressure parameters, the guidelines from the European Society of Anaesthesiology (ESA) on perioperative bleeding management recommend individualized care by monitoring the actual volume status and correcting hypovolaemia promptly if present. The motto is: 'give what is missing'. The credo of the ESA guidelines is to use management algorithms with predefined intervention triggers. Stop signals should help in avoiding hyper-resuscitation. The high-quality evidence-based S3 guidelines on volume therapy in adults have recently been prepared by 14 German scientific societies. Statements include, for example, repeated clinical inspection including turgor of the skin and mucosa. Adjunctive laboratory parameters such as central venous oxygen saturation, lactate, base excess and haematocrit should be considered. The S3 guidelines propose the use of flow-based and/or dynamic preload parameters for guiding volume therapy. Fluid challenges and/or the leg-raising test (autotransfusion) should be performed. The statement from the Co-ordination group for Mutual Recognition and Decentralized Procedures--Human informs healthcare professionals to consider applying individualized medicine and using sensitive monitoring to assess hypovolaemia. The authorities encourage a personalized goal-directed volume resuscitation technique. PMID:26728428
Theoretical studies of non-Newtonian and Newtonian fluid flow through porous media
Wu, Yu-Shu.
1990-02-01
A comprehensive theoretical study has been carried out on the flow behavior of both single and multiple phase non-Newtonian fluids in porous media. This work is divided into three parts: development of numerical and analytical solutions; theoretical studies of transient flow of non-Newtonian fluids in porous media; and applications of well test analysis and displacement efficiency evaluation to field problems. A fully implicit, integral finite difference model has been developed for simulation of non-Newtonian and Newtonian fluid flow through porous media. Several commonly-used rheological models of power-law and Bingham plastic non-Newtonian fluids have been incorporated in the simulator. A Buckley-Leverett type analytical solution for one-dimensional, immiscible displacement involving non-Newtonian fluids in porous media has been developed. An integral method is also presented for the study of transient flow of Bingham fluids in porous media. In addition, two well test analysis methods have been developed for analyzing pressure transient tests of power-law and Bingham fluids, respectively. Applications are included to demonstrate this new technology. The physical mechanisms involved in immiscible displacement with non-Newtonian fluids in porous media have been studied using the Buckley-Leverett type analytical solution. In another study, an idealized fracture model has been used to obtain some insights into the flow of a power-law fluid in a double-porosity medium. Transient flow of a general pseudoplastic fluid has been studied numerically. 125 refs., 91 figs., 12 tabs.
Measuring Black Smoker Fluid Flow Rates Using Image Correlation Velocimetry
NASA Astrophysics Data System (ADS)
Crone, T. J.; Wilcock, W. S.; McDuff, R. E.
2006-12-01
Motivated by a desire to find non-invasive methods for obtaining time-series measurements of fluid flow rates through mid-ocean ridge black smokers, we are developing an image-based velocimetry technique that will provide this information through the analysis of video sequences showing the turbulent structures of black smoker effluent jets. Our ultimate goal is to develop an autonomous seafloor instrument suitable for use with a cabled seafloor observatory that can provide extended time-series measurements of black smoker discharge rates with little user intervention. The method we are developing is based on the two-dimensional cross-correlation of an array of overlapping subimages from two sequential image frames within a sequence. For each pair of images this yields a two- dimensional representation of the instantaneous velocity field in the imaged flow. For each video sequence, the set of these "image velocity fields" from all image pairs is temporally averaged to yield a smoothed representation of the time-averaged image flow field. A transformation is then applied to convert the image flow fields into a relative discharge rate. We have developed a computational algorithm to implement this technique and have successfully applied it to video sequences collected in the late 1980s and early 1990s showing the discharge of black smokers in the Main Endeavour field of the Juan de Fuca Ridge over the course of weeks and months. We are able to resolve velocity fields that are qualitatively consistent with those predicted by plume theory from 5 seconds of video (150 image pairs), but it is difficult to calibrate or assess the precision of the technique with field data alone. In order to address these issues, as well as refine the computational algorithm, we have conducted laboratory simulations of black smoker jets with known discharge rates over a range of Reynolds numbers. We have recorded these simulations to obtain video image sequences that are similar to those
The dynamic behavior of articulated pipes conveying fluid with periodic flow rate.
NASA Technical Reports Server (NTRS)
Bohn, M. P.; Herrmann, G.
1973-01-01
The plane motion of two rigid, straight articulated pipes conveying fluid is examined. In contrast to previous work, the flow rate is not taken as constant, but is allowed to have small periodic oscillations about a mean value, as would be expected in a pump-driven system. It is shown that in the presence of such disturbances, both parametric and combination resonances are possible. When the system can also admit loss of stability by static buckling or by flutter, it is found that the presence of small periodic disturbances constitutes a destabilizing effect. Floquet theory and converging infinite determinant expansions are used to illustrate a basic difference between systems which lose stability by divergence and those that lose stability by flutter. An algebraic criterion is obtained for the minimum amplitude of flow-rate oscillation required for the system to be affected by the presence of small disturbances.
Approaching a universal scaling relationship between fracture stiffness and fluid flow
NASA Astrophysics Data System (ADS)
Pyrak-Nolte, Laura J.; Nolte, David D.
2016-02-01
A goal of subsurface geophysical monitoring is the detection and characterization of fracture alterations that affect the hydraulic integrity of a site. Achievement of this goal requires a link between the mechanical and hydraulic properties of a fracture. Here we present a scaling relationship between fluid flow and fracture-specific stiffness that approaches universality. Fracture-specific stiffness is a mechanical property dependent on fracture geometry that can be monitored remotely using seismic techniques. A Monte Carlo numerical approach demonstrates that a scaling relationship exists between flow and stiffness for fractures with strongly correlated aperture distributions, and continues to hold for fractures deformed by applied stress and by chemical erosion as well. This new scaling relationship provides a foundation for simulating changes in fracture behaviour as a function of stress or depth in the Earth and will aid risk assessment of the hydraulic integrity of subsurface sites.
Approaching a universal scaling relationship between fracture stiffness and fluid flow.
Pyrak-Nolte, Laura J; Nolte, David D
2016-01-01
A goal of subsurface geophysical monitoring is the detection and characterization of fracture alterations that affect the hydraulic integrity of a site. Achievement of this goal requires a link between the mechanical and hydraulic properties of a fracture. Here we present a scaling relationship between fluid flow and fracture-specific stiffness that approaches universality. Fracture-specific stiffness is a mechanical property dependent on fracture geometry that can be monitored remotely using seismic techniques. A Monte Carlo numerical approach demonstrates that a scaling relationship exists between flow and stiffness for fractures with strongly correlated aperture distributions, and continues to hold for fractures deformed by applied stress and by chemical erosion as well. This new scaling relationship provides a foundation for simulating changes in fracture behaviour as a function of stress or depth in the Earth and will aid risk assessment of the hydraulic integrity of subsurface sites. PMID:26868649
Approaching a universal scaling relationship between fracture stiffness and fluid flow
Pyrak-Nolte, Laura J.; Nolte, David D.
2016-01-01
A goal of subsurface geophysical monitoring is the detection and characterization of fracture alterations that affect the hydraulic integrity of a site. Achievement of this goal requires a link between the mechanical and hydraulic properties of a fracture. Here we present a scaling relationship between fluid flow and fracture-specific stiffness that approaches universality. Fracture-specific stiffness is a mechanical property dependent on fracture geometry that can be monitored remotely using seismic techniques. A Monte Carlo numerical approach demonstrates that a scaling relationship exists between flow and stiffness for fractures with strongly correlated aperture distributions, and continues to hold for fractures deformed by applied stress and by chemical erosion as well. This new scaling relationship provides a foundation for simulating changes in fracture behaviour as a function of stress or depth in the Earth and will aid risk assessment of the hydraulic integrity of subsurface sites. PMID:26868649
COMPARING SIMULATED AND EXPERIMENTAL HYSTERETIC TWO- PHASE TRANSIENT FLUID FLOW PHENOMENA
A hysteretic model for two-phase permeability (k)-saturation (S)-pressure (P) relations is outlined that accounts for effects of nonwetting fluid entrapment. The model can be employed in unsaturated fluid flow computer codes to predict temporal and spatial fluid distributions. Co...
NASA Astrophysics Data System (ADS)
Abolhasani, Milad
Flowing trains of uniformly sized bubbles/droplets (i.e., segmented flows) and the associated mass transfer enhancement over their single-phase counterparts have been studied extensively during the past fifty years. Although the scaling behaviour of segmented flow formation is increasingly well understood, the predictive adjustment of the desired flow characteristics that influence the mixing and residence times, remains a challenge. Currently, a time consuming, slow and often inconsistent manual manipulation of experimental conditions is required to address this task. In my thesis, I have overcome the above-mentioned challenges and developed an experimental strategy that for the first time provided predictive control over segmented flows in a hands-off manner. A computer-controlled platform that consisted of a real-time image processing module within an integral controller, a silicon-based microreactor and automated fluid delivery technique was designed, implemented and validated. In a first part of my thesis I utilized this approach for the automated screening of physical mass transfer and solubility characteristics of carbon dioxide (CO2) in a physical solvent at a well-defined temperature and pressure and a throughput of 12 conditions per hour. Second, by applying the segmented flow approach to a recently discovered CO2 chemical absorbent, frustrated Lewis pairs (FLPs), I determined the thermodynamic characteristics of the CO2-FLP reaction. Finally, the segmented flow approach was employed for characterization and investigation of CO2-governed liquid-liquid phase separation process. The second part of my thesis utilized the segmented flow platform for the preparation and shape control of high quality colloidal nanomaterials (e.g., CdSe/CdS) via the automated control of residence times up to approximately 5 minutes. By introducing a novel oscillatory segmented flow concept, I was able to further extend the residence time limitation to 24 hours. A case study of a
NASA Astrophysics Data System (ADS)
Tsamopoulos, John; Fraggedakis, Dimitris; Dimakopoulos, Yiannis
2015-11-01
We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our Volume-of-Fluid algorithm is used to solve the governing equations. First the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results (Cohen et al. (1999)). Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our results provide deeper insights in the mechanism of the pattern transitions and are in agreement with previous studies on core-annular flow (Kouris & Tsamopoulos (2001 & 2002)), segmented flow (Lac & Sherwood (2009)) and churn flow (Bai et al. (1992)). GSRT of Greece through the program ``Excellence'' (Grant No. 1918, entitled ``FilCoMicrA'').
Martin, Nicole; Carey, Nancy; Murphy, Steven; Kent, David; Bang, Jae; Stubbs, Tim; Wiedmann, Martin; Dando, Robin
2016-06-01
Fluid milk consumption per capita in the United States has been steadily declining since the 1940s. Many factors have contributed to this decline, including the increasing consumption of carbonated beverages and bottled water. To meet the challenge of stemming the decline in consumption of fluid milk, the dairy industry must take a systematic approach to identifying and correcting for factors that negatively affect consumers' perception of fluid milk quality. To that end, samples of fluid milk were evaluated to identify factors, with a particular focus on light-emitting diode (LED) light exposure, which negatively affect the perceived sensory quality of milk, and to quantify their relative effect on the consumer's experience. Fluid milk samples were sourced from 3 processing facilities with varying microbial postprocessing contamination patterns based on historical testing. The effect of fat content, light exposure, age, and microbiological content were assayed across 23 samples of fluid milk, via consumer, descriptive sensory, and instrumental analyses. Most notably, light exposure resulted in a broad negative reaction from consumers, more so than samples with microbiological contamination exceeding 20,000 cfu/mL on days approaching code. The predominant implication of the study is that a component of paramount importance in ensuring the success of the dairy industry would be to protect fluid milk from all sources of light exposure, from processing plant to consumer. PMID:27060830
NASA Astrophysics Data System (ADS)
Malvoisin, Benjamin; Podladchikov, Yury Yu.; Vrijmoed, Johannes C.
2015-12-01
Mineralogical reactions which generate or consume fluids play a key role during fluid flow in porous media. Such reactions are linked to changes in density, porosity, permeability, and fluid pressure which influence fluid flow and rock deformation. To understand such a coupled system, equations were derived from mass conservation and local thermodynamic equilibrium. The presented mass conservative modeling approach describes the relationships among evolving fluid pressure, porosity, fluid and solid density, and devolatilization reactions in multicomponent systems with solid solutions. This first step serves as a framework for future models including aqueous speciation and transport. The complexity of univariant and multivariant reactions is treated by calculating lookup tables from thermodynamic equilibrium calculations. Simplified cases were also investigated to understand previously studied formulations. For nondeforming systems or systems divided into phases of constant density, the equations can be reduced to porosity wave equations with addition of a reactive term taking the volume change of reaction into account. For closed systems, an expression for the volume change of reaction and the associated pressure increase can be obtained. The key equations were solved numerically for the case of devolatilization of three different rock types that may enter a subduction zone. Reactions with positive Clapeyron slope lead to an increase in porosity and permeability with decreasing fluid pressure resulting in sharp fluid pressure gradients around a negative pressure anomaly. The opposite trend is obtained for reactions having a negative Clapeyron slope during which sharp fluid pressure gradients were only generated around a positive pressure anomaly. Coupling of reaction with elastic deformation induces a more efficient fluid flow for reactions with negative Clapeyron slope than for reactions with positive Clapeyron slope.
Device and method for measuring fluid flow in a conduit having a gradual bend
Ortiz, M.G.; Boucher, T.J.
1998-11-10
A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Device and method for measuring fluid flow in a conduit having a gradual bend
Ortiz, Marcos German; Boucher, Timothy J
1998-01-01
A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Transition in the Flow of Power-Law Fluids through Isotropic Porous Media
NASA Astrophysics Data System (ADS)
Zami-Pierre, F.; de Loubens, R.; Quintard, M.; Davit, Y.
2016-08-01
We use computational fluid dynamics to explore the creeping flow of power-law fluids through isotropic porous media. We find that the flow pattern is primarily controlled by the geometry of the porous structure rather than by the nonlinear effects in the rheology of the fluid. We further highlight a macroscale transition between a Newtonian and a non-Newtonian regime, which is the signature of a coupling between the viscosity of the fluid and the structure of the porous medium. These complex features of the flow can be condensed into an effective length scale, which defines both the non-Newtonian transition and the Newtonian permeability.
Transition in the Flow of Power-Law Fluids through Isotropic Porous Media.
Zami-Pierre, F; de Loubens, R; Quintard, M; Davit, Y
2016-08-12
We use computational fluid dynamics to explore the creeping flow of power-law fluids through isotropic porous media. We find that the flow pattern is primarily controlled by the geometry of the porous structure rather than by the nonlinear effects in the rheology of the fluid. We further highlight a macroscale transition between a Newtonian and a non-Newtonian regime, which is the signature of a coupling between the viscosity of the fluid and the structure of the porous medium. These complex features of the flow can be condensed into an effective length scale, which defines both the non-Newtonian transition and the Newtonian permeability. PMID:27563969
Shock wave irradiations avoiding fluid flow evoke intracellular Ca2+ signaling
NASA Astrophysics Data System (ADS)
Takahashi, Toru; Tsukamoto, Akira; Tada, Shigeru
Shock wave irradiation accelerates therapeutic effects including angiogenesis. One mechanism underlying those effects is cellular responses evoked by shock wave irradiation. Fluid flow is one of major physical phenomena induced by shock wave irradiation. Cellular responses evoked by fluid flow are similar to those evoked by shock wave irradiation. Thus, fluid flow could be responsible for cellular responses evoked by shock wave irradiation. However, it is obscure whether fluid flow is required for the cellular responses evoked by shock wave irradiation. In this study, intracellular Ca2 + signaling was observed in cells seeded in down-sized chambers. In the down-sized chambers, fluid flow was supposed to be suppressed because size of chambers (6 mm in diameter, 1 mm in thickness) was analogous to size of shock wave focus region (3mm in diameter). Dynamics of polystyrene microbeads suspended in the chambers were visualized with a CCD camera and analyzed with a particle image velocimetry (PIV) method to quantify fluid flow in the chamber. As a result, shock wave irradiation evoked intracellular Ca2 + signaling. However, fluid flow was not observed in the chamber due to shock wave irradiation. Thus, it was suggested that physical mechanics, not fluid flow, are further required for evoking intracellular Ca2 + signaling following to shock wave irradiation.
Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda
Pyrak-Nolte, Laura J; DePaolo, Donald J.; Pietraß, Tanja
2015-05-22
From beneath the surface of the earth, we currently obtain about 80-percent of the energy our nation consumes each year. In the future we have the potential to generate billions of watts of electrical power from clean, green, geothermal energy sources. Our planet’s subsurface can also serve as a reservoir for storing energy produced from intermittent sources such as wind and solar, and it could provide safe, long-term storage of excess carbon dioxide, energy waste products and other hazardous materials. However, it is impossible to underestimate the complexities of the subsurface world. These complexities challenge our ability to acquire the scientific knowledge needed for the efficient and safe exploitation of its resources. To more effectively harness subsurface resources while mitigating the impacts of developing and using these resources, the U.S. Department of Energy established SubTER – the Subsurface Technology and Engineering RD&D Crosscut team. This DOE multi-office team engaged scientists and engineers from the national laboratories to assess and make recommendations for improving energy-related subsurface engineering. The SubTER team produced a plan with the overall objective of “adaptive control of subsurface fractures and fluid flow.”This plan revolved around four core technological pillars—Intelligent Wellbore Systems that sustain the integrity of the wellbore environment; Subsurface Stress and Induced Seismicity programs that guide and optimize sustainable energy strategies while reducing the risks associated with subsurface injections; Permeability Manipulation studies that improve methods of enhancing, impeding and eliminating fluid flow; and New Subsurface Signals that transform our ability to see into and characterize subsurface systems. The SubTER team developed an extensive R&D plan for advancing technologies within these four core pillars and also identified several areas where new technologies would require additional basic research
Traumatic Brain Injury-Induced Ependymal Ciliary Loss Decreases Cerebral Spinal Fluid Flow
Xiong, Guoxiang; Elkind, Jaclynn A.; Kundu, Suhali; Smith, Colin J.; Antunes, Marcelo B.; Tamashiro, Edwin; Kofonow, Jennifer M.; Mitala, Christina. M.; Stein, Sherman C.; Grady, M. Sean; Einhorn, Eugene; Cohen, Noam A.
2014-01-01
Abstract Traumatic brain injury (TBI) afflicts up to 2 million people annually in the United States and is the primary cause of death and disability in young adults and children. Previous TBI studies have focused predominantly on the morphological, biochemical, and functional alterations of gray matter structures, such as the hippocampus. However, little attention has been given to the brain ventricular system, despite the fact that altered ventricular function is known to occur in brain pathologies. In the present study, we investigated anatomical and functional alterations to mouse ventricular cilia that result from mild TBI. We demonstrate that TBI causes a dramatic decrease in cilia. Further, using a particle tracking technique, we demonstrate that cerebrospinal fluid flow is diminished, thus potentially negatively affecting waste and nutrient exchange. Interestingly, injury-induced ventricular system pathology resolves completely by 30 days after injury as ependymal cell ciliogenesis restores cilia density to uninjured levels in the affected lateral ventricle. PMID:24749541
Numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching sheet
NASA Astrophysics Data System (ADS)
Sher Akbar, Noreen; Ebaid, Abdelhalim; Khan, Z. H.
2015-05-01
In the present article, we have examined the two dimensional MHD flow of Eyring-Powell fluid model towards a stretching sheet. The governing equations of Eyring-Powell fluid are modeled and then simplified by using boundary layer approach and similarity transformations and then solved numerically using implicit finite difference method. It was found that the increase in the intensity of the magnetic field as well as Eyring-Powell fluid parameter γ shows resistance to the flow.
Unsteady Boundary-Layer Flow over Jerked Plate Moving in a Free Stream of Viscoelastic Fluid
Mehmood, Ahmer; Ali, Asif; Saleem, Najma
2014-01-01
This study aims to investigate the unsteady boundary-layer flow of a viscoelastic non-Newtonian fluid over a flat surface. The plate is suddenly jerked to move with uniform velocity in a uniform stream of non-Newtonian fluid. Purely analytic solution to governing nonlinear equation is obtained. The solution is highly accurate and valid for all values of the dimensionless time 0 ≤ τ < ∞. Flow properties of the viscoelastic fluid are discussed through graphs. PMID:24892060
Predicting multidimensional annular flow with a locally based two-fluid model
Antal, S.P.; Edwards, D.P.; Strayer, T.D.
1998-06-01
The purpose of this work was to: develop a methodology to predict annular flows using a multidimensional four-field, two-fluid Computational Fluid Dynamics (CFD) computer code; develop closure models which use the CFD predicted local velocities, phasic volume fractions, etc...; implement a numerical method which allows the discretized equations to have the same characteristics as the differential form; and compare predicted results to local flow field data taken in a R-134a working fluid test section.
Fluid-structure interactions in compressible cavity flows
NASA Astrophysics Data System (ADS)
Wagner, Justin L.; Casper, Katya M.; Beresh, Steven J.; Hunter, Patrick S.; Spillers, Russell W.; Henfling, John F.; Mayes, Randall L.
2015-06-01
Experiments were performed to understand the complex fluid-structure interactions that occur during aircraft internal store carriage. A cylindrical store was installed in a rectangular cavity having a length-to-depth ratio of 3.33 and a length-to-width ratio of 1. The Mach number ranged from 0.6 to 2.5 and the incoming boundary layer was turbulent. Fast-response pressure measurements provided aeroacoustic loading in the cavity, while triaxial accelerometers provided simultaneous store response. Despite occupying only 6% of the cavity volume, the store significantly altered the cavity acoustics. The store responded to the cavity flow at its natural structural frequencies, and it exhibited a directionally dependent response to cavity resonance. Specifically, cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas a spanwise response was observed only occasionally. The streamwise and wall-normal responses were attributed to the longitudinal pressure waves and shear layer vortices known to occur during cavity resonance. Although the spanwise response to cavity tones was limited, broadband pressure fluctuations resulted in significant spanwise accelerations at store natural frequencies. The largest vibrations occurred when a cavity tone matched a structural natural frequency, although energy was transferred more efficiently to natural frequencies having predominantly streamwise and wall-normal motions.
Anisotropic material synthesis by capillary flow in a fluid stripe
Hancock, Matthew J.; Piraino, Francesco; Camci-Unal, Gulden; Rasponi, Marco; Khademhosseini, Ali
2011-01-01
We present a simple bench-top technique to produce centimeter long concentration gradients in biomaterials incorporating soluble, material, and particle gradients. By patterning hydrophilic regions on a substrate, a stripe of prepolymer solution is held in place on a glass slide by a hydrophobic boundary. Adding a droplet to one end of this “pre-wet” stripe causes a rapid capillary flow that spreads the droplet along the stripe to generate a gradient in the relative concentrations of the droplet and pre-wet solutions. The gradient length and shape are controlled by the pre-wet and droplet volumes, stripe thickness, fluid viscosity and surface tension. Gradient biomaterials are produced by crosslinking gradients of prepolymer solutions. Demonstrated examples include a concentration gradient of cells encapsulated in three dimensions (3D) within a homogeneous biopolymer and a constant concentration of cells encapsulated in 3D within a biomaterial gradient exhibiting a gradient in cell spreading. The technique employs coated glass slides that may be purchased or custom made from tape and hydrophobic spray. The approach is accessible to virtually any researcher or student and should dramatically reduce the time required to synthesize a wide range of gradient biomaterials. Moreover, since the technique employs passive mechanisms it is ideal for remote or resource poor settings. PMID:21684595
Miniatuization of the flowing fluid electric conductivity loggingtec hnique
Su, Grace W.; Quinn, Nigel W.T.; Cook, Paul J.; Shipp, William
2005-10-19
An understanding of both the hydraulic properties of the aquifer and the depth distribution of salts is critical for evaluating the potential of groundwater for conjunctive water use and for maintaining suitable groundwater quality in agricultural regions where groundwater is used extensively for irrigation and drinking water. The electrical conductivity profiles recorded in a well using the flowing fluid electric conductivity logging (FEC logging) method can be analyzed to estimate interval specific hydraulic conductivity and estimates of the salinity concentration with depth. However, irrigation wells that are common in agricultural regions have limited access into them because these wells are still in operation, and the traditional equipment used for FEC logging cannot fit through the small access pipe intersecting the well. A modified, miniaturized FEC logging technique was developed such that this logging method could be used in wells with limited access. In addition, a new method for injecting water over the entire screened interval of the well was developed to reduce the time required to perform FEC logging. Results of FEC logging using the new methodology and miniaturized system in two irrigation wells are also summarized.
Flow of Fluid and Particle Assemblages in Rotating Systems
NASA Technical Reports Server (NTRS)
Kizito, John; Hiltner, David; Niederhaus, Charles; Kleis, Stanley; Hudson, Ed; Gonda, Steve
2004-01-01
NASA-designed bioreactors have been highly successful in growing three-dimensional tissue structures in a low shear environment both on earth and in space. The goal of the present study is to characterize the fluid flow environment within the HFB-S bioreactor and determine the spatial distribution of particles that mimic cellular tissue structures. The results will be used to obtain optimal operating conditions of rotation rates and media perfusehnfuse rates which are required for cell culture growth protocols. Two types of experiments have been performed so far. First, we have performed laser florescent dye visualization of the perfusion loop to determine the mixing times within the chamber. The second type of experiments involved particles which represent cellular tissue to determine the spatial distribution with the chamber. From these experiments we established that mixing times were largely dependant on the speed ratio and sign of the difference between the spinner and the dome. The shortest mixing times occurred when the spinner rotates faster than the dome and longest mixing times occurs with no relative motion between the dome and spinner. Also, we have determined the spatial and temporal distribution of particle assemblages within the chamber.
Fluid-structure interactions in compressible cavity flows
Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; Hunter, Patrick S.; Spillers, Russell Wayne; Henfling, John F.; Mayes, Randall L.
2015-06-08
Experiments were performed to understand the complex fluid-structure interactions that occur during aircraft internal store carriage. A cylindrical store was installed in a rectangular cavity having a length-to-depth ratio of 3.33 and a length-to-width ratio of 1. The Mach number ranged from 0.6 to 2.5 and the incoming boundary layer was turbulent. Fast-response pressure measurements provided aeroacoustic loading in the cavity, while triaxial accelerometers provided simultaneous store response. Despite occupying only 6% of the cavity volume, the store significantly altered the cavity acoustics. The store responded to the cavity flow at its natural structural frequencies, and it exhibited a directionally dependent response to cavity resonance. Specifically, cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas a spanwise response was observed only occasionally. Also, the streamwise and wall-normal responses were attributed to the longitudinal pressure waves and shear layer vortices known to occur during cavity resonance. Although the spanwise response to cavity tones was limited, broadband pressure fluctuations resulted in significant spanwise accelerations at store natural frequencies. As a result, the largest vibrations occurred when a cavity tone matched a structural natural frequency, although energy was transferred more efficiently to natural frequencies having predominantly streamwise and wall-normal motions.
Fluid-structure interactions in compressible cavity flows
Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; Hunter, Patrick S.; Spillers, Russell Wayne; Henfling, John F.; Mayes, Randall L.
2015-06-08
Experiments were performed to understand the complex fluid-structure interactions that occur during aircraft internal store carriage. A cylindrical store was installed in a rectangular cavity having a length-to-depth ratio of 3.33 and a length-to-width ratio of 1. The Mach number ranged from 0.6 to 2.5 and the incoming boundary layer was turbulent. Fast-response pressure measurements provided aeroacoustic loading in the cavity, while triaxial accelerometers provided simultaneous store response. Despite occupying only 6% of the cavity volume, the store significantly altered the cavity acoustics. The store responded to the cavity flow at its natural structural frequencies, and it exhibited a directionallymore » dependent response to cavity resonance. Specifically, cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas a spanwise response was observed only occasionally. Also, the streamwise and wall-normal responses were attributed to the longitudinal pressure waves and shear layer vortices known to occur during cavity resonance. Although the spanwise response to cavity tones was limited, broadband pressure fluctuations resulted in significant spanwise accelerations at store natural frequencies. As a result, the largest vibrations occurred when a cavity tone matched a structural natural frequency, although energy was transferred more efficiently to natural frequencies having predominantly streamwise and wall-normal motions.« less
NASA Astrophysics Data System (ADS)
Beaudoin, Nicolas; Koehn, Daniel; Toussaint, Renaud; Gomez-Rivas, Enrique; Bons, Paul; Chung, Peter; Martín-Martín, Juan Diego
2014-05-01
Fluid migrations are the principal agent for mineral replacement in the upper crust, leading to dramatic changes in the porosity and permeability of rocks over several kilometers. Consequently, a better understanding of the physical parameters leading to mineral replacement is required to better understand and model fluid flow and rock reservoir properties. Large-scale dolostone bodies are one of the best and most debated examples of such fluid-related mineral replacement. These formations received a lot of attention lately, and although genetic mechanics and implications for fluid volume are understood, the mechanisms controlling the formation and propagation of the dolomitization reaction front remain unclear. This contribution aims at an improvement of the knowledge about how this replacement front propagates over space and time. We study the front sharpness on hand specimen and thin section scale and what the influence of advection versus diffusion of material is on the front development. In addition, we demonstrate how preexisting heterogeneities in the host rock affect the propagation of the reaction front. The rock is normally not homogeneous but contains grain boundaries, fractures and stylolites, and such structures are important on the scale of the front width. Using Scanning Electron Microscopy and Raman Spectroscopy we characterized the reaction front chemistry and morphology in different context. Specimens of dolomitization fronts, collected from carbonate sequences of the southern Maestrat Basin, Spain and the Southwestern Scottish Highlands suggest that the front thickness is about several mm being relatively sharp. Fluid infiltrated grain boundaries and fractures forming mm-scale transition zone. We study the structure of the reaction zone in detail and discuss implications for fluid diffusion-advection models and mineral replacement. In addition we formulate a numerical model taking into account fluid flow, diffusion and advection of the mobile
Sajja, V. S. K.; Kennedy, David J.; Todd, Paul W.; Hanley, Thomas R.
2011-01-01
In the Quadrupole Magnetic Sorter (QMS) magnetic particles enter a vertical flow annulus and are separated from non-magnetic particles by radial deflection into an outer annulus where the purified magnetic particles are collected via a flow splitter. The purity of magnetically isolated particles in QMS is affected by the migration of nonmagnetic particles across transport lamina in the annular flow channel. Computational Fluid Dynamics (CFD) simulations were used to predict the flow patterns, pressure drop and nonspecific crossover in QMS flow channel for the isolation of pancreatic islets of Langerhans. Simulation results were compared with the experimental results to validate the CFD model. Results of the simulations were used to show that one design gives up to 10% less nonspecific crossover than another and this model can be used to optimise the flow channel design to achieve maximum purity of magnetic particles. PMID:21984840
Convection in Multiphase Fluid Flows Using Lattice Boltzmann Methods
NASA Astrophysics Data System (ADS)
Biferale, L.; Perlekar, P.; Sbragaglia, M.; Toschi, F.
2012-03-01
We present high-resolution numerical simulations of convection in multiphase flows (boiling) using a novel algorithm based on a lattice Boltzmann method. We first study the thermodynamical and kinematic properties of the algorithm. Then, we perform a series of 3D numerical simulations changing the mean properties in the phase diagram and compare convection with and without phase coexistence at Rayleigh number Ra˜107. We show that in the presence of nucleating bubbles non-Oberbeck-Boussinesq effects develop, the mean temperature profile becomes asymmetric, and heat-transfer and heat-transfer fluctuations are enhanced, at all Ra studied. We also show that small-scale properties of velocity and temperature fields are strongly affected by the presence of the buoyant bubble leading to high non-Gaussian profiles in the bulk.
Pediatric leptomeningeal metastasis: 111In-DTPA cerebrospinal fluid flow studies.
Chamberlain, M C
1994-04-01
Nine children (five girls and four boys) ranging in age from 1 to 18 years (median age, 12 years) with leptomeningeal metastasis were evaluated for cerebrospinal fluid compartmentalization with cerebrospinal fluid flow studies using ventricular diethylenetriaminepentaacetic acid labeled with indium 111 (111In-DTPA). Histologic diagnosis included medulloblastoma (two), primitive neuroectodermal tumor (two), acute lymphoblastic leukemia (two), pineoblastoma (one), ependymoma (one), and anaplastic astrocytoma (one). Sixteen 111In-DTPA cerebrospinal fluid flow studies were performed, of which nine demonstrated normal anterograde cerebrospinal fluid flow of radionuclide, with the following cerebrospinal fluid compartment median times to appearance, with ranges in parentheses: ventricles, 1 minute (0 to 3 minutes); cisterna magna/basal cisterns, 5 minutes (3 to 5 minutes); cervical subarachnoid space, 8 minutes (5 to 10 minutes); thoracic subarachnoid space, 15 minutes (10 to 30 minutes); lumbar subarachnoid space, 35 minutes (20 to 45 minutes); and sylvian cistern, 80 minutes (60 to 90 minutes). Blockage of normal anterograde cerebrospinal fluid flow was seen in seven 111In-DTPA cerebrospinal fluid flow studies in the following cerebrospinal fluid compartments: cervical subarachnoid space (four), lumbar subarachnoid space (two), and cisterna magna/basal cisterns (one). Five 111In-DTPA cerebrospinal fluid flow studies were performed after demonstration of cerebrospinal fluid compartmentalization and treatment with limited-field radiation therapy to involved regions; cerebrospinal fluid flow blocks resolved in three. In conclusion, cerebrospinal fluid compartmentalization, as shown by radionuclide ventriculography, is a common occurrence in pediatric leptomeningeal metastasis (four of nine patients, or 44%) and may be palliated by involved-field radiotherapy. PMID:8006365
Fluid flows and forces in development: functions, features and biophysical principles
Freund, Jonathan B.; Goetz, Jacky G.; Hill, Kent L.; Vermot, Julien
2012-01-01
Throughout morphogenesis, cells experience intracellular tensile and contractile forces on microscopic scales. Cells also experience extracellular forces, such as static forces mediated by the extracellular matrix and forces resulting from microscopic fluid flow. Although the biological ramifications of static forces have received much attention, little is known about the roles of fluid flows and forces during embryogenesis. Here, we focus on the microfluidic forces generated by cilia-driven fluid flow and heart-driven hemodynamics, as well as on the signaling pathways involved in flow sensing. We discuss recent studies that describe the functions and the biomechanical features of these fluid flows. These insights suggest that biological flow determines many aspects of cell behavior and identity through a specific set of physical stimuli and signaling pathways. PMID:22395739
Metals in Particulate Pollutants Affect Peak Expiratory Flow of Schoolchildren
Hong, Yun-Chul; Hwang, Seung-Sik; Kim, Jin Hee; Lee, Kyoung-Ho; Lee, Hyun-Jung; Lee, Kwan-Hee; Yu, Seung-Do; Kim, Dae-Seon
2007-01-01
Background The contribution of the metal components of particulate pollutants to acute respiratory effects has not been adequately evaluated. Moreover, little is known about the effects of genetic polymorphisms of xenobiotic metabolism on pulmonary function. Objectives This study was conducted to assess lung function decrement associated with metal components in particulate pollutants and genetic polymorphisms of glutathione S-transferase M1 and T1. Methods We studied 43 schoolchildren who were in the 3rd to 6th grades. Each student measured peak expiratory flow rate three times a day for 42 days. Particulate air concentrations were monitored every day, and the concentrations of iron, manganese, lead, zinc, and aluminum in the particles were measured. Glutathione S-transferase M1 and T1 genetic polymorphisms were determined using DNA extracted from participant buccal washings. We used a mixed linear regression model to estimate the association between peak expiratory flow rate and particulate air pollutants. Results We found significant reduction in the peak expiratory flow rate after the children’s exposure to particulate pollutants. The effect was shown most significantly 1 day after exposure to the ambient particles. Manganese and lead in the particles also reduced the peak expiratory flow rate. Genetic polymorphisms of glutathione S-transferase M1 and T1 did not significantly affect peak expiratory flow rate. Conclusions This study demonstrated that particulate pollutants and metals such as manganese and lead in the particles are associated with a decrement of peak expiratory flow rate. These effects were robust even with consideration of genetic polymorphisms of glutathione S-transferase. PMID:17431494