Science.gov

Sample records for affecting motor neurons

  1. Motor neurone disease.

    PubMed

    2016-03-23

    Essential facts Motor neurone disease describes a group of related diseases, affecting the neurones in the brain and spinal cord. Progressive, incurable and life-limiting, MND is rare, with about 1,100 people developing it each year in the UK and up to 5,000 people affected at any one time. One third of people will die within a year of diagnosis and more than half within two years. About 5% to 10% are alive at ten years.

  2. Interleukin-6 Deficiency Does Not Affect Motor Neuron Disease Caused by Superoxide Dismutase 1 Mutation

    PubMed Central

    Han, Yongmei; Ripley, Barry; Serada, Satoshi; Naka, Tetsuji; Fujimoto, Minoru

    2016-01-01

    Background & Aim Amyotrophic Lateral Sclerosis (ALS) is an adult-onset, progressive, motor neuron degenerative disease. Recent evidence indicates that inflammation is associated with many neurodegenerative diseases including ALS. Previously, abnormal levels of inflammatory cytokines including IL-1β, IL-6 and TNF-α were described in ALS patients and/or in mouse ALS models. In addition, one study showed that blocking IL-1β could slow down progression of ALS-like symptoms in mice. In this study, we examined a role for IL-6 in ALS, using an animal model for familial ALS. Methods Mice with mutant SOD1 (G93A) transgene, a model for familial ALS, were used in this study. The expression of the major inflammatory cytokines, IL-6, IL-1β and TNF-α, in spinal cords of these SOD1 transgenic (TG) mice were assessed by real time PCR. Mice were then crossed with IL-6(-/-) mice to generate SOD1TG/IL-6(-/-) mice. SOD1 TG/IL-6(-/-) mice (n = 17) were compared with SOD1 TG/IL-6(+/-) mice (n = 18), SOD1 TG/IL-6(+/+) mice (n = 11), WT mice (n = 15), IL-6(+/-) mice (n = 5) and IL-6(-/-) mice (n = 8), with respect to neurological disease severity score, body weight and the survival. We also histologically compared the motor neuron loss in lumber spinal cords and the atrophy of hamstring muscles between these mouse groups. Results Levels of IL-6, IL-1β and TNF-α in spinal cords of SOD1 TG mice was increased compared to WT mice. However, SOD1 TG/IL-6(-/-) mice exhibited weight loss, deterioration in motor function and shortened lifespan (167.55 ± 11.52 days), similarly to SOD1 TG /IL-6(+/+) mice (164.31±12.16 days). Motor neuron numbers and IL-1β and TNF-α levels in spinal cords were not significantly different in SOD1 TG /IL-6(-/-) mice and SOD1 TG /IL-6 (+/+) mice. Conclusion These results provide compelling preclinical evidence indicating that IL-6 does not directly contribute to motor neuron disease caused by SOD1 mutations. PMID:27070121

  3. Motor neurone disease: an overview.

    PubMed

    Kent, Anna

    Motor neurone disease (MND) is a relatively rare, progressive and incurable neurological condition affecting patients' speech, mobility and respiratory function. Care of patients with MND is complex and involves various healthcare professionals and services. There is a need to discuss symptom management and promote palliative and end of life care from the point of diagnosis to ensure appropriate holistic care is provided.

  4. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons

    PubMed Central

    Errichelli, Lorenzo; Dini Modigliani, Stefano; Laneve, Pietro; Colantoni, Alessio; Legnini, Ivano; Capauto, Davide; Rosa, Alessandro; De Santis, Riccardo; Scarfò, Rebecca; Peruzzi, Giovanna; Lu, Lei; Caffarelli, Elisa; Shneider, Neil A.; Morlando, Mariangela; Bozzoni, Irene

    2017-01-01

    The RNA-binding protein FUS participates in several RNA biosynthetic processes and has been linked to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Here we report that FUS controls back-splicing reactions leading to circular RNA (circRNA) production. We identified circRNAs expressed in in vitro-derived mouse motor neurons (MNs) and determined that the production of a considerable number of these circRNAs is regulated by FUS. Using RNAi and overexpression of wild-type and ALS-associated FUS mutants, we directly correlate the modulation of circRNA biogenesis with alteration of FUS nuclear levels and with putative toxic gain of function activities. We also demonstrate that FUS regulates circRNA biogenesis by binding the introns flanking the back-splicing junctions and that this control can be reproduced with artificial constructs. Most circRNAs are conserved in humans and specific ones are deregulated in human-induced pluripotent stem cell-derived MNs carrying the FUSP525L mutation associated with ALS. PMID:28358055

  5. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons.

    PubMed

    Errichelli, Lorenzo; Dini Modigliani, Stefano; Laneve, Pietro; Colantoni, Alessio; Legnini, Ivano; Capauto, Davide; Rosa, Alessandro; De Santis, Riccardo; Scarfò, Rebecca; Peruzzi, Giovanna; Lu, Lei; Caffarelli, Elisa; Shneider, Neil A; Morlando, Mariangela; Bozzoni, Irene

    2017-03-30

    The RNA-binding protein FUS participates in several RNA biosynthetic processes and has been linked to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Here we report that FUS controls back-splicing reactions leading to circular RNA (circRNA) production. We identified circRNAs expressed in in vitro-derived mouse motor neurons (MNs) and determined that the production of a considerable number of these circRNAs is regulated by FUS. Using RNAi and overexpression of wild-type and ALS-associated FUS mutants, we directly correlate the modulation of circRNA biogenesis with alteration of FUS nuclear levels and with putative toxic gain of function activities. We also demonstrate that FUS regulates circRNA biogenesis by binding the introns flanking the back-splicing junctions and that this control can be reproduced with artificial constructs. Most circRNAs are conserved in humans and specific ones are deregulated in human-induced pluripotent stem cell-derived MNs carrying the FUS(P525L) mutation associated with ALS.

  6. Androgens affect muscle, motor neuron, and survival in a mouse model of SOD1-related amyotrophic lateral sclerosis.

    PubMed

    Aggarwal, Tanya; Polanco, Maria J; Scaramuzzino, Chiara; Rocchi, Anna; Milioto, Carmelo; Emionite, Laura; Ognio, Emanuela; Sambataro, Fabio; Galbiati, Mariarita; Poletti, Angelo; Pennuto, Maria

    2014-08-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective loss of upper and lower motor neurons and skeletal muscle atrophy. Epidemiologic and experimental evidence suggest the involvement of androgens in ALS pathogenesis, but the mechanism through which androgens modify the ALS phenotype is unknown. Here, we show that androgen ablation by surgical castration extends survival and disease duration of a transgenic mouse model of ALS expressing mutant human SOD1 (hSOD1-G93A). Furthermore, long-term treatment of orchiectomized hSOD1-G93A mice with nandrolone decanoate (ND), an anabolic androgenic steroid, worsened disease manifestations. ND treatment induced muscle fiber hypertrophy but caused motor neuron death. ND negatively affected survival, thereby dissociating skeletal muscle pathology from life span in this ALS mouse model. Interestingly, orchiectomy decreased androgen receptor levels in the spinal cord and muscle, whereas ND treatment had the opposite effect. Notably, stimulation with ND promoted the recruitment of endogenous androgen receptor into biochemical complexes that were insoluble in sodium dodecyl sulfate, a finding consistent with protein aggregation. Overall, our results shed light on the role of androgens as modifiers of ALS pathogenesis via dysregulation of androgen receptor homeostasis.

  7. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    PubMed

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  8. Multidisciplinary Interventions in Motor Neuron Disease

    PubMed Central

    Williams, U. E.; Philip-Ephraim, E. E.; Oparah, S. K.

    2014-01-01

    Motor neuron disease is a neurodegenerative disease characterized by loss of upper motor neuron in the motor cortex and lower motor neurons in the brain stem and spinal cord. Death occurs 2–4 years after the onset of the disease. A complex interplay of cellular processes such as mitochondrial dysfunction, oxidative stress, excitotoxicity, and impaired axonal transport are proposed pathogenetic processes underlying neuronal cell loss. Currently evidence exists for the use of riluzole as a disease modifying drug; multidisciplinary team care approach to patient management; noninvasive ventilation for respiratory management; botulinum toxin B for sialorrhoea treatment; palliative care throughout the course of the disease; and Modafinil use for fatigue treatment. Further research is needed in management of dysphagia, bronchial secretion, pseudobulbar affect, spasticity, cramps, insomnia, cognitive impairment, and communication in motor neuron disease. PMID:26317009

  9. p53 Regulates the neuronal intrinsic and extrinsic responses affecting the recovery of motor function following spinal cord injury.

    PubMed

    Floriddia, Elisa M; Rathore, Khizr I; Tedeschi, Andrea; Quadrato, Giorgia; Wuttke, Anja; Lueckmann, Jan-Matthis; Kigerl, Kristina A; Popovich, Phillip G; Di Giovanni, Simone

    2012-10-03

    Following spinal trauma, the limited physiological axonal sprouting that contributes to partial recovery of function is dependent upon the intrinsic properties of neurons as well as the inhibitory glial environment. The transcription factor p53 is involved in DNA repair, cell cycle, cell survival, and axonal outgrowth, suggesting p53 as key modifier of axonal and glial responses influencing functional recovery following spinal injury. Indeed, in a spinal cord dorsal hemisection injury model, we observed a significant impairment in locomotor recovery in p53(-/-) versus wild-type mice. p53(-/-) spinal cords showed an increased number of activated microglia/macrophages and a larger scar at the lesion site. Loss- and gain-of-function experiments suggested p53 as a direct regulator of microglia/macrophages proliferation. At the axonal level, p53(-/-) mice showed a more pronounced dieback of the corticospinal tract (CST) and a decreased sprouting capacity of both CST and spinal serotoninergic fibers. In vivo expression of p53 in the sensorimotor cortex rescued and enhanced the sprouting potential of the CST in p53(-/-) mice, while, similarly, p53 expression in p53(-/-) cultured cortical neurons rescued a defect in neurite outgrowth, suggesting a direct role for p53 in regulating the intrinsic sprouting ability of CNS neurons. In conclusion, we show that p53 plays an important regulatory role at both extrinsic and intrinsic levels affecting the recovery of motor function following spinal cord injury. Therefore, we propose p53 as a novel potential multilevel therapeutic target for spinal cord injury.

  10. Heavy metals in locus ceruleus and motor neurons in motor neuron disease

    PubMed Central

    2013-01-01

    Background The causes of sporadic amyotrophic lateral sclerosis (SALS) and other types of motor neuron disease (MND) remain largely unknown. Heavy metals have long been implicated in MND, and it has recently been shown that inorganic mercury selectively enters human locus ceruleus (LC) and motor neurons. We therefore used silver nitrate autometallography (AMG) to look for AMG-stainable heavy metals (inorganic mercury and bismuth) in LC and motor neurons of 24 patients with MND (18 with SALS and 6 with familial MND) and in the LC of 24 controls. Results Heavy metals in neurons were found in significantly more MND patients than in controls when comparing: (1) the presence of any versus no heavy metal-containing LC neurons (MND 88%, controls 42%), (2) the median percentage of heavy metal-containing LC neurons (MND 9.5%, control 0.0%), and (3) numbers of individuals with heavy metal-containing LC neurons in the upper half of the percentage range (MND 75%, controls 25%). In MND patients, 67% of remaining spinal motor neurons contained heavy metals; smaller percentages were found in hypoglossal, nucleus ambiguus and oculomotor neurons, but none in cortical motor neurons. The majority of MND patients had heavy metals in both LC and spinal motor neurons. No glia or other neurons, including neuromelanin-containing neurons of the substantia nigra, contained stainable heavy metals. Conclusions Uptake of heavy metals by LC and lower motor neurons appears to be fairly common in humans, though heavy metal staining in the LC, most likely due to inorganic mercury, was seen significantly more often in MND patients than in controls. The LC innervates many cell types that are affected in MND, and it is possible that MND is triggered by toxicant-induced interactions between LC and motor neurons. PMID:24330485

  11. Motor neurons controlling fluid ingestion in Drosophila.

    PubMed

    Manzo, Andrea; Silies, Marion; Gohl, Daryl M; Scott, Kristin

    2012-04-17

    Rhythmic motor behaviors such as feeding are driven by neural networks that can be modulated by external stimuli and internal states. In Drosophila, ingestion is accomplished by a pump that draws fluid into the esophagus. Here we examine how pumping is regulated and characterize motor neurons innervating the pump. Frequency of pumping is not affected by sucrose concentration or hunger but is altered by fluid viscosity. Inactivating motor neurons disrupts pumping and ingestion, whereas activating them elicits arrhythmic pumping. These motor neurons respond to taste stimuli and show prolonged activity to palatable substances. This work describes an important component of the neural circuit for feeding in Drosophila and is a step toward understanding the rhythmic activity producing ingestion.

  12. Atypical motor neuron disease and related motor syndromes.

    PubMed

    Verma, A; Bradley, W G

    2001-06-01

    There is an imperative need for the early diagnosis of amyotrophic lateral sclerosis/motor neuron disease (ALS/MND) in the current era of emerging treatments. When evaluating the patient with ALS/MND, the neurologist must consider a number of other motor neuron disorders and related motor syndromes that may have clinical features resembling ALS/MND. The revised Airlie House-El Escorial diagnostic criteria have been established through the consensus of experts meeting at workshops. However, by definition, using these criteria a patient is likely to have fairly advanced disease at the time of a definitive ALS/MND diagnosis. The reasons for the difficulty in making an early ALS/MND diagnosis are several. No surrogate diagnostic marker currently exists for ALS/MND. ALS/MND at its onset is heterogeneous in clinical presentation, its clinical course is variable, and several clinical variants are recognized. In addition, certain motor syndromes, such as monomelic amyotrophy, postpolio muscular atrophy, and multifocal motor neuropathy, can clinically mimic ALS/MND. Therefore, not only may the diagnosis of ALS/MND be clinically missed in the early stages, but worse, the patient may be wrongly labeled as having ALS/MND. The diagnosis of ALS/MND requires a combination of upper motor neuron (UMN) and lower motor neuron (LMN) involvement. Motor syndromes in which the deficit is restricted to the UMN or LMN through the entire course of the disease are described as atypical MND in this review. Approximately 5% of patients with ALS/MND have overt dementia with a characteristic frontal affect. ALS/MND with parkinsonism and dementia is rare outside the western Pacific region. The clinical course of motor disorder in these overlap syndromes does not differ from that in typical ALS/MND.

  13. Amyotrophic lateral sclerosis-related VAPB P56S mutation differentially affects the function and survival of corticospinal and spinal motor neurons.

    PubMed

    Aliaga, Leonardo; Lai, Chen; Yu, Jia; Chub, Nikolai; Shim, Hoon; Sun, Lixin; Xie, Chengsong; Yang, Wan-Jou; Lin, Xian; O'Donovan, Michael J; Cai, Huaibin

    2013-11-01

    The substitution of Proline with Serine at residue 56 (P56S) of vesicle-associated membrane protein-associated protein B (VAPB) has been linked to an atypical autosomal dominant form of familial amyotrophic lateral sclerosis 8 (ALS8). To investigate the pathogenic mechanism of P56S VAPB in ALS, we generated transgenic (Tg) mice that heterologously express human wild-type (WT) and P56S VAPB under the control of a pan-neuronal promoter Thy1.2. While WT VAPB Tg mice did not exhibit any overt motor behavioral phenotypes, P56S VAPB Tg mice developed progressive hyperactivities and other motor abnormalities. VAPB protein was accumulated as large punctate in the soma and proximal dendrites of both corticospinal motor neurons (CSMNs) and spinal motor neurons (SMNs) in P56S VAPB Tg mice. Concomitantly, a significant increase of endoplasmic reticulum stress and unfolded protein response and the resulting up-regulation of pro-apoptotic factor CCAAT/enhancer-binding protein homologous protein expression were observed in the CSMNs and SMNs of P56S VAPB Tg mice. However, only a progressive loss of CSMNs but not SMNs was found in P56S VAPB Tg mice. In SMNs, P56S VAPB promoted a rather selective translocation of VAPB protein onto the postsynaptic site of C-boutons that altered the morphology of C-boutons and impaired the spontaneous rhythmic discharges of SMNs. Therefore, these findings provide new pathophysiological mechanisms of P56S VAPB that differentially affect the function and survival of CSMNs and SMNs in ALS8.

  14. Amyotrophic lateral sclerosis-related VAPB P56S mutation differentially affects the function and survival of corticospinal and spinal motor neurons

    PubMed Central

    Aliaga, Leonardo; Lai, Chen; Yu, Jia; Chub, Nikolai; Shim, Hoon; Sun, Lixin; Xie, Chengsong; Yang, Wan-Jou; Lin, Xian; O'Donovan, Michael J.; Cai, Huaibin

    2013-01-01

    The substitution of Proline with Serine at residue 56 (P56S) of vesicle-associated membrane protein-associated protein B (VAPB) has been linked to an atypical autosomal dominant form of familial amyotrophic lateral sclerosis 8 (ALS8). To investigate the pathogenic mechanism of P56S VAPB in ALS, we generated transgenic (Tg) mice that heterologously express human wild-type (WT) and P56S VAPB under the control of a pan-neuronal promoter Thy1.2. While WT VAPB Tg mice did not exhibit any overt motor behavioral phenotypes, P56S VAPB Tg mice developed progressive hyperactivities and other motor abnormalities. VAPB protein was accumulated as large punctate in the soma and proximal dendrites of both corticospinal motor neurons (CSMNs) and spinal motor neurons (SMNs) in P56S VAPB Tg mice. Concomitantly, a significant increase of endoplasmic reticulum stress and unfolded protein response and the resulting up-regulation of pro-apoptotic factor CCAAT/enhancer-binding protein homologous protein expression were observed in the CSMNs and SMNs of P56S VAPB Tg mice. However, only a progressive loss of CSMNs but not SMNs was found in P56S VAPB Tg mice. In SMNs, P56S VAPB promoted a rather selective translocation of VAPB protein onto the postsynaptic site of C-boutons that altered the morphology of C-boutons and impaired the spontaneous rhythmic discharges of SMNs. Therefore, these findings provide new pathophysiological mechanisms of P56S VAPB that differentially affect the function and survival of CSMNs and SMNs in ALS8. PMID:23771029

  15. Human TDP-43 and FUS selectively affect motor neuron maturation and survival in a murine cell model of ALS by non-cell-autonomous mechanisms.

    PubMed

    Wächter, Nicole; Storch, Alexander; Hermann, Andreas

    2015-01-01

    TAR DNA-binding protein 43 (TDP-43) and fused in sarcoma (FUS) were recently found to cause familial and sporadic amyotrophic lateral sclerosis (ALS). The mechanisms by which mutations within these genes cause ALS are not understood. We established murine embryonic stem cell (ESC)-based cell models that stably express the human wild-type (WT) and various ALS causing mutations of TDP-43 (A315T) and FUS (R514S, R521C and P525L). We investigated their effect on pan-neuron as well as motor neuron degeneration. Finally, non-cell-autonomous mediated neurodegeneration by muscle cells was investigated. Expression of mutant hTDP-43, but not wild-type TDP-43, as well as wild-type and mutant hFUS proteins induced neuronal degeneration with partial selectivity for motor neurons. Motor neuron loss was accompanied by abnormal neurite morphology and length. In chimeric coculture experiments with control motor neurons and mutant muscle cells (as their major target cells), we detected that mutant hTDP-43 A315T as well as wild-type and hFUS P525L expression only in muscle cells is sufficient to exert degenerative effects on control motor neurons. In conclusion, our data indicate that a selective vulnerability of motor neurons expressing the pathogenic ALS-causing genes TDP-43 and FUS, is, at least in part, mediated through non-cell-autonomous mechanisms.

  16. Pathological involvement of the motor neuron system and hippocampal formation in motor neuron disease-inclusion dementia.

    PubMed

    Toyoshima, Yasuko; Piao, Yue-Shan; Tan, Chun-Feng; Morita, Masahiro; Tanaka, Masaharu; Oyanagi, Kiyomitsu; Okamoto, Koichi; Takahashi, Hitoshi

    2003-07-01

    We report two patients with motor neuron disease-inclusion dementia, with special reference to the pathology of the motor neuron system and hippocampal formation. The ages of the patients at death were 55 and 62 years, and the disease durations were 8 and 3 years, respectively. The two patients exhibited progressive frontotemporal dementia in the absence of motor neuron signs. At autopsy, both cases exhibited frontotemporal lobar atrophy with ubiquitin-positive, and tau- and alpha-synuclein-negative neuronal inclusions. As expected from the clinical signs, in both cases, the upper and lower motor neuron systems were well preserved: no Bunina bodies or ubiquitinated inclusions were detected in the motor neurons. However, of great importance was that when visualized immunohistochemically, the Golgi apparatus and trans-Golgi network often exhibited fragmentation in the lower motor neurons (the spinal anterior horn cells). In one of the cases, a decrease in the amount of Golgi apparatus was also a frequent feature in the upper motor neurons (Betz cells in the motor cortex). Moreover, in both cases, circumscribed degeneration affecting the CA1-subiculum border zone was evident in the hippocampal formation. These findings further strengthen the idea that, pathologically, motor neuron disease-inclusion dementia is a rare phenotype of amyotrophic lateral sclerosis.

  17. Quo vadis motor neuron disease?

    PubMed Central

    Balendra, Rubika; Patani, Rickie

    2016-01-01

    Motor neuron disease (MND), also known as amyotrophic lateral sclerosis, is a relentlessly progressive neurodegenerative condition that is invariably fatal, usually within 3 to 5 years of diagnosis. The aetio-pathogenesis of MND remains unresolved and no effective treatments exist. The only Food and Drug Administration approved disease modifying therapy is riluzole, a glutamate antagonist, which prolongs survival by up to 3 mo. Current management is largely symptomatic/supportive. There is therefore a desperate and unmet clinical need for discovery of disease mechanisms to guide novel therapeutic strategy. In this review, we start by introducing the organizational anatomy of the motor system, before providing a clinical overview of its dysfunction specifically in MND. We then summarize insights gained from pathological, genetic and animal models and conclude by speculating on optimal strategies to drive the step change in discovery, which is so desperately needed in this arena. PMID:27019797

  18. Motor neuron dysfunction in frontotemporal dementia.

    PubMed

    Burrell, James R; Kiernan, Matthew C; Vucic, Steve; Hodges, John R

    2011-09-01

    Frontotemporal dementia and motor neuron disease share clinical, genetic and pathological characteristics. Motor neuron disease develops in a proportion of patients with frontotemporal dementia, but the incidence, severity and functional significance of motor system dysfunction in patients with frontotemporal dementia has not been determined. Neurophysiological biomarkers have been developed to document motor system dysfunction including: short-interval intracortical inhibition, a marker of corticospinal motor neuron dysfunction and the neurophysiological index, a marker of lower motor neuron dysfunction. The present study performed detailed clinical and neurophysiological assessments on 108 participants including 40 consecutive patients with frontotemporal dementia, 42 age- and gender-matched patients with motor neuron disease and 26 control subjects. Of the 40 patients with frontotemporal dementia, 12.5% had concomitant motor neuron disease. A further 27.3% of the patients with frontotemporal dementia had clinical evidence of minor motor system dysfunction such as occasional fasciculations, mild wasting or weakness. Biomarkers of motor system function were abnormal in frontotemporal dementia. Average short-interval intracortical inhibition was reduced in frontotemporal dementia (4.3 ± 1.7%) compared with controls (9.1 ± 1.1%, P < 0.05). Short-interval intracortical inhibition was particularly reduced in the progressive non-fluent aphasia subgroup, but was normal in patients with behavioural variant frontotemporal dementia and semantic dementia. The neurophysiological index was reduced in frontotemporal dementia (1.1) compared with controls (1.9, P < 0.001), indicating a degree of lower motor neuron dysfunction, although remained relatively preserved when compared with motor neuron disease (0.7, P < 0.05). Motor system dysfunction in frontotemporal dementia may result from pathological involvement of the primary motor cortex, with secondary

  19. Advances in motor neurone disease.

    PubMed

    Bäumer, Dirk; Talbot, Kevin; Turner, Martin R

    2014-01-01

    Motor neurone disease (MND), the commonest clinical presentation of which is amyotrophic lateral sclerosis (ALS), is regarded as the most devastating of adult-onset neurodegenerative disorders. The last decade has seen major improvements in patient care, but also rapid scientific advances, so that rational therapies based on key pathogenic mechanisms now seem plausible. ALS is strikingly heterogeneous in both its presentation, with an average one-year delay from first symptoms to diagnosis, and subsequent rate of clinical progression. Although half of patients succumb within 3-4 years of symptom onset, typically through respiratory failure, a significant minority survives into a second decade. Although an apparently sporadic disorder for most patients, without clear environmental triggers, recent genetic studies have identified disease-causing mutations in genes in several seemingly disparate functional pathways, so that motor neuron degeneration may need to be understood as a common final pathway with a number of upstream causes. This apparent aetiological and clinical heterogeneity suggests that therapeutic studies should include detailed biomarker profiling, and consider genetic as well as clinical stratification. The most common mutation, accounting for 10% of all Western hemisphere ALS, is a hexanucleotide repeat expansion in C9orf72. This and several other genes implicate altered RNA processing and protein degradation pathways in the core of ALS pathogenesis. A major gap remains in understanding how such fundamental processes appear to function without obvious deficit in the decades prior to symptom emergence, and the study of pre-symptomatic gene carriers is an important new initiative.

  20. The Effects of Motor Neurone Disease on Language: Further Evidence

    ERIC Educational Resources Information Center

    Bak, Thomas H.; Hodges, John R.

    2004-01-01

    It might sound surprising that Motor Neurone Disease (MND), regarded still by many as the very example of a neurodegenerative disease affecting selectively the motor system and sparing the sensory functions as well as cognition, can have a significant influence on language. In this article we hope to demonstrate that language dysfunction is not…

  1. ATF3 expression improves motor function in the ALS mouse model by promoting motor neuron survival and retaining muscle innervation.

    PubMed

    Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H

    2014-01-28

    ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.

  2. Motor neurons and the generation of spinal motor neuron diversity

    PubMed Central

    Stifani, Nicolas

    2014-01-01

    Motor neurons (MNs) are neuronal cells located in the central nervous system (CNS) controlling a variety of downstream targets. This function infers the existence of MN subtypes matching the identity of the targets they innervate. To illustrate the mechanism involved in the generation of cellular diversity and the acquisition of specific identity, this review will focus on spinal MNs (SpMNs) that have been the core of significant work and discoveries during the last decades. SpMNs are responsible for the contraction of effector muscles in the periphery. Humans possess more than 500 different skeletal muscles capable to work in a precise time and space coordination to generate complex movements such as walking or grasping. To ensure such refined coordination, SpMNs must retain the identity of the muscle they innervate. Within the last two decades, scientists around the world have produced considerable efforts to elucidate several critical steps of SpMNs differentiation. During development, SpMNs emerge from dividing progenitor cells located in the medial portion of the ventral neural tube. MN identities are established by patterning cues working in cooperation with intrinsic sets of transcription factors. As the embryo develop, MNs further differentiate in a stepwise manner to form compact anatomical groups termed pools connecting to a unique muscle target. MN pools are not homogeneous and comprise subtypes according to the muscle fibers they innervate. This article aims to provide a global view of MN classification as well as an up-to-date review of the molecular mechanisms involved in the generation of SpMN diversity. Remaining conundrums will be discussed since a complete understanding of those mechanisms constitutes the foundation required for the elaboration of prospective MN regeneration therapies. PMID:25346659

  3. Trophic Factor Expression in Phrenic Motor Neurons

    PubMed Central

    Mantilla, Carlos B.; Sieck, Gary C.

    2008-01-01

    The function of a motor neuron and the muscle fibers it innervates (i.e., a motor unit) determines neuromotor output. Unlike other skeletal muscles, respiratory muscles (e.g., the diaphragm, DIAm) must function from birth onwards in sustaining ventilation. DIAm motor units are capable of both ventilatory and non-ventilatory behaviors, including expulsive behaviors important for airway clearance. There is significant diversity in motor unit properties across different types of motor units in the DIAm. The mechanisms underlying the development and maintenance of motor unit diversity in respiratory muscles (including the DIAm) are not well understood. Recent studies suggest that trophic factor influences contribute to this diversity. Remarkably little is known about the expression of trophic factors and their receptors in phrenic motor neurons. This review will focus on the contribution of trophic factors to the establishment and maintenance of motor unit diversity in the DIAm, during development and in response to injury or disease. PMID:18708170

  4. Delayed focal involvement of upper motor neurons in the Madras pattern of motor neuron disease.

    PubMed

    Massa, R; Scalise, A; Iani, C; Palmieri, M G; Bernardi, G

    1998-12-01

    We report the case of a young man from the south of India, initially presenting the typical signs of benign monomelic amyotrophy (BMA) in the left upper limb. After several years, the involvement of other limbs and the appearance of bulbar signs suggested the possible diagnosis of the Madras pattern of motor neuron disease (MMND). Serial motor evoked potential (MEP) recordings allowed detection of the onset of a focal involvement of upper motor neurons (UMN) controlling innervation in the originally amyotrophic limb. Therefore, serial MEP recordings can be useful for the early detection of sub-clinical UMN damage in motor neuron disease presenting with pure lower motor neuron (LMN) signs.

  5. Selective disruption of acetylcholine synthesis in subsets of motor neurons: a new model of late-onset motor neuron disease.

    PubMed

    Lecomte, Marie-José; Bertolus, Chloé; Santamaria, Julie; Bauchet, Anne-Laure; Herbin, Marc; Saurini, Françoise; Misawa, Hidemi; Maisonobe, Thierry; Pradat, Pierre-François; Nosten-Bertrand, Marika; Mallet, Jacques; Berrard, Sylvie

    2014-05-01

    Motor neuron diseases are characterized by the selective chronic dysfunction of a subset of motor neurons and the subsequent impairment of neuromuscular function. To reproduce in the mouse these hallmarks of diseases affecting motor neurons, we generated a mouse line in which ~40% of motor neurons in the spinal cord and the brainstem become unable to sustain neuromuscular transmission. These mice were obtained by conditional knockout of the gene encoding choline acetyltransferase (ChAT), the biosynthetic enzyme for acetylcholine. The mutant mice are viable and spontaneously display abnormal phenotypes that worsen with age including hunched back, reduced lifespan, weight loss, as well as striking deficits in muscle strength and motor function. This slowly progressive neuromuscular dysfunction is accompanied by muscle fiber histopathological features characteristic of neurogenic diseases. Unexpectedly, most changes appeared with a 6-month delay relative to the onset of reduction in ChAT levels, suggesting that compensatory mechanisms preserve muscular function for several months and then are overwhelmed. Deterioration of mouse phenotype after ChAT gene disruption is a specific aging process reminiscent of human pathological situations, particularly among survivors of paralytic poliomyelitis. These mutant mice may represent an invaluable tool to determine the sequence of events that follow the loss of function of a motor neuron subset as the disease progresses, and to evaluate therapeutic strategies. They also offer the opportunity to explore fundamental issues of motor neuron biology.

  6. Selective loss of alpha motor neurons with sparing of gamma motor neurons and spinal cord cholinergic neurons in a mouse model of spinal muscular atrophy.

    PubMed

    Powis, Rachael A; Gillingwater, Thomas H

    2016-03-01

    Spinal muscular atrophy (SMA) is a neuromuscular disease characterised primarily by loss of lower motor neurons from the ventral grey horn of the spinal cord and proximal muscle atrophy. Recent experiments utilising mouse models of SMA have demonstrated that not all motor neurons are equally susceptible to the disease, revealing that other populations of neurons can also be affected. Here, we have extended investigations of selective vulnerability of neuronal populations in the spinal cord of SMA mice to include comparative assessments of alpha motor neuron (α-MN) and gamma motor neuron (γ-MN) pools, as well as other populations of cholinergic neurons. Immunohistochemical analyses of late-symptomatic SMA mouse spinal cord revealed that numbers of α-MNs were significantly reduced at all levels of the spinal cord compared with controls, whereas numbers of γ-MNs remained stable. Likewise, the average size of α-MN cell somata was decreased in SMA mice with no change occurring in γ-MNs. Evaluation of other pools of spinal cord cholinergic neurons revealed that pre-ganglionic sympathetic neurons, central canal cluster interneurons, partition interneurons and preganglionic autonomic dorsal commissural nucleus neuron numbers all remained unaffected in SMA mice. Taken together, these findings indicate that α-MNs are uniquely vulnerable among cholinergic neuron populations in the SMA mouse spinal cord, with γ-MNs and other cholinergic neuronal populations being largely spared.

  7. Selective vulnerability of spinal and cortical motor neuron subpopulations in delta7 SMA mice.

    PubMed

    d'Errico, Paolo; Boido, Marina; Piras, Antonio; Valsecchi, Valeria; De Amicis, Elena; Locatelli, Denise; Capra, Silvia; Vagni, Francesco; Vercelli, Alessandro; Battaglia, Giorgio

    2013-01-01

    Loss of the survival motor neuron gene (SMN1) is responsible for spinal muscular atrophy (SMA), the most common inherited cause of infant mortality. Even though the SMA phenotype is traditionally considered as related to spinal motor neuron loss, it remains debated whether the specific targeting of motor neurons could represent the best therapeutic option for the disease. We here investigated, using stereological quantification methods, the spinal cord and cerebral motor cortex of ∆7 SMA mice during development, to verify extent and selectivity of motor neuron loss. We found progressive post-natal loss of spinal motor neurons, already at pre-symptomatic stages, and a higher vulnerability of motor neurons innervating proximal and axial muscles. Larger motor neurons decreased in the course of disease, either for selective loss or specific developmental impairment. We also found a selective reduction of layer V pyramidal neurons associated with layer V gliosis in the cerebral motor cortex. Our data indicate that in the ∆7 SMA model SMN loss is critical for the spinal cord, particularly for specific motor neuron pools. Neuronal loss, however, is not selective for lower motor neurons. These data further suggest that SMA pathogenesis is likely more complex than previously anticipated. The better knowledge of SMA models might be instrumental in shaping better therapeutic options for affected patients.

  8. Lower Motor Neuron Findings after Upper Motor Neuron Injury: Insights from Postoperative Supplementary Motor Area Syndrome

    PubMed Central

    Florman, Jeffrey E.; Duffau, Hugues; Rughani, Anand I.

    2013-01-01

    Hypertonia and hyperreflexia are classically described responses to upper motor neuron injury. However, acute hypotonia and areflexia with motor deficit are hallmark findings after many central nervous system insults such as acute stroke and spinal shock. Historic theories to explain these contradictory findings have implicated a number of potential mechanisms mostly relying on the loss of descending corticospinal input as the underlying etiology. Unfortunately, these simple descriptions consistently fail to adequately explain the pathophysiology and connectivity leading to acute hyporeflexia and delayed hyperreflexia that result from such insult. This article highlights the common observation of acute hyporeflexia after central nervous system insults and explores the underlying anatomy and physiology. Further, evidence for the underlying connectivity is presented and implicates the dominant role of supraspinal inhibitory influence originating in the supplementary motor area descending through the corticospinal tracts. Unlike traditional explanations, this theory more adequately explains the findings of postoperative supplementary motor area syndrome in which hyporeflexia motor deficit is observed acutely in the face of intact primary motor cortex connections to the spinal cord. Further, the proposed connectivity can be generalized to help explain other insults including stroke, atonic seizures, and spinal shock. PMID:23508473

  9. [Dropped head syndrome in motor neuron disease].

    PubMed

    Lorenzoni, Paulo José; Lange, Marcos Christiano; Kay, Cláudia S K; Almeida, Luiz G M P de; Teive, Hélio A G; Scola, Rosana H; Werneck, Lineu C

    2006-03-01

    Dropped head is a syndrome caused by weakness of the neck extensor muscles found in different kinds of neuromuscular disorders and also in amyotrophic lateral sclerosis. This is a cases report of three women with motor neuron disease with beginning of dysphagia and cervical weakness that it evolved with dropped head. The investigation showed normal magnetic resonance imaging of brain and cervical column. Needle electromyography showed active and chronic denervation in bulbar muscles and cervical, thoracic and lumbosacral segments. We discuss the characteristic of disease, specially the clinical manifestations and electromyography features, with emphasis at the clinical evaluation of dropped head in the suspicion of motor neuron disease.

  10. Neuropathology and omics in motor neuron diseases.

    PubMed

    Tanaka, Fumiaki; Ikenaka, Kensuke; Yamamoto, Masahiko; Sobue, Gen

    2012-08-01

    Motor neuron diseases, including amyotrophic lateral sclerosis (ALS), are devastating disorders and effective therapies have not yet been established. One of the reasons for this lack of therapeutics, especially in sporadic ALS (SALS), is attributed to the absence of excellent disease models reflecting its pathology. For this purpose, identifying important key molecules for ALS pathomechanisms and developing disease models is crucial, and omics approaches, including genomics, transcriptomics and proteomics, have been employed. In particular, transcriptome analysis using cDNA microarray is the most popular omics approach and we have previously identified dynactin-1 as an important molecule downregulated in the motor neurons of SALS patients from the early stage of the disease. Dynactin-1 is also known as a causative gene in familial ALS (FALS). Dynactin-1 is a major component of the dynein/dynactin motor protein complex functioning in retrograde axonal transport. In motor neuron diseases as well as other neurodegenerative diseases, the role of axonal transport dysfunction in their pathogenesis always draws attention, but its precise mechanisms remain to be fully elucidated. In this article, we review our previous omics approach to SALS and the role of dynactin-1 in the pathogenesis of ALS. Finally, we emphasize the need for creating novel SALS disease models based on the results of omics analysis, especially based on the observation that dynactin-1 gene expression was downregulated in SALS motor neurons.

  11. Generation of motor neurons from pluripotent stem cells.

    PubMed

    Chipman, Peter H; Toma, Jeremy S; Rafuse, Victor F

    2012-01-01

    Alpha motor neurons (also known as lower or skeletal motor neurons) have been studied extensively for over 100 years. Motor neurons control the contraction of skeletal muscles and thus are the final common pathway in the nervous system responsible for motor behavior. Muscles become paralyzed when their innervating motor neurons die because of injury or disease. Motor neuron diseases (MNDs), such as Amyotrophic Lateral Sclerosis, progressively destroy motor neurons until those inflicted succumb to the illness due to respiratory failure. One strategy being explored to study and treat muscle paralysis due to motor neuron loss involves deriving surrogate motor neurons from pluripotent stem cells. Guided by decades of research on the development of the spinal cord, recent advances in neurobiology have shown that functional motor neurons can be derived from mouse and human embryonic stem (ES) cells. Furthermore, ES cell-derived motor neurons restore motor behavior when transplanted into animal models of motor dysfunction. The recent discovery that mouse and human motor neurons can be derived from induced pluripotent stem (iPS) cells (i.e., somatic cells converted to pluripotency) has set the stage for the development of patient-specific therapies designed to treat movement disorders. Indeed, there is now hope within the scientific community that motor neurons derived from pluripotent stem cells will be used to treat MNDs through cell transplantation and/or to screen molecules that will prevent motor neuron death. In this chapter, we review the journey that led to the generation of motor neurons from ES and iPS cells, how stem cell-derived motor neurons have been used to treat/study motor dysfunction, and where the technology will likely lead to in the future.

  12. Motor neuron death in ALS – programmed by astrocytes?

    PubMed Central

    Pirooznia, Sheila K.; Dawson, Valina L.; Dawson, Ted M.

    2014-01-01

    Motor neurons in ALS die via cell-autonomous and non-cell autonomous mechanisms. Using adult human astrocytes and motor neurons, Re et al (2014) discover that familial and sporadic ALS derived human adult astrocytes secrete neurotoxic factors that selectively kill motor neurons through necroptosis, suggesting a new therapeutic avenue. PMID:24607221

  13. Localization of Motor Neurons and Central Pattern Generators for Motor Patterns Underlying Feeding Behavior in Drosophila Larvae

    PubMed Central

    Hückesfeld, Sebastian; Schoofs, Andreas; Schlegel, Philipp; Miroschnikow, Anton; Pankratz, Michael J.

    2015-01-01

    Motor systems can be functionally organized into effector organs (muscles and glands), the motor neurons, central pattern generators (CPG) and higher control centers of the brain. Using genetic and electrophysiological methods, we have begun to deconstruct the motor system driving Drosophila larval feeding behavior into its component parts. In this paper, we identify distinct clusters of motor neurons that execute head tilting, mouth hook movements, and pharyngeal pumping during larval feeding. This basic anatomical scaffold enabled the use of calcium-imaging to monitor the neural activity of motor neurons within the central nervous system (CNS) that drive food intake. Simultaneous nerve- and muscle-recordings demonstrate that the motor neurons innervate the cibarial dilator musculature (CDM) ipsi- and contra-laterally. By classical lesion experiments we localize a set of CPGs generating the neuronal pattern underlying feeding movements to the subesophageal zone (SEZ). Lesioning of higher brain centers decelerated all feeding-related motor patterns, whereas lesioning of ventral nerve cord (VNC) only affected the motor rhythm underlying pharyngeal pumping. These findings provide a basis for progressing upstream of the motor neurons to identify higher regulatory components of the feeding motor system. PMID:26252658

  14. Localization of Motor Neurons and Central Pattern Generators for Motor Patterns Underlying Feeding Behavior in Drosophila Larvae.

    PubMed

    Hückesfeld, Sebastian; Schoofs, Andreas; Schlegel, Philipp; Miroschnikow, Anton; Pankratz, Michael J

    2015-01-01

    Motor systems can be functionally organized into effector organs (muscles and glands), the motor neurons, central pattern generators (CPG) and higher control centers of the brain. Using genetic and electrophysiological methods, we have begun to deconstruct the motor system driving Drosophila larval feeding behavior into its component parts. In this paper, we identify distinct clusters of motor neurons that execute head tilting, mouth hook movements, and pharyngeal pumping during larval feeding. This basic anatomical scaffold enabled the use of calcium-imaging to monitor the neural activity of motor neurons within the central nervous system (CNS) that drive food intake. Simultaneous nerve- and muscle-recordings demonstrate that the motor neurons innervate the cibarial dilator musculature (CDM) ipsi- and contra-laterally. By classical lesion experiments we localize a set of CPGs generating the neuronal pattern underlying feeding movements to the subesophageal zone (SEZ). Lesioning of higher brain centers decelerated all feeding-related motor patterns, whereas lesioning of ventral nerve cord (VNC) only affected the motor rhythm underlying pharyngeal pumping. These findings provide a basis for progressing upstream of the motor neurons to identify higher regulatory components of the feeding motor system.

  15. Lack of TNF-alpha receptor type 2 protects motor neurons in a cellular model of amyotrophic lateral sclerosis and in mutant SOD1 mice but does not affect disease progression.

    PubMed

    Tortarolo, Massimo; Vallarola, Antonio; Lidonnici, Dario; Battaglia, Elisa; Gensano, Francesco; Spaltro, Gabriella; Fiordaliso, Fabio; Corbelli, Alessandro; Garetto, Stefano; Martini, Elisa; Pasetto, Laura; Kallikourdis, Marinos; Bonetto, Valentina; Bendotti, Caterina

    2015-10-01

    Changes in the homeostasis of tumor necrosis factor α (TNFα) have been demonstrated in patients and experimental models of amyotrophic lateral sclerosis (ALS). However, the contribution of TNFα to the development of ALS is still debated. TNFα is expressed by glia and neurons and acts through the membrane receptors TNFR1 and TNFR2, which may have opposite effects in neurodegeneration. We investigated the role of TNFα and its receptors in the selective motor neuron death in ALS in vitro and in vivo. TNFR2 expressed by astrocytes and neurons, but not TNFR1, was implicated in motor neuron loss in primary SOD1-G93A co-cultures. Deleting TNFR2 from SOD1-G93A mice, there was partial but significant protection of spinal motor neurons, sciatic nerves, and tibialis muscles. However, no improvement of motor impairment or survival was observed. Since the sciatic nerves of SOD1-G93A/TNFR2-/- mice showed high phospho-TAR DNA-binding protein 43 (TDP-43) accumulation and low levels of acetyl-tubulin, two indices of axonal dysfunction, the lack of symptom improvement in these mice might be due to impaired function of rescued motor neurons. These results indicate the interaction between TNFR2 and membrane-bound TNFα as an innovative pathway involved in motor neuron death. Nevertheless, its inhibition is not sufficient to stop disease progression in ALS mice, underlining the complexity of this pathology. We show evidence of the involvement of neuronal and astroglial TNFR2 in the motor neuron degeneration in ALS. Both concur to cause motor neuron death in primary astrocyte/spinal neuron co-cultures. TNFR2 deletion partially protects motor neurons and sciatic nerves in SOD1-G93A mice but does not improve their symptoms and survival. However, TNFR2 could be a new target for multi-intervention therapies.

  16. Decreased function of survival motor neuron protein impairs endocytic pathways

    PubMed Central

    Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S.; O’Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C. Q.; Cook, Steven J.; Poulogiannis, George; Atwood, Walter J.; Hall, David H.; Hart, Anne C.

    2016-01-01

    Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death. PMID:27402754

  17. Neuronal Determinants of Motor Disability in MS

    DTIC Science & Technology

    2015-10-01

    between approximately 6 to 8 months delayed from the original SOW primarily due to delays in human subject authorization steps. 15. SUBJECT TERMS Motor...Motor disability is one of the primary disabling features of MS and is predictive of an aggressive progressive course of the disease . However, to...neuron  injury,  function,  and  loss   and   disease  related  metrics  in  MS  patients  at  a  baseline  and  1

  18. GPs have key role in managing motor neurone disease.

    PubMed

    Orrell, Richard W

    2011-09-01

    Motor neurone disease (MND) is a rapidly progressive neurodegenerative condition. It affects people of all ages, but is more common with increasing age (especially over 50 years) and men are affected twice as often as women. The causes remain unknown, although around 5% of cases have a genetic basis. Survival is usually only three to five years from diagnosis. MND affects both upper and lower motor neurones, with variable contributions. The nerve involvement in MND usually has a focal onset, is asymmetrical, but tends to spread to adjacent regions of the body. If the affected region is in the legs, a common presenting feature is tripping, falls or foot drop. If it is in the arms there may be difficulty with fine tasks such as fastening buttons, or raising an arm, and if the cranial nerves are affected there may be slurring of speech, or difficulty swallowing. Key to the diagnosis is evidence of progression, and this may lead to some delay in considering and also confirming the diagnosis. When examining the patient, evidence of more widespread neuromuscular involvement should be looked for. In a patient with foot drop, and fasciculation of the tongue, MND would be a likely diagnosis. Upper motor neurone involvement may be readily determined by examining the reflexes. Brisk reflexes, in the arms, legs or jaw, in the context of features of lower motor neurone denervation are highly suggestive of MND. Suspicion of MND should lead to referral for a neurology opinion. The most useful investigation is likely to be EMG with nerve conduction studies, and probably MRI scan of relevant areas. Blood tests are arranged to screen for any other causative condition. Riluzole is a disease modifying drug licensed to extend the life of patients with MND. There is no treatment that will reverse, or halt, progression of the disease.

  19. Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron.

    PubMed

    Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip

    2016-01-01

    Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons.

  20. Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron

    PubMed Central

    Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip

    2016-01-01

    Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons. PMID:27570482

  1. Embryonic stem cells and prospects for their use in regenerative medicine approaches to motor neurone disease.

    PubMed

    Christou, Y A; Moore, H D; Shaw, P J; Monk, P N

    2007-10-01

    Human embryonic stem cells are pluripotent cells with the potential to differentiate into any cell type in the presence of appropriate stimulatory factors and environmental cues. Their broad developmental potential has led to valuable insights into the principles of developmental and cell biology and to the proposed use of human embryonic stem cells or their differentiated progeny in regenerative medicine. This review focuses on the prospects for the use of embryonic stem cells in cell-based therapy for motor neurone disease or amyotrophic lateral sclerosis, a progressive neurodegenerative disease that specifically affects upper and lower motor neurones and leads ultimately to death from respiratory failure. Stem cell-derived motor neurones could conceivably be used to replace the degenerated cells, to provide authentic substrates for drug development and screening and for furthering our understanding of disease mechanisms. However, to reliably and accurately culture motor neurones, the complex pathways by which differentiation occurs in vivo must be understood and reiterated in vitro by embryonic stem cells. Here we discuss the need for new therapeutic strategies in the treatment of motor neurone disease, the developmental processes that result in motor neurone formation in vivo, a number of experimental approaches to motor neurone production in vitro and recent progress in the application of stem cells to the treatment and understanding of motor neurone disease.

  2. Increased neuronal Rab5 immunoreactive endosomes do not colocalize with TDP-43 in motor neuron disease.

    PubMed

    Matej, Radoslav; Botond, Gergö; László, Lajos; Kopitar-Jerala, Natasa; Rusina, Robert; Budka, Herbert; Kovacs, Gabor G

    2010-09-01

    Sporadic motor neuron disease (MND) is characterized by progressive degeneration of motor neurons and intraneuronal cytoplasmic translocation and deposition of the nuclear protein TDP-43. There is a paucity of data on the subcellular mechanisms of the nuclear-cytoplasmic trafficking of TDP-43, particularly about the precise role of the endosomal-lysosomal system (ELS). In the present study, using a neuron-specific morphometric approach, we examined the expression of the early endosomal marker Rab5 and lysosomal cathepsins B, D, F, and L as well as PAS-stained structures in the anterior horn cells in 11 individuals affected by sporadic MND and 5 age-matched controls. This was compared with the expression of ubiquitin, p62 and TDP-43 and its phosphorylated form. The principal finding was the increased expression of the endosomal marker Rab5 and lysosomal cathepsin D, and of PAS-positive structures in motor neurons of MND cases. Furthermore, the area-portion of Rab5 immunoreactivity correlated well with the intracellular accumulation of ubiquitin, p62 and (phosphorylated) TDP-43. However, double immunolabelling and immunogold electron microscopy excluded colocalization of phosphorylated TDP-43 with the ELS. These data contrast with observations on neuronal cytopathology in Alzheimer's or prion diseases where the disease-specific proteins are processed within endosomes, and suggest a distinct role of the ELS in MND.

  3. Mimics and chameleons in motor neurone disease.

    PubMed

    Turner, Martin R; Talbot, Kevin

    2013-06-01

    The progression of motor neurone disease (MND) is currently irreversible, and the grave implications of diagnosis naturally fuels concern among neurologists over missing a potential mimic disorder. There is no diagnostic test for MND but in reality there are few plausible mimics in routine clinical practice. In the presence of a progressive pure motor disorder, signs such as florid fasciculations, bilateral tongue wasting, the 'split hand', head drop, emotionality, and cognitive or behavioural impairment carry high positive predictive value. MND is clinically heterogeneous, however, with some important chameleon-like presentations and considerable variation in clinical course. Lack of confidence about the scope of such variation, or an approach to diagnosis emphasising investigations over clinical common sense, has the potential to exacerbate diagnostic delay in MND and impede timely planning of the care which is essential to maximising quality of life.

  4. Mimics and chameleons in motor neurone disease

    PubMed Central

    Turner, Martin R; Talbot, Kevin

    2013-01-01

    The progression of motor neurone disease (MND) is currently irreversible, and the grave implications of diagnosis naturally fuels concern among neurologists over missing a potential mimic disorder. There is no diagnostic test for MND but in reality there are few plausible mimics in routine clinical practice. In the presence of a progressive pure motor disorder, signs such as florid fasciculations, bilateral tongue wasting, the ‘split hand’, head drop, emotionality, and cognitive or behavioural impairment carry high positive predictive value. MND is clinically heterogeneous, however, with some important chameleon-like presentations and considerable variation in clinical course. Lack of confidence about the scope of such variation, or an approach to diagnosis emphasising investigations over clinical common sense, has the potential to exacerbate diagnostic delay in MND and impede timely planning of the care which is essential to maximising quality of life. PMID:23616620

  5. Motor neurone disease presenting as polycythaemia.

    PubMed

    Santana-Vaz, Natasha; Bwika, Jumaa; Morley, Kirstie; Mukherjee, Rahul

    2014-04-28

    Motor neurone disease (MND) is a chronic, progressive and currently incurable neurodegenerative disorder. This case report discusses an instance of MND presenting initially as polycythaemia, caused via insidious respiratory failure through ventilatory insufficiency. This case aims to improve clinicians' awareness of this atypical presentation and highlights the need for a high index of suspicion of respiratory failure in any patient with polycythaemia. Finally it demonstrates an improvement in quality of life associated with the use of non-invasive ventilation (NIV) in a patient with MND.

  6. Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration.

    PubMed

    Bernard-Marissal, Nathalie; Médard, Jean-Jacques; Azzedine, Hamid; Chrast, Roman

    2015-04-01

    Mutations in Sigma 1 receptor (SIGMAR1) have been previously identified in patients with amyotrophic lateral sclerosis and disruption of Sigmar1 in mouse leads to locomotor deficits. However, cellular mechanisms underlying motor phenotypes in human and mouse with disturbed SIGMAR1 function have not been described so far. Here we used a combination of in vivo and in vitro approaches to investigate the role of SIGMAR1 in motor neuron biology. Characterization of Sigmar1(-/-) mice revealed that affected animals display locomotor deficits associated with muscle weakness, axonal degeneration and motor neuron loss. Using primary motor neuron cultures, we observed that pharmacological or genetic inactivation of SIGMAR1 led to motor neuron axonal degeneration followed by cell death. Disruption of SIGMAR1 function in motor neurons disturbed endoplasmic reticulum-mitochondria contacts, affected intracellular calcium signalling and was accompanied by activation of endoplasmic reticulum stress and defects in mitochondrial dynamics and transport. These defects were not observed in cultured sensory neurons, highlighting the exacerbated sensitivity of motor neurons to SIGMAR1 function. Interestingly, the inhibition of mitochondrial fission was sufficient to induce mitochondria axonal transport defects as well as axonal degeneration similar to the changes observed after SIGMAR1 inactivation or loss. Intracellular calcium scavenging and endoplasmic reticulum stress inhibition were able to restore mitochondrial function and consequently prevent motor neuron degeneration. These results uncover the cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function and provide therapeutically relevant insight into motor neuronal diseases.

  7. Transcriptional regulation of mouse hypoglossal motor neuron somatotopic map formation.

    PubMed

    Chen, Xin; Wang, Jae Woong; Salin-Cantegrel, Adele; Dali, Rola; Stifani, Stefano

    2016-11-01

    Somatic motor neurons in the hypoglossal nucleus innervate tongue muscles controlling vital functions such as chewing, swallowing and respiration. Formation of functional hypoglossal nerve circuits depends on the establishment of precise hypoglossal motor neuron maps correlating with specific tongue muscle innervations. Little is known about the molecular mechanisms controlling mammalian hypoglossal motor neuron topographic map formation. Here we show that combinatorial expression of transcription factors Runx1, SCIP and FoxP1 defines separate mouse hypoglossal motor neuron groups with different topological, neurotransmitter and calcium-buffering phenotypes. Runx1 and SCIP are coexpressed in ventromedial hypoglossal motor neurons involved in control of tongue protrusion whereas FoxP1 is expressed in dorsomedial motor neurons associated with tongue retraction. Establishment of separate hypoglossal motor neuron maps depends in part on Runx1-mediated suppression of ventrolateral and dorsomedial motor neuron phenotypes and regulation of FoxP1 expression pattern. These findings suggest that combinatorial actions of Runx1, SCIP and FoxP1 are important for mouse hypoglossal nucleus somatotopic map formation.

  8. GDE2 regulates subtype-specific motor neuron generation through inhibition of Notch signaling.

    PubMed

    Sabharwal, Priyanka; Lee, Changhee; Park, Sungjin; Rao, Meenakshi; Sockanathan, Shanthini

    2011-09-22

    The specification of spinal interneuron and motor neuron identities initiates within progenitor cells, while motor neuron subtype diversification is regulated by hierarchical transcriptional programs implemented postmitotically. Here we find that mice lacking GDE2, a six-transmembrane protein that triggers motor neuron generation, exhibit selective losses of distinct motor neuron subtypes, specifically in defined subsets of limb-innervating motor pools that correlate with the loss of force-generating alpha motor neurons. Mechanistically, GDE2 is expressed by postmitotic motor neurons but utilizes extracellular glycerophosphodiester phosphodiesterase activity to induce motor neuron generation by inhibiting Notch signaling in neighboring motor neuron progenitors. Thus, neuronal GDE2 controls motor neuron subtype diversity through a non-cell-autonomous feedback mechanism that directly regulates progenitor cell differentiation, implying that subtype specification initiates within motor neuron progenitor populations prior to their differentiation into postmitotic motor neurons.

  9. Stress exacerbates neuron loss and microglia proliferation in a rat model of excitotoxic lower motor neuron injury

    PubMed Central

    Puga, Denise A.; Tovar, C. Amy; Guan, Zhen; C.Gensel, John; Lyman, Matthew S.; McTigue, Dana M.; Popovich, Phillip G.

    2015-01-01

    All individuals experience stress and hormones (e.g., glucocorticoids/GCs) released during stressful events can affect the structure and function of neurons. These effects of stress are best characterized for brain neurons; however, the mechanisms controlling the expression and binding affinity of glucocorticoid receptors in the spinal cord are different than those in the brain. Accordingly, whether stress exerts unique effects on spinal cord neurons, especially in the context of pathology, is unknown. Using a controlled model of focal excitotoxic lower motor neuron injury in rats, we examined the effects of acute or chronic variable stress on spinal cord motor neuron survival and glial activation. New data indicate that stress exacerbates excitotoxic spinal cord motor neuron loss and associated activation of microglia. In contrast, hypertrophy and hyperplasia of astrocytes and NG2+ glia were unaffected or were modestly suppressed by stress. Although excitotoxic lesions cause significant motor neuron loss and stress exacerbates this pathology, overt functional impairment did not develop in the relevant forelimb up to one week post-lesion. These data indicate that stress is a disease-modifying factor capable of altering neuron and glial responses to pathological challenges in the spinal cord. PMID:26100488

  10. Segmental distribution of the motor neuron columns that supply the rat hindlimb: A muscle/motor neuron tract-tracing analysis targeting the motor end plates.

    PubMed

    Mohan, R; Tosolini, A P; Morris, R

    2015-10-29

    Spinal cord injury (SCI) that disrupts input from higher brain centers to the lumbar region of the spinal cord results in paraplegia, one of the most debilitating conditions affecting locomotion. Non-human primates have long been considered to be the most appropriate animal to model lower limb dysfunction. More recently, however, there has been a wealth of scientific information gathered in the rat regarding the central control of locomotion. Moreover, rodent models of SCI at lumbar levels have been widely used to validate therapeutic scenarios aimed at the restoration of locomotor activities. Despite the growing use of the rat as a model of locomotor dysfunction, knowledge regarding the anatomical relationship between spinal cord motor neurons and the hindlimb muscles that they innervate is incomplete. Previous studies performed in our laboratory have shown the details of the muscle/motor neuron topographical relationship for the mouse forelimb and hindlimb as well as for the rat forelimb. The present analysis aims to characterize the segmental distribution of the motor neuron pools that innervate the muscles of the rat hindlimb, hence completing this series of studies. The location of the motor end plate (MEP) regions on the main muscles of the rat hindlimb was first revealed with acetylcholinesterase histochemistry. For each muscle under scrutiny, injections of Fluoro-Gold were then performed along the length of the MEP region. Targeting the MEPs gave rise to columns of motor neurons that span more spinal cord segments than previously reported. The importance of this study is discussed in terms of its application to gene therapy for SCI.

  11. Healthy and diseased corticospinal motor neurons are selectively transduced upon direct AAV2-2 injection into the motor cortex

    PubMed Central

    Jara, J H; Stanford, M J; Zhu, Y; Tu, M; Hauswirth, W W; Bohn, M C; DeVries, S H; Özdinler, P H

    2016-01-01

    Direct gene delivery to the neurons of interest, without affecting other neuron populations in the cerebral cortex, represent a challenge owing to the heterogeneity and cellular complexity of the brain. Genetic modulation of corticospinal motor neurons (CSMN) is required for developing effective and long-term treatment strategies for motor neuron diseases, in which voluntary movement is impaired. Adeno-associated viruses (AAV) have been widely used for neuronal transduction studies owing to long-term and stable gene expression as well as low immunoreactivity in humans. Here we report that AAV2-2 transduces CSMN with high efficiency upon direct cortex injection and that transduction efficiencies are similar during presymptomatic and symptomatic stages in hSOD1G93A transgenic amyotrophic lateral sclerosis (ALS) mice. Our findings reveal that choice of promoter improves selectivity as AAV2-2 chicken β-actin promoter injection results in about 70% CSMN transduction, the highest percentage reported to date. CSMN transduction in both wild-type and transgenic ALS mice allows detailed analysis of single axon fibers within the corticospinal tract in both cervical and lumbar spinal cord and reveals circuitry defects, which mainly occur between CSMN and spinal motor neurons in hSOD1G93A transgenic ALS mice. Our findings set the stage for CSMN gene therapy in ALS and related motor neuron diseases. PMID:26704722

  12. The patient experience of fatigue in motor neurone disease

    PubMed Central

    Gibbons, Chris J.; Thornton, Everard W.; Young, Carolyn A.

    2013-01-01

    Aims: This paper is a qualitative investigation that aims to investigate the lived experience of fatigue in patients with motor neurone disease—a progressive and fatal neurological condition. Background: Fatigue is a disabling symptom in motor neurone disease (MND) that affects a large number of patients. However, the term “fatigue” is in itself imprecise, as it remains a phenomenon without a widely accepted medical definition. This study sought to investigate the phenomenon of fatigue from the perspective of the MND patient. Methods: Ten patients with MND participated in semi-structured recorded interviews at a regional neuroscience center in Liverpool, UK. Transcripts analysis was broadly informed by the principles of interpretative phenomenological analysis (IPA). Findings: Fatigue was unanimously explained to be disabling and progressive phenomenon. Participants described two forms of fatigue: whole-body tiredness or use-dependent reversible muscle weakness related to exertion of limb and bulbar muscles. Both weakness and whole-body tiredness could be experienced simultaneously, and patients used the terms “fatigue” and “tiredness” interchangeably. Alongside descriptions of fatigue themes of Adaptation, Motivation, Avoidance, Frustration and Stress were revealed. Fatigue could be defined as “reversible motor weakness and whole-body tiredness that was predominantly brought on by muscular exertion and was partially relieved by rest.” Conclusion: The results of this study support a multi-dimensional model of fatigue for patients with MND. Fatigue appears to be experienced and explained in two ways, both as an inability to sustain motor function and as a pervasive tiredness. Fatigue was only partially relieved by rest and tended to worsen throughout the day. It is crucial that MND care practitioners and researchers appreciate the semantic dichotomy within fatigue. PMID:24639657

  13. Motor Execution Affects Action Prediction

    ERIC Educational Resources Information Center

    Springer, Anne; Brandstadter, Simone; Liepelt, Roman; Birngruber, Teresa; Giese, Martin; Mechsner, Franz; Prinz, Wolfgang

    2011-01-01

    Previous studies provided evidence of the claim that the prediction of occluded action involves real-time simulation. We report two experiments that aimed to study how real-time simulation is affected by simultaneous action execution under conditions of full, partial or no overlap between observed and executed actions. This overlap was analysed by…

  14. Diverse role of survival motor neuron protein.

    PubMed

    Singh, Ravindra N; Howell, Matthew D; Ottesen, Eric W; Singh, Natalia N

    2017-03-01

    The multifunctional Survival Motor Neuron (SMN) protein is required for the survival of all organisms of the animal kingdom. SMN impacts various aspects of RNA metabolism through the formation and/or interaction with ribonucleoprotein (RNP) complexes. SMN regulates biogenesis of small nuclear RNPs, small nucleolar RNPs, small Cajal body-associated RNPs, signal recognition particles and telomerase. SMN also plays an important role in DNA repair, transcription, pre-mRNA splicing, histone mRNA processing, translation, selenoprotein synthesis, macromolecular trafficking, stress granule formation, cell signaling and cytoskeleton maintenance. The tissue-specific requirement of SMN is dictated by the variety and the abundance of its interacting partners. Reduced expression of SMN causes spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. SMA displays a broad spectrum ranging from embryonic lethality to an adult onset. Aberrant expression and/or localization of SMN has also been associated with male infertility, inclusion body myositis, amyotrophic lateral sclerosis and osteoarthritis. This review provides a summary of various SMN functions with implications to a better understanding of SMA and other pathological conditions.

  15. Genetics of Pediatric-Onset Motor Neuron and Neuromuscular Diseases

    ClinicalTrials.gov

    2015-08-24

    Spinal Muscular Atrophy; Charcot-Marie-Tooth Disease; Muscular Dystrophy; Spinal Muscular Atrophy With Respiratory Distress 1; Amyotrophic Lateral Sclerosis; Motor Neuron Disease; Neuromuscular Disease; Peroneal Muscular Atrophy; Fragile X Syndrome

  16. Patterns of Weakness, Classification of Motor Neuron Disease & Clinical Diagnosis of Sporadic ALS

    PubMed Central

    Statland, Jeffrey M.; Barohn, Richard J.; McVey, April L.; Katz, Jonathan; Dimachkie, Mazen M.

    2015-01-01

    Synopsis When approaching the patient with suspected motor neuron disease (MND) the pattern of weakness on exam helps distinguish MND from other diseases of peripheral nerves, the neuromuscular junction, or muscle. MND is a clinical diagnosis supported by findings on electrodiagnostic testing, in the absence of other abnormalities on neuroimaging or serological testing. MNDs exist on a spectrum: from a pure lower motor neuron; to mixed upper and lower motor neuron; to a pure upper motor neuron variant in addition to regional variants restricted to the arms, legs or bulbar region. Amyotrophic lateral sclerosis (ALS) is a progressive mixed upper and lower motor neuron disorder, most commonly sporadic (~85%), which is invariably fatal. The only FDA approved treatments for ALS are riluzole, which prolongs life by about 3 months, and dextromethorphan/quinidine which provides symptomatic relief for pseudobulbar affect (inappropriate bouts of laughter or crying). Here we describe a pattern approach to identifying motor neuron disease, and clinical features of sporadic ALS. PMID:26515618

  17. Discussing sexuality with patients in a motor neurone disease clinic.

    PubMed

    Marsden, Rachael; Botell, Rachel

    Sexual relationships remain an important aspect of life for people living with motor neurone disease. This article explores the use of the Extended-PLISSIT model when discussing relationships and sexual function with patients and their partners in a motor neurone disease clinic. The model provides a structured approach to assist discussions with patients as well as promoting reflection and exchange of knowledge in the multidisciplinary team. It is a useful model when addressing issues that are sometimes difficult to discuss.

  18. Intrinsic Membrane Hyperexcitability of ALS Patient-Derived Motor Neurons

    PubMed Central

    Wainger, Brian J.; Kiskinis, Evangelos; Mellin, Cassidy; Wiskow, Ole; Han, Steve S.W.; Sandoe, Jackson; Perez, Numa P.; Williams, Luis A.; Lee, Seungkyu; Boulting, Gabriella; Berry, James D.; Brown, Robert H.; Cudkowicz, Merit E.; Bean, Bruce P.; Eggan, Kevin; Woolf, Clifford J.

    2014-01-01

    SUMMARY Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor nervous system. We show using multi-electrode array and patch clamp recordings that hyperexcitability detected by clinical neurophysiological studies of ALS patients is recapitulated in induced pluripotent stem cell-derived motor neurons from ALS patients harboring superoxide dismutase 1 (SOD1), C9orf72 and fused-in-sarcoma mutations. Motor neurons produced from a genetically corrected, but otherwise isogenic, SOD1+/+ stem cell line do not display the hyperexcitability phenotype. SOD1A4V/+ ALS patient-derived motor neurons have reduced delayed-rectifier potassium current amplitudes relative to control-derived motor neurons, a deficit that may underlie their hyperexcitability. The Kv7 channel activator retigabine both blocks the hyperexcitability and improves motor neuron survival in vitro when tested in SOD1 mutant ALS cases. Therefore, electrophysiological characterization of human stem cell-derived neurons can reveal disease-related mechanisms and identify therapeutic candidates. PMID:24703839

  19. Extracellularly identifying motor neurons for a muscle motor pool in Aplysia californica.

    PubMed

    Lu, Hui; McManus, Jeffrey M; Chiel, Hillel J

    2013-03-25

    In animals with large identified neurons (e.g. mollusks), analysis of motor pools is done using intracellular techniques. Recently, we developed a technique to extracellularly stimulate and record individual neurons in Aplysia californica. We now describe a protocol for using this technique to uniquely identify and characterize motor neurons within a motor pool. This extracellular technique has advantages. First, extracellular electrodes can stimulate and record neurons through the sheath, so it does not need to be removed. Thus, neurons will be healthier in extracellular experiments than in intracellular ones. Second, if ganglia are rotated by appropriate pinning of the sheath, extracellular electrodes can access neurons on both sides of the ganglion, which makes it easier and more efficient to identify multiple neurons in the same preparation. Third, extracellular electrodes do not need to penetrate cells, and thus can be easily moved back and forth among neurons, causing less damage to them. This is especially useful when one tries to record multiple neurons during repeating motor patterns that may only persist for minutes. Fourth, extracellular electrodes are more flexible than intracellular ones during muscle movements. Intracellular electrodes may pull out and damage neurons during muscle contractions. In contrast, since extracellular electrodes are gently pressed onto the sheath above neurons, they usually stay above the same neuron during muscle contractions, and thus can be used in more intact preparations. To uniquely identify motor neurons for a motor pool (in particular, the I1/I3 muscle in Aplysia) using extracellular electrodes, one can use features that do not require intracellular measurements as criteria: soma size and location, axonal projection, and muscle innervation. For the particular motor pool used to illustrate the technique, we recorded from buccal nerves 2 and 3 to measure axonal projections, and measured the contraction forces of the I1

  20. Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons

    PubMed Central

    Machado, Carolina Barcellos; Kanning, Kevin C.; Kreis, Patricia; Stevenson, Danielle; Crossley, Martin; Nowak, Magdalena; Iacovino, Michelina; Kyba, Michael; Chambers, David; Blanc, Eric; Lieberam, Ivo

    2014-01-01

    Air breathing is an essential motor function for vertebrates living on land. The rhythm that drives breathing is generated within the central nervous system and relayed via specialised subsets of spinal motor neurons to muscles that regulate lung volume. In mammals, a key respiratory muscle is the diaphragm, which is innervated by motor neurons in the phrenic nucleus. Remarkably, relatively little is known about how this crucial subtype of motor neuron is generated during embryogenesis. Here, we used direct differentiation of motor neurons from mouse embryonic stem cells as a tool to identify genes that direct phrenic neuron identity. We find that three determinants, Pou3f1, Hoxa5 and Notch, act in combination to promote a phrenic neuron molecular identity. We show that Notch signalling induces Pou3f1 in developing motor neurons in vitro and in vivo. This suggests that the phrenic neuron lineage is established through a local source of Notch ligand at mid-cervical levels. Furthermore, we find that the cadherins Pcdh10, which is regulated by Pou3f1 and Hoxa5, and Cdh10, which is controlled by Pou3f1, are both mediators of like-like clustering of motor neuron cell bodies. This specific Pcdh10/Cdh10 activity might provide the means by which phrenic neurons are assembled into a distinct nucleus. Our study provides a framework for understanding how phrenic neuron identity is conferred and will help to generate this rare and inaccessible yet vital neuronal subtype directly from pluripotent stem cells, thus facilitating subsequent functional investigations. PMID:24496616

  1. Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons.

    PubMed

    Machado, Carolina Barcellos; Kanning, Kevin C; Kreis, Patricia; Stevenson, Danielle; Crossley, Martin; Nowak, Magdalena; Iacovino, Michelina; Kyba, Michael; Chambers, David; Blanc, Eric; Lieberam, Ivo

    2014-02-01

    Air breathing is an essential motor function for vertebrates living on land. The rhythm that drives breathing is generated within the central nervous system and relayed via specialised subsets of spinal motor neurons to muscles that regulate lung volume. In mammals, a key respiratory muscle is the diaphragm, which is innervated by motor neurons in the phrenic nucleus. Remarkably, relatively little is known about how this crucial subtype of motor neuron is generated during embryogenesis. Here, we used direct differentiation of motor neurons from mouse embryonic stem cells as a tool to identify genes that direct phrenic neuron identity. We find that three determinants, Pou3f1, Hoxa5 and Notch, act in combination to promote a phrenic neuron molecular identity. We show that Notch signalling induces Pou3f1 in developing motor neurons in vitro and in vivo. This suggests that the phrenic neuron lineage is established through a local source of Notch ligand at mid-cervical levels. Furthermore, we find that the cadherins Pcdh10, which is regulated by Pou3f1 and Hoxa5, and Cdh10, which is controlled by Pou3f1, are both mediators of like-like clustering of motor neuron cell bodies. This specific Pcdh10/Cdh10 activity might provide the means by which phrenic neurons are assembled into a distinct nucleus. Our study provides a framework for understanding how phrenic neuron identity is conferred and will help to generate this rare and inaccessible yet vital neuronal subtype directly from pluripotent stem cells, thus facilitating subsequent functional investigations.

  2. A Supranuclear Disorder of Ocular Motility as a Rare Initial Presentation of Motor Neurone Disease.

    PubMed

    Yu-Wai-Man, C; Petheram, K; Davidson, A W; Williams, T; Griffiths, P G

    2011-01-01

    A case is described of motor neurone disease presenting with an ocular motor disorder characterised by saccadic intrusions, impaired horizontal and vertical saccades, and apraxia of eyelid opening. The occurrence of eye movement abnormalities in motor neurone disease is discussed.

  3. Decay in survival motor neuron and plastin 3 levels during differentiation of iPSC-derived human motor neurons.

    PubMed

    Boza-Morán, María G; Martínez-Hernández, Rebeca; Bernal, Sara; Wanisch, Klaus; Also-Rallo, Eva; Le Heron, Anita; Alías, Laura; Denis, Cécile; Girard, Mathilde; Yee, Jiing-Kuan; Tizzano, Eduardo F; Yáñez-Muñoz, Rafael J

    2015-06-26

    Spinal muscular atrophy (SMA) is a neuromuscular disease caused by mutations in Survival Motor Neuron 1 (SMN1), leading to degeneration of alpha motor neurons (MNs) but also affecting other cell types. Induced pluripotent stem cell (iPSC)-derived human MN models from severe SMA patients have shown relevant phenotypes. We have produced and fully characterized iPSCs from members of a discordant consanguineous family with chronic SMA. We differentiated the iPSC clones into ISL-1+/ChAT+ MNs and performed a comparative study during the differentiation process, observing significant differences in neurite length and number between family members. Analyses of samples from wild-type, severe SMA type I and the type IIIa/IV family showed a progressive decay in SMN protein levels during iPSC-MN differentiation, recapitulating previous observations in developmental studies. PLS3 underwent parallel reductions at both the transcriptional and translational levels. The underlying, progressive developmental decay in SMN and PLS3 levels may lead to the increased vulnerability of MNs in SMA disease. Measurements of SMN and PLS3 transcript and protein levels in iPSC-derived MNs show limited value as SMA biomarkers.

  4. Deficiency of the Survival of Motor Neuron Protein Impairs mRNA Localization and Local Translation in the Growth Cone of Motor Neurons

    PubMed Central

    Fallini, Claudia; Donlin-Asp, Paul G.; Rouanet, Jeremy P.

    2016-01-01

    Spinal muscular atrophy (SMA) is a neurodegenerative disease primarily affecting spinal motor neurons. It is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays an essential role in the biogenesis of spliceosomal small nuclear ribonucleoproteins in all tissues. The etiology of the specific defects in the motor circuitry in SMA is still unclear, but SMN has also been implicated in mediating the axonal localization of mRNA-protein complexes, which may contribute to the axonal degeneration observed in SMA. Here, we report that SMN deficiency severely disrupts local protein synthesis within neuronal growth cones. We also identify the cytoskeleton-associated growth-associated protein 43 (GAP43) mRNA as a new target of SMN and show that motor neurons from SMA mouse models have reduced levels of GAP43 mRNA and protein in axons and growth cones. Importantly, overexpression of two mRNA-binding proteins, HuD and IMP1, restores GAP43 mRNA and protein levels in growth cones and rescues axon outgrowth defects in SMA neurons. These findings demonstrate that SMN plays an important role in the localization and local translation of mRNAs with important axonal functions and suggest that disruption of this function may contribute to the axonal defects observed in SMA. SIGNIFICANCE STATEMENT The motor neuron disease spinal muscular atrophy (SMA) is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays a key role in assembling RNA/protein complexes that are essential for mRNA splicing. It remains unclear whether defects in this well characterized housekeeping function cause the specific degeneration of spinal motor neurons observed in SMA. Here, we describe an additional role of SMN in regulating the axonal localization and local translation of the mRNA encoding growth-associated protein 43 (GAP43). This study supports a model whereby SMN deficiency impedes transport and local translation of mRNAs important for neurite

  5. Experience-dependent development of spinal motor neurons

    NASA Technical Reports Server (NTRS)

    Inglis, F. M.; Zuckerman, K. E.; Kalb, R. G.; Walton, K. D. (Principal Investigator)

    2000-01-01

    Locomotor activity in many species undergoes pronounced alterations in early postnatal life, and environmental cues may be responsible for modifying this process. To determine how these events are reflected in the nervous system, we studied rats reared under two different conditions-the presence or absence of gravity-in which the performance of motor operations differed. We found a significant effect of rearing environment on the size and complexity of dendritic architecture of spinal motor neurons, particularly those that are likely to participate in postural control. These results provide evidence that neurons subserving motor function undergo activity-dependent maturation in early postnatal life in a manner analogous to sensory systems.

  6. Environmental Factors Affecting Preschoolers' Motor Development

    ERIC Educational Resources Information Center

    Venetsanou, Fotini; Kambas, Antonis

    2010-01-01

    The process of development occurs according to the pattern established by the genetic potential and also by the influence of environmental factors. The aim of the present study was to focus on the main environmental factors affecting motor development. The review of the literature revealed that family features, such as socioeconomic status,…

  7. Motor imagery muscle contraction strength influences spinal motor neuron excitability and cardiac sympathetic nerve activity.

    PubMed

    Bunno, Yoshibumi; Suzuki, Toshiaki; Iwatsuki, Hiroyasu

    2015-12-01

    [Purpose] The aim of this study was to investigate the changes in spinal motor neuron excitability and autonomic nervous system activity during motor imagery of isometric thenar muscle activity at 10% and 50% maximal voluntary contraction (MVC). [Methods] The F-waves and low frequency/high frequency (LF/HF) ratio were recorded at rest, during motor imagery, and post-trial. For motor imagery trials, subjects were instructed to imagine thenar muscle activity at 10% and 50% MVC while holding the sensor of a pinch meter for 5 min. [Results] The F-waves and LF/HF ratio during motor imagery at 50% MVC were significantly increased compared with those at rest, whereas those during motor imagery at 10% MVC were not significantly different from those at rest. The relative values of the F/M amplitude ratio during motor imagery at 50% MVC were significantly higher than those at 10% MVC. The relative values of persistence and the LF/HF ratio during motor imagery were similar during motor imagery at the two muscle contraction strengths. [Conclusion] Motor imagery can increase the spinal motor neuron excitability and cardiac sympathetic nerve activity. Motor imagery at 50% MVC may be more effective than motor imagery at 10% MVC.

  8. Spinal muscular atrophy: Factors that modulate motor neurone vulnerability.

    PubMed

    Tu, Wen-Yo; Simpson, Julie E; Highley, J Robin; Heath, Paul R

    2017-02-02

    Spinal muscular atrophy (SMA), a leading genetic cause of infant death, is a neurodegenerative disease characterised by the selective loss of particular groups of motor neurones in the anterior horn of the spinal cord with concomitant muscle weakness. To date, no effective treatment is available, however, there are ongoing clinical trials are in place which promise much for the future. However, there remains an ongoing problem in trying to link a single gene loss to motor neurone degeneration. Fortunately, given successful disease models that have been established and intensive studies on SMN functions in the past ten years, we are fast approaching the stage of identifying the underlying mechanisms of SMA pathogenesis Here we discuss potential disease modifying factors on motor neurone vulnerability, in the belief that these factors give insight into the pathological mechanisms of SMA and therefore possible therapeutic targets.

  9. Motor conduction block and high titres of anti-GM1 ganglioside antibodies: pathological evidence of a motor neuropathy in a patient with lower motor neuron syndrome.

    PubMed Central

    Adams, D; Kuntzer, T; Steck, A J; Lobrinus, A; Janzer, R C; Regli, F

    1993-01-01

    A patient with a progressive lower motor neuron syndrome and neurophysiological evidence of motor axon loss, multifocal proximal motor nerve conduction block, and high titres of anti-ganglioside GM1 antibodies. Neuropathological findings included a predominantly proximal motor radiculoneuropathy with multifocal IgG and IgM deposits on nerve fibres associated with a loss of spinal motor neurons. These findings support an autoimmune origin of this lower motor neuron syndrome with retrograde degeneration of spinal motor neurons and severe neurogenic muscular atrophy. Images PMID:8410039

  10. Interactions of neurons with topographic nano cues affect branching morphology mimicking neuron-neuron interactions.

    PubMed

    Baranes, Koby; Kollmar, Davida; Chejanovsky, Nathan; Sharoni, Amos; Shefi, Orit

    2012-08-01

    We study the effect of topographic nano-cues on neuronal growth-morphology using invertebrate neurons in culture. We use photolithography to fabricate substrates with repeatable line-pattern ridges of nano-scale heights of 10-150 nm. We plate leech neurons atop the patterned-substrates and compare their growth pattern to neurons plated atop non-patterned substrates. The model system allows us the analysis of single neurite-single ridge interactions. The use of high resolution electron microscopy reveals small filopodia processes that attach to the line-pattern ridges. These fine processes, that cannot be detected in light microscopy, add anchoring sites onto the side of the ridges, thus additional physical support. These interactions of the neuronal process dominantly affect the neuronal growth direction. We analyze the response of the entire neuronal branching tree to the patterned substrates and find significant effect on the growth patterns compared to non-patterned substrates. Moreover, interactions with the nano-cues trigger a growth strategy similarly to interactions with other neuronal cells, as reflected in their morphometric parameters. The number of branches and the number of neurites originating from the soma decrease following the interaction demonstrating a tendency to a more simplified neuronal branching tree. The effect of the nano-cues on the neuronal function deserves further investigation and will strengthen our understanding of the interplay between function and form.

  11. Conditional deletion of Ndufs4 in dopaminergic neurons promotes Parkinson’s disease-like non-motor symptoms without loss of dopamine neurons

    PubMed Central

    Choi, Won-Seok; Kim, Hyung-Wook; Tronche, François; Palmiter, Richard D.; Storm, Daniel R.; Xia, Zhengui

    2017-01-01

    Reduction of mitochondrial complex I activity is one of the major hypotheses for dopaminergic neuron death in Parkinson’s disease. However, reduction of complex I activity in all cells or selectively in dopaminergic neurons via conditional deletion of the Ndufs4 gene, a subunit of the mitochondrial complex I, does not cause dopaminergic neuron death or motor impairment. Here, we investigated the effect of reduced complex I activity on non-motor symptoms associated with Parkinson’s disease using conditional knockout (cKO) mice in which Ndufs4 was selectively deleted in dopaminergic neurons (Ndufs4 cKO). This conditional deletion of Ndufs4, which reduces complex I activity in dopamine neurons, did not cause a significant loss of dopaminergic neurons in substantia nigra pars compacta (SNpc), and there was no loss of dopaminergic neurites in striatum or amygdala. However, Ndufs4 cKO mice had a reduced amount of dopamine in the brain compared to control mice. Furthermore, even though motor behavior were not affected, Ndufs4 cKO mice showed non-motor symptoms experienced by many Parkinson’s disease patients including impaired cognitive function and increased anxiety-like behavior. These data suggest that mitochondrial complex I dysfunction in dopaminergic neurons promotes non-motor symptoms of Parkinson’s disease and reduces dopamine content in the absence of dopamine neuron loss. PMID:28327638

  12. Epigenetic regulation of motor neuron cell death through DNA methylation.

    PubMed

    Chestnut, Barry A; Chang, Qing; Price, Ann; Lesuisse, Catherine; Wong, Margaret; Martin, Lee J

    2011-11-16

    DNA methylation is an epigenetic mechanism for gene silencing engaged by DNA methyltransferase (Dnmt)-catalyzed methyl group transfer to cytosine residues in gene-regulatory regions. It is unknown whether aberrant DNA methylation can cause neurodegeneration. We tested the hypothesis that Dnmts can mediate neuronal cell death. Enforced expression of Dnmt3a induced degeneration of cultured NSC34 cells. During apoptosis of NSC34 cells induced by camptothecin, levels of Dnmt1 and Dnmt3a increased fivefold and twofold, respectively, and 5-methylcytosine accumulated in nuclei. Truncation mutation of the Dnmt3a catalytic domain and Dnmt3a RNAi blocked apoptosis of cultured neurons. Inhibition of Dnmt catalytic activity with RG108 and procainamide protected cultured neurons from excessive DNA methylation and apoptosis. In vivo, Dnmt1 and Dnmt3a are expressed differentially during mouse brain and spinal cord maturation and in adulthood when Dnmt3a is abundant in synapses and mitochondria. Dnmt1 and Dnmt3a are expressed in motor neurons of adult mouse spinal cord, and, during their apoptosis induced by sciatic nerve avulsion, nuclear and cytoplasmic 5-methylcytosine immunoreactivity, Dnmt3a protein levels and Dnmt enzyme activity increased preapoptotically. Inhibition of Dnmts with RG108 blocked completely the increase in 5-methycytosine and the apoptosis of motor neurons in mice. In human amyotrophic lateral sclerosis (ALS), motor neurons showed changes in Dnmt1, Dnmt3a, and 5-methylcytosine similar to experimental models. Thus, motor neurons can engage epigenetic mechanisms to drive apoptosis, involving Dnmt upregulation and increased DNA methylation. These cellular mechanisms could be relevant to human ALS pathobiology and disease treatment.

  13. Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults.

    PubMed

    Berghuis, K M M; Veldman, M P; Solnik, S; Koch, G; Zijdewind, I; Hortobágyi, T

    2015-06-01

    It is controversial whether or not old adults are capable of learning new motor skills and consolidate the performance gains into motor memory in the offline period. The underlying neuronal mechanisms are equally unclear. We determined the magnitude of motor learning and motor memory consolidation in healthy old adults and examined if specific metrics of neuronal excitability measured by magnetic brain stimulation mediate the practice and retention effects. Eleven healthy old adults practiced a wrist extension-flexion visuomotor skill for 20 min (MP, 71.3 years), while a second group only watched the templates without movements (attentional control, AC, n = 11, 70.5 years). There was 40 % motor learning in MP but none in AC (interaction, p < 0.001) with the skill retained 24 h later in MP and a 16 % improvement in AC. Corticospinal excitability at rest and during task did not change, but when measured during contraction at 20 % of maximal force, it strongly increased in MP and decreased in AC (interaction, p = 0.002). Intracortical inhibition at rest and during the task decreased and facilitation at rest increased in MP, but these metrics changed in the opposite direction in AC. These neuronal changes were especially profound at retention. Healthy old adults can learn a new motor skill and consolidate the learned skill into motor memory, processes that are most likely mediated by disinhibitory mechanisms. These results are relevant for the increasing number of old adults who need to learn and relearn movements during motor rehabilitation.

  14. Gamma motor neurons survive and exacerbate alpha motor neuron degeneration in ALS

    PubMed Central

    Lalancette-Hebert, Melanie; Sharma, Aarti; Lyashchenko, Alexander K.; Shneider, Neil A.

    2016-01-01

    The molecular and cellular basis of selective motor neuron (MN) vulnerability in amyotrophic lateral sclerosis (ALS) is not known. In genetically distinct mouse models of familial ALS expressing mutant superoxide dismutase-1 (SOD1), TAR DNA-binding protein 43 (TDP-43), and fused in sarcoma (FUS), we demonstrate selective degeneration of alpha MNs (α-MNs) and complete sparing of gamma MNs (γ-MNs), which selectively innervate muscle spindles. Resistant γ-MNs are distinct from vulnerable α-MNs in that they lack synaptic contacts from primary afferent (IA) fibers. Elimination of these synapses protects α-MNs in the SOD1 mutant, implicating this excitatory input in MN degeneration. Moreover, reduced IA activation by targeted reduction of γ-MNs in SOD1G93A mutants delays symptom onset and prolongs lifespan, demonstrating a pathogenic role of surviving γ-MNs in ALS. This study establishes the resistance of γ-MNs as a general feature of ALS mouse models and demonstrates that synaptic excitation of MNs within a complex circuit is an important determinant of relative vulnerability in ALS. PMID:27930290

  15. Equine motor neuron disease in 2 horses from Saskatchewan

    PubMed Central

    Husulak, Michelle L.; Lohmann, Katharina L.; Gabadage, Kamal; Wojnarowicz, Chris; Marqués, Fernando J.

    2016-01-01

    Two horses from Saskatchewan were presented with signs of sweating, muscle fasciculations, weight loss, and generalized weakness. The horses were diagnosed with equine motor neuron disease (EMND), by histological assessment of a spinal accessory nerve or sacrocaudalis dorsalis medialis muscle biopsy. This is the first report of EMND in western Canada. PMID:27429468

  16. ALS-related misfolded protein management in motor neurons and muscle cells.

    PubMed

    Galbiati, Mariarita; Crippa, Valeria; Rusmini, Paola; Cristofani, Riccardo; Cicardi, Maria Elena; Giorgetti, Elisa; Onesto, Elisa; Messi, Elio; Poletti, Angelo

    2014-12-01

    Amyotrophic Lateral Sclerosis (ALS) is the most common form of adult-onset motor neuron disease. It is now considered a multi-factorial and multi-systemic disorder in which alterations of the crosstalk between neuronal and non-neuronal cell types might influence the course of the disease. In this review, we will provide evidence that dysfunctions of affected muscle cells are not only a marginal consequence of denervation associated to motor neurons loss, but a direct consequence of cell muscle toxicity of mutant SOD1. In muscle, the misfolded state of mutant SOD1 protein, unlike in motor neurons, does not appear to have direct effects on protein aggregation and mitochondrial functionality. Muscle cells are, in fact, more capable than motor neurons to handle misfolded proteins, suggesting that mutant SOD1 toxicity in muscle is not mediated by classical mechanisms of intracellular misfolded proteins accumulation. Several recent works indicate that a higher activation of molecular chaperones and degradative systems is present in muscle cells, which for this reason are possibly able to better manage misfolded mutant SOD1. However, several alterations in gene expression and regenerative potential of skeletal muscles have also been reported as a consequence of the expression of mutant SOD1 in muscle. Whether these changes in muscle cells are causative of ALS or a consequence of motor neuron alterations is not yet clear, but their elucidation is very important, since the understanding of the mechanisms involved in mutant SOD1 toxicity in muscle may facilitate the design of treatments directed toward this specific tissue to treat ALS or at least to delay disease progression.

  17. Spasticity: the misunderstood part of the upper motor neuron syndrome.

    PubMed

    Ivanhoe, Cindy B; Reistetter, Timothy A

    2004-10-01

    Spasticity is a sensorimotor phenomenon related to the integration of the nervous system motor responses to sensory input. Although most commonly considered a velocity-dependent increase to tonic stretch, it is related to hypersensitivity of the reflex arc and changes that occur within the central nervous system, most notably, the spinal cord. Injury to the central nervous system results in loss of descending inhibition, allowing for the clinical manifestation of abnormal impulses. Muscle activity becomes overactive. This is mediated at several areas of the stretch-reflex pathway. Although spasticity is part of the upper motor neuron syndrome, it is frequently tied to the other presentations of the said syndrome. Contracture, hypertonia, weakness, and movement disorders can all coexist as a result of the upper motor neuron syndrome. Although basic science descriptions of spasticity are being elucidated, clinically, confusion exists.

  18. TDP-43 Proteinopathy and Motor Neuron Disease in Chronic Traumatic Encephalopathy

    PubMed Central

    McKee, Ann C.; Gavett, Brandon E.; Stern, Robert A.; Nowinski, Christopher J.; Cantu, Robert C.; Kowall, Neil W.; Perl, Daniel P.; Hedley-Whyte, E. Tessa; Price, Bruce; Sullivan, Chris; Morin, Peter; Lee, Hyo-Soon; Kubilus, Caroline A.; Daneshvar, Daniel H.; Wulff, Megan; Budson, Andrew E.

    2010-01-01

    Epidemiological evidence suggests that the incidence of amyotrophic lateral sclerosis is increased in association with head injury. Repetitive head injury is also associated with the development of chronic traumatic encephalopathy (CTE), a tauopathy characterized by neurofibrillary tangles throughout the brain in the relative absence of β-amyloid deposits. We examined 12 cases of CTE and, in 10, found a widespread TAR DNA-binding protein of approximately 43 kd (TDP-43) proteinopathy affecting the frontal and temporal cortices, medial temporal lobe, basal ganglia, diencephalon, and brainstem. Three athletes with CTE also developed a progressive motor neuron disease with profound weakness, atrophy, spasticity, and fasciculations several years before death. In these 3 cases, there were abundant TDP-43–positive inclusions and neurites in the spinal cord in addition to tau neurofibrillary changes, motor neuron loss, and corticospinal tract degeneration. The TDP-43 proteinopathy associated with CTE is similar to that found in frontotemporal lobar degeneration with TDP-43 inclusions, in that widespread regions of the brain are affected. Akin to frontotemporal lobar degeneration with TDP-43 inclusions, in some individuals with CTE, the TDP-43 proteinopathy extends to involve the spinal cord and is associated with motor neuron disease. This is the first pathological evidence that repetitive head trauma experienced in collision sports might be associated with the development of a motor neuron disease. PMID:20720505

  19. TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy.

    PubMed

    McKee, Ann C; Gavett, Brandon E; Stern, Robert A; Nowinski, Christopher J; Cantu, Robert C; Kowall, Neil W; Perl, Daniel P; Hedley-Whyte, E Tessa; Price, Bruce; Sullivan, Chris; Morin, Peter; Lee, Hyo-Soon; Kubilus, Caroline A; Daneshvar, Daniel H; Wulff, Megan; Budson, Andrew E

    2010-09-01

    Epidemiological evidence suggests that the incidence of amyotrophic lateral sclerosis is increased in association with head injury. Repetitive head injury is also associated with the development of chronic traumatic encephalopathy (CTE), a tauopathy characterized by neurofibrillary tangles throughout the brain in the relative absence of β-amyloid deposits. We examined 12 cases of CTE and, in 10, found a widespread TAR DNA-binding protein of approximately 43kd (TDP-43) proteinopathy affecting the frontal and temporal cortices, medial temporal lobe, basal ganglia, diencephalon, and brainstem. Three athletes with CTE also developed a progressive motor neuron disease with profound weakness, atrophy, spasticity, and fasciculations several years before death. In these 3 cases, there were abundant TDP-43-positive inclusions and neurites in the spinal cord in addition to tau neurofibrillary changes, motor neuron loss, and corticospinal tract degeneration. The TDP-43 proteinopathy associated with CTE is similar to that found in frontotemporal lobar degeneration with TDP-43 inclusions, in that widespread regions of the brain are affected. Akin to frontotemporal lobar degeneration with TDP-43 inclusions, in some individuals with CTE, the TDP-43 proteinopathy extends to involve the spinal cord and is associated with motor neuron disease. This is the first pathological evidence that repetitive head trauma experienced in collision sports might be associated with the development of a motor neuron disease.

  20. Sensory neurons do not induce motor neuron loss in a human stem cell model of spinal muscular atrophy.

    PubMed

    Schwab, Andrew J; Ebert, Allison D

    2014-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disorder leading to paralysis and early death due to reduced SMN protein. It is unclear why there is such a profound motor neuron loss, but recent evidence from fly and mouse studies indicate that cells comprising the whole sensory-motor circuit may contribute to motor neuron dysfunction and loss. Here, we used induced pluripotent stem cells derived from SMA patients to test whether sensory neurons directly contribute to motor neuron loss. We generated sensory neurons from SMA induced pluripotent stem cells and found no difference in neuron generation or survival, although there was a reduced calcium response to depolarizing stimuli. Using co-culture of SMA induced pluripotent stem cell derived sensory neurons with control induced pluripotent stem cell derived motor neurons, we found no significant reduction in motor neuron number or glutamate transporter boutons on motor neuron cell bodies or neurites. We conclude that SMA sensory neurons do not overtly contribute to motor neuron loss in this human stem cell system.

  1. SMN expression is required in motor neurons to rescue electrophysiological deficits in the SMNΔ7 mouse model of SMA.

    PubMed

    McGovern, Vicki L; Iyer, Chitra C; Arnold, W David; Gombash, Sara E; Zaworski, Phillip G; Blatnik, Anton J; Foust, Kevin D; Burghes, Arthur H M

    2015-10-01

    Proximal spinal muscular atrophy (SMA) is the most frequent cause of hereditary infant mortality. SMA is an autosomal recessive neuromuscular disorder that results from the loss of the Survival Motor Neuron 1 (SMN1) gene and retention of the SMN2 gene. The SMN2 gene produces an insufficient amount of full-length SMN protein that results in loss of motor neurons in the spinal cord and subsequent muscle paralysis. Previously we have shown that overexpression of human SMN in neurons in the SMA mouse ameliorates the SMA phenotype while overexpression of human SMN in skeletal muscle had no effect. Using Cre recombinase, here we show that either deletion or replacement of Smn in motor neurons (ChAT-Cre) significantly alters the functional output of the motor unit as measured with compound muscle action potential and motor unit number estimation. However ChAT-Cre alone did not alter the survival of SMA mice by replacement and did not appreciably affect survival when used to deplete SMN. However replacement of Smn in both neurons and glia in addition to the motor neuron (Nestin-Cre and ChAT-Cre) resulted in the greatest improvement in survival of the mouse and in some instances complete rescue was achieved. These findings demonstrate that high expression of SMN in the motor neuron is both necessary and sufficient for proper function of the motor unit. Furthermore, in the mouse high expression of SMN in neurons and glia, in addition to motor neurons, has a major impact on survival.

  2. Genetic deficiency of GABA differentially regulates respiratory and non-respiratory motor neuron development.

    PubMed

    Fogarty, Matthew J; Smallcombe, Karen L; Yanagawa, Yuchio; Obata, Kunihiko; Bellingham, Mark C; Noakes, Peter G

    2013-01-01

    Central nervous system GABAergic and glycinergic synaptic activity switches from postsynaptic excitation to inhibition during the stage when motor neuron numbers are being reduced, and when synaptic connections are being established onto and by motor neurons. In mice this occurs between embryonic (E) day 13 and birth (postnatal day 0). Our previous work on mice lacking glycinergic transmission suggested that altered motor neuron activity levels correspondingly regulated motor neuron survival and muscle innervation for all respiratory and non respiratory motor neuron pools, during this period of development [1]. To determine if GABAergic transmission plays a similar role, we quantified motor neuron number and the extent of muscle innervation in four distinct regions of the brain stem and spinal cord; hypoglossal, phrenic, brachial and lumbar motor pools, in mice lacking the enzyme GAD67. These mice display a 90% drop in CNS GABA levels ( [2]; this study). For respiratory-based motor neurons (hypoglossal and phrenic motor pools), we have observed significant drops in motor neuron number (17% decline for hypoglossal and 23% decline for phrenic) and muscle innervations (55% decrease). By contrast for non-respiratory motor neurons of the brachial lateral motor column, we have observed an increase in motor neuron number (43% increase) and muscle innervations (99% increase); however for more caudally located motor neurons within the lumbar lateral motor column, we observed no change in either neuron number or muscle innervation. These results show in mice lacking physiological levels of GABA, there are distinct regional changes in motor neuron number and muscle innervation, which appear to be linked to their physiological function and to their rostral-caudal position within the developing spinal cord. Our results also suggest that for more caudal (lumbar) regions of the spinal cord, the effect of GABA is less influential on motor neuron development compared to that of

  3. Astrocytes show reduced support of motor neurons with aging that is accelerated in a rodent model of ALS.

    PubMed

    Das, Melanie M; Svendsen, Clive N

    2015-02-01

    Astrocytes play a crucial role in supporting motor neurons in health and disease. However, there have been few attempts to understand how aging may influence this effect. Here, we report that rat astrocytes show an age-dependent senescence phenotype and a significant reduction in their ability to support motor neurons. In a rodent model of familial amyotrophic lateral sclerosis (ALS) overexpressing mutant superoxide dismutase 1 (SOD1), the rate of astrocytes acquiring a senescent phenotype is accelerated and they subsequently provide less support to motor neurons. This can be partially reversed by glial cell line-derived neurotrophic factor (GDNF). Replacing aging astrocytes with young ones producing GDNF may therefore have a significant survival promoting affect on aging motor neurons and those lost through diseases such as ALS.

  4. Regulation of ciliary neurotrophic factor receptor alpha in sciatic motor neurons following axotomy.

    PubMed

    MacLennan, A J; Devlin, B K; Neitzel, K L; McLaurin, D L; Anderson, K J; Lee, N

    1999-01-01

    Spinal motor neurons are one of the few classes of neurons capable of regenerating axons following axotomy. Injury-induced expression of neurotrophic factors and corresponding receptors may play an important role in this rare ability. A wide variety of indirect data suggests that ciliary neurotrophic factor receptor alpha may critically contribute to the regeneration of injured spinal motor neurons. We used immunohistochemistry, in situ hybridization and retrograde tracing techniques to study the regulation of ciliary neurotrophic factor receptor alpha in axotomized sciatic motor neurons. Ciliary neurotrophic factor receptor alpha immunoreactivity, detected with two independent antisera, is increased in a subpopulation of caudal sciatic motor neuron soma one, two and six weeks after sciatic nerve transection and reattachment, while no changes are detected at one day and 15 weeks post-lesion. Ciliary neurotrophic factor receptor alpha messenger RNA levels are augmented in the same classes of neurons following an identical lesion, suggesting that increased synthesis contributes, at least in part, to the additional ciliary neurotrophic factor receptor alpha protein. Separating the proximal and distal nerve stumps with a plastic barrier does not noticeably affect the injury-induced change in ciliary neurotrophic factor receptor alpha regulation, thereby indicating that this injury response is not dependent on signals distal to the lesion traveling retrogradely through the nerve or signals generated by axonal growth through the distal nerve. The prolonged increases in ciliary neurotrophic factor receptor alpha protein and messenger RNA found in regenerating sciatic motor neurons contrast with the responses of non-regenerating central neurons, which are reported to display, at most, a short-lived increase in ciliary neurotrophic factor receptor alpha messenger RNA expression following injury. The present data are the first to demonstrate, in vivo, neuronal regulation of

  5. Comparison of independent screens on differentially vulnerable motor neurons reveals alpha-synuclein as a common modifier in motor neuron diseases.

    PubMed

    Kline, Rachel A; Kaifer, Kevin A; Osman, Erkan Y; Carella, Francesco; Tiberi, Ariana; Ross, Jolill; Pennetta, Giuseppa; Lorson, Christian L; Murray, Lyndsay M

    2017-03-31

    The term "motor neuron disease" encompasses a spectrum of disorders in which motor neurons are the primary pathological target. However, in both patients and animal models of these diseases, not all motor neurons are equally vulnerable, in that while some motor neurons are lost very early in disease, others remain comparatively intact, even at late stages. This creates a valuable system to investigate the factors that regulate motor neuron vulnerability. In this study, we aim to use this experimental paradigm to identify potential transcriptional modifiers. We have compared the transcriptome of motor neurons from healthy wild-type mice, which are differentially vulnerable in the childhood motor neuron disease Spinal Muscular Atrophy (SMA), and have identified 910 transcriptional changes. We have compared this data set with published microarray data sets on other differentially vulnerable motor neurons. These neurons were differentially vulnerable in the adult onset motor neuron disease Amyotrophic Lateral Sclerosis (ALS), but the screen was performed on the equivalent population of neurons from neurologically normal human, rat and mouse. This cross species comparison has generated a refined list of differentially expressed genes, including CELF5, Col5a2, PGEMN1, SNCA, Stmn1 and HOXa5, alongside a further enrichment for synaptic and axonal transcripts. As an in vivo validation, we demonstrate that the manipulation of a significant number of these transcripts can modify the neurodegenerative phenotype observed in a Drosophila line carrying an ALS causing mutation. Finally, we demonstrate that vector-mediated expression of alpha-synuclein (SNCA), a transcript decreased in selectively vulnerable motor neurons in all four screens, can extend life span, increase weight and decrease neuromuscular junction pathology in a mouse model of SMA. In summary, we have combined multiple data sets to identify transcripts, which are strong candidates for being phenotypic modifiers

  6. Identification of motor neurons and a mechanosensitive sensory neuron in the defecation circuitry of Drosophila larvae.

    PubMed

    Zhang, Wei; Yan, Zhiqiang; Li, Bingxue; Jan, Lily Yeh; Jan, Yuh Nung

    2014-10-30

    Defecation allows the body to eliminate waste, an essential step in food processing for animal survival. In contrast to the extensive studies of feeding, its obligate counterpart, defecation, has received much less attention until recently. In this study, we report our characterizations of the defecation behavior of Drosophila larvae and its neural basis. Drosophila larvae display defecation cycles of stereotypic frequency, involving sequential contraction of hindgut and anal sphincter. The defecation behavior requires two groups of motor neurons that innervate hindgut and anal sphincter, respectively, and can excite gut muscles directly. These two groups of motor neurons fire sequentially with the same periodicity as the defecation behavior, as revealed by in vivo Ca(2+) imaging. Moreover, we identified a single mechanosensitive sensory neuron that innervates the anal slit and senses the opening of the intestine terminus. This anus sensory neuron relies on the TRP channel NOMPC but not on INACTIVE, NANCHUNG, or PIEZO for mechanotransduction.

  7. Cholestenoic acids regulate motor neuron survival via liver X receptors

    PubMed Central

    Theofilopoulos, Spyridon; Griffiths, William J.; Crick, Peter J.; Yang, Shanzheng; Meljon, Anna; Ogundare, Michael; Kitambi, Satish Srinivas; Lockhart, Andrew; Tuschl, Karin; Clayton, Peter T.; Morris, Andrew A.; Martinez, Adelaida; Reddy, M. Ashwin; Martinuzzi, Andrea; Bassi, Maria T.; Honda, Akira; Mizuochi, Tatsuki; Kimura, Akihiko; Nittono, Hiroshi; De Michele, Giuseppe; Carbone, Rosa; Criscuolo, Chiara; Yau, Joyce L.; Seckl, Jonathan R.; Schüle, Rebecca; Schöls, Ludger; Sailer, Andreas W.; Kuhle, Jens; Fraidakis, Matthew J.; Gustafsson, Jan-Åke; Steffensen, Knut R.; Björkhem, Ingemar; Ernfors, Patrik; Sjövall, Jan; Arenas, Ernest; Wang, Yuqin

    2014-01-01

    Cholestenoic acids are formed as intermediates in metabolism of cholesterol to bile acids, and the biosynthetic enzymes that generate cholestenoic acids are expressed in the mammalian CNS. Here, we evaluated the cholestenoic acid profile of mammalian cerebrospinal fluid (CSF) and determined that specific cholestenoic acids activate the liver X receptors (LXRs), enhance islet-1 expression in zebrafish, and increase the number of oculomotor neurons in the developing mouse in vitro and in vivo. While 3β,7α-dihydroxycholest-5-en-26-oic acid (3β,7α-diHCA) promoted motor neuron survival in an LXR-dependent manner, 3β-hydroxy-7-oxocholest-5-en-26-oic acid (3βH,7O-CA) promoted maturation of precursors into islet-1+ cells. Unlike 3β,7α-diHCA and 3βH,7O-CA, 3β-hydroxycholest-5-en-26-oic acid (3β-HCA) caused motor neuron cell loss in mice. Mutations in CYP7B1 or CYP27A1, which encode enzymes involved in cholestenoic acid metabolism, result in different neurological diseases, hereditary spastic paresis type 5 (SPG5) and cerebrotendinous xanthomatosis (CTX), respectively. SPG5 is characterized by spastic paresis, and similar symptoms may occur in CTX. Analysis of CSF and plasma from patients with SPG5 revealed an excess of the toxic LXR ligand, 3β-HCA, while patients with CTX and SPG5 exhibited low levels of the survival-promoting LXR ligand 3β,7α-diHCA. Moreover, 3β,7α-diHCA prevented the loss of motor neurons induced by 3β-HCA in the developing mouse midbrain in vivo.Our results indicate that specific cholestenoic acids selectively work on motor neurons, via LXR, to regulate the balance between survival and death. PMID:25271621

  8. Effects of cerebrolysin on motor-neuron-like NSC-34 cells

    SciTech Connect

    Keilhoff, Gerburg; Lucas, Benjamin; Pinkernelle, Josephine; Steiner, Michael; Fansa, Hisham

    2014-10-01

    Although the peripheral nervous system is capable of regeneration, this capability is limited. As a potential means of augmenting nerve regeneration, the effects of cerebrolysin (CL) – a proteolytic peptide fraction – were tested in vitro on the motor-neuron-like NSC-34 cell line and organotypic spinal cord cultures. Therefore, NSC-34 cells were subjected to mechanical stress by changing media and metabolic stress by oxygen glucose deprivation. Afterwards, cell survival/proliferation using MTT and BrdU-labeling (FACS) and neurite sprouting using ImageJ analysis were evaluated. Calpain-1, Src and α-spectrin protein expression were analyzed by Western blot. In organotypic cultures, the effect of CL on motor neuron survival and neurite sprouting was tested by immunohistochemistry. CL had a temporary anti-proliferative but initially neuroprotective effect on OGD-stressed NSC-34 cells. High-dosed or repeatedly applied CL was deleterious for cell survival. CL amplified neurite reconstruction to limited extent, affected calpain-1 protein expression and influenced calpain-mediated spectrin cleavage as a function of Src expression. In organotypic spinal cord slice cultures, CL was not able to support motor neuron survival/neurite sprouting. Moreover, it hampered astroglia and microglia activities. The data suggest that CL may have only isolated positive effects on injured spinal motor neurons. High-dosed or accumulated CL seemed to have adverse effects in treatment of spinal cord injury. Further experiments are required to optimize the conditions for a safe clinical administration of CL in spinal cord injuries. - Highlights: • Cerebrolysin (CL) is anti-proliferative but initially neuroprotective in OGD-stressed NSC-34 cells. • CL amplified neurite reconstruction of NSC-34 cells. • CL affected calpain-1 expression and calpain-mediated spectrin cleavage as function of Src expression. • In organotypic spinal cord cultures, CL hampered motor neuron survival and

  9. Neuronal cell sheet of cortical motor neuron phenotype derived from human iPS cells.

    PubMed

    Suzuki, Noboru; Arimitsu, Nagisa; Shimizu, Jun; Takai, Kenji; Hirotsu, Chieko; Takada, Erika; Ueda, Yuji; Wakisaka, Sueshige; Fujiwara, Naruyoshi; Suzuki, Tomoko

    2017-03-17

    Transplantation of stem cells which differentiate into more mature neural cells brings about functional improvement in pre-clinical studies of stroke. Previous transplant approaches in diseased brain have utilized injection of the cells in a cell suspension. In addition, neural stem cells were preferentially used as graft. However, these cells had no specific relationship to the damaged tissue of stroke patients and brain injury. The injection of cells in a suspension destroyed the cell-cell interactions that are suggested to be important for promoting functional integrity as cortical motor neurons.

    In order to obtain suitable cell types for grafting patients with stroke and brain damage, we have modified a protocol for differentiating human iPS cells to cells phenotypically related to cortical motor neurons. Moreover, we applied cell sheet technology to neural cell transplantation due to the idea in which keeping cell-cell communications was regarded as important for the repair of host brain architecture.

    Accordingly, we developed neuronal cell sheets being positive for FEZ family zinc finger 2 (Fezf2), COUP-TF-interacting protein 2 (CTIP2), insulin-like growth factor-binding protein 4 (Igfbp4), cysteine-rich motor neuron 1 protein precursor (CRIM1) and forkhead box p2 (Foxp2). These markers are associated with cortical motoneuron which is appropriate for the transplant location in the lesions. The sheets allowed preservation of cell-cell interactions shown by synapsin1 staining after transplantation to damaged mouse brain. The sheet transplantation brought about structural restoration partly and improvement of motor functions in hemiplegic mice.

    Collectively, the cell sheets were transplanted to damaged motor cortex in a way of a novel neuronal cell sheet that maintained cell-cell interactions and improved motor functions of the hemiplegic model mice. The motoneuron cell sheets are possibly applicable for stroke patients and patients with

  10. Motor neurons with differential vulnerability to degeneration show distinct protein signatures in health and ALS.

    PubMed

    Comley, L; Allodi, I; Nichterwitz, S; Nizzardo, M; Simone, C; Corti, S; Hedlund, E

    2015-04-16

    The lethal disease amyotrophic lateral sclerosis (ALS) is characterized by the loss of somatic motor neurons. However, not all motor neurons are equally vulnerable to disease; certain groups are spared, including those in the oculomotor nucleus controlling eye movement. The reasons for this differential vulnerability remain unknown. Here we have identified a protein signature for resistant oculomotor motor neurons and vulnerable hypoglossal and spinal motor neurons in mouse and man and in health and ALS with the aim of understanding motor neuron resistance. Several proteins with implications for motor neuron resistance, including GABAA receptor α1, guanylate cyclase soluble subunit alpha-3 and parvalbumin were persistently expressed in oculomotor neurons in man and mouse. Vulnerable motor neurons displayed higher protein levels of dynein, peripherin and GABAA receptor α2, which play roles in retrograde transport and excitability, respectively. These were dynamically regulated during disease and thus could place motor neurons at an increased risk. From our analysis is it evident that oculomotor motor neurons have a distinct protein signature compared to vulnerable motor neurons in brain stem and spinal cord, which could in part explain their resistance to degeneration in ALS. Our comparison of human and mouse shows the relative conservation of signals across species and infers that transgenic SOD1G93A mice could be used to predict mechanisms of neuronal vulnerability in man.

  11. Motor neuron disease: biomarker development for an expanding cerebral syndrome.

    PubMed

    Turner, Martin R

    2016-12-01

    Descriptions of motor neuron disease (MND) documented more than a century ago remain instantly recognisable to the physician. The muscle weakness, typically with signs of upper and lower motor neuron dysfunction, is uniquely relentless. Over the last 30 years, a wider cerebral pathology has emerged, despite the lack of overt cognitive impairment in the majority of patients. From the initial linkage of a small number of cases to mutations in SOD1, diverse cellular pathways have been implicated in pathogenesis. An increasingly complex clinical heterogeneity has emerged around a significant variability in survival. Defining a cellular signature of aggregated TDP-43 common to nearly all MND and a large proportion of frontotemporal dementia (FTD), has placed MND alongside more traditional cerebral neurodegeneration. With new genetic causes, most notably a hexanucleotide expansion in C9orf72 associated with both MND and FTD, the development of biomarkers against which to test therapeutic candidates is a priority.

  12. Brain-wide neuronal dynamics during motor adaptation in zebrafish.

    PubMed

    Ahrens, Misha B; Li, Jennifer M; Orger, Michael B; Robson, Drew N; Schier, Alexander F; Engert, Florian; Portugues, Ruben

    2012-05-09

    A fundamental question in neuroscience is how entire neural circuits generate behaviour and adapt it to changes in sensory feedback. Here we use two-photon calcium imaging to record the activity of large populations of neurons at the cellular level, throughout the brain of larval zebrafish expressing a genetically encoded calcium sensor, while the paralysed animals interact fictively with a virtual environment and rapidly adapt their motor output to changes in visual feedback. We decompose the network dynamics involved in adaptive locomotion into four types of neuronal response properties, and provide anatomical maps of the corresponding sites. A subset of these signals occurred during behavioural adjustments and are candidates for the functional elements that drive motor learning. Lesions to the inferior olive indicate a specific functional role for olivocerebellar circuitry in adaptive locomotion. This study enables the analysis of brain-wide dynamics at single-cell resolution during behaviour.

  13. Madras pattern of motor neuron disease in South India.

    PubMed Central

    Gourie-Devi, M; Suresh, T G

    1988-01-01

    This paper presents the clinical features in 12 patients with the Madras pattern of motor neuron disease (MMND) seen over a period of 10 years. Ten of the patients were from other parts of South India, outside Madras. Young age at onset, sporadic occurrence, sensorineural deafness, bulbar palsy, diffuse atrophy with weakness of limbs and progressive but benign course were the striking features. Electromyography revealed chronic partial denervation. MMND formed 3.7% of all forms of motor neuron disease. Although isolated cases have been seen elsewhere in India, this is the first report of a large number of patients of MMND seen outside Madras (Tamil Nadu). Recognition of this clinical syndrome is of importance for prognostication and as well for search of possible aetiological factors. Images PMID:3404185

  14. Motor Neuron Diseases Accompanying Spinal Stenosis: A Case Study.

    PubMed

    Shin, HyeonJu; Park, Sun Kyung; HaeJin, Suh; Choi, Yun Suk

    2016-03-01

    A 75-year-old man, who was healthy, visited the hospital because of shooting pain and numbness in both lower limbs (right > left). The patient had an L4/5 moderate right foraminal stenosis and right subarticular disc protrusion and received a lumbar epidural block. The patient experienced severe weakness in the right lower limb after 2 days. Lumbar and cervical magnetic resonance images were taken and electromyography and a nerve conduction study were performed to arrive at the diagnosis of a motor neuron disease. The patient expired 4 months later with respiratory failure due to motor neuron disease. This case suggests that any abnormal neurological symptoms that occur after an epidural block should be examined thoroughly via testing and consultations to identify the cause of the symptoms.

  15. Motor neurone disease presenting with raised serum Troponin T.

    PubMed

    Mamo, Jonathan P

    2015-05-01

    Myocardial damage indicated by a rise in cardiac Troponin may not necessarily be due to a cardiac event. Many diseases such as sepsis, pulmonary embolism, heart and renal failure can also be associated with an elevated cardiac Troponin level. This brief report discusses the rare event of a patient with motor neurone disease, where the possible diagnosis of acute myocardial infarction arose due to an elevated cardiac Troponin. A 69-year-old gentleman presented with a history of a central chest ache of mild intensity, lasting a total of 2 h prior to complete resolution. Multiple cardiac Troponin assays were elevated, and echocardiography did not show any acute changes of myocardial damage. His electrocardiogram was also normal. This patient's raised cardiac Troponin was therefore explained on the basis of his active motor neurone disease. This rare case outlines the importance of considering motor neurone disease as a cause of elevated cardiac Troponin in the absence of clinical evidence of an acute coronary event.

  16. Apoptosis of limb innervating motor neurons and erosion of motor pool identity upon lineage specific dicer inactivation.

    PubMed

    Chen, Jun-An; Wichterle, Hynek

    2012-01-01

    Diversification of mammalian spinal motor neurons into hundreds of subtypes is critical for the maintenance of body posture and coordination of complex movements. Motor neuron differentiation is controlled by extrinsic signals that regulate intrinsic genetic programs specifying and consolidating motor neuron subtype identity. While transcription factors have been recognized as principal regulators of the intrinsic program, the role of posttranscriptional regulations has not been systematically tested. MicroRNAs produced by Dicer mediated cleavage of RNA hairpins contribute to gene regulation by posttranscriptional silencing. Here we used Olig2-cre conditional deletion of Dicer gene in motor neuron progenitors to examine effects of miRNA biogenesis disruption on postmitotic spinal motor neurons. We report that despite the initial increase in the number of motor neuron progenitors, disruption of Dicer function results in a loss of many limb- and sympathetic ganglia-innervating spinal motor neurons. Furthermore, it leads to defects in motor pool identity specification. Thus, our results indicate that miRNAs are an integral part of the genetic program controlling motor neuron survival and acquisition of subtype specific properties.

  17. Selective Gating of Neuronal Activity by Intrinsic Properties in Distinct Motor Rhythms

    PubMed Central

    2015-01-01

    Many neural circuits show fast reconfiguration following altered sensory or modulatory inputs to generate stereotyped outputs. In the motor circuit of Xenopus tadpoles, I study how certain voltage-dependent ionic currents affect firing thresholds and contribute to circuit reconfiguration to generate two distinct motor patterns, swimming and struggling. Firing thresholds of excitatory interneurons [i.e., descending interneurons (dINs)] in the swimming central pattern generator are raised by depolarization due to the inactivation of Na+ currents. In contrast, the thresholds of other types of neurons active in swimming or struggling are raised by hyperpolarization from the activation of fast transient K+ currents. The firing thresholds are then compared with the excitatory synaptic drives, which are revealed by blocking action potentials intracellularly using QX314 during swimming and struggling. During swimming, transient K+ currents lower neuronal excitability and gate out neurons with weak excitation, whereas their inactivation by strong excitation in other neurons increases excitability and enables fast synaptic potentials to drive reliable firing. During struggling, continuous sensory inputs lead to high levels of network excitation. This allows the inactivation of Na+ currents and suppression of dIN activity while inactivating transient K+ currents, recruiting neurons that are not active in swimming. Therefore, differential expression of these currents between neuron types can explain why synaptic strength does not predict firing reliability/intensity during swimming and struggling. These data show that intrinsic properties can override fast synaptic potentials, mediate circuit reconfiguration, and contribute to motor–pattern switching. PMID:26156983

  18. Inhibition of Rho-kinase differentially affects axon regeneration of peripheral motor and sensory nerves.

    PubMed

    Joshi, Abhijeet R; Bobylev, Ilja; Zhang, Gang; Sheikh, Kazim A; Lehmann, Helmar C

    2015-01-01

    The small GTPase RhoA and its down-stream effector Rho-kinase (ROCK) are important effector molecules of the neuronal cytoskeleton. Modulation of the RhoA/ROCK pathway has been shown to promote axonal regeneration, however in vitro and animal studies are inconsistent regarding the extent of axonal outgrowth induced by pharmacological inhibition of ROCK. We hypothesized that injury to sensory and motor nerves result in diverse activation levels of RhoA, which may impact the response of those nerve fiber modalities to ROCK inhibition. We therefore examined the effects of Y-27632, a chemical ROCK inhibitor, on the axonal outgrowth of peripheral sensory and motor neurons grown in the presence of growth-inhibiting chondroitin sulfate proteoglycans (CSPGs). In addition we examined the effects of three different doses of Y-27632 on nerve regeneration of motor and sensory nerves in animal models of peripheral nerve crush. In vitro, sensory neurons were less responsive to Y-27632 compared to motor neurons in a non-growth permissive environment. These differences were associated with altered expression and activation of RhoA in sensory and motor axons. In vivo, systemic treatment with high doses of Y-27632 significantly enhanced the regeneration of motor axons over short distances, while the regeneration of sensory fibers remained largely unchanged. Our results support the concept that in a growth non-permissive environment, the regenerative capacity of sensory and motor axons is differentially affected by the RhoA/ROCK pathway, with motor neurons being more responsive compared to sensory. Future treatments, that are aimed to modulate RhoA activity, should consider this functional diversity.

  19. Reduced gap junctional coupling leads to uncorrelated motor neuron firing and precocious neuromuscular synapse elimination.

    PubMed

    Personius, Kirkwood E; Chang, Qiang; Mentis, George Z; O'Donovan, Michael J; Balice-Gordon, Rita J

    2007-07-10

    During late embryonic and early postnatal life, neuromuscular junctions undergo synapse elimination that is modulated by patterns of motor neuron activity. Here, we test the hypothesis that reduced spinal neuron gap junctional coupling decreases temporally correlated motor neuron activity that, in turn, modulates neuromuscular synapse elimination, by using mutant mice lacking connexin 40 (Cx40), a developmentally regulated gap junction protein expressed in motor and other spinal neurons. In Cx40-/- mice, electrical coupling among lumbar motor neurons, measured by whole-cell recordings, was reduced, and single motor unit recordings in awake, behaving neonates showed that temporally correlated motor neuron activity was also reduced. Immunostaining and intracellular recording showed that the neuromuscular synapse elimination was accelerated in muscles from Cx40-/- mice compared with WT littermates. Our work shows that gap junctional coupling modulates neuronal activity patterns that, in turn, mediate synaptic competition, a process that shapes synaptic circuitry in the developing brain.

  20. Reduced gap junctional coupling leads to uncorrelated motor neuron firing and precocious neuromuscular synapse elimination

    PubMed Central

    Personius, Kirkwood E.; Chang, Qiang; Mentis, George Z.; O'Donovan, Michael J.; Balice-Gordon, Rita J.

    2007-01-01

    During late embryonic and early postnatal life, neuromuscular junctions undergo synapse elimination that is modulated by patterns of motor neuron activity. Here, we test the hypothesis that reduced spinal neuron gap junctional coupling decreases temporally correlated motor neuron activity that, in turn, modulates neuromuscular synapse elimination, by using mutant mice lacking connexin 40 (Cx40), a developmentally regulated gap junction protein expressed in motor and other spinal neurons. In Cx40−/− mice, electrical coupling among lumbar motor neurons, measured by whole-cell recordings, was reduced, and single motor unit recordings in awake, behaving neonates showed that temporally correlated motor neuron activity was also reduced. Immunostaining and intracellular recording showed that the neuromuscular synapse elimination was accelerated in muscles from Cx40−/− mice compared with WT littermates. Our work shows that gap junctional coupling modulates neuronal activity patterns that, in turn, mediate synaptic competition, a process that shapes synaptic circuitry in the developing brain. PMID:17609378

  1. Targeting Motor End Plates for Delivery of Adenoviruses: An Approach to Maximize Uptake and Transduction of Spinal Cord Motor Neurons

    PubMed Central

    Tosolini, Andrew Paul; Morris, Renée

    2016-01-01

    Gene therapy can take advantage of the skeletal muscles/motor neurons anatomical relationship to restrict gene expression to the spinal cord ventral horn. Furthermore, recombinant adenoviruses are attractive viral-vectors as they permit spatial and temporal modulation of transgene expression. In the literature, however, several inconsistencies exist with regard to the intramuscular delivery parameters of adenoviruses. The present study is an evaluation of the optimal injection sites on skeletal muscle, time course of expression and mice’s age for maximum transgene expression in motor neurons. Targeting motor end plates yielded a 2.5-fold increase in the number of transduced motor neurons compared to injections performed away from this region. Peak adenoviral transgene expression in motor neurons was detected after seven days. Further, greater numbers of transduced motor neurons were found in juvenile (3–7 week old) mice as compared with adults (8+ weeks old). Adenoviral injections produced robust transgene expression in motor neurons and skeletal myofibres. In addition, dendrites of transduced motor neurons were shown to extend well into the white matter where the descending motor pathways are located. These results also provide evidence that intramuscular delivery of adenovirus can be a suitable gene therapy approach to treat spinal cord injury. PMID:27619631

  2. Hypergravity hinders axonal development of motor neurons in Caenorhabditis elegans

    PubMed Central

    Kalichamy, Saraswathi Subbammal; Yoon, Kyoung-hye

    2016-01-01

    As space flight becomes more accessible in the future, humans will be exposed to gravity conditions other than our 1G environment on Earth. Our bodies and physiology, however, are adapted for life at 1G gravity. Altering gravity can have profound effects on the body, particularly the development of muscles, but the reasons and biology behind gravity’s effect are not fully known. We asked whether increasing gravity had effects on the development of motor neurons that innervate and control muscle, a relatively unexplored area of gravity biology. Using the nematode model organism Caenorhabditis elegans, we examined changes in response to hypergravity in the development of the 19 GABAergic DD/VD motor neurons that innervate body muscle. We found that a high gravity force above 10G significantly increases the number of animals with defects in the development of axonal projections from the DD/VD neurons. We showed that a critical period of hypergravity exposure during the embryonic/early larval stage was sufficient to induce defects. While characterizing the nature of the axonal defects, we found that in normal 1G gravity conditions, DD/VD axonal defects occasionally occurred, with the majority of defects occurring on the dorsal side of the animal and in the mid-body region, and a significantly higher rate of error in the 13 VD axons than the 6 DD axons. Hypergravity exposure increased the rate of DD/VD axonal defects, but did not change the distribution or the characteristics of the defects. Our study demonstrates that altering gravity can impact motor neuron development. PMID:27833821

  3. Paraneoplastic subacute lower motor neuron syndrome associated with solid cancer.

    PubMed

    Verschueren, Annie; Gallard, Julien; Boucraut, José; Honnorat, Jerome; Pouget, Jean; Attarian, Shahram

    2015-11-15

    We retrospectively analyzed three patients with pure motor neuronopathy followed for more than four years in our center. The patients presented a rapidly progressive lower motor neuron syndrome (LMNS) over the course of a few weeks leading to a severe functional impairment. The neurological symptoms preceded the diagnosis of a breast adenocarcinoma and a thymoma in the first two patients, one of them with anti-CV2/CRMP5 antibodies. Cancer was not detected in the third patient who had circulating anti-Hu antibodies. A final diagnosis of paraneoplastic syndrome was made after investigations for alternative causes of lower motor neuron syndrome. Early diagnosis, combined treatment of the underlying cancer, and immunomodulatory treatment led to neurological improvement of the disease in two out of the three cases in which the cancer was diagnosed. Cases of subacute LMNS with rapid progression may occur as an expression of a paraneoplastic neurological syndrome. Identification of these syndromes is important, as the treatment of underlying malignancy along with immunomodulatory treatment may result in a favorable long-term outcome of these potentially fatal diseases.

  4. Histone deacetylases and their role in motor neuron degeneration

    PubMed Central

    Lazo-Gómez, Rafael; Ramírez-Jarquín, Uri N.; Tovar-y-Romo, Luis B.; Tapia, Ricardo

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, characterized by the progressive loss of motor neurons. The cause of this selective neuronal death is unknown, but transcriptional dysregulation is recently emerging as an important factor. The physical substrate for the regulation of the transcriptional process is chromatin, a complex assembly of histones and DNA. Histones are subject to several post-translational modifications, like acetylation, that are a component of the transcriptional regulation process. Histone acetylation and deacetylation is performed by a group of enzymes (histone acetyltransferases (HATs) and deacetylases, respectively) whose modulation can alter the transcriptional state of many regions of the genome, and thus may be an important target in diseases that share this pathogenic process, as is the case for ALS. This review will discuss the present evidence of transcriptional dysregulation in ALS, the role of histone deacetylases (HDACs) in disease pathogenesis, and the novel pharmacologic strategies that are being comprehensively studied to prevent motor neuron death, with focus on sirtuins (SIRT) and their effectors. PMID:24367290

  5. Visualization of Sensory Neurons and Their Projections in an Upper Motor Neuron Reporter Line.

    PubMed

    Genç, Barış; Lagrimas, Amiko Krisa Bunag; Kuru, Pınar; Hess, Robert; Tu, Michael William; Menichella, Daniela Maria; Miller, Richard J; Paller, Amy S; Özdinler, P Hande

    2015-01-01

    Visualization of peripheral nervous system axons and cell bodies is important to understand their development, target recognition, and integration into complex circuitries. Numerous studies have used protein gene product (PGP) 9.5 [a.k.a. ubiquitin carboxy-terminal hydrolase L1 (UCHL1)] expression as a marker to label sensory neurons and their axons. Enhanced green fluorescent protein (eGFP) expression, under the control of UCHL1 promoter, is stable and long lasting in the UCHL1-eGFP reporter line. In addition to the genetic labeling of corticospinal motor neurons in the motor cortex and degeneration-resistant spinal motor neurons in the spinal cord, here we report that neurons of the peripheral nervous system are also fluorescently labeled in the UCHL1-eGFP reporter line. eGFP expression is turned on at embryonic ages and lasts through adulthood, allowing detailed studies of cell bodies, axons and target innervation patterns of all sensory neurons in vivo. In addition, visualization of both the sensory and the motor neurons in the same animal offers many advantages. In this report, we used UCHL1-eGFP reporter line in two different disease paradigms: diabetes and motor neuron disease. eGFP expression in sensory axons helped determine changes in epidermal nerve fiber density in a high-fat diet induced diabetes model. Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation. Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage. Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.

  6. Neuromuscular Ultrasound in the Assessment of Polyneuropathies and Motor Neuron Disease

    PubMed Central

    Shen, Jack; Cartwright, Michael S.

    2015-01-01

    Neuromuscular ultrasound is an emerging technology for the evaluation of conditions affecting nerve and muscle, with the majority of research focusing on focal neuropathies. Despite this focus, researchers have also investigated the ultrasonographic changes that occur in the nerves and muscles of those with more diffuse polyneuropathies and motor neuron diseases, and this review will detail the findings in these conditions. Specific findings are discussed in this paper, but general themes will also be presented and include the following: hereditary polyneuropathies show diffuse nerve enlargement whereas immune-mediated polyneuropathies show more patchy involvement; nerve enlargement is more profound in demyelinating than axonal polyneuropathies; and muscle changes in motor neuron diseases include heterogeneous increases in echogenicity, atrophy, readily detectable fasciculations, and increased subcutaneous tissue thickness. PMID:27035248

  7. dnc-1/dynactin 1 knockdown disrupts transport of autophagosomes and induces motor neuron degeneration.

    PubMed

    Ikenaka, Kensuke; Kawai, Kaori; Katsuno, Masahisa; Huang, Zhe; Jiang, Yue-Mei; Iguchi, Yohei; Kobayashi, Kyogo; Kimata, Tsubasa; Waza, Masahiro; Tanaka, Fumiaki; Mori, Ikue; Sobue, Gen

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. We previously showed that the expression of dynactin 1, an axon motor protein regulating retrograde transport, is markedly reduced in spinal motor neurons of sporadic ALS patients, although the mechanisms by which decreased dynactin 1 levels cause neurodegeneration have yet to be elucidated. The accumulation of autophagosomes in degenerated motor neurons is another key pathological feature of sporadic ALS. Since autophagosomes are cargo of dynein/dynactin complexes and play a crucial role in the turnover of several organelles and proteins, we hypothesized that the quantitative loss of dynactin 1 disrupts the transport of autophagosomes and induces the degeneration of motor neuron. In the present study, we generated a Caenorhabditis elegans model in which the expression of DNC-1, the homolog of dynactin 1, is specifically knocked down in motor neurons. This model exhibited severe motor defects together with axonal and neuronal degeneration. We also observed impaired movement and increased number of autophagosomes in the degenerated neurons. Furthermore, the combination of rapamycin, an activator of autophagy, and trichostatin which facilitates axonal transport dramatically ameliorated the motor phenotype and axonal degeneration of this model. Thus, our results suggest that decreased expression of dynactin 1 induces motor neuron degeneration and that the transport of autophagosomes is a novel and substantial therapeutic target for motor neuron degeneration.

  8. Calbindin-D28K, parvalbumin and calretinin in primate lower motor neurons.

    PubMed

    Fahandejsaadi, Ashkan; Leung, Elaine; Rahaii, Rhoda; Bu, Jing; Geula, Changiz

    2004-03-01

    It has been suggested that lower motor neurons containing calcium-binding proteins (CBP) may be resistant to degeneration in motor neuron disease. The testing of this hypothesis is hampered by lack of comprehensive information regarding the presence of CBPs in motor neurons. To address this shortcoming, we investigated the distribution of the CBPs calbindin-D28K (CB), parvalbumin (PV) and calretinin (CRT) in lower motor neurons in the normal human and two non-human primates (rhesus monkey and common marmoset) using immunohistochemistry. A variable proportion of motor neurons in cranial nerve motor nuclei contained immunoreactivity for one or more CBPs. A subpopulation of spinal cord alpha-motor neurons was also CBP-positive. Comparison of staining for choline acetyltransferase (ChAT) and CBPs in the human spinal cord demonstrated that approximately 63% of ventral horn motor neurons contained PV, 53% contained CRT and 56% contained CB. CBP immunoreactivity within motor neurons was of variable staining intensity. It remains to be established whether the presence of these CBPs confers protection against the pathogenic mechanisms of motor neuron disease.

  9. MicroRNA-128 governs neuronal excitability and motor behavior in mice.

    PubMed

    Tan, Chan Lek; Plotkin, Joshua L; Venø, Morten T; von Schimmelmann, Melanie; Feinberg, Philip; Mann, Silas; Handler, Annie; Kjems, Jørgen; Surmeier, D James; O'Carroll, Dónal; Greengard, Paul; Schaefer, Anne

    2013-12-06

    The control of motor behavior in animals and humans requires constant adaptation of neuronal networks to signals of various types and strengths. We found that microRNA-128 (miR-128), which is expressed in adult neurons, regulates motor behavior by modulating neuronal signaling networks and excitability. miR-128 governs motor activity by suppressing the expression of various ion channels and signaling components of the extracellular signal-regulated kinase ERK2 network that regulate neuronal excitability. In mice, a reduction of miR-128 expression in postnatal neurons causes increased motor activity and fatal epilepsy. Overexpression of miR-128 attenuates neuronal responsiveness, suppresses motor activity, and alleviates motor abnormalities associated with Parkinson's-like disease and seizures in mice. These data suggest a therapeutic potential for miR-128 in the treatment of epilepsy and movement disorders.

  10. Divergent Hox Coding and Evasion of Retinoid Signaling Specifies Motor Neurons Innervating Digit Muscles.

    PubMed

    Mendelsohn, Alana I; Dasen, Jeremy S; Jessell, Thomas M

    2017-02-22

    The establishment of spinal motor neuron subclass diversity is achieved through developmental programs that are aligned with the organization of muscle targets in the limb. The evolutionary emergence of digits represents a specialized adaptation of limb morphology, yet it remains unclear how the specification of digit-innervating motor neuron subtypes parallels the elaboration of digits. We show that digit-innervating motor neurons can be defined by selective gene markers and distinguished from other LMC neurons by the expression of a variant Hox gene repertoire and by the failure to express a key enzyme involved in retinoic acid synthesis. This divergent developmental program is sufficient to induce the specification of digit-innervating motor neurons, emphasizing the specialized status of digit control in the evolution of skilled motor behaviors. Our findings suggest that the emergence of digits in the limb is matched by distinct mechanisms for specifying motor neurons that innervate digit muscles.

  11. Motor Inhibition Affects the Speed But Not Accuracy of Aimed Limb Movements in an Insect

    PubMed Central

    Calas-List, Delphine; Clare, Anthony J.; Komissarova, Alexandra; Nielsen, Thomas A.

    2014-01-01

    When reaching toward a target, human subjects use slower movements to achieve higher accuracy, and this can be accompanied by increased limb impedance (stiffness, viscosity) that stabilizes movements against motor noise and external perturbation. In arthropods, the activity of common inhibitory motor neurons influences limb impedance, so we hypothesized that this might provide a mechanism for speed and accuracy control of aimed movements in insects. We recorded simultaneously from excitatory leg motor neurons and from an identified common inhibitory motor neuron (CI1) in locusts that performed natural aimed scratching movements. We related limb movement kinematics to recorded motor activity and demonstrate that imposed alterations in the activity of CI1 influenced these kinematics. We manipulated the activity of CI1 by injecting depolarizing or hyperpolarizing current or killing the cell using laser photoablation. Naturally higher levels of inhibitory activity accompanied faster movements. Experimentally biasing the firing rate downward, or stopping firing completely, led to slower movements mediated by changes at several joints of the limb. Despite this, we found no effect on overall movement accuracy. We conclude that inhibitory modulation of joint stiffness has effects across most of the working range of the insect limb, with a pronounced effect on the overall velocity of natural movements independent of their accuracy. Passive joint forces that are greatest at extreme joint angles may enhance accuracy and are not affected by motor inhibition. PMID:24872556

  12. Motor inhibition affects the speed but not accuracy of aimed limb movements in an insect.

    PubMed

    Calas-List, Delphine; Clare, Anthony J; Komissarova, Alexandra; Nielsen, Thomas A; Matheson, Thomas

    2014-05-28

    When reaching toward a target, human subjects use slower movements to achieve higher accuracy, and this can be accompanied by increased limb impedance (stiffness, viscosity) that stabilizes movements against motor noise and external perturbation. In arthropods, the activity of common inhibitory motor neurons influences limb impedance, so we hypothesized that this might provide a mechanism for speed and accuracy control of aimed movements in insects. We recorded simultaneously from excitatory leg motor neurons and from an identified common inhibitory motor neuron (CI1) in locusts that performed natural aimed scratching movements. We related limb movement kinematics to recorded motor activity and demonstrate that imposed alterations in the activity of CI1 influenced these kinematics. We manipulated the activity of CI1 by injecting depolarizing or hyperpolarizing current or killing the cell using laser photoablation. Naturally higher levels of inhibitory activity accompanied faster movements. Experimentally biasing the firing rate downward, or stopping firing completely, led to slower movements mediated by changes at several joints of the limb. Despite this, we found no effect on overall movement accuracy. We conclude that inhibitory modulation of joint stiffness has effects across most of the working range of the insect limb, with a pronounced effect on the overall velocity of natural movements independent of their accuracy. Passive joint forces that are greatest at extreme joint angles may enhance accuracy and are not affected by motor inhibition.

  13. Nkx2.2 and Nkx2.9 are the key regulators to determine cell fate of branchial and visceral motor neurons in caudal hindbrain.

    PubMed

    Jarrar, Wassan; Dias, Jose M; Ericson, Johan; Arnold, Hans-Henning; Holz, Andreas

    2015-01-01

    Cranial motor nerves in vertebrates are comprised of the three principal subtypes of branchial, visceral, and somatic motor neurons, which develop in typical patterns along the anteroposterior and dorsoventral axes of hindbrain. Here we demonstrate that the formation of branchial and visceral motor neurons critically depends on the transcription factors Nkx2.2 and Nkx2.9, which together determine the cell fate of neuronal progenitor cells. Disruption of both genes in mouse embryos results in complete loss of the vagal and spinal accessory motor nerves, and partial loss of the facial and glossopharyngeal motor nerves, while the purely somatic hypoglossal and abducens motor nerves are not diminished. Cell lineage analysis in a genetically marked mouse line reveals that alterations of cranial nerves in Nkx2.2; Nkx2.9 double-deficient mouse embryos result from changes of cell fate in neuronal progenitor cells. As a consequence progenitors of branchiovisceral motor neurons in the ventral p3 domain of hindbrain are transformed to somatic motor neurons, which use ventral exit points to send axon trajectories to their targets. Cell fate transformation is limited to the caudal hindbrain, as the trigeminal nerve is not affected in double-mutant embryos suggesting that Nkx2.2 and Nkx2.9 proteins play no role in the development of branchiovisceral motor neurons in hindbrain rostral to rhombomere 4.

  14. Brain-wide neuronal dynamics during motor adaptation in zebrafish

    PubMed Central

    Ahrens, Misha B; Li, Jennifer M; Orger, Michael B; Robson, Drew N; Schier, Alexander F; Engert, Florian; Portugues, Ruben

    2013-01-01

    A fundamental question in neuroscience is how entire neural circuits generate behavior and adapt it to changes in sensory feedback. Here we use two-photon calcium imaging to record activity of large populations of neurons at the cellular level throughout the brain of larval zebrafish expressing a genetically-encoded calcium sensor, while the paralyzed animals interact fictively with a virtual environment and rapidly adapt their motor output to changes in visual feedback. We decompose the network dynamics involved in adaptive locomotion into four types of neural response properties, and provide anatomical maps of the corresponding sites. A subset of these signals occurred during behavioral adjustments and are candidates for the functional elements that drive motor learning. Lesions to the inferior olive indicate a specific functional role for olivocerebellar circuitry in adaptive locomotion. This study enables the analysis of brain-wide dynamics at single-cell resolution during behavior. PMID:22622571

  15. Four cases of equine motor neuron disease in Japan

    PubMed Central

    SASAKI, Naoki; IMAMURA, Yui; SEKIYA, Akio; ITOH, Megumi; FURUOKA, Hidefumi

    2016-01-01

    ABSTRACT In this study, fasciculation of the limbs and tongue was observed in four horses kept by a riding club. Neurogenic muscle atrophy was also observed in biopsy of pathological tissues. In addition, in two cases that subjected to autopsy, Bunina-like bodies of inclusion in the cell bodies of neurons in the spinal cord ventral horn were confirmed, leading to a diagnosis of equine motor neuron disease (EMND). Serum vitamin E concentrations varied between 0.3 and 0.4µg/ml, which is significantly lower than the levels in normal horses. Although lack of vitamin E is speculated to be a contributory factor for development of EMND, no significant improvement was observed following administration of vitamin E. PMID:27703407

  16. Nutritional pathway for people with motor neurone disease.

    PubMed

    Marsden, Rachael; Allan, Philip; Blackwell, Victoria; East, James; Lawson, Clare; Nickol, Annabel H; Millard, Emma; Talbot, Kevin; Thompson, Alexander G; Turner, Martin R

    2016-07-01

    This paper provides an overview of the nutritional management and care of people living with motor neurone disease (MND) in a specialist nutrition clinic. A specialist pathway of care has been developed to enable people living with MND to undergo a percutaneous endoscopic gastrostomy (PEG) procedure in a safe way; the pathway incorporates attendance at a dedicated nutrition clinic, a stratification tool to identify patients with a high periprocedural risk and a PEG insertion team with significant experience in the MND population. Since this pathway has been in place, gastrostomies have been successfully placed in patients with a forced vital capacity (FVC) of less than 50%; previously, this would not have been possible.

  17. Postradiation lower motor neuron syndrome presenting as monomelic amyotrophy.

    PubMed Central

    Lamy, C; Mas, J L; Varet, B; Ziegler, M; de Recondo, J

    1991-01-01

    Monomelic amyotrophy developed 16 months, nine and 12 years after irradiation of the lumbosacral spinal cord for seminoma in one patient and for Hodgkin's disease in two others. In two patients, involvement was clinically limited to one leg, with a subacute course followed by plateau in the first case and with progressive worsening in the second one. In the third patient, the course was progressive with involvement of the other lower limb occurring five years later. From clinical and electrophysiological data, it seems probable that the disease process was a result of a selective injury to the lower motor neuron in the lower spinal cord. PMID:1895131

  18. Postradiation lower motor neuron syndrome presenting as monomelic amyotrophy.

    PubMed

    Lamy, C; Mas, J L; Varet, B; Ziegler, M; de Recondo, J

    1991-07-01

    Monomelic amyotrophy developed 16 months, nine and 12 years after irradiation of the lumbosacral spinal cord for seminoma in one patient and for Hodgkin's disease in two others. In two patients, involvement was clinically limited to one leg, with a subacute course followed by plateau in the first case and with progressive worsening in the second one. In the third patient, the course was progressive with involvement of the other lower limb occurring five years later. From clinical and electrophysiological data, it seems probable that the disease process was a result of a selective injury to the lower motor neuron in the lower spinal cord.

  19. Establishing the UK DNA Bank for motor neuron disease (MND).

    PubMed

    Smith, Lucy; Cupid, B C; Dickie, B G M; Al-Chalabi, A; Morrison, K E; Shaw, C E; Shaw, P J

    2015-07-14

    In 2003 the Motor Neurone Disease (MND) Association, together with The Wellcome Trust, funded the creation of a national DNA Bank specific for MND. It was anticipated that the DNA Bank would constitute an important resource to researchers worldwide and significantly increase activity in MND genetic research. The DNA Bank houses over 3000 high quality DNA samples, all of which were donated by people living with MND, family members and non-related controls, accompanied by clinical phenotype data about the patients. Today the primary focus of the UK MND DNA Bank still remains to identify causative and disease modifying factors for this devastating disease.

  20. Alpha-synuclein in motor neuron disease: an immunohistologic study.

    PubMed

    Doherty, M J; Bird, T D; Leverenz, J B

    2004-02-01

    Alpha-synuclein (ASN) has been implicated in neurodegenerative disorders characterized by Lewy body inclusions such as Parkinson's disease and dementia with Lewy bodies. Lewy body-like inclusions have also been observed in spinal neurons of patients with amyotrophic lateral sclerosis (ALS) and reports suggest possible ASN abnormalities in ALS patients. We assessed ASN immunoreactivity in spinal and brain tissues of subjects who had died of progressive motor neuron disorders (MND). Clinical records of subjects with MND and a comparison group were reviewed to determine the diagnosis according to El-Escariol Criteria of ALS. Cervical, thoracic and lumbar cord sections were stained with an antibody to ASN. A blinded, semiquantitative review of sections from both groups included examination for evidence of spheroids, neuronal staining, cytoplasmic inclusions, anterior horn granules, white and gray matter glial staining, corticospinal tract axonal fiber and myelin changes. MND cases, including ALS and progressive muscular atrophy, displayed significantly increased ASN staining of spheroids ( P< or =0.001), and glial staining in gray and white matter ( P< or =0.05). Significant abnormal staining of corticospinal axon tract fibers and myelin was also observed ( P< or =0.05 and 0.01). Detection of possible ASN-positive neuronal inclusions did not differ between groups. Significant ASN abnormalities were observed in MND. These findings suggest a possible role for ASN in MND; however, the precise nature of this association is unclear.

  1. Zebrafish models of human motor neuron diseases: advantages and limitations.

    PubMed

    Babin, Patrick J; Goizet, Cyril; Raldúa, Demetrio

    2014-07-01

    Motor neuron diseases (MNDs) are an etiologically heterogeneous group of disorders of neurodegenerative origin, which result in degeneration of lower (LMNs) and/or upper motor neurons (UMNs). Neurodegenerative MNDs include pure hereditary spastic paraplegia (HSP), which involves specific degeneration of UMNs, leading to progressive spasticity of the lower limbs. In contrast, spinal muscular atrophy (SMA) involves the specific degeneration of LMNs, with symmetrical muscle weakness and atrophy. Amyotrophic lateral sclerosis (ALS), the most common adult-onset MND, is characterized by the degeneration of both UMNs and LMNs, leading to progressive muscle weakness, atrophy, and spasticity. A review of the comparative neuroanatomy of the human and zebrafish motor systems showed that, while the zebrafish was a homologous model for LMN disorders, such as SMA, it was only partially relevant in the case of UMN disorders, due to the absence of corticospinal and rubrospinal tracts in its central nervous system. Even considering the limitation of this model to fully reproduce the human UMN disorders, zebrafish offer an excellent alternative vertebrate model for the molecular and genetic dissection of MND mechanisms. Its advantages include the conservation of genome and physiological processes and applicable in vivo tools, including easy imaging, loss or gain of function methods, behavioral tests to examine changes in motor activity, and the ease of simultaneous chemical/drug testing on large numbers of animals. This facilitates the assessment of the environmental origin of MNDs, alone or in combination with genetic traits and putative modifier genes. Positive hits obtained by phenotype-based small-molecule screening using zebrafish may potentially be effective drugs for treatment of human MNDs.

  2. Identification of genes influencing dendrite morphogenesis in developing peripheral sensory and central motor neurons

    PubMed Central

    Ou, Yimiao; Chwalla, Barbara; Landgraf, Matthias; van Meyel, Donald J

    2008-01-01

    Background Developing neurons form dendritic trees with cell type-specific patterns of growth, branching and targeting. Dendrites of Drosophila peripheral sensory neurons have emerged as a premier genetic model, though the molecular mechanisms that underlie and regulate their morphogenesis remain incompletely understood. Still less is known about this process in central neurons and the extent to which central and peripheral dendrites share common organisational principles and molecular features. To address these issues, we have carried out two comparable gain-of-function screens for genes that influence dendrite morphologies in peripheral dendritic arborisation (da) neurons and central RP2 motor neurons. Results We found 35 unique loci that influenced da neuron dendrites, including five previously shown as required for da dendrite patterning. Several phenotypes were class-specific and many resembled those of known mutants, suggesting that genes identified in this study may converge with and extend known molecular pathways for dendrite development in da neurons. The second screen used a novel technique for cell-autonomous gene misexpression in RP2 motor neurons. We found 51 unique loci affecting RP2 dendrite morphology, 84% expressed in the central nervous system. The phenotypic classes from both screens demonstrate that gene misexpression can affect specific aspects of dendritic development, such as growth, branching and targeting. We demonstrate that these processes are genetically separable. Targeting phenotypes were specific to the RP2 screen, and we propose that dendrites in the central nervous system are targeted to territories defined by Cartesian co-ordinates along the antero-posterior and the medio-lateral axes of the central neuropile. Comparisons between the screens suggest that the dendrites of peripheral da and central RP2 neurons are shaped by regulatory programs that only partially overlap. We focused on one common candidate pathway controlled by the

  3. Oxidative stress induced by cumene hydroperoxide evokes changes in neuronal excitability of rat motor cortex neurons.

    PubMed

    Pardillo-Díaz, R; Carrascal, L; Ayala, A; Nunez-Abades, P

    2015-03-19

    Oxidative stress and the production of reactive oxygen radicals play a key role in neuronal cell damage. This paper describes an in vitro study that explores the neuronal responses to oxidative stress focusing on changes in neuronal excitability and functional membrane properties. This study was carried out in pyramidal cells of the motor cortex by applying whole-cell patch-clamp techniques on brain slices from young adult rats. Oxygen-derived free radical formation was induced by bath application of 10μM cumene hydroperoxide (CH) for 30min. CH produced marked changes in the electrophysiological properties of neurons (n=30). Resting membrane potential became progressively depolarized, as well as depolarization voltage, with no variations in voltage threshold. Membrane resistance showed a biphasic behavior, increasing after 5min of drug exposure and then it started to decrease, even under control values, after 15 and 30min. At the same time, changes in membrane resistance produced compensatory variations in the rheobase. The amplitude of the action potentials diminished and the duration increased progressively over time. Some of the neurons under study also lost their ability to discharge action potentials in a repetitive way. Most of the neurons, however, kept their repetitive discharge even though their maximum frequency and gain decreased. Furthermore, cancelation of the repetitive firing discharge took place at intensities that decreased with time of exposure to CH, which resulted in a narrower working range. We can conclude that oxidative stress compromises both neuronal excitability and the capability of generating action potentials, and so this type of neuronal functional failure could precede the neuronal death characteristics of many neurodegenerative diseases.

  4. A case of presumptive primary lateral sclerosis with upper and lower motor neurone pathology.

    PubMed

    Short, Cathy L; Scott, Grace; Blumbergs, Peter C; Koblar, Simon A

    2005-08-01

    Motor Neurone Disease (MND) is one of the commonest neurodegenerative disorders of adulthood. MND characteristically presents with a combination of both upper and lower motor neurone features. Primary Lateral Sclerosis (PLS) is thought to be a variant of MND presenting with purely upper motor neurone signs. Debate continues over whether PLS constitutes a distinct pathological entity or whether it is part of the spectrum of motor neurone diseases that present as an upper motor neurone-predominant form of MND. We present a case of MND with purely upper motor neurone features and a prominent pain component. A pre-mortem diagnosis of PLS was made, however autopsy findings demonstrated both upper and lower motor neurone involvement. We believe these findings support the view that PLS is not a discrete pathological entity, but that it is a part of the range of motor neurone diseases that present with predominant but not exclusive upper motor neurone involvement. This case also highlights the feature that pain may be associated with MND even though it is not appreciated to have a sensory pathology.

  5. Novel combinatorial screening identifies neurotrophic factors for selective classes of motor neurons.

    PubMed

    Schaller, Sébastien; Buttigieg, Dorothée; Alory, Alysson; Jacquier, Arnaud; Barad, Marc; Merchant, Mark; Gentien, David; de la Grange, Pierre; Haase, Georg

    2017-03-21

    Numerous neurotrophic factors promote the survival of developing motor neurons but their combinatorial actions remain poorly understood; to address this, we here screened 66 combinations of 12 neurotrophic factors on pure, highly viable, and standardized embryonic mouse motor neurons isolated by a unique FACS technique. We demonstrate potent, strictly additive, survival effects of hepatocyte growth factor (HGF), ciliary neurotrophic factor (CNTF), and Artemin through specific activation of their receptor complexes in distinct subsets of lumbar motor neurons: HGF supports hindlimb motor neurons through c-Met; CNTF supports subsets of axial motor neurons through CNTFRα; and Artemin acts as the first survival factor for parasympathetic preganglionic motor neurons through GFRα3/Syndecan-3 activation. These data show that neurotrophic factors can selectively promote the survival of distinct classes of embryonic motor neurons. Similar studies on postnatal motor neurons may provide a conceptual framework for the combined therapeutic use of neurotrophic factors in degenerative motor neuron diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy, and spinobulbar muscular atrophy.

  6. Motor neurons in the escape response circuit of white shrimp (Litopenaeus setiferus)

    PubMed Central

    2015-01-01

    Many decapod crustaceans perform escape tailflips with a neural circuit involving giant interneurons, a specialized fast flexor motor giant (MoG) neuron, populations of larger, less specialized fast flexor motor neurons, and fast extensor motor neurons. These escape-related neurons are well described in crayfish (Reptantia), but not in more basal decapod groups. To clarify the evolution of the escape circuit, I examined the fast flexor and fast extensor motor neurons of white shrimp (Litopenaeus setiferus; Dendrobranchiata) using backfilling. In crayfish, the MoGs in each abdominal ganglion are a bilateral pair of separate neurons. In L. setiferus, the MoGs have massive, possibly syncytial, cell bodies and fused axons. The non-MoG fast flexor motor neurons and fast extensor motor neurons are generally found in similar locations to where they are found in crayfish, but the number of motor neurons in both the flexor and extensor pools is smaller than in crayfish. The loss of fusion in the MoGs and increased number of fast motor neurons in reptantian decapods may be correlated with an increased reliance on non-giant mediated tailflipping. PMID:26244117

  7. Ablation of the Ferroptosis Inhibitor Glutathione Peroxidase 4 in Neurons Results in Rapid Motor Neuron Degeneration and Paralysis.

    PubMed

    Chen, Liuji; Hambright, William Sealy; Na, Ren; Ran, Qitao

    2015-11-20

    Glutathione peroxidase 4 (GPX4), an antioxidant defense enzyme active in repairing oxidative damage to lipids, is a key inhibitor of ferroptosis, a non-apoptotic form of cell death involving lipid reactive oxygen species. Here we show that GPX4 is essential for motor neuron health and survival in vivo. Conditional ablation of Gpx4 in neurons of adult mice resulted in rapid onset and progression of paralysis and death. Pathological inspection revealed that the paralyzed mice had a dramatic degeneration of motor neurons in the spinal cord but had no overt neuron degeneration in the cerebral cortex. Consistent with the role of GPX4 as a ferroptosis inhibitor, spinal motor neuron degeneration induced by Gpx4 ablation exhibited features of ferroptosis, including no caspase-3 activation, no TUNEL staining, activation of ERKs, and elevated spinal inflammation. Supplementation with vitamin E, another inhibitor of ferroptosis, delayed the onset of paralysis and death induced by Gpx4 ablation. Also, lipid peroxidation and mitochondrial dysfunction appeared to be involved in ferroptosis of motor neurons induced by Gpx4 ablation. Taken together, the dramatic motor neuron degeneration and paralysis induced by Gpx4 ablation suggest that ferroptosis inhibition by GPX4 is essential for motor neuron health and survival in vivo.

  8. Identification of motor neurons and a mechanosensitive sensory neuron in the defecation circuitry of Drosophila larvae

    PubMed Central

    Zhang, Wei; Yan, Zhiqiang; Li, Bingxue; Jan, Lily Yeh; Jan, Yuh Nung

    2014-01-01

    Defecation allows the body to eliminate waste, an essential step in food processing for animal survival. In contrast to the extensive studies of feeding, its obligate counterpart, defecation, has received much less attention until recently. In this study, we report our characterizations of the defecation behavior of Drosophila larvae and its neural basis. Drosophila larvae display defecation cycles of stereotypic frequency, involving sequential contraction of hindgut and anal sphincter. The defecation behavior requires two groups of motor neurons that innervate hindgut and anal sphincter, respectively, and can excite gut muscles directly. These two groups of motor neurons fire sequentially with the same periodicity as the defecation behavior, as revealed by in vivo Ca2+ imaging. Moreover, we identified a single mechanosensitive sensory neuron that innervates the anal slit and senses the opening of the intestine terminus. This anus sensory neuron relies on the TRP channel NOMPC but not on INACTIVE, NANCHUNG, or PIEZO for mechanotransduction. DOI: http://dx.doi.org/10.7554/eLife.03293.001 PMID:25358089

  9. Human-induced pluripotent stem cells pave the road for a better understanding of motor neuron disease.

    PubMed

    Winner, Beate; Marchetto, Maria C; Winkler, Jürgen; Gage, Fred H

    2014-09-15

    While motor neuron diseases are currently incurable, induced pluripotent stem cell research has uncovered some disease-relevant phenotypes. We will discuss strategies to model different aspects of motor neuron disease and the specific neurons involved in the disease. We will then describe recent progress to investigate common forms of motor neuron disease: amyotrophic lateral sclerosis, hereditary spastic paraplegia and spinal muscular atrophy.

  10. Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field.

    PubMed

    Li, C S; Padoa-Schioppa, C; Bizzi, E

    2001-05-01

    The primary motor cortex (M1) is known to control motor performance. Recent findings have also implicated M1 in motor learning, as neurons in this area show learning-related plasticity. In the present study, we analyzed the neuronal activity recorded in M1 in a force field adaptation task. Our goal was to investigate the neuronal reorganization across behavioral epochs (before, during, and after adaptation). Here we report two main findings. First, memory cells were present in two classes. With respect to the changes of preferred direction (Pd), these two classes complemented each other after readaptation. Second, for the entire neuronal population, the shift of Pd matched the shift observed for muscles. These results provide a framework whereby the activity of distinct neuronal subpopulations combines to subserve both functions of motor performance and motor learning.

  11. Reversible disruption of dynactin 1-mediated retrograde axonal transport in polyglutamine-induced motor neuron degeneration.

    PubMed

    Katsuno, Masahisa; Adachi, Hiroaki; Minamiyama, Makoto; Waza, Masahiro; Tokui, Keisuke; Banno, Haruhiko; Suzuki, Keisuke; Onoda, Yu; Tanaka, Fumiaki; Doyu, Manabu; Sobue, Gen

    2006-11-22

    Spinal and bulbar muscular atrophy (SBMA) is a hereditary neurodegenerative disease caused by an expansion of a trinucleotide CAG repeat encoding the polyglutamine tract in the androgen receptor (AR) gene. To elucidate the pathogenesis of polyglutamine-mediated motor neuron dysfunction, we investigated histopathological and biological alterations in a transgenic mouse model of SBMA carrying human pathogenic AR. In affected mice, neurofilaments and synaptophysin accumulated at the distal motor axon. A similar intramuscular accumulation of neurofilament was detected in the skeletal muscle of SBMA patients. Fluoro-gold labeling and sciatic nerve ligation demonstrated an impaired retrograde axonal transport in the transgenic mice. The mRNA level of dynactin 1, an axon motor for retrograde transport, was significantly reduced in the SBMA mice resulting from pathogenic AR-induced transcriptional dysregulation. These pathological events were observed before the onset of neurological symptoms, but were reversed by castration, which prevents nuclear accumulation of pathogenic AR. Overexpression of dynactin 1 mitigated neuronal toxicity of the pathogenic AR in a cell culture model of SBMA. These observations indicate that polyglutamine-dependent transcriptional dysregulation of dynactin 1 plays a crucial role in the reversible neuronal dysfunction in the early stage of SBMA.

  12. Dementia and aphasia in motor neuron disease: an underrecognised association?

    PubMed Central

    Rakowicz, W.; Hodges, J.

    1998-01-01

    OBJECTIVES—To determine the prevalence and nature of global cognitive dysfunction and language deficits in an unselected population based cohort of patients with motor neuron disease (MND).
METHODS——A battery of neuropsychological and language tests was administered to patients presenting consecutively over a 3 year period to a regional neurology service with a new diagnosis of sporadic motor neuron disease.
RESULTS—The 18 patients could be divided on the basis of their performance into three groups: Three patients were demented and had impaired language function (group 1); two non-demented patients had an aphasic syndrome characterised by word finding difficulties and anomia (group 2). Major cognitive deficits were therefore found in five of the 18 patients (28%). The remaining 13 performed normally on the test battery apart from decreased verbal fluency (group 3).
CONCLUSIONS—The prevalence of cognitive impairment in MND in this population based study of an unselected cohort was higher than has been previously reported. Language deficits, especially anomia, may be relatively frequent in the MND population. Aphasia in MND may be masked by dysarthria and missed if not specifically examined.

 PMID:9854965

  13. Change in blood antioxidant status of horses moved from a stable following diagnosis of equine motor neuron disease.

    PubMed

    Delguste, Catherine; de Moffarts, Brieuc; Kirschvink, Nathalie; Art, Tatiana; Pincemail, Joël; Defraigne, Jean-Olivier; Amory, Hélène; Lekeux, Pierre

    2007-11-01

    The antioxidant status of 10 horses living in stable 1 where 2 cases of equine motor neuron disease had previously been diagnosed was assessed before and 9 weeks after moving to another stable. Duration of residence in stable 1, subsequent moving, or both, significantly affected several parameters of the antioxidant status.

  14. Expression of diverse neuropeptide cotransmitters by identified motor neurons in Aplysia

    SciTech Connect

    Church, P.J.; Lloyd, P.E. )

    1991-03-01

    Neuropeptide synthesis was determined for individual identified ventral-cluster neurons in the buccal ganglia of Aplysia. Each of these cells was shown to be a motor neuron that innervates buccal muscles that generate biting and swallowing movements during feeding. Individual neurons were identified by a battery of physiological criteria and stained with intracellular injection of a vital dye, and the ganglia were incubated in 35S-methionine. Peptide synthesis was determined by measuring labeled peptides in extracts from individually dissected neuronal cell bodies analyzed by HPLC. Previously characterized peptides found to be synthesized included buccalin, FMRFamide, myomodulin, and the 2 small cardioactive peptides (SCPs). Each of these neuropeptides has been shown to modulate buccal muscle responses to motor neuron stimulation. Two other peptides were found to be synthesized in individual motor neurons. One peptide, which was consistently observed in neurons that also synthesized myomodulin, is likely to be the recently sequenced myomodulin B. The other peptide was observed in a subset of the neurons that synthesize FMRFamide. While identified motor neurons consistently synthesized the same peptide(s), neurons that innervate the same muscle often express different peptides. Neurons that synthesized the SCPs also contained SCP-like activity, as determined by snail heart bioassay. Our results indicate that every identified motor neuron synthesizes a subset of these methionine-containing peptides, and that several neurons consistently synthesize peptides that are likely to be processed from multiple precursors.

  15. Involvement of catecholaminergic neurons in motor innervation of striated muscle in the mouse esophagus.

    PubMed

    van der Keylen, Piet; Garreis, Fabian; Steigleder, Ruth; Sommer, Daniel; Neuhuber, Winfried L; Wörl, Jürgen

    2016-05-01

    Enteric co-innervation is a peculiar innervation pattern of striated esophageal musculature. Both anatomical and functional data on enteric co-innervation related to various transmitters have been collected in different species, although its function remains enigmatic. However, it is unclear whether catecholaminergic components are involved in such a co-innervation. Thus, we examined to identify catecholaminergic neuronal elements and clarify their relationship to other innervation components in the esophagus, using immunohistochemistry with antibodies against tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT), choline acetyltransferase (ChAT) and protein gene product 9.5 (PGP 9.5), α-bungarotoxin (α-BT) and PCR with primers for amplification of cDNA encoding TH and dopamine-β-hydroxylase (DBH). TH-positive nerve fibers were abundant throughout the myenteric plexus and localized on about 14% of α-BT-labelled motor endplates differing from VAChT-positive vagal nerve terminals. TH-positive perikarya represented a subpopulation of only about 2.8% of all PGP 9.5-positive myenteric neurons. Analysis of mRNA showed both TH and DBH transcripts in the mouse esophagus. As ChAT-positive neurons in the compact formation of the nucleus ambiguus were negative for TH, the TH-positive nerve varicosities on motor endplates are presumably of enteric origin, although a sympathetic origin cannot be excluded. In the medulla oblongata, the cholinergic ambiguus neurons were densely supplied with TH-positive varicosities. Thus, catecholamines may modulate vagal motor innervation of esophageal-striated muscles not only at the peripheral level via enteric co-innervation but also at the central level via projections to the nucleus ambiguus. As Parkinson's disease, with a loss of central dopaminergic neurons, also affects the enteric nervous system and dysphagia is prevalent in patients with this disease, investigation of intrinsic catecholamines in the esophagus may

  16. Neuronal Roles of the Bicaudal D Family of Motor Adaptors.

    PubMed

    Budzinska, M; Wicher, K B; Terenzio, M

    2017-01-01

    All cell types rely on active intracellular cargo transport to shuttle essential cellular components such as proteins, lipids, RNA, and even organelles from the center to the periphery and vice versa. Additionally, several signaling pathways take advantage of intracellular transport to propagate their signals by moving activated receptors and protein effectors to specific locations inside the cell. Neurons particularly, being a very polarized cell type, are highly dependent on molecular motors for the anterograde and retrograde delivery of essential cellular components and signaling molecules. For these reasons, motor adaptor proteins have been extensively investigated in regard to their role in physiology and pathology of the nervous system. In this chapter, we will concentrate on a family of motor adaptor proteins, Bicaudal D (BICD), and their function in the context of the nervous system. BicD was originally described as essential for the correct localization of maternal mRNAs in Drosophila's oocyte and a regulator of the Golgi to ER retrograde transport in mammalian cells. Both mammalian BICD1 and BICD2 are highly expressed in the nervous system during development, and their importance in neuronal homeostasis has been recently under scrutiny. Several mutations in BICD2 have been linked to the development of neuromuscular diseases, and BICD2 knockout (KO) mice display migration defects of the radial cerebellar granule cells. More in line with the overall topic of this book, BICD1 was identified as a novel regulator of neurotrophin (NT) signaling as its deletion leads to defective sorting of ligand-activated NT receptors with dramatic consequences on the NT-mediated signaling pathway.

  17. Optimization of input patterns and neuronal properties to evoke motor neuron synchronization.

    PubMed

    Taylor, Anna M; Enoka, Roger M

    2004-01-01

    The study used a computational approach to identify combinations of synaptic input timing and strength superimposed on a variety of active dendritic conductances that could evoke similar levels of motor unit synchronization in model motor neurons. Two motor neurons with low recruitment thresholds but different passive properties were modeled using GENESIS software. The timing and strength of synaptic inputs and the density of dendritic ion channels were optimized with a genetic algorithm to produce a set of target discharge times. The target times were taken from experimental recordings made in a human subject and had the synchronization characteristics that are commonly observed in hand muscles. The main finding was that the two parameters with the highest association to output synchrony were the ratio of inward-to-outward ionic conductances (r = 0.344; P = 0.003) and the degree of correlation in inhibitory inputs (r = 0.306; P = 0.009). Variation in the amount of correlation in the excitatory input was not positively correlated with variation in output synchrony. Further, the variability in discharge rate of the model neurons was positively correlated with the density of N -type calcium channels in the dendritic compartments (r = 0.727; P < 0.001 and r = 0.533; P < 0.001 for the two cells). This result suggests that the experimentally observed correlation between discharge variability and synchronization is caused by an increase in fast inward ionic conductances in the dendrites. Given the moderate level of correlation between output synchrony and each of the model parameters, especially at moderate levels of synchrony (E < 0.09 and CIS < 1.0), the results suggest caution in ascribing mechanisms to observations of motor unit synchronization.

  18. Extensive Fusion of Mitochondria in Spinal Cord Motor Neurons

    PubMed Central

    Owens, Geoffrey C.; Walcott, Elisabeth C.

    2012-01-01

    The relative roles played by trafficking, fission and fusion in the dynamics of mitochondria in neurons have not been fully elucidated. In the present study, a slow widespread redistribution of mitochondria within cultured spinal cord motor neurons was observed as a result of extensive organelle fusion. Mitochondria were labeled with a photoconvertible fluorescent protein (mitoKaede) that is red-shifted following brief irradiation with blue light. The behavior of these selectively labeled mitochondria was followed by live fluorescence imaging. Marking mitochondria within the cell soma revealed a complete mixing, within 18 hours, of these organelles with mitochondria coming from the surrounding neurites. Fusion of juxtaposed mitochondria was directly observed in neuritic processes at least 200 microns from the cell body. Within 24 hours, photoconverted mitoKaede was dispersed to all of the mitochondria in the portion of neurite under observation. When time lapse imaging over minutes was combined with long-term observation of marked mitochondria, moving organelles that traversed the field of view did not initially contain photoconverted protein, but after several hours organelles in motion contained both fluorescent proteins, coincident with widespread fusion of all of the mitochondria within the length of neurite under observation. These observations suggest that there is a widespread exchange of mitochondrial components throughout a neuron as a result of organelle fusion. PMID:22701641

  19. Extensive fusion of mitochondria in spinal cord motor neurons.

    PubMed

    Owens, Geoffrey C; Walcott, Elisabeth C

    2012-01-01

    The relative roles played by trafficking, fission and fusion in the dynamics of mitochondria in neurons have not been fully elucidated. In the present study, a slow widespread redistribution of mitochondria within cultured spinal cord motor neurons was observed as a result of extensive organelle fusion. Mitochondria were labeled with a photoconvertible fluorescent protein (mitoKaede) that is red-shifted following brief irradiation with blue light. The behavior of these selectively labeled mitochondria was followed by live fluorescence imaging. Marking mitochondria within the cell soma revealed a complete mixing, within 18 hours, of these organelles with mitochondria coming from the surrounding neurites. Fusion of juxtaposed mitochondria was directly observed in neuritic processes at least 200 microns from the cell body. Within 24 hours, photoconverted mitoKaede was dispersed to all of the mitochondria in the portion of neurite under observation. When time lapse imaging over minutes was combined with long-term observation of marked mitochondria, moving organelles that traversed the field of view did not initially contain photoconverted protein, but after several hours organelles in motion contained both fluorescent proteins, coincident with widespread fusion of all of the mitochondria within the length of neurite under observation. These observations suggest that there is a widespread exchange of mitochondrial components throughout a neuron as a result of organelle fusion.

  20. The development of three identified motor neurons in the larva of an ascidian, Halocynthia roretzi.

    PubMed

    Okada, Toshiaki; Katsuyama, You; Ono, Fumihito; Okamura, Yasushi

    2002-04-15

    The generation of distinct classes of motor neurons underlies the development of complex motile behavior in all animals and is well characterized in chordates. Recent molecular studies indicate that the ascidian larval central nervous system (CNS) exhibits anteroposterior regionalization similar to that seen in the vertebrate CNS. To extend the understanding about the diversity of motor neurons in the ascidian larva, we have identified the number, position, and projection of individual motor neurons in Halocynthia roretzi, using a green fluorescent protein under the control of a neuron-specific promoter. Three pairs of motor neurons, each with a distinct shape and innervation pattern, were identified along the anteroposterior axis of the neural tube: the anterior and posterior pairs extend their axons toward dorsal muscle cells, whereas the middle pair project their axons toward ventral muscle. Overexpression of a dominant-negative form of a potassium channel in these cells resulted in paralysis on the injected side, thus these cells must constitute the major population of motor neurons responsible for swimming behavior. Lim class homeobox genes have been known as candidate genes that determine subtypes of motor neurons. Therefore, the expression pattern of Hrlim, which is a Lim class homeobox gene, was examined in the motor neuron precursors. All three motor neurons expressed Hrlim at the tailbud stage, although each down-regulated Hrlim at a different time. Misexpression of Hrlim in the epidermal lineage led to ectopic expression of TuNa2, a putative voltage-gated channel gene normally expressed predominantly in the three pairs of motor neurons. Hrlim may control membrane excitability of motor neurons by regulating ion channel gene expression.

  1. Repetitive acute intermittent hypoxia increases growth/neurotrophic factor expression in non-respiratory motor neurons.

    PubMed

    Satriotomo, I; Nichols, N L; Dale, E A; Emery, A T; Dahlberg, J M; Mitchell, G S

    2016-05-13

    Repetitive acute intermittent hypoxia (rAIH) increases growth/trophic factor expression in respiratory motor neurons, thereby eliciting spinal respiratory motor plasticity and/or neuroprotection. Here we demonstrate that rAIH effects are not unique to respiratory motor neurons, but are also expressed in non-respiratory, spinal alpha motor neurons and upper motor neurons of the motor cortex. In specific, we used immunohistochemistry and immunofluorescence to assess growth/trophic factor protein expression in spinal sections from rats exposed to AIH three times per week for 10weeks (3×wAIH). 3×wAIH increased brain-derived neurotrophic factor (BDNF), its high-affinity receptor, tropomyosin receptor kinase B (TrkB), and phosphorylated TrkB (pTrkB) immunoreactivity in putative alpha motor neurons of spinal cervical 7 (C7) and lumbar 3 (L3) segments, as well as in upper motor neurons of the primary motor cortex (M1). 3×wAIH also increased immunoreactivity of vascular endothelial growth factor A (VEGFA), the high-affinity VEGFA receptor (VEGFR-2) and an important VEGF gene regulator, hypoxia-inducible factor-1α (HIF-1α). Thus, rAIH effects on growth/trophic factors are characteristic of non-respiratory as well as respiratory motor neurons. rAIH may be a useful tool in the treatment of disorders causing paralysis, such as spinal injury and motor neuron disease, as a pretreatment to enhance motor neuron survival during disease, or as preconditioning for cell-transplant therapies.

  2. Mutant TDP-43 within motor neurons drives disease onset but not progression in amyotrophic lateral sclerosis.

    PubMed

    Ditsworth, Dara; Maldonado, Marcus; McAlonis-Downes, Melissa; Sun, Shuying; Seelman, Amanda; Drenner, Kevin; Arnold, Eveline; Ling, Shuo-Chien; Pizzo, Donald; Ravits, John; Cleveland, Don W; Da Cruz, Sandrine

    2017-03-29

    Mutations in TDP-43 cause amyotrophic lateral sclerosis (ALS), a fatal paralytic disease characterized by degeneration and premature death of motor neurons. The contribution of mutant TDP-43-mediated damage within motor neurons was evaluated using mice expressing a conditional allele of an ALS-causing TDP-43 mutant (Q331K) whose broad expression throughout the central nervous system mimics endogenous TDP-43. TDP-43(Q331K) mice develop age- and mutant-dependent motor deficits from degeneration and death of motor neurons. Cre-recombinase-mediated excision of the TDP-43(Q331K) gene from motor neurons is shown to delay onset of motor symptoms and appearance of TDP-43-mediated aberrant nuclear morphology, and abrogate subsequent death of motor neurons. However, reduction of mutant TDP-43 selectively in motor neurons did not prevent age-dependent degeneration of axons and neuromuscular junction loss, nor did it attenuate astrogliosis or microgliosis. Thus, disease mechanism is non-cell autonomous with mutant TDP-43 expressed in motor neurons determining disease onset but progression defined by mutant acting within other cell types.

  3. Slow motor neuron stimulation of locust skeletal muscle: model and measurement.

    PubMed

    Wilson, Emma; Rustighi, Emiliano; Newland, Philip L; Mace, Brian R

    2013-06-01

    The isometric force response of the locust hind leg extensor tibia muscle to stimulation of a slow extensor tibia motor neuron is experimentally investigated, and a mathematical model describing the response presented. The measured force response was modelled by considering the ability of an existing model, developed to describe the response to the stimulation of a fast extensor tibia motor neuron and to also model the response to slow motor neuron stimulation. It is found that despite large differences in the force response to slow and fast motor neuron stimulation, which could be accounted for by the differing physiology of the fibres they innervate, the model is able to describe the response to both fast and slow motor neuron stimulation. Thus, the presented model provides a potentially generally applicable, robust, simple model to describe the isometric force response of a range of muscles.

  4. Modeling ALS with motor neurons derived from human induced pluripotent stem cells.

    PubMed

    Sances, Samuel; Bruijn, Lucie I; Chandran, Siddharthan; Eggan, Kevin; Ho, Ritchie; Klim, Joseph R; Livesey, Matt R; Lowry, Emily; Macklis, Jeffrey D; Rushton, David; Sadegh, Cameron; Sareen, Dhruv; Wichterle, Hynek; Zhang, Su-Chun; Svendsen, Clive N

    2016-04-01

    Directing the differentiation of induced pluripotent stem cells into motor neurons has allowed investigators to develop new models of amyotrophic lateral sclerosis (ALS). However, techniques vary between laboratories and the cells do not appear to mature into fully functional adult motor neurons. Here we discuss common developmental principles of both lower and upper motor neuron development that have led to specific derivation techniques. We then suggest how these motor neurons may be matured further either through direct expression or administration of specific factors or coculture approaches with other tissues. Ultimately, through a greater understanding of motor neuron biology, it will be possible to establish more reliable models of ALS. These in turn will have a greater chance of validating new drugs that may be effective for the disease.

  5. Modeling ALS using motor neurons derived from human induced pluripotent stem cells

    PubMed Central

    Sances, S; Bruijn, LI; Chandran, S; Eggan, K; Ho, R; Klim, J; Livesey, MR; Lowry, E; Macklis, JD; Rushton, D; Sadegh, C; Sareen, D; Wichterle, H; Zhang, SC; Svendsen, CN

    2016-01-01

    Directing the differentiation of induced pluripotent stem cells into motor neurons has allowed investigators to develop novel models of ALS. However, techniques vary between laboratories and the cells do not appear to mature into fully functional adult motor neurons. Here we discuss common developmental principles of both lower and upper motor neuron development that have led to specific derivation techniques. We then suggest how these motor neurons may be matured further either through direct expression or administration of specific factors or co-culture approaches with other tissues. Ultimately, through a greater understanding of motor neuron biology, it will be possible to establish more reliable models of ALS. These in turn will have a greater chance of validating new drugs that may be effective for the disease. PMID:27021939

  6. Motor neurone disease: a practical update on diagnosis and management.

    PubMed

    Wood-Allum, Clare; Shaw, Pamela J

    2010-06-01

    Motor neurone disease (MND) is an adult-onset neurodegenerative disease which leads inexorably via weakness of limb, bulbar and respiratory muscles to death from respiratory failure three to five years later. Most MND is sporadic but approximately 10% is inherited. In exciting recent breakthroughs two new MND genes have been identified. Diagnosis is clinical and sometimes difficult--treatable mimics must be excluded before the diagnosis is ascribed. Riluzole prolongs life by only three to four months and is only available for the amyotrophic lateral sclerosis (ALS) form of MND. Management therefore properly focuses on symptom relief and the preservation of independence and quality of life. Malnutrition is a poor prognostic factor. In appropriate patients enteral feeding is recommended although its use has yet to be shown to improve survival. In ALS patients with respiratory failure and good or only moderately impaired bulbar function non-invasive positive pressure ventilation prolongs life and improves quality of life.

  7. Mitochondrial DNA variations in Madras motor neuron disease

    PubMed Central

    Govindaraj, Periyasamy; Nalini, Atchayaram; Krishna, Nithin; Sharath, Anugula; Khan, Nahid Akhtar; Tamang, Rakesh; Devi, M. Gourie; Brown, Robert H.; Thangaraj, Kumarasamy

    2013-01-01

    Although the Madras Motor Neuron Disease (MMND) was found three decades ago, its genetic basis has not been elucidated, so far. The symptom at onset was impaired hearing, upper limb weakness and atrophy. Since some clinical features of MMND overlap with mitochondrial disorders, we analyzed the complete mitochondrial genome of 45 MMND patients and found 396 variations, including 13 disease-associated, 2 mt-tRNA and 33 non-synonymous (16 MT-ND, 10 MT-CO, 3 MT-CYB and 4 MT-ATPase). A rare variant (m.8302A>G) in mt-tRNALeu was found in three patients. We predict that these variation(s) may influence the disease pathogenesis along with some unknown factor(s). PMID:23419391

  8. Evidence for neuronal localisation of enteroviral sequences in motor neurone disease/amyotrophic lateral sclerosis by in situ hybridization.

    PubMed

    Woodall, C J; Graham, D I

    2004-01-01

    Sequences resembling those of human enterovirus type B sequences have been associated with motor neurone disease/amyotrophic lateral sclerosis. In a previous study we detected enteroviral sequences in spinal cord/brain stem from cases of motor neurone disease/amyotrophic lateral sclerosis, but not controls. Adjacent tissue sections to two of those strongly positive for these sequences by reverse-transcriptase polymerase chain reaction were analyzed by in situ hybridization with digoxigenin-labelled virus-specific antisense riboprobes. In one case, a female aged 83 showing 12 month rapid progressive disease, signal was specifically localized to cells identifiable as motor neurones of the anterior horn. In another case, a male aged 63 with a 60-month history of progressive muscle weakness, dysarthia, dyspnoea and increased tendon reflexes, signal was located to neurones in the gracile/cuneate nuclei of the brain stem tissue block that had been analyzed. This case showed loss of neurones in the anterior horn of the spinal cord by histopathologic examination which would account for clinical signs of motor neurone disease/amyotrophic lateral sclerosis. Dysfunction of the gracile/cuneate nuclei might have been masked by the paralytic disease. These structures are adjacent to the hypoglossal nuclei, and suggest either localised dissemination from hypoglossal nuclei or a possible route of dissemination of infection through the brainstem to the hypoglossal nuclei. These findings provide further evidence for the possible involvement of enteroviruses in motor neurone disease/amyotrophic lateral sclerosis.

  9. Anti-Hu associated paraneoplastic sensory neuronopathy with upper motor neurone involvement.

    PubMed

    Ogawa, M; Nishie, M; Kurahashi, K; Kaimori, M; Wakabayashi, K

    2004-07-01

    Paraneoplastic neurological syndrome is characterised by neuronal degeneration with lymphocytic infiltration in various regions of the central and peripheral nervous systems. Motor neurone symptoms may occur as a remote effect of malignancy, and have been considered because of the involvement of lower motor neurones. A case is reported of an 80 year old woman suffering from paraneoplastic sensory neuronopathy with anti-Hu antibody. Postmortem examination showed adenocarcinoma of the gall bladder and small cell carcinoma of the duodenum. Neuronal loss with lymphocytic infiltration was found in the dorsal root ganglia, brain stem, and cerebellum. Despite the absence of upper motor neurone signs, there was severe loss of Betz cells and degeneration of the bilateral pyramidal tracts. To our knowledge, this is the first demonstration of upper motor neurone involvement in anti-Hu associated paraneoplatic syndrome.

  10. The role of the ETS gene PEA3 in the development of motor and sensory neurons.

    PubMed

    Ladle, David R; Frank, Eric

    2002-12-01

    The ETS family of transcription factors includes two members, ER81 and PEA3, which are expressed in groups of sensory and motor neurons supplying individual muscles. To investigate a possible role of these genes in determining sensory and/or motor neuron phenotype, we studied mice in which each of these genes was deleted. In contrast to the deletion of ER81, which blocks the formation of projections from muscle sensory neurons to motor neurons in the spinal cord, deletion of PEA3 causes no obvious effects on sensory neurons or on their synaptic connections with motor neurons. PEA3 does play a major role in the formation of some brachial motoneurons however. Motoneurons innervating the cutaneous maximus muscle, which are normally PEA3(+), fail to develop normally so that postnatally the muscle is innervated by few motoneurons and is severely atrophic. Other studies suggest that these motoneurons initially appear during development but fail to contact their normal muscle targets.

  11. Pattern of motor neurone disease in eastern India.

    PubMed

    Saha, S P; Das, S K; Gangopadhyay, P K; Roy, T N; Maiti, B

    1997-07-01

    A clinical study about the pattern of motor neurone disease in eastern India was carried out from July 1993 to June 1995 at Bangur Institute of Neurology, Calcutta and SSKM Hospital, Calcutta. A total of 110 cases were studied and they constituted 0.11% of all neurological cases seen in the general OPD. Of 110 cases, amyotropic lateral sclerosis (ALS) constituted 43.6%, progressive muscular atrophy (PMA) 10.9%, post-polio progressive muscular atrophy (PPMA) 1.8%, spinal muscular atrophy (SMA) 20%, atypical form Madras pattern of MND (MMND) 0.9% and monomelic amyotrophy (MMA) 22.7% of cases. Disease is more common in males than females and average duration of symptoms before presentation varied from 1 to 12 months. Most of the patients were either agricultural labourers or manual workers in ALS variety whereas MMA variety was evenly distributed in both hard labourers and sedentary workers. Most of the patients in MMA and SMA groups presented before 30 years of age whereas ALS and PMA group presented after 30 years. Trauma was the commonest antecedent event in ALS and MMA followed by electrocution in the same two groups. Family history was found to be absent in SMA group though the disease is considered as a hereditary one. Weakness of the limbs and wasting of the muscles were common presenting symptoms and signs. Bulbar symptoms and signs were found only in the ALS group. EMG showed neurogenic pattern and mixed pattern in most of the patients in all groups. Only a few patients showed myopathic pattern. Neuroimaging study helped in exclusion of compressive lesion excepting two cases of MMA where facetal hypertrophy was present. Monomelic amyotrophy, a special variety of motor neurone disease, is not rare in this part as compared to other parts of India and Asia.

  12. The Gemin Associates of Survival Motor Neuron Are Required for Motor Function in Drosophila

    PubMed Central

    Borg, Rebecca; Cauchi, Ruben J.

    2013-01-01

    Membership of the survival motor neuron (SMN) complex extends to nine factors, including the SMN protein, the product of the spinal muscular atrophy (SMA) disease gene, Gemins 2–8 and Unrip. The best-characterised function of this macromolecular machine is the assembly of the Sm-class of uridine-rich small nuclear ribonucleoprotein (snRNP) particles and each SMN complex member has a key role during this process. So far, however, only little is known about the function of the individual Gemin components in vivo. Here, we make use of the Drosophila model organism to uncover loss-of-function phenotypes of Gemin2, Gemin3 and Gemin5, which together with SMN form the minimalistic fly SMN complex. We show that ectopic overexpression of the dead helicase Gem3ΔN mutant or knockdown of Gemin3 result in similar motor phenotypes, when restricted to muscle, and in combination cause lethality, hence suggesting that Gem3ΔN overexpression mimics a loss-of-function. Based on the localisation pattern of Gem3ΔN, we predict that the nucleus is the primary site of the antimorphic or dominant-negative mechanism of Gem3ΔN-mediated interference. Interestingly, phenotypes induced by human SMN overexpression in Drosophila exhibit similarities to those induced by overexpression of Gem3ΔN. Through enhanced knockdown we also uncover a requirement of Gemin2, Gemin3 and Gemin5 for viability and motor behaviour, including locomotion as well as flight, in muscle. Notably, in the case of Gemin3 and Gemin5, such function also depends on adequate levels of the respective protein in neurons. Overall, these findings lead us to speculate that absence of any one member is sufficient to arrest the SMN-Gemins complex function in a nucleocentric pathway, which is critical for motor function in vivo. PMID:24391840

  13. Functional Diversification of Motor Neuron-specific Isl1 Enhancers during Evolution

    PubMed Central

    Kim, Namhee; Park, Chungoo; Jeong, Yongsu; Song, Mi-Ryoung

    2015-01-01

    Functional diversification of motor neurons has occurred in order to selectively control the movements of different body parts including head, trunk and limbs. Here we report that transcription of Isl1, a major gene necessary for motor neuron identity, is controlled by two enhancers, CREST1 (E1) and CREST2 (E2) that allow selective gene expression of Isl1 in motor neurons. Introduction of GFP reporters into the chick neural tube revealed that E1 is active in hindbrain motor neurons and spinal cord motor neurons, whereas E2 is active in the lateral motor column (LMC) of the spinal cord, which controls the limb muscles. Genome-wide ChIP-Seq analysis combined with reporter assays showed that Phox2 and the Isl1-Lhx3 complex bind to E1 and drive hindbrain and spinal cord-specific expression of Isl1, respectively. Interestingly, Lhx3 alone was sufficient to activate E1, and this may contribute to the initiation of Isl1 expression when progenitors have just developed into motor neurons. E2 was induced by onecut 1 (OC-1) factor that permits Isl1 expression in LMCm neurons. Interestingly, the core region of E1 has been conserved in evolution, even in the lamprey, a jawless vertebrate with primitive motor neurons. All E1 sequences from lamprey to mouse responded equally well to Phox2a and the Isl1-Lhx3 complex. Conversely, E2, the enhancer for limb-innervating motor neurons, was only found in tetrapod animals. This suggests that evolutionarily-conserved enhancers permit the diversification of motor neurons. PMID:26447474

  14. Non-viral gene therapy that targets motor neurons in vivo

    PubMed Central

    Rogers, Mary-Louise; Smith, Kevin S.; Matusica, Dusan; Fenech, Matthew; Hoffman, Lee; Rush, Robert A.; Voelcker, Nicolas H.

    2014-01-01

    A major challenge in neurological gene therapy is safe delivery of transgenes to sufficient cell numbers from the circulation or periphery. This is particularly difficult for diseases involving spinal cord motor neurons such as amyotrophic lateral sclerosis (ALS). We have examined the feasibility of non-viral gene delivery to spinal motor neurons from intraperitoneal injections of plasmids carried by “immunogene” nanoparticles targeted for axonal retrograde transport using antibodies. PEGylated polyethylenimine (PEI-PEG12) as DNA carrier was conjugated to an antibody (MLR2) to the neurotrophin receptor p75 (p75NTR). We used a plasmid (pVIVO2) designed for in vivo gene delivery that produces minimal immune responses, has improved nuclear entry into post mitotic cells and also expresses green fluorescent protein (GFP). MLR2-PEI-PEG12 carried pVIVO2 and was specific for mouse motor neurons in mixed cultures containing astrocytes. While only 8% of motor neurons expressed GFP 72 h post transfection in vitro, when the immunogene was given intraperitonealy to neonatal C57BL/6J mice, GFP specific motor neuron expression was observed in 25.4% of lumbar, 18.3% of thoracic and 17.0% of cervical motor neurons, 72 h post transfection. PEI-PEG12 carrying pVIVO2 by itself did not transfect motor neurons in vivo, demonstrating the need for specificity via the p75NTR antibody MLR2. This is the first time that specific transfection of spinal motor neurons has been achieved from peripheral delivery of plasmid DNA as part of a non-viral gene delivery agent. These results stress the specificity and feasibility of immunogene delivery targeted for p75NTR expressing motor neurons, but suggests that further improvements are required to increase the transfection efficiency of motor neurons in vivo. PMID:25352776

  15. The effective neural drive to muscles is the common synaptic input to motor neurons

    PubMed Central

    Farina, Dario; Negro, Francesco; Dideriksen, Jakob Lund

    2014-01-01

    We analysed the transformation of synaptic input to the pool of motor neurons into the neural drive to the muscle. The aim was to explain the relations between common oscillatory signals sent to motor neurons and the effective component of the neural signal sent to muscles as output of the spinal cord circuitries. The approach is based on theoretical derivations, computer simulations, and experiments. It is shown theoretically that for frequencies smaller than the average discharge rates of the motor neurons, the pool of motor neurons determines a pure amplification of the frequency components common to all motor neurons, so that the common input is transmitted almost undistorted and the non-common components are strongly attenuated. The effective neural drive to the muscle thus mirrors the common synaptic input to motor neurons. The simulations with three models of motor neuron confirmed the theoretical results by showing that the coherence function between common input components and the neural drive to the muscle tends to 1 when increasing the number of active motor neurons. This result, which was relatively insensitive to the type of model used, was also supported experimentally by observing that, in the low-pass signal bandwidth, the peak in coherence between groups of motor units of the abductor digiti minimi muscle of five healthy subjects tended to 1 when increasing the number of motor units. These results have implications for our understanding of the neural control of muscles as well as for methods used for estimating the strength of common input to populations of motor neurons. PMID:24860172

  16. X-linked spinal muscular atrophy in mice caused by autonomous loss of ATP7A in the motor neuron

    PubMed Central

    Hodgkinson, Victoria L.; Dale, Jeffery M.; Garcia, Michael L.; Weisman, Gary A.; Lee, Jaekwon; Gitlin, Jonathan D.; Petris, Michael J.

    2015-01-01

    ATP7A is a copper transporting P-type ATPase that is essential for cellular copper homeostasis. Loss-of-function mutations in the ATP7A gene result in Menkes disease, a fatal neurodegenerative disorder resulting in seizures, hypotonia, and failure to thrive due to systemic copper deficiency. Most recently, rare missense mutations in ATP7A that do not impact systemic copper homeostasis have been shown to cause X-linked Spinal Muscular Atrophy type 3 (SMAX3), a distal hereditary motor neuropathy. An understanding of the mechanistic and pathophysiological basis of SMAX3 is currently lacking, in part because the disease-causing mutations have been shown to confer both loss- and gain-of-function properties to ATP7A, and because there is currently no animal model of the disease. In this study, the Atp7a gene was specifically deleted in the motor neurons of mice resulting in a degenerative phenotype consistent with the clinical features in affected patients with SMAX3, including the progressive deterioration of gait, age-dependent muscle atrophy, denervation of neuromuscular junctions, and a loss of motor neuron cell bodies. Taken together these data reveal autonomous requirements for ATP7A that reveal essential roles for copper in the maintenance and function of the motor neuron, and suggest that SMAX3 is caused by a loss of ATP7A function that specifically impacts in the spinal motor neuron. PMID:25639447

  17. X-linked spinal muscular atrophy in mice caused by autonomous loss of ATP7A in the motor neuron.

    PubMed

    Hodgkinson, Victoria L; Dale, Jeffery M; Garcia, Michael L; Weisman, Gary A; Lee, Jaekwon; Gitlin, Jonathan D; Petris, Michael J

    2015-06-01

    ATP7A is a copper-transporting P-type ATPase that is essential for cellular copper homeostasis. Loss-of-function mutations in the ATP7A gene result in Menkes disease, a fatal neurodegenerative disorder resulting in seizures, hypotonia and failure to thrive, due to systemic copper deficiency. Most recently, rare missense mutations in ATP7A that do not impact systemic copper homeostasis have been shown to cause X-linked spinal muscular atrophy type 3 (SMAX3), a distal hereditary motor neuropathy. An understanding of the mechanistic and pathophysiological basis of SMAX3 is currently lacking, in part because the disease-causing mutations have been shown to confer both loss- and gain-of-function properties to ATP7A, and because there is currently no animal model of the disease. In this study, the Atp7a gene was specifically deleted in the motor neurons of mice, resulting in a degenerative phenotype consistent with the clinical features in affected patients with SMAX3, including the progressive deterioration of gait, age-dependent muscle atrophy, denervation of neuromuscular junctions and a loss of motor neuron cell bodies. Taken together, these data reveal autonomous requirements for ATP7A that reveal essential roles for copper in the maintenance and function of the motor neuron, and suggest that SMAX3 is caused by a loss of ATP7A function that specifically impacts the spinal motor neuron.

  18. β-Catenin stabilization in skeletal muscles, but not in motor neurons, leads to aberrant motor innervation of the muscle during neuromuscular development in mice.

    PubMed

    Liu, Yun; Sugiura, Yoshie; Wu, Fenfen; Mi, Wentao; Taketo, Makoto M; Cannon, Steve; Carroll, Thomas; Lin, Weichun

    2012-06-15

    β-Catenin, a key component of the Wnt signaling pathway, has been implicated in the development of the neuromuscular junction (NMJ) in mice, but its precise role in this process remains unclear. Here we use a β-catenin gain-of-function mouse model to stabilize β-catenin selectively in either skeletal muscles or motor neurons. We found that β-catenin stabilization in skeletal muscles resulted in increased motor axon number and excessive intramuscular nerve defasciculation and branching. In contrast, β-catenin stabilization in motor neurons had no adverse effect on motor innervation pattern. Furthermore, stabilization of β-catenin, either in skeletal muscles or in motor neurons, had no adverse effect on the formation and function of the NMJ. Our findings demonstrate that β-catenin levels in developing muscles in mice are crucial for proper muscle innervation, rather than specifically affecting synapse formation at the NMJ, and that the regulation of muscle innervation by β-catenin is mediated by a non-cell autonomous mechanism.

  19. Motor Neurons Tune Premotor Activity in a Vertebrate Central Pattern Generator.

    PubMed

    Lawton, Kristy J; Perry, Wick M; Yamaguchi, Ayako; Zornik, Erik

    2017-03-22

    Central patterns generators (CPGs) are neural circuits that drive rhythmic motor output without sensory feedback. Vertebrate CPGs are generally believed to operate in a top-down manner in which premotor interneurons activate motor neurons that in turn drive muscles. In contrast, the frog (Xenopus laevis) vocal CPG contains a functionally unexplored neuronal projection from the motor nucleus to the premotor nucleus, indicating a recurrent pathway that may contribute to rhythm generation. In this study, we characterized the function of this bottom-up connection. The X. laevis vocal CPG produces a 50-60 Hz "fast trill" song used by males during courtship. We recorded "fictive vocalizations" in the in vitro CPG from the laryngeal nerve while simultaneously recording premotor activity at the population and single-cell level. We show that transecting the motor-to-premotor projection eliminated the characteristic firing rate of premotor neurons. Silencing motor neurons with the intracellular sodium channel blocker QX-314 also disrupted premotor rhythms, as did blockade of nicotinic synapses in the motor nucleus (the putative location of motor neuron-to-interneuron connections). Electrically stimulating the laryngeal nerve elicited primarily IPSPs in premotor neurons that could be blocked by a nicotinic receptor antagonist. Our results indicate that an inhibitory signal, activated by motor neurons, is required for proper CPG function. To our knowledge, these findings represent the first example of a CPG in which precise premotor rhythms are tuned by motor neuron activity.SIGNIFICANCE STATEMENT Central pattern generators (CPGs) are neural circuits that produce rhythmic behaviors. In vertebrates, motor neurons are not commonly known to contribute to CPG function, with the exception of a few spinal circuits where the functional significance of motor neuron feedback is still poorly understood. The frog hindbrain vocal circuit contains a previously unexplored connection from

  20. Respiratory complications related to bulbar dysfunction in motor neuron disease.

    PubMed

    Hadjikoutis, S; Wiles, C M

    2001-04-01

    Bulbar dysfunction resulting from corticobulbar pathway or brainstem neuron degeneration is one of the most important clinical problems encountered in motor neuron disease (MND) and contributes to various respiratory complications which are major causes of morbidity and mortality. Chronic malnutrition as a consequence of bulbar muscle weakness may have a considerable bearing on respiratory muscle function and survival. Abnormalities of the control and strength of the laryngeal and pharyngeal muscles may cause upper airway obstruction increasing resistance to airflow. Bulbar muscle weakness prevents adequate peak cough flows to clear airway debris. Dysphagia can lead to aspiration of microorganisms, food and liquids and hence pneumonia. MND patients with bulbar involvement commonly display an abnormal respiratory pattern during swallow characterized by inspiration after swallow, prolonged swallow apnoea and multiple swallows per bolus. Volitional respiratory function tests such as forced vital capacity can be inaccurate in patients with bulbofacial weakness and/or impaired volitional respiratory control. Bulbar muscle weakness with abundant secretions may increase the risk of aspiration and make successful non-invasive assisted ventilation more difficult. We conclude that an evaluation of bulbar dysfunction is an essential element in the assessment of respiratory dysfunction in MND.

  1. Growth of primary motor neurons on horizontally aligned carbon nanotube thin films and striped patterns

    NASA Astrophysics Data System (ADS)

    Roberts, Megan J.; Leach, Michelle K.; Bedewy, Mostafa; Meshot, Eric R.; Copic, Davor; Corey, Joseph M.; Hart, A. John

    2014-06-01

    Objective. Carbon nanotubes (CNTs) are attractive for use in peripheral nerve interfaces because of their unique combination of strength, flexibility, electrical conductivity and nanoscale surface texture. Here we investigated the growth of motor neurons on thin films of horizontally aligned CNTs (HACNTs). Approach. We cultured primary embryonic rat motor neurons on HACNTs and performed statistical analysis of the length and orientation of neurites. We next presented motor neurons with substrates of alternating stripes of HACNTs and SiO2. Main results. The neurons survived on HACNT substrates for up to eight days, which was the full duration of our experiments. Statistical analysis of the length and orientation of neurites indicated that the longest neurites on HACNTs tended to align with the CNT direction, although the average neurite length was similar between HACNTs and glass control substrates. We observed that when motor neurons were presented with alternating stripes of HACNTs and SiO2, the proportion of neurons on HACNTs increases over time, suggesting that neurons selectively migrate toward and adhere to the HACNT surface. Significance. The behavior of motor neurons on CNTs has not been previously investigated, and we show that aligned CNTs could provide a viable interface material to motor neurons. Combined with emerging techniques to build complex hierarchical structures of CNTs, our results suggest that organised CNTs could be incorporated into nerve grafts that use physical and electrical cues to guide regenerating axons.

  2. BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB

    NASA Technical Reports Server (NTRS)

    Hu, Peter; Kalb, Robert G.; Walton, K. D. (Principal Investigator)

    2003-01-01

    The survival promoting and neuroprotective actions of brain-derived neurotrophic factor (BDNF) are well known but under certain circumstances this growth factor can also exacerbate excitotoxic insults to neurons. Prior exploration of the receptor through which BDNF exerts this action on motor neurons deflects attention away from p75. Here we investigated the possibility that BDNF acts through the receptor tyrosine kinase, TrkB, to confer on motor neurons sensitivity to excitotoxic challenge. We blocked BDNF activation of TrkB using a dominant negative TrkB mutant or a TrkB function blocking antibody, and found that this protected motor neurons against excitotoxic insult in cultures of mixed spinal cord neurons. Addition of a function blocking antibody to BDNF to mixed spinal cord neuron cultures is also neuroprotective indicating that endogenously produced BDNF participates in vulnerability to excitotoxicity. We next examined the intracellular signaling cascades that are engaged upon TrkB activation. Previously we found that inhibition of the phosphatidylinositide-3'-kinase (PI3'K) pathway blocks BDNF-induced excitotoxic sensitivity. Here we show that expression of a constitutively active catalytic subunit of PI3'K, p110, confers excitotoxic sensitivity (ES) upon motor neurons not incubated with BDNF. Parallel studies with purified motor neurons confirm that these events are likely to be occuring specifically within motor neurons. The abrogation of BDNF's capacity to accentuate excitotoxic insults may make it a more attractive neuroprotective agent.

  3. Spinal motor and sensory neurons are androgen targets in an acrobatic bird.

    PubMed

    Fuxjager, Matthew J; Schultz, J Douglas; Barske, Julia; Feng, Ni Y; Fusani, Leonida; Mirzatoni, Anahid; Day, Lainy B; Hau, Michaela; Schlinger, Barney A

    2012-08-01

    Sex steroids affect the motivation to court mates, but less is known about how they influence motor movements associated with courtship behavior. Steroidal control of motor function may be especially important for species in which courtship requires superior strength, stamina, and neuromuscular coordination. Here we use the golden-collared manakin (Manacus vitellinus) to examine whether the neuromuscular circuitry that controls motoric aspects of courtship activity is sensitive to androgens. Males of this tropical species attract mates by rapidly jumping among branches in a courtship arena and using their wings to produce loud wing snaps. Testosterone activates this display via the androgen receptor (AR), and past work reveals that manakins injected with radio-labeled T ((3)H-T) accumulate radioactivity in the spinal cord. Thus, we used quantitative PCR to measure AR, estrogen receptor-α (ER-α) subtype, and aromatase (AROM) mRNA in spinal cords of male and female manakins and zebra finches. Expression of AR, but not ER-α or aromatase, was higher throughout the manakin spinal cord compared with the zebra finch. Next, we tested whether AR-expressing skeletal muscles are innervated by motor and sensory neurons that also express AR. To do this, we backfilled spinal neurons by injecting fluorescent tracers into select AR-sensitive wing and leg muscles of wild caught male and female manakins. We then removed these spinal cords and measured AR expression with in situ hybridization. Both sexes showed abundant AR mRNA in the cervical and lumbosacral spinal enlargements as well as in dorsal root ganglia attached to these enlargements. Together our findings suggest that androgens act widely on peripheral motor and sensory circuits in golden-collared manakins to influence wing snapping displays.

  4. Wnt7A identifies embryonic γ-motor neurons and reveals early postnatal dependence of γ-motor neurons on a muscle spindle-derived signal.

    PubMed

    Ashrafi, Soha; Lalancette-Hébert, Melanie; Friese, Andreas; Sigrist, Markus; Arber, Silvia; Shneider, Neil A; Kaltschmidt, Julia A

    2012-06-20

    Motor pools comprise a heterogeneous population of motor neurons that innervate distinct intramuscular targets. While the organization of motor neurons into motor pools has been well described, the time course and mechanism of motor pool diversification into functionally distinct classes remains unclear. γ-Motor neurons (γ-MNs) and α-motor neurons (α-MNs) differ in size, molecular identity, synaptic input and peripheral target. While α-MNs innervate extrafusal skeletal muscle fibers to mediate muscle contraction, γ-MNs innervate intrafusal fibers of the muscle spindle, and regulate sensitivity of the muscle spindle in response to stretch. In this study, we find that the secreted signaling molecule Wnt7a is selectively expressed in γ-MNs in the mouse spinal cord by embryonic day 17.5 and continues to molecularly distinguish γ-from α-MNs into the third postnatal week. Our data demonstrate that Wnt7a is the earliest known γ-MN marker, supporting a model of developmental divergence between α- and γ-MNs at embryonic stages. Furthermore, using Wnt7a expression as an early marker of γ-MN identity, we demonstrate a previously unknown dependence of γ-MNs on a muscle spindle-derived, GDNF-independent signal during the first postnatal week.

  5. Somatosensory response properties of excitatory and inhibitory neurons in rat motor cortex.

    PubMed

    Murray, Peter D; Keller, Asaf

    2011-09-01

    In sensory cortical networks, peripheral inputs differentially activate excitatory and inhibitory neurons. Inhibitory neurons typically have larger responses and broader receptive field tuning compared with excitatory neurons. These differences are thought to underlie the powerful feedforward inhibition that occurs in response to sensory input. In the motor cortex, as in the somatosensory cortex, cutaneous and proprioceptive somatosensory inputs, generated before and during movement, strongly and dynamically modulate the activity of motor neurons involved in a movement and ultimately shape cortical command. Human studies suggest that somatosensory inputs modulate motor cortical activity in a center excitation, surround inhibition manner such that input from the activated muscle excites motor cortical neurons that project to it, whereas somatosensory input from nearby, nonactivated muscles inhibit these neurons. A key prediction of this hypothesis is that inhibitory and excitatory motor cortical neurons respond differently to somatosensory inputs. We tested this prediction with the use of multisite extracellular recordings in anesthetized rats. We found that fast-spiking (presumably inhibitory) neurons respond to tactile and proprioceptive inputs at shorter latencies and larger response magnitudes compared with regular-spiking (presumably excitatory) neurons. In contrast, we found no differences in the receptive field size of these neuronal populations. Strikingly, all fast-spiking neuron pairs analyzed with cross-correlation analysis displayed common excitation, which was significantly more prevalent than common excitation for regular-spiking neuron pairs. These findings suggest that somatosensory inputs preferentially evoke feedforward inhibition in the motor cortex. We suggest that this provides a mechanism for dynamic selection of motor cortical modules during voluntary movements.

  6. Modulation of motor cortex neuronal activity and motor behavior during subthalamic nucleus stimulation in the normal primate.

    PubMed

    Johnson, Luke A; Xu, Weidong; Baker, Kenneth B; Zhang, Jianyu; Vitek, Jerrold L

    2015-04-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established surgical therapy for advanced Parkinson's disease (PD). An emerging hypothesis is that the therapeutic benefit of DBS is derived from direct modulation of primary motor cortex (M1), yet little is known about the influence of STN DBS on individual neurons in M1. We investigated the effect of STN DBS, delivered at discrete interval intensities (20, 40, 60, 80, and 100%) of corticospinal tract threshold (CSTT), on motor performance and M1 neuronal activity in a naive nonhuman primate. Motor performance during a food reach and retrieval task improved during low-intensity stimulation (20% CSTT) but worsened as intensity approached the threshold for activation of corticospinal fibers (80% and 100% CSTT). To assess cortical effects of STN DBS, spontaneous, extracellular neuronal activity was collected from M1 neurons before, during, and after DBS at the same CSTT stimulus intensities. STN DBS significantly modulated the firing of a majority of M1 neurons; however, the direction of effect varied with stimulus intensity such that, at 20% CSTT, most neurons were suppressed, whereas at the highest stimulus intensities the majority of neurons were activated. At a population level, firing rates increased as stimulus intensity increased. These results show that STN DBS influences both motor performance and M1 neuronal activity systematically according to stimulus intensity. In addition, the unanticipated reduction in reach times suggests that STN DBS, at stimulus intensities lower than typically used for treatment of PD motor signs, can enhance normal motor performance.

  7. The Drosophila Transcription Factor Dimmed Affects Neuronal Growth and Differentiation in Multiple Ways Depending on Neuron Type and Developmental Stage

    PubMed Central

    Liu, Yiting; Luo, Jiangnan; Nässel, Dick R.

    2016-01-01

    Growth of postmitotic neurons occurs during different stages of development, including metamorphosis, and may also be part of neuronal plasticity and regeneration. Recently we showed that growth of post-mitotic neuroendocrine cells expressing the basic helix loop helix (bHLH) transcription factor Dimmed (Dimm) in Drosophila could be regulated by insulin/IGF signaling and the insulin receptor (dInR). Dimm is also known to confer a secretory phenotype to neuroendocrine cells and can be part of a combinatorial code specifying terminal differentiation in peptidergic neurons. To further understand the mechanisms of Dimm function we ectopically expressed Dimm or Dimm together with dInR in a wide range of Dimm positive and Dimm negative peptidergic neurons, sensory neurons, interneurons, motor neurons, and gut endocrine cells. We provide further evidence that dInR mediated cell growth occurs in a Dimm dependent manner and that one source of insulin-like peptide (DILP) for dInR mediated cell growth in the CNS is DILP6 from glial cells. Expressing both Dimm and dInR in Dimm negative neurons induced growth of cell bodies, whereas dInR alone did not. We also found that Dimm alone can regulate cell growth depending on specific cell type. This may be explained by the finding that the dInR is a direct target of Dimm. Conditional gene targeting experiments showed that Dimm alone could affect cell growth in certain neuron types during metamorphosis or in the adult stage. Another important finding was that ectopic Dimm inhibits apoptosis of several types of neurons normally destined for programmed cell death (PCD). Taken together our results suggest that Dimm plays multiple transcriptional roles at different developmental stages in a cell type-specific manner. In some cell types ectopic Dimm may act together with resident combinatorial code transcription factors and affect terminal differentiation, as well as act in transcriptional networks that participate in long term maintenance

  8. Demonstration of motor imagery movement and phantom movement-related neuronal activity in human thalamus.

    PubMed

    Anderson, William S; Weiss, Nirit; Lawson, Herman Christopher; Ohara, Shinji; Rowland, Lance; Lenz, Frederick A

    2011-01-26

    Functional imaging studies show that motor imagery activates multiple structures in the human forebrain. We now show that phantom movements in an amputee and imagined movements in intact individuals elicit responses from neurons in several human thalamic nuclei. These include the somatic sensory nucleus receiving input from the periphery (ventral caudal), and the motor nuclei receiving input from the cerebellum [ventral intermediate (Vim)] and the basal ganglia [ventral oral posterior (Vop)]. Seven neurons in the amputee showed phantom movement-related activity (three Vim, two Vop, and two ventral caudal). In addition, seven neurons in a group of three controls showed motor imagery-related activity (four Vim and three Vop). These studies were performed during single neuron recording sessions in patients undergoing therapeutic treatment of phantom pain, tremor, and chronic pain conditions by thalamic stimulation. The activity of neurons in these sensory and motor nuclei, respectively, may encode the expected sensory consequences and the dynamics of planned movements.

  9. More than a bystander: the contributions of intrinsic skeletal muscle defects in motor neuron diseases

    PubMed Central

    Boyer, Justin G.; Ferrier, Andrew; Kothary, Rashmi

    2013-01-01

    Spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), and spinal-bulbar muscular atrophy (SBMA) are devastating diseases characterized by the degeneration of motor neurons. Although the molecular causes underlying these diseases differ, recent findings have highlighted the contribution of intrinsic skeletal muscle defects in motor neuron diseases. The use of cell culture and animal models has led to the important finding that muscle defects occur prior to and independently of motor neuron degeneration in motor neuron diseases. In SMA for instance, the muscle specific requirements of the SMA disease-causing gene have been demonstrated by a series of genetic rescue experiments in SMA models. Conditional ALS mouse models expressing a muscle specific mutant SOD1 gene develop atrophy and muscle degeneration in the absence of motor neuron pathology. Treating SBMA mice by over-expressing IGF-1 in a skeletal muscle-specific manner attenuates disease severity and improves motor neuron pathology. In the present review, we provide an in depth description of muscle intrinsic defects, and discuss how they impact muscle function in these diseases. Furthermore, we discuss muscle-specific therapeutic strategies used to treat animal models of SMA, ALS, and SBMA. The study of intrinsic skeletal muscle defects is crucial for the understanding of the pathophysiology of these diseases and will open new therapeutic options for the treatment of motor neuron diseases. PMID:24391590

  10. Survival of motor neurone protein is required for normal postnatal development of the spleen.

    PubMed

    Thomson, Alison K; Somers, Eilidh; Powis, Rachael A; Shorrock, Hannah K; Murphy, Kelley; Swoboda, Kathryn J; Gillingwater, Thomas H; Parson, Simon H

    2017-02-01

    Spinal muscular atrophy (SMA), traditionally described as a predominantly childhood form of motor neurone disease, is the leading genetic cause of infant mortality. Although motor neurones are undoubtedly the primary affected cell type, the severe infantile form of SMA (Type I SMA) is now widely recognised to represent a multisystem disorder where a variety of organs and systems in the body are also affected. Here, we report that the spleen is disproportionately small in the 'Taiwanese' murine model of severe SMA (Smn(-/-) ;SMN2(tg/0) ), correlated to low levels of cell proliferation and increased cell death. Spleen lacks its distinctive red appearance and presents with a degenerated capsule and a disorganised fibrotic architecture. Histologically distinct white pulp failed to form and this was reflected in an almost complete absence of B lymphocytes necessary for normal immune function. In addition, megakaryoctyes persisted in the red pulp. However, the vascular density remained unchanged in SMA spleen. Assessment of the spleen in SMA patients with the infantile form of the disease indicated a range of pathologies. We conclude that development of the spleen fails to occur normally in SMA mouse models and human patients. Thus, further analysis of immune function is likely to be required to fully understand the full extent of systemic disease pathology in SMA.

  11. Morphological features and responses to AMPA receptor-mediated excitotoxicity of mouse motor neurons: comparison in purified, mixed anterior horn or motor neuron/glia cocultures.

    PubMed

    De Paola, Massimiliano; Diana, Valentina; Bigini, Paolo; Mennini, Tiziana

    2008-05-15

    Primary motor neuron cultures are widely used as in vitro model to study the early mechanisms involved in the aetiology of amyotrophic lateral sclerosis. In this study, we directly compared the morphological features and the responses to AMPA receptor (AMPAR) activation of mouse spinal cord motor neurons under different culture conditions (OptiPrep-purified, mixed anterior horn or motor neuron/glia cocultures). Motor neurons cocultured with a confluent glial layer had significant improvements in axonal length and in somata perimeter and area, compared both to mixed anterior horn cultures and to purified cultures, suggesting that the presence of more "mature" glial cells was determinant to obtain healthier motor neurons. By immuno-cytochemical assays we found that both in mixed anterior horn cultures and in cocultures, lower AMPA (0.3 microM) or kainate (5 microM) concentrations, but not the higher (1 or 15 microM, respectively), induced classical apoptotic events such as the nuclear fragmentation, the membrane externalization of phosphatidylserine residues and the activation of caspases-9 and -3. The morphological features and the different degenerative pathways induced by AMPAR agonist concentrations suggest that the experimental conditions used for in vitro studies are key factors that should be deeply considered to obtain more valid and reproducible results.

  12. Glutamate affects dendritic morphology of neurons grown on compliant substrates.

    PubMed

    Previtera, Michelle L; Firestein, Bonnie L

    2015-01-01

    Brain stiffness changes in response to injury or disease. As a secondary consequence, glutamate is released from neurons and astroglia. Two types of glutamate receptors, N-methyl-d-aspartate (NMDA) and α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, sense mechanotransduction, leading to downstream signaling in neurons. Recently, our group reported that these two receptors affect dendrite morphology in hippocampal neurons grown on compliant substrates. Blocking receptor activity has distinct effects on dendrites, depending on whether neurons are grown on soft or stiff gels. In the current study, we examine whether exposure to glutamate itself alters stiffness-mediated changes to dendrites in hippocampal neurons. We find that glutamate augments changes seen when neurons are grown on soft gels of 300 or 600 Pa, but in contrast, glutamate attenuates changes seen when neurons are grown on stiff gels of 3,000 Pa. These results suggest that there is interplay between mechanosensing and glutamate receptor activation in determining dendrite morphology in neurons.

  13. Suppression of proprioceptor--motor neuron interactions by proprioceptors in crayfish claw.

    PubMed

    Lindsey, B G

    1982-11-04

    Crayfish claw proprioceptors and slow closer exciter and opener inhibitor motor neurons were monitored simultaneously during imposed claw displacements. With increasing displacement velocity and decreasing joint angle, the activity of closing sensitive receptors increased, while dynamic-static opening sensitive receptor activity decreased during claw closing. Motor neuron activity evoked by claw opening varied inversely as a function of preceding closing velocity, and directly with preceding pause duration at the closed position. This dependence on closing history cannot be accounted for by changes in opening sensitive receptor activity. Data demonstrate that closing sensitive receptors can suppress excitatory interactions between claw proprioceptors and motor neurons.

  14. Muscle-Derived GDNF: A Gene Therapeutic Approach for Preserving Motor Neuron Function in ALS

    DTIC Science & Technology

    2015-08-01

    AWARD NUMBER: W81XWH-14-1-0189 TITLE: Muscle-Derived GDNF: A Gene Therapeutic Approach for Preserving Motor Neuron Function in ALS PRINCIPAL...NUMBER W81XWH-14-1-0189 Muscle-Derived GDNF: A Gene Therapeutic Approach for Preserving Motor Neuron Function in ALS 5b. GRANT NUMBER 5c. PROGRAM...production in muscles. Hypothesis: Intramuscular AAV5-GDNF injection will ameliorate motor neuron function in the SOD1G93A rat model of ALS. Objectives

  15. Edited GluR2, a gatekeeper for motor neurone survival?

    PubMed

    Buckingham, S D; Kwak, S; Jones, A K; Blackshaw, S E; Sattelle, D B

    2008-11-01

    Amyotrophic lateral sclerosis (ALS) is a progressive degenerative disorder of motor neurones. Although the genetic basis of familial forms of ALS has been well explored, the molecular basis of sporadic ALS is less well understood. Recent evidence has linked sporadic ALS with the failure to edit key residues in ionotropic glutamate receptors, resulting in excessive influx of calcium ions into motor neurones which in turn triggers cell death. Here we suggest that edited AMPA glutamate (GluR2) receptor subunits serve as gatekeepers for motor neurone survival.

  16. Motor Behavior Mediated by Continuously Generated Dopaminergic Neurons in the Zebrafish Hypothalamus Recovers After Cell Ablation

    PubMed Central

    McPherson, Adam D.; Barrios, Joshua P.; Luks-Morgan, Sasha J.; Manfredi, John P.; Bonkowsky, Joshua L.; Douglass, Adam D.; Dorsky, Richard I.

    2015-01-01

    Summary Postembryonic neurogenesis has been observed in several regions of the vertebrate brain, including the dentate gyrus and rostral migratory stream in mammals, and is required for normal behavior [1–3]. Recently the hypothalamus has also been shown to undergo continuous neurogenesis as a way to mediate energy balance [4–10]. As the hypothalamus regulates multiple functional outputs, it is likely that additional behaviors may be affected by postembryonic neurogenesis in this brain structure. Here, we have identified a progenitor population in the zebrafish hypothalamus that continuously generates neurons that express tyrosine hydroxylase 2 (th2). We develop and use novel transgenic tools to characterize the lineage of th2+ cells and demonstrate that they are dopaminergic. Through genetic ablation and optogenetic activation we then show that th2+ neurons modulate the initiation of swimming behavior in zebrafish larvae. Finally we find that the generation of new th2+ neurons following ablation correlates with restoration of normal behavior. This work thus identifies for the first time a population of dopaminergic neurons that regulates motor behavior capable of functional recovery. PMID:26774784

  17. Slow saccades in bulbar-onset motor neurone disease.

    PubMed

    Donaghy, Colette; Pinnock, Ralph; Abrahams, Sharon; Cardwell, Chris; Hardiman, Orla; Patterson, Victor; McGivern, R Canice; Gibson, J Mark

    2010-07-01

    Historical studies of eye movements in motor neurone disease (MND) have been conflicting although current findings suggest that eye movement abnormalities relate to frontal lobe impairment. Numerous case reports, however, describe slow saccades and supranuclear gaze palsies in patients with MND often associated with bulbar-onset disease. We performed a study of saccades and smooth pursuit in a large group of patients with MND to examine for any differences between bulbar-onset and spinal-onset patients. Forty-four patients (14 bulbar-onset and 30 spinal-onset patients) and 45 controls were recruited. Reflexive saccades, antisaccades and smooth pursuit were examined using infra-red oculography and all subjects then underwent neuropsychological evaluation. Reflexive saccades were found to be slower in bulbar-onset compared to spinal-onset patients and controls (p = 0.03, p = 0.05). Antisaccade latency (p = 0.01) and antisaccade type 1 errors (p = 0.03, p = 0.04) were increased in patients compared to controls. 'Proportion of time spent in smooth pursuit' and smooth pursuit 'velocity gain' were reduced in patients compared to controls (p = 0.000, p = 0.001). Antisaccade errors and velocity gain correlated with neuropsychological measures sensitive to lesions of the frontal lobes. This is the first study to highlight the presence of slow saccades in bulbar-onset MND. These findings suggest that slow saccades may be due to increased brainstem pathology in bulbar-onset disease that involves burst cell neurons. Furthermore these observations highlight the potential for overlap between bulbar-onset MND and progressive supranuclear palsy (PSP) as both can have a bulbar palsy and slowed saccades.

  18. Facilitation of distinct inhibitory synaptic inputs by chemical anoxia in neurons in the oculomotor, facial and hypoglossal motor nuclei of the rat.

    PubMed

    Takagi, Satoshi; Kono, Yu; Nagase, Masashi; Mochio, Soichiro; Kato, Fusao

    2017-04-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective loss of motor neurons in the brainstem and spinal cord. Clinical studies have indicated that there is a distinct region-dependent difference in the vulnerability of motor neurons. For example, the motor neurons in the facial and hypoglossal nuclei are more susceptible to neuronal death than those in the oculomotor nucleus. To understand the mechanism underlying the differential susceptibility to cell death of the neurons in different motor nuclei, we compared the effects of chemical anoxia on the membrane currents and postsynaptic currents in different motor nuclei. The membrane currents were recorded from neurons in the oculomotor, facial and hypoglossal nuclei in brain slices of juvenile Wistar rats by using whole-cell recording in the presence of tetrodotoxin that prevents action potential-dependent synaptic transmission. NaCN consistently induced an inward current and a significant increase in the frequency of spontaneous synaptic inputs in neurons from these three nuclei. However, this increase in the synaptic input frequency was abolished by strychnine, a glycine receptor antagonist, but not by picrotoxin in neurons from the hypoglossal and facial nuclei, whereas that in neurons from the oculomotor nucleus was abolished by picrotoxin, but not by strychnine. Blocking ionotropic glutamate receptors did not significantly affect the NaCN-induced release facilitation in any of the three motor nuclei. These results suggest that anoxia selectively facilitates glycine release in the hypoglossal and facial nuclei and GABA release in the oculomotor nucleus. The region-dependent differences in the neurotransmitters involved in the anoxia-triggered release facilitation might provide a basis for the selective vulnerability of motor neurons in the neurodegeneration associated with ALS.

  19. Prolonged Minocycline Treatment Impairs Motor Neuronal Survival and Glial Function in Organotypic Rat Spinal Cord Cultures

    PubMed Central

    Pinkernelle, Josephine; Fansa, Hisham; Ebmeyer, Uwe; Keilhoff, Gerburg

    2013-01-01

    Background Minocycline, a second-generation tetracycline antibiotic, exhibits anti-inflammatory and neuroprotective effects in various experimental models of neurological diseases, such as stroke, Alzheimer’s disease, amyotrophic lateral sclerosis and spinal cord injury. However, conflicting results have prompted a debate regarding the beneficial effects of minocycline. Methods In this study, we analyzed minocycline treatment in organotypic spinal cord cultures of neonatal rats as a model of motor neuron survival and regeneration after injury. Minocycline was administered in 2 different concentrations (10 and 100 µM) at various time points in culture and fixed after 1 week. Results Prolonged minocycline administration decreased the survival of motor neurons in the organotypic cultures. This effect was strongly enhanced with higher concentrations of minocycline. High concentrations of minocycline reduced the number of DAPI-positive cell nuclei in organotypic cultures and simultaneously inhibited microglial activation. Astrocytes, which covered the surface of the control organotypic cultures, revealed a peripheral distribution after early minocycline treatment. Thus, we further analyzed the effects of 100 µM minocycline on the viability and migration ability of dispersed primary glial cell cultures. We found that minocycline reduced cell viability, delayed wound closure in a scratch migration assay and increased connexin 43 protein levels in these cultures. Conclusions The administration of high doses of minocycline was deleterious for motor neuron survival. In addition, it inhibited microglial activation and impaired glial viability and migration. These data suggest that especially high doses of minocycline might have undesired affects in treatment of spinal cord injury. Further experiments are required to determine the conditions for the safe clinical administration of minocycline in spinal cord injured patients. PMID:23967343

  20. Motor Recovery of the Affected Hand in Subacute Stroke Correlates with Changes of Contralesional Cortical Hand Motor Representation

    PubMed Central

    Bösl, Kathrin; Nowak, Dennis Alexander

    2017-01-01

    Objective. To investigate the relationship between changes of cortical hand motor representation and motor recovery of the affected hand in subacute stroke. Methods. 17 patients with motor impairment of the affected hand were enrolled in an in-patient neurological rehabilitation program. Hand motor function tests (Wolf Motor Function Test, Action Research Arm Test) and neurophysiological evaluations (resting motor threshold, motor evoked potentials, motor map area size, motor map area volume, and motor map area location) were obtained from both hands and hemispheres at baseline and two, four, and six weeks of in-patient rehabilitation. Results. There was a wide spectrum of hand motor impairment at baseline and hand motor recovery over time. Hand motor function and recovery correlated significantly with (i) reduction of cortical excitability, (ii) reduction in size and volume of cortical hand motor representation, and (iii) a medial and anterior shift of the center of gravity of cortical hand motor representation within the contralesional hemisphere. Conclusion. Recovery of motor function of the affected hand after stroke is accompanied by definite changes in excitability, size, volume, and location of hand motor representation over the contralesional primary motor cortex. These measures may serve as surrogate markers for the outcome of hand motor rehabilitation after stroke. PMID:28286677

  1. Integrated health care for patients with motor neurone disease.

    PubMed

    Brewah, Helen

    This article presents the findings from a study trip to Kaiser Permanente (KP), a private healthcare provider in the USA. The aim of the trip was to understand how healthcare integration is managed in KP and how this might help patients in the UK with motor neurone disease (MND). This article makes reference to the American and British healthcare systems, identifying the simple differences between health economies, and their impact on health care, with specific reference to MND. The trip was undertaken as part of the author's ongoing work on how patients with MND rate services delivered by the multidisciplinary team (MDT) in the UK. The author's community matron role involves caring for patients with long-term conditions (LTCs) including long-term neurological conditions (LTNCs). In executing this role and in service delivery to patients with LTNCs, specifically MND, the author noticed a lack of robust integration, highlighting the need to consider and address the various contributory factors. This article presents a literature review and analyses the role of the MDT including specialist neurological professionals in executing duties and in delivering healthcare services to patients diagnosed with MND. The implications for practice are also presented along with areas for practice development.

  2. Neuronal firing patterns outweigh circuitry oscillations in parkinsonian motor control

    PubMed Central

    Kuo, Sheng-Han; Tai, Chun-Hwei; Liou, Jyun-You; Pei, Ju-Chun; Chang, Chia-Yuan; Wang, Yi-Mei; Liu, Wen-Chuan; Wang, Tien-Rei

    2016-01-01

    Neuronal oscillations at beta frequencies (20–50 Hz) in the cortico-basal ganglia circuits have long been the leading theory for bradykinesia, the slow movements that are cardinal symptoms in Parkinson’s disease (PD). The beta oscillation theory helped to drive a frequency-based design in the development of deep brain stimulation therapy for PD. However, in contrast to this theory, here we have found that bradykinesia can be completely dissociated from beta oscillations in rodent models. Instead, we observed that bradykinesia is causatively regulated by the burst-firing pattern of the subthalamic nucleus (STN) in a feed-forward, or efferent-only, mechanism. Furthermore, STN burst-firing and beta oscillations are two independent mechanisms that are regulated by different NMDA receptors in STN. Our results shift the understanding of bradykinesia pathophysiology from an interactive oscillatory theory toward a feed-forward mechanism that is coded by firing patterns. This distinct mechanism may improve understanding of the fundamental concepts of motor control and enable more selective targeting of bradykinesia-specific mechanisms to improve PD therapy. PMID:27797341

  3. Joining forces: Motor control meets mirror neurons. Comment on "Grasping synergies: A motor-control approach to the mirror neuron mechanism" by D'Ausilio, Bartoli, and Maffongelli

    NASA Astrophysics Data System (ADS)

    Casile, Antonino

    2015-03-01

    Several consistent and compelling experimental findings suggest that in primates the observation of actions or movements activates the observer's motor cortex (for a recent and very thorough review see [1]). One important piece of evidence was the discovery of mirror neurons, that are neurons in the macaque ventral pre-motor (area F5), motor and parietal cortices (area PFG) that respond both when the monkey executes a goal-directed motor act (e.g. breaking a peanut) or when it sees a similar action executed by others [2-5]. A similar system has been later reported also in humans ([6-8] but see also [9,10] for negative results).

  4. Loss of Npn1 from motor neurons causes postnatal deficits independent from Sema3A signaling.

    PubMed

    Helmbrecht, Michaela S; Soellner, Heidi; Truckenbrodt, Anna M L; Sundermeier, Julia; Cohrs, Christian; Hans, Wolfgang; de Angelis, Martin Hrabě; Feuchtinger, Annette; Aichler, Michaela; Fouad, Karim; Huber, Andrea B

    2015-03-01

    The correct wiring of neuronal circuits is of crucial importance for the function of the vertebrate nervous system. Guidance cues like the neuropilin receptors (Npn) and their ligands, the semaphorins (Sema) provide a tight spatiotemporal control of sensory and motor axon growth and guidance. Among this family of guidance partners the Sema3A-Npn1 interaction has been shown to be of great importance, since defective signaling leads to wiring deficits and defasciculation. For the embryonic stage these defects have been well described, however, also after birth the organism can adapt to new challenges by compensational mechanisms. Therefore, we used the mouse lines Olig2-Cre;Npn1(cond) and Npn1(Sema-) to investigate how postnatal organisms cope with the loss of Npn1 selectively from motor neurons or a systemic dysfunctional Sema3A-Npn1 signaling in the entire organism, respectively. While in Olig2-Cre(+);Npn1(cond-/-) mice clear anatomical deficits in paw posturing, bone structure, as well as muscle and nerve composition became evident, Npn1(Sema-) mutants appeared anatomically normal. Furthermore, Olig2-Cre(+);Npn1(cond) mutants revealed a dysfunctional extensor muscle innervation after single-train stimulation of the N.radial. Interestingly, these mice did not show obvious deficits in voluntary locomotion, however, skilled motor function was affected. In contrast, Npn1(Sema-) mutants were less affected in all behavioral tests and able to improve their performance over time. Our data suggest that loss of Sema3A-Npn1 signaling is not the only cause for the observed deficits in Olig2-Cre(+);Npn1(cond-/-) mice and that additional, yet unknown binding partners for Npn1 may be involved that allow Npn1(Sema-) mutants to compensate for their developmental deficits.

  5. Respiratory management of motor neurone disease: a review of current practice and new developments.

    PubMed

    Rafiq, Muhammad Khizar; Proctor, Alison Ruth; McDermott, Christopher J; Shaw, Pamela J

    2012-06-01

    Motor neurone disease is a neurodegenerative condition with a significant morbidity and shortened life expectancy. Hypoventilatory respiratory failure is the most common cause of death and respiratory function significantly predicts both survival and quality of life in patients with motor neurone disease. Accordingly, supporting and maintaining respiratory function is important in caring for these patients. The most significant advance in motor neurone disease care of recent years has been the domiciliary provision of non-invasive ventilation for treating respiratory failure. Neuromuscular respiratory weakness also leads to ineffective cough and retained airways secretions, predisposing to recurrent chest infections. In this review, we discuss current practice and recent developments in the respiratory management of motor neurone disease, in terms of ventilatory support and cough augmentation.

  6. Dopamine from the brain promotes spinal motor neuron generation during development and adult regeneration.

    PubMed

    Reimer, Michell M; Norris, Anneliese; Ohnmacht, Jochen; Patani, Rickie; Zhong, Zhen; Dias, Tatyana B; Kuscha, Veronika; Scott, Angela L; Chen, Yu-Chia; Rozov, Stanislav; Frazer, Sarah L; Wyatt, Cameron; Higashijima, Shin-ichi; Patton, E Elizabeth; Panula, Pertti; Chandran, Siddharthan; Becker, Thomas; Becker, Catherina G

    2013-06-10

    Coordinated development of brain stem and spinal target neurons is pivotal for the emergence of a precisely functioning locomotor system. Signals that match the development of these far-apart regions of the central nervous system may be redeployed during spinal cord regeneration. Here we show that descending dopaminergic projections from the brain promote motor neuron generation at the expense of V2 interneurons in the developing zebrafish spinal cord by activating the D4a receptor, which acts on the hedgehog pathway. Inhibiting this essential signal during early neurogenesis leads to a long-lasting reduction of motor neuron numbers and impaired motor responses of free-swimming larvae. Importantly, during successful spinal cord regeneration in adult zebrafish, endogenous dopamine promotes generation of spinal motor neurons, and dopamine agonists augment this process. Hence, we describe a supraspinal control mechanism for the development and regeneration of specific spinal cell types that uses dopamine as a signal.

  7. Subcortical neuronal ensembles: an analysis of motor task association, tremor, oscillations, and synchrony in human patients.

    PubMed

    Hanson, Timothy L; Fuller, Andrew M; Lebedev, Mikhail A; Turner, Dennis A; Nicolelis, Miguel A L

    2012-06-20

    Deep brain stimulation (DBS) has expanded as an effective treatment for motor disorders, providing a valuable opportunity for intraoperative recording of the spiking activity of subcortical neurons. The properties of these neurons and their potential utility in neuroprosthetic applications are not completely understood. During DBS surgeries in 25 human patients with either essential tremor or Parkinson's disease, we acutely recorded the single-unit activity of 274 ventral intermediate/ventral oralis posterior motor thalamus (Vim/Vop) neurons and 123 subthalamic nucleus (STN) neurons. These subcortical neuronal ensembles (up to 23 neurons sampled simultaneously) were recorded while the patients performed a target-tracking motor task using a cursor controlled by a haptic glove. We observed that modulations in firing rate of a substantial number of neurons in both Vim/Vop and STN represented target onset, movement onset/direction, and hand tremor. Neurons in both areas exhibited rhythmic oscillations and pairwise synchrony. Notably, all tremor-associated neurons exhibited synchrony within the ensemble. The data further indicate that oscillatory (likely pathological) neurons and behaviorally tuned neurons are not distinct but rather form overlapping sets. Whereas previous studies have reported a linear relationship between power spectra of neuronal oscillations and hand tremor, we report a nonlinear relationship suggestive of complex encoding schemes. Even in the presence of this pathological activity, linear models were able to extract motor parameters from ensemble discharges. Based on these findings, we propose that chronic multielectrode recordings from Vim/Vop and STN could prove useful for further studying, monitoring, and even treating motor disorders.

  8. STAT3 phosphorylation in injured axons before sensory and motor neuron nuclei: potential role for STAT3 as a retrograde signaling transcription factor.

    PubMed

    Lee, Nancy; Neitzel, Karen L; Devlin, Brenda K; MacLennan, A John

    2004-07-05

    STAT3 is a latent transcription factor that is activated by plasma membrane growth factor receptor complexes. Conditional gene disruption data indicate that it contributes to the survival of cranial motor neurons after peripheral nerve lesion. In agreement, levels of activated STAT3 (Tyr705-phosphorylated STAT3) have been shown to increase in the nuclei of adult cranial motor neurons during their regeneration after the same injury. The data presented here demonstrate that STAT3 is similarly but not identically affected in sciatic motor neurons after sciatic nerve injury. In addition, we find that sensory neuron nuclei also display an analogous increase in activated STAT3, thereby supporting a role for STAT3 in the survival and regeneration of these cells. Most interesting, the present data indicate that peripheral nerve lesion leads to a very rapid activation of STAT3 in axons at the lesion site. This response increases during the first 24 hours after injury and extends back to the motor and sensory neurons such that phospho-STAT3-immunoreactive axons are first detected in the dorsal root ganglia and ventral spinal cord at the same postlesion time intervals at which the activated STAT3 is first detected in the neuronal nuclei. Together these data raise the possibility that axonal STAT3, activated at the injury site, acts as a retrograde signaling transcription factor, which promotes the survival and regeneration of both sensory and motor neurons.

  9. Direct lineage reprogramming reveals disease-specific phonotypes of motor neurons from human ALS patients

    PubMed Central

    Liu, Meng-Lu; Zang, Tong; Zhang, Chun-Li

    2015-01-01

    SUMMARY Subtype-specific neurons obtained from adult humans will be critical to modeling neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS). Here we show that adult human skin fibroblasts can be directly and efficiently converted into highly pure motor neurons without passing through an induced pluripotent stem cell stage. These adult human induced motor neurons (hiMNs) exhibit the cytological and electrophysiological features of spinal motor neurons and form functional neuromuscular junctions (NMJs) with skeletal muscles. Importantly, hiMNs converted from ALS-patient fibroblasts show disease-specific degeneration manifested through poor survival, soma shrinkage, hypoactivity, and an inability to form NMJs. A chemical screen revealed that the degenerative features of ALS-hiMNs can be remarkably rescued by the small molecule kenpaullone. Taken together, our results define a direct and efficient strategy to obtain disease-relevant neuronal subtypes from adult human patients and reveal their promising value in disease modeling and drug identification. PMID:26725112

  10. Direct Lineage Reprogramming Reveals Disease-Specific Phenotypes of Motor Neurons from Human ALS Patients.

    PubMed

    Liu, Meng-Lu; Zang, Tong; Zhang, Chun-Li

    2016-01-05

    Subtype-specific neurons obtained from adult humans will be critical to modeling neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS). Here, we show that adult human skin fibroblasts can be directly and efficiently converted into highly pure motor neurons without passing through an induced pluripotent stem cell stage. These adult human induced motor neurons (hiMNs) exhibit the cytological and electrophysiological features of spinal motor neurons and form functional neuromuscular junctions (NMJs) with skeletal muscles. Importantly, hiMNs converted from ALS patient fibroblasts show disease-specific degeneration manifested through poor survival, soma shrinkage, hypoactivity, and an inability to form NMJs. A chemical screen revealed that the degenerative features of ALS hiMNs can be remarkably rescued by the small molecule kenpaullone. Taken together, our results define a direct and efficient strategy to obtain disease-relevant neuronal subtypes from adult human patients and reveal their promising value in disease modeling and drug identification.

  11. Specific Kinematics and Motor-Related Neurons for Aversive Chemotaxis in Drosophila

    PubMed Central

    Gao, Xiaojing J; Potter, Christopher J; Gohl, Daryl M; Silies, Marion; Katsov, Alexander Y

    2013-01-01

    Summary Background Chemotaxis, the ability to direct movements according to chemical cues in the environment, is important for the survival of most organisms. The vinegar fly, Drosophila melanogaster, displays robust olfactory aversion and attraction, but how these behaviors are executed via changes in locomotion remains poorly understood. In particular, it is not clear whether aversion and attraction bi-directionally modulate a shared circuit or recruit distinct circuits for execution. Results Using a quantitative behavioral assay, we determined that both aversive and attractive odorants modulate the initiation and direction of turns, but display distinct kinematics. Using genetic tools to perturb these behaviors, we identified specific populations of neurons required for aversion but not attraction. Inactivation of these populations of cells affected the completion of aversive turns but not their initiation. Optogenetic activation of the same populations of cells triggered a locomotion pattern resembling aversive turns. Perturbations in both the ellipsoid body and the ventral nerve cord, two regions involved in motor control, resulted in defects in aversion. Conclusions Aversive chemotaxis in vinegar flies triggers ethologically appropriate kinematics distinct from those of attractive chemotaxis, and requires specific motor-related neurons. PMID:23770185

  12. Skeletal Muscle in Motor Neuron Diseases: Therapeutic Target and Delivery Route for Potential Treatments

    PubMed Central

    Dupuis, Luc; Echaniz-Laguna, Andoni

    2010-01-01

    Lower motor neuron (LMN) degeneration occurs in several diseases that affect patients from neonates to elderly and can either be genetically transmitted or occur sporadically. Among diseases involving LMN degeneration, spinal muscular atrophy (SMA) and spinal bulbar muscular atrophy (Kennedy’s disease, SBMA) are pure genetic diseases linked to loss of the SMN gene (SMA) or expansion of a polyglutamine tract in the androgen receptor gene (SBMA) while amyotrophic lateral sclerosis (ALS) can either be of genetic origin or occur sporadically. In this review, our aim is to put forward the hypothesis that muscle fiber atrophy and weakness might not be a simple collateral damage of LMN degeneration, but instead that muscle fibers may be the site of crucial pathogenic events in these diseases. In SMA, the SMN gene was shown to be required for muscle structure and strength as well as for neuromuscular junction formation, and a subset of SMA patients develop myopathic pathology. In SBMA, the occurence of myopathic histopathology in patients and animal models, along with neuromuscular phenotype of animal models expressing the androgen receptor in muscle only has lead to the proposal that SBMA may indeed be a muscle disease. Lastly, in ALS, at least part of the phenotype might be explained by pathogenic events occuring in skeletal muscle. Apart from its potential pathogenic role, skeletal muscle pathophysiological events might be a target for treatments and/or be a preferential route for targeting motor neurons. PMID:20840067

  13. Androgen receptor YAC transgenic mice recapitulate SBMA motor neuronopathy and implicate VEGF164 in the motor neuron degeneration.

    PubMed

    Sopher, Bryce L; Thomas, Patrick S; LaFevre-Bernt, Michelle A; Holm, Ida E; Wilke, Scott A; Ware, Carol B; Jin, Lee-Way; Libby, Randell T; Ellerby, Lisa M; La Spada, Albert R

    2004-03-04

    X-linked spinal and bulbar muscular atrophy (SBMA) is an inherited neuromuscular disorder characterized by lower motor neuron degeneration. SBMA is caused by polyglutamine repeat expansions in the androgen receptor (AR). To determine the basis of AR polyglutamine neurotoxicity, we introduced human AR yeast artificial chromosomes carrying either 20 or 100 CAGs into mouse embryonic stem cells. The AR100 transgenic mice developed a late-onset, gradually progressive neuromuscular phenotype accompanied by motor neuron degeneration, indicating striking recapitulation of the human disease. We then tested the hypothesis that polyglutamine-expanded AR interferes with CREB binding protein (CBP)-mediated transcription of vascular endothelial growth factor (VEGF) and observed altered CBP-AR binding and VEGF reduction in AR100 mice. We found that mutant AR-induced death of motor neuron-like cells could be rescued by VEGF. Our results suggest that SBMA motor neuronopathy involves altered expression of VEGF, consistent with a role for VEGF as a neurotrophic/survival factor in motor neuron disease.

  14. Is spinal muscular atrophy a disease of the motor neurons only: pathogenesis and therapeutic implications?

    PubMed

    Simone, Chiara; Ramirez, Agnese; Bucchia, Monica; Rinchetti, Paola; Rideout, Hardy; Papadimitriou, Dimitra; Re, Diane B; Corti, Stefania

    2016-03-01

    Spinal muscular atrophy (SMA) is a genetic neurological disease that causes infant mortality; no effective therapies are currently available. SMA is due to homozygous mutations and/or deletions in the survival motor neuron 1 gene and subsequent reduction of the SMN protein, leading to the death of motor neurons. However, there is increasing evidence that in addition to motor neurons, other cell types are contributing to SMA pathology. In this review, we will discuss the involvement of non-motor neuronal cells, located both inside and outside the central nervous system, in disease onset and progression. Even if SMN restoration in motor neurons is needed, it has been shown that optimal phenotypic amelioration in animal models of SMA requires a more widespread SMN correction. It has been demonstrated that non-motor neuronal cells are also involved in disease pathogenesis and could have important therapeutic implications. For these reasons it will be crucial to take this evidence into account for the clinical translation of the novel therapeutic approaches.

  15. Primary Lateral Sclerosis and Early Upper Motor Neuron Disease: Characteristics of a Cross-Sectional Population

    PubMed Central

    Loci, Lorena; Mitsumoto, Hiroshi; Lomen-Hoerth, Catherine; Kisanuki, Yasushi; Simmons, Zachary; Maragakis, Nicholas J; McVey, April L; Al-Lahham, Tawfiq; Heiman-Patterson, Terry D; Andrews, Jinsy; McDonnell, Erin; Cudkowicz, Merit; Atassi, Nazem

    2015-01-01

    Objectives The goals of this study were to characterize clinical and electrophysiologic findings of subjects with upper motor neuron disease and to explore feasibility of clinical trials in this population. Methods Twenty northeast ALS consortium (NEALS) sites performed chart reviews to identify active clinical pure upper motor neuron disease patients. Patients with hereditary spastic paraplegia (HSP) or meeting revised El Escorial electrodiagnostic criteria for ALS were excluded. Patients were classified into two groups according to the presence or absence of minor electromyography (EMG) abnormalities. Results 233 subjects with upper motor neuron disease were identified; 217 had available EMG data. Normal EMGs were seen in 140 subjects, and 77 had minor denervation. Mean disease duration was 84 (±80) months for the entire cohort with no difference seen between the two groups. No difference was seen in clinical symptoms, disability, or outcome measures between the two groups after correcting for multiple comparisons. Conclusions Minor EMG abnormalities were not associated with phenotypic differences in a clinical upper motor neuron disease population. These findings suggest that subtle EMG abnormalities can not necessarily be used as a prognostic tool in patients with clinical upper motor neuron disease. This study also demonstrates the availability of a large number of patients with upper motor neuron diseases within the NEALS network and suggests feasibility for conducting clinical trials in this population. PMID:26905909

  16. Fezf2 expression in layer 5 projection neurons of mature mouse motor cortex.

    PubMed

    Tantirigama, Malinda L S; Oswald, Manfred J; Clare, Alison J; Wicky, Hollie E; Day, Robert C; Hughes, Stephanie M; Empson, Ruth M

    2016-03-01

    The mature cerebral cortex contains a wide diversity of neuron phenotypes. This diversity is specified during development by neuron-specific expression of key transcription factors, some of which are retained for the life of the animal. One of these key developmental transcription factors that is also retained in the adult is Fezf2, but the neuron types expressing it in the mature cortex are unknown. With a validated Fezf2-Gfp reporter mouse, whole-cell electrophysiology with morphology reconstruction, cluster analysis, in vivo retrograde labeling, and immunohistochemistry, we identify a heterogeneous population of Fezf2(+) neurons in both layer 5A and layer 5B of the mature motor cortex. Functional electrophysiology identified two distinct subtypes of Fezf2(+) neurons that resembled pyramidal tract projection neurons (PT-PNs) and intratelencephalic projection neurons (IT-PNs). Retrograde labeling confirmed the former type to include corticospinal projection neurons (CSpPNs) and corticothalamic projection neurons (CThPNs), whereas the latter type included crossed corticostriatal projection neurons (cCStrPNs) and crossed-corticocortical projection neurons (cCCPNs). The two Fezf2(+) subtypes expressed either CTIP2 or SATB2 to distinguish their physiological identity and confirmed that specific expression combinations of key transcription factors persist in the mature motor cortex. Our findings indicate a wider role for Fezf2 within gene expression networks that underpin the diversity of layer 5 cortical projection neurons.

  17. Radiological evidence of subclinical dysphagia in motor neuron disease.

    PubMed

    Briani, C; Marcon, M; Ermani, M; Costantini, M; Bottin, R; Iurilli, V; Zaninotto, G; Primon, D; Feltrin, G; Angelini, C

    1998-04-01

    Dysphagia in motor neuron disease (MND) may lead to dangerous complications such as cachexia and aspiration pneumonia. Functional evaluation of the oropharyngeal tract is crucial for identifying specific swallowing dysfunctions and planning appropriate rehabilitation. As part of a multidisciplinary study on the treatment of dysphagia in patients with neuromuscular diseases, 23 MND patients with different degrees of dysphagia underwent videofluoroscopy, videopharyngolaryngoscopy and pharyngo-oesophageal manometry. The results of the three instrumental investigations were analysed in order (1) to define the pattern of swallowing in MND patients complaining of dysphagia; (2) to evaluate whether subclinical abnormalities may be detected; and (3) to assess the role of videofluoroscopy, videopharyngolaryngoscopy and manometry in the evaluation of MND patients with deglutition problems. Correlations between the instrumental findings and clinical features (age of the patients, duration and severity of the disease, presence and degree of dysphagia) were also assessed. The results of our study showed that: (1) The oral phase of deglutition was compromised most often, followed by the pharyngeal phase. (2) In all patients without clinical evidence of dysphagia, subclinical videofluoroscopic alterations were present in a pattern similar to that found in the dysphagic group. (3) Videofluoroscopy was the most sensitive technique in identifying oropharyngeal alterations of swallowing. Impairment of the oral phase, abnormal pharyngo-oesophageal motility and incomplete relaxation of the upper oesophageal sphincter were the changes most sensitive in detecting dysphagia. Videofluoroscopy was also capable of detecting preclinical abnormalities in non-dysphagic patients who later developed dysphagia. Practical guidelines for the use of instrumental investigations in the assessment and management of dysphagia in MND patients are proposed.

  18. Motor neuron cell bodies are actively positioned by Slit/Robo repulsion and Netrin/DCC attraction.

    PubMed

    Kim, Minkyung; Fontelonga, Tatiana; Roesener, Andrew P; Lee, Haeram; Gurung, Suman; Mendonca, Philipe R F; Mastick, Grant S

    2015-03-01

    Motor neurons differentiate from a ventral column of progenitors and settle in static clusters, the motor nuclei, next to the floor plate. Within these cell clusters, motor neurons receive afferent input and project their axons out to muscle targets. The molecular mechanisms that position motor neurons in the neural tube remain poorly understood. The floor plate produces several types of guidance cues with well-known roles in attracting and repelling axons, including the Slit family of chemorepellents via their Robo receptors, and Netrin1 via its DCC attractive receptor. In the present study we found that Islet1(+) motor neuron cell bodies invaded the floor plate of Robo1/2 double mutant mouse embryos or Slit1/2/3 triple mutants. Misplaced neurons were born in their normal progenitor column, but then migrated tangentially into the ventral midline. Robo1 and 2 receptor expression in motor neurons was confirmed by reporter gene staining and anti-Robo antibody labeling. Mis-positioned motor neurons projected their axons longitudinally within the floor plate, and failed to reach their normal exit points. To test for potential counteracting ventral attractive signals, we examined Netrin-1 and DCC mutants, and found that motor neurons shifted dorsally in the hindbrain and spinal cord, suggesting that Netrin-1/DCC signaling normally attracts motor neurons closer to the floor plate. Our results show that motor neurons are actively migrating cells, and are normally trapped in a static position by Slit/Robo repulsion and Netrin-1/DCC attraction.

  19. Orientation-dependent changes in single motor neuron activity during adaptive soft-bodied locomotion.

    PubMed

    Metallo, Cinzia; Trimmer, Barry A

    2015-01-01

    Recent major advances in understanding the organizational principles underlying motor control have focused on a small number of animal species with stiff articulated skeletons. These model systems have the advantage of easily quantifiable mechanics, but the neural codes underlying different movements are difficult to characterize because they typically involve a large population of neurons controlling each muscle. As a result, studying how neural codes drive adaptive changes in behavior is extremely challenging. This problem is highly simplified in the tobacco hawkmoth Manduca sexta, which, in its larval stage (caterpillar), is predominantly soft-bodied. Since each M. sexta muscle is innervated by one, occasionally two, excitatory motor neurons, the electrical activity generated by each muscle can be mapped to individual motor neurons. In the present study, muscle activation patterns were converted into motor neuron frequency patterns by identifying single excitatory junction potentials within recorded electromyographic traces. This conversion was carried out with single motor neuron resolution thanks to the high signal selectivity of newly developed flexible microelectrode arrays, which were specifically designed to record from M. sexta muscles. It was discovered that the timing of motor neuron activity and gait kinematics depend on the orientation of the plane of motion during locomotion. We report that, during climbing, the motor neurons monitored in the present study shift their activity to correlate with movements in the animal's more anterior segments. This orientation-dependent shift in motor activity is in agreement with the expected shift in the propulsive forces required for climbing. Our results suggest that, contrary to what has been previously hypothesized, M.sexta uses central command timing for adaptive load compensation.

  20. The Neurotoxic Tau45-230 Fragment Accumulates in Upper and Lower Motor Neurons in Amyotrophic Lateral Sclerosis Subjects

    PubMed Central

    Vintilescu, Claudia R; Afreen, Sana; Rubino, Ashlee E; Ferreira, Adriana

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive and lethal neurodegenerative disease characterized by loss of upper and lower motor neurons leading to muscle paralysis in affected individuals. Numerous mechanisms have been implicated in the death of these neurons. However, the pathobiology of this disease has not been completely elucidated. In the present study, we investigated to what extent tau cleavage and generation of the neurotoxic tau45-230 fragment is associated with ALS. Quantitative western blot analysis indicated that high levels of tau45-230 accumulated in lumbar and cervical spinal cord specimens obtained from ALS subjects. This neurotoxic tau fragment was also detected in ALS upper motor neurons located in the precentral gyrus. Our results also showed that tau45-230 aggregates were present in the spinal cord of ALS patients. On the other hand, this neurotoxic fragment was not generated in a mouse model of a familial form of this disease. Together, these results suggest a potential role for this neurotoxic tau fragment in the mechanisms leading to the degeneration of motor neurons in the context of sporadic ALS. PMID:27496042

  1. ISL1-based LIM complexes control Slit2 transcription in developing cranial motor neurons

    PubMed Central

    Kim, Kyung-Tai; Kim, Namhee; Kim, Hwan-Ki; Lee, Hojae; Gruner, Hannah N.; Gergics, Peter; Park, Chungoo; Mastick, Grant S.; Park, Hae-Chul; Song, Mi-Ryoung

    2016-01-01

    LIM-homeodomain (HD) transcription factors form a multimeric complex and assign neuronal subtype identities, as demonstrated by the hexameric ISL1-LHX3 complex which gives rise to somatic motor (SM) neurons. However, the roles of combinatorial LIM code in motor neuron diversification and their subsequent differentiation is much less well understood. In the present study, we demonstrate that the ISL1 controls postmitotic cranial branchiomotor (BM) neurons including the positioning of the cell bodies and peripheral axon pathfinding. Unlike SM neurons, which transform into interneurons, BM neurons are normal in number and in marker expression in Isl1 mutant mice. Nevertheless, the movement of trigeminal and facial BM somata is stalled, and their peripheral axons are fewer or misrouted, with ectopic branches. Among genes whose expression level changes in previous ChIP-seq and microarray analyses in Isl1-deficient cell lines, we found that Slit2 transcript was almost absent from BM neurons of Isl1 mutants. Both ISL1-LHX3 and ISL1-LHX4 bound to the Slit2 enhancer and drove endogenous Slit2 expression in SM and BM neurons. Our findings suggest that combinations of ISL1 and LHX factors establish cell-type specificity and functional diversity in terms of motor neuron identities and/or axon development. PMID:27819291

  2. Diversification of C. elegans Motor Neuron Identity via Selective Effector Gene Repression.

    PubMed

    Kerk, Sze Yen; Kratsios, Paschalis; Hart, Michael; Mourao, Romulo; Hobert, Oliver

    2017-01-04

    A common organizational feature of nervous systems is the existence of groups of neurons that share common traits but can be divided into individual subtypes based on anatomical or molecular features. We elucidate the mechanistic basis of neuronal diversification processes in the context of C.elegans ventral cord motor neurons that share common traits that are directly activated by the terminal selector UNC-3. Diversification of motor neurons into different classes, each characterized by unique patterns of effector gene expression, is controlled by distinct combinations of phylogenetically conserved, class-specific transcriptional repressors. These repressors are continuously required in postmitotic neurons to prevent UNC-3, which is active in all neuron classes, from activating class-specific effector genes in specific motor neuron subsets via discrete cis-regulatory elements. The strategy of antagonizing the activity of broadly acting terminal selectors of neuron identity in a subtype-specific fashion may constitute a general principle of neuron subtype diversification.

  3. Gap Junction-Mediated Signaling from Motor Neurons Regulates Motor Generation in the Central Circuits of Larval Drosophila.

    PubMed

    Matsunaga, Teruyuki; Kohsaka, Hiroshi; Nose, Akinao

    2017-02-22

    In this study, we used the peristaltic crawling of Drosophila larvae as a model to study how motor patterns are regulated by central circuits. We built an experimental system that allows simultaneous application of optogenetics and calcium imaging to the isolated ventral nerve cord (VNC). We then investigated the effects of manipulating local activity of motor neurons (MNs) on fictive locomotion observed as waves of MN activity propagating along neuromeres. Optical inhibition of MNs with halorhodopsin3 in a middle segment (A4, A5, or A6), but not other segments, dramatically decreased the frequency of the motor waves. Conversely, local activation of MNs with channelrhodopsin2 in a posterior segment (A6 or A7) increased the frequency of the motor waves. Since peripheral nerves mediating sensory feedback were severed in the VNC preparation, these results indicate that MNs send signals to the central circuits to regulate motor pattern generation. Our results also indicate segmental specificity in the roles of MNs in motor control. The effects of the local MN activity manipulation were lost in shaking-B(2) (shakB(2) ) or ogre(2) , gap-junction mutations in Drosophila, or upon acute application of the gap junction blocker carbenoxolone, implicating electrical synapses in the signaling from MNs. Cell-type-specific RNAi suggested shakB and ogre function in MNs and interneurons, respectively, during the signaling. Our results not only reveal an unexpected role for MNs in motor pattern regulation, but also introduce a powerful experimental system that enables examination of the input-output relationship among the component neurons in this system.SIGNIFICANCE STATEMENT Motor neurons are generally considered passive players in motor pattern generation, simply relaying information from upstream interneuronal circuits to the target muscles. This study shows instead that MNs play active roles in the control of motor generation by conveying information via gap junctions to the

  4. Specific Retrograde Transduction of Spinal Motor Neurons Using Lentiviral Vectors Targeted to Presynaptic NMJ Receptors

    PubMed Central

    Eleftheriadou, I; Trabalza, A; Ellison, SM; Gharun, K; Mazarakis, ND

    2014-01-01

    To understand how receptors are involved in neuronal trafficking and to be able to utilize them for specific targeting via the peripheral route would be of great benefit. Here, we describe the generation of novel lentiviral vectors with tropism to motor neurons that were made by coexpressing onto the lentiviral surface a fusogenic glycoprotein (mutated sindbis G) and an antibody against a cell-surface receptor (Thy1.1, p75NTR, or coxsackievirus and adenovirus receptor) on the presynaptic terminal of the neuromuscular junction. These vectors exhibit binding specificity and efficient transduction of receptor positive cell lines and primary motor neurons in vitro. Targeting of each of these receptors conferred to these vectors the capability of being transported retrogradely from the axonal tip, leading to transduction of motor neurons in vitro in compartmented microfluidic cultures. In vivo delivery of coxsackievirus and adenovirus receptor-targeted vectors in leg muscles of mice resulted in predicted patterns of motor neuron labeling in lumbar spinal cord. This opens up the clinical potential of these vectors for minimally invasive administration of central nervous system-targeted therapeutics in motor neuron diseases. PMID:24670531

  5. Systemic administration of antisense p75(NTR) oligodeoxynucleotides rescues axotomised spinal motor neurons.

    PubMed

    Lowry, K S; Murray, S S; Coulson, E J; Epa, R; Bartlett, P F; Barrett, G; Cheema, S S

    2001-04-01

    The 75 kD low-affinity neurotrophin receptor (p75(NTR)) is expressed in developing and axotomised spinal motor neurons. There is now convincing evidence that p75(NTR) can, under some circumstances, become cytotoxic and promote neuronal cell death. We report here that a single application of antisense p75(NTR) oligodeoxynucleotides to the proximal nerve stumps of neonatal rats significantly reduces the loss of axotomised motor neurons compared to controls treated with nonsense oligodeoxynucleotides or phosphate-buffered saline. Our investigations also show that daily systemic intraperitoneal injections of antisense p75(NTR) oligodeoxynucleotides for 14 days significantly reduce the loss of axotomised motor neurons compared to controls. Furthermore, we found that systemic delivery over a similar period continues to be effective following axotomy when intraperitoneal injections were 1) administered after a delay of 24 hr, 2) limited to the first 7 days, or 3) administered every third day. In addition, p75(NTR) protein levels were reduced in spinal motor neurons following treatment with antisense p75(NTR) oligodeoxynucleotides. There were also no obvious side effects associated with antisense p75(NTR) oligodeoxynucleotide treatments as determined by behavioural observations and postnatal weight gain. Our findings indicate that antisense-based strategies could be a novel approach for the prevention of motor neuron degeneration associated with injuries or disease.

  6. Motor neurons control blood vessel patterning in the developing spinal cord

    PubMed Central

    Himmels, Patricia; Paredes, Isidora; Adler, Heike; Karakatsani, Andromachi; Luck, Robert; Marti, Hugo H.; Ermakova, Olga; Rempel, Eugen; Stoeckli, Esther T.; Ruiz de Almodóvar, Carmen

    2017-01-01

    Formation of a precise vascular network within the central nervous system is of critical importance to assure delivery of oxygen and nutrients and for accurate functionality of neuronal networks. Vascularization of the spinal cord is a highly stereotypical process. However, the guidance cues controlling blood vessel patterning in this organ remain largely unknown. Here we describe a new neuro-vascular communication mechanism that controls vessel guidance in the developing spinal cord. We show that motor neuron columns remain avascular during a developmental time window, despite expressing high levels of the pro-angiogenic vascular endothelial growth factor (VEGF). We describe that motor neurons express the VEGF trapping receptor sFlt1 via a Neuropilin-1-dependent mechanism. Using a VEGF gain-of-function approach in mice and a motor neuron-specific sFlt1 loss-of-function approach in chicken, we show that motor neurons control blood vessel patterning by an autocrine mechanism that titrates motor neuron-derived VEGF via their own expression of sFlt1. PMID:28262664

  7. Characterization of thoracic motor and sensory neurons and spinal nerve roots in canine degenerative myelopathy, a potential disease model of amyotrophic lateral sclerosis.

    PubMed

    Morgan, Brandie R; Coates, Joan R; Johnson, Gayle C; Shelton, G Diane; Katz, Martin L

    2014-04-01

    Canine degenerative myelopathy (DM) is a progressive, adult-onset, multisystem degenerative disease with many features in common with amyotrophic lateral sclerosis (ALS). As with some forms of ALS, DM is associated with mutations in superoxide dismutase 1 (SOD1). Clinical signs include general proprioceptive ataxia and spastic upper motor neuron paresis in pelvic limbs, which progress to flaccid tetraplegia and dysphagia. The purpose of this study was to characterize DM as a potential disease model for ALS. We previously reported that intercostal muscle atrophy develops in dogs with advanced-stage DM. To determine whether other components of the thoracic motor unit (MU) also demonstrated morphological changes consistent with dysfunction, histopathologic and morphometric analyses were conducted on thoracic spinal motor neurons (MNs) and dorsal root ganglia (DRG) and in motor and sensory nerve root axons from DM-affected boxers and Pembroke Welsh corgis (PWCs). No alterations in MNs or motor root axons were observed in either breed. However, advanced-stage PWCs exhibited significant losses of sensory root axons, and numerous DRG sensory neurons displayed evidence of degeneration. These results indicate that intercostal muscle atrophy in DM is not preceded by physical loss of the motor neurons innervating these muscles, nor of their axons. Axonal loss in thoracic sensory roots and sensory neuron death suggest that sensory involvement may play an important role in DM disease progression. Further analysis of the mechanisms responsible for these morphological findings would aid in the development of therapeutic intervention for DM and some forms of ALS.

  8. Src Family Kinase Inhibitors Antagonize the Toxicity of Multiple Serotypes of Botulinum Neurotoxin in Human Embryonic Stem Cell-Derived Motor Neurons

    PubMed Central

    Burnett, James C.; Nuss, Jonathan E.; Wanner, Laura M.; Peyser, Brian D.; Du, Hao T.; Gomba, Glenn Y.; Kota, Krishna P.; Panchal, Rekha G.; Gussio, Rick; Kane, Christopher D.; Tessarollo, Lino

    2015-01-01

    Botulinum neurotoxins (BoNTs), the causative agents of botulism, are potent inhibitors of neurotransmitter release from motor neurons. There are currently no drugs to treat BoNT intoxication after the onset of the disease symptoms. In this study, we explored how modulation of key host pathways affects the process of BoNT intoxication in human motor neurons, focusing on Src family kinase (SFK) signaling. Motor neurons derived from human embryonic stem (hES) cells were treated with a panel of SFK inhibitors and intoxicated with BoNT serotypes A, B, or E (which are responsible for >95 % of human botulism cases). Subsequently, it was found that bosutinib, dasatinib, KX2-391, PP1, PP2, Src inhibitor-1, and SU6656 significantly antagonized all three of the serotypes. Furthermore, the data indicated that the treatment of hES-derived motor neurons with multiple SFK inhibitors increased the antagonistic effect synergistically. Mechanistically, the small molecules appear to inhibit BoNTs by targeting host pathways necessary for intoxication and not by directly inhibiting the toxins’ proteolytic activity. Importantly, the identified inhibitors are all well-studied with some in clinical trials while others are FDA-approved drugs. Overall, this study emphasizes the importance of targeting host neuronal pathways, rather than the toxin’s enzymatic components, to antagonize multiple BoNT serotypes in motor neurons. PMID:25782580

  9. Ultramicroscopy Reveals Axonal Transport Impairments in Cortical Motor Neurons at Prion Disease

    PubMed Central

    Ermolayev, Vladimir; Friedrich, Mike; Nozadze, Revaz; Cathomen, Toni; Klein, Michael A.; Harms, Gregory S.; Flechsig, Eckhard

    2009-01-01

    Abstract The functional imaging of neuronal circuits of the central nervous system is crucial for phenotype screenings or investigations of defects in neurodegenerative disorders. Current techniques yield either low penetration depth, yield poor resolution, or are restricted by the age of the animals. Here, we present a novel ultramicroscopy protocol for fluorescence imaging and three-dimensional reconstruction in the central nervous system of adult mice. In combination with tracing as a functional assay for axonal transport, retrogradely labeled descending motor neurons were visualized with >4 mm penetration depth. The analysis of the motor cortex shortly before the onset of clinical prion disease revealed that >80% neurons have functional impairments in axonal transport. Our study provides evidence that prion disease is associated with severe axonal transport defects in the cortical motor neurons and suggests a novel mechanism for prion-mediated neurodegeneration. PMID:19383482

  10. Thalamocortical Projections onto Behaviorally Relevant Neurons Exhibit Plasticity during Adult Motor Learning.

    PubMed

    Biane, Jeremy S; Takashima, Yoshio; Scanziani, Massimo; Conner, James M; Tuszynski, Mark H

    2016-03-16

    Layer 5 neurons of the neocortex receive direct and relatively strong input from the thalamus. However, the intralaminar distribution of these inputs and their capacity for plasticity in adult animals are largely unknown. In slices of the primary motor cortex (M1), we simultaneously recorded from pairs of corticospinal neurons associated with control of distinct motor outputs: distal forelimb versus proximal forelimb. Activation of ChR2-expressing thalamocortical afferents in M1 before motor learning produced equivalent responses in monosynaptic excitation of neurons controlling the distal and proximal forelimb, suggesting balanced thalamic input at baseline. Following skilled grasp training, however, thalamocortical input shifted to bias activation of corticospinal neurons associated with control of the distal forelimb. This increase was associated with a cell-specific increase in mEPSC amplitude but not presynaptic release probability. These findings demonstrate distinct and highly segregated plasticity of thalamocortical projections during adult learning.

  11. Spinal muscular atrophy phenotype is ameliorated in human motor neurons by SMN increase via different novel RNA therapeutic approaches.

    PubMed

    Nizzardo, Monica; Simone, Chiara; Dametti, Sara; Salani, Sabrina; Ulzi, Gianna; Pagliarani, Serena; Rizzo, Federica; Frattini, Emanuele; Pagani, Franco; Bresolin, Nereo; Comi, Giacomo; Corti, Stefania

    2015-06-30

    Spinal muscular atrophy (SMA) is a primary genetic cause of infant mortality due to mutations in the Survival Motor Neuron (SMN) 1 gene. No cure is available. Antisense oligonucleotides (ASOs) aimed at increasing SMN levels from the paralogous SMN2 gene represent a possible therapeutic strategy. Here, we tested in SMA human induced pluripotent stem cells (iPSCs) and iPSC-differentiated motor neurons, three different RNA approaches based on morpholino antisense targeting of the ISSN-1, exon-specific U1 small nuclear RNA (ExSpeU1), and Transcription Activator-Like Effector-Transcription Factor (TALE-TF). All strategies act modulating SMN2 RNA: ASO affects exon 7 splicing, TALE-TF increase SMN2 RNA acting on the promoter, while ExSpeU1 improves pre-mRNA processing. These approaches induced up-regulation of full-length SMN mRNA and differentially affected the Delta-7 isoform: ASO reduced this isoform, while ExSpeU1 and TALE-TF increased it. All approaches upregulate the SMN protein and significantly improve the in vitro SMA motor neurons survival. Thus, these findings demonstrate that therapeutic tools that act on SMN2 RNA are able to rescue the SMA disease phenotype. Our data confirm the feasibility of SMA iPSCs as in vitro disease models and we propose novel RNA approaches as potential therapeutic strategies for treating SMA and other genetic neurological disorders.

  12. Counterfactual thinking affects the excitability of the motor cortex.

    PubMed

    Vicario, Carmelo M; Rafal, Robert D; Avenanti, Alessio

    2015-04-01

    Evidence suggests that monetary reward and affective experiences induce activity in the cortical motor system. Nevertheless, it is unclear whether counterfactual thinking related to wrong choices that lead to monetary loss and regret affects motor excitability. Using transcranial magnetic stimulation (TMS) of the motor cortex, we measured corticospinal excitability of 2 groups of healthy humans asked to actively guess the winning key among two possible alternatives (choice group); or passively assist to monetary outcomes randomly selected by the computer program (follow group). Results document a selective increment of the corticospinal excitability when a monetary loss outcome followed the key selection (i.e., in the choice group). On the other hand, no change in corticospinal excitability was found when participants passively assisted to a monetary loss randomly selected by the computer program (i.e., follow group). These findings suggest that counterfactual thinking and the negative emotional experiences arising from choices causing monetary loss--i.e., "I would have won instead of lost money if I'd made a different choice"--are mapped in the motor system.

  13. Polymerase chain reaction and Southern blot-based analysis of the C9orf72 hexanucleotide repeat in different motor neuron diseases.

    PubMed

    Hübers, Annemarie; Marroquin, Nicolai; Schmoll, Birgit; Vielhaber, Stefan; Just, Marlies; Mayer, Benjamin; Högel, Josef; Dorst, Johannes; Mertens, Thomas; Just, Walter; Aulitzky, Anna; Wais, Verena; Ludolph, Albert C; Kubisch, Christian; Weishaupt, Jochen H; Volk, Alexander E

    2014-05-01

    The GGGGCC-hexanucleotide repeat expansion in C9orf72 is the most common genetic cause of familial amyotrophic lateral sclerosis and frontotemporal dementia. This study determined the frequency of C9orf72 repeat expansions in different motor neuron diseases (amyotrophic lateral sclerosis (ALS), motor neuron diseases affecting primarily the first or the second motor neuron and hereditary spastic paraplegia). Whereas most studies on C9orf72 repeat expansions published so far rely on a polymerase chain reaction-based screening, we applied both polymerase chain reaction-based techniques and Southern blotting. Furthermore, we determined the sensitivity and specificity of Southern blotting of the C9orf72 hexanucleotide repeat in DNA derived from lymphoblastoid cell lines. C9orf72 repeat expansions were found in 27.1% out of 166 familial ALS patients, only once in 68 sporadic ALS patients, and not in 61 hereditary spastic paraplegia patients or 52 patients with motor neuron diseases affecting clinically primarily either the first or the second motor neuron. We found hints for a correlation between C9orf72 repeat length and the age of onset. Somatic instability of the C9orf72 repeat was observed in lymphoblastoid cell lines compared with DNA derived from whole blood from the same patient and therefore caution is warranted for repeat length determination in immortalized cell lines.

  14. Globular Glial Mixed Four Repeat Tau and TDP-43 Proteinopathy with Motor Neuron Disease and Frontotemporal Dementia.

    PubMed

    Takeuchi, Ryoko; Toyoshima, Yasuko; Tada, Mari; Tanaka, Hidetomo; Shimizu, Hiroshi; Shiga, Atsushi; Miura, Takeshi; Aoki, Kenju; Aikawa, Akane; Ishizawa, Shin; Ikeuchi, Takeshi; Nishizawa, Masatoyo; Kakita, Akiyoshi; Takahashi, Hitoshi

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) may be accompanied by frontotemporal dementia (FTD). We report a case of glial mixed tau and TDP-43 proteinopathies in a Japanese patient diagnosed clinically as having ALS-D. Autopsy revealed loss of lower motor neurons and degeneration of the pyramidal tracts in the spinal cord and brain stem. The brain showed frontotemporal lobar degeneration (FTLD), the most severe neuronal loss and gliosis being evident in the precentral gyrus. Although less severe, such changes were also observed in other brain regions, including the basal ganglia and substantia nigra. AT8 immunostaining revealed that predominant occurrence of astrocytic tau lesions termed globular astrocytic inclusions (GAIs) was a feature of the affected regions. These GAIs were Gallyas-Braak negative. Neuronal and oligodendrocytic tau lesions were comparatively scarce. pS409/410 immunostaining also revealed similar neuronal and glial TDP-43 lesions. Interestingly, occasional co-localization of tau and TDP-43 was evident in the GAIs. Immunoblot analyses revealed band patterns characteristic of a 4-repeat (4R) tauopathy, corticobasal degeneration and a TDP-43 proteinopathy, ALS/FTLD-TDP Type B. No mutations were found in the MAPT or TDP-43 genes. We consider that this patient harbored a distinct, sporadic globular glial mixed 4R tau and TDP-43 proteinopathy associated with motor neuron disease and FTD.

  15. Paired patch clamp recordings from motor-neuron and target skeletal muscle in zebrafish.

    PubMed

    Wen, Hua; Brehm, Paul

    2010-11-20

    Larval zebrafish represent the first vertebrate model system to allow simultaneous patch clamp recording from a spinal motor-neuron and target muscle. This is a direct consequence of the accessibility to both cell types and ability to visually distinguish the single segmental CaP motor-neuron on the basis of morphology and location. This video demonstrates the microscopic methods used to identify a CaP motor-neuron and target muscle cells as well as the methodologies for recording from each cell type. Identification of the CaP motor-neuron type is confirmed by either dye filling or by the biophysical features such as action potential waveform and cell input resistance. Motor-neuron recordings routinely last for one hour permitting long-term recordings from multiple different target muscle cells. Control over the motor-neuron firing pattern enables measurements of the frequency-dependence of synaptic transmission at the neuromuscular junction. Owing to a large quantal size and the low noise provided by whole cell voltage clamp, all of the unitary events can be resolved in muscle. This feature permits study of basic synaptic properties such as release properties, vesicle recycling, as well as synaptic depression and facilitation. The advantages offered by this in vivo preparation eclipse previous neuromuscular model systems studied wherein the motor-neurons are usually stimulated by extracellular electrodes and the muscles are too large for whole cell patch clamp. The zebrafish preparation is amenable to combining electrophysiological analysis with a wide range of approaches including transgenic lines, morpholino knockdown, pharmacological intervention and in vivo imaging. These approaches, coupled with the growing number of neuromuscular disease models provided by mutant lines of zebrafish, open the door for new understanding of human neuromuscular disorders.

  16. Differentiation of Human Neural Stem Cells into Motor Neurons Stimulates Mitochondrial Biogenesis and Decreases Glycolytic Flux

    PubMed Central

    Keeney, Paula M.

    2015-01-01

    Differentiation of human pluripotent stem cells (hPSCs) in vitro offers a way to study cell types that are not accessible in living patients. Previous research suggests that hPSCs generate ATP through anaerobic glycolysis, in contrast to mitochondrial oxidative phosphorylation (OXPHOS) in somatic cells; however, specialized cell types have not been assessed. To test if mitobiogenesis is increased during motor neuron differentiation, we differentiated human embryonic stem cell (hESC)- and induced pluripotent stem cell-derived human neural stem cells (hNSCs) into motor neurons. After 21 days of motor neuron differentiation, cells increased mRNA and protein levels of genes expressed by postmitotic spinal motor neurons. Electrophysiological analysis revealed voltage-gated currents characteristic of excitable cells and action potential formation. Quantitative PCR revealed an increase in peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), an upstream regulator of transcription factors involved in mitobiogenesis, and several of its downstream targets in hESC-derived cultures. This correlated with an increase in protein expression of respiratory subunits, but no increase in protein reflecting mitochondrial mass in either cell type. Respiration analysis revealed a decrease in glycolytic flux in both cell types on day 21 (D21), suggesting a switch from glycolysis to OXPHOS. Collectively, our findings suggest that mitochondrial biogenesis, but not mitochondrial mass, is increased during differentiation of hNSCs into motor neurons. These findings help us to understand human motor neuron mitobiogenesis, a process impaired in amyotrophic lateral sclerosis, a neurodegenerative disease characterized by death of motor neurons in the brain and spinal cord. PMID:25892363

  17. Gamma synchrony predicts neuron-neuron correlations and correlations with motor behavior in extrastriate visual area MT.

    PubMed

    Lee, Joonyeol; Lisberger, Stephen G

    2013-12-11

    Correlated variability of neuronal responses is an important factor in estimating sensory parameters from a population response. Large correlations among neurons reduce the effective size of a neural population and increase the variation of the estimates. They also allow the activity of one neuron to be informative about impending perceptual decisions or motor actions on single trials. In extrastriate visual area MT of the rhesus macaque, for example, some but not all neurons show nonzero "choice probabilities" for perceptual decisions or non-zero "MT-pursuit" correlations between the trial-by-trial variations in neural activity and smooth pursuit eye movements. To understand the functional implications of zero versus nonzero correlations between neural responses and impending perceptions or actions, we took advantage of prior observations that specific frequencies of local field potentials reflect the correlated activity of neurons. We found that the strength of the spike-field coherence of a neuron in the gamma-band frequency range is related to the size of its MT-pursuit correlations for eye direction, as well as to the size of the neuron-neuron correlations. Spike-field coherence predicts MT-pursuit correlations better for direction than for speed, perhaps because the topographic organization of direction preference in MT is more amenable to creating meaningful local field potentials. We suggest that the relationship between spiking and local-field potentials is stronger for neurons that have larger correlations with their neighbors; larger neuron-neuron correlations create stronger MT-pursuit correlations. Neurons that lack strong correlations with their neighbors also have weaker correlations with pursuit behavior, but still could drive pursuit strongly.

  18. eGFP expression under the Uchl1 promoter labels corticospinal motor neurons and a subpopulation of degeneration resistant spinal motor neurons in ALS mouse models

    NASA Astrophysics Data System (ADS)

    Yasvoina, Marina V.

    Current understanding of basic cellular and molecular mechanisms for motor neuron vulnerability during motor neuron disease initiation and progression is incomplete. The complex cytoarchitecture and cellular heterogeneity of the cortex and spinal cord greatly impedes our ability to visualize, isolate, and study specific neuron populations in both healthy and diseased states. We generated a novel reporter line, the Uchl1-eGFP mouse, in which cortical and spinal components of motor neuron circuitry are genetically labeled with eGFP under the Uchl1 promoter. A series of cellular and anatomical analyses combined with retrograde labeling, molecular marker expression, and electrophysiology were employed to determine identity of eGFP expressing cells in the motor cortex and the spinal cord of novel Uchl1-eGFP reporter mice. We conclude that eGFP is expressed in corticospinal motor neurons (CSMN) in the motor cortex and a subset of S-type alpha and gamma spinal motor neurons (SMN) in the spinal cord. hSOD1G93A and Alsin-/- mice, mouse models for amyotrophic lateral sclerosis (ALS), were bred to Uchl1-eGFP reporter mouse line to investigate the pathophysiology and underlying mechanisms of CSMN degeneration in vivo. Evidence suggests early and progressive degeneration of CSMN and SMN in the hSOD1G93A transgenic mice. We show an early increase of autophagosome formation in the apical dendrites of vulnerable CSMN in hSOD1G93A-UeGFP mice, which is localized to the apical dendrites. In addition, labeling S-type alpha and gamma SMN in the hSOD1G93A-UeGFP mice provide a unique opportunity to study basis of their resistance to degeneration. Mice lacking alsin show moderate clinical phenotype and mild CSMN axon degeneration in the spinal cord, which suggests vulnerability of CSMN. Therefore, we investigated the CSMN cellular and axon defects in aged Alsin-/- mice bred to Uchl1-eGFP reporter mouse line. We show that while CSMN are preserved and lack signs of degeneration, CSMN axons

  19. Functional clustering of neurons in motor cortex determined by cellular resolution imaging in awake behaving mice

    PubMed Central

    Dombeck, Daniel A.; Graziano, Michael S.; Tank, David W.

    2010-01-01

    Macroscopic (millimeter scale) functional clustering is a hallmark characteristic of motor cortex spatial organization in awake behaving mammals; however, almost no information is known about the functional micro-organization (~100 microns scale). Here, we optically recorded intracellular calcium transients of layer 2/3 neurons with cellular resolution over ~200 micron diameter fields in the forelimb motor cortex of mobile, head-restrained mice during two distinct movements (running and grooming). We showed that the temporal correlation between neurons was statistically larger the closer the neurons were to each other. We further explored this correlation by using two separate methods to spatially segment the neurons within each imaging field: K-means clustering and correlations between single neuron activity and mouse movements. The two methods segmented the neurons similarly and led to the conclusion that the origin of the inverse relationship between correlation and distance seen statistically was two-fold: clusters of highly temporally correlated neurons were often spatially distinct from one another and (even when the clusters were spatially intermingled) within the clusters, the more correlated the neurons were to each other, the shorter the distance between them. Our results represent a direct observation of functional clustering within the micro-circuitry of the awake mouse motor cortex. PMID:19889987

  20. Time and dose dependent effects of oxidative stress induced by cumene hydroperoxide in neuronal excitability of rat motor cortex neurons.

    PubMed

    Pardillo-Díaz, R; Carrascal, L; Muñoz, M F; Ayala, A; Nunez-Abades, P

    2016-03-01

    It has been claimed that oxidative stress and the production of reactive oxygen radicals can contribute to neuron degeneration and might be one factor in the development of different neurological diseases. In our study, we have attempted to clarify how oxidative damage induces dose dependent changes in functional membrane properties of neurons by means of whole cell patch clamp techniques in brain slices from young adult rats. Our research demonstrates physiological changes in membrane properties of pyramidal motor cortex neurons exposed to 3 concentrations of cumene hydroperoxide (CH; 1, 10 and 100μM) during 30min. Results show that oxidative stress induced by CH evokes important changes, in a concentration and time dependent manner, in the neuronal excitability of motor cortex neurons of the rat: (i) Low concentration of the drug (1μM) already blocks inward rectifications (sag) and decreases action potential amplitude and gain, a drug concentration which has no effects on other neuronal populations, (ii) 10μM of CH depresses the excitability of pyramidal motor cortex neurons by decreasing input resistance, amplitude of the action potential, and gain and maximum frequency of the repetitive firing discharge, and (iii) 100μM completely blocks the capability to produce repetitive discharge of action potentials in all cells. Both larger drug concentrations and/or longer times of exposure to CH narrow the current working range. This happens because of the increase in the rheobase, and the reduction of the cancelation current. The effects caused by oxidative stress, including those produced by the level of lipid peroxidation, are practically irreversible and, this, therefore, indicates that neuroprotective agents should be administered at the first symptoms of alterations to membrane properties. In fact, the pre-treatment with melatonin, acting as an antioxidant, prevented the lipid peroxidation and the physiological changes induced by CH. Larger cells (as estimated

  1. The utility of cerebral blood flow imaging in patients with the unique syndrome of progressive dementia with motor neuron disease

    SciTech Connect

    Ohnishi, T.; Hoshi, H.; Jinnouchi, S.; Nagamachi, S.; Watanabe, K.; Mituyama, Y. )

    1990-05-01

    Two patients presenting with progressive dementia coupled with motor neuron disease underwent brain SPECT using N-isopropyl-p iodine-123-iodoamphetamine (({sup 123}I)IMP). The characteristic clinical features of progressive dementia and motor neuron disease were noted. IMP SPECT also revealed reduced uptake in the bilateral frontal and temporal regions, with no reduction of uptake in the parietal, parietal-occipital regions. We conclude that IMP SPECT has potential for the evaluation of progressive dementia with motor neuron disease.

  2. Distinct Muscle Biopsy Findings in Genetically Defined Adult-Onset Motor Neuron Disorders.

    PubMed

    Jokela, Manu; Huovinen, Sanna; Raheem, Olayinka; Lindfors, Mikaela; Palmio, Johanna; Penttilä, Sini; Udd, Bjarne

    2016-01-01

    The objective of this study was to characterize and compare muscle histopathological findings in 3 different genetic motor neuron disorders. We retrospectively re-assessed muscle biopsy findings in 23 patients with autosomal dominant lower motor neuron disease caused by p.G66V mutation in CHCHD10 (SMAJ), 10 X-linked spinal and bulbar muscular atrophy (SBMA) and 11 autosomal dominant c9orf72-mutated amyotrophic lateral sclerosis (c9ALS) patients. Distinct large fiber type grouping consisting of non-atrophic type IIA muscle fibers were 100% specific for the late-onset spinal muscular atrophies (SMAJ and SBMA) and were never observed in c9ALS. Common, but less specific findings included small groups of highly atrophic rounded type IIA fibers in SMAJ/SBMA, whereas in c9ALS, small group atrophies consisting of small-caliber angular fibers involving both fiber types were more characteristic. We also show that in the 2 slowly progressive motor neuron disorders (SMAJ and SBMA) the initial neurogenic features are often confused with considerable secondary "myopathic" changes at later disease stages, such as rimmed vacuoles, myofibrillar aggregates and numerous fibers reactive for fetal myosin heavy chain (dMyHC) antibodies. Based on our findings, muscle biopsy may be valuable in the diagnostic work-up of suspected motor neuron disorders in order to avoid a false ALS diagnosis in patients without clear findings of upper motor neuron lesions.

  3. Distinct Muscle Biopsy Findings in Genetically Defined Adult-Onset Motor Neuron Disorders

    PubMed Central

    Jokela, Manu; Huovinen, Sanna; Raheem, Olayinka; Lindfors, Mikaela; Palmio, Johanna; Penttilä, Sini; Udd, Bjarne

    2016-01-01

    The objective of this study was to characterize and compare muscle histopathological findings in 3 different genetic motor neuron disorders. We retrospectively re-assessed muscle biopsy findings in 23 patients with autosomal dominant lower motor neuron disease caused by p.G66V mutation in CHCHD10 (SMAJ), 10 X-linked spinal and bulbar muscular atrophy (SBMA) and 11 autosomal dominant c9orf72-mutated amyotrophic lateral sclerosis (c9ALS) patients. Distinct large fiber type grouping consisting of non-atrophic type IIA muscle fibers were 100% specific for the late-onset spinal muscular atrophies (SMAJ and SBMA) and were never observed in c9ALS. Common, but less specific findings included small groups of highly atrophic rounded type IIA fibers in SMAJ/SBMA, whereas in c9ALS, small group atrophies consisting of small-caliber angular fibers involving both fiber types were more characteristic. We also show that in the 2 slowly progressive motor neuron disorders (SMAJ and SBMA) the initial neurogenic features are often confused with considerable secondary “myopathic” changes at later disease stages, such as rimmed vacuoles, myofibrillar aggregates and numerous fibers reactive for fetal myosin heavy chain (dMyHC) antibodies. Based on our findings, muscle biopsy may be valuable in the diagnostic work-up of suspected motor neuron disorders in order to avoid a false ALS diagnosis in patients without clear findings of upper motor neuron lesions. PMID:26999347

  4. Cell freezing protocol suitable for ATAC-Seq on motor neurons derived from human induced pluripotent stem cells

    PubMed Central

    Milani, Pamela; Escalante-Chong, Renan; Shelley, Brandon C.; Patel-Murray, Natasha L.; Xin, Xiaofeng; Adam, Miriam; Mandefro, Berhan; Sareen, Dhruv; Svendsen, Clive N.; Fraenkel, Ernest

    2016-01-01

    In recent years, the assay for transposase-accessible chromatin using sequencing (ATAC-Seq) has become a fundamental tool of epigenomic research. However, it is difficult to perform this technique on frozen samples because freezing cells before extracting nuclei can impair nuclear integrity and alter chromatin structure, especially in fragile cells such as neurons. Our aim was to develop a protocol for freezing neuronal cells that is compatible with ATAC-Seq; we focused on a disease-relevant cell type, namely motor neurons differentiated from induced pluripotent stem cells (iMNs) from a patient affected by spinal muscular atrophy. We found that while flash-frozen iMNs are not suitable for ATAC-Seq, the assay is successful with slow-cooled cryopreserved cells. Using this method, we were able to isolate high quality, intact nuclei, and we verified that epigenetic results from fresh and cryopreserved iMNs quantitatively agree. PMID:27146274

  5. Muscles innervated by a single motor neuron exhibit divergent synaptic properties on multiple time scales.

    PubMed

    Blitz, Dawn M; Pritchard, Amy E; Latimer, John K; Wakefield, Andrew T

    2017-01-19

    Adaptive changes in the output of neural circuits underlying rhythmic behaviors are relayed to muscles via motor neuron activity. Pre- and postsynaptic properties of neuromuscular junctions can impact the transformation from motor neuron activity to muscle response. Further, synaptic plasticity occurring on the time scale of inter-spike intervals can differ between multiple muscles innervated by the same motor neuron. In rhythmic behaviors, motor neuron bursts can elicit additional synaptic plasticity. However, it is unknown if plasticity regulated by the longer time scale of inter-burst intervals also differs between synapses from the same neuron, and whether any such distinctions occur across a physiological activity range. To address these issues, we measured electrical responses in muscles innervated by a chewing circuit neuron, the lateral gastric (LG) motor neuron, in a well-characterized small motor system, the stomatogastric nervous system (STNS) of the Jonah crab, Cancer borealis In vitro and in vivo, sensory, hormonal and modulatory inputs elicit LG bursting consisting of inter-spike intervals of 50-250 ms and inter-burst intervals of 2-24 s. Muscles expressed similar facilitation measured with paired stimuli except at the shortest inter-spike interval. However distinct decay time constants resulted in differences in temporal summation. In response to bursting activity, augmentation occurred to different extents and saturated at different inter-burst intervals in the three muscles. Further, augmentation interacted with facilitation, resulting in distinct intra-burst facilitation between muscles. Thus, responses of multiple target muscles diverge across a physiological activity range due to distinct synaptic properties sensitive to multiple time scales.

  6. Peripherin-mediated death of motor neurons rescued by overexpression of neurofilament NF-H proteins.

    PubMed

    Beaulieu, Jean-Martin; Julien, Jean-Pierre

    2003-04-01

    In previous studies, we showed that overexpression of peripherin, a neuronal intermediate filament (IF) protein, in mice deficient for neurofilament light (NF-L) subunits induced a progressive adult-onset degeneration of spinal motor neurons characterized by the presence of IF inclusion bodies reminiscent of axonal spheroids found in amyotrophic lateral sclerosis (ALS). In contrast, the overexpression of human neurofilament heavy (NF-H) proteins provoked the formation of massive perikaryal IF protein accumulations with no loss of motor neurons. To further investigate the toxic properties of IF protein inclusions, we generated NF-L null mice that co-express both peripherin and NF-H transgenes. The axonal count in L5 ventral roots from 6 and 8-month-old transgenic mice showed that NF-H overexpression rescued the peripherin-mediated degeneration of motor neurons. Our analysis suggests that the protective effect of extra NF-H proteins is related to the sequestration of peripherin into the perikaryon of motor neurons, thereby abolishing the development of axonal IF inclusions that might block transport. These findings illustrate the importance of IF protein stoichiometry in formation, localization and toxicity of neuronal inclusion bodies.

  7. Calcium/calmodulin-dependent protein kinase II expression in motor neurons: effect of axotomy.

    PubMed

    Lund, L M; McQuarrie, I G

    1997-11-20

    Although Ca2+/calmodulin-dependent (CaM) protein kinase II isoforms are present in the nervous system in high amounts, many aspects of in vivo expression, localization, and function remain unexplored. During development, CaM kinase IIalpha and IIbeta are differentially expressed. Here, we examined CaM kinase II isoforms in Sprague-Dawley rat sciatic motor neurons before and after axotomy. We cut the L4-5 spinal nerves unilaterally and exposed the proximal nerve stumps to a fluoroprobe, to retrogradely label the neurons of origin. Anti-CaM kinase IIbeta antibody showed immunoreactivity in motor neurons, which decreased to low levels by 4 days after axotomy. We found a similar response by in situ hybridization with riboprobes. The decrease in expression of mRNA and protein was confined to fluorescent motor neurons. For CaM kinase IIalpha, in situ hybridization showed that the mRNA was in sciatic motor neurons, with a density unaffected by axotomy. However, these neurons were also enlarged, suggesting an up-regulation of expression. Northern blots confirmed an mRNA increase. We were unable to find CaM kinase IIalpha immunoreactivity before or after axotomy in sciatic motor neuron cell bodies, suggesting that CaM kinase IIalpha is in the axons or dendrites, or otherwise unavailable to the antibody. Using rats with crush lesions, we radiolabeled axonal proteins being synthesized in the cell body and used two-dimensional polyacrylamide gel electrophoresis with Western blots to identify CaM kinase IIalpha as a component of slow axonal transport. This differential regulation and expression of kinase isoforms suggests separate and unique intracellular roles. Because we find CaM kinase IIbeta down-regulates during axonal regrowth, its role in these neurons may be related to synaptic transmission. CaM kinase IIalpha appears to support axonal regrowth.

  8. Reorganization of Cajal bodies and nucleolar targeting of coilin in motor neurons of type I spinal muscular atrophy.

    PubMed

    Tapia, Olga; Bengoechea, Rocío; Palanca, Ana; Arteaga, Rosa; Val-Bernal, J Fernando; Tizzano, Eduardo F; Berciano, María T; Lafarga, Miguel

    2012-05-01

    Type I spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by loss or mutations of the survival motor neuron 1 (SMN1) gene. The reduction in SMN protein levels in SMA leads to degeneration and death of motor neurons. In this study, we have analyzed the nuclear reorganization of Cajal bodies, PML bodies and nucleoli in type I SMA motor neurons with homozygous deletion of exons 7 and 8 of the SMN1 gene. Western blot analysis is is revealed a marked reduction of SMN levels compared to the control sample. Using a neuronal dissociation procedure to perform a careful immunocytochemical and quantitative analysis of nuclear bodies, we demonstrated a severe decrease in the mean number of Cajal bodies per neuron and in the proportion of motor neurons containing these structures in type I SMA. Moreover, most Cajal bodies fail to recruit SMN and spliceosomal snRNPs, but contain the proteasome activator PA28, a molecular marker associated with the cellular stress response. Neuronal stress in SMA motor neurons also increases PML body number. The existence of chromatolysis and eccentric nuclei in SMA motor neurons correlates with Cajal body disruption and nucleolar relocalization of coil in, a Cajal body marker. Our results indicate that the Cajal body is a pathophysiological target in type I SMA motor neurons. They also suggest the Cajal body-dependent dysfunction of snRNP biogenesis and, therefore, pre-mRNA splicing in these neurons seems to be an essential component for SMA pathogenesis.

  9. Non-linear leak currents affect mammalian neuron physiology

    PubMed Central

    Huang, Shiwei; Hong, Sungho; De Schutter, Erik

    2015-01-01

    In their seminal works on squid giant axons, Hodgkin, and Huxley approximated the membrane leak current as Ohmic, i.e., linear, since in their preparation, sub-threshold current rectification due to the influence of ionic concentration is negligible. Most studies on mammalian neurons have made the same, largely untested, assumption. Here we show that the membrane time constant and input resistance of mammalian neurons (when other major voltage-sensitive and ligand-gated ionic currents are discounted) varies non-linearly with membrane voltage, following the prediction of a Goldman-Hodgkin-Katz-based passive membrane model. The model predicts that under such conditions, the time constant/input resistance-voltage relationship will linearize if the concentration differences across the cell membrane are reduced. These properties were observed in patch-clamp recordings of cerebellar Purkinje neurons (in the presence of pharmacological blockers of other background ionic currents) and were more prominent in the sub-threshold region of the membrane potential. Model simulations showed that the non-linear leak affects voltage-clamp recordings and reduces temporal summation of excitatory synaptic input. Together, our results demonstrate the importance of trans-membrane ionic concentration in defining the functional properties of the passive membrane in mammalian neurons as well as other excitable cells. PMID:26594148

  10. A cell-autonomous defect in skeletal muscle satellite cells expressing low levels of survival of motor neuron protein.

    PubMed

    Hayhurst, Monica; Wagner, Amanda K; Cerletti, Massimiliano; Wagers, Amy J; Rubin, Lee L

    2012-08-15

    Mutations in the Survival of Motor Neuron (SMN) gene underlie the development of spinal muscular atrophy (SMA), which currently represents the leading genetic cause of mortality in infants and toddlers. SMA is characterized by degeneration of spinal cord motor neurons and muscle atrophy. Although SMA is often considered to be a motor neuron disease, accumulating evidence suggests that muscle cells themselves may be affected by low levels of SMN. Here, we examine satellite cells, tissue-resident stem cells that play an essential role in the growth and repair of skeletal muscle, isolated from a severe SMA mouse model (Smn(-/-); SMN2(+/+)). We found similar numbers of satellite cells in the muscles of SMA and wild-type (Smn(+/+); SMN2(+/+)) mice at postnatal day 2 (P2), and, when isolated from skeletal muscle using cell surface marker expression, these cells showed comparable survival and proliferative potential. However, SMA satellite cells differentiate abnormally, revealed by the premature expression of muscle differentiation markers, and, especially, by a reduced efficiency in forming myotubes. These phenotypes suggest a critical role of SMN protein in the intrinsic regulation of muscle differentiation and suggest that abnormal muscle development contributes to the manifestation of SMA symptoms.

  11. SMN deficiency does not induce oxidative stress in SMA iPSC-derived astrocytes or motor neurons.

    PubMed

    Patitucci, Teresa N; Ebert, Allison D

    2016-02-01

    Spinal muscular atrophy (SMA) is a genetic disorder characterized by loss of motor neurons in the spinal cord leading to muscle atrophy and death. Although motor neurons (MNs) are the most obviously affected cells in SMA, recent evidence suggest dysfunction in multiple cell types. Astrocytes are a crucial component of the motor circuit and are intimately involved with MN health and maintenance. We have previously shown that SMA astrocytes are altered both morphologically and functionally early in disease progression, though it is unclear what causes astrocytes to become reactive. Oxidative stress is a common feature among neurodegenerative diseases. Oxidative stress can both induce apoptosis in neurons and can cause astrocytes to become reactive, which are features observed in the SMA induced pluripotent stem cell (iPSC) cultures. Therefore, we asked if oxidative stress contributes to SMA astrocyte pathology. We examined mitochondrial bioenergetics, transcript and protein levels of oxidative and anti-oxidant factors, and reactive oxygen species (ROS) production and found little evidence of oxidative stress. We did observe a significant increase in endogenous catalase expression in SMA iPSCs. While catalase knockdown in SMA iPSCs increased ROS production above basal levels, levels of ROS remained lower than in controls, further arguing against robust oxidative stress in this system. Viral delivery of survival motor neuron (SMN) reversed astrocyte activation and restored catalase levels to normal, without changing mitochondrial respiration or expression of oxidative stress markers. Taken together, these data indicate that SMN deficiency induces astrocyte reactivity, but does not do so through an oxidative stress-mediated process.

  12. Impaired Autophagy and Defective Mitochondrial Function: Converging Paths on the Road to Motor Neuron Degeneration

    PubMed Central

    Edens, Brittany M.; Miller, Nimrod; Ma, Yong-Chao

    2016-01-01

    Selective motor neuron degeneration is a hallmark of amyotrophic lateral sclerosis (ALS). Around 10% of all cases present as familial ALS (FALS), while sporadic ALS (SALS) accounts for the remaining 90%. Diverse genetic mutations leading to FALS have been identified, but the underlying causes of SALS remain largely unknown. Despite the heterogeneous and incompletely understood etiology, different types of ALS exhibit overlapping pathology and common phenotypes, including protein aggregation and mitochondrial deficiencies. Here, we review the current understanding of mechanisms leading to motor neuron degeneration in ALS as they pertain to disrupted cellular clearance pathways, ATP biogenesis, calcium buffering and mitochondrial dynamics. Through focusing on impaired autophagic and mitochondrial functions, we highlight how the convergence of diverse cellular processes and pathways contributes to common pathology in motor neuron degeneration. PMID:26973461

  13. Expression of Carbonic Anhydrase I in Motor Neurons and Alterations in ALS

    PubMed Central

    Liu, Xiaochen; Lu, Deyi; Bowser, Robert; Liu, Jian

    2016-01-01

    Carbonic anhydrase I (CA1) is the cytosolic isoform of mammalian α-CA family members which are responsible for maintaining pH homeostasis in the physiology and pathology of organisms. A subset of CA isoforms are known to be expressed and function in the central nervous system (CNS). CA1 has not been extensively characterized in the CNS. In this study, we demonstrate that CA1 is expressed in the motor neurons in human spinal cord. Unexpectedly, a subpopulation of CA1 appears to be associated with endoplasmic reticulum (ER) membranes. In addition, the membrane-associated CA1s are preferentially upregulated in amyotrophic lateral sclerosis (ALS) and exhibit altered distribution in motor neurons. Furthermore, long-term expression of CA1 in mammalian cells activates apoptosis. Our results suggest a previously unknown role for CA1 function in the CNS and its potential involvement in motor neuron degeneration in ALS. PMID:27809276

  14. A plural role for lipids in motor neuron diseases: energy, signaling and structure

    PubMed Central

    Schmitt, Florent; Hussain, Ghulam; Dupuis, Luc; Loeffler, Jean-Philippe; Henriques, Alexandre

    2013-01-01

    Motor neuron diseases (MNDs) are characterized by selective death of motor neurons and include mainly adult-onset amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Neurodegeneration is not the single pathogenic event occurring during disease progression. There are multiple lines of evidence for the existence of defects in lipid metabolism at peripheral level. For instance, hypermetabolism is well characterized in ALS, and dyslipidemia correlates with better prognosis in patients. Lipid metabolism plays also a role in other MNDs. In SMA, misuse of lipids as energetic nutrients is described in patients and in related animal models. The composition of structural lipids in the central nervous system is modified, with repercussion on membrane fluidity and on cell signaling mediated by bioactive lipids. Here, we review the main epidemiologic and mechanistic findings that link alterations of lipid metabolism and motor neuron degeneration, and we discuss the rationale of targeting these modifications for therapeutic management of MNDs. PMID:24600344

  15. How Saccade Intrusions Affect Subsequent Motor and Oculomotor Actions

    PubMed Central

    Terao, Yasuo; Fukuda, Hideki; Tokushige, Shin-ichi; Inomata-Terada, Satomi; Ugawa, Yoshikazu

    2017-01-01

    In daily activities, there is a close spatial and temporal coupling between eye and hand movements that enables human beings to perform actions smoothly and accurately. If this coupling is disrupted by inadvertent saccade intrusions, subsequent motor actions suffer from delays, and lack of coordination. To examine how saccade intrusions affect subsequent voluntary actions, we used two tasks that require subjects to make motor/oculomotor actions in response to a visual cue. One was the memory guided saccade (MGS) task, and the other the hand reaction time (RT) task. The MGS task required subjects to initiate a voluntary saccade to a memorized target location, which is indicated shortly before by a briefly presented cue. The RT task required subjects to release a button on detection of a visual target, while foveating on a central fixation point. In normal subjects of various ages, inadvertent saccade intrusions delayed subsequent voluntary motor, and oculomotor actions. We also studied patients with Parkinson's disease (PD), who are impaired not only in initiating voluntary saccades but also in suppressing unwanted reflexive saccades. Saccade intrusions also delayed hand RT in PD patients. However, MGS was affected by the saccade intrusion differently. Saccade intrusion did not delay MGS latency in PD patients who could perform MGS with a relatively normal latency. In contrast, in PD patients who were unable to initiate MGS within the normal time range, we observed slightly decreased MGS latency after saccade intrusions. What explains this paradoxical phenomenon? It is known that motor actions slow down when switching between controlled and automatic behavior. We discuss how the effect of saccade intrusions on subsequent voluntary motor/oculomotor actions may reflect a similar switching cost between automatic and controlled behavior and a cost for switching between different motor effectors. In contrast, PD patients were unable to initiate internally guided MGS in

  16. How Saccade Intrusions Affect Subsequent Motor and Oculomotor Actions.

    PubMed

    Terao, Yasuo; Fukuda, Hideki; Tokushige, Shin-Ichi; Inomata-Terada, Satomi; Ugawa, Yoshikazu

    2016-01-01

    In daily activities, there is a close spatial and temporal coupling between eye and hand movements that enables human beings to perform actions smoothly and accurately. If this coupling is disrupted by inadvertent saccade intrusions, subsequent motor actions suffer from delays, and lack of coordination. To examine how saccade intrusions affect subsequent voluntary actions, we used two tasks that require subjects to make motor/oculomotor actions in response to a visual cue. One was the memory guided saccade (MGS) task, and the other the hand reaction time (RT) task. The MGS task required subjects to initiate a voluntary saccade to a memorized target location, which is indicated shortly before by a briefly presented cue. The RT task required subjects to release a button on detection of a visual target, while foveating on a central fixation point. In normal subjects of various ages, inadvertent saccade intrusions delayed subsequent voluntary motor, and oculomotor actions. We also studied patients with Parkinson's disease (PD), who are impaired not only in initiating voluntary saccades but also in suppressing unwanted reflexive saccades. Saccade intrusions also delayed hand RT in PD patients. However, MGS was affected by the saccade intrusion differently. Saccade intrusion did not delay MGS latency in PD patients who could perform MGS with a relatively normal latency. In contrast, in PD patients who were unable to initiate MGS within the normal time range, we observed slightly decreased MGS latency after saccade intrusions. What explains this paradoxical phenomenon? It is known that motor actions slow down when switching between controlled and automatic behavior. We discuss how the effect of saccade intrusions on subsequent voluntary motor/oculomotor actions may reflect a similar switching cost between automatic and controlled behavior and a cost for switching between different motor effectors. In contrast, PD patients were unable to initiate internally guided MGS in

  17. Characterization of Thoracic Motor and Sensory Neurons and Spinal Nerve Roots in Canine Degenerative Myelopathy, a Potential Disease Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    Morgan, Brandie R.; Coates, Joan R.; Johnson, Gayle C.; Shelton, G. Diane; Katz, Martin L.

    2014-01-01

    Canine Degenerative Myelopathy (DM) is a progressive adult-onset multisystem degenerative disease with many features in common with amyotrophic lateral sclerosis (ALS). As with some forms of ALS, DM is associated with mutations in superoxide dismutase 1 (SOD1). Clinical signs include general proprioceptive ataxia and spastic upper motor neuron paresis in pelvic limbs, which progress to flaccid tetraplegia and dysphagia. The purpose of this study was to characterize DM as a potential disease model for ALS. We previously reported that intercostal muscle atrophy develops in dogs with advanced stage DM. To determine if other components of the thoracic motor unit (MU) also demonstrated morphological changes consistent with dysfunction, histopathologic and morphometric analyses were conducted on thoracic spinal motor neurons (MN) and dorsal root ganglia (DRG), and in motor and sensory nerve root axons from DM-affected Boxers and Pembroke Welsh Corgis (PWCs). No alterations in MNs, or motor root axons were observed in either breed. However, advanced stage PWCs exhibited significant losses of sensory root axons, and numerous DRG sensory neurons displayed evidence of degeneration. These results indicate that intercostal muscle atrophy in DM is not preceded by physical loss of the motor neurons innervating these muscles, or of their axons. Axonal loss in thoracic sensory roots and sensory nerve death suggest sensory involvement may play an important role in DM disease progression. Further analysis of the mechanisms responsible for these morphological findings would aid in the development of therapeutic intervention for DM and some forms of ALS. PMID:24375814

  18. Colonic Migrating Motor Complexes, High Amplitude Propagating Contractions, Neural Reflexes and the Importance of Neuronal and Mucosal Serotonin

    PubMed Central

    Smith, Terence K; Park, Kyu Joo; Hennig, Grant W

    2014-01-01

    The colonic migrating motor complex (CMMC) is a critical neurally mediated rhythmic propulsive contraction observed in the large intestine of many mammals. It seems to be equivalent to the high amplitude propagating contractions (HAPCs) in humans. This review focuses on the probable neural mechanisms involved in producing the CMMC or HAPC, their likely dependence on mucosal and neuronal serotonin and pacemaker insterstitial cells of Cajal networks and how intrinsic neural reflexes affect them. Discussed is the possibility that myenteric 5-hydroxytryptamine (5-HT) neurons are not only involved in tonic inhibition of the colon, but are also involved in generating the CMMC and modulation of the entire enteric nervous system, including coupling motility to secretion and blood flow. Mucosal 5-HT appears to be important for the initiation and effective propagation of CMMCs, although this mechanism is a longstanding controversy since the 1950s, which we will address. We argue that the slow apparent propagation of the CMMC/HAPC down the colon is unlikely to result from a slowly conducting wave front of neural activity, but more likely because of an interaction between ascending excitatory and descending (serotonergic) inhibitory neural pathways interacting both within the myenteric plexus and at the level of the muscle. That is, CMMC/HAPC propagation appears to be similar to esophageal peristalsis. The suppression of inhibitory (neuronal nitric oxide synthase) motor neurons and mucosal 5-HT release by an upregulation of prostaglandins has important implications in a number of gastrointestinal disorders, especially slow transit constipation. PMID:25273115

  19. Acetyl L-carnitine protects motor neurons and Rohon-Beard sensory neurons against ketamine-induced neurotoxicity in zebrafish embryos.

    PubMed

    Cuevas, Elvis; Trickler, William J; Guo, Xiaoqing; Ali, Syed F; Paule, Merle G; Kanungo, Jyotshna

    2013-01-01

    Ketamine, a non-competitive antagonist of N-methyl-D-aspartate (NMDA) type glutamate receptors is commonly used as a pediatric anesthetic. Multiple studies have shown ketamine to be neurotoxic, particularly when administered during the brain growth spurt. Previously, we have shown that ketamine is detrimental to motor neuron development in the zebrafish embryos. Here, using both wild type (WT) and transgenic (hb9:GFP) zebrafish embryos, we demonstrate that ketamine is neurotoxic to both motor and sensory neurons. Drug absorption studies showed that in the WT embryos, ketamine accumulation was approximately 0.4% of the original dose added to the exposure medium. The transgenic embryos express green fluorescent protein (GFP) localized in the motor neurons making them ideal for evaluating motor neuron development and toxicities in vivo. The hb9:GFP zebrafish embryos (28 h post fertilization) treated with 2 mM ketamine for 20 h demonstrated significant reductions in spinal motor neuron numbers, while co-treatment with acetyl L-carnitine proved to be neuroprotective. In whole mount immunohistochemical studies using WT embryos, a similar effect was observed for the primary sensory neurons. In the ketamine-treated WT embryos, the number of primary sensory Rohon-Beard (RB) neurons was significantly reduced compared to that in controls. However, acetyl L-carnitine co-treatment prevented ketamine-induced adverse effects on the RB neurons. These results suggest that acetyl L-carnitine protects both motor and sensory neurons from ketamine-induced neurotoxicity.

  20. The Scottish Motor Neuron Disease Register: a prospective study of adult onset motor neuron disease in Scotland. Methodology, demography and clinical features of incident cases in 1989.

    PubMed Central

    1992-01-01

    The Scottish Motor Neuron Disease Register (SMNDR) is a prospective, collaborative, population based study of motor neuron disease (MND) in Scotland. The register started in January 1989 with the aim of studying the clinical and epidemiological features of MND by prospectively identifying incident patients. It is based on a system of registration by recruitment from multiple sources, followed by the collection of complete clinical data and follow up, mainly through general practitioners. In this report the register's methodology and the demography and incidence data for the first year of study are presented. One hundred and fourteen newly diagnosed patients were identified in 1989 giving a crude incidence for Scotland of 2.24/100,000/year. Standardised incidence ratios showed a non-significant trend towards lower rates in north eastern regions and island areas. PMID:1640227

  1. Optical control of muscle function by transplantation of stem cell-derived motor neurons in mice.

    PubMed

    Bryson, J Barney; Machado, Carolina Barcellos; Crossley, Martin; Stevenson, Danielle; Bros-Facer, Virginie; Burrone, Juan; Greensmith, Linda; Lieberam, Ivo

    2014-04-04

    Damage to the central nervous system caused by traumatic injury or neurological disorders can lead to permanent loss of voluntary motor function and muscle paralysis. Here, we describe an approach that circumvents central motor circuit pathology to restore specific skeletal muscle function. We generated murine embryonic stem cell-derived motor neurons that express the light-sensitive ion channel channelrhodopsin-2, which we then engrafted into partially denervated branches of the sciatic nerve of adult mice. These engrafted motor neurons not only reinnervated lower hind-limb muscles but also enabled their function to be restored in a controllable manner using optogenetic stimulation. This synthesis of regenerative medicine and optogenetics may be a successful strategy to restore muscle function after traumatic injury or disease.

  2. Identification and characterization of a cell surface marker for embryonic rat spinal accessory motor neurons.

    PubMed

    Schubert, W; Kaprielian, Z

    2001-10-22

    The developing mammalian spinal cord contains distinct populations of motor neurons that can be distinguished by their cell body positions, by the expression of specific combinations of regulatory genes, and by the paths that their axons take to exit the central nervous system (CNS). Subclasses of spinal motor neurons are also thought to express specific cell surface proteins that function as receptors which control the guidance of their axons. We identified monoclonal antibody (mAb) SAC1 in a screen aimed at generating markers for specific subsets of neurons/axons in the developing rat spinal cord. During early embryogenesis, mAb SAC1 selectively labels a small subset of Isl1-positive motor neurons located exclusively within cervical segments of the spinal cord. Strikingly, these neurons extend mAb SAC1-positive axons along a dorsally directed trajectory toward the lateral exit points. Consistent with the finding that mAb SAC1 also labels spinal accessory nerves, these observations identify mAb SAC1 as a specific marker of spinal accessory motor neurons/axons. During later stages of embryogenesis, mAb SAC1 is transiently expressed on both dorsally and ventrally projecting spinal motor neurons/axons. Interestingly, mAb SAC1 also labels the notochord and floor plate during most stages of spinal cord development. The mAb SAC1 antigen is a 100-kD glycoprotein that is likely to be the rat homolog of SC1/BEN/DM-GRASP, a homophilic adhesion molecule that mediates axon outgrowth and fasciculation.

  3. Study of motor asymmetry in ALS indicates an effect of limb dominance on onset and spread of weakness, and an important role for upper motor neurons.

    PubMed

    Devine, Matthew S; Kiernan, Matthew C; Heggie, Susan; McCombe, Pamela A; Henderson, Robert D

    2014-12-01

    In amyotrophic lateral sclerosis (ALS), onset and spread of upper motor neuron (UMN) and lower motor neuron (LMN) dysfunction is typically asymmetric. Our aim was to investigate the relationship between limb dominance and the onset and spread of clinical UMN and LMN dysfunction in ALS. We studied 138 ALS subjects with unilateral and concordant limb dominance, from two tertiary centres. A questionnaire was used to determine the pattern of disease onset and spread. The clinical severity of UMN and LMN signs in each limb was quantified using a validated scoring system. Results showed that onset of weakness was more likely to occur in the dominant upper limb (p = 0.02). In subjects with initial weakness in a non-dominant limb, spread of weakness was more likely to be to the other limb on that side (p = 0.008). The relative distribution of upper limb UMN signs was affected by whether weakness first occurred on the dominant or non-dominant side (p = 0.03). These findings support limb dominance as a significant factor underlying onset and spread of ALS, with UMN processes playing an important role. The effect of limb dominance on the presentation of ALS may reflect underlying neuronal vulnerabilities, which become exposed by the disease.

  4. Rapid Integration of Artificial Sensory Feedback during Operant Conditioning of Motor Cortex Neurons.

    PubMed

    Prsa, Mario; Galiñanes, Gregorio L; Huber, Daniel

    2017-02-22

    Neuronal motor commands, whether generating real or neuroprosthetic movements, are shaped by ongoing sensory feedback from the displacement being produced. Here we asked if cortical stimulation could provide artificial feedback during operant conditioning of cortical neurons. Simultaneous two-photon imaging and real-time optogenetic stimulation were used to train mice to activate a single neuron in motor cortex (M1), while continuous feedback of its activity level was provided by proportionally stimulating somatosensory cortex. This artificial signal was necessary to rapidly learn to increase the conditioned activity, detect correct performance, and maintain the learned behavior. Population imaging in M1 revealed that learning-related activity changes are observed in the conditioned cell only, which highlights the functional potential of individual neurons in the neocortex. Our findings demonstrate the capacity of animals to use an artificially induced cortical channel in a behaviorally relevant way and reveal the remarkable speed and specificity at which this can occur.

  5. The critical role of membralin in postnatal motor neuron survival and disease

    PubMed Central

    Yang, Bo; Qu, Mingliang; Wang, Rengang; Chatterton, Jon E; Liu, Xiao-Bo; Zhu, Bing; Narisawa, Sonoko; Millan, Jose Luis; Nakanishi, Nobuki; Swoboda, Kathryn; Lipton, Stuart A; Zhang, Dongxian

    2015-01-01

    Hitherto, membralin has been a protein of unknown function. Here, we show that membralin mutant mice manifest a severe and early-onset motor neuron disease in an autosomal recessive manner, dying by postnatal day 5–6. Selective death of lower motor neurons, including those innervating the limbs, intercostal muscles, and diaphragm, is predominantly responsible for this fatal phenotype. Neural expression of a membralin transgene completely rescues membralin mutant mice. Mechanistically, we show that membralin interacts with Erlin2, an endoplasmic reticulum (ER) membrane protein that is located in lipid rafts and known to be important in ER-associated protein degradation (ERAD). Accordingly, the degradation rate of ERAD substrates is attenuated in cells lacking membralin. Membralin mutations or deficiency in mouse models induces ER stress, rendering neurons more vulnerable to cell death. Our study reveals a critical role of membralin in motor neuron survival and suggests a novel mechanism for early-onset motor neuron disease. DOI: http://dx.doi.org/10.7554/eLife.06500.001 PMID:25977983

  6. Calpain-dependent disruption of nucleo-cytoplasmic transport in ALS motor neurons

    PubMed Central

    Yamashita, Takenari; Aizawa, Hitoshi; Teramoto, Sayaka; Akamatsu, Megumi; Kwak, Shin

    2017-01-01

    Nuclear dysfunction in motor neurons has been hypothesized to be a principal cause of amyotrophic lateral sclerosis (ALS) pathogenesis. Here, we investigated the mechanism by which the nuclear pore complex (NPC) is disrupted in dying motor neurons in a mechanistic ALS mouse model (adenosine deaminase acting on RNA 2 (ADAR2) conditional knockout (AR2) mice) and in ALS patients. We showed that nucleoporins (Nups) that constituted the NPC were cleaved by activated calpain via a Ca2+-permeable AMPA receptor-mediated mechanism in dying motor neurons lacking ADAR2 expression in AR2 mice. In these neurons, nucleo-cytoplasmic transport was disrupted, and the level of the transcript elongation enzyme RNA polymerase II phosphorylated at Ser2 was significantly decreased. Analogous changes were observed in motor neurons lacking ADAR2 immunoreactivity in sporadic ALS patients. Therefore, calpain-dependent NPC disruption may participate in ALS pathogenesis, and inhibiting Ca2+-mediated cell death signals may be a therapeutic strategy for ALS. PMID:28045133

  7. Correlation between discharge timings of pairs of motor units reveals the presence but not the proportion of common synaptic input to motor neurons.

    PubMed

    Rodriguez-Falces, Javier; Negro, Francesco; Farina, Dario

    2017-04-01

    We investigated whether correlation measures derived from pairs of motor unit (MU) spike trains are reliable indicators of the degree of common synaptic input to motor neurons. Several 50-s isometric contractions of the biceps brachii muscle were performed at different target forces ranging from 10 to 30% of the maximal voluntary contraction relying on force feedback. Forty-eight pairs of MUs were examined at various force levels. Motor unit synchrony was assessed by cross-correlation analysis using three indexes: the output correlation as the peak of the cross-histogram (ρ) and the number of synchronous spikes per second (CIS) and per trigger (E). Individual analysis of MU pairs revealed that ρ, CIS, and E were most often positively associated with discharge rate (87, 85, and 76% of the MU pairs, respectively) and negatively with interspike interval variability (69, 65, and 62% of the MU pairs, respectively). Moreover, the behavior of synchronization indexes with discharge rate (and interspike interval variability) varied greatly among the MU pairs. These results were consistent with theoretical predictions, which showed that the output correlation between pairs of spike trains depends on the statistics of the input current and motor neuron intrinsic properties that differ for different motor neuron pairs. In conclusion, the synchronization between MU firing trains is necessarily caused by the (functional) common input to motor neurons, but it is not possible to infer the degree of shared common input to a pair of motor neurons on the basis of correlation measures of their output spike trains.NEW & NOTEWORTHY The strength of correlation between output spike trains is only poorly associated with the degree of common input to the population of motor neurons. The synchronization between motor unit firing trains is necessarily caused by the (functional) common input to motor neurons, but it is not possible to infer the degree of shared common input to a pair of

  8. Recapitulation of spinal motor neuron-specific disease phenotypes in a human cell model of spinal muscular atrophy.

    PubMed

    Wang, Zhi-Bo; Zhang, Xiaoqing; Li, Xue-Jun

    2013-03-01

    Establishing human cell models of spinal muscular atrophy (SMA) to mimic motor neuron-specific phenotypes holds the key to understanding the pathogenesis of this devastating disease. Here, we developed a closely representative cell model of SMA by knocking down the disease-determining gene, survival motor neuron (SMN), in human embryonic stem cells (hESCs). Our study with this cell model demonstrated that knocking down of SMN does not interfere with neural induction or the initial specification of spinal motor neurons. Notably, the axonal outgrowth of spinal motor neurons was significantly impaired and these disease-mimicking neurons subsequently degenerated. Furthermore, these disease phenotypes were caused by SMN-full length (SMN-FL) but not SMN-Δ7 (lacking exon 7) knockdown, and were specific to spinal motor neurons. Restoring the expression of SMN-FL completely ameliorated all of the disease phenotypes, including specific axonal defects and motor neuron loss. Finally, knockdown of SMN-FL led to excessive mitochondrial oxidative stress in human motor neuron progenitors. The involvement of oxidative stress in the degeneration of spinal motor neurons in the SMA cell model was further confirmed by the administration of N-acetylcysteine, a potent antioxidant, which prevented disease-related apoptosis and subsequent motor neuron death. Thus, we report here the successful establishment of an hESC-based SMA model, which exhibits disease gene isoform specificity, cell type specificity, and phenotype reversibility. Our model provides a unique paradigm for studying how motor neurons specifically degenerate and highlights the potential importance of antioxidants for the treatment of SMA.

  9. HERC 1 Ubiquitin Ligase Mutation Affects Neocortical, CA3 Hippocampal and Spinal Cord Projection Neurons: An Ultrastructural Study

    PubMed Central

    Ruiz, Rocío; Pérez-Villegas, Eva María; Bachiller, Sara; Rosa, José Luis; Armengol, José Angel

    2016-01-01

    The spontaneous mutation tambaleante is caused by the Gly483Glu substitution in the highly conserved N terminal RCC1-like domain of the HERC1 protein, which leads to the increase of mutated protein levels responsible for cerebellar Purkinje cell death by autophagy. Until now, Purkinje cells have been the only central nervous neurons reported as being targeted by the mutation, and their degeneration elicits an ataxic syndrome in adult mutant mice. However, the ultrastructural analysis performed here demonstrates that signs of autophagy, such as autophagosomes, lysosomes, and altered mitochondria, are present in neocortical pyramidal, CA3 hippocampal pyramidal, and spinal cord motor neurons. The main difference is that the reduction in the number of neurons affected in the tambaleante mutation in the neocortex, the hippocampus, and the spinal cord is not so evident as the dramatic loss of cerebellar Purkinje cells. Interestingly, signs of autophagy are absent in both interneurons and neuroglia cells. Affected neurons have in common that they are projection neurons which receive strong and varied synaptic inputs, and possess the highest degree of neuronal activity. Therefore, because the integrity of the ubiquitin-proteasome system is essential for protein degradation and hence, for normal protein turnover, it could be hypothesized that the deleterious effects of the misrouting of these pathways would depend directly on the neuronal activity. PMID:27147983

  10. HERC 1 Ubiquitin Ligase Mutation Affects Neocortical, CA3 Hippocampal and Spinal Cord Projection Neurons: An Ultrastructural Study.

    PubMed

    Ruiz, Rocío; Pérez-Villegas, Eva María; Bachiller, Sara; Rosa, José Luis; Armengol, José Angel

    2016-01-01

    The spontaneous mutation tambaleante is caused by the Gly483Glu substitution in the highly conserved N terminal RCC1-like domain of the HERC1 protein, which leads to the increase of mutated protein levels responsible for cerebellar Purkinje cell death by autophagy. Until now, Purkinje cells have been the only central nervous neurons reported as being targeted by the mutation, and their degeneration elicits an ataxic syndrome in adult mutant mice. However, the ultrastructural analysis performed here demonstrates that signs of autophagy, such as autophagosomes, lysosomes, and altered mitochondria, are present in neocortical pyramidal, CA3 hippocampal pyramidal, and spinal cord motor neurons. The main difference is that the reduction in the number of neurons affected in the tambaleante mutation in the neocortex, the hippocampus, and the spinal cord is not so evident as the dramatic loss of cerebellar Purkinje cells. Interestingly, signs of autophagy are absent in both interneurons and neuroglia cells. Affected neurons have in common that they are projection neurons which receive strong and varied synaptic inputs, and possess the highest degree of neuronal activity. Therefore, because the integrity of the ubiquitin-proteasome system is essential for protein degradation and hence, for normal protein turnover, it could be hypothesized that the deleterious effects of the misrouting of these pathways would depend directly on the neuronal activity.

  11. Global Motor Unit Number Index sum score for assessing the loss of lower motor neurons in amyotrophic lateral sclerosis.

    PubMed

    Grimaldi, Stephan; Duprat, Lauréline; Grapperon, Aude-Marie; Verschueren, Annie; Delmont, Emilien; Attarian, Shahram

    2017-02-06

    Introduction Our objective was to propose a motor unit number index (MUNIX) global sum score in amyotrophic lateral sclerosis (ALS) to estimate the loss of functional motor units. Methods MUNIX was assessed for 18 ALS patients and 17 healthy controls in seven muscles: the abductor pollicis brevis (APB), abductor digiti minimi (ADM), tibialis anterior (TA), deltoid, trapezius, submental complex (SMC) and orbicularis oris. Results MUNIX was significantly lower in ALS patients than in healthy controls for the APB, ADM, TA and the trapezius muscles. The MUNIX sum score of 4 muscles (ADM + APB + Trapezius + TA) was lower in ALS patients (P = 0.01) and was correlated with clinical scores. Discussion The global MUNIX sum score proposed in this study estimates the loss of lower motor neurons in several body regions including the trapezius, and is correlated with clinical impairment in ALS patients. This article is protected by copyright. All rights reserved.

  12. P2X7 receptor-induced death of motor neurons by a peroxynitrite/FAS-dependent pathway

    PubMed Central

    Gandelman, Mandi; Levy, Mark; Cassina, Patricia; Barbeito, Luis; Beckman, Joseph S

    2013-01-01

    The P2X7 receptor/channel responds to extracellular ATP and is associated with neuronal death and neuroinflammation in spinal cord injury and amyotrophic lateral sclerosis (ALS). Whether activation of P2X7 directly causes motor neuron death is unknown. We found that cultured motor neurons isolated from embryonic rat spinal cord express P2X7 and underwent caspase-dependent apoptosis when exposed to exceptionally low concentrations of the P2X7 agonist 3′-O-(4-benzoyl)-ATP (BzATP). The P2X7 inhibitors BBG, oATP and KN-62 prevented BzATP-induced motor neuron death. The endogenous P2X7 agonist ATP induced motor neuron death at low concentrations (1-100 μM). High concentrations of ATP (1 mM) paradoxically became protective due to degradation in the culture media to produce adenosine and activate adenosine receptors. P2X7-induced motor neuron death was dependent on neuronal nitric oxide synthase-mediated production of peroxynitrite, p38 activation and autocrine FAS signaling. Taken together, our results indicate that motor neurons are highly sensitive to P2X7 activation, which triggers apoptosis by activation of the well-established peroxynitrite/FAS death pathway in motor neurons. PMID:23646980

  13. Quantification of the proportion of motor neurons recruited by transcranial electrical stimulation during intraoperative motor evoked potential monitoring.

    PubMed

    Tsutsui, Shunji; Yamada, Hiroshi; Hashizume, Hiroshi; Minamide, Akihito; Nakagawa, Yukihiro; Iwasaki, Hiroshi; Yoshida, Munehito

    2013-12-01

    Transcranial motor evoked potentials (TcMEPs) are widely used to monitor motor function during spinal surgery. However, they are much smaller and more variable in amplitude than responses evoked by maximal peripheral nerve stimulation, suggesting that a limited number of spinal motor neurons to the target muscle are excited by transcranial stimulation. The aim of this study was to quantify the proportion of motor neurons recruited during TcMEP monitoring under general anesthesia. In twenty patients who underwent thoracic and/or lumbar spinal surgery with TcMEP monitoring, the triple stimulation technique (TST) was applied to the unilateral upper arm intraoperatively. Total intravenous anesthesia was employed. Trains of four stimuli were delivered with maximal intensity and an inter-pulse interval of 1.5 ms. TST responses were recorded from the abductor digiti minimi muscle, and the negative peak amplitude and area were measured and compared between the TST test (two collisions between transcranial and proximal and distal peripheral stimulation) and control response (two collisions between two proximal and one distal peripheral stimulation). The highest degree of superimposition of the TST test and control responses was chosen from several trials per patient. The average ratios (test:control) were 17.1 % (range 1.8-38 %) for the amplitudes and 21.6 % (range 2.9-40 %) for the areas. The activity of approximately 80 % of the motor units to the target muscle cannot be detected by TcMEP monitoring. Therefore, changes in evoked potentials must be interpreted cautiously when assessing segmental motor function with TcMEP monitoring.

  14. Neuronal injury in the motor cortex after chronic stroke and lower limb motor impairment: a voxel-based lesion symptom mapping study.

    PubMed

    Reynolds, Alexandria M; Peters, Denise M; Vendemia, Jennifer M C; Smith, Lenwood P; Sweet, Raymond C; Baylis, Gordon C; Krotish, Debra; Fritz, Stacy L

    2014-04-01

    Many studies have examined motor impairments using voxel-based lesion symptom mapping, but few are reported regarding the corresponding relationship between cerebral cortex injury and lower limb motor impairment analyzed using this technique. This study correlated neuronal injury in the cerebral cortex of 16 patients with chronic stroke based on a voxel-based lesion symptom mapping analysis. Neuronal injury in the corona radiata, caudate nucleus and putamen of patients with chronic stroke could predict walking speed. The behavioral measure scores were consistent with motor deficits expected after damage to the cortical motor system due to stroke. These findings suggest that voxel-based lesion symptom mapping may provide a more accurate prognosis of motor recovery from chronic stroke according to neuronal injury in cerebral motor cortex.

  15. Neuronal injury in the motor cortex after chronic stroke and lower limb motor impairment: a voxel-based lesion symptom mapping study

    PubMed Central

    Reynolds, Alexandria M.; Peters, Denise M.; Vendemia, Jennifer M. C.; Smith, Lenwood P.; Sweet, Raymond C.; Baylis, Gordon C.; Krotish, Debra; Fritz, Stacy L.

    2014-01-01

    Many studies have examined motor impairments using voxel-based lesion symptom mapping, but few are reported regarding the corresponding relationship between cerebral cortex injury and lower limb motor impairment analyzed using this technique. This study correlated neuronal injury in the cerebral cortex of 16 patients with chronic stroke based on a voxel-based lesion symptom mapping analysis. Neuronal injury in the corona radiata, caudate nucleus and putamen of patients with chronic stroke could predict walking speed. The behavioral measure scores were consistent with motor deficits expected after damage to the cortical motor system due to stroke. These findings suggest that voxel-based lesion symptom mapping may provide a more accurate prognosis of motor recovery from chronic stroke according to neuronal injury in cerebral motor cortex. PMID:25206888

  16. Neurons in Primary Motor Cortex Encode Hand Orientation in a Reach-to-Grasp Task.

    PubMed

    Ma, Chaolin; Ma, Xuan; Fan, Jing; He, Jiping

    2017-04-07

    It is disputed whether those neurons in the primary motor cortex (M1) that encode hand orientation constitute an independent channel for orientation control in reach-to-grasp behaviors. Here, we trained two monkeys to reach forward and grasp objects positioned in the frontal plane at different orientation angles, and simultaneously recorded the activity of M1 neurons. Among the 2235 neurons recorded in M1, we found that 18.7% had a high correlation exclusively with hand orientation, 15.9% with movement direction, and 29.5% with both movement direction and hand orientation. The distributions of neurons encoding hand orientation and those encoding movement direction were not uniform but coexisted in the same region. The trajectory of hand rotation was reproduced by the firing patterns of the orientation-related neurons independent of the hand reaching direction. These results suggest that hand orientation is an independent component for the control of reaching and grasping activity.

  17. Early motor neuron pool identity and muscle nerve trajectory defined by postmitotic restrictions in Nkx6.1 activity.

    PubMed

    De Marco Garcia, Natalia V; Jessell, Thomas M

    2008-01-24

    The fidelity with which spinal motor neurons innervate their limb target muscles helps to coordinate motor behavior, but the mechanisms that determine precise patterns of nerve-muscle connectivity remain obscure. We show that Nkx6 proteins, a set of Hox-regulated homeodomain transcription factors, are expressed by motor pools soon after motor neurons leave the cell cycle, before the formation of muscle nerve side branches in the limb. Using mouse genetics, we show that the status of Nkx6.1 expression in certain motor neuron pools regulates muscle nerve formation, and the pattern of innervation of individual muscles. Our findings provide genetic evidence that neurons within motor pools possess an early transcriptional identity that controls target muscle specificity.

  18. Cell-type-specific miR-431 dysregulation in a motor neuron model of spinal muscular atrophy.

    PubMed

    Wertz, Mary H; Winden, Kellen; Neveu, Pierre; Ng, Shi-Yan; Ercan, Ebru; Sahin, Mustafa

    2016-06-01

    Spinal muscular atrophy (SMA) is an autosomal-recessive pediatric neurodegenerative disease characterized by selective loss of spinal motor neurons. It is caused by mutation in the survival of motor neuron 1, SMN1, gene and leads to loss of function of the full-length SMN protein. microRNAs (miRNAs) are small RNAs that are involved in post-transcriptional regulation of gene expression. Prior studies have implicated miRNAs in the pathogenesis of motor neuron disease. We hypothesized that motor neuron-specific miRNA expression changes are involved in their selective vulnerability in SMA. Therefore, we sought to determine the effect of SMN loss on miRNAs and their target mRNAs in spinal motor neurons. We used microarray and RNAseq to profile both miRNA and mRNA expression in primary spinal motor neuron cultures after acute SMN knockdown. By integrating the miRNA:mRNA profiles, a number of dysregulated miRNAs were identified with enrichment in differentially expressed putative mRNA targets. miR-431 expression was highly increased, and a number of its putative mRNA targets were significantly downregulated in motor neurons after SMN loss. Further, we found that miR-431 regulates motor neuron neurite length by targeting several molecules previously identified to play a role in motor neuron axon outgrowth, including chondrolectin. Together, our findings indicate that cell-type-specific dysregulation of miR-431 plays a role in the SMA motor neuron phenotype.

  19. Altered mRNA Splicing in SMN-Depleted Motor Neuron-Like Cells

    PubMed Central

    Todd, A. Gary; Astroski, Jacob W.; Lin, Hai; Liu, Yunlong

    2016-01-01

    Spinal muscular atrophy (SMA) is an intractable neurodegenerative disease afflicting 1 in 6–10,000 live births. One of the key functions of the SMN protein is regulation of spliceosome assembly. Reduced levels of the SMN protein that are observed in SMA have been shown to result in aberrant mRNA splicing. SMN-dependent mis-spliced transcripts in motor neurons may cause stresses that are particularly harmful and may serve as potential targets for the treatment of motor neuron disease or as biomarkers in the SMA patient population. We performed deep RNA sequencing using motor neuron-like NSC-34 cells to screen for SMN-dependent mRNA processing changes that occur following acute depletion of SMN. We identified SMN-dependent splicing changes, including an intron retention event that results in the production of a truncated Rit1 transcript. This intron-retained transcript is stable and is mis-spliced in spinal cord from symptomatic SMA mice. Constitutively active Rit1 ameliorated the neurite outgrowth defect in SMN depleted NSC-34 cells, while expression of the truncated protein product of the mis-spliced Rit1 transcript inhibited neurite extension. These results reveal new insights into the biological consequence of SMN-dependent splicing in motor neuron-like cells. PMID:27736905

  20. Motor Neurone Disease: Disability Profile and Service Needs in an Australian Cohort

    ERIC Educational Resources Information Center

    Ng, Louisa; Talman, Paul; Khan, Fary

    2011-01-01

    Motor neurone disease (MND) places considerable burden upon patients and caregivers. This is the first study, which describes the disability profile and healthcare needs for persons with MND (pwMND) in an Australian sample from the perspective of the patients and caregivers to identify current gaps in the knowledge and service provision. A…

  1. Indices of free radical activity in the cerebrospinal fluid in motor neuron disease.

    PubMed Central

    Mitchell, J D; Jackson, M J; Pentland, B

    1987-01-01

    Indices of free-radical activity and lipid peroxidation were studied in cerebrospinal fluid samples obtained from 11 patients with motor neuron disease and 11 reference subjects. No differences were found between the two groups. The significance of this finding is discussed in relation to current views of the possible pathogenesis of this disease. PMID:3625217

  2. Altered Intracellular Milieu of ADAR2-Deficient Motor Neurons in Amyotrophic Lateral Sclerosis.

    PubMed

    Yamashita, Takenari; Akamatsu, Megumi; Kwak, Shin

    2017-02-08

    Transactive response DNA-binding protein (TDP-43) pathology, and failure of A-to-I conversion (RNA editing) at the glutamine/arginine (Q/R) site of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor subunit GluA2, are etiology-linked molecular abnormalities that concomitantly occur in the motor neurons of most patients with amyotrophic lateral sclerosis (ALS). Adenosine deaminase acting on RNA 2 (ADAR2) specifically catalyzes GluA2 Q/R site-RNA editing. Furthermore, conditional ADAR2 knockout mice (AR2) exhibit a progressive ALS phenotype with TDP-43 pathology in the motor neurons, which is the most reliable pathological marker of ALS. Therefore, the evidence indicates that ADAR2 downregulation is a causative factor in ALS, and AR2 mice exhibit causative molecular changes that occur in ALS. We discuss the contributors to ADAR2 downregulation and TDP-43 pathology in AR2 mouse motor neurons. We describe mechanisms of exaggerated Ca(2+) influx amelioration via AMPA receptors, which is neuroprotective in ADAR2-deficient motor neurons with normalization of TDP-43 pathology in AR2 mice. Development of drugs to treat diseases requires appropriate animal models and a sensitive method of evaluating efficacy. Therefore, normalization of disrupted intracellular environments resulting from ADAR2 downregulation may be a therapeutic target for ALS. We discuss the development of targeted therapy for ALS using the AR2 mouse model.

  3. Progressive Apraxia of Speech as a Sign of Motor Neuron Disease

    ERIC Educational Resources Information Center

    Duffy, Joseph R.; Peach, Richard K.; Strand, Edythe A.

    2007-01-01

    Purpose: To document and describe in detail the occurrence of apraxia of speech (AOS) in a group of individuals with a diagnosis of motor neuron disease (MND). Method: Seven individuals with MND and AOS were identified from among 80 patients with a variety of neurodegenerative diseases and AOS (J. R. Duffy, 2006). The history, presenting…

  4. Conversational Rate of a Non-Vocal Person with Motor Neurone Disease Using the 'TALK' System.

    ERIC Educational Resources Information Center

    Todman, J.; Lewins, E.

    1996-01-01

    This study evaluated the use of TALK, a computer-based augmentative and alternative communication (AAC) system, in the social communications of a nonvocal woman with motor neurone disease. She was able to achieve an average conversational rate of 42 words per minute (wpm) using TALK, compared with 2 to 10 wpm with other AAC systems using…

  5. The AMPA receptor subunit GluR1 regulates dendritic architecture of motor neurons

    NASA Technical Reports Server (NTRS)

    Inglis, Fiona M.; Crockett, Richard; Korada, Sailaja; Abraham, Wickliffe C.; Hollmann, Michael; Kalb, Robert G.

    2002-01-01

    The morphology of the mature motor neuron dendritic arbor is determined by activity-dependent processes occurring during a critical period in early postnatal life. The abundance of the AMPA receptor subunit GluR1 in motor neurons is very high during this period and subsequently falls to a negligible level. To test the role of GluR1 in dendrite morphogenesis, we reintroduced GluR1 into rat motor neurons at the end of the critical period and quantitatively studied the effects on dendrite architecture. Two versions of GluR1 were studied that differed by the amino acid in the "Q/R" editing site. The amino acid occupying this site determines single-channel conductance, ionic permeability, and other essential electrophysiologic properties of the resulting receptor channels. We found large-scale remodeling of dendritic architectures in a manner depending on the amino acid occupying the Q/R editing site. Alterations in the distribution of dendritic arbor were not prevented by blocking NMDA receptors. These observations suggest that the expression of GluR1 in motor neurons modulates a component of the molecular substrate of activity-dependent dendrite morphogenesis. The control of these events relies on subunit-specific properties of AMPA receptors.

  6. New Technologies in the Training of Young People with Severe Motor Neurone Disorders.

    ERIC Educational Resources Information Center

    Escoin Homs, Jordi

    1993-01-01

    Reviews the potential use of computer technology for the education, training, and occupational placement of people with severe motor neurone disorders (e.g., cerebral palsy) based on experiences in a program in Spain. Highlights include computer literacy, computer-assisted teaching, quality of output, software development, synthesized speech, and…

  7. Altered Intracellular Milieu of ADAR2-Deficient Motor Neurons in Amyotrophic Lateral Sclerosis

    PubMed Central

    Yamashita, Takenari; Akamatsu, Megumi; Kwak, Shin

    2017-01-01

    Transactive response DNA-binding protein (TDP-43) pathology, and failure of A-to-I conversion (RNA editing) at the glutamine/arginine (Q/R) site of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor subunit GluA2, are etiology-linked molecular abnormalities that concomitantly occur in the motor neurons of most patients with amyotrophic lateral sclerosis (ALS). Adenosine deaminase acting on RNA 2 (ADAR2) specifically catalyzes GluA2 Q/R site-RNA editing. Furthermore, conditional ADAR2 knockout mice (AR2) exhibit a progressive ALS phenotype with TDP-43 pathology in the motor neurons, which is the most reliable pathological marker of ALS. Therefore, the evidence indicates that ADAR2 downregulation is a causative factor in ALS, and AR2 mice exhibit causative molecular changes that occur in ALS. We discuss the contributors to ADAR2 downregulation and TDP-43 pathology in AR2 mouse motor neurons. We describe mechanisms of exaggerated Ca2+ influx amelioration via AMPA receptors, which is neuroprotective in ADAR2-deficient motor neurons with normalization of TDP-43 pathology in AR2 mice. Development of drugs to treat diseases requires appropriate animal models and a sensitive method of evaluating efficacy. Therefore, normalization of disrupted intracellular environments resulting from ADAR2 downregulation may be a therapeutic target for ALS. We discuss the development of targeted therapy for ALS using the AR2 mouse model. PMID:28208729

  8. Survival motor neuron (SMN) polymorphism in relation to congenital arthrogryposis in two Piedmont calves (piemontese)

    PubMed Central

    2003-01-01

    The term arthrogryposis refers to a symptom complex that is characterised by congenital limb contractures. Arthrogryposis has been reported in man, in farm animals and in pets. Several forms have been reported to have a genetic origin in man. In Brown Swiss and Holstein Friesian cattle, congenital contractures have been recorded and classified as spinal muscular atrophy (SMA). The survival motor neuron gene (SMN) has been suggested as a candidate gene for SMA. In the last 20 years, the National Association of Piedmont Cattle have recorded arthrogryposis cases. We cloned and sequenced SMN cDNA extracted from the spinal cord samples of two animals: one Piedmont calf showing a severe clinical form of arthrogryposis and one normal Piedmont calf. In the affected calf, more than 50% of the 5'end clones showed a ATG > TTG single nucleotide polymorphism (SNP) in exon 1 that should determine a Met > Leu aminoacid change (single point mutation M3L). This mutation is associated with a 9 bp increase length of 5'UTR and to a TTC → TTT silent mutation in exon 1. No single point mutation or 5'end polymorphism was shown in healthy animals and in the remaining 50% of the clones from the affected calf. We hypothesise a possible pathogenic effect of the 5'end-exon 1 polymorphism. PMID:12927089

  9. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse

    SciTech Connect

    Sun, Li; Wu, Zhou; Baba, Masashi; Peters, Christoph; Uchiyama, Yasuo; Nakanishi, Hiroshi

    2010-08-27

    Research highlights: {yields} Cathepsin B (CB), a lysosomal cysteine protease, is expressed in neuron and glia. {yields} CB increased in hypogrossal nucleus neurons after nerve injury in adult mice. {yields} CB-deficiency significantly increased the mean survival ratio of injured neurons. {yields} Thus, CB plays a critical role in axotomy-induced neuronal death in adult mice. -- Abstract: There are significant differences in the rate of neuronal death after peripheral nerve injury between species. The rate of neuronal death of motor neurons after nerve injury in the adult rats is very low, whereas that in adult mice is relatively high. However, the understanding of the mechanism underlying axotomy-induced motor neuron death in adult mice is limited. Cathepsin B (CB), a typical cysteine lysosomal protease, has been implicated in three major morphologically distinct pathways of cell death; apoptosis, necrosis and autophagic cell death. The possible involvement of CB in the neuronal death of hypogrossal nucleus (HGN) neurons after nerve injury in adult mice was thus examined. Quantitative analyses showed the mean survival ratio of HGN neurons in CB-deficient (CB-/-) adult mice after nerve injury was significantly greater than that in the wild-type mice. At the same time, proliferation of microglia in the injured side of the HGN of CB-/- adult mice was markedly reduced compared with that in the wild-type mice. On the injured side of the HGN in the wild-type adult mice, both pro- and mature forms of CB markedly increased in accordance with the increase in the membrane-bound form of LC3 (LC3-II), a marker protein of autophagy. Furthermore, the increase in CB preceded an increase in the expression of Noxa, a major executor for axotomy-induced motor neuron death in the adult mouse. Conversely, expression of neither Noxa or LC3-II was observed in the HGN of adult CB-/- mice after nerve injury. These observations strongly suggest that CB plays a critical role in axotomy

  10. Putamen neurons process both sensory and motor information during a complex task.

    PubMed

    Vicente, Ana F; Bermudez, Maria A; Romero, Maria Del Carmen; Perez, Rogelio; Gonzalez, Francisco

    2012-07-23

    The putamen has classically been considered to be primarily a motor structure. It is involved in a broad range of roles and its neurons have been postulated to function as pattern classifiers of behaviourally significant events. However, its specific role in motor and sensory processing is still unclear. For the purpose of better categorizing putamen neurons, we trained two rhesus monkeys to perform multisensory operant tasks by using complex stimuli such as short videoclips. Trials involved image or soundtrack or both. Some stimuli required a motor response associated to reward, whereas others did not require response and produced no reward. We found that neurons in the putamen showed pure visual responses, action-related activity, and reward responses. Insofar as action-related activity, preparation of movement, movement execution, and withholding of movement involved three different putamen neuron populations. Moreover, our data suggest an involvement of putamen neurons in processing primary rewards and visual events in a complex task, which may contribute to reinforcement learning through stimulus-reward association.

  11. Normal dendrite growth in Drosophila motor neurons requires the AP-1 transcription factor.

    PubMed

    Hartwig, Cortnie L; Worrell, Jason; Levine, Richard B; Ramaswami, Mani; Sanyal, Subhabrata

    2008-09-01

    During learning and memory formation, information flow through networks is regulated significantly through structural alterations in neurons. Dendrites, sites of signal integration, are key targets of activity-mediated modifications. Although local mechanisms of dendritic growth ensure synapse-specific changes, global mechanisms linking neural activity to nuclear gene expression may have profound influences on neural function. Fos, being an immediate-early gene, is ideally suited to be an initial transducer of neural activity, but a precise role for the AP-1 transcription factor in dendrite growth remains to be elucidated. Here we measure changes in the dendritic fields of identified Drosophila motor neurons in vivo and in primary culture to investigate the role of the immediate-early transcription factor AP-1 in regulating endogenous and activity-induced dendrite growth. Our data indicate that (a) increased neural excitability or depolarization stimulates dendrite growth, (b) AP-1 (a Fos, Jun hetero-dimer) is required for normal motor neuron dendritic growth during development and in response to activity induction, and (c) neuronal Fos protein levels are rapidly but transiently induced in motor neurons following neural activity. Taken together, these results show that AP-1 mediated transcription is important for dendrite growth, and that neural activity influences global dendritic growth through a gene-expression dependent mechanism gated by AP-1.

  12. Plastic Changes in the Spinal Cord in Motor Neuron Disease

    PubMed Central

    Fornai, Francesco; Ferrucci, Michela; Lenzi, Paola; Falleni, Alessandra; Biagioni, Francesca; Flaibani, Marina; Siciliano, Gabriele; Giannessi, Francesco; Paparelli, Antonio

    2014-01-01

    In the present paper, we analyze the cell number within lamina X at the end stage of disease in a G93A mouse model of ALS; the effects induced by lithium; the stem-cell like phenotype of lamina X cells during ALS; the differentiation of these cells towards either a glial or neuronal phenotype. In summary we found that G93A mouse model of ALS produces an increase in lamina X cells which is further augmented by lithium administration. In the absence of lithium these nestin positive stem-like cells preferentially differentiate into glia (GFAP positive), while in the presence of lithium these cells differentiate towards a neuron-like phenotype (βIII-tubulin, NeuN, and calbindin-D28K positive). These effects of lithium are observed concomitantly with attenuation in disease progression and are reminiscent of neurogenetic effects induced by lithium in the subependymal ventricular zone of the hippocampus. PMID:24829911

  13. Motor Training Promotes Both Synaptic and Intrinsic Plasticity of Layer II/III Pyramidal Neurons in the Primary Motor Cortex

    PubMed Central

    Kida, Hiroyuki; Tsuda, Yasumasa; Ito, Nana; Yamamoto, Yui; Owada, Yuji; Kamiya, Yoshinori; Mitsushima, Dai

    2016-01-01

    Motor skill training induces structural plasticity at dendritic spines in the primary motor cortex (M1). To further analyze both synaptic and intrinsic plasticity in the layer II/III area of M1, we subjected rats to a rotor rod test and then prepared acute brain slices. Motor skill consistently improved within 2 days of training. Voltage clamp analysis showed significantly higher α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-d-aspartate (AMPA/NMDA) ratios and miniature EPSC amplitudes in 1-day trained rats compared with untrained rats, suggesting increased postsynaptic AMPA receptors in the early phase of motor learning. Compared with untrained controls, 2-days trained rats showed significantly higher miniature EPSC amplitude and frequency. Paired-pulse analysis further demonstrated lower rates in 2-days trained rats, suggesting increased presynaptic glutamate release during the late phase of learning. One-day trained rats showed decreased miniature IPSC frequency and increased paired-pulse analysis of evoked IPSC, suggesting a transient decrease in presynaptic γ-aminobutyric acid (GABA) release. Moreover, current clamp analysis revealed lower resting membrane potential, higher spike threshold, and deeper afterhyperpolarization in 1-day trained rats—while 2-days trained rats showed higher membrane potential, suggesting dynamic changes in intrinsic properties. Our present results indicate dynamic changes in glutamatergic, GABAergic, and intrinsic plasticity in M1 layer II/III neurons after the motor training. PMID:27193420

  14. Lower Motor Control Modeled by Neuron With Fuzzy Synapses

    DTIC Science & Technology

    2007-11-02

    seen in parkinsonism , chorea, cerebellar disorders, and spasticity. In most cases, muscles work in opposing pairs: one muscle opens or extends a joint...performances of predictor schemes based on neurons with fuzzy synapses of order P = 3 in tremor prediction applications. The rules of these particular...Chelaru, A. Kandel, I. Tofan, M. Irimia, “Fuzzy methods in tremor assessment, prediction, and rehabilitation”, Artificial Intelligence in Medicine

  15. Coculture of Primary Motor Neurons and Schwann Cells as a Model for In Vitro Myelination.

    PubMed

    Hyung, Sujin; Yoon Lee, Bo; Park, Jong-Chul; Kim, Jinseok; Hur, Eun-Mi; Francis Suh, Jun-Kyo

    2015-10-12

    A culture system that can recapitulate myelination in vitro will not only help us better understand the mechanism of myelination and demyelination, but also find out possible therapeutic interventions for treating demyelinating diseases. Here, we introduce a simple and reproducible myelination culture system using mouse motor neurons (MNs) and Schwann cells (SCs). Dissociated motor neurons are plated on a feeder layer of SCs, which interact with and wrap around the axons of MNs as they differentiate in culture. In our MN-SC coculture system, MNs survived over 3 weeks and extended long axons. Both viability and axon growth of MNs in the coculture were markedly enhanced as compared to those of MN monoculture. Co-labeling of myelin basic proteins (MBPs) and neuronal microtubules revealed that SC formed myelin sheaths by wrapping around the axons of MNs. Furthermore, using the coculture system we found that treatment of an antioxidant substance coenzyme Q10 (Co-Q10) markedly facilitated myelination.

  16. Coculture of Primary Motor Neurons and Schwann Cells as a Model for In Vitro Myelination

    PubMed Central

    Hyung, Sujin; Yoon Lee, Bo; Park, Jong-Chul; Kim, Jinseok; Hur, Eun-Mi; Francis Suh, Jun-Kyo

    2015-01-01

    A culture system that can recapitulate myelination in vitro will not only help us better understand the mechanism of myelination and demyelination, but also find out possible therapeutic interventions for treating demyelinating diseases. Here, we introduce a simple and reproducible myelination culture system using mouse motor neurons (MNs) and Schwann cells (SCs). Dissociated motor neurons are plated on a feeder layer of SCs, which interact with and wrap around the axons of MNs as they differentiate in culture. In our MN-SC coculture system, MNs survived over 3 weeks and extended long axons. Both viability and axon growth of MNs in the coculture were markedly enhanced as compared to those of MN monoculture. Co-labeling of myelin basic proteins (MBPs) and neuronal microtubules revealed that SC formed myelin sheaths by wrapping around the axons of MNs. Furthermore, using the coculture system we found that treatment of an antioxidant substance coenzyme Q10 (Co-Q10) markedly facilitated myelination. PMID:26456300

  17. Impairments in Motor Neurons, Interneurons and Astrocytes Contribute to Hyperexcitability in ALS: Underlying Mechanisms and Paths to Therapy.

    PubMed

    Do-Ha, Dzung; Buskila, Yossi; Ooi, Lezanne

    2017-02-03

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterised by the loss of motor neurons leading to progressive paralysis and death. Using transcranial magnetic stimulation (TMS) and nerve excitability tests, several clinical studies have identified that cortical and peripheral hyperexcitability are among the earliest pathologies observed in ALS patients. The changes in the electrophysiological properties of motor neurons have been identified in both sporadic and familial ALS patients, despite the diverse etiology of the disease. The mechanisms behind the change in neuronal signalling are not well understood, though current findings implicate intrinsic changes in motor neurons and dysfunction of cells critical in regulating motor neuronal excitability, such as astrocytes and interneurons. Alterations in ion channel expression and/or function in motor neurons has been associated with changes in cortical and peripheral nerve excitability. In addition to these intrinsic changes in motor neurons, inhibitory signalling through GABAergic interneurons is also impaired in ALS, likely contributing to increased neuronal excitability. Astrocytes have also recently been implicated in increasing neuronal excitability in ALS by failing to adequately regulate glutamate levels and extracellular K(+) concentration at the synaptic cleft. As hyperexcitability is a common and early feature of ALS, it offers a therapeutic and diagnostic target. Thus, understanding the underlying pathways and mechanisms leading to hyperexcitability in ALS offers crucial insight for future development of ALS treatments.

  18. Actions of motor neurons and leg muscles in jumping by planthopper insects (hemiptera, issidae).

    PubMed

    Burrows, Malcolm; Bräunig, Peter

    2010-04-15

    To understand the catapult mechanism that propels jumping in a planthopper insect, the innervation and action of key muscles were analyzed. The large trochanteral depressor muscle, M133b,c, is innervated by two motor neurons and by two dorsal unpaired median (DUM) neurons, all with axons in N3C. A smaller depressor muscle, M133a, is innervated by two neurons, one with a large-diameter cell body, a large, blind-ending dendrite, and a giant ovoid, axon measuring 50 microm by 30 microm in nerve N5A. The trochanteral levator muscles (M132) and (M131) are innervated by N4 and N3B, respectively. The actions of these muscles in a restrained jump were divisible into a three-phase pattern. First, both hind legs were moved into a cocked position by high-frequency bursts of spikes in the levator muscles lasting about 0.5 seconds. Second, and once both legs were cocked, M133b,c received a long continuous sequence of motor spikes, but the two levators spiked only sporadically. The spikes in the two motor neurons to M133b,c on one side were closely coupled to each other and to the spikes on the other side. If one hind leg was cocked then the spikes only occurred in motor neurons to that side. The final phase was the jump movement itself, which occurred when the depressor spikes ceased and which lasted 1 ms. Muscles 133b,c activated synchronously on both sides, are responsible for generating the power, and M133a and its giant neuron may play a role in triggering the release of a jump.

  19. Social-comparative feedback affects motor skill learning.

    PubMed

    Lewthwaite, Rebecca; Wulf, Gabriele

    2010-04-01

    This study examined motivational effects of feedback on motor learning. Specifically, we investigated the influence of social-comparative feedback on the learning of a balance task (stabilometer). In addition to veridical feedback (error scores reflecting deviation from the target horizontal platform position) about their own performance after each trial, two groups received false normative information about the "average" score of others on that trial. Average performance scores indicated that the participant's performance was either above (better group) or below (worse group) the average, respectively. A control group received veridical feedback about trial performance without normative feedback. Learning as a function of social-comparative feedback was determined in a retention test without feedback, performed on a third day following two days of practice. Normative feedback affected the learning of the balance task: The better group demonstrated more effective balance performance than both the worse and control groups on the retention test. Furthermore, high-frequency/low-amplitude balance adjustments, indicative of more automatic control of movement, were greater in the better than in the worse group. The control group exhibited more limited learning and less automaticity than both the better and the worse groups. The findings indicate that positive normative feedback had a facilitatory effect on motor learning.

  20. Object use affects motor planning in infant prehension.

    PubMed

    Contaldo, Annarita; Cola, Elisabetta; Minichilli, Fabrizio; Crecchi, Alessandra; Carboncini, Maria Chiara; Rossi, Bruno; Bonfiglio, Luca

    2013-06-01

    The purpose of this study was to investigate the factors underlying the ability to plan object-oriented grasping movements in the first two years of life. In particular, we were interested in evaluating the relationship between manual motor planning, object use and infant-parent interaction. In order to achieve this aim, grasping behaviors of nineteen healthy infants, aged nine to 25 months, were examined during naturalistic play sessions with a standard set of toys. Our main finding was that, regardless of age, infants perform a better manual planning when they use an object in a functional rather than non-functional way, suggesting that the planning of an action also depends on knowing the functional properties of an object. In addition, we found that the ability to use objects in a functional way was strongly affected by infant-parent interaction. Thus, level of object use and environmental role must be taken into account in order to understand the development of manual motor planning.

  1. IPLEX administration improves motor neuron survival and ameliorates motor functions in a severe mouse model of spinal muscular atrophy.

    PubMed

    Murdocca, Michela; Malgieri, Arianna; Luchetti, Andrea; Saieva, Luciano; Dobrowolny, Gabriella; de Leonibus, Elvira; Filareto, Antonio; Quitadamo, Maria Chiara; Novelli, Giuseppe; Musarò, Antonio; Sangiuolo, Federica

    2012-09-25

    Spinal muscular atrophy (SMA) is an inherited neurodegenerative disorder and the first genetic cause of death in childhood. SMA is caused by low levels of survival motor neuron (SMN) protein that induce selective loss of α-motor neurons (MNs) in the spinal cord, resulting in progressive muscle atrophy and consequent respiratory failure. To date, no effective treatment is available to counteract the course of the disease. Among the different therapeutic strategies with potential clinical applications, the evaluation of trophic and/or protective agents able to antagonize MNs degeneration represents an attractive opportunity to develop valid therapies. Here we investigated the effects of IPLEX (recombinant human insulinlike growth factor 1 [rhIGF-1] complexed with recombinant human IGF-1 binding protein 3 [rhIGFBP-3]) on a severe mouse model of SMA. Interestingly, molecular and biochemical analyses of IGF-1 carried out in SMA mice before drug administration revealed marked reductions of IGF-1 circulating levels and hepatic mRNA expression. In this study, we found that perinatal administration of IPLEX, even if does not influence survival and body weight of mice, results in reduced degeneration of MNs, increased muscle fiber size and in amelioration of motor functions in SMA mice. Additionally, we show that phenotypic changes observed are not SMN-dependent, since no significant SMN modification was addressed in treated mice. Collectively, our data indicate IPLEX as a good therapeutic candidate to hinder the progression of the neurodegenerative process in SMA.

  2. Substratum preferences of motor and sensory neurons in postnatal and adult rats.

    PubMed

    Gonzalez-Perez, Francisco; Alé, Albert; Santos, Daniel; Barwig, Christina; Freier, Thomas; Navarro, Xavier; Udina, Esther

    2016-02-01

    After peripheral nerve injuries, damaged axons can regenerate but functional recovery is limited by the specific reinnervation of targets. In this study we evaluated if motor and sensory neurites have a substrate preference for laminin and fibronectin in postnatal and adult stages. In postnatal dorsal root ganglia (DRG) explants, sensory neurons extended longer neurites on collagen matrices enriched with laminin (~50%) or fibronectin (~35%), whereas motoneurons extended longer neurites (~100%) in organotypic spinal cord slices embedded in fibronectin-enriched matrix. An increased percentage of parvalbumin-positive neurites (presumptive proprioceptive) vs. neurofilament-positive neurites was also found in DRG in fibronectin-enriched matrix. To test if the different preference of neurons for extracellular matrix components was maintained in vivo, these matrices were used to fill a chitosan guide to repair a 6-mm gap in the sciatic nerve of adult rats. However, the number of regenerating motor and sensory neurons after 1 month was similar between groups. Moreover, none of the retrotraced sensory neurons in DRG was positive for parvalbumin, suggesting that presumptive proprioceptive neurons had poor regenerative capabilities compared with other peripheral neurons. Using real-time PCR we evaluated the expression of α5β1 (receptor for fibronectin) and α7β1 integrin (receptor for laminin) in spinal cord and DRG 2 days after injury. Postnatal animals showed a higher increase of α5β1 integrin, whereas both integrins were similarly expressed in adult neurons. Therefore, we conclude that motor and sensory axons have a different substrate preference at early postnatal stages but this difference is lost in the adult.

  3. The C. elegans NeuroD homolog cnd-1 functions in multiple aspects of motor neuron fate specification.

    PubMed

    Hallam, S; Singer, E; Waring, D; Jin, Y

    2000-10-01

    The basic helix-loop-helix transcription factor NeuroD (Neurod1) has been implicated in neuronal fate determination, differentiation and survival. Here we report the expression and functional analysis of cnd-1, a C. elegans NeuroD homolog. cnd-1 expression was first detected in neuroblasts of the AB lineage in 14 cell embryos and maintained in many neuronal descendants of the AB lineage during embryogenesis, diminishing in most terminally differentiated neurons prior to hatching. Specifically, cnd-1 reporter genes were expressed in the precursors of the embryonic ventral cord motor neurons and their progeny. A loss-of-function mutant, cnd-1(ju29), exhibited multiple defects in the ventral cord motor neurons. First, the number of motor neurons was reduced, possibly caused by the premature withdrawal of the precursors from mitotic cycles. Second, the strict correlation between the fate of a motor neuron with respect to its lineage and position in the ventral cord was disrupted, as manifested by the variable expression pattern of motor neuron fate specific markers. Third, motor neurons also exhibited defects in terminal differentiation characteristics including axonal morphology and synaptic connectivity. Finally, the expression patterns of three neuronal type-specific transcription factors, unc-3, unc-4 and unc-30, were altered. Our data suggest that cnd-1 may specify the identity of ventral cord motor neurons both by maintaining the mitotic competence of their precursors and by modulating the expression of neuronal type-specific determination factors. cnd-1 appears to have combined the functions of several vertebrate neurogenic bHLH proteins and may represent an ancestral form of this protein family.

  4. Network feedback regulates motor output across a range of modulatory neuron activity.

    PubMed

    Spencer, Robert M; Blitz, Dawn M

    2016-06-01

    Modulatory projection neurons alter network neuron synaptic and intrinsic properties to elicit multiple different outputs. Sensory and other inputs elicit a range of modulatory neuron activity that is further shaped by network feedback, yet little is known regarding how the impact of network feedback on modulatory neurons regulates network output across a physiological range of modulatory neuron activity. Identified network neurons, a fully described connectome, and a well-characterized, identified modulatory projection neuron enabled us to address this issue in the crab (Cancer borealis) stomatogastric nervous system. The modulatory neuron modulatory commissural neuron 1 (MCN1) activates and modulates two networks that generate rhythms via different cellular mechanisms and at distinct frequencies. MCN1 is activated at rates of 5-35 Hz in vivo and in vitro. Additionally, network feedback elicits MCN1 activity time-locked to motor activity. We asked how network activation, rhythm speed, and neuron activity levels are regulated by the presence or absence of network feedback across a physiological range of MCN1 activity rates. There were both similarities and differences in responses of the two networks to MCN1 activity. Many parameters in both networks were sensitive to network feedback effects on MCN1 activity. However, for most parameters, MCN1 activity rate did not determine the extent to which network output was altered by the addition of network feedback. These data demonstrate that the influence of network feedback on modulatory neuron activity is an important determinant of network output and feedback can be effective in shaping network output regardless of the extent of network modulation.

  5. Trophic effect of olmesartan, a novel AT1R antagonist, on spinal motor neurons in vitro and in vivo.

    PubMed

    Iwasaki, Yasuo; Ichikawa, Yasumitsu; Igarashi, Osamu; Kinoshita, Masao; Ikeda, Ken

    2002-07-01

    Olmesartan is a novel compound which has been shown to exhibit various neuropharmacological effects. For the purpose of clarifying the effect of Olmesartan on spinal motor neurons, we studied the following tests. We studied the effect in vitro of Olmesartan on neurite outgrowth and choline acetyltransferase (ChAT) activity in primary explant cultures of ventral spinal cord (VSCC) of fetal rats. Olmesartan-treated VSCC, compared with control VSCC, had a significant neurite outgrowth and increased activity of ChAT. The effect was dose-related in neurite outgrowth. However, there was no relationship between activity of ChAT andgiven doses of Olmesartan. We examined in vivo the effect of Olmesartan on axotomized spinal motor neuron death in the rat spinal cord. After post-natal unilateral section of sciatic nerve, there was approximately a 50% survival of motor neurons in the fourth lumbar segment. In comparison with vehicle, intraperitoneal injection of Olmesartan for consecutive 14 days reduced spinal motor neuron death. There was no relationship between number of surviving neurons and doses of Olmesartan. These in vitro and in vivo studies showed that Olmesartan has a neurotrophic effect on spinal motor neurons. Our data suggest a potential therapeutic use of Olmesartan in treating diseases that involve degeneration and death of motor neurons, such as motor neuropathy and amyotrophic lateral sclerosis.

  6. Adult rat motor neurons do not re-establish electrical coupling during axonal regeneration and muscle reinnervation.

    PubMed

    Favero, Morgana; Cangiano, Alberto; Busetto, Giuseppe

    2015-01-01

    Gap junctions (GJs) between neurons are present in both the newborn and the adult nervous system, and although important roles have been suggested or demonstrated in a number of instances, in many other cases a full understanding of their physiological role is still missing. GJs are expressed in the rodent lumbar cord at birth and mediate both dye and electrical coupling between motor neurons. This expression has been proposed to mediate: (i) fast synchronization of motoneuronal spike activity, in turn linked to the process of refinement of neuromuscular connections, and (ii) slow synchronization of locomotor-like oscillatory activity. Soon after birth this coupling disappears. Since in the adult rat regeneration of motor fibers after peripheral nerve injury leads to a recapitulation of synaptic refinement at the target muscles, we tested whether GJs between motor neurons are transiently re-expressed. We found that in conditions of maximal responsiveness of lumbar motor neurons (such as no depression by anesthetics, decerebrate release of activity of subsets of motor neurons, use of temporal and spatial summation by antidromic and orthodromic stimulations, testing of large ensembles of motor neurons) no firing is observed in ventral root axons in response to antidromic spike invasion of nearby counterparts. We conclude that junctional coupling between motor neurons is not required for the refinement of neuromuscular innervation in the adult.

  7. AMPA receptor activation causes preferential mitochondrial Ca²⁺ load and oxidative stress in motor neurons.

    PubMed

    Joshi, Dinesh C; Tewari, Bhanu P; Singh, Mahendra; Joshi, Preeti G; Joshi, Nanda B

    2015-08-07

    It is well established that motor neurons are highly vulnerable to glutamate induced excitotoxicity. The selective vulnerability of these neurons has been attributed to AMPA receptor mediated excessive rise in cytosolic calcium and consequent mitochondrial Ca(2+) loading. Earlier we have reported that in motor neurons a generic rise in [Ca(2+)]i does not always lead to mitochondrial Ca(2+) loading and membrane depolarization but it occurs upon AMPA receptor activation. The mechanism of such specific mitochondrial involvement upon AMPA receptor activation is not known. The present study examines the mitochondrial Ca(2+) regulation and oxidative stress in spinal cord neurons upon AMPA subtype of glutamate receptor activation. Stimulating the spinal neurons with AMPA exhibited a sharp rise in [Ca(2+)]m in both motor and other spinal neurons that was sustained up to the end of recording time of 30min. The rise in [Ca(2+)]m was substantially higher in motor neurons than in other spinal neurons which could be due to the differential mitochondrial homeostasis in two types of neurons. To examine this possibility, we measured AMPA induced [Ca(2+)]m loading in the presence of mitochondrial inhibitors. In both cell types the AMPA induced [Ca(2+)]m loading was blocked by mitochondrial calcium uniporter blocker ruthenium red. In motor neurons it was also inhibited substantially by CGP37157 and cyclosporine-A, the blockers of Na(+)/Ca(2+) exchanger and mitochondrial permeability transition pore (MPTP) respectively, whereas no effect of these agents was observed in other spinal neurons. Thus in motor neurons the Ca(2+) sequestration by mitochondria occurs through mitochondrial calcium uniporter as well as due to reversal of Na(+)/Ca(2+) exchanger, in contrast the latter pathway does not contribute in other spinal neurons. The ROS formation was inhibited by nitric oxide synthase (NOS) inhibitor L-NAME in both types of neurons, however the mitochondrial complex-I inhibitor rotenone

  8. Crosstalk between p38, Hsp25 and Akt in spinal motor neurons after sciatic nerve injury

    NASA Technical Reports Server (NTRS)

    Murashov, A. K.; Ul Haq, I.; Hill, C.; Park, E.; Smith, M.; Wang, X.; Wang, X.; Goldberg, D. J.; Wolgemuth, D. J.

    2001-01-01

    The p38 stress-activated protein kinase pathway is involved in regulation of phosphorylation of Hsp25, which in turn regulates actin filament dynamic in non-neuronal cells. We report that p38, Hsp25 and Akt signaling pathways were specifically activated in spinal motor neurons after sciatic nerve axotomy. The activation of the p38 kinase was required for induction of Hsp25 expression. Furthermore, Hsp25 formed a complex with Akt, a member of PI-3 kinase pathway that prevents neuronal cell death. Together, our observations implicate Hsp25 as a central player in a complex system of signaling that may both promote regeneration of nerve fibers and prevent neuronal cell death in the injured spinal cord.

  9. Specification of individual adult motor neuron morphologies by combinatorial transcription factor codes.

    PubMed

    Enriquez, Jonathan; Venkatasubramanian, Lalanti; Baek, Myungin; Peterson, Meredith; Aghayeva, Ulkar; Mann, Richard S

    2015-05-20

    How the highly stereotyped morphologies of individual neurons are genetically specified is not well understood. We identify six transcription factors (TFs) expressed in a combinatorial manner in seven post-mitotic adult leg motor neurons (MNs) that are derived from a single neuroblast in Drosophila. Unlike TFs expressed in mitotically active neuroblasts, these TFs do not regulate each other's expression. Removing the activity of a single TF resulted in specific morphological defects, including muscle targeting and dendritic arborization, and in a highly specific walking defect in adult flies. In contrast, when the expression of multiple TFs was modified, nearly complete transformations in MN morphologies were generated. These results show that the morphological characteristics of a single neuron are dictated by a combinatorial code of morphology TFs (mTFs). mTFs function at a previously unidentified regulatory tier downstream of factors acting in the NB but independently of factors that act in terminally differentiated neurons.

  10. Electrophysiological recording from neurons controlling sensory and motor functions of the esophagus.

    PubMed

    Sengupta, J N

    2001-12-03

    contractions of the distal esophagus. This response undergoes inhibition in response to proximal distension. In addition, there is a second, nonrhythmic firing response that occurs both proximal and distal esophageal distension. This observation suggests that swallow-induced inhibition of the distal esophagus is controlled by the preganglionic motor neurons in the brain stem. Electrophysiological studies allow direct understanding of neuronal activities regulating esophageal functions. In vivo recording has an advantage for studying functional roles of the neurons in regulatory reflexes, whereas in vitro recording is useful for more accurate study of receptor pharmacology. Recordings from the central nervous system allow study of the neurotransmitters involved in neuronal function and the circuitry of different reflex mechanisms.

  11. Functional Dopaminergic Neurons in Substantia Nigra are Required for Transcranial Magnetic Stimulation-Induced Motor Plasticity.

    PubMed

    Hsieh, Tsung-Hsun; Huang, Ying-Zu; Rotenberg, Alexander; Pascual-Leone, Alvaro; Chiang, Yung-Hsiao; Wang, Jia-Yi; Chen, Jia-Jin J

    2015-07-01

    Repetitive magnetic stimulation (rTMS), including theta burst stimulation (TBS), is capable of modulating motor cortical excitability through plasticity-like mechanisms and might have therapeutic potential for Parkinson's disease (PD). An animal model would be helpful for elucidating the mechanism of rTMS that remain unclear and controversial. Here, we have established a TMS model in rat and applied this model to study the impact of substantia nigra dopamine neuron on TBS-induced motor plasticity in PD rats. In parallel with human results, continuous TBS (cTBS) successfully suppressed motor evoked potentials (MEPs), while MEPs increased after intermittent TBS (iTBS) in healthy rats. We then tested the effect of iTBS in early and advanced 6-hydroxydopamine (6-OHDA)-lesioned PD. Moreover, dopaminergic neurons in substantia nigra and rotation behavior were assessed to correlate with the amount of iTBS-induced plasticity. In results, iTBS-induced potentiation was reduced in early PD rats and was absent in advanced PD rats. Such reduction in plasticity strongly correlated with the dopaminergic cell loss and the count of rotation in PD rats. In conclusion, we have established a TMS PD rat model. With the help of this model, we confirmed the loss of domaninergic neurons in substantia nigra resulting in reduced rTMS-induced motor plasticity in PD.

  12. Nonlinear integration of visual and haltere inputs in fly neck motor neurons.

    PubMed

    Huston, Stephen J; Krapp, Holger G

    2009-10-21

    Animals use information from multiple sensory organs to generate appropriate behavior. Exactly how these different sensory inputs are fused at the motor system is not well understood. Here we study how fly neck motor neurons integrate information from two well characterized sensory systems: visual information from the compound eye and gyroscopic information from the mechanosensory halteres. Extracellular recordings reveal that a subpopulation of neck motor neurons display "gating-like" behavior: they do not fire action potentials in response to visual stimuli alone but will do so if the halteres are coactivated. Intracellular recordings show that these motor neurons receive small, sustained subthreshold visual inputs in addition to larger inputs that are phase locked to haltere movements. Our results suggest that the nonlinear gating-like effect results from summation of these two inputs with the action potential threshold providing the nonlinearity. As a result of this summation, the sustained visual depolarization is transformed into a temporally structured train of action potentials synchronized to the haltere beating movements. This simple mechanism efficiently fuses two different sensory signals and may also explain the context-dependent effects of visual inputs on fly behavior.

  13. Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI

    PubMed Central

    Tomassy, Giulio Srubek; De Leonibus, Elvira; Jabaudon, Denis; Lodato, Simona; Alfano, Christian; Mele, Andrea; Macklis, Jeffrey D.; Studer, Michèle

    2010-01-01

    Transcription factors with gradients of expression in neocortical progenitors give rise to distinct motor and sensory cortical areas by controlling the area-specific differentiation of distinct neuronal subtypes. However, the molecular mechanisms underlying this area-restricted control are still unclear. Here, we show that COUP-TFI controls the timing of birth and specification of corticospinal motor neurons (CSMN) in somatosensory cortex via repression of a CSMN differentiation program. Loss of COUP-TFI function causes an area-specific premature generation of neurons with cardinal features of CSMN, which project to subcerebral structures, including the spinal cord. Concurrently, genuine CSMN differentiate imprecisely and do not project beyond the pons, together resulting in impaired skilled motor function in adult mice with cortical COUP-TFI loss-of-function. Our findings indicate that COUP-TFI exerts critical areal and temporal control over the precise differentiation of CSMN during corticogenesis, thereby enabling the area-specific functional features of motor and sensory areas to arise. PMID:20133588

  14. Nonnative SOD1 trimer is toxic to motor neurons in a model of amyotrophic lateral sclerosis

    PubMed Central

    Fee, Lanette; Tao, Yazhong; Redler, Rachel L.; Fay, James M.; Zhang, Yuliang; Lv, Zhengjian; Mercer, Ian P.; Deshmukh, Mohanish; Lyubchenko, Yuri L.; Dokholyan, Nikolay V.

    2016-01-01

    Since the linking of mutations in the Cu,Zn superoxide dismutase gene (sod1) to amyotrophic lateral sclerosis (ALS) in 1993, researchers have sought the connection between SOD1 and motor neuron death. Disease-linked mutations tend to destabilize the native dimeric structure of SOD1, and plaques containing misfolded and aggregated SOD1 have been found in the motor neurons of patients with ALS. Despite advances in understanding of ALS disease progression and SOD1 folding and stability, cytotoxic species and mechanisms remain unknown, greatly impeding the search for and design of therapeutic interventions. Here, we definitively link cytotoxicity associated with SOD1 aggregation in ALS to a nonnative trimeric SOD1 species. We develop methodology for the incorporation of low-resolution experimental data into simulations toward the structural modeling of metastable, multidomain aggregation intermediates. We apply this methodology to derive the structure of a SOD1 trimer, which we validate in vitro and in hybridized motor neurons. We show that SOD1 mutants designed to promote trimerization increase cell death. Further, we demonstrate that the cytotoxicity of the designed mutants correlates with trimer stability, providing a direct link between the presence of misfolded oligomers and neuron death. Identification of cytotoxic species is the first and critical step in elucidating the molecular etiology of ALS, and the ability to manipulate formation of these species will provide an avenue for the development of future therapeutic strategies. PMID:26719414

  15. GABA and 5-HT chitosan nanoparticles decrease striatal neuronal degeneration and motor deficits during liver injury.

    PubMed

    Shilpa, J; Paulose, C S

    2014-07-01

    The metabolic alterations resulted from hepatic injury and cell loss lead to synaptic defects and neurodegeneration that undoubtedly contribute motor deficits. In the present study, GABA and 5-HT chitosan nanoparticles mediated liver cell proliferation influenced by growth factor and cytokines and neuronal survival in corpus striatum of partially hepatectomised rats was evaluated. Liver cell proliferation was initiated and progressed by the combined effect of increased expression of growth factor, insulin like growth factor-1 and decreased expressions of cytokines, tumor necrosis factor-α and Akt-1. This was confirmed by the extent of incorporation of thymidine analogue, BrdU, in the DNA of rapidly dividing cells. Inappropriate influx of compounds to corpus striatum resulting from incomplete metabolism elevated GABAB and 5-HT2A neurotransmissions compared to those treated with nanoparticles. This directly influenced cyclic AMP response element binding protein, glial cell derived neurotrophic factor and brain derived neurotrophic factor in the corpus striatum that facilitate neurogenesis, neuronal survival, development, differentiation and neuroprotection. Motor deficits due to liver injury followed striatal neuronal damage were scored by grid walk and rotarod studies, which confirmed the regain of motor activity by GABA and 5-HT chitosan nanoparticle treatment. The present study revealed the therapeutic significance of GABA and 5-HT chitosan nanoparticles in liver based diseases and related striatal neuronal damage that influenced by GABA and 5-HT.

  16. Non-Aggregating Tau Phosphorylation by Cyclin-Dependent Kinase 5 Contributes to Motor Neuron Degeneration in Spinal Muscular Atrophy

    PubMed Central

    Miller, Nimrod; Feng, Zhihua; Edens, Brittany M.; Yang, Ben; Shi, Han; Sze, Christie C.; Hong, Benjamin Taige; Su, Susan C.; Cantu, Jorge A.; Topczewski, Jacek; Crawford, Thomas O.; Ko, Chien-Ping; Sumner, Charlotte J.; Ma, Long

    2015-01-01

    Mechanisms underlying motor neuron degeneration in spinal muscular atrophy (SMA), the leading inherited cause of infant mortality, remain largely unknown. Many studies have established the importance of hyperphosphorylation of the microtubule-associated protein tau in various neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. However, tau phosphorylation in SMA pathogenesis has yet to be investigated. Here we show that tau phosphorylation on serine 202 (S202) and threonine 205 (T205) is increased significantly in SMA motor neurons using two SMA mouse models and human SMA patient spinal cord samples. Interestingly, phosphorylated tau does not form aggregates in motor neurons or neuromuscular junctions (NMJs), even at late stages of SMA disease, distinguishing it from other tauopathies. Hyperphosphorylation of tau on S202 and T205 is mediated by cyclin-dependent kinase 5 (Cdk5) in SMA disease condition, because tau phosphorylation at these sites is significantly reduced in Cdk5 knock-out mice; genetic knock-out of Cdk5 activating subunit p35 in an SMA mouse model also leads to reduced tau phosphorylation on S202 and T205 in the SMA;p35−/− compound mutant mice. In addition, expression of the phosphorylation-deficient tauS202A,T205A mutant alleviates motor neuron defects in a zebrafish SMA model in vivo and mouse motor neuron degeneration in culture, whereas expression of phosphorylation-mimetic tauS202E,T205E promotes motor neuron defects. More importantly, genetic knock-out of tau in SMA mice rescues synapse stripping on motor neurons, NMJ denervation, and motor neuron degeneration in vivo. Altogether, our findings suggest a novel mechanism for SMA pathogenesis in which hyperphosphorylation of non-aggregating tau by Cdk5 contributes to motor neuron degeneration. PMID:25878277

  17. Alterations in the motor neuron-Renshaw cell circuit in the Sod1G93A mouse model

    PubMed Central

    Wootz, Hanna; FitzSimons-Kantamneni, Eileen; Larhammar, Martin; Rotterman, Travis M.; Enjin, Anders; Patra, Kalicharan; Andre, Elodie; van Zundert, Brigitte; Kullander, Klas; Alvarez, Francisco J.

    2012-01-01

    Motor neurons become hyperexcitable during progression of amyotrophic lateral sclerosis (ALS). This abnormal firing behavior has been explained by changes in their membrane properties, but more recently it has been suggested that changes in premotor circuits may also contribute to this abnormal activity. The specific circuits that may be altered during development of ALS have not been investigated. Here we examined the Renshaw cell recurrent circuit that exerts inhibitory feedback control on motor neuron firing. Using two markers for Renshaw cells (calbindin and Chrna2 , cholinergic nicotinic receptor subunit alpha2), two general markers for motor neurons (NeuN and VAChT, vesicular acethylcholine transporter ) and two markers for fast motor neurons (Chondrolectin and Calca, calcitonin-related polypeptide alpha), we analyzed the survival and connectivity of these cells during disease progression in the Sod1G93A mouse model. Most calbindin-immunoreactive (IR) Renshaw cells survive to end-stage but downregulate postsynaptic Chrna2 in presymptomatic animals. In motor neurons, some markers are downregulated early (NeuN, VAChT, Chondrolectin) and others at end-stage(Calca). Early downregulation of presynaptic VAChT and Chrna2 was correlated with disconnection from Renshaw cells as well as major structural abnormalities of motor axon synapses inside the spinal cord. Renshaw cell synapses on motor neurons underwent more complex changes, including transitional sprouting preferentially over remaining NeuN-IR motor neurons. We conclude that the loss of presynaptic motor axon input on Renshaw cells occurs at early stages of ALS and disconnects the recurrent inhibitory circuit, presumably resulting in a diminished control of motor neuron firing. PMID:23172249

  18. Regulation of motor patterns by the central spike-initiation zone of a sensory neuron.

    PubMed

    Daur, Nelly; Nadim, Farzan; Stein, Wolfgang

    2009-09-01

    Sensory feedback from muscles and peripheral sensors acts to initiate, tune or reshape motor activity according to the state of the body. Yet, sensory neurons often show low levels of activity even in the absence of sensory input. Here we examine the functional role of spontaneous low-frequency activity of such a sensory neuron. The anterior gastric receptor (AGR) is a muscle-tendon organ in the crab stomatogastric nervous system whose phasic activity shapes the well-characterized gastric mill (chewing) and pyloric (filtering) motor rhythms. Phasic activity is driven by a spike-initiation zone near the innervated muscle. We demonstrate that AGR possesses a second spike-initiation zone, which is located spatially distant from the innervated muscle in a central section of the axon. This initiation zone generates tonic activity and is responsible for the spontaneous activity of AGR in vivo, but does not code sensory information. Rather, it is sensitive to the neuromodulator octopamine. A computational model indicates that the activity at this initiation zone is not caused by excitatory input from another neuron, but generated intrinsically. This tonic activity is functionally relevant, because it modifies the activity state of the gastric mill motor circuit and changes the pyloric rhythm. The sensory function of AGR is not impaired as phasic activity suppresses spiking at the central initiation zone. Our results thus demonstrate that sensory neurons are not mere reporters of sensory signals. Neuromodulators can elicit non-sensory coding activity in these neurons that shapes the state of the motor system.

  19. Exploring the transitional process from receiving a diagnosis to living with motor neurone disease.

    PubMed

    Mistry, Kriten; Simpson, Jane

    2013-01-01

    Motor neurone disease (MND) is a rapidly progressing neurodegenerative condition that results in a marked reduction in life expectancy. Currently, little is known about the experiences of people after they have received this diagnosis and the effect of this on their sense of self and identity. In this study, interpretative phenomenological analysis was used to explore both the personal and lived experiences of people with MND. Seven people diagnosed with MND within the previous six months were recruited. The three themes constructed from the participants' accounts were 'Then they dropped the bomb shell'; Receiving a diagnosis of MND; 'Getting on with it'; Learning to live with MND; and 'A lot of normal life is lost'; Experiencing progressive loss. Participants described receiving a diagnosis as a devastating experience but most participants were able to accept their diagnosis and employ adaptive strategies to cope with increasing levels of functional decline. However, in spite of this, the participants experienced functional changes that affected their identity, social status and social relationships.

  20. Developmental nicotine exposure enhances inhibitory synaptic transmission in motor neurons and interneurons critical for normal breathing

    PubMed Central

    Jaiswal, Stuti J.; Wollman, Lila Buls; Harrison, Caitlyn M.; Pilarski, Jason Q.; Fregosi, Ralph F.

    2015-01-01

    Nicotine exposure in utero negatively affects neuronal growth, differentiation and synaptogenesis. We used rhythmic brainstems slices and immunohistochemistry to determine how developmental nicotine exposure (DNE) alters inhibitory neurotransmission in two regions essential to normal breathing, the hypoglossal motor nucleus (XIIn) and preBötzinger complex (preBötC). We microinjected glycine or muscimol (GABAA agonist) into the XIIn or preBötC of rhythmic brainstem slices from neonatal rats while recording from XII nerve roots to obtain XII motoneuron population activity. Injection of glycine or muscimol into the XIIn reduced XII nerve burst amplitude, while injection into the preBötC altered nerve burst frequency. These responses were exaggerated in preparations from DNE animals. Quantitative immunohistochemistry revealed a significantly higher GABAA receptor density on XII motoneurons from DNE pups. There were no differences in GABAA receptor density in the preBötC, and there were no differences in glycine receptor expression in either region. Nicotine, in the absence of other chemicals in tobacco smoke, alters normal development of brainstem circuits that are critical for normal breathing. PMID:26097160

  1. Monomelic amyotrophy (hirayama disease) with upper motor neuron signs: a case report.

    PubMed

    Yoo, Seung Don; Kim, Hee-Sang; Yun, Dong Hwan; Kim, Dong Hwan; Chon, Jinmann; Lee, Seung Ah; Lee, Sung Yong; Han, Yoo Jin

    2015-02-01

    Monomelic amyotrophy (MMA), also known as Hirayama disease, is a sporadic juvenile muscular atrophy in the distal upper extremities. This disorder rarely involves proximal upper extremities and presents minimal sensory symptoms with no upper motor neuron (UMN) signs. It is caused by anterior displacement of the posterior dural sac and compression of the cervical cord during neck flexion. An 18-year-old boy visited our clinic with a 5-year history of left upper extremity pain and slowly progressive weakness affecting the left shoulder. Atrophy was present in the left supraspinatus and infraspinatus. On neurological examination, positive UMN signs were evident in both upper and lower extremities. Electrodiagnostic study showed root lesion involving the fifth to seventh cervical segment of the cord with chronic and ongoing denervation in the fifth and sixth cervical segment innervated muscles. Cervical magnetic resonance imaging (MRI) showed asymmetric cord atrophy apparent in the left side and intramedullary high signal intensity along the fourth to sixth cervical vertebral levels. With neck flexion, cervical MRI revealed anterior displacement of posterior dural sac, which results in the cord compression of those segments. The mechanisms of myelopathy in our patient seem to be same as that of MMA. We report a MMA patient involving proximal limb with UMN signs in biomechanical concerns and discuss clinical importance of cervical MRI with neck flexion. The case highlights that clinical variation might cause misdiagnosis.

  2. Monomelic Amyotrophy (Hirayama Disease) With Upper Motor Neuron Signs: A Case Report

    PubMed Central

    Yoo, Seung Don; Kim, Hee-Sang; Yun, Dong Hwan; Kim, Dong Hwan; Chon, Jinmann; Lee, Seung Ah; Han, Yoo Jin

    2015-01-01

    Monomelic amyotrophy (MMA), also known as Hirayama disease, is a sporadic juvenile muscular atrophy in the distal upper extremities. This disorder rarely involves proximal upper extremities and presents minimal sensory symptoms with no upper motor neuron (UMN) signs. It is caused by anterior displacement of the posterior dural sac and compression of the cervical cord during neck flexion. An 18-year-old boy visited our clinic with a 5-year history of left upper extremity pain and slowly progressive weakness affecting the left shoulder. Atrophy was present in the left supraspinatus and infraspinatus. On neurological examination, positive UMN signs were evident in both upper and lower extremities. Electrodiagnostic study showed root lesion involving the fifth to seventh cervical segment of the cord with chronic and ongoing denervation in the fifth and sixth cervical segment innervated muscles. Cervical magnetic resonance imaging (MRI) showed asymmetric cord atrophy apparent in the left side and intramedullary high signal intensity along the fourth to sixth cervical vertebral levels. With neck flexion, cervical MRI revealed anterior displacement of posterior dural sac, which results in the cord compression of those segments. The mechanisms of myelopathy in our patient seem to be same as that of MMA. We report a MMA patient involving proximal limb with UMN signs in biomechanical concerns and discuss clinical importance of cervical MRI with neck flexion. The case highlights that clinical variation might cause misdiagnosis. PMID:25750881

  3. Expression of functional alternative telomerase RNA component gene in mouse brain and in motor neurons cells protects from oxidative stress

    PubMed Central

    Eitan, Erez; Tamar, Admoni; Yossi, Grin; Peleg, Refael; Braiman, Alex; Priel, Esther

    2016-01-01

    Telomerase, a ribonucleoprotein, is highly expressed and active in many tumor cells and types, therefore it is considered to be a target for anti-cancer agents. On the other hand, recent studies demonstrated that activation of telomerase is a potential therapeutic target for age related diseases. Telomerase mainly consists of a catalytic protein subunit with a reverse transcription activity (TERT) and an RNA component (TERC), a long non-coding RNA, which serves as a template for the re-elongation of telomeres by TERT. We previously showed that TERT is highly expressed in distinct neuronal cells of the mouse brain and its expression declined with age. To understand the role of telomerase in non-mitotic, fully differentiated cells such neurons we here examined the expression of the other component, TERC, in mouse brain. Surprisingly, by first using bioinformatics analysis, we identified an alternative TERC gene (alTERC) in the mouse genome. Using further experimental approaches we described the presence of a functional alTERC in the mouse brain and spleen, in cultures of motor neurons- like cells and neuroblastoma tumor cells. The alTERC is similar (87%) to mouse TERC (mTERC) with a deletion of 18 bp in the TERC conserved region 4 (CR4). This alTERC gene is expressed and its product interacts with the endogenous mTERT protein and with an exogenous human TERT protein (hTERT) to form an active enzyme. Overexpression of the alTERC and the mTERC genes, in mouse motor neurons like cells, increased the activity of TERT without affecting its protein level. Under oxidative stress conditions, alTERC significantly increased the survival of motor neurons cells without altering the level of TERT protein or its activity. The results suggest that the expression of the alTERC gene in the mouse brain provides an additional way for regulating telomerase activity under normal and stress conditions and confers protection to neuronal cells from oxidative stress. PMID:27823970

  4. Robust neuronal dynamics in premotor cortex during motor planning

    PubMed Central

    Li, Nuo; Daie, Kayvon; Svoboda, Karel; Druckmann, Shaul

    2016-01-01

    Neural activity maintains representations that bridge past and future events, often over many seconds. Network models can produce persistent and ramping activity, but the positive feedback that is critical for these slow dynamics can cause sensitivity to perturbations. Here we use electrophysiology and optogenetic perturbations in mouse premotor cortex to probe robustness of persistent neural representations during motor planning. Preparatory activity is remarkably robust to large-scale unilateral silencing: detailed neural dynamics that drive specific future movements were quickly and selectively restored by the network. Selectivity did not recover after bilateral silencing of premotor cortex. Perturbations to one hemisphere are thus corrected by information from the other hemisphere. Corpus callosum bisections demonstrated that premotor cortex hemispheres can maintain preparatory activity independently. Redundancy across selectively coupled modules, as we observed in premotor cortex, is a hallmark of robust control systems. Network models incorporating these principles show robustness that is consistent with data. PMID:27074502

  5. Triheptanoin Protects Motor Neurons and Delays the Onset of Motor Symptoms in a Mouse Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    Barkl-Luke, Mallory E.; Ngo, Shyuan T.; Thomas, Nicola K.; McDonald, Tanya S.; Borges, Karin

    2016-01-01

    There is increasing evidence that energy metabolism is disturbed in Amyotrophic Lateral Sclerosis (ALS) patients and animal models. Treatment with triheptanoin, the triglyceride of heptanoate, is a promising approach to provide alternative fuel to improve oxidative phosphorylation and aid ATP generation. Heptanoate can be metabolized to propionyl-CoA, which after carboxylation can produce succinyl-CoA and thereby re-fill the tricarboxylic acid (TCA) cycle (anaplerosis). Here we tested the hypothesis that treatment with triheptanoin prevents motor neuron loss and delays the onset of disease symptoms in female mice overexpressing the mutant human SOD1G93A (hSOD1G93A) gene. When oral triheptanoin (35% of caloric content) was initiated at P35, motor neuron loss at 70 days of age was attenuated by 33%. In untreated hSOD1G93A mice, the loss of hind limb grip strength began at 16.7 weeks. Triheptanoin maintained hind limb grip strength for 2.8 weeks longer (p<0.01). Loss of balance on the rotarod and reduction of body weight were delayed by 13 and 11 days respectively (both p<0.01). Improved motor function occurred in parallel with alterations in the expression of genes associated with muscle metabolism. In gastrocnemius muscles, the mRNA levels of pyruvate, 2-oxoglutarate and succinate dehydrogenases and methyl-malonyl mutase were reduced by 24–33% in 10 week old hSOD1G93A mice when compared to wild-type mice, suggesting that TCA cycling in skeletal muscle may be slowed in this ALS mouse model at a stage when muscle strength is still normal. At 25 weeks of age, mRNA levels of succinate dehydrogenases, glutamic pyruvic transaminase 2 and the propionyl carboxylase β subunit were reduced by 69–84% in control, but not in triheptanoin treated hSOD1G93A animals. Taken together, our results suggest that triheptanoin slows motor neuron loss and the onset of motor symptoms in ALS mice by improving TCA cycling. PMID:27564703

  6. Process Extension from Embryonic Stem Cell-Derived Motor Neurons through Synthetic Extracellular Matrix Mimics

    NASA Astrophysics Data System (ADS)

    McKinnon, Daniel Devaud

    This thesis focuses on studying the extension of motor axons through synthetic poly(ethylene glycol) PEG hydrogels that have been modified with biochemical functionalities to render them more biologically relevant. Specifically, the research strategy is to encapsulate embryonic stem cell-derived motor neurons (ESMNs) in synthetic PEG hydrogels crosslinked through three different chemistries providing three mechanisms for dynamically tuning material properties. First, a covalently crosslinked, enzymatically degradable hydrogel is developed and exploited to study the biophysical dynamics of axon extension and matrix remodeling. It is demonstrated that dispersed motor neurons require a battery of adhesive peptides and growth factors to maintain viability and extend axons while those in contact with supportive neuroglial cells do not. Additionally, cell-degradable crosslinker peptides and a soft modulus mimicking that of the spinal cord are requirements for axon extension. However, because local degradation of the hydrogel results in a cellular environment significantly different than that of the bulk, enzymatically degradable peptide crosslinkers were replaced with reversible covalent hydrazone bonds to study the effect of hydrogel modulus on axon extension. This material is characterized in detail and used to measure forces involved in axon extension. Finally, a hydrogel with photocleavable linkers incorporated into the network structure is exploited to explore motor axon response to physical channels. This system is used to direct the growth of motor axons towards co-cultured myotubes, resulting in the formation of an in vitro neural circuit.

  7. [Neuronal mechanisms of motor signal transmission in thalamic Voi nucleus in spasmodic torticollis patients].

    PubMed

    Sedov, A S; Raeva, S N; Pavlenko, V B

    2014-01-01

    Neural mechanisms of motor signal transmission in ventrooral (Voi) nucleus of motor thalamus during the realization-of voluntary and involuntary abnormal (dystonic) movements in patients with spasmodic torticollis were investigated by means of microelectrode technique. The high reactivity of the cellular Voi elements to various functional (mainly motor) tests was proved. Analysis of neuronal activity showed: (1) the difference of neural mechanisms of motor signal transmission in the realization of voluntary movement with and without the involvement of the pathological axial neck muscles, as well as passive and abnormal involuntary dystonic movements; (2) significance of sensory component in the mechanisms of sensorimotor interactions during realization of voluntary and involuntary dystonic head and neck movements, causing the activation of the axial neck muscles; (3) important role of the rhythmic and synchronized neuronal activity in motor signal transmission during the realization of active and passive movements. Participation of Voi nucleus in pathological mechanisms of spasmodic torticollis was shown. The data obtained can be used for identificatiori of Voi thalamic nucleus during stereotactic neurosurgical operations in patients with spasmodic torticollis for selection the optimum destruction (stimulation) target and reduction of postoperative effects.

  8. Development and Maturation of Embryonic Cortical Neurons Grafted into the Damaged Adult Motor Cortex

    PubMed Central

    Ballout, Nissrine; Frappé, Isabelle; Péron, Sophie; Jaber, Mohamed; Zibara, Kazem; Gaillard, Afsaneh

    2016-01-01

    Injury to the human central nervous system can lead to devastating consequences due to its poor ability to self-repair. Neural transplantation aimed at replacing lost neurons and restore functional circuitry has proven to be a promising therapeutical avenue. We previously reported in adult rodent animal models with cortical lesions that grafted fetal cortical neurons could effectively re-establish specific patterns of projections and synapses. The current study was designed to provide a detailed characterization of the spatio-temporal in vivo development of fetal cortical transplanted cells within the lesioned adult motor cortex and their corresponding axonal projections. We show here that as early as 2 weeks after grafting, cortical neuroblasts transplanted into damaged adult motor cortex developed appropriate projections to cortical and subcortical targets. Grafted cells initially exhibited characteristics of immature neurons, which then differentiated into mature neurons with appropriate cortical phenotypes where most were glutamatergic and few were GABAergic. All cortical subtypes identified with the specific markers CTIP2, Cux1, FOXP2, and Tbr1 were generated after grafting as evidenced with BrdU co-labeling. The set of data provided here is of interest as it sets biological standards for future studies aimed at replacing fetal cells with embryonic stem cells as a source of cortical neurons. PMID:27536221

  9. Beadex function in the motor neurons is essential for female reproduction in Drosophila melanogaster.

    PubMed

    Kairamkonda, Subhash; Nongthomba, Upendra

    2014-01-01

    Drosophila melanogaster has served as an excellent model system for understanding the neuronal circuits and molecular mechanisms regulating complex behaviors. The Drosophila female reproductive circuits, in particular, are well studied and can be used as a tool to understand the role of novel genes in neuronal function in general and female reproduction in particular. In the present study, the role of Beadex, a transcription co-activator, in Drosophila female reproduction was assessed by generation of mutant and knock down studies. Null allele of Beadex was generated by transposase induced excision of P-element present within an intron of Beadex gene. The mutant showed highly compromised reproductive abilities as evaluated by reduced fecundity and fertility, abnormal oviposition and more importantly, the failure of sperm release from storage organs. However, no defect was found in the overall ovariole development. Tissue specific, targeted knock down of Beadex indicated that its function in neurons is important for efficient female reproduction, since its neuronal knock down led to compromised female reproductive abilities, similar to Beadex null females. Further, different neuronal class specific knock down studies revealed that Beadex function is required in motor neurons for normal fecundity and fertility of females. Thus, the present study attributes a novel and essential role for Beadex in female reproduction through neurons.

  10. Copy Number Variations in the Survival Motor Neuron Genes: Implications for Spinal Muscular Atrophy and Other Neurodegenerative Diseases

    PubMed Central

    Butchbach, Matthew E. R.

    2016-01-01

    Proximal spinal muscular atrophy (SMA), a leading genetic cause of infant death worldwide, is an early-onset, autosomal recessive neurodegenerative disease characterized by the loss of spinal α-motor neurons. This loss of α-motor neurons is associated with muscle weakness and atrophy. SMA can be classified into five clinical grades based on age of onset and severity of the disease. Regardless of clinical grade, proximal SMA results from the loss or mutation of SMN1 (survival motor neuron 1) on chromosome 5q13. In humans a large tandem chromosomal duplication has lead to a second copy of the SMN gene locus known as SMN2. SMN2 is distinguishable from SMN1 by a single nucleotide difference that disrupts an exonic splice enhancer in exon 7. As a result, most of SMN2 mRNAs lack exon 7 (SMNΔ7) and produce a protein that is both unstable and less than fully functional. Although only 10–20% of the SMN2 gene product is fully functional, increased genomic copies of SMN2 inversely correlates with disease severity among individuals with SMA. Because SMN2 copy number influences disease severity in SMA, there is prognostic value in accurate measurement of SMN2 copy number from patients being evaluated for SMA. This prognostic value is especially important given that SMN2 copy number is now being used as an inclusion criterion for SMA clinical trials. In addition to SMA, copy number variations (CNVs) in the SMN genes can affect the clinical severity of other neurological disorders including amyotrophic lateral sclerosis (ALS) and progressive muscular atrophy (PMA). This review will discuss how SMN1 and SMN2 CNVs are detected and why accurate measurement of SMN1 and SMN2 copy numbers is relevant for SMA and other neurodegenerative diseases. PMID:27014701

  11. Assessment of motor neuron excitability in parkinsonian rigidity by the F wave.

    PubMed

    Abbruzzese, G; Vische, M; Ratto, S; Abbruzzese, M; Favale, E

    1985-01-01

    F-wave responses from abductor pollicis brevis muscle occurred more frequently, with a larger amplitude and longer duration in rigid parkinsonian patients than in age-matched normal controls. F-wave potentiation during voluntary contraction was impaired in parkinsonian patients. These findings suggest that spinal motor neuron excitability is enhanced in rigidity. F-wave amplitude was significantly correlated to the clinical evaluation of motor disability, so that the F wave may be regarded as a useful approach to quantitative evaluation of rigidity.

  12. Motor Neuron Activation in Peripheral Nerves Using Infrared Neural Stimulation

    PubMed Central

    Peterson, EJ; Tyler, DJ

    2014-01-01

    Objective Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach The rabbit sciatic nerve was stimulated extraneurally with 1875 nm-wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results 81% of nerves tested were sensitive to INS, with 1.7± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2–9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance The observed selectivity of INS indicates it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS. PMID:24310923

  13. Motor neuron activation in peripheral nerves using infrared neural stimulation

    NASA Astrophysics Data System (ADS)

    Peterson, E. J.; Tyler, D. J.

    2014-02-01

    Objective. Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach. The rabbit sciatic nerve was stimulated extraneurally with 1875 nm wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results. 81% of nerves tested were sensitive to INS, with 1.7 ± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2-9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance. The observed selectivity of INS indicates that it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS.

  14. Techniques for studying protein trafficking and molecular motors in neurons

    PubMed Central

    Feng, Shanxi; Arnold, Don B.

    2016-01-01

    This review focuses on techniques that facilitate the visualization of protein trafficking. In the mid-1990’s the cloning of GFP allowed fluorescently tagged proteins to be expressed in cells and then visualized in real time. This advance allowed a glimpse, for the first time, of the complex system within cells for distributing proteins. It quickly became apparent, however, that time-lapse sequences of exogenously expressed GFP-labeled proteins can be difficult to interpret. Reasons for this include the relatively low signal that comes from moving proteins and high background rates from stationary proteins and other sources, as well as the difficulty of identifying the origins and destinations of specific vesicular carriers. In this review we will examine a range of techniques that have overcome these issues to varying degrees and discuss the insights into protein trafficking that they have enabled. We will concentrate on neurons, as they are highly polarized and, thus, their trafficking systems tend to be accessible for study. PMID:26800506

  15. Effect of a nonspiking neuron on motor patterns of the leech.

    PubMed

    Rodriguez, Mariano J; Alvarez, Rodrigo J; Szczupak, Lidia

    2012-04-01

    Premotor and motoneurons could play regulatory roles in motor control. We have investigated the role of a premotor nonspiking (NS) neuron of the leech nervous system in two locomotive patterns: swimming and crawling. The NS neuron is coupled through rectifying electrical junctions to all the excitatory motoneurons examined. In addition, activation of motoneurons evokes chemically mediated inhibitory responses in NS. During swimming and crawling, the NS membrane potential (Vm(NS)) oscillated phase locked to the motor output. Hyperpolarization or depolarization of NS had no effect on swimming, but hyperpolarization of NS slowed down the crawling activity and decreased the motoneuron firing frequency. Depolarization of NS increased the motoneuron activity, and, at stages where the crawling pattern was fading, depolarization of NS reinstated it. Future work should determine if NS is actually a member of the central pattern generator or a regulatory element.

  16. Recommendations to support informal carers of people living with motor neurone disease.

    PubMed

    Bergin, Susan; Mockford, Carole

    2016-10-02

    Informal carers are increasingly providing specialist care at home for people living with motor neurone disease. The carers may experience significant deterioration in their quality of life as a result of the physical and psychological burden they undertake. This systematic review seeks to provide evidence-based recommendations to enable healthcare professionals to support carers appropriately to maintain their wellbeing and to continue providing care at home. Inclusion criteria included articles focusing on the experience of informal carers of people with motor neurone disease, particularly when reporting on their perspective of professional services. Twenty-three studies were included and a thematic analysis was undertaken. Four key recommendations were identified: providing support, early access to palliative care, information regarding availability of services, and offering carers training for using specialist equipment. These recommendations offer healthcare professionals practical, cost-effective suggestions to improve existing services.

  17. Multiplexing of Motor Information in the Discharge of a Collision Detecting Neuron during Escape Behaviors

    PubMed Central

    Fotowat, Haleh; Harrison, Reid R; Gabbiani, Fabrizio

    2010-01-01

    Locusts possess an identified neuron, the descending contralateral movement detector (DCMD), conveying visual information about impending collision from the brain to thoracic motor centers. We built a telemetry system to simultaneously record, in freely behaving animals, the activity of the DCMD and of motoneurons involved in jump execution. Co-contraction of antagonistic leg muscles, a required preparatory phase, was triggered after the DCMD firing rate crossed a threshold. Thereafter, the number of DCMD spikes predicted precisely motoneuron activity and jump occurrence. Additionally, the time of DCMD peak firing rate predicted that of jump. Ablation experiments suggest that the DCMD, together with a nearly identical ipsilateral descending neuron, is responsible for the timely execution of the escape. Thus, three distinct features that are multiplexed in a single neuron’s sensory response to impending collision – firing rate threshold, peak firing time, and spike count – likely control three distinct motor aspects of escape behaviors. PMID:21220105

  18. Motor neurons in Drosophila flight control: could b1 be the one?

    NASA Astrophysics Data System (ADS)

    Whitehead, Samuel; Shirangi, Troy; Cohen, Itai

    Similar to balancing a stick on one's fingertip, flapping flight is inherently unstable; maintaining stability is a delicate balancing act made possible only by near-constant, often-subtle corrective actions. For fruit flies, such corrective responses need not only be robust, but also fast: the Drosophila flight control reflex has a response latency time of ~5 ms, ranking it among the fastest reflexes in the animal kingdom. How is such rapid, robust control implemented physiologically? Here we present an analysis of a putatively crucial component of the Drosophila flight control circuit: the b1 motor neuron. Specifically, we apply mechanical perturbations to freely-flying Drosophila and analyze the differences in kinematics patterns between flies with manipulated and un-manipulated b1 motor neurons. Ultimately, we hope to identify the functional role of b1 in flight stabilization, with the aim of linking it to previously-proposed, reduced-order models for reflexive control.

  19. Allosteric modulation by benzodiazepines of GABA-gated chloride channels of an identified insect motor neurone.

    PubMed

    Buckingham, Steven D; Higashino, Yoshiaki; Sattelle, David B

    2009-11-01

    The actions of benzodiazepines were studied on the responses to GABA of the fast coxal depressor (D(f)) motor neurone of the cockroach, Periplaneta americana. Ro5-4864, diazepam and clonazepam were investigated. Responses to GABA receptors were enhanced by both Ro5-4864 and diazepam, whereas clonazepam, a potent-positive allosteric modulator of human GABA(A) receptors, was ineffective on the native insect GABA receptors of the D(f) motor neurone. Thus, clear pharmacological differences exist between insect and mammalian native GABA-gated chloride channels with respect to the actions of benzodiazepines. The results enhance our understanding of invertebrate GABA-gated chloride channels which have recently proved important in (a) comparative studies aimed at identifying human allosteric drug-binding sites and (b) understanding the actions of compounds used to control ectoparasites and insect crop pests.

  20. BMP4 is a peripherally-derived factor for motor neurons and attenuates glutamate-induced excitotoxicity in vitro.

    PubMed

    Chou, Hui-Ju; Lai, Dar-Ming; Huang, Cheng-Wen; McLennan, Ian S; Wang, Horng-Dar; Wang, Pei-Yu

    2013-01-01

    Bone morphogenetic proteins (BMPs), members of the transforming growth factor-beta (TGF-β) superfamily, have been shown to play important roles in the nervous system, including neuronal survival and synaptogenesis. However, the physiological functions of BMP signaling in the mammalian neuromuscular system are not well understood. In this study, we found that proteins of the type II bone morphogenetic receptors (BMPRII) were detected at the neuromuscular junction (NMJ), and one of its ligands, BMP4, was expressed by Schwann cells and skeletal muscle fibers. In double-ligated nerves, BMP4 proteins accumulated at the proximal and distal portions of the axons, suggesting that Schwann cell- and muscle fiber-derived BMP4 proteins were anterogradely and retrogradely transported by motor neurons. Furthermore, BMP4 mRNA was down-regulated in nerves but up-regulated in skeletal muscles following nerve ligation. The motor neuron-muscle interactions were also demonstrated using differentiated C2C12 muscle cells and NG108-15 neurons in vitro. BMP4 mRNA and immunoreactivity were significantly up-regulated in differentiated C2C12 muscle cells when the motor neuron-derived factor, agrin, was present in the culture. Peripherally-derived BMP4, on the other hand, promotes embryonic motor neuron survival and protects NG108-15 neurons from glutamate-induced excitotoxicity. Together, these data suggest that BMP4 is a peripherally-derived factor that may regulate the survival of motor neurons.

  1. Contribution of LFP dynamics to single-neuron spiking variability in motor cortex during movement execution

    PubMed Central

    Rule, Michael E.; Vargas-Irwin, Carlos; Donoghue, John P.; Truccolo, Wilson

    2015-01-01

    Understanding the sources of variability in single-neuron spiking responses is an important open problem for the theory of neural coding. This variability is thought to result primarily from spontaneous collective dynamics in neuronal networks. Here, we investigate how well collective dynamics reflected in motor cortex local field potentials (LFPs) can account for spiking variability during motor behavior. Neural activity was recorded via microelectrode arrays implanted in ventral and dorsal premotor and primary motor cortices of non-human primates performing naturalistic 3-D reaching and grasping actions. Point process models were used to quantify how well LFP features accounted for spiking variability not explained by the measured 3-D reach and grasp kinematics. LFP features included the instantaneous magnitude, phase and analytic-signal components of narrow band-pass filtered (δ,θ,α,β) LFPs, and analytic signal and amplitude envelope features in higher-frequency bands. Multiband LFP features predicted single-neuron spiking (1ms resolution) with substantial accuracy as assessed via ROC analysis. Notably, however, models including both LFP and kinematics features displayed marginal improvement over kinematics-only models. Furthermore, the small predictive information added by LFP features to kinematic models was redundant to information available in fast-timescale (<100 ms) spiking history. Overall, information in multiband LFP features, although predictive of single-neuron spiking during movement execution, was redundant to information available in movement parameters and spiking history. Our findings suggest that, during movement execution, collective dynamics reflected in motor cortex LFPs primarily relate to sensorimotor processes directly controlling movement output, adding little explanatory power to variability not accounted by movement parameters. PMID:26157365

  2. Mitochondrial dysfunction and death in motor neurons exposed to the glutathione-depleting agent ethacrynic acid.

    PubMed

    Rizzardini, M; Lupi, M; Bernasconi, S; Mangolini, A; Cantoni, L

    2003-03-15

    This study investigated the mechanisms of toxicity of glutathione (GSH) depletion in one cell type, the motor neuron. Ethacrynic acid (EA) (100 microM) was added to immortalized mouse motor neurons (NSC-34) to deplete both cytosolic and mitochondrial glutathione rapidly. This caused a drop in GSH to 25% of the initial level in 1 h and complete loss in 4 h. This effect was accompanied by enhanced generation of reactive oxygen species (ROS) with a peak after 2 h of exposure, and by signs of mitochondrial dysfunction such as a decrease in 3-(4,5-dimethyl-2-thiazoyl)-2,5-diphenyltetrazolium bromide (MTT) (30% less after 4 h). The increase in ROS and the MTT reduction were both EA concentration-dependent. Expression of heme oxygenase-1 (HO-1), a marker of oxidative stress, also increased. The mitochondrial damage was monitored by measuring the mitochondrial membrane potential (MMP) from the uptake of rhodamine 123 into mitochondria. MMP dropped (20%) after only 1 h exposure to EA, and slowly continued to decline until 3 h, with a steep drop at 5 h (50% decrease), i.e. after the complete GSH loss. Quantification of DNA fragmentation by the TUNEL technique showed that the proportion of cells with fragmented nuclei rose from 10% after 5 h EA exposure to about 65% at 18 h. These results indicate that EA-induced GSH depletion rapidly impairs the mitochondrial function of motor neurons, and this precedes cell death. This experimental model of oxidative toxicity could be useful to study mechanisms of diseases like spinal cord injury (SCI) and amyotrophic lateral sclerosis (ALS), where motor neurons are the vulnerable population and oxidative stress has a pathogenic role.

  3. Assisting patients with motor neurone disease to make decisions about their care.

    PubMed

    Gale, Caroline

    2015-05-01

    Motor neurone disease (MND), is a progressive terminal illness affecting the central nervous system, causing paralysis of the muscles affecting limb movement, breathing and bulbar function, with an average life expectancy of 2-4 years. Patients are presented with repeated loss and the constant need to make adjustments to their lifestyle and expectations. Within palliative care there has been a move to formalise planning by undertaking advance care planning, giving the patient the opportunity to plan whether they would consider medical interventions and how they would like their care and death to be managed. There are now a multitude of forms and documents to complete if the patient is willing to do so. Advance care planning may not be something all patients wish to embrace, and this poses the question of whether there are cases where the repeated demand to think forward to a time when further losses are experienced is serving the agenda of the health professional at the expense of the patient. Nevertheless, health professionals might be concerned that a delay in decision making could impact on the patient's future care. There is potential for conflict between the wish of the patient--to remain focused on the positive--and the health professional's perception of the benefits of completing an advance care plan or discussing interventions which, if persued, might lead to a breakdown of the therapeutic relationship. A more flexible approach, focusing on the agenda set by the patient, underpinned by a therapeutic and trusting relationship, can avoid distress for the patient, while ensuring good care and the best outcome for the patient.

  4. Known and unexpected constraints evoke different kinematic, muscle, and motor cortical neuron responses during locomotion.

    PubMed

    Stout, Erik E; Sirota, Mikhail G; Beloozerova, Irina N

    2015-11-01

    During navigation through complex natural environments, people and animals must adapt their movements when the environment changes. The neural mechanisms of such adaptations are poorly understood, especially with respect to constraints that are unexpected and must be adapted to quickly. In this study, we recorded forelimb-related kinematics, muscle activity, and the activity of motor cortical neurons in cats walking along a raised horizontal ladder, a complex locomotion task requiring accurate limb placement. One of the crosspieces was motorized, and displaced before the cat stepped on the ladder or at different points along the cat's progression over the ladder, either towards or away from the cat. We found that, when the crosspiece was displaced before the cat stepped onto the ladder, the kinematic modifications were complex and involved all forelimb joints. When the crosspiece displaced unexpectedly while the cat was on the ladder, the kinematic modifications were minimalistic and primarily involved distal joints. The activity of M. triceps and M. extensor digitorum communis differed based on the direction of displacement. Out of 151 neurons tested, 69% responded to at least one condition; however, neurons were significantly more likely to respond when crosspiece displacement was unexpected. Most often they responded during the swing phase. These results suggest that different neural mechanisms and motor control strategies are used to overcome constraints for locomotor movements depending on whether they are known or emerge unexpectedly.

  5. Accuracy of regenerating motor neurons: influence of diffusion in denervated nerve.

    PubMed

    Madison, R D; Robinson, G A

    2014-07-25

    Following injury to a peripheral nerve the denervated distal nerve segment undergoes remarkable changes including loss of the blood-nerve barrier, Schwann cell proliferation, macrophage invasion, and the production of many cytokines and neurotrophic factors. The aggregate consequence of such changes is that the denervated nerve becomes a permissive and even preferred target for regenerating axons from the proximal nerve segment. The possible role that an original end-organ target (e.g. muscle) may play in this phenomenon during the regeneration period is largely unexplored. We used the rat femoral nerve as an in vivo model to begin to address this question. We also examined the effects of disrupting communication with muscle in terms of accuracy of regenerating motor neurons as judged by their ability to correctly project to their original terminal nerve branch. Our results demonstrate that the accuracy of regenerating motor neurons is dependent upon the denervated nerve segment remaining in uninterrupted continuity with muscle. We hypothesized that this influence of muscle on the denervated nerve might be via diffusion-driven movement of biomolecules or the active axonal transport that continues in severed axons for several days in the rat, so we devised experiments to separate these two possibilities. Our data show that disrupting ongoing diffusion-driven movement in a denervated nerve significantly reduces the accuracy of regenerating motor neurons.

  6. Small GSK-3 Inhibitor Shows Efficacy in a Motor Neuron Disease Murine Model Modulating Autophagy

    PubMed Central

    de Munck, Estefanía; Palomo, Valle; Muñoz-Sáez, Emma; Perez, Daniel I.; Gómez-Miguel, Begoña; Solas, M. Teresa; Gil, Carmen; Martínez, Ana; Arahuetes, Rosa M.

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron degenerative disease that has no effective treatment up to date. Drug discovery tasks have been hampered due to the lack of knowledge in its molecular etiology together with the limited animal models for research. Recently, a motor neuron disease animal model has been developed using β-N-methylamino-L-alanine (L-BMAA), a neurotoxic amino acid related to the appearing of ALS. In the present work, the neuroprotective role of VP2.51, a small heterocyclic GSK-3 inhibitor, is analysed in this novel murine model together with the analysis of autophagy. VP2.51 daily administration for two weeks, starting the first day after L-BMAA treatment, leads to total recovery of neurological symptoms and prevents the activation of autophagic processes in rats. These results show that the L-BMAA murine model can be used to test the efficacy of new drugs. In addition, the results confirm the therapeutic potential of GSK-3 inhibitors, and specially VP2.51, for the disease-modifying future treatment of motor neuron disorders like ALS. PMID:27631495

  7. A Screen for Regulators of Survival of Motor Neuron Protein Levels

    PubMed Central

    Makhortova, Nina R.; Hayhurst, Monica; Cerqueira, Antonio; Sinor-Anderson, Amy D.; Zhao, Wen-Ning; Heiser, Patrick W.; Arvanites, Anthony C.; Davidow, Lance S.; Waldon, Zachary O.; Steen, Judith A.; Lam, Kelvin; Ngo, Hien D.; Rubin, Lee L.

    2011-01-01

    The motor neuron disease Spinal Muscular Atrophy (SMA) results from mutations that lead to low levels of the ubiquitously expressed protein Survival of Motor Neuron (SMN). Ever-increasing data suggest that therapeutics that elevate SMN may be effective in treating SMA. We executed an image-based screen of annotated chemical libraries and discovered multiple classes of compounds that were able to increase cellular SMN. Among the most important was the RTK/PI3K/AKT/GSK-3 signaling cascade. Chemical inhibitors of GSK-3, as well as shRNAs directed against this target, elevate SMN levels primarily by stabilizing the protein. Of particular significance is that GSK-3 chemical inhibitors were also effective in motor neurons, not only in elevating SMN levels, but also in blocking the death that was produced when SMN was acutely reduced by a SMN-specific shRNA. Thus, we have established a screen capable of detecting drug-like compounds that correct the main phenotypic change that underlies SMA. PMID:21685895

  8. Small GSK-3 Inhibitor Shows Efficacy in a Motor Neuron Disease Murine Model Modulating Autophagy.

    PubMed

    de Munck, Estefanía; Palomo, Valle; Muñoz-Sáez, Emma; Perez, Daniel I; Gómez-Miguel, Begoña; Solas, M Teresa; Gil, Carmen; Martínez, Ana; Arahuetes, Rosa M

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron degenerative disease that has no effective treatment up to date. Drug discovery tasks have been hampered due to the lack of knowledge in its molecular etiology together with the limited animal models for research. Recently, a motor neuron disease animal model has been developed using β-N-methylamino-L-alanine (L-BMAA), a neurotoxic amino acid related to the appearing of ALS. In the present work, the neuroprotective role of VP2.51, a small heterocyclic GSK-3 inhibitor, is analysed in this novel murine model together with the analysis of autophagy. VP2.51 daily administration for two weeks, starting the first day after L-BMAA treatment, leads to total recovery of neurological symptoms and prevents the activation of autophagic processes in rats. These results show that the L-BMAA murine model can be used to test the efficacy of new drugs. In addition, the results confirm the therapeutic potential of GSK-3 inhibitors, and specially VP2.51, for the disease-modifying future treatment of motor neuron disorders like ALS.

  9. Parallel changes in cortical neuron biochemistry and motor function in protein-energy malnourished adult rats.

    PubMed

    Alaverdashvili, Mariam; Hackett, Mark J; Caine, Sally; Paterson, Phyllis G

    2017-04-01

    While protein-energy malnutrition in the adult has been reported to induce motor abnormalities and exaggerate motor deficits caused by stroke, it is not known if alterations in mature cortical neurons contribute to the functional deficits. Therefore, we explored if PEM in adult rats provoked changes in the biochemical profile of neurons in the forelimb and hindlimb regions of the motor cortex. Fourier transform infrared spectroscopic imaging using a synchrotron generated light source revealed for the first time altered lipid composition in neurons and subcellular domains (cytosol and nuclei) in a cortical layer and region-specific manner. This change measured by the area under the curve of the δ(CH2) band may indicate modifications in membrane fluidity. These PEM-induced biochemical changes were associated with the development of abnormalities in forelimb use and posture. The findings of this study provide a mechanism by which PEM, if not treated, could exacerbate the course of various neurological disorders and diminish treatment efficacy.

  10. Grasping synergies: A motor-control approach to the mirror neuron mechanism

    NASA Astrophysics Data System (ADS)

    D'Ausilio, Alessandro; Bartoli, Eleonora; Maffongelli, Laura

    2015-03-01

    The discovery of mirror neurons revived interest in motor theories of perception, fostering a number of new studies as well as controversies. In particular, the degree of motor specificity with which others' actions are simulated is highly debated. Human corticospinal excitability studies support the conjecture that a mirror mechanism encodes object-directed goals or low-level kinematic features of others' reaching and grasping actions. These interpretations lead to different experimental predictions and implications for the functional role of the simulation of others' actions. We propose that the representational granularity of the mirror mechanism cannot be any different from that of the motor system during action execution. Hence, drawing from motor control models, we propose that the building blocks of the mirror mechanism are the relatively few motor synergies explaining the variety of hand functions. The recognition of these synergies, from action observation, can be potentially very robust to visual noise and thus demonstrate a clear advantage of using motor knowledge for classifying others' action.

  11. Clinical characteristics affecting motor recovery and ambulation in stroke patients

    PubMed Central

    Yetisgin, Alparslan

    2017-01-01

    [Purpose] To describe the clinical characteristics affecting motor recovery and ambulation in stroke patients. [Subjects and Methods] Demographic and clinical characteristics of 53 stroke patients (31 M, 22 F), such as age, gender, etiology, hemiplegic side, Brunnstrom stage, functional ambulation scale scores, history of rehabilitation, and presence of shoulder pain and complex regional pain syndrome were evaluated. [Results] The etiology was ischemic in 79.2% of patients and hemorrhagic in 20.8%. Brunnstrom hand and upper extremity values in females were lower than in males. Complex regional pain syndrome was observed at a level of 18.9% in all patients (more common in females). Brunnstrom hand stage was lower in complex regional pain syndrome patients than in those without the syndrome. Shoulder pain was present in 44.4% of patients. Brunnstrom lower extremity values and functional ambulation scale scores were higher in rehabilitated than in non-rehabilitated cases. [Conclusion] Brunnstrom stages of hand and upper extremity were lower and complex regional pain syndrome was more common in female stroke patients. Shoulder pain and lower Brunnstrom hand stages were related to the presence of complex regional pain syndrome. PMID:28265142

  12. Primary motor cortex of the parkinsonian monkey: altered neuronal responses to muscle stretch

    PubMed Central

    Pasquereau, Benjamin; Turner, Robert S.

    2013-01-01

    Exaggeration of the long-latency stretch reflex (LLSR) is a characteristic neurophysiologic feature of Parkinson's disease (PD) that contributes to parkinsonian rigidity. To explore one frequently-hypothesized mechanism, we studied the effects of fast muscle stretches on neuronal activity in the macaque primary motor cortex (M1) before and after the induction of parkinsonism by unilateral administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We compared results from the general population of M1 neurons and two antidromically-identified subpopulations: distant-projecting pyramidal-tract type neurons (PTNs) and intra-telecenphalic-type corticostriatal neurons (CSNs). Rapid rotations of elbow or wrist joints evoked short-latency responses in 62% of arm-related M1 neurons. As in PD, the late electromyographic responses that constitute the LLSR were enhanced following MPTP. This was accompanied by a shortening of M1 neuronal response latencies and a degradation of directional selectivity, but surprisingly, no increase in single unit response magnitudes. The results suggest that parkinsonism alters the timing and specificity of M1 responses to muscle stretch. Observation of an exaggerated LLSR with no change in the magnitude of proprioceptive responses in M1 is consistent with the idea that the increase in LLSR gain that contributes to parkinsonian rigidity is localized to the spinal cord. PMID:24324412

  13. [The neuronal level of motor activity: determination of motor cortex excitability by TMS].

    PubMed

    Eichhammer, Peter; Langguth, Berthold; Müller, Jürgen; Hajak, Göran

    2005-04-01

    Transcranial magnetic stimulation as mapping method offers the possibility to measure aspects of motor cortex excitability painlessly and non-invasively. Using this neurophysiological tool, new insights into the effects of central-acting drugs are possible. Particularly striking seems to be the potential of this approach to gain new insights into neurobiological processes associated with neuropsychiatric diseases like schizophrenia or major depression. In combination with genetic aspects, TMS is able to bridge the gap between molecular research and clinical approach.

  14. [Quality of neuronal signal registered in the monkey motor cortex with chronically implanted multiple microwires].

    PubMed

    Bondar', I V; Vasil'eva, L N; Badakva, A M; Miller, N V; Zobova, L N; Roshchin, V Iu

    2014-01-01

    Disconnection of central and peripheral parts of motor system leads to severe forms of disability. However, current research of brain-computer interfaces will solve the problem of rehabilitation of patients with motor disorders in future. Chronic recordings of single-unit activity in specialized areas of cerebral cortex could provide appropriate control signal for effectors with multiple degrees of freedom. In present article we evaluated the quality of chronic single-unit recordings in the primary motor cortex of awake behaving monkeys obtained with bundles of multiple microwires. Action potentials of proper quality were recorded from single units during three months. In some cases up to 7 single units could be extracted on a channel. Recording quality stabilized after 40 days since electrodes were implanted. Ultimately, functionality of multiple electrodes bundle makes it highly usable and reliable instrument for obtaining of control neurophysiologic signal from populations of neurons for brain-computer interfaces.

  15. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with C9ORF72 repeat expansion

    PubMed Central

    Sareen, D.; O’Rourke, J. G.; Meera, P.; Muhammad, A.K.M.G.; Grant, S.; Simpkinson, M.; Bell, S.; Carmona, S.; Ornelas, L.; Sahabian, A.; Gendron, T.; Petrucelli, L.; Baughn, M.; Ravits, J.; Harms, M. B.; Rigo, F.; Bennett, C. F.; Otis, T. S.; Svendsen, C. N.; Baloh, R. H.

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative condition characterized by loss of motor neurons in the brain and spinal cord. Expansions of a hexanucleotide repeat (GGGGCC) in the noncoding region of the C9ORF72 gene are the most common cause of the familial form of ALS (C9-ALS), as well as frontotemporal lobar degeneration and other neurological diseases. How the repeat expansion causes disease remains unclear, with both loss of function (haploinsufficiency) and gain of function (either toxic RNA or protein products) proposed. Here, we report a cellular model of C9-ALS with motor neurons differentiated from induced pluripotent stem cells (iPSCs) derived from ALS patients carrying the C9ORF72 repeat expansion. No significant loss of C9ORF72 expression was observed, and knockdown of the transcript was not toxic to cultured human motor neurons. Transcription of the repeat was increased leading to accumulation of GGGGCC repeat-containing RNA foci selectively in C9-ALS motor neurons. Repeat-containing RNA foci co-localized with hnRNPA1 and Pur-α, suggesting that they may be able to alter RNA metabolism. C9-ALS motor neurons showed altered expression of genes involved in membrane excitability including DPP6, and demonstrated a diminished capacity to fire continuous spikes upon depolarization compared to control motor neurons. Antisense oligonucleotides (ASOs) targeting the C9ORF72 transcript suppressed RNA foci formation and reversed gene expression alterations in C9-ALS motor neurons. These data show that patient-derived motor neurons can be used to delineate pathogenic events in ALS. PMID:24154603

  16. Anti-Excitotoxic and Antioxidant TGF-BETA Family Neurotropic Factors: In Vitro Screening Models of Motor Neuron Degeneration

    DTIC Science & Technology

    2001-07-01

    acid, a non-steroidal anti-inflammatory drug and chloride channeiblocker, caused Qil ae Sent iza tin; Q ipflSeff Syte xIS is coneated in interneurons ...or b) PDC, a than CNTF, NGF, BDNF , and IGF-I for motor neuron survival, disorder with parkinsonian features including rigidity and’bradykinesia...ucsd.edu. 638.9 638.10 GDNF AND BDNF IN CEREBROSPINAL FLUID FROM NEUROGFLAMENT SIDE-ARMS ARE PHOSPHORYLATED BY MULTIPLE PATIENTS WITH MOTOR NEURON

  17. Clinical Experiences of Uncommon Motor Neuron Disease: Hirayama Disease

    PubMed Central

    Lee, Kyoung Hee; Choi, Dae Seob; Lee, Young Suk

    2016-01-01

    Hirayama disease, juvenile muscular atrophy of the distal upper limb, is a rare disease predominantly affecting the anterior horn cells of the cervical spinal cord in young men. This cervical myelopathy is associated with neck flexion. It should be suspected in young male patients with a chronic history of weakness and atrophy involving the upper extremities followed by clinical stability in few years. Herein, we report 2 cases of Hirayama disease on emphasis of diagnostic approach and describe the pathognomonic findings at flexion magnetic resonance imaging. PMID:27800001

  18. Rabies virus envelope glycoprotein targets lentiviral vectors to the axonal retrograde pathway in motor neurons.

    PubMed

    Hislop, James N; Islam, Tarin A; Eleftheriadou, Ioanna; Carpentier, David C J; Trabalza, Antonio; Parkinson, Michael; Schiavo, Giampietro; Mazarakis, Nicholas D

    2014-06-06

    Rabies pseudotyped lentiviral vectors have great potential in gene therapy, not least because of their ability to transduce neurons following their distal axonal application. However, very little is known about the molecular processes that underlie their retrograde transport and cell transduction. Using multiple labeling techniques and confocal microscopy, we demonstrated that pseudotyping with rabies virus envelope glycoprotein (RV-G) enabled the axonal retrograde transport of two distinct subtypes of lentiviral vector in motor neuron cultures. Analysis of this process revealed that these vectors trafficked through Rab5-positive endosomes and accumulated within a non-acidic Rab7 compartment. RV-G pseudotyped vectors were co-transported with both the tetanus neurotoxin-binding fragment and the membrane proteins thought to mediate rabies virus endocytosis (neural cell adhesion molecule, nicotinic acetylcholine receptor, and p75 neurotrophin receptor), thus demonstrating that pseudotyping with RV-G targets lentiviral vectors for transport along the same pathway exploited by several toxins and viruses. Using motor neurons cultured in compartmentalized chambers, we demonstrated that axonal retrograde transport of these vectors was rapid and efficient; however, it was not able to transduce the targeted neurons efficiently, suggesting that impairment in processes occurring after arrival of the viral vector in the soma is responsible for the low transduction efficiency seen in vivo, which suggests a novel area for improvement of gene therapy vectors.

  19. Activity Parameters of Subthalamic Nucleus Neurons Selectively Predict Motor Symptom Severity in Parkinson's Disease

    PubMed Central

    Gulberti, Alessandro; Zittel, Simone; Tudor Jones, Adam A.; Fickel, Ulrich; Münchau, Alexander; Köppen, Johannes A.; Gerloff, Christian; Westphal, Manfred; Buhmann, Carsten; Hamel, Wolfgang; Engel, Andreas K.

    2014-01-01

    Parkinson's disease (PD) is a heterogeneous disorder that leads to variable expression of several different motor symptoms. While changes in firing rate, pattern, and oscillation of basal ganglia neurons have been observed in PD patients and experimental animals, there is limited evidence linking them to specific motor symptoms. Here we examined this relationship using extracellular recordings of subthalamic nucleus neurons from 19 PD patients undergoing surgery for deep brain stimulation. For each patient, ≥10 single units and/or multi-units were recorded in the OFF medication state. We correlated the proportion of neurons displaying different activities with preoperative Unified Parkinson's Disease Rating Scale subscores (OFF medication). The mean spectral power at sub-beta frequencies and percentage of units oscillating at beta frequencies were positively correlated with the axial and limb rigidity scores, respectively. The percentage of units oscillating at gamma frequency was negatively correlated with the bradykinesia scores. The mean intraburst rate was positively correlated with both bradykinesia and axial scores, while the related ratio of interspike intervals below/above 10 ms was positively correlated with these symptoms and limb rigidity. None of the activity parameters correlated with tremor. The grand average of all the significantly correlated subthalamic nucleus activities accounted for >60% of the variance of the combined bradykinetic-rigid and axial scores. Our results demonstrate that the occurrence of alterations in the rate and pattern of basal ganglia neurons could partly underlie the variability in parkinsonian phenotype. PMID:24790198

  20. Activity parameters of subthalamic nucleus neurons selectively predict motor symptom severity in Parkinson's disease.

    PubMed

    Sharott, Andrew; Gulberti, Alessandro; Zittel, Simone; Tudor Jones, Adam A; Fickel, Ulrich; Münchau, Alexander; Köppen, Johannes A; Gerloff, Christian; Westphal, Manfred; Buhmann, Carsten; Hamel, Wolfgang; Engel, Andreas K; Moll, Christian K E

    2014-04-30

    Parkinson's disease (PD) is a heterogeneous disorder that leads to variable expression of several different motor symptoms. While changes in firing rate, pattern, and oscillation of basal ganglia neurons have been observed in PD patients and experimental animals, there is limited evidence linking them to specific motor symptoms. Here we examined this relationship using extracellular recordings of subthalamic nucleus neurons from 19 PD patients undergoing surgery for deep brain stimulation. For each patient, ≥ 10 single units and/or multi-units were recorded in the OFF medication state. We correlated the proportion of neurons displaying different activities with preoperative Unified Parkinson's Disease Rating Scale subscores (OFF medication). The mean spectral power at sub-beta frequencies and percentage of units oscillating at beta frequencies were positively correlated with the axial and limb rigidity scores, respectively. The percentage of units oscillating at gamma frequency was negatively correlated with the bradykinesia scores. The mean intraburst rate was positively correlated with both bradykinesia and axial scores, while the related ratio of interspike intervals below/above 10 ms was positively correlated with these symptoms and limb rigidity. None of the activity parameters correlated with tremor. The grand average of all the significantly correlated subthalamic nucleus activities accounted for >60% of the variance of the combined bradykinetic-rigid and axial scores. Our results demonstrate that the occurrence of alterations in the rate and pattern of basal ganglia neurons could partly underlie the variability in parkinsonian phenotype.

  1. Task-dependent modification of leg motor neuron synaptic input underlying changes in walking direction and walking speed.

    PubMed

    Rosenbaum, Philipp; Schmitz, Josef; Schmidt, Joachim; Büschges, Ansgar

    2015-08-01

    Animals modify their behavior constantly to perform adequately in their environment. In terrestrial locomotion many forms of adaptation exist. Two tasks are changes of walking direction and walking speed. We investigated these two changes in motor output in the stick insect Cuniculina impigra to see how they are brought about at the level of leg motor neurons. We used a semi-intact preparation in which we can record intracellularly from leg motor neurons during walking. In this single-leg preparation the middle leg of the animal steps in a vertical plane on a treadwheel. Stimulation of either abdomen or head reliably elicits fictive forward or backward motor activity, respectively, in the fixed and otherwise deafferented thorax-coxa joint. With a change of walking direction only thorax-coxa-joint motor neurons protractor and retractor changed their activity. The protractor switched from swing activity during forward to stance activity during backward walking, and the retractor from stance to swing. This phase switch was due to corresponding change of phasic synaptic inputs from inhibitory to excitatory and vice versa at specific phases of the step cycle. In addition to phasic synaptic input a tonic depolarization of the motor neurons was present. Analysis of changes in stepping velocity during stance showed only a significant correlation to flexor motor neuron activity, but not to that of retractor and depressor motor neurons during forward walking. These results show that different tasks in the stick insect walking system are generated by altering synaptic inputs to specific leg joint motor neurons only.

  2. Task-dependent modification of leg motor neuron synaptic input underlying changes in walking direction and walking speed

    PubMed Central

    Rosenbaum, Philipp; Schmitz, Josef; Schmidt, Joachim

    2015-01-01

    Animals modify their behavior constantly to perform adequately in their environment. In terrestrial locomotion many forms of adaptation exist. Two tasks are changes of walking direction and walking speed. We investigated these two changes in motor output in the stick insect Cuniculina impigra to see how they are brought about at the level of leg motor neurons. We used a semi-intact preparation in which we can record intracellularly from leg motor neurons during walking. In this single-leg preparation the middle leg of the animal steps in a vertical plane on a treadwheel. Stimulation of either abdomen or head reliably elicits fictive forward or backward motor activity, respectively, in the fixed and otherwise deafferented thorax-coxa joint. With a change of walking direction only thorax-coxa-joint motor neurons protractor and retractor changed their activity. The protractor switched from swing activity during forward to stance activity during backward walking, and the retractor from stance to swing. This phase switch was due to corresponding change of phasic synaptic inputs from inhibitory to excitatory and vice versa at specific phases of the step cycle. In addition to phasic synaptic input a tonic depolarization of the motor neurons was present. Analysis of changes in stepping velocity during stance showed only a significant correlation to flexor motor neuron activity, but not to that of retractor and depressor motor neurons during forward walking. These results show that different tasks in the stick insect walking system are generated by altering synaptic inputs to specific leg joint motor neurons only. PMID:26063769

  3. [The effect of noradrenaline on the neuronal reactions of the motor cortex evoked by conditional stimulation].

    PubMed

    Storozhuk, V M; Stezhka, V V; Ivanova, S F

    1990-01-01

    In chronic experiments on cats the influence of iontophoretic application of adrenomimetic ephedrin and beta-adrenoblocker obsidan (propranolol) on motor cortex neuron reactions following conditional stimuli was investigated under instrumental placing reaction. It was shown for a majority of neurons that the background impulse activity and reactions following conditional stimulation were suppressed by the influence of ephedrin and on the contrary were increased by obsidan application. It is concluded that there exists a consistent tonic suppressing influence of the noradrenergic system on background and evoked cortical neurons impulse activity in the natural state. It is supposed that noradrenergic influence temporal increase may serve as an important link in mechanisms of external inhibition during stress situations, aversive effects, and distractive external excitations.

  4. Xenotransplantation of embryonic stem cell-derived motor neurons into the developing chick spinal cord.

    PubMed

    Wichterle, Hynek; Peljto, Mirza; Nedelec, Stephane

    2009-01-01

    A growing number of specific cell types have been successfully derived from embryonic stem cells (ES cells), including a variety of neural cells. In vitro generated cells need to be extensively characterized to establish functional equivalency with their in vivo counterparts. The ultimate test for the ability of ES cell-derived neurons to functionally integrate into neural networks is transplantation into the developing central nervous system, a challenging technique limited by the poor accessibility of mammalian embryos. Here we describe xenotransplantation of mouse embryonic stem cell-derived motor neurons into the developing chick neural tube as an alternative for testing the ability of in vitro generated neurons to survive, integrate, extend axons, and form appropriate synaptic contacts with functionally relevant targets in vivo. Similar methods can be adapted to study functionality of other mammalian cells, including derivatives of human ES cells.

  5. Extracellular pancuronium affects sodium current in chick embryo sensory neurones.

    PubMed Central

    Maestrone, E.; Magnelli, V.; Nobile, M.; Usai, C.

    1994-01-01

    1. The action of pancuronium on transmembrane sodium conductance was investigated in dorsal root ganglion neurones of chick embryos. The Na+ current was measured by use of the patch-clamp technique in whole-cell configuration. 2. Externally perfused pancuronium (50 microM to 1 mM) reversibly inhibited the current by a fast mechanism of action. Inhibition was concentration-dependent (with a half-effective dose of 170 microM) but not voltage-dependent. 3. The activation and inactivation kinetics of the Na+ current were estimated in pancuronium and in control solution by fitting experimental data with a Hodgkin-Huxley theoretical model. 4. The activation time constant tau m, at negative membrane voltages, was larger in the presence of pancuronium than in the control. In contrast, the inactivation time constant tau h was smaller during drug perfusion at membrane voltages < -10 mV. The steady-state inactivation h infinity was not affected by pancuronium. 5. These results suggest that pancuronium may reduce the sodium current by interacting with the sodium channels in both the resting and open states. PMID:8012707

  6. High yield extraction of pure spinal motor neurons, astrocytes and microglia from single embryo and adult mouse spinal cord

    PubMed Central

    Beaudet, Marie-Josée; Yang, Qiurui; Cadau, Sébastien; Blais, Mathieu; Bellenfant, Sabrina; Gros-Louis, François; Berthod, François

    2015-01-01

    Extraction of mouse spinal motor neurons from transgenic mouse embryos recapitulating some aspects of neurodegenerative diseases like amyotrophic lateral sclerosis has met with limited success. Furthermore, extraction and long-term culture of adult mouse spinal motor neurons and glia remain also challenging. We present here a protocol designed to extract and purify high yields of motor neurons and glia from individual spinal cords collected on embryos and adult (5-month-old) normal or transgenic mice. This method is based on mild digestion of tissue followed by gradient density separation allowing to obtain two millions motor neurons over 92% pure from one E14.5 single embryo and more than 30,000 from an adult mouse. These cells can be cultured more than 14 days in vitro at a density of 100,000 cells/cm2 to maintain optimal viability. Functional astrocytes and microglia and small gamma motor neurons can be purified at the same time. This protocol will be a powerful and reliable method to obtain motor neurons and glia to better understand mechanisms underlying spinal cord diseases. PMID:26577180

  7. Force Generation by Molecular-Motor-Powered Microtubule Bundles; Implications for Neuronal Polarization and Growth

    PubMed Central

    Jakobs, Maximilian; Franze, Kristian; Zemel, Assaf

    2015-01-01

    The heavily cross-linked microtubule (MT) bundles found in neuronal processes play a central role in the initiation, growth and maturation of axons and dendrites; however, a quantitative understanding of their mechanical function is still lacking. We here developed computer simulations to investigate the dynamics of force generation in 1D bundles of MTs that are cross-linked and powered by molecular motors. The motion of filaments and the forces they exert are investigated as a function of the motor type (unipolar or bipolar), MT density and length, applied load, and motor connectivity. We demonstrate that only unipolar motors (e.g., kinesin-1) can provide the driving force for bundle expansion, while bipolar motors (e.g., kinesin-5) oppose it. The force generation capacity of the bundles is shown to depend sharply on the fraction of unipolar motors due to a percolation transition that must occur in the bundle. Scaling laws between bundle length, force, MT length and motor fraction are presented. In addition, we investigate the dynamics of growth in the presence of a constant influx of MTs. Beyond a short equilibration period, the bundles grow linearly in time. In this growth regime, the bundle extends as one mass forward with most filaments sliding with the growth velocity. The growth velocity is shown to be dictated by the inward flux of MTs, to inversely scale with the load and to be independent of the free velocity of the motors. These findings provide important molecular-level insights into the mechanical function of the MT cytoskeleton in normal axon growth and regeneration after injury. PMID:26617489

  8. Force Generation by Molecular-Motor-Powered Microtubule Bundles; Implications for Neuronal Polarization and Growth.

    PubMed

    Jakobs, Maximilian; Franze, Kristian; Zemel, Assaf

    2015-01-01

    The heavily cross-linked microtubule (MT) bundles found in neuronal processes play a central role in the initiation, growth and maturation of axons and dendrites; however, a quantitative understanding of their mechanical function is still lacking. We here developed computer simulations to investigate the dynamics of force generation in 1D bundles of MTs that are cross-linked and powered by molecular motors. The motion of filaments and the forces they exert are investigated as a function of the motor type (unipolar or bipolar), MT density and length, applied load, and motor connectivity. We demonstrate that only unipolar motors (e.g., kinesin-1) can provide the driving force for bundle expansion, while bipolar motors (e.g., kinesin-5) oppose it. The force generation capacity of the bundles is shown to depend sharply on the fraction of unipolar motors due to a percolation transition that must occur in the bundle. Scaling laws between bundle length, force, MT length and motor fraction are presented. In addition, we investigate the dynamics of growth in the presence of a constant influx of MTs. Beyond a short equilibration period, the bundles grow linearly in time. In this growth regime, the bundle extends as one mass forward with most filaments sliding with the growth velocity. The growth velocity is shown to be dictated by the inward flux of MTs, to inversely scale with the load and to be independent of the free velocity of the motors. These findings provide important molecular-level insights into the mechanical function of the MT cytoskeleton in normal axon growth and regeneration after injury.

  9. Motor neuron-specific overexpression of the presynaptic choline transporter: impact on motor endurance and evoked muscle activity.

    PubMed

    Lund, D; Ruggiero, A M; Ferguson, S M; Wright, J; English, B A; Reisz, P A; Whitaker, S M; Peltier, A C; Blakely, R D

    2010-12-29

    The presynaptic, hemicholinium-3 sensitive, high-affinity choline transporter (CHT) supplies choline for acetylcholine (ACh) synthesis. In mice, a homozygous deletion of CHT (CHT-/-) leads to premature cessation of spontaneous or evoked neuromuscular signaling and is associated with perinatal cyanosis and lethality within 1 h. Heterozygous (CHT+/-) mice exhibit diminished brain ACh levels and demonstrate an inability to sustain vigorous motor activity. We sought to explore the contribution of CHT gene dosage to motor function in greater detail using transgenic mice where CHT is expressed under control of the motor neuron promoter Hb9 (Hb9:CHT). On a CHT-/- background, the Hb9:CHT transgene conferred mice with the ability to move and breath for a postnatal period of ∼24 h, thus increasing survival. Conversely, Hb9:CHT expression on a wild-type background (CHT+/+;Hb9:CHT) leads to an increased capacity for treadmill running compared to wild-type littermates. Analysis of the stimulated compound muscle action potential (CMAP) in these animals under basal conditions established that CHT+/+;Hb9:CHT mice display an unexpected, bidirectional change, producing either elevated or reduced CMAP amplitude, relative to CHT+/+ animals. To examine whether these two groups arise from underlying changes in synaptic properties, we used high-frequency stimulation of motor axons to assess CMAP recovery kinetics. Although CHT+/+; Hb9:CHT mice in the two groups display an equivalent, time-dependent reduction in CMAP amplitude, animals with a higher basal CMAP amplitude demonstrate a significantly enhanced rate of recovery. To explain our findings, we propose a model whereby CHT support for neuromuscular signaling involves contributions to ACh synthesis as well as cholinergic synaptic vesicle availability.

  10. Motivation and Affective Judgments Differentially Recruit Neurons in the Primate Dorsolateral Prefrontal and Anterior Cingulate Cortex

    PubMed Central

    Amemori, Ken-ichi; Amemori, Satoko

    2015-01-01

    The judgment of whether to accept or to reject an offer is determined by positive and negative affect related to the offer, but affect also induces motivational responses. Rewarding and aversive cues influence the firing rates of many neurons in primate prefrontal and cingulate neocortical regions, but it still is unclear whether neurons in these regions are related to affective judgment or to motivation. To address this issue, we recorded simultaneously the neuronal spike activities of single units in the dorsolateral prefrontal cortex (dlPFC) and the anterior cingulate cortex (ACC) of macaque monkeys as they performed approach–avoidance (Ap–Av) and approach–approach (Ap–Ap) decision-making tasks that can behaviorally dissociate affective judgment and motivation. Notably, neurons having activity correlated with motivational condition could be distinguished from neurons having activity related to affective judgment, especially in the Ap–Av task. Although many neurons in both regions exhibited similar, selective patterns of task-related activity, we found a larger proportion of neurons activated in low motivational conditions in the dlPFC than in the ACC, and the onset of this activity was significantly earlier in the dlPFC than in the ACC. Furthermore, the temporal onsets of affective judgment represented by neuronal activities were significantly slower in the low motivational conditions than in the other conditions. These findings suggest that motivation and affective judgment both recruit dlPFC and ACC neurons but with differential degrees of involvement and timing. PMID:25653353

  11. Dual role of medial A10 dopamine neurons in affective encoding.

    PubMed

    Liu, Zhong-Hua; Shin, Rick; Ikemoto, Satoshi

    2008-11-01

    Increasing evidence suggests that the activation of medial A10 neurons mediates positive affective encoding. However, little is known about the functions of the inhibition of midbrain dopamine neurons. Here we show evidence suggesting that the inhibition of medial A10 neurons mediates a negative affective state, leading to negative affective encoding, whereas blunting the activation of medial A10 neurons disrupts positive affective encoding involving food reward. We used a microinjection procedure, in which the D(2) dopamine receptor agonist quinpirole was administered into the cell body region of the dopamine neurons, a procedure that reduces dopamine cell firing. Microinjections of quinpirole into the posteromedial ventral tegmental area, but not its more lateral counterparts, led to conditioned place aversion. Quinpirole administration to this site also decreased food intake and basal dopamine concentration in the ventromedial striatum, a major projection area of medial A10 neurons. In addition, moderate quinpirole doses that did not lead to conditioned place aversion or disrupt food intake abolished food-conditioned place preference, suggesting that blunting dopamine impulse activity in response to food reward disrupts positive affective encoding in associated external stimuli. Our data support the hypothesis that activation of medial A10 dopamine neurons mediates a positive affective state, leading to positive affective encoding, while their inhibition mediates a negative affective state, leading to negative affective encoding. Together with previous findings, we propose that medial A10 neurons are an important component of the mechanism via which animals learn to avoid negative incentive stimuli.

  12. Dual Role of Medial A10 Dopamine Neurons in Affective Encoding

    PubMed Central

    Liu, Zhong-Hua; Shin, Rick; Ikemoto, Satoshi

    2008-01-01

    Increasing evidence suggests that the activation of medial A10 neurons mediates positive affective encoding. However, little is known about the functions of the inhibition of midbrain dopamine neurons. Here we show evidence suggesting that the inhibition of medial A10 neurons mediates a negative affective state, leading to negative affective encoding, whereas blunting the activation of medial A10 neurons disrupts positive affective encoding involving food reward. We used a microinjection procedure, in which the D2 dopamine receptor agonist quinpirole was administered into the cell body region of the dopamine neurons, a procedure that reduces dopamine cell firing. Microinjections of quinpirole into the posteromedial ventral tegmental area, but not its more lateral counterparts, led to conditioned place aversion. Quinpirole administration to this site also decreased food intake and basal dopamine concentration in the ventromedial striatum, a major projection area of medial A10 neurons. In addition, moderate quinpirole doses that did not lead to conditioned place aversion or disrupt food intake abolished food-conditioned place preference, suggesting that blunting dopamine impulse activity in response to food reward disrupts positive affective encoding in associated external stimuli. Our data support the hypothesis that activation of medial A10 dopamine neurons mediates a positive affective state, leading to positive affective encoding, while their inhibition mediates a negative affective state, leading to negative affective encoding. Together with previous findings, we propose that medial A10 neurons are an important component of the mechanism via which animals learn to avoid negative incentive stimuli. PMID:18256592

  13. Motor-Auditory-Visual Integration: The Role of the Human Mirror Neuron System in Communication and Communication Disorders

    ERIC Educational Resources Information Center

    Le Bel, Ronald M.; Pineda, Jaime A.; Sharma, Anu

    2009-01-01

    The mirror neuron system (MNS) is a trimodal system composed of neuronal populations that respond to motor, visual, and auditory stimulation, such as when an action is performed, observed, heard or read about. In humans, the MNS has been identified using neuroimaging techniques (such as fMRI and mu suppression in the EEG). It reflects an…

  14. Developmental Alterations in Motor Coordination and Medium Spiny Neuron Markers in Mice Lacking PGC-1α

    PubMed Central

    Lucas, Elizabeth K.; Dougherty, Sarah E.; McMeekin, Laura J.; Trinh, Alisa T.; Reid, Courtney S.; Cowell, Rita M.

    2012-01-01

    Accumulating evidence implicates the transcriptional coactivator peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α) in the pathophysiology of Huntington Disease (HD). Adult PGC-1α −/− mice exhibit striatal neurodegeneration, and reductions in the expression of PGC-1α have been observed in striatum and muscle of HD patients as well as in animal models of the disease. However, it is unknown whether decreased expression of PGC-1α alone is sufficient to lead to the motor phenotype and striatal pathology characteristic of HD. For the first time, we show that young PGC-1α −/− mice exhibit severe rotarod deficits, decreased rearing behavior, and increased occurrence of tremor in addition to the previously described hindlimb clasping. Motor impairment and striatal vacuolation are apparent in PGC-1α −/− mice by four weeks of age and do not improve or decline by twelve weeks of age. The behavioral and pathological phenotype of PGC-1α −/− mice can be completely recapitulated by conditional nervous system deletion of PGC-1α, indicating that peripheral effects are not responsible for the observed abnormalities. Evaluation of the transcriptional profile of PGC-1α −/− striatal neuron populations and comparison to striatal neuron profiles of R6/2 HD mice revealed that PGC-1α deficiency alone is not sufficient to cause the transcriptional changes observed in this HD mouse model. In contrast to R6/2 HD mice, PGC-1α −/− mice show increases in the expression of medium spiny neuron (MSN) markers with age, suggesting that the observed behavioral and structural abnormalities are not primarily due to MSN loss, the defining pathological feature of HD. These results indicate that PGC-1α is required for the proper development of motor circuitry and transcriptional homeostasis in MSNs and that developmental disruption of PGC-1α leads to long-term alterations in motor functioning. PMID:22916173

  15. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo

    PubMed Central

    Ward, Patricia J.; Jones, Laura N.; Mulligan, Amanda; Goolsby, William; Wilhelm, Jennifer C.; English, Arthur W.

    2016-01-01

    Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation) that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2), we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2) to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555) was greater in mice that received optical treatment. Thus, the acute (1 hour), one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-). We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons. PMID:27152611

  16. Intracisternal delivery of AAV9 results in oligodendrocyte and motor neuron transduction in the whole central nervous system of cats.

    PubMed

    Bucher, T; Dubreil, L; Colle, M-A; Maquigneau, M; Deniaud, J; Ledevin, M; Moullier, P; Joussemet, B

    2014-05-01

    Systemic and intracerebrospinal fluid delivery of adeno-associated virus serotype 9 (AAV9) has been shown to achieve widespread gene delivery to the central nervous system (CNS). However, after systemic injection, the neurotropism of the vector has been reported to vary according to age at injection, with greater neuronal transduction in newborns and preferential glial cell tropism in adults. This difference has not yet been reported after cerebrospinal fluid (CSF) delivery. The present study analyzed both neuronal and glial cell transduction in the CNS of cats according to age of AAV9 CSF injection. In both newborns and young cats, administration of AAV9-GFP in the cisterna magna resulted in high levels of motor neurons (MNs) transduction from the cervical (84±5%) to the lumbar (99±1%) spinal cord, demonstrating that the remarkable tropism of AAV9 for MNs is not affected by age at CSF delivery. Surprisingly, numerous oligodendrocytes were also transduced in the brain and in the spinal cord white matter of young cats, but not of neonates, indicating that (i) age of CSF delivery influences the tropism of AAV9 for glial cells and (ii) AAV9 intracisternal delivery could be relevant for both the treatment of MN and demyelinating disorders.

  17. The effect of Bobath approach on the excitability of the spinal alpha motor neurones in stroke patients with muscle spasticity.

    PubMed

    Ansari, N N; Naghdi, S

    2007-01-01

    A clinical study was performed to evaluate the efficacy of the Bobath approach on the excitability of the spinal alpha motor neurones in patients with poststroke spasticity. Ten subjects ranging in age from 37 through 76 years (average 60 years) with ankle plantarflexor spasticity secondary to a stroke were recruited and completed the trial. They had physiotherapy according to Bobath concept for ten treatment sessions, three days per week. Two repeated measures, one before and another after treatment, were taken to quantify clinical efficacy. The effect of this type of therapy on the excitability of alpha motor neurones (aMN) was assessed by measuring the latency of the Hoffmann reflex (H-reflex) and the Hmax/Mmax ratio. The original Ashworth scale and ankle range of motion were also measured. The mean HmaxlMmax ratio on the affected side at baseline was high in the study patients. However, there were no statistically significant differences in the HmaxlMmax ratio or in the H-reflex latency between the baseline values and those recorded after therapy intervention. Before treatment, the HmaxlMmax ratio was significantly higher in the affected side than in the unaffected side. However, it was similar at both sides after treatment. Following treatment, the significant reduction in spasticity was clinically detected as measured with the original Ashworth scale. The ankle joint active and passive range of motion was significantly increased. In conclusion, Bobath therapy had a statistically significant effect on the excitability of the aMN in the affected side compared to the unaffected side in stroke patients with muscle spasticity.

  18. Research on Motor Neuron Diseases Konzo and Neurolathyrism: Trends from 1990 to 2010

    PubMed Central

    Ngudi, Delphin Diasolua; Kuo, Yu-Haey; Van Montagu, Marc; Lambein, Fernand

    2012-01-01

    Konzo (caused by consumption of improperly processed cassava, Manihot esculenta) and neurolathyrism (caused by prolonged overconsumption of grass pea, Lathyrus sativus) are two distinct non-infectious upper motor neurone diseases with identical clinical symptoms of spastic paraparesis of the legs. They affect many thousands of people among the poor in the remote rural areas in the central and southern parts of Africa afflicting them with konzo in Ethiopia and in the Indian sub-continent with neurolathyrism. Both diseases are toxico-nutritional problems due to monotonous consumption of starchy cassava roots or protein-rich grass pea seeds as a staple, especially during drought and famine periods. Both foods contain toxic metabolites (cyanogenic glycosides in cassava and the neuro-excitatory amino acid β-ODAP in grass pea) that are blamed for theses diseases. The etiology is also linked to the deficiency in the essential sulfur amino acids that protect against oxidative stress. The two diseases are not considered reportable by the World Health Organization (WHO) and only estimated numbers can be found. This paper analyzes research performance and determines scientific interest in konzo and neurolathyrism. A literature search of over 21 years (from 1990 to 2010) shows that in terms of scientific publications there is little interest in these neglected motorneurone diseases konzo and neurolathyrism that paralyze the legs. Comparison is made with HTLV-1/TSP, an infectious disease occurring mainly in Latin America of which the clinical manifestation is similar to konzo and neurolathyrism and requires a differential diagnosis. Our findings emphasize the multidisciplinary nature of studies on these neglected diseases, which however have not really captured the attention of decision makers and project planners, especially when compared with the infectious HTLV-1/TSP. Konzo and neurolathyrism can be prevented by a balanced diet. PMID:22860149

  19. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43.

    PubMed

    Arnold, Eveline S; Ling, Shuo-Chien; Huelga, Stephanie C; Lagier-Tourenne, Clotilde; Polymenidou, Magdalini; Ditsworth, Dara; Kordasiewicz, Holly B; McAlonis-Downes, Melissa; Platoshyn, Oleksandr; Parone, Philippe A; Da Cruz, Sandrine; Clutario, Kevin M; Swing, Debbie; Tessarollo, Lino; Marsala, Martin; Shaw, Christopher E; Yeo, Gene W; Cleveland, Don W

    2013-02-19

    Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43(Q331K) and TDP-43(M337V)), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: (i) loss of TDP-43 from the corresponding nuclei, (ii) accumulation of TDP-43 aggregates, and (iii) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43-dependent alternative splicing events conferred by both human wild-type and mutant TDP-43(Q331K), but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43(Q331K) enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage.

  20. KIF4 motor regulates activity-dependent neuronal survival by suppressing PARP-1 enzymatic activity.

    PubMed

    Midorikawa, Ryosuke; Takei, Yosuke; Hirokawa, Nobutaka

    2006-04-21

    In brain development, apoptosis is a physiological process that controls the final numbers of neurons. Here, we report that the activity-dependent prevention of apoptosis in juvenile neurons is regulated by kinesin superfamily protein 4 (KIF4), a microtubule-based molecular motor. The C-terminal domain of KIF4 is a module that suppresses the activity of poly (ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme known to maintain cell homeostasis by repairing DNA and serving as a transcriptional regulator. When neurons are stimulated by membrane depolarization, calcium signaling mediated by CaMKII induces dissociation of KIF4 from PARP-1, resulting in upregulation of PARP-1 activity, which supports neuron survival. After dissociation from PARP-1, KIF4 enters into the cytoplasm from the nucleus and moves to the distal part of neurites in a microtubule-dependent manner. We suggested that KIF4 controls the activity-dependent survival of postmitotic neurons by regulating PARP-1 activity in brain development.

  1. An investigation into the inter-relationships of sulphur xeno-biotransformation pathways in Parkinson's and motor neurone diseases.

    PubMed

    Steventon, Glyn B; Waring, Rosemary H; Williams, Adrian C

    2003-01-01

    The role of defective 'sulphur xenobiotic' biotransformations in the aetiology of Parkinson's and motor neurone diseases has been in the literature for over a decade. Problems in the S-oxidation of aliphatic thioethers, sulphation of phenolic compounds and the S-methylation of aliphatic sulphydryl groups have all been reported. These reports have also been consistent in observing that only a 'significant minority' of patients express these problems in sulphur biotransformation pathways. However, no investigation has yet reported on the incidence of these three defective pathways in control invididuals and in patients with Parkinson's and motor neurone disease. This investigation has found that: 1. Forty percent of patients with Parkinson's and motor neurone disease have a defect in the S-oxidation of S-carboxymethyl-L-cysteine compared to 4% of controls. 2. 35-40% of patients with Parkinson's and motor neurone disease have a defect in the sulphation of paracetamol compared to 4% of controls. 3. 60% of patients with motor neurone disease have a high capacity for the S-methylation of 2-mercaptoethanol compared to 4% of controls. 4. 38% of patients with Parkinson's disease have a low capacity for the S-methylation of 2-mercaptoethanol compared to 4% of controls. 5. There is no correlation between the S-oxidation phenotype, low paracetamol sulphation phenotype and low or high S-methylation phenotype in controls or patients with Parkinson's or motor neurone disease. 6. The number of controls that expressed one of the aberrant phenotypes was 4% compared to 38% of the patients with Parkinson's disease and 47% of the patients with motor neurone disease. 7. The number of controls that expressed two of the aberrant phenotypes was 0% compared to 18% of the patients with Parkinson's disease and 19% of those with motor neurone disease. 8. No controls or patients with Parkinson's disease or motor neurone disease expressed all three of the aberrant phenotypes. The results

  2. Induction of human umbilical Wharton's jelly-derived mesenchymal stem cells toward motor neuron-like cells.

    PubMed

    Bagher, Zohreh; Ebrahimi-Barough, Somayeh; Azami, Mahmoud; Mirzadeh, Hamid; Soleimani, Mansooreh; Ai, Jafar; Nourani, Mohammad Reza; Joghataei, Mohammad Taghi

    2015-10-01

    The most important property of stem cells from different sources is the capacity to differentiate into various cells and tissue types. However, problems including contamination, normal karyotype, and ethical issues cause many limitations in obtaining and using these cells from different sources. The cells in Wharton's jelly region of umbilical cord represent a pool source of primitive cells with properties of mesenchymal stem cells (MSCs). The aim of this study was to determine the potential of human Wharton's jelly-derived mesenchymal stem cells (WJMSCs) for differentiation to motor neuron cells. WJMSCs were induced to differentiate into motor neuron-like cells by using different signaling molecules and neurotrophic factors in vitro. Differentiated neurons were then characterized for expression of motor neuron markers including nestin, PAX6, NF-H, Islet 1, HB9, and choline acetyl transferase (ChAT) by quantitative reverse transcription PCR and immunocytochemistry. Our results showed that differentiated WJMSCs could significantly express motor neuron biomarkers in RNA and protein levels 15 d post induction. These results suggested that WJMSCs can differentiate to motor neuron-like cells and might provide a potential source in cell therapy for neurodegenerative disease.

  3. Chronic uranium contamination alters spinal motor neuron integrity via modulation of SMN1 expression and microglia recruitment.

    PubMed

    Saint-Marc, Brice; Elie, Christelle; Manens, Line; Tack, Karine; Benderitter, Marc; Gueguen, Yann; Ibanez, Chrystelle

    2016-07-08

    Consequences of uranium contamination have been extensively studied in brain as cognitive function impairments were observed in rodents. Locomotor disturbances have also been described in contaminated animals. Epidemiological studies have revealed increased risk of motor neuron diseases in veterans potentially exposed to uranium during their military duties. To our knowledge, biological response of spinal cord to uranium contamination has not been studied even though it has a crucial role in locomotion. Four groups of rats were contaminated with increasing concentrations of uranium in their drinking water compared to a control group to study cellular mechanisms involved in locomotor disorders. Nissl staining of spinal cord sections revealed the presence of chromatolytic neurons in the ventral horn. This observation was correlated with a decreased number of motor neurons in the highly contaminated group and a decrease of SMN1 protein expression (Survival of Motor Neuron 1). While contamination impairs motor neuron integrity, an increasing number of microglial cells indicates the trigger of a neuroinflammation process. Potential overexpression of a microglial recruitment chemokine, MCP-1 (Monocyte Chimioattractant Protein 1), by motor neurons themselves could mediate this process. Studies on spinal cord appear to be relevant for risk assessment of population exposed via contaminated food and water.

  4. Subacute motor neuron hyperexcitability with mercury poisoning: a case series and literature review.

    PubMed

    Zhou, Zhibin; Zhang, Xingwen; Cui, Fang; Liu, Ruozhuo; Dong, Zhao; Wang, Xiaolin; Yu, Shengyuan

    2014-01-01

    Motor neuron hyperexcitability (MNH) indicates a disorder characterized by an ectopic motor nerve discharge on electromyogram (EMG). Here, we present a series of three cases of subacute MNH with mercury poisoning. The first case showed hyperhidrosis, insomnia, generalied myokymia, cramps, tremor, weight loss, and myokymic and neuromyotonic discharges, followed by encephalopathy with confusion, hallucinations, and memory decrease. The second case was similar to the former but without encephalopathic features. The third case showed widespread fasciculation, fatigue, insomnia, weight loss, and autonomic dysfunction, including constipation, micturition difficulty, and impotence, with multiple fibrillation, unstable fasciculation, widened motor neuron potential, and an incremental response at high-rate stimulation in repetitive nerve stimulation. Based on the symptoms, the three cases were diagnosed as Morvan's syndrome, Isaacs' syndrome, and Lambert-Eaton myasthenic syndrome with ALS-like syndrome, respectively. Mercury poisoning in the three cases was confirmed by analysis of blood and urine samples. All cases recovered several months after chelation therapy and were in good condition at follow-up. Very few cases of MNH linked with mercury exposure have been reported in the literature. The mechanism of mercury-induced MNH may be associated with ion channel dysfunction.

  5. MHC class I protects motor neurons from astrocyte-induced toxicity in amyotrophic lateral sclerosis (ALS)

    PubMed Central

    Braun, Lyndsey; Meyer, Kathrin; Frakes, Ashley E.; Ferraiuolo, Laura; Likhite, Shibi; Bevan, Adam K.; Foust, Kevin D.; McConnell, Michael J.; Walker, Christopher M.; Kaspar, Brian K.

    2016-01-01

    Astrocytes isolated from individuals with amyotrophic lateral sclerosis (ALS) are toxic towards motor neurons (MNs) and play a non-cell autonomous role in disease pathogenesis. The mechanisms underlying the susceptibility of motor neurons to cell death remains unclear. Here, we report that astrocytes derived from mice bearing ALS mutations and from individuals with ALS reduce expression of major histocompatibility complex class I (MHCI) on MNs. Reduced MHCI expression makes these MNs susceptible to astrocyte-induced cell death. Increasing MHCI expression on MNs increases survival and motor performance in a mouse model of ALS and protects MN against astrocyte toxicity. A single MHCI molecule, HLA-F, protects MNs from ALS astrocyte-mediated toxicity, while knockdown of its receptor, the killer cell immunoglobulin-like receptor KIR3DL2, an inhibitory receptor that recognizes MHCI, on astrocytes results in enhanced MN death. These data indicate that in ALS upon loss of MHCI expression MNs become vulnerable to astrocyte-mediated toxicity. PMID:26928464

  6. Post-translational Modifications and Protein Quality Control in Motor Neuron and Polyglutamine Diseases

    PubMed Central

    Sambataro, Fabio; Pennuto, Maria

    2017-01-01

    Neurodegenerative diseases, including motor neuron and polyglutamine (polyQ) diseases, are a broad class of neurological disorders. These diseases are characterized by neuronal dysfunction and death, and by the accumulation of toxic aggregation-prone proteins in the forms of inclusions and micro-aggregates. Protein quality control is a cellular mechanism to reduce the burden of accumulation of misfolded proteins, a function that results from the coordinated actions of chaperones and degradation systems, such as the ubiquitin-proteasome system (UPS) and autophagy-lysosomal degradation system. The rate of turnover, aggregation and degradation of the disease-causing proteins is modulated by post-translational modifications (PTMs), such as phosphorylation, arginine methylation, palmitoylation, acetylation, SUMOylation, ubiquitination, and proteolytic cleavage. Here, we describe how PTMs of proteins linked to motor neuron and polyQ diseases can either enhance or suppress protein quality control check and protein aggregation and degradation. The identification of molecular strategies targeting these modifications may offer novel avenues for the treatment of these yet incurable diseases.

  7. Riluzole suppresses postinhibitory rebound in an excitatory motor neuron of the medicinal leech.

    PubMed

    Angstadt, James D; Simone, Amanda M

    2014-08-01

    Postinhibitory rebound (PIR) is an intrinsic property often exhibited by neurons involved in generating rhythmic motor behaviors. Cell DE-3, a dorsal excitatory motor neuron in the medicinal leech exhibits PIR responses that persist for several seconds following the offset of hyperpolarizing stimuli and are suppressed in reduced Na(+) solutions or by Ca(2+) channel blockers. The long duration and Na(+) dependence of PIR suggest a possible role for persistent Na(+) current (I NaP). In vertebrate neurons, the neuroprotective agent riluzole can produce a selective block of I NaP. This study demonstrates that riluzole inhibits cell DE-3 PIR in a concentration- and Ca(2+)-dependent manner. In 1.8 mM Ca(2+) solution, 50-100 µM riluzole selectively blocked the late phase of PIR, an effect similar to that of the neuromodulator serotonin. However, 200 µM riluzole blocked both the early and late phases of PIR. Increasing extracellular Ca(2+) to 10 mM strengthened PIR, but high riluzole concentrations continued to suppress both phases of PIR. These results indicate that riluzole may suppress PIR via a nonspecific inhibition of Ca(2+) conductances and suggest that a Ca(2+)-activated nonspecific current (I(CAN)), rather than I NaP, may underlie the Na(+)-dependent component of PIR.

  8. Spontaneous activity in electromyography may differentiate certain benign lower motor neuron disease forms from amyotrophic lateral sclerosis.

    PubMed

    Jokela, Manu E; Jääskeläinen, Satu K; Sandell, Satu; Palmio, Johanna; Penttilä, Sini; Saukkonen, Annamaija; Soikkeli, Raija; Udd, Bjarne

    2015-08-15

    There is limited data on electromyography (EMG) findings in other motor neuron disorders than amyotrophic lateral sclerosis (ALS). We assessed whether the distribution of active denervation detected by EMG, i.e. fibrillations and fasciculations, differs between ALS and slowly progressive motor neuron disorders. We compared the initial EMG findings of 43 clinically confirmed, consecutive ALS patients with those of 41 genetically confirmed Late-onset Spinal Motor Neuronopathy and 14 Spinal and Bulbar Muscular Atrophy patients. Spontaneous activity was more frequently detected in the first dorsal interosseus and deltoid muscles of ALS patients than in patients with the slowly progressive motor neuron diseases. The most important observation was that absent fibrillations in the first dorsal interosseus muscle identified the benign forms with sensitivities of 66%-77% and a specificity of 93%. The distribution of active denervation may help to separate ALS from mimicking disorders at an early stage.

  9. Factors affecting post-stroke motor recovery: Implications on neurotherapy after brain injury.

    PubMed

    Alawieh, Ali; Zhao, Jing; Feng, Wuwei

    2016-08-13

    Neurological disorders are a major cause of chronic disability globally among which stroke is a leading cause of chronic disability. The advances in the medical management of stroke patients over the past decade have significantly reduced mortality, but at the same time increased numbers of disabled survivors. Unfortunately, this reduction in mortality was not paralleled by satisfactory therapeutics and rehabilitation strategies that can improve functional recovery of patients. Motor recovery after brain injury is a complex, dynamic, and multifactorial process in which an interplay among genetic, pathophysiologic, sociodemographic and therapeutic factors determines the overall recovery trajectory. Although stroke recovery is the most well-studied form of post-injury neuronal recovery, a thorough understanding of the pathophysiology and determinants affecting stroke recovery is still lacking. Understanding the different variables affecting brain recovery after stroke will not only provide an opportunity to develop therapeutic interventions but also allow for developing personalized platforms for patient stratification and prognosis. We aim to provide a narrative review of major determinants for post-stroke recovery and their implications in other forms of brain injury.

  10. Release of a single neurotransmitter from an identified interneuron coherently affects motor output on multiple time scales.

    PubMed

    Dacks, Andrew M; Weiss, Klaudiusz R

    2013-05-01

    Neurotransmitters can have diverse effects that occur over multiple time scales often making the consequences of neurotransmission difficult to predict. To explore the consequences of this diversity, we used the buccal ganglion of Aplysia to examine the effects of GABA release by a single interneuron, B40, on the intrinsic properties and motor output of the radula closure neuron B8. B40 induces a picrotoxin-sensitive fast IPSP lasting milliseconds in B8 and a slow EPSP lasting seconds. We found that the excitatory effects of this slow EPSP are also mediated by GABA. Together, these two GABAergic actions structure B8 firing in a pattern characteristic of ingestive programs. Furthermore, we found that repeated B40 stimulation induces a persistent increase in B8 excitability that was occluded in the presence of the GABA B receptor agonist baclofen, suggesting that GABA affects B8 excitability over multiple time scales. The phasing of B8 activity during the feeding motor programs determines the nature of the behavior elicited during that motor program. The persistent increase in B8 excitability induced by B40 biased the activity of B8 during feeding motor programs causing the motor programs to become more ingestive in nature. Thus, a single transmitter released from a single interneuron can have consequences for motor output that are expressed over multiple time scales. Importantly, despite the differences in their signs and temporal characteristics, the three actions of B40 are coherent in that they promote B8 firing patterns that are characteristic of ingestive motor outputs.

  11. Sensory feedback synchronizes motor and sensory neuronal networks in the neonatal rat spinal cord.

    PubMed

    Inácio, Ana R; Nasretdinov, Azat; Lebedeva, Julia; Khazipov, Roustem

    2016-10-07

    Early stages of sensorimotor system development in mammals are characterized by the occurrence of spontaneous movements. Whether and how these movements support correlated activity in developing sensorimotor spinal cord circuits remains unknown. Here we show highly correlated activity in sensory and motor zones in the spinal cord of neonatal rats in vivo. Both during twitches and complex movements, movement-generating bursts in motor zones are followed by bursts in sensory zones. Deafferentation does not affect activity in motor zones and movements, but profoundly suppresses activity bursts in sensory laminae and results in sensorimotor uncoupling, implying a primary role of sensory feedback in sensorimotor synchronization. This is further supported by largely dissociated activity in sensory and motor zones observed in the isolated spinal cord in vitro. Thus, sensory feedback resulting from spontaneous movements is instrumental for coordination of activity in developing sensorimotor spinal cord circuits.

  12. [Experimental approach to the gene therapy of motor neuron disease with the use of genes hypoxia-inducible factors].

    PubMed

    Ismailov, Sh M; Barykova, Iu A; Shmarov, M M; Tarantul, V Z; Barskov, I V; Kucherianu, V G; Brylev, L V; Logunov, D Iu; Tutykhina, I L; Bocharov, E V; Zakharova, M N; Naroditskiĭ, B S; Illarioshkin, S N

    2014-05-01

    Motor neuron disease (MND), or amyotrophic lateral sclerosis, is a fatal neurodegenerative disorder characterized by a progressive loss of motor neurons in the spinal cord and the brain. Several angiogenic and neurogenic growth factors, such as the vascular endothelial growth factor (VEGF), angiogenin (ANG), insulin-like growth factor (IGF) and others, have been shown to promote survival of the spinal motor neurons during ischemia. We constructed recombinant vectors using human adenovirus 5 (Ad5) carrying the VEGF, ANG or IGF genes under the control of the cytomegalovirus promoter. As a model for MND, we employed a transgenic mice strain, B6SJL-Tg (SOD1*G93A)d11 Gur/J that develops a progressive degeneration of the spinal motor neurons caused by the expression of a mutated Cu/Zn superoxide dismutase gene SOD1. Delivery of the therapeutic genes to the spinal motor neurons was done using the effect of the retrograde axonal transport after multiple injections of the Ad5-VEGF, Ad5-ANG and Ad5-IGF vectors and their combinations into the limbs and back muscles of the SOD1(G93A) mice. Viral transgene expression in the spinal cord motor neurons was confirmed by immunocytochemistry and RT-RCR. We assessed the neurological status, motor activity and lifespan of experimental and control animal groups. We discovered that SOD1(G93A) mice injected with the Ad5-VEGF + Ad5-ANG combination showed a 2-3 week delay in manifestation of the disease, higher motor activity at the advanced stages of the disease, and at least a 10% increase in the lifespan compared to the control and other experimental groups. These results support the safety and therapeutic efficacy of the tested recombinant treatment. We propose that the developed experimental MND treatment based on viral delivery of VEGF + ANG can be used as a basis for gene therapy drug development and testing in the preclinical and clinical trials of the MND.

  13. Expression of Sex Steroid Hormone Receptors in Vagal Motor Neurons Innervating the Trachea and Esophagus in Mouse

    PubMed Central

    Mukudai, Shigeyuki; Ichi Matsuda, Ken; Bando, Hideki; Takanami, Keiko; Nishio, Takeshi; Sugiyama, Yoichiro; Hisa, Yasuo; Kawata, Mitsuhiro

    2016-01-01

    The medullary vagal motor nuclei, the nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMV), innervate the respiratory and gastrointestinal tracts. We conducted immunohistochemical analysis of expression of the androgen receptor (AR) and estrogen receptor α (ERα), in relation to innervation of the trachea and esophagus via vagal motor nuclei in mice. AR and ERα were expressed in the rostral NA and in part of the DMV. Tracing experiments using cholera toxin B subunit demonstrated that neurons of vagal motor nuclei that innervate the trachea and esophagus express AR and ERα. There was no difference in expression of sex steroid hormone receptors between trachea- and esophagus-innervating neurons. These results suggest that sex steroid hormones may act on vagal motor nuclei via their receptors, thereby regulating functions of the trachea and esophagus. PMID:27006520

  14. Mild hypoxia affects synaptic connectivity in cultured neuronal networks.

    PubMed

    Hofmeijer, Jeannette; Mulder, Alex T B; Farinha, Ana C; van Putten, Michel J A M; le Feber, Joost

    2014-04-04

    Eighty percent of patients with chronic mild cerebral ischemia/hypoxia resulting from chronic heart failure or pulmonary disease have cognitive impairment. Overt structural neuronal damage is lacking and the precise cause of neuronal damage is unclear. As almost half of the cerebral energy consumption is used for synaptic transmission, and synaptic failure is the first abrupt consequence of acute complete anoxia, synaptic dysfunction is a candidate mechanism for the cognitive deterioration in chronic mild ischemia/hypoxia. Because measurement of synaptic functioning in patients is problematic, we use cultured networks of cortical neurons from new born rats, grown over a multi-electrode array, as a model system. These were exposed to partial hypoxia (partial oxygen pressure of 150Torr lowered to 40-50Torr) during 3 (n=14) or 6 (n=8) hours. Synaptic functioning was assessed before, during, and after hypoxia by assessment of spontaneous network activity, functional connectivity, and synaptically driven network responses to electrical stimulation. Action potential heights and shapes and non-synaptic stimulus responses were used as measures of individual neuronal integrity. During hypoxia of 3 and 6h, there was a statistically significant decrease of spontaneous network activity, functional connectivity, and synaptically driven network responses, whereas direct responses and action potentials remained unchanged. These changes were largely reversible. Our results indicate that in cultured neuronal networks, partial hypoxia during 3 or 6h causes isolated disturbances of synaptic connectivity.

  15. Multiple forebrain systems converge on motor neurons innervating the thyroarytenoid muscle

    PubMed Central

    Van Daele, Douglas J.; Cassell, Martin D.

    2009-01-01

    The present study investigated the central connections of motor neurons innervating the thyroarytenoid laryngeal muscle that is active in swallowing, respiration and vocalization. In both intact and sympathectomized rats, the pseudorabies virus (PRV) was inoculated into the muscle. After initial infection of laryngomotor neurons in the ipsilateral loose division of the nucleus ambiguous (NA) by 3 days post-inoculation., PRV spread to the ipsilateral compact portion of the NA, the central and intermediate divisions of the nucleus tractus solitarii (NTS), the Botzinger complex, and the parvocellular reticular formation by 4 days. Infection was subsequently expanded to include the ipsilateral granular and dysgranular parietal insular cortex, the ipsilateral medial division of the central nucleus of the amygdala, the lateral, paraventricular, ventrolateral and medial preoptic nuclei of the hypothalamus (generally bilaterally), the lateral periaqueductal gray, the A7 and oral and caudal pontine nuclei. At the latest time points sampled post-inoculation (5 days), infected neurons were identified in the ipsilateral agranular insular cortex, the caudal parietal insular cortex, the anterior cingulate cortex, and the contralateral motor cortex. In the amygdala, infection had spread to the lateral central nucleus and the parvocellular portion of the basolateral nucleus. Hypothalamic infection was largely characterized by an increase in the number of infected cells in earlier infected regions though the posterior, dorsomedial, tuberomammillary and mammillary nuclei contained infected cells. Comparison with previous connectional data suggest PRV followed three interconnected systems originating in the forebrain; a bilateral system including the ventral anterior cingulate cortex, periaqueductal gray and ventral respiratory group; an ipsilateral system involving the parietal insular cortex, central nucleus of the amygdala and parvicellular reticular formation, and a minor

  16. Exome Sequencing Links Corticospinal Motor Neuron Disease to Common Neurodegenerative Disorders

    PubMed Central

    Hofree, Matan; Silhavy, Jennifer L.; Heiberg, Andrew D.; Abdellateef, Mostafa; Rosti, Basak; Scott, Eric; Mansour, Lobna; Masri, Amira; Kayserili, Hulya; Al-Aama, Jumana Y.; Abdel-Salam, Ghada M. H.; Karminejad, Ariana; Kara, Majdi; Kara, Bulent; Bozorgmehri, Bita; Ben-Omran, Tawfeg; Mojahedi, Faezeh; El Din Mahmoud, Iman Gamal; Bouslam, Naima; Bouhouche, Ahmed; Benomar, Ali; Hanein, Sylvain; Raymond, Laure; Forlani, Sylvie; Mascaro, Massimo; Selim, Laila; Shehata, Nabil; Al-Allawi, Nasir; Bindu, P.S.; Azam, Matloob; Gunel, Murat; Caglayan, Ahmet; Bilguvar, Kaya; Tolun, Aslihan; Issa, Mahmoud Y.; Schroth, Jana; Spencer, Emily G.; Rosti, Rasim O.; Akizu, Naiara; Vaux, Keith K.; Johansen, Anide; Koh, Alice A.; Megahed, Hisham; Durr, Alexandra; Brice, Alexis; Stevanin, Giovanni; Gabriel, Stacy B.; Ideker, Trey; Gleeson, Joseph G.

    2014-01-01

    Hereditary spastic paraplegias (HSPs) are neurodegenerative motor neuron diseases characterized by progressive age-dependent loss of corticospinal motor tract function. Although the genetic basis is partly understood, only a fraction of cases can receive a genetic diagnosis, and a global view of HSP is lacking. By using whole-exome sequencing in combination with network analysis, we identified 18 previously unknown putative HSP genes and validated nearly all of these genes functionally or genetically. The pathways highlighted by these mutations link HSP to cellular transport, nucleotide metabolism, and synapse and axon development. Network analysis revealed a host of further candidate genes, of which three were mutated in our cohort. Our analysis links HSP to other neurodegenerative disorders and can facilitate gene discovery and mechanistic understanding of disease. PMID:24482476

  17. Neuronal connectome of a sensory-motor circuit for visual navigation.

    PubMed

    Randel, Nadine; Asadulina, Albina; Bezares-Calderón, Luis A; Verasztó, Csaba; Williams, Elizabeth A; Conzelmann, Markus; Shahidi, Réza; Jékely, Gáspár

    2014-05-27

    Animals use spatial differences in environmental light levels for visual navigation; however, how light inputs are translated into coordinated motor outputs remains poorly understood. Here we reconstruct the neuronal connectome of a four-eye visual circuit in the larva of the annelid Platynereis using serial-section transmission electron microscopy. In this 71-neuron circuit, photoreceptors connect via three layers of interneurons to motorneurons, which innervate trunk muscles. By combining eye ablations with behavioral experiments, we show that the circuit compares light on either side of the body and stimulates body bending upon left-right light imbalance during visual phototaxis. We also identified an interneuron motif that enhances sensitivity to different light intensity contrasts. The Platynereis eye circuit has the hallmarks of a visual system, including spatial light detection and contrast modulation, illustrating how image-forming eyes may have evolved via intermediate stages contrasting only a light and a dark field during a simple visual task.

  18. Aging in Sensory and Motor Neurons Results in Learning Failure in Aplysia californica.

    PubMed

    Kempsell, Andrew T; Fieber, Lynne A

    2015-01-01

    The physiological and molecular mechanisms of age-related memory loss are complicated by the complexity of vertebrate nervous systems. This study takes advantage of a simple neural model to investigate nervous system aging, focusing on changes in learning and memory in the form of behavioral sensitization in vivo and synaptic facilitation in vitro. The effect of aging on the tail withdrawal reflex (TWR) was studied in Aplysia californica at maturity and late in the annual lifecycle. We found that short-term sensitization in TWR was absent in aged Aplysia. This implied that the neuronal machinery governing nonassociative learning was compromised during aging. Synaptic plasticity in the form of short-term facilitation between tail sensory and motor neurons decreased during aging whether the sensitizing stimulus was tail shock or the heterosynaptic modulator serotonin (5-HT). Together, these results suggest that the cellular mechanisms governing behavioral sensitization are compromised during aging, thereby nearly eliminating sensitization in aged Aplysia.

  19. [Prolonged homosynaptic depression of the impulse reactions of the motor cortex neurons in the cat].

    PubMed

    Sil'kis, I G; Rapoport, S Sh; Veber, N V; Gushchin, A M

    1993-01-01

    It is shown that in the motor and the visual cortices of the cat the homosynaptic long-term posttetanic depression (LTD) of monosynaptic impulse responses of the cortical neurons may be induced in the tetanized input. Homosynaptic LTD appears as a decrease of the probability of the monosynaptic discharges or an increase in the latency of the monosynaptic responses. The cortical homosynaptic depression possesses the same properties as the hippocampal LTD, namely, the longevity, input specificity, cooperativity, and associativity. The possible mechanisms of the homosynaptic LTD induction are discussed. The effect may be determined, on the one hand, as Ca-dependent phenomenon, and on the other hand, as the LTP of monosynaptic reactions of the input inhibitory interneurons. It is supposed that the homosynaptic LTD of the impulse reactions of the cortical neurons may be one of the basic mechanisms in certain learning tasks, such as habituation or extinction.

  20. Control of ventricular excitability by neurons of the dorsal motor nucleus of the vagus nerve

    PubMed Central

    Machhada, Asif; Ang, Richard; Ackland, Gareth L.; Ninkina, Natalia; Buchman, Vladimir L.; Lythgoe, Mark F.; Trapp, Stefan; Tinker, Andrew; Marina, Nephtali; Gourine, Alexander V.

    2015-01-01

    Background The central nervous origins of functional parasympathetic innervation of cardiac ventricles remain controversial. Objective This study aimed to identify a population of vagal preganglionic neurons that contribute to the control of ventricular excitability. An animal model of synuclein pathology relevant to Parkinson’s disease was used to determine whether age-related loss of the activity of the identified group of neurons is associated with changes in ventricular electrophysiology. Methods In vivo cardiac electrophysiology was performed in anesthetized rats in conditions of selective inhibition of the dorsal vagal motor nucleus (DVMN) neurons by pharmacogenetic approach and in mice with global genetic deletion of all family members of the synuclein protein. Results In rats anesthetized with urethane (in conditions of systemic beta-adrenoceptor blockade), muscarinic and neuronal nitric oxide synthase blockade confirmed the existence of a tonic parasympathetic control of cardiac excitability mediated by the actions of acetylcholine and nitric oxide. Acute DVMN silencing led to shortening of the ventricular effective refractory period (vERP), a lowering of the threshold for triggered ventricular tachycardia, and prolongation of the corrected QT (QTc) interval. Lower resting activity of the DVMN neurons in aging synuclein-deficient mice was found to be associated with vERP shortening and QTc interval prolongation. Conclusion Activity of the DVMN vagal preganglionic neurons is responsible for tonic parasympathetic control of ventricular excitability, likely to be mediated by nitric oxide. These findings provide the first insight into the central nervous substrate that underlies functional parasympathetic innervation of the ventricles and highlight its vulnerability in neurodegenerative diseases. PMID:26051529

  1. Do canine parvoviruses affect canine neurons? An immunohistochemical study.

    PubMed

    Url, A; Schmidt, P

    2005-08-01

    In cats (most of which died from panleukopenia), cerebral neurons have recently been shown to be susceptible to canine parvovirus infection. In addition to positive immunostaining and distinct in situ hybridization signals, signs of neurodegeneration were identified by histopathology, mainly in the diencephalic area. Similar histological lesions of the diencephalic regions in dogs have also attracted attention; therefore, an immunohistochemical study was initiated to determine the possible infection of canine neurons with canine parvoviruses. The study was carried out on formalin-fixed and paraffin-embedded brain tissue, with and without signs of neurodegeneration, from 40 dogs, most of them dying from parvovirus enteritis. Immunohistochemistry, using polyclonal antiserum against canine parvoviruses, was negative in all 40 cases, suggesting that, unlike cats, canine parvoviruses do not seem capable of infecting canine neurons.

  2. Initial Observations of Fruit Fly;s Flight with its b1 Motor Neuron Altered

    NASA Astrophysics Data System (ADS)

    Wang, Z. Jane; Melfi, James, Jr.

    2015-11-01

    Recently we have suggested that one of the fly's 17 steering muscles, the first basalar muscle (b1) is responsible for maintaining flight stability. To test this, we compare the flight behavior of normal flies with genetically modified flies whose motor neuron to the b1 muscle is silenced. We report our initial observation of the difference and similarity between these two lines supplied by Janelia Farm. We also discuss the basic question for quantifying flight, what makes a good flier? Partly supported by the Visiting Scientist program at HHMI-Janelia Farm.

  3. Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex.

    PubMed

    Chadderdon, George L; Neymotin, Samuel A; Kerr, Cliff C; Lytton, William W

    2012-01-01

    Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint "forearm" to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. The model consisted of 144 excitatory and 64 inhibitory event-based neurons, each with AMPA, NMDA, and GABA synapses. Proprioceptive cell input to this model encoded the 2 muscle lengths. Plasticity was only enabled in feedforward connections between input and output excitatory units, using spike-timing-dependent eligibility traces for synaptic credit or blame assignment. Learning resulted from a global 3-valued signal: reward (+1), no learning (0), or punishment (-1), corresponding to phasic increases, lack of change, or phasic decreases of dopaminergic cell firing, respectively. Successful learning only occurred when both reward and punishment were enabled. In this case, 5 target angles were learned successfully within 180 s of simulation time, with a median error of 8 degrees. Motor babbling allowed exploratory learning, but decreased the stability of the learned behavior, since the hand continued moving after reaching the target. Our model demonstrated that a global reinforcement signal, coupled with eligibility traces for synaptic plasticity, can train a spiking sensorimotor network to perform goal-directed motor behavior.

  4. Reinforcement Learning of Targeted Movement in a Spiking Neuronal Model of Motor Cortex

    PubMed Central

    Chadderdon, George L.; Neymotin, Samuel A.; Kerr, Cliff C.; Lytton, William W.

    2012-01-01

    Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint “forearm” to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. The model consisted of 144 excitatory and 64 inhibitory event-based neurons, each with AMPA, NMDA, and GABA synapses. Proprioceptive cell input to this model encoded the 2 muscle lengths. Plasticity was only enabled in feedforward connections between input and output excitatory units, using spike-timing-dependent eligibility traces for synaptic credit or blame assignment. Learning resulted from a global 3-valued signal: reward (+1), no learning (0), or punishment (−1), corresponding to phasic increases, lack of change, or phasic decreases of dopaminergic cell firing, respectively. Successful learning only occurred when both reward and punishment were enabled. In this case, 5 target angles were learned successfully within 180 s of simulation time, with a median error of 8 degrees. Motor babbling allowed exploratory learning, but decreased the stability of the learned behavior, since the hand continued moving after reaching the target. Our model demonstrated that a global reinforcement signal, coupled with eligibility traces for synaptic plasticity, can train a spiking sensorimotor network to perform goal-directed motor behavior. PMID:23094042

  5. Differential activation of an identified motor neuron and neuromodulation provide Aplysia's retractor muscle an additional function.

    PubMed

    McManus, Jeffrey M; Lu, Hui; Cullins, Miranda J; Chiel, Hillel J

    2014-08-15

    To survive, animals must use the same peripheral structures to perform a variety of tasks. How does a nervous system employ one muscle to perform multiple functions? We addressed this question through work on the I3 jaw muscle of the marine mollusk Aplysia californica's feeding system. This muscle mediates retraction of Aplysia's food grasper in multiple feeding responses and is innervated by a pool of identified neurons that activate different muscle regions. One I3 motor neuron, B38, is active in the protraction phase, rather than the retraction phase, suggesting the muscle has an additional function. We used intracellular, extracellular, and muscle force recordings in several in vitro preparations as well as recordings of nerve and muscle activity from intact, behaving animals to characterize B38's activation of the muscle and its activity in different behavior types. We show that B38 specifically activates the anterior region of I3 and is specifically recruited during one behavior, swallowing. The function of this protraction-phase jaw muscle contraction is to hold food; thus the I3 muscle has an additional function beyond mediating retraction. We additionally show that B38's typical activity during in vivo swallowing is insufficient to generate force in an unmodulated muscle and that intrinsic and extrinsic modulation shift the force-frequency relationship to allow contraction. Using methods that traverse levels from individual neuron to muscle to intact animal, we show how regional muscle activation, differential motor neuron recruitment, and neuromodulation are key components in Aplysia's generation of multifunctionality.

  6. Effect of Octreotide on Enteric Motor Neurons in Experimental Acute Necrotizing Pancreatitis

    PubMed Central

    Zou, Duowu; Wu, Wenbin; Li, Zhaoshen

    2012-01-01

    Background/Aims Amelioration of intestinal dysmotility and stasis during the early period of acute necrotizing pancreatitis (ANP) appears to be important to reduce the risks of secondary pancreatic infection. We aimed to characterize the association between the neuropathy of the enteric nervous system and gut dysfunction and to examine the effect of octreotide on motor innervation in the early stage of ANP. Methodology/Principal Findings The rats were randomly divided into eight groups: control+saline; control+octreotide; ANP+saline and ANP+octreotide (24 h, 48 h, 72 h). The spontaneous activity of ileal segments and the response to ACh, l-NNA were recorded. The alterations of myenteric neuronal nitric oxide synthase (nNOS), choline acetyltransferase (CHAT), PGP9.5 and somatostatin receptor 2 (SSTR2) immunoreactive cells were evaluated by immunofluorescence and the protein expression of nNOS and CHAT were evaluated by western blot. We found the amplitude of spontaneous contractions at 48 h and the response to ACh at 24 h declined in the ANP+saline rats. A higher contractile response to both ACh and to l-NNA was observed in the ANP+octreotide group, compared with the ANP+saline rats at 24 h. A significant reduction in the nNOS and cholinergic neurons was observed in ANP+saline rats at the three time points. However, this reduction was greatly ameliorated in the presence of octreotide at 24 h and 48 h. The protein expression of CHAT neurons at 24 h and the nNOS neurons at 48 h in the ANP+octreotide rats was much higher than the ANP+saline rats. Conclusion The pathogenesis of ileus in the early stage of ANP may be related to the neuropathy of the enteric nervous system. Octreotide may reduce the severity of ileus by lessening the damage to enteric motor innervation. PMID:23300603

  7. Exendin-4 Ameliorates Motor Neuron Degeneration in Cellular and Animal Models of Amyotrophic Lateral Sclerosis

    PubMed Central

    Li, Yazhou; Chigurupati, Srinivasulu; Holloway, Harold W.; Mughal, Mohamed; Tweedie, David; Bruestle, Daniel A.; Mattson, Mark P.; Wang, Yun; Harvey, Brandon K.; Ray, Balmiki; Lahiri, Debomoy K.; Greig, Nigel H.

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by a progressive loss of lower motor neurons in the spinal cord. The incretin hormone, glucagon-like peptide-1 (GLP-1), facilitates insulin signaling, and the long acting GLP-1 receptor agonist exendin-4 (Ex-4) is currently used as an anti-diabetic drug. GLP-1 receptors are widely expressed in the brain and spinal cord, and our prior studies have shown that Ex-4 is neuroprotective in several neurodegenerative disease rodent models, including stroke, Parkinson's disease and Alzheimer's disease. Here we hypothesized that Ex-4 may provide neuroprotective activity in ALS, and hence characterized Ex-4 actions in both cell culture (NSC-19 neuroblastoma cells) and in vivo (SOD1 G93A mutant mice) models of ALS. Ex-4 proved to be neurotrophic in NSC-19 cells, elevating choline acetyltransferase (ChAT) activity, as well as neuroprotective, protecting cells from hydrogen peroxide-induced oxidative stress and staurosporine-induced apoptosis. Additionally, in both wild-type SOD1 and mutant SOD1 (G37R) stably transfected NSC-19 cell lines, Ex-4 protected against trophic factor withdrawal-induced toxicity. To assess in vivo translation, SOD1 mutant mice were administered vehicle or Ex-4 at 6-weeks of age onwards to end-stage disease via subcutaneous osmotic pump to provide steady-state infusion. ALS mice treated with Ex-4 showed improved glucose tolerance and normalization of behavior, as assessed by running wheel, compared to control ALS mice. Furthermore, Ex-4 treatment attenuated neuronal cell death in the lumbar spinal cord; immunohistochemical analysis demonstrated the rescue of neuronal markers, such as ChAT, associated with motor neurons. Together, our results suggest that GLP-1 receptor agonists warrant further evaluation to assess whether their neuroprotective potential is of therapeutic relevance in ALS. PMID:22384126

  8. Short-Term Limb Immobilization Affects Cognitive Motor Processes

    ERIC Educational Resources Information Center

    Toussaint, Lucette; Meugnot, Aurore

    2013-01-01

    We examined the effects of a brief period of limb immobilization on the cognitive level of action control. A splint placed on the participants' left hand was used as a means of immobilization. We used a hand mental rotation task to investigate the immobilization-induced effects on motor imagery performance (Experiments 1 and 2) and a number mental…

  9. Motor neurons derived from ALS-related mouse iPS cells recapitulate pathological features of ALS

    PubMed Central

    Park, Ju-Hwang; Park, Hang-Soo; Hong, Sunghoi; Kang, Seongman

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a late-onset progressive neurodegenerative disease characterized by the loss of motor neurons in the spinal cord and brain. Mutations in Cu/Zn superoxide dismutase 1 (SOD1) are known to induce ALS. Although many research models have been developed, the exact pathological mechanism of ALS remains unknown. The recently developed induced pluripotent stem (iPS) cell technology is expected to illuminate the pathological mechanisms and new means of treatment for neurodegenerative diseases. To determine the pathological mechanism of ALS, we generated mouse iPS (miPS) cells from experimental ALS transgenic mice and control mice and characterized the cells using molecular biological methods. The generated miPS cells expressed many pluripotent genes and differentiated into three germ layers in vitro and in vivo. Motor neurons derived from ALS-related miPS cells recapitulated the pathological features of ALS. The ALS-model motor neurons showed SOD1 aggregates, as well as decreased cell survival rate and neurite length compared with wild-type motor neurons. Our study will be helpful in revealing the mechanism of motor neuronal cell death in ALS. PMID:27932790

  10. NSC-34 Motor Neuron-Like Cells Are Unsuitable as Experimental Model for Glutamate-Mediated Excitotoxicity

    PubMed Central

    Madji Hounoum, Blandine; Vourc’h, Patrick; Felix, Romain; Corcia, Philippe; Patin, Franck; Guéguinou, Maxime; Potier-Cartereau, Marie; Vandier, Christophe; Raoul, Cédric; Andres, Christian R.; Mavel, Sylvie; Blasco, Hélène

    2016-01-01

    Glutamate-induced excitotoxicity is a major contributor to motor neuron degeneration in the pathogenesis of amyotrophic lateral sclerosis (ALS). The spinal cord × Neuroblastoma hybrid cell line (NSC-34) is often used as a bona fide cellular model to investigate the physiopathological mechanisms of ALS. However, the physiological response of NSC-34 to glutamate remains insufficiently described. In this study, we evaluated the relevance of differentiated NSC-34 (NSC-34D) as an in vitro model for glutamate excitotoxicity studies. NSC-34D showed morphological and physiological properties of motor neuron-like cells and expressed glutamate receptor subunits GluA1–4, GluN1 and GluN2A/D. Despite these diverse characteristics, no specific effect of glutamate was observed on cultured NSC-34D survival and morphology, in contrast to what has been described in primary culture of motor neurons (MN). Moreover, a small non sustained increase in the concentration of intracellular calcium was observed in NSC-34D after exposure to glutamate compared to primary MN. Our findings, together with the inability to obtain cultures containing only differentiated cells, suggest that the motor neuron-like NSC-34 cell line is not a suitable in vitro model to study glutamate-induced excitotoxicity. We suggest that the use of primary cultures of MN is more suitable than NSC-34 cell line to explore the pathogenesis of glutamate-mediated excitotoxicity at the cellular level in ALS and other motor neuron diseases. PMID:27242431

  11. Motor neurons derived from ALS-related mouse iPS cells recapitulate pathological features of ALS.

    PubMed

    Park, Ju-Hwang; Park, Hang-Soo; Hong, Sunghoi; Kang, Seongman

    2016-12-09

    Amyotrophic lateral sclerosis (ALS) is a late-onset progressive neurodegenerative disease characterized by the loss of motor neurons in the spinal cord and brain. Mutations in Cu/Zn superoxide dismutase 1 (SOD1) are known to induce ALS. Although many research models have been developed, the exact pathological mechanism of ALS remains unknown. The recently developed induced pluripotent stem (iPS) cell technology is expected to illuminate the pathological mechanisms and new means of treatment for neurodegenerative diseases. To determine the pathological mechanism of ALS, we generated mouse iPS (miPS) cells from experimental ALS transgenic mice and control mice and characterized the cells using molecular biological methods. The generated miPS cells expressed many pluripotent genes and differentiated into three germ layers in vitro and in vivo. Motor neurons derived from ALS-related miPS cells recapitulated the pathological features of ALS. The ALS-model motor neurons showed SOD1 aggregates, as well as decreased cell survival rate and neurite length compared with wild-type motor neurons. Our study will be helpful in revealing the mechanism of motor neuronal cell death in ALS.

  12. Mutant HSPB1 overexpression in neurons is sufficient to cause age-related motor neuronopathy in mice

    PubMed Central

    Srivastava, Amit K.; Renusch, Samantha R.; Naiman, Nicole E.; Gu, Shuping; Sneh, Amita; Arnold, W. David; Sahenk, Zarife; Kolb, Stephen J.

    2012-01-01

    The small heat shock protein HSPB1 is a multifunctional, α-crystallin-based protein that has been shown to be neuroprotective in animal models of motor neuron disease and peripheral nerve injury. Missense mutations in HSPB1 result in axonal Charcot-Marie-Tooth disease with minimal sensory involvement (CMT2F) and distal hereditary motor neuropathy type 2 (dHMN-II). These disorders are characterized by a selective loss of motor axons in peripheral nerve resulting in distal muscle weakness and often severe disability. To investigate the pathogenic mechanisms of HSPB1 mutations in motor neurons in vivo, we have developed and characterized transgenic PrP-HSPB1 and PrP-HSPB1(R136W) mice. These mice express the human HSPB1 protein throughout the nervous system including in axons of peripheral nerve. Although both mouse strains lacked obvious motor deficits, the PrP-HSPB1(R136W) mice developed an age-dependent motor axonopathy. Mutant mice showed axonal pathology in spinal cord and peripheral nerve with evidence of impaired neurofilament cytoskeleton, associated with organelle accumulation. Accompanying these findings, increases in the number of Schmidt-Lanterman incisures, as evidence of impaired axon-Schwann cell interactions, were present. These observations suggest that overexpression of HSPB1(R136W) in neurons is sufficient to cause pathological and electrophysiological changes in mice that are seen in patients with hereditary motor neuropathy. PMID:22521462

  13. The CB1 cannabinoid receptor drives corticospinal motor neuron differentiation through the Ctip2/Satb2 transcriptional regulation axis

    PubMed Central

    Díaz-Alonso, Javier; Aguado, Tania; Wu, Chia-Shan; Palazuelos, Javier; Hofmann, Clementine; Garcez, Patricia; Guillemot, Francois; Lu, Hui-Chen; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2012-01-01

    The generation and specification of pyramidal neuron subpopulations during development relies on a complex network of transcription factors. The CB1 cannabinoid receptor is the major molecular target of endocannabinoids and marijuana active compounds. This receptor has been shown to influence neural progenitor proliferation and axonal growth, but its involvement in neuronal differentiation and the functional impact in the adulthood caused by altering its signaling during brain development are not known. Here we show that the CB1 receptor, by preventing Satb2-mediated repression, increased Ctip2 promoter activity and Ctip2+ neuron generation. Unbalanced neurogenic fate determination found in complete CB1−/− mice and in glutamatergic neuron-specific Nex-CB1−/− mice induced overt alterations in corticospinal motor neuron generation and subcerebral connectivity, thereby resulting in an impairment of skilled motor function in adult mice. Likewise, genetic deletion of CB1 receptors in Thy1-YFP-H mice elicited alterations in corticospinal tract development. Altogether, these data demonstrate that the CB1 receptor contributes to the generation of deep-layer cortical neurons, by coupling endocannabinoid signals from the neurogenic niche to the intrinsic proneurogenic Ctip2/Satb2 axis, thus influencing appropriate subcerebral projection neuron specification and corticospinal motor function in the adulthood. PMID:23175820

  14. The CB(1) cannabinoid receptor drives corticospinal motor neuron differentiation through the Ctip2/Satb2 transcriptional regulation axis.

    PubMed

    Díaz-Alonso, Javier; Aguado, Tania; Wu, Chia-Shan; Palazuelos, Javier; Hofmann, Clementine; Garcez, Patricia; Guillemot, François; Lu, Hui-Chen; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2012-11-21

    The generation and specification of pyramidal neuron subpopulations during development relies on a complex network of transcription factors. The CB(1) cannabinoid receptor is the major molecular target of endocannabinoids and marijuana active compounds. This receptor has been shown to influence neural progenitor proliferation and axonal growth, but its involvement in neuronal differentiation and the functional impact in the adulthood caused by altering its signaling during brain development are not known. Here we show that the CB(1) receptor, by preventing Satb2 (special AT-rich binding protein 2)-mediated repression, increased Ctip2 (COUP-TF interacting protein 2) promoter activity, and Ctip2-positive neuron generation. Unbalanced neurogenic fate determination found in complete CB(1)(-/-) mice and in glutamatergic neuron-specific Nex-CB(1)(-/-) mice induced overt alterations in corticospinal motor neuron generation and subcerebral connectivity, thereby resulting in an impairment of skilled motor function in adult mice. Likewise, genetic deletion of CB(1) receptors in Thy1-YFP-H mice elicited alterations in corticospinal tract development. Altogether, these data demonstrate that the CB(1) receptor contributes to the generation of deep-layer cortical neurons by coupling endocannabinoid signals from the neurogenic niche to the intrinsic proneurogenic Ctip2/Satb2 axis, thus influencing appropriate subcerebral projection neuron specification and corticospinal motor function in the adulthood.

  15. Influence of respiratory motor neurone activity on human autonomic and haemodynamic rhythms

    NASA Technical Reports Server (NTRS)

    Gonschorek, A. S.; Lu, L. L.; Halliwill, J. R.; Beightol, L. A.; Taylor, J. A.; Painter, J. A.; Warzel, H.; Eckberg, D. L.

    2001-01-01

    Although humans hold great advantages over other species as subjects for biomedical research, they also bring major disadvantages. One is that among the many rhythmic physiological signals that can be recorded, there is no sure way to know which individual change precedes another, or which change represents cause and which represents effect. In an attempt to deal with the inherent complexity of research conducted in intact human subjects, we developed and used a structural equation model to analyse responses of healthy young men to pharmacological changes of arterial pressure and graded inspiratory resistance, before and after vagomimetic atropine. Our model yielded a good fit of the experimental data, with a system weighted R2 of 0.77, and suggested that our treatments exerted both direct and indirect influences on the variables we measured. Thus, infusions of nitroprusside and phenylephrine exerted all of their direct effects by lowering and raising arterial pressure; the changes of R-R intervals, respiratory sinus arrhythmia and arterial pressure fluctuations that these drugs provoked, were indirect consequences of arterial pressure changes. The only direct effect of increased inspiratory resistance was augmentation of arterial pressure fluctuations. These results may provide a new way to disentangle and understand responses of intact human subjects to experimental forcings. The principal new insight we derived from our modelling is that respiratory gating of vagal-cardiac motor neurone firing is nearly maximal at usual levels of arterial pressure and inspiratory motor neurone activity.

  16. Targeted assessment of lower motor neuron burden is associated with survival in amyotrophic lateral sclerosis.

    PubMed

    Devine, Matthew S; Ballard, Emma; O'Rourke, Peter; Kiernan, Matthew C; Mccombe, Pamela A; Henderson, Robert D

    2016-01-01

    Estimating survival in amyotrophic lateral sclerosis (ALS) is challenging due to heterogeneity in clinical features of disease and a lack of suitable markers that predict survival. Our aim was to determine whether scoring of upper or lower motor neuron weakness is associated with survival. With this objective, 161 ALS subjects were recruited from two tertiary referral centres. Scoring of upper (UMN) and lower motor neuron (LMN) signs was performed, in addition to a brief questionnaire. Subjects were then followed until the censorship date. Univariate analysis was performed to identify variables associated with survival to either non-invasive ventilation (NIV) or death, which were then further characterized using Cox regression. Results showed that factors associated with reduced survival included older age, bulbar and respiratory involvement and shorter diagnostic delay (all p < 0.05). Whole body LMN score was strongly associated with time to NIV or death (p ≤0.001) whereas UMN scores were poorly associated with survival. In conclusion, our results suggest that, early in disease assessment and in the context of other factors (age, bulbar, respiratory status), the burden of LMN weakness provides an accurate estimate of outcome. Such a scoring system could predict prognosis, and thereby aid in selection of patients for clinical trials.

  17. Trends in motor neuron disease: association with latitude and air lead levels in Spain.

    PubMed

    Santurtún, Ana; Villar, Alejandro; Delgado-Alvarado, Manuel; Riancho, Javier

    2016-08-01

    Motor neuron diseases (MND) are a group of disorders characterized by motor neuron degeneration. Among them, amyotrophic lateral sclerosis (ALS) is by far the most common in adulthood. This paper assesses the trend and geographical pattern in MND incidence in Spain and the possible air lead levels effect on this pathology. To confirm this concept, we performed a retrospective analysis of the deaths due to MND in Spain during 2000 and 2013, determined the geographical differences, and explored the relationship between MND and the air levels of lead. Overall, between 2000 and 2013, 11,355 people died in Spain because of MND. Disease mortality significantly increased in recent years (2007-2013) when compared with the first time of the period. Spearman's rank correlation coefficient also showed a statistically significant positive trend (CC = 0.824, p = 0.0002). Among people over 65 years, mortality rates were higher in Northern provinces. Moreover, we found a significant association of MND mortality with higher air lead levels (CC = 0.457, p = 0.01). Our study confirms that MND mortality is increasing in Spain, with a significant latitude gradient, which suggests an important role of environmental exposures. This ecological study suggests that air lead levels may be implicated in ALS pathogenesis.

  18. Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity

    PubMed Central

    Mazzoni, Esteban O; Mahony, Shaun; Closser, Michael; Morrison, Carolyn A; Nedelec, Stephane; Williams, Damian J; An, Disi; Gifford, David K; Wichterle, Hynek

    2013-01-01

    Efficient transcriptional programming promises to open new frontiers in regenerative medicine. However, mechanisms by which programming factors transform cell fate are unknown, preventing more rational selection of factors to generate desirable cell types. Three transcription factors, Ngn2, Isl1 and Lhx3, were sufficient to program rapidly and efficiently spinal motor neuron identity when expressed in differentiating mouse embryonic stem cells. Replacement of Lhx3 by Phox2a led to specification of cranial, rather than spinal, motor neurons. Chromatin immunoprecipitation–sequencing analysis of Isl1, Lhx3 and Phox2a binding sites revealed that the two cell fates were programmed by the recruitment of Isl1-Lhx3 and Isl1-Phox2a complexes to distinct genomic locations characterized by a unique grammar of homeodomain binding motifs. Our findings suggest that synergistic interactions among transcription factors determine the specificity of their recruitment to cell type–specific binding sites and illustrate how a single transcription factor can be repurposed to program different cell types. PMID:23872598

  19. Motor neurone responses during a postural reflex in solitarious and gregarious desert locusts.

    PubMed

    Blackburn, Laura M; Ott, Swidbert R; Matheson, Tom; Burrows, Malcolm; Rogers, Stephen M

    2010-08-01

    Desert locusts show extreme phenotypic plasticity and can change reversibly between two phases that differ radically in morphology, physiology and behaviour. Solitarious locusts are cryptic in appearance and behaviour, walking slowly with the body held close to the ground. Gregarious locusts are conspicuous in appearance and much more active, walking rapidly with the body held well above the ground. During walking, the excursion of the femoro-tibial (F-T) joint of the hind leg is smaller in solitarious locusts, and the joint is kept more flexed throughout an entire step. Under open loop conditions, the slow extensor tibiae (SETi) motor neurone of solitarious locusts shows strong tonic activity that increases at more extended F-T angles. SETi of gregarious locusts by contrast showed little tonic activity. Simulated flexion of the F-T joint elicits resistance reflexes in SETi in both phases, but regardless of the initial and final position of the leg, the spiking rate of SETi during these reflexes was twice as great in solitarious compared to gregarious locusts. This increased sensory-motor gain in the neuronal networks controlling postural reflexes in solitarious locusts may be linked to the occurrence of pronounced behavioural catalepsy in this phase similar to other cryptic insects such as stick insects.

  20. Neuronal migration and its disorders affecting the CA3 region

    PubMed Central

    Belvindrah, Richard; Nosten-Bertrand, Marika; Francis, Fiona

    2014-01-01

    In this review, we focus on CA3 neuronal migration disorders in the rodent. We begin by introducing the main steps of hippocampal development, and we summarize characteristic hippocampal malformations in human. We then describe various mouse mutants showing structural hippocampal defects. Notably, genes identified in human cortical neuronal migration disorders consistently give rise to a CA3 phenotype when mutated in the mouse. We successively describe their molecular, physiological and behavioral phenotypes that together contribute to a better understanding of CA3-dependent functions. We finally discuss potential factors underlying the CA3 vulnerability revealed by these mouse mutants and that may also contribute to other human neurological and psychiatric disorders. PMID:24624057

  1. Unilateral nasal obstruction affects motor representation development within the face primary motor cortex in growing rats.

    PubMed

    Abe, Yasunori; Kato, Chiho; Uchima Koecklin, Karin Harumi; Okihara, Hidemasa; Ishida, Takayoshi; Fujita, Koichi; Yabushita, Tadachika; Kokai, Satoshi; Ono, Takashi

    2017-03-23

    Postnatal growth is influenced by genetic and environmental factors. Nasal obstruction during growth alters the electromyographic activity of orofacial muscles. The facial primary motor area represents muscles of the tongue and jaw, which are essential in regulating orofacial motor functions, including chewing and jaw opening. This study aimed to evaluate the effect of chronic unilateral nasal obstruction during growth on the motor representations within the face primary motor cortex (M1). Seventy-two 6-day-old male Wistar rats were randomly divided into control (n = 36) and experimental (n = 36) groups. Rats in the experimental group underwent unilateral nasal obstruction after cauterization of the external nostril at 8 days of age. Intracortical microstimulation (ICMS) mapping was performed when the rats were 5, 7, 9, and 11 weeks old in control and experimental groups (n = 9 per group per time point). Repeated-measures multivariate analysis of variance was used for intergroup and intragroup statistical comparisons. In the control and experimental groups, the total number of positive ICMS sites for the genioglossus and anterior digastric muscles was significantly higher at 5, 7, and 9 weeks, but there was no significant difference between 9 and 11 weeks of age. Moreover, the total number of positive ICMS sites was significantly smaller in the experimental group than in the control at each age. It is possible that nasal obstruction induced the initial changes in orofacial motor behavior in response to the altered respiratory pattern, which eventually contributed to face-M1 neuroplasticity.

  2. A Multi-step Transcriptional and Chromatin State Cascade Underlies Motor Neuron Programming from Embryonic Stem Cells.

    PubMed

    Velasco, Silvia; Ibrahim, Mahmoud M; Kakumanu, Akshay; Garipler, Görkem; Aydin, Begüm; Al-Sayegh, Mohamed Ahmed; Hirsekorn, Antje; Abdul-Rahman, Farah; Satija, Rahul; Ohler, Uwe; Mahony, Shaun; Mazzoni, Esteban O

    2017-02-02

    Direct cell programming via overexpression of transcription factors (TFs) aims to control cell fate with the degree of precision needed for clinical applications. However, the regulatory steps involved in successful terminal cell fate programming remain obscure. We have investigated the underlying mechanisms by looking at gene expression, chromatin states, and TF binding during the uniquely efficient Ngn2, Isl1, and Lhx3 motor neuron programming pathway. Our analysis reveals a highly dynamic process in which Ngn2 and the Isl1/Lhx3 pair initially engage distinct regulatory regions. Subsequently, Isl1/Lhx3 binding shifts from one set of targets to another, controlling regulatory region activity and gene expression as cell differentiation progresses. Binding of Isl1/Lhx3 to later motor neuron enhancers depends on the Ebf and Onecut TFs, which are induced by Ngn2 during the programming process. Thus, motor neuron programming is the product of two initially independent transcriptional modules that converge with a feedforward transcriptional logic.

  3. Incidence of and risk factors for Motor Neurone Disease in UK women: a prospective study

    PubMed Central

    2012-01-01

    Background Motor neuron disease (MND) is a severe neurodegenerative disease with largely unknown etiology. Most epidemiological studies are hampered by small sample sizes and/or the retrospective collection of information on behavioural and lifestyle factors. Methods 1.3 million women from the UK Million Women Study, aged 56 years on average at recruitment, were followed up for incident and/or fatal MND using NHS hospital admission and mortality data. Adjusted relative risks were calculated using Cox regression models. Findings During follow-up for an average of 9·2 years, 752 women had a new diagnosis of MND. Age-specific rates increased with age, from 1·9 (95% CI 1·3 – 2·7) to 12·5 (95% CI 10·2 – 15·3) per 100,000 women aged 50–54 to 70–74, respectively, giving a cumulative risk of diagnosis with the disease of 1·74 per 1000 women between the ages of 50 and 75 years. There was no significant variation in risk of MND with region of residence, socio-economic status, education, height, alcohol use, parity, use of oral contraceptives or hormone replacement therapy. Ever-smokers had about a 20% greater risk than never smokers (RR 1·19 95% CI 1·02 to 1·38, p = 0·03). There was a statistically significant reduction in risk of MND with increasing body mass index (pfor trend = 0·009): obese women (body mass index, 30 kg/m2 or more) had a 20% lower risk than women of normal body mass index (20 to <25 Kg/m2)(RR 0·78 95% CI 0·65-0·94; p = 0·03). This effect persisted after exclusion of the first three years of follow-up. Interpretation MND incidence in UK women rises rapidly with age, and an estimated 1 in 575 women are likely to be affected between the ages of 50 and 75 years. Smoking slightly increases the risk of MND, and adiposity in middle age is associated with a lower risk of the disease. PMID:22559076

  4. Changes in the Neurochemical Composition of Motor Neurons of the Spinal Cord in Mice under Conditions of Space Flight.

    PubMed

    Porseva, V V; Shilkin, V V; Strelkov, A A; Krasnov, I B; Masliukov, P M

    2017-01-01

    Expression of choline acetyltransferase, 200-kDa neurofilament protein, 28-kDa calbindin, neuronal NO synthase, caspase 3, and Ki-67 in the motor neurons of spinal cord segments T3-T5 in male C57Bl/6 mice after 30-day space flight in the Bion-M1 biosatellite was studied by immunohistochemical methods. Under conditions space flight, the size of motoneurons increased, the number of neurons containing choline acetyltransferase and neurofilaments, decreased, and the number of calbindin-positive neurons increased; motoneurons, expressing neuronal NO synthase and caspase 3 appeared, while Ki-67 was not detected. Fragmentation of neurons with the formation structures similar to apoptotic (residual) bodies was observed in individual caspase 3-positive motoneurons.

  5. Electronic bypass of spinal lesions: activation of lower motor neurons directly driven by cortical neural signals

    PubMed Central

    2014-01-01

    Background Lower motor neurons in the spinal cord lose supraspinal inputs after complete spinal cord injury, leading to a loss of volitional control below the injury site. Extensive locomotor training with spinal cord stimulation can restore locomotion function after spinal cord injury in humans and animals. However, this locomotion is non-voluntary, meaning that subjects cannot control stimulation via their natural “intent”. A recent study demonstrated an advanced system that triggers a stimulator using forelimb stepping electromyographic patterns to restore quadrupedal walking in rats with spinal cord transection. However, this indirect source of “intent” may mean that other non-stepping forelimb activities may false-trigger the spinal stimulator and thus produce unwanted hindlimb movements. Methods We hypothesized that there are distinguishable neural activities in the primary motor cortex during treadmill walking, even after low-thoracic spinal transection in adult guinea pigs. We developed an electronic spinal bridge, called “Motolink”, which detects these neural patterns and triggers a “spinal” stimulator for hindlimb movement. This hardware can be head-mounted or carried in a backpack. Neural data were processed in real-time and transmitted to a computer for analysis by an embedded processor. Off-line neural spike analysis was conducted to calculate and preset the spike threshold for “Motolink” hardware. Results We identified correlated activities of primary motor cortex neurons during treadmill walking of guinea pigs with spinal cord transection. These neural activities were used to predict the kinematic states of the animals. The appropriate selection of spike threshold value enabled the “Motolink” system to detect the neural “intent” of walking, which triggered electrical stimulation of the spinal cord and induced stepping-like hindlimb movements. Conclusion We present a direct cortical “intent”-driven electronic spinal

  6. Chronic Exposure to Dietary Sterol Glucosides is Neurotoxic to Motor Neurons and Induces an ALS-PDC Phenotype

    PubMed Central

    Tabata, R. C.; Wilson, J. M. B.; Ly, P.; Zwiegers, P.; Kwok, D.; Van Kampen, J. M.; Cashman, N.; Shaw, C. A.

    2008-01-01

    Epidemiological studies of the Guamanian variants of amyotrophic lateral sclerosis (ALS) and parkinsonism, amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS-PDC), have shown a positive correlation between consumption of washed cycad seed flour and disease occurrence. Previous in vivo studies by our group have shown that the same seed flour induces ALS and PDC phenotypes in out bred adult male mice. In vitro studies using isolated cycad compounds have also demonstrated that several of these are neurotoxic, specifically, a number of water insoluble phytosterol glucosides of which β-sitosterol β-d-glucoside (BSSG) forms the largest fraction. BSSG is neurotoxic to motor neurons and other neuronal populations in culture. The present study shows that an in vitro hybrid motor neuron (NSC-34) culture treated with BSSG undergoes a dose-dependent cell loss. Surviving cells show increased expression of HSP70, decreased cytosolic heavy neurofilament expression, and have various morphological abnormalities. CD-1 mice fed mouse chow pellets containing BSSG for 15 weeks showed motor deficits and motor neuron loss in the lumbar and thoracic spinal cord, along with decreased glutamate transporter labelling, and increased glial fibrillary acid protein reactivity. Other pathological outcomes included increased caspase-3 labelling in the striatum and decreased tyrosine-hydroxylase labelling in the striatum and substantia nigra. C57BL/6 mice fed BSSG-treated pellets for 10 weeks exhibited progressive loss of motor neurons in the lumbar spinal cord that continued to worsen even after the BSSG exposure ended. These results provide further support implicating sterol glucosides as one potential causal factor in the motor neuron pathology previously associated with cycad consumption and ALS-PDC. PMID:18196479

  7. Skeletal muscle DNA damage precedes spinal motor neuron DNA damage in a mouse model of Spinal Muscular Atrophy (SMA).

    PubMed

    Fayzullina, Saniya; Martin, Lee J

    2014-01-01

    Spinal Muscular Atrophy (SMA) is a hereditary childhood disease that causes paralysis by progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. The mechanisms by which lack of SMN causes SMA pathology are not known, making it very difficult to develop effective therapies. We investigated whether DNA damage is a perinatal pathological event in SMA, and whether DNA damage and cell death first occur in skeletal muscle or spinal cord of SMA mice. We used a mouse model of severe SMA to ascertain the extent of cell death and DNA damage throughout the body of prenatal and newborn mice. SMA mice at birth (postnatal day 0) exhibited internucleosomal fragmentation in genomic DNA from hindlimb skeletal muscle, but not in genomic DNA from spinal cord. SMA mice at postnatal day 5, compared with littermate controls, exhibited increased apoptotic cell death profiles in skeletal muscle, by hematoxylin and eosin, terminal deoxynucleotidyl transferase dUTP nick end labeling, and electron microscopy. SMA mice had no increased cell death, no loss of choline acetyl transferase (ChAT)-positive motor neurons, and no overt pathology in the ventral horn of the spinal cord. At embryonic days 13 and 15.5, SMA mice did not exhibit statistically significant increases in cell death profiles in spinal cord or skeletal muscle. Motor neuron numbers in the ventral horn, as identified by ChAT immunoreactivity, were comparable in SMA mice and control littermates at embryonic day 15.5 and postnatal day 5. These observations demonstrate that in SMA, disease in skeletal muscle emerges before pathology in spinal cord, including loss of motor neurons. Overall, this work identifies DNA damage and cell death in skeletal muscle as therapeutic targets for SMA.

  8. The neocortex of cetartiodactyls. II. Neuronal morphology of the visual and motor cortices in the giraffe (Giraffa camelopardalis).

    PubMed

    Jacobs, Bob; Harland, Tessa; Kennedy, Deborah; Schall, Matthew; Wicinski, Bridget; Butti, Camilla; Hof, Patrick R; Sherwood, Chet C; Manger, Paul R

    2015-09-01

    The present quantitative study extends our investigation of cetartiodactyls by exploring the neuronal morphology in the giraffe (Giraffa camelopardalis) neocortex. Here, we investigate giraffe primary visual and motor cortices from perfusion-fixed brains of three subadults stained with a modified rapid Golgi technique. Neurons (n = 244) were quantified on a computer-assisted microscopy system. Qualitatively, the giraffe neocortex contained an array of complex spiny neurons that included both "typical" pyramidal neuron morphology and "atypical" spiny neurons in terms of morphology and/or orientation. In general, the neocortex exhibited a vertical columnar organization of apical dendrites. Although there was no significant quantitative difference in dendritic complexity for pyramidal neurons between primary visual (n = 78) and motor cortices (n = 65), there was a significant difference in dendritic spine density (motor cortex > visual cortex). The morphology of aspiny neurons in giraffes appeared to be similar to that of other eutherian mammals. For cross-species comparison of neuron morphology, giraffe pyramidal neurons were compared to those quantified with the same methodology in African elephants and some cetaceans (e.g., bottlenose dolphin, minke whale, humpback whale). Across species, the giraffe (and cetaceans) exhibited less widely bifurcating apical dendrites compared to elephants. Quantitative dendritic measures revealed that the elephant and humpback whale had more extensive dendrites than giraffes, whereas the minke whale and bottlenose dolphin had less extensive dendritic arbors. Spine measures were highest in the giraffe, perhaps due to the high quality, perfusion fixation. The neuronal morphology in giraffe neocortex is thus generally consistent with what is known about other cetartiodactyls.

  9. Motor neurons and glia exhibit specific individualized responses to TDP-43 expression in a Drosophila model of amyotrophic lateral sclerosis

    PubMed Central

    Estes, Patricia S.; Daniel, Scott G.; Mccallum, Abigail P.; Boehringer, Ashley V.; Sukhina, Alona S.; Zwick, Rebecca A.; Zarnescu, Daniela C.

    2013-01-01

    SUMMARY Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by complex neuronal and glial phenotypes. Recently, RNA-based mechanisms have been linked to ALS via RNA-binding proteins such as TDP-43, which has been studied in vivo using models ranging from yeast to rodents. We have developed a Drosophila model of ALS based on TDP-43 that recapitulates several aspects of pathology, including motor neuron loss, locomotor dysfunction and reduced survival. Here we report the phenotypic consequences of expressing wild-type and four different ALS-linked TDP-43 mutations in neurons and glia. We show that TDP-43-driven neurodegeneration phenotypes are dose- and age-dependent. In motor neurons, TDP-43 appears restricted to nuclei, which are significantly misshapen due to mutant but not wild-type protein expression. In glia and in the developing neuroepithelium, TDP-43 associates with cytoplasmic puncta. TDP-43-containing RNA granules are motile in cultured motor neurons, although wild-type and mutant variants exhibit different kinetic properties. At the neuromuscular junction, the expression of TDP-43 in motor neurons versus glia leads to seemingly opposite synaptic phenotypes that, surprisingly, translate into comparable locomotor defects. Finally, we explore sleep as a behavioral readout of TDP-43 expression and find evidence of sleep fragmentation consistent with hyperexcitability, a suggested mechanism in ALS. These findings support the notion that although motor neurons and glia are both involved in ALS pathology, at the cellular level they can exhibit different responses to TDP-43. In addition, our data suggest that individual TDP-43 alleles utilize distinct molecular mechanisms, which will be important for developing therapeutic strategies. PMID:23471911

  10. Neurochemical, morphologic, and laminar characterization of cortical projection neurons in the cingulate motor areas of the macaque monkey

    NASA Technical Reports Server (NTRS)

    Nimchinsky, E. A.; Hof, P. R.; Young, W. G.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1996-01-01

    The primate cingulate gyrus contains multiple cortical areas that can be distinguished by several neurochemical features, including the distribution of neurofilament protein-enriched pyramidal neurons. In addition, connectivity and functional properties indicate that there are multiple motor areas in the cortex lining the cingulate sulcus. These motor areas were targeted for analysis of potential interactions among regional specialization, connectivity, and cellular characteristics such as neurochemical profile and morphology. Specifically, intracortical injections of retrogradely transported dyes and intracellular injection were combined with immunocytochemistry to investigate neurons projecting from the cingulate motor areas to the putative forelimb region of the primary motor cortex, area M1. Two separate groups of neurons projecting to area M1 emanated from the cingulate sulcus, one anterior and one posterior, both of which furnished commissural and ipsilateral connections with area M1. The primary difference between the two populations was laminar origin, with the anterior projection originating largely in deep layers, and the posterior projection taking origin equally in superficial and deep layers. With regard to cellular morphology, the anterior projection exhibited more morphologic diversity than the posterior projection. Commissural projections from both anterior and posterior fields originated largely in layer VI. Neurofilament protein distribution was a reliable tool for localizing the two projections and for discriminating between them. Comparable proportions of the two sets of projection neurons contained neurofilament protein, although the density and distribution of the total population of neurofilament protein-enriched neurons was very different in the two subareas of origin. Within a projection, the participating neurons exhibited a high degree of morphologic heterogeneity, and no correlation was observed between somatodendritic morphology and

  11. Central neuronal motor behaviour in skilled and less skilled novices - Approaching sports-specific movement techniques.

    PubMed

    Vogt, Tobias; Kato, Kouki; Schneider, Stefan; Türk, Stefan; Kanosue, Kazuyuki

    2017-02-14

    Research on motor behavioural processes preceding voluntary movements often refers to analysing the readiness potential (RP). For this, decades of studies used laboratory setups with controlled sports-related actions. Further, recent applied approaches focus on athlete-non-athlete comparisons, omitting possible effects of training history on RP. However, RP preceding real sport-specific movements in accordance to skill acquisition remains to be elucidated. Therefore, after familiarization 16 right-handed males with no experience in archery volunteered to perform repeated sports-specific movements, i.e. 40 arrow-releasing shots at 60s rest on a 15m distant standard target. Continuous, synchronised EEG and right limb EMG recordings during arrow-releasing served to detect movement onsets for RP analyses over distinct cortical motor areas. Based on attained scores on target, archery novices were, a posteriori, subdivided into a skilled and less skilled group. EMG results for mean values revealed no significant changes (all p>0.05), whereas RP amplitudes and onsets differed between groups but not between motor areas. Arrow-releasing preceded larger RP amplitudes (p<0.05) and later RP onsets (p<0.05) in skilled compared to less skilled novices. We suggest this to reflect attentional orienting and greater effort that accompanies central neuronal preparatory states of a sports-specific movement.

  12. Cocaine increases dopaminergic neuron and motor activity via midbrain α1 adrenergic signaling.

    PubMed

    Goertz, Richard Brandon; Wanat, Matthew J; Gomez, Jorge A; Brown, Zeliene J; Phillips, Paul E M; Paladini, Carlos A

    2015-03-13

    Cocaine reinforcement is mediated by increased extracellular dopamine levels in the forebrain. This neurochemical effect was thought to require inhibition of dopamine reuptake, but cocaine is still reinforcing even in the absence of the dopamine transporter. Here, we demonstrate that the rapid elevation in dopamine levels and motor activity elicited by cocaine involves α1 receptor activation within the ventral midbrain. Activation of α1 receptors increases dopaminergic neuron burst firing by decreasing the calcium-activated potassium channel current (SK), as well as elevates dopaminergic neuron pacemaker firing through modulation of both SK and the hyperpolarization-activated cation currents (Ih). Furthermore, we found that cocaine increases both the pacemaker and burst-firing frequency of rat ventral-midbrain dopaminergic neurons through an α1 adrenergic receptor-dependent mechanism within the ventral tegmental area and substantia nigra pars compacta. These results demonstrate the mechanism underlying the critical role of α1 adrenergic receptors in the regulation of dopamine neurotransmission and behavior by cocaine.

  13. BMAA selectively injures motor neurons via AMPA/kainate receptor activation.

    PubMed

    Rao, Shyam D; Banack, Sandra Anne; Cox, Paul Alan; Weiss, John H

    2006-09-01

    The toxin beta-methylamino-l-alanine (BMAA) has been proposed to contribute to amyotrophic lateral sclerosis-Parkinsonism Dementia Complex of Guam (ALS/PDC) based on its ability to induce a similar disease phenotype in primates and its presence in cycad seeds, which constituted a dietary item in afflicted populations. Concerns about the apparent low potency of this toxin in relation to estimated levels of human ingestion led to a slowing of BMAA research. However, recent reports identifying potential new routes of exposure compel a re-examination of the BMAA/cycad hypothesis. BMAA was found to induce selective motor neuron (MN) loss in dissociated mixed spinal cord cultures at concentrations ( approximately 30 muM) significantly lower than those previously found to induce widespread neuronal degeneration. The glutamate receptor antagonist NBQX prevented BMAA-induced death, implicating excitotoxic activation of AMPA/kainate receptors. Using microfluorimetric techniques, we further found that BMAA induced preferential [Ca(2+)](i) rises and selective reactive oxygen species (ROS) generation in MNs with minimal effect on other spinal neurons. Cycad seed extracts also triggered preferential AMPA/kainate-receptor-dependent MN injury, consistent with the idea that BMAA is a crucial toxic component in this plant. Present findings support the hypothesis that BMAA may contribute to the selective MN loss in ALS/PDC.

  14. A Delay between Motor Cortex Lesions and Neuronal Transplantation Enhances Graft Integration and Improves Repair and Recovery.

    PubMed

    Péron, Sophie; Droguerre, Marine; Debarbieux, Franck; Ballout, Nissrine; Benoit-Marand, Marianne; Francheteau, Maureen; Brot, Sébastien; Rougon, Geneviève; Jaber, Mohamed; Gaillard, Afsaneh

    2017-02-15

    We previously reported that embryonic motor cortical neurons transplanted immediately after lesions in the adult mouse motor cortex restored damaged motor cortical pathways. A critical barrier hindering the application of transplantation strategies for a wide range of traumatic injuries is the determination of a suitable time window for therapeutic intervention. Here, we report that a 1 week delay between the lesion and transplantation significantly enhances graft vascularization, survival, and proliferation of grafted cells. More importantly, the delay dramatically increases the density of projections developed by grafted neurons and improves functional repair and recovery as assessed by intravital dynamic imaging and behavioral tests. These findings open new avenues in cell transplantation strategies as they indicate successful brain repair may occur following delayed transplantation.SIGNIFICANCE STATEMENT Cell transplantation represents a promising therapy for cortical trauma. We previously reported that embryonic motor cortical neurons transplanted immediately after lesions in the adult mouse motor cortex restored damaged cortical pathways. A critical barrier hindering the application of transplantation strategies for a wide range of traumatic injuries is the determination of a suitable time window for therapeutic intervention. We demonstrate that a 1 week delay between the lesion and transplantation significantly enhances graft vascularization, survival, proliferation, and the density of the projections developed by grafted neurons. More importantly, the delay has a beneficial impact on functional repair and recovery. These results impact the effectiveness of transplantation strategies in a wide range of traumatic injuries for which therapeutic intervention is not immediately feasible.

  15. Plasticity in respiratory motor neurons in response to reduced synaptic inputs: A form of homeostatic plasticity in respiratory control?

    PubMed

    Braegelmann, K M; Streeter, K A; Fields, D P; Baker, T L

    2017-01-01

    For most individuals, the respiratory control system produces a remarkably stable and coordinated motor output-recognizable as a breath-from birth until death. Very little is understood regarding the processes by which the respiratory control system maintains network stability in the presence of changing physiological demands and network properties that occur throughout life. An emerging principle of neuroscience is that neural activity is sensed and adjusted locally to assure that neurons continue to operate in an optimal range, yet to date, it is unknown whether such homeostatic plasticity is a feature of the neurons controlling breathing. Here, we review the evidence that local mechanisms sense and respond to perturbations in respiratory neural activity, with a focus on plasticity in respiratory motor neurons. We discuss whether these forms of plasticity represent homeostatic plasticity in respiratory control. We present new analyses demonstrating that reductions in synaptic inputs to phrenic motor neurons elicit a compensatory enhancement of phrenic inspiratory motor output, a form of plasticity termed inactivity-induced phrenic motor facilitation (iPMF), that is proportional to the magnitude of activity deprivation. Although the physiological role of iPMF is not understood, we hypothesize that it has an important role in protecting the drive to breathe during conditions of prolonged or intermittent reductions in respiratory neural activity, such as following spinal cord injury or during central sleep apnea.

  16. Theoretical Model and Experimental Validation of the estimated proportions of common and independent input to motor neurons.

    PubMed

    Castronovo, A Margherita; Negro, Francesco; Farina, Dario

    2015-01-01

    Motor neurons in the spinal cord receive synaptic input that comprises common and independent components. The part of synaptic input that is common to all motor neurons is the one regulating the production of force. Therefore, its quantification is important to assess the strategy used by Central Nervous System (CNS) to control and regulate movements, especially in physiological conditions such as fatigue. In this study we present and validate a method to estimate the ratio between strengths of common and independent inputs to motor neurons and we apply this method to investigate its changes during fatigue. By means of coherence analysis we estimated the level of correlation between motor unit spike trains at the beginning and at the end of fatiguing contractions of the Tibialis Anterior muscle at three different force targets. Combining theoretical modeling and experimental data we estimated the strength of the common synaptic input with respect to the independent one. We observed a consistent increase in the proportion of the shared input to motor neurons during fatigue. This may be interpreted as a strategy used by the CNS to counteract the occurrence of fatigue and the concurrent decrease of generated force.

  17. Structural plasticity within highly specific neuronal populations identifies a unique parcellation of motor learning in the adult brain

    PubMed Central

    Wang, Ling; Conner, James M.; Rickert, Jessica; Tuszynski, Mark H.

    2011-01-01

    Cortical networks undergo adaptations during learning, including increases in dendritic complexity and spines. We hypothesized that structural elaborations during learning are restricted to discrete subsets of cells preferentially activated by, and relevant to, novel experience. Accordingly, we examined corticospinal motor neurons segregated on the basis of their distinct descending projection patterns, and their contribution to specific aspects of motor control during a forelimb skilled grasping task in adult rats. Learning-mediated structural adaptations, including extensive expansions of spine density and dendritic complexity, were restricted solely to neurons associated with control of distal forelimb musculature required for skilled grasping; neurons associated with control of proximal musculature were unchanged by the experience. We further found that distal forelimb-projecting and proximal forelimb-projecting neurons are intermingled within motor cortex, and that this distribution does not change as a function of skill acquisition. These findings indicate that representations of novel experience in the adult motor cortex are associated with selective structural expansion in networks of functionally related, active neurons that are distributed across a single cortical domain. These results identify a distinct parcellation of cortical resources in support of learning. PMID:21257908

  18. Motor neuron-astrocyte interactions and levels of Cu,Zn superoxide dismutase in sporadic amyotrophic lateral sclerosis.

    PubMed

    O'Reilly, S A; Roedica, J; Nagy, D; Hallewell, R A; Alderson, K; Marklund, S L; Kuby, J; Kushner, P D

    1995-02-01

    Copper, zinc superoxide dismutase (SOD1) is involved in neutralizing free radicals within cells, and mutant forms of the enzyme have recently been shown to occur in about 20% of familial cases of amyotrophic lateral sclerosis (ALS). To explore the mechanism of SOD1 involvement in ALS, we have analyzed SOD1 in sporadic ALS using activity assays and immunocyto-chemistry. Analyses of SOD1 activity in washed erythrocytes revealed no difference between 13 ALS cases and 4 controls. Spinal cord sections from 6 ALS cases, 1 primary lateral sclerosis (PLS) case, and 1 control case were stained using three different antibodies to SOD1. Since astrocytes are closely associated with motor neurons, antibodies to glial fibrillary acidic protein (GFAP) and vimentin were used as independent monitors of astrocytes. The principal findings from localizations are: (1) normal motor neurons do not have higher levels of SOD1 than other neurons, (2) there was no detectable difference in SOD1 levels in motor neurons of ALS cases and controls, (3) ALS spinal cord displayed a reduction or absence of SOD1-reactive astrocytes compared to the control and PLS cases, and (4) examination of GFAP-stained sections and morphometry showed that the normal close association between astrocytic processes and motor neuron somata was decreased in the ALS and PLS cases. These results indicate the disease mechanism in sporadic ALS may involve alterations in spinal cord astrocytes.

  19. Impaired astrocytic extracellular matrix distribution under congenital hypothyroidism affects neuronal development in vitro.

    PubMed

    Mendes-de-Aguiar, Cláudia Beatriz Nedel; Alchini, Ricardo; Zucco, Juliana Klein; Costa-Silva, Bruno; Decker, Helena; Alvarez-Silva, Marcio; Tasca, Carla Inês; Trentin, Andréa Gonçalves

    2010-11-15

    Astrocytes clearly play a role in neuronal development. An indirect mechanism of thyroid hormone (T3) in the regulation of neuronal development mediated by astrocytes has been proposed. T3 alters the production and organization of the extracellular matrix (ECM) proteins and proteoglycans, producing a high-quality substrate for neuronal differentiation. The present study investigated the effect of hypothyroidism on the astrocyte production of fibronectin (FN) and laminin (LN) as well as their involvement in neuronal growth and neuritogenesis. Our results demonstrated that the amount of both FN and LN were significantly reduced in cultures of hypothyroid astrocytes from rat cerebellum compared with normal cells. This effect was accompanied by reduced numbers of neurons and neuritogenesis. Similarly, the proportions of neurons and neurons with neurites were reduced in cultures on ECM prepared from hypothyroid astrocytes in comparison with normal cells. The proportion of both normal and hypothyroid neurons is strongly reduced in astrocyte ECM compared with cocultures on astrocyte monolayers, suggesting that extracellular factors other than ECM proteins are involved in this process. Moreover, treatment of hypothyroid astrocytic cultures with T3 restored the area of both FN and LN immunostaining to normal levels and partially reestablished neuronal survival and neuritogenesis. Taken together, our results demonstrated that hypothyroidism involves impairment of the astrocytic microenvironment and affects the production of ECM proteins. Thus, hypothyroidism is implicated in impaired neuronal development.

  20. Identification of nonviable genes affecting touch sensitivity in Caenorhabditis elegans using neuronally enhanced feeding RNA interference.

    PubMed

    Chen, Xiaoyin; Cuadros, Margarete Diaz; Chalfie, Martin

    2015-01-09

    Caenorhabditis elegans senses gentle touch along the body via six touch receptor neurons. Although genetic screens and microarray analyses have identified several genes needed for touch sensitivity, these methods miss pleiotropic genes that are essential for the viability, movement, or fertility of the animals. We used neuronally enhanced feeding RNA interference to screen genes that cause lethality or paralysis when mutated, and we identified 61 such genes affecting touch sensitivity, including five positive controls. We confirmed 18 genes by using available alleles, and further studied one of them, tag-170, now renamed txdc-9. txdc-9 preferentially affects anterior touch response but is needed for tubulin acetylation and microtubule formation in both the anterior and posterior touch receptor neurons. Our results indicate that neuronally enhanced feeding RNA interference screens complement traditional mutageneses by identifying additional nonviable genes needed for specific neuronal functions.

  1. From neurons to epidemics: How trophic coherence affects spreading processes

    NASA Astrophysics Data System (ADS)

    Klaise, Janis; Johnson, Samuel

    2016-06-01

    Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models—one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network—and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes.

  2. Botulinum Neurotoxins A and E Undergo Retrograde Axonal Transport in Primary Motor Neurons

    PubMed Central

    Manich, Maria; Bercsenyi, Kinga; Menendez, Guillermo; Rossetto, Ornella; Caleo, Matteo; Schiavo, Giampietro

    2012-01-01

    The striking differences between the clinical symptoms of tetanus and botulism have been ascribed to the different fate of the parental neurotoxins once internalised in motor neurons. Tetanus toxin (TeNT) is known to undergo transcytosis into inhibitory interneurons and block the release of inhibitory neurotransmitters in the spinal cord, causing a spastic paralysis. In contrast, botulinum neurotoxins (BoNTs) block acetylcholine release at the neuromuscular junction, therefore inducing a flaccid paralysis. Whilst overt experimental evidence supports the sorting of TeNT to the axonal retrograde transport pathway, recent findings challenge the established view that BoNT trafficking is restricted to the neuromuscular junction by highlighting central effects caused by these neurotoxins. These results suggest a more complex scenario whereby BoNTs also engage long-range trafficking mechanisms. However, the intracellular pathways underlying this process remain unclear. We sought to fill this gap by using primary motor neurons either in mass culture or differentiated in microfluidic devices to directly monitor the endocytosis and axonal transport of full length BoNT/A and BoNT/E and their recombinant binding fragments. We show that BoNT/A and BoNT/E are internalised by spinal cord motor neurons and undergo fast axonal retrograde transport. BoNT/A and BoNT/E are internalised in non-acidic axonal carriers that partially overlap with those containing TeNT, following a process that is largely independent of stimulated synaptic vesicle endo-exocytosis. Following intramuscular injection in vivo, BoNT/A and TeNT displayed central effects with a similar time course. Central actions paralleled the peripheral spastic paralysis for TeNT, but lagged behind the onset of flaccid paralysis for BoNT/A. These results suggest that the fast axonal retrograde transport compartment is composed of multifunctional trafficking organelles orchestrating the simultaneous transfer of diverse cargoes

  3. [The study of chronic partial denervation and quality of life in patients with motor neuron disease treated with semax].

    PubMed

    Serdiuk, A V; Levitskiĭ, G N; Miasoedov, N F; Skvortsova, V I

    2007-01-01

    The study of chronic partial denervation (CPD) and quality of life was carried out in 27 patients with definite, probable and possible diagnosis of motor neuron disease (MND) treated with semax (1% solution). The needle electromyography (EMG) was performed thrice with short-term 2 month interval (60 days before enrollment and on day 1 and day 48 of the study) in three muscles on bulbar, cervical and lumbosacral levels on the less affected side. According to Revised El-Escorial Criteria (1998) the needle EMG for diagnostic purposes was also performed in two muscles on the cervical and lumbosacral levels on the more affected side along with stimulation electroneuronmyography of motor and sensory fibers of the peripheral nerves of neck, upper and lower extremities. The open-label clinical trial of Semax (1% solution) was conducted in sequential groups of patients. The drug was administered intranasally in two 10-day-long courses with 2-weeks break in daily dose of 12 mg. Sixty days before enrollment, and on days 1, 10, 24, 34 and 48, patients were assessed by the Norris ALS, the ALS Functioning Rating Scale and the ALSAQ-40 quality of life in the ALS scale. It was shown that CPD on the early as well as on the late stages was characterized by forward-backward, but not unidirectional course, that did not allow to recommend the follow-up needle EMG with short-term interval for evaluation of drug efficacy monitoring. Early CPD stages were characterized by forward-backwards fluctuations reflecting the compensatory reinnervation process (a phenomenon of exchange of muscle fibers, more rational in view of reinnervation, between adjacent motor units) whereas on the late CPD stages these forward-backwards CPD fluctuations reflected the processes of progressive deterioration of muscle fibers and secondary demyelination of large motor axons. Semax (1% solution) does not influence either the course of CPD or the dynamics of clinical estimates, in particular the terms of ensuing

  4. HDAC6 Inhibitors Rescued the Defective Axonal Mitochondrial Movement in Motor Neurons Derived from the Induced Pluripotent Stem Cells of Peripheral Neuropathy Patients with HSPB1 Mutation

    PubMed Central

    Hong, Young Bin; Choi, Heesun; Kim, Jisoo; Choi, Hyunjung; Mook-Jung, Inhee; Ha, Nina; Kyung, Jangbeen; Koo, Soo Kyung

    2016-01-01

    The Charcot-Marie-Tooth disease 2F (CMT2F) and distal hereditary motor neuropathy 2B (dHMN2B) are caused by autosomal dominantly inherited mutations of the heat shock 27 kDa protein 1 (HSPB1) gene and there are no specific therapies available yet. Here, we assessed the potential therapeutic effect of HDAC6 inhibitors on peripheral neuropathy with HSPB1 mutation using in vitro model of motor neurons derived from induced pluripotent stem cells (iPSCs) of CMT2F and dHMN2B patients. The absolute velocity of mitochondrial movements and the percentage of moving mitochondria in axons were lower both in CMT2F-motor neurons and in dHMN2B-motor neurons than those in controls, and the severity of the defective mitochondrial movement was different between the two disease models. CMT2F-motor neurons and dHMN2B-motor neurons also showed reduced α-tubulin acetylation compared with controls. The newly developed HDAC6 inhibitors, CHEMICAL X4 and CHEMICAL X9, increased acetylation of α-tubulin and reversed axonal movement defects of mitochondria in CMT2F-motor neurons and dHMN2B-motor neurons. Our results suggest that the neurons derived from patient-specific iPSCs can be used in drug screening including HDAC6 inhibitors targeting peripheral neuropathy. PMID:28105056

  5. HDAC6 Inhibitors Rescued the Defective Axonal Mitochondrial Movement in Motor Neurons Derived from the Induced Pluripotent Stem Cells of Peripheral Neuropathy Patients with HSPB1 Mutation.

    PubMed

    Kim, Ji-Yon; Woo, So-Youn; Hong, Young Bin; Choi, Heesun; Kim, Jisoo; Choi, Hyunjung; Mook-Jung, Inhee; Ha, Nina; Kyung, Jangbeen; Koo, Soo Kyung; Jung, Sung-Chul; Choi, Byung-Ok

    2016-01-01

    The Charcot-Marie-Tooth disease 2F (CMT2F) and distal hereditary motor neuropathy 2B (dHMN2B) are caused by autosomal dominantly inherited mutations of the heat shock 27 kDa protein 1 (HSPB1) gene and there are no specific therapies available yet. Here, we assessed the potential therapeutic effect of HDAC6 inhibitors on peripheral neuropathy with HSPB1 mutation using in vitro model of motor neurons derived from induced pluripotent stem cells (iPSCs) of CMT2F and dHMN2B patients. The absolute velocity of mitochondrial movements and the percentage of moving mitochondria in axons were lower both in CMT2F-motor neurons and in dHMN2B-motor neurons than those in controls, and the severity of the defective mitochondrial movement was different between the two disease models. CMT2F-motor neurons and dHMN2B-motor neurons also showed reduced α-tubulin acetylation compared with controls. The newly developed HDAC6 inhibitors, CHEMICAL X4 and CHEMICAL X9, increased acetylation of α-tubulin and reversed axonal movement defects of mitochondria in CMT2F-motor neurons and dHMN2B-motor neurons. Our results suggest that the neurons derived from patient-specific iPSCs can be used in drug screening including HDAC6 inhibitors targeting peripheral neuropathy.

  6. Localization and expression of ciliary neurotrophic factor (CNTF) in postmortem sciatic nerve from patients with motor neuron disease and diabetic neuropathy

    SciTech Connect

    Lee, D.A.; Gross, L.; Wittrock, D.A.; Windebank, A.J.

    1996-08-01

    Ciliary neurotrophic factor (CNTF) is thought to play an important role in the maintenance of the mature motor system. The factor is found most abundantly in myelinating Schwann cells in the adult sciatic nerve. Lack of neuronal growth factors has been proposed as one possible etiology of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Growth factor replacement therapies are currently being evaluated as a treatment for motor neuron disease. In this report we determined whether the expression of CNTF in sciatic nerve differed in patients with motor neuron disease compared to controls or patients with another form of axonopathy. We identified 8 patients (7 with ALS and 1 with SMA) with motor neuron disease and 6 patients with diabetic motor neuropathy who had autopsy material available. Immunoperoxidase staining showed reduced CNTF expression in nerves of patients with motor neuron disease but not in patients with diabetic motor neuropathy. Decreased CNTF appears be associated with primary motor neuron disease rather than a generalized process of axon loss. This result supports suggestions that CNTF deficiency may be an important factor in the development of motor neuron disease. 20 refs., 4 figs., 1 tab.

  7. Distinct Etiological Roles for Myocytes and Motor Neurons in a Mouse Model of Kennedy's Disease/Spinobulbar Muscular Atrophy.

    PubMed

    Ramzan, Firyal; McPhail, Mike; Rao, Pengcheng; Mo, Kaiguo; Halievski, Katherine; Swift-Gallant, Ashlyn; Mendoza-Viveros, Lucia; Cheng, Hai-Ying M; Monks, D Ashley

    2015-04-22

    Polyglutamine (polyQ) expansion of the androgen receptor (AR) causes Kennedy's disease/spinobulbar muscular atrophy (KD/SBMA) through poorly defined cellular mechanisms. Although KD/SBMA has been thought of as a motor neuron disease, recent evidence indicates a key role for skeletal muscle. To resolve which early aspects of the disease can be caused by neurogenic or myogenic mechanisms, we made use of the tet-On and Cre-loxP genetic systems to selectively and acutely express polyQ AR in either motor neurons (NeuroAR) or myocytes (MyoAR) of transgenic mice. After 4 weeks of transgene induction in adulthood, deficits in gross motor function were seen in NeuroAR mice, but not MyoAR mice. Conversely, reduced size of fast glycolytic fibers and alterations in expression of candidate genes were observed only in MyoAR mice. Both NeuroAR and MyoAR mice exhibited reduced oxidative capacity in skeletal muscles, as well as a shift in fast fibers from oxidative to glycolytic. Markers of oxidative stress were increased in the muscle of NeuroAR mice and were reduced in motor neurons of both NeuroAR and MyoAR mice. Despite secondary pathology in skeletal muscle and behavioral deficits, no pathological signs were observed in motor neurons of NeuroAR mice, possibly due to relatively low levels of polyQ AR expression. These results indicate that polyQ AR in motor neurons can produce secondary pathology in muscle. Results also support both neurogenic and myogenic contributions of polyQ AR to several acute aspects of pathology and provide further evidence for disordered cellular respiration in KD/SBMA skeletal muscle.

  8. Identification of neuronal loci involved with displays of affective aggression in NC900 mice.

    PubMed

    Nehrenberg, Derrick L; Sheikh, Atif; Ghashghaei, H Troy

    2013-07-01

    Aggression is a complex behavior that is essential for survival. Of the various forms of aggression, impulsive violent displays without prior planning or deliberation are referred to as affective aggression. Affective aggression is thought to be caused by aberrant perceptions of, and consequent responses to, threat. Understanding the neuronal networks that regulate affective aggression is pivotal to development of novel approaches to treat chronic affective aggression. Here, we provide a detailed anatomical map of neuronal activity in the forebrain of two inbred lines of mice that were selected for low (NC100) and high (NC900) affective aggression. Attack behavior was induced in male NC900 mice by exposure to an unfamiliar male in a novel environment. Forebrain maps of c-Fos+ nuclei, which are surrogates for neuronal activity during behavior, were then generated and analyzed. NC100 males rarely exhibited affective aggression in response to the same stimulus, thus their forebrain c-Fos maps were utilized to identify unique patterns of neuronal activity in NC900s. Quantitative results indicated robust differences in the distribution patterns and densities of c-Fos+ nuclei in distinct thalamic, subthalamic, and amygdaloid nuclei, together with unique patterns of neuronal activity in the nucleus accumbens and the frontal cortices. Our findings implicate these areas as foci regulating differential behavioral responses to an unfamiliar male in NC900 mice when expressing affective aggression. Based on the highly conserved patterns of connections and organization of neuronal limbic structures from mice to humans, we speculate that neuronal activities in analogous networks may be disrupted in humans prone to maladaptive affective aggression.

  9. Mutations affecting the chemosensory neurons of Caenorhabditis elegans

    SciTech Connect

    Starich, T.A.; Herman, R.K.; Kari, C.K.

    1995-01-01

    We have identified and characterized 95 mutations that reduce or abolish dye filling of amphid and phasmid neurons and that have little effect on viability, fertility or movement. Twenty-seven mutations occurred spontaneously in strains with a high frequency of transposon insertion. Sixty-eight were isolated after treatment with EMS. All of the mutations result in defects in one or more chemosensory responses, such as chemotaxis to ammonium chloride or formation of dauer larvae under conditions of starvation and overcrowding. Seventy-five of the mutations are alleles of 12 previously defined genes, mutations which were previously shown to lead to defects in amphid ultrastructure. We have assigned 20 mutations to 13 new genes, called dyf-1 through dyf-13. We expect that the genes represented by dye-filling defective mutants are important for the differentiation of amphid and phasmid chemosensilla. 58 refs., 3 figs., 6 tabs.

  10. Mutations Affecting the Chemosensory Neurons of Caenorhabditis Elegans

    PubMed Central

    Starich, T. A.; Herman, R. K.; Kari, C. K.; Yeh, W. H.; Schackwitz, W. S.; Schuyler, M. W.; Collet, J.; Thomas, J. H.; Riddle, D. L.

    1995-01-01

    We have identified and characterized 95 mutations that reduce or abolish dye filling of amphid and phasmid neurons and that have little effect on viability, fertility or movement. Twenty-seven mutations occurred spontaneously in strains with a high frequency of transposon insertion. Sixty-eight were isolated after treatment with EMS. All of the mutations result in defects in one or more chemosensory responses, such as chemotaxis to ammonium chloride or formation of dauer larvae under conditions of starvation and overcrowding. Seventy-five of the mutations are alleles of 12 previously defined genes, mutations which were previously shown to lead to defects in amphid ultrastructure. We have assigned 20 mutations to 13 new genes, called dyf-1 through dyf-13. We expect that the genes represented by dye-filling defective mutants are important for the differentiation of amphid and phasmid chemosensilla. PMID:7705621

  11. Brivaracetam Differentially Affects Voltage-Gated Sodium Currents Without Impairing Sustained Repetitive Firing in Neurons

    PubMed Central

    Niespodziany, Isabelle; André, Véronique Marie; Leclère, Nathalie; Hanon, Etienne; Ghisdal, Philippe; Wolff, Christian

    2015-01-01

    Aims Brivaracetam (BRV) is an antiepileptic drug in Phase III clinical development. BRV binds to synaptic vesicle 2A (SV2A) protein and is also suggested to inhibit voltage-gated sodium channels (VGSCs). To evaluate whether the effect of BRV on VGSCs represents a relevant mechanism participating in its antiepileptic properties, we explored the pharmacology of BRV on VGSCs in different cell systems and tested its efficacy at reducing the sustained repetitive firing (SRF). Methods Brivaracetam investigations on the voltage-gated sodium current (INa) were performed in N1E-155 neuroblastoma cells, cultured rat cortical neurons, and adult mouse CA1 neurons. SRF was measured in cultured cortical neurons and in CA1 neurons. All BRV (100–300 μM) experiments were performed in comparison with 100 μM carbamazepine (CBZ). Results Brivaracetam and CBZ reduced INa in N1E-115 cells (30% and 40%, respectively) and primary cortical neurons (21% and 47%, respectively) by modulating the fast-inactivated state of VGSCs. BRV, in contrast to CBZ, did not affect INa in CA1 neurons and SRF in cortical and CA1 neurons. CBZ consistently inhibited neuronal SRF by 75–93%. Conclusions The lack of effect of BRV on SRF in neurons suggests that the reported inhibition of BRV on VGSC currents does not contribute to its antiepileptic properties. PMID:25444522

  12. Maternal creatine supplementation affects the morpho-functional development of hippocampal neurons in rat offspring.

    PubMed

    Sartini, S; Lattanzi, D; Ambrogini, P; Di Palma, M; Galati, C; Savelli, D; Polidori, E; Calcabrini, C; Rocchi, M B L; Sestili, P; Cuppini, R

    2016-01-15

    Creatine supplementation has been shown to protect neurons from oxidative damage due to its antioxidant and ergogenic functions. These features have led to the hypothesis of creatine supplementation use during pregnancy as prophylactic treatment to prevent CNS damage, such as hypoxic-ischemic encephalopathy. Unfortunately, very little is known on the effects of creatine supplementation during neuron differentiation, while in vitro studies revealed an influence on neuron excitability, leaving the possibility of creatine supplementation during the CNS development an open question. Using a multiple approach, we studied the hippocampal neuron morphological and functional development in neonatal rats born by dams supplemented with 1% creatine in drinking water during pregnancy. CA1 pyramidal neurons of supplemented newborn rats showed enhanced dendritic tree development, increased LTP maintenance, larger evoked-synaptic responses, and higher intrinsic excitability in comparison to controls. Moreover, a faster repolarizing phase of action potential with the appearance of a hyperpolarization were recorded in neurons of the creatine-treated group. Consistently, CA1 neurons of creatine exposed pups exhibited a higher maximum firing frequency than controls. In summary, we found that creatine supplementation during pregnancy positively affects morphological and electrophysiological development of CA1 neurons in offspring rats, increasing neuronal excitability. Altogether, these findings emphasize the need to evaluate the benefits and the safety of maternal intake of creatine in humans.

  13. Melatonin inhibits manganese-induced motor dysfunction and neuronal loss in mice: involvement of oxidative stress and dopaminergic neurodegeneration.

    PubMed

    Deng, Yu; Jiao, Congcong; Mi, Chao; Xu, Bin; Li, Yuehui; Wang, Fei; Liu, Wei; Xu, Zhaofa

    2015-02-01

    Excessive manganese (Mn) induces oxidative stress and dopaminergic neurodegeneration. However, the relationship between them during Mn neurotoxicity has not been clarified. The purpose of this study was to investigate the probable role of melatonin (MLT) against Mn-induced motor dysfunction and neuronal loss as a result of antagonizing oxidative stress and dopaminergic neurodegeneration. Mice were randomly divided into five groups as follows: control, MnCl2, low MLT + MnCl2, median MLT + MnCl2, and high MLT + MnCl2. Administration of MnCl2 (50 mg/kg) for 2 weeks significantly induced hypokinesis, dopaminergic neurons degeneration and loss, neuronal ultrastructural damage, and apoptosis in the substantia nigra and the striatum. These conditions were caused in part by the overproduction of reactive oxygen species, malondialdehyde accumulation, and dysfunction of the nonenzymatic (GSH) and enzymatic (GSH-Px, superoxide dismutase, quinone oxidoreductase 1, glutathione S-transferase, and glutathione reductase) antioxidative defense systems. Mn-induced neuron degeneration, astrocytes, and microglia activation contribute to the changes of oxidative stress markers. Dopamine (DA) depletion and downregulation of DA transporter and receptors were also found after Mn administration, this might also trigger motor dysfunction and neurons loss. Pretreatment with MLT prevented Mn-induced oxidative stress and dopaminergic neurodegeneration and inhibited the interaction between them. As a result, pretreatment with MLT significantly alleviated Mn-induced motor dysfunction and neuronal loss. In conclusion, Mn treatment resulted in motor dysfunction and neuronal loss, possibly involving an interaction between oxidative stress and dopaminergic neurodegeneration in the substantia nigra and the striatum. Pretreatment with MLT attenuated Mn-induced neurotoxicity by means of its antioxidant properties and promotion of the DA system.