Science.gov

Sample records for affecting locomotor activity

  1. Inbreeding affects locomotor activity in Drosophila melanogaster at different ages.

    PubMed

    Manenti, Tommaso; Pertoldi, Cino; Moghadam, Neda Nasiri; Nasiri, Neda; Schou, Mads Fristrup; Kjærsgaard, Anders; Cavicchi, Sandro; Loeschcke, Volker

    2015-01-01

    The ability to move is essential for many behavioural traits closely related to fitness. Here we studied the effect of inbreeding on locomotor activity (LA) of Drosophila melanogaster at different ages under both dark and light regimes. We expected to find a decreased LA in inbred lines compared to control lines. We also predicted an increased differentiation between lines due to inbreeding. LA was higher in the dark compared to the light regime for both inbred and outbred control lines. As expected, inbreeding increased phenotypic variance in LA, with some inbred lines showing higher and some lower LA than control lines. Moreover, age per se did not affect LA neither in control nor in inbred lines, while we found a strong line by age interaction between inbred lines. Interestingly, inbreeding changed the daily activity pattern of the flies: these patterns were consistent across all control lines but were lost in some inbred lines. The departure in the daily pattern of LA in inbred lines may contribute to the inbreeding depression observed in inbred natural populations.

  2. Nasal oxytocin administration reduces food intake without affecting locomotor activity and glycemia with c-Fos induction in limited brain areas.

    PubMed

    Maejima, Yuko; Rita, Rauza Sukma; Santoso, Putra; Aoyama, Masato; Hiraoka, Yuichi; Nishimori, Katsuhiko; Gantulga, Darambazar; Shimomura, Kenju; Yada, Toshihiko

    2015-01-01

    Recent studies have considered oxytocin (Oxt) as a possible medicine to treat obesity and hyperphagia. To find the effective and safe route for Oxt treatment, we compared the effects of its nasal and intraperitoneal (IP) administration on food intake, locomotor activity, and glucose tolerance in mice. Nasal Oxt administration decreased food intake without altering locomotor activity and increased the number of c-Fos-immunoreactive (ir) neurons in the paraventricular nucleus (PVN) of the hypothalamus, the area postrema (AP), and the dorsal motor nucleus of vagus (DMNV) of the medulla. IP Oxt administration decreased food intake and locomotor activity and increased the number of c-Fos-ir neurons not only in the PVN, AP, and DMNV but also in the nucleus of solitary tract of the medulla and in the arcuate nucleus of the hypothalamus. In IP glucose tolerance tests, IP Oxt injection attenuated the rise of blood glucose, whereas neither nasal nor intracerebroventricular Oxt affected blood glucose. In isolated islets, Oxt administration potentiated glucose-induced insulin secretion. These results indicate that both nasal and IP Oxt injections reduce food intake to a similar extent and increase the number of c-Fos-ir neurons in common brain regions. IP Oxt administration, in addition, activates broader brain regions, reduces locomotor activity, and affects glucose tolerance possibly by promoting insulin secretion from pancreatic islets. In comparison with IP administration, the nasal route of Oxt administration could exert a similar anorexigenic effect with a lesser effect on peripheral organs.

  3. Acetylcholine from the mesopontine tegmental nuclei differentially affects methamphetamine induced locomotor activity and neurotransmitter levels in the mesolimbic pathway

    PubMed Central

    Dobbs, Lauren K.; Mark, Gregory P.

    2012-01-01

    Methamphetamine (MA) increases dopamine (DA) levels within the mesolimbic pathway and acetylcholine (ACh), a neurotransmitter known to increase DA cell firing and release and mediate reinforcement, within the ventral tegmental area (VTA). The laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPT) nuclei provide cholinergic input to the VTA; however, the contribution of LDT- and PPT-derived ACh to MA-induced DA and ACh levels and locomotor activation remains unknown. The first experiment examined the role of LDT-derived ACh in MA locomotor activation by reversibly inhibiting these neurons with bilateral intra-LDT microinjections of the M2 receptor agonist oxotremorine (OXO). Male C57BL/6 J mice were given a bilateral 0.1 µl OXO (0, 1, or 10 nM/side) microinjection immediately prior to IP saline or MA (2 mg/kg). The highest OXO concentration significantly inhibited both saline-and MA-primed locomotor activity. In a second set of experiments we characterized the individual contributions of ACh originating in the LDT or pedunculopontine tegmental nucleus (PPT) to MA-induced levels of ACh and DA by administering intra-LDT or PPT OXO and performing in vivo microdialysis in the VTA and NAc. Intra-LDT OXO dose-dependently attenuated the MA-induced increase in ACh within the VTA but had no effect on DA in NAc. Intra-PPT OXO had no effect on ACh or DA levels within the VTA or NAc, respectively. We conclude that LDT, but not PPT, ACh is important in locomotor behavior and the cholinergic, but not dopaminergic, response to systemic MA. PMID:21945297

  4. Low-dose effect of ethanol on locomotor activity induced by activation of the mesolimbic system.

    PubMed

    Milton, G V; Randall, P K; Erickson, C K

    1995-06-01

    Four experiments were designed to study the ability of 0.5 g/kg ethanol (EtOH) intraperitoneally to modify locomotor activity induced by drugs that interact with different sites in the mesolimbic system (MLS) of male Sprague-Dawley rats. Locomotor activity was measured in a doughnut-shaped circular arena after various treatments. EtOH alone did not alter locomotor activity in any of the experiments. Amphetamine (AMP, intraperitoneally or intraaccumbens) increased locomotor activity in a dose-dependent manner, and the presence of EtOH attenuated AMP-induced locomotor activity. Bilateral infusion of GABAA antagonist picrotoxin (PIC) into the ventral tegmental area also increased locomotor activity in a dose-dependent manner, and the presence of EtOH attenuated PIC-induced locomotor activity. On the other hand, the interaction between bilateral infusion of mu-receptor agonist Tyr-D-Ala-Gly-NMe-Phe-Gly-ol (DAGO) and EtOH on locomotor activity is complex. The highest dose of DAGO that significantly increased locomotor activity was not affected by the presence of EtOH. But, with lower doses of DAGO that either had no effect or a small increase in locomotor activity, the combination of EtOH and DAGO increased and attenuated locomotor activity, respectively. Results from this study support our hypothesis that a low dose of EtOH that does not modify behavior can interact with neurotransmitter systems in the brain and modify drug-induced locomotor activity. Modification of this drug-induced locomotor activity by a low dose of EtOH is dependent on the rate of ongoing locomotor behavior induced by drug and the neurotransmitter substrate that the drug modified to induce locomotor behavior.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Locomotor Experience Affects Self and Emotion

    ERIC Educational Resources Information Center

    Uchiyama, Ichiro; Anderson, David I.; Campos, Joseph J.; Witherington, David; Frankel, Carl B.; Lejeune, Laure; Barbu-Roth, Marianne

    2008-01-01

    Two studies investigated the role of locomotor experience on visual proprioception in 8-month-old infants. "Visual proprioception" refers to the sense of self-motion induced in a static person by patterns of optic flow. A moving room apparatus permitted displacement of an entire enclosure (except for the floor) or the side walls and…

  6. Inhibition of GABA synthesis in the prefrontal cortex increases locomotor activity but does not affect attention in the 5-choice serial reaction time task.

    PubMed

    Asinof, Samuel K; Paine, Tracie A

    2013-02-01

    Attention deficits are a core cognitive symptom of schizophrenia; the neuropathology underlying these deficits is not known. Attention is regulated, at least in part, by the prefrontal cortex (PFC), a brain area in which pathology of γ-aminobutyric acid (GABA) neurons has been consistently observed in post-mortem analysis of the brains of people with schizophrenia. Specifically, expression of the 67-kD isoform of the GABA synthesis enzyme glutamic acid decarboxylase (GAD67) is reduced in parvalbumin-containing fast-spiking GABA interneurons. Thus it is hypothesized that reduced cortical GABA synthesis and release may contribute to the attention deficits in schizophrenia. Here the effect of reducing cortical GABA synthesis with l-allylglycine (LAG) on attention was tested using three different versions of the 5-choice serial reaction time task (5CSRTT). Because 5CSRTT performance can be affected by locomotor activity, we also measured this behavior in an open field. Finally, the expression of Fos protein was used as an indirect measure of reduced GABA synthesis. Intra-cortical LAG (10 μg/0.5 μl/side) infusions increased Fos expression and resulted in hyperactivity in the open field. Intra-cortical LAG infusions did not affect attention in any version of the 5CSRTT. These results suggest that a general decrease in GABA synthesis is not sufficient to cause attention deficits. It remains to be tested whether a selective decrease in GABA synthesis in parvalbumin-containing GABA neurons could cause attention deficits. Decreased cortical GABA synthesis did increase locomotor activity; this may reflect the positive symptoms of schizophrenia.

  7. Locomotor activity and tissue levels following acute ...

    EPA Pesticide Factsheets

    Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metrics. Products of cyhalothrin, a type II pyrethroid, include mixtures of isomers (e.g., λ-cyhalothrin) as well as enriched active isomers (e.g., γ-cyhalothrin). We measured acute changes in locomotor activity in adult male rats and directly correlated these changes to peak brain and plasma concentrations of λ- and γ-cyhalothrin using a within-subject design. One-hour locomotor activity studies were conducted 1.5 h after oral gavage dosing, and immediately thereafter plasma and brains were collected for analyzing tissue levels using LC/MS/MS methods. Both isomers produced dose-related decreases in activity counts, and the effective dose range for γ-cyhalothrin was lower than for λ-cyhalothrin. Doses calculated to decrease activity by 50% were 2-fold lower for the γ-isomer (1.29 mg/kg) compared to λ-cyhalothrin (2.65 mg/kg). Salivation, typical of type II pyrethroids, was also observed at lower doses of γ-cyhalothrin. Administered dose correlated well with brain and plasma concentrations, which furthermore showed good correlations with activity changes. Brain and plasma levels were tightly correlated across doses. While γ-cyhalothrin was 2-fold more potent based on administ

  8. Sensory-evoked perturbations of locomotor activity by sparse sensory input: a computational study

    PubMed Central

    Brownstone, Robert M.

    2015-01-01

    Sensory inputs from muscle, cutaneous, and joint afferents project to the spinal cord, where they are able to affect ongoing locomotor activity. Activation of sensory input can initiate or prolong bouts of locomotor activity depending on the identity of the sensory afferent activated and the timing of the activation within the locomotor cycle. However, the mechanisms by which afferent activity modifies locomotor rhythm and the distribution of sensory afferents to the spinal locomotor networks have not been determined. Considering the many sources of sensory inputs to the spinal cord, determining this distribution would provide insights into how sensory inputs are integrated to adjust ongoing locomotor activity. We asked whether a sparsely distributed set of sensory inputs could modify ongoing locomotor activity. To address this question, several computational models of locomotor central pattern generators (CPGs) that were mechanistically diverse and generated locomotor-like rhythmic activity were developed. We show that sensory inputs restricted to a small subset of the network neurons can perturb locomotor activity in the same manner as seen experimentally. Furthermore, we show that an architecture with sparse sensory input improves the capacity to gate sensory information by selectively modulating sensory channels. These data demonstrate that sensory input to rhythm-generating networks need not be extensively distributed. PMID:25673740

  9. EARLY MATERNAL SEPARATION AFFECTS ETHANOL-INDUCED CONDITIONING IN A nor-BNI INSENSITIVE MANNER, BUT DOES NOT ALTER ETHANOL-INDUCED LOCOMOTOR ACTIVITY

    PubMed Central

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E.; Fabio, Ma. Carolina; Spear, Norman E.

    2011-01-01

    Early environmental stress significantly affects the development of offspring. This stress has been modeled in rats through the maternal separation (MS) paradigm, which alters the functioning of the HPA axis and can enhance ethanol intake at adulthood. Infant rats are sensitive to ethanol’s reinforcing effects, which modulate ethanol seeking and intake. Little is known about the impact of MS on sensitivity to ethanol’s appetitive and aversive effects during infancy. The present study assessed ethanol-induced conditioned place preference established through second-order conditioning (SOC), spontaneous or ethanol-induced locomotor activity and ethanol intake in preweanling rats that experienced normal animal facility rearing (AFR) or daily episodes of maternal separation (MS) during postnatal days 1-13 (PDs 1-13). Low-ethanol dose (0.5 g/kg) induced appetitive conditioned place preference (via SOC) in control rats given conventional rearing but not in rats given maternal separation in early infancy, whereas 2.0 g/kg ethanol induced aversive conditioned place preference in the former but not the latter. The administration of a kappa antagonist at PD1 or immediately before testing did not alter ethanol-induced reinforcement. High (i.e., 2.5 and 2.0 g/kg) but not low (i.e., 0.5 g/kg) ethanol dose induced reliable motor stimulation, which was independent of early maternal separation. Ethanol intake and blood alcohol levels during conditioning were unaffected by rearing conditions. Pups given early maternal separation had lower body weights than controls and showed an altered pattern of exploration when placed in an open field. These results indicate that, when assessed in infant rats, earlier maternal separation alters the balance between the appetitive and aversive motivational effects of ethanol but has no effect on the motor activating effects of the drug. PMID:22108648

  10. Activation of Neurotensin Receptor Type 1 Attenuates Locomotor Activity

    PubMed Central

    Vadnie, Chelsea A.; Hinton, David J.; Choi, Sun; Choi, YuBin; Ruby, Christina L.; Oliveros, Alfredo; Prieto, Miguel L.; Park, Jun Hyun; Choi, Doo-Sup

    2014-01-01

    Intracerebroventricular administration of neurotensin (NT) suppresses locomotor activity. However, the brain regions that mediate the locomotor depressant effect of NT and receptor subtype-specific mechanisms involved are unclear. Using a brain-penetrating, selective NT receptor type 1 (NTS1) agonist PD149163, we investigated the effect of systemic and brain region-specific NTS1 activation on locomotor activity. Systemic administration of PD149163 attenuated the locomotor activity of C57BL/6J mice both in a novel environment and in their homecage. However, mice developed tolerance to the hypolocomotor effect of PD149163 (0.1 mg/kg, i.p.). Since NTS1 is known to modulate dopaminergic signaling, we examined whether PD149163 blocks dopamine receptor-mediated hyperactivity. Pretreatment with PD149163 (0.1 or 0.05 mg/kg, i.p.) inhibited D2R agonist bromocriptine (8 mg/kg, i.p.)-mediated hyperactivity. D1R agonist SKF81297 (8 mg/kg, i.p.)-induced hyperlocomotion was only inhibited by 0.1 mg/kg of PD149163. Since the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) have been implicated in the behavioral effects of NT, we examined whether microinjection of PD149163 into these regions reduces locomotion. Microinjection of PD149163 (2 pmol) into the NAc, but not the mPFC suppressed locomotor activity. In summary, our results indicate that systemic and intra-NAc activation of NTS1 is sufficient to reduce locomotion and NTS1 activation inhibits D2R-mediated hyperactivity. Our study will be helpful to identify pharmacological factors and a possible therapeutic window for NTS1-targeted therapies for movement disorders. PMID:24929110

  11. Prenatal Iron Deficiency in Guinea Pigs Increases Locomotor Activity but Does Not Influence Learning and Memory.

    PubMed

    Fiset, Catherine; Rioux, France M; Surette, Marc E; Fiset, Sylvain

    2015-01-01

    The objective of the current study was to determine whether prenatal iron deficiency induced during gestation in guinea pigs affected locomotor activity and learning and memory processes in the progeny. Dams were fed either iron-deficient anemic or iron-sufficient diets throughout gestation and lactation. After weaning, all pups were fed an iron-sufficient diet. On postnatal day 24 and 40, the pups' locomotor activity was observed within an open-field test, and from postnatal day 25 to 40, their learning and memory processes were assessed within a Morris Water Maze. The behavioural and cognitive tests revealed that the iron deficient pup group had increased locomotor activity, but solely on postnatal day 40, and that there were no group differences in the Morris Water Maze. In the general discussion, we propose that prenatal iron deficiency induces an increase in nervousness due to anxiety in the progeny, which, in the current study, resulted in an increase of locomotor activity.

  12. Locomotor activity and zonation of upper shore arthropods in a sandy beach of north central Chile

    NASA Astrophysics Data System (ADS)

    Jaramillo, E.; Contreras, H.; Duarte, C.; Avellanal, M. H.

    2003-10-01

    comparisons of capture figures show that the highest locomotor activity occurred during early summer (December 2000). Moon phases apparently affect locomotor activity (i.e. T. spinulosus and P. maculata had higher locomotor activity during neap tides as compared with that observed during spring tide samplings carried out with full moon). Periodograms resulting from the locomotor activity of adults of O. tuberculata, T. spinulosus and P. maculata studied with actographs and total darkness show evidence of a circadian endogenous component close to 23-25 h. Activity peaks close to 11-14 h were also found that probably represents a circatidal component in the locomotor activity. Results of actograph experiments under constant light show that the circadian rhythm of locomotor activity of O. tuberculata was the only one maintained throughout the experiment and phased with the subjective night. Analyses of contour distributional maps and mean hourly zonations show that the locomotor activity of the studied species also differed, specially that of O. tuberculata versus that of T. spinulosus and P. maculata. Results of coexistence experiments showed no evidence of intraspecific interactions. Similar experiments evidentiated interspecific interactions: those species with similarities in locomotor activity (that is T. spinulosus and P. maculata) showed no interactions between them, while both of them had negative interactions with O. tuberculata, the species which separated more in time and hourly zonation of locomotor activity. Thus, differences in time/space partitioning of surface locomotor activity can be interpreted as a means to avoid detrimental interactions in this guild of scavengers. That partitioning would allow coexistence of interacting scavenger species and provides evidence that biological interactions are indeed important in community structure of sandy beach macroinfauna.

  13. Anxiety status affects nicotine- and baclofen-induced locomotor activity, anxiety, and single-trial conditioned place preference in male adolescent rats.

    PubMed

    Falco, Adriana M; McDonald, Craig G; Smith, Robert F

    2014-09-01

    Adolescents have an increased vulnerability to nicotine and anxiety may play a role in the development of nicotine abuse. One possible treatment for anxiety disorders and substance abuse is the GABAB agonist, baclofen. The aim of the present study was to determine the effect of anxiety-like behavior on single-trial nicotine conditioned place preference in adolescent rats, and to assess the action of baclofen. Baclofen was shown to have effects on locomotor and anxiety-like behavior in rats divided into high-anxiety and low-anxiety groups. Baclofen decreased locomotor behavior in high-anxiety rats. Baclofen alone failed to produce differences in anxiety-like behavior, but nicotine and baclofen + nicotine administration were anxiolytic. High- and low-anxiety groups also showed differences in single-trial nicotine-induced place preference. Only high-anxiety rats formed place preference to nicotine, while rats in the low-anxiety group formed no conditioned place preference. These results suggest that among adolescents, high-anxiety individuals are more likely to show preference for nicotine than low-anxiety individuals.

  14. Exendin-4 Decreases Amphetamine-induced Locomotor Activity

    PubMed Central

    Erreger, Kevin; Davis, Adeola R.; Poe, Amanda M.; Greig, Nigel H.; Stanwood, Gregg D.; Galli, Aurelio

    2012-01-01

    Glucagon-like peptide-1 (GLP-1) is released in response to nutrient ingestion and is a regulator of energy metabolism and consummatory behaviors through both peripheral and central mechanisms. The GLP-1 receptor (GLP-1R) is widely distributed in the central nervous system, however little is known about how GLP-1Rs regulate ambulatory behavior. The abused psychostimulant amphetamine (AMPH) promotes behavioral locomotor activity primarily by inducing the release of the neurotransmitter dopamine. Here, we identify the GLP-1R agonist exendin-4 (Ex-4) as a modulator of behavioral activation by AMPH. We report that in rats a single acute administration of Ex-4 decreases both basal locomotor activity as well as AMPH-induced locomotor activity. Ex-4 did not induce behavioral responses reflecting anxiety or aversion. Our findings implicate GLP-1R signaling as a novel modulator of psychostimulant-induced behavior and therefore a potential therapeutic target for psychostimulant abuse. PMID:22465309

  15. Genotypic structure of a Drosophila population for adult locomotor activity

    SciTech Connect

    Grechanyi, G.V.; Korzun, V.M.

    1995-01-01

    Analysis of the variation of adult locomotor activity in four samples taken at different times from a natural population of Drosophila melanogaster showed that the total variation of this trait is relatively stable in time and has a substantial genetic component. Genotypic structure of the population for locomotor activity is characterized by the presence of large groups of genotypes with high and low values of this trait. A possible explanation for the presence of such groups in a population is cyclic density-dependent selection.

  16. DRUG EFFECTS ON THE LOCOMOTOR ACTIVITY OF LARVAL ZEBRAFISH.

    EPA Science Inventory

    As part of an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae and the effects of prototype drugs. Zebrafish larvae (6-7 days post-fertilization) were indiv...

  17. Acute Neuroactive Drug Exposures alter Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    As part of the development of a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae by assessing the acute effects of prototypic drugs that act on the central nervous system. Initially,...

  18. Active Gaze, Visual Look-Ahead, and Locomotor Control

    ERIC Educational Resources Information Center

    Wilkie, Richard M.; Wann, John P.; Allison, Robert S.

    2008-01-01

    The authors examined observers steering through a series of obstacles to determine the role of active gaze in shaping locomotor trajectories. Participants sat on a bicycle trainer integrated with a large field-of-view simulator and steered through a series of slalom gates. Steering behavior was determined by examining the passing distance through…

  19. Acute neuroactive drug exposures alter locomotor activity in larval zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA's prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after exposure to prototypic drugs that act on the central nervous system. MPTP (1-methyl-4phenyl- 1 ,2,3,6-...

  20. Prenatal Iron Deficiency in Guinea Pigs Increases Locomotor Activity but Does Not Influence Learning and Memory

    PubMed Central

    Fiset, Catherine; Rioux, France M.; Surette, Marc E.; Fiset, Sylvain

    2015-01-01

    The objective of the current study was to determine whether prenatal iron deficiency induced during gestation in guinea pigs affected locomotor activity and learning and memory processes in the progeny. Dams were fed either iron-deficient anemic or iron-sufficient diets throughout gestation and lactation. After weaning, all pups were fed an iron-sufficient diet. On postnatal day 24 and 40, the pups’ locomotor activity was observed within an open-field test, and from postnatal day 25 to 40, their learning and memory processes were assessed within a Morris Water Maze. The behavioural and cognitive tests revealed that the iron deficient pup group had increased locomotor activity, but solely on postnatal day 40, and that there were no group differences in the Morris Water Maze. In the general discussion, we propose that prenatal iron deficiency induces an increase in nervousness due to anxiety in the progeny, which, in the current study, resulted in an increase of locomotor activity. PMID:26186713

  1. Sigma ligand S14905 and locomotor activity in mice.

    PubMed

    Hascoet, M; Bourin, M; Payeur, R; Lombet, A; Peglion, J L

    1995-12-01

    The binding and locomotor profile of a new sigma ligand, S14905, (isobutyl-N-(1-indan-2yl-piperid-4-yl)N-methyl carbamate, furamate) was studied. The binding data revealed that S14905 has a high affinity for sigma receptors and very low affinity for both dopamine D1 and D2 receptors. We have demonstrated that this sigma ligand prevents the locomotor stimulation induced by morphine (32 and 64 mg/kg), cocaine (16 mg/kg), amphetamine (4 mg/kg) and adrafinil (32 mg/kg) at doses lower than those required to depress spontaneous locomotor activity. The antagonism observed in the present study seems to be more specific of morphine induced hyperlocomotion. The high affinity of this compound for sigma receptors makes it a good choice to study the role of this receptor in the CNS. In addition, S14905 does not directly block dopamine receptors but may modulate them in some manner, and would thus warrant further study as a potential atypical antipsychotic agent, and an antagonist for the hyperactivity induced by opiate drug.

  2. Melatonin and locomotor activity in the fiddler crab Uca pugilator.

    PubMed

    Tilden, Andrea R; Shanahan, J Kearney; Khilji, Zahra S; Owen, Jeffrey G; Sterio, Thomas W; Thurston, Kristy T

    2003-05-01

    The influence of melatonin on locomotor activity levels was measured in the fiddler crab Uca pugilator. First, activity in untreated, laboratory-acclimated crabs was measured over 48 hours in a 12L:12D photoperiod; this study showed a nocturnal increase in activity. In eyestalk-ablated crabs, overall activity was significantly reduced, and no significant activity pattern occurred. Next, crabs were injected with melatonin or saline (controls) at various times during the 12L:12D photoperiod (0900h, 1200h, and twice at 2100h; each trial was separated by 3-4 days) and monitored for 3 hr post-injection. Control crabs had low activity during early photophase, high at mid-photophase, increasing activity during the first scotophase trial, and decreasing activity during the second scotophase trial. Melatonin had no significant influence on activity when injected during the early-photophase activity trough or early-scotophase activity decline, but significantly increased activity when injected during the mid-photophase activity peak and early-scotophase activity incline. Next, crabs were injected during an early scotophase activity trough and monitored throughout the twelve-hour scotophase. Melatonin did not increase activity until the mid-scotophase activity increase, approximately 6 hours later, showing that the pharmacological dosage persisted in the crabs' systems and had later effects during the incline and peak of activity but not the trough. Eyestalk-ablated crabs were injected with melatonin or saline during early photo- and scotophase. Melatonin significantly increased activity in the photophase but not the scotophase trial, indicating that the responsiveness to melatonin continues following eyestalk removal, but the timing may not match that of intact crabs. Melatonin may be involved in the transmission of environmental timing information from the eyestalks to locomotor centers in U. pugilator.

  3. Drosophila ATF-2 regulates sleep and locomotor activity in pacemaker neurons.

    PubMed

    Shimizu, Hideyuki; Shimoda, Masami; Yamaguchi, Terumi; Seong, Ki-Hyeon; Okamura, Tomoo; Ishii, Shunsuke

    2008-10-01

    Stress-activated protein kinases such as p38 regulate the activity of transcription factor ATF-2. However, the physiological role of ATF-2, especially in the brain, is unknown. Here, we found that Drosophila melanogaster ATF-2 (dATF-2) is expressed in large ventral lateral neurons (l-LN(v)s) and also, to a much lesser extent, in small ventral lateral neurons, the pacemaker neurons. Only l-LN(v)s were stained with the antibody that specifically recognizes phosphorylated dATF-2, suggesting that dATF-2 is activated specifically in l-LN(v)s. The knockdown of dATF-2 in pacemaker neurons using RNA interference decreased sleep time, whereas the ectopic expression of dATF-2 increased sleep time. dATF-2 knockdown decreased the length of sleep bouts but not the number of bouts. The ATF-2 level also affected the sleep rebound after sleep deprivation and the arousal threshold. dATF-2 negatively regulated locomotor activity, although it did not affect the circadian locomotor rhythm. The degree of dATF-2 phosphorylation was greater in the morning than at night and was enhanced by forced locomotion via the dp38 pathway. Thus, dATF-2 is activated by the locomotor while it increases sleep, suggesting a role for dATF-2 as a regulator to connect sleep with locomotion.

  4. Mephedrone interactions with cocaine: prior exposure to the 'bath salt' constituent enhances cocaine-induced locomotor activation in rats.

    PubMed

    Gregg, Ryan A; Tallarida, Christopher S; Reitz, Allen B; Rawls, Scott M

    2013-12-01

    Concurrent use of mephedrone (4-methylmethcathinone; MEPH) and established drugs of abuse is now commonplace, but knowledge about interactions between these drugs is sparse. The present study was designed to test the hypothesis that prior MEPH exposure enhances the locomotor-stimulant effects of cocaine and methamphetamine (METH). For cocaine experiments, rats pretreated with saline, cocaine (15 mg/kg), or MEPH (15 mg/kg) for 5 days were injected with cocaine after 10 days of drug absence. For METH experiments, rats pretreated with saline, METH (2 mg/kg), or MEPH (15 mg/kg) were injected with METH after 10 days of drug absence. Cocaine challenge produced greater locomotor activity after pretreatment with cocaine or MEPH than after pretreatment with saline. METH challenge produced greater locomotor activity after METH pretreatment than after saline pretreatment; however, locomotor activity in rats pretreated with MEPH or saline and then challenged with METH was not significantly different. The locomotor response to MEPH (15 mg/kg) was not significantly affected by pretreatment with cocaine (15 mg/kg) or METH (0.5, 2 mg/kg). The present demonstration that cocaine-induced locomotor activation is enhanced by prior MEPH exposure suggests that MEPH cross-sensitizes to cocaine and increases cocaine efficacy. Interestingly, MEPH cross-sensitization was not bidirectional and did not extend to METH, suggesting that the phenomenon is sensitive to specific psychostimulants.

  5. Interactions between morphine and the morphine-glucuronides measured by conditioned place preference and locomotor activity.

    PubMed

    Vindenes, Vigdis; Ripel, Ase; Handal, Marte; Boix, Fernando; Mørland, Jørg

    2009-07-01

    After intake of heroin or morphine, active metabolites are formed in the body. The two most important morphine metabolites are morphine-6-glucuronide (M6G) and morphine-3-glucuronide (M3G). M6G and M3G are present for longer time periods and in higher concentrations than the parent drug, but their potential contribution to reward and to development of dependence and addiction is not clear. We tested the effects of morphine and M6G separately (doses of 10, 20, 30 and 50 micromol/kg), administered together, and also in combination with with 200 microm l/kg M3G in male C57BL/6J-Bom mice. M3G in doses of 50, 100, 200, 300 and 400 micromol/kg were also tested alone. We evaluated the rewarding effects in a conditioning place preference (CPP) model and the psychomotor stimulating effects by recording locomotor activity. Mice were subjected to three consecutive conditioning days with drugs or saline before testing. Changes in locomotor activity from conditioning day one to day three were also compared to the expression of CPP on the test day. This study revealed that coadministration of morphine and M6G induced CPP of similar magnitude to the sum of equimolar doses of these compounds alone, and different ratios of the two drugs did not affect the results. M3G did not cause CPP and reduced the CPP induced by both morphine and M6G when coadministered with these drugs. Morphine induced locomotor activity was reduced by coadministration of M3G, but this was not seen when M3G was co-injected with M6G. The changes in locomotor activity during the conditioning periods did not correlated with the expression of CPP. This study revealed that the morphine-glucuronides in different and complex ways can influence the pharmacological effects of psychomotor activation and reward observed after intake of morphine.

  6. Reduced locomotor activity and exploratory behavior in CC chemokine receptor 4 deficient mice.

    PubMed

    Ambrée, Oliver; Klassen, Irene; Förster, Irmgard; Arolt, Volker; Scheu, Stefanie; Alferink, Judith

    2016-11-01

    Chemokines and their receptors are key regulators of immune cell trafficking and activation. Recent findings suggest that they may also play pathophysiological roles in psychiatric diseases like depression and anxiety disorders. The CC chemokine receptor 4 (CCR4) and its two ligands, CCL17 and CCL22, are functionally involved in neuroinflammation as well as anti-infectious and autoimmune responses. However, their influence on behavior remains unknown. Here we characterized the functional role of the CCR4-CCL17 chemokine-receptor axis in the modulation of anxiety-related behavior, locomotor activity, and object exploration and recognition. Additionally, we investigated social exploration of CCR4 and CCL17 knockout mice and wild type (WT) controls. CCR4 knockout (CCR4(-/-)) mice exhibited fewer anxiety-related behaviors in the elevated plus-maze, diminished locomotor activity, exploratory behavior, and social exploration, while their recognition memory was not affected. In contrast, CCL17 deficient mice did not show an altered behavior compared to WT mice regarding locomotor activity, anxiety-related behavior, social exploration, and object recognition memory. In the dark-light and object recognition tests, CCL17(-/-) mice even covered longer distances than WT mice. These data demonstrate a mechanistic or developmental role of CCR4 in the regulation of locomotor and exploratory behaviors, whereas the ligand CCL17 appears not to be involved in the behaviors measured here. Thus, either CCL17 and the alternative ligand CCL22 may be redundant, or CCL22 is the main activator of CCR4 in these processes. Taken together, these findings contribute to the growing evidence regarding the involvement of chemokines and their receptors in the regulation of behavior.

  7. Effects of 3-O-methyldopa, L-3,4-dihydroxyphenylalanine metabolite, on locomotor activity and dopamine turnover in rats.

    PubMed

    Onzawa, Yoritaka; Kimura, Yasuhiro; Uzuhashi, Kengo; Shirasuna, Megumi; Hirosawa, Tasuku; Taogoshi, Takanori; Kihira, Kenji

    2012-01-01

    It has been well known that 3-O-methyldopa (3-OMD) is a metabolite of L-3,4-dihydroxyphenylalanine (L-DOPA) formed by catechol O-methyltransferase (COMT), and 3-OMD blood level often reaches higher than physiological level in Parkinson's disease (PD) patients receiving long term L-DOPA therapy. However, the physiological role of 3-OMD has not been well understood. Therefore, in order to clarify the effects of 3-OMD on physiological function, we examined the behavioral alteration in rats based on locomotor activity, and measured dopamine (DA) and its metabolites levels in rats at the same time after 3-OMD subchronic administration. The study results showed that repeated administrations of 3-OMD increased its blood and the striatum tissue levels in those rats, and decreased locomotor activity in a dose dependent manner. Although 3-OMD subchronic administration showed no significant change in DA level in the striatum, DA metabolite levels, such as 3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), and homovanillic acid (HVA) were significantly decreased. After 3-OMD washout period (7 d), locomotor activity and DA turnover in those rats returned to normal levels. Furthermore, locomotor activity and DA turnover decreased by 3-OMD administration were recovered to normal level by acute L-DOPA administration. These results suggested that 3-OMD affect to locomotor activity via DA neuron system. In conclusion, 3-OMD itself may have a disadvantage in PD patients receiving L-DOPA therapy.

  8. Neurotensin and bombesin, a relationship between their effects on body temperature and locomotor activity?

    PubMed

    van Wimersma Greidanus, T B; Schijff, J A; Noteboom, J L; Spit, M C; Bruins, L; van Zummeren, B M; Rinkel, G J

    1984-08-01

    Neurotensin and bombesin have been tested for their effects on body temperature and locomotor activity in an open field. Both peptides induce hypothermia and suppress ambulation and rearing. The time curves of the hypothermic effects of both peptides appear to be rather similar, although bombesin is a more potent hypothermic agent than neurotensin. The time curves of the effects on locomotor activity appear to be quite different. The suppressive effect of neurotensin on locomotor activity is relatively short lasting and reaches its maximum at approximately 32 minutes. The effect of bombesin follows a different time curve and shows two peaks, suggesting that two different mechanisms are involved in the suppressive action of bombesin on locomotor activity. Calculation of the correlation coefficients between the effects of neurotensin and of bombesin on body temperature and on locomotor activity (ambulation) suggest that a causal relationship between these two effects is not likely, in particular for neurotensin.

  9. Effects of repeated blood samplings on locomotor activity, evasion and wheel-running activity in mice.

    PubMed

    Pfeil, R

    1988-01-01

    The effects of serial blood sampling on nocturnal locomotor activity, evasion, wheel-running activity and body mass were studied in male NMRI mice aged 7-8 weeks. The erythrocyte count, haematocrit and haemoglobin concentration at the beginning and end of the study showed no difference in group 1 (two samples per week, 0.08 ml each) while there was a significant decrease in the group 2 values (three samples per week, 0.08 ml each). The total amount of nocturnal locomotor activity decreased in the animals bled repeatedly while the periods with locomotor activity increased. These alterations appeared particularly after bleeding. In the test-group animals evasion showed a decrease compared with the untreated control animals, but there was no evidence of a relation to the timing of the bleedings.

  10. The time of day differently influences fatigue and locomotor activity: is body temperature a key factor?

    PubMed

    Machado, Frederico Sander Mansur; Rodovalho, Gisele Vieira; Coimbra, Cândido Celso

    2015-03-01

    The aim of this study was to verify the possible interactions between exercise capacity and spontaneous locomotor activity (SLA) during the oscillation of core body temperature (Tb) that occurs during the light/dark cycle. Wistar rats (n=11) were kept at an animal facility under a light/dark cycle of 14/10h at an ambient temperature of 23°C and water and food ad libitum. Initially, in order to characterize the daily oscillation in SLA and Tb of the rats, these parameters were continuously recorded for 24h using an implantable telemetric sensor (G2 E-Mitter). The animals were randomly assigned to two progressive exercise test protocols until fatigue during the beginning of light and dark-phases. Fatigue was defined as the moment rats could not keep pace with the treadmill. We assessed the time to fatigue, workload and Tb changes induced by exercise. Each test was separated by 3days. Our results showed that exercise capacity and heat storage were higher during the light-phase (p<0.05). In contrast, we observed that both SLA and Tb were higher during the dark-phase (p<0.01). Notably, the correlation analysis between the amount of SLA and the running capacity observed at each phase of the daily cycle revealed that, regardless of the time of the day, both types of locomotor physical activity have an important inherent component (r=0.864 and r=0.784, respectively, p<0.01) without a direct relationship between them. This finding provides further support for the existence of specific control mechanisms for each type of physical activity. In conclusion, our data indicate that the relationship between the body temperature and different types of physical activity might be affected by the light/dark cycle. These results mean that, although exercise performance and spontaneous locomotor activity are not directly associated, both are strongly influenced by daily cycles of light and dark.

  11. Evolving Hox Activity Profiles Govern Diversity in Locomotor Systems

    PubMed Central

    Jung, Heekyung; Mazzoni, Esteban O.; Soshnikova, Natalia; Hanley, Olivia; Venkatesh, Byrappa; Duboule, Denis; Dasen, Jeremy S.

    2014-01-01

    Summary The emergence of limb-driven locomotor behaviors was a key event in the evolution of vertebrates and fostered the transition from aquatic to terrestrial life. We show that the generation of limb-projecting lateral motor column (LMC) neurons in mice relies on a transcriptional autoregulatory module initiated via transient activity of multiple genes within the HoxA and HoxC clusters. Repression of this module at thoracic levels restricts expression of LMC determinants, thus dictating LMC position relative to the limbs. This suppression is mediated by a key regulatory domain that is specifically found in the Hoxc9 proteins of appendage-bearing vertebrates. The profile of Hoxc9 expression inversely correlates with LMC position in land vertebrates, and likely accounts for the absence of LMC neurons in limbless species such as snakes. Thus, modulation of both Hoxc9 protein function and Hoxc9 gene expression likely contributed to evolutionary transitions between undulatory and ambulatory motor circuit connectivity programs. PMID:24746670

  12. Diurnal changes in the synthesis of the neurosteroid 7alpha-hydroxypregnenolone stimulating locomotor activity in newts.

    PubMed

    Koyama, Teppei; Haraguchi, Shogo; Vaudry, Hubert; Tsutsui, Kazuyoshi

    2009-04-01

    We recently identified 7alpha-hydroxypregnenolone as a novel amphibian neurosteroid stimulating locomotor activity in newts. Because male newts show marked diurnal changes in locomotor activity, we hypothesized that 7alpha-hydroxypregnenolone may be a key factor for the induction of diurnal changes in locomotor activity in male newts. In this study, we found diurnal changes in 7alpha-hydroxypregnenolone synthesis in the brain of male newts, which paralleled locomotor activity. Interestingly, the production of 7alpha-hydroxypregnenolone in the male newt brain increased during the dark phase when locomotor activity of males was high.

  13. Locomotor activity, object exploration and space preference in children with autism and Down syndrome.

    PubMed

    Kawa, Rafał; Pisula, Ewa

    2010-01-01

    There have been ambiguous accounts of exploration in children with intellectual disabilities with respect to the course of that exploration, and in particular the relationship between the features of explored objects and exploratory behaviour. It is unclear whether reduced exploratory activity seen with object exploration but not with locomotor activity is autism-specific or if it is also present in children with other disabilities. The purpose of the present study was to compare preschool children with autism with their peers with Down syndrome and typical development in terms of locomotor activity and object exploration and to determine whether the complexity of explored objects affects the course of exploration activity in children with autism. In total there were 27 children in the study. The experimental room was divided into three zones equipped with experimental objects providing visual stimulation of varying levels of complexity. Our results indicate that children with autism and Down syndrome differ from children with typical development in terms of some measures of object exploration (i.e. looking at objects) and time spent in the zone with the most visually complex objects.

  14. Locomotor activity and tissue levels following acute administration of lambda- and gamma-cyhalothrin in rats

    EPA Science Inventory

    Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metric...

  15. Decisions at the Brink: Locomotor Experience Affects Infants' Use of Social Information on an Adjustable Drop-off.

    PubMed

    Karasik, Lana B; Tamis-LeMonda, Catherine S; Adolph, Karen E

    2016-01-01

    How do infants decide what to do at the brink of a precipice? Infants could use two sources of information to guide their actions: perceptual information generated by their own exploratory activity and social information offered by their caregivers. The current study investigated the role of locomotor experience in using social information-both encouragement and discouragement-for descending drop-offs. Mothers of 30 infants (experienced 12-month-old crawlers, novice 12-month-old walkers, and experienced 18-month-old walkers) encouraged and discouraged descent on a gradation of drop-offs (safe "steps" and risky "cliffs"). Novice walkers descended more frequently than experienced crawlers and walkers and fell while attempting to walk over impossibly high cliffs. All infants showed evidence of integrating perceptual and social information, but locomotor experience affected infants' use of social messages, especially on risky drop-offs. Experienced crawlers and walkers selectively deferred to social information when perceptual information is ambiguous. In contrast, novice walkers took mothers' advice inconsistently and only at extreme drop-offs.

  16. Decisions at the Brink: Locomotor Experience Affects Infants’ Use of Social Information on an Adjustable Drop-off

    PubMed Central

    Karasik, Lana B.; Tamis-LeMonda, Catherine S.; Adolph, Karen E.

    2016-01-01

    How do infants decide what to do at the brink of a precipice? Infants could use two sources of information to guide their actions: perceptual information generated by their own exploratory activity and social information offered by their caregivers. The current study investigated the role of locomotor experience in using social information—both encouragement and discouragement—for descending drop-offs. Mothers of 30 infants (experienced 12-month-old crawlers, novice 12-month-old walkers, and experienced 18-month-old walkers) encouraged and discouraged descent on a gradation of drop-offs (safe “steps” and risky “cliffs”). Novice walkers descended more frequently than experienced crawlers and walkers and fell while attempting to walk over impossibly high cliffs. All infants showed evidence of integrating perceptual and social information, but locomotor experience affected infants’ use of social messages, especially on risky drop-offs. Experienced crawlers and walkers selectively deferred to social information when perceptual information is ambiguous. In contrast, novice walkers took mothers’ advice inconsistently and only at extreme drop-offs. PMID:27375507

  17. Sex-related effects of agmatine on caffeine-induced locomotor activity in Swiss Webster mice.

    PubMed

    Uzbay, Tayfun; Kose, Akin; Kayir, Hakan; Ulusoy, Gokhan; Celik, Turgay

    2010-03-25

    In mammalian brain, agmatine is an endogenous amine that is synthesized through the decarboxylation of l-arginine by arginine decarboxylase. It has been proposed as a new neurotransmitter and/or neuromodulator. It was shown that agmatine had some beneficial effects in animal models of opioid and alcohol addiction. Locomotor stimulant properties of drugs such as ethanol, caffeine, nicotine and amphetamine have been linked to their addictive properties. The present study investigates the effects of agmatine on caffeine-induced locomotor activity both in male and female mice. Adult Swiss Webster mice were used in the study. Locomotor activity was measured for 30min immediately following caffeine (2.5, 5, 10 and 20mg/kg, i.p.) or saline treatments. Agmatine (5, 10 and 20mg/kg, i.p.) were injected 20min before caffeine (2.5 and 5mg/kg, i.p.) administration. In both sexes, agmatine (5-20mg/kg) were also tested for ability to depress or stimulate locomotor activity in the absence of caffeine. Caffeine (5mg/kg) induced a significant increase in locomotor activity of both male and female mice. There was no significant difference in the locomotor-activating effects of caffeine between male and female mice. Agmatine blocked the caffeine (5mg/kg)-induced locomotor stimulation dose dependently in male but not female mice. Agmatine had not any effect on the lower dose (2.5mg/kg) of caffeine in both sexes. These results suggest that agmatine has sex-related inhibitory effects on caffeine-induced locomotor activity in Swiss Webster mice, and male mice are more sensitive than the females to the effect of agmatine.

  18. Neurochemical factors underlying individual differences in locomotor activity and anxiety-like behavioral responses in zebrafish.

    PubMed

    Tran, Steven; Nowicki, Magda; Muraleetharan, Arrujyan; Chatterjee, Diptendu; Gerlai, Robert

    2016-02-04

    Variation among individuals may arise for several reasons, and may have diverse underlying mechanisms. Individual differences have been studied in a variety of species, but recently a new model organism has emerged in this field that offers both sophistication in phenotypical characterization and powerful mechanistic analysis. Recently, zebrafish, one of the favorites of geneticists, have been shown to exhibit consistent individual differences in baseline locomotor activity. In the current study, we further explore this finding and examine whether individual differences in locomotor activity correlate with anxiety-like behavioral measures and with levels of dopamine, serotonin and the metabolites of these neurotransmitters. In addition, we examine whether individual differences in locomotor activity are also associated with reactivity to the locomotor stimulant effects of and neurochemical responses to acute ethanol exposure (30min long, 1% v/v ethanol bath application). Principal component analyses revealed a strong association among anxiety-like responses, locomotor activity, serotonin and dopamine levels. Furthermore, ethanol exposure was found to abolish the locomotion-dependent anxiety-like behavioral and serotonergic responses suggesting that this drug also engages a common underlying pathway. Overall, our results provide support for an important role of the serotonergic system in mediating individual differences in anxiety-like responses and locomotor activity in zebrafish and for a minor modulatory role of the dopaminergic system.

  19. A new automated method for rat sleep deprivation with minimal confounding effects on corticosterone and locomotor activity.

    PubMed

    Leenaars, Cathalijn H C; Dematteis, Maurice; Joosten, Ruud N J M A; Eggels, Leslie; Sandberg, Hans; Schirris, Mischa; Feenstra, Matthijs G P; Van Someren, Eus J W

    2011-03-15

    The function of sleep in physiology, behaviour and cognition has become a primary focus of neuroscience. Its study inevitably includes experimental sleep deprivation designs. However, concerns exist regarding confounds like stress, increased locomotor activity levels, and decreased motivation to perform operant tasks induced by the methods employed. We here propose a novel procedure for sleep deprivation in rats and evaluate how it affects sleep, corticosterone concentration profiles, locomotor activity levels, and motivation to perform an operant task. Before, during and after 12h of total sleep deprivation by means of gradually increasing the rotation variability and the speed of a novel automated, two-compartment sleep deprivation device, sleep-wake states were assessed by electroencephalography (n=21), brain extracellular corticosterone concentrations using microdialysis (n=11), locomotor activity by infrared measurements (n=8), and operant performance using a fixed-interval-fixed-ratio task (n=16). Sleep was effectively prevented during the procedure; rats on average slept less than 1% of the time (0.8±0.2%, mean±standard error). Brain corticosterone concentrations were mildly increased during the procedure, but did not exceed normal peak concentrations. Locomotor activity was not only increased during the procedure, but also did not exceed the peak levels found during undisturbed wakefulness. Food restriction to 12 g/rat/day prevented sleep deprivation from reducing the motivation to perform an operant task. This novel procedure can be applied to sleep deprive rats in a highly effective way, while keeping corticosterone and locomotor activity within the normal range.

  20. Caffeine and amphetamine produce cross-sensitization to nicotine-induced locomotor activity in mice.

    PubMed

    Celik, Eylem; Uzbay, I Tayfun; Karakas, Sirel

    2006-01-01

    Sensitization development is linked to the addictive potential of the drugs. The same mechanisms might play a role in sensitization development to the different addictive drugs. The aim of the study was to investigate the development of cross-sensitization to caffeine and amphetamine in nicotine-induced locomotor sensitization in mice. Caffeine (2.5-20 mg/kg), amphetamine (1-16 mg/kg) or saline were injected to Swiss-Webster mice and locomotor activity was recorded for 30 min. Nicotine (0.5-2 mg/kg) or saline were injected to mice and locomotor activity was recorded for 30 min. Process was applied for 19 days, every other day (10 sessions). Caffeine (5 mg/kg), amphetamine (4 mg/kg) or saline were challenged to the different groups of nicotine-sensitized mice 2 days later on the last nicotine injection, and locomotor activity was recorded. Repetitive injections of nicotine (0.5-2 mg) produced locomotor sensitization in mice. After caffeine and amphetamine challenge injections, locomotor activity of the nicotine-sensitized mice was found to be significantly higher than saline-pretreated mice. Saline challenge did not produce any significant effect in nicotine- or saline-pretreated mice. Our results suggest that a cross-sensitization developed to both caffeine and amphetamine in nicotine-sensitized mice. In conclusion, similar central mechanisms may be responsible for the development of addiction to these substances.

  1. Effects of sex pheromones and sexual maturation on locomotor activity in female sea lamprey (Petromyzon marinus)

    USGS Publications Warehouse

    Walaszczyk, Erin J.; Johnson, Nicholas S.; Steibel, Juan Pedro; Li, Weiming

    2013-01-01

    Synchronization of male and female locomotor rhythmicity can play a vital role in ensuring reproductive success. Several physiological and environmental factors alter these locomotor rhythms. As sea lamprey, Petromyzon marinus, progress through their life cycle, their locomotor activity rhythm changes multiple times. The goal of this study was to elucidate the activity patterns of adult female sea lamprey during the sexual maturation process and discern the interactions of these patterns with exposure to male pheromones. During these stages, preovulated and ovulated adult females are exposed to sex pheromone compounds, which are released by spermiated males and attract ovulated females to the nest for spawning. The locomotor behavior of adult females was monitored in a natural stream with a passive integrated tag responder system as they matured, and they were exposed to a sex pheromone treatment (spermiated male washings) or a control (prespermiated male washings). Results showed that, dependent on the hour of day, male sex pheromone compounds reduce total activity (p < 0.05) and cause increases in activity during several daytime hours in preovulated and ovulated females. These results are one of the first examples of how sex pheromones modulate a locomotor rhythm in a vertebrate, and they suggest that the interaction between maturity stage and sex pheromone exposure contributes to the differential locomotor rhythms found in adult female sea lamprey. This phenomenon may contribute to the reproductive synchrony of mature adults, thus increasing reproductive success in this species.

  2. Insulin-Dependent Activation of MCH Neurons Impairs Locomotor Activity and Insulin Sensitivity in Obesity.

    PubMed

    Hausen, A Christine; Ruud, Johan; Jiang, Hong; Hess, Simon; Varbanov, Hristo; Kloppenburg, Peter; Brüning, Jens C

    2016-12-06

    Melanin-concentrating-hormone (MCH)-expressing neurons (MCH neurons) in the lateral hypothalamus (LH) are critical regulators of energy and glucose homeostasis. Here, we demonstrate that insulin increases the excitability of these neurons in control mice. In vivo, insulin promotes phosphatidylinositol 3-kinase (PI3K) signaling in MCH neurons, and cell-type-specific deletion of the insulin receptor (IR) abrogates this response. While lean mice lacking the IR in MCH neurons (IR(ΔMCH)) exhibit no detectable metabolic phenotype under normal diet feeding, they present with improved locomotor activity and insulin sensitivity under high-fat-diet-fed, obese conditions. Similarly, obesity promotes PI3 kinase signaling in these neurons, and this response is abrogated in IR(ΔMCH) mice. In turn, acute chemogenetic activation of MCH neurons impairs locomotor activity but not insulin sensitivity. Collectively, our experiments reveal an insulin-dependent activation of MCH neurons in obesity, which contributes via distinct mechanisms to the manifestation of impaired locomotor activity and insulin resistance.

  3. Effects of caffeine on locomotor activity in streptozotocin-induced diabetic rats.

    PubMed

    Bădescu, S V; Tătaru, C P; Kobylinska, L; Georgescu, E L; Zahiu, D M; Zăgrean, A M; Zăgrean, L

    2016-01-01

    Diabetes mellitus modifies the expression of adenosine receptors in the brain. Caffeine acts as an antagonist of A1 and A2A adenosine receptors and was shown to have a dose-dependent biphasic effect on locomotion in mice. The present study investigated the link between diabetes and locomotor activity in an animal model of streptozotocin-induced diabetes, and the effects of a low-medium dose of caffeine in this relation. The locomotor activity was investigated by using Open Field Test at 6 weeks after diabetes induction and after 2 more weeks of chronic caffeine administration. Diabetes decreased locomotor activity (total distance moved and mobility time). Chronic caffeine exposure impaired the locomotor activity in control rats, but not in diabetic rats. Our data suggested that the medium doses of caffeine might block the A2A receptors, shown to have an increased density in the brain of diabetic rats, and improve or at least maintain the locomotor activity, offering a neuroprotective support in diabetic rats. Abbreviations: STZ = streptozotocin, OFT = Open Field Test.

  4. Nicotine-induced perturbations on heart rate, body temperature and locomotor activity daily rhythms in rats.

    PubMed

    Pelissier, A L; Gantenbein, M; Bruguerolle, B

    1998-08-01

    The aim of this study was to evaluate the influence of nicotine on the daily rhythms of heart rate, body temperature and locomotor activity in unrestrained rats by use of implanted radiotelemetry transmitters. The study was divided into three seven-day periods: a control period, a treatment period and a recovery period. The control period was used for baseline measurement of heart rate, body temperature and locomotor activity. During the treatment period three rats received nicotine (1 mg kg(-1), s.c.) at 0900 h. Three rats received saline under the same experimental conditions. Heart rate, body temperature and locomotor activity were continuously monitored and plotted every 10 min. During the three periods a power spectrum analysis was used to determine the dominant period of rhythmicity. If daily rhythms of heart rate, body temperature and locomotor activity were detected, the characteristics of these rhythms, i.e. the mesors, amplitudes and acrophases, were determined by cosinor analysis, expressed as means +/- s.e.m. and compared by analysis of variance. Nicotine did not suppress daily rhythmicity but induced decreases of amplitudes and phase-advances of acrophases for heart rate, body temperature and locomotor activity. These perturbations might result from the effects of nicotine on the suprachiasmatic nucleus, the hypothalamic clock that co-ordinates biological rhythms.

  5. Behavioral and Locomotor Measurements Using an Open Field Activity Monitoring System for Skeletal Muscle Diseases

    PubMed Central

    Tatem, Kathleen S.; Quinn, James L.; Phadke, Aditi; Yu, Qing; Gordish-Dressman, Heather; Nagaraju, Kanneboyina

    2014-01-01

    The open field activity monitoring system comprehensively assesses locomotor and behavioral activity levels of mice. It is a useful tool for assessing locomotive impairment in animal models of neuromuscular disease and efficacy of therapeutic drugs that may improve locomotion and/or muscle function. The open field activity measurement provides a different measure than muscle strength, which is commonly assessed by grip strength measurements. It can also show how drugs may affect other body systems as well when used with additional outcome measures. In addition, measures such as total distance traveled mirror the 6 min walk test, a clinical trial outcome measure. However, open field activity monitoring is also associated with significant challenges: Open field activity measurements vary according to animal strain, age, sex, and circadian rhythm. In addition, room temperature, humidity, lighting, noise, and even odor can affect assessment outcomes. Overall, this manuscript provides a well-tested and standardized open field activity SOP for preclinical trials in animal models of neuromuscular diseases. We provide a discussion of important considerations, typical results, data analysis, and detail the strengths and weaknesses of open field testing. In addition, we provide recommendations for optimal study design when using open field activity in a preclinical trial. PMID:25286313

  6. Tritherapy (Spinalon)-Elicited Spinal Locomotor Network Activation: Phase I-IIa Clinical Trial in Spinal Cord-Injured Patients

    DTIC Science & Technology

    2013-10-01

    PROTOCOL SPIN-01 Tri- therapy (SPINALON)-elicited spinal locomotor network activation: Phase I-Ila clinicaltrials in spinalcord-injured patients Clinical...STUDY) described in the Protocol SPIN-01 (PROTOCOL) being entitled: "Tri- therapy (SPINALON)-elicited spinal locomotor network activation: Phase I...Report SC100155 SPIN-01 Tri- therapy (SPINALON)-elicited spinal locomotor network activation: Phase I-IIa clinical trials in spinal cord-injured

  7. Seasonal changes in the synthesis of the neurosteroid 7alpha-hydroxypregnenolone stimulating locomotor activity in newts.

    PubMed

    Haraguchi, Shogo; Matsunaga, Masahiro; Koyama, Teppei; Do Rego, Jean-Luc; Tsutsui, Kazuyoshi

    2009-04-01

    We recently found that the newt brain actively produces 7alpha-hydroxypregnenolone, a novel amphibian neurosteroid stimulating locomotor activity. It is well known that locomotor activity of male newts increases during the breeding period. To understand the physiological role of 7alpha-hydroxypregnenolone, we investigated seasonal changes in 7alpha-hydroxypregnenolone synthesis in the brain of male newts. Interestingly, 7alpha-hydroxypregnenolone synthesis in the brain showed marked changes during the annual breeding cycle, with a maximal level in the breeding period when locomotor activity of male newts increases. These results suggest that 7alpha-hydroxypregnenolone induces seasonal locomotor changes in male newts.

  8. Locomotor activity and body temperature in selected mouse lines differing greatly in feed intake.

    PubMed

    Sojka, P A; Griess, R S; Nielsen, M K

    2013-08-01

    Locomotor activity, body temperature, feed intake, and BW were measured on 382 mature male mice sampled from lines previously selected (25 generations) for either high (MH) or low (ML) heat loss and an unselected control (MC). Animals were from all 3 independent replicates of the 3 lines and across 4 generations (68 through 71). Locomotor activity and body temperatures were obtained using implanted transmitters with data collection over 4 d following a 3-d postsurgery recovery period. Data were collected every minute and then averaged into 30-min periods, thus providing 192 data points for each mouse. Least-squares means for feed intake adjusted for BW (Feed/BW, feed·BW(-1)·d(-1), g/g) were 0.1586, 0.1234, and 0.1125 (±0.0022) for MH, MC, and ML, respectively, with line being a highly significant source of variation (P < 0.0003). Line effects for locomotor activity counts, transformed to the 0.25 power for analysis, were significantly different, with MH mice being 2.1 times more active than ML mice (P < 0.003); MC mice were intermediate. Differences in body temperature were significant for both line (P < 0.03) and day effects (P < 0.001), with a 0.32°C difference between the MH and ML lines. Fourier series analysis used the combined significant periodicities of 24, 18, 12, 9, 6, and 3 h to describe circadian cycles for activity and body temperature. All 3 lines expressed daily peaks in body temperature and locomotor activity ∼3 h into darkness and ∼2 h after lights were turned on. There was a stronger relationship between locomotor activity and Feed/BW (P < 0.0001) than between body temperature and Feed/BW (P < 0.01); differences between lines in locomotor activity and body temperature explained 17% and 3%, respectively, of differences between lines in Feed/BW. Thus, line differences in locomotor activity contribute to line differences in maintenance, but approximately 80% of the differences between the MH and ML selection lines in Feed/BW remains

  9. Nicotine-induced place conditioning and locomotor activity in an adolescent animal model of attention deficit/hyperactivity disorder (ADHD).

    PubMed

    Watterson, Elizabeth; Daniels, Carter W; Watterson, Lucas R; Mazur, Gabriel J; Brackney, Ryan J; Olive, M Foster; Sanabria, Federico

    2015-09-15

    Attention deficit/hyperactivity disorder (ADHD) is a risk factor for tobacco use and dependence. This study examines the responsiveness to nicotine of an adolescent model of ADHD, the spontaneously hypertensive rat (SHR). The conditioned place preference (CPP) procedure was used to assess nicotine-induced locomotion and conditioned reward in SHR and the Wistar Kyoto (WKY) control strain over a range of nicotine doses (0.0, 0.1, 0.3 and 0.6 mg/kg). Prior to conditioning, SHRs were more active and less biased toward one side of the CPP chamber than WKY rats. Following conditioning, SHRs developed CPP to the highest dose of nicotine (0.6 mg/kg), whereas WKYs did not develop CPP to any nicotine dose tested. During conditioning, SHRs displayed greater locomotor activity in the nicotine-paired compartment than in the saline-paired compartment across conditioning trials. SHRs that received nicotine (0.1, 0.3, 0.6 mg/kg) in the nicotine-paired compartment showed an increase in locomotor activity between conditioning trials. Nicotine did not significantly affect WKY locomotor activity. These findings suggest that the SHR strain is a suitable model for studying ADHD-related nicotine use and dependence, but highlights potential limitations of the WKY control strain and the CPP procedure for modeling ADHD-related nicotine reward.

  10. A novel approach in automatic estimation of rats' loco-motor activity

    NASA Astrophysics Data System (ADS)

    Anishchenko, Lesya N.; Ivashov, Sergey I.; Vasiliev, Igor A.

    2014-05-01

    The paper contains feasibility study of a method for bioradar monitoring of small laboratory animals loco-motor activity improved by using a corner reflector. It presents results of mathematical simulation of bioradar signal reflection from the animal with the help of finite-difference time-domain method. It was proved both by theoretical and experimental results that a corner reflector usage during monitoring of small laboratory animals loco-motor activity improved the effectiveness of the method by reducing the dependency of the power flux density level from the distance between antennas block and the object.

  11. Actions of incretin metabolites on locomotor activity, cognitive function and in vivo hippocampal synaptic plasticity in high fat fed mice.

    PubMed

    Porter, David; Faivre, Emilie; Flatt, Peter R; Hölscher, Christian; Gault, Victor A

    2012-05-01

    The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) improve markers of cognitive function in obesity-diabetes, however, both are rapidly degraded to their major metabolites, GLP-1(9-36)amide and GIP(3-42), respectively. Therefore, the present study investigated effects of GLP-1(9-36)amide and GIP(3-42) on locomotor activity, cognitive function and hippocampal synaptic plasticity in mice with diet-induced obesity and insulin resistance. High-fat fed Swiss TO mice treated with GLP-1(9-36)amide, GIP(3-42) or exendin(9-39)amide (twice-daily for 60 days) did not exhibit any changes in bodyweight, non-fasting plasma glucose and plasma insulin concentrations or glucose tolerance compared with high-fat saline controls. Similarly, locomotor and feeding activity, O(2) consumption, CO(2) production, respiratory exchange ratio and energy expenditure were not altered by chronic treatment with incretin metabolites. Administration of the truncated metabolites did not alter general behavior in an open field test or learning and memory ability as recorded during an object recognition test. High-fat mice exhibited a significant impairment in hippocampal long-term potentiation (LTP) which was not affected by treatment with incretin metabolites. These data indicate that incretin metabolites do not influence locomotor activity, cognitive function and hippocampal synaptic plasticity when administered at pharmacological doses to mice fed a high-fat diet.

  12. Conditioned place preference and locomotor activity in response to methylphenidate, amphetamine and cocaine in mice lacking dopamine D4 receptors

    SciTech Connect

    Thanos, P.K.; Thanos, P.K.; Bermeo, C.; Rubinstein, M.; Suchland, K.L.; Wang, G.-J.; Grandy, D.K.; Volkow, N.D.

    2010-05-01

    Methylphenidate (MP) and amphetamine (AMPH) are the most frequently prescribed medications for the treatment of attention-deficit/hyperactivity disorder (ADHD). Both drugs are believed to derive their therapeutic benefit by virtue of their dopamine (DA)-enhancing effects, yet an explanation for the observation that some patients with ADHD respond well to one medication but not to the other remains elusive. The dopaminergic effects of MP and AMPH are also thought to underlie their reinforcing properties and ultimately their abuse. Polymorphisms in the human gene that codes for the DA D4 receptor (D4R) have been repeatedly associated with ADHD and may correlate with the therapeutic as well as the reinforcing effects of responses to these psychostimulant medications. Conditioned place preference (CPP) for MP, AMPH and cocaine were evaluated in wild-type (WT) mice and their genetically engineered littermates, congenic on the C57Bl/6J background, that completely lack D4Rs (knockout or KO). In addition, the locomotor activity in these mice during the conditioning phase of CPP was tested in the CPP chambers. D4 receptor KO and WT mice showed CPP and increased locomotor activity in response to each of the three psychostimulants tested. D4R differentially modulates the CPP responses to MP, AMPH and cocaine. While the D4R genotype affected CPP responses to MP (high dose only) and AMPH (low dose only) it had no effects on cocaine. Inasmuch as CPP is considered an indicator of sensitivity to reinforcing responses to drugs these data suggest a significant but limited role of D4Rs in modulating conditioning responses to MP and AMPH. In the locomotor test, D4 receptor KO mice displayed attenuated increases in AMPH-induced locomotor activity whereas responses to cocaine and MP did not differ. These results suggest distinct mechanisms for D4 receptor modulation of the reinforcing (perhaps via attenuating dopaminergic signalling) and locomotor properties of these stimulant drugs

  13. The hyperactive syndrome: metanalysis of genetic alterations, pharmacological treatments and brain lesions which increase locomotor activity.

    PubMed

    Viggiano, Davide

    2008-12-01

    The large number of transgenic mice realized thus far with different purposes allows addressing new questions, such as which animals, over the entire set of transgenic animals, show a specific behavioural abnormality. In the present study, we have used a metanalytical approach to organize a database of genetic modifications, brain lesions and pharmacological interventions that increase locomotor activity in animal models. To further understand the resulting data set, we have organized a second database of the alterations (genetic, pharmacological or brain lesions) that reduce locomotor activity. Using this approach, we estimated that 1.56% of the genes in the genome yield to hyperactivity and 0.75% of genes produce hypoactivity when altered. These genes have been classified into genes for neurotransmitter systems, hormonal, metabolic systems, ion channels, structural proteins, transcription factors, second messengers and growth factors. Finally, two additional classes included animals with neurodegeneration and inner ear abnormalities. The analysis of the database revealed several unexpected findings. First, the genes that, when mutated, induce hyperactive behaviour do not pertain to a single neurotransmitter system. In fact, alterations in most neurotransmitter systems can give rise to a hyperactive phenotype. In contrast, fewer changes can decrease locomotor activity. Specifically, genetic and pharmacological alterations that enhance the dopamine, orexin, histamine, cannabinoids systems or that antagonize the cholinergic system induce an increase in locomotor activity. Similarly, imbalances in the two main neurotransmitters of the nervous system, GABA and glutamate usually result in hyperactive behaviour. It is remarkable that no genetic alterations pertaining to the GABA system have been reported to reduce locomotor behaviour. Other neurotransmitters, such as norepinephrine and serotonin, have a more complex influence. For instance, a decrease in norepinephrine

  14. Chronic nicotine alters cannabinoid-mediated locomotor activity and receptor density in periadolescent but not adult male rats

    PubMed Central

    Werling, Linda L.; Reed, Stephanie Collins; Wade, Dean; Izenwasser, Sari

    2009-01-01

    A significant number of youths use cigarettes, and more than half of the youths who smoke daily also use illicit drugs. The focus of these studies is on how exposure to nicotine affects subsequent responses to both nicotine and cannabinoids in adolescents compared with adults. We have shown previously that chronic treatment with nicotine produces sensitization to its locomotor-activating effects in female and adult rats but not male adolescent rats. To better understand the effects of nicotine on adolescent and adult rats, rats were injected with nicotine or saline for 7 days and, on day 8, either challenged with delta-9-tetrahydrocannabinol (Δ9-THC) or the cannabinoid agonist CP 55,940 and tested for locomotor activity, or the brains were removed for quantitative autoradiography studies of the cannabinoid1 receptor. A separate group of rats was treated with nicotine plus the cannabinoid antagonist AM 251 and then challenged with CP 55,940. In adolescent male rats, nicotine administration led to sensitization to the locomotor-decreasing effects of both Δ9-THC and CP 55,940, but in adult male rats, the response to either drug was unchanged compared to controls. The effect of nicotine on CP 55,940-mediated locomotor activity was blocked by co-administration of AM 251 with the nicotine. Further, cannabinoid receptor density was increased in the prelimbic prefrontal cortex, ventral tegmental area, and select regions of the hippocampus in adolescent male rats pretreated with nicotine compared to vehicle-treated controls. There were no significant changes in cannabinoid receptor binding, however, in any of the brain regions examined in adult males pretreated with nicotine. The prelimbic prefrontal cortex and the hippocampus have been shown previously to be involved in stimulant reinforcement; thus it is possible that these changes contribute to the unique behavioral effects of chronic nicotine and subsequent drug administration in adolescents compared with adults. PMID

  15. METHAMPHETAMINE TREATMENT CAUSES DELAYED DECREASE IN NOVELTY-INDUCED LOCOMOTOR ACTIVITY IN MICE

    PubMed Central

    Krasnova, Irina N.; Hodges, Amber B.; Ladenheim, Bruce; Rhoades, Raina; Phillip, Crystal G.; Ceseňa, Angela; Ivanova, Ekaterina; Hohmann, Christine F.; Cadet, Jean Lud

    2009-01-01

    Methamphetamine (METH) is a psychostimulant that causes damage to dopamine (DA) axons and to non-monoaminergic neurons in the brain. The aim of the present study was to investigate short- and long-term effects of neurotoxic METH treatment on novelty-induced locomotor activity in mice. Male BALB/c mice, 12–14 weeks old, were injected with saline or METH (i.p., 7.5 mg/kg × 4 times, every 2 hours). Behavior and neurotoxic effects were assessed at 10 days, 3 and 5 months following drug treatment. METH administration caused marked decreases in DA levels in the mouse striatum and cortex at 10 days post-drug. However, METH did not induce any changes in novelty-induced locomotor activity. At 3 and 5 months after treatment METH-exposed mice showed significant recovery of DA levels in the striatum and cortex. In contrast, these animals demonstrated significant decreases in locomotor activity at 5 months in comparison to aged-matched control mice. Further assessment of METH toxicity using TUNEL staining showed that the drug induced increased cell death in the striatum and cortex at 3 days after administration. Taken together, these data suggest that delayed deficits in novelty-induced locomotor activity observed in METH exposed animals are not due to neurodegeneration of DA terminals but to combined effects of METH and age-dependent dysfunction of non-DA intrinsic striatal and/or corticostriatal neurons. PMID:19559060

  16. Drugs that Target Dopamine Receptors: Changes in Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    As part of an effort at the US Environmental Protection Agency to develop a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae. This includes assessing the acute effects of drugs known...

  17. CHARACTERIZATION OF LOCOMOTOR ACTIVITY OF ZEBRAFISH LARVAE: TEMPORAL VARIABILITY AND PHOTORESPONSE.

    EPA Science Inventory

    As part of EPA’s effort to develop a rapid, in vivo, vertebrate screen for toxic chemicals, we have begun research to characterize the locomotor activity of 6-day post-fertilization (dpf) zebrafish (Danio rerio) larvae. Larvae were individually housed and tested in 96-well micro...

  18. The Effects of Acute Exposure to Neuroactive Drugs on the Locomotor Activity of Larval Zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae using prototypic drugs that act on the central nervous system. Initially, we chose to define the beh...

  19. The role of the laterodorsal tegmental nucleus in methamphetamine conditioned place preference and locomotor activity.

    PubMed

    Dobbs, Lauren K; Cunningham, Christopher L

    2014-05-15

    Methamphetamine (METH) indirectly stimulates the laterodorsal tegmental nucleus (LDT) acetylcholine (ACh) neurons to increase ACh within the ventral tegmental area (VTA). LDT ACh inhibition attenuates METH and saline locomotor activity. The aim of these experiments was to determine whether LDT ACh contributes to METH conditioned place preference (CPP). C57BL/6J mice received a bilateral electrolytic or sham lesion of the LDT. After recovery, mice received alternating pairings of METH (0.5 mg/kg) and saline with distinct tactile floor cues over 8 days. During preference tests, mice were given access to both floor types and time spent on each was recorded. Mice were tested again after exposure to both extinction and reconditioning trials. Brains were then processed for choline acetyltransferase immunohistochemistry to label LDT ACh neurons. Lesioned mice had significantly fewer LDT ACh neurons and showed increased saline and METH locomotor activity during the first conditioning trial compared to sham mice. Locomotor activity (saline and METH) was negatively correlated with the number of LDT ACh neurons. Lesioned and sham mice showed similar METH CPP following conditioning, extinction and reconditioning trials. LDT ACh neurons are not necessary for METH reward as indexed by CPP, but may be important for basal and METH-induced locomotor activity.

  20. Developmental Exposure to a Dopaminergic Toxicant Produces Altered Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after developmental exposure to various classes of prototypic drugs that act on the central nervous system. ...

  1. Differential Effects of Inhaled Toluene on Locomotor Activity in Adolescent and Adult Rats

    PubMed Central

    Batis, Jeffery C.; Hannigan, John H.; Bowen, Scott E.

    2010-01-01

    Inhalant abuse is a world-wide public health concern among adolescents. Most preclinical studies have assessed inhalant effects in adult animals leaving unclear how behavioral effects differ in younger animals. We exposed adolescent (postnatal day [PN] 28) and adult (PN90) male rats to toluene using 1 of 3 exposure patterns. These patterns modeled those reported in toluene abuse in teens and varied concentration, number and length of exposures, as well as the inter-exposure interval. Animals were exposed repeatedly over 12 days to toluene concentrations of 0, 8,000 or 16,000 parts per million (ppm). Locomotor activity was quantified during toluene exposures and for 30 min following completion of the final daily toluene exposure. For each exposure pattern, there were significant toluene concentration-related increases and decreases in locomotor activity compared to the 0-ppm “air” controls at both ages. These changes depended upon when activity was measured – during or following exposure. Compared to adults, adolescents displayed greater locomotor activity on the first day and generally greater increases in activity over days than adults during toluene exposure. Adults displayed greater locomotor activity than adolescents in the “recovery” period following exposure on the first and subsequent days. Age group differences were clearest following the pattern of paced, brief (5-min) repeated binge exposures. The results suggest that locomotor behavior in rats during and following inhalation of high concentrations of toluene depends on age and the pattern of exposure. The results are consistent with dose-dependent shifts in sensitivity and sensitization or tolerance to repeated toluene in the adolescent animals compared to the adult animals. Alternate interpretations are possible and our interpretation is limited by the range of very high concentrations of toluene used. The results imply that both pharmacological and psychosocial factors contribute to the teen

  2. [On mechanism of functional changes in the organism of teenagers at different levels of locomotor activity].

    PubMed

    Mindubaeva, F A; Shukurov, F A; Salikhova, Y Y; Niyazova, Y I; Ramazanov, A K

    2015-02-01

    Comprehensive study of the cardiovascular system functional condition of 15-16 teenagers while in normal daily locomotor activity and in the mode of regular moderate physical activity was performed. The features of cerebral circulation and myocardium functional condition of teenagers are studied depending on initial tonus of the autonomic nervous system and locomotor activity level in the process of continuous step physical activity on tredmil. The condition of regulatory mechanisms, providing adaptation of teenagers in the conditions of modern school was studied. Research results showed, that elasticity of cerebrum arterial vessels, veins tone, venous outflow for teenagers not having regular physical activity, considerably mionectic. More adequate reaction of coronary blood flow in the process of physical activity is educed for the trained teenagers with the balanced autonomic regulation of cardiac rhythm. This group showed a higher level and regulation quality of organism reserve possibilities.

  3. Influences of acute ethanol exposure on locomotor activities of zebrafish larvae under different illumination.

    PubMed

    Guo, Ning; Lin, Jia; Peng, Xiaolan; Chen, Haojun; Zhang, Yinglan; Liu, Xiuyun; Li, Qiang

    2015-11-01

    Larval zebrafish present unique opportunities to study the behavioral responses of a model organism to environmental challenges during early developmental stages. The purpose of the current study was to investigate the locomotor activities of AB strain zebrafish larvae at 5 and 7 days post-fertilization (dpf) in response to light changes under the influence of ethanol, and to explore potential neurological mechanisms that are involved in ethanol intoxication. AB strain zebrafish larvae at both 5 and 7 dpf were treated with ethanol at 0% (control), 0.1%, 0.25%, 0.5%, 1%, and 2% (v/v%). The locomotor activities of the larvae during alternating light-dark challenges, as well as the locomotor responses immediately following the light transitions, were investigated. The levels of various neurotransmitters were also measured in selected ethanol-treated groups. The larvae at 5 and 7 dpf demonstrated similar patterns of locomotor responses to ethanol treatment. Ethanol treatment at 1% increased the swimming distances of the zebrafish larvae in the dark periods, but had no effect on the swimming distances in the light periods. In contrast, ethanol treatment at 2% increased the swimming distances in the light periods, but did not potentiate the swimming activity in the dark periods, compared to controls. Differences in the levels of neurotransmitters that are involved in norepinephrine, dopamine, and serotonin pathways were also observed in groups with different ethanol treatments. These results indicated the behavioral studies concerning the ethanol effects on locomotor activities of zebrafish larvae could be carried out as early as 5 dpf. The 1% and 2% ethanol-treated zebrafish larvae modeled ethanol effects at different intoxication states, and the differences in neurotransmitter levels suggested the involvement of various neurotransmitter pathways in different ethanol intoxication states.

  4. Effect of age and severity of cognitive dysfunction on spontaneous activity in pet dogs - part 1: locomotor and exploratory behaviour.

    PubMed

    Rosado, B; González-Martínez, A; Pesini, P; García-Belenguer, S; Palacio, J; Villegas, A; Suárez, M-L; Santamarina, G; Sarasa, M

    2012-11-01

    Age-related cognitive dysfunction syndrome (CDS) has been reported in dogs and it is considered a natural model for Alzheimer's disease in humans. Changes in spontaneous activity (including locomotor and exploratory behaviour) and social responsiveness have been related to the age and cognitive status of kennel-reared Beagle dogs. The aim of this study was to assess the influence of age and severity of CDS on locomotor and exploratory behaviour of privately owned dogs. This is the first part of a two-part report on spontaneous activity in pet dogs. An open-field (OF) test and a curiosity test were administered at baseline and 6 months later to young (1-4 years, n=9), middle-aged (5-8 years, n=9), cognitively unimpaired aged (≥ 9 years, n=31), and cognitively impaired aged ( ≥ 9 years, n=36) animals. Classification of cognitive status was carried out using an owner-based observational questionnaire, and in the cognitively impaired group, the dogs were categorised as having either mild or severe cognitive impairment. Dogs were recorded during sessions in the testing room and the video-recordings were subsequently analysed. The severity of CDS (but not age) influenced locomotion and exploratory behaviour so that the more severe the impairment, the higher the locomotor activity and frequency of corner-directed (aimless) behaviours, and the lower the frequency of door-aimed activities. Curiosity directed toward novel stimuli exhibited an age-dependent decline although severely affected animals displayed more sniffing episodes directed towards the objects. OF activity did not change after 6 months. Testing aged pet dogs for spontaneous behaviour might help to better characterise cognitively affected individuals.

  5. EPOC and the energetics of brief locomotor activity in Mus domesticus.

    PubMed

    Baker, E J; Gleeson, T T

    1998-02-01

    Excess post-exercise oxygen consumption (EPOC) is normally not considered in determinations of the metabolic cost of activity. This approach overlooks an important energetic cost that an animal incurs as a result of activity. To examine the importance of EPOC, we determined how the energetic cost of locomotion was affected by activity of short duration and high intensity. Mice were run at maximum speed on a treadmill while enclosed in an open-flow respirometry system. After sprinting for 5, 15, 30, or 60 sec, each mouse was allowed to recover while remaining enclosed in the respirometry chamber. Exercise oxygen consumption (EOC), the volume of oxygen consumed during the exercise, increased linearly with sprint duration. EPOC was determined as the volume of oxygen consumed after exercise ended until rest was reached. EPOC volumes were found to be constant following 5-60 sec of activity and accounted for > or = 90% of the total metabolic cost. The average EPOC volume of all treatments was 0.76 +/- 0.456 ml O2.gm-1. The net cost of activity (Cact), which considers both EOC and EPOC, decreased as sprint duration increased and varied between 500 ml O2.g-1.km-1 for 5 sec to 30 ml O2.g-1.km-1 for 60 sec of activity. The values for Cact were 15 to 250 times higher than traditional estimates of locomotor costs. From these data, it can be concluded that (1) EPOC is not affected by short exercise durations; (2) EPOC is an important energetic consideration when exercise durations are short; and (3) the metabolic costs of brief, vigorous locomotion may be much higher than previously estimated.

  6. Leptin-Dependent Control of Glucose Balance and Locomotor Activity by POMC Neurons

    PubMed Central

    Huo, Lihong; Gamber, Kevin; Greeley, Sarah; Silva, Jose; Huntoon, Nicholas; Leng, Xinghong; Bjørbæk, Christian

    2009-01-01

    Summary Leptin plays a pivotal role in regulation of energy balance. Via unknown central pathways leptin also affects peripheral glucose homeostasis and locomotor activity. We hypothesized that specifically Pro-opiomelanocortin (POMC) neurons mediate those actions. To examine this possibility we applied Cre-Lox technology to express leptin receptors (ObRb) exclusively in POMC neurons of the morbidly obese, profoundly diabetic, and severely hypoactive leptin receptor deficient Leprdb/db mice. We here show that expression of ObRb only in POMC neurons leads to a marked decrease in energy intake and a modest reduction in body weight in Leprdb/db mice. Remarkably, blood glucose levels are entirely normalized. This normalization occurs independently of changes in food intake and body weight. In addition, physical activity is greatly increased despite profound obesity. Our results suggest that leptin signaling exclusively in POMC neurons is sufficient to stimulate locomotion and prevent diabetes in the severely hypoactive and hyperglycemic obese Leprdb/db mice. PMID:19490908

  7. Withdrawal from THC during adolescence: sex differences in locomotor activity and anxiety.

    PubMed

    Harte-Hargrove, Lauren C; Dow-Edwards, Diana L

    2012-05-16

    Research suggests that the use and abuse of marijuana can be especially harmful if it occurs during adolescence, a period of vast developmental changes throughout the brain. Due to the localization of cannabinoid receptors within the limbic system and the established effects of cannabinoids on emotional states and anxiety levels of rats and humans, we studied the sex- and dose-related effects of Δ⁹-tetrahydrocannabinol (THC, the main psychoactive component in marijuana) on behavior and anxiety during spontaneous withdrawal. Male and female Sprague Dawley rats were administered 2, 7.5 or 15 mg/kg THC or vehicle from postnatal day 35-41 (approximating mid-adolescence in humans). Locomotor activity and anxiety-related behaviors were measured during drug administration and abstinence. THC caused significant dose-dependent locomotor depression during drug administration. Locomotor depression initially abated upon drug cessation, but re-emerged by the end of the abstinence period and was greater in female than male rats. We found sensitization to the locomotor-depressing effects of THC in middle- and high-dose rats and the subsequent development of tolerance in high-dose rats. The high dose of THC increased anxiety-like behaviors while the low dose decreased anxiety-like behaviors during drug administration, with females more sensitive to the anxiogenic effects of THC than males. During abstinence, females were again especially sensitive to the anxiogenic effects of THC. This study demonstrates sexually-dimorphic effects of THC on anxiety-related behaviors and locomotor activity during and after THC administration during adolescence. This information may be useful in the development of therapeutic approaches for the treatment of marijuana withdrawal in adolescents.

  8. Comparison of the locomotor activating effects of bicuculline infusions into the preoptic area and ventral pallidum

    PubMed Central

    Zahm, Daniel S.; Schwartz, Zachary M.; Lavezzi, Heather N.; Yetnikoff, Leora; Parsley, Kenneth P.

    2013-01-01

    Ambulatory locomotion in the rodent is robustly activated by unilateral infusions into the basal forebrain of type A gamma-aminobutyric acid (GABAA) receptor antagonists, such as bicuculline and picrotoxin. The present study was carried out to better localize the neuroanatomical substrate(s) underlying this effect. To accomplish this, differences in total locomotion accumulated during a 20 minute test period following bicuculline versus saline infusions in male Sprague-Dawley rats were calculated, rank ordered and mapped on a diagram of basal forebrain transposed from immunoprocessed sections. The most robust locomotor activation was elicited by bicuculline infusions clustered in rostral parts of the preoptic area. Unilateral infusions of bicuculline into the ventral pallidum produced an unanticipatedly diminutive activation of locomotion, which led us to evaluate bilateral ventral pallidal infusions, and these also produced only a small activation of locomotion, and, interestingly, a non-significant trend toward suppression of rearing. Subjects with bicuculline infused bilaterally into the ventral pallidum also exhibited persistent bouts of abnormal movements. Bicuculline infused unilaterally into other forebrain structures, including the bed nucleus of stria terminalis, caudate-putamen, globus pallidus, sublenticular extended amygdala and sublenticular substantia innominata, did not produce significant locomotor activation. Our data identify the rostral preoptic area as the main substrate for the locomotor activating effects of basal forebrain bicuculline infusions. In contrast, slight activation of locomotion and no effect on rearing accompanied unilateral and bilateral ventral pallidal infusions. Implications of these findings for forebrain processing of reward are discussed. PMID:23423460

  9. Characterization of sacral interneurons that mediate activation of locomotor pattern generators by sacrocaudal afferent input.

    PubMed

    Etlin, Alex; Finkel, Eran; Mor, Yoav; O'Donovan, Michael J; Anglister, Lili; Lev-Tov, Aharon

    2013-01-09

    Identification of the neural pathways involved in retraining the spinal central pattern generators (CPGs) by afferent input in the absence of descending supraspinal control is feasible in isolated rodent spinal cords where the locomotor CPGs are potently activated by sacrocaudal afferent (SCA) input. Here we study the involvement of sacral neurons projecting rostrally through the ventral funiculi (VF) in activation of the CPGs by sensory stimulation. Fluorescent labeling and immunostaining showed that VF neurons are innervated by primary afferents immunoreactive for vesicular glutamate transporters 1 and 2 and by intraspinal neurons. Calcium imaging revealed that 55% of the VF neurons were activated by SCA stimulation. The activity of VF neurons and the sacral and lumbar CPGs was abolished when non-NMDA receptors in the sacral segments were blocked by the antagonist CNQX. When sacral NMDA receptors were blocked by APV, the sacral CPGs were suppressed, VF neurons with nonrhythmic activity were recruited and a moderate-drive locomotor rhythm developed during SCA stimulation. In contrast, when the sacral CPGs were activated by SCA stimulation, rhythmic and nonrhythmic VF neurons were recruited and the locomotor rhythm was most powerful. The activity of 73 and 27% of the rhythmic VF neurons was in-phase with the ipsilateral and contralateral motor output, respectively. Collectively, our studies indicate that sacral VF neurons serve as a major link between SCA and the hindlimb CPGs and that the ability of SCA to induce stepping can be enhanced by the sacral CPGs. The nature of the ascending drive to lumbar CPGs, the identity of subpopulations of VF neurons, and their potential role in activating the locomotor rhythm are discussed.

  10. Effects of phthalate esters on the locomotor activity of the freshwater amphipod Gammarus pulex

    SciTech Connect

    Thuren, A. ); Woin, P. )

    1991-01-01

    Phthalates are of environmental concern owing to their large-scale annual production and to their ubiquitous use as additives in the manufacture of plastics. Among the phthalates, di-2-ethylhexyl phthalate (DEHP) and dibutylphthalate (DBP) are the most commonly used compounds. Phthalates are lipophilic with a relatively low water solubility and show low acute toxicity to fish and selectively toxic to cladocerans. Little is known, however, about their effects on the behavior, reproductive success or the growth of organisms. In this investigation of locomotor activity of G. pulex was studied under phthalate stress. The aim of the study was to determine the effects of phthalates on overall locomotor activity of G. pulex and the impact of long term exposure on diel activity.

  11. Locomotor-like activity generated by the neonatal mouse spinal cord.

    PubMed

    Bonnot, Agnès; Whelan, Patrick J; Mentis, George Z; O'Donovan, Michael J

    2002-10-01

    This report describes locomotor-like activity generated by the neonatal mouse spinal cord in vitro. We demonstrate that locomotor-like activity can be produced either spontaneously or by a train of stimuli applied to the dorsal roots or in the presence of bath-applied drugs. Calcium imaging of the motoneuron activity generated by a train of dorsal root stimuli revealed a rostrocaudally propagating component of the optical signal in the anterior lumbar (L1-L3) and in the caudal segments (S1-S4). We hypothesize that this spatio-temporal pattern arises from a rostrocaudal gradient of excitability in the relevant segments. Our experiments suggest that left/right reciprocal inhibition and NMDA-mediated oscillations are not essential mechanisms underlying rhythmogenesis in the neonatal mouse cord. Finally, our data are discussed in the context of other models of locomotion in lower and higher vertebrates.

  12. Melanin-concentrating hormone is necessary for olanzapine-inhibited locomotor activity in male mice

    PubMed Central

    Chee, Melissa J. S.; Douris, Nicholas; Forrow, Avery B.; Monnard, Arnaud; Lu, Shuangyu; Flaherty, Stephen E.; Adams, Andrew C.; Maratos-Flier, Eleftheria

    2015-01-01

    Olanzapine (OLZ), an atypical antipsychotic, can be effective in treating patients with restricting type anorexia nervosa who exercise excessively. Clinical improvements include weight gain and reduced pathological hyperactivity. However the neuronal populations and mechanisms underlying OLZ actions are not known. We studied the effects of OLZ on hyperactivity using male mice lacking the hypothalamic neuropeptide melanin-concentrating hormone (MCHKO) that are lean and hyperactive. We compared the in vivo effects of systemic or intra-accumbens nucleus (Acb) OLZ administration on locomotor activity in WT and MCHKO littermates. Acute systemic OLZ treatment in WT mice significantly reduced locomotor activity, an effect that is substantially attenuated in MCHKO mice. Furthermore, OLZ infusion directly into the Acb of WT mice reduced locomotor activity, but not in MCHKO mice. To identify contributing neuronal mechanisms, we assessed the effect of OLZ treatment on Acb synaptic transmission ex vivo and in vitro. Intraperitoneal OLZ treatment reduced Acb GABAergic activity in WT but not MCHKO neurons. This effect was also seen in vitro by applying OLZ to acute brain slices. OLZ reduced the frequency and amplitude of GABAergic activity that was more robust in WT than MCHKO Acb. These findings indicate that OLZ reduced Acb GABAergic transmission and that MCH is necessary for the hypolocomotor effects of OLZ. PMID:26092201

  13. QRFP and Its Receptors Regulate Locomotor Activity and Sleep in Zebrafish

    PubMed Central

    Chen, Audrey; Chiu, Cindy N.; Mosser, Eric A.; Kahn, Sohini; Spence, Rory

    2016-01-01

    The hypothalamus plays an important role in regulating sleep, but few hypothalamic sleep-promoting signaling pathways have been identified. Here we demonstrate a role for the neuropeptide QRFP (also known as P518 and 26RFa) and its receptors in regulating sleep in zebrafish, a diurnal vertebrate. We show that QRFP is expressed in ∼10 hypothalamic neurons in zebrafish larvae, which project to the hypothalamus, hindbrain, and spinal cord, including regions that express the two zebrafish QRFP receptor paralogs. We find that the overexpression of QRFP inhibits locomotor activity during the day, whereas mutation of qrfp or its receptors results in increased locomotor activity and decreased sleep during the day. Despite the restriction of these phenotypes to the day, the circadian clock does not regulate qrfp expression, and entrained circadian rhythms are not required for QRFP-induced rest. Instead, we find that QRFP overexpression decreases locomotor activity largely in a light-specific manner. Our results suggest that QRFP signaling plays an important role in promoting sleep and may underlie some aspects of hypothalamic sleep control. SIGNIFICANCE STATEMENT The hypothalamus is thought to play a key role in regulating sleep in vertebrate animals, but few sleep-promoting signaling pathways that function in the hypothalamus have been identified. Here we use the zebrafish, a diurnal vertebrate, to functionally and anatomically characterize the neuropeptide QRFP. We show that QRFP is exclusively expressed in a small number of neurons in the larval zebrafish hypothalamus that project widely in the brain. We also show that QRFP overexpression reduces locomotor activity, whereas animals that lack QRFP signaling are more active and sleep less. These results suggest that QRFP signaling participates in the hypothalamic regulation of sleep. PMID:26865608

  14. Diurnal locomotor activity and oxidative metabolism of the suprachiasmatic nucleus in two models of hepatic insufficiency.

    PubMed

    Lopez, Laudino; Cimadevilla, Jose M; Aller, Maria A; Arias, Jaime; Nava, M Paz; Arias, Jorge L

    2003-08-15

    Subjects with hepatic cirrhosis develop alterations of several rhythmic behavioural and biochemical patterns. Since most cirrhotic patients combine portal hypertension and hepatic impairment, our work aims to assess the extent to which rhythmical changes can be due to hepatic insufficiency or portal hypertension. This was done using two experimental models in rats, portacaval shunt model (PC) and portal hypertension by a triple stenosing ligature of the portal vein (PH). We assess diurnal locomotor activity and determine the oxidative metabolism of the suprachiasmatic nucleus (SCN) by histochemical determination of cytochrome oxidase (COX). The results show that animals with PC have altered diurnal locomotor rhythm compared to control and PH rats (p<0.001). They also present lower COX activity in the SCN (p<0.05). We conclude that rhythmic alterations are due to hepatic insufficiency and not to portal hypertension.

  15. Conditioned Reinforcement and Locomotor Activating Effects of Caffeine and Ethanol Combinations in Mice

    PubMed Central

    Hilbert, Megan L.T.; May, Christina E.; Griffin, William C.

    2013-01-01

    A growing trend among ethanol drinkers, especially young adults, is to combine caffeinated energy drinks with ethanol during a drinking episode. The primary active ingredient of these mixers is caffeine, which may significantly interact with ethanol. We tested the two hypotheses that caffeine would enhance ethanol-conditioned place preference and also enhance ethanol-stimulated locomotor activity. The interactive pharmacology of ethanol and caffeine was examined in C57BL/6J (B6) mice in a conditioned place preference procedure with 1.75 g/kg ethanol and 3 mg/kg caffeine. Additionally, we used B6 mice to evaluate ethanol/caffeine combinations on locomotor activity using 3 doses of ethanol (1.75, 2.5 and 3.25 g/kg) and 2 two doses of caffeine (3 and 15 mg/kg). Both ethanol and caffeine administered alone increased preference for the drug paired side, though the effect of caffeine was more modest than that of ethanol. The drug combination produced significant place preference itself, but this was not greater than that for ethanol alone. Additionally, the combination of caffeine and ethanol significantly increased locomotion compared to giving either drug alone. The effect was strongest with a stimulatory dose of ethanol (1.75 g/kg) and waned with increasing doses of ethanol. Thus, combinations of caffeine and ethanol had significant conditioned reinforcing and locomotor activating effects in mice. PMID:23872371

  16. Chromosome 1 replacement increases brain orexins and antidepressive measures without increasing locomotor activity.

    PubMed

    Feng, Pingfu; Hu, Yufen; Vurbic, Drina; Akladious, Afaf; Strohl, Kingman P

    2014-12-01

    Decreased orexin level has been well demonstrated in patients suffering from narcolepsy, depression accompanied with suicide attempt; obstructive sleep apnea and comorbidity were also demonstrated in these diseases. As C57BL/6J (B6) mice are more "depressed" and have lower brain orexins than A/J mice, B6 mice having chromosome 1 replacement (B6A1 mice) might have restored orexin levels and less depressive behavior. We studied the behavior of 4-6 month old B6, A/J and B6A1 mice with forced swim, tail suspension, and locomotor activity tests. The animals were then sacrificed and hypothalamus and medullas dissected from brain tissue. Orexins-A and -B were determined by radioimmunoassay. Compared with A/J mice, B6 mice displayed several signs of depression, including increased immobility, increased locomotors activity, and decreased orexin A and -B levels in both the hypothalamus and medulla. Compared to B6 mice, B6A1 mice exhibited significantly higher levels of orexins-A and -B in both brain regions. B6A1 mice also exhibited antidepressive features in most of measured variables, including decreased locomotor activity, decreased immobility and increased swim in tail suspension test; compared with B6 mice, however. B6A1 mice also reversed immobility in the early phase of the swim test. In summary, B6 mice exhibited depressive attributes compared with A/J mice, including increased locomotor activity, greater immobility, and decreased brain orexins, these were largely reversed in B6A1 mice. We conclude that orexin levels modulate these B6 behaviors, likely due to expression of A/J alleles on Chromosome 1.

  17. Music and methamphetamine: conditioned cue-induced increases in locomotor activity and dopamine release in rats.

    PubMed

    Polston, J E; Rubbinaccio, H Y; Morra, J T; Sell, E M; Glick, S D

    2011-03-01

    Associations between drugs of abuse and cues facilitate the acquisition and maintenance of addictive behaviors. Although significant research has been done to elucidate the role that simple discriminative or discrete conditioned stimuli (e.g., a tone or a light) play in addiction, less is known about complex environmental cues. The purpose of the present study was to examine the role of a musical conditioned stimulus by assessing locomotor activity and in vivo microdialysis. Two groups of rats were given non-contingent injections of methamphetamine (1.0 mg/kg) or vehicle and placed in standard conditioning chambers. During these conditioning sessions both groups were exposed to a continuous conditioned stimulus, in the form of a musical selection ("Four" by Miles Davis) played repeatedly for 90 min. After seven consecutive conditioning days subjects were given one day of rest, and subsequently tested for locomotor activity or dopamine release in the absence of drugs while the musical conditioned stimulus was continually present. The brain regions examined included the basolateral amygdala, nucleus accumbens, and prefrontal cortex. The results show that music is an effective contextual conditioned stimulus, significantly increasing locomotor activity after repeated association with methamphetamine. Furthermore, this musical conditioned stimulus significantly increased extracellular dopamine levels in the basolateral amygdala and nucleus accumbens. These findings support other evidence showing the importance of these brain regions in conditioned learning paradigms, and demonstrate that music is an effective conditioned stimulus warranting further investigation.

  18. Development and characterization of an equine behaviour chamber and the effects of amitraz and detomidine on spontaneous locomotor activity.

    PubMed

    Harkins, J D; Queiroz-Neto, A; Mundy, G D; West, D; Tobin, T

    1997-10-01

    This report describes the development of a behaviour chamber and the validation of the chamber of measure locomotor activity of a horse. Locomotor activity was detected by four Mini-beam sensors and recorded on a data logger every 5 min for 22 h. Horses were more active during daytime than in the evening, which was at least partially related to human activity in their surroundings. To validate the ability of the chambers to detect changes in activity, fentanyl citrate and xylazine HCl, agents well-characterized as a stimulant and a depressant, respectively, were administered to five horses. Fentanyl citrate (0.016 mg/kg) significantly increased locomotor activity which persisted for 30 min. Xylazine HCl (1 mg/kg) significantly reduced locomotor activity for 90 min. Amitraz produced a dose-dependent decrease in locomotor activity, lasting 75 min for the 0.05 mg/kg dose, 120 min for the 0.10 mg/kg dose, and 180 min for the 0.15 mg/kg dose. In a separate experiment, yohimbine administration immediately reversed the sedative effect of amitraz. This suggests there is a similarity in the mode of action of amitraz, xylazine and detomidine, as yohimbine acts primarily by blocking central alpha 2 -adrenoceptors that are stimulated by agents like xylazine. There was also a significant decrease in locomotor activity following injection of detomidine (0.02, 0.04 and 0.08 mg/kg) for 1.5, 3.5 and 5.0 h, respectively. The locomotor chamber is a useful, sensitive and highly reproducible tool for measuring spontaneous locomotor activity in the horse, which allows investigators to determine an agent's average time of onset, duration and intensity of effect on movement.

  19. Catalase inhibition in the Arcuate nucleus blocks ethanol effects on the locomotor activity of rats.

    PubMed

    Sanchis-Segura, Carles; Correa, Mercé; Miquel, Marta; Aragon, Carlos M G

    2005-03-07

    Previous studies have demonstrated that there is a bidirectional modulation of ethanol-induced locomotion produced by drugs that regulate brain catalase activity. In the present study we have assessed the effect in rats of intraperitoneal, intraventricular or intracraneal administration of the catalase inhibitor sodium azide in the locomotor changes observed after ethanol (1 g/kg) administration. Our results show that sodium azide prevents the effects of ethanol in rats locomotion not only when sodium azide was systemically administered but also when it was intraventricularly injected, then confirming that the interaction between catalase and ethanol takes place in Central Nervous System (CNS). Even more interestingly, the same results were observed when sodium azide administration was restricted to the hypothalamic Arcuate nucleus (ARC), a brain region which has one of the highest levels of expression of catalase. Therefore, the results of the present study not only confirm a role for brain catalase in the mediation of ethanol-induced locomotor changes in rodents but also point to the ARC as a major neuroanatomical location for this interaction. These results are in agreement with our reports showing that ethanol-induced locomotor changes are clearly dependent of the ARC integrity and, especially of the POMc-synthesising neurons of this nucleus. According to these data we propose a model in which ethanol oxidation via catalase could produce acetaldehyde into the ARC and to promote a release of beta-endorphins that would activate opioid receptors to produce locomotion and other ethanol-induced neurobehavioural changes.

  20. Alterations in locomotor activity induced by radioprotective doses of 16,16-dimethyl prostaglandin E2

    SciTech Connect

    Landauer, M.R.; Walden, T.L.; Davis, H.D.; Dominitz, J.A.

    1987-01-01

    16,16-Dimethyl prostaglandin E2 (DiPGE2) is an effective radioprotectant when administered before irradiation. A notable side effect of this compound is sedation. In separate experiments, the dose-response determinations of the time course of locomotor activity and 30-day survival after 10 Gy gamma irradiation (LD100) were made. Adult male CD2F1 mice were injected subcutaneously with vehicle or DiPGE2 in doses ranging from 0.01 to 40 micrograms per mouse. A dose of 0.01 micrograms did not result in alterations in locomotor behaviour or enhance survival. Doses greater than 1 microgram produced ataxia and enhanced radiation survival in a dose-dependent fashion. Full recovery of locomotor activity did not occur until 6 and 30 hr after injection for the 10 microgram and 40 microgram groups, respectively. Radioprotection was observed when DiPGE2 was administered preirradiation but not postirradiation. Doses of 1 and 10 micrograms were maximally effective as a radioprotectant if injected 5 min prior to irradiation (80%-90% survival). A dose of 40 micrograms resulted in 100% survival when injected 5-30 min before irradiation. Therefore, increasing doses of DiPGE2 resulted in an enhanced effectiveness as a radioprotectant. However, the doses that were the most radioprotective were also the most debilitating to the animal.

  1. Striatal dopamine release and biphasic pattern of locomotor and motor activity under gas narcosis.

    PubMed

    Balon, Norbert; Risso, Jean-Jacques; Blanc, François; Rostain, Jean-Claude; Weiss, Michel

    2003-05-02

    Inert gas narcosis is a neurological syndrome appearing when humans or animals are exposed to hyperbaric inert gases (nitrogen, argon) composed by motor and cognitive impairments. Inert gas narcosis induces a decrease of the dopamine release at the striatum level, structure involved in the regulation of the extrapyramidal motricity. We have investigated, in freely moving rats exposed to different narcotic conditions, the relationship between the locomotor and motor activity and the striatal dopamine release, using respectively a computerized device that enables a quantitative analysis of this behavioural disturbance and voltammetry. The use of 3 MPa of nitrogen, 2 MPa of argon and 0.1 MPa of nitrous oxide, revealed after a transient phase of hyperactivity, a lower level of the locomotor and motor activity, in relation with the decrease of the striatal dopamine release. It is concluded that the striatal dopamine decrease could be related to the decrease of the locomotor and motor hyperactivity, but that other(s) neurotransmitter(s) could be primarily involved in the behavioural motor disturbances induced by narcotics. This biphasic effect could be of major importance for future pharmacological investigations, and motor categorization, on the basic mechanisms of inert gas at pressure.

  2. Removing sensory input disrupts spinal locomotor activity in the early postnatal period

    PubMed Central

    Acevedo, JeanMarie; Díaz-Ríos, Manuel

    2013-01-01

    Motor patterns driving rhythmic movements of our lower limbs during walking are generated by groups of neurons within the spinal cord, called central pattern generators (CPGs). After suffering a spinal cord injury (SCI), many descending fibers from our brain are severed or become nonfunctional which leaves the spinal CPG network without its initiating drive. Recent studies are focusing on the importance of maintaining sensory stimulation to the legs on SCI patients as a way to initiate and control the CPG locomotor network. We began assessing the role of sensory feedback to the locomotor CPG network by using a neonatal mouse spinal cord preparation were the lower limbs are still attached. Removing sensory feedback coming from the hindlimbs by way of a lower lumbar transection or by ventral root denervation revealed a positive correlation in the ability of sensory input deprivation to disrupt ongoing locomotor activity on older versus younger animals. The differences in the motor responses as a function of age could be correlated with the loss of excitatory activity from sensory afferents. Continued studies on this field could eventually provide key information that translates in the design of novel therapeutic strategies to treat patients that have suffered a SCI. PMID:24043359

  3. Analysis of the locomotor activity of a nocturnal desert lizard (Reptilia: Gekkonidae: Teratoscincus scincus) under varying moonlight.

    PubMed

    Seligmann, Hervé; Anderson, Steven C; Autumn, Kellar; Bouskila, Amos; Saf, Rachel; Tuniyev, Boris S; Werner, Yehudah L

    2007-01-01

    1. This project seeks to identify determinants of the variation observed in the foraging behavior of predatory animals, especially in moonlight, using a lizard as a model. 2. Moonlight generally enhances the foraging efficiency of nocturnal visual predators and often depresses the locomotor activity of prey animals. Previous evidence has indicated for three different nocturnal species of smallish gecko lizards that they respond to moonlight by increasing their activity. 3. In this study some aspects of the foraging activity of the somewhat larger nocturnal psammophilous Teratoscincus scincus, observed near Repetek and Ashgabat, Turkmenistan, were significantly depressed by moonlight, while several confounding factors (sex, maturity, size, sand temperature, hour, prior handling and observer effect) were taken into account. 4. This behavioral difference may relate to the eye size of the various species. 5. Additionally, a novel method of analyzing foraging behavior shows that in this species the duration of moves increases the duration of subsequent stationary pauses. Measurement of locomotor speed, yielding an average speed of 220% of the maximum aerobic speed, indicates a need for these pauses. Secondarily, pause duration decreases the duration of subsequent moves, precluding escalation of move duration. 6. The results of this and related projects advocate the taking into account of physiological and environmental factors that may affect an animal's foraging behavior.

  4. Effect of Environmental Conditions and Toxic Compounds on the Locomotor Activity of Pediculus humanus capitis (Phthiraptera: Pediculidae).

    PubMed

    Ortega-Insaurralde, I; Toloza, A C; Gonzalez-Audino, P; Mougabure-Cueto, G A; Alvarez-Costa, A; Roca-Acevedo, G; Picollo, M I

    2015-09-01

    In this work, we evaluated the effect of environmental variables such as temperature, humidity, and light on the locomotor activity of Pediculus humanus capitis. In addition, we used selected conditions of temperature, humidity, and light to study the effects of cypermethrin and N,N-diethyl-3-methylbenzamide (DEET) on the locomotor activity of head lice. Head lice increased their locomotor activity in an arena at 30°C compared with activity at 20°C. When we tested the influence of the humidity level, the locomotor activity of head lice showed no significant differences related to humidity level, both at 30°C and 20°C. Concerning light influence, we observed that the higher the intensity of light, the slower the movement of head lice. We also demonstrated that sublethal doses of toxics may alter locomotor activity in adults of head lice. Sublethal doses of cypermethrin induced hyperactivated responses in adult head lice. Sublethal doses of DEET evocated hypoactivated responses in head lice. The observation of stereotyped behavior in head lice elicited by toxic compounds proved that measuring locomotor activity in an experimental set-up where environmental conditions are controlled would be appropriate to evaluate compounds of biological importance, such as molecules involved in the host-parasite interaction and intraspecific relationships.

  5. Substrate diameter and compliance affect the gripping strategies and locomotor mode of climbing boa constrictors.

    PubMed

    Byrnes, Greg; Jayne, Bruce C

    2010-12-15

    Arboreal habitats pose unique challenges for locomotion as a result of their narrow cylindrical surfaces and discontinuities between branches. Decreased diameter of branches increases compliance, which can pose additional challenges, including effects on stability and energy damping. However, the combined effects of substrate diameter and compliance are poorly understood for any animal. We quantified performance, kinematics and substrate deformation while boa constrictors (Boa constrictor) climbed vertical ropes with three diameters (3, 6 and 9 mm) and four tensions (0.5, 1.0, 1.5 and 2.0 body weights). Mean forward velocity decreased significantly with both decreased diameter and increased compliance. Both diameter and compliance had numerous effects on locomotor kinematics, but diameter had larger and more pervasive effects than compliance. Locomotion on the largest diameter had a larger forward excursion per cycle, and the locomotor mode and gripping strategy differed from that on the smaller diameters. On larger diameters, snakes primarily applied opposing forces at the same location on the rope to grip. By contrast, on smaller diameters forces were applied in opposite directions at different locations along the rope, resulting in increased rope deformation. Although energy is likely to be lost during deformation, snakes might use increased surface deformation as a strategy to enhance their ability to grip.

  6. Effects of feeding schedule on locomotor activity rhythms and stress response in sea bream.

    PubMed

    Sánchez, J A; López-Olmeda, J F; Blanco-Vives, B; Sánchez-Vázquez, F J

    2009-08-04

    Feeding cycles entrain biological rhythms, which enable animals to anticipate feeding times and so maximize food utilization and welfare. In this article, the effect of mealtime was investigated in two groups of sea bream (Sparus aurata): one group received a single daily meal at random times during the light period (random daytime feeding, RDF), whereas the other group received the meal during the light period but at the same time (scheduled daytime feeding, SDF). All the fish showed diurnal behavior, although the SDF group showed a lower percentage of diurnalism (84.4% vs. 79.5% in RDF and SDF respectively) and developed food anticipatory activity some hours before the mealtime. In addition, the mean daily locomotor activity of the RDF group was significantly higher than that of the SDF group (3132 vs. 2654 counts/day, respectively). Although the mean weight differed between both groups on day 30 (115.7 g and 125.6 g in RDF and SDF respectively), these differences had disappeared by day 60. Plasma cortisol and glucose significantly differed in both groups (cortisol: 71.8 vs. 8.7 ng/ml, glucose: 53.7 vs. 43.8 mg/dl in RDF and SDF, respectively), whereas lactate did not differ significantly. The results obtained suggest that altering the feeding time (scheduled vs. random) affects the behavior and physiology of sea bream, indicating that a single daily feeding cycle (compared to random) is beneficial for fish welfare because they can prepare themselves for the forthcoming feed.

  7. Locomotor activity and tissue levels following acute administration of lambda- and gamma-cyhalothrin in rats.

    PubMed

    Moser, Virginia C; Liu, Zhiwei; Schlosser, Christopher; Spanogle, Terri L; Chandrasekaran, Appavu; McDaniel, Katherine L

    2016-12-15

    Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metrics. Products of cyhalothrin, a type II pyrethroid, include mixtures of isomers (e.g., λ-cyhalothrin) as well as enriched active isomers (e.g., γ-cyhalothrin). We measured acute changes in locomotor activity in adult male rats and directly correlated these changes to peak brain and plasma concentrations of λ- and γ-cyhalothrin using a within-subject design. One-hour locomotor activity studies were conducted 1.5h after oral gavage dosing, and immediately thereafter plasma and brains were collected for analyzing tissue levels using LC/MS/MS methods. Both isomers produced dose-related decreases in activity counts, and the effective dose range for γ-cyhalothrin was lower than for λ-cyhalothrin. Doses calculated to decrease activity by 50% were 2-fold lower for the γ-isomer (1.29mg/kg) compared to λ-cyhalothrin (2.65mg/kg). Salivation, typical of type II pyrethroids, was also observed at lower doses of γ-cyhalothrin. Administered dose correlated well with brain and plasma concentrations, which furthermore showed good correlations with activity changes. Brain and plasma levels were tightly correlated across doses. While γ-cyhalothrin was 2-fold more potent based on administered dose, the differences based on internal concentrations were less, with γ-cyhalothrin being 1.3- to 1.6-fold more potent than λ-cyhalothrin. These potency differences are consistent with the purity of the λ-isomer (approximately 43%) compared to the enriched isomer γ-cyhalothrin (approximately 98%). Thus, administered dose as well as differences in cyhalothrin isomers is a good predictor of behavioral effects.

  8. Analysis of Indonesian Spice Essential Oil Compounds That Inhibit Locomotor Activity in Mice

    PubMed Central

    Muchtaridi; Diantini, Adjeng; Subarnas, Anas

    2011-01-01

    Some fragrance components of spices used for cooking are known to have an effect on human behavior. The aim of this investigation was to examine the effect of the essential oils of basil (Ocimum formacitratum L.) leaves, lemongrass (Cymbopogon citrates L.) herbs, ki lemo (Litsea cubeba L.) bark, and laja gowah (Alpinia malaccencis Roxb.) rhizomes on locomotor activity in mice and identify the active component(s) that might be responsible for the activity. The effect of the essential oils was studied by a wheel cage method and the active compounds of the essential oils were identified by GC/MS analysis. The essential oils were administered by inhalation at doses of 0.1, 0.3, and 0.5 mL/cage. The results showed that the four essential oils had inhibitory effects on locomotor activity in mice. Inhalation of the essential oils of basil leaves, lemongrass herbs, ki lemo bark, and laja gowah rhizomes showed the highest inhibitory activity at doses of 0.5 (57.64%), 0.1 (55.72%), 0.5 (60.75%), and 0.1 mL/cage (47.09%), respectively. The major volatile compounds 1,8-cineole, α-terpineol, 4-terpineol, citronelol, citronelal, and methyl cinnamate were identified in blood plasma of mice after inhalation of the four oils. These compounds had a significant inhibitory effect on locomotion after inhalation. The volatile compounds of essential oils identified in the blood plasma may correlate with the locomotor-inhibiting properties of the oil when administered by inhalation.

  9. Developmental Deltamethrin Exposure Causes Persistent Changes in Dopaminergic Gene Expression, Neurochemistry, and Locomotor Activity in Zebrafish

    PubMed Central

    Kung, Tiffany S.; Richardson, Jason R.; Cooper, Keith R.; White, Lori A.

    2015-01-01

    Pyrethroids are commonly used insecticides that are considered to pose little risk to human health. However, there is an increasing concern that children are more susceptible to the adverse effects of pesticides. We used the zebrafish model to test the hypothesis that developmental exposure to low doses of the pyrethroid deltamethrin results in persistent alterations in dopaminergic gene expression, neurochemistry, and locomotor activity. Zebrafish embryos were treated with deltamethrin (0.25–0.50 μg/l), at concentrations below the LOAEL, during the embryonic period [3–72 h postfertilization (hpf)], after which transferred to fresh water until the larval stage (2-weeks postfertilization). Deltamethrin exposure resulted in decreased transcript levels of the D1 dopamine (DA) receptor (drd1) and increased levels of tyrosine hydroxylase at 72 hpf. The reduction in drd1 transcripts persisted to the larval stage and was associated with decreased D2 dopamine receptor transcripts. Larval fish, exposed developmentally to deltamethrin, had increased levels of homovanillic acid, a DA metabolite. Since the DA system is involved in locomotor activity, we measured the swim activity of larval fish following a transition to darkness. Developmental exposure to deltamethrin significantly increased larval swim activity which was attenuated by concomitant knockdown of the DA transporter. Acute exposure to methylphenidate, a DA transporter inhibitor, increased swim activity in control larva, while reducing swim activity in larva developmentally exposed to deltamethrin. Developmental exposure to deltamethrin causes locomotor deficits in larval zebrafish, which is likely mediated by dopaminergic dysfunction. This highlights the need to understand the persistent effects of low-dose neurotoxicant exposure during development. PMID:25912032

  10. HIGH ETHANOL DOSE DURING EARLY ADOLESCENCE INDUCES LOCOMOTOR ACTIVATION AND INCREASES SUBSEQUENT ETHANOL INTAKE DURING LATE ADOLESCENCE

    PubMed Central

    Acevedo, María Belén; Molina, Juan Carlos; Nizhnikov, Michael E.; Spear, Norman E.; Pautassi, Ricardo Marcos

    2011-01-01

    Adolescent initiation of ethanol consumption is associated with subsequent heightened probability of ethanol-use disorders. The present study examined the relationship between motivational sensitivity to ethanol initiation in adolescent rats and later ethanol intake. Experiment 1 determined that ethanol induces locomotor activation shortly after administration but not if tested at a later post-administration interval. In Experiment 2, adolescents were assessed for ethanol-induced locomotor activation on postnatal day 28. These animals were then evaluated for ethanol-mediated conditioned taste aversion and underwent a 16-day-long ethanol intake protocol. Ethanol-mediated aversive effects were unrelated to ethanol locomotor stimulation or subsequent ethanol consumption patterns. Ethanol intake during late adolescence was greatest in animals initiated to ethanol earliest at postnatal day 28. Females that were more sensitive to ethanol’s locomotor-activating effects showed a transient increase in ethanol self-administration. Blood ethanol concentrations during initiation were not related to ethanol-induced locomotor activation. Adolescent rats appeared sensitive to the locomotor-stimulatory effects of ethanol. Even brief ethanol exposure during adolescence may promote later ethanol intake. PMID:20373327

  11. Validation of a microwave radar system for the monitoring of locomotor activity in mice

    PubMed Central

    Pasquali, Vittorio; Scannapieco, Eugenio; Renzi, Paolo

    2006-01-01

    Background The general or spontaneous motor activity of animals is a useful parameter in chronobiology. Modified motion detectors can be used to monitor locomotor activity rhythms. We modified a commercial microwave-based detection device and validated the device by recording circadian and ultradian rhythms. Methods Movements were detected by microwave radar based on the Doppler effect. The equipment was designed to detect and record simultaneously 12 animals in separate cages. Radars were positioned at the bottom of aluminium bulkheads. Animal cages were positioned above the bulkheads. The radars were connected to a computer through a digital I/O board. Results The apparatus was evaluated by several tests. The first test showed the ability of the apparatus to detect the exact frequency of the standard moving object. The second test demonstrated the stability over time of the sensitivity of the radars. The third was performed by simultaneous observations of video-recording of a mouse and radar signals. We found that the radars are particularly sensitive to activities that involve a displacement of the whole body, as compared to movement of only a part of the body. In the fourth test, we recorded the locomotor activity of Balb/c mice. The results were in agreement with published studies. Conclusion Radar detectors can provide automatic monitoring of an animal's locomotor activity in its home cage without perturbing the pattern of its normal behaviour or initiating the spurt of exploration occasioned by transfer to a novel environment. Recording inside breeding cages enables long-term studies with uninterrupted monitoring. The use of electromagnetic waves allows contactless detection and freedom from interference of external stimuli. PMID:16674816

  12. Local field potentials in the ventral tegmental area during cocaine-induced locomotor activation: Measurements in freely moving rats.

    PubMed

    Harris Bozer, Amber L; Li, Ai-Ling; Sibi, Jiny E; Bobzean, Samara A M; Peng, Yuan B; Perrotti, Linda I

    2016-03-01

    The ventral tegmental area (VTA) has been established as a critical nucleus for processing behavioral changes that occur during psychostimulant use. Although it is known that cocaine induced locomotor activity is initiated in the VTA, not much is known about the electrical activity in real time. The use of our custom-designed wireless module for recording local field potential (LFP) activity provides an opportunity to confirm and identify changes in neuronal activity within the VTA of freely moving rats. The purpose of this study was to investigate the changes in VTA LFP activity in real time that underlie cocaine induced changes in locomotor behavior. Recording electrodes were implanted in the VTA of rats. Locomotor behavior and LFP activity were simultaneously recorded at baseline, and after saline and cocaine injections. Results indicate that cocaine treatment caused increases in both locomotor behavior and LFP activity in the VTA. Specifically, LFP activity was highest during the first 30 min following the cocaine injection and was most robust in Delta and Theta frequency bands; indicating the role of low frequency VTA activity in the initiation of acute stimulant-induced locomotor behavior. Our results suggest that LFP recording in freely moving animals can be used in the future to provide valuable information pertaining to drug induced changes in neural activity.

  13. Effect of light-dark changes on the locomotor activity in open field in adult rats and opossums.

    PubMed

    Klejbor, I; Ludkiewicz, B; Turlejski, K

    2013-11-01

    There have been no reports on how the light-dark changes determine the locomotor activity of animals in the group of high reactivity (HR) and low reactivity (LR). In the present study we have compared selected parameters of the locomotor activity of the HR and the LR groups of the laboratory opossums and Wistar rats during consecutive, light and dark phases in the open field test. Sixty male Wistar adult rats, at an average weight of 350 g each, and 24 adult Monodelphis opossums of both sexes at an average weight of 120 g each were used. The animals' activity for 2 h daily between the hours of 17:30 and 19:30, in line with the natural light-dark cycle were recorded and then analysed using VideoTrack ver.2.0 (Vievpoint France). According to our results, we noted that a change of the experimental conditions from light to dark involves an increase in the locomotor activity in rats and opossums of the HR group, while there is no effect on the activity of the rats and opossums in the LR group. Locomotor activity in the HR rats, both in the light and dark conditions is characterised by a consistent pattern of change - higher activity in the first stage of the recording and a slowdown (habituation) in the second phase of the observation. The locomotor activity of the opossum, during both light and dark conditions, was observed to be at a consistently high level compared to the rats.

  14. Effects of cocaine on norepinephrine stimulated phosphoinositide hydrolysis and locomotor activity in rat

    SciTech Connect

    Mosaddeghi, M.

    1989-01-01

    The function of {alpha}{sub 1}-adrenoceptors was determined by stimulating cortical tissue slices, which were pre-labeled with ({sup 3}H)inositol, with norepinephrine (NE) in the presence of 8 mM LiCl. Results of in vitro studies showed that cocaine 10 {mu}M potentiated maximal NE-stimulated PI hydrolysis by 30%. In addition, the EC{sub 50} was decreased from 3.93 {plus minus} 0.42 to 1.91 {plus minus} 0.31 {mu}M NE. Concentrations of 0.1-100 {mu}M and 0.1-10 {mu}M cocaine enhanced PI hydrolysis stimulated by 0.3 and 3 {mu}M NE, respectively. The concentration-effect curves for NE-stimulated PI hydrolysis were shifted to the right 100-fold in the presence of 0.1 {mu}M prazosin. Cocaine (10 {mu}M) did not potentiate NE-stimulated PI hydrolysis in the presence of 0.1 {mu}M prazosin. ({sup 3}H)Prazosin saturation and NE ({sup 3}H)prazosin competition binding studies using crude membrane preparations showed that 10 {mu}M cocaine did not alter binding parameters B{sub max}, K{sub d}, Hill slope, and IC{sub 50}. Together, these results implied that cocaine in vitro potentiated NE-stimulated PI hydrolysis by blocking NE reuptake. For in vivo studies, the locomotor activity was determined after an acute or chronic injections of either cocaine or saline. Cocaine or saline-treated rats were killed after measurement of the locomotor activity, and NE-stimulated PI hydrolysis was measured. Acute administration of cocaine 3.2-42 mg/kg (i.p.) produced an inverted U shaped dose-response curve on locomotor activity. The peak increase in locomotor activity was at 32 mg/kg cocaine. A dose of 42 mg/kg cocaine produced a significant depression of maximal NE-stimulated PI hydrolysis.

  15. Activation of the GABA(B) Receptor Prevents Nicotine-Induced Locomotor Stimulation in Mice.

    PubMed

    Lobina, Carla; Carai, Mauro A M; Froestl, Wolfgang; Mugnaini, Claudia; Pasquini, Serena; Corelli, Federico; Gessa, Gian Luigi; Colombo, Giancarlo

    2011-01-01

    Recent studies demonstrated that activation of the GABA(B) receptor, either by means of orthosteric agonists or positive allosteric modulators (PAMs), inhibited different nicotine-related behaviors, including intravenous self-administration and conditioned place preference, in rodents. The present study investigated whether the anti-nicotine effects of the GABA(B) receptor agonist, baclofen, and GABA(B) PAMs, CGP7930, and GS39783, extend to nicotine stimulant effects. To this end, CD1 mice were initially treated with baclofen (0, 1.25, and 2.5 mg/kg, i.p.), CGP7930 (0, 25, and 50 mg/kg, i.g.), or GS39783 (0, 25, and 50 mg/kg, i.g.), then treated with nicotine (0 and 0.05 mg/kg, s.c.), and finally exposed to an automated apparatus for recording of locomotor activity. Pretreatment with doses of baclofen, CGP7930, or GS39783 that did not alter locomotor activity when given with nicotine vehicle fully prevented hyperlocomotion induced by 0.05 mg/kg nicotine. These data extend to nicotine stimulant effects the capacity of baclofen and GABA(B) PAMs to block the reinforcing, motivational, and rewarding properties of nicotine. These data strengthen the hypothesis that activation of the GABA(B) receptor may represent a potentially useful, anti-smoking therapeutic strategy.

  16. Naloxone blocks ethanol-mediated appetitive conditioning and locomotor activation in adolescent rats.

    PubMed

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E; Acevedo, María Belén; Spear, Norman E

    2011-01-01

    Age-related differences in ethanol sensitivity could put adolescents at risk for developing alcohol-related problems. Little information exists, however, about adolescent sensitivity to ethanol's appetitive effects and the neurobiological mechanisms underlying ethanol reinforcement during this developmental stage. The present study assessed the role of the opioid system in adolescent rats in an appetitive second-order schedule of ethanol reinforcement and ethanol-induced locomotor stimulation. On postnatal day 32 (PD32), animals were pretreated with the general opioid antagonist naloxone (0.0, 0.75, 1.50, or 2.5 mg/kg) and then given pairings of ethanol (0.0 or 2.0 g/kg, intragastrically) with intraoral pulses of water (conditioned stimulus 1 [CS₁], first-order conditioning phase). CS₁ delivery occurred 30-45 min after ethanol administration when the effect of ethanol was assumed to be appetitive. On PD33, adolescents were exposed to CS₁ (second-order conditioning phase) while in a chamber featuring distinctive exteroceptive cues (CS₂). Preference for CS₂ was then tested. Adolescents given CS₁-ethanol pairings exhibited greater preference for CS₂ than controls, indicating ethanol-mediated reinforcement, but only when not pretreated with naloxone. Blood alcohol levels during conditioning were not altered by naloxone. Experiment 2 revealed that ethanol-induced locomotor activation soon after administration, and naloxone dose-dependently suppressed this stimulating effect. The present study indicates that adolescent rats are sensitive to ethanol's reinforcing and locomotor-stimulating effects. Both effects of ethanol appear to be mediated by endogenous opioid system activation.

  17. NALOXONE BLOCKS ETHANOL-MEDIATED APPETITIVE CONDITIONING AND LOCOMOTOR ACTIVATION IN ADOLESCENT RATS

    PubMed Central

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E.; Acevedo, María Belén; Spear, Norman E.

    2010-01-01

    Age-related differences in ethanol sensitivity could put adolescents at risk for developing alcohol-related problems. Little information exists, however, about adolescent sensitivity to ethanol's appetitive effects and the neurobiological mechanisms underlying ethanol reinforcement during this developmental stage. The present study assessed the role of the opioid system in adolescent rats in an appetitive second-order schedule of ethanol reinforcement and ethanol-induced locomotor stimulation. On postnatal day 32 (PD32), animals were pretreated with the general opioid antagonist naloxone (0.0, 0.75, 1.50, or 2.5 mg/kg) and then given pairings of ethanol (0.0 or 2.0 g/kg, intragastrically) with intraoral pulses of water (conditioned stimulus 1 [CS1], first-order conditioning phase). CS1 delivery occurred 30–45 min after ethanol administration when the effect of ethanol was assumed to be appetitive. On PD33, adolescents were exposed to CS1 (second-order conditioning phase) while in a chamber featuring distinctive exteroceptive cues (CS2). Preference for CS2 was then tested. Adolescents given CS1-ethanol pairings exhibited greater preference for CS2 than controls, indicating ethanol-mediated reinforcement, but only when not pretreated with naloxone. Blood alcohol levels during conditioning were not altered by naloxone. Experiment 2 revealed that ethanol induced locomotor activation soon after administration, and naloxone dose-dependently suppressed this stimulating effect. The present study indicates that adolescent rats are sensitive to ethanol's reinforcing and locomotor-stimulating effects. Both effects of ethanol appear to be mediated by endogenous opioid system activation. PMID:20708642

  18. Octopamine and tyramine influence the behavioral profile of locomotor activity in the honey bee (Apis mellifera).

    PubMed

    Fussnecker, Brendon L; Smith, Brian H; Mustard, Julie A

    2006-10-01

    The biogenic amines octopamine and tyramine are believed to play a number of important roles in the behavior of invertebrates including the regulation of motor function. To investigate the role of octopamine and tyramine in locomotor behavior in honey bees, subjects were injected with a range of concentrations of octopamine, tyramine, mianserin or yohimbine. Continuous observation of freely moving worker bees was used to examine the effects of these treatments on the amount of time honey bees spent engaged in different locomotor behaviors such as walking, grooming, fanning and flying. All treatments produced significant shifts in behavior. Decreases in time spent walking and increases in grooming or stopped behavior were observed for every drug. However, the pattern of the shift depended on drug, time after injection and concentration. Flying behavior was differentially affected with increases in flying seen in octopamine treated bees, whereas those receiving tyramine showed a decrease in flying. Taken together, these data provide evidence that octopamine and tyramine modulate motor function in the honey bee perhaps via interaction with central pattern generators or through effects on sensory perception.

  19. Locomotor activating effects of cocaine and scopolamine combinations in rats: isobolographic analysis.

    PubMed

    Thomsen, Morgane

    2014-08-01

    Muscarinic cholinergic receptors are currently receiving renewed interest as viable targets for treating various psychiatric disorders. Dopaminergic and muscarinic systems interact in complex ways. The goal of this study was to quantify the interaction between a systemically administered psychomotor stimulant and muscarinic antagonist at the behavioral level. Through isobolographic analysis of locomotor activity data, we assessed the effects of three cocaine/scopolamine mixtures in terms of deviation from simple dose addition (additivity), at four effect levels. All three mixtures produced some more-than-additive (synergistic) effects, as lower doses were needed to produce the given effects relative to the calculated effect of additive doses. A mixture with comparable contributions from cocaine and scopolamine produced significantly more-than-additive effects at all but the lowest effect level examined. A mostly-cocaine mixture was more-than-additive only at low effect levels, whereas a mostly-scopolamine mixture produced effects more consistent with additivity, with only the highest effect level barely reaching significant synergism. Our study confirms and quantifies previous findings that suggested synergistic effects of stimulants and muscarinic antagonists. The synergism implies that cocaine and scopolamine stimulate locomotor activity through nonidentical pathways, and was most pronounced for a mixture containing cocaine and scopolamine in comparable proportions.

  20. Effects of Neurotensin-2 Receptor Deletion on Sensorimotor Gating and Locomotor Activity

    PubMed Central

    Feifel, David; Pang, Zheng; Shilling, Paul D.; Melendez, Gilia; Schreiber, Rudy; Button, Donald

    2010-01-01

    SUMMARY Endogenous neurotensin (NT) has been implicated in brain processes relevant to schizophrenia as well as the therapeutic effects of antipsychotic drugs (APDs) used to treat this disorder. Converging evidence suggests that NT1 receptors mediate the antipsychotic-like effects of NT, such as prepulse inhibition (PPI) elevation. However, the role of NT2 receptors in these effects is not known. To investigate the contribution of NT2 receptors to the regulation of PPI, we measured baseline PPI and acoustic startle response (ASR), in male and female wild type (WT) and NT2 knockout (KO) mice. For comparison, we also measured locomotor activity. Baseline PPI was significantly elevated in both male (P < 0.01) and female (P < 0.01) NT2 KO compared to WT mice, while ASR was significantly decreased in KO mice of both genders (P < 0.01). In contrast, female but not male KO mice exhibited significantly less baseline ambulations (P < 0.05). These data support the regulation of baseline PPI, ASR and locomotor activity by endogenous NT acting at the NT2 receptor. Further studies investigating the role of NT2 receptors in the modulation of APD-like effects are warranted. PMID:20399236

  1. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae).

    PubMed

    Haupt, Meghan; Bennett, Nigel C; Oosthuizen, Maria K

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment.

  2. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae)

    PubMed Central

    Haupt, Meghan; Bennett, Nigel C.

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment. PMID:28072840

  3. Blockade of acute microglial activation by minocycline promotes neuroprotection and reduces locomotor hyperactivity after closed head injury in mice: a twelve-week follow-up study.

    PubMed

    Homsi, Shadi; Piaggio, Tomaso; Croci, Nicole; Noble, Florence; Plotkine, Michel; Marchand-Leroux, Catherine; Jafarian-Tehrani, Mehrnaz

    2010-05-01

    Traumatic brain injury (TBI) causes a wide spectrum of consequences, such as microglial activation, cerebral inflammation, and focal and diffuse brain injury, as well as functional impairment. In this study we aimed to investigate the effects of acute treatment with minocycline as an inhibitor of microglial activation on cerebral focal and diffuse lesions, and on the spontaneous locomotor activity following TBI. The weight-drop model was used to induce TBI in mice. Microglial activation and diffuse axonal injury (DAI) were detected by immunohistochemistry using CD11b and ss-amyloid precursor protein (ss-APP) immunolabeling, respectively. Focal injury was determined by the measurement of the brain lesion volume. Horizontal and vertical locomotor activities were measured for up to 12 weeks post-injury by an automated actimeter. Minocycline or vehicle were administered three times post-insult, at 5 min (90 mg/kg i.p.), 3 h, and 9 h post-TBI (45 mg/kg i.p.). Minocycline treatment attenuated microglial activation by 59% and reduced brain lesion volume by 58%, yet it did not affect DAI at 24 h post-TBI. More interestingly, minocycline significantly decreased TBI-induced locomotor hyperactivity at 48 h post-TBI, and its effect lasted for up to 8 weeks. Taken together, the results indicate that microglial activation appears to play an important role in the development of TBI-induced focal injury and the subsequent locomotor hyperactivity, and its short-term inhibition provides long-lasting functional recovery after TBI. These findings emphasize the fact that minocycline could be a promising new therapeutic strategy for head-injured patients.

  4. Adult Female Rats Altered Diurnal Locomotor Activity Pattern Following Chronic Methylphenidate Treatment

    PubMed Central

    Trinh, T.; Kohllepin, S; Yang, P.B.; Burau, K.D.; Dafny, N.

    2014-01-01

    Methylphenidate (MPD) is one of the most prescribed pharmacological agents and also used as cognitive enhancement and for recreational purposes. The objective of this study was to investigate the repetitive dose-response effects of MPD on rhythm locomotor activity pattern of female WKY rats and compare to prior study done on male. The hypothesis is that change in the circadian activity pattern indicates a long-lasting effect of the drug. Four animal groups (saline control, 0.6, 2.5, and 10.0 mg/kg MPD dose groups) were housed in a sound-controlled room at 12:12 light/dark cycle. All received saline injections on experimental day 1 (ED 1). On EDs 2-7, the control group received saline injection; the other groups received 0.6, 2.5, or 10.0 mg/kg MPD, respectively. On ED 8-10, injections were withheld. On ED 11, each group received the same dose as EDs 2-7. Hourly histograms and cosine statistical analyses calculating the acrophase (ϕ), amplitude (A), and MESOR (M) were applied to assess the 24-hour circadian activity pattern. The 0.6 and 2.5 mg/kg MPD groups exhibited significant (p<0.05) change in their circadian activity pattern on ED 11. The 10.0 mg/kg MPD group exhibited tolerance on ED 11 and also a significant change in activity pattern on ED 8 compared to ED 1, consistent with withdrawal behavior (p<0.007). In conclusion, chronic MPD administration alters circadian locomotor activity of adult female WKY rats and confirms that chronic MPD use elicits long lasting effects PMID:23893293

  5. Ethanol induces locomotor activating effects in preweanling Sprague-Dawley rats

    PubMed Central

    Arias, Carlos; Mlewski, Cecilia E.; Molina, Juan Carlos; Spear, Norman E.

    2009-01-01

    Drugs of abuse exert biphasic motor activity effects, which seem to be associated with their motivational effects. In the case of ethanol, heterogenous rat strains appear to be particularly sensitive to the sedative effects of the drug. In contrast, ethanol’s activating effects have been consistently reported in rats genetically selected for ethanol affinity. Heightened ethanol affinity and sensitivity to ethanol’s reinforcement are also observed in non-selected rats during early ontogeny. In the present study we examined psychomotor effects of ethanol (1.25 and 2.5 g/kg) in 8, 12 and 15-day-old pups. Motor activity in a novel environment was assessed 5–10 or 15–20 minutes following drug treatment. Rectal temperatures and latency to exhibit the righting reflex were recorded immediately after locomotor activity assessment. Ethanol exerted clear activating effects at 8 and 12 days of age (Experiments 1a and 1b) and to a lesser extent at 15 days. At this age ethanol enhanced locomotor activity in the first testing interval (Experiment 1b) and suppressed locomotion at 15–20 minutes (Experiment 1a). Ethanol-mediated motor impairment was more pronounced in the youngest group (PD 8) than in the older ones. Blood ethanol concentrations were equivalent in all age groups. The present study indicates that preweanling rats are sensitive to ethanol’s stimulating effects during the second postnatal week, and suggest that specific periods during early ontogeny of the rat can provide a valuable framework for the study of mechanisms underlying ethanol’s stimulation and reinforcement effects. PMID:19185206

  6. Bromocriptine and quinpirole, but not 7-OH-DPAT or SKF 38393, potentiate the inhibitory effect of L-NAME on ethanol-induced locomotor activity in mice.

    PubMed

    Uzbay, I Tayfun; Kayir, Hakan

    2003-04-01

    The effects of N(G)-nitro- l-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, SKF 38393, bromocriptine (BRM), quinpirole (QPR) and 7-hydroxy-2-dipropylaminotetralin (7-OH-DPAT), dopamine receptor agonists, and combinations of the dopamine agonists and L-NAME on ethanol-induced locomotor activity in adult male Swiss-Webster mice were investigated. The mice were given ethanol (0.5-2 g/kg), L-NAME (15-60 mg/kg), SKF 38393 (5-20 mg/kg), BRM (2.5 and 5 mg/kg), QPR (0.25 and 0.5 mg/kg), 7-OH-DPAT (0.5 and 1.0 mg/kg), a combination of l-arginine (1 g/kg) and L-NAME (60 mg/kg), combinations of SKF 38393, BRM, QPR or 7-OH-DPAT with L-NAME (60 mg/kg) or ethanol (0.5 g/kg) and saline or vehicle by i.p. injection. Triple combinations (dopaminergic agonist, 60 mg/kg L-NAME and 0.5 g/kg ethanol) were also given. Locomotor activity was measured for 30 min immediately following ethanol injections. Ethanol (0.5 g/kg) significantly increased locomotor activity. L-NAME, BRM, QPR and 7-OH-DPAT blocked the ethanol (0.5 g/kg)-induced locomotor hyperactivity dose dependently and at doses that did not affect locomotor activity in naive mice when administered alone. The inhibitory effects of L-NAME (60 mg/kg) were not prevented by pretreatment with l-arginine. BRM and QPR, but not 7-OH-DPAT, significantly and dose-dependently potentiated the inhibitory effect of L-NAME. Our results suggest that L-NAME inhibits ethanol-induced locomotor hyperactivity in mice by a mechanism not involving NO. The inhibitory effect of L-NAME may be related to the activation of presynaptic dopamine D(2) receptors rather than dopamine D(3) receptors.

  7. The presence of a single-nucleotide polymorphism in the BDNF gene affects the rate of locomotor adaptation after stroke.

    PubMed

    Helm, Erin E; Tyrell, Christine M; Pohlig, Ryan T; Brady, Lucas D; Reisman, Darcy S

    2016-02-01

    Induction of neural plasticity through motor learning has been demonstrated in animals and humans. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family of growth factors, is thought to play an integral role in modulation of central nervous system plasticity during learning and motor skill recovery. Thirty percent of humans possess a single-nucleotide polymorphism on the BDNF gene (Val66Met), which has been linked to decreased activity-dependent release of BDNF. Presence of the polymorphism has been associated with altered cortical activation, short-term plasticity and altered skill acquisition, and learning in healthy humans. The impact of the Val66Met polymorphism on motor learning post-stroke has not been explored. The purpose of this study was to examine the impact of the Val66Met polymorphism in learning of a novel locomotor task in subjects with chronic stroke. It was hypothesized that subjects with the polymorphism would have an altered rate and magnitude of adaptation to a novel locomotor walking paradigm (the split-belt treadmill), compared to those without the polymorphism. The rate of adaptation was evaluated as the reduction in gait asymmetry during the first 30 (early adaptation) and last 100 (late adaptation) strides. Twenty-seven individuals with chronic stroke participated in a single session of split-belt treadmill walking and tested for the polymorphism. Step length and limb phase were measured to assess adaptation of spatial and temporal parameters of walking. The rate of adaptation of step length asymmetry differed significantly between those with and without the polymorphism, while the amount of total adaptation did not. These results suggest that chronic stroke survivors, regardless of presence or absence of the polymorphism, are able to adapt their walking pattern over a period of trial-and-error practice; however, the presence of the polymorphism influences the rate at which this is achieved.

  8. The presence of a single nucleotide polymorphism in the BDNF gene affects the rate of locomotor adaptation after stroke

    PubMed Central

    Helm, Erin E.; Tyrell, Christine M.; Pohlig, Ryan T.; Brady, Lucas D.; Reisman, Darcy S.

    2015-01-01

    Induction of neural plasticity through motor learning has been demonstrated in animals and humans. Brain derived neurotrophic factor (BDNF), a member of the neurotrophin family of growth factors, is thought to play an integral role in modulation of central nervous system plasticity during learning and motor skill recovery. Thirty percent of humans possess a single nucleotide polymorphism on the BDNF gene (Val66Met), which has been linked to decreased activity dependent release of BDNF. Presence of the polymorphism has been associated with altered cortical activation, short term plasticity and altered skill acquisition, and learning in healthy humans. The impact of the Val66Met polymorphism on motor learning post-stroke has not been explored. The purpose of this study was to examine the impact of the Val66Met polymorphism in learning of a novel locomotor task in subjects with chronic stroke. It was hypothesized that subjects with the polymorphism would have an altered rate and magnitude of adaptation to a novel locomotor walking paradigm (the split-belt treadmill), compared to those without the polymorphism. The rate of adaptation was evaluated as the reduction in gait asymmetry during the first 30 (early adaptation) and last 100 (late adaptation) strides. Twenty-seven individuals with chronic stroke participated in a single session of split-belt treadmill walking and tested for the polymorphism. Step length and limb phase were measured to assess adaptation of spatial and temporal parameters of walking. The rate of adaptation of step length asymmetry differed significantly between those with and without the polymorphism, while the amount of total adaptation did not. These results suggest that chronic stroke survivors, regardless of presence or absence of the polymorphism, are able to adapt their walking pattern over a period of trial and error practice, however the presence of the polymorphism influences the rate at which this is achieved. PMID:26487176

  9. Evidence That GABA Mediates Dopaminergic and Serotonergic Pathways Associated with Locomotor Activity in Juvenile Chinook Salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Clements, S.; Schreck, C.B.

    2004-01-01

    The authors examined the control of locomotor activity in juvenile salmon (Oncorhynchus tshawytscha) by manipulating 3 neurotransmitter systems-gamma-amino-n-butyric acid (GABA), dopamine, and serotonin-as well as the neuropeptide corticotropin releasing hormone (CRH). Intracerebroventricular (ICV) injections of CRH and the GABAAagonist muscimol stimulated locomotor activity. The effect of muscimol was attenuated by administration of a dopamine receptor antagonist, haloperidol. Conversely, the administration of a dopamine uptake inhibitor (4???,4??? -difluoro-3-alpha-[diphenylmethoxy] tropane hydrochloride [DUI]) potentiated the effect of muscimol. They found no evidence that CRH-induced hyperactivity is mediated by dopaminergic systems following concurrent injections of haloperidol or DUI with CRH. Administration of muscimol either had no effect or attenuated the locomotor response to concurrent injections of CRH and fluoxetine, whereas the GABAA antagonist bicuculline methiodide potentiated the effect of CRH and fluoxetine.

  10. Spontaneous locomotor activity in late-stage chicken embryos is modified by stretch of leg muscles

    PubMed Central

    Bradley, Nina S.; Ryu, Young U.; Yeseta, Marie C.

    2014-01-01

    Chicks initiate bilateral alternating steps several days before hatching and adaptively walk within hours of hatching, but emergence of precocious walking skills is not well understood. One of our aims was to determine whether interactions between environment and movement experience prior to hatching are instrumental in establishing precocious motor skills. However, physiological evidence of proprioceptor development in the chick has yet to be established; thus, one goal of this study was to determine when in embryogenesis proprioception circuits can code changes in muscle length. A second goal was to determine whether proprioception circuits can modulate leg muscle activity during repetitive limb movements for stepping (RLMs). We hypothesized that proprioception circuits code changes in muscle length and/or tension, and modulate locomotor circuits producing RLMs in anticipation of adaptive locomotion at hatching. To this end, leg muscle activity and kinematics were recorded in embryos during normal posture and after fitting one ankle with a restraint that supported the limb in an atypical posture. We tested the hypotheses by comparing leg muscle activity during spontaneous RLMs in control posture and ankle extension restraint. The results indicated that proprioceptors detect changes in muscle length and/or muscle tension 3 days before hatching. Ankle extension restraint produced autogenic excitation of the ankle flexor and reciprocal inhibition of the ankle extensor. Restraint also modified knee extensor activity during RLMs 1 day before hatching. We consider the strengths and limitations of these results and propose that proprioception contributes to precocious locomotor development during the final 3 days before hatching. PMID:24265423

  11. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity.

    PubMed

    Chen, Qiqing; Gundlach, Michael; Yang, Shouye; Jiang, Jing; Velki, Mirna; Yin, Daqiang; Hollert, Henner

    2017-04-15

    This study investigated the direct and indirect toxic effects of microplastics and nanoplastics toward zebrafish (Danio rerio) larvae locomotor activity. Results showed that microplastics alone exhibited no significant effects except for the upregulated zfrho visual gene expression; whereas nanoplastics inhibited the larval locomotion by 22% during the last darkness period, and significantly reduced larvae body length by 6%, inhibited the acetylcholinesterase activity by 40%, and upregulated gfap, α1-tubulin, zfrho and zfblue gene expression significantly. When co-exposed with 2μg/L 17 α-ethynylestradiol (EE2), microplastics led to alleviation on EE2's inhibition effect on locomotion, which was probably due to the decreased freely dissolved EE2 concentration. However, though nanoplastics showed stronger adsorption ability for EE2, the hypoactivity phenomenon still existed in the nanoplastics co-exposure group. Moreover, when co-exposed with a higher concentration of EE2 (20μg/L), both plastics showed an enhanced effect on the hypoactivity. Principal component analysis was performed to reduce data dimensions and four principal components were reconstituted in terms of oxidative stress, body length, nervous and visual system related genes explaining 84% of total variance. Furthermore, oxidative damage and body length reduction were evaluated to be main reasons for the hypoactivity. Therefore, nanoplastics alone suppressed zebrafish larvae locomotor activity and both plastic particles can change the larvae swimming behavior when co-exposed with EE2. This study provides new insights into plastic particles' effects on zebrafish larvae, improving the understanding of their environmental risks to the aquatic environment.

  12. Scaling Behavior of Human Locomotor Activity Amplitude: Association with Bipolar Disorder

    PubMed Central

    Indic, Premananda; Salvatore, Paola; Maggini, Carlo; Ghidini, Stefano; Ferraro, Gabriella; Baldessarini, Ross J.; Murray, Greg

    2011-01-01

    Scale invariance is a feature of complex biological systems, and abnormality of multi-scale behaviour may serve as an indicator of pathology. The hypothalamic suprachiasmatic nucleus (SCN) is a major node in central neural networks responsible for regulating multi-scale behaviour in measures of human locomotor activity. SCN also is implicated in the pathophysiology of bipolar disorder (BD) or manic-depressive illness, a severe, episodic disorder of mood, cognition and behaviour. Here, we investigated scaling behaviour in actigraphically recorded human motility data for potential indicators of BD, particularly its manic phase. A proposed index of scaling behaviour (Vulnerability Index [VI]) derived from such data distinguished between: [i] healthy subjects at high versus low risk of mood disorders; [ii] currently clinically stable BD patients versus matched controls; and [iii] among clinical states in BD patients. PMID:21655197

  13. Evaluation of harmonic direction-finding systems for detecting locomotor activity

    USGS Publications Warehouse

    Boyarski, V.L.; Rodda, G.H.; Savidge, J.A.

    2007-01-01

    We conducted a physical simulation experiment to test the efficacy of harmonic direction finding for remotely detecting locomotor activity in animals. The ability to remotely detect movement helps to avoid disturbing natural movement behavior. Remote detection implies that the observer can sense only a change in signal bearing. In our simulated movements, small changes in bearing (<5.7??) were routinely undetectable. Detectability improved progressively with the size of the simulated animal movement. The average (??SD) of reflector tag movements correctly detected for 5 observers was 93.9 ?? 12.8% when the tag was moved ???11.5??; most observers correctly detected tag movements ???20.1??. Given our data, one can assess whether the technique will be effective for detecting movements at an observation distance appropriate for the study organism. We recommend that both habitat and behavior of the organism be taken into consideration when contemplating use of this technique for detecting locomotion.

  14. Functional Electrical Stimulation Alters the Postural Component of Locomotor Activity in Healthy Humans

    PubMed Central

    Talis, Vera; Ballay, Yves; Grishin, Alexander; Pozzo, Thierry

    2015-01-01

    Knowledge of the effects of Functional Electrical Stimulation (FES) of different intensity on postural stability during walking in healthy subjects is necessary before these relationships in patients with postural disorders can be assessed and understood. We examined healthy subjects in Control group walking on a treadmill for 40 min and in FES group—provided with 30 min of stimulation, which intensity increased every 10 min. The main difference between Control and FES group was the progressive increase of trunk oscillations in sagittal, frontal, and horizontal planes and an increase of relative stance duration in parallel with FES intensity increase. Both Control and FES groups exhibited shank elevation angle increase as an after-effect. It is concluded, that high intensity FES significantly changes the postural component of locomotor activity, but the fatigue signs afterwards were not FES specific. PMID:26733791

  15. Effects of caffeine and L-phenylisopropyladenosine on locomotor activity of mice

    SciTech Connect

    Buckholtz, N.S.; Middaugh, L.D.

    1987-10-01

    C57BL/6J and DBA/2J mice were used to determine if possible differences in the behavioral response to caffeine might be related to differences in A1 adenosine receptors. Caffeine stimulated locomotor activity of both strains, but the dose-response relationship and time course of drug action differed according to strain. Although their response to caffeine differed, the strains did not differ in response to the A1 adenosine agonist L-phenylisopropyladenosine (PIA) nor in the binding of the A1 agonist (/sup 3/H)N6-cyclohexyladenosine (CHA) in various brain regions. Thus, the behavioral differences in response to caffeine could not be accounted for by differences in adenosine binding. Of alternative mechanisms, strain differences in A2 receptors appear to be the most promising.

  16. Loss of circadian rhythmicity in body temperature and locomotor activity following suprachiasmatic lesions in the rat

    NASA Technical Reports Server (NTRS)

    Saleh, M. A.; Haro, P. J.; Winget, C. M.

    1977-01-01

    In experiments on male and female ambulatory rats, the effect of bilateral suprachiasmatic lesions on deep body temperature and locomotor activity circadian rhythms was investigated. A L/D:12/12 cycle and 23 C ambient temperature were maintained. One-half of the rats received radiofrequency lesions in the suprachiasmic nucleus (SCN) while the second group were sham operated by lowering the radiofrequency electrode to the SCN without producing electrolytic lesions. Four weeks were allowed for recuperation. Autopsies were conducted to make sure that the lesions were restricted to SCN. The results show the complete disappearance of circadian rhythm in the SCN lesioned rats and only a slight diminution for the sham operated rats.

  17. Cardiovascular responses to locomotor activity and feeding in unrestrained three-toed sloths, Bradypus variegatus.

    PubMed

    Duarte, D P F; Jaguaribe, A M; Pedrosa, M A C; Clementino, A C C R; Barbosa, A A; Silva, A F V; Gilmore, D P; Da Costa, C P

    2004-10-01

    Heart rate (HR) and systolic (SBP), diastolic (DBP) and mean (MBP) blood pressure were recorded by biotelemetry in nine conscious unrestrained sloths for 1 min every 15 min over a 24-h period. The animals were allowed to freely move in an acoustically isolated and temperature-controlled (24 +/- 1 degree C) experimental room with light-dark cycle (12/12 h). Behavior was closely monitored through a unidirectional visor and classified as resting (sitting or suspended), feeding (chewing and swallowing embauba leaves, Cecropia adenops), or locomotor activity around the tree trunk or on the room floor. Locomotor activity caused statistically significant increases in SBP (+8%, from 121 +/- 22 to 131 +/- 18 mmHg), DBP (+7%, from 86 +/- 17 to 92 +/- 10 mmHg), MBP (+8%, from 97 +/- 19 to 105 +/- 12 mmHg), and HR (+14%, from 84 +/- 15 to 96 +/- 15 bpm) compared to resting values, indicating a possible major influence of the autonomic nervous system on the modulation of cardiac function during this behavior. During feeding, the increase in blood pressure was even higher (SBP +27%, from 119 +/- 21 to 151 +/- 21 mmHg; DBP +21%, from 85 +/- 16 to 103 +/- 15 mmHg; MBP +24%, from 96 +/- 17 to 119 +/- 17 mmHg), while HR remained at 14% (from 84 +/- 15 to 96 +/- 10 bpm) above resting values. The proportionally greater increase in blood pressure than in HR during feeding suggests an increase in peripheral vascular resistance as part of the overall response to this behavior.

  18. Acute effects of ethanol or d-amphetamine on the locomotor activity of larval zebrafish in a microtiter plate format.

    EPA Science Inventory

    As part of an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae. We are assessing the acute effects of prototypic drugs that are known to act on the central ...

  19. The role of leg touchdown for the control of locomotor activity in the walking stick insect

    PubMed Central

    Schmitz, Joscha; Büschges, Ansgar

    2015-01-01

    Much is known on how select sensory feedback contributes to the activation of different motoneuron pools in the locomotor control system of stick insects. However, even though activation of the stance phase muscles depressor trochanteris, retractor unguis, flexor tibiae and retractor coxae is correlated with the touchdown of the leg, the potential sensory basis of this correlation or its connection to burst intensity remains unknown. In our experiments, we are using a trap door setup to investigate how ground contact contributes to stance phase muscle activation and burst intensity in different stick insect species, and which afferent input is involved in the respective changes. While the magnitude of activation is changed in all of the above stance phase muscles, only the timing of the flexor tibiae muscle is changed if the animal unexpectedly steps into a hole. Individual and combined ablation of different force sensors on the leg demonstrated influence from femoral campaniform sensilla on flexor muscle timing, causing a significant increase in the latencies during control and air steps. Our results show that specific load feedback signals determine the timing of flexor tibiae activation at the swing-to-stance transition in stepping stick insects, but that additional feedback may also be involved in flexor muscle activation during stick insect locomotion. With respect to timing, all other investigated stance phase muscles appear to be under sensory control other than that elicited through touchdown. PMID:25652931

  20. Methodological optimization of applying neuroactive agents for the study of locomotor-like activity in the mudpuppies (Necturus Maculatus)

    PubMed Central

    Lavrov, Igor; Cheng, Jianguo

    2008-01-01

    We compared the effects of mode of delivery of neuroactive agents and the effects of Dimethyl sulfoxide (DMSO), a vehicle for dissolving neuroactive agents, on locomotor-like activity in vitro. By superfusion, D-glutamate (0.3 – 0.9 mM) produced robust walking-like activity at superfusion rates 10–25 ml/min. In contrast, bolus application of the same or higher doses of glutamate (0.1–1.5 mM) failed to induce any rhythmic activity. Superfusion with AP-5, a NMDA receptor antagonist, produced dose-dependent inhibition of the ongoing walking-like activity induced by D-glutamate and completely blocked the activity at 20 µM. In contrast, bolus application of AP-5 did not block the walking-like activity at concentrations up to 120 µM. Similarly, superfusion of AP-5 inhibited the initiation of walking-like activity and completely blocked the initiation at 20 µM, while bolus application of AP-5 failed to do so at concentrations up to 120 µM. Superfusion of strychnine, a glycine receptor antagonist, blocked the walking-like activity at concentrations of 3–5 µM, while its bolus application altered NMDA-induced, but not glutamate-induced, walking-like activity to a synchronized pattern. DMSO significantly affected the walking-like activity in a dose-dependent manner at concentrations ranging 1–10% (v/v). These results demonstrate that the way by which the neuroactive agents are applied is a significant factor that determines the outcome of experiments on the neural control of locomotion. Also, the dose-dependent effects of DMSO on the activity of neural networks for locomotion should be taken into account in data interpretation. PMID:18692523

  1. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21.

    PubMed

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N

    2014-08-12

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level.

  2. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21

    PubMed Central

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M.; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N.

    2014-01-01

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α)–dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level. PMID:25082895

  3. Circadian rhythm of spontaneous locomotor activity in the bed bug, Cimex lectularius L.

    PubMed

    Romero, Alvaro; Potter, Michael F; Haynes, Kenneth F

    2010-11-01

    Bed bugs must avoid detection when finding hosts and returning to hidden harborages. Their stealthy habits include foraging when hosts are asleep. Characteristics of spontaneous locomotor activity rhythm of bed bugs with different feeding histories were studied. In the absence of host stimuli, adults and nymphs were much more active in the dark than in the light. The onset of activity in the scotophase commenced soon after lights-off. The free-running period (tau) for all stages was longer in continuous darkness (DD) than in continuous light (LL). The lengthening of tau in DD is an exception for the circadian rule that predicts the opposite in nocturnal animals. Activity in all stages was entrained to reverse L:D regimes within four cycles. Short-term starved adults moved more frequently than recently fed adults. While bed bugs can survive for a year or more without a blood meal, we observed a reduction in activity in insects held for five weeks without food. We suggest that bed bugs make a transition to host-stimulus dependent searching when host presence is not predictable. Such a strategy would enable bed bugs to maximize reproduction when resources are abundant and save energy when resources are scarce.

  4. Effect of 1 GeV/n Fe particles on cocaine-stimulated locomotor activity

    NASA Astrophysics Data System (ADS)

    Vazquez, M.; Bruneus, M.; Gatley, J.; Russell, S.; Billups, A.

    Space travel beyond the Earth's protective magnetic field (for example, to Mars) will involve exposure of astronauts to irradiation by high-energy nuclei such as 56Fe (HZE radiation), which are a component of galactic cosmic rays. These particles have high linear energy transfer (LET) and are expected to irreversibly damage cells they traverse. Our working hypothesis is that long-term behavioral alterations are induced after exposure of the brain to 1 GeV/n iron particles with fluences of 1 to 8 particles/cell targets. Previous studies support this notion but are not definitive, especially with regard to long-term effects. Using the Alternating Gradient Synchrotron (AGS) we expose C57 mice to 1 GeV/n 56Fe radiation (head only) at doses of 0, 15, 30, 60, 120 and 240 cGy. There were originally 19 mice per group. The ability of cocaine to increase locomotor activity in 16 of these animals in response to an intraperitoneal injection of cocaine has been measured so far at 1, 4, 8, 12, 16, 20, 24 and 28 weeks. Cocaine-stimulated locomotor activity was chosen in part because it is a behavioral assay with which we have considerable experience. More importantly, the ability to respond to cocaine is a complex behavior involving many neurotransmitter systems and brain circuits. Therefore, the probability of alteration of this behavior by HZE particles was considered high. However, the central circuit is the nigrostriatal dopamine system, in which dopamine is released in striatum from nerve terminals whose cell bodies are located in the substantia nigra. Cocaine activates behavior by blocking dopamine transporters on striatal nerve terminals and therefore elevating the concentration of dopamine in the synapse. Dopamine activates receptors on striatal GABAergic cells that project via other brain regions to the thalamus. Activation of the motor cortex by glutamatergic projections from the thalamus leads ultimately to increased locomotion. The experimental paradigm involves

  5. [Physiologic parameters and locomotor activity in Fleckvieh and Schwarzbund cattle during an alpine summer].

    PubMed

    Koch, K; Pirchner, F; Graf, F

    1995-01-01

    The investigation on an alpine pasture was performed on 15 heifers of the breeds Fleckvieh and Friesians from different farms. Some physiological parameters and locomotor activities in dependence of breed, farm of origin and weather conditions were studied. Animals of one farm were pastured in spring, the animals of the other farm were brought directly from the barn to the mountain area. Physiological parameters were influenced by farm, but not by breed. The activities of GOT and CK increased in unprepared heifers only (due to the release from skeletal muscles) as did levels of free fatty acids and beta-hydroxybutyrate obviously due to adaptation-difficulties linked with energy-deficiency. Pre-pastured animals showed higher blood-urea concentrations, due to their ability to locate always fresh grass with high protein content. The breed influence on the daily number of steps and on the distance covered was statistically not significant. Animals already pastured in spring showed more movement than unprepared ones. Among weather conditions thunderstorm showed a striking increase in activity which resulted from the search for shelter. On rainy days without wind the animals showed least movement. Cloudy, dry weather as well as sunshine was associated with average activity. These reactions to meteorological conditions were manifested more clearly in prepared heifers. The other animals obviously had to learn first how to minimize untoward effects by suitable behaviour.

  6. Dopamine transporter occupancy by RTI-55, inhibition of dopamine transport and stimulation of locomotor activity

    SciTech Connect

    Gatley, S.J.; Gifford, A.N.; Volkow, N.D.

    1997-05-01

    Cocaine analogs such as RTI-55 (or {beta}CIT) with a higher affinity for the DAT are potentially useful as therapeutic drugs in cocaine abuse as well as for radiopharmaceutical use. Previously we showed that in mice RTI-55 (2 mg/Kg, i/p) reduced H-3 cocaine striatum-to-cerebellum ratios (St/Cb, {lg_bullet}) from 1.6 to 1.2 at 3 h after administration, with recovery by 12 h. In the present study we demonstrate a very similar time-course for transport {triangle} measured in striatal homo within 2 min of sacrifice. The maximum inhibition of uptake at about 1 h corresponded to about 80% of the control uptake rate, similar to the percent reduction in St/Cb. The time-course of the effect of this dose of RTI-55 on locomotor activity ({sq_bullet}) was complex, with a drop in the activity measure at 7 h, after a further injection of RTI-55, but activity remained higher than in saline controls. In spite of this complexity, which may be associated with stereotypies and/or exhaustion, the duration of increased activity is consistent with the duration of transporter blockade. These experiments support the notion that PET/SPECT measures of transporter occupancy accurately reflect transporter inhibition.

  7. Effects of postweaning social and physical deprivation on locomotor activity patterns and explorative behavior in female CD-1 mice.

    PubMed

    Haupt, Moritz; Schaefers, Andrea T U

    2010-05-01

    Social and physical deprivation during adolescence has detrimental consequences for brain maturation and cognitive functions. To test the hypothesis that social and physical deprivation during mouse adolescence would disrupt activity and exploration behavior, we exposed mice either to deprived or enriched rearing (postnatal days 21-60) and assessed activity and exploration of adult mice individually or in mixed treatment groups. In automated group compartments, deprived-reared mice displayed higher locomotor activity, reduced explorative behavior and shifted activity timing compared to enriched-reared mice. Contrastingly, distance and timing of wheel running were largely unaffected by deprived rearing. Our results demonstrate that postweaning social and physical deprivation has measurable effects on mouse locomotor and exploratory behavior, and that such effects may be discernable depending on the activity type studied. Our results further emphasize the importance of the sensitive postweaning period for shaping adult behavioral profiles.

  8. Circadian locomotor activity of Musca flies: Recording method and effects of 10 Hz square-wave electric fields

    SciTech Connect

    Engelmann, W.; Hellrung, W.; Johnsson, A.

    1996-05-01

    Musca domestica flies that were exposed to a uniform vertical 10 Hz electric square-wave field of 1 kVm{sup {minus}1} changed the period length of their circadian locomotor activity rhythm. Under constant conditions, the clock of short-period flies was slowed down by the field, whereas the clock of long-period flies either was affected only scarcely (experiments at about 19 C) or ran faster (experiments at 25 C). It the field was applied for only 12 h daily, then 30--40% of the flies were synchronized. Thus, the field could function as a weak Zeitgeber (synchronizer). If the field was increased to 10 kVm{sup {minus}1}, then 50--70% of the flies were synchronized. Flies avoided becoming active around the onset of the 12 h period of exposure to a 10 Hz field. The results of these experiments are discussed with respect to similar experiments by Wever on the effects of exposure to a 10 Hz field on the circadian system of man.

  9. On-ground housing in “Mice Drawer System” (MDS) cage affects locomotor behaviour but not anxiety in male mice

    NASA Astrophysics Data System (ADS)

    Simone, Luciano; Bartolomucci, Alessandro; Palanza, Paola; Parmigiani, Stefano

    2008-03-01

    In the present study adult male mice were housed for 21 days in a housing modules of the Mice Drawer System (MDS). MDS is the facility that will support the research on board the International Space Station (ISS). Our investigation focused on: circadian rhythmicity of wide behavioural categories such as locomotor activity, food intake/drinking and resting; emotionality in the elevated plus maze (EPM); body weight. Housing in the MDS determined a strong up-regulation of activity and feeding behaviour and a concomitant decrease in inactivity. Importantly, housing in the MDS disrupted circadian rhythmicity in mice and also determined a decrease in body weight. Finally, when mice were tested in the EPM a clear hyperactivity (i.e. increased total transitions) was found, while no evidence for altered anxiety was detected. In conclusion, housing adult male mice in the MDS housing modules may affect their behaviour, circadian rhythmicity while having no effect on anxiety. It is suggested that to allow adaptation to the peculiar housing allowed by MDS a longer housing duration is needed.

  10. Locomotor activity, ultrasonic vocalization and oxytocin levels in infant CD38 knockout mice.

    PubMed

    Liu, Hong-Xiang; Lopatina, Olga; Higashida, Chiharu; Tsuji, Takahiro; Kato, Ichiro; Takasawa, Shin; Okamoto, Hiroshi; Yokoyama, Shigeru; Higashida, Haruhiro

    2008-12-19

    Oxytocin (OT), a neurohormone involved in reproduction, plays a critical role in social behavior in a wide range of mammalian species from rodents to humans. The role of CD38 in regulating OT secretion for social behavior has been demonstrated in adult mice, but has not been examined in pups or during development. Separation from the dam induces stress in 7-day-old mouse pups. During such isolation, locomotor activity was higher in CD38 knockout (CD38(-/-)) pups than in wild-type (CD38(+/+)) or heterozygous (CD38(+/-)) controls. The number of ultrasonic vocalizations was lower in CD38(-/-) pups than in CD38(+/+) pups. However, the difference between the two genotypes was less severe than that in OT knockout or OT receptor knockout mice. To explain this, we measured plasma OT levels. The level was not lower in CD38(-/-) pups during the period 1-3 weeks after birth, but was significantly reduced after weaning (>3 weeks). ADP-ribosyl cyclase activities in the hypothalamus and pituitary were markedly lower from 1 week after birth in CD38(-/-) mice and were consistently lower thereafter to the adult stage (2 months old). These results showed that the reduced severity of behavioral abnormalities in CD38(-/-) pups was due to partial compensation by the high level of plasma OT.

  11. Effects of locomotor skill program on minority preschoolers' physical activity levels.

    PubMed

    Alhassan, Sofiya; Nwaokelemeh, Ogechi; Ghazarian, Manneh; Roberts, Jasmin; Mendoza, Albert; Shitole, Sanyog

    2012-08-01

    This pilot study examined the effects of a teacher-taught, locomotor skill (LMS)-based physical activity (PA) program on the LMS and PA levels of minority preschooler-aged children. Eight low-socioeconomic status preschool classrooms were randomized into LMS-PA (LMS-oriented lesson plans) or control group (supervised free playtime). Interventions were delivered for 30 min/day, five days/week for six months. Changes in PA (accelerometer) and LMS variables were assessed with MANCOVA. LMS-PA group exhibited a significant reduction in during-preschool (F (1,16) = 6.34, p = .02, d = 0.02) and total daily (F (1,16) = 9.78, p = .01, d = 0.30) percent time spent in sedentary activity. LMS-PA group also exhibited significant improvement in leaping skills, F (1, 51) = 7.18, p = .01, d = 0.80). No other, significant changes were observed. The implementation of a teacher-taught, LMS-based PA program could potentially improve LMS and reduce sedentary time of minority preschoolers.

  12. P2X7 receptors in body temperature, locomotor activity, and brain mRNA and lncRNA responses to sleep deprivation.

    PubMed

    Davis, Christopher J; Taishi, Ping; Honn, Kimberly A; Koberstein, John N; Krueger, James M

    2016-12-01

    The ionotropic purine type 2X7 receptor (P2X7R) is a nonspecific cation channel implicated in sleep regulation and brain cytokine release. Many endogenous rhythms covary with sleep, including locomotor activity and core body temperature. Furthermore, brain-hypothalamic cytokines and purines play a role in the regulation of these physiological parameters as well as sleep. We hypothesized that these parameters are also affected by the absence of the P2X7 receptor. Herein, we determine spontaneous expression of body temperature and locomotor activity in wild-type (WT) and P2X7R knockout (KO) mice and how they are affected by sleep deprivation (SD). We also compare hypothalamic, hippocampal, and cortical cytokine- and purine-related receptor and enzyme mRNA expressions before and after SD in WT and P2X7RKO mice. Next, in a hypothesis-generating survey of hypothalamic long noncoding (lnc) RNAs, we compare lncRNA expression levels between strains and after SD. During baseline conditions, P2X7RKO mice had attenuated temperature rhythms compared with WT mice, although locomotor activity patterns were similar in both strains. After 6 h of SD, body temperature and locomotion were enhanced to a greater extent in P2X7RKO mice than in WT mice during the initial 2-3 h after SD. Baseline mRNA levels of cortical TNF-α and P2X4R were higher in the KO mice than WT mice. In response to SD, the KO mice failed to increase hypothalamic adenosine deaminase and P2X4R mRNAs. Further, hypothalamic lncRNA expressions varied by strain, and with SD. Current data are consistent with a role for the P2X7R in thermoregulation and lncRNA involvement in purinergic signaling.

  13. Risperidone alters food intake, core body temperature, and locomotor activity in mice.

    PubMed

    Cope, Mark B; Li, Xingsheng; Jumbo-Lucioni, Patricia; DiCostanzo, Catherine A; Jamison, Wendi G; Kesterson, Robert A; Allison, David B; Nagy, Tim R

    2009-03-02

    Risperidone induces significant weight gain in female mice; however, the underlying mechanisms related to this effect are unknown. We investigated the effects of risperidone on locomotor activity, core body temperature, and uncoupling protein (UCP) and hypothalamic orexin mRNA expression. Female C57BL/6J mice were acclimated to individual housing and randomly assigned to either risperidone (4 mg/kg BW day) or placebo (PLA). Activity and body temperature were measured over 48-hour periods twice a week for 3 weeks. Food intake and body weights were measured weekly. UCP1 (BAT), UCP3 (gastrocnemius), and orexin (hypothalamus) mRNA expressions were measured using RT-PCR. Risperidone-treated mice consumed more food (p=0.050) and gained more weight (p=0.0001) than PLA-treated mice after 3 weeks. During the initial 2 days of treatment, there was an acute effect of treatment on activity (p=0.046), but not body temperature (p=0.290). During 3 weeks of treatment, average core body temperatures were higher in risperidone-treated mice compared to controls during the light phase (p=0.0001), and tended to be higher during the dark phase (p=0.057). Risperidone-treated mice exhibited lower activity levels than controls during the dark phase (p=0.006); there were no differences in activity during the light phase (p=0.47). UCP1 (p<0.01) and UCP3 (p<0.05) mRNA expressions were greater in risperidone-treated mice compared to controls, whereas, orexin mRNA expression was lower in risperidone-treated mice (p<0.01). These results suggest that risperidone-induced weight gain in mice is a consequence of increased energy intake and reduced activity, while the elevation in body temperature may be a result of thermogenic effect of food intake and elevated UCP1, UCP3, and a reduced hypothalamic orexin expression.

  14. Age and egg-sac loss determine maternal behaviour and locomotor activity of wolf spiders (Araneae, Lycosidae).

    PubMed

    Ruhland, Fanny; Chiara, Violette; Trabalon, Marie

    2016-11-01

    Wolf spiders' (Lycosidae) maternal behaviour includes a specific phase called "egg brooding" which consists of guarding and carrying an egg-sac throughout the incubation period. The transport of an egg-sac can restrict mothers' exploratory and locomotor activity, in particular when foraging. The present study details the ontogeny of maternal behaviour and assesses the influence of age of egg-sac (or embryos' developmental stage) on vagrant wolf spider Pardosa saltans females' exploration and locomotion. We observed these spiders' maternal behaviour in the laboratory and evaluated their locomotor activity using a digital activity recording device. Our subjects were virgin females (without egg-sac) and first time mothers (with her egg-sac) who were divided into three groups. The first group of mothers were tested on the day the egg-sac was built (day 0), and the females of the other two groups were tested 10 or 15days after they had built their egg-sac. We evaluated the effects of the presence and the loss of egg-sac on mothers' activity. Pardosa saltans females' behaviour depended on mothers' physiological state and/or age of egg-sac (developmental stage of embryos). Virgin females' behaviour was not modified by the presence of an egg-sac in their environment. Mothers' reactions to the presence, the loss and the recovery of their egg-sac varied during the maternal cycle. Maternal behaviour changed with age of egg-sac, but the levels of locomotor activity of mothers with egg-sacs was similar to those of virgin females. Loss of egg-sac modified the maternal behaviour and locomotor activity of all mothers; these modifications were greater on "day 15" when embryos had emerged from eggs. All mothers were able to retrieve their egg-sacs and to re-attach them to their spinnerets.

  15. Mouse aldehyde-oxidase-4 controls diurnal rhythms, fat deposition and locomotor activity

    PubMed Central

    Terao, Mineko; Barzago, Maria Monica; Kurosaki, Mami; Fratelli, Maddalena; Bolis, Marco; Borsotti, Andrea; Bigini, Paolo; Micotti, Edoardo; Carli, Mirjana; Invernizzi, Roberto William; Bagnati, Renzo; Passoni, Alice; Pastorelli, Roberta; Brunelli, Laura; Toschi, Ivan; Cesari, Valentina; Sanoh, Seigo; Garattini, Enrico

    2016-01-01

    Aldehyde-oxidase-4 (AOX4) is one of the mouse aldehyde oxidase isoenzymes and its physiological function is unknown. The major source of AOX4 is the Harderian-gland, where the enzyme is characterized by daily rhythmic fluctuations. Deletion of the Aox4 gene causes perturbations in the expression of the circadian-rhythms gene pathway, as indicated by transcriptomic analysis. AOX4 inactivation alters the diurnal oscillations in the expression of master clock-genes. Similar effects are observed in other organs devoid of AOX4, such as white adipose tissue, liver and hypothalamus indicating a systemic action. While perturbations of clock-genes is sex-independent in the Harderian-gland and hypothalamus, sex influences this trait in liver and white-adipose-tissue which are characterized by the presence of AOX isoforms other than AOX4. In knock-out animals, perturbations in clock-gene expression are accompanied by reduced locomotor activity, resistance to diet induced obesity and to hepatic steatosis. All these effects are observed in female and male animals. Resistance to obesity is due to diminished fat accumulation resulting from increased energy dissipation, as white-adipocytes undergo trans-differentiation towards brown-adipocytes. Metabolomics and enzymatic data indicate that 5-hydroxyindolacetic acid and tryptophan are novel endogenous AOX4 substrates, potentially involved in AOX4 systemic actions. PMID:27456060

  16. Effect of chronic caffeine consumption on changes in locomotor activity of WAG/G and Fischer-344 rats induced by nicotine, ethanol, and morphine.

    PubMed

    Sudakov, S K; Rusakova, I V; Medvedeva, O F

    2003-12-01

    We studied the effect of single treatment with nicotine, ethanol, and morphine on locomotor activity of WAG/G and Fischer-344 rats chronically drinking caffeine solution. In Fischer-344 rats receiving caffeine locomotor activity in the open-field test was much lower than in animals drinking water, while in WAG/G rats no differences in locomotor activity were found. Chronic caffeine intake increased rat sensitivity to the stimulating effect of nicotine and ethanol, but decreased their sensitivity to the depressant effect of morphine. Chronic caffeine treatment most significantly modulated the effects of nicotine, ethanol, and morphine in Fischer-344 rats.

  17. Locomotor activity in common spiny mice (Acomys cahirinuse): The effect of light and environmental complexity

    PubMed Central

    Eilam, David

    2004-01-01

    Background Rodents typically avoid illuminated and open areas, favoring dark or sheltered environments for activity. While previous studies focused on the effect of these environmental attributes on the level of activity, the present study tested whether the spatio-temporal structure of activity was also modified in illuminated compared with dark and complex compared with open arenas. For this, we tested common spiny mice (Acomys cahirinus) in empty or stone-containing arenas with lights on or lights off. Results In an illuminated or open arena, spiny mice moved in less frequent but longer trips with relatively long distances between consecutive stops. In contrast, in either a dark arena or an arena with stones, the animals took shorter and more frequent trips, with more stops per trip and shorter inter-stop distances. In illuminated arenas spiny mice remained mainly along the walls, whereas locomotion in the center was more prevalent in dark empty arenas, and was carried out along convoluted paths. Increasing environmental complexity by adding stones to either illuminated or dark arenas increased locomotion along straight trajectories and away from walls. Conclusions Earlier findings of reduced activity in illuminated or open areas have been extended in the present study by demonstrating changes in the spatio-temporal structure of locomotor behavior. In the more complex arenas (with stones) spiny mice traveled along short straight segments whereas in the open their trips were longer and took the shape of a zigzag path which is more effective against fast or nearby predators. Alternatively, the zigzag path may reflect a difficulty in navigation. PMID:15537426

  18. GHRP-6 mimics ghrelin-induced stimulation of food intake and suppression of locomotor activity in goldfish.

    PubMed

    Yahashi, Satowa; Kang, Ki Sung; Kaiya, Hiroyuki; Matsuda, Kouhei

    2012-04-01

    Ghrelin was first identified and characterized from rat stomach as an endogenous ligand for the growth hormone secretagogue (GHS) receptor (GHS-R). Ghrelin also acts as an orexigenic factor and regulates energy balance in rodents. In goldfish, native ghrelin consists of 11 molecular variants, the major form being a 17-residue peptide with n-octanoic acid modification (n-octanoyl ghrelin17), and intraperitoneal (IP) administration of n-octanoyl ghrelin17 induces central actions such as stimulation of food intake and suppression of locomotor activity through capsaicin-sensitive afferents. Four types of GHS-Rs (1a-1, 1a-2, 2a-1 and 2a-2) have been identified in goldfish, and one GHS, GHRP-6, can activate only GHS-R2a-1 in vitro. However, there is no information about the effect of GHRP-6 on food intake and locomotor activity in goldfish in vivo. Therefore, in the present study, we examined whether IP-administered GHRP-6 would mimic the orexigenic action of n-octanoyl ghrelin17 and its suppression of locomotor activity. IP administration of GHRP-6 at 1pmol/g body weight (BW) stimulated food intake, and was equipotent to the orexigenic action of n-octanoyl ghrelin17 at 10 pmol/g BW. IP-injected GHRP-6 at 1 pmol/g BW also induced a significant decrease of locomotor activity, as was the case for IP-injected n-octanoyl ghrelin17 at 10 pmol/g BW. The action of GHRP-6 was blocked by IP-preinjected capsaicin at 160 nmol/g BW. These results suggest that the central action of GHRP-6 might be mediated via the GHS-R2a-1-signaling pathway, and subsequently through capsaicin-sensitive afferents in goldfish.

  19. AB296. SPR-23 Aberrant bladder reflexes can drive hind limb locomotor activity following complete suprasacral spinal cord injury

    PubMed Central

    Inouye, Brian M.; Brooks, Jillene M.; Degoski, Danielle J.; Hughes, Francis M.; Purves, J. Todd; Fraser, Matthew O.

    2016-01-01

    Objective Many rats with chronic suprasacral spinal cord injury (SCI) demonstrate hind limb locomotor activity (HLLA) in response to external crede or high pressure contractions during cystometry. We propose that this aberrant, pressure-driven bladder reflex pathway may be harnessed to facilitate walking in SCI patients. As a first step in exploring this possibility, we examined the relationship between intravesical pressure (IVP) and HLLA in chronic suprasacral SCI rats. Methods Female rats (4 weeks post-SCI at T9-10, n=16) were anesthetized with isoflurane and fitted with transvesical catheters and right quadriceps EMG electrodes to monitor bladder and hind limb locomotor activities, respectively. The animals were mounted in Ballman restraint cages to which they had been previously acclimated. The catheter was connected to a pressure transducer, an infusion pump, and a saline-filled reservoir mounted on a metered vertical pole (pressure clamp). After 30 min of recovery from anesthesia, the bladder was filled at 0.1 mL/min with saline to verify bladder-to-bladder reflex activity for 30 min. IVP was then increased in an interrupted stepwise fashion from 0–120 cmH2O at 10 cmH2O increments. Each step consisted of five minutes: 3 minutes at the new pressure followed by 2 minutes at 0 cmH2O. IVP and the number of HLLA events (as defined by rhythmic EMG discharges of 3–10 cycles/event) were recorded for each pressure step. This process was repeated for two more trials for each rat to assess the durability of the reflex. Data were analyzed using ANOVA with repeated measures both within and across pressure escalation trials. P<0.05 was considered significant. Results ANOVA revealed that locomotor events increased with increasing IVP and decreased with the number of escalation trials (P<0.0001 for both effects). The increase in the number of locomotor events with increasing IVP appeared to plateau at ~50–60 cmH2O (P<0.05 for all). The average of the maximal number of

  20. Effects of stress and tranylcypromine on amphetamine-induced locomotor activity and GABA(B) receptor function in rat brain.

    PubMed

    Sands, S A; Reisman, S A; Enna, S J

    2003-01-17

    Modification in gamma-aminobutyric acid-B (GABA(B)) receptors may contribute to the symptoms of some neurological and psychiatric disorders and to the clinical response to psychotherapeutics. The present study was undertaken to determine whether chronic administration of tranylcypromine (TCP), an antidepressant, and chronic stress influence GABA(B) receptor function in rat brain. The results indicate that TCP treatment, but not stress, increases GABA(B) receptor activity in the cerebral cortex, as measured by baclofen-stimulated GTPgammaS binding. In addition, chronic administration of TCP enhances significantly the locomotor response to a single dose of amphetamine, an effect that is abolished by restraint stress. These results indicate that although TCP administration modifies brain GABA(B) receptor activity, which may contribute to the antidepressant response to this agent, this effect is unrelated to the interaction of stress and TCP treatment on the locomotor response to amphetamine.

  1. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals.

    PubMed

    Hofstoetter, Ursula S; Krenn, Matthias; Danner, Simon M; Hofer, Christian; Kern, Helmut; McKay, William B; Mayr, Winfried; Minassian, Karen

    2015-10-01

    The level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after motor-incomplete spinal cord injury. Here, we present initial data using noninvasive transcutaneous lumbar spinal cord stimulation (tSCS) to modulate this central state of excitability during voluntary treadmill stepping in three motor-incomplete spinal cord-injured individuals. Stimulation was applied at 30 Hz with an intensity that generated tingling sensations in the lower limb dermatomes, yet without producing muscle reflex activity. This stimulation changed muscle activation, gait kinematics, and the amount of manual assistance required from the therapists to maintain stepping with some interindividual differences. The effect on motor outputs during treadmill-stepping was essentially augmentative and step-phase dependent despite the invariant tonic stimulation. The most consistent modification was found in the gait kinematics, with the hip flexion during swing increased by 11.3° ± 5.6° across all subjects. This preliminary work suggests that tSCS provides for a background increase in activation of the lumbar spinal locomotor circuitry that has partially lost its descending drive. Voluntary inputs and step-related feedback build upon the stimulation-induced increased state of excitability in the generation of locomotor activity. Thus, tSCS essentially works as an electrical neuroprosthesis augmenting remaining motor control.

  2. Electrophysiological and pharmacological properties of locomotor activity-related neurons in cfos-EGFP mice.

    PubMed

    Dai, Yue; Carlin, Kevin P; Li, Zongming; McMahon, Douglas G; Brownstone, Robert M; Jordan, Larry M

    2009-12-01

    Although locomotion is known to be generated by networks of spinal neurons, knowledge of the properties of these neurons is limited. Using neonatal transgenic mice that express enhanced green fluorescent protein (EGFP) driven by the c-fos promoter, we visualized EGFP-positive neurons in spinal cord slices from animals that were subjected to a locomotor task or drug cocktail [N-methyl-D-aspartate, serotonin (5-HT), dopamine, and acetylcholine (ACh)]. The activity-dependent expression of EGFP was also induced in dorsal root ganglion neurons with electrical stimulation of the neurons. Following 60-90 min of swimming, whole cell patch-clamp recordings were made from EGFP+ neurons in laminae VII, VIII, and X from slices of segments T(12) to L(4). The EGFP+ neurons (n = 55) could be classified into three types based on their responses to depolarizing step currents: single spike, phasic firing, and tonic firing. Membrane properties observed in these neurons include hyperpolarization-activated inward currents (29/55), postinhibitory rebound (11/55), and persistent-inward currents (31/55). Bath application of 10-40 microM 5-HT and/or ACh increased neuronal excitability or output with hyperpolarization of voltage threshold and changes in membrane potential. 5-HT also increased input resistance, reduced the afterhyperpolarization (AHP), and induced membrane oscillations, whereas ACh reduced the input resistance and increased the AHP. In this study, we demonstrate a new way of identifying neurons active in locomotion. Our results suggest that the EGFP+ neurons are a heterogeneous population of interneurons. The actions of 5-HT and ACh on these neurons provide insights into the neuronal properties modulated by these transmitters for generation of locomotion.

  3. Locomotor activity and sensory-motor developmental alterations in rat offspring exposed to arsenic prenatally and via lactation.

    PubMed

    Gumilar, Fernanda; Lencinas, Ileana; Bras, Cristina; Giannuzzi, Leda; Minetti, Alejandra

    2015-01-01

    Arsenic (As) is one of the most toxic naturally occurring contaminants in the environment. The major source of human exposure to inorganic As (iAs) is through contaminated drinking water. Although both genotoxicity and carcinogenicity derived from this metalloid have been thoroughly studied, the effects of iAs on the development and function of the central nervous system (CNS) have received less attention and only a few studies have focused on neurobehavioral effects. Thus, in order to characterize developmental and behavioral alterations induced by iAs exposure, pregnant Wistar rats were exposed to 0.05 and 0.10 mg/L iAs through drinking water during gestation and lactation. Sensory-motor reflexes in each pup were analyzed and the postnatal day when righting reflex, cliff aversion and negative geotaxis were recorded. Functional Observational Battery (FOB) and locomotor activity in an open field were assessed in 90-day-old offspring. Results show that rats exposed to low iAs concentrations through drinking water during early development evidence a delay in the development of sensory-motor reflexes. Both FOB procedure and open-field tests showed a decrease in locomotor activity in adult rats. This study reveals that exposure to the above-mentioned iAs concentrations produces dysfunction in the CNS mechanisms whose role is to regulate motor and sensory development and locomotor activity.

  4. Age-related changes in fatty acid profile and locomotor activity rhythms in Nothobranchius korthausae.

    PubMed

    Lucas-Sánchez, A; Almaida-Pagán, P F; Madrid, J A; de Costa, J; Mendiola, P

    2011-12-01

    The life cycle of Nothobranchius korthausae, a Cyprinodontiformes fish, was studied in our laboratory to characterise the ageing process. Some morphological changes, such as spine curvature, skin colour, and fin and eye appearance are described. Growth and survival curves reflected a fast life cycle with rapid initial growth until 4weeks of age, after which the fish grew more slowly before reaching their final size in week 40. Senescence onset was established at week 48 with a decrease in spawn size and viability and a general decline in the animal's appearance (weight and colouration losses, caudal fin degradation, and cataractogenesis). The fatty acid composition changed with age, with high unsaturation in the adult stage as reflected by a high peroxidation index, a condition that is associated with high susceptibility to oxidative damage if elevated reactive oxygen species (ROS) production occurs. Senescent fish had an increase in monounsaturated fatty acid proportions and a lower peroxidation index (226.5±19.7 in adults versus 120.2±19.1 in senescent fish, P<0.05). The circadian system, as reflected by locomotor activity rhythms, showed noticeable changes with age. Twenty-four-week-old fish (adults) had a robust diurnal rhythm that showed a decrease in total activity, an increase in rhythm fragmentation, and a fall in amplitude and regularity with age. Changes were clearly reflected in the Circadian Function Index variations (0.56, 0.47 and 0.25 at 24, 48 and 72weeks of age, respectively). In conclusion, N. korthausae appears to be a species with appropriate characteristics for ageing studies because it manifests clear signs of progressive ageing. Comparing species of Nothobranchius genus with different lifespans may be useful for increasing our understanding of the ageing process.

  5. Locomotor exercise in weightlessness

    NASA Technical Reports Server (NTRS)

    Thornton, W.; Whitmore, H.

    1991-01-01

    The requirements for exercise in space by means of locomotion are established and addressed with prototype treadmills for use during long-duration spaceflight. The adaptation of the human body to microgravity is described in terms of 1-G locomotor biomechanics, the effects of reduced activity, and effective activity-replacement techniques. The treadmill is introduced as a complement to other techniques of force replacement with reference given to the angle required for exercise. A motor-driven unit is proposed that can operate at a variety of controlled speeds and equivalent grades. The treadmills permit locomotor exercise as required for long-duration space travel to sustain locomotor and cardiorespiratory capacity at a level consistent with postflight needs.

  6. Protease-Activated Receptor-1 Supports Locomotor Recovery by Biased Agonist Activated Protein C after Contusive Spinal Cord Injury

    PubMed Central

    Whetstone, William D.; Walker, Breset; Trivedi, Alpa; Lee, Sangmi; Noble-Haeusslein, Linda J.; Hsu, Jung-Yu C.

    2017-01-01

    Thrombin-induced secondary injury is mediated through its receptor, protease activated receptor-1 (PAR-1), by "biased agonism." Activated protein C (APC) acts through the same PAR-1 receptor but functions as an anti-coagulant and anti-inflammatory protein, which counteracts many of the effects of thrombin. Although the working mechanism of PAR-1 is becoming clear, the functional role of PAR-1 and its correlation with APC in the injured spinal cord remains to be elucidated. Here we investigated if PAR-1 and APC are determinants of long-term functional recovery after a spinal cord contusive injury using PAR-1 null and wild-type mice. We found that neutrophil infiltration and disruption of the blood-spinal cord barrier were significantly reduced in spinal cord injured PAR-1 null mice relative to the wild-type group. Both locomotor recovery and ability to descend an inclined grid were significantly improved in the PAR-1 null group 42 days after injury and this improvement was associated with greater long-term sparing of white matter and a reduction in glial scarring. Wild-type mice treated with APC acutely after injury showed a similar level of improved locomotor recovery to that of PAR-1 null mice. However, improvement of APC-treated PAR-1 null mice was indistinguishable from that of vehicle-treated PAR-1 null mice, suggesting that APC acts through PAR-1. Collectively, our findings define a detrimental role of thrombin-activated PAR-1 in wound healing and further validate APC, also acting through the PAR-1 by biased agonism, as a promising therapeutic target for spinal cord injury. PMID:28122028

  7. [Spinal cord stepping electrostimulation as a method for recovery of locomotor activity in vertebrogenic myelopathies].

    PubMed

    Shapkova, E Iu; Mushkin, A Iu

    2002-01-01

    The paper summarizes accumulated data on the parameters effective in calling alternate leg stepping and the areas of application of spinal cord electrostimulation, as well as the results of its application to restore locomotor capacities (tetra- and bipedal walking) of paralyzed patients.

  8. The potentiating effect of sertraline and fluoxetine on amphetamine-induced locomotor activity is not mediated by serotonin.

    PubMed

    Sills, T L; Greenshaw, A J; Baker, G B; Fletcher, P J

    1999-04-01

    Sertraline dose-dependently increased the locomotor stimulating effect of amphetamine. At the highest dose, 20 mg/kg sertraline had a biphasic effect on amphetamine-induced hyperactivity, producing an initial reduction in amphetamine-induced hyperactivity that was later followed by an augmentation of amphetamine-induced hyperactivity in the last hour of the 3-h test. Sertraline, at doses of 5 and 10 mg/kg, produced an augmentation of amphetamine-induced hyperactivity over the last 2 h of the 3-h test session. Further, there was an increase in the concentration of amphetamine in the brain in rats pretreated with 5 mg/kg sertraline. Both sertraline (5 mg/kg) and fluoxetine (5 mg/kg) produced an augmentation of amphetamine-induced hyperactivity that was unaltered by a serotonergic lesion of the median and dorsal raphe nuclei that resulted in a greater than 90% depletion of serotonin in hippocampus, striatum, and nucleus accumbens. Further, both sertraline and fluoxetine inhibited spontaneous locomotor activity and this effect was also unaltered by the depletion of serotonin. Thus, serotonergic neurotransmission is not essential for the effects of sertraline and fluoxetine on spontaneous and amphetamine-induced locomotion. It is probable that sertraline and fluoxetine augment the locomotor stimulatory effect of amphetamine by decreasing the metabolism of amphetamine, perhaps via actions on cytochrome P450 isozymes.

  9. 7alpha-Hydroxypregnenolone acts as a neuronal activator to stimulate locomotor activity of breeding newts by means of the dopaminergic system.

    PubMed

    Matsunaga, Masahiro; Ukena, Kazuyoshi; Baulieu, Etienne-Emile; Tsutsui, Kazuyoshi

    2004-12-07

    It is becoming clear that steroids can be synthesized de novo by the brain and other nervous systems. Such steroids are called neurosteroids, and de novo neurosteroidogenesis from cholesterol is a conserved property of vertebrate brains. In this study, we show that the newt brain actively produces 7alpha-hydroxypregnenolone, a previously undescribed amphibian neurosteroid that stimulates locomotor activity. 7alpha-hydroxypregnenolone was identified as a most abundant amphibian neurosteroid in the newt brain by using biochemical techniques combined with HPLC, TLC, and GC-MS analyses. The production of 7alpha-hydroxypregnenolone in the diencephalon and rhombencephalon was higher than that in the telencephalon and peripheral steroidogenic glands. In addition, 7alpha-hydroxypregnenolone synthesis in the brain showed marked changes during the annual breeding cycle, with a maximal level in the spring breeding period when locomotor activity of the newt increases. Behavioral analysis of newts in the nonbreeding period demonstrated that administration of this previously undescribed amphibian neurosteroid acutely increased locomotor activity. In vitro analysis further revealed that 7alpha-hydroxypregnenolone treatment resulted in a dose-dependent increase in the release of dopamine from cultured brain tissue of nonbreeding newts. The effect of this neurosteroid on locomotion also was abolished by dopamine D(2)-like receptor antagonists. These results indicate that 7alpha-hydroxypregnenolone acts as a neuronal activator to stimulate locomotor activity of breeding newts through the dopaminergic system. This study demonstrates a physiological function of 7alpha-hydroxypregnenolone that has not been described previously in any vertebrate class. This study also provides findings on the regulatory mechanism of locomotor activity from a unique standpoint.

  10. Electrophysiological characterization of V2a interneurons and their locomotor-related activity in the neonatal mouse spinal cord.

    PubMed

    Zhong, Guisheng; Droho, Steven; Crone, Steven A; Dietz, Shelby; Kwan, Alex C; Webb, Watt W; Sharma, Kamal; Harris-Warrick, Ronald M

    2010-01-06

    The V2a class of Chx10-expressing interneurons has been implicated in frequency-dependent control of left-right phase during locomotion in the mouse. We have used the Chx10::CFP mouse line to further investigate the properties and locomotion-related activity of V2a interneurons in the isolated neonatal spinal cord. V2a interneurons can be divided into three classes, based on their tonic, phasic, or delayed-onset responses to step depolarization. Electrical coupling is found only between neurons of same class and helps to synchronize neuronal activity within the class. Serotonin (5-HT) excites isolated tonic V2a interneurons by depolarizing the neurons and increasing their membrane input resistance, with no significant effects on action potential properties, a mechanism distinct from 5-HT excitation of commissural interneurons. During NMDA-/5-HT-induced locomotor-like activity, patch-clamp recordings and two-photon calcium imaging experiments show that approximately half of V2a interneurons fire rhythmically with ventral root-recorded motor activity; the rhythmic V2a interneurons fired during one half of the cycle, in phase with either the ipsilateral or the contralateral L2 ventral root bursts. The percentage of rhythmically firing V2a interneurons increases during higher-frequency fictive locomotion, and they become significantly more rhythmic in their firing during the locomotor cycle; this may help to explain the frequency-dependent shift in left-right coupling in Chx10::DTA mice, which lack these neurons. Our results together with data from the accompanying paper (Dougherty and Kiehn, 2009) reinforce earlier proposals that the V2a interneurons are components of the hindlimb central pattern generator, helping to organize left-right locomotor coordination in the neonatal mouse spinal cord.

  11. Cocaine-induced locomotor sensitization in rats correlates with nucleus accumbens activity on manganese-enhanced MRI.

    PubMed

    Perrine, Shane A; Ghoddoussi, Farhad; Desai, Kirtan; Kohler, Robert J; Eapen, Ajay T; Lisieski, Michael J; Angoa-Perez, Mariana; Kuhn, Donald M; Bosse, Kelly E; Conti, Alana C; Bissig, David; Berkowitz, Bruce A

    2015-11-01

    A long-standing goal of substance abuse research has been to link drug-induced behavioral outcomes with the activity of specific brain regions to understand the neurobiology of addiction behaviors and to search for drug-able targets. Here, we tested the hypothesis that cocaine produces locomotor (behavioral) sensitization that correlates with increased calcium channel-mediated neuroactivity in brain regions linked with drug addiction, such as the nucleus accumbens (NAC), anterior striatum (AST) and hippocampus, as measured using manganese-enhanced MRI (MEMRI). Rats were treated with cocaine for 5 days, followed by a 2-day drug-free period. The following day, locomotor sensitization was quantified as a metric of cocaine-induced neuroplasticity in the presence of manganese. Immediately following behavioral testing, rats were examined for changes in calcium channel-mediated neuronal activity in the NAC, AST, hippocampus and temporalis muscle, which was associated with behavioral sensitization using MEMRI. Cocaine significantly increased locomotor activity and produced behavioral sensitization compared with saline treatment of control rats. A significant increase in MEMRI signal intensity was determined in the NAC, but not AST or hippocampus, of cocaine-treated rats compared with saline-treated control rats. Cocaine did not increase signal intensity in the temporalis muscle. Notably, in support of our hypothesis, behavior was significantly and positively correlated with MEMRI signal intensity in the NAC. As neuronal uptake of manganese is regulated by calcium channels, these results indicate that MEMRI is a powerful research tool to study neuronal activity in freely behaving animals and to guide new calcium channel-based therapies for the treatment of cocaine abuse and dependence.

  12. Chronic nicotine differentially alters cocaine-induced locomotor activity in adolescent vs. adult male and female rats.

    PubMed

    Collins, Stephanie L; Izenwasser, Sari

    2004-03-01

    Tobacco use is prevalent in the adolescent population. It is a major concern because tobacco is highly addictive and has also been linked to illicit drug use. There is not much research, however, on the interaction between nicotine and other stimulant drugs in animal models of early adolescence. This study examined the effects of chronic nicotine alone and on cocaine-stimulated activity in male and female periadolescent rats compared to male and female adult rats. During the seven-day nicotine pretreatment period, nicotine increased locomotor activity in all groups compared to vehicle controls. Male and female adult rats and female periadolescent rats developed sensitization to the locomotor-activating effects of nicotine over the 7-day treatment period, while male periadolescent rats did not. All groups treated with nicotine, however, exhibited sensitization to nicotine-induced repetitive motion over the 7-day nicotine treatment period. On day 8, male periadolescent rats pretreated with nicotine were more markedly sensitized to the locomotor-activating effects of cocaine than male adult rats, while female rats pretreated with nicotine were not sensitized to cocaine. In contrast, male and female periadolescent rats, but not adult rats, had increased amounts of repetitive beam breaks induced by cocaine after nicotine pretreatment. Overall, it appears that cross-sensitization to cocaine is greater in periadolescent than in adult rats, and that males are more sensitized than females. Thus, it may be that nicotine use during adolescence carries a greater risk than during adulthood and that male adolescents may be particularly vulnerable to the risk of cocaine abuse after nicotine use. This information should be taken into account so as to help us better understand the development of drug addiction in adolescents compared to adults.

  13. Circadian Disruption Alters the Effects of Lipopolysaccharide Treatment on Circadian and Ultradian Locomotor Activity and Body Temperature Rhythms of Female Siberian Hamsters.

    PubMed

    Prendergast, Brian J; Cable, Erin J; Stevenson, Tyler J; Onishi, Kenneth G; Zucker, Irving; Kay, Leslie M

    2015-12-01

    The effect of circadian rhythm (CR) disruption on immune function depends on the method by which CRs are disrupted. Behavioral and thermoregulatory responses induced by lipopolysaccharide (LPS) treatment were assessed in female Siberian hamsters in which circadian locomotor activity (LMA) rhythms were eliminated by exposure to a disruptive phase-shifting protocol (DPS) that sustains arrhythmicity even when hamsters are housed in a light-dark cycle. This noninvasive treatment avoids genome manipulations and neurological damage associated with other models of CR disruption. Circadian rhythmic (RHYTH) and arrhythmic (ARR) hamsters housed in a 16L:8D photocycle were injected with bacterial LPS near the onset of the light (zeitgeber time 1; ZT1) or dark (ZT16) phase. LPS injections at ZT16 and ZT1 elicited febrile responses in both RHYTH and ARR hamsters, but the effect was attenuated in the arrhythmic females. In ZT16, LPS inhibited LMA in the dark phase immediately after injection but not on subsequent nights in both chronotypes; in contrast, LPS at ZT1 elicited more enduring (~4 day) locomotor hypoactivity in ARR than in RHYTH hamsters. Power and period of dark-phase ultradian rhythms (URs) in LMA and Tb were markedly altered by LPS treatment, as was the power in the circadian waveform. Disrupted circadian rhythms in this model system attenuated responses to LPS in a trait- and ZT-specific manner; changes in UR period and power are novel components of the acute-phase response to infection that may affect energy conservation.

  14. Circadian Disruption Alters the Effects of Lipopolysaccharide Treatment on Circadian and Ultradian Locomotor Activity and Body Temperature Rhythms of Female Siberian Hamsters

    PubMed Central

    Prendergast, Brian J.; Cable, Erin J.; Stevenson, Tyler J.; Onishi, Kenneth G.; Zucker, Irving; Kay, Leslie M.

    2016-01-01

    The effect of circadian rhythm (CR) disruption on immune function depends on the method by which CRs are disrupted. Behavioral and thermoregulatory responses induced by lipopolysaccharide (LPS) treatment were assessed in female Siberian hamsters in which circadian locomotor activity (LMA) rhythms were eliminated by exposure to a disruptive phase-shifting protocol (DPS) that sustains arrhythmicity even when hamsters are housed in a light-dark cycle. This noninvasive treatment avoids genome manipulations and neurological damage associated with other models of CR disruption. Circadian rhythmic (RHYTH) and arrhythmic (ARR) hamsters housed in a 16L:8D photocycle were injected with bacterial LPS near the onset of the light (zeitgeber time 1; ZT1) or dark (ZT16) phase. LPS injections at ZT16 and ZT1 elicited febrile responses in both RHYTH and ARR hamsters, but the effect was attenuated in the arrhythmic females. In ZT16, LPS inhibited LMA in the dark phase immediately after injection but not on subsequent nights in both chronotypes; in contrast, LPS at ZT1 elicited more enduring (~4 day) locomotor hypoactivity in ARR than in RHYTH hamsters. Power and period of dark-phase ultradian rhythms (URs) in LMA and Tb were markedly altered by LPS treatment, as was the power in the circadian waveform. Disrupted circadian rhythms in this model system attenuated responses to LPS in a trait- and ZT-specific manner; changes in UR period and power are novel components of the acute-phase response to infection that may affect energy conservation. PMID:26566981

  15. Enhanced Locomotor Activity Is Required to Exert Dietary Restriction-Dependent Increase of Stress Resistance in Drosophila.

    PubMed

    Ghimire, Saurav; Kim, Man Su

    2015-01-01

    Dietary restriction (DR) is known to be one of the most effective interventions to increase stress resistance, yet the mechanisms remain elusive. One of the most obvious DR-induced changes in phenotype is an increase in locomotor activity. Although it is conceptually perceivable that nutritional scarcity should prompt enhanced foraging behavior to garner additional dietary resources, the significance of enhanced movement activity has not been associated with the DR-dependent increase of stress resistance. In this study, we confirmed that flies raised on DR exhibited enhanced locomotive activity and increased stress resistance. Excision of fly wings minimized the DR-induced increase in locomotive activity, which resulted in attenuation of the DR-dependent increase of stress resistance. The possibility that wing clipping counteracts the DR by coercing flies to have more intake was ruled out since it did not induce any weight gain. Rather it was found that elimination of reactive oxygen species (ROS) that is enhanced by DR-induced upregulation of expression of antioxidant genes was significantly reduced by wing clipping. Collectively, our data suggests that DR increased stress resistance by increasing the locomotor activity, which upregulated expression of protective genes including, but not limited to, ROS scavenger system.

  16. Olfactory bulbectomy modifies photic entrainment and circadian rhythms of body temperature and locomotor activity in a nocturnal primate.

    PubMed

    Perret, Martine; Aujard, Fabienne; Séguy, Maud; Schilling, Alain

    2003-10-01

    Studies on rodents have emphasized that removal of the olfactory bulbs modulates circadian rhythmicity. Using telemetric recordings of both body temperature (Tb) and locomotor activity (LA) in a male nocturnal primate, the gray mouse lemur, the authors investigated the effects of olfactory bulbectomy on (1) the circadian periods of Tb and LA in constant dim light condition, and (2) photic re-entrainment rates of circadian rhythms following 6-h phase shifts of entrained light-dark cycle (LD 12:12). Under free-running condition, bulbectomized males had significantly shorter circadian periods of Tb and LA rhythms than those of control males. However, the profiles of Tb rhythms, characterized by a phase of hypothermia at the beginning of the subjective day, and Tb parameters were not modified by olfactory bulbectomy. Under a light-dark cycle, olfactory bulbectomy significantly modified the expression of daily hypothermia, especially by an increase in the latency to reach minimal daily Tb, suggesting a delayed response to induction of daily hypothermia by light onset. Reentrainment rates following both a 6-h phase advance and a 6-h phase delay of entrained LD were also delayed in bulbectomized males. Olfactory bulbectomy led to significant fragmentation of locomotor activity and increased locomotor activity levels during the resting period. The shortening of circadian periods in bulbectomized males could partly explain the delayed responses to photic stimuli since in control males, the longer the circadian period, the better the response to light entrainment. This experiment shows for the 1st time that olfactory bulbs can markedly modify the circadian system in a primate.

  17. Differences in Monoamine Oxidase Activity in the Brain of Wistar and August Rats with High and Low Locomotor Activity: A Cytochemical Study.

    PubMed

    Sergutina, A V; Rakhmanova, V I

    2016-06-01

    Monoamine oxidase activity was quantitatively assessed by cytochemical method in brain structures (layers III and V of the sensorimotor cortex, caudate nucleus, nucleus accumbens, hippocampal CA3 field) of rats of August line and Wistar population with high and low locomotor activity in the open fi eld test. Monoamine oxidase activity (substrate tryptamine) predominated in the nucleus accumbens of Wistar rats with high motor activity in comparison with rats with low locomotor activity. In August rats, enzyme activity (substrates tryptamine and serotonin) predominated in the hippocampus of animals with high motor activity. Comparison of August rats with low locomotor activity and Wistar rats with high motor activity (i.e. animals demonstrating maximum differences in motor function) revealed significantly higher activity of the enzyme (substrates tryptamine and serotonin) in the hippocampus of Wistar rats. The study demonstrates clear-cut morphochemical specificity of monoaminergic metabolism based on the differences in the cytochemical parameter "monoamine oxidase activity", in the studied brain structures, responsible for the formation and realization of goal-directed behavior in Wistar and August rats.

  18. Impairment of locomotor activity induced by the novel N-acylhydrazone derivatives LASSBio-785 and LASSBio-786 in mice

    PubMed Central

    Silva, G.A.P.; Kummerle, A.E.; Antunes, F.; Fraga, C.A.M.; Barreiro, E.J.; Zapata-Sudo, G.; Sudo, R.T.

    2013-01-01

    The N-acylhydrazone (NAH) analogues N-methyl 2-thienylidene 3,4-benzoylhydrazine (LASSBio-785) and N-benzyl 2-thienylidene 3,4-benzoylhydrazine (LASSBio-786) were prepared from 2-thienylidene 3,4-methylenedioxybenzoylhydrazine (LASSBio-294). The ability of LASSBio-785 and LASSBio-786 to decrease central nervous system activity was investigated in male Swiss mice. LASSBio-785 or LASSBio-786 (30 mg/kg, ip) reduced locomotor activity from 209 ± 26 (control) to 140 ± 18 (P < 0.05) or 146 ± 15 crossings/min (P < 0.05), respectively. LASSBio-785 (15 or 30 mg/kg, iv) also reduced locomotor activity from 200 ± 15 to 116 ± 29 (P < 0.05) or 60 ± 16 crossings/min (P < 0.01), respectively. Likewise, LASSBio-786 (15 or 30 mg/kg, iv) reduced locomotor activity from 200 ± 15 to 127 ± 10 (P < 0.01) or 96 ± 14 crossings/min (P < 0.01), respectively. Pretreatment with flumazenil (20 mg/kg, ip) prevented the locomotor impairment induced by NAH analogues (15 mg/kg, iv), providing evidence that the benzodiazepine (BDZ) receptor is involved. This finding was supported by the structural similarity of NAH analogues to midazolam. However, LASSBio-785 showed weak binding to the BDZ receptor. LASSBio-785 or LASSBio-786 (30 mg/kg, ip, n = 10) increased pentobarbital-induced sleeping time from 42 ± 5 (DMSO) to 66 ± 6 (P < 0.05) or 75 ± 4 min (P < 0.05), respectively. The dose required to achieve 50% hypnosis (HD50) following iv injection of LASSBio-785 or LASSBio-786 was 15.8 or 9.5 mg/kg, respectively. These data suggest that both NAH analogues might be useful for the development of new neuroactive drugs for the treatment of insomnia or for use in conjunction with general anesthesia. PMID:23558854

  19. Zebrafish locomotor capacity and brain acetylcholinesterase activity is altered by Aphanizomenon flos-aquae DC-1 aphantoxins.

    PubMed

    Zhang, De Lu; Hu, Chun Xiang; Li, Dun Hai; Liu, Yong Ding

    2013-08-15

    Aphanizomenon flos-aquae (A. flos-aquae) is a source of neurotoxins known as aphantoxins or paralytic shellfish poisons (PSPs) that present a major threat to the environment and to human health. Generally, altered neurological function is reflected in behavior. Although the molecular mechanism of action of PSPs is well known, its neurobehavioral effects on adult zebrafish and its relationship with altered neurological functions are poorly understood. Aphantoxins purified from a natural isolate of A. flos-aquae DC-1 were analyzed by HPLC. The major analogs found in the toxins were the gonyautoxins 1 and 5 (GTX1 and GTX5; 34.04% and 21.28%, respectively) and the neosaxitoxin (neoSTX, 12.77%). Zebrafish (Danio rerio) were intraperitoneally injected with 5.3 and 7.61 μg STXeq/kg (low and high dose, respectively) of A. flos-aquae DC-1 aphantoxins. The swimming activity was investigated by observation combined with video at 6 timepoints from 1 to 24 h post-exposure. Both aphantoxin doses were associated with delayed touch responses, reduced head-tail locomotory abilities, inflexible turning of head, and a tailward-shifted center of gravity. The normal S-pattern (or undulating) locomotor trajectory was replaced by a mechanical motor pattern of swinging the head after wagging the tail. Finally, these fish principally distributed at the top and/or bottom water of the aquarium, and showed a clear polarized distribution pattern at 12 h post-exposure. Further analysis of neurological function demonstrated that both aphantoxin doses inhibited brain acetylcholinesterase activity. All these changes were dose- and time-dependent. These results demonstrate that aphantoxins can alter locomotor capacity, touch responses and distribution patterns by damaging the cholinergic system of zebrafish, and suggest that zebrafish locomotor behavior and acetylcholinesterase can be used as indicators for investigating aphantoxins and blooms in nature.

  20. Age-dependent cyclic locomotor activity in the cricket, Gryllus bimaculatus, and the effect of adipokinetic hormone on locomotion and excitability.

    PubMed

    Fassold, Katharina; El-Damanhouri, Hassan I H; Lorenz, Matthias W

    2010-04-01

    Excitability and locomotor activity of male and female last instar larvae and adults of the two-spotted cricket are measured under crowded conditions, allowing the animals to interact with conspecifics during observations. Male and female last instar larvae display age-dependent cyclic patterns of activity with maxima during early to mid scotophase and minima during early photophase. A period of low locomotor activity without time of day-dependent cyclic changes starts 1 day before the final moult and lasts until 1 day after the moult. Then, both excitability and locomotor activity increase and become cyclic again within 2 or 3 days. The cyclic changes gradually dampen in adult females older than 6 days and finally cease. When injected into photophase larvae and adults, adipokinetic hormone (AKH) increases excitability and locomotor activity in a dose-dependent manner, whereas it has no such effect when injected into scotophase animals. Other behaviours (jumping, hind wing trembling) that mostly occur in scotophase crickets are also increased by injecting AKH into photophase crickets. We argue that AKH could be responsible for linking the endogenous clock output with the cyclic changes in locomotor activity. Furthermore, AKH may serve to synchronise metabolism and behaviour to optimise larval development and reproduction.

  1. Inhibition of spinal c-Jun-NH2-terminal kinase (JNK) improves locomotor activity of spinal cord injured rats.

    PubMed

    Martini, Alessandra C; Forner, Stefânia; Koepp, Janice; Rae, Giles Alexander

    2016-05-16

    Mitogen-activated protein kinases (MAPKs) have been implicated in central nervous system injuries, yet the roles within neurodegeneration following spinal cord injury (SCI) still remain partially elucidated. We aimed to investigate the changes in expression of the three MAPKs following SCI and the role of spinal c-jun-NH2-terminal kinase (JNK) in motor impairment following the lesion. SCI induced at the T9 level resulted in enhanced expression of phosphorylated MAPKs shortly after trauma. SCI increased spinal cord myeloperoxidase levels, indicating a local neutrophil infiltration, and elevated the number of spinal apoptotic cells. Intrathecal administration of a specific inhibitor of JNK phosphorylation, SP600125, given at 1 and 4h after SCI, reduced the p-JNK expression, the number of spinal apoptotic cells and many of the histological signs of spinal injury. Notably, restoration of locomotor performance was clearly ameliorated by SP600125 treatment. Altogether, the results demonstrate that SCI induces activation of spinal MAPKs and that JNK plays a major role in mediating the deleterious consequences of spinal injury, not only at the spinal level, but also those regarding locomotor function. Therefore, inhibition of JNK activation in the spinal cord shortly after trauma might constitute a feasible therapeutic strategy for the functional recovery from SCI.

  2. The effects of lighting conditions and food restriction paradigms on locomotor activity of common spiny mice, Acomys cahirinus

    PubMed Central

    2012-01-01

    Background An endogenous circadian clock controls locomotor activity in common spiny mice (Acomys cahirinus). However, little is known about the effects of constant light (LL) on this activity or about the existence of an additional food entrainable clock. A series of experiments were performed to investigate the effects of LL and DD on tau and activity levels. Methods Spiny mice were housed individually and their running wheel activity monitored. One group of mice was exposed to LD, DD and several intensities of LL. Another group was exposed to a restricted feeding (RF) paradigm in light: dark (LD) during one hour before the L to D transition. Significance of rhythmicity was assessed using Lomb-Scargle periodograms. Results In LD all animals exhibited nocturnal activity rhythms that persisted in DD. When animals were exposed to RF (during L), all of these animals (n = 11) demonstrated significant food anticipatory activity as well as an increase in diurnal activity. This increase in diurnal activity persisted in 4/11 animals during subsequent ad libitum conditions. Under LL conditions, the locomotor rhythms of 2/11 animals appeared to entrain to RF. When animals were exposed to sequentially increasing LL intensities, rhythmicity persisted and, while activity decreased significantly, the free-running period was relatively unaffected. In addition, the period in LL was significantly longer than the period in DD. Exposure to LL also induced long-term changes (after-effects) on period and activity when animals were again exposed to DD. Conclusions Overall these studies demonstrate clear and robust circadian rhythms of wheel-running in A. cahirinus. In addition, LL clearly inhibited activity in this species and induced after-effects. The results also confirm the presence of a food entrainable oscillator in this species. PMID:22958374

  3. Comparison of the MK-801-induced increase in non-rewarded appetitive responding with dopamine agonists and locomotor activity in rats.

    PubMed

    Davis-MacNevin, Parnell L; Dekraker, Jordan; LaDouceur, Liane; Holahan, Matthew R

    2013-09-01

    Systemic administration of the noncompetitive N-methyl-D-aspartate (NMDA)- receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. Evidence has shown that MK-801 increases the probability of operant responding during extinction, possibly modeling perseveration, as would be seen in patients with schizophrenia. This MK-801-induced behavioral perseveration is reversed by dopamine receptor antagonism. To further explore the role of dopamine in this behavioral change, the current study sought to determine if the MK-801-induced increase in non-rewarded operant responding could be mimicked by dopamine agonism and determine how it was related to locomotor activity. Male Long Evans rats were treated systemically with MK-801, cocaine, GBR12909 or apomorphine (APO) and given a single trial operant extinction session, followed by a separate assessment of locomotor activity. Both MK-801 (0.05 mg/kg) and cocaine (10 mg/kg) significantly increased responding during the extinction session and both increased horizontal locomotor activity. No dose of GBR-12909 (5, 10 or 20 mg/kg) was found to effect non-rewarded operant responding or locomotor activity. APO (0.05, 0.5, 2 or 5 mg/kg) treatment produced a dose-dependent decrease in both operant responding and locomotor activity. These results suggest the possibility that, rather than a primary influence of increased dopamine concentration on elevating bar-pressing responses during extinction, other neurotransmitter systems may be involved.

  4. Cognitive deficits and decreased locomotor activity induced by single-walled carbon nanotubes and neuroprotective effects of ascorbic acid.

    PubMed

    Liu, Xudong; Zhang, Yuchao; Li, Jinquan; Wang, Dong; Wu, Yang; Li, Yan; Lu, Zhisong; Yu, Samuel C T; Li, Rui; Yang, Xu

    2014-01-01

    Single-walled carbon nanotubes (SWCNTs) have shown increasing promise in the field of biomedicine, especially in applications related to the nervous system. However, there are limited studies available on the neurotoxicity of SWCNTs used in vivo. In this study, neurobehavioral changes caused by SWCNTs in mice and oxidative stress were investigated. The results of ethological analysis (Morris water maze and open-field test), brain histopathological examination, and assessments of oxidative stress (reactive oxygen species [ROS], malondialdehyde [MDA], and glutathione [GSH]), inflammation (nuclear factor κB, tumor necrosis factor α, interleukin-1β), and apoptosis (cysteine-aspartic acid protease 3) in brains showed that 6.25 and 12.50 mg/kg/day SWCNTs in mice could induce cognitive deficits and decreased locomotor activity, brain histopathological alterations, and increased levels of oxidative stress, inflammation, and apoptosis in mouse brains; however, 3.125 mg/kg/day SWCNTs had zero or minor adverse effects in mice, and these effects were blocked by concurrent administration of ascorbic acid. Down-regulation of oxidative stress, inflammation, and apoptosis were proposed to explain the neuroprotective effects of ascorbic acid. This work suggests SWCNTs could induce cognitive deficits and decreased locomotor activity, and provides a strategy to avoid the adverse effects.

  5. Zebrafish temperature selection and synchronization of locomotor activity circadian rhythm to ahemeral cycles of light and temperature.

    PubMed

    López-Olmeda, Jose Fernando; Sánchez-Vázquez, Francisco Javier

    2009-02-01

    In addition to light cycles, temperature cycles are among the most important synchronizers in nature. Indeed, both clock gene expression and circadian activity rhythms entrain to thermocycles. This study aimed to extend our knowledge of the relative strength of light and temperature as zeitgebers for zebrafish locomotor activity rhythms. When the capacity of a 24:20 degrees C (thermophase:cryophase, referred to as TC) thermocycle to synchronize activity rhythms under LL was evaluated, it was found that most groups (78%) synchronized to these conditions. Under LD, when zebrafish were allowed to select the water temperature (24 degrees C vs. 20 degrees C), most fish selected the higher temperature and showed diurnal activity, while a small (25%) percentage of fish that preferred the lower temperature displayed nocturnal activity. Under conflicting LD and TC cycles, fish showed diurnal activity when the zeitgebers were in phase or in antiphase, with a high percentage of activity displayed around dawn and dusk (22% and 34% of the total activity for LD/TC and LD/CT, respectively). Finally, to test the relative strength of each zeitgeber, fish were subjected to ahemeral cycles of light (T=25 h) and temperature (T=23 h). Zebrafish synchronized mostly to the light cycle, although they displayed relative coordination, as their locomotor activity increased when light and thermophase coincided. These findings show that although light is a stronger synchronizer than temperature, TC cycles alone can entrain circadian rhythms and interfere in their light synchronization, suggesting the existence of both light- and temperature-entrainable oscillators that are weakly coupled.

  6. The sublethal effects of endosulfan on the circadian rhythms and locomotor activity of two sympatric parasitoid species.

    PubMed

    Delpuech, Jean-Marie; Bussod, Sophie; Amar, Aurelien

    2015-08-01

    The organochlorine insecticide endosulfan is dispersed worldwide and significantly contributes to environmental pollution. It is an antagonist of the neurotransmitter gamma-aminobutyric acid (GABA), which is also indirectly involved in photoperiodic time measurement. In this study, we show that endosulfan at a dose as low as LC 0.1 modified the rhythm of locomotor activity of two sympatric parasitoid species, Leptopilina boulardi and Leptopilina heterotoma. The insecticide strongly increased the nocturnal activity of both species and synchronized their diurnal activity; these activities were not synchronized under control conditions. Parasitoids are important species in ecosystems because they control the populations of other insects. In this paper, we discuss the possible consequences of these sublethal effects and highlight the importance of such effects in evaluating the consequences of environmental pollution due to insecticides.

  7. A miniaturized video system for monitoring the locomotor activity of walking Drosophila melanogaster in space and terrestrial settings.

    PubMed

    Inan, Omer T; Etemadi, Mozziyar; Sanchez, Max E; Marcu, Oana; Bhattacharya, Sharmila; Kovacs, Gregory T A

    2009-02-01

    A novel method is presented for monitoring movement of Drosophila melanogaster (the fruit fly) in space. Transient fly movements were captured by a $60, 2.5-cm-cubed monochrome video camera imaging flies illuminated by a uniform light source. The video signal from this camera was bandpass filtered (0.3-10 Hz) and amplified by an analog circuit to extract the average light changes as a function of time. The raw activity signal output of this circuit was recorded on a computer and digitally processed to extract the fly movement "events" from the waveform. These events corresponded to flies entering and leaving the image and were used for extracting activity parameters such as interevent duration. The efficacy of the system in quantifying locomotor activity was evaluated by varying environmental temperature and measuring the activity level of the flies. The results of this experiment matched those reported in the literature.

  8. Locomotor activation by theacrine, a purine alkaloid structurally similar to caffeine: involvement of adenosine and dopamine receptors.

    PubMed

    Feduccia, Allison A; Wang, Yuanyuan; Simms, Jeffrey A; Yi, Henry Y; Li, Rui; Bjeldanes, Leonard; Ye, Chuangxing; Bartlett, Selena E

    2012-08-01

    Purine compounds, such as caffeine, have many health-promoting properties and have proven to be beneficial in treating a number of different conditions. Theacrine, a purine alkaloid structurally similar to caffeine and abundantly present in Camellia kucha, has recently become of interest as a potential therapeutic compound. In the present study, theacrine was tested using a rodent behavioral model to investigate the effects of the drug on locomotor activity. Long Evans rats were injected with theacrine (24 or 48 mg/kg, i.p.) and activity levels were measured. Results showed that the highest dose of theacrine (48 mg/kg, i.p.) significantly increased locomotor activity compared to control animals and activity remained elevated throughout the duration of the session. To test for the involvement of adenosine receptors underlying theacrine's motor-activating properties, rats were administered a cocktail of the adenosine A₁ agonist, N⁶-cyclopentyladenosine (CPA; 0.1 mg/kg, i.p.) and A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680; 0.2 mg/kg, i.p.). Pre-treatment with theacrine significantly attenuated the motor depression induced by the adenosine receptor agonists, indicating that theacrine is likely acting as an adenosine receptor antagonist. Next, we examined the role of DA D₁ and D₂ receptor antagonism on theacrine-induced hyperlocomotion. Both antagonists, D₁R SCH23390 (0.1 or 0.05 mg/kg, i.p.) and D₂R eticlopride (0.1 mg/kg, i.p.), significantly reduced theacrine-stimulated activity indicating that this behavioral response, at least in part, is mediated by DA receptors. In order to investigate the brain region where theacrine may be acting, the drug (10 or 20 μg) was infused bilaterally into nucleus accumbens (NAc). Theacrine enhanced activity levels in a dose-dependent manner, implicating a role of the NAc in modulating theacrine's effects on locomotion. In addition, theacrine did not induce locomotor

  9. Differential involvement of CCK-A and CCK-B receptors in the regulation of locomotor activity in the mouse.

    PubMed

    Vasar, E; Harro, J; Lang, A; Pôld, A; Soosaar, A

    1991-01-01

    The influence of the CCK-A antagonist devazepide and the CCK-B/gastrin antagonist L-365,260 on the locomotor activity of mice was studied. Devazepide and L-365,260 had opposite effects on spontaneous locomotor activity, and on caerulein- and apomorphine-induced hypomotility in the mouse. Devazepide in high doses (0.1-1 mg/kg IP) reduced spontaneous motor activity, whereas L-365,260 at a high dose (1 mg/kg IP) increased the activity of mice. Devazepide (0.1-10 micrograms/kg) moderately antagonized the sedative effect of apomorphine (0.1 mg/kg SC) and caerulein (25 micrograms/kg SC), whereas L-365,260 (1-10 micrograms/kg) significantly potentiated the actions of dopamine and CCK agonists. Concomitant administration of caerulein (15 micrograms/kg SC) and apomorphine (0.1 mg/kg SC) caused an almost complete loss of locomotor activity in the mouse. Devazepide and L-365,260 (0.1-10 micrograms/kg) were completely ineffective against caerulein-induced potentiation of apomorphine hypomotility. Devazepide in high doses (0.1-1 mg/kg), reducing the spontaneous motor activity of mice, counteracted the motor excitation induced by d-amphetamine (5 mg/kg IP). The CCK agonist caerulein (100 micrograms/kg SC) had a similar antiamphetamine effect. Devazepide (1-100 micrograms/kg) and L-365,260 (1 micrograms/kg) reversed completely the antiamphetamine effect of caerulein. The results of present study reflect apparently distinct role of CCK-A and CCK-B receptors in the regulation of motor activity. The opposite effect of devazepide and L-365,260 on caerulein- and apomorphine-induced hypolocomotion is probably related to the antagonistic role of CCK-A and CCK-B receptor subtypes in the regulation of mesencephalic dopaminergic neurons. The antiamphetamine effect of caerulein is possibly linked to the stimulation of CCK-A receptors in the mouse brain, whereas the blockade of both subtypes of the CCK-8 receptor is involved in the antiamphetamine effect of devazepide.

  10. (-)-1-(Benzofuran-2-yl)-2-propylaminopentane enhances locomotor activity in rats due to its ability to induce dopamine release.

    PubMed

    Shimazu, S; Takahata, K; Katsuki, H; Tsunekawa, H; Tanigawa, A; Yoneda, F; Knoll, J; Akaike, A

    2001-06-15

    "Catecholaminergic and serotoninergic activity enhancer" effects are newly found mechanisms of action of a class of compound that enhance impulse propagation-mediated release of catecholamines and serotonin in the brain. In the present study, (-)-1-(benzofuran-2-yl)-2-propylaminopentane hydrochloride [(-)-BPAP HCl], a compound with selective and potent "catecholaminergic and serotoninergic activity enhancer" effects, was tested for its efficacy to potentiate locomotor activity in normal rats and to attenuate hypolocomotion in reserpine-treated rats. (-)-BPAP HCl potentiated locomotor activity in non-habituated rats during a 2-h observation period dose-dependently (0.3-10 mg/kg). (-)-BPAP HCl (1-3 mg/kg) was also effective to reverse reserpine-induced hypolocomotion. The effects of (-)-BPAP HCl in normal and reserpine-treated rats were attenuated by the dopamine D1 receptor antagonist, R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SCH 23390), suggesting that the effects of (-)-BPAP HCl were mediated by activation of the dopaminergic system. In addition, the administration of (-)-BPAP HCl increased ipsilateral turning in unilaterally 6-hydroxydopamine-lesioned rats, implying presynaptic activation of nigrostriatal dopaminergic terminals by (-)-BPAP HCl. Furthermore, although antiparkinsonian agents, such as apomorphine and amantadine, failed to improve reserpine-induced ptosis, (-)-BPAP HCl significantly improved ptosis. These findings suggested that a "catecholaminergic and serotoninergic activity enhancer" compound, (-)-BPAP, stimulates motor function in rats and improves motor deficits in animal models of Parkinson's disease due to its ability to induce dopamine release.

  11. Afferent contribution to locomotor muscle activity during unconstrained overground human walking: an analysis of triceps surae muscle fascicles.

    PubMed

    af Klint, R; Cronin, N J; Ishikawa, M; Sinkjaer, T; Grey, M J

    2010-03-01

    Plantar flexor series elasticity can be used to dissociate muscle-fascicle and muscle-tendon behavior and thus afferent feedback during human walking. We used electromyography (EMG) and high-speed ultrasonography concomitantly to monitor muscle activity and muscle fascicle behavior in 19 healthy volunteers as they walked across a platform. On random trials, the platform was dropped (8 cm, 0.9 g acceleration) or held at a small inclination (up to +/-3 degrees in the parasagittal plane) with respect to level ground. Dropping the platform in the mid and late phases of stance produced a depression in the soleus muscle activity with an onset latency of about 50 ms. The reduction in ground reaction force also unloaded the plantar flexor muscles. The soleus muscle fascicles shortened with a minimum delay of 14 ms. Small variations in platform inclination produced significant changes in triceps surae muscle activity; EMG increased when stepping on an inclined surface and decreased when stepping on a declined surface. This sensory modulation of the locomotor output was concomitant with changes in triceps surae muscle fascicle and gastrocnemius tendon length. Assuming that afferent activity correlates to these mechanical changes, our results indicate that within-step sensory feedback from the plantar flexor muscles automatically adjusts muscle activity to compensate for small ground irregularities. The delayed onset of muscle fascicle movement after dropping the platform indicates that at least the initial part of the soleus depression is more likely mediated by a decrease in force feedback than length-sensitive feedback, indicating that force feedback contributes to the locomotor activity in human walking.

  12. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling

    PubMed Central

    Barca-Mayo, Olga; Pons-Espinal, Meritxell; Follert, Philipp; Armirotti, Andrea; Berdondini, Luca; De Pietri Tonelli, Davide

    2017-01-01

    Circadian rhythms are controlled by a network of clock neurons in the central pacemaker, the suprachiasmatic nucleus (SCN). Core clock genes, such as Bmal1, are expressed in SCN neurons and in other brain cells, such as astrocytes. However, the role of astrocytic clock genes in controlling rhythmic behaviour is unknown. Here we show that ablation of Bmal1 in GLAST-positive astrocytes alters circadian locomotor behaviour and cognition in mice. Specifically, deletion of astrocytic Bmal1 has an impact on the neuronal clock through GABA signalling. Importantly, pharmacological modulation of GABAA-receptor signalling completely rescues the behavioural phenotypes. Our results reveal a crucial role of astrocytic Bmal1 for the coordination of neuronal clocks and propose a new cellular target, astrocytes, for neuropharmacology of transient or chronic perturbation of circadian rhythms, where alteration of astrocytic clock genes might contribute to the impairment of the neurobehavioural outputs such as cognition. PMID:28186121

  13. Prolactin increases the synthesis of 7alpha-hydroxypregnenolone, a key factor for induction of locomotor activity, in breeding male Newts.

    PubMed

    Haraguchi, Shogo; Koyama, Teppei; Hasunuma, Itaru; Vaudry, Hubert; Tsutsui, Kazuyoshi

    2010-05-01

    We recently found that the Japanese red-bellied newt, Cynops pyrrhogaster, actively produces 7alpha-hydroxypregnenolone, a previously undescribed amphibian neurosteroid. 7alpha-Hydroxypregnenolone stimulates locomotor activity of male newts. Locomotor activity of male newts increases during the breeding period as in other wild animals, but the molecular mechanism for such a change in locomotor activity is poorly understood. Here we show that the adenohypophyseal hormone prolactin (PRL) stimulates 7alpha-hydroxypregnenolone synthesis in the brain, thus increasing locomotor activity of breeding male newts. In this study, cytochrome P450(7alpha) (CYP7B), a steroidogenic enzyme catalyzing the formation of 7alpha-hydroxypregnenolone, was first identified to analyze seasonal changes in 7alpha-hydroxypregnenolone synthesis. Only males exhibited marked seasonal changes in 7alpha-hydroxypregnenolone synthesis and CYP7B expression in the brain, with a maximum level in the spring breeding period when locomotor activity of males increases. Subsequently we identified PRL as a key component of the mechanism regulating 7alpha-hydroxypregnenolone synthesis. Hypophysectomy decreased 7alpha-hydroxypregnenolone synthesis in the male brain, whereas administration of PRL but not gonadotropins to hypophysectomized males caused a dose-dependent increase in 7alpha-hydroxypregnenolone synthesis. To analyze the mode of PRL action, CYP7B and the receptor for PRL were localized in the male brain. PRL receptor was expressed in the neurons expressing CYP7B in the magnocellular preoptic nucleus. Thus, PRL appears to act directly on neurosteroidogenic magnocellular preoptic nucleus neurons to regulate 7alpha-hydroxypregnenolone synthesis, thus inducing seasonal locomotor changes in male newts. This is the first report describing the regulation of neurosteroidogenesis in the brain by an adenohypophyseal hormone in any vertebrate.

  14. Individual differences in cocaine-induced locomotor activity of male Sprague-Dawley rats are not explained by plasma corticosterone levels.

    PubMed

    Nelson, Anna M; Kleschen, Melissa J; Zahniser, Nancy R

    2010-05-26

    Humans differ in their initial response to, and subsequent abuse of, addictive drugs like cocaine. Rodents also exhibit marked individual differences in responsiveness to cocaine. Previously, we classified male Sprague-Dawley rats as either low or high cocaine responders (LCRs or HCRs, respectively), based on their acute low-dose cocaine-induced locomotor activity, and found that with repeated drug exposure LCRs exhibit greater cocaine locomotor sensitization, reward and reinforcement than HCRs. Differential cocaine-induced increases in striatal dopamine help to explain the LCR/HCR phenotypes. Differential levels of stress and/or anxiety could also contribute but have not been explored. Here we measured open-field activity and plasma corticosterone levels both pre- and post-cocaine treatment in LCRs, HCRs, and saline-treated controls. The three groups did not differ in baseline locomotor activity or corticosterone levels. Importantly, LCR/HCR differences in corticosterone levels were also not observed following acute cocaine (10mg/kg, i.p.), when cocaine induced approximately 3.5-fold greater locomotor activity in HCRs than LCRs. Additionally, there were no LCR/HCR differences in plasma corticosterone levels following 5 days of once-daily cocaine, during which time LCRs developed locomotor sensitization such that their cocaine-induced locomotor activity no longer differed from that of HCRs. Likewise, there were no group activity differences in any of four concentric zones within the open-field chamber. In summary, neither plasma corticosterone levels nor thigmotaxis-type anxiety appears to be a factor that contributes to the observed cocaine-induced LCR/HCR behavioral differences.

  15. Effect of locomotor activity on ultrastructure of cerebellar neurons, neurological disturbances, and survival of Krushinsky-Molodkina rats with hemorrhagic stroke.

    PubMed

    Samosudova, N V; Reutov, V P; Krushinsky, A L; Kuzenkov, V S; Sorokina, E G

    2012-10-01

    We studied the effect of locomotor activity on the ultrastructure of cerebellar neurons, neurological disturbances, and survival rate in Krushinsky-Molodkina rats during the development of hemorrhagic induced by acoustic stress. In animals with high spontaneous locomotor activity, severe edema of cerebellar neurons (resulting in the destruction of surrounding structures) and swelling of the synapses (terminals of mossy fibers on granule cell dendrites) were observed. By contrast, the areas of intracerebral, subdural, and subarachnoid hemorrhages were lower in rats under conditions of forced rest.

  16. Synchronization to light and mealtime of the circadian rhythms of self-feeding behavior and locomotor activity of white shrimps (Litopenaeus vannamei).

    PubMed

    Santos, Aline Dos Anjos; López-Olmeda, José Fernando; Sánchez-Vázquez, Francisco Javier; Fortes-Silva, Rodrigo

    2016-09-01

    The role of light and feeding cycles in synchronizing self-feeding and locomotor activity rhythms was studied in white shrimps using a new self-feeding system activated by photocell trigger. In experiment 1, shrimps maintained under a 12:12h light/dark (LD) photoperiod were allowed to self-feed using feeders connected to a photoelectric cell, while locomotor activity was recorded with a second photocell. On day 30, animals were subjected to constant darkness (DD) for 12days to check the existence of endogenous circadian rhythms. In the experiment 2, shrimps were exposed to both a 12:12h LD photoperiod and a fixed meal schedule in the middle of the dark period (MD, 01:00h). On day 20, shrimps were exposed to DD conditions and the same fixed feeding. On day 30, they were maintained under DD and fasted for 7days. The results revealed that under LD, shrimps showed a clear nocturnal feeding pattern and locomotor activity (81.9% and 67.7% of total daily food-demands and locomotor activity, respectively, at nighttime). Both feeding and locomotor rhythms were endogenously driven and persisted under DD with an average period length (τ) close to 24h (circadian) (τ=24.18±0.13 and 23.87±0.14h for locomotor and feeding, respectively). Moreover, Shrimp showed a daily food intake under LD condition (1.1±0.2gday(-1) in the night phase vs. 0.2±0.1gday(-1) in the light phase). Our findings might be relevant for some important shrimp aquaculture aspects, such as developing suitable feeding management on shrimp farms.

  17. The Effects of the Mars Exploration Rovers (MER) Work Schedule Regime on Locomotor Activity Circadian Rhythms, Sleep and Fatigue

    NASA Technical Reports Server (NTRS)

    DeRoshia, Charles W.; Colletti, Laura C.; Mallis, Melissa M.

    2008-01-01

    This study assessed human adaptation to a Mars sol by evaluating sleep metrics obtained by actigraphy and subjective responses in 22 participants, and circadian rhythmicity in locomotor activity in 9 participants assigned to Mars Exploration Rover (MER) operational work schedules (24.65 hour days) at the Jet Propulsion Laboratory in 2004. During MER operations, increased work shift durations and reduced sleep durations and time in bed were associated with the appearance of pronounced 12-hr (circasemidian) rhythms with reduced activity levels. Sleep duration, workload, and circadian rhythm stability have important implications for adaptability and maintenance of operational performance not only of MER operations personnel but also in space crews exposed to a Mars sol of 24.65 hours during future Mars missions.

  18. Behaviour and locomotor activity of a migratory catostomid during fishway passage.

    PubMed

    Silva, Ana T; Hatry, Charles; Thiem, Jason D; Gutowsky, Lee F G; Hatin, Daniel; Zhu, David Z; Dawson, Jeffery W; Katopodis, Christos; Cooke, Steven J

    2015-01-01

    Fishways have been developed to restore longitudinal connectivity in rivers. Despite their potential for aiding fish passage, fishways may represent a source of significant energetic expenditure for fish as they are highly turbulent environments. Nonetheless, our understanding of the physiological mechanisms underpinning fishway passage of fish is still limited. We examined swimming behaviour and activity of silver redhorse (Moxostoma anisurum) during its upriver spawning migration in a vertical slot fishway. We used an accelerometer-derived instantaneous activity metric (overall dynamic body acceleration) to estimate location-specific swimming activity. Silver redhorse demonstrated progressive increases in activity during upstream fishway passage. Moreover, location-specific passage duration decreased with an increasing number of passage attempts. Turning basins and the most upstream basin were found to delay fish passage. No relationship was found between basin-specific passage duration and activity and the respective values from previous basins. The results demonstrate that successful fishway passage requires periods of high activity. The resultant energetic expenditure may affect fitness, foraging behaviour and increase susceptibility to predation, compromising population sustainability. This study highlights the need to understand the physiological mechanisms underpinning fishway passage to improve future designs and interpretation of biological evaluations.

  19. Behaviour and Locomotor Activity of a Migratory Catostomid during Fishway Passage

    PubMed Central

    Silva, Ana T.; Hatry, Charles; Thiem, Jason D.; Gutowsky, Lee F. G.; Hatin, Daniel; Zhu, David Z.; W. Dawson, Jeffery; Katopodis, Christos; J. Cooke, Steven

    2015-01-01

    Fishways have been developed to restore longitudinal connectivity in rivers. Despite their potential for aiding fish passage, fishways may represent a source of significant energetic expenditure for fish as they are highly turbulent environments. Nonetheless, our understanding of the physiological mechanisms underpinning fishway passage of fish is still limited. We examined swimming behaviour and activity of silver redhorse (Moxostoma anisurum) during its upriver spawning migration in a vertical slot fishway. We used an accelerometer-derived instantaneous activity metric (overall dynamic body acceleration) to estimate location-specific swimming activity. Silver redhorse demonstrated progressive increases in activity during upstream fishway passage. Moreover, location-specific passage duration decreased with an increasing number of passage attempts. Turning basins and the most upstream basin were found to delay fish passage. No relationship was found between basin-specific passage duration and activity and the respective values from previous basins. The results demonstrate that successful fishway passage requires periods of high activity. The resultant energetic expenditure may affect fitness, foraging behaviour and increase susceptibility to predation, compromising population sustainability. This study highlights the need to understand the physiological mechanisms underpinning fishway passage to improve future designs and interpretation of biological evaluations. PMID:25853245

  20. Greater Ethanol-Induced Locomotor Activation in DBA/2J versus C57BL/6J Mice Is Not Predicted by Presynaptic Striatal Dopamine Dynamics

    PubMed Central

    Rose, Jamie H.; Calipari, Erin S.; Mathews, Tiffany A.; Jones, Sara R.

    2013-01-01

    A large body of research has aimed to determine the neurochemical factors driving differential sensitivity to ethanol between individuals in an attempt to find predictors of ethanol abuse vulnerability. Here we find that the locomotor activating effects of ethanol are markedly greater in DBA/2J compared to C57BL/6J mice, although it is unclear as to what neurochemical differences between strains mediate this behavior. Dopamine elevations in the nucleus accumbens and caudate-putamen regulate locomotor behavior for most drugs, including ethanol; thus, we aimed to determine if differences in these regions predict strain differences in ethanol-induced locomotor activity. Previous studies suggest that ethanol interacts with the dopamine transporter, potentially mediating its locomotor activating effects; however, we found that ethanol had no effects on dopamine uptake in either strain. Ex vivo voltammetry allows for the determination of ethanol effects on presynaptic dopamine terminals, independent of drug-induced changes in firing rates of afferent inputs from either dopamine neurons or other neurotransmitter systems. However, differences in striatal dopamine dynamics did not predict the locomotor-activating effects of ethanol, since the inhibitory effects of ethanol on dopamine release were similar between strains. There were differences in presynaptic dopamine function between strains, with faster dopamine clearance in the caudate-putamen of DBA/2J mice; however, it is unclear how this difference relates to locomotor behavior. Because of the role of the dopamine system in reinforcement and reward learning, differences in dopamine signaling between the strains could have implications for addiction-related behaviors that extend beyond ethanol effects in the striatum. PMID:24349553

  1. Contribution of Drosophila TRPA1-expressing neurons to circadian locomotor activity patterns.

    PubMed

    Lee, Youngseok

    2013-01-01

    In both vertebrates and invertebrates, Transient Receptor Potential (TRP) channels are expressed in sensory neurons and mediate environmental stimuli such as light, sound, temperature, and taste. Some of these channels, however, are expressed only in the brain and their functions remain incompletely understood. Using the GAL4/UAS binary system with a line in which the GAL4 had been knocked into the trpA1 locus in Drosophila, we recently reported new insights into TRPA1 localization and function, including its expression in approximately 15% of all circadian neurons. TRPA1 is expressed in lateral posterior neurons (LPNs), which are known to be highly sensitive to entrainment by temperature cycles. Here, I used the bacterial sodium channel, NaChBac, to examine the effects of altering the electrical properties of trpA1 neurons on circadian rhythms. My results indicate that circadian activity of the flies in the morning, daytime, and evening was affected in a temperature-dependent manner following TRPA1 neuronal activation. Remarkably, TRPA1 neuron activation in flies kept at 18°C impacted the morning peak of circadian activity even though TRPA1 is not expressed in morning cells. Taken together, these results suggest that the activation of TRPA1-expressing neurons may differentially coordinate light/dark circadian entrainment, depending on the temperature.

  2. Neonatal olfactory bulbectomy enhances locomotor activity, exploratory behavior and binding of NMDA receptors in pre-pubertal rats.

    PubMed

    Flores, G; Ibañez-Sandoval, O; Silva-Gómez, A B; Camacho-Abrego, I; Rodríguez-Moreno, A; Morales-Medina, J C

    2014-02-14

    In this study, we investigated the effect of neonatal olfactory bulbectomy (nOBX) on behavioral paradigms related to olfaction such as exploratory behavior, locomotor activity in a novel environment and social interaction. We also studied the effect of nOBX on the activity of the N-methyl-d-aspartate (NMDA) subtype of glutamate receptors during development. The behavioral effects of nOBX (postnatal day 7, PD7) were investigated in pre- (PD30) and post-pubertal (PD60) Wistar rats. NMDA receptor activity was measured with [(125)I]MK-801 in the brain regions associated with the olfactory circuitry. A significant increase in the novelty-induced locomotion was seen in the pre-pubertal nOBX rats. Although the locomotor effect was less marked than in pre-pubertal rats, the nOBX rats tested post-pubertally failed to habituate to the novel situation as quickly as the sham- and normal- controls. Pre-pubertally, the head-dipping behavior was enhanced in nOBX rats compared with sham-operated and normal controls, while normal exploratory behavior was observed between groups in adulthood. In contrast, social interaction was increased in post-pubertal animals that underwent nOBX. Both pre- and post-pubertal nOBX rats recovered olfaction. Interestingly, pre-pubertal rats showed a significant increase in the [(125)I]MK-801 binding in the piriform cortex, dorsal hippocampus, inner and outer layers of the frontal cortex and outer layer of the cingulate cortex. At post-pubertal age, no significant differences in [(125)I]MK-801 binding were observed between groups at any of the brain regions analyzed. These results suggest that nOBX produces pre-pubertal behavioral disturbances and NMDA receptor changes that are transitory with recovery of olfaction early in adulthood.

  3. Application of the Copenhagen Soccer Test in high-level women players - locomotor activities, physiological response and sprint performance.

    PubMed

    Bendiksen, Mads; Pettersen, Svein Arne; Ingebrigtsen, Jørgen; Randers, Morten B; Brito, João; Mohr, Magni; Bangsbo, Jens; Krustrup, Peter

    2013-12-01

    We evaluated the physiological response, sprint performance and technical ability in various phases of the Copenhagen Soccer Test for Women (CSTw) and investigated whether the locomotor activities of the CSTw were comparable to competitive match-play (CM). Physiological measurements and physical/technical assessments were performed during CSTw for eleven Norwegian high-level women soccer players. The activity pattern during CSTw and CM was monitored using the ZXY tracking system. No differences were observed between CSTw and CM with regards to total distance covered (10093±94 and 9674±191m), high intensity running (1278±67 and 1193±115m) or sprinting (422±55 and 372±46m) (p>.05). During CSTw, average HR was 85±2%HRmax with 35±2% playing time >90%HRmax. Blood lactate increased (p<.05) from 1.4±0.3mM at rest to an average of 4.7±0.5mM during CSTw, with no changes during the test. Blood glucose was 5.4±0.3mM at rest and remained unaltered during CSTw. Sprint performance (2×20m) decreased (p<.05) by 3% during CSTw (8.19±0.06-8.47±0.10s). In conclusion, the locomotor activities during CSTw were comparable to that of high-level competitive match-play. The physiological demands of the CSTw were high, with no changes in heart rate, blood lactate or technical performance during the test, but a lowered sprint performance towards the end of the test.

  4. l-5-hydroxytryptophan resets the circadian locomotor activity rhythm of the nocturnal Indian pygmy field mouse, Mus terricolor

    NASA Astrophysics Data System (ADS)

    Basu, Priyoneel; Singaravel, Muniyandi; Haldar, Chandana

    2012-03-01

    We report that l-5-hydroxytryptophan (5-HTP), a serotonin precursor, resets the overt circadian rhythm in the Indian pygmy field mouse, Mus terricolor, in a phase- and dose-dependent manner. We used wheel running to assess phase shifts in the free-running locomotor activity rhythm. Following entrainment to a 12:12 h light-dark cycle, 5-HTP (100 mg/kg in saline) was intraperitoneally administered in complete darkness at circadian time (CT)s 0, 3, 6, 9, 12, 15, 18, and 21, and the ensuing phase shifts in the locomotor activity rhythm were calculated. The results show that 5-HTP differentially shifts the phase of the rhythm, causing phase advances from CT 0 to CT 12 and phase delays from CT 12 to CT 21. Maximum advance phase shift was at CT 6 (1.18 ± 0.37 h) and maximum delay was at CT 18 (-2.36 ± 0.56 h). No extended dead zone is apparent. Vehicle (saline) at any CT did not evoke a significant phase shift. Investigations with different doses (10, 50, 100, and 200 mg/kg) of 5-HTP revealed that the phase resetting effect is dose-dependent. The shape of the phase-response curve (PRC) has a strong similarity to PRCs obtained using some serotonergic agents. There was no significant increase in wheel-running activity after 5-HTP injection, ruling out behavioral arousal-dependent shifts. This suggests that this phase resetting does not completely depend on feedback of the overt rhythmic behavior on the circadian clock. A mechanistic explanation of these shifts is currently lacking.

  5. Identification of Compounds in the Essential Oil of Nutmeg Seeds (Myristica fragrans Houtt.) That Inhibit Locomotor Activity in Mice

    PubMed Central

    Muchtaridi; Subarnas, Anas; Apriyantono, Anton; Mustarichie, Resmi

    2010-01-01

    The present study was designed to evaluate the inhibitory effect of nutmeg (Myristica fragrans Houtt.) seed essential oil on the locomotor activity of mice in a wheel cage. Active compounds in the essential oil were identified by off-line solid phase extraction (SPE-C18) and GC/MS analysis. The essential oil was administered by inhalation at doses of 0.1, 0.3, and 0.5 mL/cage. The results showed that inhalation of nutmeg seed essential oil at a dose of 0.5 mL/cage decreased locomotion by 68.62%; and inhalation of 0.1 and 0.3 mL/cage inhibited locomotion by 62.81% and 65.33%, respectively. Generally, larger doses and longer administrations of nutmeg seed essential oil exhibited greater locomotor inhibition. Subsequently, the plasma concentrations of essential oil compounds were measured. The most concentrated compound in the plasma was myristicin. Half an hour after the addition of 1 mL/cage of nutmeg seed oil, the plasma concentration of myristicin was 3.7 μg/mL; one and two hours after the addition, the blood levels of myristicin were 5.2 μg/mL and 7.1 μg/mL, respectively. Other essential oil compounds identified in plasma were safrole (two-hour inhalation: 1.28 μg/mL), 4-terpineol (half-hour inhalation: 1.49 μg/mL, one-hour inhalation: 2.95 μg/mL, two-hour inhalation: 6.28 μg/mL) and fatty esters. The concentrations of the essential oil compounds in the blood plasma were relatively low (μg/mL or ppm). In conclusion, the volatile compounds of nutmeg seed essential oil identified in the blood plasma may correlate with the locomotor-inhibiting properties of the oil when administered by inhalation. PMID:21151471

  6. Identification of compounds in the essential oil of nutmeg seeds (Myristica fragrans Houtt.) that inhibit locomotor activity in mice.

    PubMed

    Muchtaridi; Subarnas, Anas; Apriyantono, Anton; Mustarichie, Resmi

    2010-11-23

    The present study was designed to evaluate the inhibitory effect of nutmeg (Myristica fragrans Houtt.) seed essential oil on the locomotor activity of mice in a wheel cage. Active compounds in the essential oil were identified by off-line solid phase extraction (SPE-C18) and GC/MS analysis. The essential oil was administered by inhalation at doses of 0.1, 0.3, and 0.5 mL/cage. The results showed that inhalation of nutmeg seed essential oil at a dose of 0.5 mL/cage decreased locomotion by 68.62%; and inhalation of 0.1 and 0.3 mL/cage inhibited locomotion by 62.81% and 65.33%, respectively. Generally, larger doses and longer administrations of nutmeg seed essential oil exhibited greater locomotor inhibition. Subsequently, the plasma concentrations of essential oil compounds were measured. The most concentrated compound in the plasma was myristicin. Half an hour after the addition of 1 mL/cage of nutmeg seed oil, the plasma concentration of myristicin was 3.7 μg/mL; one and two hours after the addition, the blood levels of myristicin were 5.2 μg/mL and 7.1 μg/mL, respectively. Other essential oil compounds identified in plasma were safrole (two-hour inhalation: 1.28 μg/mL), 4-terpineol (half-hour inhalation: 1.49 μg/mL, one-hour inhalation: 2.95 μg/mL, two-hour inhalation: 6.28 μg/mL) and fatty esters. The concentrations of the essential oil compounds in the blood plasma were relatively low (μg/mL or ppm). In conclusion, the volatile compounds of nutmeg seed essential oil identified in the blood plasma may correlate with the locomotor-inhibiting properties of the oil when administered by inhalation.

  7. Effects of the imidazobenzodiazepine R015-4513 on the stimulant and depressant actions of ethanol on spontaneous locomotor activity

    SciTech Connect

    Becker, H.C.

    1988-01-01

    The purpose of this study was to investigate the effects of the imidazobenzodiazepine R015-4513, a partial inverse agonist at benzodiazepine (BDZ) receptors, on the stimulant and depressant actions of ethanol in mice. For comparative purposes, another BDZ inverse agonist, FG-7142, was examined as well. Neither R015-4513 nor FG-7142 influenced the low-dose excitatory effects of ethanol on spontaneous locomotor activity. However, both R015-4513 and FG-7142 significantly antagonized the depressant effects of ethanol, and this antagonism was completely reversed by pretreatment with the BDZ receptor antagonist, R015-1788. These data suggest that R015-4513 is capable of antagonizing only some of the behavioral effects of ethanol, and in particular, those responses to ethanol that are mediated by modulation of the GABA/BDZ-chloride channel receptor complex.

  8. Interactions between Dorsal and Ventral Root Stimulation on the Generation of Locomotor-Like Activity in the Neonatal Mouse Spinal Cord.

    PubMed

    Pujala, Avinash; Blivis, Dvir; O'Donovan, Michael J

    2016-01-01

    We investigated whether dorsal (DR) and ventral root (VR) stimulus trains engage common postsynaptic components to activate the central pattern generator (CPG) for locomotion in the neonatal mouse spinal cord. VR stimulation did not activate the first order interneurons mediating the activation of the locomotor CPG by sacrocaudal afferent stimulation. Simultaneous stimulation of adjacent dorsal or ventral root pairs, subthreshold for evoking locomotor-like activity, did not summate to activate the CPG. This suggests that locomotor-like activity is triggered when a critical class of efferent or afferent axons is stimulated and does not depend on the number of stimulated axons or activated postsynaptic neurons. DR- and VR-evoked episodes exhibited differences in the coupling between VR pairs. In DR-evoked episodes, the coupling between the ipsilateral and contralateral flexor/extensor roots was similar and stronger than the bilateral extensor roots. In VR-evoked episodes, ipsilateral flexor/extensor coupling was stronger than both the contralateral flexor/extensor and the bilateral extensor coupling. For both types of stimulation, the coupling was greatest between the bilateral L1/L2 flexor-dominated roots. This indicates that the recruitment and/or the firing pattern of motoneurons differed in DR and VR-evoked episodes. However, the DR and VR trains do not appear to activate distinct CPGs because trains of DR and VR stimuli at frequencies too low to evoke locomotor-like activity did so when they were interleaved. These results indicate that the excitatory actions of VR stimulation converge onto the CPG through an unknown pathway that is not captured by current models of the locomotor CPG.

  9. Interactions between Dorsal and Ventral Root Stimulation on the Generation of Locomotor-Like Activity in the Neonatal Mouse Spinal Cord

    PubMed Central

    2016-01-01

    Abstract We investigated whether dorsal (DR) and ventral root (VR) stimulus trains engage common postsynaptic components to activate the central pattern generator (CPG) for locomotion in the neonatal mouse spinal cord. VR stimulation did not activate the first order interneurons mediating the activation of the locomotor CPG by sacrocaudal afferent stimulation. Simultaneous stimulation of adjacent dorsal or ventral root pairs, subthreshold for evoking locomotor-like activity, did not summate to activate the CPG. This suggests that locomotor-like activity is triggered when a critical class of efferent or afferent axons is stimulated and does not depend on the number of stimulated axons or activated postsynaptic neurons. DR- and VR-evoked episodes exhibited differences in the coupling between VR pairs. In DR-evoked episodes, the coupling between the ipsilateral and contralateral flexor/extensor roots was similar and stronger than the bilateral extensor roots. In VR-evoked episodes, ipsilateral flexor/extensor coupling was stronger than both the contralateral flexor/extensor and the bilateral extensor coupling. For both types of stimulation, the coupling was greatest between the bilateral L1/L2 flexor-dominated roots. This indicates that the recruitment and/or the firing pattern of motoneurons differed in DR and VR-evoked episodes. However, the DR and VR trains do not appear to activate distinct CPGs because trains of DR and VR stimuli at frequencies too low to evoke locomotor-like activity did so when they were interleaved. These results indicate that the excitatory actions of VR stimulation converge onto the CPG through an unknown pathway that is not captured by current models of the locomotor CPG. PMID:27419215

  10. Dorsomedial hypothalamic lesions counteract decreases in locomotor activity in male Syrian hamsters transferred from long to short day lengths.

    PubMed

    Jarjisian, Stephan G; Butler, Matthew P; Paul, Matthew J; Place, Ned J; Prendergast, Brian J; Kriegsfeld, Lance J; Zucker, Irving

    2015-02-01

    The dorsomedial nucleus (DMN) of the hypothalamus has been implicated in seasonal control of reproduction. Syrian hamsters with DMN lesions, unlike control hamsters, do not undergo testicular regression after transfer from a long day length (14 h of light per day; LD) to a short day length (8 h of light per day; SD). SDs also markedly reduce hamster locomotor activity (LMA). To assess whether the DMN is a component of the neural circuitry that mediates seasonal variation in LMA, neurologically intact males (controls) and hamsters that had sustained lesions of the DMN (DMNx) were housed in an LD or SD photoperiod for 26 weeks. DMNx that prevented testicular regression counteracted decreases in LMA during 8 to10 weeks of SD treatment; steroid-independent effects of SDs did not override high levels of LMA in DMNx males. As in previous studies, testosterone (T) restoration increased LMA in LD but not SD castrated control males. In the present study, T also failed to increase LMA in SD-DMNx hamsters. The DMN is not necessary to maintain decreased responsiveness of locomotor activity systems to T in SDs, which presumably is mediated by other central nervous system androgen target tissues. Finally, DMNx did not interfere with the spontaneous increase in LMA exhibited by photorefractory hamsters after 26 weeks of SD treatment. We propose that DMN is an essential part of the substrate that mediates seasonal decreases in LMA as day length decreases but is not required to sustain decreased SD responsiveness to T or for development of refractoriness to SDs.

  11. Effects of pinealectomy on the neuroendocrine reproductive system and locomotor activity in male European sea bass, Dicentrarchus labrax.

    PubMed

    Cowan, Mairi; Paullada-Salmerón, José A; López-Olmeda, José Fernando; Sánchez-Vázquez, Francisco Javier; Muñoz-Cueto, José A

    2017-02-08

    The seasonally changing photoperiod controls the timing of reproduction in most fish species, however, the transduction of this photoperiodic information to the reproductive axis is still unclear. This study explored the potential role of two candidate neuropeptide systems, gonadotropin-inhibitory hormone (Gnih) and kisspeptin, as mediators between the pineal organ (a principle transducer of photoperiodic information) and reproductive axis in male European sea bass, Dicentrarchus labrax. Two seven-day experiments of pinealectomy (Px) were performed, in March (end of reproductive season) and August (resting season). Effects of Px and season on the brain expression of gnih (sbgnih) and its receptor (sbgnihr), kisspeptins (kiss1, kiss2) and their receptors (kissr2, kissr3) and gonadotropin-releasing hormone (gnrh1, gnrh2, gnrh3) and the main brain receptor (gnrhr-II-2b) genes, plasma melatonin levels and locomotor activity rhythms were examined. Results showed that Px reduced night-time plasma melatonin levels. Gene expression analyses demonstrated a sensitivity of the Gnih system to Px in March, with a reduction in sbgnih in the mid-hindbrain, a region with bilateral connections to the pineal organ. In August, kiss2 levels increased in Px animals but not in controls. Significant differences in expression were observed for diencephalic sbgnih, sbgnihr, kissr3 and tegmental gnrh2 between seasons. Recordings of locomotor activity following surgery revealed a change from light-synchronised to free-running rhythmic behavior. Altogether, the Gnih and Kiss2 sensitivity to Px and seasonal differences observed for Gnih and its receptor, Gnrh2, and the receptor for Kiss2 (Kissr3), suggested they could be mediators involved in the relay between environment and seasonal reproduction.

  12. Dorsomedial Hypothalamic Lesions Counteract Decreases in Locomotor Activity in Male Syrian Hamsters Transferred from Long to Short Day Lengths

    PubMed Central

    Paul, Matthew J.; Place, Ned J.; Prendergast, Brian J.; Kriegsfeld, Lance J.; Zucker, Irving

    2015-01-01

    The dorsomedial nucleus (DMN) of the hypothalamus has been implicated in seasonal control of reproduction. Syrian hamsters with DMN lesions, unlike control hamsters, do not undergo testicular regression after transfer from a long day length (14 h of light per day; LD) to a short day length (8 h of light per day; SD). SDs also markedly reduce hamster locomotor activity (LMA). To assess whether the DMN is a component of the neural circuitry that mediates seasonal variation in LMA, neurologically intact males (controls) and hamsters that had sustained lesions of the DMN (DMNx) were housed in an LD or SD photoperiod for 26 weeks. DMNx that prevented testicular regression counteracted decreases in LMA during 8 to10 weeks of SD treatment; steroid-independent effects of SDs did not override high levels of LMA in DMNx males. As in previous studies, testosterone (T) restoration increased LMA in LD but not SD castrated control males. In the present study, T also failed to increase LMA in SD-DMNx hamsters. The DMN is not necessary to maintain decreased responsiveness of locomotor activity systems to T in SDs, which presumably is mediated by other central nervous system androgen target tissues. Finally, DMNx did not interfere with the spontaneous increase in LMA exhibited by photorefractory hamsters after 26 weeks of SD treatment. We propose that DMN is an essential part of the substrate that mediates seasonal decreases in LMA as day length decreases but is not required to sustain decreased SD responsiveness to T or for development of refractoriness to SDs. PMID:25512303

  13. Availability of N-Methyl-d-Aspartate Receptor Coagonists Affects Cocaine-Induced Conditioned Place Preference and Locomotor Sensitization: Implications for Comorbid Schizophrenia and Substance Abuse.

    PubMed

    Puhl, Matthew D; Berg, Alexandra R; Bechtholt, Anita J; Coyle, Joseph T

    2015-06-01

    Schizophrenia is associated with high prevalence of substance abuse. Recent research suggests that dysregulation of N-methyl-d-aspartate receptor (NMDAR) function may play a role in the pathophysiology of both schizophrenia and drug addiction, and thus, may account for this high comorbidity. Our laboratory has developed two transgenic mouse lines that exhibit contrasting NMDAR activity based on the availability of the glycine modulatory site (GMS) agonists d-serine and glycine. Glycine transporter 1 knockdowns (GlyT1(+/-)) exhibit NMDAR hyperfunction, whereas serine racemase knockouts (SR(-/-)) exhibit NMDAR hypofunction. We characterized the behavior of these lines in a cocaine-induced (20 mg/kg) conditioned place preference (CPP) and locomotor sensitization paradigm. Compared with wild-type mice, GlyT1(+/-) mice displayed hastened extinction of CPP and robust cocaine-induced reinstatement. SR(-/-) mice appeared to immediately "forget" the learned preference, because they did not exhibit cocaine-induced reinstatement and also displayed attenuated locomotor sensitization. Treatment of GlyT1(+/-) mice with gavestinel (10 mg/kg on day 1; 5 mg/kg on days 2-17), a GMS antagonist, attenuated cocaine-induced CPP and caused them to immediately "forget" the learned preference. Treatment of SR(-/-) mice with d-serine (300 mg/kg on day 1; 150 mg/kg on days 2-17) to normalize brain levels caused them to avoid the cocaine-paired side of the chamber during extinction. These results highlight NMDAR dysfunction as a possible neural mechanism underlying comorbid schizophrenia and substance abuse. Also, these findings suggest drugs that directly or indirectly activate the NMDAR GMS could be an effective treatment of cocaine abuse.

  14. An enriched environment reduces the stress level and locomotor activity induced by acute morphine treatment and by saline after chronic morphine treatment in mice.

    PubMed

    Xu, Jia; Sun, Jinling; Xue, Zhaoxia; Li, Xinwang

    2014-06-18

    This study investigated the relationships among an enriched environment, stress levels, and drug addiction. Mice were divided randomly into four treatment groups (n=12 each): enriched environment without restraint stress (EN), standard environment without restraint stress (SN), enriched environment with restraint stress (ES), and standard environment with restraint stress (SS). Mice were reared in the respective environment for 45 days. Then, the ES and SS groups were subjected to restraint stress daily (2 h/day) for 14 days, whereas the EN and SN groups were not subjected to restraint stress during this stage. The stress levels of all mice were tested in the elevated plus maze immediately after exposure to restraint stress. After the 2-week stress testing period, mice were administered acute or chronic morphine (5 mg/kg) treatment for 7 days. Then, after a 7-day withdrawal period, the mice were injected with saline (1 ml/kg) or morphine (5 mg/kg) daily for 2 days to observe locomotor activity. The results indicated that the enriched environment reduced the stress and locomotor activity induced by acute morphine administration or saline after chronic morphine treatment. However, the enriched environment did not significantly inhibit locomotor activity induced by morphine challenge. In addition, the stress level did not mediate the effect of the enriched environment on drug-induced locomotor activity after acute or chronic morphine treatment.

  15. Supplementation of Spirulina (Arthrospira platensis) Improves Lifespan and Locomotor Activity in Paraquat-Sensitive DJ-1β(Δ93) Flies, a Parkinson's Disease Model in Drosophila melanogaster.

    PubMed

    Kumar, Ajay; Christian, Pearl K; Panchal, Komal; Guruprasad, B R; Tiwari, Anand K

    2017-09-03

    Spirulina (Arthrospira platensis) is a cyanobacterium (blue-green alga) consumed by humans and other animals because of its nutritional values and pharmacological properties. Apart from high protein contents, it also contains high levels of antioxidant and anti-inflammatory compounds, such as carotenoids, β-carotene, phycocyanin, and phycocyanobilin, indicating its possible pharmaco-therapeutic utility. In the present study using DJ-1β(Δ93) flies, a Parkinson's disease model in Drosophila, we have demonstrated the therapeutic effect of spirulina and its active component C-phycocyanin (C-PC) in the improvement of lifespan and locomotor behavior. Our findings indicate that dietary supplementation of spirulina significantly improves the lifespan and locomotor activity of paraquat-fed DJ-1β(Δ93) flies. Furthermore, supplementation of spirulina and C-PC individually and independently reduced the cellular stress marked by deregulating the expression of heat shock protein 70 and Jun-N-terminal kinase signaling in DJ-1β(Δ93) flies. A significant decrease in superoxide dismutase and catalase activities in spirulina-fed DJ-1β(Δ93) flies tends to indicate the involvement of antioxidant properties associated with spirulina in the modulation of stress-induced signaling and improvement in lifespan and locomotor activity in Drosophila DJ-1β(Δ93) flies. Our results suggest that antioxidant boosting properties of spirulina can be used as a nutritional supplement for improving the lifespan and locomotor behavior in Parkinson's disease.

  16. Effects of chronic and acute methylphenidate hydrochloride (Ritalin) administration on locomotor activity, ultrasonic vocalizations, and neuromotor development in 3- to 11-day-old CD-1 mouse pups.

    PubMed

    Penner, M R; McFadyen, M P; Carrey, N; Brown, R E

    2001-11-01

    The present study examined the effects of chronic and acute treatment with methylphenidate hydrochloride (Ritalin) on isolation-induced ultrasonic vocalizations, spontaneous locomotor activity, and neuromotor coordination in 3- to 11-day-old CD-1 mouse pups. In Experiment 1, 3- to 11-day-old pups received daily injections of saline, 5 mg/kg or 20 mg/kg of methylphenidate hydrochloride, or no injection and were tested on postnatal Days 3, 5, 7, 9, and 11. Both doses of methylphenidate resulted in significant increases in locomotor activity at all ages, but had no significant effect on body weight, neuromotor development, or emission of ultrasonic vocalizations. In Experiment 2, pups were given a single dose of methylphenidate (5 or 20 mg/kg), saline, or no injection on one of postnatal Days 5, 7, 9, or 11. This acute methylphenidate treatment increased locomotor activity, but had no significant effects on ultrasonic vocalizations or neuromotor coordination. These results indicate that short-term, chronic methylphenidate treatment elevates locomotor responses, but has no immediate effects on anxietylike responses or on the development of neuromotor behavior of CD-1 mice in the first 11 days of life.

  17. Suppression of Locomotor Activity in Female C57Bl/6J Mice Treated with Interleukin-1β: Investigating a Method for the Study of Fatigue in Laboratory Animals

    PubMed Central

    Bonsall, David R.; Kim, Hyunji; Tocci, Catherine; Ndiaye, Awa; Petronzio, Abbey; McKay-Corkum, Grace; Molyneux, Penny C.; Scammell, Thomas E.; Harrington, Mary E.

    2015-01-01

    Fatigue is a disabling symptom in patients with multiple sclerosis and Parkinson’s Disease, and is also common in patients with traumatic brain injury, cancer, and inflammatory disorders. Little is known about the neurobiology of fatigue, in part due to the lack of an approach to induce fatigue in laboratory animals. Fatigue is a common response to systemic challenge by pathogens, a response in part mediated through action of the pro-inflammatory cytokine interleukin-1 beta (IL-1β). We investigated the behavioral responses of mice to IL-1β. Female C57Bl/6J mice of 3 ages were administered IL-1β at various doses i.p. Interleukin-1β reduced locomotor activity, and sensitivity increased with age. Further experiments were conducted with middle-aged females. Centrally administered IL-1β dose-dependently reduced locomotor activity. Using doses of IL-1β that caused suppression of locomotor activity, we measured minimal signs of sickness, such as hyperthermia, pain or anhedonia (as measured with abdominal temperature probes, pre-treatment with the analgesic buprenorphine and through sucrose preference, respectively), all of which are responses commonly reported with higher doses. We found that middle-aged orexin-/- mice showed equivalent effects of IL-1β on locomotor activity as seen in wild-type controls, suggesting that orexins are not necessary for IL-1β -induced reductions in wheel-running. Given that the availability and success of therapeutic treatments for fatigue is currently limited, we examined the effectiveness of two potential clinical treatments, modafinil and methylphenidate. We found that these treatments were variably successful in restoring locomotor activity after IL-1β administration. This provides one step toward development of a satisfactory animal model of the multidimensional experience of fatigue, a model that could allow us to determine possible pathways through which inflammation induces fatigue, and could lead to novel treatments for

  18. Caffeine stimulates locomotor activity in the mammalian spinal cord via adenosine A1 receptor-dopamine D1 receptor interaction and PKA-dependent mechanisms.

    PubMed

    Acevedo, JeanMarie; Santana-Almansa, Alexandra; Matos-Vergara, Nikol; Marrero-Cordero, Luis René; Cabezas-Bou, Ernesto; Díaz-Ríos, Manuel

    2016-02-01

    Caffeine is a potent psychostimulant that can have significant and widely variable effects on the activity of multiple neuronal pathways. The most pronounced caffeine-induced behavioral effect seen in rodents is to increase locomotor activity which has been linked to a dose-dependent inhibition of A1 and A(2A) receptors. The effects of caffeine at the level of the lumbar spinal central pattern generator (CPG) network for hindlimb locomotion are lacking. We assessed the effects of caffeine to the locomotor function of the spinal CPG network via extracellular ventral root recordings using the isolated neonatal mouse spinal cord preparation. Addition of caffeine and of an A1 receptor antagonist significantly decreased the cycle period accelerating the ongoing locomotor rhythm, while decreasing burst duration reversibly in most preparations suggesting the role of A1 receptors as the primary target of caffeine. Caffeine and an A1 receptor antagonist failed to stimulate ongoing locomotor activity in the absence of dopamine or in the presence of a D1 receptor antagonist supporting A1/D1 receptor-dependent mechanism of action. The use of caffeine or an A1 receptor blocker failed to stimulate an ongoing locomotor rhythm in the presence of a blocker of the cAMP-dependent protein kinase (PKA) supporting the need of this intracellular pathway for the modulatory effects of caffeine to occur. These results support a stimulant effect of caffeine on the lumbar spinal network controlling hindlimb locomotion through the inhibition of A1 receptors and subsequent activation of D1 receptors via a PKA-dependent intracellular mechanism.

  19. Cutaneous inputs from the back abolish locomotor-like activity and reduce spastic-like activity in the adult cat following complete spinal cord injury.

    PubMed

    Frigon, Alain; Thibaudier, Yann; Johnson, Michael D; Heckman, C J; Hurteau, Marie-France

    2012-06-01

    Spasticity is a condition that can include increased muscle tone, clonus, spasms, and hyperreflexia. In this study, we report the effect of manually stimulating the dorsal lumbosacral skin on spontaneous locomotor-like activity and on a variety of reflex responses in 5 decerebrate chronic spinal cats treated with clonidine. Cats were spinalized 1 month before the terminal experiment. Stretch reflexes were evoked by stretching the left triceps surae muscles. Crossed reflexes were elicited by electrically stimulating the right tibial or superficial peroneal nerves. Wind-up of reflex responses was evoked by electrically stimulating the left tibial or superficial peroneal nerves. We found that pinching the skin of the back abolished spontaneous locomotor-like activity. We also found that back pinch abolished the rhythmic activity observed during reflex testing without eliminating the reflex responses. Some of the rhythmic episodes of activity observed during reflex testing were consistent with clonus with an oscillation frequency greater than 3 Hz. Pinching the skin of the back effectively abolished rhythmic activity occurring spontaneously or evoked during reflex testing, irrespective of oscillation frequency. The results are consistent with the hypothesis that locomotion and clonus are produced by common central pattern-generators. Stimulating the skin of the back could prove helpful in managing undesired rhythmic activity in spinal cord-injured humans.

  20. Cerebellum Transcriptome of Mice Bred for High Voluntary Activity Offers Insights into Locomotor Control and Reward-Dependent Behaviors

    PubMed Central

    Caetano-Anollés, Kelsey; Rhodes, Justin S.; Garland, Theodore; Perez, Sam D.; Hernandez, Alvaro G.; Southey, Bruce R.; Rodriguez-Zas, Sandra L.

    2016-01-01

    The role of the cerebellum in motivation and addictive behaviors is less understood than that in control and coordination of movements. High running can be a self-rewarding behavior exhibiting addictive properties. Changes in the cerebellum transcriptional networks of mice from a line selectively bred for High voluntary running (H) were profiled relative to an unselected Control (C) line. The environmental modulation of these changes was assessed both in activity environments corresponding to 7 days of Free (F) access to running wheel and to Blocked (B) access on day 7. Overall, 457 genes exhibited a significant (FDR-adjusted P-value < 0.05) genotype-by-environment interaction effect, indicating that activity genotype differences in gene expression depend on environmental access to running. Among these genes, network analysis highlighted 6 genes (Nrgn, Drd2, Rxrg, Gda, Adora2a, and Rab40b) connected by their products that displayed opposite expression patterns in the activity genotype contrast within the B and F environments. The comparison of network expression topologies suggests that selection for high voluntary running is linked to a predominant dysregulation of hub genes in the F environment that enables running whereas a dysregulation of ancillary genes is favored in the B environment that blocks running. Genes associated with locomotor regulation, signaling pathways, reward-processing, goal-focused, and reward-dependent behaviors exhibited significant genotype-by-environment interaction (e.g. Pak6, Adora2a, Drd2, and Arhgap8). Neuropeptide genes including Adcyap1, Cck, Sst, Vgf, Npy, Nts, Penk, and Tac2 and related receptor genes also exhibited significant genotype-by-environment interaction. The majority of the 183 differentially expressed genes between activity genotypes (e.g. Drd1) were under-expressed in C relative to H genotypes and were also under-expressed in B relative to F environments. Our findings indicate that the high voluntary running mouse

  1. The night-time temporal window of locomotor activity in the Namib Desert long-distance wandering spider, Leucorchestris arenicola.

    PubMed

    Nørgaard, Thomas; Henschel, Joh R; Wehner, Rüdiger

    2006-04-01

    Even though being active exclusively after sunset, the male Leucorchestris arenicola spiders are able to return to their point of departure by following bee-line routes of up to several hundreds of meters in length. While performing this kind of long-distance path integration they must rely on external cues to adjust for navigational errors. Many external cues which could be used by the spiders change dramatically or disappear altogether in the transition period from day to night. Hence, it is therefore imperative to know exactly when after sunset the spiders navigate in order to find out how they do it. To explore this question, we monitored their locomotor activity with data loggers equipped with infrared beam sensors. Our results show that the male spiders are most active in the period between the end and the beginning of the astronomical twilight period. Moreover, they prefer the moonless, i.e. darkest times at night. Hence, we conclude that the males are truly-and extremely-nocturnal. We further show that they are able to navigate under the very dim light conditions prevailing on moonless nights, and thus do not have to rely on the moon or on moon-related patterns of polarised light as potential compass cues.

  2. Acute injection of ASP in the third ventricle inhibits food intake and locomotor activity in rats.

    PubMed

    Roy, Christian; Roy, Marie-Claude; Gauvreau, Danny; Poulin, Anne-Marie; Tom, Fun-Qun; Timofeeva, Elena; Richard, Denis; Cianflone, Katherine

    2011-07-01

    Acylation-stimulating protein (ASP; also known as C3adesArg) stimulates triglyceride synthesis and glucose transport via interaction with its receptor C5L2, which is expressed peripherally (adipose tissue, muscle) and centrally. Previous studies have shown that ASP-deficient mice (C3KO) and C5L2-deficient mice (C5L2KO) are hyperphagic (59 to 229% increase, P < 0.0001), which is counterbalanced by increased energy expenditure measured as oxygen consumption (Vo(2)) and a lower RQ. The aim of the present study was to evaluate ASP's effect on food intake, energy expenditure, and neuropeptide expression. Male rats were surgically implanted with intracerebroventricular (icv) cannulas directed toward the third ventricle. After a 5-h fast, rats were injected, and food intake was assessed at 0.5, 1, 2, 4, 16, 24, and 48 h, with a 5- to 7-day washout period between each injection. Acute icv injections of ASP (0.3-1,065 pmol) had a time-dependent effect on decreasing food intake by 20 to 57% (P < 0.05). Decreases were detected by 30 min (maximum 57%, P < 0.01) and at the highest dose effects extended to 48 h (19%, P < 0.05, 24- to 48-h period). Daily body weight gain was decreased by 131% over the first 24 h and 29% over the second 24 h (P < 0.05). A conditioned taste aversion test indicated that there was no malaise. Furthermore, acute ASP injection affected energy substrate usage, demonstrated by decreased Vo(2) and RQ (P < 0.05; implicating greater fatty acid usage), with a 49% decrease in total activity over 24 h (P < 0.05). ASP administration also increased anorexic neuropeptide POMC expression (44%) in the arcuate nucleus, with no change in NPY. Altogether ASP may have central in addition to peripheral effects.

  3. Sex differences in the effects of social and physical environment on novelty-induced exploratory behavior and cocaine-stimulated locomotor activity in adolescent rats.

    PubMed

    Zakharova, Elena; Starosciak, Amy; Wade, Dean; Izenwasser, Sari

    2012-04-21

    Many factors influence the rewarding effects of drugs such as cocaine. The present study was done to determine whether social and environmental factors alter behavior in adolescent male and female rats. On postnatal day (PND) 23, rats were housed in one of several same-sex conditions. Both social (number of rats per cage) and environmental (availability of toys) factors were manipulated. Socially isolated rats were housed alone (1 rat/cage) in an environment that either was impoverished (with no toys; II) or enriched (with toys; IE). Standard housing for these studies was social and impoverished, which was 2 rats/cage with no toys (SI2). Other rats were housed 2/cage with toys (SE2), or 3/cage with (SE3) or without (SI3) toys. On PND 37, novelty-induced locomotor activity was measured for 30min. On PND 44-46, locomotor activity in response to an injection of 5mg/kg cocaine was measured for 60min each day. For male rats, only social conditions altered novelty-induced activity. Males housed in groups of three had the most activity, compared to pair-housed and isolated rats. For females, social and environmental enrichment interacted to alter novelty-induced activity. In contrast to males, isolated females had increased activity, compared to group-housed females. Further, isolated females in impoverished environments had more activity than isolated females in enriched environments and group-housed females in impoverished environments. The effect of environmental enrichment on cocaine-stimulated locomotor activity was altered depending upon the number of rats living in a cage for males. For females, only social conditions altered cocaine-stimulated behavior, with activity increasing with the number of rats in the cage, regardless of environmental enrichment. These data show that social and environmental enrichment differentially alter novelty-induced and cocaine-stimulated locomotor activity in adolescent male and female rats.

  4. Circadian rhythms of locomotor activity in solitary and social species of African mole-rats (family: Bathyergidae).

    PubMed

    Oosthuizen, Maria K; Cooper, Howard M; Bennett, Nigel C

    2003-12-01

    Mole-rats are strictly subterranean and hardly, if ever, come into contact with external light. As a result, their classical visual system is severely regressed and the circadian system proportionally expanded. The family Bathyergidae presents a unique opportunity to study the circadian system in the absence of the classical visual system in a range of species. Daily patterns of activity were studied in the laboratory under constant temperature but variable lighting regimes in individually housed animals from 3 species of mole-rat exhibiting markedly different degrees of sociality. All 3 species possessed individuals that exhibited endogenous circadian rhythms under constant darkness that entrained to a light-dark cycle. In the solitary species, Georychus capensis, 9 animals exhibited greater activity during the dark phase of the light cycle, while 2 individuals expressed more activity in the light phase of the light cycle. In the social, Cryptomys hottentotus pretoriae, 5 animals displayed the majority of their activity during the dark phase of the light cycle and the remaining 2 exhibited more activity during the light phase of the light cycle. Finally in the eusocial Cryptomys damarensis, 6 animals displayed more activity during the light phase of the light cycle, and the other 2 animals displayed more activity during the dark phase of the light cycle. Since all three mole-rat species are able to entrain their locomotor activity to an external light source, light must reach the SCN, suggesting a functional circadian clock. In comparison to the solitary species, the 2 social species display a markedly poorer response to light in all aspects. Thus, in parallel with the sociality continuum, there exists a continuum of sensitivity of the circadian clock to light.

  5. Activation of spinal locomotor circuits in the decerebrated cat by spinal epidural and/or intraspinal electrical stimulation.

    PubMed

    Lavrov, Igor; Musienko, Pavel E; Selionov, Victor A; Zdunowski, Sharon; Roy, Roland R; Edgerton, V Reggie; Gerasimenko, Yury

    2015-03-10

    The present study was designed to further compare the stepping-like movements generated via epidural (ES) and/or intraspinal (IS) stimulation. We examined the ability to generate stepping-like movements in response to ES and/or IS of spinal lumbar segments L1-L7 in decerebrate cats. ES (5-10 Hz) of the dorsal surface of the spinal cord at L3-L7 induced hindlimb stepping-like movements on a moving treadmill belt, but with no rhythmic activity in the forelimbs. IS (60 Hz) of the dorsolateral funiculus at L1-L3 (depth of 0.5-1.0mm from the dorsal surface of the spinal cord) induced quadrupedal stepping-like movements. Forelimb movements appeared first, followed by stepping-like movements in the hindlimbs. ES and IS simultaneously enhanced the rhythmic performance of the hindlimbs more robustly than ES or IS alone. The differences in the stimulation parameters, site of stimulation, and motor outputs observed during ES vs. IS suggest that different neural mechanisms were activated to induce stepping-like movements. The effects of ES may be mediated more via dorsal structures in the lumbosacral region of the spinal cord, whereas the effects of IS may be mediated via more ventral propriospinal networks and/or brainstem locomotor areas. Furthermore, the more effective facilitation of the motor output during simultaneous ES and IS may reflect some convergence of pathways on the same interneuronal populations involved in the regulation of locomotion.

  6. Timekeeping through social contacts: social synchronization of circadian locomotor activity rhythm in the carpenter ant Camponotus paria.

    PubMed

    Lone, Shahnaz Rahman; Sharma, Vijay Kumar

    2011-12-01

    In ant colonies a large proportion of individuals remain inside nests for most of their lives and come out only when necessary. It is not clear how, in a nest of several thousand individuals, information about local time is communicated among members of the colony. Central to this seem to be circadian clocks, which have an intrinsic ability to keep track of local time by entraining to environmental light-dark, temperature, and social cycles. Here, the authors report the results of their study aimed at understanding the role of cyclic social interactions in circadian timekeeping of a day-active species of carpenter ant Camponotus paria. The authors found that daily social interactions with visitors (worker ants) was able to synchronize the circadian locomotor activity rhythm of host worker ants and queens, in one-on-one (pair-wise) and multi-individual (group-wise) interactions. Interestingly, the outcome of cyclic social interactions was context specific; when visitor workers socially interacted with host workers one-on-one, host workers considered the time of interaction as subjective day, but when visitor workers interacted with a group of workers and queens, the hosts considered the time of interaction as subjective night. These results can be taken to suggest that members of the ant species C. paria keep track of local time by socially interacting with workers (foragers) who shuttle in and out of the colony in search of food. (Author correspondence: vsharma@jncasr.ac.in ).

  7. Simulated shift work in rats perturbs multiscale regulation of locomotor activity

    PubMed Central

    Hsieh, Wan-Hsin; Escobar, Carolina; Yugay, Tatiana; Lo, Men-Tzung; Pittman-Polletta, Benjamin; Salgado-Delgado, Roberto; Scheer, Frank A. J. L.; Shea, Steven A.; Buijs, Ruud M.; Hu, Kun

    2014-01-01

    Motor activity possesses a multiscale regulation that is characterized by fractal activity fluctuations with similar structure across a wide range of timescales spanning minutes to hours. Fractal activity patterns are disturbed in animals after ablating the master circadian pacemaker (suprachiasmatic nucleus, SCN) and in humans with SCN dysfunction as occurs with aging and in dementia, suggesting the crucial role of the circadian system in the multiscale activity regulation. We hypothesized that the normal synchronization between behavioural cycles and the SCN-generated circadian rhythms is required for multiscale activity regulation. To test the hypothesis, we studied activity fluctuations of rats in a simulated shift work protocol that was designed to force animals to be active during the habitual resting phase of the circadian/daily cycle. We found that these animals had gradually decreased mean activity level and reduced 24-h activity rhythm amplitude, indicating disturbed circadian and behavioural cycles. Moreover, these animals had disrupted fractal activity patterns as characterized by more random activity fluctuations at multiple timescales from 4 to 12 h. Intriguingly, these activity disturbances exacerbated when the shift work schedule lasted longer and persisted even in the normal days (without forced activity) following the shift work. The disrupted circadian and fractal patterns resemble those of SCN-lesioned animals and of human patients with dementia, suggesting a detrimental impact of shift work on multiscale activity regulation. PMID:24829282

  8. Simulated shift work in rats perturbs multiscale regulation of locomotor activity.

    PubMed

    Hsieh, Wan-Hsin; Escobar, Carolina; Yugay, Tatiana; Lo, Men-Tzung; Pittman-Polletta, Benjamin; Salgado-Delgado, Roberto; Scheer, Frank A J L; Shea, Steven A; Buijs, Ruud M; Hu, Kun

    2014-07-06

    Motor activity possesses a multiscale regulation that is characterized by fractal activity fluctuations with similar structure across a wide range of timescales spanning minutes to hours. Fractal activity patterns are disturbed in animals after ablating the master circadian pacemaker (suprachiasmatic nucleus, SCN) and in humans with SCN dysfunction as occurs with aging and in dementia, suggesting the crucial role of the circadian system in the multiscale activity regulation. We hypothesized that the normal synchronization between behavioural cycles and the SCN-generated circadian rhythms is required for multiscale activity regulation. To test the hypothesis, we studied activity fluctuations of rats in a simulated shift work protocol that was designed to force animals to be active during the habitual resting phase of the circadian/daily cycle. We found that these animals had gradually decreased mean activity level and reduced 24-h activity rhythm amplitude, indicating disturbed circadian and behavioural cycles. Moreover, these animals had disrupted fractal activity patterns as characterized by more random activity fluctuations at multiple timescales from 4 to 12 h. Intriguingly, these activity disturbances exacerbated when the shift work schedule lasted longer and persisted even in the normal days (without forced activity) following the shift work. The disrupted circadian and fractal patterns resemble those of SCN-lesioned animals and of human patients with dementia, suggesting a detrimental impact of shift work on multiscale activity regulation.

  9. Spatiotemporal pattern of motoneuron activation in the rostral lumbar and the sacral segments during locomotor-like activity in the neonatal mouse spinal cord.

    PubMed

    Bonnot, Agnès; Whelan, Patrick J; Mentis, George Z; O'Donovan, Michael J

    2002-02-01

    We used calcium imaging to visualize the spatiotemporal pattern of motoneuron activity during dorsal root-evoked locomotor-like bursting in the lumbosacral spinal cord of the neonatal mouse. Dorsal root stimuli elicited a tonic discharge in motoneurons on which alternating left-right rhythmic discharges were superimposed. Both the tonic and the rhythmic components could be recorded optically from populations of motoneurons labeled with calcium-green dextran. Optical and electrical recordings revealed that rhythmic signals from different parts of the lumbar (L1, L2) and sacral (S1-S3) segments rose, peaked, and decayed in a rostrocaudal sequence. This pattern gave rise to a rostrocaudal "wave" in the activation of motoneurons during each cycle of locomotor-like activity. A similar rostrocaudal delay was observed during episodes of alternation that occurred in the absence of stimulation, suggesting that this delay was not caused by the train of dorsal root stimuli. It is hypothesized that this behavior may simplify the appropriate sequencing of motoneurons during locomotion.

  10. Maternal immune activation in late gestation enhances locomotor response to acute but not chronic amphetamine treatment in male mice offspring: role of the D1 receptor.

    PubMed

    Zager, Adriano; Mennecier, Gregory; Palermo-Neto, João

    2012-06-15

    Exposure to elevated levels of maternal cytokines can lead to functional abnormalities of the dopaminergic system in the adult offspring, including enhanced amphetamine (AMPH)-induced locomotion. Therefore, it seems reasonable to consider that offspring of challenged mothers would behave differently in models of addictive behavior, such as behavioral sensitization. Thus, we sought to evaluate the effects of prenatal exposure to lipopolysaccharide (LPS) on the locomotor response to acute and chronic AMPH treatment in male mice offspring. For this purpose, LPS (Escherichia coli 0127:B8; 120 μg/kg) was administered intraperitoneally to pregnant Swiss mice on gestational day 17. At adulthood, male offspring were studied under one of the following conditions: (1) locomotor response to acute AMPH treatment (2.5 or 5.0 mg/kg) in an open field test; (2) behavioral sensitization paradigm, which consists of a daily injection of AMPH (1.0 mg/kg) for 10 days and observation of locomotion in the open field on days 1, 5, 10 (development phase), 15 and 17 (expression phase). The LPS stimulated offspring showed enhancement of the locomotor-stimulant effect after an acute AMPH challenge in comparison to baseline and saline pre-treated mice. They also showed development of behavioral sensitization earlier than the saline pre-treated group, although no changes between saline and LPS pre-treated groups were observed on development or expression of locomotor behavioral sensitization to AMPH. Furthermore, there was up-regulation of D1 receptor protein level within striatum in the LPS-stimulated offspring which was strongly correlated with increased grooming behavior. Taken together, our results indicate that motor and dopaminergic alterations caused by maternal immune activation are restricted to the acute AMPH challenge, mostly due to up-regulation of the D1 receptor within the mesolimbic and nigrostriatal pathways, but no locomotor differences were observed for behavioral

  11. Effects of Arc/Arg3.1 gene deletion on rhythmic synchronization of hippocampal CA1 neurons during locomotor activity and sleep.

    PubMed

    Malkki, Hemi A I; Mertens, Paul E C; Lankelma, Jan V; Vinck, Martin; van Schalkwijk, Frank J; van Mourik-Donga, Laura B; Battaglia, Francesco P; Mahlke, Claudia; Kuhl, Dietmar; Pennartz, Cyriel M A

    2016-05-01

    The activity-regulated cytoskeletal-associated protein/activity regulated gene (Arc/Arg3.1) is crucial for long-term synaptic plasticity and memory formation. However, the neurophysiological substrates of memory deficits occurring in the absence of Arc/Arg3.1 are unknown. We compared hippocampal CA1 single-unit and local field potential (LFP) activity in Arc/Arg3.1 knockout and wild-type mice during track running and flanking sleep periods. Locomotor activity, basic firing and spatial coding properties of CA1 cells in knockout mice were not different from wild-type mice. During active behavior, however, knockout animals showed a significantly shifted balance in LFP power, with a relative loss in high-frequency (beta-2 and gamma) bands compared to low-frequency bands. Moreover, during track-running, knockout mice showed a decrease in phase locking of spiking activity to LFP oscillations in theta, beta and gamma bands. Sleep architecture in knockout mice was not grossly abnormal. Sharp-wave ripples, which have been associated with memory consolidation and replay, showed only minor differences in dynamics and amplitude. Altogether, these findings suggest that Arc/Arg3.1 effects on memory formation are not only manifested at the level of molecular pathways regulating synaptic plasticity, but also at the systems level. The disrupted power balance in theta, beta and gamma rhythmicity and concomitant loss of spike-field phase locking may affect memory encoding during initial storage and memory consolidation stages.

  12. Brief light stimulation during the mouse nocturnal activity phase simultaneously induces a decline in core temperature and locomotor activity followed by EEG-determined sleep.

    PubMed

    Studholme, Keith M; Gompf, Heinrich S; Morin, Lawrence P

    2013-03-15

    Light exerts a variety of effects on mammals. Unexpectedly, one of these effects is the cessation of nocturnal locomotion and the induction of behavioral sleep (photosomnolence). Here, we extend the initial observations in several ways, including the fundamental demonstration that core body temperature (T(c)) drops substantially (about 1.5°C) in response to the light stimulation at CT15 or CT18 in a manner suggesting that the change is a direct response to light rather than simply a result of the locomotor suppression. The results show that 1) the decline of locomotion and T(c) begin soon after nocturnal light stimulation; 2) the variability in the magnitude and onset of light-induced locomotor suppression is very large, whereas the variability in T(c) is very small; 3) T(c) recovers from the light-induced decline in advance of the recovery of locomotion; 4) under entrained and freerunning conditions, the daily late afternoon T(c) increase occurs in advance of the corresponding increase in wheel running; and 5) toward the end of the subjective night, the nocturnally elevated T(c) persists longer than does locomotor activity. Finally, EEG measurements confirm light-induced sleep and, when T(c) or locomotion was measured, show their temporal association with sleep onset. Both EEG- and immobility-based sleep detection methods confirm rapid induction of light-induced sleep. The similarities between light-induced loss of locomotion and drop in T(c) suggest a common cause for parallel responses. The photosomnolence response may be contingent upon both the absence of locomotion and a simultaneous low T(c).

  13. Brief light stimulation during the mouse nocturnal activity phase simultaneously induces a decline in core temperature and locomotor activity followed by EEG-determined sleep

    PubMed Central

    Studholme, Keith M.; Gompf, Heinrich S.

    2013-01-01

    Light exerts a variety of effects on mammals. Unexpectedly, one of these effects is the cessation of nocturnal locomotion and the induction of behavioral sleep (photosomnolence). Here, we extend the initial observations in several ways, including the fundamental demonstration that core body temperature (Tc) drops substantially (about 1.5°C) in response to the light stimulation at CT15 or CT18 in a manner suggesting that the change is a direct response to light rather than simply a result of the locomotor suppression. The results show that 1) the decline of locomotion and Tc begin soon after nocturnal light stimulation; 2) the variability in the magnitude and onset of light-induced locomotor suppression is very large, whereas the variability in Tc is very small; 3) Tc recovers from the light-induced decline in advance of the recovery of locomotion; 4) under entrained and freerunning conditions, the daily late afternoon Tc increase occurs in advance of the corresponding increase in wheel running; and 5) toward the end of the subjective night, the nocturnally elevated Tc persists longer than does locomotor activity. Finally, EEG measurements confirm light-induced sleep and, when Tc or locomotion was measured, show their temporal association with sleep onset. Both EEG- and immobility-based sleep detection methods confirm rapid induction of light-induced sleep. The similarities between light-induced loss of locomotion and drop in Tc suggest a common cause for parallel responses. The photosomnolence response may be contingent upon both the absence of locomotion and a simultaneous low Tc. PMID:23364525

  14. Circadian rhythms of body temperature and locomotor activity in aging BALB/c mice: early and late life span predictors.

    PubMed

    Basso, Andrea; Del Bello, Giovanna; Piacenza, Francesco; Giacconi, Robertina; Costarelli, Laura; Malavolta, Marco

    2016-08-01

    Impairment of one or more parameters of circadian rhythms (CR) of body temperature (BT) and locomotor activity (LMA) are considered among the hallmarks of mammalian aging. These alterations are frequently used as markers for imminent death in laboratory mice. However, there are still contradictory data for particular strains and it is also uncertain which changes might predict senescence changes later in life, including the force of mortality. In the present paper we use telemetry to study LMA and CR of BT during aging of BALB/c mice. At our knowledge this is the first time that CR of BT and LMA are investigated in this strain in a range of age covering the whole lifespan, from young adult up to very old age. CR of BT was analyzed with a cosine model using a cross sectional approach and follow-up measurements. The results show that BT, LMA, amplitude, goodness-of-fit (GoF) to circadian cycle of temperature decrease with different shapes during chronological age. Moreover, we found that the % change of amplitude and BT in early life (5-19 months) can predict the remaining lifespan of the mice. Later in life (22-32 months), best predictors are single measurements of LMA and GoF. The results of this study also offer potential measures to rapidly identifying freely unrestrained mice with the worst longitudinal outcome and against which existing or novel biomarkers and treatments may be assessed.

  15. Citrus flavonoid, naringenin, increases locomotor activity and reduces diacylglycerol accumulation in skeletal muscle of obese ovariectomized mice

    PubMed Central

    Ke, Jia-Yu; Cole, Rachel M; Hamad, Essam M; Hsiao, Yung-Hsuan; Cotten, Bradley M; Powell, Kimerly A; Belury, Martha A

    2016-01-01

    Scope Estrogen deficiency has been associated with central obesity, muscle loss, and metabolic syndrome in postmenopausal women. This study assessed naringenin accumulation in tissues and investigated the hypothesis that naringenin reverses diet-induced metabolic disturbances in obese ovariectomized mice. Methods and results In study 1, we measured naringenin concentrations in plasma, liver, perigonadal and subcutaneous adipose tissues, and muscle of ovariectomized C57BL/6J female mice after 11 weeks of naringenin supplementation. Naringenin accumulated 5–12 times more in mice fed a 3% naringenin diet than in mice fed a 1% naringenin diet. In study 2, ovariectomized mice were fed a high-fat diet (60 kcal% fat) for 11 weeks and half of the mice were then supplemented with 3% naringenin for another 11 weeks. Dietary naringenin suppressed weight gain, lowered hyperglycemia, and decreased intra-abdominal adiposity evaluated by magnetic resonance imaging. Naringenin-fed mice exhibited elevated locomotor activity monitored by infrared beam breaks, maintained muscle mass, and reduced muscle diacylglycerol content. Real-time PCR analysis in muscle revealed decreased mRNA level for genes involved in de novo lipogenesis, lipolysis, and triglyceride synthesis/storage. Conclusions Long-term 3% naringenin supplementation resulted in significant naringenin accumulation in plasma and tissues, associated with attenuated metabolic dysregulation and muscle loss in obese ovariectomized mice. PMID:26573879

  16. Genetic basis of incidence and period length of circadian rhythm for locomotor activity in populations of a seed beetle.

    PubMed

    Harano, T; Miyatake, T

    2010-09-01

    Circadian rhythms are ubiquitous in a wide variety of organisms, although their genetic variation has been analyzed in only a few species. We found genetic differences in the circadian rhythm of adult locomotor activity among strains of the adzuki bean beetle, Callosobruchus chinensis, which differed in origin and have been maintained in isolation. All beetles in some strains clearly had free-running rhythms in constant darkness whereas most beetles in other strains were arrhythmic. The period of free-running rhythm varied from approximately 19 to 23 h between the strains. F(1) males from reciprocal crosses among strains with different periods of circadian rhythms had circadian periods that were intermediate between their parental strains. Segregation of the circadian rhythm appeared in the F(2) generation. These findings are consistent with the hypothesis that variation in the period length of circadian rhythm is explained by a major autosomal gene with additive effects and no dominance. This hypothesis was supported by the joint scaling test for the free-running period in the F(1) and F(2) generations. We discuss possible causes for genetic variation in circadian rhythm in the C. chinensis strains in terms of random factors and selection.

  17. Different effects of bifeprunox, aripiprazole, and haloperidol on body weight gain, food and water intake, and locomotor activity in rats.

    PubMed

    De Santis, Michael; Pan, Bo; Lian, Jiamei; Huang, Xu-Feng; Deng, Chao

    2014-09-01

    Following on the success of Aripiprazole with its high clinical efficacy and minimal side effects, further antipsychotic drugs (such as Bifeprunox) have been developed based on the same dopamine D2 partial agonist pharmacological profile as Aripiprazole. However clinical trials of Bifeprunox have found differing results to that of its predecessor, without the same significant clinical efficacy. This study has therefore investigated the different effects of 10 week treatment with Aripiprazole (0.75 mg/kg, 3 times per day), Bifeprunox (0.8 mg/kg, 3 times per day) and Haloperidol (0.1mg/kg, 3 times per day) on body weight gain, food and water intake, white fat mass, and 8 week treatment on locomotor activity. Treatment with Bifeprunox was found to significantly reduce all of the measured parameters except white fat mass compared to the control group. However, Aripiprazole and Haloperidol treatment reduced water intake compared to the control, without any significant effects on the other measured parameters. These findings further demonstrate the potential pharmacological differences between Aripiprazole and Bifeprunox, and identify potential weight loss side effects and increased anxiety behaviour with Bifeprunox treatment.

  18. Levo-tetrahydropalmatine attenuates the development and expression of methamphetamine-induced locomotor sensitization and the accompanying activation of ERK in the nucleus accumbens and caudate putamen in mice.

    PubMed

    Zhao, N; Chen, Y; Zhu, J; Wang, L; Cao, G; Dang, Y; Yan, C; Wang, J; Chen, T

    2014-01-31

    Levo-tetrahydropalmatine (l-THP) is an alkaloid purified from corydalis and has been used in many traditional Chinese herbal preparations for its analgesic, sedative, and hypnotic properties. Previous studies indicated that l-THP has modest antagonist activity against dopamine receptors and thus it might have potential therapeutic effects on drug addiction. However, whether and how l-THP contributes to methamphetamine (METH)-induced locomotor sensitization remains unclear. Therefore, the current study aims to examine the roles of l-THP in the development and expression of METH-induced locomotor sensitization as well as the accompanying extracellular-regulated kinase (ERK) activation in the nucleus accumbens (NAc), caudate putamen (CPu) and prefrontal cortex (PFc) in mice. We found that moderate doses of METH (0.5 and 2 mg/kg) induced hyper-locomotor activity in mice on all METH injection days whereas high dose of METH (5 mg/kg)-treated mice displayed only acute locomotor response to METH and severe stereotyped behaviors on the first day after drug injection. Interestingly, only 2 mg/kg dose of METH-induced locomotor sensitization which was accompanied by the activation of ERK1/2 in the NAc and CPu in mice. Although l-THP (5 and 10 mg/kg) per se did not induce obvious changes in locomotor activities in mice, its co-administration with METH could significantly attenuate acute METH-induced hyper-locomotor activity, the development and expression of METH-induced locomotor sensitization, and the accompanying ERK1/2 activation in the NAc and CPu. These results suggest that l-THP has potential therapeutic effect on METH-induced locomotor sensitization, and the underlying molecular mechanism might be related to its inhibitory effect on ERK1/2 phosphorylation in the NAc and CPu.

  19. An Evolutionarily Conserved Switch in Response to GABA Affects Development and Behavior of the Locomotor Circuit of Caenorhabditis elegans

    PubMed Central

    Han, Bingjie; Bellemer, Andrew; Koelle, Michael R.

    2015-01-01

    The neurotransmitter gamma-aminobutyric acid (GABA) is depolarizing in the developing vertebrate brain, but in older animals switches to hyperpolarizing and becomes the major inhibitory neurotransmitter in adults. We discovered a similar developmental switch in GABA response in Caenorhabditis elegans and have genetically analyzed its mechanism and function in a well-defined circuit. Worm GABA neurons innervate body wall muscles to control locomotion. Activation of GABAA receptors with their agonist muscimol in newly hatched first larval (L1) stage animals excites muscle contraction and thus is depolarizing. At the mid-L1 stage, as the GABAergic neurons rewire onto their mature muscle targets, muscimol shifts to relaxing muscles and thus has switched to hyperpolarizing. This muscimol response switch depends on chloride transporters in the muscles analogous to those that control GABA response in mammalian neurons: the chloride accumulator sodium-potassium-chloride-cotransporter-1 (NKCC-1) is required for the early depolarizing muscimol response, while the two chloride extruders potassium-chloride-cotransporter-2 (KCC-2) and anion-bicarbonate-transporter-1 (ABTS-1) are required for the later hyperpolarizing response. Using mutations that disrupt GABA signaling, we found that neural circuit development still proceeds to completion but with an ∼6-hr delay. Using optogenetic activation of GABAergic neurons, we found that endogenous GABAA signaling in early L1 animals, although presumably depolarizing, does not cause an excitatory response. Thus a developmental depolarizing-to-hyperpolarizing shift is an ancient conserved feature of GABA signaling, but existing theories for why this shift occurs appear inadequate to explain its function upon rigorous genetic analysis of a well-defined neural circuit. PMID:25644702

  20. Locomotor activity influences muscle architecture and bone growth but not muscle attachment site morphology

    PubMed Central

    Rabey, Karyne N.; Green, David J.; Taylor, Andrea B.; Begun, David R.; Richmond, Brian G.; McFarlin, Shannon C.

    2014-01-01

    The ability to make behavioural inferences from skeletal remains is critical to understanding the lifestyles and activities of past human populations and extinct animals. Muscle attachment site (enthesis) morphology has long been assumed to reflect muscle strength and activity during life, but little experimental evidence exists to directly link activity patterns with muscle development and the morphology of their attachments to the skeleton. We used a mouse model to experimentally test how the level and type of activity influences forelimb muscle architecture of spinodeltoideus, acromiodeltoideus, and superficial pectoralis, bone growth rate and gross morphology of their insertion sites. Over an 11-week period, we collected data on activity levels in one control group and two experimental activity groups (running, climbing) of female wild-type mice. Our results show that both activity type and level increased bone growth rates influenced muscle architecture, including differences in potential muscular excursion (fibre length) and potential force production (physiological cross-sectional area). However, despite significant influences on muscle architecture and bone development, activity had no observable effect on enthesis morphology. These results suggest that the gross morphology of entheses is less reliable than internal bone structure for making inferences about an individual’s past behaviour. PMID:25467113

  1. Locomotor activity influences muscle architecture and bone growth but not muscle attachment site morphology.

    PubMed

    Rabey, Karyne N; Green, David J; Taylor, Andrea B; Begun, David R; Richmond, Brian G; McFarlin, Shannon C

    2015-01-01

    The ability to make behavioural inferences from skeletal remains is critical to understanding the lifestyles and activities of past human populations and extinct animals. Muscle attachment site (enthesis) morphology has long been assumed to reflect muscle strength and activity during life, but little experimental evidence exists to directly link activity patterns with muscle development and the morphology of their attachments to the skeleton. We used a mouse model to experimentally test how the level and type of activity influences forelimb muscle architecture of spinodeltoideus, acromiodeltoideus, and superficial pectoralis, bone growth rate and gross morphology of their insertion sites. Over an 11-week period, we collected data on activity levels in one control group and two experimental activity groups (running, climbing) of female wild-type mice. Our results show that both activity type and level increased bone growth rates influenced muscle architecture, including differences in potential muscular excursion (fibre length) and potential force production (physiological cross-sectional area). However, despite significant influences on muscle architecture and bone development, activity had no observable effect on enthesis morphology. These results suggest that the gross morphology of entheses is less reliable than internal bone structure for making inferences about an individual's past behaviour.

  2. Morphine-induced sensitization of locomotor activity in mice: effect of social isolation on plasma corticosterone levels.

    PubMed

    Francès, H; Graulet, A; Debray, M; Coudereau, J P; Guéris, J; Bourre, J M

    2000-03-31

    This study examined the influence of social isolation on behavioural sensitization to the locomotor effect of morphine and the link between this behaviour and plasma corticosterone concentrations. Four weeks isolation induced an increase in the locomotor effect of morphine. In social and isolated mice, repeated administrations (6) of morphine (one injection every 3 or 4 days) followed by 3 h in an actimeter induced behavioural sensitization to the locomotor effect of morphine. No interaction was observed between social isolation and behavioural sensitization to morphine. Resocializing previously isolated mice for 3 weeks reduced the morphine-induced locomotor effect without altering the behavioural sensitization. Corticosterone plasma levels were more increased (416%) in mice isolated 5 weeks than in mice isolated for 2 weeks (243%) and they return to the control levels following 3 weeks of resocialization. Since there was no interaction between the increase in morphine locomotor effect induced by social isolation and the morphine-induced behavioural sensitization, it is suggested that each of these two events acts independently. Whether or not a common mechanism (plasma corticosterone levels?) partly underlies both effects, the result resembles a simple additive effect.

  3. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization.

    PubMed

    Zhong, Guisheng; Shevtsova, Natalia A; Rybak, Ilya A; Harris-Warrick, Ronald M

    2012-10-01

    We explored the organization of the spinal central pattern generator (CPG) for locomotion by analysing the activity of spinal interneurons and motoneurons during spontaneous deletions occurring during fictive locomotion in the isolated neonatal mouse spinal cord, following earlier work on locomotor deletions in the cat. In the isolated mouse spinal cord, most spontaneous deletions were non-resetting, with rhythmic activity resuming after an integer number of cycles. Flexor and extensor deletions showed marked asymmetry: flexor deletions were accompanied by sustained ipsilateral extensor activity, whereas rhythmic flexor bursting was not perturbed during extensor deletions. Rhythmic activity on one side of the cord was not perturbed during non-resetting spontaneous deletions on the other side, and these deletions could occur with no input from the other side of the cord. These results suggest that the locomotor CPG has a two-level organization with rhythm-generating (RG) and pattern-forming (PF) networks, in which only the flexor RG network is intrinsically rhythmic. To further explore the neuronal organization of the CPG, we monitored activity of motoneurons and selected identified interneurons during spontaneous non-resetting deletions. Motoneurons lost rhythmic synaptic drive during ipsilateral deletions. Flexor-related commissural interneurons continued to fire rhythmically during non-resetting ipsilateral flexor deletions. Deletion analysis revealed two classes of rhythmic V2a interneurons. Type I V2a interneurons retained rhythmic synaptic drive and firing during ipsilateral motor deletions, while type IIV2a interneurons lost rhythmic synaptic input and fell silent during deletions. This suggests that the type I neurons are components of the RG, whereas the type II neurons are components of the PF network.We propose a computational model of the spinal locomotor CPG that reproduces our experimental results. The results may provide novel insights into the

  4. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization

    PubMed Central

    Zhong, Guisheng; Shevtsova, Natalia A; Rybak, Ilya A; Harris-Warrick, Ronald M

    2012-01-01

    We explored the organization of the spinal central pattern generator (CPG) for locomotion by analysing the activity of spinal interneurons and motoneurons during spontaneous deletions occurring during fictive locomotion in the isolated neonatal mouse spinal cord, following earlier work on locomotor deletions in the cat. In the isolated mouse spinal cord, most spontaneous deletions were non-resetting, with rhythmic activity resuming after an integer number of cycles. Flexor and extensor deletions showed marked asymmetry: flexor deletions were accompanied by sustained ipsilateral extensor activity, whereas rhythmic flexor bursting was not perturbed during extensor deletions. Rhythmic activity on one side of the cord was not perturbed during non-resetting spontaneous deletions on the other side, and these deletions could occur with no input from the other side of the cord. These results suggest that the locomotor CPG has a two-level organization with rhythm-generating (RG) and pattern-forming (PF) networks, in which only the flexor RG network is intrinsically rhythmic. To further explore the neuronal organization of the CPG, we monitored activity of motoneurons and selected identified interneurons during spontaneous non-resetting deletions. Motoneurons lost rhythmic synaptic drive during ipsilateral deletions. Flexor-related commissural interneurons continued to fire rhythmically during non-resetting ipsilateral flexor deletions. Deletion analysis revealed two classes of rhythmic V2a interneurons. Type I V2a interneurons retained rhythmic synaptic drive and firing during ipsilateral motor deletions, while type II V2a interneurons lost rhythmic synaptic input and fell silent during deletions. This suggests that the type I neurons are components of the RG, whereas the type II neurons are components of the PF network. We propose a computational model of the spinal locomotor CPG that reproduces our experimental results. The results may provide novel insights into the

  5. Feather pecking in domestic fowl is genetically related to locomotor activity levels: implications for a hyperactivity disorder model of feather pecking.

    PubMed

    Kjaer, Joergen B

    2009-09-01

    Feather pecking is a major welfare problem in egg production. Genetic lines differing in the level of feather pecking have been developed by genetic selection. In two experiments correlated responses in locomotor activity were investigated. Firstly, general locomotor activity was estimated using electronic transponders. A total of 325 pullets from three lines: an unselected control line (CON), a line selected for low levels of feather pecking (LFP) and a line selected for high levels of feather pecking (HFP) during 6 generations, were reared in mixed line groups and activity was recorded from 13 to 17 weeks of age using antennas placed in the litter. Locomotor activity was significantly higher in the HFP and significantly lower in the LFP compared to the CON line (lsmeans 0.72 vs. 0.62 vs. 0.57 records per hen per h for HFP, CON and LFP respectively). In a second experiment locomotion was recorded in 40 chickens from the LFP and the HFP line at 5 weeks of age during day time from 09.00 to 16.00 h using a very precise computer facilitated tracking system. Distance travelled was found to be significantly higher in the high feather pecking line compared to the low feather pecking line (lsmeans 122 vs. 99 m per hour in HFP and LFP respectively). These results are discussed in relation to the ontogeny of feather pecking and a hyperactivity disorder model of feather pecking is suggested.

  6. Serotonin 1A, 1B, and 7 receptors of the rat medial nucleus accumbens differentially regulate feeding, water intake, and locomotor activity.

    PubMed

    Clissold, Kara A; Choi, Eugene; Pratt, Wayne E

    2013-11-01

    Serotonin (5-HT) signaling has been widely implicated in the regulation of feeding behaviors in both humans and animal models. Recently, we reported that co-stimulation of 5-HT1&7 receptors of the anterior medial nucleus accumbens with the drug 5-CT caused a dose-dependent decrease in food intake, water intake, and locomotion in rats (Pratt et al., 2009). The current experiments sought to determine which of three serotonin receptor subtypes (5-HT1A, 5-HT1B, or 5-HT7) might be responsible for these consummatory and locomotor effects. Food-deprived rats were given 2-h access to rat chow after stimulation of nucleus accumbens 5-HT1A, 5-HT1B, or 5-HT7 receptors, or blockade of the 5-HT1A or 5-HT1B receptors. Stimulation of 5-HT1A receptors with 8-OH-DPAT (at 0.0, 2.0, 4.0, and 8.0 μg/0.5 μl/side) caused a dose-dependent decrease in food and water intake, and reduced rearing behavior but not ambulation. In contrast, rats that received the 5-HT1B agonist CP 93129 (at 0.0, 1.0, 2.0 and 4.0 μg/0.5 μl/side) showed a significant dose-dependent decrease in water intake only; stimulation of 5-HT7 receptors (AS 19; at 0.0, 1.0, and 5.0 μg/0.5 μl/side) decreased ambulatory activity but did not affect food or water consumption. Blockade of 5-HT1A or 5-HT1B receptors had no lasting effects on measures of food consumption. These data suggest that the food intake, water intake, and locomotor effects seen after medial nucleus accumbens injections of 5-CT are due to actions on separate serotonin receptor subtypes, and contribute to growing evidence for selective roles of individual serotonin receptors within the nucleus accumbens on motivated behavior.

  7. Pharmacological Effects of a Monoclonal Antibody against 6-Monoacetylmorphine upon Heroin-Induced Locomotor Activity and Pharmacokinetics in Mice.

    PubMed

    Kvello, Anne Marte Sjursen; Andersen, Jannike Mørch; Øiestad, Elisabeth Leere; Mørland, Jørg; Bogen, Inger Lise

    2016-08-01

    Immunotherapy can provide a supplemental treatment strategy against heroin use on the principle of sequestering the active drug in the bloodstream, thereby reducing its distribution to the brain. Previous studies have shown that heroin's first metabolite, 6-monoacetylmorphine (6-MAM), is the main mediator of acute heroin effects. The objective of the present study was to characterize the pharmacological potential of a monoclonal antibody against 6-MAM (anti-6-MAM mAb) to counteract the heroin response. The individual contributions from heroin and 6-MAM to heroin effects were also examined by pretreating mice with anti-6-MAM mAb (10-100 mg/kg) prior to either heroin or 6-MAM injection (1.25-2.5 μmol/kg). The opioid-induced behavioral response was assessed in a locomotor activity test, followed by opioid and antibody quantification in blood and brain tissue. Pretreatment with mAb caused a profound reduction of heroin- and 6-MAM-induced behavior, accompanied by correspondingly decreased levels of 6-MAM in brain tissue. mAb pretreatment was more efficient against 6-MAM injection than against heroin, leading to an almost complete blockade of 6-MAM-induced effects. mAb pretreatment was unable to block the immediate (5-minute) transport of active metabolites across the blood-brain barrier after heroin injection, indicating that heroin itself appears to enhance the immediate delivery of 6-MAM to the brain. The current study provides additional evidence that 6-MAM sequestration is crucial for counteracting the acute heroin response, and demonstrates the pharmacological potential of immunotherapy against heroin use.

  8. Medial hypothalamic 5-hydroxytryptamine (5-HT)1A receptors regulate neuroendocrine responses to stress and exploratory locomotor activity: application of recombinant adenovirus containing 5-HT1A sequences.

    PubMed

    Li, Qian; Holmes, Andrew; Ma, Li; Van de Kar, Louis D; Garcia, Francisca; Murphy, Dennis L

    2004-12-01

    Our previous studies found that serotonin transporter (SERT) knock-out mice showed increased sensitivity to minor stress and increased anxiety-like behavior but reduced locomotor activity. These mice also showed decreased density of 5-hydroxytryptamine (5-HT1A) receptors in the hypothalamus, amygdala, and dorsal raphe. To evaluate the contribution of hypothalamic 5-HT1A receptors to these phenotypes of SERT knock-out mice, two studies were conducted. Recombinant adenoviruses containing 5-HT1A sense and antisense sequences (Ad-1AP-sense and Ad-1AP-antisense) were used to manipulate 5-HT1A receptors in the hypothalamus. The expression of the 5-HT1A genes is controlled by the 5-HT1A promoter, so that they are only expressed in 5-HT1A receptor-containing cells. (1) Injection of Ad-1AP-sense into the hypothalamus of SERT knock-out mice restored 5-HT1A receptors in the medial hypothalamus; this effect was accompanied by elimination of the exaggerated adrenocorticotropin responses to a saline injection (minor stress) and reduced locomotor activity but not by a change in increased exploratory anxiety-like behavior. (2) To further confirm the observation in SERT-/- mice, Ad-1AP-antisense was injected into the hypothalamus of normal mice. The density and the function of 5-HT1A receptors in the medial hypothalamus were significantly reduced in Ad-1AP-antisense-treated mice. Compared with the control group (injected with Ad-track), Ad-1A-antisense-treated mice showed a significant reduction in locomotor activity, but again no changes in exploratory anxiety-like behaviors, tested by elevated plus-maze and open-field tests. Thus, the present results demonstrate that medial hypothalamic 5-HT1A receptors regulate stress responses and locomotor activity but may not regulate exploratory anxiety-like behaviors.

  9. Food restriction alters N'-propyl-4,5,6,7-tetrahydrobenzothiazole-2,6-diamine dihydrochloride (pramipexole)-induced yawning, hypothermia, and locomotor activity in rats: evidence for sensitization of dopamine D2 receptor-mediated effects.

    PubMed

    Collins, Gregory T; Calinski, Diane M; Newman, Amy Hauck; Grundt, Peter; Woods, James H

    2008-05-01

    Food restriction enhances sensitivity to the reinforcing effects of a variety of drugs of abuse including opiates, nicotine, and psychostimulants. Food restriction has also been shown to alter a variety of behavioral and pharmacological responses to dopaminergic agonists, including an increased sensitivity to the locomotor stimulatory effects of direct- and indirect-dopamine agonists, elevated extracellular dopamine levels in responses to psychostimulants, as well as suppression of agonist-induced yawning. Behavioral and molecular studies suggest that augmented dopaminergic responses observed in food-restricted animals result from a sensitization of the dopamine D2 receptor; however, little is known about how food restriction affects dopamine D3 receptor function. The current studies were aimed at better defining the effects of food restriction on D2 and D3 receptor function by assessing the capacity of N'-propyl-4,5,6,7-tetrahydrobenzothiazole-2,6-diamine dihydrochloride (pramipexole) to induce yawning, penile erection (PE), hypothermia, and locomotor activity in free-fed and food-restricted rats. Food restriction resulted in a suppression of pramipexole-induced yawning, a sensitized hypothermic response, and an enhanced locomotor response to pramipexole, effects that are suggestive of an enhanced D2 receptor activity; no effect on pramipexole-induced PE was observed. Antagonist studies further supported a food restriction-induced enhancement of the D2 receptor activity because the D2 antagonist 3-[4-(4-chlorophenyl)-4-hydroxypiperidin-l-yl]methyl-1H-indole (L741,626) recovered pramipexole-induced yawning to free-fed levels, whereas yawning and PE were suppressed following pretreatment with the D3 antagonist N-{4-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide hydrochloride (PG01037). The results of the current studies suggest that food restriction sensitized rats to the D2-mediated effects of pramipexole while having no effect

  10. Locomotor activity in a novel environment predicts both responding for a visual stimulus and self-administration of a low dose of methamphetamine in rats

    PubMed Central

    Gancarz, Amy M.; San George, Michele A.; Ashrafioun, Lisham; Richards, Jerry B.

    2011-01-01

    There is evidence that visual stimuli used to signal drug delivery in self-administration procedures have primary reinforcing properties, and that drugs of abuse enhance the reinforcing properties of such stimuli. Here, we explored the relationships between locomotor activity, responding for a visual stimulus, and self-administration of methamphetamine (METH). Rats were classified as high or low responders based on activity levels in a novel locomotor chamber and were subsequently tested for responding to produce a visual stimulus followed by self-administration of a low dose of METH (0.025 mg/kg/infusion) paired with the visual stimulus. High responder rats responded more for the visual stimulus than low responder rats indicating that the visual stimulus was reinforcing and that operant responding for a visual stimulus has commonalities with locomotor activity in a novel environment. Similarly, high responder rats responded more for METH paired with a visual stimulus than low responder rats. Because of the reinforcing properties of the visual stimulus, it was not possible to determine if the rats were responding to produce the visual stimulus, METH or the combination. We speculate that responding to produce sensory reinforcers may be a measure of sensation seeking. These results indicate that visual stimuli have unconditioned reinforcing effects which may have a significant role in acquisition of drug self-administration, a role that is not yet well understood. PMID:21215305

  11. Novel technology for modulating locomotor activity as an operant response in the mouse: implications for neuroscience studies involving "exercise" in rodents.

    PubMed

    Fantegrossi, William E; Xiao, Wendy R; Zimmerman, Sarah M

    2013-01-30

    We have developed a novel, low-cost device designed to monitor and modulate locomotor activity in murine subjects. This technology has immediate application to the study of effects of physical exercise on various neurobiological endpoints, and will also likely be useful in the study of psychomotor sensitization and drug addiction. Here we demonstrate the capacity of these devices to establish locomotor activity as an operant response reinforced by food pellet presentations, and show that schedules of reinforcement can reliably control this behavior. Importantly, these data show that varying degrees of increased locomotor activity (in other words, "exercise") can be elicited and maintained in mice by manipulating the schedule of reinforcement. Our findings argue that the present technology might reduce the imposition of stress and motivational bias inherent in more traditional procedures for establishing exercise in laboratory rodents, while allowing for true random assignment to experimental groups. As interest in physical exercise as a modulating factor in numerous clinical conditions continues to grow, technologies like the one proposed here are likely to become critical in conducting future experiments along these lines.

  12. Differences in the neurochemical and behavioural profiles of lisdexamfetamine methylphenidate and modafinil revealed by simultaneous dual-probe microdialysis and locomotor activity measurements in freely-moving rats.

    PubMed

    Rowley, Helen L; Kulkarni, Rajiv S; Gosden, Jane; Brammer, Richard J; Hackett, David; Heal, David J

    2014-03-01

    Lisdexamfetamine dimesylate is a novel prodrug approved in North America, Europe and Brazil for treating attention deficit hyperactivity disorder (ADHD). It undergoes rate-limited hydrolysis by red blood cells to yield d-amphetamine. Following our previous work comparing lisdexamfetamine with d-amphetamine, the neurochemical and behavioural profiles of lisdexamfetamine, methylphenidate and modafinil were compared by dual-probe microdialysis in the prefrontal cortex (PFC) and striatum of conscious rats with simultaneous locomotor activity measurement. We employed pharmacologically equivalent doses of all compounds and those that spanned the therapeutically relevant and psychostimulant range. Lisdexamfetamine (0.5, 1.5, 4.5 mg/kg d-amphetamine base, per os (po)), methylphenidate (3, 10, 30 mg/kg base, po) and modafinil (100, 300, 600 mg/kg base, po) increased efflux of dopamine and noradrenaline in PFC, and dopamine in striatum. Only lisdexamfetamine increased 5-hydroxytryptamine (5-HT) efflux in PFC and striatum. Lisdexamfetamine had larger and more sustained effects on catecholaminergic neurotransmission than methylphenidate or modafinil. Linear correlations were observed between striatal dopamine efflux and locomotor activity for lisdexamfetamine and methylphenidate, but not modafinil. Regression slopes revealed greater increases in extracellular dopamine could be elicited without producing locomotor activation by lisdexamfetamine than methylphenidate. These results are consistent with clinical findings showing that lisdexamfetamine is an effective ADHD medication with prolonged duration of action and good separation between its therapeutic actions and stimulant side-effects.

  13. Locomotor activity assay in zebrafish larvae: influence of age, strain and ethanol.

    PubMed

    de Esch, Celine; van der Linde, Herma; Slieker, Roderick; Willemsen, Rob; Wolterbeek, André; Woutersen, Ruud; De Groot, Didima

    2012-07-01

    Several characteristics warrant the zebrafish a refining animal model for toxicity testing in rodents, thereby contributing to the 3R principles (Replacement, Reduction, and Refinement) in animal testing, e.g. its small size, ease of obtaining a high number of progeny, external fertilization, transparency and rapid development of the embryo, and a basic understanding of its gene function and physiology. In this context we explored the motor activity pattern of zebrafish larvae, using a 96-well microtiter plate and a video-tracking system. Effects of induced light and darkness on locomotion of zebrafish larvae of different wild-type strains and ages (AB and TL, 5, 6 and 7 dpf; n=25/group) were studied. Locomotion was also measured in zebrafish larvae after exposure to different concentrations of ethanol (0; 0.5; 1; 2 and 4%) (AB and TL strain, 6 dpf; n=19/group). Zebrafish larvae showed a relatively high swimming activity in darkness when compared to the activity in light. Small differences were found between wild-type strains and/or age. Ethanol exposure resulted in hyperactivity (0.5-2%) and in hypo-activity (4%). In addition, the limitations and/or relevance of the parameters distance moved, duration of movements and velocity are exemplified and discussed. Together, the results support the suggestion that zebrafish may act as an animal refining alternative for toxicity testing in rodents provided internal and external environmental stimuli are controlled. As such, light, age and strain differences must be taken into account.

  14. Hyperleptinemia During Pregnancy Decreases Adult Weight of Offspring and Is Associated With Increased Offspring Locomotor Activity in Mice.

    PubMed

    Pollock, Kelly E; Stevens, Damaiyah; Pennington, Kathleen A; Thaisrivongs, Rose; Kaiser, Jennifer; Ellersieck, Mark R; Miller, Dennis K; Schulz, Laura Clamon

    2015-10-01

    Pregnant women who are obese or have gestational diabetes mellitus have elevated leptin levels and their children have an increased risk for child and adult obesity. The goals of this study were to determine whether offspring weights are altered by maternal hyperleptinemia, and whether this occurs via behavioral changes that influence energy balance. We used 2 hyperleptinemic mouse models. The first was females heterozygous for a leptin receptor mutation (DB/+), which were severely hyperleptinemic, and that were compared with wild-type females. The second model was wild-type females infused with leptin (LEP), which were moderately hyperleptinemic, and were compared with wild-type females infused with saline (SAL). Total food consumption, food preference, locomotor activity, coordinated motor skills, and anxiety-like behaviors were assessed in wild-type offspring from each maternal group at 3 postnatal ages: 4-6, 11-13, and 19-21 weeks. Half the offspring from each group were then placed on a high-fat diet, and behaviors were reassessed. Adult offspring from both groups of hyperleptinemic dams weighed less than their respective controls beginning at 23 weeks of age, independent of diet or sex. Weight differences were not explained by food consumption or preference, because female offspring from hyperleptinemic dams tended to consume more food and had reduced preference for palatable, high-fat and sugar, food compared with controls. Offspring from DB/+ dams were more active than offspring of controls, as were female offspring of LEP dams. Maternal hyperleptinemia during pregnancy did not predispose offspring to obesity, and in fact, reduced weight gain.

  15. Development of metabolic enzyme activity in locomotor and cardiac muscles of the migratory barnacle goose.

    PubMed

    Bishop, C M; Butler, P J; Egginton, S; el Haj, A J; Gabrielsen, G W

    1995-07-01

    Preflight development of the goslings was typified by rapid increases in the mitochondrial enzymes of the semimembranosus and heart ventricular muscles resulting in near-adult values by 3 wk of age. In contrast, aerobic capacity of the pectoralis muscle initially developed slowly but showed a rapid increase between 5 and 7 wk of age, in preparation for becoming airborne. Activities of glycolytic enzymes in the pectoralis muscle showed similar patterns of development as those found for the aerobic enzymes, except for hexokinase, which was low at all ages, indicating an adaptation for catabolism of both intracellular glycogen and plasma fatty acids in preference to plasma glucose. Muscle mass specific activity of citrate synthase in the pectoralis increased by only 33% from goslings during the first few days of flight, compared with premigratory geese. Activities of anaerobic glycolytic enzymes in the ventricles were low, but values for hexokinase, which is involved in the phosphorylation of plasma glucose, developed rapidly. Values for lactate dehydrogenase were also high, reflecting the capacity of the heart to catabolize plasma lactate. Substrate flux supplied by carnitine palmitoyltransferase and oxoglutarate dehydrogenase (OGD), in the pectoralis muscles of the premigratory geese, appears to have the smallest excess capacities to meet the requirements of sustained aerobic flight. The average maximum oxygen uptake for premigratory geese during flight, as indicated by values for OGD, is calculated to be 484 ml O2/min (or 208 ml O2.min-1.kg-1).

  16. Fmrp Interacts with Adar and Regulates RNA Editing, Synaptic Density and Locomotor Activity in Zebrafish

    PubMed Central

    Porath, Hagit T.; Barak, Michal; Pinto, Yishay; Wachtel, Chaim; Zilberberg, Alona; Lerer-Goldshtein, Tali; Efroni, Sol; Levanon, Erez Y.; Appelbaum, Lior

    2015-01-01

    Fragile X syndrome (FXS) is the most frequent inherited form of mental retardation. The cause for this X-linked disorder is the silencing of the fragile X mental retardation 1 (fmr1) gene and the absence of the fragile X mental retardation protein (Fmrp). The RNA-binding protein Fmrp represses protein translation, particularly in synapses. In Drosophila, Fmrp interacts with the adenosine deaminase acting on RNA (Adar) enzymes. Adar enzymes convert adenosine to inosine (A-to-I) and modify the sequence of RNA transcripts. Utilizing the fmr1 zebrafish mutant (fmr1-/-), we studied Fmrp-dependent neuronal circuit formation, behavior, and Adar-mediated RNA editing. By combining behavior analyses and live imaging of single axons and synapses, we showed hyperlocomotor activity, as well as increased axonal branching and synaptic density, in fmr1-/- larvae. We identified thousands of clustered RNA editing sites in the zebrafish transcriptome and showed that Fmrp biochemically interacts with the Adar2a protein. The expression levels of the adar genes and Adar2 protein increased in fmr1-/- zebrafish. Microfluidic-based multiplex PCR coupled with deep sequencing showed a mild increase in A-to-I RNA editing levels in evolutionarily conserved neuronal and synaptic Adar-targets in fmr1-/- larvae. These findings suggest that loss of Fmrp results in increased Adar-mediated RNA editing activity on target-specific RNAs, which, in turn, might alter neuronal circuit formation and behavior in FXS. PMID:26637167

  17. An action potential-driven model of soleus muscle activation dynamics for locomotor-like movements

    PubMed Central

    Kim, Hojeong; Sandercock, Thomas G.; Heckman, C. J.

    2016-01-01

    Objective The goal of this study was to develop a physiologically plausible, computationally robust model for the muscle activation dynamics (A(t)) under physiologically relevant excitation and movement. Approach The interaction of excitation and movement on A(t) was investigated comparing the force production between a cat soleus muscle and its Hill-type model. For capturing A(t) under excitation and movement variation, a modular modeling framework was proposed comprising of 3 compartments: (1) spikes-to-[Ca2+]; (2) [Ca2+]-to-A; and (3) A-to-force transformation. The individual signal transformations were modeled based on physiological factors so that the parameter values could be separately determined for individual modules directly based on experimental data. Main results The strong dependency of A(t) on excitation frequency and muscle length was found during both isometric and dynamically-moving contractions. The identified dependencies of A(t) under the static and dynamic conditions could be incorporated in the modular modeling framework by modulating the model parameters as a function of movement input. The new modeling approach was also applicable to cat soleus muscles producing waveforms independent of those used to set the model parameters. Significance This study provides a modeling framework for spike-driven muscle responses during movement, that is suitable not only for insights into molecular mechanisms underlying muscle behaviors but also for large scale simulations. PMID:26087477

  18. Atrazine and its main metabolites alter the locomotor activity of larval zebrafish (Danio rerio).

    PubMed

    Liu, Zhenzhen; Wang, Yueyi; Zhu, Zhihong; Yang, Enlu; Feng, Xiayan; Fu, Zhengwei; Jin, Yuanxiang

    2016-04-01

    Atrazine (ATZ) and its main chlorometabolites, i.e., diaminochlorotriazine (DACT), deisopropylatrazine (DIP), and deethylatrazine (DE), have been widely detected in aquatic systems near agricultural fields. However, their possible effects on aquatic animals are still not fully understood. In this study, it was observed that several developmental endpoints such as the heart beat, hatchability, and morphological abnormalities were influenced by ATZ and its metabolites in different developmental stages. In addition, after 5 days of exposure to 30, 100, 300 μg L(-1) ATZ and its main chlorometabolites, the swimming behaviors of larval zebrafish were significantly disturbed, and the acetylcholinesterase (AChE) activities were consistently inhibited. Our results also demonstrate that ATZ and its main chlorometabolites are neuroendocrine disruptors that impact the expression of neurotoxicity-related genes such as Ache, Gap43, Gfap, Syn2a, Shha, Mbp, Elavl3, Nestin and Ngn1 in early developmental stages of zebrafish. According to our results, it is possible that not only ATZ but also its metabolites (DACT, DIP and DE) have the same or even more toxic effects on different endpoints of the early developmental stages of zebrafish.

  19. An action potential-driven model of soleus muscle activation dynamics for locomotor-like movements

    NASA Astrophysics Data System (ADS)

    Kim, Hojeong; Sandercock, Thomas G.; Heckman, C. J.

    2015-08-01

    Objective. The goal of this study was to develop a physiologically plausible, computationally robust model for muscle activation dynamics (A(t)) under physiologically relevant excitation and movement. Approach. The interaction of excitation and movement on A(t) was investigated comparing the force production between a cat soleus muscle and its Hill-type model. For capturing A(t) under excitation and movement variation, a modular modeling framework was proposed comprising of three compartments: (1) spikes-to-[Ca2+]; (2) [Ca2+]-to-A; and (3) A-to-force transformation. The individual signal transformations were modeled based on physiological factors so that the parameter values could be separately determined for individual modules directly based on experimental data. Main results. The strong dependency of A(t) on excitation frequency and muscle length was found during both isometric and dynamically-moving contractions. The identified dependencies of A(t) under the static and dynamic conditions could be incorporated in the modular modeling framework by modulating the model parameters as a function of movement input. The new modeling approach was also applicable to cat soleus muscles producing waveforms independent of those used to set the model parameters. Significance. This study provides a modeling framework for spike-driven muscle responses during movement, that is suitable not only for insights into molecular mechanisms underlying muscle behaviors but also for large scale simulations.

  20. Molecular Mechanisms Underlying Cell Death in Spinal Networks in Relation to Locomotor Activity After Acute Injury in vitro

    PubMed Central

    Kuzhandaivel, Anujaianthi; Nistri, Andrea; Mazzone, Graciela L.; Mladinic, Miranda

    2011-01-01

    Understanding the pathophysiological changes triggered by an acute spinal cord injury is a primary goal to prevent and treat chronic disability with a mechanism-based approach. After the primary phase of rapid cell death at the injury site, secondary damage occurs via autodestruction of unscathed tissue through complex cell-death mechanisms that comprise caspase-dependent and caspase-independent pathways. To devise novel neuroprotective strategies to restore locomotion, it is, therefore, necessary to focus on the death mechanisms of neurons and glia within spinal locomotor networks. To this end, the availability of in vitro preparations of the rodent spinal cord capable of expressing locomotor-like oscillatory patterns recorded electrophysiologically from motoneuron pools offers the novel opportunity to correlate locomotor network function with molecular and histological changes long after an acute experimental lesion. Distinct forms of damage to the in vitro spinal cord, namely excitotoxic stimulation or severe metabolic perturbation (with oxidative stress, hypoxia/aglycemia), can be applied with differential outcome in terms of cell types and functional loss. In either case, cell death is a delayed phenomenon developing over several hours. Neurons are more vulnerable to excitotoxicity and more resistant to metabolic perturbation, while the opposite holds true for glia. Neurons mainly die because of hyperactivation of poly(ADP-ribose) polymerase-1 (PARP-1) with subsequent DNA damage and mitochondrial energy collapse. Conversely, glial cells die predominantly by apoptosis. It is likely that early neuroprotection against acute spinal injury may require tailor-made drugs targeted to specific cell-death processes of certain cell types within the locomotor circuitry. Furthermore, comparison of network size and function before and after graded injury provides an estimate of the minimal network membership to express the locomotor program. PMID:21734866

  1. Astrocytic IL-6 mediates locomotor activity, exploration, anxiety, learning and social behavior.

    PubMed

    Erta, Maria; Giralt, Mercedes; Esposito, Flavia Lorena; Fernandez-Gayol, Olaya; Hidalgo, Juan

    2015-07-01

    Interleukin-6 (IL-6) is a major cytokine in the central nervous system, secreted by different brain cells and with roles in a number of physiological functions. We herewith confirm and expand the importance of astrocytic production of and response to IL-6 by using transgenic mice deficient in astrocytic IL-6 (Ast-IL-6 KO) or in its receptor (Ast-IL-6R KO) in full C57Bl/6 genetic background. A major prosurvival effect of astrocytic IL-6 at early ages was clearly demonstrated. Robust effects were also evident in the control of activity and anxiety in the hole-board and elevated plus-maze, and in spatial learning in the Morris water-maze. The results also suggest an inhibitory role of IL-6 in the mechanism controlling the consolidation of hippocampus-dependent spatial learning. Less robust effects of astrocytic IL-6 system were also observed in despair behavior in the tail suspension test, and social behavior in the dominance and resident-intruder tests. The behavioral phenotype was highly dependent on age and/or sex in some cases. The phenotype of Ast-IL-6R KO mice mimicked only partially that of Ast-IL-6KO mice, which indicates both a role of astrocytes in behavior and the participation of other cells besides astrocytes. No evidences of altered function of the hypothalamic-pituitary-adrenal axis were observed. These results demonstrate that astrocytic IL-6 (acting at least partially in astrocytes) regulates normal behavior in mice.

  2. A versatile telemetry system for continuous measurement of heart rate, body temperature and locomotor activity in free-ranging ruminants

    PubMed Central

    Signer, Claudio; Ruf, Thomas; Schober, Franz; Fluch, Gerhard; Paumann, Thomas; Arnold, Walter

    2012-01-01

    Summary 1. Measuring physiological and behavioural parameters in free-ranging animals – and therefore under fully natural conditions – is of general biological concern but difficult to perform. 2. We have developed a minimally invasive telemetry system for ruminants that is capable of measuring heart rate (HR), body temperature (Tb) and locomotor activity (LA). A ruminal transmitter unit was per os placed into the reticulum and therefore located in close proximity to the heart. The unit detected HR by the use of an acceleration sensor and also measured Tb. HR and Tb signals were transmitted via short-distance UHF link to a repeater system located in a collar unit. The collar unit decoded and processed signals received from the ruminal unit, measured LA with two different activity sensors and transmitted pulse interval-modulated VHF signals over distances of up to 10 km. 3. HR data measured with the new device contained noise caused by reticulum contractions and animal movements that triggered the acceleration sensor in the ruminal unit. We have developed a software filter to remove this noise. Hence, the system was only capable of measuring HR in animals that showed little or no activity and in the absence of rumen contractions. Reliability of this ‘stationary HR’ measurement was confirmed with a second independent measurement of HR detected by an electrocardiogram in a domestic sheep (Ovis aries). 4. In addition, we developed an algorithm to correctly classify an animal as ‘active’ or ‘at rest’ during each 3-min interval from the output of the activity sensors. Comparison with direct behavioural observations on free-ranging Alpine ibex (Capra ibex) showed that 87% of intervals were classified correctly. 5. First results from applications of this new technique in free-ranging Alpine ibex underlined its suitability for reliable and long-term monitoring of physiological and behavioural parameters in ruminants under harsh field conditions. With the

  3. Altered object-in-place recognition memory, prepulse inhibition, and locomotor activity in the offspring of rats exposed to a viral mimetic during pregnancy.

    PubMed

    Howland, J G; Cazakoff, B N; Zhang, Y

    2012-01-10

    Infection during pregnancy (i.e., prenatal infection) increases the risk of psychiatric illnesses such as schizophrenia and autism in the adult offspring. The present experiments examined the effects of prenatal immune challenge on behavior in three paradigms relevant to these disorders: prepulse inhibition (PPI) of the acoustic startle response, locomotor responses to an unfamiliar environment and the N-methyl-d-aspartate antagonist MK-801, and three forms of recognition memory. Pregnant Long-Evans rats were exposed to the viral mimetic polyinosinic-polycytidylic acid (PolyI:C; 4 mg/kg, i.v.) on gestational day 15. Offspring were tested for PPI and locomotor activity before puberty (postnatal days (PNDs)35 and 36) and during young adulthood (PNDs 56 and 57). Four prepulse-pulse intervals (30, 50, 80, and 140 ms) were employed in the PPI test. Recognition memory testing was performed using three different spontaneous novelty recognition tests (object, object location, and object-in-place recognition) after PND 60. Regardless of sex, offspring of PolyI:C-treated dams showed disrupted PPI at 50-, 80-, and 140-ms prepulse-pulse intervals. In the prepubescent rats, we observed prepulse facilitation for the 30-ms prepulse-pulse interval trials that was selectively retained in the adult PolyI:C-treated offspring. Locomotor responses to MK-801 were significantly reduced before puberty, whereas responses to an unfamiliar environment were increased in young adulthood. Both male and female PolyI:C-treated offspring showed intact object and object location recognition memory, whereas male PolyI:C-treated offspring displayed significantly impaired object-in-place recognition memory. Females were unable to perform the object-in-place test. The present results demonstrate that prenatal immune challenge during mid/late gestation disrupts PPI and locomotor behavior. In addition, the selective impairment of object-in-place recognition memory suggests tasks that depend on prefrontal

  4. Rhythmic 24 h Variation of Core Body Temperature and Locomotor Activity in a Subterranean Rodent (Ctenomys aff. knighti), the Tuco-Tuco

    PubMed Central

    Tachinardi, Patricia; Bicudo, José Eduardo Wilken; Oda, Gisele Akemi; Valentinuzzi, Verónica Sandra

    2014-01-01

    The tuco-tuco Ctenomys aff. knighti is a subterranean rodent which inhabits a semi-arid area in Northwestern Argentina. Although they live in underground burrows where environmental cycles are attenuated, they display robust, 24 h locomotor activity rhythms that are synchronized by light/dark cycles, both in laboratory and field conditions. The underground environment also poses energetic challenges (e.g. high-energy demands of digging, hypoxia, high humidity, low food availability) that have motivated thermoregulation studies in several subterranean rodent species. By using chronobiological protocols, the present work aims to contribute towards these studies by exploring day-night variations of thermoregulatory functions in tuco-tucos, starting with body temperature and its temporal relationship to locomotor activity. Animals showed daily, 24 h body temperature rhythms that persisted even in constant darkness and temperature, synchronizing to a daily light/dark cycle, with highest values occurring during darkness hours. The range of oscillation of body temperature was slightly lower than those reported for similar-sized and dark-active rodents. Most rhythmic parameters, such as period and phase, did not change upon removal of the running wheel. Body temperature and locomotor activity rhythms were robustly associated in time. The former persisted even after removal of the acute effects of intense activity on body temperature by a statistical method. Finally, regression gradients between body temperature and activity were higher in the beginning of the night, suggesting day-night variation in thermal conductance and heat production. Consideration of these day-night variations in thermoregulatory processes is beneficial for further studies on thermoregulation and energetics of subterranean rodents. PMID:24454916

  5. Rhythmic 24 h variation of core body temperature and locomotor activity in a subterranean rodent (Ctenomys aff. knighti), the tuco-tuco.

    PubMed

    Tachinardi, Patricia; Bicudo, José Eduardo Wilken; Oda, Gisele Akemi; Valentinuzzi, Verónica Sandra

    2014-01-01

    The tuco-tuco Ctenomys aff. knighti is a subterranean rodent which inhabits a semi-arid area in Northwestern Argentina. Although they live in underground burrows where environmental cycles are attenuated, they display robust, 24 h locomotor activity rhythms that are synchronized by light/dark cycles, both in laboratory and field conditions. The underground environment also poses energetic challenges (e.g. high-energy demands of digging, hypoxia, high humidity, low food availability) that have motivated thermoregulation studies in several subterranean rodent species. By using chronobiological protocols, the present work aims to contribute towards these studies by exploring day-night variations of thermoregulatory functions in tuco-tucos, starting with body temperature and its temporal relationship to locomotor activity. Animals showed daily, 24 h body temperature rhythms that persisted even in constant darkness and temperature, synchronizing to a daily light/dark cycle, with highest values occurring during darkness hours. The range of oscillation of body temperature was slightly lower than those reported for similar-sized and dark-active rodents. Most rhythmic parameters, such as period and phase, did not change upon removal of the running wheel. Body temperature and locomotor activity rhythms were robustly associated in time. The former persisted even after removal of the acute effects of intense activity on body temperature by a statistical method. Finally, regression gradients between body temperature and activity were higher in the beginning of the night, suggesting day-night variation in thermal conductance and heat production. Consideration of these day-night variations in thermoregulatory processes is beneficial for further studies on thermoregulation and energetics of subterranean rodents.

  6. Waterborne citalopram has anxiolytic effects and increases locomotor activity in the three-spine stickleback (Gasterosteus aculeatus).

    PubMed

    Kellner, M; Porseryd, T; Hallgren, S; Porsch-Hällström, I; Hansen, S H; Olsén, K H

    2016-04-01

    Citalopram is an antidepressant drug, which acts by inhibiting the re-uptake of serotonin from the synaptic cleft into the pre-synaptic nerve ending. It is one of the most common drugs used in treatment of depression, it is highly lipophilic and frequently found in sewage treatment plant effluents and surface waters around the world. Citalopram and other selective serotonin re-uptake inhibitors have, at concentrations that occur in nature, been shown to have behavioural as well as physiological effects on fish and other animals. This study is the result of several different experiments, intended to analyse different aspects of behavioural effects of chronic citalopram exposure in fish. Our model species the three-spine stickleback is common in the entire northern hemisphere and is considered to be a good environmental sentinel species. Female three-spine sticklebacks were exposed to 0, 1.5 and 15μg/l nominal concentrations of citalopram for 21 days and subjected to the novel tank (NT) diving test. In the NT test, the fish exposed to 1.5μg/l, but not the 15μg/l fish made a significantly higher number of transitions to the upper half and stayed there for significantly longer time than the fish exposed to 0μg/l. The 15μg/l group, however, displayed a significantly lower number of freeze bouts and a shorter total freezing time. The test for locomotor activity included in the NT test showed that fish treated with 1.5 and 15μg/l displayed a significantly higher swimming activity than control fish both 5-7 and 15-17min after the start of the experiment. In the next experiment we compared fish exposed to 1.5μg/l and 0.15μg/l to pure water controls with regard to shoaling intensity and found no effect of treatment. In the final experiment the propensity of fish treated with 1.5μg/l to approach an unknown object and aggressive behaviour was investigated using the Novel Object test and a mirror test, respectively. The exposed fish ventured close to the unknown object

  7. Synchronization to light and mealtime of daily rhythms of locomotor activity, plasma glucose and digestive enzymes in the Nile tilapia (Oreochromis niloticus).

    PubMed

    Guerra-Santos, Bartira; López-Olmeda, José Fernando; de Mattos, Bruno Olivetti; Baião, Alice Borba; Pereira, Denise Soledade Peixoto; Sánchez-Vázquez, Francisco Javier; Cerqueira, Robson Bahia; Albinati, Ricardo Castelo Branco; Fortes-Silva, Rodrigo

    2017-02-01

    The light-dark cycle and feeding can be the most important factors acting as synchronizers of biological rhythms. In this research we aimed to evaluate synchronization to feeding schedule of daily rhythms of locomotor activity and digestive enzymes of tilapia. For that purpose, 120 tilapias (65.0±0.6g) were distributed in 12 tanks (10 fish per tank) and divided into two groups. One group was fed once a day at 11:00h (zeitgeber time, ZT6) (ML group) and the other group was fed at 23:00h (ZT18) (MD group). The fish were anesthetized to collect samples of blood, stomach and midgut at 4-hour intervals over a period of 24h. Fish fed at ML showed a diurnal locomotor activity (74% of the total daily activity occurring during the light phase) and synchronization to the feeding schedule, as this group showed anticipation to the feeding time. Fish fed at MD showed a disruption in the pattern of locomotor activity and became less diurnal (59%). Alkaline protease activity in the midgut showed daily rhythm with the achrophase at the beginning of the dark phase in both ML and MD groups. Acid protease and amylase did not show significant daily rhythms. Plasma glucose showed a daily rhythm with the achrophase shifted by 12h in the ML and MD groups. These results revealed that the feeding time and light cycle synchronize differently the daily rhythms of behavior, digestive physiology and plasma metabolites in the Nile tilapia, which indicate the plasticity of the circadian system and its synchronizers.

  8. Locomotor activity measures in the diagnosis of Attention Deficit Hyperactivity Disorder: Meta-analyses and new findings

    PubMed Central

    Murillo, Lourdes García; Cortese, Samuele; Anderson, David; Martino, Adriana Di; Castellanos, Francisco Xavier

    2015-01-01

    Introduction Our aim was to assess differences in movement measures in Attention-Deficit/Hyperactivity Disorder (ADHD) vs. typically developing (TD) controls. Methods We performed meta-analyses of published studies on motion measures contrasting ADHD with controls. We also conducted a case-control study with children/adolescents (n=61 TD, n=62 ADHD) and adults (n=30 TD, n=19 ADHD) using the McLean Motion Activity Test, semi-structured diagnostic interviews and the Behavior Rating Inventory of Executive Function and Conners (Parent, Teacher; Self) Rating Scales. Results Meta-analyses revealed medium-to-large effect sizes for actigraph (standardized mean difference [SMD]: 0.64, 95% Confidence interval (CI): 0.43, 0.85) and motion tracking systems (SDM: 0.92, 95% CI: 0.65, 1.20) measures in differentiating individuals with ADHD from controls. Effects sizes were similar in studies of children/adolescents ([SMD]:0.75, 95% CI: 0.50, 1.01) and of adults ([SMD]: 0.73, 95% CI: 0.46, 1.00). In our sample, ADHD groups differed significantly in number of Head Movements (p=0.02 in children; p=0.002 in adults), Displacement (p=0.009/p<0.001), Head Area (p=0.03/p<0.001), Spatial Complexity (p=0.06/p=0.02) and Temporal Scaling (p=0.05/p=0.04). Mean effect sizes were non-significantly larger (d=0.83, 95% CI: 0.20, 1.45) in adults vs. children/adolescents with ADHD (d=0.45, 95% CI: 0.08, 0.82). In the concurrent go/no-go task, reaction time variability was significantly greater in ADHD (p<0.05 in both age groups) than controls. Conclusions Locomotor hyperactivity remains core to the construct of ADHD even in adults. Our results suggest that objective locomotion measures may be particularly useful in evaluating adults with possible ADHD. PMID:25770940

  9. Interactions of serotonin (5-HT)2 receptor-targeting ligands and nicotine: locomotor activity studies in rats.

    PubMed

    Zaniewska, Magdalena; McCreary, Andrew C; Filip, Małgorzata

    2009-08-01

    Male Wistar rats were used to verify the hypothesis that serotonin (5-HT)(2A) or 5-HT(2C) receptors may control the locomotor effects evoked by nicotine (0.4 mg/kg). The 5-HT(2A) receptor antagonist (M100,907), the 5-HT(2A) receptor agonist (DOI), the 5-HT(2C) receptor antagonist (SB 242,084), and the 5-HT(2C) receptor agonists (Ro 60-0175 and WAY 163,909) were used. M100,907 (0.5-2mg/kg) did not alter, while DOI (1 mg/kg) enhanced the nicotine-induced hyperlocomotion. The effect of DOI was antagonized by M100,907 (1 mg/kg). SB 242,084 (0.25-1 mg/kg) augmented, while Ro 60-0175 (1 and 3 mg/kg) and WAY 163,909 (1.5 mg/kg) decreased the overall effect of acute nicotine; effects of Ro 60-0175 and WAY 163,909 were attenuated by SB 242,084 (0.125 mg/kg). In another set of experiments, M100,907 (2 mg/kg) on Day 10 attenuated, while DOI (0.1-1 mg/kg) enhanced the nicotine-evoked conditioned hyperlocomotion in rats repeatedly (Days 1-5) treated with nicotine in experimental chambers. SB 242,084 (0.125 or 1 mg/kg) did not change, while Ro 60-0175 (1 mg/kg) or WAY 163,909 (1.5 mg/kg) decreased the expression of nicotine-induced conditioned hyperactivity. Only DOI (0.3 and 1 mg/kg) and SB 242,084 (1 mg/kg) enhanced the basal locomotion. The present data indicate that 5-HT(2A) receptors are significant for the expression of nicotine-evoked conditioned hyperactivity. Conversely, 5-HT(2C) receptors play a pivotal role in the acute effects of nicotine. Pharmacological stimulation of 5-HT(2A) receptors enhances the conditioned hyperlocomotion, while activation of 5-HT(2C) receptors decreases both the response to acute nicotine and conditioned hyperactivity.

  10. In vivo effects of abused 'bath salt' constituent 3,4-methylenedioxypyrovalerone (MDPV) in mice: drug discrimination, thermoregulation, and locomotor activity.

    PubMed

    Fantegrossi, William E; Gannon, Brenda M; Zimmerman, Sarah M; Rice, Kenner C

    2013-03-01

    In recent years, synthetic analogues of naturally occurring cathinone have emerged as psychostimulant-like drugs of abuse in commercial 'bath salt' preparations. 3,4-Methylenedioxypyrovalerone (MDPV) is a common constituent of these illicit products, and its structural similarities to the more well-known drugs of abuse 3,4-methylenedioxymethamphetamine (MDMA), and methamphetamine (METH) suggest that it may have similar in vivo effects to these substances. In these studies, adult male NIH Swiss mice were trained to discriminate 0.3 mg/kg MDPV from saline, and the interoceptive effects of a range of substitution doses of MDPV, MDMA, and METH were then assessed. In separate groups of mice, surgically implanted radiotelemetry probes simultaneously monitored thermoregulatory and locomotor responses to various doses of MDPV and MDMA, as a function of ambient temperature. We found that mice reliably discriminated the MDPV training dose from saline and that cumulative doses of MDPV, MDMA, and METH fully substituted for the MDPV training stimulus. All three drugs had similar ED(50) values in this procedure. Stimulation of motor activity was observed following administration of a wide range of MDPV doses (1-30 mg/kg), and the warm ambient temperature potentiated motor activity and elicited profound stereotypy and self-injurious behavior at 30 mg/kg. In contrast, MDPV-induced hyperthermic effects were observed in only the warm ambient environment. This pattern of effects is in sharp contrast to MDMA, where ambient temperature interacts with thermoregulation, but not locomotor activity. These studies suggest that although the interoceptive effects of MDPV are similar to those of MDMA and METH, direct effects on thermoregulatory processes and locomotor activity are likely mediated by different mechanisms than those of MDMA.

  11. Chronic central administration of apelin-13 over 10 days increases food intake, body weight, locomotor activity and body temperature in C57BL/6 mice.

    PubMed

    Valle, A; Hoggard, N; Adams, A C; Roca, P; Speakman, J R

    2008-01-01

    The peptide apelin has been located in a wide range of tissues, including the gastrointestinal tract, stomach and adipose tissue. Apelin and its receptor has also been detected in the arcuate and paraventricular nuclei of the hypothalamus, which are involved in the control of feeding behaviour and energy expenditure. This distribution suggests apelin may play a role in energy homeostasis, but previous attempts to discern the effects of apelin by acute injection into the brain have yielded conflicting results. We examined the effect of a chronic 10-day intracerebroventricular (i.c.v.) infusion of apelin-13 into the third ventricle on food intake, body temperature and locomotor activity in C57BL/6 mice. Apelin-13 (1 microg/day) increased food intake significantly on days 3-7 of infusion; thereafter, food intake of treated and control individuals converged. This convergence was potentially because of progressive conversion of apelin-13 to [Pyr(1)]apelin-13 which has a four-fold lower receptor binding affinity at the orphan G protein-coupled receptor, APJ. Locomotor activity was also higher in the apelin-treated mice, especially during the nocturnal peak, when most feeding occurs, and the first hours of the light phase. Body temperature was also elevated during this increased period of activity, but was otherwise unaffected. Apelin-13-infused animals gained more weight than the saline-infused controls, suggesting the elevated locomotor activity did not offset the increased food intake. Elevated locomotion and the consequent increases in body temperature were probably secondary effects to the increased food intake. These results suggest that apelin-13 may play a central role in the control of feeding behaviour and is one of only two peripheral ligands known to stimulate rather than inhibit intake. As apelin production is elevated during obesity, this may provide an important feed-forward mechanism exacerbating the problem. Antagonists of the apelin receptor may

  12. Abnormal clock gene expression and locomotor activity rhythms in two month-old female APPSwe/PS1dE9 mice.

    PubMed

    Oyegbami, Olaide; Collins, Hilary M; Pardon, Marie C; Ebling, Fran Jp; Heery, David M; Moran, Paula M

    2017-03-17

    In addition to cognitive decline, Alzheimer's disease (AD) is also characterized by agitation and disruptions in activity and sleep. These symptoms typically occur in the evening or at night and have been referred to as 'sundowning'. These symptoms are especially difficult for carers and there are no specific drug treatments. There is increasing evidence that these symptoms reflect an underlying pathology of circadian rhythm generation and transmission. We investigated whether a transgenic mouse model relevant to AD (APPswe/PS1dE9) exhibits circadian alterations in locomotor activity and expression of clock genes involved in the regulation of the circadian cycle. Female mice at 2 months of age were investigated in their home cage. Results show that the APPswe/PS1dE9 transgene alters levels and patterns in circadian rhythm of locomotor activity. Expression of the clock genes Per1, Per2, Cry1 and Cry2 was found to increase at night compared to day in wild-type control mice in the medulla/pons. This effect was blunted for Cry1 and Cry2 gene expression in APPswe/PS1dE9. In summary, this study suggests altered circadian regulation of locomotor activity is abnormal in female APPswe/PS1dE9 mice and that this alteration has biomolecular analogies in a widely available model of AD. Furthermore, the early age at which these effects are manifest suggests that these circadian effects may precede plaque development. The APPswe/PS1dE9 mouse genetic model may have potential to serve as a tool in understanding the neuropathology of circadian abnormalities in AD and as a model system to test novel therapeutic agents for these symptoms.

  13. The daily pattern of heart rate, body temperature, locomotor activity, and autonomic nervous activity in congenitally bronchial-hypersensitive (BHS) and bronchial-hyposensitive (BHR) guinea pigs.

    PubMed

    Akita, Megumi; Kuwahara, Masayoshi; Nishibata, Ryoji; Mikami, Hiroki; Tsubone, Hirokazu

    2004-04-01

    We studied the characteristics of the rhythmicity of heart rate (HR), body temperature (BT), locomotor activity (LA) and autonomic nervous activity in bronchial-hypersensitive (BHS) and bronchial-hyposensitive (BHR) guinea pigs. For this purpose, HR, BT, LA, and electrocardiogram (ECG) were recorded from conscious and unrestrained guinea pigs using a telemetry system. Autonomic nervous activity was analyzed by power spectral analysis of heart rate variability. Nocturnal patterns, in which the values in the dark phase (20:00-06:00) were higher than those in the light phase (06:00-20:00), were observed in HR, BT and LA in both strains of guinea pigs. The autonomic nervous activity in BHS guinea pigs showed a daily pattern, although BHR guinea pigs did not show such a rhythmicity. The high frequency (HF) power in BHS guinea pigs was higher than that in BHR guinea pigs throughout the day. Moreover, the low frequency/high frequency (LF/HF) ratio in BHS guinea pigs was lower than that in BHR guinea pigs throughout the day. These results suggest that parasympathetic nervous activity may be predominant in BHS guinea pigs.

  14. Chronic low-level arsenic exposure causes gender-specific alterations in locomotor activity, dopaminergic systems, and thioredoxin expression in mice

    SciTech Connect

    Bardullas, U.; Limon-Pacheco, J.H.; Giordano, M.; Carrizales, L.; Mendoza-Trejo, M.S.; Rodriguez, V.M.

    2009-09-01

    Arsenic (As) is a toxic metalloid widely present in the environment. Human exposure to As has been associated with the development of skin and internal organ cancers and cardiovascular disorders, among other diseases. A few studies report decreases in intelligence quotient (IQ), and sensory and motor alterations after chronic As exposure in humans. On the other hand, studies of rodents exposed to high doses of As have found alterations in locomotor activity, brain neurochemistry, behavioral tasks, and oxidative stress. In the present study both male and female C57Bl/6J mice were exposed to environmentally relevant doses of As such as 0.05, 0.5, 5.0, or 50 mg As/L of drinking water for 4 months, and locomotor activity was assessed every month. Male mice presented hyperactivity in the group exposed to 0.5 mg As/L and hypoactivity in the group exposed to 50 mg As/L after 4 months of As exposure, whereas female mice exposed to 0.05, 0.5, and 5.0 mg As/L exhibited hyperactivity in every monthly test during As exposure. Furthermore, striatal and hypothalamic dopamine content was decreased only in female mice. Also decreases in tyrosine hydroxylase (TH) and cytosolic thioredoxin (Trx-1) mRNA expression in striatum and nucleus accumbens were observed in male and female mice, respectively. These results indicate that chronic As exposure leads to gender-dependent alterations in dopaminergic markers and spontaneous locomotor activity, and down-regulation of the antioxidant capacity of the brain.

  15. Increased locomotor activity induced by heroin in mice: pharmacokinetic demonstration of heroin acting as a prodrug for the mediator 6-monoacetylmorphine in vivo.

    PubMed

    Andersen, Jannike Mørch; Ripel, Ase; Boix, Fernando; Normann, Per Trygve; Mørland, Jørg

    2009-10-01

    We investigated the relative importance of heroin and its metabolites in eliciting a behavioral response in mice by studying the relationship between concentrations of heroin, 6-monoacetylmorphine (6MAM), and morphine in brain tissue and the effects on locomotor activity. Low doses (subcutaneous) of heroin (< or =5 micromol/kg) or 6MAM (< or =15 micromol/kg) made the mice run significantly more than mice given equimolar doses of morphine. There were no differences in the response between heroin and 6MAM, although we observed a shift to the left of the dose-response curve for the maximal response of heroin. The behavioral responses were abolished by pretreatment with 1 mg/kg naltrexone. Heroin was detected in brain tissue after injection, but the levels were low and its presence too short-lived to be responsible for the behavioral response observed. The concentration of 6MAM in brain tissue increased shortly after administration of both heroin and 6MAM and the concentration changes during the first hour roughly reflected the changes in locomotor activity. Both the maximal and the total concentration of 6MAM were higher after administration of heroin than after administration of 6MAM itself. The morphine concentration increased slowly after injection and could not explain the immediate behavioral response. In summary, the locomotor activity response after injection of heroin was mediated by 6MAM, which increased shortly after administration. Heroin acted as an effective prodrug. The concentration of morphine was too low to stimulate the immediate response observed but might have an effect on the later part of the heroin-induced behavioral response curve.

  16. Effects of voluntary wheel running on heart rate, body temperature, and locomotor activity in response to acute and repeated stressor exposures in rats.

    PubMed

    Masini, Cher V; Nyhuis, Tara J; Sasse, Sarah K; Day, Heidi E W; Campeau, Serge

    2011-05-01

    Stress often negatively impacts physical and mental health but it has been suggested that voluntary physical activity may benefit health by reducing some of the effects of stress. The present experiments tested whether voluntary exercise can reduce heart rate, core body temperature and locomotor activity responses to acute (novelty or loud noise) or repeated stress (loud noise). After 6 weeks of running-wheel access, rats exposed to a novel environment had reduced heart rate, core body temperature, and locomotor activity responses compared to rats housed under sedentary conditions. In contrast, none of these measures were different between exercised and sedentary rats following acute 30-min noise exposures, at either 85 or 98 dB. Following 10 weeks of running-wheel access, both groups displayed significant habituation of all these responses to 10 consecutive daily 30-min presentations of 98 dB noise stress. However, the extent of habituation of all three responses was significantly enhanced in exercised compared to sedentary animals on the last exposure to noise. These results suggest that in physically active animals, under some conditions, acute responses to stress exposure may be reduced, and response habituation to repeated stress may be enhanced, which ultimately may reduce the negative and cumulative impact of stress.

  17. Stereoselective Effects of Abused "Bath Salt" Constituent 3,4-Methylenedioxypyrovalerone in Mice: Drug Discrimination, Locomotor Activity, and Thermoregulation.

    PubMed

    Gannon, Brenda M; Williamson, Adrian; Suzuki, Masaki; Rice, Kenner C; Fantegrossi, William E

    2016-03-01

    3,4-Methylenedioxypyrovalerone (MDPV) is a common constituent of illicit "bath salts" products. MDPV is a chiral molecule, but the contribution of each enantiomer to in vivo effects in mice has not been determined. To address this, mice were trained to discriminate 10 mg/kg cocaine from saline, and substitutions with racemic MDPV, S(+)-MDPV, and R(-)-MDPV were performed. Other mice were implanted with telemetry probes to monitor core temperature and locomotor responses elicited by racemic MDPV, S(+)-MDPV, and R(-)-MDPV under a warm (28°C) or cool (20°C) ambient temperature. Mice reliably discriminated the cocaine training dose from saline, and each form of MDPV fully substituted for cocaine, although marked potency differences were observed such that S(+)-MDPV was most potent, racemic MDPV was less potent than the S(+) enantiomer, and R(-)-MDPV was least potent. At both ambient temperatures, locomotor stimulant effects were observed after doses of S(+)-MDPV and racemic MDPV, but R(-)-MDPV did not elicit locomotor stimulant effects at any tested dose. Interestingly, significant increases in maximum core body temperature were only observed after administration of racemic MDPV in the warm ambient environment; neither MDPV enantiomer altered core temperature at any dose tested, at either ambient temperature. These studies suggest that all three forms of MDPV induce biologic effects, but R(-)-MDPV is less potent than S(+)-MDPV and racemic MDPV. Taken together, these data suggest that the S(+)-MDPV enantiomer is likely responsible for the majority of the biologic effects of the racemate and should be targeted in therapeutic efforts against MDPV overdose and abuse.

  18. Repeated exposure to corticosterone increases depression-like behavior in two different versions of the forced swim test without altering nonspecific locomotor activity or muscle strength.

    PubMed

    Marks, Wendie; Fournier, Neil M; Kalynchuk, Lisa E

    2009-08-04

    We have recently shown that repeated high dose injections of corticosterone (CORT) reliably increase depression-like behavior on a modified one-day version of the forced swim test. The main purpose of this experiment was to compare the effect of these CORT injections on our one-day version of the forced swim test and the more traditional two-day version of the test. A second purpose was to determine whether altered behavior in the forced swim test could be due to nonspecific changes in locomotor activity or muscle strength. Separate groups of rats received a high dose CORT injection (40 mg/kg) or a vehicle injection once per day for 21 consecutive days. Then, half the rats from each group were exposed to the traditional two-day forced swim test and the other half were exposed to our one-day forced swim test. After the forced swim testing, all the rats were tested in an open field and in a wire suspension grip strength test. The CORT injections significantly increased the time spent immobile and decreased the time spent swimming in both versions of the forced swim test. However, they had no significant effect on activity in the open field or grip strength in the wire suspension test. These results show that repeated CORT injections increase depression-like behavior regardless of the specific parameters of forced swim testing, and that these effects are independent of changes in locomotor activity or muscle strength.

  19. Organization of mammalian locomotor rhythm and pattern generation

    PubMed Central

    McCrea, David A.; Rybak, Ilya A.

    2008-01-01

    Central pattern generators (CPGs) located in the spinal cord produce the coordinated activation of flexor and extensor motoneurons during locomotion. Previously proposed architectures for the spinal locomotor CPG have included the classical half-center oscillator and the unit burst generator (UBG) comprised of multiple coupled oscillators. We have recently proposed another organization in which a two-level CPG has a common rhythm generator (RG) that controls the operation of the pattern formation (PF) circuitry responsible for motoneuron activation. These architectures are discussed in relation to recent data obtained during fictive locomotion in the decerebrate cat. The data show that the CPG can maintain the period and phase of locomotor oscillations both during spontaneous deletions of motoneuron activity and during sensory stimulation affecting motoneuron activity throughout the limb. The proposed two-level CPG organization has been investigated with a computational model which incorporates interactions between the CPG, spinal circuits and afferent inputs. The model includes interacting populations of spinal interneurons and motoneurons modeled in the Hodgkin-Huxley style. Our simulations demonstrate that a relatively simple CPG with separate RG and PF networks can realistically reproduce many experimental phenomena including spontaneous deletions of motoneuron activity and a variety of effects of afferent stimulation. The model suggests plausible explanations for a number of features of real CPG operation that would be difficult to explain in the framework of the classical single-level CPG organization. Some modeling predictions and directions for further studies of locomotor CPG organization are discussed. PMID:17936363

  20. Gonadotropin-releasing hormone treatment improves locomotor activity, urinary function and neurofilament protein expression after spinal cord injury in ovariectomized rats.

    PubMed

    Calderón-Vallejo, Denisse; Quintanar, J Luis

    2012-05-02

    It was reported that the hypothalamic decapeptide, gonadotropin-releasing hormone (GnRH) produces neurotrophic effects and that the spinal cord possesses GnRH receptors. The aim of the present study was to determine whether administration of GnRH improves locomotor activity, urinary function and neurofilament (NFs) protein expression after spinal cord injury (SCI) in ovariectomized rats. SCI was induced by balloon inflation model resulting in paraplegia. Locomotion was evaluated according to the Basso, Beattie, and Bresnahan Scale. Rats were subjected to bladder compression, twice daily until bladder reflex was established. NFs of 68, 160 and 200 kDa from spinal cords were analyzed by electrophoresis. GnRH (60 μg/kg) or physiologic NaCl solution was administered at 1 day after SCI and then daily for 15 days and the functional evaluation was realized for 5 weeks. Our results indicate that locomotor activity, restoration of urinary dysfunction and NFs expression of 160 and 200 kDa were improved in SCI animals given GnRH compared to those without treatment. These findings suggest that GnRH acts as a neurotrophic factor and may be used as a potential therapeutic agent for treatment of SCI.

  1. Role of the ecto-nucleotidases in the cooperative effect of adenosine and neuropeptide-S on locomotor activity in mice.

    PubMed

    Pacheco, Robson; Pescador, Bruna Bardini; Mendonça, Bruna Pescador; Ramos, Saulo Fábio; Guerrini, Remo; Calo', Girolamo; de Andrade, Vanessa Moraes; Gavioli, Elaine Cristina; Boeck, Carina Rodrigues

    2011-10-01

    Activation of adenosine receptors modifies the action of classic neurotransmitters (i.e. dopamine, glutamate and acetylcholine) and other neuromodulators, like vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and neuropeptide S (NPS). Similarly to adenosine, NPS is involved in the regulation of stimulus and response to fear and arousal. Thus, the present study investigates the effects of NPS on locomotor activity in mice treated with or without α,β-methylene adenosine 5'-diphosphate (AOPCP), the inhibitor of ecto-5'-nucleotidase. Additionally, we evaluate the activity of ecto-5'-nucleotidase in brain slices of mice treated with or without NPS. Male adult CF-1 mice received i.c.v. NPS as 0.1 nmol injection with or without pre-treatment with 1 nmol α,β-methylene adenosine 5'-diphosphate (AOPCP), the selective inhibitor of ecto-5'-nucleotidase, to evaluate locomotor activity. In another set of experiments, mice received i.c.v. infusion of 0.1 nmol NPS to assay enzymatic activity in brain slices. The results demonstrated that the pre-treatment with AOPCP, which was inactive per se, prevented NPS-induced hyperlocomotion in mice. The dose of 0.1 nmol NPS was efficient to induce hyperlocomotion in animals during the observation period in the activity cage. Regarding enzymatic activity, i.c.v. NPS injection did not induce any significant alterations in ATP and AMP hydrolysis in striatum and hippocampus brain slices of mice. The present study shows that the hyperlocomotor effect of NPS depends on the ecto-5'-nucleotidase activity.

  2. Voluntary exercise contributed to an amelioration of abnormal feeding behavior, locomotor activity and ghrelin production concomitantly with a weight reduction in high fat diet-induced obese rats.

    PubMed

    Mifune, Hiroharu; Tajiri, Yuji; Nishi, Yoshihiro; Hara, Kento; Iwata, Shimpei; Tokubuchi, Ichiro; Mitsuzono, Ryouichi; Yamada, Kentaro; Kojima, Masayasu

    2015-09-01

    In the present study, effects of voluntary exercise in an obese animal model were investigated in relation to the rhythm of daily activity and ghrelin production. Male Sprague-Dawley rats were fed either a high fat diet (HFD) or a chow diet (CD) from four to 16 weeks old. They were further subdivided into either an exercise group (HFD-Ex, CD-Ex) with a running wheel for three days of every other week or sedentary group (HFD-Se, CD-Se). At 16 weeks old, marked increases in body weight and visceral fat were observed in the HFD-Se group, together with disrupted rhythms of feeding and locomotor activity. The induction of voluntary exercise brought about an effective reduction of weight and fat, and ameliorated abnormal rhythms of activity and feeding in the HFD-Ex rats. Wheel counts as voluntary exercise was greater in HFD-Ex rats than those in CD-Ex rats. The HFD-obese had exhibited a deterioration of ghrelin production, which was restored by the induction of voluntary exercise. These findings demonstrated that abnormal rhythms of feeding and locomotor activity in HFD-obese rats were restored by infrequent voluntary exercise with a concomitant amelioration of the ghrelin production and weight reduction. Because ghrelin is related to food anticipatory activity, it is plausible that ghrelin participates in the circadian rhythm of daily activity including eating behavior. A beneficial effect of voluntary exercise has now been confirmed in terms of the amelioration of the daily rhythms in eating behavior and physical activity in an animal model of obesity.

  3. Arm sway holds sway: locomotor-like modulation of leg reflexes when arms swing in alternation.

    PubMed

    Massaad, F; Levin, O; Meyns, P; Drijkoningen, D; Swinnen, S P; Duysens, J

    2014-01-31

    It has been argued that arm movements are important during human gait because they affect leg activity due to neural coupling between arms and legs. Consequently, one would expect that locomotor-like alternating arm swing is more effective than in-phase swing in affecting the legs' motor output. Other alternating movements such as trunk rotation associated to arm swing could also affect leg reflexes. Here, we assessed how locomotor-like movement patterns would affect soleus H-reflexes in 13 subjects performing arm swing in the sagittal plane (ipsilateral, contralateral and bilateral in-phase versus locomotor-like anti-phase arm movements) and trunk rotation with the legs stationary, and leg stepping with the arms stationary. Findings revealed that soleus H-reflexes were suppressed for all arm, trunk or leg movements. However, a marked reflex modulation occurred during locomotor-like anti-phase arm swing, as was also the case during leg stepping, and this modulation flattened out during in-phase arm swing. This modulation had a peculiar bell shape and showed maximum suppression at a moment where the heel-strike would occur during a normal walking cycle. Furthermore, this modulation was independent from electromyographic activity, suggesting a spinal processing at premotoneuronal level. Therefore, trunk movement can affect legs' output, and a special neural coupling occurs between arms and legs when arms move in alternation. This may have implications for gait rehabilitation.

  4. Video-Tracking-Box linked to Smart software as a tool for evaluation of locomotor activity and orientation in brain-injured rats.

    PubMed

    Otero, Laura; Zurita, Mercedes; Aguayo, Concepción; Bonilla, Celia; Rodríguez, Alicia; Vaquero, Jesús

    2010-04-30

    Injuries of the Central Nervous System (CNS) cause devastating and irreversible losses of function. In order to analyze the deficits subsequent to brain injury it is necessary to use behavioral tests which evaluate cerebral dysfunction. In this study, we describe a new tool, the Video-Tracking-Box (VTB) linked to Smart software. This new method adequately quantifies parameters related to locomotor activity and orientation in brain-injured rats. This method has been used in our laboratory in order to measure behavioral outcome after brain injury caused by intracerebral hemorrhage (ICH) in adult Wistar rats. In our experimental model, ICH was induced by stereotactic injection of 0.5U of collagenase type IV in striatum. ICH injured rats decreased its motor coordination and presented deficits in cognitive memory. VTB-Smart test was sensitive to chronic locomotor and orientation dysfunction, and it was performed between 1 and 5 months after ICH. Our results revealed a significant increase in motor latency and loss of spatial orientation in the damaged-animals compared with intact animals. The data demonstrate that our VTB, joined to Smart software, offers a reliable measure to assess motor dysfunction and orientation after brain injury.

  5. Spinal neuronal activation during locomotor-like activity enabled by epidural stimulation and 5-HT agonists in spinal rats

    PubMed Central

    Duru, Paul O.; Tillakaratne, Niranjala J.K.; Kim, Jung A.; Zhong, Hui; Stauber, Stacey M.; Pham, Trinh T.; Xiao, Mei S.; Edgerton, V. Reggie; Roy, Roland R.

    2015-01-01

    The neural networks that generate stepping in complete spinal adult rats remain poorly defined. To address this problem we used c-fos (an activity-dependent marker) to identify active interneurons and motoneurons in the lumbar spinal cord of adult spinal rats during a 30-minute bout of bipedal stepping. Spinal rats were either step trained (30 min/day, 3 days/week for 7.5 weeks) or not step-trained. Stepping was enabled by epidural stimulation and the administration of the serotonergic agonists quipazine and 8-OHDPAT. A third group of spinal rats served as untreated (no stimulation, drugs, or stepping) controls. The number of activated cholinergic central canal cluster cells and partition neurons was higher in both step-trained and non-trained than untreated rats, and higher in non-trained than step-trained rats. The latter finding suggests that daily treatment with epidural stimulation plus serotonergic agonist treatment without step training enhanced the excitability of a broader cholinergic interneuronal population than step training. The number of activated interneurons in laminae II-VI of lumbar cross sections was higher in both step-trained and non-trained than untreated rats, and highest in step-trained rats. This finding suggests that this population of interneurons was responsive to epidural stimulation plus serotonergic treatment and that load-bearing induced when stepping had an additive effect. The number of activated motoneurons of all size categories was higher in the step-trained than the other two groups, reflecting a strong effect of loading on motoneuron recruitment. In general, these results indicate that the spinal networks for locomotion are similar with and without brain input. PMID:25789848

  6. Failure of MK-801 to suppress D1 receptor-mediated induction of locomotor activity and striatal preprotachykinin mRNA expression in the dopamine-depleted rat.

    PubMed

    Campbell, B M; Kreipke, C W; Walker, P D

    2006-01-01

    N-methyl-D-aspartate receptor antagonism exerts suppressive influences over dopamine D1 receptor-mediated striatal gene expression and locomotor behavior in the intact rat. The present study examined the effects of the N-methyl-D-aspartate receptor antagonist MK-801 on locomotor activity and striatal preprotachykinin mRNA expression stimulated by the D1 agonist (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide in rats with bilateral dopamine lesions. Two months after neonatal dopamine lesions with 6-hydroxydopamine, rats were challenged with (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (1.0 mg/kg) 15 min after administration of the N-methyl-D-aspartate receptor antagonist MK-801 (0.1 mg/kg). In the intact rat, MK-801 prevented the induction of striatal preprotachykinin mRNA by D1 agonism. Similarly, direct infusion of (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (3.0 microg) into the intact striatum produced an increase in locomotor activity that was suppressed by MK-801 (1.0 microg) co-infusion. In the dopamine-depleted rat, MK-801 (0.1 mg/kg) administered prior to (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (1.0 mg/kg) increased, rather than suppressed, striatal preprotachykinin mRNA levels. Intrastriatal infusion of MK-801 (1.0 microg) failed to inhibit D1-mediated induction of motor activity in dopamine-depleted animals. Together, these data provide further support that N-methyl-D-aspartate receptor antagonists lose their ability to block D1-mediated behavioral activation following dopamine depletion. The activation, rather than suppression, of tachykinin neurons of the direct striatonigral pathway may play a facilitatory role in this mechanism.

  7. Maximum cold-induced food consumption in mice selected for high locomotor activity: implications for the evolution of endotherm energy budgets.

    PubMed

    Koteja, P; Swallow, J G; Carter, P A; Garland, T

    2001-03-01

    We studied house mice (Mus domesticus) that had been artificially selected for high activity to test the hypothesis that a high capacity for energy assimilation in cold-exposed endotherms could evolve as a correlated response to selection for increased locomotor activity. After 10 generations of selection for increased voluntary wheel-running, mice from four selected lines ran 75 % more wheel revolutions per day than did mice from four random-bred, control lines. The maximum cold-induced rates of food consumption (C(max); mean 10.6 g day(-1)) and energy assimilation (A(max); mean 141 kJ day(-1)) were not significantly higher in the selected than in the control mice. However, in cold-exposure trials, mice from the selected lines maintained body mass better than did mice from the control lines. C(max) and A(max) were positively correlated with the amount of wheel-running activity measured before cold-exposure and also with the rates of food consumption measured when the mice had access to running wheels. In females at least, the correlation was significant not only among individuals but also among adjusted means of the replicate lines, which suggests the presence of a positive genetic correlation between the traits. Thus, despite the lack of a significant difference between the selected and control lines in maximum rate of food consumption, the remaining results conform to the hypothesis that a selection for increased locomotor activity could be a factor behind the evolution of the ability to sustain activity and maintain energy balance during prolonged cold-exposure, as occurred during the evolution of mammalian and avian endothermy.

  8. Locomotor Behaviour of Blattella germanica Modified by DEET

    PubMed Central

    Sfara, Valeria; Mougabure-Cueto, Gastón A.; Zerba, Eduardo N.; Alzogaray, Raúl A.

    2013-01-01

    N,N-diethyl-3-methylbenzamide (DEET) is the active principle of most insect repellents used worldwide. However, its toxicity on insects has not been widely studied. The aim of this work is to study the effects of DEET on the locomotor activity of Blattella germanica. DEET has a dose-dependent repellent activity on B. germanica. Locomotor activity was significantly lower when insects were pre-exposed to 700 µg/cm2 of DEET for 20 or 30 minutes, but it did not change when pre-exposure was shorter. Locomotor activity of insects that were pre-exposed to 2.000 µg/cm2 of DEET for 10 minutes was significantly lower than the movement registered in controls. No differences were observed when insects were pre-exposed to lower concentrations of DEET. A 30-minute pre-exposure to 700 µg/cm2 of DEET caused a significant decrease in locomotor activity. Movement was totally recovered 24 h later. The locomotor activity measured during the exposure to different concentrations of DEET remained unchanged. Insects with decreased locomotor activity were repelled to the same extent than control insects by the same concentration of DEET. We demonstrated that the repellency and modification of locomotor activity elicited by DEET are non-associated phenomena. We also suggested that the reduction in locomotor activity indicates toxicity of DEET, probably to insect nervous system. PMID:24376701

  9. Locomotor behaviour of Blattella germanica modified by DEET.

    PubMed

    Sfara, Valeria; Mougabure-Cueto, Gastón A; Zerba, Eduardo N; Alzogaray, Raúl A

    2013-01-01

    N,N-diethyl-3-methylbenzamide (DEET) is the active principle of most insect repellents used worldwide. However, its toxicity on insects has not been widely studied. The aim of this work is to study the effects of DEET on the locomotor activity of Blattella germanica. DEET has a dose-dependent repellent activity on B. germanica. Locomotor activity was significantly lower when insects were pre-exposed to 700 µg/cm(2) of DEET for 20 or 30 minutes, but it did not change when pre-exposure was shorter. Locomotor activity of insects that were pre-exposed to 2.000 µg/cm(2) of DEET for 10 minutes was significantly lower than the movement registered in controls. No differences were observed when insects were pre-exposed to lower concentrations of DEET. A 30-minute pre-exposure to 700 µg/cm(2) of DEET caused a significant decrease in locomotor activity. Movement was totally recovered 24 h later. The locomotor activity measured during the exposure to different concentrations of DEET remained unchanged. Insects with decreased locomotor activity were repelled to the same extent than control insects by the same concentration of DEET. We demonstrated that the repellency and modification of locomotor activity elicited by DEET are non-associated phenomena. We also suggested that the reduction in locomotor activity indicates toxicity of DEET, probably to insect nervous system.

  10. Developmental delays and locomotor activity in the C57BL6/J mouse following neonatal exposure to the fully-brominated PBDE, decabromodiphenyl ether.

    PubMed

    Rice, Deborah C; Reeve, Elizabeth A; Herlihy, Aleece; Zoeller, R Thomas; Thompson, W Douglas; Markowski, Vincent P

    2007-01-01

    After several decades of commercial use, the flame retardant chemicals polybrominated diphenyl ethers (PBDEs) and their metabolites have become pervasive environmental contaminants with a global distribution. PBDEs have entered the food chain and increasing levels can be detected in the human body. Decabrominated diphenyl ether (decaBDE) is currently the most widely used of the PBDEs in the United States. Despite its widespread use, little is known about the health effects of decaBDE. The current study examined the effects of neonatal exposure to decaBDE in the inbred C57BL6/J mouse. Neonatal male and female mice were exposed to a daily oral dose of 0, 6, or 20 mg/kg decaBDE from postnatal day 2 to 15. Three groups of endpoints were examined: the ontogeny of sensorimotor responses and serum thyroxine levels in immature animals, and locomotor activity in adult animals. In immature animals, 20 mg/kg/day produced developmental delays in the acquisition of the palpebral reflex. At this age, exposed males also showed a dose-related reduction of serum thyroxine levels. As adults, decaBDE exposure altered the normal sex- and age-specific characteristics of spontaneous locomotor activity. The most striking effect was an increase of activity during the first 1.5 h of the 2 h assessment in males exposed to 20 mg/kg/day decaBDE. These effects suggest that decaBDE is a developmental neurotoxicant that can produce long-term behavioral changes following a discrete period of neonatal exposure.

  11. Effect of a selective SGLT2 inhibitor, luseogliflozin, on circadian rhythm of sympathetic nervous function and locomotor activities in metabolic syndrome rats.

    PubMed

    Rahman, Asadur; Fujisawa, Yoshihide; Nakano, Daisuke; Hitomi, Hirofumi; Nishiyama, Akira

    2017-01-07

    Metabolic syndrome is often associated with disruption of circadian rhythm of systemic hemodynamics and cardiovascular disease. Experiments were conducted to investigate the effects of luseogliflozin, a selective SGLT2 inhibitor, on circadian rhythm of sympathetic nervous function and locomotor activity (LA) in metabolic syndrome rats. The difference in the low frequency component of systolic blood pressure between the dark and light period significantly increased in the luseogliflozin-treated SHRcp. LA also increased in the dark period compared with the light period following luseogliflozin treatment. These data suggest that circadian rhythm of sympathetic nervous function and LA is improved by luseogliflozin in metabolic syndrome rats, which may contribute to SGLT2 inhibitor-induced improvement of cardiovascular outcomes. This article is protected by copyright. All rights reserved.

  12. Systemic administration of D-penicillamine prevents the locomotor activation after intra-VTA ethanol administration in rats.

    PubMed

    Martí-Prats, Lucía; Sánchez-Catalán, María José; Hipólito, Lucía; Orrico, Alejandro; Zornoza, Teodoro; Polache, Ana; Granero, Luis

    2010-10-11

    Although recently published studies seem to confirm the important role displayed by acetaldehyde (ACH), the main metabolite of ethanol, in the behavioral effects of ethanol, the origin of ACH is still a matter of debate. While some authors confer more importance to the central (brain metabolism) origin of ACH, others indicate that the hepatic origin could be more relevant. In this study we have addressed this topic using an experimental approach that combines local microinjections of ethanol into the ventral tegmental area (VTA) (which guarantees the brain origin of the ACH) to induce motor activation in rats together with systemic administration (i.p.) of several doses (0, 12.5, 25 and 50 mg/kg) of D-penicillamine (DP), a sequestering agent of ACH with contrasted efficiency to abolish the behavioral effects of the drug. Our results clearly show that DP prevented in a dose-dependent manner the motor activation induced by intra-VTA ethanol, being the 50 mg/kg dose the most efficient. DP per se did not affect the basal activity of the rats. In order to determine the specificity of the DP action, we also studied the effects of DP 50 mg/kg on the DAMGO-induced motor activation after the intra-VTA administration of this mu-opioid receptors agonist. DP did not significantly modify the motor activation induced by DAMGO thus confirming the specificity of the DP effects. Our results clearly suggest that the brain-derived ACH is necessary to manifest the activating effects resulting from ethanol administration.

  13. Subchronic MK-801 treatment and post-weaning social isolation in rats: differential effects on locomotor activity and hippocampal long-term potentiation.

    PubMed

    Ashby, Donovan M; Habib, Diala; Dringenberg, Hans C; Reynolds, James N; Beninger, Richard J

    2010-09-01

    Subchronic NMDA receptor antagonist treatment and post-weaning social isolation are two animal models of schizophrenia symptoms. However, behavioral and physiological changes following a combination of these two procedures have not been investigated. Thus, we examined effects of a novel, "double hit" model combining these two treatments, comparing them to standard models involving only NMDA antagonist treatment or social isolation. Male, Sprague-Dawley rats were either group-housed or maintained in social isolation (starting at postnatal day [PD] 21 and continuing throughout the study). Each housing condition was further subdivided into two groups, receiving either subchronic treatment with either saline or MK-801 (0.5mg/kg, i.p., 2xday for seven days starting at PD 56). Post-weaning social isolation increased locomotor activity (assessed at PD 70) in response to a novel environment and an acute amphetamine injection, while subchronic MK-801 increased only amphetamine induced locomotor activity. Subsequent electrophysiological experiments (under urethane anesthesia) assessing changes in plasticity of hippocampal synapses showed that subchronic MK-801 treatment resulted in an increase in long-term potentiation in area CA1 in response to high frequency stimulation of the contralateral CA3 area, while housing condition had no effect. No other changes in hippocampal electrophysiology (input-output curves, paired-pulse facilitation) were observed. These data are the first to demonstrate an enhancement in hippocampal long-term plasticity in vivo following subchronic MK-801 administration, an effect that may be related to the well-characterized changes in glutamatergic and GABAergic systems seen after subchronic NMDA receptor blockade. That lack of additive or synergistic effects in the "double hit model" suggests that combining isolation and subchronic MK-801 treatment does not necessarily produce greater behavioral or physiological dysfunction than that seen with either

  14. The inhibition of cocaine-induced locomotor activity by CART 55-102 is lost after repeated cocaine administration.

    PubMed

    Job, Martin O; Shen, Li L; Kuhar, Michael J

    2013-08-29

    CART peptide is known for having an inhibitory effect on cocaine- and dopamine-mediated actions after acute administration of cocaine and dopamine. In this regard, it is postulated to be a homeostatic, regulatory factor on dopaminergic activity in the nucleus accumbens (NAc). However, there is no data on the effect of CART peptide after chronic administration of cocaine, and this study addresses this. It was found that CART peptide blunted cocaine-induced locomotion (LMA) after acute administration of cocaine, as expected, but it did not affect cocaine-mediated LMA after chronic administration of cocaine. The loss of CART peptide's inhibitory effect did not return for up to 9 weeks after stopping the repeated cocaine administration. It may not be surprising that homeostatic regulatory mechanisms in the NAc are lost after repeated cocaine administration, and that this may be a mechanism in the development of addiction.

  15. Tolerance to the locomotor-activating effects of 3,4-methylenedioxymethamphetamine (MDMA) predicts escalation of MDMA self-administration and cue-induced reinstatement of MDMA seeking in rats.

    PubMed

    Ball, Kevin T; Slane, Mylissa

    2014-11-01

    Pre-clinical studies of individual differences in addiction vulnerability have been increasing over recent years, but the amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) has received relatively little attention in this regard. Previously, we reported large individual differences both in rats' initial behavioral response to experimenter-administered MDMA and their degree of behavioral sensitization to repeated administration. To determine whether these differences could predict subsequent patterns of MDMA-taking or -seeking behaviors we used the self-administration-extinction-reinstatement model to examine addiction-like behavior (i.e., escalation of MDMA self-administration and cue-induced reinstatement of MDMA seeking) in rats a priori characterized for either locomotor sensitization or tolerance to MDMA. Rats that developed tolerance to the locomotor-activating effects of MDMA had a significantly larger locomotor response to the first MDMA injection relative to rats that developed sensitization. Importantly, rats that developed tolerance subsequently displayed an escalation of MDMA self-administration over days, as well as clear cue-induced reinstatement of MDMA seeking following extinction. Conversely, rats that developed locomotor sensitization to MDMA subsequently maintained relatively stable levels of MDMA self-administration over days and showed no cue-induced reinstatement of MDMA seeking. These results show that differences in the level of psychomotor activation following acute and repeated MDMA administration can reliably predict two important addiction-like behaviors in rats, which may have implications in the prediction of compulsive MDMA use in humans.

  16. Dose-dependent changes in the locomotor responses to methamphetamine in BALB/c mice: low doses induce hypolocomotion.

    PubMed

    Singh, Rana A K; Kosten, Therese A; Kinsey, Berma M; Shen, Xiaoyun; Lopez, Angel Y; Kosten, Thomas R; Orson, Frank M

    2012-12-01

    The overall goal of the present study was to determine the effects of different doses of (+)-methamphetamine (meth) on locomotor activity of Balb/C mice. Four experiments were designed to test a wide range of meth doses in BALB/c female mice. In Experiment 1, we examined locomotor activity induced by an acute administration of low doses of meth (0.01 and 0.03mg/kg) in a 90-min session. Experiment 2 was conducted to test higher meth doses (0.3-10mg/kg). In Experiment 3, separate sets of mice were pre-treated with various meth doses once or twice (one injection/week) prior to a locomotor challenge with a low meth dose. Finally, in Experiment 4, we tested whether locomotor activation would be affected by pretreatment with a low or moderate dose of meth one month prior to the low meth dose challenge. Results show that low doses of meth induce hypolocomotion whereas moderate to high doses induce hyperlocomotion. Prior exposure to either one moderate or high dose of meth or to two, low doses of meth attenuated the hypolocomotor effect of a low meth dose one week later. This effect was also attenuated in mice tested one month after administration of a moderate meth dose. These results show that low and high doses of meth can have opposing effects on locomotor activity. Further, prior exposure to the drug leads to tolerance, rather than sensitization, of the hypolocomotor response to low meth doses.

  17. Testicular Steroidogenesis and Locomotor Activity Are Regulated by Gonadotropin-Inhibitory Hormone in Male European Sea Bass

    PubMed Central

    Paullada-Salmerón, José A.; Cowan, Mairi; Aliaga-Guerrero, María; López-Olmeda, José F.; Mañanós, Evaristo L.; Zanuy, Silvia

    2016-01-01

    Gonadotropin-inhibitory hormone (GnIH) is a neurohormone that suppresses reproduction by acting at both the brain and pituitary levels. In addition to the brain, GnIH may also be produced in gonads and can regulate steroidogenesis and gametogenesis. However, the function of GnIH in gonadal physiology has received little attention in fish. The main objective of this study was to evaluate the effects of peripheral sbGnih-1 and sbGnih-2 implants on gonadal development and steroidogenesis during the reproductive cycle of male sea bass (Dicentrarchus labrax). Both Gnihs decreased testosterone (T) and 11-ketotestosterone (11-KT) plasma levels in November and December (early- and mid-spermatogenesis) but did not affect plasma levels of the progestin 17,20β-dihydroxy-4-pregnen-3-one (DHP). In February (spermiation), fish treated with sbGnih-1 and sbGnih-2 exhibited testicles with abundant type A spermatogonia and partial spermatogenesis. In addition, we determined the effects of peripheral Gnih implants on plasma follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) levels, as well as on brain and pituitary expression of the main reproductive hormone genes and their receptors during the spermiation period (February). Treatment with sbGnih-2 increased brain gnrh2, gnih, kiss1r and gnihr transcript levels. Whereas, both Gnihs decreased lhbeta expression and plasma Lh levels, and sbGnih-1 reduced plasmatic Fsh. Finally, through behavioral recording we showed that Gnih implanted animals exhibited a significant increase in diurnal activity from late spermatogenic to early spermiogenic stages. Our results indicate that Gnih may regulate the reproductive axis of sea bass acting not only on brain and pituitary hormones but also on gonadal physiology and behavior. PMID:27788270

  18. Circadian changes in core body temperature, metabolic rate and locomotor activity in rats on a high-protein, carbohydrate-free diet.

    PubMed

    Yamaoka, Ippei; Hagi, Mieko; Doi, Masako

    2009-12-01

    Ingestion of a high-protein meal results in body weight loss due to elevated energy expenditure, while also increasing satiety and decreasing subsequent food intake. The present study aimed to clarify the effects of a high-protein, carbohydrate-free diet (HPCFD) on these physiological indicators from a circadian perspective. Rats were given HPCFD or a pair-fed normal protein content diet (20% protein; NPD) for 4 d. The HPCFD group lost more body weight than the NPD group. Oxygen consumption (VO(2)) in the HPCFD group did not change during the experimental period, and tended to be higher during the light (L) phase than in the NPD group. Carbon dioxide production (VCO(2)) during the L phase was higher in the HPCFD group than in the NPD group, where VCO(2) was gradually decreased during the last dark (D) phase and throughout the L phase. The HPCFD group exhibited higher daily core body temperature (T(b)), particularly during the late D phase and throughout the L phase when compared to the NPD group. Locomotor activities during the D phase of the NPD group tended to gradually increase and were thus significantly higher than in the HPCFD group. These results suggest that HPCFD, even if energy intake is insufficient, maintains circadian changes in metabolic rates, resulting in maintenance of elevated daily T(b) and body weight reduction without increasing activity.

  19. Involvement of the TRPV1 channel in the modulation of spontaneous locomotor activity, physical performance and physical exercise-induced physiological responses.

    PubMed

    Hudson, A S R; Kunstetter, A C; Damasceno, W C; Wanner, S P

    2016-01-01

    Physical exercise triggers coordinated physiological responses to meet the augmented metabolic demand of contracting muscles. To provide adequate responses, the brain must receive sensory information about the physiological status of peripheral tissues and organs, such as changes in osmolality, temperature and pH. Most of the receptors involved in these afferent pathways express ion channels, including transient receptor potential (TRP) channels, which are usually activated by more than one type of stimulus and are therefore considered polymodal receptors. Among these TRP channels, the TRPV1 channel (transient receptor potential vanilloid type 1 or capsaicin receptor) has well-documented functions in the modulation of pain sensation and thermoregulatory responses. However, the TRPV1 channel is also expressed in non-neural tissues, suggesting that this channel may perform a broad range of functions. In this review, we first present a brief overview of the available tools for studying the physiological roles of the TRPV1 channel. Then, we present the relationship between the TRPV1 channel and spontaneous locomotor activity, physical performance, and modulation of several physiological responses, including water and electrolyte balance, muscle hypertrophy, and metabolic, cardiovascular, gastrointestinal, and inflammatory responses. Altogether, the data presented herein indicate that the TPRV1 channel modulates many physiological functions other than nociception and thermoregulation. In addition, these data open new possibilities for investigating the role of this channel in the acute effects induced by a single bout of physical exercise and in the chronic effects induced by physical training.

  20. Involvement of the TRPV1 channel in the modulation of spontaneous locomotor activity, physical performance and physical exercise-induced physiological responses

    PubMed Central

    Hudson, A.S.R.; Kunstetter, A.C.; Damasceno, W.C.; Wanner, S.P.

    2016-01-01

    Physical exercise triggers coordinated physiological responses to meet the augmented metabolic demand of contracting muscles. To provide adequate responses, the brain must receive sensory information about the physiological status of peripheral tissues and organs, such as changes in osmolality, temperature and pH. Most of the receptors involved in these afferent pathways express ion channels, including transient receptor potential (TRP) channels, which are usually activated by more than one type of stimulus and are therefore considered polymodal receptors. Among these TRP channels, the TRPV1 channel (transient receptor potential vanilloid type 1 or capsaicin receptor) has well-documented functions in the modulation of pain sensation and thermoregulatory responses. However, the TRPV1 channel is also expressed in non-neural tissues, suggesting that this channel may perform a broad range of functions. In this review, we first present a brief overview of the available tools for studying the physiological roles of the TRPV1 channel. Then, we present the relationship between the TRPV1 channel and spontaneous locomotor activity, physical performance, and modulation of several physiological responses, including water and electrolyte balance, muscle hypertrophy, and metabolic, cardiovascular, gastrointestinal, and inflammatory responses. Altogether, the data presented herein indicate that the TPRV1 channel modulates many physiological functions other than nociception and thermoregulation. In addition, these data open new possibilities for investigating the role of this channel in the acute effects induced by a single bout of physical exercise and in the chronic effects induced by physical training. PMID:27191606

  1. Different locomotor sensitization responses to repeated cocaine injections are associated with differential phosphorylation of GluA1 in the dorsomedial striatum of adult rats.

    PubMed

    Kim, Myonghwan; Kim, Wonju; Baik, Ja-Hyun; Yoon, Bong-June

    2013-11-15

    Behavioral sensitization to psychostimulants reflects neural adaptation, which might share a common mechanism with drug addiction. Outbred male rats show different locomotor sensitization responses to cocaine, and cocaine also produces varied addictive progress in humans. We investigated whether differences in the induction of sensitization would affect the long-term persistence of sensitized locomotor activity, and we sought to determine the molecular basis for the variability in sensitization. Male Sprague-Dawley rats that showed sensitized locomotor responses over 5 consecutive daily cocaine injections (SENS) had significantly lower initial locomotor responses to the 1st cocaine exposure than did rats that did not show locomotor sensitization (NONS). Furthermore, rats that underwent 1 month of cocaine withdrawal after 5 repeated cocaine injections also exhibited sensitized or non-sensitized locomotor responses to a challenge injection of cocaine (SENS-C or NONS-C, respectively). This variability was also related to the initial responsiveness to cocaine. We examined the level of phosphorylation of the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropioniate receptor (AMPAR) in the dorsal striatum and found that there were significant differences between the sensitized rats and the non-sensitized rats. pGluA1-Ser831 was increased in the SENS rats during the induction of locomotor sensitization, and pGluA1-Ser845 was increased in the SENS-C rats during the expression of locomotor sensitization. These phosphorylation changes were observed in the dorsomedial striatum (DMS) of adult rats but not in the dorsolateral striatum (DLS) of adults. Our findings suggest that differential phosphorylation of AMPAR might be an important mechanism that contributes to the development of locomotor sensitization to cocaine in adult rats.

  2. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively in voting-connected activities. Accordingly, the quoted language should be broadly construed to apply to...

  3. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively in voting-connected activities. Accordingly, the quoted language should be broadly construed to apply to...

  4. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively in voting-connected activities. Accordingly, the quoted language should be broadly construed to apply to...

  5. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively in voting-connected activities. Accordingly, the quoted language should be broadly construed to apply to...

  6. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively in voting-connected activities. Accordingly, the quoted language should be broadly construed to apply to...

  7. Grainyhead-like 3 (Grhl3) deficiency in brain leads to altered locomotor activity and decreased anxiety-like behaviours in aged mice.

    PubMed

    Dworkin, Sebastian; Auden, Alana; Partridge, Darren D; Daglas, Maria; Medcalf, Robert L; Mantamadiotis, Theo; Georgy, Smitha R; Darido, Charbel; Jane, Stephen M; Ting, Stephen B

    2016-12-01

    The highly conserved Grainyhead-like (Grhl) family of transcription factors, comprising three members in vertebrates (Grhl1-3), play critical regulatory roles during embryonic development, cellular proliferation and apoptosis. Although loss of Grhl function leads to multiple neural abnormalities in numerous animal models, a comprehensive analysis of Grhl expression and function in the mammalian brain has not been reported. Here we show that only Grhl3 expression is detectable in the embryonic mouse brain; particularly within the habenula, an organ known to modulate repressive behaviours. Using both Grhl3-knockout mice (Grhl3(-/-) ), and brain-specific conditional deletion of Grhl3 in adult mice (Nestin-Cre/Grhl3(flox/flox) ), we performed histological expression analyses and behavioural tests to assess long-term effects of Grhl3 loss on motor co-ordination, spatial memory, anxiety and stress. We found that complete deletion of Grhl3 did not lead to noticeable structural or cell-intrinsic defects in the embryonic brain, however aged Grhl3 conditional knockout (cKO) mice showed enlarged lateral ventricles and displayed marked changes in motor function and behaviours suggestive of decreased fear and anxiety. We conclude that loss of Grhl3 in the brain leads to significant alterations in locomotor activity and decreased self-inhibition, and as such, these mice may serve as a novel model of human conditions of impulsive behaviour or hyperactivity. This article is protected by copyright. All rights reserved.

  8. Dmp53, basket and drICE gene knockdown and polyphenol gallic acid increase life span and locomotor activity in a Drosophila Parkinson’s disease model

    PubMed Central

    Ortega-Arellano, Hector Flavio; Jimenez-Del-Rio, Marlene; Velez-Pardo, Carlos

    2013-01-01

    Understanding the mechanism(s) by which dopaminergic (DAergic) neurons are eroded in Parkinson’s disease (PD) is critical for effective therapeutic strategies. By using the binary tyrosine hydroxylase (TH)-Gal4/UAS-X RNAi Drosophila melanogaster system, we report that Dmp53, basket and drICE gene knockdown in dopaminergic neurons prolong life span (p < 0.05; log-rank test) and locomotor activity (p < 0.05; χ2 test) in D. melanogaster lines chronically exposed to (1 mM) paraquat (PQ, oxidative stress (OS) generator) compared to untreated transgenic fly lines. Likewise, knockdown flies displayed higher climbing performance than control flies. Amazingly, gallic acid (GA) significantly protected DAergic neurons, ameliorated life span, and climbing abilities in knockdown fly lines treated with PQ compared to flies treated with PQ only. Therefore, silencing specific gene(s) involved in neuronal death might constitute an excellent tool to study the response of DAergic neurons to OS stimuli. We propose that a therapy with antioxidants and selectively “switching off” death genes in DAergic neurons could provide a means for pre-clinical PD individuals to significantly ameliorate their disease condition. PMID:24385865

  9. Assessment of long-range correlation in animal behavior time series: The temporal pattern of locomotor activity of Japanese quail (Coturnix coturnix) and mosquito larva (Culex quinquefasciatus)

    NASA Astrophysics Data System (ADS)

    Kembro, Jackelyn M.; Flesia, Ana Georgina; Gleiser, Raquel M.; Perillo, María A.; Marin, Raul H.

    2013-12-01

    Detrended Fluctuation Analysis (DFA) is a method that has been frequently used to determine the presence of long-range correlations in human and animal behaviors. However, according to previous authors using statistical model systems, in order to correctly use DFA different aspects should be taken into account such as: (1) the establishment by hypothesis testing of the absence of short term correlation, (2) an accurate estimation of a straight line in the log-log plot of the fluctuation function, (3) the elimination of artificial crossovers in the fluctuation function, and (4) the length of the time series. Taking into consideration these factors, herein we evaluated the presence of long-range correlation in the temporal pattern of locomotor activity of Japanese quail (Coturnix coturnix) and mosquito larva (Culex quinquefasciatus). In our study, modeling the data with the general autoregressive integrated moving average (ARFIMA) model, we rejected the hypothesis of short-range correlations (d=0) in all cases. We also observed that DFA was able to distinguish between the artificial crossover observed in the temporal pattern of locomotion of Japanese quail and the crossovers in the correlation behavior observed in mosquito larvae locomotion. Although the test duration can slightly influence the parameter estimation, no qualitative differences were observed between different test durations.

  10. ETHANOL-INDUCED LOCOMOTOR ACTIVITY IN ADOLESCENT RATS AND THE RELATIONSHIP WITH ETHANOL-INDUCED CONDITIONED PLACE PREFERENCE AND CONDITIONED TASTE AVERSION

    PubMed Central

    Acevedo, María Belén; Nizhnikov, Michael E.; Spear, Norman E.; Molina, Juan C.; Pautassi, Ricardo Marcos

    2012-01-01

    Adolescent rats exhibit ethanol-induced locomotor activity (LMA), which is considered an index of ethanol’s motivational properties likely to predict ethanol self-administration, but few studies have reported or correlated ethanol-induced LMA with conditioned place preference by ethanol at this age. The present study assessed age-related differences in ethanol’s motor stimulating effects and analysed the association between ethanol-induced LMA and conventional measures of ethanol-induced reinforcement. Experiment 1 compared ethanol-induced LMA in adolescent and adult rats. Subsequent experiments analyzed ethanol-induced conditioned place preference and conditioned taste aversion in adolescent rats evaluated for ethanol-induced LMA. Adolescent rats exhibit a robust LMA after high-dose ethanol. Ethanol-induced LMA was fairly similar across adolescents and adults. As expected, adolescents were sensitive to ethanol’s aversive reinforcement, but they also exhibited conditioned place preference. These measures of ethanol reinforcement, however, were not related to ethanol-induced LMA. Spontaneous LMA in an open field was, however, negatively associated with ethanol-induced CTA. PMID:22592597

  11. The influence of the hot water extract from shiitake medicinal mushroom, Lentinus edodes (higher Basidiomycetes) on the food intake, life span, and age-related locomotor activity of Drosophila melanogaster.

    PubMed

    Matjuskova, Natalya; Azena, Elena; Serstnova, Ksenija; Muiznieks, Indrikis

    2014-01-01

    Shiitake medicinal mushroom, Lentinus edodes, is among the most widely cultivated edible mushrooms in the world and is a well-studied source of nutrients and biologically active compounds. We have studied the influence of the dietary supplement of the polysaccharides containing a hot water extract of the mushroom L. edodes on the fruit fly Drosophila melanogaster in terms of food intake, body weight, life span, and age-related locomotor activity. L. edodes extract, when added to the D. melanogaster feeding substrate at a 0.003-0.030% concentration (calculated for the dry weight of the polysaccharide fraction) did not influence food intake or body weight of the flies. It increased the life span and locomotor activities of male flies but was associated with early mortality and decreased locomotor activity of female flies. We conclude that the observed anti-aging effects of L. edodes extracts in the male D. melanogaster are not the result of dietary restriction. We propose that D. melanogaster is a suitable model organism for researching the molecular basis of the anti-aging effect of the shiitake mushroom extracts and sex linkage of these effects.

  12. Do recreational activities affect coastal biodiversity?

    NASA Astrophysics Data System (ADS)

    Riera, Rodrigo; Menci, Cristiano; Sanabria-Fernández, José Antonio; Becerro, Mikel A.

    2016-09-01

    Human activities are largely affecting coastal communities worldwide. Recreational perturbations have been overlooked in comparison to other perturbations, yet they are potential threats to marine biodiversity. They affect coastal communities in different ways, underpinning consistent shifts in fish and invertebrates assemblages. Several sites were sampled subjected to varying effects by recreational fishermen (low and high pressure) and scuba divers (low and high) in an overpopulated Atlantic island. Non-consistent differences in ecological, trophic and functional diversity were found in coastal communities, considering both factors ("diving" and "fishing"). Multivariate analyses only showed significant differences in benthic invertebrates between intensively-dived and non-dived sites. The lack of clear trends may be explained by the depletion of coastal resources in the study area, an extensively-affected island by overfishing.

  13. Immature Spinal Locomotor Output in Children with Cerebral Palsy

    PubMed Central

    Cappellini, Germana; Ivanenko, Yury P.; Martino, Giovanni; MacLellan, Michael J.; Sacco, Annalisa; Morelli, Daniela; Lacquaniti, Francesco

    2016-01-01

    Detailed descriptions of gait impairments have been reported in cerebral palsy (CP), but it is still unclear how maturation of the spinal motoneuron output is affected. Spatiotemporal alpha-motoneuron activation during walking can be assessed by mapping the electromyographic activity profiles from several, simultaneously recorded muscles onto the anatomical rostrocaudal location of the motoneuron pools in the spinal cord, and by means of factor analysis of the muscle activity profiles. Here, we analyzed gait kinematics and EMG activity of 11 pairs of bilateral muscles with lumbosacral innervation in 35 children with CP (19 diplegic, 16 hemiplegic, 2–12 years) and 33 typically developing (TD) children (1–12 years). TD children showed a progressive reduction of EMG burst durations and a gradual reorganization of the spatiotemporal motoneuron output with increasing age. By contrast, children with CP showed very limited age-related changes of EMG durations and motoneuron output, as well as of limb intersegmental coordination and foot trajectory control (on both sides for diplegic children and the affected side for hemiplegic children). Factorization of the EMG signals revealed a comparable structure of the motor output in children with CP and TD children, but significantly wider temporal activation patterns in children with CP, resembling the patterns of much younger TD infants. A similar picture emerged when considering the spatiotemporal maps of alpha-motoneuron activation. Overall, the results are consistent with the idea that early injuries to developing motor regions of the brain substantially affect the maturation of the spinal locomotor output and consequently the future locomotor behavior. PMID:27826251

  14. The anatomy and physiology of the locomotor system.

    PubMed

    Farley, Alistair; McLafferty, Ella; Hendry, Charles

    Mobilisation is one of the activities of living. The term locomotor system refers to those body tissues and organs responsible for movement. Nurses and healthcare workers should be familiar with the body structures that enable mobilisation to assist those in their care with this activity. This article outlines the structure and function of the locomotor system, including the skeleton, joints, muscles and muscle attachments. Two common bone disorders, osteoporosis and osteoarthritis, are also considered.

  15. Effects of manipulating slowpoke calcium-dependent potassium channel expression on rhythmic locomotor activity in Drosophila larvae

    PubMed Central

    2013-01-01

    Rhythmic motor behaviors are generated by networks of neurons. The sequence and timing of muscle contractions depends on both synaptic connections between neurons and the neurons’ intrinsic properties. In particular, motor neuron ion currents may contribute significantly to motor output. Large conductance Ca2+-dependent K+ (BK) currents play a role in action potential repolarization, interspike interval, repetitive and burst firing, burst termination and interburst interval in neurons. Mutations in slowpoke (slo) genes encoding BK channels result in motor disturbances. This study examined the effects of manipulating slo channel expression on rhythmic motor activity using Drosophila larva as a model system. Dual intracellular recordings from adjacent body wall muscles were made during spontaneous crawling-related activity in larvae expressing a slo mutation or a slo RNA interference construct. The incidence and duration of rhythmic activity in slo mutants were similar to wild-type control animals, while the timing of the motor pattern was altered. slo mutants showed decreased burst durations, cycle durations, and quiescence intervals, and increased duty cycles, relative to wild-type. Expressing slo RNAi in identified motor neurons phenocopied many of the effects observed in the mutant, including decreases in quiescence interval and cycle duration. Overall, these results show that altering slo expression in the whole larva, and specifically in motor neurons, changes the frequency of crawling activity. These results suggest an important role for motor neuron intrinsic properties in shaping the timing of motor output. PMID:23638395

  16. Acute stress increases the synthesis of 7α-hydroxypregnenolone, a new key neurosteroid stimulating locomotor activity, through corticosterone action in newts.

    PubMed

    Haraguchi, Shogo; Koyama, Teppei; Hasunuma, Itaru; Okuyama, Shin-ichiro; Ubuka, Takayoshi; Kikuyama, Sakae; Do Rego, Jean-Luc; Vaudry, Hubert; Tsutsui, Kazuyoshi

    2012-02-01

    7α-Hydroxypregnenolone (7α-OH PREG) is a newly identified bioactive neurosteroid stimulating locomotor activity in the brain of newt, a wild animal, which serves as an excellent model to investigate the biosynthesis and biological action of neurosteroids. Here, we show that acute stress increases 7α-OH PREG synthesis in the dorsomedial hypothalamus (DMH) through corticosterone (CORT) action in newts. A 30-min restraint stress increased 7α-OH PREG synthesis in the brain tissue concomitant with the increase in plasma CORT concentrations. A 30-min restraint stress also increased the expression of cytochrome P450(7α) (CYP7B), the steroidogenic enzyme of 7α-OH PREG formation, in the DMH. Decreasing plasma CORT concentrations by hypophysectomy or trilostane administration decreased 7α-OH PREG synthesis in the diencephalon, whereas administration of CORT to these animals increased 7α-OH PREG synthesis. Glucocorticoid receptor was present in DMH neurons expressing CYP7B. Thus, CORT appears to act directly on DMH neurons to increase 7α-OH PREG synthesis. We further investigated the biological action of 7α-OH PREG in the brain under stress. A 30-min restraint stress or central administration of 7α-OH PREG increased serotonin concentrations in the diencephalon. Double immunolabeling further showed colocalization of CYP7B and serotonin in the DMH. These results indicate that acute stress increases the synthesis of 7α-OH PREG via CORT action in the DMH, and 7α-OH PREG activates serotonergic neurons in the DMH that may coordinate behavioral responses to stress. This is the first demonstration of neurosteroid biosynthesis regulated by peripheral steroid hormone and of neurosteroid action in the brain under stress in any vertebrate class.

  17. An Allosteric Potentiator of the Dopamine D1 Receptor Increases Locomotor Activity in Human D1 Knock-In Mice without Causing Stereotypy or Tachyphylaxis

    PubMed Central

    Heinz, Beverly A.; Schaus, John M.; Beck, James P.; Hao, Junliang; Krushinski, Joseph H.; Reinhard, Matthew R.; Cohen, Michael P.; Hellman, Sarah L.; Getman, Brian G.; Wang, Xushan; Menezes, Michelle M.; Maren, Deanna L.; Falcone, Julie F.; Anderson, Wesley H.; Wright, Rebecca A.; Morin, S. Michelle; Knopp, Kelly L.; Adams, Benjamin L.; Rogovoy, Borys; Okun, Ilya; Suter, Todd M.; Statnick, Michael A.; Gehlert, Donald R.; Nelson, David L.; Lucaites, Virginia L.; Emkey, Renee; DeLapp, Neil W.; Wiernicki, Todd R.; Cramer, Jeffrey W.; Yang, Charles R.; Bruns, Robert F.

    2017-01-01

    Allosteric potentiators amplify the sensitivity of physiologic control circuits, a mode of action that could provide therapeutic advantages. This hypothesis was tested with the dopamine D1 receptor potentiator DETQ [2-(2,6-dichlorophenyl)-1-((1S,3R)-3-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one]. In human embryonic kidney 293 (HEK293) cells expressing the human D1 receptor, DETQ induced a 21-fold leftward shift in the cAMP response to dopamine, with a Kb of 26 nM. The maximum response to DETQ alone was ∼12% of the maximum response to dopamine, suggesting weak allosteric agonist activity. DETQ was ∼30-fold less potent at rat and mouse D1 receptors and was inactive at the human D5 receptor. To enable studies in rodents, an hD1 knock-in mouse was generated. DETQ (3–20 mg/kg orally) caused a robust (∼10-fold) increase in locomotor activity (LMA) in habituated hD1 mice but was inactive in wild-type mice. The LMA response to DETQ was blocked by the D1 antagonist SCH39166 and was dependent on endogenous dopamine. LMA reached a plateau at higher doses (30–240 mg/kg) even though free brain levels of DETQ continued to increase over the entire dose range. In contrast, the D1 agonists SKF 82958, A-77636, and dihydrexidine showed bell-shaped dose-response curves with a profound reduction in LMA at higher doses; video-tracking confirmed that the reduction in LMA caused by SKF 82958 was due to competing stereotyped behaviors. When dosed daily for 4 days, DETQ continued to elicit an increase in LMA, whereas the D1 agonist A-77636 showed complete tachyphylaxis by day 2. These results confirm that allosteric potentiators may have advantages compared with direct-acting agonists. PMID:27811173

  18. Spontaneous alternation and locomotor activity in three species of marine crabs: green crab (Carcinus maenas), blue crab (Callinectes sapidus), and fiddler crab (Uca pugnax).

    PubMed

    Balcı, Fuat; Ramey-Balcı, Patricia A; Ruamps, Perrine

    2014-02-01

    Spontaneous alternation refers to the tendency of organisms to explore places that they have least recently visited. Our previous work showed that alternation performance of Carcinus maenas (invasive European green crab) was significantly higher than Callinectes sapidus (native blue crab), and chance level performance (Ramey, P. A., Teichman, E., Oleksiak, J., & Balcı, F. [2009]. Spontaneous alternation in marine crabs: Invasive versus native species. Behavioural Processes, 82, 51-55.). In the current study, we first tested the robustness of these findings in the absence of visual cues, longer test durations, and wider maze dimensions. These manipulations enabled us to determine whether these two crab species relied on the visual cues provided during the spontaneous alternation task in our prior work, and allowed for better characterization of their exploratory activity in the maze. Our original findings were reproduced in the present study under these new task conditions, suggesting no role for visual cues during alternation, and emphasizing the robustness and generalizability of the corresponding interspecies differences in alternation performance. We also tested whether the lower alternation performance of C. sapidus also applied to another native crab species, Uca pugnax (fiddler crab). Spontaneous alternation performance of U. pugnax was significantly lower than C. maenas but indistinguishable from C. sapidus. Finally, we examined whether the potentially higher inherent risk-sensitivity of C. sapidus could have contributed to their lower alternation performance by testing C. maenas in the presence of a larger natural predator (stressor). Higher risk sensitivity presumably induced by the stressor led to locomotor activity patterns that better resembled those of C. sapidus, however the resultant reduction in alternation performance was not statistically significant.

  19. Food deprivation increases the low-dose locomotor stimulant response to ethanol in Drosophila melanogaster.

    PubMed

    Kliethermes, Christopher L

    2013-10-01

    Acute and chronic states of food deprivation result in increased sensitivity to a variety of natural reinforcers as well as to drugs of abuse. Food deprived animals show increased locomotor activity during periods of food deprivation, as well as increased locomotor stimulant responses to drugs of abuse, including cocaine, amphetamine, morphine, and ethanol, implying that drugs of abuse act in part on neural systems that underlie responses towards food. To determine whether this effect extends to an invertebrate, highly genetically tractable animal, the locomotor stimulant effects of low dose ethanol were assessed under a variety of feeding conditions in the fruit fly, Drosophila melanogaster. Food deprivation resulted in strain specific increases in ethanol-stimulated locomotor activity in most strains tested, although elevated baseline activity confounded interpretation in some strains. Experiments conducted with Canton S flies found that the effects of food deprivation on the locomotor stimulant response to ethanol increased with the duration of deprivation, and could be blocked by refeeding the flies with standard food or sucrose, but not yeast, immediately prior to the ethanol exposure. Life-span extending dietary depletion procedures or previous periods of food deprivation did not affect the response to ethanol, indicating that only animals in an acutely food deprived state are more sensitive to the stimulant effects of ethanol. These results suggest that increased sensitivity to the stimulant effects of some drugs of abuse might reflect an evolutionarily conserved neural mechanism that underlies behavioral responses to natural reinforcers and drugs of abuse. The identification of this mechanism, and the genes that underlie its development and function, will constitute a novel approach towards the study of alcohol abuse and dependence.

  20. Distinct sets of locomotor modules control the speed and modes of human locomotion

    PubMed Central

    Yokoyama, Hikaru; Ogawa, Tetsuya; Kawashima, Noritaka; Shinya, Masahiro; Nakazawa, Kimitaka

    2016-01-01

    Although recent vertebrate studies have revealed that different spinal networks are recruited in locomotor mode- and speed-dependent manners, it is unknown whether humans share similar neural mechanisms. Here, we tested whether speed- and mode-dependence in the recruitment of human locomotor networks exists or not by statistically extracting locomotor networks. From electromyographic activity during walking and running over a wide speed range, locomotor modules generating basic patterns of muscle activities were extracted using non-negative matrix factorization. The results showed that the number of modules changed depending on the modes and speeds. Different combinations of modules were extracted during walking and running, and at different speeds even during the same locomotor mode. These results strongly suggest that, in humans, different spinal locomotor networks are recruited while walking and running, and even in the same locomotor mode different networks are probably recruited at different speeds. PMID:27805015

  1. Prenatal ethanol exposure modifies locomotor activity and induces selective changes in Met-enk expression in adolescent rats.

    PubMed

    Abate, P; Reyes-Guzmán, A C; Hernández-Fonseca, K; Méndez, M

    2016-11-22

    Several studies suggest that prenatal ethanol exposure (PEE) facilitates ethanol intake. Opioid peptides play a main role in ethanol reinforcement during infancy and adulthood. However, PEE effects upon motor responsiveness elicited by an ethanol challenge and the participation of opioids in these actions remain to be understood. This work assessed the susceptibility of adolescent rats to prenatal and/or postnatal ethanol exposure in terms of behavioral responses, as well as alcohol effects on Met-enk expression in brain areas related to drug reinforcement. Motor parameters (horizontal locomotion, rearings and stereotyped behaviors) in pre- and postnatally ethanol-challenged adolescents were evaluated. Pregnant rats received ethanol (2g/kg) or water during gestational days 17-20. Adolescents at postnatal day 30 (PD30) were tested in a three-trial activity paradigm (habituation, vehicle and drug sessions). Met-enk content was quantitated by radioimmunoassay in several regions: ventral tegmental area [VTA], nucleus accumbens [NAcc], prefrontal cortex [PFC], substantia nigra [SN], caudate-putamen [CP], amygdala, hypothalamus and hippocampus. PEE significantly reduced rearing responses. Ethanol challenge at PD30 decreased horizontal locomotion and showed a tendency to reduce rearings and stereotyped behaviors. PEE increased Met-enk content in the PFC, CP, hypothalamus and hippocampus, but did not alter peptide levels in the amygdala, VTA and NAcc. These findings suggest that PEE selectively modifies behavioral parameters at PD30 and induces specific changes in Met-enk content in regions of the mesocortical and nigrostriatal pathways, the hypothalamus and hippocampus. Prenatal and postnatal ethanol actions on motor activity in adolescents could involve activation of specific neural enkephalinergic pathways.

  2. Post-weaning living with parents during juvenile period alters locomotor activity, social and parental behaviors in mandarin voles.

    PubMed

    Wu, Ruiyong; Song, Zhenzhen; Tai, Fadao; Wang, Lu; Kong, Lingzhe; Wang, Jianli

    2013-09-01

    Neonatal parental care plays an important role in the development of offspring behavior, but little is known about the effect of post-weaning contact between offspring and parents on locomotory, social and parental behavior. Here, we explore this concept using socially monogamous mandarin voles (Microtus mandarinus). Voles were assigned to live with parents and siblings from the same litter until 45d (natural dispersal time in the field) or to live with siblings from the same litter after weaning at 21d (normally weaned time, the control). At 70d of age, behaviors were recorded in open field and social interaction tests, and parental care toward their own offspring was measured. Results show that voles that live with parents post-weaning engaged in less locomotory activity and rearing behavior in the open field test, less sniffing of novel individuals and displayed more parental care, compared to voles that did not continue to live with their parents. These findings demonstrate that parent-offspring interaction post-weaning alters locomotory activity, social behavior and parental behavior of offspring at adulthood.

  3. The effect of early environmental manipulation on locomotor sensitivity and methamphetamine conditioned place preference reward.

    PubMed

    Hensleigh, E; Pritchard, L M

    2014-07-15

    Early life stress leads to several effects on neurological development, affecting health and well-being later in life. Instances of child abuse and neglect are associated with higher rates of depression, risk taking behavior, and an increased risk of drug abuse later in life. This study used repeated neonatal separation of rat pups as a model of early life stress. Rat pups were either handled and weighed as controls or separated for 180 min per day during postnatal days 2-8. In adulthood, male and female rats were tested for methamphetamine conditioned place preference reward and methamphetamine induced locomotor activity. Tissue samples were collected and mRNA was quantified for the norepinephrine transporter in the prefrontal cortex and the dopamine transporter in the nucleus accumbens. Results indicated rats given methamphetamine formed a conditioned place preference, but there was no effect of early separation or sex. Separated males showed heightened methamphetamine-induced locomotor activity, but there was no effect of early separation for females. Overall females were more active than males in response to both saline and methamphetamine. No differences in mRNA levels were observed across any conditions. These results suggest early neonatal separation affects methamphetamine-induced locomotor activity in a sex-dependent manner but has no effects on methamphetamine conditioned place preference.

  4. Long-Term Blockade of Cocaine Self-Administration and Locomotor Activation in Rats by an Adenoviral Vector-Delivered Cocaine Hydrolase.

    PubMed

    Smethells, John R; Swalve, Natashia; Brimijoin, Stephen; Gao, Yang; Parks, Robin J; Greer, Adam; Carroll, Marilyn E

    2016-05-01

    A promising approach in treating cocaine abuse is to metabolize cocaine in the blood using a mutated butyrylcholinesterase (BChE) that functions as a cocaine hydrolase (CocH). In rats, a helper-dependent adenoviral (hdAD) vector-mediated delivery of CocH abolished ongoing cocaine use and cocaine-primed reinstatement of drug-seeking for several months. This enzyme also metabolizes ghrelin, an effect that may be beneficial in maintaining healthy weights. The effect of a single hdAD-CocH vector injection was examined in rats on measures of anxiety, body weight, cocaine self-administration, and cocaine-induced locomotor activity. To examine anxiety, periadolescent rats were tested in an elevated-plus maze. Weight gain was then examined under four rodent diets. Ten months after CocH-injection, adult rats were trained to self-administer cocaine intravenously and, subsequently, cocaine-induced locomotion was tested. Viral gene transfer produced sustained plasma levels of CocH for over 13 months of testing. CocH-treated rats did not differ from controls in measures of anxiety, and only showed a transient reduction in weight gain during the first 3 weeks postinjection. However, CocH-treated rats were insensitive to cocaine. At 10 months postinjection, none of the CocH-treated rats initiated cocaine self-administration, unlike 90% of the control rats. At 13 months postinjection, CocH-treated rats showed no cocaine-induced locomotion, whereas control rats showed a dose-dependent enhancement of locomotion. CocH vector produced a long-term blockade of the rewarding and behavioral effects of cocaine in rats, emphasizing its role as a promising therapeutic intervention in cocaine abuse.

  5. Differential acquisition of lever pressing in inbred and outbred mice: comparison of one-lever and two-lever procedures and correlation with differences in locomotor activity.

    PubMed

    McKerchar, Todd L; Zarcone, Troy J; Fowler, Stephen C

    2005-11-01

    Recent progress in mouse genetics has led to an increased interest in developing procedures for assessing mouse behavior, but relatively few of the behavioral procedures developed involve positively reinforced operant behavior. When operant methods are used, nose poking, not lever pressing, is the target response. In the current study differential acquisition of milk-reinforced lever pressing was observed in five inbred strains (C57BL/6J, DBA/2J, 129X1/SvJ, C3H/HeJ, and BALB/cJ) and one outbred stock (CD-1) of mice. Regardless of whether one or two levers (an "operative" and "inoperative" lever) were in the operant chamber, a concomitant variable-time fixed-ratio schedule of milk reinforcement established lever pressing in the majority of mice within two 120-min sessions. Substantial differences in lever pressing were observed across mice and between procedures. Adding an inoperative lever retarded acquisition in C57BL/6J, DBA/2J, 129X1/SvJ, and C3H/HeJ mice, but not in CD-1 and BALB/cJ mice. Locomotor activity was positively correlated with number of lever presses in both procedures. Analyses of durations of the subcomponents (e.g., time to move from hopper to lever) of operant behavior revealed further differences among the six types of mice. Together, the data suggest that appetitively reinforced lever pressing can be acquired rapidly in mice and that a combination of procedural, behavioral, and genetic variables contributes to this acquisition.

  6. Simvastatin inhibits neural cell apoptosis and promotes locomotor recovery via activation of Wnt/β-catenin signaling pathway after spinal cord injury.

    PubMed

    Gao, Kai; Shen, Zhaoliang; Yuan, Yajiang; Han, Donghe; Song, Changwei; Guo, Yue; Mei, Xifan

    2016-07-01

    Statins exhibit neuroprotective effects after spinal cord injury (SCI). However, the molecular mechanism underlying these effects remains unknown. This study demonstrates that the hydroxymethylglutaryl coenzyme A reductase inhibitor simvastatin (Simv) exhibits neuroprotective effects on neuronal apoptosis and supports functional recovery in a rat SCI model by activating the Wnt/β-catenin signaling pathway. In specific, Simv administration after SCI significantly up-regulated the expression of low density lipoprotein receptor-related protein 6 phosphorylation and β-catenin protein, increased the mRNA expression of lymphoid enhancer factor-1 and T-cell factor-1, and suppressed the expression of β-catenin phosphorylation in the spinal cord neurons. Simv enhanced motor neuronal survival in the spinal cord anterior horn and decreased the lesion of spinal cord tissues after SCI. Simv administration after SCI also evidently reduced the expression levels of Bax, active caspase-3, and active caspase-9 in the spinal cord neurons and the proportion of transferase UTP nick end labeling (TUNEL)-positive neuron cells, but increased the expression level of Bcl-2 in the spinal cord neurons. However, the anti-apoptotic effects of Simv were reduced in cultured spinal cord nerve cells when the Wnt/β-catenin signaling pathway was suppressed in the lipopolysaccharide-induced model. Furthermore, the Basso, Beattie, and Bresnahan scores indicated that Simv treatment significantly improved the locomotor functions of rats after SCI. This study is the first to report that Simv exerts neuroprotective effects by reducing neuronal apoptosis, and promoting functional and pathological recovery after SCI by activating the Wnt/β-catenin signaling pathway. We verified the neuroprotective properties associated with simvastatin following spinal cord injury (SCI). Simvastatin reduced neuronal apoptosis, improved the functional and pathological recovery via activating Wnt/β-catenin signal pathway

  7. Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    PubMed

    Kannape, Oliver Alan; Barré, Arnaud; Aminian, Kamiar; Blanke, Olaf

    2014-01-01

    The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation.

  8. Solar activity affects avian timing of reproduction

    PubMed Central

    Visser, Marcel E.; Sanz, Juan José

    2009-01-01

    Avian timing of reproduction is strongly affected by ambient temperature. Here we show that there is an additional effect of sunspots on laying date, from five long-term population studies of great and blue tits (Parus major and Cyanistes caeruleus), demonstrating for the first time that solar activity not only has an effect on population numbers but that it also affects the timing of animal behaviour. This effect is statistically independent of ambient temperature. In years with few sunspots, birds initiate laying late while they are often early in years with many sunspots. The sunspot effect may be owing to a crucial difference between the method of temperature measurements by meteorological stations (in the shade) and the temperatures experienced by the birds. A better understanding of the impact of all the thermal components of weather on the phenology of ecosystems is essential when predicting their responses to climate change. PMID:19574283

  9. Endocrine (plasma cortisol and glucose) and behavioral (locomotor and self-feeding activity) circadian rhythms in Senegalese sole (Solea senegalensis Kaup 1858) exposed to light/dark cycles or constant light.

    PubMed

    Oliveira, Catarina C V; Aparício, Rocio; Blanco-Vives, Borja; Chereguini, Olvido; Martín, Ignacio; Javier Sánchez-Vazquez, F

    2013-06-01

    The existence of daily rhythms under light/dark (LD) cycles in plasma cortisol, blood glucose and locomotor and self-feeding activities, as well as their persistence (circadian nature) under constant light (LL), was investigated in Senegalese sole (Solea senegalensis). For the cortisol and glucose rhythms study, 48 soles were equally distributed in 8 tanks and exposed to a 12:12 LD cycle and natural water temperature (experiment 1). After an acclimation period, blood was sampled every 3 h until a 24-h cycle was completed. Blood glucose levels were measured immediately after sampling, while plasma cortisol was measured later by ELISA. In experiment 2, the fish were exposed to LL for 11 days, and after this period, the same sampling procedure was repeated. For the study of locomotor and self-feeding rhythms (experiment 3), two groups of sole were used: one exposed to LD and the other to LL. Each group was distributed within 3 tanks equipped with infrared photocells for the record of locomotor activity, and self-feeders for feeding behavior characterization. The results revealed a marked oscillation in cortisol concentrations during the daily cycle under LD, with a peak (35.65 ± 3.14 ng/ml) in the afternoon (15:00 h) and very low levels during the night (5.30 ± 1.09 ng/ml). This cortisol rhythm persisted under LL conditions, with lower values (mean cortisol concentration = 7.12 ± 1.11 ng/ml) and with the peak shifted by 3 h. Both rhythms were confirmed by COSINOR analysis (p < 0.05). The synchronizing role of temperature and feeding schedule, in addition to light, is also discussed. Diel rhythms of glucose were not evident in LD or LL. As to locomotor and self-feeding activity, a very marked rhythm was observed under LD, with higher activity observed during the night, with acrophases located at 2:14 and 3:37 h, respectively. The statistical significance of daily rhythms was confirmed by COSINOR analysis. Under LL, both feeding and locomotor

  10. Locomotor Dysfunction after Spaceflight: Characterization and Countermeasure Development

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Cohen, H. S.; Peters, B. T.; Miller, C. A.; Brady, R.; Bloomberg, Jacob J.

    2007-01-01

    Astronauts returning from space flight show disturbances in locomotor control manifested by changes in various sub-systems including head-trunk coordination, dynamic visual acuity, lower limb muscle activation patterning and kinematics (Glasauer, et al., 1995; Bloomberg, et al., 1997; McDonald, et al., 1996; 1997; Layne, et al., 1997; 1998, 2001, 2004; Newman, et al., 1997; Bloomberg and Mulavara, 2003). These post flight changes in locomotor performance, due to neural adaptation to the microgravity conditions of space flight, affect the ability of crewmembers especially after a long duration mission to egress their vehicle and perform extravehicular activities soon after landing on Earth or following a landing on the surface of the Moon or Mars. At present, no operational training intervention is available pre- or in- flight to mitigate post flight locomotor disturbances. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially "learns to learn" and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to "normal". Rather the training regimen should facilitate the reorganization of available sensorimotor sub-systems to achieve safe and effective locomotion as soon as possible after space flight. We have previously confirmed that subjects participating in adaptive generalization training programs, using a variety of visuomotor distortions and different motor tasks from throwing to negotiating an obstacle course as the dependent measure, can learn to enhance their ability to adapt to a

  11. Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation

    PubMed Central

    Rybak, Ilya A; Stecina, Katinka; Shevtsova, Natalia A; McCrea, David A

    2006-01-01

    A computational model of the mammalian spinal cord circuitry incorporating a two-level central pattern generator (CPG) with separate half-centre rhythm generator (RG) and pattern formation (PF) networks has been developed from observations obtained during fictive locomotion in decerebrate cats. Sensory afferents have been incorporated in the model to study the effects of afferent stimulation on locomotor phase switching and step cycle period and on the firing patterns of flexor and extensor motoneurones. Here we show that this CPG structure can be integrated with reflex circuits to reproduce the reorganization of group I reflex pathways occurring during locomotion. During the extensor phase of fictive locomotion, activation of extensor muscle group I afferents increases extensor motoneurone activity and prolongs the extensor phase. This extensor phase prolongation may occur with or without a resetting of the locomotor cycle, which (according to the model) depends on the degree to which sensory input affects the RG and PF circuits, respectively. The same stimulation delivered during flexion produces a temporary resetting to extension without changing the timing of following locomotor cycles. The model reproduces this behaviour by suggesting that this sensory input influences the PF network without affecting the RG. The model also suggests that the different effects of flexor muscle nerve afferent stimulation observed experimentally (phase prolongation versus resetting) result from opposing influences of flexor group I and II afferents on the PF and RG circuits controlling the activity of flexor and extensor motoneurones. The results of modelling provide insights into proprioceptive control of locomotion. PMID:17008375

  12. Technical Actions, Heart Rate, and Locomotor Activity in 7v7 and 8v8 Games for Female Youth Soccer Players.

    PubMed

    Ørntoft, Christina; Larsen, Malte N; Andersen, Thomas B; Rasmussen, Lasse S; Póvoas, Susana C A; Randers, Morten B; Krustrup, Peter

    2016-12-01

    Ørntoft, C, Larsen, MN, Andersen, TB, Rasmussen, LS, Póvoas, SCA, Randers, MB, and Krustrup, P. Technical actions, heart rate, and locomotor activity in 7v7 and 8v8 games for female youth soccer players. J Strength Cond Res 30(12): 3298-3303, 2016-The purpose of this study was to evaluate technical performance, heart rate (HR), and activity profile in 7v7 and 8v8 soccer games for 9- to 10-year-old girls (U11). A total of 24 female youth players participated in the study, all playing 20-minute 7v7 and 8v8 games with 160 and 223 m per player, respectively. Technical actions, HR, and activity profile were measured during the games using video filming, HR monitors, and 5-Hz Global positioning system (GPS) units. The number of technical actions was higher in 7v7 than in 8v8 games (34 ± 19 vs. 28 ± 14; p = 0.03; d = 0.37), as was the number of successful actions (25 ± 16 vs. 20 ± 12; p = 0.01; d = 0.35), with no difference in success rate for technical actions (70 ± 13 vs. 69 ± 14%; p = 0.63; d = 0.07). No differences were found between 7v7 and 8v8 in total distance covered (1,574 ± 251 and 1,622 ± 281 m; p = 0.66; d = 0.18), peak speed (19.5 ± 2.6 and 20.7 ± 1.5 km·h; p = 0.16; d = 0.56), mean HR values (85 ± 5 and 86 ± 6%HRpeak; p = 0.85; d = 0.18), and time of >90% HRpeak (37 ± 16 and 35 ± 14% of playing time; p = 0.70; d = 0.13). Distance covered at the highest running speeds of >16 km·h was lower in 7v7 than in 8v8 games (34 ± 24 vs. 63 ± 34 m; p = 0.018; d = 0.98), as was the number of entries into this speed zone (8 ± 5 vs. 13 ± 7; p = 0.006; d = 0.82). In conclusion, more technical actions and successful actions were observed in 7v7 than in 8v8 games, but players covered more ground with high-speed running in 8v8 games. This study also revealed that HR values were high in both game formats for U11 adolescent female players, with no difference between formats.

  13. The effects of feedback lighting on the circadian rhythm of locomotor activity and the reproductive maturation of the male Djungarian hamster (Phodopus sungorus).

    PubMed

    Ferraro, J S

    1988-01-01

    The non-parametric model of entrainment suggests that brief pulses of light, delivered between dusk and dawn can simulate the phasing effects of full photoperiods or even constant light (LL). Feedback lighting (LDFB) is a lighting condition where individual animals, otherwise in constant darkness (DD), are exposed to light in response to a monitored behavior. The specific purpose of this type of illumination is to expose the circadian cycle to light only during the subjective night. LDFB has been used to support this hypothesis in several species of nocturnal rodents and one species of diurnal primate by producing similar free-running periods in LDFB as in LL. This lighting condition has also been used to test the hypothesis that exposing the subjective night to even short duration light pulses will maintain reproductive function in long day breeders. In the Syrian hamster (Mesocricetus auratus), however, LDFB is not as photostimulatory as LL despite extensive light exposure during the subjective night. In the experiments presented here, a group of immature male Djungarian hamsters (Phodopus sungorus) were placed in individual light-tight sound attenuated chambers where they had free access to food, water and an activity wheel. The animals were exposed to one of four lighting conditions [DD, LL, LDFB or a neighbor control of feedback lighting (LDFB NC)] for approximately 30 days shortly after weaning. LDFB NC is a lighting condition where a neighbor control hamster receives the identical lighting regime as a paired animal exposing itself to LDFB, yet the neighbor has no control over it. A fifth group was exposed to a light-dark cycle of 16 hours of light and 8 hours of dark (LD16:8). This group was housed in cages in a colony room and did not have access to a running wheel. The free-running periods of the locomotor activity rhythms for hamsters exposed to LDFB and LL were not similar, unlike the results for rats, Syrian hamsters, mice, monkeys and even mature

  14. The effects of feedback lighting on the circadian rhythm of locomotor activity and the reproductive maturation of the male Djungarian hamster (Phodopus sungorus)

    NASA Technical Reports Server (NTRS)

    Ferraro, J. S.

    1988-01-01

    The non-parametric model of entrainment suggests that brief pulses of light, delivered between dusk and dawn can simulate the phasing effects of full photoperiods or even constant light (LL). Feedback lighting (LDFB) is a lighting condition where individual animals, otherwise in constant darkness (DD), are exposed to light in response to a monitored behavior. The specific purpose of this type of illumination is to expose the circadian cycle to light only during the subjective night. LDFB has been used to support this hypothesis in several species of nocturnal rodents and one species of diurnal primate by producing similar free-running periods in LDFB as in LL. This lighting condition has also been used to test the hypothesis that exposing the subjective night to even short duration light pulses will maintain reproductive function in long day breeders. In the Syrian hamster (Mesocricetus auratus), however, LDFB is not as photostimulatory as LL despite extensive light exposure during the subjective night. In the experiments presented here, a group of immature male Djungarian hamsters (Phodopus sungorus) were placed in individual light-tight sound attenuated chambers where they had free access to food, water and an activity wheel. The animals were exposed to one of four lighting conditions [DD, LL, LDFB or a neighbor control of feedback lighting (LDFB NC)] for approximately 30 days shortly after weaning. LDFB NC is a lighting condition where a neighbor control hamster receives the identical lighting regime as a paired animal exposing itself to LDFB, yet the neighbor has no control over it. A fifth group was exposed to a light-dark cycle of 16 hours of light and 8 hours of dark (LD16:8). This group was housed in cages in a colony room and did not have access to a running wheel. The free-running periods of the locomotor activity rhythms for hamsters exposed to LDFB and LL were not similar, unlike the results for rats, Syrian hamsters, mice, monkeys and even mature

  15. Locomotor adaptations of some gelatinous zooplankton.

    PubMed

    Bone, Q

    1985-01-01

    Swimming behaviour and locomotor adaptations are described in chaetognaths, larvacean tunicates, some cnidaria, and thaliacean tunicates. The first two groups swim by oscillating a flattened tail, the others by jet propulsion. In chaetognaths, the locomotor muscle fibres are extensively coupled and relatively sparsely innervated, they exhibit compound spike-like potentials. The motoneurons controlling the rhythmic activity of the locomotor muscle lie in a ventral ganglion whose organization is briefly described. Rhythmic swimming bursts in larvaceans are similarly driven by a caudal ganglion near the base of the tail, but each caudal muscle cell is separately innervated by two sets of motor nerves, as well as being coupled to its neighbours. The external epithelium is excitable, and linked to the caudal ganglion by the axons of central cells. Mechanical stimulation of the epithelium evokes receptor potentials followed by action potentials and by bursts of rapid swimming. The trachyline medusa Aglantha and the small siphonophore Chelophyes also show rapid escape responses; in Aglantha these are driven by a specialized giant axon system lacking in other hydromedusae, and in Chelophyes. Slow swimming in Aglantha apparently involves a second nerve supply to the same muscle sheets used in rapid swimming, whereas in Chelophyes slow swimming results from the activity of the smaller posterior nectophore. Slow swimming in siphonophores is more economical than the rapid responses. In the hydrozoan medusa Polyorchis (as in Chelophyes) action potentials in the locomotor muscle sheet change in shape during swimming bursts, and their duration is related to the size of the medusa; they are not simply triggers of muscular contraction. The two groups of thaliacean tunicates are specialized differently. Doliolum is adapted for single rapid jet pulses (during which it achieves instantaneous velocities of 50 body lengths s-l), whilst salps are adapted for slow continuous swimming. The

  16. Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback.

    PubMed

    Akay, Turgay; Tourtellotte, Warren G; Arber, Silvia; Jessell, Thomas M

    2014-11-25

    Mammalian locomotor programs are thought to be directed by the actions of spinal interneuron circuits collectively referred to as "central pattern generators." The contribution of proprioceptive sensory feedback to the coordination of locomotor activity remains less clear. We have analyzed changes in mouse locomotor pattern under conditions in which proprioceptive feedback is attenuated genetically and biomechanically. We find that locomotor pattern degrades upon elimination of proprioceptive feedback from muscle spindles and Golgi tendon organs. The degradation of locomotor pattern is manifest as the loss of interjoint coordination and alternation of flexor and extensor muscles. Group Ia/II sensory feedback from muscle spindles has a predominant influence in patterning the activity of flexor muscles, whereas the redundant activities of group Ia/II and group Ib afferents appear to determine the pattern of extensor muscle firing. These findings establish a role for proprioceptive feedback in the control of fundamental aspects of mammalian locomotor behavior.

  17. Sex differences in locomotor effects of morphine in the rat

    PubMed Central

    Craft, Rebecca M.; Clark, James L.; Hart, Stephen P.; Pinckney, Megan K.

    2007-01-01

    Sex differences in reinforcing, analgesic and other effects of opioids have been demonstrated; however, the extent to which sex differences in motoric effects of opioids contribute to apparent sex differences in their primary effects is not known. The goal of this study was to compare the effects of the prototypic mu opioid agonist morphine on locomotor activity in male vs. female rats. Saline or morphine (1-10 mg/kg) was administered s.c. to adult Sprague-Dawley rats, which were placed into a photobeam apparatus for 3-5 hr to measure activity. Modulation of morphine's effects by gonadal hormones and by handling (either during the test session or for 4 days before the test session) were examined. Morphine initially suppressed and later increased locomotor activity in both sexes relative to their saline-injected controls, but males were more sensitive than females to the initial locomotor suppressant effect of morphine. Intermittent, brief handling during the 3-hr test session blunted morphine-induced locomotor activation in both sexes. Females in proestrus were the most sensitive to morphine's locomotor-stimulant effect, with females in estrus showing the least response to morphine. Gonadectomized (GDX) males with or without testosterone were equally sensitive to morphine's effects, whereas GDX females treated with estradiol showed a blunted response to morphine's effects, similar to intact females in estrus. Brief handling on each of 4 consecutive days pre-test attenuated morphine's locomotor suppressant effect in males but had no effect in females, thereby eliminating the sex difference. These data suggest that sex differences in morphine's effects on locomotor activity can be attributed to gonadal hormones in females, and to differential stress-induced modulation of morphine's effects in males vs. females. PMID:17217999

  18. [Semax potentiates effects of D-amphetamine on the level of extracellular dopamine in the Sprague-Dawley rat striatum and on the locomotor activity of C57BL/6 mice].

    PubMed

    Eremin, K O; Saransaari, P; Oja, S; Raevskiĭ, K S

    2004-01-01

    The synthetic peptide semax (a fragment of ACTH 4-7 Pro-Gly-Pro) enhances the release of extracell dopamine (DA) induced by D-amphetamine (5 mg/kg) in the striatum of Spraig-Dowley (SD) rats and increases the locomotor activity stimulated by D-amphetamine (2 mg/kg) in C57/BL6 mice. The basal content of DA, 3,4-dihydroxyphenylacetic acid (DHPAA), and homovanillic acid (HVA) in dialysate of SD rats was 0.5-1.0, 996 +/- 25, and 761 +/- 37 pmole/ml, respectively (n = 7). D-amphetamine (5 mg/kg) induced a sharp increases in the DA level (up to 20 pmole/ml) 20-40 min after treatment and reduced the extracell DHPAA content to 30% of the basal level for a prolonged time (over the entire experimental period). Preliminary (20 min before D-amphetamine) administration of semax resulted in a greater peak of DA concentration (p < 0.05) and a more pronounced drop in DHPAA level (p < 0.01) as compared to the effects produced by the psychostimulant alone. In behavioral tests on C57/BL6 mice, D-amphetamine (2 mg/kg) increased the locomotor activity to a level of 182% (p < 0.01). Simultaneous introduction of semax (0.6 mg/kg) and D-amphetamine (2 mg/kg) led to a more pronounced increase in the locomotor activity of mice (261%, p < 0.01). It is suggested that the peptide modulates dopaminergic systems involved in the formation of the psychostimulant effect.

  19. Stereoselective Effects of Abused “Bath Salt” Constituent 3,4-Methylenedioxypyrovalerone in Mice: Drug Discrimination, Locomotor Activity, and Thermoregulation

    PubMed Central

    Gannon, Brenda M.; Williamson, Adrian; Suzuki, Masaki; Rice, Kenner C.

    2016-01-01

    3,4-Methylenedioxypyrovalerone (MDPV) is a common constituent of illicit “bath salts” products. MDPV is a chiral molecule, but the contribution of each enantiomer to in vivo effects in mice has not been determined. To address this, mice were trained to discriminate 10 mg/kg cocaine from saline, and substitutions with racemic MDPV, S(+)-MDPV, and R(−)-MDPV were performed. Other mice were implanted with telemetry probes to monitor core temperature and locomotor responses elicited by racemic MDPV, S(+)-MDPV, and R(−)-MDPV under a warm (28°C) or cool (20°C) ambient temperature. Mice reliably discriminated the cocaine training dose from saline, and each form of MDPV fully substituted for cocaine, although marked potency differences were observed such that S(+)-MDPV was most potent, racemic MDPV was less potent than the S(+) enantiomer, and R(−)-MDPV was least potent. At both ambient temperatures, locomotor stimulant effects were observed after doses of S(+)-MDPV and racemic MDPV, but R(−)-MDPV did not elicit locomotor stimulant effects at any tested dose. Interestingly, significant increases in maximum core body temperature were only observed after administration of racemic MDPV in the warm ambient environment; neither MDPV enantiomer altered core temperature at any dose tested, at either ambient temperature. These studies suggest that all three forms of MDPV induce biologic effects, but R(−)-MDPV is less potent than S(+)-MDPV and racemic MDPV. Taken together, these data suggest that the S(+)-MDPV enantiomer is likely responsible for the majority of the biologic effects of the racemate and should be targeted in therapeutic efforts against MDPV overdose and abuse. PMID:26769917

  20. Phosphodiesterase 1B differentially modulates the effects of methamphetamine on locomotor activity and spatial learning through DARPP32-dependent pathways: evidence from PDE1B-DARPP32 double-knockout mice.

    PubMed

    Ehrman, L A; Williams, M T; Schaefer, T L; Gudelsky, G A; Reed, T M; Fienberg, A A; Greengard, P; Vorhees, C V

    2006-10-01

    Mice lacking phosphodiesterase 1B (PDE1B) exhibit an exaggerated locomotor response to D-methamphetamine and increased in vitro phosphorylation of DARPP32 (dopamine- and cAMP-regulated phosphoprotein, M r 32 kDa) at Thr34 in striatal brain slices treated with the D1 receptor agonist, SKF81297. These results indicated a possible regulatory role for PDE1B in pathways involving DARPP32. Here, we generated PDE1B x DARPP32 double-knockout (double-KO) mice to test the role of PDE1B in DARPP32-dependent pathways in vivo. Analysis of the response to d-methamphetamine on locomotor activity showed that the hyperactivity experienced by PDE1B mutant mice was blocked in PDE1B-/- x DARPP32-/- double-KO mice, consistent with participation of PDE1B and DARPP32 in the same pathway. Further behavioral testing in the elevated zero-maze revealed that DARPP32-/- mice showed a less anxious phenotype that was nullified in double-mutant mice. In contrast, in the Morris water maze, double-KO mice showed deficits in spatial reversal learning not observed in either single mutant compared with wild-type mice. The data suggest a role for PDE1B in locomotor responses to psychostimulants through modulation of DARPP32-dependent pathways; however, this modulation does not necessarily impact other behaviors, such as anxiety or learning. Instead, the phenotype of double-KOs observed in these latter tasks may be mediated through independent pathways.

  1. Movement Exploration and Locomotor Skills.

    ERIC Educational Resources Information Center

    National Center on Educational Media and Materials for the Handicapped, Columbus, OH.

    Selected from the National Instructional Materials Information System (NIMIS)--a computer based on-line interactive retrieval system on special education materials--the bibliography covers 23 materials for teaching movement exploration and locomotor skills to handicapped students at all educational levels. Entries are presented in order of NIMIS…

  2. Enhanced effects of amphetamine but reduced effects of the hallucinogen, 5-MeO-DMT, on locomotor activity in 5-HT(1A) receptor knockout mice: implications for schizophrenia.

    PubMed

    van den Buuse, Maarten; Ruimschotel, Emma; Martin, Sally; Risbrough, Victoria B; Halberstadt, Adam L

    2011-01-01

    Serotonin-1A (5-HT(1A)) receptors may play a role in schizophrenia and the effects of certain antipsychotic drugs. However, the mechanism of interaction of 5-HT(1A) receptors with brain systems involved in schizophrenia, remains unclear. Here we show that 5-HT(1A) receptor knockout mice display enhanced locomotor hyperactivity to acute treatment with amphetamine, a widely used animal model of hyperdopaminergic mechanisms in psychosis. In contrast, the effect of MK-801 on locomotor activity, modeling NMDA receptor hypoactivity, was unchanged in the knockouts. The effect of the hallucinogen 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) was markedly reduced in 5-HT(1A) receptor knockout mice. There were no changes in apomorphine-induced disruption of PPI, a model of sensory gating deficits seen in schizophrenia. Similarly, there were no major changes in density of dopamine transporters (DAT) or dopamine D(1) or D(2) receptors which could explain the behavioural changes observed in 5-HT(1A) receptor knockout mice. These results extend our insight into the possible role of these receptors in aspects of schizophrenia. As also suggested by previous studies using agonist and antagonist drugs, 5-HT(1A) receptors may play an important role in hallucinations and to modulate dopaminergic activity in the brain.

  3. Chronic Exposure to Arsenic in Drinking Water Causes Alterations in Locomotor Activity and Decreases Striatal mRNA for the D2 Dopamine Receptor in CD1 Male Mice.

    PubMed

    Moreno Ávila, Claudia Leticia; Limón-Pacheco, Jorge H; Giordano, Magda; Rodríguez, Verónica M

    2016-01-01

    Arsenic exposure has been associated with sensory, motor, memory, and learning alterations in humans and alterations in locomotor activity, behavioral tasks, and neurotransmitters systems in rodents. In this study, CD1 mice were exposed to 0.5 or 5.0 mg As/L of drinking water for 6 months. Locomotor activity, aggression, interspecific behavior and physical appearance, monoamines levels, and expression of the messenger for dopamine receptors D1 and D2 were assessed. Arsenic exposure produced hypoactivity at six months and other behaviors such as rearing and on-wall rearing and barbering showed both increases and decreases. No alterations on aggressive behavior or monoamines levels in striatum or frontal cortex were observed. A significant decrease in the expression of mRNA for D2 receptors was found in striatum of mice exposed to 5.0 mg As/L. This study provides evidence for the use of dopamine receptor D2 as potential target of arsenic toxicity in the dopaminergic system.

  4. Chronic Exposure to Arsenic in Drinking Water Causes Alterations in Locomotor Activity and Decreases Striatal mRNA for the D2 Dopamine Receptor in CD1 Male Mice

    PubMed Central

    Moreno Ávila, Claudia Leticia

    2016-01-01

    Arsenic exposure has been associated with sensory, motor, memory, and learning alterations in humans and alterations in locomotor activity, behavioral tasks, and neurotransmitters systems in rodents. In this study, CD1 mice were exposed to 0.5 or 5.0 mg As/L of drinking water for 6 months. Locomotor activity, aggression, interspecific behavior and physical appearance, monoamines levels, and expression of the messenger for dopamine receptors D1 and D2 were assessed. Arsenic exposure produced hypoactivity at six months and other behaviors such as rearing and on-wall rearing and barbering showed both increases and decreases. No alterations on aggressive behavior or monoamines levels in striatum or frontal cortex were observed. A significant decrease in the expression of mRNA for D2 receptors was found in striatum of mice exposed to 5.0 mg As/L. This study provides evidence for the use of dopamine receptor D2 as potential target of arsenic toxicity in the dopaminergic system. PMID:27375740

  5. The 5-HT3 receptor antagonist, ondansetron, blocks the development and expression of ethanol-induced locomotor sensitization in mice.

    PubMed

    Umathe, Sudhir N; Bhutada, Pravinkumar S; Raut, Vivek S; Jain, Nishant S; Mundhada, Yogita R

    2009-02-01

    Manipulation of the serotonergic system has been shown to alter ethanol sensitization. Ondansetron is a 5-HT3 receptor antagonist, reported to attenuate cocaine and methamphetamine-induced behavioral sensitization, but no reports are available on its role in ethanol-induced behavioral sensitization. Therefore, an attempt has been made to assess this issue by using an earlier used animal model of ethanol-induced locomotor sensitization. Results indicated that ondansetron (0.25-1.0 mg/kg, subcutaneously) given before the challenge dose of ethanol (2.4 g/kg, intraperitoneally) injection, significantly and dose dependently attenuated the expression of sensitization. In addition, ondansetron (1.0 mg/kg, subcutaneously) given before ethanol injection on days 1, 4, 7, and 10 significantly blocked the development (days 1, 4, 7, and 10), and expression (day 15) of sensitization to the locomotor stimulant effect of ethanol injection. Ondansetron had no effect per se on locomotor activity and did not affect blood ethanol levels. Therefore, the results raise the possibility that ondansetron blocked the development and expression of ethanol-induced locomotor sensitization by acting on 5-HT3 receptors.

  6. Nitric oxide-mediated modulation of the murine locomotor network.

    PubMed

    Foster, Joshua D; Dunford, Catherine; Sillar, Keith T; Miles, Gareth B

    2014-02-01

    Spinal motor control networks are regulated by neuromodulatory systems to allow adaptability of movements. The present study aimed to elucidate the role of nitric oxide (NO) in the modulation of mammalian spinal locomotor networks. This was investigated with isolated spinal cord preparations from neonatal mice in which rhythmic locomotor-related activity was induced pharmacologically. Bath application of the NO donor diethylamine NONOate (DEA/NO) decreased the frequency and modulated the amplitude of locomotor-related activity recorded from ventral roots. Removal of endogenous NO with coapplication of a NO scavenger (PTIO) and a nitric oxide synthase (NOS) blocker [nitro-l-arginine methyl ester (l-NAME)] increased the frequency and decreased the amplitude of locomotor-related activity. This demonstrates that endogenously derived NO can modulate both the timing and intensity of locomotor-related activity. The effects of DEA/NO were mimicked by the cGMP analog 8-bromo-cGMP. In addition, the soluble guanylyl cyclase (sGC) inhibitor ODQ blocked the effects of DEA/NO on burst amplitude and frequency, although the frequency effect was only blocked at low concentrations of DEA/NO. This suggests that NO-mediated modulation involves cGMP-dependent pathways. Sources of NO were studied within the lumbar spinal cord during postnatal development (postnatal days 1-12) with NADPH-diaphorase staining. NOS-positive cells in the ventral horn exhibited a rostrocaudal gradient, with more cells in rostral segments. The number of NOS-positive cells was also found to increase during postnatal development. In summary, we have shown that NO, derived from sources within the mammalian spinal cord, modulates the output of spinal motor networks and is therefore likely to contribute to the fine-tuning of locomotor behavior.

  7. Stability and variability of locomotor responses of laboratory rodents. III. Effect of environmental factors and lack of catecholamine receptor correlates.

    PubMed

    Vetulani, J; Marona-Lewicka, D; Michaluk, J; Popik, P

    1988-01-01

    The exploratory locomotor activity of rats differs between groups, and the results suggest the involvement of a seasonal factor. The body weight and the state of satiety do not appear to influence the locomotor activity. The individual activities of rats are correlated in subsequent tests only if the period between the tests is not long. The foehn wind changes the locomotor activity in the second test, depending on the animals' experience. No correlation between the native locomotor activity and cortical and striatal binding sites for [3H]prazosin and [3H]spiroperidol was found.

  8. Two Components of Nocturnal Locomotor Suppression by Light

    PubMed Central

    Morin, Lawrence P.; Lituma, Pablo J.; Studholme, Keith M.

    2010-01-01

    In nocturnal rodents, millisecond light (“flash”) stimuli can induce both a large circadian rhythm phase shift and an associated state change from highly active to quiescence followed by behavioral sleep. Suppression of locomotion (“negative masking”) is an easily measured correlate of the state change. The present mouse studies used both flashes and longer light stimuli (“pulses”) to distinguish initiation from maintenance effects of light on locomotor suppression and to determine whether the locomotor suppression exhibits temporal integration as is thought to be characteristic of phase shift responses to pulse, but not flash, stimuli. In Expt. 1, locomotor suppression increased with irradiance (0.01–100 μW/cm2), in accordance with previous reports. It also increased with stimulus duration (3–3000 sec), but interpretation of this result is complicated by the ability of light to both initiate and maintain locomotor suppression. In Expt. 2, an irradiance response curve was determined using a stimulus series of 10 flashes, 2 msec each, with total flash energy varying from 0.0025 – 110.0 J/m2. This included a test for temporal integration in which the effects of two equal energy series of flashes were compared, but which differed in the number of flashes per series (10 vs 100). The 10 flash series more effectively elicited locomotor suppression than the 100 flash series, a result consistent with prior observations involving flash-induced phase shifts. In Expt. 3, exposure of mice to an 11 hr light stimulus yielded irradiance-dependent locomotor suppression that can be maintained for the entire stimulus duration by a 100 μW/cm2 stimulus. Light has the ability to initiate a time-limited (30–40 min) interval of locomotor suppression (initiation effect) that can be extended by additional light (maintenance effect). Temporal integration resembling that seen in phase shifting responses to light does not exist for either phase shift or locomotor

  9. Strategies of locomotor collision avoidance.

    PubMed

    Basili, Patrizia; Sağlam, Murat; Kruse, Thibault; Huber, Markus; Kirsch, Alexandra; Glasauer, Stefan

    2013-03-01

    Collision avoidance during locomotion can be achieved by a variety of strategies. While in some situations only a single trajectory will successfully avoid impact, in many cases several different strategies are possible. Locomotor experiments in the presence of static boundary conditions have suggested that the choice of an appropriate trajectory is based on a maximum-smoothness strategy. Here we analyzed locomotor trajectories of subjects avoiding collision with another human crossing their path orthogonally. In such a case, changing walking direction while keeping speed or keeping walking direction while changing speed would be two extremes of solving the problem. Our participants clearly favored changing their walking speed while keeping the path on a straight line between start and goal. To interpret this result, we calculated the costs of the chosen trajectories in terms of a smoothness-maximization criterion and simulated the trajectories with a computational model. Data analysis together with model simulation showed that the experimentally chosen trajectory to avoid collision with a moving human is not the optimally smooth solution. However, even though the trajectory is not globally smooth, it was still locally smooth. Modeling further confirmed that, in presence of the moving human, there is always a trajectory that would be smoother but would deviate from the straight line. We therefore conclude that the maximum smoothness strategy previously suggested for static environments no longer holds for locomotor path planning and execution in dynamically changing environments such as the one tested here.

  10. Mutations affecting enzymatic activity in liver arginase

    SciTech Connect

    Vockley, J.G.; Tabor, D.E.; Goodman, B.K.

    1994-09-01

    The hydrolysis of arginine to ornithine and urea is catalyzed by arginase in the last step of the urea cycle. We examined a group of arginase deficient patients by PCR-SSCP analysis to characterize the molecular basis of this disorder. A heterogeneous population of nonsense mutations, microdeletions, and missense mutations has been identified in our cohort. Microdeletions which introduce premature stop codons downstream of the deletion and nonsense mutations result in no arginase activity. These mutations occur randomly along the gene. The majority of missense mutations identified appear to occur in regions of high cross-species homology. To test the effect of these missense mutations on arginase activity, site-directed mutagenesis was used to re-create the patient mutations for in vivo expression studies in a prokaryotic fusion-protein expression system. Of 4 different missense mutations identified in 6 individuals, only one was located outside of a conserved region. The three substitution mutations within the conserved regions had a significant effect on enzymatic activity (0-3.1 nmole/30min, normal is 1300-1400 nmoles/30min, as determined by in vitro arginase assay), while the fourth mutation, a T to S substitution, did not. In addition, site-directed mutagenesis was utilized to create mutations not in residues postulated to play a significant role in the enzymatic function or active site formation in manganese-binding proteins such as arginase. We have determined that the substitution of glycine for a histidine residue, located in a very highly conserved region of exon 3, and the substitution of a histidine and an aspartic acid residue within a similarly conserved region in exon 4, totally abolishes enzymatic activity. Mutations substituting glycine for an additional histidine and aspartic acid residue in exon 4 and two aspartic acid residues in exon 7 have also been created. We are currently in the process of characterizing these mutations.

  11. Training Locomotor Networks

    PubMed Central

    Edgerton, V. Reggie; Courtine, Grégoire; Gerasimenko, Yury P.; Lavrov, Igor; Ichiyama, Ronaldo M.; Fong, Andy J.; Cai, Lance L.; Otoshi, Chad K.; Tillakaratne, Niranjala J.K.; Burdick, Joel W.; Roy, Roland R.

    2008-01-01

    For a complete adult spinal rat to regain some weight-bearing stepping capability, it appears that a sequence of specific proprioceptive inputs that are similar, but not identical, from step to step must be generated over repetitive step cycles. Furthermore, these cycles must include the activation of specific neural circuits that are intrinsic to the lumbosacral spinal cord segments. For these sensorimotor pathways to be effective in generating stepping, the spinal circuitry must be modulated to an appropriate excitability level. This level of modulation is sustained from supraspinal input in intact, but not spinal, rats. In a series of experiments with complete spinal rats, we have shown that an appropriate level of excitability of the spinal circuitry can be achieved using widely different means. For example, this modulation level can be acquired pharmacologically, via epidural electrical stimulation over specific lumbosacral spinal cord segments, and/or by use-dependent mechanisms such as step or stand training. Evidence as to how each of these treatments can “tune” the spinal circuitry to a “physiological state” that enables it to respond appropriately to proprioceptive input will be presented. We have found that each of these interventions can enable the proprioceptive input to actually control extensive details that define the dynamics of stepping over a range of speeds, loads, and directions. A series of experiments will be described that illustrate sensory control of stepping and standing after a spinal cord injury and the necessity for the “physiological state” of the spinal circuitry to be modulated within a critical window of excitability for this control to be manifested. The present findings have important consequences not only for our understanding of how the motor pattern for stepping is formed, but also for the design of rehabilitation intervention to restore lumbosacral circuit function in humans following a spinal cord injury. PMID

  12. Transcriptome analysis of the brain of the silkworm Bombyx mori infected with Bombyx mori nucleopolyhedrovirus: A new insight into the molecular mechanism of enhanced locomotor activity induced by viral infection.

    PubMed

    Wang, Guobao; Zhang, Jianjia; Shen, Yunwang; Zheng, Qin; Feng, Min; Xiang, Xingwei; Wu, Xiaofeng

    2015-06-01

    Baculoviruses have been known to induce hyperactive behavior in their lepidopteran hosts for over a century. As a typical lepidopteran insect, the silkworm Bombyx mori displays enhanced locomotor activity (ELA) following infection with B. mori nucleopolyhedrovirus (BmNPV). Some investigations have focused on the molecular mechanisms underlying this abnormal hyperactive wandering behavior due to the virus; however, there are currently no reports about B. mori. Based on previous studies that have revealed that behavior is controlled by the central nervous system, the transcriptome profiles of the brains of BmNPV-infected and non-infected silkworm larvae were analyzed with the RNA-Seq technique to reveal the changes in the BmNPV-infected brain on the transcriptional level and to provide new clues regarding the molecular mechanisms that underlies BmNPV-induced ELA. Compared with the controls, a total of 742 differentially expressed genes (DEGs), including 218 up-regulated and 524 down-regulated candidates, were identified, of which 499, 117 and 144 DEGs could be classified into GO categories, KEGG pathways and COG annotations by GO, KEGG and COG analyses, respectively. We focused our attention on the DEGs that are involved in circadian rhythms, synaptic transmission and the serotonin receptor signaling pathway of B. mori. Our analyses suggested that these genes were related to the locomotor activity of B. mori via their essential roles in the regulations of a variety of behaviors and the down-regulation of their expressions following BmNPV infection. These results provide new insight into the molecular mechanisms of BmNPV-induced ELA.

  13. Biologically active extracts with kidney affections applications

    NASA Astrophysics Data System (ADS)

    Pascu (Neagu), Mihaela; Pascu, Daniela-Elena; Cozea, Andreea; Bunaciu, Andrei A.; Miron, Alexandra Raluca; Nechifor, Cristina Aurelia

    2015-12-01

    This paper is aimed to select plant materials rich in bioflavonoid compounds, made from herbs known for their application performances in the prevention and therapy of renal diseases, namely kidney stones and urinary infections (renal lithiasis, nephritis, urethritis, cystitis, etc.). This paper presents a comparative study of the medicinal plant extracts composition belonging to Ericaceae-Cranberry (fruit and leaves) - Vaccinium vitis-idaea L. and Bilberry (fruit) - Vaccinium myrtillus L. Concentrated extracts obtained from medicinal plants used in this work were analyzed from structural, morphological and compositional points of view using different techniques: chromatographic methods (HPLC), scanning electronic microscopy, infrared, and UV spectrophotometry, also by using kinetic model. Liquid chromatography was able to identify the specific compounds of the Ericaceae family, present in all three extracts, arbutosid, as well as specific components of each species, mostly from the class of polyphenols. The identification and quantitative determination of the active ingredients from these extracts can give information related to their therapeutic effects.

  14. Chemokines and cocaine: CXCR4 receptor antagonist AMD3100 attenuates cocaine place preference and locomotor stimulation in rats.

    PubMed

    Kim, Jae; Connelly, Krista L; Unterwald, Ellen M; Rawls, Scott M

    2016-08-26

    Plasma levels of the chemokine CXCL12 are elevated in mice following acute cocaine exposure and decreased in human cocaine abusers during withdrawal. CXCL12 is also one of the few chemokines located in the brain and can modulate dopamine transmission through activation of its receptor CXCR4. To assess a role for the CXCL12/CXCR4 system in behavioral effects of cocaine, we tested the hypothesis that AMD 3100 (Plerixafor), a CXCR4 antagonist, would inhibit conditioned place preference (CPP) and locomotor activation produced by cocaine. Rats injected with cocaine (10mg/kg) displayed CPP relative to saline-injected controls following 4 conditioning sessions. AMD 3100 (1, 2.5, 5mg/kg) administered prior to cocaine conditioning reduced development of cocaine CPP. AMD 3100 (5mg/kg) also inhibited expression of cocaine-induced CPP in a paradigm in which it was injected once (following cocaine conditioning and just prior to CPP testing). In addition, AMD 3100 (5, 10mg/kg) pretreatment reduced locomotor activation produced by an acute cocaine injection (15mg/kg) but did not affect basal locomotor activity relative to saline-injected controls. Repeated cocaine exposure produced a significant increase (1.49-fold) in CXCL12 mRNA expression in the ventral tegmental area (VTA). Our results suggest that the CXCL12/CXCR4 system in the brain reward circuit is impacted by cocaine exposure and influences behavioral effects related to the abuse liability of cocaine.

  15. Evaluation of the interaction of mu and kappa opioid agonists on locomotor behavior in the horse.

    PubMed Central

    Mama, K R; Pascoe, P J; Steffey, E P

    1993-01-01

    This study was designed to determine the interactive effects of mu and kappa opioid agonists on locomotor behavior in the horse. Three doses of a mu agonist, fentanyl (5, 10, 20 micrograms/kg) and a kappa agonist U50,488H (30, 60, 120 micrograms/kg) were administered in a random order to six horses. Locomotor activity was measured using a two minute footstep count. Each dose of U50,488H was then combined with 20 micrograms/kg of fentanyl to determine the interactive effects of the drugs on locomotor activity. A significant increase in locomotor activity was seen with 20 micrograms/kg of fentanyl and all the drug combinations. The combination of U50,488H with fentanyl resulted in an earlier onset of locomotor activity. At the highest doses of the combination (U50,488H 120 micrograms/kg, fentanyl 20 micrograms/kg), the duration of locomotor activity was significantly increased when compared to the other doses. We conclude that locomotor activity is maintained or enhanced in horses when a receptor specific kappa agonist is combined with a mu receptor agonist. PMID:8490803

  16. Continuous exposure to a novel stressor based on water aversion induces abnormal circadian locomotor rhythms and sleep-wake cycles in mice.

    PubMed

    Miyazaki, Koyomi; Itoh, Nanako; Ohyama, Sumika; Kadota, Koji; Oishi, Katsutaka

    2013-01-01

    Psychological stressors prominently affect diurnal rhythms, including locomotor activity, sleep, blood pressure, and body temperature, in humans. Here, we found that a novel continuous stress imposed by the perpetual avoidance of water on a wheel (PAWW) affected several physiological diurnal rhythms in mice. One week of PAWW stress decayed robust circadian locomotor rhythmicity, while locomotor activity was evident even during the light period when the mice are normally asleep. Daytime activity was significantly upregulated, whereas nighttime activity was downregulated, resulting in a low amplitude of activity. Total daily activity gradually decreased with increasing exposure to PAWW stress. The mice could be exposed to PAWW stress for over 3 weeks without adaptation. Furthermore, continuous PAWW stress enhanced food intake, but decreased body weight and plasma leptin levels, indicating that sleep loss and PAWW stress altered the energy balance in these mice. The diurnal rhythm of corticosterone levels was not severely affected. The body temperature rhythm was diurnal in the stressed mice, but significantly dysregulated during the dark period. Plasma catecholamines were elevated in the stressed mice. Continuous PAWW stress reduced the duration of daytime sleep, especially during the first half of the light period, and increased nighttime sleepiness. Continuous PAWW stress also simultaneously obscured sleep/wake and locomotor activity rhythms compared with control mice. These sleep architecture phenotypes under stress are similar to those of patients with insomnia. The stressed mice could be entrained to the light/dark cycle, and when they were transferred to constant darkness, they exhibited a free-running circadian rhythm with a timing of activity onset predicted by the phase of their entrained rhythms. Circadian gene expression in the liver and muscle was unaltered, indicating that the peripheral clocks in these tissues remained intact.

  17. The effects of locomotor-respiratory coupling on the pattern of breathing in horses.

    PubMed Central

    Lafortuna, C L; Reinach, E; Saibene, F

    1996-01-01

    1. To investigate the effect of locomotor activity on the pattern of breathing in quadrupeds, ventilatory response was studied in four healthy horses during horizontal and inclined (7%) treadmill exercise at different velocities (1.4-6.9 m s(-1)) and during chemical stimulation with a rebreathing method. Stride frequency (f(s)) and locomotor-respiratory coupling (LRC) were also simultaneously determined by means of video recordings synchronized with respiratory events. 2. Tidal volume (V(T)) was positively correlated with pulmonary ventilation (V(E)) but significantly different linear regression equations were found between the experimental conditions (P < 0.0001), since the chemical hyperventilation was mainly due to increases in V(T), whereas the major contribution to exercise hyperpnoea came from changes in respiratory frequency (f(R)). 3. The average f(R) at each exercise level was not significantly different from f(S), although there was not always a tight 1:1 LRC. At constant speeds, f(S) was independent of the treadmill slope and hence the greater V(E) during inclined exercise was due to increased V(T). 4. At any ventilatory level, the differences in breathing patterns between locomotion and rebreathing or locomotion at different slopes derived from different set points of the inspiratory off-switch mechanism. 5. The percentage of single breaths entrained with locomotor rhythm rose progressively and significantly with treadmill speed (P < 0.0001) up to a 1:1 LRC and was significantly affected by treadmill slope (P < 0.001). 6. A LRC of 1:1 was systematically observed at canter (10 out of 10 trials) and sometimes at trot (5 out of 14) and it entailed (i) a 4- to 5-fold reduction in both V(T) and f(R) variability, and (ii) a gait-specific phase locking of inspiratory onset during the locomotor cycle. 7. It is concluded that different patterns of breathing are employed during locomotion and rebreathing due to the interference between locomotor and respiratory

  18. The thermal plasticity of locomotor performance has diverged between northern and southern populations of the eastern newt (Notophthalmus viridescens).

    PubMed

    Mineo, Patrick M; Schaeffer, Paul J

    2015-01-01

    Many temperate ectotherms undergo thermal acclimation to remain functional over a wide range of body temperatures, but few studies have investigated whether populations of a single species have evolved differences in the thermal plasticity of locomotor performance. Therefore, we asked whether the thermal plasticity of locomotor performance has diverged between northern and southern populations of eastern newts (Notophthalmus viridescens). We acclimated eastern newts from Florida and Maine to cold (6 °C) or warm (28 °C) conditions for 12 weeks. Following acclimation, we measured the burst speed of newts at 6, 11.5, 17, 22.5, 28, and 33.5 °C. We also measured the activities of creatine kinase (CK) and lactate dehydrogenase (LDH) in skeletal muscle of newts. The newts from Maine were better able to acclimate to low temperature compared to newts from Florida. Regardless of acclimation, the thermal sensitivity of burst speed was higher in the Florida compared to the Maine population. In general, newts from Maine performed better at low temperatures, whereas newts from Florida performed better at high temperatures. The activities of CK and LDH were lower in cold compared to warm-acclimated newts in the Florida population, but acclimation did not affect the activities of these enzymes in the Maine population. The activities of CK and LDH do not explain differences in the thermal plasticity of locomotor performance between populations. Our results demonstrate that the thermal sensitivity and plasticity of locomotor performance differ between northern and southern populations of eastern newts, suggesting that these traits readily adapt to the thermal environment.

  19. Locomotor Expertise Predicts Infants' Perseverative Errors

    ERIC Educational Resources Information Center

    Berger, Sarah E.

    2010-01-01

    This research examined the development of inhibition in a locomotor context. In a within-subjects design, infants received high- and low-demand locomotor A-not-B tasks. In Experiment 1, walking 13-month-old infants followed an indirect path to a goal. In a control condition, infants took a direct route. In Experiment 2, crawling and walking…

  20. Integrated Locomotor Function Tests for Countermeasure Evaluation

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Landsness, E. C.; Black, F. O.

    2005-01-01

    Following spaceflight crewmembers experience locomotor dysfunction due to inflight adaptive alterations in sensorimotor function. Countermeasures designed to mitigate these postflight gait alterations need to be assessed with a new generation of tests that evaluate the interaction of various sensorimotor sub-systems central to locomotor control. The goal of the present study was to develop new functional tests of locomotor control that could be used to test the efficacy of countermeasures. These tests were designed to simultaneously examine the function of multiple sensorimotor systems underlying the control of locomotion and be operationally relevant to the astronaut population. Traditionally, gaze stabilization has been studied almost exclusively in seated subjects performing target acquisition tasks requiring only the involvement of coordinated eye-head movements. However, activities like walking involve full-body movement and require coordination between lower limbs and the eye-head-trunk complex to achieve stabilized gaze during locomotion. Therefore the first goal of this study was to determine how the multiple, interdependent, full-body sensorimotor gaze stabilization subsystems are functionally coordinated during locomotion. In an earlier study we investigated how alteration in gaze tasking changes full-body locomotor control strategies. Subjects walked on a treadmill and either focused on a central point target or read numeral characters. We measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. In comparison to the point target fixation condition, the results of the number reading task showed that compensatory head pitch movements increased, peak head acceleration was reduced and knee flexion at heel-strike was increased. In a more recent study we investigated the

  1. Reduced Anticipatory Locomotor Responses to Scheduled Meals in Ghrelin Receptor Deficient Mice

    PubMed Central

    Blum, Ian D.; Patterson, Zack; Khazall, Rim; Lamont, Elaine Waddington; Sleeman, Mark W.; Horvath, Tamas L.; Abizaid, Alfonso

    2009-01-01

    Ghrelin, an orexigenic hormone produced by the stomach, is secreted in anticipation of scheduled meals and in correlation with anticipatory locomotor activity. We hypothesized that ghrelin is directly implicated in stimulating locomotor activity in anticipation of scheduled meals. To test this hypothesis, we observed 24 hr patterns of locomotor activity in mice with targeted mutations of the ghrelin receptor gene (GHSR KO) and wild-type littermates, all given access to food for four hours daily for 14 days. While WT and GHSR KO mice produced increases in anticipatory locomotor activity, anticipatory locomotor activity in GHSR KO mice was attenuated (p.< 0.05). These behavioral measures correlated with attenuated levels of Fos immunoreactivity in a number of hypothalamic nuclei from GHSR KO placed on the same restricted feeding schedule for seven days and sacrificed at ZT4. Interestingly, seven daily intraperitoeneal ghrelin injections mimicked hypothalamic Fos expression patterns to those seen in mice under restricted feeding schedules. These data suggest that ghrelin acts in the hypothalamus to augment locomotor activity in anticipation of scheduled meals. PMID:19666088

  2. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns

    PubMed Central

    Cruchet, Steeve; Gustafson, Kyle; Benton, Richard; Floreano, Dario

    2015-01-01

    The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs—locomotor bouts—matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior. PMID:26600381

  3. Effects of salvinorin A on locomotor sensitization to D2/D3 dopamine agonist quinpirole.

    PubMed

    Beerepoot, Pieter; Lam, Vincent; Luu, Alice; Tsoi, Bernice; Siebert, Daniel; Szechtman, Henry

    2008-12-03

    Locomotor sensitization induced by the dopamine agonist quinpirole can be potentiated by co-treatment with the synthetic kappa opioid agonist U69593. The identification of salvinorin A, an active component of the psychotropic sage Salvia divinorum, as a structurally different agonist of kappa-opioid receptors raised the question of whether this compound would similarly potentiate sensitization to quinpirole. Rats were co-treated with 0.5 mg/kg quinpirole and either salvinorin A (0.04, 0.4 or 2.0 mg/kg) or U69593 (0.3 mg/kg). Control groups were co-treated with vehicle and saline, vehicle and quinpirole (0.5 mg/kg), or saline and salvinorin A (0.4 mg/kg). Rats were injected biweekly for a total of 10 injections and locomotor activity measured after each treatment. Results showed that the highest dose of salvinorin A potentiated sensitization to quinpirole as did U69593, the middle salvinorin A dose had no effect on quinpirole sensitization, and the lowest dose of salvinorin A attenuated sensitization to quinpirole. These findings indicate that structural differences between salvinorin A and U69593 do not affect the potentiation of quinpirole sensitization. Moreover, the opposite effects of high and low salvinorin A doses suggest that salvinorin A can produce bidirectional modulation of sensitization to dopamine agonists.

  4. Short-term effects of a perinatal exposure to the HBCDD α-isomer in rats: Assessment of early motor and sensory development, spontaneous locomotor activity and anxiety in pups.

    PubMed

    Maurice, Nicolas; Olry, Jean-Charles; Cariou, Ronan; Dervilly-Pinel, Gaud; Le Bizec, Bruno; Travel, Angélique; Jondreville, Catherine; Schroeder, Henri

    2015-01-01

    The present study investigated the developmental neurotoxicity of an early exposure to α-HBCDD through the ingestion of contaminated hen's egg in pregnant and lactating Wistar female rats. Hens were given α-HBCDD-contaminated feed (40 ng/g fresh matter) for 5 and 10 days, which produced eggs with HBCDD content of 33 and 102 ng/glipid weight, respectively. Female rats were administered daily p.o. with an appropriate volume of the whole egg from the day of fertilization (GD0) to the weaning day for pups (PND21). Fetuses and pups were thus exposed continuously to α-HBCDD via the dam over a whole 42-day period that included both gestation and lactation. The administered egg volume was calculated on the basis of daily egg consumption in humans (0.7 egg/person/day) and duration of gestation and lactation in both species, which led animals to be exposed to α-HBCDD at levels of 22 and 66 ng/kg/day, respectively. Neurobehavioral development of pups was investigated from PND3 to PND25 using various tasks including the righting reflex (PND4), the grasping reflex (PND5), the negative geotaxis (PND9), the forelimb grip strength test (PND10) and the locomotor coordination test (PND20). Pup ultrasonic vocalizations were also recorded daily from PND4 to PND14. After weaning, behaviors related to spontaneous locomotor activity and anxiety were examined in the open-field (PND25) and in an elevated-plus maze (PND26), respectively. The results showed a significant decrease in body weight of pups exposed to the lower HBCDD level from PND3 to PND28, whereas the weight of rat pups given 66 ng/kg/day of HBCDD was not different from controls. During the first 3 weeks of life, impairments in motor maturation of pups were observed in a dose-dependent manner depending on the test, whereas no significant differences were reported between male and female pups. At PND26, the anxiety level of female rats exposed to the lowest dose of HBCDD (22 ng/kg/day) was significantly reduced whereas it

  5. Corrugator activity confirms immediate negative affect in surprise

    PubMed Central

    Topolinski, Sascha; Strack, Fritz

    2015-01-01

    The emotion of surprise entails a complex of immediate responses, such as cognitive interruption, attention allocation to, and more systematic processing of the surprising stimulus. All these processes serve the ultimate function to increase processing depth and thus cognitively master the surprising stimulus. The present account introduces phasic negative affect as the underlying mechanism responsible for this switch in operating mode. Surprising stimuli are schema-discrepant and thus entail cognitive disfluency, which elicits immediate negative affect. This affect in turn works like a phasic cognitive tuning switching the current processing mode from more automatic and heuristic to more systematic and reflective processing. Directly testing the initial elicitation of negative affect by surprising events, the present experiment presented high and low surprising neutral trivia statements to N = 28 participants while assessing their spontaneous facial expressions via facial electromyography. High compared to low surprising trivia elicited higher corrugator activity, indicative of negative affect and mental effort, while leaving zygomaticus (positive affect) and frontalis (cultural surprise expression) activity unaffected. Future research shall investigate the mediating role of negative affect in eliciting surprise-related outcomes. PMID:25762956

  6. Dynamics and plasticity of spinal locomotor circuits.

    PubMed

    El Manira, Abdeljabbar

    2014-12-01

    Spinal circuits generate coordinated locomotor movements. These hardwired circuits are supplemented with neuromodulation that provide the necessary flexibility for animals to move smoothly through their environment. This review will highlight some recent insights gained in understanding the functional dynamics and plasticity of the locomotor circuits. First the mechanisms governing the modulation of the speed of locomotion will be discussed. Second, advantages of the modular organization of the locomotor networks with multiple circuits engaged in a task-dependent manner will be examined. Finally, the neuromodulation and the resulting plasticity of the locomotor circuits will be summarized with an emphasis on endocannabinoids and nitric oxide. The intention is to extract general principles of organization and discuss some onto-genetic and phylogenetic divergences.

  7. Repeatability of locomotor performance and morphology-locomotor performance relationships.

    PubMed

    Conradsen, Cara; Walker, Jeffrey A; Perna, Catherine; McGuigan, Katrina

    2016-09-15

    There is good evidence that natural selection drives the evolution of locomotor performance, but the processes that generate the among-individual variation for selection to act on are relatively poorly understood. We measured prolonged swimming performance, Ucrit, and morphology in a large cohort (n=461) of wild-type zebrafish (Danio rerio) at ∼6 months and again at ∼9 months. Using mixed-model analyses to estimate repeatability as the intraclass correlation coefficient, we determined that Ucrit was significantly repeatable (r=0.55; 95% CI: 0.45-0.64). Performance differences between the sexes (males 12% faster than females) and changes with age (decreasing 0.07% per day) both contributed to variation in Ucrit and, therefore, the repeatability estimate. Accounting for mean differences between sexes within the model decreased the estimate of Ucrit repeatability to 21% below the naïve estimate, while fitting age in the models increased the estimate to 14% above the naïve estimate. Greater consideration of factors such as age and sex is therefore necessary for the interpretation of performance repeatability in wild populations. Body shape significantly predicted Ucrit in both sexes in both assays, with the morphology-performance relationship significantly repeatable at the population level. However, morphology was more strongly predicative of performance in older fish, suggesting a change in the contribution of morphology relative to other factors such as physiology and behaviour. The morphology-performance relationship changed with age to a greater extent in males than females.

  8. Locomotor sequence learning in visually guided walking.

    PubMed

    Choi, Julia T; Jensen, Peter; Nielsen, Jens Bo

    2016-04-01

    Voluntary limb modifications must be integrated with basic walking patterns during visually guided walking. In this study we tested whether voluntary gait modifications can become more automatic with practice. We challenged walking control by presenting visual stepping targets that instructed subjects to modify step length from one trial to the next. Our sequence learning paradigm is derived from the serial reaction-time (SRT) task that has been used in upper limb studies. Both random and ordered sequences of step lengths were used to measure sequence-specific and sequence-nonspecific learning during walking. In addition, we determined how age (i.e., healthy young adults vs. children) and biomechanical factors (i.e., walking speed) affected the rate and magnitude of locomotor sequence learning. The results showed that healthy young adults (age 24 ± 5 yr,n= 20) could learn a specific sequence of step lengths over 300 training steps. Younger children (age 6-10 yr,n= 8) had lower baseline performance, but their magnitude and rate of sequence learning were the same compared with those of older children (11-16 yr,n= 10) and healthy adults. In addition, learning capacity may be more limited at faster walking speeds. To our knowledge, this is the first study to demonstrate that spatial sequence learning can be integrated with a highly automatic task such as walking. These findings suggest that adults and children use implicit knowledge about the sequence to plan and execute leg movement during visually guided walking.

  9. Locomotor Experience and Use of Social Information Are Posture Specific

    PubMed Central

    Adolph, Karen E.; Tamis-LeMonda, Catherine S.; Ishak, Shaziela; Karasik, Lana B.; Lobo, Sharon A.

    2015-01-01

    The authors examined the effects of locomotor experience on infants’ perceptual judgments in a potentially risky situation—descending steep and shallow slopes—while manipulating social incentives to determine where perceptual judgments are most malleable. Twelve-month-old experienced crawlers and novice walkers were tested on an adjustable sloping walkway as their mothers encouraged and discouraged descent. A psychophysical procedure was used to estimate infants’ ability to crawl/walk down slopes, followed by test trials in which mothers encouraged and discouraged infants to crawl/walk down. Both locomotor experience and social incentives affected perceptual judgments. In the encourage condition, crawlers only attempted safe slopes within their abilities, but walkers repeatedly attempted impossibly risky slopes, replicating previous work. The discourage condition showed where judgments are most malleable. When mothers provided negative social incentives, crawlers occasionally avoided safe slopes, and walkers occasionally avoided the most extreme 50° increment, although they attempted to walk on more than half the trials. Findings indicate that both locomotor experience and social incentives play key roles in adaptive responding, but the benefits are specific to the posture that infants use for balance and locomotion. PMID:18999332

  10. Locomotor experience and use of social information are posture specific.

    PubMed

    Adolph, Karen E; Tamis-LeMonda, Catherine S; Ishak, Shaziela; Karasik, Lana B; Lobo, Sharon A

    2008-11-01

    The authors examined the effects of locomotor experience on infants' perceptual judgments in a potentially risky situation--descending steep and shallow slopes--while manipulating social incentives to determine where perceptual judgments are most malleable. Twelve-month-old experienced crawlers and novice walkers were tested on an adjustable sloping walkway as their mothers encouraged and discouraged descent. A psychophysical procedure was used to estimate infants' ability to crawl/walk down slopes, followed by test trials in which mothers encouraged and discouraged infants to crawl/walk down. Both locomotor experience and social incentives affected perceptual judgments. In the encourage condition, crawlers only attempted safe slopes within their abilities, but walkers repeatedly attempted impossibly risky slopes, replicating previous work. The discourage condition showed where judgments are most malleable. When mothers provided negative social incentives, crawlers occasionally avoided safe slopes, and walkers occasionally avoided the most extreme 50 degrees increment, although they attempted to walk on more than half the trials. Findings indicate that both locomotor experience and social incentives play key roles in adaptive responding, but the benefits are specific to the posture that infants use for balance and locomotion.

  11. Short-term Cortical Plasticity Associated With Feedback-Error Learning After Locomotor Training in a Patient With Incomplete Spinal Cord Injury

    PubMed Central

    Peters, Sue; Borich, Michael R.; Boyd, Lara A.; Lam, Tania

    2015-01-01

    Background and Purpose For rehabilitation strategies to be effective, training should be based on principles of motor learning, such as feedback-error learning, that facilitate adaptive processes in the nervous system by inducing errors and recalibration of sensory and motor systems. This case report suggests that locomotor resistance training can enhance somatosensory and corticospinal excitability and modulate resting-state brain functional connectivity in a patient with motor-incomplete spinal cord injury (SCI). Case Description The short-term cortical plasticity of a 31-year-old man who had sustained an incomplete SCI 9.5 years previously was explored in response to body-weight–supported treadmill training with velocity-dependent resistance applied with a robotic gait orthosis. The following neurophysiological and neuroimaging measures were recorded before and after training. Sensory evoked potentials were elicited by electrical stimulation of the tibial nerve and recorded from the somatosensory cortex. Motor evoked potentials were generated with transcranial magnetic stimulation applied over the tibialis anterior muscle representation in the primary motor cortex. Resting-state functional magnetic resonance imaging was performed to evaluate short-term changes in patterns of brain activity associated with locomotor training. Outcomes Somatosensory excitability and corticospinal excitability were observed to increase after locomotor resistance training. Motor evoked potentials increased (particularly at higher stimulation intensities), and seed-based resting-state functional magnetic resonance imaging analyses revealed increased functional connectivity strength in the motor cortex associated with the less affected side after training. Discussion The observations suggest evidence of short-term cortical plasticity in 3 complementary neurophysiological measures after one session of locomotor resistance training. Future investigation in a sample of people with

  12. Wings versus legs in the avian bauplan: development and evolution of alternative locomotor strategies.

    PubMed

    Heers, Ashley M; Dial, Kenneth P

    2015-02-01

    Wings have long been regarded as a hallmark of evolutionary innovation, allowing insects, birds, and bats to radiate into aerial environments. For many groups, our intuitive and colloquial perspective is that wings function for aerial activities, and legs for terrestrial, in a relatively independent manner. However, insects and birds often engage their wings and legs cooperatively. In addition, the degree of autonomy between wings and legs may be constrained by tradeoffs, between allocating resources to wings versus legs during development, or between wing versus leg investment and performance (because legs must be carried as baggage by wings during flight and vice versa). Such tradeoffs would profoundly affect the development and evolution of locomotor strategies, and many related aspects of animal ecology. Here, we provide the first evaluation of wing versus leg investment, performance and relative use, in birds-both across species, and during ontogeny in three precocial species with different ecologies. Our results suggest that tradeoffs between wing and leg modules help shape ontogenetic and evolutionary trajectories, but can be offset by recruiting modules cooperatively. These findings offer a new paradigm for exploring locomotor strategies of flying organisms and their extinct precursors, and thereby elucidating some of the most spectacular diversity in animal history.

  13. Tail loss and narrow surfaces decrease locomotor stability in the arboreal green anole lizard (Anolis carolinensis).

    PubMed

    Hsieh, Shi-Tong Tonia

    2016-02-01

    Tails play an important role in dynamic stabilization during falling and jumping in lizards. Yet tail autotomy (the voluntary loss of an appendage) is a common mechanism used for predator evasion in these animals. How tail autotomy has an impact on locomotor performance and stability remains poorly understood. The goal of this study was to determine how tail loss affects running kinematics and performance in the arboreal green anole lizard, Anolis carolinensis. Lizards were run along four surface widths (9.5 mm, 15.9 mm, 19.0 mm and flat), before and following 75% tail autotomy. Results indicate that when perturbed with changes in surface breadth and tail condition, surface breadth tends to have greater impacts on locomotor performance than tail loss. Furthermore, while tail loss does have a destabilizing effect during regular running in these lizards, its function during steady locomotion is minimal. Instead, the tail probably plays a more active role during dynamic maneuvers that require dramatic changes in whole body orientation or center of mass trajectories.

  14. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.

    PubMed

    Gordon, Keith E; Kinnaird, Catherine R; Ferris, Daniel P

    2013-04-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to "fight" the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations.

  15. 16 CFR 801.3 - Activities in or affecting commerce.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Activities in or affecting commerce. 801.3 Section 801.3 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.3...

  16. 16 CFR 801.3 - Activities in or affecting commerce.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Activities in or affecting commerce. 801.3 Section 801.3 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.3...

  17. 16 CFR 801.3 - Activities in or affecting commerce.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Activities in or affecting commerce. 801.3 Section 801.3 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.3...

  18. 16 CFR 801.3 - Activities in or affecting commerce.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Activities in or affecting commerce. 801.3 Section 801.3 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.3...

  19. 16 CFR 801.3 - Activities in or affecting commerce.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Activities in or affecting commerce. 801.3 Section 801.3 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.3...

  20. Monitoring Affect States during Effortful Problem Solving Activities

    ERIC Educational Resources Information Center

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  1. The influence of wind and locomotor activity on surface temperature and energy expenditure of the Eastern house finch (Carpodacus mexicanus) during cold stress.

    PubMed

    Zerba, E; Dana, A N; Lucia, M A

    1999-01-01

    We investigated the extent to which exercise-generated heat compensates for regulatory thermogenesis of Eastern house finches (Carpodacus mexicanus Müller) exposed to ambient temperatures (Ta) and convective conditions typical of that which birds experience in nature while perched in the open or foraging on the ground. We addressed the hypothesis that resting and active birds exposed to similar net convective conditions will exhibit similar surface temperatures (Ts) and metabolic energy expenditures. To test this hypothesis, resting birds were exposed to a wind speed equivalent to the treadmill speed (0.5 m s-1) for a hopping bird (active). Ts of resting birds in no wind, resting birds exposed to wind, and active birds were measured with infrared thermography at Ta between 0 degrees and 25 degrees C. Metabolic heat production was estimated from measures of respiratory gases at Ta between -5 degrees and 25 degrees C. For resting birds in no wind, resting birds in wind, and active birds, Ts decreased with decreasing Ta. The effects of variation in Ta on Ts depended on activity level (F=3.91, df=2,40, P=0.0280). The regression relationship of Ts on Ta, however, did not differ significantly between resting birds exposed to wind and active birds (F=0.12, df=2,40, P=0.8865), whereas the slope was lower and intercept higher for resting birds in no wind compared with those of resting birds exposed to wind and active birds combined (F=20.96, df=2,42, P<0.0001). Metabolic heat production for resting birds exposed to wind and active birds increased with decreasing Ta. Average metabolic heat production of resting (46.01 mW g-1+/-10.60 SD) and active birds (47.63 mW g-1+/-8.76 SD) exposed to similar net convective conditions did not differ significantly (F=3.87, df=1,44, P=0.0556). These results support our hypothesis and provide evidence that exercise generated compensates for thermostatic requirements at Ta just below thermoneutrality, which resembles conditions under which

  2. Lipopolysaccharide affects exploratory behaviors toward novel objects by impairing cognition and/or motivation in mice: Possible role of activation of the central amygdala.

    PubMed

    Haba, Ryota; Shintani, Norihito; Onaka, Yusuke; Wang, Hyper; Takenaga, Risa; Hayata, Atsuko; Baba, Akemichi; Hashimoto, Hitoshi

    2012-03-17

    Lipopolysaccharide (LPS) produces a series of systemic and psychiatric changes called sickness behavior. In the present study, we characterized the LPS-induced decrease in novel object exploratory behaviors in BALB/c mice. As already reported, LPS (0.3-5 μg/mouse) induced dose- and time-dependent decreases in locomotor activity, food intake, social interaction, and exploration for novel objects, and an increase in immobility in the forced-swim test. Although the decrease in locomotor activity was ameliorated by 10h postinjection, novel object exploratory behaviors remained decreased at 24h and were observed even with the lowest dose of LPS. In an object exploration test, LPS shortened object exploration time but did not affect moving time or the frequency of object exploration. Although pre-exposure to the same object markedly decreased the duration of exploration and LPS did not change this reduction, LPS significantly impaired the exploration of a novel object that replaced the familiar one. LPS did not affect anxiety-like behaviors in open-field and elevated plus-maze tests. An LPS-induced increase in the number of c-Fos-immunoreactive cells was observed in several brain regions within 6h of LPS administration, but the number of cells quickly returned to control levels, except in the central amygdala where the increase continued for 24h. These results suggest that LPS most prominently affects object exploratory behaviors by impairing cognition and/or motivation including continuous attention and curiosity toward objects, and that this may be associated with activation of brain nuclei such as the central amygdala.

  3. Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion

    PubMed Central

    Rybak, Ilya A; Shevtsova, Natalia A; Lafreniere-Roula, Myriam; McCrea, David A

    2006-01-01

    The mammalian spinal cord contains a locomotor central pattern generator (CPG) that can produce alternating rhythmic activity of flexor and extensor motoneurones in the absence of rhythmic input and proprioceptive feedback. During such fictive locomotor activity in decerebrate cats, spontaneous omissions of activity occur simultaneously in multiple agonist motoneurone pools for a number of cycles. During these ‘deletions’, antagonist motoneurone pools usually become tonically active but may also continue to be rhythmic. The rhythmic activity that re-emerges following a deletion is often not phase shifted. This suggests that some neuronal mechanism can maintain the locomotor period when motoneurone activity fails. To account for these observations, a simplified computational model of the spinal circuitry has been developed in which the locomotor CPG consists of two levels: a half-centre rhythm generator (RG) and a pattern formation (PF) network, with reciprocal inhibitory interactions between antagonist neural populations at each level. The model represents a network of interacting neural populations with single interneurones and motoneurones described in the Hodgkin-Huxley style. The model reproduces the range of locomotor periods and phase durations observed during real locomotion in adult cats and permits independent control of the level of motoneurone activity and of step cycle timing. By altering the excitability of neural populations within the PF network, the model can reproduce deletions in which motoneurone activity fails but the phase of locomotor oscillations is maintained. The model also suggests criteria for the functional identification of spinal interneurones involved in the mammalian locomotor pattern generation. PMID:17008376

  4. Respiratory gas transport, metabolic status, and locomotor capacity of the Christmas Island red crab Gecarcoidea natalis assessed in the field with respect to dichotomous seasonal activity levels.

    PubMed

    Adamczewska, A M; Morris, S

    2000-05-01

    Red crabs, Gecarcoidea natalis, exhibit seasonal activity patterns: low activity during the dry season when they shelter in burrows to avoid dehydration, and high activity during the wet season. Red crabs were examined in situ in the rainforest of Christmas Island to determine if there were underlying seasonal differences in the capacity for exercise and associated metabolism. During both seasons, free-ranging (FR) crabs engaged in their normal activities and, together with crabs induced to exercise for 5 min, were sampled for haemolymph and muscle tissue. Respiratory gases in the haemolymph and key metabolites were measured to assess differences in metabolic status of FR and exercised crabs. Actively foraging FR crabs during the wet season exhibited a relative haemolymph hypoxia (2.9 kPa) and accumulated an extra 3 mmol. litre(-1) of CO(2) compared to the relatively inactive FR crabs during the dry season. Wet-season crabs appeared to be in a state of relative respiratory acidosis compared to dry-season animals. This hypercapnia may arise as a consequence of a relative hypoventilation in animals with a relatively higher metabolic rate during the wet season. Oxygenation of pulmonary and arterial haemolymph was similar and remained high after 5 min of exercise, indicating that the gills and lungs functioned similarly in gas exchange in both FR and exercised crabs. During exercise, venous O(2) reserves decreased and red crabs experienced a mixed respiratory/metabolic acidosis. Similar changes, after 5 min of enforced exercise, in metabolite concentrations, pH and respiratory gas status in the haemolymph during both sampling seasons suggest that the crabs maintain similar capacity to increase exercise during the wet and the dry seasons, despite the differences in underlying physiological status. This is important since after prolonged inactivity during the dry season, with the arrival of moonsoonal rains, red crabs must engage in their annual breeding migration.

  5. Effects of an oil enriched in gamma linolenic acid on locomotor activity and behaviour in the Morris Maze, following in utero ethanol exposure in rats.

    PubMed

    Duffy, O; Ménez, J F; Leonard, B E

    1992-04-01

    Ethanol is known to decrease the quantity of polyunsaturated fatty acids in brain membranes possibly as the repercussion of an inhibition of delta-5- and delta-6-desaturases. Consequently behavioural changes may occur. Evening Primrose Oil (EPO) which is rich in gamma linolenic acid (10% 8:3 (n-6)) was proposed to try to circumvent these deleterious effects of ethanol. An animal model of the foetal alcohol syndrome was used in which ethanol was administered throughout gestation and into the weaning period, in a milk diet. EPO was administered concurrently with ethanol to establish the effect of this essential fatty acid and ethanol on the animal's behaviour. Animals were tested at approximately 60 days of age for their responses in two different behavioural paradigms, i.e. the stressful memory task of the Morris Maze and the non-stressful activity monitor. In this study we report an increase in learning ability in male (Control-EPO and alcohol-EPO versus their control: P less than 0.00001 and P less than 0.01, respectively) and female rats (Control-EPO and alcohol-EPO versus control: P less than 0.0001 and P less than 0.00001, respectively) after administration of EPO. It was also found that ethanol plus EPO administration consistently raised the activity scores of the rats in the activity monitor (daytime activity scores for male and female rats were P less than 0.00001 and P less than 0.0001, respectively), while ethanol alone decreased the scores (male and female rats P less than 0.00001 and P less than 0.01, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Dopamine D4 receptor stimulation in GABAergic projections of the globus pallidus to the reticular thalamic nucleus and the substantia nigra reticulata of the rat decreases locomotor activity.

    PubMed

    Erlij, David; Acosta-García, Jacqueline; Rojas-Márquez, Martín; González-Hernández, Brenda; Escartín-Perez, Erick; Aceves, Jorge; Florán, Benjamín

    2012-02-01

    Dopamine D4 receptors are localized in the GABAergic projections that globus pallidus (GP) neurons send to the reticular nucleus of the thalamus (RTN), the substantia nigra reticulata (SNr) and the subthalamic nucleus (STN). Deficient D4 function in this network could lead to hyperactivity and thus be important in generating some of the symptoms of ADHD (attention deficit hyperactivity disorder), a condition associated with polymorphisms of dopamine D4 receptors. It is then, unexpected that systemic injections of D4 ligands have no significant effects on the motor activity of normal rats. We further examined this issue by microinjecting D4 ligands and psychostimulant drugs in relevant structures. Interstitial dopamine overflow in the RTN was increased by reverse microdialysis of both methylphenidate and methamphetamine. Intranuclear injections in the RTN of methylphenidate, methamphetamine and the selective D4 agonist PD 168,077 reduced motor activity. Intraperitoneal injection of the D4 antagonist L 745,870 blocked the effects of these intranuclear injections. Similarly, intranuclear injections of PD 168,077 in the SNr inhibited motor activity, an effect that was also blocked by intraperitoneal L 745,870. In rats with 6-OHDA induced hemiparkinsonism, intraperitoneal PD 168,077 produced ipsilateral turning behavior that was blocked by L 745,870. Our results suggest that diminished D4 signaling in GP projections could lead to increased traffic through the relay nuclei of the thalamus and hyperactivity. Hence this basal-ganglia-thalamus network may be one of the targets of the beneficial effects that psychostimulant drugs have in disorders associated with D4 receptor abnormalities. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.

  7. Reactive oxygen species scavenger N-acetyl cysteine reduces methamphetamine-induced hyperthermia without affecting motor activity in mice

    PubMed Central

    Sanchez-Alavez, Manuel; Bortell, Nikki; Galmozzi, Andrea; Conti, Bruno; Marcondes, Maria Cecilia G.

    2014-01-01

    Hyperthermia is a potentially lethal side effect of Methamphetamine (Meth) abuse, which involves the participation of peripheral thermogenic sites such as the Brown Adipose Tissue (BAT). In a previous study we found that the anti-oxidant N-acetyl cysteine (NAC) can prevent the high increase in temperature in a mouse model of Meth-hyperthermia. Here, we have further explored the ability of NAC to modulate Meth-induced hyperthermia in correlation with changes in BAT. We found that NAC treatment in controls causes hypothermia, and, when administered prior or upon the onset of Meth-induced hyperthermia, can ameliorate the temperature increase and preserve mitochondrial numbers and integrity, without affecting locomotor activity. This was different from Dantrolene, which decreased motor activity without affecting temperature. The effects of NAC were seen in spite of its inability to recover the decrease of mitochondrial superoxide induced in BAT by Meth. In addition, NAC did not prevent the Meth-induced decrease of BAT glutathione. Treatment with S-adenosyl-L-methionine, which improves glutathione activity, had an effect in ameliorating Meth-induced hyperthermia, but also modulated motor activity. This suggests a role for the remaining glutathione for controlling temperature. However, the mechanism by which NAC operates is independent of glutathione levels in BAT and specific to temperature. Our results show that, in spite of the absence of a clear mechanism of action, NAC is a pharmacological tool to examine the dissociation between Meth-induced hyperthermia and motor activity, and a drug of potential utility in treating the hyperthermia associated with Meth-abuse. PMID:26346736

  8. Asymmetric frontal cortical activity and negative affective responses to ostracism.

    PubMed

    Peterson, Carly K; Gravens, Laura C; Harmon-Jones, Eddie

    2011-06-01

    Ostracism arouses negative affect. However, little is known about variables that influence the intensity of these negative affective responses. Two studies fill this void by incorporating work on approach- and withdrawal-related emotional states and their associated cortical activations. Study 1 found that following ostracism anger related directly to relative left frontal cortical activation. Study 2 used unilateral hand contractions to manipulate frontal cortical activity prior to an ostracizing event. Right-hand contractions, compared to left-hand contractions, caused greater relative left frontal cortical activation during the hand contractions as well as ostracism. Also, right-hand contractions caused more self-reported anger in response to being ostracized. Within-condition correlations revealed patterns of associations between ostracism-induced frontal asymmetry and emotive responses to ostracism consistent with Study 1. Taken together, these results suggest that asymmetrical frontal cortical activity is related to angry responses to ostracism, with greater relative left frontal cortical activity being associated with increased anger.

  9. Locomotor expertise predicts infants' perseverative errors.

    PubMed

    Berger, Sarah E

    2010-03-01

    This research examined the development of inhibition in a locomotor context. In a within-subjects design, infants received high- and low-demand locomotor A-not-B tasks. In Experiment 1, walking 13-month-old infants followed an indirect path to a goal. In a control condition, infants took a direct route. In Experiment 2, crawling and walking 13-month-old infants crawled through a tunnel to reach a goal at the other end and received the same control condition as in Experiment 1. In both experiments, perseverative errors occurred more often in the high-demand condition than in the low-demand condition. Moreover, in Experiment 2, walkers perseverated more than crawlers, and extent of perseveration was related to infants' locomotor experience. In Experiment 3, the authors addressed a possible confound in Experiment 2 between locomotor expertise and locomotor posture. Novice crawlers perseverated in the difficult tunnels condition, behaving more like novice walkers than expert crawlers. As predicted by a cognitive capacity account of infant perseveration, overtaxed attentional resources resulted in a cognition-action trade-off. Experts who found the task less motorically effortful than novices had more cognitive resources available for problem solving.

  10. A maternal high-fat, high-sucrose diet has sex-specific effects on fetal glucocorticoids with little consequence for offspring metabolism and voluntary locomotor activity in mice

    PubMed Central

    Martel, Kaitlyn M.; Wong, Chi Kin; Hamden, Jordan E.; Gibson, William T.; Soma, Kiran K.

    2017-01-01

    Maternal overnutrition and obesity during pregnancy can have long-term effects on offspring physiology and behaviour. These developmental programming effects may be mediated by fetal exposure to glucocorticoids, which is regulated in part by placental 11β-hydroxysteroid dehydrogenase (11β-HSD) type 1 and 2. We tested whether a maternal high-fat, high-sucrose diet would alter expression of placental 11β-HSD1 and 2, thereby increasing fetal exposure to maternal glucocorticoids, with downstream effects on offspring physiology and behaviour. C57BL/6J mice were fed a high-fat, high-sucrose (HFHS) diet or a nutrient-matched low-fat, no-sucrose control diet prior to and during pregnancy and lactation. At day 17 of gestation, HFHS dams had ~20% lower circulating corticosterone levels than controls. Furthermore, there was a significant interaction between maternal diet and fetal sex for circulating corticosterone levels in the fetuses, whereby HFHS males tended to have higher corticosterone than control males, with no effect in female fetuses. However, placental 11β-HSD1 or 11β-HSD2 expression did not differ between diets or show an interaction between diet and sex. To assess potential long-term consequences of this sex-specific effect on fetal corticosterone, we studied locomotor activity and metabolic traits in adult offspring. Despite a sex-specific effect of maternal diet on fetal glucocorticoids, there was little evidence of sex-specific effects on offspring physiology or behaviour, although HFHS offspring of both sexes had higher circulating corticosterone at 9 weeks of age. Our results suggest the existence of as yet unknown mechanisms that mitigate the effects of altered glucocorticoid exposure early in development, making offspring resilient to the potentially negative effects of a HFHS maternal diet. PMID:28301585

  11. How does the anthropogenic activity affect the spring discharge?

    NASA Astrophysics Data System (ADS)

    Hao, Yonghong; Zhang, Juan; Wang, Jiaojiao; Li, Ruifang; Hao, Pengmei; Zhan, Hongbin

    2016-09-01

    Karst hydrological process has largely been altered by climate change and human activity. In many places throughout the world, human activity (e.g. groundwater pumping and dewatering from mining) has intensified and surpassed climate change, where human activity becomes the primary factor that affects groundwater system. But it is still largely unclear how the human activity affects spring discharge in magnitude and periodicity. This study investigates the effects of anthropogenic activity on spring discharge, using the Xin'an Springs of China as an example. The Xin'an Spring discharge were divided into two time periods: the pre-development period from 1956 to 1971 and the post-development period from 1972 to 2013. We confirm the dividing time (i.e. 1971) of these two periods using the Wilcoxon rank-sum test. Then the wavelet transform and wavelet coherence were used to analyze the karst hydrological processes for the two periods respectively. We analyze the correlations of precipitation and the Xin'an spring discharge with the monsoons including the Indian Summer Monsoon (ISM) and the West North Pacific Monsoon (WNPM) and the climate teleconnections including El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), respectively. The results indicated that the spring discharge was attenuated about 19.63% under the influence of human activity in the Xin'an Springs basin. However, human activity did not alter the size of the resonance frequencies between the spring discharge and the monsoons. In contrast, it reinforced the periodicities of the monsoons-driven spring discharge. It suggested that human has adapted to the major climate periodicities, and human activity had the same rhyme with the primary climate periodicity. In return, human activity enhances the correlation between the monsoons and the spring discharge.

  12. Atomoxetine reverses locomotor hyperactivity, impaired novel object recognition, and prepulse inhibition impairment in mice lacking pituitary adenylate cyclase-activating polypeptide.

    PubMed

    Shibasaki, Y; Hayata-Takano, A; Hazama, K; Nakazawa, T; Shintani, N; Kasai, A; Nagayasu, K; Hashimoto, R; Tanida, M; Katayama, T; Matsuzaki, S; Yamada, K; Taniike, M; Onaka, Y; Ago, Y; Waschek, J A; Köves, K; Reglődi, D; Tamas, A; Matsuda, T; Baba, A; Hashimoto, H

    2015-06-25

    Attention-deficit/hyperactivity disorder (ADHD) is a complex neurobehavioral disorder that is characterized by attention difficulties, impulsivity, and hyperactivity. A non-stimulant drug, atomoxetine (ATX), which is a selective noradrenaline reuptake inhibitor, is widely used for ADHD because it exhibits fewer adverse effects compared to conventional psychostimulants. However, little is known about the therapeutic mechanisms of ATX. ATX treatment significantly alleviated hyperactivity of pituitary adenylate cyclase-activating polypeptide (PACAP)-deficient (PACAP(-/-)) mice with C57BL/6J and 129S6/SvEvTac hybrid background. ATX also improved impaired novel object recognition memory and prepulse inhibition in PACAP(-/-) mice with CD1 background. The ATX-induced increases in extracellular noradrenaline and dopamine levels were significantly higher in the prefrontal cortex of PACAP(-/-) mice compared to wild-type mice with C57BL/6J and 129S6/SvEvTac hybrid background. These results suggest that ATX treatment-induced increases in central monoamine metabolism may be involved in the rescue of ADHD-related abnormalities in PACAP(-/-) mice. Our current study suggests that PACAP(-/-) mice are an ideal rodent model with predictive validity for the study of ADHD etiology and drug development. Additionally, the potential effects of differences in genetic background of PACAP(-/-) mice on behaviors are discussed.

  13. Chronic intracerebroventricular exposure to beta-amyloid(1-40) impairs object recognition but does not affect spontaneous locomotor activity or sensorimotor gating in the rat.

    PubMed

    Nag, S; Tang, F; Yee, B K

    2001-01-01

    This study examined the cognitive effects of chronic in vivo exposure to beta-amyloid(1-40) via the intracerebroventricular route on two distinct paradigms. The first test evaluated a form of early attentional control referred to as sensorimotor gating in which an antecedent weak prepulse stimulus modulates the reactivity to a subsequent startle-eliciting stimulus. The second test utilized the spontaneous preference for a novel object over that of a familiar one in rats as a measure of object recognition memory. We found that beta-amyloid exposure leads to a severe deficit in the object memory test but spares sensorimotor gating. Moreover, unlike the water maze deficit induced by beta-amyloid (Nag et al., in preparation), the deficit on object recognition was resistant to amelioration by systemic physostigmine treatment at a dose of 0.06 mg/kg per day intraperitoneally. The present results add to previous reports that beta-amyloid exposure can lead to deficits on hippocampal lesion sensitive tasks, suggesting that dysfunction of the rhinal cortices in addition to that of the septohippocampal system is implicated in beta-amyloid-induced behavioral impairments. It therefore lends support to the hypothesis that beta-amyloid exposure can lead to severe impairment across multiple memory systems.

  14. Factors affecting farm noise during common agricultural activities.

    PubMed

    Franklin, R C; Depczynski, J; Challinor, K; Williams, W; Fragar, L J

    2006-05-01

    Hearing injury due to exposure to excessive noise during common farming activities is a significant problem for farmers. The aim of this study was to investigate factors that affect the level of risk to hearing caused by common farming activities. Noise levels on farms were measured across a range of activities and producer groups, and situational factors that effect noise levels were also investigated. Older tractors were found to be 6 dB louder than newer tractors. Cabs reduced noise to the operator by 16 dB, which was halved to 8 dB if a door was open. Radios added between 3 and 5 dB to the noise in the cab. These variables significantly affect the noise level at the ear of operators and others in the workplace, and affect the subsequent exposure limits that are considered safe. Situational factors need to be considered in assessing the level of risk to farmers' hearing and in choosing noise management strategies on the farm. This information has been incorporated into material about hearing and discussions with farmers who participated in field day hearing screening programs in Australia.

  15. Firing Dynamics and Modulatory Actions of Supraspinal Dopaminergic Neurons during Zebrafish Locomotor Behavior

    PubMed Central

    Jay, Michael; De Faveri, Francesca; McDearmid, Jonathan Robert

    2015-01-01

    Summary Background Dopamine (DA) has long been known to have modulatory effects on vertebrate motor circuits. However, the types of information encoded by supraspinal DAergic neurons and their relationship to motor behavior remain unknown. Results By conducting electrophysiological recordings from awake, paralyzed zebrafish larvae that can produce behaviorally relevant activity patterns, we show that supraspinal DAergic neurons generate two forms of output: tonic spiking and phasic bursting. Using paired supraspinal DA neuron and motoneuron recordings, we further show that these firing modes are associated with specific behavioral states. Tonic spiking is prevalent during periods of inactivity while bursting strongly correlates with locomotor output. Targeted laser ablation of supraspinal DA neurons reduces motor episode frequency without affecting basic parameters of motor output, strongly suggesting that these cells regulate spinal network excitability. Conclusions Our findings reveal how vertebrate motor circuit flexibility is temporally controlled by supraspinal DAergic pathways and provide important insights into the functional significance of this evolutionarily conserved cell population. PMID:25639243

  16. Circadian regulation of bird song, call, and locomotor behavior by pineal melatonin in the zebra finch.

    PubMed

    Wang, Gang; Harpole, Clifford E; Trivedi, Amit K; Cassone, Vincent M

    2012-04-01

    As both a photoreceptor and pacemaker in the avian circadian clock system, the pineal gland is crucial for maintaining and synchronizing overt circadian rhythms in processes such as locomotor activity and body temperature through its circadian secretion of the pineal hormone melatonin. In addition to receptor presence in circadian and visual system structures, high-affinity melatonin binding and receptor mRNA are present in the song control system of male oscine passeriform birds. The present study explores the role of pineal melatonin in circadian organization of singing and calling behavior in comparison to locomotor activity under different lighting conditions. Similar to locomotor activity, both singing and calling behavior were regulated on a circadian basis by the central clock system through pineal melatonin, since these behaviors free-ran with a circadian period and since pinealectomy abolished them in constant environmental conditions. Further, rhythmic melatonin administration restored their rhythmicity. However, the rates by which these behaviors became arrhythmic and the rates of their entrainment to rhythmic melatonin administration differed among locomotor activity, singing and calling under constant dim light and constant bright light. Overall, the study demonstrates a role for pineal melatonin in regulating circadian oscillations of avian vocalizations in addition to locomotor activity. It is suggested that these behaviors might be controlled by separable circadian clockworks and that pineal melatonin entrains them all through a circadian clock.

  17. Serotonin and Dopamine: Unifying Affective, Activational, and Decision Functions

    PubMed Central

    Cools, Roshan; Nakamura, Kae; Daw, Nathaniel D

    2011-01-01

    Serotonin, like dopamine (DA), has long been implicated in adaptive behavior, including decision making and reinforcement learning. However, although the two neuromodulators are tightly related and have a similar degree of functional importance, compared with DA, we have a much less specific understanding about the mechanisms by which serotonin affects behavior. Here, we draw on recent work on computational models of dopaminergic function to suggest a framework by which many of the seemingly diverse functions associated with both DA and serotonin—comprising both affective and activational ones, as well as a number of other functions not overtly related to either—can be seen as consequences of a single root mechanism. PMID:20736991

  18. Oxalomalate affects the inducible nitric oxide synthase expression and activity.

    PubMed

    Irace, Carlo; Esposito, Giuseppe; Maffettone, Carmen; Rossi, Antonietta; Festa, Michela; Iuvone, Teresa; Santamaria, Rita; Sautebin, Lidia; Carnuccio, Rosa; Colonna, Alfredo

    2007-03-13

    Inducible nitric oxide synthase (iNOS) is an homodimeric enzyme which produces large amounts of nitric oxide (NO) in response to inflammatory stimuli. Several factors affect the synthesis and catalytic activity of iNOS. Particularly, dimerization of NOS monomers is promoted by heme, whereas an intracellular depletion of heme and/or L-arginine considerably decreases NOS resistance to proteolysis. In this study, we found that oxalomalate (OMA, oxalomalic acid, alpha-hydroxy-beta-oxalosuccinic acid), an inhibitor of both aconitase and NADP-dependent isocitrate dehydrogenase, inhibited nitrite production and iNOS protein expression in lipopolysaccharide (LPS)-activated J774 macrophages, without affecting iNOS mRNA content. Furthermore, injection of OMA precursors to LPS-stimulated rats also decreased nitrite production and iNOS expression in isolated peritoneal macrophages. Interestingly, alpha-ketoglutarate or succinyl-CoA administration reversed OMA effect on NO production, thus correlating NO biosynthesis with the anabolic capacity of Krebs cycle. When protein synthesis was blocked by cycloheximide in LPS-activated J774 cells treated with OMA, iNOS protein levels, evaluated by Western blot analysis and (35)S-metabolic labelling, were decreased, suggesting that OMA reduces iNOS biosynthesis and induces an increase in the degradation rate of iNOS protein. Moreover, we showed that OMA inhibits the activity of the iNOS from lung of LPS-treated rats by enzymatic assay. Our results, demonstrating that OMA acts regulating synthesis, catalytic activity and degradation of iNOS, suggest that this compound might have a potential role in reducing the NO overproduction occurring in some pathological conditions.

  19. Neuronal control of locomotor handedness in Drosophila.

    PubMed

    Buchanan, Sean M; Kain, Jamey S; de Bivort, Benjamin L

    2015-05-26

    Genetically identical individuals display variability in their physiology, morphology, and behaviors, even when reared in essentially identical environments, but there is little mechanistic understanding of the basis of such variation. Here, we investigated whether Drosophila melanogaster displays individual-to-individual variation in locomotor behaviors. We developed a new high-throughout platform capable of measuring the exploratory behavior of hundreds of individual flies simultaneously. With this approach, we find that, during exploratory walking, individual flies exhibit significant bias in their left vs. right locomotor choices, with some flies being strongly left biased or right biased. This idiosyncrasy was present in all genotypes examined, including wild-derived populations and inbred isogenic laboratory strains. The biases of individual flies persist for their lifetime and are nonheritable: i.e., mating two left-biased individuals does not yield left-biased progeny. This locomotor handedness is uncorrelated with other asymmetries, such as the handedness of gut twisting, leg-length asymmetry, and wing-folding preference. Using transgenics and mutants, we find that the magnitude of locomotor handedness is under the control of columnar neurons within the central complex, a brain region implicated in motor planning and execution. When these neurons are silenced, exploratory laterality increases, with more extreme leftiness and rightiness. This observation intriguingly implies that the brain may be able to dynamically regulate behavioral individuality.

  20. Neuronal control of locomotor handedness in Drosophila

    PubMed Central

    Buchanan, Sean M.; Kain, Jamey S.; de Bivort, Benjamin L.

    2015-01-01

    Genetically identical individuals display variability in their physiology, morphology, and behaviors, even when reared in essentially identical environments, but there is little mechanistic understanding of the basis of such variation. Here, we investigated whether Drosophila melanogaster displays individual-to-individual variation in locomotor behaviors. We developed a new high-throughout platform capable of measuring the exploratory behavior of hundreds of individual flies simultaneously. With this approach, we find that, during exploratory walking, individual flies exhibit significant bias in their left vs. right locomotor choices, with some flies being strongly left biased or right biased. This idiosyncrasy was present in all genotypes examined, including wild-derived populations and inbred isogenic laboratory strains. The biases of individual flies persist for their lifetime and are nonheritable: i.e., mating two left-biased individuals does not yield left-biased progeny. This locomotor handedness is uncorrelated with other asymmetries, such as the handedness of gut twisting, leg-length asymmetry, and wing-folding preference. Using transgenics and mutants, we find that the magnitude of locomotor handedness is under the control of columnar neurons within the central complex, a brain region implicated in motor planning and execution. When these neurons are silenced, exploratory laterality increases, with more extreme leftiness and rightiness. This observation intriguingly implies that the brain may be able to dynamically regulate behavioral individuality. PMID:25953337

  1. Activities affecting surface water resources: A general overview

    SciTech Connect

    Not Available

    1990-01-01

    In November 1987, P.E.I. signed a federal/provincial work-sharing arrangement on water resource management focusing on groundwater pollution, surface water degradation and estuarine eutrophication. The surface water program was designed to identify current surface water uses and users within 12 major watersheds across the Island containing 26 individual rivers, as well as problems arising due to practices that degrade the quality of surface water and restricts its value to other user groups. This report presents a general overview of the program, covering the general characteristics of the Island; operations in agriculture, fish and wildlife, forestry, recreation, fisheries, and industry; alterations of natural features of waterways; wetlands; additional watershed activities such as hydrometric stations and subdivision development; and activities affecting surface water resources such as sedimentation sources, pollution point sources and instream obstructions.

  2. Intolerance of uncertainty correlates with insula activation during affective ambiguity

    PubMed Central

    Simmons, Alan; Matthews, Scott C.; Paulus, Martin P.; Stein, Murray B.

    2009-01-01

    Intolerance of uncertainty (IU), or the increased affective response to situations with uncertain outcomes, is an important component process of anxiety disorders. Increased IU is observed in panic disorder (PD), obsessive compulsive disorder (OCD) and generalized anxiety disorder (GAD), and is thought to relate to dysfunctional behaviors and thought patterns in these disorders. Identifying what brain systems are associated with IU would contribute to a comprehensive model of anxiety processing, and increase our understanding of the neurobiology of anxiety disorders. Here, we used a behavioral task, Wall of Faces (WOF), during functional magnetic resonance imaging (fMRI), which probes both affect and ambiguity, to examine the neural circuitry of IU in fourteen (10 females) college age (18.8 yrs) subjects. All subjects completed the Intolerance of Uncertainty Scale (IUS), Anxiety Sensitivity Index (ASI), and a measure of neuroticism (i.e. the NEO-N). IUS scores but neither ASI nor NEO-N scores, correlated positively with activation in bilateral insula during affective ambiguity. Thus, the experience of IU during certain types of emotion processing may relate to the degree to which bilateral insula processes uncertainty. Previously observed insula hyperactivity in anxiety disorder individuals may therefore be directly linked to altered processes of uncertainty. PMID:18079060

  3. Intolerance of uncertainty correlates with insula activation during affective ambiguity.

    PubMed

    Simmons, Alan; Matthews, Scott C; Paulus, Martin P; Stein, Murray B

    2008-01-10

    Intolerance of uncertainty (IU), or the increased affective response to situations with uncertain outcomes, is an important component process of anxiety disorders. Increased IU is observed in panic disorder (PD), obsessive compulsive disorder (OCD) and generalized anxiety disorder (GAD), and is thought to relate to dysfunctional behaviors and thought patterns in these disorders. Identifying what brain systems are associated with IU would contribute to a comprehensive model of anxiety processing, and increase our understanding of the neurobiology of anxiety disorders. Here, we used a behavioral task, Wall of Faces (WOFs), during functional magnetic resonance imaging (fMRI), which probes both affect and ambiguity, to examine the neural circuitry of IU in 14 (10 females) college age (18.8 years) subjects. All subjects completed the Intolerance of Uncertainty Scale (IUS), Anxiety Sensitivity Index (ASI), and a measure of neuroticism (i.e. the NEO-N). IUS scores but neither ASI nor NEO-N scores, correlated positively with activation in bilateral insula during affective ambiguity. Thus, the experience of IU during certain types of emotion processing may relate to the degree to which bilateral insula processes uncertainty. Previously observed insula hyperactivity in anxiety disorder individuals may therefore be directly linked to altered processes of uncertainty.

  4. Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis).

    PubMed

    Böser, S; Dournon, C; Gualandris-Parisot, L; Horn, E

    2008-03-01

    During early periods of life, modifications of the gravitational environment affect the development of sensory, neuronal and motor systems. The vestibular system exerts significant effects on motor networks that control eye and body posture as well as swimming. The objective of the present study was to study whether altered gravity (AG) affects vestibuloocular and spinal motor systems in a correlated manner. During the French Soyuz taxi flight Andromède to the International Space Station ISS (launch: October 21, 2001; landing: October 31, 2001) Xenopus laevis embryos were exposed for 10 days to microgravity (microg). In addition, a similar experiment with 3g-hypergravity (3g) was performed in the laboratory. At onset of AG, embryos had reached developmental stages 24 to 27. After exposure to AG, each tadpole was tested for its roll-induced vestibuloocular reflex (rVOR) and 3 hours later it was tested for the neuronal activity recorded from the ventral roots (VR) during fictive swimming. During the post-AG recording periods tadpoles had reached developmental stages 45 to 47. It was observed that microgravity affected VR activity during fictive swimming and rVOR. In particular, VR activity changes included a significant decrease of the rostrocaudal delay and a significant increase of episode duration. The rVOR-amplitude was transiently depressed. Hypergravity was less effective on the locomotor pattern; occurring effects on fictive swimming were the opposite of microg effects. As after microgravity, the rVOR was depressed after 3g-exposure. All modifications of the rVOR and VR-activity recovered to normal levels within 4 to 7 days after termination of AG. Significant correlations between the rVOR amplitude and VR activity of respective tadpoles during the recording period have been observed in both tadpoles with or without AG experience. The data are consistent with the assumptions that during this period of life which is characterized by a progressive development

  5. Comparative effects of continuous infusion of mCPP, Ro 60-0175 and d-fenfluramine on food intake, water intake, body weight and locomotor activity in rats.

    PubMed

    Vickers, S P; Benwell, K R; Porter, R H; Bickerdike, M J; Kennett, G A; Dourish, C T

    2000-07-01

    1. The aim of the study was to compare the effects of 14 day subcutaneous infusion of the 5-HT(2C) receptor agonists, m-chlorophenylpiperazine (mCPP, 12 mg kg(-1) day(-1)) and Ro 60-0175 (36 mg kg(-1) day(-1)) and the 5-HT releasing agent and re-uptake inhibitor, d-fenfluramine (6 mg kg(-1) day(-1)), on food and water intake, body weight gain and locomotion in lean male Lister hooded rats. 2. Chronic infusion of all three drugs significantly reduced food intake and attenuated body weight gain. In contrast, drug infusion did not lead to significant reductions in locomotor activity in animals assessed 2 and 13 days after pump implantation. 3. In a subsequent 14 day study that was designed to identify possible tolerance during days 7 - 14, animals were given a subcutaneous infusion of mCPP (12 mg kg(-1) day(-1)) or d-fenfluramine (6 mg kg(-1) day(-1)) for either 7 or 14 days. During the first 7 days both drugs significantly reduced body weight gain compared to saline-infused controls; however, from day 7 onwards animals withdrawn from drug treatment exhibited an increase in body weight such that by day 14 they were significantly heavier than their 14-day drug-treated counterparts. 4. Both mCPP and d-fenfluramine reduced daily food intake throughout the infusion periods. For 14-day treated animals this hypophagia was marked during the initial week of the study but only minor during the second week. In light of the sustained drug effect on body weight, the data suggest that weight loss by 5-HT(2C) receptor stimulation may be only partly dependent on changes in food consumption and that 5-HT(2C) receptor agonists may have effects on thermogenesis. 5. These data suggest tolerance does not develop to the effects of d-fenfluramine, mCPP and Ro 60-0175 on rat body weight gain.

  6. Exploring the role of locomotor sensitization in the circadian food entrainment pathway

    PubMed Central

    Opiol, Hanna; de Zavalia, Nuria; Delorme, Tara; Solis, Pavel; Rutherford, Spencer; Shalev, Uri; Amir, Shimon

    2017-01-01

    Food entrainment is the internal mechanism whereby the phase and period of circadian clock genes comes under the control of daily scheduled food availability. Food entrainment allows the body to efficiently realign the internal timing of behavioral and physiological functions such that they anticipate food intake. Food entrainment can occur with or without caloric restriction, as seen with daily schedules of restricted feeding (RF) or restricted treat (RT) that restrict food or treat intake to a single feeding time. However, the extent of clock gene control is more pronounced with caloric restriction, highlighting the role of energy balance in regulating clock genes. Recent studies have implicated dopamine (DA) to be involved in food entrainment and caloric restriction is known to affect dopaminergic pathways to enhance locomotor activity. Since food entrainment results in the development of a distinct behavioral component, called food anticipatory activity (FAA), we examined the role of locomotor sensitization (LS) in food entrainment by 1) observing whether amphetamine (AMPH) sensitization results in enhanced locomotor output of FAA and 2) measuring LS of circadian and non-circadian feeding paradigms to an acute injection of AMPH (AMPH cross-sensitization). Unexpectedly, AMPH sensitization did not show enhancement of FAA. On the contrary, LS did develop with sufficient exposure to RF. LS was present after 2 weeks of RF, but not after 1, 3 or 7 days into RF. When food was returned and rats regain their original body weight at 10–15 days post-RF, LS remained present. LS did not develop to RT, nor to feedings of a non-circadian schedule, e.g. variable restricted feeding (VRF) or variable RT (VRT). Further, when RF was timed to the dark period, LS was observed only when tested at night; RF timed to the light period resulted in LS that was present during day and night. Taken together our results show that LS develops with food entrainment to RF, an effect that is

  7. Long-term imaging of circadian locomotor rhythms of a freely crawling C. elegans population

    PubMed Central

    Winbush, Ari; Gruner, Matthew; Hennig, Grant W.; van der Linden, Alexander M.

    2016-01-01

    Background Locomotor activity is used extensively as a behavioral output to study the underpinnings of circadian rhythms. Recent studies have required a populational approach for the study of circadian rhythmicity in Caenorhabditis elegans locomotion. New method We describe an imaging system for long-term automated recording and analysis of locomotion data of multiple free-crawling C. elegans animals on the surface of an agar plate. We devised image analysis tools for measuring specific features related to movement and shape to identify circadian patterns. Results We demonstrate the utility of our system by quantifying circadian locomotor rhythms in wild-type and mutant animals induced by temperature cycles. We show that 13 °C:18 °C (12:12 h) cycles are sufficient to entrain locomotor activity of wild-type animals, which persist but are rapidly damped during 13 °C free-running conditions. Animals with mutations in tax-2, a cyclic nucleotide-gated (CNG) ion channel, significantly reduce locomotor activity during entrainment and free-running. Comparison with existing method(s) Current methods for measuring circadian locomotor activity is generally restricted to recording individual swimming animals of C. elegans, which is a distinct form of locomotion from crawling behavior generally observed in the laboratory. Our system works well with up to 20 crawling adult animals, and allows for a detailed analysis of locomotor activity over long periods of time. Conclusions Our population-based approach provides a powerful tool for quantification of circadian rhythmicity of C. elegans locomotion, and could allow for a screening system of candidate circadian genes in this model organism. PMID:25911068

  8. Locomotor-Like Leg Movements Evoked by Rhythmic Arm Movements in Humans

    PubMed Central

    Sylos-Labini, Francesca; Ivanenko, Yuri P.; MacLellan, Michael J.; Cappellini, Germana; Poppele, Richard E.; Lacquaniti, Francesco

    2014-01-01

    Motion of the upper limbs is often coupled to that of the lower limbs in human bipedal locomotion. It is unclear, however, whether the functional coupling between upper and lower limbs is bi-directional, i.e. whether arm movements can affect the lumbosacral locomotor circuitry. Here we tested the effects of voluntary rhythmic arm movements on the lower limbs. Participants lay horizontally on their side with each leg suspended in an unloading exoskeleton. They moved their arms on an overhead treadmill as if they walked on their hands. Hand-walking in the antero-posterior direction resulted in significant locomotor-like movements of the legs in 58% of the participants. We further investigated quantitatively the responses in a subset of the responsive subjects. We found that the electromyographic (EMG) activity of proximal leg muscles was modulated over each cycle with a timing similar to that of normal locomotion. The frequency of kinematic and EMG oscillations in the legs typically differed from that of arm oscillations. The effect of hand-walking was direction specific since medio-lateral arm movements did not evoke appreciably leg air-stepping. Using externally imposed trunk movements and biomechanical modelling, we ruled out that the leg movements associated with hand-walking were mainly due to the mechanical transmission of trunk oscillations. EMG activity in hamstring muscles associated with hand-walking often continued when the leg movements were transiently blocked by the experimenter or following the termination of arm movements. The present results reinforce the idea that there exists a functional neural coupling between arm and legs. PMID:24608249

  9. Plasticity and modular control of locomotor patterns in neurological disorders with motor deficits

    PubMed Central

    Ivanenko, Y. P.; Cappellini, G.; Solopova, I. A.; Grishin, A. A.; MacLellan, M. J.; Poppele, R. E.; Lacquaniti, F.

    2013-01-01

    Human locomotor movements exhibit considerable variability and are highly complex in terms of both neural activation and biomechanical output. The building blocks with which the central nervous system constructs these motor patterns can be preserved in patients with various sensory-motor disorders. In particular, several studies highlighted a modular burst-like organization of the muscle activity. Here we review and discuss this issue with a particular emphasis on the various examples of adaptation of locomotor patterns in patients (with large fiber neuropathy, amputees, stroke and spinal cord injury). The results highlight plasticity and different solutions to reorganize muscle patterns in both peripheral and central nervous system lesions. The findings are discussed in a general context of compensatory gait mechanisms, spatiotemporal architecture and modularity of the locomotor program. PMID:24032016

  10. Zinc supplementation affects the activity patterns of rural Guatemalan infants.

    PubMed

    Bentley, M E; Caulfield, L E; Ram, M; Santizo, M C; Hurtado, E; Rivera, J A; Ruel, M T; Brown, K H

    1997-07-01

    Zinc deficiency has been associated with growth deficits, reduced dietary intake and appetite, and has been hypothesized to result in reduced activity. This randomized, double-blind, placebo-controlled study examined whether 10 mg of oral zinc as zinc sulfate, given daily for up to 7 mo, affected activity patterns of 85 Guatemalan infants recruited at 6-9 mo of age. Infant activity was assessed by time sampling-observation method at 10-min intervals during a 12-h data collection period, at base line, 3 and 7 mo follow-up. Motor development and the percentage of time infants were observed in various positions (being carried, lying down, sitting, crawling, standing or walking) and engaged in various activities (eating, sleeping, resting, crying/whining or playing) were compared by treatment group. No differences in motor development were observed by treatment group. However, at follow-up 2 (after 7 mo of supplementation), zinc-supplemented infants were significantly more frequently observed sitting up compared with lying down, and were playing during 4.18 +/- 1.95% (P < 0.05) more observations than unsupplemented infants. They were also somewhat less likely to be observed crying or whining (P < 0.10) compared with those receiving the placebo. These effects are independent of other factors including infant age, motor development, sex, maternal education, family socioeconomic status and nutritional status at base line. Further research must be conducted to determine the long-term developmental importance of these differences in activity patterns associated with zinc supplementation in this setting.

  11. Serotonin-dopamine antagonism ameliorates impairments of spontaneous alternation and locomotor hyperactivity induced by repeated electroconvulsive seizures in rats.

    PubMed

    Hidaka, Noriaki; Suemaru, Katsuya; Araki, Hiroaki

    2010-08-01

    We have shown that seven consecutive administrations of electroconvulsive shock (ECS) produce impairment of spontaneous alternation behavior in a Y-maze test and a locomotor hyperactivity in an open-field test even 24h after the last administration in rats. To clarify the mechanisms of the behavioral impairments, we investigated the effect of drugs acting on dopaminergic and serotonergic nervous systems. The dopamine-2 (D(2)) receptor antagonists haloperidol and sulpiride abolished locomotor hyperactivity, but did not show effects on the impairment of spontaneous alternation behavior. The serotonin-2 (5-HT(2)) receptor antagonist ketanserin suppressed the impairment of spontaneous alternation behavior without affecting locomotor hyperactivity. The 5-HT(2) and D(2) receptor antagonist risperidone significantly ameliorated both behavioral impairments. These results suggest that 5-HT(2) receptors and D(2) receptors are associated with repeated ECS-induced impairment of spontaneous alternation behavior and locomotor hyperactivity, respectively.

  12. Differential roles of GABAB1 subunit isoforms on locomotor responses to acute and repeated administration of cocaine.

    PubMed

    Jacobson, Laura H; Sweeney, Fabian F; Kaupmann, Klemens; O'Leary, Olivia F; Gassmann, Martin; Bettler, Bernhard; Cryan, John F

    2016-02-01

    GABAB receptors are crucial modulators of the behavioural effects of drug abuse, and agonists and positive allosteric modulators show promise as pharmacological strategies for anti-addiction therapeutics. GABAB receptors are functional heterodimers of GABAB1 and GABAB2 subunits. The predominant neuronal GABAB1 subunit isoforms are GABAB1a and GABAB1b. Selective ablation of these isoforms in mice revealed differential behavioural responses in fear, cognition and stress sensitivity. However, the influence of the two GABAB1 isoforms on responses to drugs of abuse is unclear. Therefore we examined the responses of GABAB1 subunit isoform null mice to cocaine in acute locomotor activity and conditioned place preference (CPP) paradigms. During habituation for the acute locomotor activity assay, GABAB1b(-/-) mice showed higher levels of locomotor activity relative to wild-type (WT) and GABAB1a(-/-) mice, in accordance with previous studies. Acute cocaine (10 mg/kg) increased locomotor activity in habituated mice of all three genotypes, with GABAB1a(-/-) mice showing sustained hyperlocomotor responses 30 min after cocaine relative to WT and GABAB1b(-/-) mice. No genotypes demonstrated a cocaine-induced place preference, however, GABAB1a(-/-) mice demonstrated enhanced locomotor sensitisation to chronic cocaine in the CPP paradigm in comparison to WT mice, whereas GABAB1b(-/-) mice failed to develop locomotor sensitisation, despite higher levels of basal locomotor activity. These findings indicate that GABAB1a and GABAB1b isoforms differentially regulate behavioural responses to cocaine, with deletion of GABAB1a enhancing cocaine-induced locomotor activity and deletion of GABAB1b protecting from cocaine-induced sensitisation.

  13. Development of a Countermeasure to Mitigate Postflight Locomotor Dysfunction

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.; Ruttley, T. M.

    2006-01-01

    Astronauts returning from space flight experience locomotor dysfunction following their return to Earth. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially learns to learn and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Evidence for the potential efficacy of an adaptive generalization gait training program can be obtained from numerous studies in the motor learning literature which have demonstrated that systematically varying the conditions of training enhances the ability of the performer to learn and retain a novel motor task. These variable practice training approaches have been used in applied contexts to improve motor skills required in a number of different sports. The central nervous system (CNS) can produce voluntary movement in an almost infinite number of ways. For example, locomotion can be achieved with many different combinations of joint angles, muscle activation patterns and forces. The CNS can exploit these degrees of freedom to enhance motor response adaptability during periods of adaptive flux like that encountered during a change in gravitational environment. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to normal. Rather the training regimen should facilitate the reorganization of available sensory and motor subsystems to achieve safe and effective locomotion as soon as possible after long duration space flight. Indeed, this approach has been proposed as a basic feature underlying effective neurological rehabilitation. We have previously confirmed that subjects participating in an adaptive

  14. Monitoring Locomotor Load in Soccer: Is Metabolic Power, Powerful?

    PubMed

    Buchheit, M; Manouvrier, C; Cassirame, J; Morin, J-B

    2015-12-01

    The aim of the present study was to examine the validity and reliability of metabolic power (P) estimated from locomotor demands during soccer-specific drills. 14 highly-trained soccer players performed a soccer-specific circuit with the ball (3×1-min bouts, interspersed with 30-s passive recovery) on 2 different occasions. Locomotor activity was monitored with 4-Hz GPSs, while oxygen update (VO2) was collected with a portable gas analyzer. P was calculated using either net VO2 responses and traditional calorimetry principles (PVO2, W.kg(-1)) or locomotor demands (PGPS, W.kg(-1)). Distance covered into different speed, acceleration and P zones was recorded. While PGPS was 29±10% lower than PVO2 (d<- 3) during the exercise bouts, it was 85±7% lower (d<- 8) during recovery phases. The typical error between PGPS vs. PVO2 was moderate: 19.8%, 90% confidence limits: (18.4;21.6). The correlation between both estimates of P was small: 0.24 (0.14;0.33). Very large day-to-day variations were observed for acceleration, deceleration and > 20 W.kg(-1) distances (all CVs > 50%), while average Po2 and PGPS showed CVs < 10%. ICC ranged from very low- (acceleration and > 20 W.kg(-1) distances) to-very high (PVO2). PGPS largely underestimates the energy demands of soccer-specific drills, especially during the recovery phases. The poor reliability of PGPS >20 W.kg(-1) questions its value for monitoring purposes in soccer.

  15. Yawning and locomotor behavior induced by dopamine receptor agonists in mice and rats.

    PubMed

    Li, Su-Min; Collins, Gregory T; Paul, Noel M; Grundt, Peter; Newman, Amy H; Xu, Ming; Grandy, David K; Woods, James H; Katz, Jonathan L

    2010-05-01

    Dopaminergic (DA) agonist-induced yawning in rats seems to be mediated by DA D3 receptors, and low doses of several DA agonists decrease locomotor activity, an effect attributed to presynaptic D2 receptors. Effects of several DA agonists on yawning and locomotor activity were examined in rats and mice. Yawning was reliably produced in rats, and by the cholinergic agonist, physostigmine, in both the species. However, DA agonists were ineffective in producing yawning in Swiss-Webster or DA D2R and DA D3R knockout or wild-type mice. The drugs significantly decreased locomotor activity in rats at one or two low doses, with activity returning to control levels at higher doses. In mice, the drugs decreased locomotion across a 1000-10 000-fold range of doses, with activity at control levels (U-91356A) or above control levels [(+/-)-7-hydroxy-2-dipropylaminotetralin HBr, quinpirole] at the highest doses. Low doses of agonists decreased locomotion in all mice except the DA D2R knockout mice, but were not antagonized by DA D2R or D3R antagonists (L-741 626, BP 897, or PG01037). Yawning does not provide a selective in-vivo indicator of DA D3R agonist activity in mice. Decreases in mouse locomotor activity by the DA agonists seem to be mediated by D2 DA receptors.

  16. Pharmacologic Antagonism of Ghrelin Receptors Attenuates Development of Nicotine Induced Locomotor Sensitization in Rats

    PubMed Central

    Wellman, Paul J.; Clifford, P. Shane; Rodriguez, Juan; Hughes, Samuel; Eitan, Shoshana; Brunel, Luc; Fehrentz, Jean-Alain; Martinez, Jean

    2011-01-01

    Aims Ghrelin (GHR) is an orexigenic gut peptide that interacts with ghrelin receptors (GHR-Rs) to modulate brain reinforcement circuits. Systemic GHR infusions augment cocaine stimulated locomotion and conditioned place preference (CPP) in rats, whereas genetic or pharmacological ablation of GHR-Rs has been shown to attenuate the acute locomotor-enhancing effects of nicotine, cocaine, amphetamine and alcohol and to blunt the CPP induced by food, alcohol, amphetamine and cocaine in mice. The stimulant nicotine can induce CPP and like amphetamine and cocaine, repeated administration of nicotine induces locomotor sensitization in rats. A key issue is whether pharmacological antagonism of GHR-Rs would similarly attenuate nicotine-induced locomotor sensitization. Method To examine the role of GHR-Rs in the behavioral sensitizing effects of nicotine, adult male rats were injected with either 0, 3 or 6 mg/kg of the GHR-R receptor antagonist JMV 2959 (i.p.) and 20 minutes later with either vehicle or 0.4 mg/kg nicotine hydrogen tartrate (s.c.) on each of 7 consecutive days. Results Rats treated with nicotine alone showed robust locomotor sensitization, whereas rats pretreated with JMV 2959 showed significantly attenuated nicotine-induced hyperlocomotion. Conclusions These results suggest that GHR-R activity is required for the induction of locomotor sensitization to nicotine and complement an emerging literature implicating central GHR systems in drug reward/reinforcement. PMID:21903141

  17. Decomposition of abnormal free locomotor behavior in a rat model of Parkinson's disease

    PubMed Central

    Grieb, Benjamin; von Nicolai, Constantin; Engler, Gerhard; Sharott, Andrew; Papageorgiou, Ismini; Hamel, Wolfgang; Engel, Andreas K.; Moll, Christian K.

    2013-01-01

    Poverty of spontaneous movement, slowed execution and reduced amplitudes of movement (akinesia, brady- and hypokinesia) are cardinal motor manifestations of Parkinson's disease that can be modeled in experimental animals by brain lesions affecting midbrain dopaminergic neurons. Most behavioral investigations in experimental parkinsonism have employed short-term observation windows to assess motor impairments. We postulated that an analysis of longer-term free exploratory behavior could provide further insights into the complex fine structure of altered locomotor activity in parkinsonian animals. To this end, we video-monitored 23 h of free locomotor behavior and extracted several behavioral measures before and after the expression of a severe parkinsonian phenotype following bilateral 6-hydroxydopamine (6-OHDA) lesions of the rat dopaminergic substantia nigra. Unbiased stereological cell counting verified the degree of midbrain tyrosine hydroxylase positive cell loss in the substantia nigra and ventral tegmental area. In line with previous reports, overall covered distance and maximal motion speed of lesioned animals were found to be significantly reduced compared to controls. Before lesion surgery, exploratory rat behavior exhibited a bimodal distribution of maximal speed values obtained for single movement episodes, corresponding to a “first” and “second gear” of motion. 6-OHDA injections significantly reduced the incidence of second gear motion episodes and also resulted in an abnormal prolongation of these fast motion events. Likewise, the spatial spread of such episodes was increased in 6-OHDA rats. The increase in curvature of motion tracks was increased in both lesioned and control animals. We conclude that the discrimination of distinct modes of motion by statistical decomposition of longer-term spontaneous locomotion provides useful insights into the fine structure of fluctuating motor functions in a rat analog of Parkinson's disease. PMID:24348346

  18. Relative shortening velocity in locomotor muscles: turkey ankle extensors operate at low V/V(max).

    PubMed

    Gabaldón, Annette M; Nelson, Frank E; Roberts, Thomas J

    2008-01-01

    The force-velocity properties of skeletal muscle have an important influence on locomotor performance. All skeletal muscles produce less force the faster they shorten and typically develop maximal power at velocities of approximately 30% of maximum shortening velocity (V(max)). We used direct measurements of muscle mechanical function in two ankle extensor muscles of wild turkeys to test the hypothesis that during level running muscles operate at velocities that favor force rather than power. Sonomicrometer measurements of muscle length, tendon strain-gauge measurements of muscle force, and bipolar electromyographs were taken as animals ran over a range of speeds and inclines. These measurements were integrated with previously measured values of muscle V(max) for these muscles to calculate relative shortening velocity (V/V(max)). At all speeds for level running the V/V(max) values of the lateral gastrocnemius and the peroneus longus were low (<0.05), corresponding to the region of the force-velocity relationship where the muscles were capable of producing 90% of peak isometric force but only 35% of peak isotonic power. V/V(max) increased in response to the demand for mechanical power with increases in running incline and decreased to negative values to absorb energy during downhill running. Measurements of integrated electromyograph activity indicated that the volume of muscle required to produce a given force increased from level to uphill running. This observation is consistent with the idea that V/V(max) is an important determinant of locomotor cost because it affects the volume of muscle that must be recruited to support body weight.

  19. Cell-Type-Specific Control of Brainstem Locomotor Circuits by Basal Ganglia

    PubMed Central

    Roseberry, Thomas K.; Lee, A. Moses; Lalive, Arnaud L.; Wilbrecht, Linda; Bonci, Antonello; Kreitzer, Anatol C.

    2015-01-01

    Summary The basal ganglia (BG) are critical for adaptive motor control, but the circuit principles underlying their pathway-specific modulation of target regions are not well understood. Here, we dissect the mechanisms underlying BG direct- and indirect-pathway-mediated control of the mesencephalic locomotor region (MLR), a brainstem target of the BG that is critical for locomotion. We optogenetically dissect the locomotor function of the three neurochemically-distinct cell types within the MLR: glutamatergic, GABAergic, and cholinergic neurons. We find that the glutamatergic subpopulation encodes locomotor state and speed, is necessary and sufficient for locomotion, and is selectively innervated by BG. We further show activation and suppression, respectively, of MLR glutamatergic neurons by direct and indirect pathways, which is required for bidirectional control of locomotion by BG circuits. These findings provide a fundamental understanding of how the BG can initiate or suppress a motor program through cell-type-specific regulation of neurons linked to specific actions. PMID:26824660

  20. Relaxation training affects success and activation on a teaching test.

    PubMed

    Helin, P; Hänninen, O

    1987-12-01

    We studied the effects of an audiocassette-relaxation training period (ART) and its timing on success at a teaching test (lecture type), on observed tension and on a number of physiological responses. The electrical activity of the upper trapezius muscle (EMG), heart rate (HR) and blood pressure (BP), of female and male instructor candidates, were examined before, during and after the teaching test as well as during its critique. The relaxation period (18 min) was presented either on the preceding night (ARTnt) or immediately before the teaching test (ARTimm). The influence of personality (types A-B and extrovert-introvert) was also studied. ART improved success at the teaching test in both sexes. In males (but not in females), ARTimm decreased EMG level during the test, but ARTnt increased EMG at the test period as compared to the control group. In females, both ARTnt and ARTimm lowered HR more than in the control group. ARTimm lowered systolic BP in both sexes. Personality types affected the ART responses; ART was more beneficial for type A than B subjects.

  1. The relationship between activating affects, inhibitory affects, and self-compassion in patients with Cluster C personality disorders.

    PubMed

    Schanche, Elisabeth; Stiles, Tore C; McCullough, Leigh; Svartberg, Martin; Nielsen, Geir Høstmark

    2011-09-01

    In the short-term dynamic psychotherapy model termed "Affect Phobia Treatment," it is assumed that increase in patients' defense recognition, decrease in inhibitory affects (e.g., anxiety, shame, guilt), and increase in the experience of activating affects (e.g., sadness, anger, closeness) are related to enhanced self-compassion across therapeutic approaches. The present study aimed to test this assumption on the basis of data from a randomized controlled trial, which compared a 40-session short-term dynamic psychotherapy (N = 25) with 40-session cognitive treatment (N = 25) for outpatients with Cluster C personality disorders. Patients' defense recognition, inhibitory affects, activating affects, and self-compassion were rated with the Achievement of Therapeutic Objectives Scale (McCullough et al., 2003b) in Sessions 6 and 36. Results showed that increase in self-compassion from early to late in therapy significantly predicted pre- to post-decrease in psychiatric symptoms, interpersonal problems, and personality pathology. Decrease in levels of inhibitory affects and increase in levels of activating affects during therapy were significantly associated with higher self-compassion toward the end of treatment. Increased levels of defense recognition did not predict higher self-compassion when changes in inhibitory and activating affects were statistically controlled for. There were no significant interaction effects with type of treatment. These findings support self-compassion as an important goal of psychotherapy and indicate that increase in the experience of activating affects and decrease in inhibitory affects seem to be worthwhile therapeutic targets when working to enhance self-compassion in patients with Cluster C personality disorders.

  2. Locomotor stimulant and discriminative stimulus effects of 'bath salt' cathinones.

    PubMed

    Gatch, Michael B; Taylor, Cynthia M; Forster, Michael J

    2013-09-01

    A number of psychostimulant-like cathinone compounds are being sold as 'legal' alternatives to methamphetamine or cocaine. The purpose of these experiments was to determine whether cathinone compounds stimulate motor activity and have discriminative stimulus effects similar to those of cocaine and/or methamphetamine. 3,4-Methylenedioxypyrovalerone (MDPV), methylone, mephedrone, naphyrone, flephedrone, and butylone were tested for locomotor stimulant effects in mice and subsequently for substitution in rats trained to discriminate cocaine (10 mg/kg, intraperitoneally) or methamphetamine (1 mg/kg, intraperitoneally) from saline. All compounds fully substituted for the discriminative stimulus effects of cocaine and methamphetamine. Several commonly marketed cathinones produce discriminative stimulus effects comparable with those of cocaine and methamphetamine, which suggests that these compounds are likely to have similar abuse liabilities. MDPV and naphyrone produced locomotor stimulant effects that lasted much longer than those of cocaine or methamphetamine and therefore may be of particular concern, particularly because MDPV is one of the most commonly found substances associated with emergency room visits because of adverse effects of taking 'bath salts'.

  3. Role of the 5-HT₂A receptor in the locomotor hyperactivity produced by phenylalkylamine hallucinogens in mice.

    PubMed

    Halberstadt, Adam L; Powell, Susan B; Geyer, Mark A

    2013-07-01

    The 5-HT₂A receptor mediates the effects of serotonergic hallucinogens and may play a role in the pathophysiology of certain psychiatric disorders, including schizophrenia. Given these findings, there is a need for animal models to assess the behavioral effects of 5-HT₂A receptor activation. Our previous studies demonstrated that the phenylalkylamine hallucinogen and 5-HT₂A/₂C agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) produces dose-dependent effects on locomotor activity in C57BL/6J mice, increasing activity at low to moderate doses and reducing activity at high doses. DOI did not increase locomotor activity in 5-HT₂A knockout mice, indicating the effect is a consequence of 5-HT₂A receptor activation. Here, we tested a series of phenylalkylamine hallucinogens in C57BL/6J mice using the Behavioral Pattern Monitor (BPM) to determine whether these compounds increase locomotor activity by activating the 5-HT₂A receptor. Low doses of mescaline, 2,5-dimethoxy-4-ethylamphetamine (DOET), 2,5-dimethoxy-4-propylamphetamine (DOPR), 2,4,5-trimethoxyamphetamine (TMA-2), and the conformationally restricted phenethylamine (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine (TCB-2) increased locomotor activity. By contrast, the non-hallucinogenic phenylalkylamine 2,5-dimethoxy-4-tert-butylamphetamine (DOTB) did not alter locomotor activity at any dose tested (0.1-10 mg/kg i.p.). The selective 5-HT₂A antagonist M100907 blocked the locomotor hyperactivity induced by mescaline and TCB-2. Similarly, mescaline and TCB-2 did not increase locomotor activity in 5-HT₂A knockout mice. These results confirm that phenylalkylamine hallucinogens increase locomotor activity in mice and demonstrate that this effect is mediated by 5-HT₂A receptor activation. Thus, locomotor hyperactivity in mice can be used to assess phenylalkylamines for 5-HT₂A agonist activity and hallucinogen-like behavioral effects. These studies provide additional support for the link between 5

  4. Cool running: locomotor performance at low body temperature in mammals

    PubMed Central

    Rojas, A. Daniella; Körtner, Gerhard; Geiser, Fritz

    2012-01-01

    Mammalian torpor saves enormous amounts of energy, but a widely assumed cost of torpor is immobility and therefore vulnerability to predators. Contrary to this assumption, some small marsupial mammals in the wild move while torpid at low body temperatures to basking sites, thereby minimizing energy expenditure during arousal. Hence, we quantified how mammalian locomotor performance is affected by body temperature. The three small marsupial species tested, known to use torpor and basking in the wild, could move while torpid at body temperatures as low as 14.8–17.9°C. Speed was a sigmoid function of body temperature, but body temperature effects on running speed were greater than those in an ectothermic lizard used for comparison. We provide the first quantitative data of movement at low body temperature in mammals, which have survival implications for wild heterothermic mammals, as directional movement at low body temperature permits both basking and predator avoidance. PMID:22675136

  5. Cool running: locomotor performance at low body temperature in mammals.

    PubMed

    Rojas, A Daniella; Körtner, Gerhard; Geiser, Fritz

    2012-10-23

    Mammalian torpor saves enormous amounts of energy, but a widely assumed cost of torpor is immobility and therefore vulnerability to predators. Contrary to this assumption, some small marsupial mammals in the wild move while torpid at low body temperatures to basking sites, thereby minimizing energy expenditure during arousal. Hence, we quantified how mammalian locomotor performance is affected by body temperature. The three small marsupial species tested, known to use torpor and basking in the wild, could move while torpid at body temperatures as low as 14.8-17.9°C. Speed was a sigmoid function of body temperature, but body temperature effects on running speed were greater than those in an ectothermic lizard used for comparison. We provide the first quantitative data of movement at low body temperature in mammals, which have survival implications for wild heterothermic mammals, as directional movement at low body temperature permits both basking and predator avoidance.

  6. Frontal Brain Activity and Behavioral Indicators of Affective States are Weakly Affected by Thermal Stimuli in Sheep Living in Different Housing Conditions

    PubMed Central

    Vögeli, Sabine; Wolf, Martin; Wechsler, Beat; Gygax, Lorenz

    2015-01-01

    Many stimuli evoke short-term emotional reactions. These reactions may play an important role in assessing how a subject perceives a stimulus. Additionally, long-term mood may modulate the emotional reactions but it is still unclear in what way. The question seems to be important in terms of animal welfare, as a negative mood may taint emotional reactions. In the present study with sheep, we investigated the effects of thermal stimuli on emotional reactions and the potential modulating effect of mood induced by manipulations of the housing conditions. We assume that unpredictable, stimulus-poor conditions lead to a negative and predictable, stimulus-rich conditions to a positive mood state. The thermal stimuli were applied to the upper breast during warm ambient temperatures: hot (as presumably negative), intermediate, and cold (as presumably positive). We recorded cortical activity by functional near-infrared spectroscopy, restlessness behavior (e.g., locomotor activity, aversive behaviors), and ear postures as indicators of emotional reactions. The strongest hemodynamic reaction was found during a stimulus of intermediate valence independent of the animal’s housing conditions, whereas locomotor activity, ear movements, and aversive behaviors were seen most in sheep from the unpredictable, stimulus-poor housing conditions, independent of stimulus valence. We conclude that, sheep perceived the thermal stimuli and differentiated between some of them. An adequate interpretation of the neuronal activity pattern remains difficult, though. The effects of housing conditions were small indicating that the induction of mood was only modestly efficacious. Therefore, a modulating effect of mood on the emotional reaction was not found. PMID:26664938

  7. Ketogenic diet delays the phase of circadian rhythms and does not affect AMP-activated protein kinase (AMPK) in mouse liver.

    PubMed

    Genzer, Yoni; Dadon, Maayan; Burg, Chen; Chapnik, Nava; Froy, Oren

    2015-12-05

    Ketogenic diet (KD) is used for weight loss or to treat epilepsy. KD leads to liver AMP-activated protein kinase (AMPK) activation, which would be expected to inhibit gluconeogenesis. However, KD leads to increased hepatic glucose output. As AMPK and its active phosphorylated form (pAMPK) show circadian oscillation, this discrepancy could stem from wrong-time-of-day sampling. The effect of KD was tested on mouse clock gene expression, AMPK, mTOR, SIRT1 and locomotor activity for 2 months and compared to low-fat diet (LFD). KD led to 1.5-fold increased levels of blood glucose and insulin. Brain pAMPK/AMPK ratio was 40% higher under KD, whereas that in liver was not affected. KD led to 40% and 20% down-regulation of the ratio of pP70S6K/P70S6K, the downstream target of mTOR, in the brain and liver, respectively. SIRT1 levels were 40% higher in the brain, but 40% lower in the liver of KD-fed mice. Clock genes showed delayed rhythms under KD. In the brain of KD-fed mice, amplitudes of clock genes were down-regulated, whereas 6-fold up-regulation was found in the liver. The metabolic state under KD indicates reduced satiety in the brain and reduced anabolism alongside increased gluconeogenesis in the liver.

  8. Modelling the locomotor energetics of extinct hominids.

    PubMed

    Kramer, P A

    1999-10-01

    Bipedality is the defining characteristic of Hominidae and, as such, an understanding of the adaptive significance and functional implications of bipedality is imperative to any study of human evolution. Hominid bipedality is, presumably, a solution to some problem for the early hominids, one that has much to do with energy expenditure. Until recently, however, little attention could be focused on the quantifiable energetic aspects of bipedality as a unique locomotor form within Primates because of the inability to measure empirically the energy expenditure of non-modern hominids. A recently published method provides a way of circumventing the empirical measurement dilemma by calculating energy expenditure directly from anatomical variables and movement profiles. Although the origins of bipedality remain clouded, two discernible forms of locomotor anatomy are present in the hominid fossil record: the australopithecine and modern configurations. The australopithecine form is best represented by AL 288-1, a partial skeleton of Australopithecus afarensis, and is characterized as having short legs and a wide pelvis. The modern form is represented by modern humans and has long legs and a narrow pelvis. Human walking is optimized to take advantage of the changing levels of potential and kinetic energy that occur as the body and limbs move through the stride cycle. Although this optimization minimizes energy expenditure, some energy is required to maintain motion. I quantify this energy by developing a dynamic model that uses kinematic equations to determine energy expenditure. By representing both configurations with such a model, I can compare their rates of energy expenditure. I find that the australopithecine configuration uses less energy than that of a modern human. Despite arguments presented in the anthropological literature, the shortness of the legs of AL 288-1 provides no evidence that she was burdened with a compromised or transitional locomotor anatomy

  9. Acute exposure to DE-71: effects on locomotor behavior and developmental neurotoxicity in zebrafish larvae.

    PubMed

    Chen, Lianguo; Huang, Changjiang; Hu, Chenyan; Yu, Ke; Yang, Lihua; Zhou, Bingsheng

    2012-10-01

    The aim of the present study was to investigate the acute developmental neurotoxicity of polybrominated diphenyl ethers (PBDEs) in zebrafish larvae. From 2 to 120 h postfertilization zebrafish embryos were exposed to DE-71 (0, 31.0, 68.7, and 227.6 µg/L). The authors studied the locomotor behavior of larvae, involvement of the cholinergic system, and selected gene and protein expressions in the central nervous system. The results showed that low DE-71 concentration caused hyperactivity, whereas higher concentrations decreased activity during the dark period. During the light period, larval activity was significantly reduced in a concentration-dependent manner. In the cholinergic system, acetylcholinesterase activity significantly increased (10.7 and 12.4%) in the 68.7 and 227.6 µg/L exposure groups, respectively, and acetylcholine concentration accordingly decreased (60.5%) in the 227.6 µg/L exposure group. The mRNA expressions of genes encoding myelin basic protein, neuron microtubule protein (α1-tubulin), and sonic hedgehog a were significantly downregulated. Western blotting assay demonstrated that the protein concentration of α1-tubulin was also decreased. Overall, the present study demonstrated that acute exposure to PBDEs can disrupt the neurobehavior of zebrafish larvae and affect cholinergic neurotransmission and neuron development.

  10. Levodopa influences striatal activity but does not affect cortical hyper-activity in Parkinson's disease.

    PubMed

    Martinu, K; Degroot, C; Madjar, C; Strafella, A P; Monchi, O

    2012-02-01

    Motor studies of Parkinson's disease (PD) have shown cortical hypo-activity in relation to nigrostriatal dopamine depletion. Cognitive studies also identified increased cortical activity in PD. We have previously suggested that the hypo-activity/hyper-activity patterns observed in PD are related to the striatal contribution. Tasks that recruit the striatum in control participants are associated with cortical hypo-activity in patients with PD, whereas tasks that do not result in cortical hyper-activity. The putamen, a structure affected by the neurodegeneration observed in PD, shows increased activation for externally-triggered (ET) and self-initiated (SI) movements. The first goal of this study was to evaluate the effect of levodopa on the putamen's response to ET and SI movements. Our second goal was to assess the effect of levodopa on the hypo-activity/hyper-activity patterns in cortical areas. Patients with PD on and off levodopa and healthy volunteers performed SI, ET and control finger movements during functional magnetic resonance imaging. Healthy participants displayed significant differences in putamen activity in ET and SI movements. These differences were reduced in patients off medication, with non-task-specific increases in activity after levodopa administration. Furthermore, the ventrolateral prefrontal cortex showed significant increases in activity during SI movements in healthy controls, whereas it was hypo-active in PD. This region showed significantly increased activity during ET movements in patients off medication. Levodopa had no effect on this discrepancy. Our results suggest that dopamine replacement therapy has a non-task-specific effect on motor corticostriatal regions, and support the hypothesis that increases and decreases in cortical activity in PD are related to the mesocortical dopamine pathway imbalance.

  11. Voluntary and reactive recruitment of locomotor muscle synergies during perturbed walking.

    PubMed

    Chvatal, Stacie A; Ting, Lena H

    2012-08-29

    The modular control of muscles in groups, often referred to as muscle synergies, has been proposed to provide a motor repertoire of actions for the robust control of movement. However, it is not clear whether muscle synergies identified in one task are also recruited by different neural pathways subserving other motor behaviors. We tested the hypothesis that voluntary and reactive modifications to walking in humans result from the recruitment of locomotor muscle synergies. We recorded the activity of 16 muscles in the right leg as subjects walked a 7.5 m path at two different speeds. To elicit a second motor behavior, midway through the path we imposed ramp and hold translation perturbations of the support surface in each of four cardinal directions. Variations in the temporal recruitment of locomotor muscle synergies could account for cycle-by-cycle variations in muscle activity across strides. Locomotor muscle synergies were also recruited in atypical phases of gait, accounting for both anticipatory gait modifications before perturbations and reactive feedback responses to perturbations. Our findings are consistent with the idea that a common pool of spatially fixed locomotor muscle synergies can be recruited by different neural pathways, including the central pattern generator for walking, brainstem pathways for balance control, and cortical pathways mediating voluntary gait modifications. Together with electrophysiological studies, our work suggests that muscle synergies may provide a library of motor subtasks that can be flexibly recruited by parallel descending pathways to generate a variety of complex natural movements in the upper and lower limbs.

  12. The GABAB agonist baclofen blocks the expression of sensitisation to the locomotor stimulant effect of amphetamine.

    PubMed

    Bartoletti, M; Gubellini, C; Ricci, F; Gaiardi, M

    2004-09-01

    The purpose of the present study was to test the possible influence of baclofen, a GABAB agonist, on the long-term sensitisation to amphetamine in rats. As expected, chronic amphetamine treatment (1.5 mg/kg i.p. daily for 10 days) led to an increased locomotor response to amphetamine (0.75 mg/kg i.p.), when the animals were challenged 20 days after the end of repeated treatment. Baclofen (2 mg/kg i.p.), administered before the test session, did not significantly modify the spontaneous locomotor activity of rats, but decreased the normal and, to a greater extent, the sensitised locomotor response to amphetamine; thus baclofen prevented the expression of sensitisation to amphetamine. Moreover a previous chronic treatment with baclofen (2 mg/kg i.p. daily for 10 days) attenuated the amphetamine-induced locomotor activity in sensitised, but not in control animals. This effect was observed 20 days after the last baclofen administration. In conclusion, the present results demonstrate that GABAB receptors play an important role in the expression of the sensitised behavioural response to amphetamine and further support a potential role of GABAB agonists in the treatment of psychostimulant addiction.

  13. Bovine Circadian Locomotor Output Cycles Kaput (CLOCK) and Clusterin (CLU) mRNA Quantitation in Ejaculated Crossbred Bull Spermatozoa.

    PubMed

    Kumar, S; Deb, R; Singh, U; Ganguly, I; Mandal, D K; Tyagi, S; Kumar, M; Sengar, G; Sharma, S; Singh, R; Singh, R

    2015-06-01

    Mammalian circadian locomotor output cycles kaput (CLOCK) gene encodes a transcription factor that affects both the persistence and the period of circadian rhythms. Earlier reports suggested that CLOCK gene might be associated with male infertility in human. Present investigation, for the first time, reports that CLOCK gene expresses differentially between good and poor quality crossbred bull semen. The relative expression of CLOCK was significantly (p < 0.05) higher among good quality bull semen than motility-impaired ones. Clusterins (CLU) are series of genes associated with a variety of physiological activities including spermatogenesis, apoptosis and degenerative disease conditions. In the present context, we also investigated that the expression of CLU gene was significantly (p < 0.05) higher among motility-impaired crossbred bull semen compared to the good quality one.

  14. Suprachiasmatic vasopressin and the circadian regulation of voluntary locomotor behavior.

    PubMed

    Cormier, Holly C; Della-Maggiore, Valeria; Karatsoreos, Ilia N; Koletar, Margaret M; Ralph, Martin R

    2015-01-01

    A role for arginine vasopressin in the circadian regulation of voluntary locomotor behavior (wheel running activity) was investigated in the golden hamster, Mesocricetus auratus. Spontaneous nocturnal running was suppressed in a dose-dependent manner by systemic injections of vasopressin, and also in a concentration-dependent manner by microinjections directly into the hypothalamic suprachiasmatic nucleus. Pre-injections of a vasopressin V1 receptor antagonist into the nucleus reduced the suppression of behavior by vasopressin. Ethogram analyses revealed that peripheral drug injections predominantly increased grooming, flank marking, and sleep-related behaviors. Central injections did not induce sleep, but increased grooming and periods of 'quiet vigilance' (awake but not moving). Nocturnal behavioral profiles following either peripheral or central injections were similar to those shown by untreated animals in the hour prior to the onset of nocturnal wheel running. Site control vasopressin injections into the medial preoptic area or periaqueductal gray increased flank marking and grooming, but had no significant effect on locomotion, suggesting behavioral specificity of a vasopressin target near the suprachiasmatic nucleus. Both peripheral and central administration increased FOS-like immunoreactivity in the retinorecipient core of the suprachiasmatic nucleus. The distribution of FOS-positive cells overlapped the calbindin subregion, but was more extensive, and most calbindin-positive cells did not co-express FOS. We propose a model of temporal behavioral regulation wherein voluntary behavior, such as nocturnal locomotor activity, is inhibited by the activity of neurons in the suprachiasmatic ventrolateral core that project to the posterior hypothalamus and are driven by rhythmic vasopressin input from the dorsomedial shell.

  15. Real-World Affected Upper Limb Activity in Chronic Stroke: An Examination of Potential Modifying Factors

    PubMed Central

    Bailey, Ryan R.; Birkenmeier, Rebecca L.; Lang, Catherine E.

    2015-01-01

    BACKGROUND Despite improvement in motor function after intervention, adults with chronic stroke experience disability in everyday activity. Factors other than motor function may influence affected upper limb (UL) activity. OBJECTIVE To characterize affected UL activity and examine potential modifying factors of affected UL activity in community-dwelling adults with chronic stroke. METHODS Forty-six adults with chronic stroke wore accelerometers on both ULs for 25 hours and provided information about potential modifying factors (time spent in sedentary activity, cognitive impairment, depressive symptomatology, number of comorbidities, motor dysfunction of the affected UL, age, activities of daily living (ADL) status, and living arrangement). Accelerometry was used to quantify duration of affected and unaffected UL activity. The ratio of affected-to-unaffected UL activity was also calculated. Associations within and between accelerometry-derived variables and potential modifying factors were examined. RESULTS Mean hours of affected and unaffected UL activity were 5.0 ± 2.2 and 7.6 ± 2.1 hours, respectively. The ratio of affected-to-unaffected UL activity was 0.64 ± 0.19, and hours of affected and unaffected UL activity were strongly correlated (r=0.78). Increased severity of motor dysfunction and dependence in ADLs were associated with decreased affected UL activity. No other factors were associated with affected UL activity. CONCLUSIONS Severity of motor dysfunction and ADL status should be taken into consideration when setting goals for UL activity in people with chronic stroke. Given the strong, positive correlation between affected and unaffected UL activity, encouragement to increase activity of the unaffected UL may increase affected UL activity. PMID:25776118

  16. Effects of training and testosterone on muscle fiber types and locomotor performance in male six-lined racerunners (Aspidoscelis sexlineata).

    PubMed

    O'Connor, Jennifer L; McBrayer, Lance D; Higham, Timothy E; Husak, Jerry F; Moore, Ignacio T; Rostal, David C

    2011-01-01

    Testosterone (T) is thought to affect a variety of traits important for fitness, including coloration, the size of sexual ornaments, aggression, and locomotor performance. Here, we investigated the effects of experimentally elevated T and locomotor training on muscle physiology and running performance in a nonterritorial male lizard species (Aspidoscelis sexlineata). Additionally, several morphological attributes were quantified to examine other characters that are likely affected by T and/or a training regimen. Neither training alone nor training with T supplementation resulted in increased locomotor performance. Instead, we found that T and training resulted in a decrease in each of three locomotor performance variables as well as in hematocrit, ventral coloration, and testis size. Strikingly, neither the size nor the fiber composition of the iliofibularis or gastrocnemius muscles was different among the two treatments or a group of untrained control animals. Hence, the relationships among T, training, and associated characters are not clear. Our results offer important insights for those hoping to conduct laboratory manipulations on nonmodel organisms and highlight the challenges of studying both training effects and the effects of steroid hormones on locomotor performance.

  17. A silent synapse-based mechanism for cocaine-induced locomotor sensitization.

    PubMed

    Brown, Travis E; Lee, Brian R; Mu, Ping; Ferguson, Deveroux; Dietz, David; Ohnishi, Yoshinori N; Lin, Ying; Suska, Anna; Ishikawa, Masago; Huang, Yanhua H; Shen, Haowei; Kalivas, Peter W; Sorg, Barbara A; Zukin, R Suzanne; Nestler, Eric J; Dong, Yan; Schlüter, Oliver M

    2011-06-01

    Locomotor sensitization is a common and robust behavioral alteration in rodents whereby following exposure to abused drugs such as cocaine, the animal becomes significantly more hyperactive in response to an acute drug challenge. Here, we further analyzed the role of cocaine-induced silent synapses in the nucleus accumbens (NAc) shell and their contribution to the development of locomotor sensitization. Using a combination of viral vector-mediated genetic manipulations, biochemistry, and electrophysiology in a locomotor sensitization paradigm with repeated, daily, noncontingent cocaine (15 mg/kg) injections, we show that dominant-negative cAMP-element binding protein (CREB) prevents cocaine-induced generation of silent synapses of young (30 d old) rats, whereas constitutively active CREB is sufficient to increase the number of NR2B-containing NMDA receptors (NMDARs) at synapses and to generate silent synapses. We further show that occupancy of CREB at the NR2B promoter increases and is causally related to the increase in synaptic NR2B levels. Blockade of NR2B-containing NMDARs by administration of the NR2B-selective antagonist Ro256981 directly into the NAc, under conditions that inhibit cocaine-induced silent synapses, prevents the development of cocaine-elicited locomotor sensitization. Our data are consistent with a cellular cascade whereby cocaine-induced activation of CREB promotes CREB-dependent transcription of NR2B and synaptic incorporation of NR2B-containing NMDARs, which generates new silent synapses within the NAc. We propose that cocaine-induced activation of CREB and generation of new silent synapses may serve as key cellular events mediating cocaine-induced locomotor sensitization. These findings provide a novel cellular mechanism that may contribute to cocaine-induced behavioral alterations.

  18. Daily treadmill exercise attenuates cocaine cue-induced reinstatement and cocaine induced locomotor response but increases cocaine-primed reinstatement

    PubMed Central

    Thanos, Panayotis K.; Stamos, Joshua; Robison, Lisa S.; Heyman, Gary; Tucci, Andrew; Wang, Gene-Jack; Robinson, John K.; Anderson, Brenda J.; Volkow, Nora D.

    2013-01-01

    Exercise affects neuroplasticity and neurotransmission including dopamine (DA), which modulates drug-taking behavior. Previous research in rodents has shown that exercise may attenuate the rewarding effects of drugs of abuse. The present study examined the effects of high and low exercise on cocaine responses in male Wistar rats that had been trained to self-administer and were compared to a group of sedentary rats. High exercise rats (HE) ran daily on a treadmill for 2 h and low exercise (LE) ran daily for 1 h. After 6 weeks of this exercise regimen, rats were tested over 2 days for reinstatement (day 1: cue-induced reinstatement; day 2: cocaine-primed reinstatement). During cue-induced reinstatement, the sedentary rats showed the expected increase in active lever responses when compared to maintenance, whereas these increased responses were inhibited in the exercised rats (HE and LE). During cocaine-primed reinstatement, however, there was a significant increase in active lever presses when compared to maintenance only in the HE group. This data suggests that chronic exercise during abstinence attenuates the cue-induced reinstatement seen in the sedentary rats by 26% (LE) and 21% (HE). In contrast, only the high exercise rats exhibited sensitized cocaine-seeking behavior (active lever presses) following cocaine-primed reinstatement. Finally, while sedentary rats increased locomotor activity during cocaine-primed reinstatement over that seen with cocaine during maintenance, this was not observed in the exercised rats, suggesting that exercise may interfere with the sensitized locomotor response during cocaine reinstatement. PMID:23103403

  19. [The effect of goal framing on the activation of affective representations].

    PubMed

    Takehashi, Hiroki; Karasawa, Kaori

    2007-10-01

    Guided by regulatory focus theory, this study examined the effects of goal framing on the subjective experience of affect and the accessibility of affective representations. Study I examined lay persons' beliefs concerning the relationship between goal framing and certain kinds of affective experiences. The results indicated that a promotion focus was associated with happiness and disappointment, whereas a prevention focus was associated with relaxation and tension. Study 2 examined the effect of goal framing on the activation of affective representations, and found that a promotion focus activated both gain-related representations (happy and disappointment) and loss-related representations (relaxation and tension), whereas a prevention focus activated only loss-related representations. These results suggest that goal framing activates particular affective representations, and the activated affective representations may influence the interpretation of positive or negative experiences. The discussion considered the function of the activation of affective representations as a mediator between goal framing and its cognitive and behavioral consequences.

  20. T Cell Activation Thresholds are Affected by Gravitational

    NASA Technical Reports Server (NTRS)

    Adams, Charley; Gonzalez, M.; Nelman-Gonzalez, M.

    1999-01-01

    T cells stimulated in space flight by various mitogenic signals show a dramatic reduction in proliferation and expression of early activation markers. Similar results are also obtained in a ground based model of microgravity, clinorotation, which provides a vector-averaged reduction of the apparent gravity on cells without significant shear force. Here we demonstrate that T cell inhibition is due to an increase in the required threshold for activation. Dose response curves indicate that cells activated during clinorotation require higher stimulation to achieve the same level of activation, as measured by CD69 expression. Interleukin 2 receptor expression, and DNA synthesis. The amount of stimulation necessary for 50% activation is 5 fold in the clinostat relative to static. Correlation of TCR internalization with activation also exhibit a dramatic right shift in clinorotation, demonstrating unequivocally that signal transduction mechanism independent of TCR triggering account for the increased activation threshold. Previous results from space flight experiments are consistent with the dose response curves obtained for clinorotation. Activation thresholds are important aspects of T cell memory, autoimmunity and tolerance Clinorotation is a useful, noninvasive tool for the study of cellular and biochemical event regulating T cell activation threshold and the effects of gravitation forces on these systems.

  1. [Comparative analysis of metabotropic and ionotropic glutamate striatal receptors blockade influence on rats locomotor behaviour].

    PubMed

    Iakimovskiĭ, A F; Kerko, T V

    2013-02-01

    The influence of NMDA and metabotropic neostriatal glutamate receptors blockade to avoidance conditioning (in shuttle box) and free locomotor behavior (in open field) in chronic experiments in rats were investigated. The glutamate receptor antagonists were injected bilateral into striatum separately and with the GABA-A receptor antagonist picrotoxin (2 microg), that produced in rats the impairment of avoidance conditioning and choreo-myoklonic hyperkinesis. The most effective in preventing of negative picrotoxin influence on behavior was 5-type metabotropic glutamate receptors antagonist MTEP (3 microg). Separately injected MTEP did not influence on avoidance conditioning and free locomotor behavior. Unlike that, 1-type metabotropic glutamate receptors antagonist EMQMCM (3 microg) impaired normal locomotor behavior and did not prevent the picrotoxin effects. The NMDA glutamate receptors MK 801 (disocilpin--1 and 5 microg) impaired the picrotoxin-induced hyperkinesis, but did not to prevent the negative effects on avoidance conditioning; separately injected MK 801 reduced free locomotor activity. Based on location of investigated receptor types in neostriatal neurons membranes, we proposed that the most effective influence on 5-type metabotropic glutamate receptors is associated with their involvement in "indirect" efferent pathway, suffered in hyperkinetic extrapyramidal motor dysfunction--Huntington's chorea in human.

  2. Determinants affecting physical activity levels in animal models

    NASA Technical Reports Server (NTRS)

    Tou, Janet C L.; Wade, Charles E.

    2002-01-01

    Weight control is dependent on energy balance. Reduced energy expenditure (EE) associated with decreased physical activity is suggested to be a major underlying cause in the increasing prevalence of weight gain and obesity. Therefore, a better understanding of the biological determinants involved in the regulation of physical activity is essential. To facilitate interpretation in humans, it is helpful to consider the evidence from animal studies. This review focuses on animal studies examining the biological determinants influencing activity and potential implications to human. It appears that physical activity is influenced by a number of parameters. However, regardless of the parameter involved, body weight appears to play an underlying role in the regulation of activity. Furthermore, the regulation of activity associated with body weight appears to occur only after the animal achieves a critical weight. This suggests that activity levels are a consequence rather than a contributor to weight control. However, the existence of an inverse weight-activity relationship remains inconclusive. Confounding the results are the multifactorial nature of physical activity and the lack of appropriate measuring devices. Furthermore, many determinants of body weight are closely interlocked, making it difficult to determine whether a single, combination, or interaction of factors is important for the regulation of activity. For example, diet-induced obesity, aging, lesions to the ventral medial hypothalamus, and genetics all produce hypoactivity. Providing a better understanding of the biological determinants involved in the regulation of activity has important implications for the development of strategies for the prevention of weight gain leading to obesity and subsequent morbidity and mortality in the human population.

  3. Determinants Affecting Physical Activity Levels In Animal Models

    NASA Technical Reports Server (NTRS)

    Tou, Janet C. L.; Wade, Charles E.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    Weight control is dependent on energy balance. Reduced energy expenditure (EE) associated with decreased physical activity is suggested to be a major underlying cause in the increasing prevalence of weight gain and obesity. Therefore, a better understanding of the biological determinants involved in the regulation of physical activity is essential. To facilitate interpretation in humans, it is helpful to consider the evidence from animal studies. This review focuses on animal studies examining the biological determinants influencing activity and potential implications to human. It appears that physical activity is influenced by a number of parameters. However, regardless of the parameter involved, body weight appears to play all underlying role in the regulation of activity. Furthermore, the regulation of activity associated with body weight appears to occur only after the animal achieves a critical weight. This suggests that activity levels are a consequence rather than a contributor to weight control. However, the existence of an inverse weight-activity relationship remains inconclusive. Confounding the results are the multi-factorial nature of physical activity and the lack of appropriate measuring devices. Furthermore, many determinants of body weight are closely interlocked making it difficult to determine whether a single, combination or interaction of factors is important for the regulation of activity. For example, diet-induced obesity, aging, lesions to tile ventral medial hypothalamus and genetics all produce hypoactivity. Providing a better understanding of the biological determinants involved in the regulation of activity has important implications for the development of strategies for the prevention of weight gain leading to obesity and subsequent morbidity and mortality in the human population.

  4. Facets of dynamic positive affect: differentiating joy, interest, and activation in the positive and negative affect schedule (PANAS).

    PubMed

    Egloff, Boris; Schmukle, Stefan C; Burns, Lawrence R; Kohlmann, Carl-Walter; Hock, Michael

    2003-09-01

    This article proposes the differentiation of Joy, Interest, and Activation in the Positive Affect (PA) scale of the Positive and Negative Affect Schedule (PANAS; D. Watson, L. A. Clark, & A. Tellegen, 1988). Study 1 analyzed the dynamic course of PA before, during, and after an exam and established the differentiation of the three facets. Study 2 used a multistate-multitrait analysis to confirm this structure. Studies 3-5 used success-failure experiences, speaking tasks, and feedback of exam results to further examine PA fa